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Abstract

Clunhy twon entegorienl progeamming language basml on distributive eatogorbos (1 1he neo
ol Sl nud Lnwvere) with strong datatypes (in Lo sonse of Hagino). Disleibubive calegorbon
cote witle a term logie which cnn expross most, standard programs; and they are hinduinent ol
o conputon scionee hocnuso they pertiit proof by cone analysis and, when strong datulypen nis
ndtoduced, prool by stractural induction.

Charlty n Tunetional nnd polymorphic in style, and in strongly norranlizing As n culeporkonl
progrvmutng lungunge it provides a unique marringe of computer sclonee and niathenntl o
thought  The above aspocts ace particalarly important for the production of vertlied progrnng
nu Lhe nnburality of morphistms gives un “theorenms for free” | termination proofs nre not peguied
nied st hemathicnl spocifieations ean be used.

( Introduction

FoncHonnl wnd Togle programming langunges have rodueoad the gap batween theory and imphonn i
Futtone by coduchig Che notational movement from mthomatles to progrian, but some alpaiilooan
page potalet Tw particular, the wie of general rocursion, which producen “Hwed polnte Wt
ettt e of Chene languages huplios thal they roprosent a pecullar verston ol mat hematicos

I'he Lo charity starts from Uhe basis Chat one can and should actually Jnnpdement ofanla
mnthemntion without trickery, "Thun, we eliminade the uncomfortable trannition

'
dinerete mathematles " Program
By bnatng, Che diicrete mathomation in distributive eatogories and making the progranimbng g
chatlty which makes them the e puesait.
ol Waltern, Steve Schanuel, BilE Lawvere, and Robin Cockett had all obrerved that ol il
e vantlows rontn of eategorles availuble distributive categorien seem 1o hiave cwictly Hie iipht




properties for doing computer science. Indeed, Robin Cockett had observed that the subject of
discrete structures was really! about the properties of (the initial) distributive category with list
arithmetic{Coc90].

Currently one of the most unsatisfactory aspects of software development is the movement from
specification to program. There are various factors which exacerbate the achievement of a smooth
transition. A fundamental problem is that, while one wants the specification to be in a language
which is generally understandable, this is often in conflict with the requirement that it be rigorous
and implementable.

The solution which seems to be emerging has been to link up formal mathematical methods
more closely with programming. The idea being that if a specification is essentially a piece of
mathematics it will be rigorous and, on the other hand, readable as we have been taught to read
mathematics! Whatever one thinks of such a solution, it is clear that there is considerable value
to the idea. There is, after all, a wealth of mathematical understanding out there which could be
useful in developing specifications.

The point of charity is that it is an uncompromising implementation of constructive discrete
mathematics. While it is certainly possible to implement constructive discrete mathematics in a
functional language, it is not the case that the semantics of these languages embody constructive
discrete mathematics. Certainly, there is a logic underlying functional (and imperative) program-
ming, but it is not the logic which underpins or indeed is even compatible with the vast majority
of our mathematical training. In fact, mathematically speaking it is decidedly peculiar!

In mathematics, functions are total, however, when programming over an imperative or func-
tional language, one does have to be careful to avoid the production of non-terminating programs.
As charity has a semantics which is compatible with this mathematical intuition one cannot write
a non-terminating program. This is not to say that everything is automatically correct but rather
that a subtle and all pervading source of incorrectness has been eliminated. For the program verifier
this means that the hard proof of termination is no longer required.

The adoption of categorical or type theoretic languages like charity requires a change of the
programming paradigm. In particular, general recursion, which is an absolutely fundamental tool
in modern computer science thought, is not explicitly allowed in these paradigms. While charity is
still under development, we already know that not using general recursion is possible theoretically,
pragmatically, and practically. However, much work remains to bring this paradigm incisively to
bear on practical applications.

2 Preliminaries

A recent trend in computer science is to see a category as being the proof theory of some known
logic. Thus, cartesian closed categories are the proof theory of intuitionistic propositional logic,
s—autonomous categories of the multiplicative fragment of linear logic. As computer scientists have
often seen the usefulness of logic (implying that a similar statement concerning category theory is
more tendentious) this provides a convenient justification of the use of categories. We may start
therefore by asking rather cynically “for what logic are distributive categories the proof theory?”
Fortunately, there is such a logic and it is the (A, V)-fragment of propositional logic — or at least

1A computer scientist was asked what struck him most about category theorists. He replied that they always told
him what subjects, which he had been studying for some time, were really about and this really annoyed him.



morally so!

We shall start by explaining what a distributive category is. This is somewhat complicated by
the fact that there are several different shades of distributive categories with embedding theorems
allowing one to slip relatively smoothly between them. We start with predistributive categories:
a distributive category is a completion of this basic concept (in the same sort of sense that the
complex numbers are a completion of the real numbers). We shall assume that everyone knows
what a category is and what a product and coproduct are.

2.1 Notation

Roman font, lower-case italics and upper-case italics will be used to indicate items with predefined
meanings, variables for maps and type variables respectively. If f: X — Y and ¢ : Y — Z then
the composition of the maps will be written, using the algebraic order, f;g.

The notation used for maps associated with the product and coproduct will be:

identity 1: X— X
terminal map ' Z7—1
product factorizer (z,9): W—XxY
first projection Po: XxY —X
second projection Pi: XxY —Y

product symmetry ¢ = (P1,Pp): X XY —Y x X
product diagonal map A =(1,1): X — X xX

coproduct factorizer (v]iw)y: X+4Y —W
first coprojection bo: X —X+Y
second coprojection b1: Y—X+Y

where

z:W—X,y:W—Y, v: X —Wandw:Y —W

and these satisfy the standard equations

! =

(,9);Po
("”'ay>;pl
(z;Po,z; P1)
bo; (v | w)
bi;{v | w
(bo;z | bi;)

|
8 g < 8a s

2.2 Predistributive categories

A predistributive category is a category with finite products and binary coproducts such that

the map
(boX1| b1 x1l): (AXxX)+(BxX)— (A+B)xX

is invertible. When coproducts satisfy this we shall call them sums. In particular, given any maps:

f:AXxX —C and ¢g:BxX —C



there is a unique map
case{f,9} :(A+ B)x X — C

defined by case{f,g} = (bo X1 | b1 x1)7%;(f | g). This can be thought of as the if...then...else
program control construct: “if the value is in the first case do f else do g.” It is precisely the ability
of distributive categories to express control which makes them so applicable to computer science.

2.3 Proof theory

The way in which predistributive categories arise as the proof theory of the (A, V)-fragment of
propositional logic is as follows:

Axiom

AFA

Logical Rules
Artrue

I'B T+C . .
= A-intro. and elim.
'—
T'FBAC I‘MBXC

identity

truth

ATl'+C B,J+C
AVBItC
Structural rules

V-intro. and elim.

axr—Lec Bxr—f.c
case{f,g}:(A+B)x'—C

R
I',A,B,AFC PxAxBXxA—+C
T,B,AAFC exchange Ixc X L;RDXBXAXA——C
3

I'A,A-C . I'xAXA—=+C
Tarc contraction  {LARTXA—C

T+B . r—t.p
T,AFB weakening PohTxA—B
Cut Rule
TFA  AAFB cut r—e4 Axa—4+B

TLAFB fx1;g:’'xA—B

2.4 A remark on abstract data structures

Bob Walters particularly has exploited the presence of control in describing how the specification of
data structures can be accomplished using the language of distributive categories. The specification
of a stack in a distributive category may be expressed as follows:

Sorts:
A,stack(A)
Operations:
empty: 1 --> stack(A),
push: A * stack(A) --> stack(4),
pop: stack(A) --> 1 + A * stack(Ad)
Equations:
(empty | push) ; pop
pop ; (empty | push)

1,
i

This is a short sweet specification compared to others in the literature: it says that a stack on
A is any object with elements which are either empty or of the form push(A,X). The specification



done for a general type A does not introduce any extraneous types, and all its models are what we
intuitively expect stacks to be!
2.5 Distributive categories

A category is distributive (in the sense of Schanuel and Lawvere) in case it is finitely complete
and has binary coproducts satisfying the following diagrammatic condition:

A f! B q c'

whenever the lower row is a coproduct, squares (1) and (2) are pullbacks if and only if the top row
is a coproduct.

A distributive category is certainly predistributive. There are many examples of distributive
categories: the category of sets, Set, and any topos, topological spaces, the dual of the category of
commutative rings, finitely complete bicartesian closed categories (with inhabited non-empty types)
and formal categories of datatypes. The last example being the motivation behind this work.

Observe that the coproduct embeddings in a distributive category must be monic by considering:

A —b .44p b B

! pb 4+ pb !

true 1+1 false

and using the fact that any map from the final object is monic so that its pullback along !+! must
be monic.

Considering, the pullback of the two embeddings into a coproduct we have an object 0 given
by the left-hand pullback below:

0 0 1 1 1
! pb false pp 1
true 1+1 false



This is an initial object. From the fact that the top row is a coproduct it follows that 0 + 1 = 1.
However, this gives

0 —b0 .o+p—P1L__ B

1 pb 1+ pb !

0 bo 0+1 B 1

in which the embeddings by are isomorphisms.

Any two different maps P — B will provide two different maps P + B to B, whose second
component is the identity. If by : B — P + B is an isomorphism it follows that no two such maps
can exist. If by : B — P + B is an isomorphism for every B then there can be at most one map
from P to B. In other words P is a preinitial object (at most one map to any other object).

The object 0 is therefore preinitial. However, there always is a map bo;bl'] :0—0+B— B
and so it is an initial object. Furthermore, it is a strict initial object (in the sense that any
map with codomain 0 is an isomorphism) as any object P with a map to it is preinitial because
b1 : B — P + B is necessarily an isomorphism by pulling back over 0 + 1.

This means that the coproduct in a distributive category is disjoint and universal. In fact,
having disjoint universal coproducts implies the category is distributive.

As the defining diagrammatic condition of a distributive category is connected it will hold in any
slice category. This means that if X is a distributive category then X/A is a distributive category.

We shall assume for the rest of this report that we are working in a distributive category.

3 Datatypes and term logic

The initial distributive category is the category of finite sets. While this is a very interesting
category it is not sufficiently rich to model the data structures commonly used in computer science.
Thus, we need to show how we may add datatypes in the sense of Hagino.

The purpose of this section is not only to introduce these datatypes but also to introduce the
term logic which is used for their manipulation.

3.1 Number and list arithmetic

A distributive category has number arithmetic if it has a strong natural number object. A
strong natural number object (A,0,s) has an element 0 : 1 — AN and a successor map
s: N'— N. Such that given any f : X — C and endomorphism g : C — C there is a unique
map foldV {f, g} such that



1.
X <"0’1)./\f><X sX1 Arxx

gfold”{f,y} Efold”{f,g}
i i

c c

g
Morally speaking this is the wrong diagram it should really be

Ix X—O0X1 Ary xo8X1 Ay x

; ;

C CxX

g

However, by having X as a component of C in the first diagram we can obtain the effect of the
second diagram.

It is well-known that a natural number object present in this strong form allows the represen-
tation of all the primitive recursive functions. Indeed the initial cartesian category with a strong
natural number object is the formal theory of primitive recursive functions.

It is simple to see that a strong natural number object is preserved by slicing. In X /A the new
natural number object is [N x A—Ei A]. Furthermore, this is a strong natural number for X/A.

A distributive category with list arithmetic, a locos, is the categorical setting for discrete
structures. A distributive category has list arithmetic in case it has a strong list object for every
A. A strong list object for A, (list(A),nil, cons), has an element nil : 1 — list(A) and an action
cons : A x list(4) — list(A) such that given any f : 1Xx X — C and action g: (AXC)x X — C
there is a unique map fold™*{ f, g} making the following diagram commute:

1x XMLXLjigp(A) x X —consXl (4 xTist(A)) x X
fold!*t{ £, g} {0351 x fold™*{, g}, 1)

v ¥

C AxC)yx X

g

where 65 : (A x list(4)) x X — A x (list(A) x X);((2,9),2) = (z,(y,2)) is the associative
isomorphism. The notation 83 will be described in more detail later. A strong list object is an
algebraically free monoid in the sense of Max Kelly and has associated with it a multiplication
(given by append = fold"t{p,, Po; cons}). The list object on the final object is a strong natural
number object, thus, list arithmetic certainly implies number arithmetic. We would not expect the



reverse to be true, so it is a little surprising to discover how nearly it is true. It suffices to have
enough “A-infinite objects” to obtain the list arithmetic from number arithmetic[Coc91a].

If a distributive category has list arithmetic then all its slice categories will have list arithmetic.
This is a non-trivial observation.

3.2 Datatypes

Both the strong natural number object and the list datatype are examples of the general notion of
an initial datatype which was introduced by Tatsuya Hagino in his thesis[Hag87]. Gavin Wraith
somewhat simplified the original system and declarations by assuming explicitly that the underlying
setting was a bicartesian closed category[Wra89]. In this treatment we take another direction and
assume that the underlying category is distributive and replace the closed requirement by the
assumption that the datatypes are strong. We also include final datatypes, which are the dual of
initial datatypes.
Initial datatypes are given by definitions of the form:

data L(A) — §=
G :El(A,S) — S

| ¢n:En(4,5)—S.

This says that the maps from the new type L(A) to a type S are determined by maps to § from the
types E1(A4,S), ..., En(A, S). The type variable A is usually taken to range over a power (a finite
product) of the given category. The object L(A) comes equipped with canonical maps

¢;: E;(A,L(A)) — L(A)

whose type is obtained by setting S = L(A) in the declaration. These are called constructors.
The functor L is called the type construction of the datatype. The datatype is given by the pair
(L, c) of construction and constructors.

With respect to these maps the datatype satisfies the following universal property: given g; :
Ei(A,Y) x X — Y there is a unique map fold“{gy,...,g,}, such that the following diagram
commutes:

E(A,L(A)x X 51 L(A)x X
(65, P1)
E(AL(A) x X)x X gfoldL
Ei{1,foldl) x 1}
; ;
Ei(A,Y) x X 9i Y



where O}E;‘ = 6% E{po,1} and the subscripted R means to use the strength in the recursive
argument only, that is, where L(A) occurs. In the datatype (L, c), the construction L is necessarily
a strong functor. It is well-known that if a category has products (or sums) and has initial datatypes
then the constructors form a coproduct cone. For strong initial datatypes we have the stronger
result: if (L,¢) is an initial strong datatype then the constructors form a sum (where we use the
term sum, as before, to indicate that the product distributes over this coproduct).

The strength of the type constructor L is defined uniquely by the following diagram:

Ei(A,L(A) x X ¢ x1 L(A) x X
(65", P1)
E(A LA X X)x X 0L
E{1,6%} x 1

: v
\j
E{A L(Ax X)x X

E{(Ax X,L(Ax X)) L(Ax X)

625
The subscripted ~R on the strength means to use the strength in the non-recursive arguments only.

Notice that
i x Lmap"{f} = e x1;6%L{f}
= (0%,p1); E{1,05} x 1;05; ¢;; L{f} by definition
= (OIE%‘, P1); 05;%; E{1,6%};¢;; L{f} naturality of Hf;'i

Ci

= 0% E{1,6"};ci; L{f} corollary 3.4 below
= 0%, E{1,6"}; E{f, L{f}};ci naturality of ¢;
= 05 E{f, 0% L{f}};ci functorality of E;

= map”{f,map"{f}};c;

where 8F; E;{z,y} and 8%; L{z} are combined to give the map combinators map¥{z,y} and
mapZ{z} for the map operation which will be discussed again later. The equation also gives an
optimized rewrite rule for the map combinator which will be used in the formulation of the abstract
machine.

Final datatypes are given by definitions of the form:

data S — R(A)=
d:5 — F(4,5)
| dn:8 — Fu(4,5).

Dual to the initial datatypes, this says that the maps from S to the new type R(A) are determined
by maps from S to the types F;(4,5), ..., Fn(A, §). Again, the type variable A is taken to range over



a power (a finite product) of the given category. The object R(A) comes equipped with canonical
maps

d; : R(4) — Fy(4, R(4))
whose type is obtained by setting § = R(A) in the declaration. These are called destructors. The
functor R is called the type constructor of the datatype.

The datatype satisfies the following universal property: given g; : § x X — F;(4, 5) there is
a unique map unfoldR{gl, ..y gn}, such that the following diagram commutes:

Sx X (9:P1) | pea,s)x X
o
unfolng Fi(A,S x X)
{F(1, unfold®)
e
R(4) - Fi(A, R(4))
The strength of the type constructor R is defined uniquely by the following diagram:
Fi
R(A)x X dixl _ paRAYxX rPUpoax x, R(A) x X
o
oRg F(Ax X,R(A) x X)
Fi{1,6%}
e
R(A X X) ? Fi(Ax X,R(A X X))
Notice that
mapR{h};d; = 6OF;R{h};d;
= d; x 1;{6%,p,); 05; F{1,68}; F;{h, R{k}} by definition
= d; x 1;05; F{1,6%}; F{h, R{h}} corollary 3.4 below
= d; x 1;65; F{h,0%; R{h}} functorality of F;

d; x 1;map™ {h, mapR{h}}.

10



As with the initial datatypes, this identity will be used to give an efficient rewriting rule for the
abstract machine.
The achieve the above equalities we need the following results.

Definition 3.1 A bifunctor F : A x B — C is strong if there is a natural transformation Gﬁ"B, x:
F(A,B)x X — F(A x X,B x X).

Definition 3.2 A bifunctor F : A X B — C is bistrong if F(_, B) and F(A,_) are strong.

Proposition 3.3 A bifunctor is strong if and only if it is bistrong and

(F(A,B)x X)xY 3 (F(A,B)xY)x X

F( B)
0,y ' x1
Ip x 1 o

F(A,BxX)xY F(AxY,B)xX

F(AXY,_
0F(_,BxX) aBSXX )
AY

F(AXY,Bx X)
commutes, where s = ({Po; Po, P1); Po; P1).
Corollary 3.4 (Og‘,Pl); 05}; = 0% and (Gf}{,Pl);og‘ = 5,

Proof. 95}; and 02" strengthen the first and second components of the bifunctor F; : Ax C — C
and so are %(=C) and 9Fi(4-) respectively. Thus,
<ogi,p1>; 0-%2
OBy 8
1x Aja; Gg';}((A") X 1;0ff§;’cxx)
0%,

Similarly, we can prove that (%%, p,); 65 = 9%,

11



3.3 Term logic

It is sometimes convenient to describe the maps of a distributive category using a term logic.
This removes the necessity to specify projections and can provide more natural looking proofs and
programs. The term logic used here is the term logic of cartesian categories augmented with an
appropriate notation for the sum and any other datatypes which have been declared. The notation
used for maps from the sum is:

el ) X 41.8) — i - {2 7 Mo

In the combinator (or categorical notation) and term logic we shall use braces (which we shall
often omit together with their contents when they can be inferred from the context) to enclose the
arguments of a map whose definition is dependent on other maps (such as the arguments {f, ¢} in
case{f, g} above).

For the number arithmetic of the setting we shall sometimes use the special term notation

n{f,g}: N x X — X;(n,z)~ ¢"(f(2)).
This notation suggests that the following equations should hold and they do:

@) = 2
ff(@) = )
@) = ()
(M=) = M)
For the initial datatype declared above there is a sum which is determined by its constructors.

We may determine a map by its definition on each constructor. This gives the case expression
of the charity programming language:

a(a) = fi(z1,2)
caseL{f1, ., fu} : L(A) x X — Y; (z,2) — : (2)
Cn(zn) = fn(znyz)
where f;: Ei(A,L(A)) — Y.
The fold operation is written as
a:zn — gi(z,2)
foldL{g1, ..., gn} : L(A) x X — C;(z,z) — : (2)
CnizZn — gn(Zn,2)
where g; : E;(A,C)x X — C.
The map expression will be written as
n = h(y,e)
map®{h1, ..., hm} : G(A1, e, Am) X X — G(B, ..., Bp); (2,2) — G : (2)
Ym hm(ym,x)

12






true +~ false
= : Bool — Bool;z — { false o true }(:c)
Notice that all of these maps are given by the case expression. For this simple declaration this is
the only expression of any significance. In fact, the fold operation and case expression coincide and
the map expression has no arguments and so is the projection. It is easy although tedious to show
that A, V, and - give Boolean algebra operations on Bool. The maps from any type to Bool are
then the propositions of that type and induce a simple logic for the setting.
From the point of view of programming the most recognizable construct which may be produced

when the Boolean datatype is present is the conditional:

1{p, f,9}: ¥ X (Xo x X1) —> z;(y,uo,zl))»»{ b 5((")’ }(p(y))

This says “if p then f else g.” It takes as parameters a proposition p : Y — Bool and two functions
f:Xo— Zand g: X; — Z.

4.2 Number Arithmetic
Probably the next most basic datatype is the natural numbers:

data N — X =
zero:1 — X
| succ: X — X

4.2.1 The case expression

Suppose we wish to express the map from N to A which is zero at zero and one elsewhere we

would write:
5N — N { Zero +—  Zero }(n)

succ(.) + succ(zero)

The meaning of this expression is literally “if n is zero the answer is zero else if n is the successor
of some ‘don’t care’ value set the answer to the successor of zero.” Thus, the case expression does
pattern matching on the structure of the term.

Here is another example of the use of the case expression in which we compute the predecessor

of a number:
Zero +> Zero
pred : N — Nin— { suce(n’) — ' }(n)

In this case again we output zero if n is zero, but this time on matching n and succ(n’) we output
n' the value obtained through the matching.

Here is a slightly more complex example which illustrates how one can use variables available
from outside the case factorization. We shall assume that we have defined # = y (monus). Then
note that one way of discovering whether = > y is by determining whether y = z is zero or not.
Thus, to determine the maximum of two numbers we have the following expression:

mm(n,m);NxNHN;(n,m)H{ o }(m*n).

suce(-) — m

14



Similarly, the expression for the minimum of two numbers is:

succ(-) — n

min(n,m):NxN—>N;(n,m)H{ zere. = m}(m*n).
However, this begs the question of how one expresses ~; for this we need the fold operation.

4.2.2 The fold operation

The fold operation of a datatype is the fundamental map associated with the datatype. Both the
case expression and the map expression can be obtained from it. However, this does not mean that
it is not worth having these last two present independently. They both have computational and
expressive value. We have already seen that the case expression is quite useful expressively; to see
why the map expression is useful we will have to wait until we discuss the list arithmetic. In the
meantime let us consider the fold itself.

To express the function which adds two numbers we have two alternatives:

+ : N XN — N;(n,m) — succ™(m)

or using the fold operation notation above:

+:N><N—>N;(n,m)v—>{]zem:() — m )E(")

succ:n’ +— suce(n’

where we regard the second (succ) phrase of the operation to be a map which is iterated n times
with starting conditions given by the first (zero) phrase. Clearly the first notation is much more
suggestive, however, it does not generalize to arbitrary datatypes which the second notation, of
course, does. For this reason we shall stress the latter syntax as this will lead into its use for more
general datatypes later.

There is another way of viewing the meaning of the latter expression which is very suggestive.
A natural number may be regarded as being a code in the sense that 2 means “take zero, apply
succ, apply succ” the expression in the curly brackets indicates how this code is to be modified.
Thus, on the instruction “take zero” one instead takes m and on the instruction “apply succ” one
instead performs the second phrase, in this case (confusingly) to apply succ. The point being as
the starting point is different the expression so interpreted computes n + m.

The expression for n = m is as follows

.. : zero: () — n
2N XN — N;(n,m) - ﬂ succ:n' > pred(n’) &(m)
In this case, regarding m as the code on the instruction “take zero” one instead takes n and on the
instruction “apply succ” one instead applies pred.
The expression for multiplication is of interest as it uses strength in the recursive (succ) phrase;
this would not be possible if we had used the first diagram in section 3.1 to give the fold operation:

succ:n' — n'+n

':NXNHN;(n,m)Hﬂ zero:() + zero [}(m)

15



This may be regarded as saying add n m times to zero. It is interesting to express multiplication
in the other syntax:
z -y =P1({(n,m) ~ (n,m + n)}¥(z, zer0))

which is not so nice!
Suppose we wish to create the proposition which tests whether a number is even. The way to
do this is to use -:

even : ' — Bool; n — ﬂ zero: () > true u(n),

succ:z — —(z)

which demonstrates how “regular” propositions on the natural numbers can arise. It is worth noting
that eventually every map on a finite number of states either becomes fixed or cycles. This makes
the regular propositions on the natural numbers eventually equivalent to a proposition of the form
“p divides n.”

The reader should try to write down the expression of other common arithmetic expressions
in this syntax: for example the exponential and truncated halving (harder). As a last example
consider the problem of writing factorial n:

zero : — (succ(zero), succ(zero
fac: N — ./V;n [ Po(ﬂ suce : (n',n(z; — Enl . 72, suc)(’:(m))( )) u ('n))
Notice that here we have had to resort to a state which is a pair of values in order to express
the factorial. This is needed as we need to have both the number we should multiply by and the
factorial so far and both are changing.

Burstall gives an alternative syntax for the fold expression in [Bur87] which exploits the use of
a cartesian closed setting.

4.3 List arithmetic

The list datatype has the following definition:

data list(4) — X =
nil:1 — X
| cons:AXX — X

in which nil is the empty list and cons is the operation which adds a new element to the front of
the list.
4.3.1 The case expression

A map of classical interest is the following:

tail : list(A) —» list(A); z — { mil = nil }(z).

cons(,2') — 2

What this does is to throw away the head of the list should there be one. Compare this to
the map pred. Bearing in mind that list(1) is a natural number object we see that tail is the
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“generalization” of pred. Notice also that tail is not the pop of a stack although a simple way of
implementing a stack is as a list.

A more complex use of the case expression is as follows: given a list of numbers return the sum
of the first two numbers in the list. If the list does not contain two numbers return zero. This map
is given by the following expression:

nil — zero

filist(V) — Nz cons(no, ') 1 { nil +— zero }(z’) (2)

cons(ny,-) +— ng+mny

which shows how the case expressions can be nested.

The simple pattern matching available for the case expression required that the case statements
be nested in the above example. The ability to do more complex pattern matching is possible, but
is not available yet.

4.3.2 The fold operation

The operation of appending two lists is given by the following fold operation:

. . . nil : — 2
append : list(A) x list(A) — list(A); (21, 22) — {] cons : (9:,;8 s cons(z, y) [}(zl)

In the same way that tail generalizes pred, the operation of appending two lists generalizes addition.
Appending is confusing in exactly the same way as addition is confusing, as the second phrase in
the fold operation uses the map cons. A useful way to regard this expression is to think of the list
271 as being the code “take the empty list, push a, onto the list, push a,—; onto the list, ... , push
a; onto the list.” The two phrases of the fold operation then modify this code so that instead of
starting with the empty list one starts with the list z; and then replacing each of the “push a; onto
the list”s with (the same) “push a; onto the list.”

A common thing one wants to do with lists is to reverse them. We shall show how to do this
two different ways. First we shall do the naive reverse:

nil: () ~ nil

reverse : list(A) — list(A); z — {] cons : (a,y) ~> append(y,cons(a, nil)) }(z)

It is well-known that this is inefficient as one repeatedly calls an append inside the second phrase
of the fold operation acting on z (order n?). Much more efficient is the following formulation of
reverse (order n):

reverse' : list(A) — list(A);
nil: () +~ (ni,z)

z — Py . o nil ~ (y0,91) (2))-
cons : (-, (%0, 41)) { cons(a,y;) +~ (cons(a,yo),¥]) }(yl)

Now we are claiming that they are the same maps, however we should really be able to prove this!
We shall return to this in the next section.
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Suppose that one has a list of lists, often one wants to flatten the list by appending all the inner
lists together. This operation can be defined by:

flatten : list(list(A)) — list(A); 2 — {] il () ol ﬂ (2)-

cons : (29,21) + append(zg,21)
For example this has the effect of taking

[[a1, a2, [}, [b1, b2]] = [a1, a2, b1, b2

This is the generalization of the map which sums the entries of a list of natural numbers. It is also
the “multiplication” of the list monad.

Perhaps the most common thing one wants to do with a list is to order the contents in some
manner; this can be done with the following naive insertion sort. We will suppose that we are given
a predicate p : X x X —s Bool which determines the order (true if > y): this will be used as a
parameter in the map. To create the map which orders a list of X’s it is first necessary to have a
map which inserts an element into its proper place in an ordered list:

insert{p} : X x list(X) — list(X);
nil: () +— (z,nil)

(z,2) +— cons( true — (z1,cons(zg, 21)) }(p(zo,fh)) (2))-

cons : (20,(z1,21)) = § pree ., (2o, cons(z1,21))

Notice that the map insert has the parameter p which allows this map to be general for all types
with an order (in fact any proposition p will do). Also note that pushdown is not as efficient as it
might be as it continues to do unnecessary comparisons after the inserted element has been placed
in the list; this can be remedied by using a flag in the state to signal when the element has been

inserted. The elements of the input list are then inserted, an element at a time, into the initially
empty ordered list:

insort{p} : list(X) — list(X); 2 — ﬂ cons 1(1;1’23 : ?Iilsert{p}(a:,zl) u(z)

4.3.3 The map expression

Suppose we have a list of numbers to which we want to add some other number. We could certainly
do this using the fold operation, however, there is a much more succinct expression for this using
the map expression:

list(NV) X N — list(NV); (2, n) — list{y — n + y}(2).

Now this may seem to be a somewhat trivial thing to want to do but it is surprising how often one
wishes to do something uniformly to every item of a list (or data structure).

For example suppose that one has two lists and one wants to form the list of all possible pairs
in which the first record is an item from the first list and the second record is an item from the
second list. This may be done as follows. First, form the list with each item a pair whose first
record is an item of the first list and second record a copy of the second list, next for each of these
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pairs form the list of pairs whose records are respectively the item from the first list and an item
from the second list. This will give a list of lists which must be flattened to obtain the list of pairs.
The expression for this is:

pairs : list(X) x list(Y) — list(X x Y); (20, 21) +— flatten(list{zo > list{z1 > (zo,21)}(21)}(20)).

Now suppose p: X x Y — Bool is some proposition then we might have asked for a list of pairs
for which p(z,y) = true. One way to obtain this list is as follows: first form all pairs then for each
pair in the list apply the map which gives the empty list if the pair is outside p and the singleton
list if it is inside p. Applying this uniformly to the list and then flattening will yield the desired
result. Set
-

filter{p} : list(X) — list(X); z — flatten(list{z — { f":ll;: N Ic:i)lns(x,ml) } (p(2)}(2))
then the map we want is pairs;filter{p}. These, of course, are the maps underlying list
comprehension[Wad90]. This leads us to believe that it is suitable to add monads to charity because
of the categorical basis of the system.

A further little example of the use of the map expression is given by the following: suppose we
want to know how many times an item occurs in a list. We could form the list of pairs whose first

record is the item and whose second record is an element of the list (map expression), then filter
with respect to the equality test and determine the length of the resulting list.

4.4 Trees and Quicksort

Given a list of data and a predicate we have seen how we can order the data using an insertion sort.
Here we show how charity can be used to sort a list of data using a method similar to Quicksort.
The algorithm takes a list of unsorted data; removes the first element as a pivot piv; and divides
the rest of the list [ into two lists {; and /3. Using a predicate p, each element z of [ is put in [y if
p(z, piv) and I, otherwise. Using natural numbers and the relation <, the effect would be:

3,1,5,3] = g/g\g

(1,3] (5]

The process is then applied to the sublists. When all that remains are the pivots and empty sublists,
the structure is a sorted binary tree with elements as the nodes and empty lists as the leaves. The
nodes can then be gathered to produce the sorted list.

VAN []/ AN > [1,3,3,5]
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To implement this in charity we need to declare a datatype to hold the intermediate trees from
above. This datatype is a binary tree where, if the input list is type list(A) then the nodes contain
elements of type A, and the leaves contain elements of type list( A).

data btree'(4) — X =
leaf : list(4A) — X
| node:(Xx(AxX)— X

This datatype definition suffices to implement the algorithm, but in order to present a map expres-
sion which has two phrases, the more general definition

data btree(4,B) — X =
leaf : A — X
| node: (X x(BxX))— X

will be used. The difference between the definitions is that in btree the leaf may contain data not
necessarily related to the type of data in the nodes. In fact, btree’ is an instantiation of btree (ie.
btree’(A) = btree(list(A), A)).

Solving the problem from the bottom up, a map is needed which splits a list using the pivot
and a predicate p : A x A — Bool (as in the insertion sort of section 4.3.2):

split_list{p} : list(B) x A — list(B) x (4 x list(B));
nil : ( (nil, (piv, nil))

) —
(1, piv) ) o | e = (b, (piv,cons(a, 1)) }(p(piv,a)) “

cons : (a, (11, (piv, ) false + (cons(a,ly),(piv,ls))

The state on which the fold operation acts is a triple: the first and third component are the lists
containing elements “less than or equal to” and “greater than” the pivot piv respectively; the pivot
is in the second component.
Next we define a map which extracts the pivot from a list and then divides the list using
split_list.
divide{p} : list(A) — btree(list(A), A);

l nil — leaf(nil) }(l)
{cons(a,tajl) — {(11,(11,12)) — node(leaf(l4), (a,leaf(ly))) }(split_]jst{p}(tail,a))

If the list  is empty an empty leaf is produced, otherwise a node with the pivot a and two leaves
containing the sublists /; and I3 is produced.

The map divide produces a tree type from the list type. Now we must apply divide to all the
leaves of the tree for which we may use the map expression of btree:

node_it{p} : btree(list(4), B) — btree(btree(list(A), A), B);

it btree{ ; — divide{p}(z) }(t)

=y

Notice how this map expression can perform two actions. This map will be applied to data of type
btree(a,b) where a and b are instantiated instances of A and B. The first and second phrases
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describe the actions to be performed on the elements of type a and b respectively, thus divide will
be applied to the leaves, and nodes will be left unchanged.

Since divide is applied to all the leaves of the tree, they will no longer contain lists of data,
but will instead contain trees of data; this is also reflected in the type definition of node.it where
list(A) becomes btree(list(4), A). To return the tree back to the proper form where leaves contain
lists of data, a map btreeflatten is used:

btree_flatten : btree(btree( A, B), B) — btree(A, B);

leaf : (b) — b
e {] node : (c,(a,c’)) +— node(c,(a,c’) ﬁ(t)
All of the leaves in the tree are replaced by the subtree that the leaf contains, effectively attaching
the top node of the subtree back into the tree.

The maps node_it and btree_flatten can be used to provide one pass of the sort, thus these maps
must be applied to the tree until all of the leaves contain empty lists (ie. the input elements are in
sorted order in the tree). When the number of passes is at least the number of input elements this
condition is met.

apply{p} : list(A) — btree(list(A), A);

zero: () w— leaf(l)
b ﬂ succ: (t) +— btreeflatten(node_it{p}(t)) E(length(l))

The map length : list(A) — N returns the length of the list.

After there have been enough passes, the ordered tree can be gathered to produce an ordered
list:
leaf : () — b

gather : btree(list(A), A) — list(A);t — ﬂ node : (I1,(a,l2)) — append(ly,cons(a,ls)) u(t)

The top level map, sort, requires a predicate p and the unordered list:
sort{p} : list(A) — list(A);! — gather(apply{p}(1)).

While the above algorithm implements the idea of Quicksort it fails to achieve the expected
nlogn complexity. The main reason for this is because node it and btree_flatten always work over
the whole tree when we only really need to be working on the leaves. The inefficiency is resolved
by using a right btree in section 4.6.

4.5 Infinite lists

Up to this point all of the examples have used left datatypes exclusively. The right datatypes allow
us to use possibly infinite data. Possibly the first infinite datatype that comes to mind is the infinite
list.
data S — inflist(A4) =
head : § — A
| tail: §-— S

An infinite list, which takes a state of type S and produces an infinite list of type A, is described
by the operations given for the head and tail.
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4.5.1 The unfold expression
The unfold expression can be used to define the increasing infinite list of natural numbers ( 0, 1,
2, .. )

. head : §
nats : 1 — inflist(NV); () — (]S > tail : suce(S) D (zero)

which says that the initial state is zero, the operation associated with head simply returns the state,
and the operation associated with tail increments the state.

Both the head and the tail threads have operations which can work on the state §. The operation
for head is not recursive (which is determined by the datatype declaration) and so returns a “value”
by applying the map of the head thread to the state, while the operation for tail, which is recursive,
produces a new state for the unfold expression.

head(nats) = zero

head(tail(nats)) = head (() — QS - ?:Ed suScc(S) I) (succ(zero))) = succ(zero)

We could also use the unfold expression to define an infinite list of the powers of 2 (2°,2!,22...)
by doubling the value of the previous state:

o head : §
powersof2 : 1 — inflist(NV); () — (]S S tail: S48 l) (zero).

4.5.2 The record expression

The record expression is useful for adding some constant data onto the front of an infinite list. If
we wanted to add an extra zero to the front of nats we could do it simply by:

zeronats : 1 — inflist(NV); () — (head : zero, tail : nats)

which would represent the infinite list (0, 0, 1, 2, ... ).

4.5.3 The map expression

The effect of using the map expression is conceptually the same as the map expression on finite
lists, in that it performs some operation on every element of the list. The difference is that the
map expression on infinite lists must be lazy as it would take a very long time to do an operation
on every element of an infinite list.

To get the infinite list of even numbers:

evens : 1 — inflist(N); () — inflist {z — z + z} (nats)
An alternative definition of getting the powersof2:

powersof2 : 1 — inflist(NV); () ~ inflist {z — 27} (nats)
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4.5.4 The Fibonacci Sequence

When working with finite objects an element of the Fibonacci sequence can be calculated by the
following defining equations

fib(0) = 1
fib(1) = 1
fib(n) = fib(n—1)+fib(n-2),n> 2.

Using an infinite list, we can conceptually create the whole sequence and then select the element
that we want. Then the Fibonacci sequence is (ag, a1, @2, ...) such that:

apg = 1
a = 1
Un = Gp-1 t 2,022

Using an unfold, the above definition is given simply by

fib : 1 — inflist(NV); () = (I(a:,y) - h(:g :(vy,z +1) D (1,1)

which uses a pair for the state: the first and second components contain the value of the current
element, and the next element respectively. The calculation of the new state (through the tail
thread) is done by making the old next element the new current element, and calculating the new
next element by adding the two old values together.

To get the nth value in the sequence (or any infinite list for that matter), we would do n tails
and then a head:

get : N x inflist(A) — A;(n, L) — head (ﬂ sui:(::r?(:lg : tLa.ll(L) E(n)) .

4.5.5 The Ackermann’s function

Using an infinite list of infinite lists to build an infinite table, we can define the Ackermann’s
function. This is significant because the initial datatypes had restricted us to the domain of
primitive recursive functions, but with the power of final datatypes we can define a combinator
which is not primitive recursive.

The defining equations for the Ackermann’s function are:

ack(0,n) = s(n) (1)
ack(s(m),0) = ack(m,1) (2)
ack(s(m),s(n)) = ack(m,ack(s(m),n)) (3)

Letting m and n be the column and row index respectively, equation 1 tells us that column 0
is an infinite list where the ith value is ¢ 4 1:
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That is column 0 is the infinite list of successive numbers starting from 1:
colp = tail(nats)

Equation 2 tells us that the values in row 0 of a column are the same as the value in row 1 of
the previous column.

Finally, equation 3 tells us that the value in position (s(m),s(n)) is the same as the value in
position (m,:) where ¢ is the value in position (s(m),n):

Thus, the value in position (1,1) is determined by taking the value 2 from position (1,0) and using
it as an index into the previous column.

Since, all values are determined by previously calculated values, we can generate the Acker-
mann’s table:

29

[0 1 2 3
01 23 5
12 3 5 13
203 4 7

To calculate column m we use the values from column m — 1:
coly, : inflist(NV) — inflist(N);

head : head(L)
tail : {newL > (head(newL) ~ nat,newL)}

zero: () — L #(nzt))

succ:s + tail(s)

L ||(nzt,L) —~ (pred(head(tail(L))), tail(L))
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The variable L is the previous column in the table. The variable nzt is used to store the offset
(number of tails needed) to the next value.
The Ackermann’s table is then simply the infinite list of all the columns:

ack_table : 1 — inflist(inflist(NV));

O~ GL + head : L tail : col,, (L) [) (colp)

To get the value in position (m,n), we could use the get combinator to first find the proper
column, and then the proper row in that column:

ack : N x N — N;(m,n) — get(n, get(m,ack_table))

4.6 Quicksort revisited

Here we show how the Quicksort can be more efficiently implemented using a final datatype to hold
the partially sorted data.

Again, the datatype to store the data is a binary tree, the difference this time is that the binary
tree is defined as a final datatype and may be infinite (although our trees will be finite).

data § — rbtree(A4, B) =
look: 5 — S x(BxS)+A

Every time the destructor look is applied to the tree, a node (bo) or a leaf (b1) value will be
returned.

Now by using the pivot map defined above, a map, tree, which creates a sorted binary tree
given a predicate and input list can be defined:

tree{p} : list(A) —> rbtree(1, A); ({) — (= ~ look : pivot{p}(z)] ({)

So the creation of the sorted tree is quick, the real problem comes when we try to convert the
tree to a sorted list. This was easy when the tree was an initial datatype because we could use the
fold operation to iterate over it. The procedure that we will use to collect the tree will be to create
a state consisting of three components: the accumulated list (L), the current part of the tree we
are looking at (T), and the dump (D). We will then manipulate the state as follows:

o If we are looking at the node of a tree on T then we will push the node value and the right
subtree onto the dump, and continue with the left subtree on T:

(L, ( Tleft, value, Tright), D) = (L, Tleft, (value, Tright).D)

o If we are looking at a leaf on T then we will pop an element (a,T) from the dump; the value
a will be added to L and we will work on T:

(L,(),(a,T).D) = (a.L, T, D)
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To calculate the number of times that the above operations must be done, we note that for a list of
length n there will be n nodes and n + 1 leaves, so we will require 2n + 1 pushs and pops to collect
up the tree.

The collect algorithm follows:

pop : list(A) X list(A x rbtree(1, B)) — list(A) x (rbtree(1, B) x list(A X rbtree(1, B)));

(acc,dump)H{ il() = (ace, ((look : 1)), 1)) }(dump)

cons((a,t),dump’y — (cons(a,acc),(t,dump’))

The push is so straightforward that we directly put it into the collect map.
collect : rbtree(1, A) X N' — list(A) x (rbtree(1, A) x list(A * rbtree(1, A)));

zero: () +— ([],(tree,[]))
succ : (L, (T, D)) —

(tree, size) v (size)

bi() ~ pop(L,D)
{ bo(T1, (a,T7)) = (L, (T1,cons((a, Tr), D)) } (look(T))

Since the collect map makes only one pass over the whole tree, as opposed to the n passes that
the previous Quicksort made, we can see that this sort is more efficient.

To calculate the expected complexity of the above algorithm, we assume that any permutation
of the input is equally likely. The collect map takes time kn for some constant k. The generation
of the tree depends on the unsorted input list: if we select the ith smallest element as the pivot, it
will take time T'(i — 1) and T(n — ) to sort the subtrees. This gives us the relationship:

T(n) <kt ST - 1) + T(n - i).

i=1

In [AVAT74] this is shown to have O(nlog n) as expected.

5 Proving equality of maps

The term logic has rules of inference for handling equations which make it logically equivalent to
the category itself. The purpose of this section is to show informally how the term logic can be
used to prove equivalence of programs.

5.1 Case analysis

A common method of proving that two maps are equal in a distributive category is by a case
analysis. This involves splitting the domain into coproduct components over each of which the
argument for equality can be made. While this works in any category with coproducts, it works
particularly well when the coproducts are universal because the components can be chosen to reflect
the splitting on the intermediate domains which occur naturally in the proof.

A case analysis can be lain out somewhat like a decision tree, allowing each subcase to be
further split in a non—uniform way in the manner required to complete the proof down that branch.
Often the branchings can be arranged naturally using propositions (maps p : X — 14 1) and the
splitting induced by assuming in turn that they are true or false (p(z) = true and p(z) = false).
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As a trivial example consider the following two formulations of A:

. . true —» 17
A : Bool x Bool — Bool; (2o, 1) — { false > false }(zo)

I, . true — o
A’ : Bool x Bool — Bool; (2o, z1) — { false 1 false }(zl)

To prove they are the same we perform the following case analysis:
Case 1: z¢ = true.

This means that ¢ A 1 = 1 and it remains to do a case analysis on z; to obtain the values
of N

Case 1.1: z; = true.
xgl\'a:l =zg=true=1z1 =29 A ;.

Case 1.2: z; = false.
zo N 2y = false = 21 = g A 21.

Case 2: zg = false.

This means that zg A z; = false and it remains to do a case analysis on zg to obtain the
values for A’

Case 2.1: z; = true.
zo N 21 = 2o = false = 79 A 21.

Case 2.2: z; = false.
zo N 21 = false = zg A 1.

Below we will consider a less trivial example.

5.2 Structural induction

Particularly important is the case analysis associated with an initial datatype. Given the datatype
declaration of section 3.2, suppose we wish to prove that

[g: LA xX —Z

are equal. It suffices to prove that their equalizer is the whole of L(A) X X. Let (E,¢€) be the
equalizer of f and g, then it suffices to prove that e is an isomorphism, which given that e is
necessarily monic is established if we can find an a with a;e = 1. This in turn is provided if we can
show that E is “closed under the action” in the sense
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F(A LA xX)xX e

_F,(l,Po) x1

Fi(A, L(A)) X X L(A) x X

that there is an e; : F;(A, E) X X — E such that e;;e = (F(1,€;P0);¢;) x 1. If we have such a
factorization then we have

F(ALA)XxX— % . L(A)xX
(85 1)
F(A L(Ax X)x X a
F(l,a)x1
F(AE)x X & E
F;(1,e;P0) x 1 ;P
Fi(4,L(4)) x X L(A)

¢ X 1;Pg
in which a; e;Pg = Pg by the uniqueness of the fold map. But also a;e;P; is determined by

(65 ,P1); (Fi(1, a5 €; Po); ) X 1); Py

= (0£‘,P1);P1
= Pl

Il

(ci X 1);a;e;P1

so certainly a;e;P; = P;. But this makes a;e = 1 and so e is an isomorphism.

Specializing this argument to that of determining whether f,g: N X X — Z are equal shows
that it suffices to prove that f(0,z) = ¢(0,z) and that if f(n,z) = g(n,z) then f(s(n),z) =
g(s(n),z). Similarly to determine whether f,g : list(A) X X — Z are equal it suffices to prove
f(nil, z) = g(nil, z) and if f(z,z) = ¢(z,z) then f(cons(a, z),z) = g(cons(a, z), z).

As an example we shall now sketch a proof that the naive reverse is equal as a map to the “fast”
reverse. To do this we start by proving a lemma:

Let )
Q(?Jo,yl)={ nil = (?/o,zh) }(3/1)

cons(a,y;) +— (cons(a,yo),¥])
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then clearly reverse/(z) = Po(g'e"8th(2)(nil, 2)).
Lemma 5.1

gon8th(z0) (7 2) = (append(Po(¢° %) (nil, 25)), 21 ), tail'*"eth(z0) (2,)),
Proof. We shall do a structural induction on 2g:

Case 1: zy = nil.

The equality is immediate.
Case 2: 2y = cons(a, z3) and the result holds for z{.

q( qlength(z(',) ( 2, 22))
q(append(Po(qleng‘h(zé)(nil, 22)), 71), ta.ille“gth(’{))(zz))

qlength(cons(a,z{)))( 7, 22)

1

To complete the proof we must pull the append through an application of q. To show that
this may be done we resort to a case analysis on the form of taill*"¢*h(z0)(z,).

Case 2.1: tail'®"8th(z0)(2,) = nil.

then the effect of ¢ is the identity and the result holds.
Case 2.2: taill*™8(=0)(2,) = cons(d’, 23).

Setting w = Po(q'8*(=0)(nil, z;)) we have:

¢(append(w, ), cons(a’, 23)) = (cons(a’,append(w,z1)), 23)
(append(cons(a’, w), 21), 23)

Finally cons(a’, w) = Po(g'e"&*h(z0)(ni, z,)).

So now we have:

Proposition 5.2
reverse(z) = reverse'(z).

Proof. By structural induction on z:
Case 1: z = nil.

Clear.

Case 2: z = cons(a, 2’) and the result holds for 2’.

We have using the above lemma:

reverse(cons(a, 2)) append(reverse(z'), cons(a, nil))

= append(reverse/(2’), cons(a, nil))

= append(Po(g""&"*')(nil, 2), cons(a, nil))
Po(q'"¢™=")(cons(a, nil), 2'))
po(qlength(cons(a,z')) (nil, cons(a, zl)))

= reverse'(cons(a, 2')).
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Arguments by structural induction are already very familiar: it is significant that they can be
used in this setting. However, the real significance of this setting is that there are many other proof
techniques available of the “theorems for free” kind[Wad89].

6 Evaluating Categorical Combinators

It was Tatsuya Hagino’s contribution to show that categories constructed from datatypes can
be used directly as programming languages. The languages that result have some rather special
properties: the principle one being that one cannot write non-terminating programs in them.

6.1 Eager evaluation in a category

In order to see how evaluation comes about in a category it is useful to trace the ideas through
some simpler steps in order to arrive at the by-value machine currently used in charity.

Towards this end we explore a simple categorical rewriting system. It relies on the fact that any
composition of primitive symbols of the category can always be associatively rearranged into a left—
associated expression followed by a right—associated expression. The place where these expressions
meet is denoted by a * and will indicate the position of the rewriting head

(-(((13a1); az); @3); - - -3 @) % (@ig15 (- - -5 (@n—2; (@n-1; (@n; 1)))..).

Any computer scientist will instantly realize that the way to implement this is as two stacks.
The rewriting head then starts on the left and traverses the composition once, to the right, by
popping things off the right stack and pushing them onto the left stack. Whenever a situation is
detected to be one in which a reduction can be performed the reduction is performed rather than
the popping and pushing. This detection process will involve looking only at the top cells of each
stack.

Consider the following rules:

a f=ay a;;9= a3
ag; f = a3 a9 = ay
as; f = a1 az;9=a

The following is a chain rewriting on the term:
a1; f39;9
as follows:
*a1; f39; 9
= a1xf;g;9
= ax*g;9g

= a1*g
= dazx

30



In fact, this is a good stab at what a full blown abstract machine for rewriting any functional
language looks like. Traditionally the left stack is called the value stack and the right stack is
called the code stack. Obviously this is still overly simple as sometimes we will meet a situation in
which a major sub-reduction must be performed before one can continue with the rewriting of the
main chain. To facilitate this, one just needs one more stack, traditionally called the dump, on
which to push intermediate states of the calculation to which one must return. With this addition,
a full blown categorical abstract machine is obtained.

6.2 Using a predistributive category

To illustrate how the abstract machine works consider the rewriting rules associated with a predis-
tributive category.

z! = |
(z,¥);P0 = =
(z,y);h =
(2;b0,2); (f | y) = (z2);f
(zbn,2)i(flg) = (22)9
z(z,y) = (%2,7)
The transitions for the corresponding abstract machine are:
value code dump value code dump
1w le d — ! c d
2 | (vo,v1) Po.c d — c d
3 | (vo,v1) Py.c d — 9 c d
4 | (vo.bo,v1) {co|er).c d —  {vo,v1) o c(e).d
5| (vo.b1,v1) (co|c1)c d —  (vo,1) €@ c(c).d
6| v {co,c1).c d — v co pro(v,e1,¢).d
7| v [] pro(v,c1,¢)d — v a pry(vo, c).d
8 [ v [] pri(vo,¢).d — (vo,v1) ¢ d
9lv e d — d
10| v [] c(c) — d
11| v [] [] — STOP

Transitions 1 to 5 correspond closely to the rewriting rules.

Transitions 6 to 8 give us the distributive rule. Transition 6 says that when we encounter a
pair, evaluate the first component of the pair and for the product, hold the second component
on the dump for later evaluation. When the first component has been evaluated, we will reach
transition 7, which stores away the result for the first component of the pair and evaluates the
second component. Transition 8 puts the reduced pair on the value stack and resumes execution
with the code following the pair.

Transitions 9 to 11 are generic. Transition 9 says that if there is no action associated with
the value on the top of the code stack (ie. bo and by), push it onto the value stack. Transition
10 says that if the code stack is empty and there is a continuation on the dump then execute the
continuation. Transition 11 indicates that the rewriting is complete: the result is on the value
stack.
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6.3 Adding the initial datatypes

When we add initial datatypes there are some associated rewrite rules that must be added to the
system. With each datatype (defined as in section 3.2) come constructors, a case, a fold and a map.
The new constructors are handled by transition 9.
The case combinator gives the simplest rewrite rule. Given a list of maps, we simply chose the
map that positionally corresponds to the constructor on the value stack.

(vo; ¢i, v1); casel { fi, ..., fu} = (w0, 01); fi

The fold is more complex. From the diagram for the fold we obtain a rewrite rule going from
the expression ¢; x 1;fold” to the more defined expression (95’;‘,1’1); Ei(1,fold®) x 1;g;. The latter
map can be written using the map combinator as (mapZ {po, fold“{g,, ..., gn}},P1); ¢i. This gives
us:

(vo; i, v1); fold"{g1, ..., gn} = (v0, v1); (map™ {Po, fold"{gy, ..., g} }, P1); i

From the defining diagram for map we get:
(vo; ¢i, v1); mapl{hy, ey hpn} => (v0,v1); map®{hy, ..., hyn, map{hy, ..., hn}}; ¢

The corresponding transitions for the above rules are

value code dump value code dump
12 | (vo.ci,v1) casel{f1,..., fa}c d — (vo,n1) fi c(c).d
13 | (vo.ciyv1) fold“{gy,...,gn}.c d —  (vo,v1) (map®{po,fold’{g1,...,g.}}, c(c).d
P1).gi
14 | (vo.c;,v1) mapl{hy,....;hn}c d —  (vo,1) mapZ{hy,...,hm, c(c).d
map©{hy, oy b}

For the factorizers, a table is needed which holds the name of the constructor ¢;, its type, and
its corresponding position in the definition of L. The case combinator uses the position to select
the proper f; from the list. The fold uses the position to select the proper g; and then uses the
type information to do the proper substitutions (ie. to use Py or fold“{gy, ..., gn}). For the map
combinator, the type information is used to select the proper h; or mapZ{hy, ..., hm}.

6.4 Adding finite products

The rewrite rules for the finite products of which there are only three, are as follows:

(vo,v1);map! = o
(vo,v1);map'{f} = (vo,v1); f
((vo,vl),m);mapx{f,g} = ((”0,”2>,(”1,’l)2));f><g

These produce the following machine transitions:

value code dump value code dump
15 | (vo,v1) map’ .c d — 7 c d
16 | v map{f}.c d — f c(c).d
17 <<’Uo,’l)1),’02) ma,px{f,g}.c d —_ (v0a02) f PrO((vhv?)ag’C)'d
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6.5 Adding the final datatypes

For the final datatypes, rules must be added for the destructors. The unfold, record and map
are inactive combinators and so are handled by transition 9. The destructor behaves differently
depending on what type of data it is destructing.

unfold®™{fy, ..., fu}idi = (i, P1); map™ {Po, unfold®{fy, .., fn}}

record®{g1, .., gat;di => @

mapP{h, ., hm};di = d; X 1;map" {hy, ..o, hn, mapR{hy, ..., b }}

The corresponding transitions for the rules are:

value code dump value code dump
18 | v.unfold®{fy,..., f} dic d — v (f:,P1). map™* {Po, c(c).d
unfoldB{fi, ..., f}}
19 | v.record®{g1,...,gn} dic d — v gi c(c).d
20 | v.map®{hy,...,hn} dic d —_ (p0.d;, p1). map® {hy, ..., bmm, ¢(c).d

ma’PR{hh ) hm}}

7 'Translating the term logic

The categorical combinators (despite what some category theorist seem to think) are totally un-
readable! We really want to use the term logic as the programming language as this is much more
friendly. However, to do so we need a translation process from the term logic into the combinators
for evaluation. This raises all sorts of nasty issues like how one does an efficient translation. How-
ever, one of the essential points to note is that unlike the initial stabs at translating into Curry’s
combinators (which turned out to be exponential and only after considerable work was brought
down by Turner to polynomial[Tur79b, Tur79a] and later Statman to nlogn), we enter the compe-
tition with an nlogn translation. As this is the theoretical limit (don’t forget the constants where
there is room for improvement) we can be reasonably happy.

We shall set up the term logic for a predistributive category with datatypes and then describe
the translation to combinators. A proof of the translation is given in [CS92]. We assume that the
datatype declarations are of the form given in section 3.2.

7.1 Variable bases

For each type in the category we shall suppose that we have a set of variables (in fact the type is
inferred) {z,y, 2, ...}
A variable base is then defined by

¢ () is a variable base of type 1,
e If z is a variable then z is a variable base with type type(z),

o If vy and v, are variable bases with no variables in common then (v, ;) is a variable base
where

type((vo, v1)) = type(vo) X type(vy).
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7.2

Terms

A term is defined by:

() is a term of type type(()) = 1,

If t is a term where type(t) = X X Y then Po(t) and Py(t) are terms where type(Po(2)) = X
and type(P1(t)) =Y,

If to and t; are terms then (to,%;) is a term where type((to,%1)) = type(to) X type(t1),

If w is a variable base and ¢ is a term where type(w) = type(t) then

{we 1}t
is a term of type type(t’), and the variables in w are bound in ¢'.

If ¢ is a term bo(t) and by(2) are terms where type(bo(2)) = type(t) + X and type(b1(?)) =
X + type(t) (where X is an indeterminate type).

If ¢ is a term where type(t) = Ag + A; and vg and v; are variable bases where type(v;) = A;,
and tp and t; are terms where type(fo) = type(t;) = B then

bo(®) +— o
{blgvlg = 1 }(t)

is a term of type B. The variables in vy and v; are bound in to and ¢; respectively.

If ty,...,t, are terms where type(t;) = E;(A, L(A)) then ¢1(t1),...,cn(tn) are terms where
type(ei(t:)) = L(A).
If t is a term where type(t) = L(A) and vy,...,v, are variable bases where type(v;) =

E;(A,L(A)) and t,...,t, are terms where type(t;) = ... = type(t,) = B then

cl(vl) — 1
: )

co(vn) — ty

is a term (the case expression) of type B. The variables in vy,...,v, are bound in #y,...,2,
respectively.

If t is a term where type(t) = L(A) and vy, ..., v, are variable bases where type(v;) = E;(4, X)
and ty,...,t, are terms where type(t;) = ... = type(t,) = X then

cq:vp = 4

(®)

CntVp = iy

is a term (the fold) of type X. The variables in vy, ..., o, are bound in ty, ..., 1, respectively.
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e If tis a term where type(t) = L(Ay, ..., Am) and vy, ..., U, are variable bases where type(v;) =
Aj and ty,..., 1, are terms where type(t;) = B; then

v = 4
L : ()

VU Iy

is a term (the map expression) of type L(By, ..., By). The variables in vy, ..., v, are bound
in ty, ..., t,;, respectively.

e If ¢ is a term where type() = 5 and v is a variable base where type(v) = S and t,...,t, are
terms where type(t;) = F;(4,S) then

is a term (the unfold) of type R(A). The variables in v are bound in ty,...,%, respectively.
o Ifty,...,t, are terms where type(t;) = Fj(A, R(A)) then

dlltl

d, : ty,

is a term (the record) of type R(A).

7.3 Abstracted maps
A program is not a term but an abstracted map this is a pair
{v—1}

where v is a variable base containing all the free variables of the term ¢.
The abstracted maps are what we must translate into combinators so that we can evaluate
them.

7.4 Translation to categorical combinators

The translation 7 from the term logic is described as follows:
o Tlow O] =,
e Tz z]=1,
o T[(vo,v1) — ] = Pi; T[v; — z]where ¢ = 0 if  occurs in vy otherwise : = 1,

o T[v~ {wr t}(@)] = (Tlv 1], 1); T(w, v) = ¥'),
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o T[vr Pi(t)]=T[vwt];P; for i = 0,1,

T (to,tl)] = <T[v — to], T[v — t1]),

L

T[v = bi(t)] = T[v = t];b; for i = 0, 1,

bo(’l)o) — to

oT[v»—» bi(n1) — 4

} (t)] = (T[v > 1], 1); case{T{(v0, v) = 2o, T[(v1,v) = tl},

o Tlo > &i(t)] = Tlo o s,

C1(’l]1) — tl )
)| = (T[v o 1],1); case? {T[(v1,v) = t1], e, T[(Vn, v) = tn]},

cn(vn) — 1, 4

o T |vm

@) = (T[vwt],1); foldL{T[(vl, V) > ],y ey T[(n, ) = 0]},

[ ﬂclt’vl — tl 1

Cnilp P 1y

AR 71
e T|vm L : )| = (TTv - 1], 1); map"{T[(v1,) = t1], e, T[(Vm, ¥) = tm]}-
L Um P im
[ di:ty
e Tlom [|lwr : )| = (TTv - t],1); unfold“{ T[(v, w) > t1], ..., T[(v,w) = t,]}
L dm :lm
[ ditth
e T (vm : = record“{Tv ~ t1], ..., T[v = t,]}
L dm i tm
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A Charity programming system

The notation used in this document unfortunately does not translate directly into ascii. Therefore
we summarize the differences between the mathematical notation above and the charityprogramming
system’s notation. For a complete description of the charity programming system of which only a
part of is described here, we refer the reader to the Charity User’s Manual. Spacing is not important
in the following examples. All system commands must be followed by a “.” (period).

Both the charity programming system and the Charity User’s Manual are available via anonymous
ftp from cpsc.ucalgary.ca in pub/charity.

A.1 Datatype definition

The differences in the datatype definition are that the “—” is replaced by “->”, and the “Xx”
(product) is replaced by “*” (asterisk) for type expressions.

data L(4A)->C=
C1: E](A,C) ->C

| cn: Eq(A,C) -C.
For example, the definition for btree would be

data btree(A,B) -> C =
leaf : A -> C
| node : (C *x (B * C)) -> C.

The definitions for natural numbers and booleans are predefined in the system as

datanat ->C=2Z :1->C | S : nat -> C.
data bool => C = true : 1 -> C | false : 1 => C.

where Z is zero and S is the successor.

A.2 Terms
To define the map
k{fiyes fn}: X — Y0
to the system, one would write:
def k{f1,..., fa}(v) =1t.
and the notational changes for terms are:

e “—” (maps to) is written “=>" (equals, greater than).

o The case operation

a(n) ~ { fl(vl) =1

(1) is written

|
v
o~

3

cn(vn) — 12 ; z;)(vn)—
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The fold operation

{I ¢ :patty => expr,

¢ :patty — expr | ¢y :palty => expry
(ezpr) is written :
¢ patty, —  expry, | em:patt, => expry,
1} (ezpr)
¢ The map operation
=>
v - t1 L { m t1
L : () is written
s Um => i,
Um > tm } @
e Abstraction is written:
{v=>t'}(1)
¢ The unfold operation
(I patt =>
dy:
dy : exprq ! . €ePT1
L. | dy: expry
patt — : (expr) is written
d,, : expry, | dn:  expry,
1) (expr)
o The record operation
( dy : expr
dy : expry , dy : exprsy
is written
d,, : expry s dm : expry

For example, the definition for divide (section 4.4) would be:
def divide{p} (1) =
{ nil () => leaf(nil)
| cons(a,tail) =>
{ (11,(a,12)) => node(leaf(11),(a,leaf(12))) }
(split_list{p}(tail,a))
Q.
Note that the definition of divide uses the previously defined definition split_list. Recursive calls
are not allowed.
The command eval is used to evaluate closed terms. For example:
eval divide{gt}([S(s(Z)),8(2),s(s(s(2))),Z]).

would apply divide to the list of numbers [2,1,3,0] with predicate greater than.
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A.3 Combinator notation
Combinator notation is also available but has to be translated into ascii. The differences are:

L] ca.seL

is written case_L,
o fold” is written fold -L,
e map¥; L is written map _L.

The command used to define a combinator expression to the system under name ident is:
cdef ident{fi,..., fu} = expr.

where expr is a combinator expression which uses maps fi, ..., fa-
The command ceval is used to evaluate closed combinator expressions. For example:

ceval < Z, Z ; S > ; pl.

extracts 1 from the pair (0,1).

A.4 Example

To give a flavor for programming in the charity programming system we give a short example
session. In this example, we show how to define the natural numbers and some maps to use them.
We will use a shorthand for lists supplied by the system:

[z1,Z2, ..., T5] = cons(zy, cons(z3, ... cons(zy, nil)))

When charity is started, it will give a message signaling that it is ready. User commands can be
entered at the “>” prompt and the “+” prompt signals that the command is being continued over
several lines.

Charity ready
>

The first command required for this example is
> restart_base.

which erases all predefined datatypes and combinators, and thus allowing us to redefine our own
natural numbers below.
We define the natural numbers by the command

> data mynat -> X =
+ zero : 1 ->X
+ | suce : X -> X.
which says that mynat is a type and has constructors zero and succ (successor). Thus values of

type mynat may be created by applying zero to () (ie. something of type 1) or by applying succ
to an expression of type mynat. For convenience the () may be omitted. For example:
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zero = 0
succ(succ(zero)) = 2
succ(n) = n+1

After the command has been entered, the system will display information about the combinators
created (this information is mainly for programming at the combinator level as opposed to the term-
logic level).

Next, we define addition using the fold operation:

> def myadd(x,y) =

+ {l zero: () =>y
+ | succ: n => succ(n)
+ 1}(x).

We can think of x as being a code sequence of a zero followed by succs. The fold operation
says that zero is replaced by y and then each succ is replaced by succ. For example, if x =
succ(succ(zero)) and y = succ(zero) then

X = Zero ; succ ; succ
replacing the zero by y gives
— succ(zero) ; succ ; succ
then replacing each succ by succ gives
=> succ(zero) ; succ ; succ
= succ(succ(succ(zero))) =3

To add 2 to 1 in the system we type:

> eval myadd(succ(succ(zero)),succ(zero)).
typing : ’a -> mynat

succ(succ(succ(zero)))

the type of the expression as well as the result is displayed.
The case operation can be used for the predecessor map.

> def mypred(x) =

+ { zero () => 0
+ | succ(n) => n
+ }x).

> eval mypred(succ(succ(zero))).
typing : ’a -> mynat

succ(zero)

This says that if x is zero then return zero otherwise x is the successor of a number n in which

case we return n.
An example of the map operation is “map” which given L which is of type list, apply f to
every element x in the list.
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> def mymap{f} (L) = list{x => £(x)}(L).
Now to double every element in a list of natural numbers:

> def double(x) = myadd(x,x).
> eval mymap{double} ([zero, succ(zero), succ(succ(zero))]).

typing : ’a -> list(mynat)

[zero,succ(succ(zero)),succ(succ(succ(succ(zero))))]
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