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Abstract. The process of personal information collection and exchange
is associated with ever-growing privacy concerns. To resolve the issue,
data provider’s consent on the usage of private information is sought
through privacy policy specifications. The parameters of such privacy
policies influence the quantity and quality of gathered information. Choos-
ing the right privacy policy parameters can potentially increase the rev-
enues to a data collector and the firms (third-parties) interested in ac-
cessing the database for data analysis purposes. In this work we use an
extensive form game model to examine the decisions made by a data
collector and a third-party to maximize their benefits from collecting
and accessing data. We have found the game’s subgame perfect equilib-
ria for various problem settings and provide the details of game analysis
for a simplified scenario and two case studies. The equilibrium solutions
demonstrate steady states of the game where collecting personal infor-
mation at a specific privacy level is advantageous to the data collector
and the third-party. Consequently the results define a realistic boundary
on collecting personal information.

Keywords: Data Privacy, Data Repository Management, Privacy Pol-
icy Setting, Price/Privacy Trade-off, Game Theory

1 Introduction

Todays ever increasing privacy concerns stem from advances in mass
data storage technologies, Web-mediated data collection/access meth-
ods, and data mining procedures to discover hidden patterns. The
ideal of having perfect privacy protection has been shown to be very
ambitious [11]. Even if a sanitization method [24,15,12] (which aims
at creating a publishable private data table) is used, the amount
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of privacy protection is limited by the value of a privacy parame-
ter (such as k in k-anonymity). Regardless of the privacy protec-
tion mechanism, some risk to an individual’s privacy is still present.
Therefore, data providers’ consent in terms of an agreement to a pri-
vacy policy must be sought before collecting personal information.

A privacy policy can be specified using languages such as P3P
[9], XACML [18], or EPAL [5]. Specification of a privacy policy in-
volves setting some parameters to define scope and limitations of the
promised privacy protection level. As the privacy protection level in-
creases, more data providers will be willing to provide their personal
information but the collected data will have lower quality for data
analysis purposes. A setting for privacy parameters that balances
level of data quality/quantity is desired by different parties involved
in an information collection and usage procedure. A comprehensive
and fair solution to address this challenge must consider the different
and often opposing needs of these parties.

We recognize three parties involved in a data collection procedure:
The first entity is a third-party (data user) who is interested in access-
ing a private data table with a considerable number of high quality
private data records. The second entity is a data collector who has
earned trust of individuals to protect their privacy. The data col-
lector is asked by the third-party to collect a private table. Before
collecting the required information, the data collector publishes a
privacy policy. Finally, data providers form the third entity who de-
cide whether or not to agree to a privacy policy and participate in
the data collection procedure.

We use a sequential game model to illustrate and analyze the in-
terplay of decisions made by three parties (a third-party, a data
collector, and data providers) involved in a data collection proce-
dure. The game’s outcomes indicate steady (stable) privacy policies
which are unlikely to be changed since no single player can achieve
a higher utility by unilaterally changing his strategy. These steady
privacy policies are determined based on how valuable the collected
data is to the third-party and how private it is to the data providers.
We solve the game with regard to a specific aggregate query appli-
cation. Our results show the stable combinations of revelation level
(how specific data is revealed), retention period, price per data item,
and the incentive required to attract data providers.
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The game’s equilibria are described as choices between fifteen op-
tions. However, for each instance of the problem only some of the
options are relevant. Each option is a two variable payoff function
that the third-party must optimize subject to some constraints on
the variables. The data collector’s maximum payoff and the optimum
amount of incentive are also associated with every option. Therefore,
the outcome of this paper is similar to a lookup table which describes
realistic privacy settings and the value of information in various situ-
ations. The results are also provided for a simplified scenario through
a more in-depth analysis. We further demonstrate how to use the re-
sults through two case studies.

The novelty of our work lies in considering the reaction of data
providers to a privacy policy and framing the challenge of privacy
policy settings in a sequential game model to analyze the strategies
of data providers, the data collector, and the third-party simultane-
ously.

The results of this paper show the effects of data providers’ privacy
behavior on the amount of profit a data collector and a third-party
receive under various privacy policies. This outcome implies that re-
alizing the ”limited information collection” principle of Hippocratic
databases [3] is case based and the boundary on privacy promises is
determined based on several parameters. Moreover, as demonstrated
in Section 9 the results can be used as a metric to distinguish between
sensitive and non-sensitive attributes.

Before explaining the game-theoretic model, we first provide a brief
overview of related work in Section 2 and then Section 3 defines the
privacy policy structure considered in this paper. Section 4 explains
the assumptions made to analyze the situation. Based on these as-
sumptions, the game model, the players, and their payoff functions
are described in Section 5. By applying the backward induction
method, best responses of the data collector are explored in Sec-
tion 6. Section 7 considers the third-party’s best strategies and the
subgame perfect equilibrium of the game. The Equilibrium strate-
gies are analyzed in more detail for a simplified scenario in Section 8.
To illustrate the application of the results, we use two case studies
in Section 9 and elaborate the procedure for finding the subgame
perfect equilibria of the game. Finally, in Section 10 conclusions are
drawn and possible extensions to this work are discussed.
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2 Related Work

Literature on privacy protected data repositories often follows two
major trends. The first group of researchers [24,15,12] mainly focuses
on proposing methods to sanitize a database and remove the possi-
bility of tracing a piece of information to any individual. From this
point of view a database can be safely published once it is sanitized.
The second group [5,3,10,6] believe that once the information collec-
tion and usage procedure conforms to an agreement between data
providers and the data collector (in terms of a privacy policy) data
practices are privacy preserving.

With regard to the first point of view, Dwork [11] proves that
perfect privacy is unachievable. As a result, all works in this area
introduce a parameter such as k in k-anonymity [24], l in l-diversity
[15], or t in t-closeness [12] that needs to be initialized by the data
collector and guarantees privacy only to the limit specified by these
parameters. Only a few researchers [22,13,14,16] provide directions
on how to choose the value of privacy parameter. Even these works
overlook the effect of data providers’ privacy preferences on a bal-
anced value for the privacy parameter.

The second viewpoint has led to extensive research on privacy pol-
icy specification standards and elements. The Platform for Privacy
Preferences (P3P) [9], eXtensible Access Control Markup Language
(XACML) [18] and the Enterprise Privacy Authorization Language
(EPAL) [5] are three of the most well-known protocols to specify
general purpose and adhoc privacy policies. These protocols together
with other work on purpose [23,25] only aim at providing structured
vocabularies to describe any arbitrary privacy policy. However, the
existing literature only hints at how to find the appropriate level
of privacy promises. One very significant work in this area is the
collection of ten principles in Hippocratic Databases [3]. Two rele-
vant principles in this regard are “limited collection” and “limited
retention” that are not formally defined.

To address the challenges of privacy settings in both trends, we
use a sequential game model to consider the conflicting needs of all
parties involved in a data collection procedure. In an earlier work
[2], we have successfully applied this model to address the problem
of privacy parameter settings in sanitization systems (and specially
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k-anonymity). This work completes our previous work in showing
the applicability of our game model to privacy policy specification
approach. Both works share the same definition for players and game
structure. But since the context of this paper is not data sanitization,
this paper has its own descriptions for actions available to players
and conditions on the moves. Consequently the whole game analysis
procedure is new and different from our previous work.

Game theory has been applied to privacy related issues mainly
to find the impact of privacy on price discrimination [7], comparison
between self-regulation procedures versus government interference to
preserve privacy [4], and modelling privacy discrimination (dynamic
privacy) for different groups of data providers [20]. The model ex-
plained in the latter is very similar to ours but the game is only
used to provide a visual illustration of the challenge and no further
analysis is provided. Calzolari and Pavan [8] also use game theory
to optimize the flow of private information between two firms. The
model in this work is the closest to ours in terms of the entities they
recognized as players. However, the analysis is substantially different
from what we do since a privacy policy is defined as the probability
of revealing detailed customers’ information to another party.

Other economic concepts such as economic price theory have also
been used to find the optimum trade-off levels between privacy and
utility [26]. Zielinski and Olivier [26] use entropy-based metrics to
measure the importance of an attribute value to a data user and a
privacy intruder. A weighted sum of these two metrics define a utility
function that must be optimized under some restrictions. While the
ultimate goal of this work is very similar to ours, the problem formu-
lation and the tools used by Zielinski and Olivier are very different
from this paper. Our paper does not measure privacy according to
an intruder’s opinion. Instead we consider the important role of data
providers and the effects of privacy protection levels on the quantity
of the collected records. We believe that an assumption about having
knowledge on aggregate behaviour of data providers is more realistic
than having knowledge about intruders’ needs and preferences.
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3 Privacy Policy

To describe any arbitrary privacy policy, we adopt a framework close
to what P3P [10] and at least one privacy taxonomy [6] suggest. The
main idea behind these two protocols is that for each piece of col-
lected information (data field), purpose, visibility (recipient), reten-
tion period, and granularity levels must be specified. The granularity
level is adopted from the privacy taxonomy [6]. It specifies how spe-
cific and accurate the value of a data field would appear in a query
result. Since granularity levels defined in the privacy taxonomy are
not exactly in the context of a privacy policy specification we provide
our own granularity levels:

(0)-None: No information on the data field is provided.
(1)-Unlinkable, Partial: The value of a data field cannot be linked

to values of other data fields provided by the same individual
(Unlinkable) and the value of the data field is generalized or per-
turbed with some noise.

(2)-Unlinkable, Exact: The data field is not linkable but the value
of the field is revealed in the exact form.

(3)-Linkable, non-identifiable, Partial: the data field is linkable
to all other linkable data fields. A sanitization method is used to
anonymize data. The exact value of the data is not revealed.

(4)-Linkable, non-identifiable, Exact: It is the same as as level
(3), except that data value is exact.

(5)-Linkable, identifiable, Partial: It is the same as level (3)
without any sanitization.

(6)-Linkable, identifiable, Exact: It is the same as level (4) with-
out any sanitization.

Let DF , Pr, V , R, and G = {0, 1, 2, 3, 4, 5, 6} denote the sets of all
possible data fields, purposes, visibilities, retentions, and granularity
levels. A privacy statement ps can be defined as follows:

ps ∈ DF × Pr × V ×R×G (1)

Consequently a privacy policy PP can be defined as a set of privacy
statements:

PP ⊂ DF × Pr × V ×R×G (2)
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The set of privacy statements is usually chosen by the data collec-
tor according to data requirements of third-parties interested in the
database. Once the data collector publishes a privacy policy PP , the
data providers have the choice of opting in or out for the statements.
To provide a semantically consistent functionality of opt-in/opt-out
options, we consider statement groups in the sense that if a group
of privacy statements share the same purpose and visibility, either
all or none of the statements in the group must be accepted. Some
privacy policy languages such as P3P [9] already support this idea
via the “consent attribute” in the statement group construct.

4 Problem Definition and Basic Assumptions

In the process of collecting personal information, three groups of en-
tities are involved: third-parties, a data collector, and data providers.
Third-parties are those entities who want to use a data table contain-
ing private information for some data analysis purposes and are will-
ing to pay a data collector to collect such information. Upon receiv-
ing such a request from a third-party, a data collector announces a
privacy policy and possibly some incentive to attract data providers.
Finally, data providers decide to participate in the data collection
procedure if they find the combination of the privacy policy and in-
centive as “worthwhile”. Since data providers could potentially be
anyone who wishes to use a service on line, we use the terms “data
providers” and “public” interchangeably throughout the balance of
the paper.

Let k denote the total number of data fields a data collector might
want to collect from a target population with n individuals as po-
tential data providers. To define a payoff function for every potential
data provider, we must know the underlying privacy preferences of
every single individual who might participate in the data collection
procedure. Since the details of such a diverse set of privacy prefer-
ences are usually not known (even to the data providers themselves),
in this paper we assume that for each combination of purpose and
visibility, data providers’ willingness to share their private informa-
tion is explained by a probability model of the following form:

prob(opt− in) = β0 + β1f(g1) + ...+ βkf(gk) + θh(r) + γI (3)
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where gi denotes the granularity level of the data field dfi, r denotes
the retention period in terms of the number of years, and I is a real
number representing the amount of incentive (in monetary value) the
data collector offers the data providers in exchange for the requested
information.

f(.) and h(.) are decreasing functions of granularity and retention.
Consequently, all β ’s, θ, and γ can be safely assumed to have a value
greater than or equal to zero. As the granularity levels (or the reten-
tion period) increase, the values of function g(.) (or h(.)) decrease
and the data providers are less willing to share their information.
In this paper we make another simplifying assumption and assume
that these two functions are defined as:

f(g) = 1
g+1 and h(r) = 1

r+1 (4)

If functions f(.) and h(.) have definitions different from what we
assumed in Eq(4) the procedure explained in this paper will remain
the same but the final results may vary.

Various studies [1][17][21] have already provided models and statis-
tics to quantify the influences of factors such as the amount of knowl-
edge about privacy risks, trust, age, income level, etc. on the data
provider’s privacy decisions. A probability model similar to Eq(3) is
a natural extension of the existing literature.

The probability model can be viewed as data providers’ mixed
strategy presumably found based on some observation (and not game
analysis). Although such an assumption might seem as an oversim-
plification of the problem, it increases the applicability and flexibility
of our model, encapsulates the social intricacies of human mind, and
allows our approach to adopt to any potential evolution in in pub-
lic’s privacy awareness. Nevertheless, the impact of data providers’
decisions are still reflected in our model and it is very essential to
our game analysis.

A data collector decides on a privacy policy based on the offers he
receives from the third-parties who are interested in the database.
We assume that the data collector responds independently to each
data request from each third-party for each purpose. With this as-
sumption, we only consider a single third-party with a single data
usage purpose since any multi-third-party/multi-purpose case can be
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described as an aggregation of single third-party/single purpose in-
dependent cases. Note that if the same third-party requests the same
data for two different purposes with different granularity levels, there
is a potential of inferring additional information by combining the
two versions of data. This situation can be modeled as two separate
games and in the second game, the data has a higher economic value
to the third-party. A more realistic and complicated approach would
be modeling such cases with a single repeated game. Solving the
problem using the latter approach is a future fork we are interested
in.

We narrow our attention to a third-party with aggregate reasoning
as the goal of data analysis. More specifically, we assume that the
third-party only wants to run a COUNT-query on the data field
dfj . The query retrieves the number of data records satisfying some
conditions on dfj .

Finally, the data collector and the third-party are assumed to be
rational and to know the probability function that describes data
provider’s privacy behavior. The model assumes that the the third-
party knows the data collector’s payoff function.

5 Model Description

Game theory provides a formal approach to model situations where
a group of decision makers (players) have to choose optimum actions
considering the mutual effects of other players’ decisions. The main
components of a game are the players and the set of actions available
to each player. A player’s strategy is a sequence of actions he chooses
to maximize a payoff function. The payoff to each player depends on
the decisions made by the player and the other players in the game.
The stable outcomes of games are often predicted using the concept
of Nash equilibrium. A specific play of the game is a Nash equilib-
rium if none of the players can increase their payoff by unilaterally
deviating from their strategy [19].

The normal form and the extensive form (or sequential form) are
two common alternatives to model games. Normal form games model
situations where all players have to make decisions without knowing
other players’ decisions. Extensive form game models are capable of
capturing a certain order for players’ turns to move. The orderings
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are illustrated in a tree. A node in the game tree is a point where a
specific player has to make a decision. Different choices by the player
create different subtrees (subgames) of the node. Every possible se-
quence of actions from the root to the leaves represents a terminal
history and any path from the root to an intermediate node is re-
ferred to as a history [19].“Subgame-perfect Equilibrium” is usually
used in extensive form games to predict the game’s steady states. In
a subgame perfect equilibrium all subgames of the original game are
also in a Nash equilibrium [19].

The actions of a data collector, third-party, and data providers can
influence the final decision about a privacy policy. Each of these three
entities are trying to maximize their benefits. Therefore, we model
our problem in a game theoretic framework. Since there exists a
logical order on players’ turns to play, the game is explained as an
extensive form game with perfect information. The game’s sub game
perfect equilibria (or equilibria for short) illustrate the behavior of
each party in their efforts to optimize their gains and suggest the
stable outcomes of the game.

5.1 Players

Fig. 1. Game tree without data providers’ actions

The parties involved in the game are n potential data providers,
a data collector c, and a third party t. As mentioned in Section 4,
we assume a probabilistic function to explain data providers’ mixed
strategy at any point during the game. As a result, we only need to
solve the game with regard to the data collector and third-party’s
decisions and take the actions of the data providers for granted.
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The set of actions available to the third-party is making an offer,
o, of the form o = 〈g1, ..., gk, r, pr, p, Min, Max〉.

In this offer gi denotes the granularity level at which the third-
party wishes to access data field dfi. Elements r, pr, and p represent
retention period, purpose, and price respectively. Price is described
as a real number and represents the amount of money the third-party
pays for each data record at a specified privacy level. Finally, Min
and Max parameters specify the minimum and maximum number
of data records necessary for data analysis. In other words, if the
database has less than Min number of records, the third-party is
not interested in the database (and naturally does not pay) and by
increasing the data records over the Max limit, the amount of money
paid by the third-party for the database does not increase. In this
paper, we assume that pr, Min, and Max are fixed for each instance
of the problem.

We consider the situations where data analysis queries are of the
following COUNT-query form:

SELECT COUNT(*) FROM privateTable WHERE Pred(dfj)

In this query Pred is a predicate defined on the data field dfj . Conse-
quently, the payoff to the third-party, Ut, can be explained as follows:

Ut =


0 if size < Min
size(a.r − p) if Min ≤ size ≤Max ∧gj is odd
size(b.r − p) if Min ≤ size ≤Max ∧gj is even
Max(a.r − p) if Max < size ∧gj is odd
Max(b.r − p) if Max < size ∧gj is even

(5)

In this function size is the number of data records provided to the
third-party. Since the third-party only needs to work with data field
dfj the payoff is not influenced by the granularity level of any other
data field. Notice that if gj is odd then the value of the data field dfj is
partially revealed whereas even values for gj imply exact revelation.
In this sense, a and b are two parameters denoting how valuable a
data item is if it is partial or exact. Therefore we have a ≤ b. Values
of a and b are predefined for each instance of the problem. They
depend on the scale of generalization (or noise addition) process and
how aligned it is with the COUNT-query predicate.
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The data collector’s actions are either rejecting the third-party’s
offer or attempting to collect information from data providers by
choosing an incentive value I. The value of I is a real number and rep-
resents the monetary value of the incentive offered to data providers.

Let G be the cost of generalization or any other procedure to make
the value partial and A represent the cost of anonymization. If the
data collector decides to collect information according to an offer
from the third-party then the cost of providing data field dfi at gran-
ularity level gi (without considering the incentives) can be defined
as:

CG(gi) =


0 if gi = 0 ∨ gi = 2 ∨ gi = 6
G if gi = 1 ∨ gi = 5
A+G if gi = 3
A if gi = 4

(6)

Moreover, providing the database to the third-party is associated
with a basic cost B for enforcing some data protection method to
make sure that data practices of the third-party conform to the pri-
vacy policy.

Consider an offer o with the following description:

o = 〈g1, ..., gk, r, pr, p, Min, Max〉
We use Co to denote the cost of providing the third-party with the

database according to the offer o:

Co =

k∑
i=1

CG(gi) +B (7)

The data collector also has to pay the promised incentive to the data
providers. Therefore, the ultimate cost to the data collector, c, is:

Costc =

{
0 if c rejects
size ∗ I + Co if c accepts

(8)

The benefit to the data collector, c, is:

Benefitc =

0 if c rejects ∨ size < Min
size ∗ p if c accepts ∧ Min ≤ size ≤Max
Max ∗ p if c accepts ∧ Max ≤ size

(9)
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Consequently, the payoff to the data collector will be:

Uc = Benefitc − Costc (10)

By plugging the formulas of Benefitc and Costc into Eq(10), we
can formulate the utility to the data collector in the acceptance case
as follows:

Uacceptc =0− size ∗ I − Co if size < Min
size ∗ (p− I)− Co if Min ≤ size ≤Max
(Max)p− size ∗ I − Co if Max < size

(11)

Table 1. The best strategies of the data collector in Case1: nαo < Min

Condition Best incentive Best action† Maximum payoff Database size

a γp−αo
2γ < Min−nαo

nγ I = Min−nαo
nγ Accept if U∗,1ac > 0 max{U∗,1ac , 0} Min if Accept

Reject if U∗,1ac < 0 0 if Reject
Indifferent otherwise

b Min−nαo
nγ ≤ γp−αo

2γ ≤ Max−nαo
nγ I = γp−αo

2γ Accept if U∗,1bc > 0 max{U∗,1bc , 0} n(αo+γp2 ) if Accept

Reject if U∗,1bc < 0 0 if Reject
Indifferent otherwise

c Max−nαo
nγ ≤ γp−αo

2γ I = Max−nαo
nγ Accept if U∗,1cc > 0 max{U∗,1cc , 0} Max if Accept

Reject if U∗,1cc < 0 0 if Reject
Indifferent otherwise

† Utilities are defined as: U∗,1ac = Min(p − Min−nαo
nγ ) − Co, U∗,1bc = n

γ (αo+γp2 )2 − Co, U∗,1cc = Max(p −
Max−nαo

nγ )− Co.

5.2 Game Rules

The extensive-form game starts with a “one shot negotiation” be-
tween the third-party and the data collector. Then the privacy pol-
icy is established and data providers choose to participate or not. In
practice, the negotiation can continue in multiple rounds but since
we are not considering the time factor and the game is modeled
with complete information, adding multiple rounds of negotiation
does not change the results as long as it ends with an offer from
the third-party followed by a response from the data collector. We
believe that a negotiation started by a third-party (and not the data
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collector) is more natural and realistic. However, should the data
collector initiate the negotiation, the analysis of the game and the
outcome will potentially be different. Once the third-party makes
an offer, the data collector can either reject the offer or collect the
required information by publishing the privacy policy and announc-
ing an incentive. In the former case, the payoff to both the third-
party and the data collector are zero. In the latter case, the data
providers have to decide whether to opt-in or opt-out. Generally,
the data providers can get involved in a negotiation with the data
collector to choose the best privacy level and incentive combination.
However, modeling the game with multiple rounds of negotiation
between the data collector and each data provider rapidly increases
the depth of the game tree. Moreover, the data providers are usually
not patient enough to go through such a negotiation for each piece of
information they provide online. As explained in Section 4, consider-
ing each data provider’s privacy preferences is practically infeasible.
Therefore, the data providers’ mixed strategy is explained with the
probability model of Eq(3) and once the incentive and the parame-
ters of the offer are plugged in, an exact probability will be given by
the model for each case. Therefore, we can assume that optimal ac-
tions of data providers are already determined and the game is only
illustrated to the point where the data collector makes a decision.

Except for the time when the data collector rejects, at each terminal
node the size of the database is:

size = n ∗ (β0 + β1
1

1 + g1
+ ...+ βk

1

1 + gk
+ θ

1

1 + r
+ γI) (12)

Where the values for the gi’s, r, and I are chosen by the third-party
and data collector along the path that leads to the terminal node.

The payoffs to the third-party and the data collector are calculated
by plugging the size into the payoff functions from Section 5.1. The
(trimmed) game tree is depicted in Fig(1).

6 Data Collector’s Best Responses

In the procedure of backward induction [19] on the trimmed tree,
the first step is to find the optimal actions in the smallest subgames.
These subgames are the ones that follow a history of the form (o =
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〈g1, ..., gk, r, pr, p, Min, Max〉) where o is an instance of an offer
made by the third-party. In these subgames, it is the data collector’s
turn to either reject or accept (and announce some incentive) the
third-party’s offer.

After a history of the form o, the data collector optimizes his payoff
based on the price p and other privacy attributes of the offer. At any
of these nodes in the tree, the size of the database can be determined
by Eq(12). To simplify the notations, let αo denote the probability
of opting in for a specific offer o with zero incentive. In other words:

αo = β0 + β1
1

1 + g1
+ ...+ βk

1

1 + gk
+ θ

1

1 + r
(13)

The values of gi and r are plugged in from the specifications of o.
Since we are assuming n potential data providers, the expected num-
ber of data providers who will opt-in with granularity gi, retention
r, and incentive I can be calculated as:

size = n(α0 + γI) (14)

When size is plugged in into Eq(11) and the conditions are specified
based on I, we can restate Uacceptc as follows:

Uacceptc =
0− n(αo + γI)I − Co if I < Min−nα0

nγ

n(αo + γI)(p− I)− Co if Min−nα0

nγ ≤ I ≤ Max−nα0

nγ

(Max)p− n(αo + γI)I − Co if Max−nα0

nγ < I

(15)

Since we can safely assume that αo > 0 the first case of the Uacceptc

function always yields a negative payoff and therefore choosing an
incentive I < Min−nαo

nγ is always dominated by at least the reject
action. To find the maximum of the second and the third pieces of
the function we find the maximizing I for each piece of function by
setting the derivative of the piece to zero. We then need to compare
this maximizing value with the upper and lower bounds of I in the
piece. There is also an implicit condition on valid values of I. This
condition ensures that the maximizing incentives are not less than
zero. To simplify these comparisons and organize the results, we
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consider three cases: case 1 happens when the lower bound of I in
the second piece is greater than zero, case 2 happens when the lower
bound is less than zero but the upper bound of I in the second piece
is greater than zero, and case 3 occurs when the upper bound of I in
the second piece is less than zero. Notice that these cases are specific
to to each instance of the game and are not dependent on the offer
received from the third party 1.

6.1 Case 1: nαo < Min

Table 2. The best strategies of the data collector in Case 2: Min ≤ nαo ≤Max

Condition Best incentive Best action† Maximum payoff Database size

a γp−αo
2γ < 0 I = 0 Accept if U∗,2ac > 0 max{U∗,2ac , 0} nαo if Accept

Reject if U∗,2ac < 0 0 if Reject
Indifferent otherwise

b 0 ≤ γp−αo
2γ ≤ Max−nαo

nγ I = γp−αo
2γ Accept if U∗,2bc > 0 max{U∗,2bc , 0} n(αo+γp2 ) if Accept

Reject if U∗,2bc < 0 0 if Reject
Indifferent otherwise

c Max−nαo
nγ ≤ γp−αo

2γ I = Max−nαo
nγ Accept if U∗,2cc > 0 max{U∗,2cc , 0} Max if Accept

Reject if U∗,2cc < 0 0 if Reject
Indifferent otherwise

† Utilities are defined as: U∗,2ac = nαop−Co, U∗,2bc = n
γ (αo+γp2 )2−Co, U∗,2cc = Max(p− Max−nαo

nγ )−
Co.

Table 3. The best strategies of the data collector in Case 3: Max < nαo

Condition Best incentive Best action† Maximum payoff Database size

none I = 0 Accept if U∗,3c > 0 max{U∗,3c , 0} nαo if Accept
Reject if U∗,3c < 0 0 if Reject
Indifferent otherwise

† Utility is defined as: U∗,3c = p(Max)− Co

This case happens when the anticipated number of data providers
who opt-in for the policy without any incentive is less than Min.

If the maxima of either the second or the third piece of the Uacceptc

function in Eq(15) is greater than zero then the data collector decides
to accept and the number of data records can be calculated based
on the maximizing incentive. If the maximum of these two pieces is

1 These three cases cover the space of all possible values for upper and lower bounds
on values of I in the second piece of Eq(15).
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equal to zero then the data collector can either choose to accept or
reject (both are optimal actions).

To find the maximum in the second piece of the function, we cal-
culate the derivative of second piece of Uacceptc with respect to I and
set it to zero:

dUacceptc

dI
= nγp− nαo − 2nγI = 0⇒ I∗ =

γp− αo
2γ

(16)

Since the second derivative of the function is negative, the function
is concave down and thus I∗ represents a local maximum. Depending
on the value of I∗ the following three sub-cases can occur:

(a) If I∗ < Min−nαo
nγ , then the maximum happens at the beginning

of the interval (i.e., I = Min−nαo
nγ ). In this case the maximum

payoff to the data collector (if he accepts), denoted by U∗,1ac , is
calculated as:

U∗,1ac = Min(p− Min− nαo
nγ

)− Co (17)

(b) If Min−nαo
nγ ≤ I∗ ≤ Max−nαo

nγ , then the maximum happens at

I∗. In this case the maximum payoff to the data collector (if he

accepts), denoted by U∗,1bc , is calculated as:

U∗,1bc =
n

γ
(
αo + γp

2
)2 − Co (18)

(c) If Max−nαo
nγ ≤ I∗, then the maximum happens at the end of the

interval (i.e., I = Max−nαo
nγ ). In this case the maximum payoff to

the data collector (if he accepts), denoted by U∗,1cc , is calculated
as:

U∗,1cc = Max(p− Max− nαo
nγ

)− Co (19)

The maximum of the third piece of the function can be determined
by finding the derivative of Uacceptc (third piece) with respect to I
and setting it to zero:

dUacceptc

dI
= −nαo − 2nγI = 0⇒ I∗ = −αo

2γ
< 0 <

Max− nαo
nγ

(20)
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Notice that since the second derivative is negative, the I∗ is a lo-
cal maximum. However, as Eq(20) shows, this I∗ is less than the
beginning of the interval and the maximizing incentive will be I =
Max−nαo

nγ . Plugging this incentive in the third piece of the payoff

function we receive the same maximum payoff as U∗,1cc in Eq(19).
The best responses in case 1 are summarized in Table 1.

6.2 Case 2: Min ≤ nαo ≤ Max

This case happens when the anticipated number of data providers
who opt-in for the policy without any incentive is more than (or equal
to) Min but less than or equal to Max.

A procedure similar to Section 6.1 can be used to find the local
optima of the payoff function. If the maxima of either the second or
the third piece of the Uacceptc function in Eq(15) is greater than zero
then the data collector decides to accept and the number of data
records can be calculated based on the maximizing incentive. If the
maximum of these two pieces is equal to zero then the data collector
can either choose to accept or reject (both are optimal actions).

The maximum incentive in the second piece of the function, can
be calculated by Eq(16). Based on the equation, I∗ = γp−αo

2γ is the
local maximum of the second piece of the function. Depending on
the value of I∗ the following three cases can occur:

(a) If I∗ < 0, then the maximum happens at the zero. Notice that
unlike case 1, the beginning of the interval is still less than zero
and we cannot set I to the lower bound of this piece. In this
case the maximum payoff to the data collector (if he accepts),

denoted by U∗,2ac , is calculated as:

U∗,2ac = nαop− Co (21)

(b) If 0 ≤ I∗ ≤ Max−nαo
nγ , then the maximum happens at I∗. In this

case the maximum payoff to the data collector (if he accepts),

denoted by U∗,1bc , is calculated as:

U∗,2bc =
n

γ
(
αo + γp

2
)2 − Co (22)
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(c) If Max−nαo
nγ ≤ I∗, then the maximum happens at the end of the

interval (i.e., I = Max−nαo
nγ ). In this case the maximum payoff to

the data collector (if he accepts), denoted by U∗,2cc , is calculated
as:

U∗,2cc = Max(p− Max− nαo
nγ

)− Co (23)

Identical to case 1, the maximum of the third piece of the function
can be determined by finding the derivative of Uacceptc (third piece)
with respect to I and setting it to zero. Based on Eq(20), the local
maximum is less than the beginning of the interval and therefore I =
Max−nαo

nγ maximizes the third piece of the function. This value for

the incentive provides the same maximum payoff as U∗,2cc in Eq(23).
The best responses in case 2 are summarized in Table 2.

6.3 Case 3: Max < nαo

In this last case, the number of data providers who are willing to
share their information without any incentive is already greater than
Max. Since more than Max opt-in with zero incentive, increasing
the incentive above zero will entice more data providers without
adding anything to the data collector’s payoff. In this case, the best
action of the data collector is to either accept with I∗ = 0 or reject.
With zero incentive, the payoff to the data collector would be U∗,3c =
p(Max)− Co. This result is shown in Table 3.

7 Subgame Perfect Equilibria

To find the subgame perfect equilibria of the game, we need to take
the best actions of the data collector from Section 6 as given and find
the optimal actions of the third-party. The following three proposi-
tions help us to reduce the search space for the best actions.

Theorem 1. Let o1 = 〈g1, ..., gj , ..., gk, r, pr, p,Min,Max〉 be an of-
fer such that at least one of the gi’s with i 6= j is set to a level higher
than zero. Recall that dfj is the data field over which the predicate of
the COUNT-query is defined. The third-party can do at least as good
as o1 by making an offer o2 = 〈0, 0, ..., gj , ..., 0, r, pr, p,Min,Max〉
or o2′ = 〈0, 0, ..., gj , ..., 0, r, pr, 0,Min,Max〉.
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Proof. Consider the description of αo given in Eq(13). Since all pa-
rameters β0,..., βk are greater than zero and there is at least one
gi that is zero in o2 but more than zero in o1, we have αo1 < αo2.
Moreover, as one of the gi ’s in o2 changes from zero to another
granularity level in o1, CG(gi) from Eq(6) either increases or stays
the same. Thus, the inequality Co2 ≤ Co1 holds.

With these two facts we show that for all meaningful combinations
of cases (from Section 6):

– part 1 - If the data collector accepts o1 he will also accept o2.

– part 2 - The expected database size after accepting offer o2 is
at least as large as offer o1.

– part 3 - Offering o2 or o2′ provides the third-party with a payoff
at least as large as o1.

Since αo1 < αo2 not all combination of cases apply to offers o1 and
o2. All possible combinations are enumerated in Table 4. For each
combination, we first prove parts 1 and 2 and then justify part 3 of
the theorem.

Table 4. Possible combinations of cases for o1 and o2

```````````Case for o2
Case for o1

1a 1b 1c 2a 2b 2c 3

1a X 7 7 7 7 7 7

1b X X 7 7 7 7 7

1c X X X 7 7 7 7

2a X X 7 X X 7 7

2b X X 7 7 X 7 7

2c X X X 7 X X 7

3 X X X X X X X

Proof of parts 1 and 2 :
Case 1a for o1 vs. case 1a for o2 - If the data collector accepts
offer o1 in case 1a, then the payoff U∗,1ac to the data collector for
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offer o1 is greater than or equal to zero2. In other words:

0 ≤Min(p− Min− nαo1
nγ

)− Co1 = Uc[o1]

Since αo1 ≤ αo2 and Co2 ≤ Co1, we have:

Min(p−Min− nαo1
nγ

)−Co1 ≤Min(p−Min− nαo2
nγ

)−Co2 = Uc[o2]

Consequently, the data collector would also accept offer o2.
According to Table 1 if the data collector accepts any offer in case

1a the expected size of the database will be Min. Therefore, the
expected database size after accepting offer o2 is at least as large as
offer o1.

Case 1a for o1 vs. case 1b for o2 - If the data collector ac-
cepts offer o1 in case 1a, then the data collector’s payoff U∗,1ac for
offer o1 is greater than or equal to zero. In other words:

0 ≤Min(p− Min− nαo1
nγ

)− Co1 = Uc[o1]

Based on Eq(16), the maximum of the Uacceptc in case 1 happens by

setting I∗ = γp−αo
2γ and this maximum yields U∗,1bc . Therefore, for

every offer, U∗,1ac ≤ U∗,1bc . We have:

Min(p− Min− nαo1
nγ

)− Co1 ≤
n

γ
(
αo1 + γp

2
)2 − Co1

Since αo1 ≤ αo2 and Co2 ≤ Co1, we have:

0 ≤ n
γ (αo1+γp

2 )2 − Co1 ≤ n
γ (αo2+γp

2 )2 − Co2

= Uc[o2]

Therefore, o2 will be accepted.

2 In the rest of the proof, we denote the data collector’s payoff for offer o as Uc[o] and
don’t include the superscripts. The superscripts can be deduced based on the case
that applies to the offer.



22 Rosa Karimi Adl, Ken Barker, and Jörg Denzinger

According to Table 1 if the data collector accepts an offer in case
1a the size of the database will be Min and if he accepts an offer in
case 1b the expected size would be n(αo2+γp

2 ). Since case 1b applies
to offer o2, the condition for this case is fulfilled:

Min−nαo2
nγ ≤ γp−αo2

2γ ⇒

Min
n ≤ γp

2 + αo2
2 ⇒

Min ≤ n(γp+αo22 )

Therefore, the expected database size after accepting offer o2 is at
least as large as offer o1.

Case 1a for o1 vs. case 1c for o2 - If the data collector ac-
cepts offer o1 in case 1a, then the data collector’s payoff U∗,1ac for
offer o1 is greater than or equal to zero. In other words:

0 ≤Min(p− Min− nαo1
nγ

)− Co1 = Uc[o1]

Since Min ≤Max and Co2 ≤ Co1, we have:

Min(p− Min− nαo1
nγ

)− Co1 ≤Max(p− Min− nαo1
nγ

)− Co2

We now show that (p − Min−nαo1
nγ ) ≤ (p − Max−nαo2

nγ ) and therefore

0 ≤ Uc[o1] ≤ Uc[o2].
Since case 1c applies to o2, based on the condition of this case in

Table 1 we have:

Max− nαo2
nγ

≤ γp− αo2
2γ

Since αo1 ≤ αo2, we also have:

γp− αo2
2γ

≤ γp− αo1
2γ

Finally, condition 1a that applies to o1 requires:

γp− αo1
2γ

≤ Min− nαo1
nγ
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Based on the past three inequalities, we have:

Max−nαo2
nγ ≤ Min−nαo1

nγ ⇒

−Min−nαo1
nγ ≤ −Max−nαo2

nγ ⇒

p− Min−nαo1
nγ ≤ p− Max−nαo2

nγ ⇒

Min(p− Min−nαo1
nγ )− Co1 ≤Max(p− Max−nαo2

nγ )− Co2 ⇒

0 ≤ Uc[o1] ≤ Uc[o2]

Therefore, o2 will be accepted.
According to Table 1 if the data collector accepts an offer in case

1a the size of the database will be Min and if he accepts an offer
in case 1c the expected size would be Max. Since Min ≤Max, the
expected database size after accepting offer o2 is at least as large as
offer o1.

Case 1a for o1 vs. case 2a for o2 - If the data collector ac-
cepts offer o1 in case 1a, then the data collector’s payoff U∗,1ac for
offer o1 is greater than or equal to zero. In other words:

0 ≤Min(p− Min− nαo1
nγ

)− Co1 = Uc[o1]

Since Co2 ≤ Co1, we have:

0 ≤Min(p− Min− nαo1
nγ

)− Co1 ≤Min(p− Min− nαo1
nγ

)− Co2

According to Table 1 the condition for case 1 is nαo1 < Min. There-
fore, by sunstituting the term αo1 with Min we get:

Min(p− Min−nαo1
nγ )− Co2 ≤Min(p− Min−Min

nγ )− Co2
= Min p− Co2

Finally, case 2 applies to αo2 and the condition for case 2 (in Table
2) is Min ≤ nαo2. With this property we substitute the term Min
with nαo2 to get the following:

Min p− Co2 ≤ nαo2p− Co2 = Uc[o2]
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Based on the past four inequalities we conclude that the data col-
lector’s payoff U∗,2ac for offer o2 is greater than or equal to zero.

According to Table 1 if the data collector accepts an offer in case
1a the size of the database will be Min and if he accepts an offer
in case 2a the expected size would be nαo2. The condition for case
2 (see Table 2) is Min ≤ nαo2 and therefore, the expected database
size after accepting offer o2 is at least as large as offer o1.

Case 1a for o1 vs. case 2b for o2 - If the data collector ac-
cepts offer o1 in case 1a, then he would also accept offer o2. The
proof of this claim is identical to “case 1a for o1 vs. case 1b for o2”.

According to Table 1 if the data collector accepts an offer in case
1a the size of the database will be Min and if he accepts in case
2b the expected size would be n(αo2+γp

2 ). Case 2b applies to offer o2
and part of the condition for this case (see Table 2) is:

0 ≤ γp−αo2
2γ ⇒

αo2 ≤ γp ⇒

n(αo2+αo2
2 ) ≤ n(αo2+γp

2 )⇒

nαo2 ≤ n(αo2+γp
2 )

Moreover, the condition for case 2 is Min ≤ nαo2. Therefore, the
expected database size after accepting offer o2 is at least as large as
offer o1.

Case 1a for o1 vs. case 2c for o2 - If the data collector accepts
offer o1 in case 1a, he would also accept the offer o2 in case 2c because
U∗,2cc = U∗,1cc and the proof is identical to “case 1a for o1 vs. case 1c
for o2”.

The expected size of the database after accepting offer o2 in case
2c is at least the same as the expected size of the database if o1 is
accepted in case 1a since Min ≤Max.

Case 1a for o1 vs. case 3 for o2 - If the data collector accepts
offer o1 in case 1a, then the data collector’s payoff U∗,1ac for offer o1
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is greater than or equal to zero. In other words:

0 ≤Min(p− Min− nαo1
nγ

)− Co1 = Uc[o1]

The condition for case 1 is nαo1 < Min (see Table 1). As a result:

0 ≤ Min−nαo1
nγ ⇒

−Min−nαo1
nγ ≤ 0

Consequently, the following holds:

Min(p− Min− nαo1
nγ

)− Co1 ≤Min(p)− Co1

Since Min ≤Max and Co2 ≤ Co1, we have:

Min(p)− Co1 ≤Max(p)− Co2 = Uc[o2]

The equations prove that in this case offer o2 would also be accepted.
The expected size of the database after accepting offer o1 in case 1a

is Min (see Table 2). The expected size of the database after accept-
ing offer o2 in case 3 is nαo2 (see Table 3). Since Min ≤Max ≤ nαo2
(the condition for case 3), if offer o2 is accepted the expected size is
at least the same as offer o1.

Case 1b for o1 vs. case 1b for o2 - If the data collector ac-
cepts offer o1 in case 1b, then his payoff U∗,1bc for offer o1 is greater
than or equal to zero. In other words:

0 ≤ n

γ
(
αo1 + γp

2
)2 − Co1 = Uc[o1]

Since αo1 ≤ αo2 and Co2 ≤ Co1, we have:

n

γ
(
αo1 + γp

2
)2 − Co1 ≤

n

γ
(
αo2 + γp

2
)2 − Co2 = Uc[o2]

Therefore, the data collector would also accept offer o2.
The expected size of the database if offer o1 is accepted would be

n(αo1+γp
2 ). The database size is n(αo2+γp

2 ) if offer o2 is accepted. Since
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αo1 ≤ αo2, if offer o2 is accepted the expected size of the dataset is
at least as large as the expected size of the dataset after accepting
offer o1.

Case 1b for o1 vs. case 1c for o2 - The data collector’s payoff
in case 1b can be rewritten as:

U∗,1bc = n(αo + γ
γp− αo

2γ
)(p− γp− αo

2γ
)− Co (24)

This equation is the result of plugging the optimum incentive I∗ =
γp−αo

2γ in the second piece of the Uacceptc function in Eq(11).

If the data collector accepts offer o1 in case 1b, his payoff U∗,1bc is
greater than or equal to zero. In other words:

0 ≤ n(αo1 + γ γp−αo12γ )(p− γp−αo1
2γ )− Co1 = Uc[o1]⇒

0 ≤ n(γp2 + αo1
2 )(p− γp−αo1

2γ )− Co1 = Uc[o1]

According to Table 1, part of the condition for case 1b is:

γp−αo1
2γ ≤ Max−nαo1

nγ ⇒

γp
2 −

αo1
2 + αo1 ≤ Max

n ⇒

n(γp2 + αo1
2 ) ≤Max

(25)

Based on this inequality we have:

n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 ≤Max(p− γp− αo1
2γ

)− Co1

Since αo1 ≤ αo2 and Co2 ≤ Co1, the following holds:

Max(p− γp− αo1
2γ

)− Co1 ≤Max(p− γp− αo2
2γ

)− Co2

Based on the condition for case 1c in Table 1, we know:

Max−nαo2
nγ ≤ γp−αo2

2γ ⇒

−γp−αo22γ ≤ −Max−nαo2
nγ
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Consequently we have:

Max(p− γp− αo2
2γ

)−Co2 ≤Max(p−Max− nαo2
nγ

)−Co2 = Uc[o2]

Therefore, the data collector would also accept offer o2 since the
payoff would be greater than or equal to zero.

The expected size of the database is n(αo1+γp
2 ) in case of accept-

ing offer o1, and Max in case of accepting o2. Based on Eq(25),
n(αo1+γp

2 ) ≤Max and accepting offer o2 would result in a database
at least as large as the case where offer o1 is accepted.

Case 1b for o1 vs. case 2a for o2 - If the data collector ac-
cepts offer o1 in case 1b, his payoff U∗,1bc (see the version in Eq(24))
is greater than or equal to zero. In other words:

0 ≤ n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 = Uc[o1]

The condition for case 1 is nαo1 < Min. Combining this fact with the
condition in case 1b (see Table 1), proves the following inequality:

0 ≤ Min− nαo1
nγ

≤ γp− αo1
2γ

As a result we have:

n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 ≤ n(
γp

2
+
αo1
2

)p− Co1

Case 2a for o2 (see Table 2) implies that γp < αo2. We also know
that αo1 < αo2 and Co2 ≤ Co1. Therefore we have:

n(
γp

2
+
αo1
2

)p− Co1 ≤ n(
αo2
2

+
αo2
2

)p− Co2 = Uc[o2] (26)

The expected size of the database after accepting offer o1 would be
n(αo1+γp

2 ), and after accepting offer o2 would be nαo2. Since αo1 ≤
αo2 and γp < αo2 (see condition 2a in Table 2), we have:

n(αo1+γp
2 )≤ n(αo2+γp

2 )

≤ n(αo2+αo2
2 )

= nαo2



28 Rosa Karimi Adl, Ken Barker, and Jörg Denzinger

Therefore, accepting offer o2 would result in a database at least as
large as the case where offer o1 is accepted.

Case 1b for o1 vs. case 2b for o2 - Since U∗,1bc = U∗,2bc and
the proof of “case 1b for o1 vs. case 1b for o2” only relies on the
facts that αo1 ≤ αo2 and Co2 ≤ Co1, the proof of this case is identi-
cal to the proof of “case 1b for o1 vs. case 2b for o2”.

Case 1b for o1 vs. case 2c for o2 - The proof of this case is
identical to the proof of “case 1b for o1 vs. case 1c for o2”. This is
due to the facts that U∗,1cc = U∗,2cc , condition 1c (from Table 1) is
the same as condition 2c (from Table 2), and the other inequalities
used to prove “case 1b for o1 vs. case 1c for o2” are either αo1 ≤ αo2
and Co2 ≤ Co1, or related to o1.

Case 1b for o1 vs. case 3 for o2 - If the data collector ac-
cepts offer o1 in case 1b, his payoff U∗,1bc (see the version in Eq(24))
is greater than or equal to zero. In other words:

0 ≤ n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 = Uc[o1]

The condition for case 1 is nαo1 < Min. Combining this fact with the
condition in case 1b (see Table 1), proves the following inequality:

0 ≤ Min− nαo1
nγ

≤ γp− αo1
2γ

As a result we have:

n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 ≤ n(
γp

2
+
αo1
2

)p− Co1

Since Co2 ≤ Co1 and n(γp2 + αo1
2 ) ≤Max (see Eq(25)), the following

holds:
n(
γp

2
+
αo1
2

)p− Co1 ≤Max p− Co2 = Uc[o2]

This proves that if offer o1 is accepted by the data collector, offer o2
is also accepted.

The expected size of the database after accepting offer o1 would
be n(αo1+γp

2 ) and after accepting offer o2 would be nαo2. Based on



Title Suppressed Due to Excessive Length 29

Eq(25) we know n(γp2 + αo1
2 ) ≤ Max. The condition for case 3 (see

Table 3) is Max ≤ nαo2. These two facts prove the following:

n(
αo1 + γp

2
) ≤Max ≤ nαo2

Therefore, accepting offer o2 would result in a database at least as
large as the case where offer o1 is accepted.

Case 1c for o1 vs. case 1c for o2 - If the data collector ac-
cepts offer o1 in case 1c, then his payoff U∗,1cc for offer o1 is greater
than or equal to zero. In other words:

0 ≤Max(p− Max− nαo1
nγ

)− Co1 = Uc[o1]

Since αo1 ≤ αo2 and Co2 ≤ Co1, we have:

Max(p− Max−nαo1
nγ )− Co1 ≤Max(p− Max−nαo2

nγ )− Co2

= Uc[o2]

Therefore, the data collector would also accept offer o2.

If any of the offers o1 or o2 are accepted the expected size of the
database would be Max.

Case 1c for o1 vs. case 2c for o2 - Since the condition 1c
(from Table 1) is the same as the condition 2c (from Table 2) and

U∗,1cc = U∗,2cc , the proof of this case is identical to “case 1c for o1 vs.
case 1c for o2”.

Case 1c for o1 vs. case 3 for o2 - If the data collector accepts
offer o1 in case 1c, then his payoff U∗,1cc for offer o1 is greater than
or equal to zero. In other words:

0 ≤Max(p− Max− nαo1
nγ

)− Co1 = Uc[o1]
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Based on the condition for case 1 (see Table 1), we know:

nαo1 < Min < Max⇒

0 < Max− nαo1 ⇒

−Max−nαo1
nγ < 0

Considering this inequality and the fact that Co2 ≤ Co1, we have:

Max(p− Max−nαo1
nγ )− Co1 ≤Max (p)− Co1 ⇒

≤Max (p)− Co2 = Uc[o2]

This proves that if offer o1 is accepted by the data collector, offer o2
is also accepted.

The expected size of the database after accepting offer o1 would
be Max and after accepting offer o2 would be nαo2. Based on the
condition for case 3 (see Table 3), we know Max ≤ nαo2. Therefore,
accepting offer o2 would result in a database at least as large as the
case where offer o1 is accepted.

Case 2a for o1 vs. case 2a for o2 - If the data collector ac-
cepts offer o1 in case 2a then his payoff U∗,2ac for offer o1 is greater
than or equal to zero. In other words:

0 ≤ nαo1p− Co1 = Uc[o1]

Since αo1 ≤ αo2 and Co2 ≤ Co1, we have:

nαo1p− Co1 ≤ nαo2p− Co2 = Uc[o2]

Therefore, the data collector would also accept offer o2.
The expected size of the database would be nαo1 if offer o1 is ac-

cepted and nαo2 if offer o2 is accepted . Since αo1 ≤ αo2, the expected
size of the database after accepting offer o2 is at least as large as ac-
cepting offer o1.

Case 2a for o1 vs. case 3 for o2 - If the data collector accepts
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offer o1 in case 2a then his payoff U∗,2ac for offer o1 is greater than
or equal to zero. In other words:

0 ≤ nαo1p− Co1 = Uc[o1]

The condition for case 2 (see Table 2) is nαo1 ≤Max. This inequality
and the fact that Co2 ≤ Co1, prove the following:

nαo1p− Co1 ≤Max p− Co1 ≤Max p− Co2 = Uc[o2]

Therefore, the data collector would also accept offer o2.
The expected size of the database would be nαo1 if offer o1 is ac-

cepted and nαo2 if offer o2 is accepted . Since αo1 ≤ αo2, the expected
size of the database after accepting offer o2 is at least as large as ac-
cepting offer o1.

Case 2b for o1 vs. case 2a for o2 - If the data collector ac-
cepts offer o1 in case 2b, his payoff U∗,2bc (see the version in Eq(24))
is greater than or equal to zero. In other words:

0 ≤ n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 = Uc[o1]

The condition for case 2b is 0 ≤ γp−αo1
2γ . Therefore, the following

inequality holds:

n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 ≤ n(
γp

2
+
αo1
2

)p− Co1

Case 2a for o2 (see Table 2) implies that γp < αo2. We also know
that αo1 < αo2 and Co2 ≤ Co1. Therefore we have:

n(
γp

2
+
αo1
2

)p− Co1 ≤ n(
αo2
2

+
αo2
2

)p− Co2 = Uc[o2] (27)

The expected size of the database after accepting offer o1 would be
n(αo1+γp

2 ), and after accepting offer o2 would be nαo2. Since αo1 ≤
αo2 and γp < αo2 (see condition 2a in Table 2), we have:

n(αo1+γp
2 )≤ n(αo2+γp

2 )

≤ n(αo2+αo2
2 )

= nαo2
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Therefore, accepting offer o2 would result in a dataset at least as
large as the case where offer o1 is accepted.

Case 2b for o1 vs. case 2b for o2 - Since U∗,1bc = U∗,2bc , the
proof of this case is identical to the proof of “case 2b for o1 vs. case
2b for o2”.

Case 2b for o1 vs. case 2c for o2 - The proof of this case is
identical to the proof of “case 1b for o1 and case 1c for o2”. This
is due to the facts that U∗,1bc = U∗,2bc , U∗,1cc = U∗,2cc , and conditions
used to prove “case 1b for o1 vs. case 1c for o2” also hold in “case
2b for o1 vs. case 2c for o2”.

Case 2b for o1 vs. case 3 for o2 - If the data collector ac-
cepts offer o1 in case 2b, his payoff U∗,2bc is greater than or equal to
zero. In other words:

0 ≤ n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 = Uc[o1]

According to Table 2, the condition for case 2b is:

0 ≤ γp− αo1
2γ

As a result we have:

n(
γp

2
+
αo1
2

)(p− γp− αo1
2γ

)− Co1 ≤ n(
γp

2
+
αo1
2

)p− Co1

Since Co2 ≤ Co1 and n(γp2 + αo1
2 ) ≤Max (see Eq(25)), the following

holds:
n(
γp

2
+
αo1
2

)p− Co1 ≤Max p− Co2 = Uc[o2]

This proves that if offer o1 is accepted by the data collector, offer o2
is also accepted.

The expected size of the database after accepting offer o1 would
be n(αo1+γp

2 ) and after accepting offer o2 would be nαo2. Based on
Eq(25) we know n(γp2 + αo1

2 ) ≤ Max. The condition for case 3 (see
Table 3) is Max ≤ nαo2. These two facts prove the following:

n(
αo1 + γp

2
) ≤Max ≤ nαo2
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Therefore, accepting offer o2 would result in a database at least as
large as the case where offer o1 is accepted.

Case 2c for o1 vs. case 2c for o2 - Since the condition 1c
(from Table 1) is the same as the condition 2c (from Table 2) and

U∗,1cc = U∗,2cc , the proof of this case is identical to “case 1c for o1 vs.
case 1c for o2”.

Case 2c for o1 vs. case 3 for o2 - The proof of this case is
identical to the proof of “case 1c for o1 and case 3 for o2”. This is
due to the facts that U∗,1cc = U∗,2cc , and all of the conditions used to
prove “case 1c for o1 vs. case 3 for o2” also hold in “case 2c for o1
vs. case 3 for o2”.

Case 3 for o1 vs. case 3 for o2 - If the data collector accepts
offer o1 in case 3 then his payoff U∗,3c for offer o1 is greater than or
equal to zero. In other words:

0 ≤ p(Max)− Co1 = Uc[o1]

Since Co2 ≤ Co1, we have:

p(Max)− Co1 ≤ p(Max)− Co2 = Uc[o2]

Therefore, the data collector would also accept offer o2.
The expected size of the database would be nαo1 if offer o1 is ac-

cepted and nαo2 if offer o2 is accepted . Since αo1 ≤ αo2, the expected
size of the database after accepting offer o2 is at least as large as ac-
cepting offer o1.

Proof of part 3 :
So far we have shown that for every possible combination of cases

that apply to offers o1 and o2, if the data collector accepts offer
o1, he will also accept offer o2. Moreover, the data collector would
expect a database of at lease the same size if he accepts offer o2
instead of offer o1. In this part we prove that offering o2 or o2′ (an
offer with price 0) provides the third-party with a payoff at least as
large as the payoff for offering o1.
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In the rest of this proof we use ESo to denote the expected size of
the database if the data collector accepts offer o. We prove this part
in the following three possible scenarios:

Scenario 1: Both offers get accepted by the data collector -
In this case the payoff to the data collector for both offers o1 and o2
is greater than or equal to zero. Therefore, we anticipate that both
offers get accepted. The expected size of the database would be ESo1
for offer o1 and ESo2 for offer o2. In part 2 of the proof we saw that
ESo1 ≤ ESo2.

The payoff to the third-party is determined via Eq(5). In this func-
tion, if the required data field, dfj , is requested at a partial level (i.e.,
gj is odd) then the economic value of each of the the records is a
to the third-party, and if the required data field, dfj , is requested
at an exact level (i.e., gj is even) then the economic value of each
of the the collected records is b to third-party. Therefore we have
a ≤ b. Without loss of generality, we only prove this scenario with
the assumption that gj is odd (i.e., dfj is requested at the partial
level in both o1 and o2). To prove the case where gj is even, we have
to substitute all occurrences of parameter a with parameter b in the
proof. With the assumption “gj is odd” the Ut function from Eq(5)
becomes the following:

Ut[o] =

0 if ESo < Min
ESo(a.r − p) if Min ≤ ESo ≤Max
Max(a.r − p) if Max < ESo

(28)

Notice the use of ESo instead of the term size in the original formula.
In all cases where offer o1 gets accepted (and consequently offer o2

gets accepted), ESo1 (and ESo2) is at least Min. Therefore the first
piece of the function in Eq(28) will never happen in this scenario.
The following cases can happen:

– ESo1 ≤Max and ESo2 ≤Max- For this case we have:

Ut[o1] = ESo1(a.r − p)

Ut[o2] = ESo2(a.r − p)

Since ESo1 ≤ ESo2, we conclude that Ut[o1] ≤ Ut[o2].
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– ESo1 ≤Max and Max ≤ ESo2- For this case we have:

Ut[o1] = ESo1(a.r − p)

Ut[o2] = Max(a.r − p)

Since ESo1 ≤Max, we conclude that Ut[o1] ≤ Ut[o2].
– Max ≤ ESo1 and Max ≤ ESo2- For this case we have:

Ut[o1] = Ut[o2] = Max(a.r − p)

Therefore, we proved that if partial data is requested for dfj then for
the scenario where both offers o1 and o2 are acceptable, the third-
party makes at least as much profit by offering o2 instead of o1.

Scenario 2: Offer o1 does not get accepted but offer o2 gets
accepted by the data collector - In this scenario, Uc[o1] < 0
and therefore we anticipate that the data collector rejects offer o1.
When offer o1 is rejected, the payoff to the third-party is Ut[o1] = 0.
However, in this scenario the third-party expects the data collector
to accept offer o2 since Uc[o2] ≥ 0. After plugging ESo2 for size
in Eq(5), if Ut[o2] ≥ 0 then the third-party can make more profit
by offering o2 instead of o1. If Ut[o2] < 0, then the third-party can
make offer o2′ (ask for information without paying for it or simply
not making an offer) and have a guaranteed payoff of at least zero.
Therefore, we proved that in this scenario the third-party can make
at least as much profit if he offers o2 or o2′ instead of o1.

Scenario 3: None of the offers get accepted by the data
collector - In this scenario, Uc[o1] < 0 and Uc[o2] < 0. There-
fore, we anticipate the data collector reject both of the offers. When
the offers are rejected, the payoff to the third-party is zero. Conse-
quently, the third-party can make at least as much profit by offering
o2 instead of o1.

Theorem 2. Let o1 = 〈0, 0, ..., gj , ..., 0, r, pr, p,Min,Max〉 be an of-
fer such that gj ∈ {3, 5} where dfj is the data field over which the
predicate of COUNT-query is defined. The third-party can do at least
as good as o1 by making an offer o2 = 〈0, 0, ..., 1, ..., 0, r, pr, p,Min,Max〉.
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Table 5. Potentially optimal payoffs to the third-party if gj = 1

Maximum payoff† Subject to

p1 U∗,p1t = Min(ar∗ − p∗) [c-1]: nαop < Min
[c-1a]: αop + γp < 2Min

n

[c-p1]:
γCop
Min + Min

n ≤ αop + γp

p2 U∗,p2t = n
2 (αop + γp)(ar∗ − p∗) [c-1]: nαop < Min

[c-1b]: 2Min
n ≤ αop + γp ≤ 2Max

n

[c-p2]: 2

√
γCop
n ≤ αop + γp

p3 U∗,p3t = Max(ar∗ − p∗) [c-1]: nαop < Min
[c-1c]: 2Max

n ≤ αop + γp

[c-p3]:
γCop
Max + Max

n ≤ αop + γp

p4 U∗,p4t = n(αop)(ar∗ − p∗) [c-2]: Min ≤ nαop ≤Max
[c-2a]: γp− αop < 0
[c-p4]: Cop ≤ nαopp

p5 U∗,p5t = n
2 (αop + γp)(ar∗ − p∗) [c-2]: Min ≤ nαop ≤Max

[c-2b]: 0 ≤ γp− αop and αop + γp ≤ 2Max
n

[c-p5]: 2

√
γCop
n ≤ αop + γp

p6 U∗,p6t = Max(ar∗ − p∗) [c-2]: Min ≤ nαop ≤Max
[c-2c]: 2Max

n ≤ αop + γp

[c-p6]:
γCop
Max + Max

n ≤ αop + γp

p7 U∗,p7t = Max(ar∗ − p∗) [c-3]: Max < nαop
[c-p7]: Cop ≤Max p

† In all formulas r∗ and p∗ are the values that maximize the payoff in the row
subject to the constraints. Parameters αop and Cop are defined as: αop =

β0 + β1 + ... +
βj
2 + βj+1 + ... + βk + θ

r∗+1
, Cop = G+ B.



Title Suppressed Due to Excessive Length 37

Proof. (Sketch) Consider the description of αo given in Eq(13). Since
all parameters β0,..., βk are greater than zero and 1

1+1 >
1

1+3 >
1

1+5 ,
we have αo1 < αo2. Moreover, based on Eq(6) we have CG(1) =
CG(5) < CG(3). Therefore we can conclude that Co2 ≤ Co1. The
rest of the proof is the same as the proof sketch in Theorem 1.

Theorem 3. Let o1 = 〈0, 0, ..., gj , ..., 0, r, pr, p,Min,Max〉 be an of-
fer such that gj ∈ {4, 6} where dfj is the data field over which the
predicate of COUNT-query is defined. The third-party can do at least
as good as o1 by making an offer o2 = 〈0, 0, ..., 2, ..., 0, r, pr, p,Min,Max〉.

Proof. (Sketch) Similar to Proposition 2, we can show that αo1 < αo2
and Co2 ≤ Co1. The rest of the proof is the same as the proof sketch
in Theorem 1.

According to the three propositions, we can safely narrow down
our attention to “partial” and “exact” offers of the forms
op = 〈0, 0, ..., 1, ..., 0, r, pr, p,Min,Max〉 and
oe = 〈0, 0, ..., 2, ..., 0, r, pr, p,Min,Max〉.

To find the third-party’s best strategy we consider the two offers of
“partial” and “exact” granularity levels separately. For each of the
two possible types of offers any of the cases mentioned in Section
6 can happen. The best strategies of the data collector determines
an expected size (explained in the last column of Tables 1, 2, and
3) for the data table in each sub-case. Plugging these size elements
into the corresponding piece of Ut function in Eq(5) and finding
the maximizing combination of parameters r and p completes the
procedure of finding the game’s subgame perfect equilibria.

Tables 5 and 6 summarize the potentially optimal actions of the
third-party if he chooses gj = 1 (partial) and gj = 2 (exact), re-
spectively. The cases for partial offers are numbered as p1 to p7 (see
Table 5) and the cases for the exact offers are numbered as e1 to
e7 (see Table 6). Each of these cases exactly correspond to one of
the seven sub-cases that could apply to an offer (i.e., sub-cases 1a,
1b, 1c, 2a, 2b, 2c, and 3 from Tables 1, 2, and 3). Each row in Ta-
bles 5 and 6 lists a two-variable function to be maximized subject
to three conditions (or two conditions in cases p7 and e7). The first
condition in a row is the table condition (i.e., the condition specified
above either of the Tables 1, 2, and 3 ) and the second condition
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(if exists) refers to the case condition specified in the corresponding
row in one of the three Tables 1, 2, or 3. The last condition in each
row ensures that the proposed offer provides the data collector with
a utility greater than or equal to zero (otherwise, the offer will not
get accepted).

If the third-party sets p = 0 then his payoff would be 0. We specify
this final case with U∗,0t = 0.

The tables must be considered as a semi-lookup table; For any
instance of the problem with specific values for β0, β1,.., βk, θ, γ,
Min, and Max the maximizing values, r∗ and p∗, of each row can be
easily calculated subject to the conditions specified. The row which
yields maximum payoff to the third-party is the winning row. The
values of r∗, p∗, and gj in the winning row specify the parameters that
the third-party will use in the offer in a subgame perfect equilibrium.
The granularity levels of other data fields could be set to values
greater than zero if and only if doing so yields the same payoff for
the third-party.

Table 6. Potentially optimum payoffs to the third-party if gj = 2

Maximum payoff† Subject to

e1 U∗,e1t = Min(br∗ − p∗) [c-1]: nαoe < Min
[c-1a]: αoe + γp < 2Min

n

[c-e1]: γCoeMin + Min
n ≤ αoe + γp

e2 U∗,e2t = n
2 (αoe + γp)(br∗ − p∗) [c-1]: nαoe < Min

[c-1b]: 2Min
n ≤ αoe + γp ≤ 2Max

n

[c-e2]: 2
√
γCoe
n ≤ αoe + γp

e3 U∗,e3t = Max(br∗ − p∗) [c-1]: nαoe < Min
[c-1c]: 2Max

n ≤ αoe + γp

[c-e3]: γCoeMax + Max
n ≤ αoe + γp

e4 U∗,e4t = n(αoe)(br
∗ − p∗) [c-2]: Min ≤ nαoe ≤Max

[c-2a]: γp− αoe < 0
[c-e4]: Coe ≤ nαoep

e5 U∗,e5t = n
2 (αoe + γp)(br∗ − p∗) [c-2]: Min ≤ nαoe ≤Max

[c-2b]: 0 ≤ γp− αoe and αoe + γp ≤ 2Max
n

[c-e5]: 2
√
γCoe
n ≤ αoe + γp

e6 U∗,e6t = Max(br∗ − p∗) [c-2]: Min ≤ nαoe ≤Max
[c-2c]: 2Max

n ≤ αoe + γp

[c-e6]: γCoeMax + Max
n ≤ αoe + γp

e7 U∗,e7t = Max(br∗ − p∗) [c-3]: Max < nαoe
[c-e7]: Coe ≤Max p

† In all formulas r∗ and p∗ are the values that maximize the payoff in the row
subject to the constraints. Parameters αoe and Coe are defined as: αoe =

β0 + β1 + ... +
βj
3 + βj+1 + ... + βk + θ

r∗+1
, Coe = B.
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8 Results in a Simplified Scenario

To move one step further from the 15 cases explained in Table (5),

Table (6), and U∗,0t , we make another simplifying assumption and
consider the situation where the third-party requires the data field
dfj for only one year. In other words, storing the database for more
than one year does not add any advantage to the third-party. For
this assumption we can rewrite the payoff function to the third-party
as:

Ut =


0 if size < Min ∨ r < 1
size(a− p) if Min ≤ size ≤Max ∧ gj is odd
size(b− p) if Min ≤ size ≤Max ∧ gj is even
Max(a− p) if Max < size ∧ gj is odd
Max(b− p) if Max < size ∧ gj is even

(29)

This utility function is the same as Eq(5) where all occurrences of r
are substituted by 1. Similar to Theorems 2 and 3 it can be shown
that in all of the Equilibrium offers if p > 0 then r = 1 and setting
r to any value greater than one cannot provide the third-party with
a higher payoff than r = 1. Therefore, it is enough to only analyze
offers,op and oe, with the following format:
op = 〈0, 0, ..., 1, ..., 0, 1, pr, p, Min, Max〉
oe = 〈0, 0, ..., 2, ..., 0, 1, pr, p, Min, Max〉

With this assumption, we are basically moving from optimizing
two-variable utility functions to single variable ones (r is not con-
sidered as a variable anymore). In this Section we show how to
find the maximum of third-party’s payoff function in each of the
cases p1, p2, ..., p7 from Table 5. The same procedure can be fol-
lowed to find the maximum of the utility functions for an exact
offer (cases listed in Table 6). In all cases we assume that r = 1,

αop = β0 + β1 + ... + βj
2 + βj+1 + ... + βk + θ

2 , and Cop = G+B.

The maximizing price in each case is denoted by p∗,〈case〉 where 〈case〉
is the ID of the specific case (followed by sub-cases) that the maxi-
mizing price belongs to.
Best action in case p1 - The constraints in this case can be sum-
marized as:

– [c-1]: nαop < Min
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– [c-1a]: αop + γp < 2Min
n

– [c-p1]: γCop
Min + Min

n ≤ αop + γp

Since the lower bound for αop+γp must be less than it’s upper bound
we need the following inequality to hold:

γCop
Min + Min

n < 2Min
n ⇒

nγCop < Min2
(30)

Payoff to the third-party is the maximum of the Up1t = Min(a− p)
(the first row of Table 5 with r∗ being substituted by 1). Up1t is
a decreasing function of price and hence the minimum value for p
maximizes the function. In other words:

p∗,p1 =
Cop
Min

+
Min

nγ
−
αop
γ

(31)

Notice that this value is greater than zero (since nαop < Min). If we

plug this value in the definition of Up1t , we get the following payoff:

U∗,p1t = Min(a−
Cop
Min

− Min

nγ
+
αop
γ

) (32)

As a result, the inequality

Cop
Min

+
Min

nγ
−
αop
γ
≤ a (33)

guarantees that the optimum price, p∗,p1, provides the third-party
with a utility of at least zero. Otherwise, the third-party is better off
by setting the price equal to zero as in case U∗,0t . The optimum price,

p∗,p1 results in U∗,1ac = 0. Therefore, the data collector will be indif-
ferent between accepting and rejecting. In this work we only analyze
those equilibria in which the data collector chooses to accept when
he is indifferent between his choices. If U∗,p1t is the maximum among
all other relevant U∗t ’s, then in the sub game perfect Equilibrium of
the game, the third-party makes an offer op with price equal to p∗,p1

and the data collector sets the incentive to Min−nαop
nγ .

Best action in case p2 - The constraints in this case can be sum-
marized as:
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– [c-1]: nαop < Min
– [c-1b]: 2Min

n ≤ αop + γp ≤ 2Max
n

– [c-p2]: 2

√
γCop
n ≤ αop + γp

Since both of the lower bounds for γp must be less than or equal to
it’s upper bound we need the following inequality to hold:

2

√
γCop
n ≤ 2Max

n ⇒

nγCop ≤Max2

(34)

Payoff to the third-party is the maximum of the Up2t = n
2 (αop +

γp)(a− p) (the second row of Table 5 with r∗ being substituted by

1). To find the maximum, we find the derivative of Up2t with respect
to p and set it to zero:

d(Up2t )

dp
= n(

γ

2
(a− p)−

αop + γp

2
) = 0⇒ p∗,p2 =

γa− αop
2γ

(35)

p∗,p2 maximizes Up2t but we need to make sure it is within the bound-
aries. Two situations can happen:

(a) nγCop < Min2: In this situation, 2

√
γCop
n < 2Min

n . The value of

p∗,p2 is within boundaries if:

2Min
n ≤ γp∗,p2 + αop ≤ 2Max

n ⇒

2Min
n − αop ≤ γa−αop

2 ≤ 2Max
n − αop⇒

4Min
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ

(36)

I. If Eq(36) holds, p∗,p2(a)I = p∗,p2 = γa−αop
2γ is the optimum

price and we have:

U
∗,p2(a)I
t =

n

8γ
(αop + γa)2 (37)

In this case, the payoff to the data collector is:

U∗,1bc =
n

16γ
(αop + γa)2 − Cop (38)
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II. if a < 4Min
nγ −

αop
γ , then the optimum price is the beginning

of the boundary. Therefore, p∗,p2(a)II = 2Min
nγ −

αop
γ .

The payoff to the third-party would be:

U
∗,p2(a)II
t = Min(a− 2Min

nγ
+
αop
γ

) (39)

To guarantee a payoff of at least zero to the third-party,
the following condition must hold:

2Min

nγ
−
αop
γ
≤ a (40)

If all of the constraints hold and U
∗,p2(a)II
t is the maximum

among all other relevant U∗t ’s then in the equilibrium, the
third-party makes offer op with p = 2Min

nγ −
αop
γ and the

data collector accepts with I = Min−nαop
nγ . The payoff to

the data collector will be:

U∗,1bc =
Min2

nγ
− Cop (41)

III. If 4Max
nγ −

αop
γ < a, then the maximizing price is p∗,p2(a)III =

2Max
nγ −

αop
γ . In this case the maximum payoff to the third-

party is:

U
∗,p2(a)III
t = Max(a− 2Max

nγ
+
αop
γ

) (42)

Notice that in this situation U
∗,p2(a)III
t > 0. The payoff to

the data collector is:

U∗,1bC =
Max2

nγ
− Cop (43)

If the settings of the problem is aligned with the conditions

of this situation and U
∗,p2(a)III
t is greater than all other

relevant U∗t ’s, then in the subgame perfect equilibrium
the third-party makes an offer of the form op with p =
2Max
nγ −

αop
γ and the data collector accepts with an incentive

I = Max−nαop
nγ .
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(b) Min2 ≤ nγCop: In this situation, 2Min
n ≤ 2

√
γCop
n . The value of

p∗,p2 is within boundaries if:

2

√
γCop
n ≤ γp∗,p2 + αop ≤ 2Max

n ⇒

2

√
γCop
n − αop ≤ γa−αop

2 ≤ 2Max
n − αop⇒

4
√

Cop
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ

(44)

I. If Eq(44) holds, p∗,p2(b)I = p∗,p2 = γa−αop
2γ is the optimum

price and the situation is the same as p2(a)I.

II. if a < 4
√

Cop
nγ −

αop
γ , then the optimum price is the beginning

of the boundary. Therefore, p∗,p2(b)II = 2
√

Cop
nγ −

αop
γ .

The payoff to the third-party would be:

U
∗,p2(b)II
t =

√
nγCop(a− 2

√
Cop
nγ

+
αop
γ

) (45)

The third-party needs this payoff to be greater than or
equal to zero in order to make such an offer. Therefore this
case imposes another constraint:

2

√
Cop
nγ
−
αop
γ
≤ a (46)

If all of the constraints hold and U
∗,p2(b)II
t is the maximum

among all other relevant U∗t ’s then in the equilibrium, the

third-party makes offer op with p = 2
√

Cop
nγ −

αop
γ and the

data collector accepts with I =
√

Cop
nγ −

αop
γ . The payoff to

the data collector will be:

U∗,1bc =
n

γ
(γ

√
Cop
nγ

)2 − Cop = 0 (47)

Here the data collector would be indifferent between ac-
cepting or rejecting. In this work we only analyze those
equilibria in which the data collector chooses to accept.
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III. If 4Max
nγ −

αop
γ < a, then the case is the same as p2(a)III.

Best action in case p3 - The constraints in this case can be sum-
marized as:

– [c-1]: nαop < Min
– [c-1c]: 2Max

n ≤ αop + γp

– [c-p3]: γCop
Max + Max

n ≤ αop + γp

The payoff to the third-party is the maximum of Up3t = Max(a− p)
(the third row of Table 5 with r∗ being substituted by 1). This func-
tion is maximized when p is minimized. Based on the relationship
between the two lower bounds, the following two situations can hap-
pen:

(a) Max2 < nγCop: In this situation, 2Max
n < γCop

Max + Max
n . The

minimum price p would be p∗,p3(a) = Cop
Max + Max

nγ −
αop
γ and the

maximum payoff would be:

U
∗,p3(a)
t = Max(a−

Cop
Max

− Max

nγ
+
αop
γ

) (48)

The following condition must hold to guarantee a non-negative
payoff to the third-party:

Cop
Max

+
Max

nγ
−
αop
γ
≤ a (49)

If the constraints hold and U
∗,p3(a)
t is the maximum among all

other relevant U∗t ’s then in the equilibrium, the third-party

makes offer op with p = Cop
Max + Max

nγ −
αop
γ . The maximizing

incentive after receiving such an offer is I = Max−nαop
nγ and the

payoff to the data collator would be:

U∗,1cc = Max(
Cop
Max

+
Max

nγ
−
αop
γ
−Max

nγ
+
αop
γ

)−Cop = 0 (50)

Here the data collector would be indifferent between accepting
or rejecting but we only consider those equilibria in which the
data collector chooses to accept.
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(b) nγCop ≤Max2: In this situation, γCopMax + Max
n ≤ 2Max

n . The min-

imum price p would be p∗,p3(b) = 2Max
nγ −

αop
γ and the maximum

payoff would be:.

U
∗,p3(b)
t = Max(a− 2Max

nγ
+
αop
γ

) (51)

With the following constraint, the third-party is guaranteed a
non-negative payoff:

2Max

nγ
−
αop
γ
≤ a (52)

If the constraints hold and U
∗,p3(b)
t is the maximum among all

other relevant U∗t ’s then in the equilibrium, the third-party
makes offer op with p = 2Max

nγ − αop
γ . The maximizing incen-

tive after receiving such an offer is I = Max−nαop
nγ and the payoff

to the data collator would be:

U∗,1cc = Max(2Max
nγ −

αop
γ −

Max
nγ + αop

γ )− Cop

= Max2

nγ − Cop > 0

(53)

Best action in case p4 - The constraints in this case can be sum-
marized as:

– [c-2]: Min ≤ nαop ≤Max
– [c-2a]: γp− αop < 0
– [c-p4]: Cop ≤ nαopp

Since the lower bound for p must be less than or equal to it’s upper
bound, the following inequality must hold:

Cop
nαop

< αop
γ ⇒

nγCop < (nαop)
2

(54)

The payoff to the third-party is the maximum of Up4t = nαop(a− p)
(the fourth row of Table 5 with r∗ being substituted by 1). This
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function is maximized when p is minimized. According to condition
[c-p4], the minimum price value is p∗,p4 = Cop

nαop
. Consequently, the

maximum payoff to the third-party would be:

U∗,p4t = nαop(a−
Cop
nαop

) = nαopa− Cop (55)

The third-party does not make such an offer unless his payoff for it
is non-negative. In other words:

Cop
nαop

≤ a (56)

If the constraints hold and U∗,p4t is the maximum among all other
relevant U∗t ’s then in the equilibrium, the third-party makes offer

op with p = Cop
nαop

. The maximizing incentive after receiving such an

offer is I = 0 and the payoff to the data collator would be:

U∗,2ac = nαop
Cop
nαop

− Cop = 0 (57)

Here the data collector would be indifferent between accepting or
rejecting.

Best action in case p5 - The constraints in this case can be sum-
marized as:

– [c- 2]: Min ≤ nαop ≤Max
– [c-1b]:0 ≤ γp− αop and αop + γp ≤ 2Max

n

– [c-p5]: 2

√
γCop
n ≤ αop + γp

Since the both of the lower bounds for γp+αop must be less than or
equal to it’s upper bound we need the following inequality to hold:

2

√
γCop
n ≤ 2Max

n ⇒

nγCop ≤Max2

(58)

Payoff to the third-party is the maximum of the Up5t = n
2 (αop +

γp)(a− p) (the fifth row of Table 5 with r∗ being substituted by 1).
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To find the maximum, we find the derivative of Up5t with respect to
p and set it to zero:

d(Up5t )

dp
= n(

γ

2
(a− p)−

αop + γp

2
) = 0⇒ p∗,p5 =

γa− αop
2γ

(59)

p∗,p5 maximizes Up5t but we need to make sure it is within the bound-
aries. Two situations can happen:

(a) (nαop)
2 ≤ nγCop: In this situation, αopγ ≤

2

√
γCop
n
−αop

γ . The value

of p∗,p5 is within boundaries if:

2

√
γCop
n ≤ γp∗,p5 + αop ≤ 2Max

n ⇒

2

√
γCop
n ≤ γa

2 + αop
2 ≤

2Max
n ⇒

4

√
γCop
n − αop ≤ γa ≤ 4Max

n − αop⇒

4
√

Cop
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ

(60)

I. If Eq(60) holds, p∗,p5(a)I = p∗,p5 = γa−αop
2γ is the optimum

price and we have:

U
∗,p5(a)I
t =

n

8γ
(αop + γa)2 (61)

In this case, the payoff to the data collector is:

U∗,2bc =
n

16γ
(αop + γa)2 − Cop (62)

II. if a < 4
√

Cop
nγ −

αop
γ , then the optimum price is the beginning

of the boundary. Therefore, p∗,p5(a)II = 2
√

Cop
nγ −

αop
γ . The
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payoff to the third-party would be:

U
∗,p5(a)II
t = n

2 (αop + γp∗,p5(a)II)(a− p∗,p5(a)II)

= n
2 (αop + 2

√
γCop
n − αop)(a− 2

√
Cop
nγ + αop

γ )

=
√
nCopγ(a− 2

√
Cop
nγ + αop

γ )

(63)
A payoff of at least zero can be guaranteed for the third-
party if the following holds:

2

√
Cop
nγ
−
αop
γ
≤ a (64)

If all of the constraints hold and U
∗,p5(a)II
t is the maximum

among all other relevant U∗t ’s then in the equilibrium, the

third-party makes offer op with p = 2
√

Cop
nγ −

αop
γ and the

data collector accepts with I =
√

Cop
nγ −

αop
γ . The payoff to

the data collector will be:

U∗,2bc = n
γ (αop+γp

∗,p5(a)II

2 )2 − Cop

= n
γ (

αop+2

√
γCop
n
−αop

2 )2 = 0

(65)

Here the data collector would be indifferent between ac-
cepting or rejecting. We only consider those equilibria in
which the data collector accepts.

III. If 4Max
nγ −

αop
γ < a, then the maximizing price is p∗,p5(a)III =

2Max
nγ −

αop
γ . In this case the maximum payoff to the third-

party is:

U
∗,p5(a)III
t = n

2 (αop + γp∗,p5)(a− p∗,p5(a)III)

= Max(a− 2Max
nγ + αop

γ )

(66)



Title Suppressed Due to Excessive Length 49

Notice that in this situation U
∗,p5(a)III
t > 0. The payoff to

the data collector is:

U∗,2bC = n
γ (αop+γp

∗,p5(a)III

2 )2 − Cop

= Max2

nγ − Cop
(67)

If the settings of the problem is aligned with the conditions

of this situation and U
∗,p5(a)III
t is greater than all other

relevant U∗t ’s, then in the subgame perfect equilibrium the
third-party makes an offer of the form op with price p =
2Max
nγ −

αop
γ and the data collector accepts with an incentive

I = Max−nαop
nγ .

(b) nγCop < (nαop)
2: In this situation,

2

√
γCop
n
−αop

γ < αop
γ . The value

of p∗,p5 is within boundaries if:

αop ≤ γp∗,p5 ≤ 2Max
n − αop ⇒

αop ≤ γa−αop
2 ≤ 2Max

n − αop⇒

3αopγ ≤ a ≤ 4Max
nγ −

αop
γ

(68)

I. If Eq(68) holds, P ∗,p5(b)I = p∗,p5 = γa−αop
2γ is the optimum

price and the situation is the same as P5(a)I.
II. if a < 3αopγ , then the optimum price is the beginning of the

boundary. Therefore, p∗,p5(b)II = αop
γ . The payoff to the

third-party would be:

U
∗,p5(b)II
t = nαop(a−

αop
γ

) (69)

The third-party does not make this offer unless his payoff
is at least zero. Therefore, the following constraint must
hold:

αop
γ
≤ a (70)

If all of the constraints hold and U
∗,p5(b)II
t is the maximum

among all other relevant U∗t ’s then in the equilibrium, the
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third-party makes offer op with p = αop
γ and the data col-

lector accepts with I = αop−αop
2γ = 0. The payoff to the data

collector will be:

U∗,2bc = n
γ (αop+αop2 )2 − Cop

=
nα2

op

γ − Cop > 0

(71)

III. If 4Max
nγ −

αop
γ < a, then the case is the same as p5(a)-III.

Best action in case p6 - The constraints in this case can be sum-
marized as:

– [c-2]: Min ≤ nαop ≤Max

– [c-2c]: 2Max
n ≤ αop + γp

– [c-p6]: γCop
Max + Max

n ≤ αop + γp

The payoff to the third-party is the maximum of Up6t = Max(a− p)
(the sixth row of Table 5 with r∗ being substituted by 1). This func-
tion is maximized when p is minimized. Based on the relationship
between the two lower bounds, the following two situations can hap-
pen:

(a) Max2 < nγCop: The constraints and payoff functions in this
sub-case are identical to case p3(a).

(b) nγCop ≤ Max2: The constraints and payoff functions in this
sub-case are identical to case p3(b).

Best action in case p7 - The constraints in this case can be sum-
marized as:

– [c-3]: Max < nαop
– [c-p7]: Cop ≤Max p

The payoff to the third-party is the maximum of Up7t = Max(a− p)
(the seventh row of Table 5 with r∗ being substituted by 1). This
function is maximized when p is minimized. According to condition
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[c-p7], the minimum price value is p∗,p7 = Cop
Max . Consequently, the

maximum payoff to the third-party would be:

U∗,p7t = Max(a−
Cop
Max

) (72)

With the following constraint, the payoff to the third-party for such
an offer would be non-negative:

Cop
Max

≤ a (73)

If the constraints hold and U∗,p7t is the maximum among all other
relevant U∗t ’s then in the equilibrium, the third-party makes offer

op with p = Cop
Max . The maximizing incentive after receiving such an

offer is I = 0 and the payoff to the data collator would be:

U∗,3c = Max
Cop
Max

− Cop = 0 (74)

Here, the data collector would be indifferent between accepting or
rejecting. We only study those equilibria in which he accepts.

We showed how to find the maximum of each utility function in
Table 5. The procedure of finding maximum of utility functions
in Table 6 is identical to the last seven cases (explained for par-
tial granularity offers), if all occurrences of αop are substituted by

αoe = β0 + β1 + ... + βj
3 + βj+1 + ... + βk+ θ

2 and all occurrences
of Cop are substituted by Coe = B.

8.1 Summary of the Simplified Scenario Results

We have already enumerated all possible cases that can apply to an
offer (seven major cases and their sub-cases for each partial and ex-
act granularity offers) and shown the maximum payoff to the players
in each case. Some of the conditions in each case are independent
of the maximizing price p∗. We call these conditions environmental
conditions since they depend on the characteristics of an instance
of the game (and are independent of a specific play of the game).
Often, these conditions are shared between multiple cases. In this
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Section we classify the cases based on the environmental conditions
and in some classes find the case that yields the maximum payoff to
the third-party (the equilibrium of the game) among all cases that
apply to that class. We show how to classify the cases for an offer
that asks for data field dfj at a partial granularity level (i.e., offer
op). The procedure is identical for an exact granularity offer oe. In

the classes we have αop = β0 + β1 + ... + βj
2 + βj+1 + ... + βk+ θ

2
and Cop = G+B.

Class 1 and subclasses- The environmental conditions in this class
can be summarized as:

1. nαop < Min
2. nγCop < Min2

The first condition in this class applies to cases p1, p2, and p3. Within
these cases, the sub cases p1, p2(a), and p3(b) also require the second
condition to be true (for case p3(b) the second condition is a sufficient
condition but not necessary).

The relevant cases can be further organized based on bounds on
parameter a. Remember that parameter a denotes the real economic
value that data item dfj has for the third-party (when the data item
is access at a partial granularity level). Eq(33), Eq(36), Eq(40), and
Eq(52) specify different boundaries on values of a. Notice that the

lower bound Cop
Min + Min

nγ −
αop
γ (from Eq(33)) is smaller than the

lower bound 2Min
nγ −

αop
γ (from Eq(40)) since the second condition

of this class requires: nγCop < Min2. The lower bound 2Max
nγ −

αop
γ

(from Eq(52)) could be either less than or greater than 4Min
nγ −

αop
γ

(from Eq(36)). We consider both possibilities when we go through
the details of each subclass. When we put these lower/upper bounds
of a into an order, we get the following subclasses:

I. a < Cop
Min + Min

nγ −
αop
γ

II. Cop
Min + Min

nγ −
αop
γ ≤ a ≤ 2Min

nγ −
αop
γ

III. 2Min
nγ −

αop
γ ≤ a ≤ 4Min

nγ −
αop
γ

IV. 4Min
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ

V. 4Max
nγ −

αop
γ < a
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We determine the cases that apply to each subclass (based on Eq(33),
Eq(36), Eq(40), and Eq(52)) and by finding the cases the provide
higher payoff values to the third-party, we describe the subgame
equilibria of each subclass:

I. a < Cop
Min + Min

nγ −
αop
γ :

In this subclass, none of the Eq(33), Eq(36), Eq(40), Eq(52)
and 4Max

nγ − αop
γ < a hold and consequently no offer provides

the third-party with a payoff of at least zero. In this subclass,
the subgame perfect equilibrium is the play in which the third-
party is not making an offer (we denote such situation by an
offer with price zero) or requesting the data field at the exact
granularity level (if it provides the third-party with a payoff
greater than zero).

II. Cop
Min + Min

nγ −
αop
γ ≤ a ≤ 2Min

nγ −
αop
γ :

The only case that applies to this subclass is p1 (see Eq(33)).
The subgame perfect equilibrium of the game is the set of
strategies mentioned in case p1 or requesting the data field at
the exact granularity level (if it provides the third-party with
a higher payoff).

III. 2Min
nγ −

αop
γ ≤ a ≤ 4Min

nγ −
αop
γ :

Based on Eq(33) and Eq(40), cases p1 and p2(a)II apply to
this subclass. Moreover, if Max ≤ 2Min then we have:

2Max

nγ
−
αop
γ
≤ 4Min

nγ
−
αop
γ

(75)

and case p3(b) may also apply to this subclass.
By looking at the details of the case p2(a), we see that according
to Eq(35) and Eq(36), if the conditions of this subclass hold

then U
∗,p2(a)II
t is the local maximum of the Up2t = n

2 (αop +
γp)(a− p). This implies:

U
∗,p2(a)II
t ≥ U

∗,p2(a)III
t (76)

Moreover, based on Eq(42) and Eq(51), we have:

U
∗,p2(a)III
t = U

∗,p3(b)
t (77)
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Consequently, for this class case U
∗,p2(a)II
t ≥ U

∗,p3(b)
t and p2(a)II

is a more profitable choice for the third-party than p3(b).
The third-party’s payoff in case p2(a)II never gets higher than
his payoff in case p1. To see the reason, notice that the second
condition of this class is nγCop < Min2. This condition requires

that Cop
Min <

Min
nγ . Therefore, we have:

Cop
Min <

Min
nγ ⇒

Cop
Min + Min

nγ −
αop
γ < 2Min

nγ −
αop
γ ⇒

−( CopMin + Min
nγ −

αop
γ ) > −(2Min

nγ −
αop
γ ) ⇒

Min(a− ( CopMin + Min
nγ −

αop
γ )) >

Min(a− (2Min
nγ −

αop
γ ))⇒

U∗,p1t > U
∗,p2(a)II
t

(78)

As a result, case p1 is provides a higher profit to the third-party
than p2(a)II (for the details of the payoff functions please see
Eq(32) and Eq(39)). To sum up, case p1 is the subgame perfect
equilibrium of this subclass (unless requesting the data field
at the exact granularity level provides the third-party with a
higher payoff).

IV. 4Min
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ :

Based on Eq(33) and Eq(36), cases p1 and p2(a)I apply to this
subclass. Moreover, since 2Max

nγ −
αop
γ ≤

4Max
nγ −

αop
γ case p3(b)

may also apply to this subclass.
The third-party’s payoff in case p3(b) never gets higher than

his payoff in case p2(a)I. To see the reason, notice that U
∗,p3(b)
t

from Eq(51) is the same as U
∗,p2(a)III
t from Eq(42). Eq(35)

proves that U
∗,p2(a)I
t from Eq(37) is the maximum of the func-

tion U∗,p2t . Therefore, we know that:

U
∗,p2(a)I
t ≥ U

∗,p2(a)III
t = U

∗,p3(b)
t (79)
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Consequently, for this subclass, p2(a)I is a more profitable
choice than p3(b).
In this subclass, between the cases p1, p2(a)I, and requesting
the data item at the exact granularity level the one that pro-
vides a higher payoff to the third-party determines the game’s
subgame perfect equilibrium.

V. 4Max
nγ −

αop
γ < a:

Based on Eq(33), Eq(36), and Eq(52), cases p1 and p2(a)III
and p3(b) apply to this subclass. By comparing Eq(42) with
Eq(51), and Eq(43) with Eq(53) we see that case p2(a)III and
p3(b) offer the same maximum payoffs to the third-party and
the data collector. Therefore, they represent the same strategy
profile.
In this subclass, between the cases p1, p2(a)III (or p3(b)), and
requesting the data item at the exact granularity level the one
that provides a higher payoff to the third-party determines the
game’s subgame perfect equilibrium.

Class 2 and subclasses- The environmental conditions in this class
can be summarized as:

1. nαop < Min
2. Min2 ≤ nγCop ≤Max2

The first condition in this class applies to cases p1, p2, and p3. The
second condition does not conform to the required inequality of case
p1 (see Eq(30)). Within the remaining cases p2 and p3, the sub cases
p2(b), and p3(b) also have the second condition.

The relevant cases can be further organized based on bounds on
parameter a. Eq(44), Eq(46), and Eq(52) specify different bound-
aries on value of a. The lower bound 2Max

nγ − αop
γ (from Eq(52)) is

always greater than (or equal to) the lower bound 2
√

Cop
nγ −

αop
γ (from

Eq(46)) since the second condition of this class implies
√

Cop
nγ ≤

Max
nγ .

But, 2Max
nγ −

αop
γ could be either less than or greater than 4

√
Cop
nγ −

αop
γ

(from Eq(44)). We consider both possibilities when we go through
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the details of each subclass. When we put these lower/upper bounds
of a into an order, we get the following subclasses:

I. a < 2
√

Cop
nγ −

αop
γ

II. 2
√

Cop
nγ −

αop
γ ≤ a ≤ 4

√
Cop
nγ −

αop
γ

III. 4
√

Cop
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ

IV. 4Max
nγ −

αop
γ < a

In the following, for each of these subclasses, we discuss the appli-
cable cases (based on Eq(44), Eq(46), and Eq(52)) and compare the
amount of profit they provide to the third-party.

I. a < 2
√

Cop
nγ −

αop
γ :

In this subclass, none of the Eq(44), (46), (52), and 4Max
nγ −

αop
γ < a (the necessary condition for case p2(b)III) hold and

consequently no offer provides the third-party with a payoff of
at least zero. In this subclass, the subgame perfect equilibrium
is the play in which the third-party is not making an offer (we
denote such situation by an offer with price zero) or requesting
the data field at the exact granularity level (if it provides the
third-party with a payoff greater than zero).

II. 2
√

Cop
nγ −

αop
γ ≤ a ≤ 4

√
Cop
nγ −

αop
γ :

According to Eq(46) and since a ≤ 4
√

Cop
nγ −

αop
γ case p2(b)II

applies to this subclass. Moreover, if Max2 ≤ 4nγCop then we
have:

Max2 ≤ 4nγCop ⇒

Max ≤ 2
√
nγCop ⇒

2Max
nγ ≤ 4

√
Cop
nγ ⇒

2Max
nγ −

αop
γ ≤ 4

√
Cop
nγ −

αop
γ

(80)

and case p3(b) may also apply to this subclass.
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The third-party’s payoff in case p3(b) never gets higher than his

payoff in case p2(b)II. To see the reason, notice that U
∗,p3(b)
t

from Eq(51) is the same as U
∗,p2(b)III
t = U

∗,p2(a)III
t from Eq(42).

When a is within the limits defined for this subclass, U
∗,p2(b)II
t

(see Eq(45)) is the maximum of the U∗,p2t function. Therefore

U
∗,p2(b)II
t ≥ U

∗,p2(b)III
t = U

∗,p3(b)
t (81)

and for this subclass, case p2(b)II provides a higher payoff to
the third-party than p3(b).
In this subclass, between the case p2(b)II and requesting the
data item at the exact granularity level the one that provides a
higher payoff to the third-party determines the game’s subgame
perfect equilibrium.

III. 4
√

Cop
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ :

Based on Eq(44), case p2(b)I apply to this subclass. Moreover,
since 2Max

nγ − αop
γ ≤

4Max
nγ − αop

γ case p3(b) may also apply to
this subclass.
Third-party’s payoff in case p3(b) never gets higher than his

payoff in case p2(b)I. To see the reason, notice that U
∗,p3(b)
t from

Eq(51) is the same as U
∗,p2(b)III
t = U

∗,p2(a)III
t from Eq(42).

Eq(35) proves that U
∗,p2(b)I
t = U

∗,p2(a)I
t from Eq(37) is the

maximum of the function U∗,p2t (with the constraint Min2 ≤
nγCop). Therefore, we know that:

U
∗,p2(b)I
t ≥ U

∗,p2(b)III
t = U

∗,p3(b)
t (82)

Consequently, for this subclass, case p2(b)I is a more profitable
choice for the third-party than p3(b).
In this subclass, between the case p2(b)I and requesting the
data item at the exact granularity level the one that provides a
higher payoff to the third-party determines the game’s subgame
perfect equilibrium.

IV. 4Max
nγ −

αop
γ < a:

The subclass condition matches the condition for case p2(b)III.
Moreover, since 2Max

nγ −
αop
γ ≤

4Max
nγ −

αop
γ case p3(b) also applies

to this subclass.
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Cases p2(b)III and p2(a)III are identical. Moreover, by com-
paring Eq(42) with Eq(51), and Eq(43) with Eq(53) we see that
cases p2(a)III and p3(b) offer the same maximum payoffs to
the third-party and the data collector since the third-party of-
fers the same price in both cases. Therefore, cases p2(b)III and
p3(b) represent the same strategy profile.
In this subclass, between the case p2(b)III (or p3(b)) and re-
questing the data item at the exact granularity level the one
that provides a higher payoff to the third-party determines the
game’s subgame perfect equilibrium.

Class 3 and subclasses- The environmental conditions in this class
can be summarized as:

1. nαop < Min
2. Max2 < nγCop

The first condition in this class applies to cases p1, p2, and p3. The
second condition does not conform to the required inequalities of
case p1 and p2 (see Eq(30) and Eq(34)). Within the remaining case
p3, the sub-case p3(a) is the only one conforming to the second
condition.

Based on the required condition of sub-case p3(a) (see Eq(49)), we
can distinguish two subclasses for this class:

I. a < Cop
Max + Max

nγ −
αop
γ :

In this subclass, Eq(49) doesn’t hold and consequently no offer
provides the third-party with a payoff of at least zero. The
subgame perfect equilibrium is the play in which the third-
party is not making an offer (we denote such situations by an
offer with price zero) or requesting the data field at the exact
granularity level (if it provides the third-party with a payoff
greater than zero).

II. Cop
Max + Max

nγ −
αop
γ ≤ a:

This condition conforms to Eq(49). Between the case p3(a) and
requesting the data item at the exact granularity level the one
that provides a higher payoff to the third-party determines the
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subgame perfect equilibrium of the subclass.

Class 4 and subclasses- The environmental conditions in this class
can be summarized as:

1. Min ≤ nαop ≤Max
2. nγCop < (nαop)

2 < Max2

The first condition in this class applies to cases p4, p5, and p6. Within
these cases, the sub cases p4, p5(b), and p6(b) also require the second
condition to be true (for case p6(b) the second condition is a sufficient
condition but not necessary).

The relevant cases can be further organized based on bounds on
parameter a. Eq(56), Eq(68), Eq(70), and Eq(52) specify different

boundaries on value of a. Notice that the lower bound Cop
nαop

(from

Eq(56)) is smaller than the lower bound αop
γ (from Eq(70)) since the

second condition of this class requires: γCop < n(αop)
2. The lower

bound 2Max
nγ −

αop
γ (from Eq(52)) could be either less than or greater

than 3αop
γ (from Eq(68)). We consider both possibilities when we go

through the details of each subclass. When we put these lower/upper
bounds of a into an order, we get the following subclasses:

I. a < Cop
nαop

II. Cop
nαop

≤ a ≤ αop
γ

III. αop
γ ≤ a ≤ 3αop

γ

IV. 3αop
γ ≤ a ≤ 4Max

nγ −
αop
γ

V. 4Max
nγ −

αop
γ < a

In the following, we describe the subgame perfect equilibrium of each
subclass by finding the most profitable (to the third-party) cases
among all applicable cases:

I. a < Cop
nαop

:

In this subclass, none of the Eq(56), Eq(68), Eq(70), Eq(52)
and 4Max

nγ − αop
γ < a hold and consequently no offer provides

the third-party with a payoff of at least zero. In this subclass,
the subgame perfect equilibrium is the play in which the third-
party is not making an offer (we denote such situation by an
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offer with price zero) or requesting the data field at the exact
granularity level (if it provides the third-party with a payoff
greater than zero).

II. Cop
nαop

≤ a ≤ αop
γ :

The only case that applies to this subclass is p4 (see Eq(56)).
The subgame perfect equilibrium of the game is the set of
strategies mentioned in case p4 or requesting the data field at
the exact granularity level (if it provides the third-party with
a higher payoff).

III. αop
γ ≤ a ≤ 3αop

γ :

Based on Eq(56) and Eq(70), cases p4 and p5(b)II apply to
this subclass. Moreover, if Max ≤ 2(nαop) then we have:

2Max

nγ
−
αop
γ
≤

3αop
γ

(83)

and case p6(b) may also apply to this subclass.

By looking at the details of the case p5(b), we see that according
to Eq(59) and Eq(68), if the conditions of this subclass hold

then U
∗,p5(b)II
t is the local maximum of the Up5t = n

2 (αop +
γp)(a− p). This implies:

U
∗,p5(b)II
t ≥ U

∗,p5(b)III
t (84)

Moreover, the third-party’s payoffs in cases p6(b), p3(b), p5(a)III,
and p5(b)III are the same. We have:

U
∗,p5(b)III
t = U

∗,p6(b)
t (85)

Consequently, for this subclass U
∗,p5(b)II
t ≥ U

∗,p6(b)
t and p5(b)II

is a better choice than p6(b).

Third-party’s payoff in case p5(b)II never gets higher than his
payoff in case p4. To see the reason, notice that the second con-
dition of this class is nγCop < (nαop)

2. This condition requires
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that Cop <
n(αop)

2

γ . Therefore, we have:

Cop <
n(αop)

2

γ ⇒

−Cop > −n(αop)
2

γ ⇒

nαopa− Cop > nαopa− n(αop)
2

γ ⇒

U∗,p4t > U
∗,p5(b)II
t

(86)

As a result the case p5(b)II is dominated by case p4 (for the de-
tails of the payoff functions please see Eq(55) and Eq(69)). To
sum up, case p4 is the subgame perfect equilibrium of this sub-
class (unless requesting the data field at the exact granularity
level provides the third-party with a higher payoff).

IV. 3αop
γ ≤ a ≤ 4Max

nγ −
αop
γ :

Based on Eq(56) and Eq(68), cases p4 and p2(b)I apply to this
subclass. Moreover, since 2Max

nγ −
αop
γ ≤

4Max
nγ −

αop
γ case p6(b)

may also apply to this subclass.
The third-party’s payoff in case p6(b) never gets higher than his
payoff in case p4(b)I. To see the reason, notice that the third-
party’s payoffs in cases p6(b), p3(b), p5(a)III, and p5(b)III are
the same. We have:

U
∗,p5(b)III
t = U

∗,p6(b)
t (87)

Eq(59) proves that U
∗,p5(b)I
t (equal to U

∗,p5(a)I
t from Eq(61))

is the maximum of the function U∗,p5t = n
2 (αop + γp)(a − p).

Therefore, we know that:

U
∗,p5(b)I
t ≥ U

∗,p5(b)III
t = U

∗,p6(b)
t (88)

Consequently, for this subclass, case p5(b)I is a more profitable
choice than p6(b) for the third-party.
In this subclass, between the cases p4, p5(b)I, and requesting
the data item at the exact granularity level the one that pro-
vides a higher payoff to the third-party determines the game’s
subgame perfect equilibrium.
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V. 4Max
nγ −

αop
γ < a:

Based on Eq(56), Eq(68), and Eq(52), cases p4 and p5(b)III,
and p6(b) apply to this subclass.
The third-party offers the same price in cases p6(b), p3(b),
p5(a)III, and p5(b)III and his payoffs are the same in all of
these four cases. Therefore, p5(b)III and p6(b) represent the
same strategy profile.
In this subclass, between the cases p4, p5(b)III (or p6(b)), and
requesting the data item at the exact granularity level the one
that provides a higher payoff to the third-party determines the
game’s subgame perfect equilibrium.

Class 5 and subclasses- The environmental conditions in this class
can be summarized as:

1. Min ≤ nαop ≤Max
2. (nαop)

2 ≤ nγCop ≤Max2

The first condition in this class applies to cases p4, p5, and p6. The
second condition does not conform to the required inequality of case
p4 (see Eq(54)). Within the remaining cases p5 and p6, the sub cases
p5(a), and p6(b) also have the second condition.

The relevant cases can be further organized based on bounds on
parameter a. Eq(60), Eq(64), and Eq(52) specify different bound-
aries on values of a. The lower bound 2Max

nγ − αop
γ (from Eq(52))

is greater than (or equal to) the lower bound 2
√

Cop
nγ −

αop
γ (from

Eq(64)) since the second condition of this class implies
√

Cop
nγ ≤

Max
nγ .

But, 2Max
nγ −

αop
γ could be either less than or greater than 4

√
Cop
nγ −

αop
γ

(from Eq(60)). We consider both possibilities when we go through
the details of each subclass. When we put these lower/upper bounds
of a into an order, we get the following subclasses:

I. a < 2
√

Cop
nγ −

αop
γ

II. 2
√

Cop
nγ −

αop
γ ≤ a ≤ 4

√
Cop
nγ −

αop
γ
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III. 4
√

Cop
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ

IV. 4Max
nγ −

αop
γ < a

For each of these subclasses, we enumerate the applicable cases and
compare them to find the subgame perfect equilibrium of each sub-
class:

I. a < 2
√

Cop
nγ −

αop
γ :

In this subclass, none of the Eq(60), Eq(64), Eq(52), and 4Max
nγ −

αop
γ < a (the necessary condition for case p5(a)III) hold and

consequently no offer provides the third-party with a payoff of
at least zero. In this subclass, the subgame perfect equilibrium
is the play in which the third-party is not making an offer (we
denote such situations by an offer with price zero) or requesting
the data field at the exact granularity level (if it provides the
third-party with a payoff greater than zero).

II. 2
√

Cop
nγ −

αop
γ ≤ a ≤ 4

√
Cop
nγ −

αop
γ :

According to Eq(64) and since a ≤ 4
√

Cop
nγ −

αop
γ case p5(a)II

applies to this subclass. Moreover, if Max2 ≤ 4nγCop then we
have:

Max2 ≤ 4nγCop ⇒

Max ≤ 2
√
nγCop ⇒

2Max
nγ ≤ 4

√
Cop
nγ ⇒

2Max
nγ −

αop
γ ≤ 4

√
Cop
nγ −

αop
γ

(89)

and case p6(b) may also apply to this subclass.
The third-party’s payoff in case p6(b) never gets higher than
his payoff in case p5(a)II. To see the reason, notice that the
third-party’s payoffs in cases p6(b), p3(b), and p5(a)III are the
same. We have:

U
∗,p5(a)III
t = U

∗,p6(b)
t (90)

When a is within the limits defined for this subclass, U
∗,p5(a)II
t

(see Eq(63)) is the maximum of the Up5t = n
2 (αop + γp)(a− p)
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function.Therefore, we know that:

U
∗,p5(a)II
t ≥ U

∗,p5(a)III
t = U

∗,p6(b)
t (91)

Consequently, for this subclass, case p6(b) cannot offer a higher
profit to the third-party compared to p5(a)II.
In this subclass, between the case p5(a)II and requesting the
data item at the exact granularity level the one that provides a
higher payoff to the third-party determines the game’s subgame
perfect equilibrium.

III. 4
√

Cop
nγ −

αop
γ ≤ a ≤ 4Max

nγ −
αop
γ :

Based on Eq(60), case p5(a)I apply to this subclass. Moreover,
since 2Max

nγ − αop
γ ≤

4Max
nγ − αop

γ case p6(b) may also apply to
this subclass.
Third-party’s payoff in case p6(b) never gets higher than his
payoff in case p5(a)I. To see the reason, notice that the third-
party’s payoffs in cases p6(b), p3(b),and p5(a)III are the same.
We have:

U
∗,p5(a)III
t = U

∗,p6(b)
t (92)

Eq(59) proves that U
∗,p5(a)I
t from Eq(61) is the maximum of

function Up5t = n
2 (αop + γp)(a− p). Therefore, we know that:

U
∗,p5(a)I
t ≥ U

∗,p5(a)III
t = U

∗,p6(b)
t (93)

Consequently, for this subclass, case p5(a)I is a better choice
for the third-party than p6(b).
In this subclass, between the case p5(a)I and requesting the
data item at the exact granularity level the one that provides a
higher payoff to the third-party determines the game’s subgame
perfect equilibrium.

IV. 4Max
nγ −

αop
γ < a:

The subclass condition matches the condition for case p5(a)III.
Moreover, since 2Max

nγ −
αop
γ ≤

4Max
nγ −

αop
γ case p6(b) also applies

to this subclass.
Cases p6(b) and p3(b) provide the same payoffs to the third-
party and data collector. Moreover, by comparing Eq(66) with
Eq(51), and Eq(67) with Eq(53) we see that cases p5(a)III and
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p3(b) offer the same maximum payoffs to the third-party and
the data collector since the third-party offers the same price in
both cases. Therefore, p5(a)III and p6(b) represent the same
strategy profile.
In this subclass, between the case p5(a)III (or p6(b)) and re-
questing the data item at the exact granularity level the one
that provides a higher payoff to the third-party determines the
game’s subgame perfect equilibrium.

Class 6 and subclasses- The environmental conditions in this class
can be summarized as:

1. Min ≤ nαop ≤Max
2. Max2 < nγCop

The first condition in this class applies to cases p4, p5, and p6. The
second condition does not conform to the required inequalities of
case p4 and p5 (see Eq(54) and Eq(58)). Within the remaining case
p6, the sub-case p6(a) is the only one conforming to the second con-
dition. Since the strategy in p6(a) is the same as p3(a), the subclasses
and their analysis for this class are the same as Class 3.

Class 7 and subclasses- The environmental condition in this class
can be summarized as:

– Max < nαop

This condition only matches with the case p7. Based on the required
condition of case p7 (see Eq(73)), we can distinguish two subclasses
for this class:

I. a < Cop
Max :

In this subclass, Eq(73) doesn’t hold and consequently no offer
provides the third-party with a payoff of at least zero. In this
subclass, the subgame perfect equilibrium is the play in which
the third-party is not making an offer or requesting the data
field at the exact granularity level (if it provides the third-party
with a payoff greater than zero).

II. Cop
Max ≤ a:
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This condition conforms to Eq(73). Between the case p7 and
requesting the data item in exact granularity level the one
that provides a higher payoff to the third-party determines the
game’s subgame perfect equilibrium.

Tables 7 to 13 summarize subgame perfect equilibria of the game
in different situations if requesting the data field at the partial gran-
ularity level is more beneficial to the third-party than the exact
one. Similar to Tables 7 to 13, seven more tables can be produced
by changing every instance of parameter a to b and using αoe =

β0 + β1 + ... + βj
3 + βj+1 + ... + βk + θ

2 and Coe = B in-
stead of αop and Cop. Consequently, each real instance of the problem
matches one row from Tables 7 to 13 and one row in the other series
of seven tables for offer oe. In fact, these tables partition the problem
space into 22×22 different spaces and demonstrate the outcome and
subgame perfect equilibriums of each case.

Table 7. subgame perfect equilibria strategies for Class 1†

Condition‡ Best price U∗t U∗c

I a <
Cop
Min + Min

nγ −
αop
γ = l1 0 0 reject

II/III l1 ≤ a < 4Min
nγ − αop

γ = l2
Cop
Min + Min

nγ −
αop
γ Min(a− (

Cop
Min + Min

nγ −
αop
γ )) U∗,1ac = 0

IV l2 ≤ a ≤ 4Max
nγ − αop

γ = l3
Cop
Min + Min

nγ −
αop
γ max{Min(a− (

Cop
Min + Min

nγ −
αop
γ )), U∗,1ac = 0 OR

OR
γa−αop

2γ
n
8γ (αop + γa)2} U∗,1bc = n

16γ (αop + γa)2 − Cop

V l3 < a
Cop
Min + Min

nγ −
αop
γ max{Min(a− (

Cop
Min + Min

nγ −
αop
γ )), U∗,1ac = 0 OR

OR 2Max
nγ − αop

γ Max(a− ( 2Max
nγ − αop

γ ))} U∗,1bc = Max2

nγ − Cop
† In this class, data dfj is requested at the partial granularity level, nαop < Min, and nγCop < Min2

‡ In all formulas αop = β0 + β1 + ... +
βj
2 + βj+1 + ... + βk + θ

2 and Cop = G+ B.

In the next Section we illustrate how these results can be used in
two simple case studies and what the formulas imply.

9 Case Studies

We explain the usage and implications of the seven classes in Section
8.1 via two synthetic case studies.

Case study 1: The first case represents an abstract instance of the
problem. Consider a situation where the third-party requires data



Title Suppressed Due to Excessive Length 67

Table 8. subgame perfect equilibria strategies for Class 2†

Condition† Best price U∗t U∗c

I a < 2
√
Cop
nγ −

αop
γ = l1 0 0 reject

II l1 ≤ a < 4
√
Cop
nγ −

αop
γ = l2 2

√
Cop
nγ −

αop
γ

√
nγCop(a− 2

√
Cop
nγ +

αop
γ ) U∗,1bc = 0

III l2 ≤ a ≤ 4Max
nγ − αop

γ = l3
γa−αop

2γ
n
8γ (αop + γa)2 U∗,1bc = n

16γ (αop + γa)2 − Cop

IV l3 ≤ a 2Max
nγ − αop

γ Max(a− ( 2Max
nγ − αop

γ )) U∗,1bc = Max2

nγ − Cop
† In this class, data dfj is requested at the partial granularity level, nαop < Min, and Min2 ≤ nγCop ≤Max2

‡ In all formulas αop = β0 + β1 + ... +
βj
2 + βj+1 + ... + βk + θ

2 and Cop = G+ B.

Table 9. subgame perfect equilibria strategies for Class 3†

Condition‡ Best price U∗t U∗c

I a <
Cop
Max + Max

nγ −
αop
γ = l1 0 0 reject

II l1 ≤ a
Cop
Max + Max

nγ −
αop
γ Max(a− (

Cop
Max + Max

nγ −
αop
γ )) U∗,1cc = 0

† In this class, data dfj is requested at the partial granularity level, nαop < Min, and Max2 <
nγCop
‡ In all formulas αop = β0 + β1 + ... +

βj
2 + βj+1 + ... + βk + θ

2 and Cop = G+ B.

Table 10. subgame perfect equilibria strategies for Class 4†

Condition‡ Best price U∗t U∗c

I a <
Cop
nαop

= l1 0 0 reject

II/III l1 ≤ a <
3αop
γ = l2

Cop
nαop

nαop(a− (
Cop
nαop

)) U∗,2ac = 0

IV l2 ≤ a ≤ 4Max
nγ − αop

γ = l3
Cop
nαop

OR max{nαop(a− (
Cop
nαop

)) U∗,2ac = 0 OR
γa−αop

2γ
n
8γ (αop + γa)2} U∗,2bc = n

16γ (αop + γa)2 − Cop

V l3 ≤ a
Cop
nαop

OR max{nαop(a− (
Cop
nαop

)) U∗,2ac = 0 OR

2Max
nγ − αop

γ Max(a− ( 2Max
nγ − αop

γ ))} U∗,2bc = Max2

nγ − Cop
† In this class, data dfj is requested at the partial granularity level, Min ≤ nαop ≤ Max, and nγCop <

(nαop)2 < Max2

‡ In all formulas αop = β0 + β1 + ... +
βj
2 + βj+1 + ... + βk + θ

2 and Cop = G+ B.

Table 11. subgame perfect equilibria strategies for Class 5†

Condition‡ Best price U∗t U∗c

I a < 2
√
Cop
nγ −

αop
γ = l1 0 0 reject

II l1 ≤ a < 4
√
Cop
nγ −

αop
γ = l2 2

√
Cop
nγ −

αop
γ

√
Copγn(a− (2

√
Cop
nγ −

αop
γ )) U∗,2bc = 0

III l2 ≤ a ≤ 4Max
nγ − αop

γ = l3
γa−αop

2γ
n
8γ (αop + γa)2 U∗,2bc = n

16γ (αop − γa)2 − Cop

IV l3 ≤ a 2Max
nγ − αop

γ Max(a− ( 2Max
nγ − αop

γ )) U∗,2bc = Max2

nγ − Cop
† In this class, data dfj is requested at the partial granularity level, Min ≤ nαop ≤ Max, and (nαop)2 ≤
nγCop ≤Max2

‡ In all formulas αop = β0 + β1 + ... +
βj
2 + βj+1 + ... + βk + θ

2 and Cop = G+ B.
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Table 12. subgame perfect equilibria strategies for Class 6†

Condition‡ Best price U∗t U∗c

I a <
Cop
Max + Max

nγ −
αop
γ = l1 0 0 reject

II l1 ≤ a
Cop
Max + Max

nγ −
αop
γ Max(a− (

Cop
Max + Max

nγ −
αop
γ )) U∗,2cc = 0

† In this class, data dfj is requested at the partial granularity level, Min ≤ nαop ≤ Max, and

Max2 < nγCop
‡ In all formulas αop = β0 + β1 + ... +

βj
2 + βj+1 + ... + βk + θ

2 and Cop = G+ B.

Table 13. subgame perfect equilibria strategies for Class 7†

Condition‡ Best price U∗t U∗c

I a <
Cop
Max = l1 0 0 reject

II l1 ≤ a
Cop
Max Max(a− (

Cop
Max )) U∗,3c = 0

† In this class, data dfj is requested at the partial gran-
ularity level, Max < nαop.
‡ In all formulas αop = β0 + β1 + ... +

βj
2 + βj+1 +

... + βk + θ
2 and Cop = G+ B.

field dfj for only one year.Therefore, it is enough to only analyze
offers, op and oe, with the following formats:
op = 〈0, 0, ..., 1, ..., 0, 1, pr, p, Min, Max〉
oe = 〈0, 0, ..., 2, ..., 0, 1, pr, p, Min, Max〉
For any offer of partial information request, op, let αop denote the
probability of a data provider providing data at partial granularity
level (gj = 1) with zero incentive and Cop represent the cost of
providing the third-party with the database according to op. In other
words, αop = β0 + β1 + ... + βj/2 + βj+1 + ... + βk + θ/2,
and Cop = G + B. Similar to αop and Cop we use the notations
αoe = β0 + β1 + ... + βj/3 + βj+1 + ... + βk + θ/2 and
Coe = B to represent the same concepts where the offer is made for
exact granularity level, oe.

Let the abstract instance of the problem have the following setups:

Condition op(a): nαop < Min,
Condition op(b): nγCop < Min2,

Condition op(c): Cop
Min + Min

nγ −
αop
γ ≤ a ≤ 4Min

nγ −
αop
γ ,

Condition oe(a): nαoe < Min,
Condition oe(b): nγCoe < Min2 and
Condition oe(c): Coe

Min + Min
nγ −

αoe
γ ≤ b ≤ 4Min

nγ −
αoe
γ

The conditions mentioned for op matches only with the second row
of Table(7). In other words, the environmental conditions and bound-
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aries on a match classes 1-II and 1-III. In both of these classes the
game’s subgame perfect equilibria are the set of strategies specified
in case p1 from Section 8 or requesting data at the exact granularity
level. As a result, by requesting data at the partial granularity level,
the third-party expects the following maximum payoff:

U∗,pt = U∗,p1t = Min(a−
Cop
Min

− Min

nγ
+
αop
γ

) (94)

Similarly, by requesting data at the exact granularity level, the
third-party expects the following maximum payoff:

U∗,et = U∗,e1t = Min(b− Coe
Min

− Min

nγ
+
αoe
γ

) (95)

The third-party has to make a final decision between op and oe
based on U∗,p1t and U∗,e1t . The third-party chooses to ask for exact
information if the following holds:

Min(a−(
Cop
Min

+
Min

nγ
−
αop
γ

)) < Min(b−(
Coe
Min

+
Min

nγ
−αoe

γ
)) (96)

Considering the facts that αop − αoe = Bj
6 and Cop − Coe = G, we

can rewrite the inequality in Eq(96) as:

Bj
6γ
− G

Min
< b− a (97)

Therefore, if Eq(97) holds, the third-party asks for exact information
on dfj . In case of an equality the third-party would be indifferent
between asking for exact or partial information. Finally, if b − a <
Bj
6γ −

G
Min then the third-party is better off by asking for partial

information. This analysis shows:

1. If sharing data field dfj has a high impact on the public’s privacy
decisions (as Bj increases), the firms are forced to collect only
partial information rather than exact information.

2. As the influence of incentive becomes less important on the pub-
lic’s privacy decisions (as γ decreases), the only way to collect
personal information is to protect individual’s privacy by using
generalization (or other perturbation methods) on data.
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3. When the cost of generalization G increases, asking for data at
the exact granularity level becomes the most profitable choice of
the third-party.

4. By increasing the minimum number of required records, the third
party has no choice other than providing privacy to the data
providers and ask for data at the partial granularity level.

5. The inequality can be considered as a reference point to recognize
sensitive attributes from non-sensitive ones. In other words, if Bj
is high enough to violate Eq(97), it indicates that dfj is sensitive.
Notice that sensitivity of an attribute also depends on the data
application (b− a).

Case study 2: As a more concrete case study, we consider a situ-
ation where a pharmacy goods manufacturer (a third-party) is plan-
ning to launch a few new production lines. To make the best decision
on what kind of goods to produce, the manufacturer needs a database
containing the pharmacy-related shopping habits of habitants in the
area. To this end, the manufacturer decides to ask for such informa-
tion from the largest supermarket (a data collector) in the city. The
supermarket records the date, total amount payable, and items

purchased when each customer pays for his basket. The supermarket
can offer some discount and seek for the customer’s permission to
provide this information to the pharmacy goods manufacturer (for
each shopping trip). The supermarket knows its clients’ privacy be-
havior (possibly based on some past experience) and can model it
with the following probability model:

prob(opt− in) = 0.05 + 0.02 1
g1+1 + 0.05 1

g2+1 + 0.2 1
g3+1

+0.04 1
r+1 + 0.05I

(98)

Where g1, g2, and g3 represent granularity levels of date, total

amount payable, and items respectively.
The third-party is only interested in accessing item information for

a year. This information can be provided at the exact granularity
level or at the partial granularity level (after values are generalized
to broader categories). Other parameters of this problem instance
are summarized in Table 14.

The third-party must decide on the granularity level, g3, of data
field item, and the price for each piece of information. We calcu-
late αop (probability of opt-in for partial level with zero incentive)
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Table 14. Parameter settings

Parameter Value Parameter Value

1 Max 20, 000 2 Min 8, 000

3 B $1, 000 4 G $100

5 a $5 6 b $10

7 n 30, 000

and Cop (cost of providing partial information to the third-party) as
follows:

αop = β0 + β1
1

g1+1 + β2
1

g2+1 + β3
1

g3+1 + θ 1
r+1

= 0.05 + 0.02 1
0+1 + 0.05 1

0+1 + 0.2 1
1+1 + 0.04 1

1+1
= 0.24

Cop = G+B = 1, 100

(99)

Similarly, the probability of opt-in for the exact granularity level
with zero incentive, αoe, and the cost of providing such information,
Coe, are calculated as:

αoe = β0 + β1
1

g1+1 + β2
1

g2+1 + β3
1

g3+1 + θ 1
r+1

= 0.05 + 0.02 1
0+1 + 0.05 1

0+1 + 0.2 1
2+1 + 0.04 1

1+1
= 0.2

Coe = B = 1, 000

(100)

We can easily see that the settings of this problem conform to the
conditions op(a), (b), (c) and oe(a), (b), (c). Therefore we have:

U∗,p1t = Min(a− Cop
Min −

Min
nγ + αop

γ )

= 34633

U∗,e1t = Min(b− Coe
Min −

Min
nγ + αoe

γ )

= 69400

(101)

Since U∗,e1t > U∗,p1t , the payoff to the third-party would be higher if
the exact granularity level is asked for. Therefore, in the stable state
of the game the subgame perfect Equilibrium suggests the following
payoffs and prices:

p∗ = Coe
Min −

Min
nγ + αoe

γ = 1.3250

U∗t = Min(b− Coe
Min −

Min
nγ + αoe

γ ) = 69400

U∗c = 0

(102)
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Notice that the equilibrium results in Uc = 0. Therefore the data
collector will be indifferent between accepting and rejecting. We have
only analyzed those equilibria in which the data collector accepts
when he is indifferent. Although accepting the offer does not add any
monetary value to the utility of the data collector, the opportunity of
building a relationship with a possibly future supplier might convince
the supermarket to collect information. The data collector sets the
incentive to Min−nαoe

nγ = 1.2.

10 Conclusions and Future Work

This study set out to determine a balanced privacy policy settings for
aggregate query applications. By adopting a game theoretic frame-
work, the optimization problem is analyzed from the viewpoints of
the third-party and the data collector while considering the effects
of data providers’ privacy preferences. Backward induction method
is used to find the games’ subgame perfect equilibria. The results
narrow down the solution space to a choice between the fifteen cases
mentioned in Section 7. Moreover, for each problem instance, some of
the cases do not need any further analysis since the conditions cannot
be satisfied. Based on these cases, a simplified scenario is adapted to
mathematically show how to find the subgame perfect equilibria of
the game. We demonstrated the application of this study using two
case studies.

Our work provides directions on how to set a privacy policy to
achieve maximum revenue while respecting data providers’ privacy
preferences. We showed how to model and tackle the challenge for
a simple privacy policy language and COUNT-query data applica-
tion. But our model is not limited to a specific language and any
statement-based privacy policy language can be modeled in our game
as long as data granularity is somehow expressed and preferences of
the players can be defined accordingly. After solving the game with
our sample policy language and data application, our results demon-
strate how a shift in data providers’ privacy behavior can change the
price of information and expectations of data collectors. These re-
sults can also indicate a metric to assess the sensitivity of each piece
of information.



Title Suppressed Due to Excessive Length 73

We have already used this model to address the challenge of setting
privacy parameter values in sanitization systems in a different work
[2]. This work completes our previous research and shows the appli-
cability of our model to the privacy policy declaration approach and
proves that our model is not exclusive to a specific privacy protec-
tion mechanism. Since our game model is generic and independent of
a specific privacy protection method, it can be potentially used for
benchmarking purposes in order to compare different privacy pro-
tection approaches from variety of perspectives. This is the main
direction of our future work. Further research might explore the ef-
fects of price discrimination in offering the incentives, the influences
of introducing bargaining to the game, and the outcome of the game
if the third-party has incomplete information. Moreover, experimen-
tal investigations are needed to estimate the parameters of the data
providers’ privacy behavior model.

References

1. A. Acquisti and J. Grossklags. Privacy and rationality in individual decision mak-
ing. IEEE Security & Privacy, 3(1):26–33, 2005.

2. R. K. Adl, M. Askari, K. Barker, and R. Safavi-Naini. Privacy consensus in
anonymization systems via game theory. In Data and Applications Security and
Privacy XXVI - 26th Annual IFIP WG 11.3 Conference (DBSec 2012), volume
7371 of Lecture Notes in Computer Science, pages 74–89. Springer, 2012.

3. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In VLDB
’02: Proceedings of the 28th international conference on Very Large Data Bases,
pages 143–154. VLDB Endowment, 2002.

4. H. E. Anderson. The privacy gambit: Toward a game theoretic approach to inter-
national data protection. bepress Legal Series, 2006.

5. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise Privacy
Authorization Language (EPAL 1.2). Technical report, IBM, 2003.

6. K. Barker, M. Askari, M. Banerjee, K. Ghazinour, B. Mackas, M. Majedi, S. Pun,
and A. Williams. A data privacy taxonomy. In BNCOD 26: Proceedings of the
26th British National Conference on Databases, pages 42–54, Berlin, Heidelberg,
2009. Springer-Verlag.
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