
THE UNIVERSITY OF CALGARY

TOPICS AND TOOLS IN THE INTRODUCTORY COMPUTER SCIENCE

CURRICULUM

by

KATRIN BECKER

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 1983

© KATRIN BECKER 1983

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to

the Faculty of Graduate Studies for acceptance, a thesis entitled,

"Topics and Tools in the Introductory Computer Science Curriculum"

submitted by Katrin Becker in partial fulfillment of the requirements

for the degree of Master of Science.

Supervisor /
Dr. Anton W. Colijn
Department of Computer Science

Dr. Michael R. Williams
Department of Computer Science

Dr. John Slater—
V.

Malaspina College

Dr. David J.I. Fry
Department of Physics

1983-08-19

ABSTRACT

The research outlined in this thesis deals primarily with the introductory computer

science curriculum (i.e. the first two years). The topics and objectives are outlined first.

This is the body of information that a finishing second year student should be

expected to know. The results of the questionnaire given to computer science

department members are discussed and then tools used for teaching computer

science, both current and future, are described.

ACKNOWLEDGEMENTS

I am indebted to my supervisor, Dr. Anton Colijn, whose advice and guidance

helped keep me on track and in school. I also wish to thank my former Dr. John

Slater for his many good ideas and for convincing me that the work was worthwhile,

as well as for taking the time to see it through to the end.

Thanks also to the other two members of my committee, Dr. David Fry for his

participation, and to Dr. Mike Williams for his time and concern, not only at the

defense, but throughout the years I have spent at the University.

Although too numerous to mention them all by name, I wish to thank all those who

answered my questionnaire, and took the time to talk to me, as well as those

members of this department who let me use their classes.

Finally, I thank my mother, Renate Bischof, for all her help and support, and my

mother-in-law, Vivian Parker, who typeset this thesis, and Jim Parker, without whom I

could not have made it this far.

iv

TABLE OF CONTENTS

Abstract iii

Acknowledgements iv

List of Tables and Figures vi

Chapter Page

1 Introduction 1

2 Topics and Objectives 4

3 Interrelationships 9

4 Questionnaire Results 18

5 Recommendations 35

6 Current Tools 42

6.1 Software Tools 46

6.2 Hardware Tools 49

6.3 Other Tools 50

7 A Few Additions 54

7.1 Syntax Diagrams 54

7.2 Microtool 57

7.3 Finite State Machine Simulator 58

8 New Tools 61

8.1 Recursion 61

8.2 Floating Point Demonstrator 62

8.3 Treetool 63

9 Conclusions 68

References 70

Textbooks 73

Appendix 75

V

LIST OF TABLES AND FIGURES

Table Page

4.1 Tools/Techniques 33

5.1 Areas of Need 38

8.1 Treetool - Commands 65

8.2 Treetool - Language Definitions 66

Figure Page

2,1 Major Categories 6

3.1 Very Strong Interdependence of Topics 13

3.2 Strong Interdependence of Topics 14

3.3 Some Interdependence of Topics 15

3.4 Final Structure - Interdependence of Topics 16

4.1 University of Victoria - Course Plan 19

4.2 University of British Columbia - Course Plan 20

4.3 Simon Fraser University - Course Plan 21

4.4 University of Alberta - Course Plan 22

4.5 University of Calgary - Course Plan 23

4.6 University of Lethbridge - Course Plan 24

4.7 University of Saskatchewan - Course Plan 25

4.8 University of Regina - Course Plan 26

4.9 Topics Covered in the Introductory Curriculum 27

4.loDegree of Coverage 29

4.11 Satisfaction with Results 29

6.1 Distribution of Tools Used 43

6.2 SP/k Subsets 46

7.1 Example Exercise 1 55

7.2 Example Exercise 2 56

7.3 Commands for Finite State Machine Simulator 59

vi

Chapter 1

INTRODUCTION

Computer science is the study of solving problems in information manipulation.

Computer science has existed as a discipline (taught in universities) for approximately

twenty years - not very long in comparison to other disciplines, some of which have

been studied for centuries. In most universities, computer science had developed as

part of another field, most often mathematics, but also engineering and sometimes

business. Since their inception, most computer science sections of these departments

have become departments in their own right.

In 1968, the ACM produced their first curriculum [C3S 68]. In this document, the

ACM Curriculum Committee outlined its recommendations for undergraduate

programs. A classification for subject areas was presented and various courses in

those areas were described.

Nine years later, the IEEE Computer Society published its own curriculum. Even

though it was intended for computer science and engineering [lEEE77], it concentrates

its efforts most heavily on the teaching of engineering and as such does not have a

great deal of impact on computer science.

By 1978, the ACM has produced its second computer science curriculum [Aust78].

It provides an extensive list of topics considered necessary to students of computer

science. The committee singled out those topics deemed to be part of the elementary

curriculum. This list forms the basis for the list given in the appendix of this thesis.

Since the initial curriculum in 1968, numerous other groups have endeavoured to

define the computer science curriculum [Coug73, MuId75, Engl78]. Clearly, the

discipline is maturing. The time has come to define fully the discipline and develop a

strategy for teaching it.

Although many have tried to list the required topics in this field, few have actually

defined, or given objectives for the topics they list. Most describe overall objectives,

but few go as far as stating what the abilities of the students should be when they

1

2

have mastered each topic. This is one of the major goals of this thesis.

Outlining the objectives of any given subject area gives a direction for teaching and

a means of identifying achievement (a way of knowing when the student has

succeeded). Clear objectives also allow the instructors to keep in touch with the task at

hand; they allow the instructor to plan and present an organized course that instructors

in subsequent courses can build on with confidence. The importance of this, from the

students' point of view, is that they know what is expected of them. This allows them

to prepare for the course and it also gives the students a sense of direction - they

too will be able to identify success. It should be noted however, that this type of

approach is really only possible when dealing with material that has primarily a skill

oriented or knowledge based component. Judging success is far more difficult when

dealing with a deep understanding or philosophical problem. It is still possible to

outline objectives but determining success is not quite so clear cut.

The subject of this thesis is very closely related to the study of education, and

education theory plays a prominent role, but it is felt very strongly that the research

outlined in this document could not be completed by someone schooled solely in

education. Such a person would know much of the theory of education and

approaches to solving the problems experienced by computer science departments,

but they would lack the familiarity with the subject matter required to make valid

decisions about required topics and their interrelationships.

With the rapidly increasing student numbers and escalating demands placed upon

all computer science faculty, it is obvious there is a need for a clear definition of the

subject matter and the means for making the task of teaching it somewhat less

demanding of both time and energy.

Using the ACM curriculum as the primary source, a list of topics to be required of

elementary computer science students was created. With the aid of dictionaries and

textbooks, objectives were added to the topics. This resultant list, given in the

appendix is discussed in the second chapter. Chapter 3 attempts to describe how

these topics are interrelated. By listing the interdependencies, it is possible to decide

on a rough order and outline of courses to be offered in such a curriculum.

In order to come up with an accurate list of topics and objectives covered in the

elementary curriculum, several Western Canadian universities were interviewed and the

3

faculty presented with questionnaires. The results of these questionnaires are

described in chapter 4. From these results it was possible in chapter 5, to outline the

areas of need and describe tools that could be used to fulfill these needs.

It is quite alarming that departments of computer science do not use the computer

as a tool (writing programs excepted). For various reasons, little development of tools

for the purposes of teaching computer science has taken place. Chapter 6 introduces

some of the tools that are currently available. Several new tools have been designed

and implemented. These are described in chapter 7, along with preliminary results

from their testing (where available). Chapter 8 proposes several additional tools, not

yet implemented, that fulfill several of the areas of need, and the conclusions appear

in chapter 9.

Chapter 2

TOPICS AND OBJECTIVES

One of the major goals of this thesis is to research, identify, and describe the major

concepts of importance in the elementary computer science curriculum. This chapter

describes the list (found in the appendix) that resulted from this research. The major

sections are described in turn and some topics that warrant special mention are

discussed in greater detail.

The initial list of topics was drawn up using the ACM curriculum guide [Aust79] and

various introductory textbooks (see list following references) as well as through

consultation with various individuals [Slat82, Park83a]. This resulted in a very long list

of topics, many of which overlapped with each other. Quite often many different terms

are used to refer to very similar topics.

In an attempt to eliminate this overlap, several dictionaries were used (including 2

computer science dictionaries [Sipp76, Chan77]) as well as a thesaurus. Smaller topics

with a common core were grouped into somewhat larger concept blocks (for example,

definition, call and expansion of macros in assembler were combined with assembly

time computation, conditional assembly and parameter handling to form the block

called 'macros'.)

As explained earlier (Chap. 1) a set of objectives was drawn up for each topic

describing what an elementary computer science student should be able to do once

that topic has been mastered. It is very important to set goals with each topic to

provide direction. To make this somewhat clearer, consider the following example.

Most would agree that every student in an elementary curriculum should understand

the common parameter passing techniques. This is a fairly broad subject though, and

outlining what the student is expected to know at the elementary level is quite

important. There is a substantial difference between being able to trace the execution

of a program that uses parameters by hand and predicting the result, and being able

to implement these parameter passing mechanisms. Very few would expect their

elementary students to do the latter, but this information is not revealed by looking

4

5

only at the topic heading.

Guided largely by past experience and the course descriptions from various Western

Canadian universities, these topics were then placed into 12 major categories (see

Figure 2.1). One of the primary reasons for the higher level division was a desire to

create a common thread for a large group of concept blocks. A secondary reason but

perhaps almost as important was to break up the list into manageable chunks. Even

with a guide, some of the choices were of necessity somewhat arbitrary, and one

could no doubt argue that a particular topic was more closely related to one category

than another. Quite often in such cases there are as many arguments for having the

topic in one section as there are for having it in the other. For example, although few

would suggest that a topic such as number representation is a topic of theory, it is

more difficult to draw the line between the architecture and logic design aspects of this

topic. It is found here (in the appendix) in the logic design section for two reasons: it

follows quite nicely from sequential circuits, which is much more a topic of logic

design than architecture, and the other reason is one of practicality: that is, the

architecture section is already quite large.

One of the major difficulties encountered while creating this list of topics was one of

terminology. As it is still a relatively young discipline, many terms were required that

did not previously exist in the context of computer science. In consequence, each

group of researchers came up with their own terms as they were required. The result

is that often several names exist for very similar ideas yet each has subtle differences

so they all remain in use. Because of this problem terms have been used in some

parts of the list with which many may not be familiar. These will now be explained,

along with a more detailed explanation of the choice of categories.

'Introduction to Computers' includes all of the information that is typically covered in

the first few lectures of an introductory computer science course. It is intended to

introduce the students to the idea of a computer, its major parts, and its operation.

'Operational Use of the Computer' is an area that is quite often covered in labs or

tutorials, usually by a teaching assistant. This section serves to provide the students

with a working knowledge of the computer they will be using as well as the necessary

skills to complete their assignments and exercises. One topic in this section that

deserves special mention is that of keyboard skills. Proficiency at the use of the

6

Figure 2.1 Major Categories

1. Introduction to Computers

2. Operational Use of the Computer

3. Programming Techniques

4. Programming Language Structure

5. Logic Design

6. Architecture

7. Discrete Mathematics

8. Theory of Computation

9. Data Structures

10. Storage Management

11. Other Major Topics

12. Miscellaneous

keyboard (typing) is a skill that every computer scientist needs, but also one that very

few get the opportunity to learn formally. With so many new ideas to learn at once in a

first course, it is unfortunate that students are forced to add to their frustration by

having to fumble with an unfamiliar keyboard at the same time.

The next two sections are very closely related, and in fact could be combined under

the main heading of 'Elementary Software Design'. It has been split into two sections

to show the two different aspects of the art of programming: developing an algorithm

and turning it into a program ('Programming Techniques'), and the structure of the

program itself (i.e. how the statements are executed and the syntax and semantics of

the language), covered in 'Programming Language Structure'.

The concept of abstract data structures is a useful one (in 'Programming

Techniques'), even if the students do not have access to a language that implements

them. Even though few universities include it in the elementary curriculum (see

Chapter 4), many programmers have found it to be beneficial in helping them to

organize their programs into well structured modules [Lisk74], and there is no reason

to believe that this type of approach cannot do the same for students.

Some topics appear to be listed more than once. For example, parameters are

referred to in several areas - in 'Programming Techniques', 'Programming Language

7

Structure', and in 'Architecture' - but in each case a different aspect of the topic is

discussed. Under the heading of programming (in 'Programming Techniques'),

parameters are mentioned in the context of program features, while in the

programming language structure section, they are discussed in the context of scope,

as well as the run-time environment. In the architecture section, where they are

mentioned again, it is in connection with assembler language.

'Logic Design' is intended to include the lowest level of computer function of interest

to a computer scientist, from the theory of digital circuits to digital arithmetic, and then

on to an introduction to computer design. It fits in very closely with architecture and, in

fact some topics can be argued as being part of architecture rather than logic design.

For that matter, all of the material in both sections can be considered part of

architecture, but in an effort to keep that section from becoming too large, it was

broken up.

'Discrete Mathematics' requires little explanation other than the fact that since many

areas of computer science rely heavily on concepts of discrete mathematics, it stands

to reason that discrete mathematics should figure prominently in the elementary

curriculum.

'Theory of Computation' uses the required background in abstract algebra to form a

basis for understanding the nature and theoretical limitations of machines, programs.

and programming problems. Although detailed study is usually left until the senior

years, an early introduction to this area is helpful in several respects. It not only helps

students understand their programs better, but also the machines on which these

programs run. Another important benefit is that a knowledge of theory also helps

develop the discipline of problem solving and the analytical approach required of all

computer scientists.

The next section is 'Data Structures'. Although this is an area that could fall under

the main heading of 'Software Design', it is itself of sufficient magnitude to warrant its

own section. The primary objective at the elementary level should be a practical

knowledge of the various data structures and their applications. A more detailed

treatment can be left until the senior years. The same can be said of the section that

deals with storage management.

The last two sections (Other Major Topics and Miscellaneous) of the list are not really

8

to be considered as part of the core, but it is felt that students entering the senior part

of a computer science program should be familiar with the main areas of the field, as

well as having had exposure to its history and present status in society.

The complete list is given in the appendix. It forms a description of the capabilities

and knowledge that a student would ideally have acquired upon completion of the

elementary part of a computer science program. It is not meant to detail completely

the knowledge.a computer scientist requires, but rather to form a solid foundation

upon which to build.

Chapter 3

INTERRELATIONSHIPS

When discussing a curriculum in any discipline, simply listing the topics and stating

the corresponding objectives does not reveal the complete picture. The mastery of one

topic almost always depends on a prior understanding of some other topic or set of

topics. In order to allow the students to absorb as much of the material presented to

them as possible, it is very important that the sequence of presentation be carefully

organized to provide maximum coherency [Good8O].

As in categorizing the topics, there is a certain amount of repetition in describing

their interdependencies. The discipline of computer science can be thought of as a

'Gestalt'. In this light, one could state that almost all of the subjects depend on

information in all other areas to be complete (although the extent of the dependency

varies). The ideal situation would be to cover all subjects simultaneously, but for

practical reasons this is clearly impossible. Not only would this require so much time

that the students could do nothing else, but the structure of each individual course

would become so general that no-one would have sufficient depth of understanding in

each subject to teach these courses effectively.

For the purposes of this discussion, every attempt has been made to outline only

the most relevant relationships. Where applicable, the topics listed within each major

category have been listed in chronological order, so for the most part, the way that

topics in a category relate to each other need not be discussed further. There are,

however, several exceptions.

Most of the topics under the third category ('Programming Techniques') must be

dealt with in parallel, but the last few (software portability, software communication,

numeric computations, manipulating character data, and recursion) can be covered

separately in the most convenient manner. The same is true of section 6:

'Architecture'. Most of the topics must be dealt with simultaneously with the exception

of the first few (Von Neumann machine and hardware systems organization) and the

last few (microprogramming, etc.), which should be covered in the order indicated.

9

10

There are a few topics that stand out as separate from the rest. These will be dealt

with individually. The first of these comes from the area of discrete mathematics. It is

the topic of proofs. The importance of proofs is very much underrrated in most

computer science curricula, as indeed, it is in many disciplines [Poly57]. It is a topic

seldom discussed in its own right and quite often one that students understand only

superficially at best. The approach used in constructing a rigorous proof teaches a

discipline that is applicable in all areas. As stated before, systematic problem solving is

really what computer science is all about, and familiarity with the process of strict

mathematical reasoning, as well as both formal and informal logic are clearly valuable

assets.

Another topic of major importance also falls under the category of theory. If it is

agreed that problem solving (along with the study of information) is the nucleus of

computer science, then it follows that the analysis of algorithms should also be

considered a central topic. The analysis of algorithms includes not only the study of

computational, space, and time complexity and expected performance, but also

various aspects of proving programs correct. Although one cannot possibly cover

these topics in great detail within the context of the elementary curriculum, it is

certainly possible to lay a solid foundation for further study. The major goals of this

subject at this level should be to provide a good introduction and thereby make the

student aware of this aspect of problem solving during their studies.

Information theory, although it probably fits most naturally in the category of 'Theory'

bears very little relation to any of the other topics described in this section. It is

however, along with proofs, and analysis of algorithms a fairly central topic.

Knowledge of the basis of information theory (how codes are formed, how numbers

and fractions are represented, etc.) help one to derive a more thorough understanding

of various aspects of programming techniques (it helps to answer why certain

programming errors occur as well as how one might approach various programming

tasks in the light of how the information is actually stored and transmitted). It is

obviously central to the understanding of data representation and various aspects of

architecture. Information theory also plays an important role in the study of storage

management.

There is one other topic that, although it fits in fairly well with the other topics of its

group, deserves special mention due to its importance. Again, due to the nature of the

11

discipline (solving problems of information manipulation), sorting and searching, by

definition, must play a very important role. It is vital that the students understand the

major algorithms thoroughly to the point of being second nature (although not

necessarily to this depth at the elementary level). Although sorting and searching are

listed as topics separate from the others in the area of data structures, they cannot be

dealt with as such, but instead should be discussed in connection with the specific

data structures (sorting and searching arrays, lists, etc.).

Some other topics, although quite distinct and definable, cannot be taken as

separate concept blocks. Clearly, it is not possible to discuss problem solving in one

series of lectures, however long it may be, without discussing other topics (such as

programming style, debugging, verification, etc.) along with it. The same holds true for

many other topics. These must be covered in smaller sections over a period of time,

going on to more advanced and involved aspects of the topics as the students' base

of knowledge broadens (a 'concentric' approach).

The last two areas in the list of topics have not been included in the discussion of

interrelationships to this point. Numerical methods and random numbers do not really

fit with the other topics listed in section 11 ('Other Major Topics'), but even though

numerical methods is a topic more closely related to programming techniques, it is

one of sufficient magnitude to warrant being dealt with separately. Random numbers is

also an important issue and one that elementary students should definitely be familiar

with, but it does not lend itself to categorization under the major headings in this list.

The other topics in this section can be dealt with in any general computer science or

programming course. They require almost no prior knowledge (except that found in

section 1 and terminology from section 2) and as a result could be covered in a first

course, if desired. Although students may be expected to be familiar with these areas

and their application, little more need be done with them at the elementary level.

The miscellaneous section also requires little in the way of prior knowledge

(especially with the first two - history and social issues) when covered more or less

superficially. The last two, strictly speaking, also do not require much prior knowledge,

but they are probably best left until the students have somewhat more knowledge of

computer science in general so they may appreciate the material better.

The interrelationships shown in the following figures (3.1-3.3) were compiled using

12

the list in the appendix. Because of the complicated web of interrelationships the

diagram showing how the topics relate to each other has been broken up into several

parts. Figure 3.1 shows these areas that have a very strong dependence on other

areas (almost all topics rely on knowledge gained from the study of almost all topics in

the other area), thereby displaying a definite prerequisite and co-requisite structure (the

source of the arrows denotes a prerequisite, and arrows pointing in both directions

show areas that can be considered co-requisites). As the figure illustrates, an

'Introduction to Computers' (section 1) is required for every other area except 'Discrete

Mathematics' and 'Theory'. 'Operational Use of the Computer' is also shown to be a

prerequisite for almost every other area. What this figure does not show is that general

terminology (from section 2) can be considered a prerequisite for every area, with the

possible exception of 'Discrete Mathematics'. 'Programming Techniques' and

'Programming Language Structure' are co-requisites and fit together quite closely.

Although neither are strong prerequisites for the data structures section, 'Discrete

Mathematics' is. Both 'Data Structures' and 'Programming Techniques' serve as

prerequisites for 'Storage Management'.

The next step in the development of the prerequisite structure is to illustrate those

areas that have a strong dependence (although not complete) on each other. Figure

3.2 illustrates the interdependence at this level. Note the co-dependence of

'Programming Techniques' and 'Architecture', as well as the dependence of 'Storage

Management' on an understanding of 'Programming Language Structure'.

The last stage exhibits a weaker dependence (approximately half of the topics of

one area depend on as many topics from the other) but still important enough to be

worth describing. Here the author has tried to draw attention to 'Logic Design' (section

5 - particularly up to logic control) as an area of some importance to three groups:

'Programming Language Structure', 'Programming Techniques' and 'Architecutre'. As

the reverse is also true, it can be said that these four groups are fairly strongly

interrelated (other dependencies within this set have been described earlier). At this

stage, the importance of 'Theory' to both programming sections is illustrated.

The last figure (Fig. 3.4) shows how all of the topics relate to each other (a

combination of the previous 3 figures). In an attempt to keep the diagram from

becoming unreadable, it has been simplified somewhat by allowing some prerequisites

Figure 3.1 Very Strong Interdependence of Topics
0)

Figure 3.2 Strong Interdependence of Topics

Figure 3.3 Some Interdependence of Topics

3
Programming
Techniques

01

5
Logic
Design

6

Architecture

3
Programming
Techniques

Introduction
to

Computers

2
Operational
Use of the
Computer

9
Data

Structures

10
Storage

Management

4
Programming
Language
Structure

7
Discrete

Mathematics

8
Theory of

Computation

Figure 3.4 Final Structure - Interdependence of Topics

17

to become implicit. For example, section 2 is a prerequisite for section 9, but also for

section 3 which is itself a prerequisite for secion 9. It can then be assumed that the

connection between 2 and 9 is implicit through 3: there is a transitive relationship.

From these four diagrams, it is possible to draw an outline of the core elementary

computer science curriculum. One can not only decide on the order in which the

topics should be presented, but also the prerequisites and co-requisites that should be

required to provide the fullest possible appreciation of the subject matter. Although this

provides a much clearer picture of the elementary curriculum than the list of topics

and objectives by itself, it is still by no means complete; it simply outlines the

interdependencies of the areas as sections. Each section need not, and indeed should

not be covered in its entirety before going on to another one. As an example, the

foundations of data structures can in fact be laid before the student has a strong

knowledge of programming, so the fact that it occurs second to last in figure 3.4 is

somewhat misleading. Indeed, only the more involved aspects need to wait until then.

The areas themselves are not quite as neatly defined as the diagrams would imply

either. 'Programming Techniques' for example covers a very broad range of topics.

many of which should be discussed throughout the entire curriculum and not just for

the middle part of the elementary curriculum.

As stated before, this description is by no means complete, but it is hoped that it

does describe the major interdependencies. It leaves enough room for individual

preferences, but still, if followed fairly closely, will provide a solid, consistent, and

robust web of information that is vital to the education of a well rounded student of

computer science.

Chapter 4

QUESTIONNAIRE RESULTS

In order to determine the extent to which existing programs in Western Canada are

oriented to convey to their students such concepts as appear in the list (see

appendix), faculty members of computer science departments in the universities were

interviewed first and then given the previously mentioned questionnaires. Eight

universities in all were interviewed, and seven received the questionnaires (one

declined). From the interviews, and with the help of the university calendars, it was

possible to produce a course outline for an average elementary program. In the

following pages, these outlines are discussed and then the results of the

questionnaires are covered.

First, a general overview of the computer science programs at the eight universities

was drawn up. Using the university calendars, supplemented by the interviews and

various other materials (such as course outlines, student guides, etc.), it was possible

to draw relatively typical course plans that most students would follow in the

elementary curricula. These are shown in Figures 4.1-4.8. The total number of courses

usually taken in the first two years is roughly equivalent (when full courses and

mathematical courses are counted) in all major, four-year programs (please note:

Lethbridge does not have a major's program as yet). The amount of required

mathematics varies a great deal; from a very heavy requirement that outweighs the

computer science courses in the elementary program at the University of

Saskatchewan and the University of British Columbia, to a relatively light requirement

at Simon Fraser University and the University of Calgary, where the number of

computer science courses the-students are expected to take is much higher. The other

universities that fall somewhere in between are basically pleased with their situation

and although the importance of mathematics to computer science cannot be denied,

perhaps, as with almost everything else that is beneficial, these universities feel that

moderation is the best approach.

18

csc 110 CSC 115

Computer 1j. Computer
Programming I Programming II

REQUIRED 9 REQUIRED

CSC 230

Introduction to
Computer Systems

REQUIRED I

MATH 222

Discrete
Mathematics

REQUIRED 9

CSC 250

Introduction to
Computer

Organization
REQUIRED

STATS 250

Introduction to
Statistics I

REQUIRED I

File Structures
for Data Processing

MATH 100

Calculus I

REQUIRED

I MATH 110 '\

Linear Algebra I

REQUIRED

CSC 240

Numerical
Methods

REQUIRED I

Figure 4.1 University of Victoria Course Plan

MATH 101

Calculus II

REQUIRED

MATH 201

Introduction to Series
and Differential

Equations
REQUIRED

MATH 100 MATH 101

Calculus I

REQUIRED

Calculus II

REQUIRED

CPSC 115

Principles of
Computer

' Programming
\ 4 REQUIRED

CPSC 215

Computer
Program Design I

\, REQUIRED J

CPSC 200

Elements of
Computer Science

RECOMMENDED }

CPSC 220

Introduction to
Discrete Structures

REQUIRED

MATH 120 ''%\

Differential
Calculus

REQUIRED

MATH 220

Analysis I

\\ RECOMMENDED ,,1

Figure 4.2 University of British Columbia Course Plan

MATH 121

Integral
Calculus

REQUIRED

MATH 205

Probability
and Statistics

REQUIRED

,4HSY 110 or 11!'\
or 120

(All three include
Mechanics and

\N Electricity)
ONE IS REQUIRED

MATH 221

Matrix Algebra I

RFQLJIRFD

('MATH 101.3
or 272.3

(Statistics)

ONE IS REQUIRED

1/CMPT 101.4\\

Introduction to
Programming
Language
REQUIRED

CMPT 118.3 ' \ CMPT 105.3\

Computing
Projects in the

111 •

. Arts/Science
\•_ REQUIRED

CMPT 201.4.

Data and Program
Organization

REQUIRED 9
(1 COURSE PREREQUISITE)

CMPT 260.3'"\

Social Implications
of a Computerized

\\ Society
REQUIRED

Fundamental
Concepts of
Computing
REQUIRED

CMPT 205.3

Introduction to Formal
Topics in Computing

Science
REQUIRED

Figure 4.3 Simon Fraser University

Course Plan

7MACM 216.3'\,

Introduction to
Computational

\ Methods
REQUIRED

PHIL 210.4

Elementary
Formal Logic I

\ RECOMMENDED 0//

MATH 151.3 MATH 152.3

Calculus I

REQUIRED

CMPT 290.3

Introduction to
Digital Systems

REQUIRED 2

\11•
Calculus II

REQUIRL.0,ED

PHYS 150.3

Elementary
Physics of Electronic

Devices
REQUIRED

CMPT 291.4

Introduction to
Digital Circuit

Design
RFQUIRFD '00/

CPSC 215

Elementary
Data Structures

REQUIRED

I

MATH 207

Calculus I

REQUIRED

CPSC 214

Introduction to
Computing Science

REQUIRED

I

MATH 307

Advanced
Calculus I

REQUIRED

11 1%

CPSC 364 CPSC 365

Combinational
Computing

REQUIRED }
Computer

Organization and
Programming

REQUIRED

I MATH 221

Linear Algebra

REQUIRED

CPSC 316

Introduction to
Numerical Methods

REQUIRED

MATH 308

Advanced
Calculus II

REQUIRFD

Figure 4.4 University of Alberta Course Plan

PHYS 242

(unavailable)

REQUIRED

1
PHYS 340

Heat, Electricity
and Magnetism

REQUIRED

CPSC 321

Applied
Probability

REQUIRED }
CPSC 322

Applied
Statistics

REQUIRED

MATH 251

Calculus I

REQUIRED

MATH 253

Calculus II

RECOMMENDED

1CPSC 312

Introduction to
Theoretical

Computer Science
FULL: RECOMMENDED

I

Linear Methods I

REQUIRED

MATH CPSC 211

Introduction to
Computer Science I

REQUIRED I

MATH 271\\ CPSC 213

Discrete Introduction to
Mathematics Computer Science II

REQUIRED /11 REQUIRED

CPSC 302

Procedure
Language

Programming
FULL: REQUIRED

CPSC 300 ,

Assembly Language
Programming and

Machine Architecture
FULL: REQUIRED

Figure 4.5 University of Calgary Course Plan

STATS 211

Concepts of
Mathematical

¼ Statistics
RECOMMENDED

CPSC 321

Introduction to
Logic Design

(/COMPSCI 160''\

Elementary
Computer

Programming
REQUIRED

MATH 1450

Finite
Mathematics

REQUIRED

(" CoMPSCl 265'\

Programming
and Data Structures

REQUIRED Oe)

1"COMPSCl 266 " \

File Processing I

REQUIRED "/

Figure 4.6 University of Lethbridge Course Plan

I

CMPT 230

Computer
Systems

FULL: REQUIRED

lsl•

CMPT 110
Introduction to
Computational

Science and Data
Structures

FULL: REQUIRED

I
CMPT 250

MATH 175

Elementary
Calculus and

K

alytical Geometry
RECOMMENDED

Discrete Structures
and Applications

Analysis of Data and
Language Structures

FULL: REQUIRED MATH 266B

Linear Algebra

RECOMMENDED ,,/

MATH 190A

Mathematics for
Business Decisions

RECOMMENDED

MATH 241A

Probability
Theory

RECOMMENDED}

QUANT 194B

Statistics I

\\, RECOMMENDED,'

IMATH 242B IQUANT 295B

Statistical Theory Statistics II
and Methodology

RECOMMENDED 2

Figure 4.7 University of Saskatchewan Course Plan

RECOMMENDED,J

CPSC 270

Business
Information Systems

REQUIRED

CPSC 300

Elements of
Computer Hardware
\ and Software

REQUIRED

CPSC 102

Introduction to
Computers

REQUIRED

CPSC 200 "\ \

Introduction to
Computer Science

and Problem Solving
REQUIRED

Y

CPSC 340

Programming
Languages and
Data Structures

Oo/ REQUIRED

MATH 102

Introductory
Calculus I

REQUIRED I

MATH 210

Calculus I

REQUIRED

IMATH 222

Linear Algebra I

REQUIRED

CPSC 311

Finite Automata
Theory

RFOUIRFD 9

*4""\

I

CPSC 261

Methods in
Numerical Analysis

RFQUIRED 9
Figure 4.8 University of Regina Course Plan

MATH 211

Calculus II

REQUIRED

UNIVERSITY
or

VICTORIA

UNIVERSITY
or BRITISH
COlUMBIA

SIMON

FRASER
UNIVFFTSITY

(JNIVF RSITY
OF

AII3FRTA

IJNIVETlSI IY
OF

CALGARY

UNIVERSITY
or

I FTHITRIDGE

UNIVFRSITY
OF

SASKATCHEWAN

IjNIVI-RSI TY
or

nrGIHA

PROGRAMMING X X X X X X X X
DATA STRUCTURES X X X X X X X
ARCHITECTURES X X X X X X
LOGIC DESIGN X X X
THEORY X X X
NUMERICAL ANALYSIS X X X X
DISCRETE
MATHEMATICS X X X X X X
LINEAR ALGEBRA X X X X X X X
CALCULUS X X X X X X X
STATISTICS X X X X X X X
FORMAL LOGIC X
BUSINESS
APPLICATIONS

ELECTRICITY AND
MAGNETISM

Figure 4.9 Topics Covered in Elementary Curriculum

28

Using university calendars primarily, a summary of the major topics covered by the

eight universities in first and second year was created and then this was combined to

show what had been covered at the end of the elementary curriculum (Fig. 4.9). Every

university covered aspects of programming and either required or recommended at

least one course in statistics. With one or two exceptions in each category, most of the

other topics were also required or recommended in that same period. Very few (one

or two) required their students to study physics (electricity and magnetism), formal

logic, or business applications of computer science, while slightly more (three or four)

expected their students to study numerical analysis, the theory of computation, or logic

design.

When all areas are taken into account, it would seem that the universities with the

most complete elementary curriculum are: the Universities of Victoria, Calgary, Regina,

and Simon Fraser University. When only the areas specifically from computer science

are included, the same four universities fare equally well, each missing only one area.

Although this guide may be quite informative, it must still be taken with a grain of salt.

At the University of Calgary for instance, some students take a course from

philosophy, thus filling the lack in the area of formal logic, but as this is not strongly

recommended, it is not included. It is likely that with few exceptions, each university

offers courses in all areas at the elementary level, but this is not reflected in the

calendar entries for computer science, and so it will not be discussed further. The

university calendars were used as the primary source, and it is a well known fact that

they often do not accurately reflect on the actual course content, and in addition,

when individuals are interviewed, their responses are often tempered by their own

personal opinion of a subject's relative importance. This summary then, can be taken

as a rough guideline, but by no means is it meant to be the definitive work on the

completeness of the elementary programs in computer science departments of

Western Canada.

After having listed all of the topics considered by the literature to be part of the

elementary curriculum, it remained to discover whether, and to what extent, various

universities deal with these topics. This was done by means of a questionnaire, formed

from the list of topics and objectives itself. The questionnaire became quite long, but it

seemed there was no way to avoid this if there was to be any hope of acquiring a

thorough response. The questionnaire was delivered by hand or mailed to the major

29

universities in the 3 western provinces (7 universities in all) in sufficient numbers so

that each full-time faculty member could answer one.

For each topic or objective listed, the instructor was asked to judge the degree of

coverage (Fig. 4.10), name the course in which the topics were covered, list the tools

and techniques used to bring these ideas across (see list, Table 4.1 - at the end of

the chapter), and estimate their satisfaction with the results (Fig. 4.11). From this

survey, it was hoped it would be possible to arrive at a list of topics covered and the

tools currently used. To supplement this, I also visited the universities to interview

various members of the faculties. The results of this survey are described below.

1. not dealt with

2. received superficial mention

3. general discussion

4. in-depth study

Figure 4.10 Degree of Coverage

1. very satisfied

2. generally satisfied

3. sufficient

4. somewhat lacking

5. unhappy with results

6. attempts failed

Figure 4.11 Satisfaction with Results

The questionnaires were given (93 in total) to seven of the eight universities (Simon

Fraser did not wish to receive any) and of the seven, five returned completed

questionnaires (20 were returned). No responses were received from the University of

British Columbia or the University of Saskatchewan.

The above caution about the subjectivity of individuals' responses must also be

taken into account when discussing the questionnaire results. The response given for

degree of coverage may be tempered by an individual's opinion of its importance.

Also, it is understandable that instructors are reluctant to admit when their attempts at

dealing with a particular topic were unsuccessful. Unfortunately, there are also some

who are insensitive to the students' reactions, and as a result, feel that all they do is

30

successful. Clearly, none of these problems can easily be deduced from questionnaire

results and so because of the subjective nature of the questionnaire and in part

because the time and space available for discussion is limited, for the most part, only

the most common responses will be discussed. There must however be an exception.

Since most people, for whatever reasons, are reluctant to admit failure, those that do

deserve special mention. These comments will be dealt with in the next chapter.

Coverage on the first section ('Introduction to Computers') ranged mostly from

superficial mention to general discussion with the most common being the latter. These

topics were covered primarily in the first year but also to some extent in the second.

The tools and techniques most frequently employed were lectures and so-called hand-

waving explanations while textbooks and the use of overhead projectors were also

found to be present. The term 'hand-waving' is used here to imply a much more

animated approach to lectures than verbal explanations and blackboard oriented

lectures alone, and is not meant in a derogatory sense. A few included written and

programming assignments, and some less common tools were mentioned. The latter

will be discussed at length in a later chapter (Chapter 6). By and large, instructors

dealing with this area were generally satisfied with the results. There were a few parts

where some thought the treatment was somewhat lacking, but again, this will be left to

a later chapter (Chapter 5).

'Operational Use of the Computer' was dealt with somewhat more thoroughly than

the previous section. While most still classified their coverage as general discussion,

some considered they had come closer to an in depth study. By far the majority

covered these topics in the first year with very few adding to it in the second. The

tools and techniques used were almost the same as in the first section. But no-one

listed written assignments as being used. Only the University of Regina dealt with

batch use of the computer, and this was done in the second year (the students learn

about interactive systems first). A few other tools were used by isolated individuals, but

again, discussion of these is deferred to Chapter 6. The degree of satisfaction with the

treatment of this topic is evenly split between generally satisfied and sufficient.

When tabulating results in most of the other sections, all topics in a particular section

have results that are similar but in the third section ('Programming Techniques'), three

distinct groups were formed. All topics in this list from the first (problem solving) to

debugging and verification formed one group, all with similar responses on the

31

questionnaire. The next group included topics from abstract data types to software

communication (inclusive), and the rest of the topics formed the third. All topics were

covered to some extent in both first and second year. Coverage was primarily general

discussion but tended towards a more in depth study for everything but the section

from 'abstract data types' to 'software communication', for which coverage was much

more superficial. This part was covered using mostly lectures and hand-waving

explanations, with a little use of textbooks, overheads, and programming assignments

while these were used to a far greater extent with the other topics, including some use

of written assignments as well. Satisfaction with everything up to 'software

communication' ranged from sufficient to somewhat lacking while satisfaction was

generally higher for the rest. Fewer instructors dealt with the topics from 'abstract data

types' to 'software communication'.

'Programming Language Structure' was most often left until the second year and the

coverage was for the most part on in-depth study (of the objectives stated). Again

lectures and hand-waving were the most popular with textbooks and overheads a

close second. Some use of both written and programming assignments was recorded

and most were generally satisfied with the result.

The next four sections (see Fig. 2.1 for a list of sections) of the questionnaire

received a relatively poor response (fewer than 5 responses) which reflects to some

extent (particularly with logic design and theory) the results from the summaries

discussed earlier.

'Logic Design' was split into two groups, with more answering those parts dealing

with data representation, numbers, and digital arithmetic than any of the others. These

three were covered pretty well in depth, evenly split between first and second year,

and the tools included: lectures, hand-waving, overheads, textbooks and some

assignments (mostly written). Most were generally satisfied. The other topics were not

covered as often, nor as thoroughly and the satisfaction ranged more from sufficient to

somewhat lacking.

The architecture section was next. Most topics were covered by general discussion

and some in-depth study of those topics related to assembly and assembler

languages. Some coverage occurred in the first year, but more in the second. The

most frequently used tools were lectures and textbooks, with some use of hand-waving

32

explanations, overheads and programming assignments. Those that answered this part

of the questionnaire were fairly satisfied with their results.

No-one dealt with matrices and vectors; presumably that is assumed to be covered

in linear algebra rather than discrete mathematics. The other parts are covered by

general discussion, in the second year, using lectures, textbooks, and both written and

programming assignments. It was generally thought that the results were sufficient.

There was very poor response (few people answered) on the theory section but

those that answered had the following responses. Finite automata, formal languages,

context-free, and context-sensitive grammars are dealt with superficially; turing

machines and computability are studied in a fair amount of detail, and analysis of

algorithms received general discussion. Information theory is not covered in the same

courses as the rest of the topics. The others were dealt with in the second year only.

They were taught using lectures, textbooks, and written assignments with a sufficient

degree of satisfaction.

The section on data structures had a much better response. The topics in this

category were covered by general discussion and in-depth study in the second year

using lectures, textbooks, and programming assignments. For the most part, the

degree of satisfaction was sufficient. The same can be said of the next section on

storage management although the degree of satisfaction is somewhat less.

Although some listed all parts of the major topics in section 11 as having received at

least superficial mention, only the first four (numerical methods, word processing, data

processing, and random numbers) were covered by more than four individuals. The

topics were quite evenly spread between first and second year and all of the

traditional methods (lecture, hand-waving, textbook, overhead, and assignments) were

used as tools with varying degrees of satisfaction (from generally satisfied to unhappy

with results).

In the first section, 'computers and the law' together with 'the computer industry'

were hardly discussed at all and a number of individuals expressed their dissatisfaction

with this situation. The sections on history and social issues did receive more attention

both in the forms of superficial mention and general discussion in both years using

mostly lectures and hand-waving with an average degree of satisfaction.

In summary then, most topics were treated to a general discussion in both years

33

with the main emphasis in the second. Students get most of their information through

lectures, textbooks and blackboard demonstrations. It would seem that they are

seldom given an opportunity to actually work with the information they have been

given with the exception of some assignments. The respondents had a choice of 20

tools and techniques on the questionnaire (see Table 4.1), but with few exceptions

(discussed in Chapter 6), only six of them (1-4, 9, 10) were used; the specifically

designed tools seemed almost totally left out. Many educators agree that the value of

doing versus seeing and hearing is not to be underestimated [Good80]. Although the

instructors were for the most part satisfied with their efforts, there were some areas

where more than one instructor was not. As stated earlier, these responses are quite

important and will be dealt with in the next chapter.

Table 4.1

TOOLS / TECHNIQUES

1. blackboard-oriented lecture - fairly self-explanatory - includes verbal
explanations and notes, diagrams, etc. written on the blackboard

2. hand-waving explanations - implies a somewhat more animated approach to
explanations that can sometimes be very effective

3. textbooks - also covers use of supplementary reading material

4. overhead projectors - allows use of previously prepared slides, copies of
which can be given to the students in the form of handouts

5. guest speakers - includes other faculty members, professionals from industry
and others - most effective when speaker talks about a subject that can be
considered their own area of expertise

6. films - fairly self-explanatory

7. seminar-type discussions - ideally, the discussion will be lead by someone
who knows the material well

8. student research and presentations - difficult to accomplish in large
classrooms, but manageable in a lab or tutorial setting - important for the
students to learn how to research as well as how to speak in front of a group

9. written assignements - hand-written - includes everything from arithmetic
problems and short answer to essay-type explanations

10. programming assignments - anything that involves writing and/or running
programs on a computer

11. assignments that require the student to demonstrate ability in some activity or
skill - eg. use of a particular subsystem

34

Table 4.1 (continued)

12. assignments that require the student to build something (device) - eg.
building a half adder from flip-flops

13. demonstrations using hardware adapted to illustrate the topic - hands-on
experience is almost always preferable but one could use demonstrations
when the device does not exist in sufficient quantity for the students to use

14. demonstrations using hardware designed to illustrate the topic - systems can
be built that illustrate the Von Neumann machine - a large one can be used
to show a whole class

15. hands-on experience with hardware adapted for that purpose - eg, older
shift calculators can be used to illustrate multiply and divide algorithms

16. hands-on experience with hardware designed for that purpose - eg. DEC
Logic Labs (see chapter 6)

17, demonstrations using software adapted to illustrate the topic - software
designed for one purpose can be used to illustrate other ideas - eg.
simulations can be used to show how simulations work

18, demonstrations using software designed to illustrate the topic - the student
can run programs already written that can show how various algorithms work

19. hands-on experience with software adapted for that purpose - eg. on-line
documentation systems can be used to help the student familiarize
themselves with the computer system

20. hands-on experience with software designed for that purpose - such as
LEARN on UNIX [Kern79]

Chapter 5

RECOMMENDATIONS

Using the results of the questionnaire, it was possible to. arrive at some conclusions

about the areas where supplementary tools would be most beneficial. These areas are

discussed and general suggestions are made for the type of tool that would be

suitable.

Instructors were basically satisfied with most areas covered in the questionnaire.

There were however, a number of topics that were felt to be somewhat lacking and

even some with which a few individuals were unhappy. These are the areas with

which it is felt that new tools should be developed. With very few exceptions, the same

traditional tools are being used to teach all aspects of computer science (lectures,

textbooks, etc.), even though the nature of one topic may be drastically different from

that of another. The teaching of skills for example, can be approached differently than

the presentation of facts of the understanding of concepts [Good8O]. If a particular

topic can be identified as to its nature (concept, knowledge, skill, etc.), this information

can be used in deciding what types of tools would be most appropriate. Many topics

are not easily slotted, as they are composed of many different parts, so instructors

must be willing to try different approaches. They must also be sensitive to the

reactions of their students: simply because a film was successful in illustrating sorting

algorithms [CSRG81] doesn't mean that films are always useful. Similarly, lectures may

be completely adequate for some topics, while resulting in almdst total confusion when

used to cover others. For those topics that can be identified, in particular those

classified as skills or facts, it is known which methods are most effective [Skem79], and

thus development of tools for these should be quite straight-forward.

The following is a discussion of those topics with which instructors were unhappy.

Where possible, the topics have been classified and suggestions are made as to

which type of tools may be most useful. For a summary list of the areas of need, see

Table 5.1.

35

36

The initial introduction to computers is typically quite straight-forward but there are

always a great many new ideas that the students must learn all at once. In addition to

this, for most students, their first computer science course comes in their first semester,

and, as a result there are a number of practical problems to be overcome (students

must be motivated to think and work on their own - something they often do not

learn in high school). There were a few parts where instructors felt the student's

comprehension was insufficient. Their understanding of the operation of memory and

being able to distinguish functions performed by the different parts of the computer

system (O/S, hardware, their own programs, etc.) were felt to be somewhat lacking. In

this case, as the topics are largely factual at this level, simply allowing more exposure,

perhaps in the form of exercises, demonstrations, and/or models should make

assimilation of this information more complete for most students. More exposure (in the

form of more time) is not always possible, and many students will tell you that they

have little enough time to complete all their work as it is, without adding to it. With

carefully designed exercises that guide the students through the work, it is possible to

make somewhat more efficient use of the available time than is often done. This is

especially true in classes that have scheduled labs or tutorial time that is currently

being used solely to answer questions.

There were a few areas under the heading of 'operational use' where instructors felt

there was a lack and even a few areas where they felt unhappy with their results.

These areas were the students' ability to prepare and run programs and their

understanding of the logical subsystems of a computer. The first could be helped by a

document that details the process and requirements for preparing assignments and

the second by exercises and tutorials that require the students to use the various

subsystems and answer questions about them. Again, it is felt that more exposure

(perhaps through more effective use of the available time) would produce a noticeable

improvement in the skills of many students. If the students are to be expected to

recognize the different subsystems, they must be given the opportunity to practice

using them and moving between them in a guided fashion.

The other areas in this section where instructors felt the students were lacking were

in their understanding of system organization (related to subsystems, etc.) and several

important, though often neglected skills. Keyboard skills and terminal operation are

skills the students are expected to pick up on their own. It is strongly felt that even a

37

few hours of guided practice would go a long way towards improving these skills.

Not surprisingly, the main areas of difficulty in 'Programming Techniques' were

those that dealt with problem solving, evaluation of algorithms, and programming style

- all topics that are difficult to define. Problem solving is a topic that most would

agree is difficult to teach as well as master. Indeed, it is more of an art than a skill,

and cannot be approached head-on. One can show the student various methods of

attack [Poly57] and give them many examples (graduated examples, and sequences

of assignments where each one builds on the previous one work relatively well) in the

hopes they can build from this a 'database' of problem types and approaches to

solutions but it is clear from the students' responses that this is by no means the ideal

solution. Perhaps the difficulty that the students experience is due in part (aside from

its inherent difficulty) to the fact that the leanring environment is neither imaginative nor

varied (both important qualities of good problem solving skills). Educators in post-

secondary institutions too often assume that their students are all mature individuals,

motivated by a burning desire to learn,, or that since they themselves find a subject

intrinsically fascinating, their students must too, and thus make little effort to provide a

stimulating environment so important to all forms of learning.

The other areas (algorithms and programming style), all related to problem solving to

some extent, again can be helped by numerous examples. Problems in debugging

and verification often stem from a lack of understanding of how programs operate.

Perhaps a better treament of how programs are translated and executed at an earlier

stage in the students' careers is one way to improve the situation. One method of

bringing this about is through exercises in hand execution of programs (another area

where students are lacking). Another is through exercises with syntax [Beck83]. Two

such exercises are described in Chapter 7.

Recursion is also a topic with which instructors are often unhappy. Recursion is a

difficult concept and most traditional means of introducing the idea fail. Even when the

students appear to have mastered specific applications the general concept still

escapes them. Examples of recursion that the students are already familiar with (and

therefore can easily relate to) are difficult to find. Most often, examples are taken from

the realm of mathematics, an area most students find uncomfortable in the first place.

38

Table 5.1 Areas of Need

Area 1: Introduction To Computers
Components of the Systems
The Operating System

Area 2: Operational Use of the Computer
Keyboard Skills
System Organization
Interactive Use
Running Programs

Area 3: Programming Techniques
Problem Solving
Algorithms
Programming Style
Debugging and Verification
Manipulating Character Data
Recursion

Area 4: Programming Language Structure
Flow of Control
Translators and Compilers
Run-Time Environment

Area 5: Logic Design
Digital Circuits
Digital' Arithmetic

Area 6: Architecture
Hardware Systems Organization
Memory
Symbolic Coding
Assembler Language
Program Segmentation and Linkage
Macros

Area 9: Data Structures
Lists

Area 10: Storage Management
Files

Area 11: Other Major Topics - (all parts)

Area 12: Miscellaneous
Social Issues in Computer Science
The Computer Industry

Several ways of dealing with this subject are discussed in Chapter 6. The

programming techniques part is perhaps the single most difficult area to deal with

because the skills and concepts being taught are so intangible, yet they are

fundamental to success in computer science.

39

'Programming Language Structure' is much more straight-forward than the previous

area, and, as expected, fewer problems were expressed. The main concerns were

with 'flow of control', 'translators and compilers' and 'the run-time environment'. These

areas primarily deal with factual information and as a result, simulation (by hand or

otherwise) of the various processes should yield positive results. As with any other tool,

such exercises and systems are time-consuming to develop, and most computer

science instructors have little time for such work, so even when a solution is clear, it is

often not implemented. Sometimes other systems are adapted for this new purpose,

but they are often of minimal use because they are so cluttered with other parts that

students miss the point. It is very important to be able to isolate those ideas the

student is expected to gain from a tool as much as possible. The intent should be to

leave the student to concentrate on the problem at hand, and then integrate the idea

in stages into a more realistic environment.

As fewer people answered the next four sections, it was more difficult to come to

any conclusions. Those teaching discrete mathematics and theory of computation

reported that they had experienced few difficulties. This may be somewhat misleading.

Students and instructors alike expect these topics to be difficult and perhaps because

of this, a rating of sufficient has a slightly different meaning than for other categories.

Practically no tools exist for these topics except the traditional lectures and textbooks.

It is quite likely that in this area, traditional tools work very well, however, it is still felt

that development of a few tools for demonstrations and practice purposes could be

very enlightening.

In 'Logic Design', it was felt that the treatment of digital circuits was somewhat lacking

as well as parts of digital arithmetic - in particular: multiplication, division and floating

point. These topics can be considered factual, and as such, demonstrations and

exercises can be of benefit. Several tools are currently available to show (from a

computer science point of view) how these circuits operate and they will be discussed

in Chapter 6. Multiply and divide algorithms can also be demonstrated in various

ways. These too will be described in the next chapter. Floating points representation

and arithmetic could benefit from some tools developed for demonstration purposes as

none currently appear to exist.

In the area of architecture, although most were satisfied, some expressed

40

dissatisfaction with some parts. Overall hardware systems organization and

bootstrapping presented some problems. These involve the understanding of certain

concepts and thus are not as easily tackled as facts or skills. Perhaps demonstrations

and hands-on experience with real or simulated systems (animation might also be

used to advantage) would be of service. Another area found to be lacking was

memory (access, control, paging, and segmentation). Again, as this information is

largely factual, demonstrations should be useful. So much of computer science

involves knowledge or understanding of dynamic processes yet most of the tools used

are of a decidely static nature (blackboard or overhead drawings, books, computer

program listings, etc.), On closer inspection, these tools are also found to be passive,

with little for the student to do but listen and watch. The value of doing versus seeing

and hearing must not be underestimated.

Instructors were found to be displeased with their results with the students'

understanding of 'pseudo-ops'. This is suspected to be due to insufficient time

available to spend on the subject rather than approach. Assembler language was

another subject area where some were unhappy. Problems in this area are probably

related to difficulties encountered in section 3 (programming techniques) and as such

the solution should be related to those for problems in Section 3. Several questioned

the success of their attempts to teach loading and linking as well as relocation.

Perhaps this is also due to the dynamic nature of the process and the static state of

the available tools. Macros almost invariably give students trouble, and a few

instructors mentioned this. Some of the problem may again be related to section 3

(with similar solutions), but the rest could be aided with numerous examples (perhaps

graduated examples). Macros are a rather difficult concept to master as well as teach.

It is somewhat disheartening, with so much discussion going on about the importance

of well structured languages (such as ADA, for example), that most macro languages

still have syntax that is so awkward and cumbersome that few learn to use them

effectively.

'Lists' was the subject that caused the most trouble in the section on data structures.

Topics in data structures do not easily fall under the categories of fact, skill, or

concept: all of these play their role. One method for dealing with them is suggested in

Chapter 8.

41

In storage management, the section on files was found to be somewhat lacking.

Much of what is covered at the elementary level is factual, and this type of information

can be covered quite adequately using demonstrations and exercises.

In each area covered under major topics, at least one respondent stated they were

dissatisfied with the results. The main reason for this was lack of time for coverage so

the students did not have a chance to assimilate the information given. The same

comment was made for the last section ('Miscellaneous Topics') with the results of their

dealings with the social aspects and the computer industry. Several films on these

subjects exist which are quite well made ('Fast Forward' series), and it is felt that often

the primary source of difficulty in these areas is lack of organization on the part of the

instructor (for which the instructor is not necessarily to blame). Most instructors have

very little time to spare, and these topics are not usually considered to be part of the

core material. As a result, these topics do not receive as much attention as perhaps

they should. The remedy for this situation would be either to provide a finished

package that the instructor could use, or to create (somehow) more time for the

instructor.

With each topic considered in this chapter, it becomes apparent that many problems

are related to each other and a solution for one will go a long way towards a solution

for several others. The dynamic nature of many of the processes deserves special

note, and it is felt that recognition of the importance of this fact will lead the way for

development of tools that provide the stimulation necessary to overcome the

difficulties. Hands-on experience is a vital asset and with proper guidance, it can fill in

many of the holes that still exist. Although very time-consuming, organization of the

materials presented is also important, and many subjects could benefit from lessons

learned in education [Good8O].

Chapter 6

CURRENT TOOLS

Most instructors used only the traditional tools (lectures, textbooks, hand-waving) to

bring their ideas across, but a few tried other methods. Those other methods along

with other tools currently available are the subject of this chapter.

The results of the survey would indicate that very few instructors employ any but the

most obvious tools and techniques. In the institutions studied, almost everyone listed

the first four tools (see Table 4.1) as tools they used in teaching and some also

included programming assignments and to a lesser extent, written assignments. Very

few however (never more than two), listed any other tools or techniques from the list of

twenty that were available. The distribution of tools used according to major area is

shown in figure 6.1. Although the tools used seem to be spread fairly evenly, it must

be noted that in most areas the tools were used for only a few topics and then only by

one or two individuals. There are several reasons for this deficiency, lack of time and

motivation not the least among them.

One point that deserves mention is that the instructor's satisfaction with any

particular topic tends to increase when he uses more and varied tools and techniques.

The reasons behind this are not quite clear but it would seem to be a combination of

positive feedback from the students and a result of the effort expended.

No tools other than the traditional ones were used on sections 7 ('Discrete

Mathematics') and 8 ('Theory'). There was a very poor response on these (few people

answered). Any individual instructor is unlikely to have the time to develop many

different tools, and indeed, few tools appear to exist in this area. Another possibility is

the fact that discrete mathematics and theory have much in common with the other

branches of mathematics and, as such, traditional methods are considered to be

sufficient.

Some tools were not used at all - among them, student research and presentations

(#8, see Table 4.1). No one said they made use of guest speakers. Although it is likely

42

TOOLS AND TECHNIQUES

1 2 3 4 5 6 7 8 9 1011121314151617181920
.4 INTRODUCTION
I TO COMPUTERS

V
A X X X X X X X X X X X X

OPERATIONAL
USE OF THE
COMPUTER

MXXX XXXXX X x
,., PROGRAMMING

TECHNIQUES
V
A X X X X X X X X X

PROGRAMMING
LANGUAGE
4 STRUCTURE

,

A X X X X X X X X X
LOGIC
5 DESIGN X X X X X X X X X
6 ARCHITECTURE X X X X X X X X X X

DISCRETE
7 MATHEMATICS X X X X
THEORY OF

i COMPUTATION
V
A X X

DATA
9 STRUCTURES X X X X X X X X X
,-, STORAGE

10 MANAGEMENT X X X X X X
OTHER MAJOR

11 TOPICS XXXXXX XXX X X
1 2 MISCELLANEOUS X X X X X

Figure 6.1 Distribution of Tools Used

CA)

44

to make little difference in some areas, there are a few topics where the use of

someone whose area of expertise lies in that field could not only make the topic more

interesting, but also more complete (eg. history, or social issues).

Most respondents did not comment on the tools they used even when they were out

of the ordinary. Those that were mentioned are discussed below.

Films were used by some for the introductory material, lists ('L6'), sorting algorithms

('Sorting Out Sorting'), other major topics, and computers in industry. Some material

changes fairly quickly, making films as well as other materials out-dated too fast to

make their production worth-while, however films, especially animated films provide an

ideal medium for illustrating various algorithms (such as sorting) and other complex

concepts. The dynamic nature of some of these topics can probably be illustrated best

by the use of animation.

Seminar type discussions were used for parts of sections 5 ('Logic Design') and 11

('Other Major Topics'). Due to the large numbers of students in most universities, it is

not surprising that this technique is not used more often. However, at those universities

that have small labs (with 25 or fewer students), it would be possible to conduct

seminars and even presentations in the labs (provided the teaching assistants are

reliable).

Assignments that require the student to demonstrate ability in some activity or skill

(eg. use of a particular subsystem) were used quite frequently by one individual and

occasionally by one or two others. By their very nature, most programming

assignments also require the students to demonstrate skills and abilities, but few

recognize this fact and take advantage of it. In order to complete a programming

assignment, students are usually required to run the programs on the computer. Being

able to enter and run programs involves skill in the use of the system. By adding a

few questions to an assignment that directly involve using the computer one can

expand and build on these skills.

The rest of the tools fall into two main categories: hardware and software tools.

Neither will usually be composed of just one or the other (many hardware tools run

various kinds of software, and of course, all software must run on a machine), but

these tools are categorized according to their major components. As can be seen in

the figure (6.1), various tools were used in almost all areas but usually by only one

45

respondent and most of them did not explain what those tools were. Among the tools

named were a CAI system (a software tool) called LEARN, which runs on UNIX

[Kern79], used in some introductory courses. One instructor at the University of

Calgary recommended to his introductory students that they use an on-line

documentation system called BROWSE [Bram83] in order to familiarize themselves with

the system (UNIX). BROWSE is a highly interactive, friendly system which helps

introductory students gain confidence in themselves and their ability to help

themselves.

Other software tools used by at least one instructor were programs that served as

examples to run, sample code for students to examine and simulations to study. Most

instructors teaching any of the software topics use examples, and they are almost

always appreciated by the students, but to produce three or four running programs for

each new topic requires a great deal of time and effort, and as such, must be

considered a very important tool indeed.

Although not mentioned by those who responded to the questionnaires, many other

software tools exist, and some of these will be described in the second half of this

chapter.

Very few hardware tools were named by the respondents. The logic labs from

Digital Equipment Corporation were one set used for some aspects of loic design.

They are described later in the chapter. Older shift calculators were used by several

instructors to aid in explaining multiply and divide algorithms. Although shift calculators

are not really in the category of hardware, they are still close enough to fall in that

group.

One other tool was used by one instructor which can not be classed as either

hardware or software. Wooden models of the 'Towers of Hanoi' were used by one
instructor in a second year programming course to help the students grasp the

concept of recursion.

In addition to other software tools that are available but not mentioned, there are

also numerous hardware and other tools, some of which are described in the following

pages.

46

6.1 Software Tools

Software tools includes all tools whose main component is a program or series of

programs. The hardware that this software runs on is, of course also important, but in

many cases, the same system can be run on several different machines.

SPIk

SF/k [Holt77] is a programming language designed specifically for teaching

purposes. It is easy to learn, yet it makes the transition from a teaching language to a

'real' language quite simple: SPIk is a compatible subset of FL/i. Designed to

encourage structured problem solving by computer,SPIk is actually a sequence of

eight subsets. Each subset introduces new constructs (see fig. 6.2), while retaining all

of the constructs from previous subsets.

SP/1 : expressions and output

SP/2 : variables, assignment, and input

SP/3 : selection and repetition

SP/4 : character strings

SP/5 : arrays

SF/6 : procedures

SP/7 : formatted l/D

SP/8 : records and files

Figure 6.2 SF/k Subsets

One of the great advantages of a system such as this is that the student will not

become confused by the accidental use of constructs they do not yet understand: they

simply do not exist. Choosing a programming language is usually a difficult decision. It

is usually desired to choose a language that is used outside of the university

environment, yet it must also be straight-forward enough for first-year students to

grasp, and flexible enough to illustrate more advanced concepts as the students gain

experience. Quite often, this need is filled by the use of several languages. Although

most would agree that students should be exposed to several different programming

languages, it is also important that the students have the opportunity to deal with new

concepts using a language they are thoroughly familiar with, so that the pecularities of

47

the language don't clutter up the main issue.

Plato

Plato is probably one of the best known 'Computer Aided Instruction' systems

available today. It was developed at the Computer Education Research Laboratory

(CERL) at the University of Illinois. It was intended to be a cost-effective, geneal

purpose computer-based educational system [Lyma77]. Although used primarily for

secondary school, it also has potential uses in a university environment - for drill and

practice, problems, presentations and simulated experiments. Plato uses specially

designed intelligent terminals that allow the addition of numerous peripheral devices

(audio devices, music synthesizers, etc.). The system itself (the one used by CERL,

other configurations may vary) is backed up by two COO machines with two million

words of extended core, and uses a programming language ('Tutor') created to

minimize the need for specialized knowledge of programming in order to create

courseware.

Teachers who have used the system feel it to be helpful [Rant8O]. Students are more

motivated and therefore work longer. There are, however, several problems with a

system such as this: it is still quite expensive to install, the course-writing languages

are still too complicated to make them truly useful, and in order to use Plato, one must

still tie in to a large system [Hall8O]. Some of these problems are being remedied, and

versions of Plato will be available on some microcomputers.

Logo and Karel the Robot

As the two systems, Logo and Karel the Robot are similar in many respects, they

will be discussed together.

Logo [Pape8O] provides an environment intended to help children learn to use

computers. Users of Logo write statements that operate on an object called a 'turtle'.

The 'turtle' can be a physical object that moves or a symbol on a CRT that draws

pictures on the screen. Papert refers to them as 'objects to think with'. Logo is based

on Lisp: it is highly interactive; it is interpretive, and allows procedural definitions, with

facilities for both local variables and recursion. The 'turtle' can move a specified

number of 'steps', turn a given number of degrees, put its pen down (start drawing),

48

and lift its pen up (stop drawing). In addition to these basic capacities, the system has

many more advanced capabilities (arithmetic, file operations, etc.).

Karel the Robot [Patt8l] is also designed to help people learn to use computers, but

the audience is the university student rather than children. The system (along with the

textbook) is designed to be covered in the first few weeks of an introductory

programming course. Karel's world consists of a city that has streets and avenues

along which Karel can move. Some streets and avenues may have walls between

them which Karel cannot cross. Karel has the ability to move in the direction he is

pointing (one block at a time) and to turn left 90 degrees. He can also pick up and

deposit objects called 'beepers'.

The Karel simulator is written in Pascal, and Karel's language is based on Pascal.

The language has no actual variables or data structures, but it has the begin-end

construct, as well as most of the major control structures of Pascal. Like Logo, Karel is

also interactive and interpretive. It allows procedural definitions, including recursive

ones (control can be implemented using 'if', 'while', or 'iterate' statements).

Both of these systems have many points in their favour. They allow the users, be

they children or adults, to get started almost immediately. Because they are so

interactive and graphic, the users get immediate and easily understandable feedback.

These systems are fun - gamelike - therefore users are likely to become more

involved. The systems are also essentially non-numerical: this avoids the 'fear of math'

that causes a block in many users. Using either of these systems, one can learn the

basic principles of programming quickly and in an environment that is isolated from

the other concepts a programmer needs (it becomes possible to separate algorithms

from I/O variables, compilation).

These systems have numerous qualities that make them useful for teaching problem

solving skills. Users learn to break objects and tasks down and describe them in parts.

Perhaps most importantly, the users have immediately visible, recognizable

applications with which to work (the applications have a connection with something

they know). Users can achieve success very quickly, and then build on those

'procedures' to solve larger and larger problems. Conversely, they can quite easily see

how a larger problem can be broken down into parts they already know how to solve.

The results of their efforts (the output) are dynamic: this makes it easier for students to

49

visualize solutions (they can imagine what Karel or the turtle must do).

Although Logo has several advantages over Karel when viewed in terms of their

appropriateness for post-secondary teaching, Karel seems the better system. Logo

allows the user to draw pictures - a very concrete goal - which is personally

gratifying. Logo is also available on many systems both large and small for as little as

$150.00 [Will82].

Karel, on the other hand has the substantial advantages that the intended target is

that for which it is to be used, as well as the fact that the teaching materials have

already been produced (textbooks and exercises). Karel has fewer primitives than

Logo so there is less to remember. Karel is also much more like the language they are

about to use than is Logo - this makes the step to Pascal relatively painless. Also

because of its similarity to Pascal, Karel goes a long way towards promoting good

programming habits (more so than the unstructured nature of Lisp) and the textbook

attempts to teach structured programming habits.

6.2 Hardware Tools

As a general rule, fewer hardware than software tools exist. Most of those that are

available, however, have the potential for being very useful.

Shift Calculators

Although by today's standards, a shift calculator would not be classed as hardware,

it is included largely for historical reasons. As tools, they are not longer used for their

original purpose, but they do have one very important application. They provide an

excellent vehicle for illustrating how low level multiply and divide algorithms (logic

design) work. For multiplication one number is entered, and the user must turn the

crank the appropriate number of times in each place ('10's, '100's, etc.) before shifting

to the next one. For division, the crank is turned the other way until the number

becomes negative, then it is turned back once, and that count is recorded before

shifting to the next place. No formal studies have been done, but the students who

have used them seemed to enjoy them and generally felt quite positive.

50

DEC Logic Labs

In Chapter 5, it was found that some instructors were dissatisfied with the treatment

of digital circuits. Although now quite old, the DEC Logic Labs still serve well to show

the composition and operation of simple circuits. Students can build these circuits and

observe their behavior.

M icroProfessor

Ideally, to learn important concepts in computer operation, one wants a stand-alone

system that the students can use and with which they can experiment (without the

danger of interfering with other people's processes). MicroProfessor is such a system.

It is quite new (1981) and is available from Multitech Electronic Inc. It was designed

specifically to teach microprocessor concepts and the fundamentals of microcomputer

operation. The system is composed of a Z80 processor chip with on-board RAM and

ROM; it has a 36-key keyboard, and an internal power supply. One can load

programs, set breakpoints, and single-step through programs. There are also various

additional devices that can be attached (including tape recorders, printers, and a

speech synthesizer). The system comes complete with three manuals: one for general

reference (User's Manual) which contains examples; an Experiment Manual containing

13 complete experiments; and the monitor program source listing. A student workbook

is also available, though not included.

This system has many advantages. It is very inexpensive (the basic system complete

with the three manuals is available for approximately $150.00) and has been designed

specifically for teaching purposes. In fact, is is actually designed to be self teaching,

so the documentation is especially clear. In addition, the hardware has been carefully

laid out and has all been labeled. Finally, and perhaps most importantly, the system is

uncluttered - it has been designed for a single purpose. Although it would not be

impossible to write programs to accomplish personal tasks, it was not meant to be so

versatile that the basic system becomes inacessible.

6.3 Other Tools

There are some other tools that can be considered neither software nor hardware.

As the discpline we are dealing with is the study of computers, it seems that many

51

instructors ignore the possibility of using tools that do not involve the computer (with

the possible exception of films).

Towers of Hanoi

Recursion is a topic that every year confuses the students and aggravates the

instructors. The difficulties in teaching this subject have already been discussed

(Chapter 5). It seems unlikely that a single tool will suddenly make it all clear, but one

attempt has been made at the University of Calgary. One instructor built models of the

Towers of Hanoi (with five discs), which were used in the second year class. The

students were allowed to manipulate these models during a lab period and were

slowly guided towards a written solution to the recursive algorithm. They were asked

questions, given time to answer, and then they were given the correct answers so they

could move on to the next step. The students enjoyed the experience, and although

many were still somewhat confused (about recursion), most agreed that having an

actual model to work with helped them work out their algorithms.

CARDIAC Kits

The Cardiac Kit was designed by Bell Telephone Labs in 1968 to help people

understand the basic operation of a computer (hardware systems organization),

'Cardiac' is an acronym for 'CARDboard Illustration Aid to Computation'. As the name

implies, the Cardiac Kit is made completely of cardboard. It uses a simplistic

hypothetical machine language which 'runs' on the cardboard model. It was designed

specifically for teaching - in fact, it has no other use. The Cardiac Kit comes with a

booklet that has clear explanations and numerous examples. The booklet also directly

addresses the problem of 'bootstrapping', a topic with which several instructors were

dissatisfied.

Although this tool is now quite old (in fact, it is now almost as old as the next set of

first year students!), it still fulfills the purpose it was originally designed for quite

admirably. It is a simple, straight-forward method of introducing students to the basic

concepts and ideas of computer operation.

52

Sorting Out Sorting

Films are not used as much in computer science as they are in some other

disciplines but they do deserve recognition, and several excellent examples are

currently available. 'Sorting Out Sorting', produced by the University of Toronto is one

of these. Through the use of animation, it describes and illustrates nine algorithms for

three different types of sort (linear, exchange, and selection). Each algorithm is

illustrated and described by means of lines of varying lengths (items to be sorted) that

move to the position described by the algorithms. Three algorithms in each group are

described, then compared to each other (via speed comparisons) before going on to

the next group. The visual effect of the actual sorting behavior is quite dramatic, and

illustrates the point far better than tracing the execution of a program on the

blackboard and listing the times for completion. After all of the algorithms have been

introduced, all nine are compared with each other - with interesting effects. At the

end of the film, the whole film is repeated in a fraction of its original time - an

extremely useful strategy - which refreshes the students' memories and helps them

remember what they have seen. The whole film takes appioximately 30 minutes and is

most definitely a far more effective use of that time than any purely verbal explanation

could be.

Although there is still much room for improvement in the area of teaching tools for

computer science and many areas of need that would definitely benefit from such

attentions, numerous well-designed and thoughtful tools do exist, but sadly, few

actually use them. Practical problems prevent the widespread use of some. For

example, although a device such as the MicroProfessor is a little too expensive to

expect all students to buy their own, problems with theft and vandalism prevent some

departments from using them in their classes. In addition, they are understandably

unwilling to complicate the already heavily taxed administrative staff's duties by

expecting them to manage loans with or without safety deposits. Perhaps when the

institutions begin to realize that computer science departments are unique in their

requirements, allowance can be made to provide for adequate staff and useful tools

will begin to make a more prominent appearance.

The problem does not only lie with administration, however. With a bit of fore-

thought on the part of the instructors, many of the tools can be made available to the

53

students. Instructors are seldom given encouragement to organize their classes or

develop tools of their own. In fact, as most are also required to do research, many are

discouraged from becoming effective teachers. Sadly, there are even those who feel

that teaching should not be their job at all, forgetting that research cannot be

advanced if no one has been taught to do that research.

Chapter 7

A FEW ADDITIONS

The preceding chapters have dealt with the need for teaching tools in computer

science and the last chapter introduced a few that are currently available. According

to the results of the questionnaire (chapters 4 & 5), there are numerous areas where

many instructors felt the treatment was less than satisfactory (see Table 5.1). These are

areas that could probably benefit most from the development of new tools. This

chapter discusses three new tools, developed at the University of Calgary to fulfill

various needs. These tools have been implemented and more information is available

upon request.

7.1 Syntax Diagrams

The syntax of a language is usually considered to be the easiest part to learn; still,

introductory programming students spend a disproportionate amount of time on syntax

(learning, looking things up, debugging). This situation can be improved somewhat

with the use of the following tool.

Many introductory Pascal textbooks use syntax diagrams to introduce new

constructs. Quite often, those textbooks that use the syntax diagrams make no attempt

to explain them (they can be useful). Students can be taught to use these syntax

diagrams effectively. By using the syntax diagrams, students can make sure their own

programs are syntactically correct and they can quickly locate syntax errors when they

do occur.

Two types of exercise have been developed in November of 1982 [Beck83] to allow

students to learn the syntax of the programming language they are going to use (in

this case Pascal).

The object of the first set of exercises is to reduce given samples of Pascal code,

beginning with the simple tokens and ending with the highest level syntactic unit for

that sample. The syntax diagrams prescribe the rules for reduction.

54.

55

The student must make several passes over the sample, reducing the tokens to the

next higher set in each pass (each pass is written down).

if 10

then begin

= 0;

x: =xx

end

else begin

= i + 1;

x: = y

PASS 1:

if E

then begin

ID: = E;

PASS 2:

if E

then begin

S;

ID :=E S

end end

else begin else begin

ID: = E;

5;

ID :=E S

end end;

PASS 3: PASS 4:

if E

then S

then S;

S;

Figure 7.1 Example - Exercise 1

The second set of exercises also uses the syntax diagrams, but in this case a list of

syntax error messages is also required. Here the student is asked 'to play compiler',

and must parse the samples. Each sample specifies the starting unit (eg. program

or if statement), and, with this, the student is to follow the syntax diagrams,
expanding each syntactical entity appropriately until they are able to follow the terminal

symbols as they appear in the sample. When an error is found (a terminal symbol in

the sample that does not match with an alterntive from the syntax diagrams), they

56

search the list of error messages, record the most appropriate one and follow the

attached instructions for recovery to continue.

program one (input, output):

var 1 : integer;

begin

write ('Number please:

while not eof(input) do

begin

read (i)

writeln ('That was a', i)

write ('Number please: ')

end

end.

RESULT AFTER PARSING:

P[PH[program id (id, id) 1;
B [VD [var id : t]

begin

Si [id (CS['characters'])
S5 [while E do

S2[begin

**ERROR 12 ; S1[id (CS['characters'], id) I
**ERROR 12 ; S1[id (CS['characters'])]

end]

end I

Figure 7.2 Example - Exercise 2

These exercises have been tested on a second-year computer science class and the

comments were favorable. The class used the exercises to help them review Pascal

and most agreed that they could be useful in finding bugs in programs.

57

With some refinement, these syntax diagrams can be used in the first year when

students are learning their first language and hopefully, it will make them more aware

of the syntax as they begin to write their programs.

7.2 Microtool

Microprogramming is a topic that few instructors said they covered in the

introductory curriculum. Many seem to feel that this topic is too advanced for most

introductory students, but this need not be the case. Jim Parker at the University of

Calgary has developed a software tool to deal with microprogramming [Park83b].

When teaching about microprogramming, there are certain notions of importance.

One is the concept of a machine inside a machine, and another is the notion of the

machine interpreting instructions to it. Most conventional methods of teaching

microprogramming fall into two categories. First is the blackboard and textbook

treatment of a simplified example system (often accompanied by a programming

assignment to simulate the (macro) computer's operation), and the second is the use

of a commercial system with writable microstore. With the first method, the students do

not have the opportunity to experience the behavior of a real system, and the second

is rather expensive (of both money and space) and sometimes difficult to manage.

The system developed by Parker is based on the processor described by

Tanenbaum [Tane76]. This design was chosen primarily because of the availability of a

relatively popular text that could be used in conjunction with the system. The

'machine' uses a 40-bit microinstruction, and the system permits users to enter

microcode from the terminal. It is also possible to load machine code from files. The

user can step through the execution of programs, set breakpoints, and the system

allows tracing and dumping of both 'macro' store and the control store.

Among the advantages of this system over the other methods is that students get

practice with writing and executing microprogrammed instructions without the

complexities of dealing with a real machine. The students have access to high level

debugging tools and can create microprograms using higher level editors. This way,

students can concentrate on the concepts being taught without having to fuss with all

of the 'extras' found in actual machines. The system is reasonably portable (it is written

in Pascal and runs on a VAX UNIX system), but perhaps most importantly, it allows

58

large numbers of students to have access without the danger of harming the

processor on which it runs.

It was not possible to test the system on students to get their reactions, but it was

still possible to get some comments from other instructors. Of primary concern was the

design of the 'machine' itself. It was felt that although it might make a good starting

point for the students, it was too simplistic to be useful for long. To remedy this

situation, it would become necessary to alter Tanenbaum's design, thus making the

textbook somewhat less useful. For the most part though, the reaction was positive

and it is felt that such a system would help make the previously mentioned concepts a

little easier for the students to grasp.

7.3 Finite State Machine Simulator

Those that answered section 8 of the questionnaire ('Theory of Computation') were

basically satisfied with the results of their efforts. Theory is an area that involves many

abstract concepts and one that many students find very difficult indeed. Few tools are

available that instructors can make use of besides the traditional ones (textbooks,

lectures, etc). Because of its inherent difficulty, it is unlikely that the development of

new tools will make this subject simpler, but it is felt that the employment of a few

tools that allow the students to observe and work with some of the many dynamic

processes involved might make some of the concepts a little less abstract, and thereby

somewhat easier to grasp.

The tool that has been developed is intended to help students understand finite state

machines and how they operate. Currently, this tool is a software program that runs on

a VAX (under UNIX), but this simulator is basically just a prototype for a hardware box

to be built specifically to demonstrate finite state machines. The original idea was put

forth by John Slater, but has since been expanded.

The purpose of the simulator is to provide a vehicle for manipulating sample

instances of finite automata. The simulator contains numerous descriptions of finite

automata which can be displayed on request. It also allows the user to define strings

and test them to see if the FA will accept them. Once a new string has been entered,

the user is to indicate which state is to be used as the initial state, and then each time

the user presses the return key, the finite state machine takes the next character as

59

input and uses it to move to the next possible state.

By working through various examples, it is hoped that the user will gain experience

with finite state automata and their significance. When the simulator is first invoked, a

blank Finite State Machine (FSM) is drawn on the right side of the screen and the user

is prompted for a command. The prompt (' >') appears along the bottom of the

screen. The commands are all entered as single letters (except one) followed by a

<return>. The exception to this is 'pulse' which is a <return > character all by itself.
A brief explanation of each command is found in Figure 7.3

I (load) load a new FSM

w (word) define a new string

(return> (pulse) move to next state based on input

i (ignore) skip current character

r (reset) : reset the error flags

s (state) : move to specified state

(used to resolve non-deterministic input)

c (clear) : erase the current string

q (quit) : leave simulator

Figure 7.3 Commands for Finite State Machine Simulator

The Finite State Machine Simulator contains descriptions for a number of different

finite automata. The user may request any one of them by loading it into the state

table (using 'I'). The F.A.'s are referred to by number. Once loaded, the graph is

displayed on the right-hand side of the screen along with the definition, which is

described on the left-hand side. The user may then create strings/words (using 'w')

and observe the behavior of the FSM as the characters are processed (using 'pulse').

If the string is part of the described language, it will be possible to 'pulse' to the end

of the input, at which point the user sees a message that indicates the end has been

reached. Under various conditions, a number of error flags may be set while

processing a given string. These error flags indicate non-deterministic states, symbols

encountered that are not members of the alphabet, and attempts to move from a state

using a symbol not allowed for that state.

60

This simulator was given to a second year class at the University of Calgary that

was studying finite automata at the time. As rigorous testing was not attempted (see

discussion at end of chapter), the students were merely asked to try the system and

return their comments. Most students liked the idea, although they felt the system was

not flexible enough. They wanted to be able to define their own automata. This is a

capability that the final system will definitely have, along with more possible states (the

current system has five), and access to the full keyboard for the alphabets. Even

though the graphics were found to be somewhat confusing, the students thought the

system was fun to work with and many commented that the system helped them to

visualize other automata with which they were working.

Although none of the comments given in this chapter can be used to prove

conclusively the utility of the tools described, it is fairly clear that most students

appreciate the efforts and seem to feel that the opportunity for 'hands-on' experience

is a valuable one.

Rigorous testing was not used with any of these tools for several reasons. This type

of testing is exceedingly difficult to control properly and there is the danger that the

statistical results, although significant, may be misleading (they may indicate that

something is significant, but the reaons may be contrary to what the researcher

assumed). In addition, there is a question of ethics to be considered. These tools are

thought to be potentially very useful, and initial reactions bear this out. As a result, it

could be considered to be unfair to allow some students the benefits of these tools

and not others. It is not within the scope of this thesis to try to solve these problems.

Hopefully, it is sufficient to state that the students and instructors who reviewed the

tools outlined in this chapter would indicate that further work in the area of tool

development would be welcomed by all involved.

Chapter 8

NEW TOOLS

In the last chapter several tools that have been developed recently were described

and the reactions of the students who used them were discussed. According to the

comments of those who answered the questionnaire (chapter 5), there are numerous

areas where instructors felt the treatment was less than satisfactory (see Table 5.1).

These areas of dissatisfaction are areas that would probably benefit most from the

development of new tools. This chapter deals with three such tools. None of these

tools has been implemented as yet, but the initial designs are complete and these will

be discussed in the following paragraphs.

8.1 Recursion

The first of these proposed tools was originally designed at the University of Calgary

[Park83c]. It deals with recursion, which has traditionally been a very difficult concept

to master. Often, even when the students understand individual applications, they still

do not grasp the general concept.

Finding suitable examples is difficult. The students often have difficulty following the

example itself, so the point being made by it is lost. Recursion is a very dynamic

process and most techniques used are rather static (blackboard drawings, textbooks,

etc.). To deal effectively with a dynamic process, it is felt that the tools used should

also be dynamic.

Parker has suggested that a film be produced to illustrate the concept of recursion.

A film would be an ideal medium, in which the powers of animation and 'trick

photography' could be used to great advantage. One example that can be illustrated

in a film is a recursive tree traversal. A recursive tree traversal can be shown using

both a representation of the tree (diagrammatic) and the code for the procedure being

executed. Each new invocation would result in the procedure call being expanded and

the tree being modified such that the part of the tree that is accessible by the new

invocation is a different colour from the rest.

61

62

Another technique that would be employed by the film that would be quite illustrative

is a 'mock news cast', similar to what is seen on television. Frequently, during a typical

newscast, the anchor-man will refer to another reporter for a more detailed account of

a story. When the reporter has finished speaking, he or she will refer back to the

anchor-man who continues with the broadcast. Occasionally, the reporter will go a

level deeper and refer to yet another reporter. This technique can be used quite

effectively to illustrate how recursion works. To make the example approximate

recursion a little more closely, the same announcer would be used for all parts.

Instead of referring to another reporter, the anchor-man would refer to himself. This

could be carried to several levels and upon returning, each 'invocation' would

conclude in the same manner as every other, and then refer back to the previous

'call' (" . . .and now back to you Fred. .

Another device that can be used to advantage to illustrate recursion in the film is the

mathematical puzzle. Several mathematical puzzles exist whose solutions rely on

principles of recursion (such as 'Computer Loops'). These can be solved and their

solutions shown using animation (in this case 'trick' photography) so that no-ones

hands interfere with the observation of the solution.

Although no single tool is likely to suddenly make a difficult concept like recursion

easy to learn, the use of a few carefully selected techniques can make the learning

process a little more enjoyable and the students a little likelier to grasp the ideas

faster.

8.2 Floating Point Demonstrator

Another area that instructors were dissatisfied with is floating point representation

and arithmetic (part of logic design). As stated in chapter 5, these topics are primarily

factual, thus it is likely that demonstrations and exercises will be of benefit. One way to

accomplish this is with the use of a software package. A drill and practise type of

'CAI' program could be quite useful. It is possible to display various representations

(perhaps those that are used in the machines available to the students), present

material, and ask questions that can be monitored by the machine. The students can

observe simple floating point arithmetic (more thorough treatment could perhaps be

left until the senior years).

63

The system can display numbers in three formats: decimal, octal, and binary. The

decimal format can be used initially so the students have a number system with which

they are thoroughly familiar, to be used until they understand the basic principles.

Then they move on to octal and binary numbers.

To learn about the representation and normalization, students are first shown how

various numbers (decimal) are converted to floating point and what happens during

normalization. They are then prompted with numbers chosen by the system and asked

to enter the floating point representation in the normalized and non-normalized forms.

Learning about floating point arithmetic is accomplished in the same manner. The

students are shown the algorithms for performing addition, multiplication, etc. in a

stepwise fashion and later asked to follow through by themselves (entering

intermediate results).

The system itself need not be very elaborate; numerous lessons preceded by

explanations and succeeded by questions or a quiz may be quite adequate. Although

quite important, floating point is not as troublesome a topic as, for example, recursion

or problem solving and as such, it is felt that somewhat more exposure and a little

more practice would help to bring the ideas across.

8.3 Treetool

In the area of data structures, 'lists' was a topic where the coverage was found to

be somewhat lacking. Manipulation of data structures, as so many other topics in

computer science, is very dynamic, and as a result it is difficult to show using static

tools (eg. blackboards, overheads, etc.).

Quite often, students find that programs written to implement algorithms that

manipulate data structures are difficult to debug. The students may have a vague

'picture' of the algorithm but cannot imagine what might be causing the bugs when

they appear. One substantial problem with debugging these programs is the lack of

diagnostic output - especially when pointers are involved; 'pointers' is a concept that

many students find problematic in the first place.

In order to help teach these concepts, we need a tool that allows students to

manipulate various data structures without the cluttering effect of a complete language

and with the ability to observe the structures as they are manipulated (observe the

64

effects of the algorithms as they are carried out). One such tool is the 'treetool'. This

tool deals specifically with binary trees, primarily to keep the design simple (it would

be possible to create a general data structres system along the same lines).

The tool is a software system that the students use to help them answer questions

that they are given and to observe and implement various algorithms which

manipulate binary trees. The student uses predefined nodes to perform the common

operations on binary trees - namely: insertion, deletion, and traversal. The 'language'

that is used to do this is a subset of a known language (Pascal) to make it easier for

the students to begin using the system quickly. All required variables are pre-defined

as well as the procedure interfaces (via procedure headings). This is intended to allow

the students to concentrate on the actual algorithms as much as possible. Also in an

effort to keep the point of the exercises as obvious as possible the allowable

operations of the language are severely restricted. The student is allowed to assign

values to the variables, print the values of keys, and call any of the three procedures.

To make the system complete for dealing with tree structures, there exist 'if'

statements and a 'while' statement.

The system is intended to be highly interactive, so many actions can be performed

from 'command mode'. Among these actions are: the ability to interrupt and resume

execution; the ability to execute one of the three procedures; the ability to create a

new tree to work with and to perform various other bookkeeping chores. It is also

possible to define a new version of any of the three procedures.

The system uses the terminal screen in two ways. One part of the screen is used to

display the currently active procedure (the code itself is displayed along with a marker

pointing to the currently active statement). A small part of this half of the screen is also

used for the output from the routine and for echoing the most recently issued

command. The other half of the screen is used to display the tree itself. Markers are

used to show the current values of the variables. These markers are changed when

the value of the variable changes (as does the tree when appropriate). For a complete

list of commands and description of the language, refer to tables 8.1 and 8.2.

The students using this sytem are provided with an explanatory manual about the

system and a set of exercises they are to complete. For example:

65

Create a tree with the following nodes: 2 6 12 9 5 4
Where in the resultant tree would the node with the key '7' be inserted?
Draw the tree and check your answer by inserting it in the tree shown.

The exercises are intended to guide the student through a series of demonstrations,

and present to the student various questions along the way. With a system such as

this, the students watch what is happening to the variables and the tree as the code is

executed and they can examine the results of certain actions. This will hopefully help

build an intuitive 'picture' of what the routines are doing. It also allows the student to

actually observe the effect of various bugs as they occur.

Although not yet implemented, this system is intended to be completed in the

upcoming academic year and will be tested on a second year class at the University

of Calgary (Cpsc 302). The system will initially deal only with binary trees, but, as

Table 8.1 Treetool Commands

ctrl S : PAUSE: halt execution

c : CONTINUE: start execution
(pick up where 'pause' left off)

proc 'X' : DEFINE PROCEDURE: start input for
subroutine 'X' ('X' can be one
of traverse, delete, or insert)

traverse : CALL TRAVERSE: call traverse routine
with main root

insert N : CALL INSERT: call insert routine with N
(insert new node with key = N)

delete N : CALL DELETE: call delete routine with N
(delete node with key = N)

restore 'X' : RESTORE: restore standard subroutine 'X'
('X' can be traverse, delete, or insert)

stop : CLEANUP: get rid of information created
by 'pause' for 'continue'

make Ni N2: MAKETREE: build a standard search tree from the given
input (maximum number of keys is 15)

clear : CLEARTREE: delete tree, set root to nil

quit : QUIT: leave treetool system

N 'statement': CHANGE: change line N to the statement given

display 'X' : DISPLAY: display the named routine on the screen
('X' can be traverse, insert, or delete)

66

Table 8.2 Treetool Language Definition

PRIMITIVES: const nil = 0;
type node—ptr = 0,, 15;

node = record key : integer;
left : node—ptr;
right : node—ptr

end;

VARIABLES: var root : node—ptr;
p : node—ptr;
n : node—ptr;

flag : boolean;
k : integer;

KEYWORDS: if then else begin end while

BUILTlNS: print (< integer >) :print value as output
new (node) :return new node

return pointer to it

SPECIAL SYMBOLS: := () , . = <= > 0
SUBROUTINE HEADERS: traverse (var root: node—ptr);

insert (var k: integer,
var root: node—ptr);

delete (var k: integer,
var root: node—ptr);

SYNTAX

Integer Value <ival> : : = < integer > : <iref>
Integer Reference <iref > : : = k <locator>, key

Pointer Value <pval> : : new (node) I <pref>
Pointer Reference <pref> : : = root I r I n

<locator >. left (<locator>, right
Boolean Value <boolval> : : = true I false I <boolref>
Boolean Reference <boolref> : : = flag I <ival> <= <ival>

<ival> > <ival> I <ival> = <ival>
<ival> <> <ival> <pval> = <pval >

<pval> <> <pval>

Locator <locator> : : = <pref > '
Assignment <assign> : : = <pref> : = <pval> I

<iref> : = <ival>
flag : = <boolval>

Print <print> : : = print (<ival>)
If - Then - Else <if> : : = if <boolref> then <s>

if <boolref> then <s> else <s>

67

Table 8.2 (continued)

While <while> : : = while <boolref> <s>

Call < call > : : = traverse(<pref))j
insert (< ival >, <pref>) I
delete (<ival> , <pref>)

Statement <s> : = <emptyOwhile> (assign) I <print> I <01<call> I
begin <s); (s>j end

Procedure Finish <pt> : : = end.

stated earlier in this chapter, it can be expanded to include other data structures as

well (eg. linked lists, matrices, queues, stacks, etc.).

It seems certain that the development of new tools cannot either replace the role of

the instructor of a course nor make the task of learning computer science a simple

one, but hopefully they can serve both the students and the instructors in useful ways.

Through the use of carefully designed tools the student can be better motivated and

the task of learning can be made somewhat more enjoyable. For the instructor, the

benefits include somewhat less time spent on preparation which can be very important

when most have very little time to spare.

Chapter 9

CONCLUSIONS

The list of topics and objectives given in the appendix is one of the major outcomes

of this thesis. It outlines the knowledge and abilities that computer science students

should have upon completion of the introductory part (approximately the first two

years) of their programs. While several other groups and individuals list topics to be

included in such a curriculum, most give no indication of what they mean by a

particular topic (one person's interpretation of a particular topic may be vastly different

from another). These curricula also do not state any goals to go with the individual

topics. It is very important to outline goals when discussing a curriculum. Aside from

defining the topic more completely, it also gives a better indication to the instructors in

a computer science department as to what they should be attempting. These guides

should not be too rigid, however. Instructors must be given a reasonable amount of

freedom to develop their own courses. By using the topics and objectives as a basis

to work from, it is possible to build a curriculum that is both consistent and complete.

A list of topics and objectives alone is not sufficient. It is also necessary to know

how these topics are interrelated. This has also been recorded in this document using

the previously mentioned list as a basis. The description of the interrelationships in the

third chapter is not complete and open for debate. It is hoped that more work will be

done in this area to define more fully the interdependencies of the subjects taught in

computer science. Perhaps, some topics that have proven very difficult for the

students may be somewhat easier if presented in a different order.

In order to validate the list of topics and objectives, it was given to faculty members

of computer science departments in most Western Canadian universities so they could

comment on which topics they covered. The results of the questionnaire have been

described and recommendations laid out. In particular, those topics with which

instructors were displeased were singled out and possible solutions suggested.

Primary attention was paid to the tools used in teaching. Numerous tools currently

available were reviewed and then several new tools developed at the University of

68

69

Calgary were described.

The tools and techniques most often used were fairly traditional ones (lectures,

blackboards, overheads, etc.); none of which are very dynamic in nature. So many of

the concepts taught in computer science are very dynamic, yet most of the tools used

are quite static. The importance of using dynamic tools to illustrate dynamic ideas

cannot be stressed too strongly. The use of tools to fit the topic are likely not only to

make the topics easier to learn, but also easier to teach.

Finally, three proposed new tools were described. These have not yet been

implemented but will hopefully be completed in the coming year. In addition to this,

the three already implemented will be revised and improved.

There are still numerous areas where instructors were displeased and thus many

areas where the development of new tools could be of great value. Although it is

possible that the use of too many tools can cause students to become as bored or

confused as the use of too few, it is fairly clear that it "Will be quite some time before

the danger of too many tools becomes real.

REFERENCES

[Abel82] Abelson, Harold, "A Beginner's Guide to Logo - Logo is not just for

kids". BYTE Vol. 7 No. 8, Aug, 1982, pp. 88-112.

[Aust79] Austig, Richard H., Bruce H. Barnes, Della T. Bonnette, Gerald L. Engel,

Gordon Stokes, Editors, "Curriculum '78: Recommendations for the

Undergraduate Program in Computer Science - A Report of the ACM

Curriculum Committee on Computer Science' CACM Vol. 22 No. 3, March.

1979, pp. 147-165.

[Beck83] Becker, K., "Teaching Syntax in an Introductory Programming Course", -

Proceedings of Converging Technologies Conference, Canadian

Information Processing Society, Ottawa, Ont, May 16-20, 1983, pp.

183-195.

[Bram83] Bramwell, Bob, "An Automatic Manual", MSc Thesis, University of Calgary,

1983.

[Chan77] Chandor, Anthony, John Graham, and Robin Wiliamson, "The Penguin

Dictionary of Computers", Second Edition, Great Britain, Penguin Books

Ltd., 1977.

[Coug73] Couger, J. Daniel, Ed., "Curriculum Recommendations for Undergraduate

Programs in Information Systems", CACM, Vol. 16, No. 12, Dec. 1973.

[CSRG81] Computer Systems Research Group, "Sorting Out Sorting", (film), Dynamic

Graphics Project Production, University of Toronto, 1981.

[C3S 68] Curriculum Committee on Computer Science (C3S), "Curriculum '68,

Recommendations for Academic Programs in Computer Science',

Comm.ACM 11,3 (March, 1968), pp. 151-197.

[Enge78] Engel, Gerald L., and Oscar N. Garcia, "Curricula Development in

Computer Science and Engineering", IEEE Trans. Ed., Vol. E21, No. 4,

Nov. 1978.

[Good80] Good, Thomas L. and Jere E. Brophy, "Educational Psychology: A

Realistic Approach", 2nd Ed. New York: Holt, Rinehart and Wilson, 1980.

70

71

REFERENCES (contined)

[Hall80] Hallworth, H.J., and Ann Brebner, "Computer Assisted Instruction in

Schools: Achievements, Present Developments, and Projections for the

Future", Planning and Research, Alberta Education, June, 1980.

[Harv82] Harvey, Brian, "Why Logo? : Logo is designed to encourage development

of problem-solving skills", BYTE, Vol. 7, No. 8, Aug., 1982, pp. 163-193.

[Holt77] Holt, R.C., D.B. Wortman, D.T. Barnard and J.R. Cordy, "SP/k: A System

for Teaching Computer Programming", CACM, Vol. 20, No. 5, May, 1977.

pp. 301-309.

[IEEE77] IEEE Education Committee (Model Curriculum Subcommittee of the IEEE

Computer Society), "A Curriculum in Computer Science and Engineering,

Committee Report IEEE Publication EHO119-8, Jan. 1977.

[Kern79] Kernighan, Brian W., and Michael E. Lesk, "LEARN - Computer Aided

Instruction on UNIX", Bell Labs Publications, January 30, 1979.

[Lisk74] Liskov, Barbara, and Stephen Zilles, "Programming with Abstract Date

Types", SIGPLAN Notices, Volume 9, No. 4 (April, 1974), pp. 50-59.

[Lyma77] Lyman, Elizabeth R., "PLATO Makes Learning Mickey Mouse", ROM,

Sept. 1977, pp. 34-39.

[Muld75] Mulder, Michael C., "Model Curricula for Four Year Computer Science and

Engineering Programs: Bridging the Tar Pit", Computer, Dec. 1975.

[Pape80] Papert, Seymour, "MINDSTORMS: Children, Computers and Powerful

Ideas", New York: Basic Books Inc. Publishers, 1980.

[Park83a] Parker, J.R., Personal communication, January and February, 1983.

[Park83b] Parker, J.R., "The Microtool Processor Emulation System", University of

Calgary Yellow Series Report No. 82/110/29.

[Park83c] Parker, J.R., ".. . And Now, Back to You", A preliminary screenplay for a

movie about recursion. In preparation, 1983.

[Patt81] Pattis, Richard E., "Karel the Robot: A Gentle Introduction to the Art of

Programming", New York: John Wiley & Sons, 1981.

72

REFERENCES (continued)

[PoIy57] Polya, G., "How to Solve It: A New Aspect of Mathematical Method", 2nd

Ed., Princeton, New Jersey: Princeton Press, 1957.

[Rant8O] Rantanen, J., "The Plato Experiment in Finland", Teaching Informatics

Courses, HLWJackson (Editor) North-Holland Publishing Co., IFIP, 1982,

pp. 75-86.

[Sipp76] Sippl, Charles J., "Data Communications Dictionary", New York: Van

Nostrand Reinhold Company, 1976.

[Skem79] Skemp, Richard R., "Intelligence, Learning and Action: A Foundation for

Theory and Practice in Education", Chichester: John Wiley and Sons,

1979

[Slat82] Slater, J., Personal communication, November, 1982.

[Tane76] Tanenbaum, Andrew S., "Structured Computer Organization", New Jersey:

Prentice-Hall Inc., 1976.

[WiIl82] Williams, Gregg, "Logo for the Applell, the T199/4A and the TRS8O Color

Computer", BYTE, Vol. 7, No. 8, Aug. 1982, pp. 230-290.

TEXTBOOKS

1. Aho. Alfred V., John E. Hoperoft, and Jeffery D. Ullman, "Data Structures and
Algorithms", Addison-Wesley, 1982.

2. Bohl, Maralyn, "Information Processing", SRA 1976, 1971.

3. Bradley, James, "File and Data Base Techniques", HRW Series in Computer
Science, 1982.

4. Cooper, Doug, and Michael Clancy, "Oh. Pascal!", WWNorton and Company.
1982.

5. Eckhouse, Richard E., and L. Robert Morris, "Minicomputer Systems:
Organization Programming and Applications (PDP-1 1) New Jersey: Prentice-Hall,
1979.

6. Engeler, Erwin, "Introduction to the Theory of Computation", New York: Academic
Press, 1973.

7. Graham, Neill, "Introduction to Computer Science: A Structured Approach". West
Publishing Co., 1982.

8. Haber, Fred, "An Introduction to Information and Communication Theory'. Vol. 4.
Advances in Modern Engineering, Mass: Addison-Wesley, 1974,

9. Hayes, John P., "Computer Architecture and Organization", McGraw-Hill
Computer Science Series, 1978.

10. Hill, Frederick J., Gerald R. Peterson, "Digital Systems: Hardware Organization
and Design", 2nd Ed. John Wiley and Sons, 1973, 1978

11. Hoperoft, John E,, and Jeffery D. Ullman, "Formal Languages and Their Relation
to Automata", Addison-Wesley Series in Computer Science and Information
Processing, 1969.

12, Hoperaft, John E., and Jeffery D. Ullman, "Introduction to Automata Theory.
Languages, and Computation", Addison-Wesley Series in Computer Science and
Information Processing, 1979.

11
13. Lippiatt, Arthur G., "The Architecture of Small Computer Systems", London:

Prentice-Hall International Inc., 1978.

14. Lipschutz, Seymour, "Theory and Problems of Discrete Mathematics", Schaum's
Outline Series in Mathematics, McGraw-Hill Book Co., 1976.

15. Mano, M. Morris, "Digital Logic and Computer Design", New Jersey: Prentice-
Hall, 1979.

16. Mendelson, Elliott, "Theory and Problems of Boolean Algebra and Switching
Circuits", Schaum's Vocational and Technical Series, McGraw-Hill Book Co.,
1970.

17. Pratt, Terrence W., "Programming Lenguages: Design and Implementation", New
Jersey: Prentice-Hall, 1975.

18. Stone, Harold S., et al., "Introduction to Computer Architecture", SRA Computer
Science Series, 1980.

73

74

TEXTBOOKS (continued)

19. Tokheim, Roger L., "Theory and Problems of Digital Principles", Schaums
Vocational and Technical Series, McGraw-Hill Book Co., 1980.

20. Washburn, Dale W., "Computer Programming: A Total Language Approach'.
Holt, Reinhart, and Winston, Inc., 1970.

Appendix 1

Topics and Objectives

1. INTRODUCTION TO COMPUTERS

AIMS: 1. Familiarity with computers: their capabilities, limitations
2. Understanding of computer function (operation) in general terms.

Components of the System (Hardware Configuration)
Objectives: 1. Draw schematically the different parts of the computer.

2. Describe how they are related and how they interact.

The CPU
objectives: 1. Give a general overview of what it does.

2. Identify what makes a computer different from a calculator (eg. stored
instructions).

Memory/Storage
objectives: 1. List the types and uses of storage devices and data recording
media.

2. Explain, in general terms, the operation of memory.

Input/Output Devices
objectives: 1. List the types and uses of l/D devices.

2. Describe how they interact with the rest of the system.

The Operating System
objectives: 1. Define the concept of an operating system.

2. Distinguish functions performed by O/S, program, hardware (in general
terms).

Files

objectives: 1. Define the concept of a file.

2. OPERATIONAL USE OF THE COMPUTER

AIMS: 1. Familiarity with the use of the computer.
2. The ability to prepare and run programs.
3. Knowledge of how to find information, get help.

Terminology
objectives: 1. Define those terms the student is likely to come across when

first learning to use the computer (eg. terminal, command, program, batch,
data)

75

76

Keyboard Skills
objectives: 1. Proficiency at use of the keyboard (typing, knowledge of special

characters, etc.).

System Organization
objectives: 1. Familiarity with the system that will be used

2. Know how to access the system (logical - accounts, logging on, etc. and
physical - terminals, printers, etc.)
3. Diagram the system's file structure.
4. List the important system facilities (libraries, text formatters, etc.)
5. Describe available documentation (on- and off-line)

Commands
objectives: 1. Knowledge of function and result of the commands

that the student will need.
2. Knowledge of general command structure, types and uses of
commands (eg. status commands, file manipulation commands, etc.)

Interactive Use
* Intended for those with access to interactive systems *
objectives: 1. Familiarity with the use of an interactive system.

Terminal Operation
objectives: 1. Skills in terminal use - knowledge of special characters.
terminal settings.

Logical Subsystems

Objectives: 1. Understanding of different levels of operation, how to move
between them, escape, error recovery (eg. editors, debugging systems).

Batch Use
* Intended for those with access to batch systems *
objectives: 1. Familiarity with the use of batch systems.

Keypunch Operation
objectives: 1. Skills in keypunch use - knowledge of special characters,

keypunch settings, card formats, formatting, etc.

Running Programs
objectives: 1. Familiarity with the steps one must follow from the time the program

is written on paper to the time it is handed in for marking (eg. entering the
program, running. it, preparing listings, etc.)

3. PROGRAMMING TECHNIQUES

AIMS: 1. An understanding of the steps involved in writing programs.
2. Broaden experience with the problem solving process.
3. Practice and experience in software design.
4. Understanding the need for and familiarity with examples of different types of
programming languages.

77

Problem Solving
objectives: 1. Formulate solutions to problems in a clear and concise manner.

Classification and Definition of Tasks
objectives: 1. Recognize various types of problems.
2. State problems clearly and completely.

Techniques: 1. Discuss paradigms of problem solving.
2. Knowledge of methods and approaches to problem solving (eg. top-down.
'divide and conquer', decision tables).

Algorithms
1. Express solutions to problems in a manner that can be translated

into a computer language with relative ease.

Concepts and Properties
objectives: 1. Define the concept of an 'algorithm

2. Recognize types and characteristics of simple algorithms.

Expression of Algorithms
objectives: 1. Know how to express algorithms clearly (eg. drawing flow
charts, pseudo-code)

Design
objectives: 1. Organize and define algorithms.

2. Discuss various programming methodologies (eg. data-flow analysis,
top-down, bottom-up, abstract data types)

Analysis and Verification
objectives: 1. Determine whether the algorithms that have been written

are complete and correct.

Programming Style
objectives: 1. Write programs that are clear, easy to read, understand and modify.

2. Evaluate the appropriateness of a language for implementing a given
algorithm.
3. Discuss how the programming language affects one's approach to solving
the problem.

Program Features
objectives: 1. Choose appropriate constructs in a given language.

2. Discuss the proper use of parameters and how they affect structure
and design.

Readability
objectives: 1. Organize the program logically into modules.

2. Write programs such that the structure is obvious by appearance (eg.
indentation, blank lines).
3. Know how to choose those constructs and statements that lead to
maximum clarity (eg. while statements instead of counting loops with
goto's, and meaningful variable names).

Documentation
objectives: 1. Make programs easily understandable by other programmers

(eg. comments, external doc.).

78

2. Make program's function clear to the user (includes meaningful output,
prompts, error messages, etc.)

Debugging and Verification
objectives: 1. Demonstrate that a given program works.

2. Find and correct errors in programs.
3. Distinguish between run-time errors and compile-time errors.

Software Reliability
objectives: 1. Describe what it means for a program to be reliable and robust.

2. Describe measures for software reliability.
3. Discuss testing of input data (how much; what is reasonable for a
given application; what kinds of assumptions one might make)
4. Discuss how system errors may be avoided or trapped (such as PL/1
conditions)

Error Detection and Correction
objectives: 1. Understand the importance of documentation and programming

style in error detection and correction.
2. Describe numerous techniques for error detection (eg, reading cross-
reference maps, etc.)

Programming Techniques
objectives: 1. Employ various programming techniques ('Antibugging')

to aid in writing correct programs (eg. explicit initialization)

Selection of Test Data
objectives: 1. Select correct types and amount of test data for thorough

checking (including pathological cases) ,

Debugging Software
objectives: 1. Use available debugging software to find errors in

programs (eg. interactive debuggers, setting break points, tracing
programs)

Hand Execution of Programs
objectives: 1. Skill in debugging programs through hand execution.

Abstract Data Types
objectives: 1. Define the concept of an abstract data type

2. List uses, advantages and disadvantages
3. Describe how they might be implemented in several languages

Performance Evaluation and Efficiency Considerations
objectives: i. Describe efficiency in relation to programming and how some

algorithms can be more efficient than others.
2. Describe how efficiency may be measured.

Software Portability
objectives: 1. Define software portability.

2. Describe some ways it can be achieved.

System Dependencies
objectives: 1. List several examples and state their impact (eg. word

length, file access methods)

79

Language Dependencies
objectives: 1. List several examples and state their impact (eg. extensions)

Software Communication
objectives: 1. Write programs that share information (eg. files, external variables)

2. Write programs that use separately compiled modules.
3. Use external routines and variables, both system and user defined.

Numeric Computations
objectives: 1. Describe how expressions are evaluated and the importance

of order and precedence.
2. Describe what happens during assignment
3. Discuss how operations affect accuracy

Manipulating Character Data
objectives: 1. State how strings can be manipulated and how assignment occurs.

2. Describe the difference between fixed and varying length strings.
3. Describe how the standard character codes (EBCDIC, ASCII, etc.) affect
programming (eg. sorting alphanumeric data).
4. Demonstrate how to convert between characters and numbers
5. List the different kinds of operations that can be performed on strings (eg.
concatenation, substrings)

Recursion
objectives: 1. Describe the concept of recursion.

2. Recognize problems that lend themselves to recursive solutions.
3. Recognize problems that should not be solved recursively.
4. Implement recursive algorithms.

4. PROGRAMMING LANGUAGE STRUCTURE

AIMS: 1. Use one or two languages as examples.
2. General understanding of how languages are built,
3. Understanding of how compilers work, what they do.

Syntax and Semantics
objectives: 1. Define the terms.

2. Distinguish one from the other.

Variables
objectives: 1. Define the concept of a variable.

2. Define what a declaration is.
3. Discuss defaults and how they affect variables.
4. State how they are declared.
5. Draw how they are represented.
6. Describe how input and output is performed.
7. Differentiate between computer variables and mathematical variables.

Types
objectives: 1. Define 'type'

2. List the major types.

80

3. Differentiate between strong and weak typing.
4. Discuss how strong and weak typing affect programming style.

Calculations
objectives: 1. Describe the characteristics of common arithmetic types

(eg. integer, real) and how they interact.
2. Describe the effects of mixed mode arithmetic.

Statements
objectives: 1. Distinguish different types of statements (declaration,

conditionals, assignment, etc.)
2. Describe, in general terms how they operate.
3. Discuss statements that alter the sequence of operations (call, goto. etc.)
4. Discuss the various loop structures (while, for, etc.) and their uses.

Flow of Control
objectives: 1. Describe mechanisms by which subroutines are called and

and how control is returned to the caller,

Scope Rules
objectives: 1. Define 'scope'.

2. Describe the significance of scope rules.

Block Structure
objectives: 1. Define 'block'.

2. Differentiate between local and global scope at all levels.

Static and Dynamic Scope
objectives: 1. Define the difference.

2. Differentiate between lexically nested subroutines and nested
subroutine calls.

System Scope
objectives: 1. Identify elements of the system's scope (eg. builtins) and

describe their effect on user defined elements.

Parameters
objectives: 1. State how parameters differ from local and global entities.

Translators and Compilers
objectives: 1. General understanding of what compilers are and how they work.

2. Contrast compilers and interpreters and define intermediate code.

Compiler Operation and Function
objectives: 1. Describe the role of a compiler and what it accomplishes.

Syntax and Translation
objectives: 1. Define the steps a compiler would go through during

lexical analysis.
2. Differentiate compile-time errors from run-time errors (i.e. 'bugs' from
syntax errors)

Formal Definition of Syntax
objectives: 1. Describe, in general terms, how the syntax of a language

can be defined (eg. BNF)
2. Use syntax diagrams, BNF, or some other formal system to describe

81

simple constructs and to determine whether examples of these constructs
are syntactically correct.

Run-Time Environment
objectives: 1. Predict what will happen when a program is running.

2. Describe how the program runs.
3. Differentiate between static and dynamic environments.

Program Execution
objectives: 1. Follow program execution by hand in all its steps.

Run-Time Storage Management
objectives: 1. Define static (as in FORTRAN and COBOL) and dynamic

(as in Pascal and PL/1) storage management.
2. Draw the main parts of the run-time stack and show how it changes
as the program executes.
3. Describe how recursion affects storage management.

Parameter Passing Mechanisms
objectives: 1. Define the main parameter passing mechanisms (call-by-value.

call-by-reference, call-by-name).
2. Show how parameters affect local and global entities at run-time (eg.
side-effects, using the same name in different contexts/places)

5. LOGIC DESIGN

AIMS: 1. Understanding of how the components of a computer inter-relate.

Boolean Algebra
objectives: 1. Define and evaluate boolean expressions.

2. Describe the relationship between boolean algebras and computer circuits.

Mapping (Simplifying Boolean Circuits)
objectives: 1. State and describe DeMorgan's theorems.

2. Draw 2-6 variable maps.
3. Write sum-of-products boolean expression for various truth-tables)

Digital Circuits
objectives: 1. Draw truth tables for boolean functions

2. Define gate.
3. Draw the corresponding gates for given boolean expressions.
4. Define switching circuits.
5. Draw and/or build specified circuits.
6. Define masking.

Combinational Circuits
objectives: 1. Differentiate between sequential and combinational circuits.

2. Describe, draw some examples of combinational circuits (eg. AND, OR,
NAND)

82

Sequential Circuits
objectives: 1. Describe, draw, and build the following circuits: flip-flops

counters, shift-registers)
2. List several applications.
3. Define state-reduction.
4. Show how a simple circuit might be reduced.

Data Representation
objectives: 1. Draw and explain how data is represented at the bit level.
Composition

objectives: 1. Define bit, byte, and word, and describe how they are related.
Codes

objectives: 1. Define the term binary code.
2. Describe how bits, bytes and words relate to characters and binary
codes.

Error Detection and Correction
objectives: 1. Compare 2 methods of error detection and correction.

Numbers
objectives: 1. Describe and manipulate the most common number bases

(binary, decimal, octal, hexadecimal, BCD)

Types
objectives: 1. Name the commonly used number bases.

2. State the algorithms for conversion.

Representation
objectives: 1. Describe several common number formats (eg. binary, BOO)

2. Describe how overflows occur and how they can be detected.

Digital Arithmetic
objectives: 1. Draw and explain how digital arithmetic is accomplished.

Addition
objectives: Diagram the function of an adder (half, full, serial, parallel)

Subtraction and Negation
objectives: 1. Convert ordinary negatives to l's and 2's compliment

and signed magnitude.
2. Describe subtraction algorithms

Multiplication and Division
objectives: 1. Describe common multiply and divide algorithms.

2. Discuss methods for speeding up these algorithms.

Floating Point
objectives: 1. Draw representation of a floating point number on a

familiar system.
2. Contrast floating point arithmetic with fixed point
3. Define normalization.

Logic Control
objectives: 1. Define hard-wired control.

83

2. Define microprogrammed control.
3. Discuss now the processor unit is controlled.

Multiplexors
objectives: 1. Describe their purpose and function.

D/A = ND Conversion
objectives: 1. Describe, in general terms their purpose and function.

Digital Integrated Circuits
objectives: 1. Some understanding of how the circuits are built and operate.

2. Define diodes and transistors and describe their purpose.
3. Describe the common types of DIC's, their differences and uses (eg. MOS,
CMOS, TTL, IlL, ECL, etc.)

Processor Logic Design
objectives: 1. Describe the main steps involved in designing a processor;

including: organization, logic circuit design, arithmetic circuit design, ALU
design, status register, shifter, accumulator.

Computer Design
objectives: 1. Describe the main steps in designing a computer, including:

system configuration, instructions and execution, timing and control, register
design, control design, 'the console'.

6. ARCHITECTURE

AIMS: 1. Understanding of how a machine works, how instructions are carried
out, how data is managed.
2. Understanding of what is happening in the machine when a program is
compiled and run.
3. Knowledge of how to manipulate data at the bit level.
4. Understanding of how representation of data and word-size affect architecture.
5. Provide a concrete example of a machine architecture and how to write
programs which use that architectUre.

Von.Neumann Machine
objectives: 1. Describe and draw the operation of the Von Neumann machine.

2. Discuss various methods of implementation (eg. stack machines, register
machines) and their applications.

Hardware Systems Organization
objectives: 1. State the major characteristics (functions) of and relationships

between l/D devices, processors, control units, main and auxiliary storage
devices.
2. Define bootstrapping and describe the process in general terms.

Memory
objectives: 1. Describe the role that memory plays in the hardware system.

84

Types
objectives: 1. Describe RAM, ROM.

2. List the different types of memory (eg. virtual, cache, interleaved,
associative) and contrast their features.

Access and Control
objectives: 1. Describe how memory (RAM) is controlled and accessed.

Paging and Segmentation
objectives: 1. Define paging and segmentation.

2. Describe advantages and disadvantages of each.
3. Define trashing.

Storage Allocation
objectives: 1. Define the need for storage allocation.

2. Describe two techniques for performing the task.
3. Define spooling.

Instructions
objectives: 1. Describe the different types of instructions and explain

how they work.

Principle Types
objectives: 1. List principal types of instructions (eg. register, logical,
arithmetic, jump, etc.) and describe how they differ.

Format
objectives: 1. Recognize how instructions are defined in terms of bit

sequences (eg. codes - size, number)
2. Illustrate how registers and addresses may be specified.

Execution
objectives: 1. Describe in general terms, how the different types of

instruction fetch, decode, etc.)
2. Define the concept of system state.
3. Describe how the system state can change and how it can be saved
and restored.

Implementation
objectives: 1. Discuss various methods of implementing instructions

(eg. hardware, microcode).

Error Conditions
objectives: 1. Describe how systems signal and deal with error

conditions (eg. error flags for overflow)
2. Describe how error conditions can be tested for, what they mean,
what can be done about them.

Addressing
objectives: 1. Describe the various addressing techniques, their differences,

similarities and uses.
2. Describe how the organization of the machine facilitates different modes of
addressing.

Symbolic Coding
objectives: 1. Describe how symbols are defined and assembled.

85

2. State how symbols affect addressing.

Literals
objectives: 1. Describe the definition of literals.

2. Discuss how and when they are used.

Mnemonic Op Codes
objectives: 1. Using a known assembler, show how the mnemonic op codes

correspond to the actual op codes.

Symbolic Address
objectives: 1. Show how symbolic addresses (including address expressions

and labels) are defined and evaluated.
2. Define relocation and state which symbols are relocatable and which
are absolute.

Pseudo-Ops
objectives: 1. Discuss their uses.

2. Describe the difference between pseudo-ops and other instructions.

Assembler Language
objectives: 1. Write assembler language programs and follow their execution.

2. Illustrate how a known architecture can be used to advantage.

Subroutines
objectives: 1. Describe the function and use of subroutines and

how jumps occur.
2. Discuss parameter passing mechanisms.

Programming
objectives: 1. Write assembler programs.

2. Suggest how the assembler might look for constructs in higher level
languages.
3. Implement high level language constructs in assembler.

Assembly, Scanning
objectives: 1. Follow the scanning process and describe what the

scanner is doing.
2. Assemble and disassemble programs by hand.
3. Describe the operation of a two-pass assembler.
4. Describe how to resolve forward references.

Symbol Tables
objectives: 1. Describe the purpose of symbol tables.

2. Follow the assembly of a program and draw the symbol table.

Program Segmentation and Linkage
objectives: 1. Know how programs are prepared for execution.

Loading and Linking
objectives: 1. Define the terms.

2. State the need.
3. Describe how programs are loaded and linked where applicable.

Separate Compilation, Resolving References
objectives: 1. Explain how routines may be separately compiled.

86

2. Explain how references are resolved for separately compiled code.

Subroutines, Functions, Coroutines, Re-entrant Subprograms
objectives: 1. Distinguish the different types of routines

2. Discuss how each type is assembled and run.

Parameter Passing and Binding
objectives: 1. Define binding.

2. Explain how parameters are passed and bound.

Relocation
objectives: 1. Define relocation.

2. Explain how relocation occurs and what is involved.

Overlays
objectives: 1. Define overlay.

2. Discuss how they work.

Macros
objectives: 1. Describe the concept of a macro.

2. Discuss their uses.

Definition, Call and Expansion
objectives: 1. Write macros for given purposes.

2. Predict how they will be expanded.

Assembly Time Computation
objectives: 1. Differentiate between those expressions that are evaluated at

assembly time and those that are evaluated at run time.

Conditional Assembly
objectives: 1. Define conditional assembly.

2. List several situations where it might be useful.

Parameter Handling
objectives: 1. Describe how parameters are handled in macros.

2. Contrast parameter handling in macros with parameter handling in
other routines.

Hardware Control
objectives: 1. Compare and contrast synchronous and asynchronous control

2. Describe several modes of communication , between devices
3. Discuss several issues related to reliability and how they are dealt with

I/O Operation and Devices
objectives: 1. Describe how data is moved from one location to another

(eg. data transfer)
2. Define data bus and describe its purpose
3. Describe handshaking.

Interrupts
objectives: 1. Describe what happens when an interrupt occurs

2. Define the term interrupt
3. List the conditions under which an interrupt may occur
4. Write an interrupt routine.

87

Microprogramming
objectives: 1. Define the concept of microprogramming

2. Contrast microprogramming with assembler programming
3. Describe the kinds of operations accomplished by microprograms
4. Write a microprogram routine and describe how it works.

Microprocessors
objectives: 1. Distinguish microprocessors from other types of processors

2. Discuss how microprocessors may be used in computer systems and in
their applications (eg. cars, appliances).

Multiprocessors
objectives: 1. Define the term

2. Describe how they differ from single processors in terms of control and
programming.

7. DISCRETE MATHEMATICS

AIMS: 1. Discussion of required background in discrete mathematics for
further study in the theory of computation
2. Form an axiomatic foundation for elementary concepts in discrete mathematics.

Matrices and Vectors
objectives: 1. Define the general properties

2. Perform addition and multiplication
3. Calculate the transpose
4. Perform inversion
5. Calculate determinants.

Set Theory
objectives: 1. Define the attributes and properties

2. Describe and draw Venn diagrams
3. Perform set operations
4. Define classes of sets
5. Define the term power set
6. Define maps, regions
7. Contrast, prove various relations, functions.

Graphs
objectives: 1. Define attributes and properties

2. List applications of graphs
3. Define classes of graphs (eg. trees, directed graphs)
4. Discuss important graph theoretical problems (eg. spanning trees, shortest
path, max flow min out)
5. Describe combinatorial and counting problems (eg. counting rooted trees)

Abstract Algebra
objectives: 1. Define 'semigroup'

2. Define attributes and properties of groups, semigroups, and fields
3. Define free monoid.

88

4. Discuss applications of groups, semigroups, and fields.

Proofs
objectives: 1. Solve problems by strict reasoning using a mathematical

(analytical) approach
2. Construct rigorous proofs
3. Explain the principle of induction
4. Perform induction proofs
5. Recognize and describe applications for other proofs (eg. contradiction.
constructive)

8. THEORY OF COMPUTATION

AIMS: 1. Provide a general introduction to theory and problems in Computer Science

Finite Automaton
objectives: 1. Define regular expressions and how they can be recognized

2. Draw finite state machines for given grammars
3. Describe how recognizers work
4. Define equivalence relations
5. Present canonical forms.

Formal Languages and Grammars
objectives: 1. Present definitions, formal notations

2. Define alphabets
3. Describe various types of grammars
4. Define the empty sentence
5. Define 'recursiveness' in relation to grammars
6. Construct and describe derivation trees.

Context-Free Grammars
objectives: 1. Define and diagram context-free grammars

2. describe and identify context-free grammars
3. Formulate derivation trees
4. Define closure
5. Describe push-down automata.

Context-Sensitive Grammars
objectives: 1. Present definitions

2. Describe difficulties in dealing with them.

Turing Machine
AIMS: 1. General understanding of the theoretical limitations on the computer's

capabilities

objectives: 1. Define the concept of a turing machine
2. Present definitions and notation

89

3. Define related concepts (eg. primitive recursion functions, recursively
enumerable sets, Church's thesis)
4. Identify the halting problem

Computability
objectives: 1. Describe the problem.

Analysis of Algorithms
objectives: 1. Define the concepts of space and time efficiency

2. Differentiate between deterministic and non-deterministic automata
3. Define the concept of np-completeness
4. Illustrate the equivalence of some important np-complete problems
5. Discuss several algorithms for manipulating graphs (eg. minimal spanning
algorithms, depth-first search, breadth-first search)

Information Theory
objectives: 1. Define information theory

2. Relate the work of Shannon and discuss his role in information theory
3. Define 'measure of information'
4. Define entropy and variety
5. Describe at least two types of codes (ASCII, Huffman)
6. Discuss error detection and correction techniques of these codes
7. Define modularity.

9. DATA STRUCTURES

AIMS: 1. Familiarity with the use of common data structures
2. Implementation of common data structures in several high-level programming
languages

Record Types
objectives: 1. Describe their representation

2. Write programs to manipulate records
3. Discuss assignment of different parts of the record (as is 'move
corresponding' in COBOL and 'by name' in PL/1)

Pointers
objectives: 1. Define pointers in terms of programming languages

2. Show how pointers are used to aid in the manipulation of other data
structre.

Sets
objectives: 1. Describe their representation

2. Write programs to manipulate sets
3. Recognize appropriate applications.

Lists
objectives: 1. Distinguish different types of lists, their uses and applications.

90

Arrays
objectives: 1. Describe their representation (fixed and variable length, single

and multidimensional)
2. Calculate subscripts
3. Write programs to manipulate arrays
4. Describe applications of arrays (eg. sparse, triangular matrices)

Strings
objectives: 1. Diagram the representation of strings - both fixed and

varying length
2. Describe the common string operations
3. Write programs that manipulate strings.

Stacks and Queues
objectives: 1. Draw stacks and queues

2. Describe how they would be implemented using other data structures
3. Write routines to manipulate stacks and queues.

Linked Lists
objectives: 1. Draw linked lists (eg. singly-linked, doubly-linked,

circularly-linked)
2. Demonstrate insertion, deletion, searching, and traversal of the various
linked lists
3. Show how the various linked lists can be implemented.

Trees
objectives: 1. Define the terminology

2. Distinguish the common types of trees (eg. binary, n-ary)
3. Show how trees can be implemented
4. Demonstrate the creation of trees and tree-nodes
5. Demonstrate, diagrammatically, and with programs, how trees can be
traversed (in-order, pre-order, post-order)
6. Demonstrate algorithms for searching and sorting trees
7. Define treading and discuss its effects on insertion, deletion, traversal
8. List several applications of trees.

Sorting and Searching
objectives: 1. Describe and discuss various algorithms for sorting and searching

information and how they are related
2. Define hashing
3. Discuss several hashing techniques and identify their role in sorting and
searching algorithms.

10. STORAGE MANAGEMENT

AIMS: 1. General understanding of how storage on a computer system is managed
and how different types of files are manipulated

91

Memory Storage
objectives: 1. Distinguish dynamic from static storage management

2. Describe what happens when variables are allocated and deallocated
3. Diagram storage management using heaps and stacks
4. Define garbage collection
5. Identify the need and describe, in general terms, how it works.

Files
objectives: 1. Define the terminology (eg. record, file, blocking, etc.)

2. Describe the types and characteristics (eg. capabilities, speed) of the
common mass storage media (eg. disk, tape)
3. Describe the main type of files (eg. sequential access, random access) and
their characteristics
4. Demonstrate diagrammatically how these files are manipulated
5. Describe how files are written and read and illustrate the programming
language constructs used
6. Discuss sort/merge algorithms.

11, OTHER MAJOR TOPICS

AIMS: 1. Some understanding of the main areas in Computer Science (i.e. familiarity
with the terms and some idea of what they are about)

Numerical Methods

Word Processing

Data Processing

Random Numbers

Real-time Programming

Translators

Graphics

Simulation

Databases

Distributed Systems

Networks

Communications

92

Artificial Intelligence

Robotics and Cybernetics

Pattern Recognition

12. MISCELLANEOUS

AIMS: 1. General introduction to other issues relating to Computer Science

History of Computers
objectives: 1. Trace the major steps in the development of computers since

ancient times
2. Discuss some of the motivations and problems.

Social Issues in Computer Science
objectives: 1. Discuss the impact that computers have had on society

2. Discuss how computers have changed various aspects of our lives
3. Discuss privacy, regulation, computer abuse and crime
4. Discuss trans-border data flow.

Computers and the Law
objectives: 1. Discuss current issues regarding copyrights, patents, proprietary

rights, trade secrets
2. Discuss writing computer contracts for software and hardware maintenance
3. Describe some of the laws currently in place regarding information held in
the computer (governmental regulation and taxation)

The Computer Industry
objectives: 1. Discuss current markets, supplies

2. Discuss standards for software, conduct.

