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Abstract 

Computer viruses and malicious software (malware) in general are a prevalent threat in 

today's world. While widely used, static based detection of malware, such as signature 

detection, is not sufficient to fight this threat. We need to also adopt dynamic approaches. 

One of the dynamic approaches is code emulation, specifically using anti-virus emula-

tors. Anti-virus emulators have a strong focus on malware detection and analysis instead 

of on emulating code to its completion. 

However, most anti-virus emulators are unavailable for researchers. Most of them are 

proprietary and when not embedded in an anti-virus product, they are limited to anti-

virus companies' laboratories. In this work, we present AGAVE, a step towards automatic 

generation of anti-virus emulators. AGAVE is flexible and customizable. Using Python 

syntax, the researcher can customize library and system calls and even CPU instructions. 

To simplify use by the researcher, AGAVE uses previously collected program execution 

traces as a base of information about system and library calls. This information is 

accessed using Case-Based Reasoning(CBR), so even when an unknown call is found 

during the emulation, the emulator can respond to the call properly and the emulation 

is not interrupted. 

In order to emulate low-level CPU instructions, AGAVE uses a third-party CPU 

emulator. The researcher, the intended user of AGAVE, can choose to change the CPU 

emulator to the one of their preference. AGAVE provides a common interface for the 

CPU emulator that can be customized so the researcher can use the chosen emulator. 

In this thesis, we discuss the design and implementation of AGAVE, including its CBR 

modules and how a researcher would use it in a practical example. We also evaluate our 

implementation, discuss some limitations of AGAVE and propose some future work. 
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Chapter 1 

Introduction 

Computers have become impressively prevalent, more notably in the last three decades. 

We do not only find them in universities and companies but also in our very homes, with 

uses varying from games to home banking, and now even wherever we are, as celiphones 

and PDA's. However, with all the benefits we have from computers and computing 

devices, they have also introduced a new concern into our lives: malicious software. 

Malicious software (malware) is a generic term that includes all kinds of malicious 

programs. Some examples are: 

• The infamous viruses that, as their biological counterpart does, can "reproduce" 

themselves by copying their (genetic) code into other programs and that are some-

times considered by media as a synonym for malware; and 

• Trojan horses. Inspired by Greek history, these programs seem like a gift (such as 

a free graphic editor or a fun game), but are hiding a secret danger. Secretly, they 

may look at our files or detect keystrokes, trying to gather sensitive information, 

like passwords to our favorite websites or even to our bank accounts. 

During this work, the differences between types of malware (virus, Trojan horses, 

worms and others) are irrelevant and, in order to keep expressions and names as used in 

the original sources, the words "virus" and "malware" might sometimes be interchanged, 

sharing the same basic concept of "malicious software". The exception is when "viral 

code" is mentioned specifically, which refers to the ability of a computer virus to replicate 

itself. 

Detecting, and eventually eliminating, malware is a problem that has been becoming 
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increasingly harder, as the motivation for writing malware has also changed[24]. While 

the first malware writers did so only for learning how things work, for fun or, in some 

cases, for fame, nowadays it is used mainly for profit, sometimes with criminal organiza-

tions behind them, funding their development [34]. 

One of the earliest approaches for detection is the use of static analysis[62]. This 

includes looking at the code being analyzed to understand how it works, using tools like 

disassemblers (programs that can translate the machine language code in an executable 

back to code in a higher level language, such as assembly) and also searching for specific 

sequences of characters (usually called signatures). Signature detection is, by itself, a 

quite difficult problem, as the number of possible signatures to be found tends to be 

incredibly high'. 

While still being largely used, static analysis has lost some of its efficacy as malware 

writers now use different techniques to avoid it. Obfuscation techniques, including the 

application of cryptography, can be used to hide malicious code until the moment when 

it is really necessary[21], avoiding earlier detection. It is also possible to create code 

that is able to adapt itself, essentially changing from one generation to another, making 

detection, in special signature-based techniques, even harder while still preserving the 

malicious capabilities. This is achieved by using techniques known as polymorphism or 

metamorphism [6]. 

When static analysis fails, security researchers must adopt what are called dynamic 

approaches. An example consists in executing any suspicious code in a controlled, moni-

tored, and preferably isolated, environment. By doing this, whenever something consid-

ered "bad" happens (as an unexpected file change or removal, or a network connection), 

no harm to the production system is done and information about the code, as what it 

'Symantec's website reports a total of over 8.7 million signatures in their signature file in October 
2010. Source: http://www. symantec. com/business/security_response/def initions/certif led! 
index. jsp 
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has been doing or what it saved in memory or disk, can be collected to allow further 

identification and analysis. 

It must be noted that, for each time an analysis is performed, the machine would need 

to be returned to an "initial state", a state when it is considered safe, with no infection 

(no maiware was installed). Depending on the case, a task that might require quite some 

time to be performed properly, as not only files in the disk can be infected, but there 

are also cases of malware attacking the BIOS (Basic Input/Output System), the built-in 

software in all computers that is responsible for the very task of accessing disks and other 

devices. 

Instead of executing the code in a controlled environment, an even safer approach 

would be emulating its execution. 

Figure 1.1: Movie set scenery 

We can think of emulation as a movie set (Figure 1.1) when you look around, ev-

erything seems quite real, but behind a door there is just a wall and a window provides 
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a view to a nice picture. In order to emulate code execution, we need to provide an 

environment with enough elements so the malware is able to run without noticing that 

it is only a facade, and the emulated programs become actors in a play, acting as if the 

facade was real, but with no impact in the real world, other than knowledge, of course. 

Still in the realm of movies, we can recall the 1998 movie "The Truman Show", where 

the main character (Jim Carrey), was part of a TV show for his entire life (30 years) 

without being aware of it. The entire city was scenery and all the people there, but him, 

were actors. He lived his life as it was the real world in front of his eyes, and not a TV 

show with scripts, where even the weather was controlled by people outside that bubble. 

This is basically what we want in an emulated environment, the program being emulated, 

our suspicious malware, must not have any hint that it is in an emulation and not in an 

actual system. 

Emulation can be used in several ways and there are several different tools available. 

A common approach for many security researchers is running suspicious code in virtual 

machines, which are, in this context, hardware emulators (programs that emulate only 

the hardware, including processors, memory and video cards) that are able to execute 

common operating systems. This approach not only removes the need of purchasing 

new equipment for tests, but it also provides a level of isolation necessary for tests and 

even allows the researcher to return to the initial state in a short time. However some 

problems still persist[6]: 

• The actual operating system is executed in the virtual machine, so while this assures 

that the environment reflects a real one, there might be some issues concerning 

compatibility to the hardware being emulated and also OS copyright and licensing. 

• Monitoring capabilities are not usually included or are not designed for the specific 

task of detecting malware. 
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• Booting the operating system requires an amount of time that delays the actual 

task of emulating the code, decreasing productivity. 2 

Another use of emulation may happen internally to some anti-virus products. In 

order to provide dynamic analysis, they send part of the suspicious code to a secure 

environment' and then emulate the code, so malicious activities can be detected[55, 

p.164]. In some cases this process can also help to detect malware signatures that were 

encrypted until then and in order to be used, need to be decrypted in memory. The 

mentioned "secure environment", known as "anti-virus emulator", sometimes also called 

a sandbox, is not capable of running a full emulation (as graphic operations, among 

others, are usually nonexistent), but it is still able to emulate some hardware and software 

operations and this allows it to achieve its main purpose: malware detection. 

A drawback for emulating both hardware and software, however, is the fact that, 

sometimes, an emulation is not able to understand some instructions, in particular un-

documented or fairly uncommon ones[56] and, by introducing software emulation (e.g., 

operating system) to the hardware emulation, we also introduce more chances of having 

such failures in emulation. 

One big challenge in producing emulators for malware detection, especially in the re-

search setting, is that there are a vast number of possible hardware and software charac-

teristics that need to be emulated in order to create an environment able to run suspicious 

code and identify its malicious features. 

Making this challenge even harder is the fact that most of the research on emulation 

for malware detection happens within anti-virus companies, thus new and innovative 

methods are usually not publicly (or academically) available, being published just as 

2A feature that helps on this and that are present in some virtual machines is the capability of using 
"snapshots". Users can save states of the machine, whatever is in memory and in the processor registers, 
and eventually return to them, continuing the execution from that point. 

3An environment where programs can be executed without causing harm to the hosting system, 
regardless of whether or not the harm is intentional. 
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patents. Sometimes those companies release information about their results, but with 

few exceptions, that information is usually embedded into marketing material, which 

makes the results not too reliable nor repeatable from the point of view of an independent 

researcher. 

This work is motivated by the need for a framework in which researchers, academics 

or otherwise, can develop new techniques for dynamic malware detection and analysis 

and also to evaluate existing techniques in an unbiased context. As an additional ben-

efit, we want this framework to allow not only the implementation and testing of novel 

heuristics in a standalone mode, but also to give the researcher a possibility to "plug" 

this framework into an existing product, extending its functionality. 

In this thesis, we describe AGAVE, a tool designed for automatic generation of anti-

virus emulators and that provides an environment for malware analysis. This environ-

ment includes hardware and operating system emulation. 

AGAVE is meant to be a framework to develop and test new techniques for malware 

analysis and detection on end-user machines. AGAVE was not designed to be used as a 

primary tool for malware analysis. Nor was it designed to use all the resources that might 

be available in an anti-virus laboratory and that are unlikely to be found in computers 

used by non-experts. The general end-user, the one with little or no expertise with 

computers, must be kept in mind as the main beneficiary of the techniques and methods 

that can be developed by using AGAVE. 

Like any usual code, malicious software is basically a sequence of instructions, which 

includes calls to libraries, that provide several resources, and also directly to the operating 

system, known as system calls. AGAVE is meant to be used by security researchers and, 

to do so, it also allows implementation of system and library calls, and even low-level 

instructions, which gives the researcher the ability to customize the environment. 

We believe that AGAVE can be used in different scenarios. Security researchers can 
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use AGAVE interactively for maiware analysis, so they can learn how malicious software 

works and how it can be better prevented or detected. Security researchers can also use 

AGAVE as a testbed for new heuristics for maiware detection. AGAVE can be used 

embedded into anti-maiware (anti-virus) products, allowing emulation of suspicious code 

to detect variations of known maiware, using the heuristics already included within those 

products or ones created in AGAVE. 

1.1 AGAVE at a glance 

AGAVE is a framework that produces a secure environment for emulating the execution of 

suspicious code. We believe that one of its most important characteristics is its flexibility, 

as it not only allows researchers to choose the hardware and operating system to be 

emulated, but also allows customization of both, as well as development of heuristics and 

interfaces to third-party products. 

Conceptually, the researcher provides information about how the operating system 

works, what hardware it should emulate and also any customization that should be 

applied. AGAVE, then, provides an environment where the researcher can emulate sus-

picious code for analysis and eventual detection of maiware. As shown in Figure 1.2, this 

environment consists of basically three components: 

• OS Emulator 

• Hardware Emulator 

• Controller 

In order to provide OS Emulation, we have to understand how an operating system 

works. In a usual anti-virus emulator, the researcher either implements each and every 

function that is called by a program or returns a default value for those that are unknown. 
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Custom 
Code and/or 
Specifications 

Libraries/OS 
Queries 

A.G.A.V.E. 

Controller 

CPU/Memory 
Emulator 

Emulation Environment 

OS Emulator 

Figure 1.2: Conceptual view of AGAVE 

In anti-virus laboratories, sometimes tests are interrupted due to a missing function. So 

the researcher should implement the function and restart the emulation. To avoid this 

in AGAVE, prior to the actual emulation, the researcher needs to provide information 

about the operating system. This information consists of traces of library and system 

calls, that are parsed and stored in a database. During the emulation, when a call to 

the operating system is requested, we use Case-Based Reasoning (CBR) to decide how 

the emulator will respond to it. The researcher can override and customize responses if 

desired. We provide details on how CBR was implemented in AGAVE in Chapter 3. 

Even though it was desirable, AGAVE currently does not produce a CPU emulator 

due to time constraints; instead we provide an interface from which AGAVE can inter-

act with existing products. While we used a specific emulator for this proof-of-concept 

(PyEmu), we developed an interface that is general enough to allow researchers to use 
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other hardware emulators, provided some features are available, like the access to memory 

and CPU and also the execution of a single instruction at a time. 

In Chapter 2, we explain how emulation is used within AGAVE. In Chapter 4 we 

demonstrate the use of AGAVE and also describe some of the problems we faced, demon-

strating how to solve these problems. 

The Controller is responsible for the flow of execution within the emulation, directly 

controlling the other two components, and also for the user interface. 

The user interface is text-based, where we tried to incorporate elements from both 

the Python IDE and GDB, a popular debugger used by developers and researchers for 

debugging and code analysis. Our interface, thus, allows the user to transparently enter 

not only usual Python commands but also commands and functions that are part of 

AGAVE itself, allowing access to information about CPU status and to read from and 

write into the emulated memory. 

Researchers can develop code in Python for controlling the code execution, heuristics 

for detecting malware and interface to third-party products. The AGAVE Controller 

offers a set of functions (also described in Chapter 2) to help the researcher. These func-

tions, from the programmer's point of view, seem like built-in functions and commands. 

Finally, in Chapter 5, we present our conclusions and also suggest some future work. 
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Chapter 2 

Overview 

As with many technological developments (artificial satellites, space stations, gene ther-

apy, etc.), the idea of computer viruses was first introduced by science fiction novelists'. 

However, what seemed to be just science fiction now affects our everyday lives. 

The idea of computer viruses and how to defend against them was first academically' 

discussed by Red Cohen[15] and since then, computer viruses, and malware in general, 

have quickly become a prevalent threat for computers and other devices, such as cell-

phones or FDA's. The good news is that anti-virus technologies have also advanced at a 

similar pace, as noticed and discussed by Nachenberg[45]. 

One approach for detecting maiware is the use of static analysis, in particular, signa-

ture scanning. This technique consists of looking for specific sequences of characters in 

files that would indicate the presence of maiware. 

While rather efficient for a limited number of signatures, both its efficiency and its 

efficacy are compromised by the increasing number of signatures that are constantly 

added to the list. In fact, thousands of new signatures are found every day3. (Some of 

these new signatures, however, do not describe new threats, but previously known ones.) 

Detection by signatures can be avoided by many ways. Malicious code can be hidden, 

for example, encrypted, inside an executable. Then, only when the infected executable 

is running is the malicious code decrypted and executed. Another common practice, 

'In 1970, Gregory Benford published "The Scarred Man" and, in 1972, David Gerrold published 
"When Harlie was One", stories that mention not only a computer virus, but also a program to defeat 
it, thus mentioning "anti-viruses" as well.[6] 

'Some researchers also refer to John Von Neumann's work "Theory of self-reproducing automata" as 
the first discussion about computer viruses, e.g., [62]. 

3According to Symantec's website, 259246 new signatures were added to in their "certified" list of 
signatures during October 2010, an average of over 8,000 new signatures daily. Source: http://www. 

symantec . com/business/security_response/def initions/certif led/index. jsp. 
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inspired by biological mutations, is self-mutating code, by using techniques such as poly-

morphism and metamorphism. With these techniques, every instance of a program can 

potentially be different from previous ones, thus having different signatures[46, 59]. 

Dynamic methods of analysis and detection have, then, been developed not only as 

an alternative, but as a complement to static approaches. For example, we can observe 

the behavior of a program (the sequence of actions the program performs) to identify 

suspicious activities. 

In this chapter, we are going to discuss one dynamic approach: the use of emulation 

for malware detection and analysis. First, we will review what emulation is and some of 

the ways emulation can be used when working with maiware, then we give an overview 

of AGAVE. 

2.1 Code emulation 

The idea of emulation can be traced back to the 1960's, originally used to make the 

new and smaller systems (still mainframes at that time) behave like the large and old 

ones [63]. The objective was keeping existing programs running without adaptation to 

the new equipment, that was usually not compatible with its predecessors. The basic 

idea was providing a scenario that programs would recognize as their actual environment 

and would be able to run normally. 

Emulation allows us to run code written for a specific processor in a different type of 

machine, or code written for a specific operating system can be executed in a different 

one, sometimes with the entire environment (CPU, memory, devices) also being emu-

lated. This type of emulation is usually called "virtualization", as the main motivation is 

basically the original motivation for emulation, the creation of a "virtual machine". The 

virtual machine can be used to execute code that would be incompatible with the avail-
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able equipment. In this type of application, low-level instructions can be either emulated 

or translated to the host machine. 

Tools as QEMU[1O] and Bochs[40] are some of the examples that allow the emulation 

of a machine within another operating system. Xen[7] and VMWare[66] can go even 

further, providing the emulation of several machines in one single system, ideal for hosting 

services. 

Virtualization implies emulating an entire environment and in recent years has in-

creased in complexity as the users request new features[35], thus also draining more 

resources from the host computer. However, virtualization is not suitable for maiware 

detection. Maiware detection, especially when performed by anti-virus products, should 

be efficient and with as little overhead as possible. 

However, some researchers have successfully used virtualization tools for maiware 

analysis (e.g., [9], [33]). The environment can be monitored, allowing capture of library 

calls or detection of changes in registers, memory and stack. Differences from the ma-

chine status before and after maiware execution can be collected for comparison, so the 

researcher can understand how the maiware works, how it infects the machine and maybe 

even how to remove it safely. 

Virtualization is not the only way of using emulation to fight maiware. The impor-

tance of emulation in the fight against maiware is that emulation provides a way of safely 

observing what suspicious code is doing. This safety comes from the fact that the en-

vironment that runs within the emulation is completely different and isolated from the 

host. 

Sometimes, the idea of emulation being an isolated environment can be confused with 

sandboxes, but these are different concepts. In a sandbox[51] the code runs in the actual 

machine, but in a protected and fairly isolated environment, that, ideally, would not 

affect other programs in the same computer. However, some resources are still shared 
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with other applications (e.g., processor, memory, disk) and, sometimes, they can be 

used to provoke system interruption. On the other hand, emulation provides an entirely 

isolated and fake environment, where even access to devices like disks or video has no 

impact on the real devices, as some of them do not even exist in reality. 

We must emphasize, however, that a balance must exist between the use of static 

and dynamic analysis (emulation). On one hand, emulation techniques are considered 

more effective and less risky than static analysis, but it is also more complex and, thus, 

slower. On the other hand, static analysis can help emulation because of its speed and of 

its ability to discover anti-emulation measures[16]. Also, we must remember that, unless 

within an anti-virus laboratory, it is not always possible to emulate a whole program for 

detection. Some prograths (e.g., a word processor) simply never finish, unless requested 

by the user. So, just a limited number of instructions must be emulated[6]. 

2.2 Maiware detection and analysis using emulation 

Emulation allows the use of a huge variety of techniques for malware detection[6]. The 

techniques are commonly based on generic decryption, heuristics or program behavior 

profiles. 

As previously mentioned, static detection, especially signature scanning, has lost 

some of its efficacy. In part, this is due to the development of polymorphic viruses, 

capable of mutating from one generation to another. The common way of "mutating" is 

by encrypting  the viral code, so a previously determined signature would not be valid 

for that particular instance of the virus. In order to be executed, however, it becomes 

necessary to include into the target program what is called a "decryptor loop". The 

decryptor loop is responsible for decrypting the viral code (either in memory or on disk) 

4The concept of encryption here is rather loose. Malware writers call "encryption" techniques such as 
a simple XOR operation or techniques of code obfuscation. However, actual application of cryptographic 
algorithms may happen sometimes. 
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and then executing it. A detailed description of how the code can mutate is beyond 

the scope of this work, but polymorphism is formally described by Filiol[22] and a more 

practical approach can be found in [62]. 

In generic decryption[48], execution of a suspicious program is emulated, looking for 

signatures (sequence of characters) in the emulated memory to detect when malicious 

code has been decrypted. In our experiments, we have implemented a simple variation 

of this approach, as can be seen in Chapter 4. 

Heuristics based approaches rely on a set of rules used to define what should be con-

sidered a threat [3]. Those rules can help to identify malicious characteristics in unknown 

programs, for which signature based detection would fail. Heuristics can be used to select 

events. Sequences of these events can be then compared to previously collected malicious 

sequences to identify malicious code[31]. We can also emulate a predefined number of 

instructions of a program, collecting operands, operators and states of registers after each 

instruction. Then, using a heuristic analyzer to evaluate this data, we could determine a 

probability of the program containing viral code[69]. Another heuristic approach involves 

producing histograms based on active instructions (i.e., instructions that modify mem-

ory) or on sequences of them. These histograms can be used to identify some obfuscated 

malicious code [47]. 

A program's behavior profile can be described as a sequence of actions it performs. 

Examples of actions considered when building a behavior profile are: a process creation or 

termination, file opening or deleting, making a network connection. In practice, system 

calls made by the program are collected to build its behavior profile[23]. One approach is 

monitoring and storing the behavior of a program when it is first executed. Every time 

that program is updated, its behavior is again monitored and compared to the original 

one. Any differences can be then compared to behaviors of known malicious software for 

identification [64]. 
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Using a different approach, we can emulate code, building a model that characterizes 

its behavior. The model describes information flow between system calls. The model is 

compared to a database of previously recorded malicious behaviors (similar to a signature 

database) [38]. 

It is also important to keep in mind that emulation does not need to be done entirely 

by software. Hardware-virtualization extensions, as provided by Intel-VT, may be used 

to analyze malware, while the analyzer remains transparent and cannot be detected by 

the malware[17]. 

A slightly different use of emulation for malware detection is in Network Intrusion 

Detection Systems (NIDS) or Network Intrusion Prevention System (NIPS) [41]. In this 

type of application, code is still emulated to identify the presence of malware, but now 

the suspicious code comes from network devices instead of coming from disk or memory. 

For example, a CPU emulator can try to emulate code directly from network streams 

looking for signs of buffer overflow attacks or attempts of shell-code injection[27]. In 

order to find attempts of shell-code injection, another approach is the use of "forensics 

shelicode" to monitor operations[54]. 

Virtual machine inputs can also be logged and replayed on a separate analysis plat-

form, so input and logs can be used for intrusion detection, bug finding or, in the worst 

case, forensics[14, 18]. 

2.3 Anti-virus emulators 

"Anti-virus emulator" refers to the use of emulation techniques specifically for malware 

detection. Note that they are different from traditional emulators, whose main goal is the 

ability to execute code from one platform on a different one, thus correct and complete 

code execution is demanded. Platforms, in this case, might refer to different processor 
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architectures or simply to different operating systems. 

Code executed by an anti-virus emulator may not have the same results as if exe-

cuted by another type of emulation or in a real environment, so the problem posed by 

Martignoni et al. [42] (which presents a fuzzing-based methodology used to test four dif-

ferent CPU emulators and that found errors in all of them, some even preventing proper 

execution), is not really a concern when thinking about emulators for malware detection. 

The anti-virus emulator only requires that the emulation be just accurate enough to keep 

malware running. 

Aycock[6, pp.75-77] describes an anti-virus emulator as having five conceptual parts: 

1. CPU emulation: that interprets and emulates the execution of instructions. 

2. Memory emulation: used for mapping and controlling emulated memory allocation. 

3. Hardware and operating system (OS) emulation: Actual OSs are not actually used 

in anti-virus emulation. Among reasons, Aycock cites startup time, size, licensing 

issues and specific monitoring capabilities. 

4. Emulation controller: responsible for controlling the flow of the emulation, when 

the emulation should stop and what to do if something is detected. 

5. Modules for extra analysis: allowing the researcher to deal with special cases and 

also to include new approaches of malware analysis and detection in the emulator. 

When talking about anti-virus emulators, we must mention that there are, at least, 

two types of applications for anti-virus emulators. They can be used in an anti-virus 

laboratory, as a tool for malware detection, for testing detection and for malware analysis. 

It also can be embedded in anti-virus products on user machines, providing a more 

powerful anti-virus approach than static signature detection. 
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This thesis focuses on anti-virus emulators. We visualize the anti-virus emulator as 

a way of providing a scenario to the malware, a representation of the environment it 

would find when being executed in an actual machine. However no access to any actual 

device neither to any real application nor files should be made available to the suspicious 

program. 

Unfortunately, there is not much academic work related to anti-virus emulators. The 

research on anti-virus emulators is usually done within anti-virus or anti-malware com-

panies. Thus, most of the available discussion and results in this area can only be found 

in the form of patents (including patent applications), or in "white-papers" (with the 

actual data surrounded by or mixed with marketing information). 

AGAVE intends to be a tool to help researchers, especially from academia, to become 

more familiar with techniques and methods used to dynamically detect malware. It can 

also be used as a testbed for new methods, allowing the researcher to "plug-in" their new 

methods into existing products. 

2.4 Describing AGAVE 

AGAVE, our tool for automatic generation of anti-virus emulators, is designed to be 

used by malware researchers. The ultimate goal of AGAVE is that, for a given pair 

(Hardware, OperatingSystem) , AGAVE should produce an anti-virus emulator that can 

be used either for malware analysis or for malware detection. 

AGAVE is intended to be used both in a "standalone" mode, where a researcher 

can interactively analyse suspicious code, or embedded in a third-party tool, such as an 

anti-virus product, so new heuristics can be developed and tested. 

Currently, AGAVE is implemented as shown in Figure 2.1. A third-party emulator 

(1) is responsible for CPU and memory emulation, as described by Aycock[6]. AGAVE 
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Figure 2.1: Overview of AGAVE 

accesses this third-party emulator by an interface (2). A skeleton for writing a new 

interface is provided and we currently have a working implementation of an interface to 

PyEmu5, an x86 CPU emulator written in Python. 

Hardware and OS emulation is provided by the CBR modules (3), which are respon-

sible for generating responses to system and library calls. Some functions, however, must 

be implemented by the researcher, in order to allow correct emulation and, consequently, 

a correct analysis. 

Between the CPU emulator and the CBR modules, we have the AGAVE Controller 

(4), which is responsible for loading the executable and controlling the flow of execution 

and the access to OS functions, either by calling implemented functions or by doing re-

quests to the CBR modules. The CBR functions are accessed through the CBR retriever, 

a module specialized for responding to queries. Heuristics to control the flow of execution 

5PyEmu Revision r19 
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and also call extra modules for analysis, mentioned by Aycock, can be implemented by 

the researcher and called by AGAVE as necessary (5). 

The remainder of this chapter discusses CPU and memory emulation and also the 

AGAVE Controller. A discussion about the CBR Modules is in Chapter 3. 

2.5 CPU and memory emulation 

Writing a CPU emulator from scratch would obviously take a really long time. Due to 

time constraints, we decided to use a tool that is already available. 

Some characteristics, however, should be present in the product we use: 

• It should be preferably open source. Not only would this help to understand how 

the CPU emulator works, but also it could be necessary to make minor changes, in 

order to allow an interface to our code6. 

. It should be well documented, both in terms of user manual and also code docu-

mentation. 

• It should allow easy access to registers and memory, thus allowing the researcher 

to read and modify them as necessary. 

Its fairly good documentation and the fact that it was written in Python, a program-

ming language that was familiar to us, made PyEmu our choice of CPU emulator for this 

proof-of-concept. Even when the documentation was not complete, the code was clear 

enough to provide a good understanding. 

Our familiarity with Python even allowed us to easily solve some problems that hap-

pened because of this specific emulator. We had several interruptions in our experiments, 

61t turned out that we did have to make small changes, due to some bugs. Bugs that also motivated 
another feature for AGAVE: Custom implementation for low-level instructions. 
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especially when trying to emulate the execution of statically compiled code, because of 

some instructions that were missing. We also found a bug in the PyEmu implementation 

of the instruction SCASD, which caused us another interruption. 

Initially, we added the missing instructions to the emulator code. However, missing 

instructions were a possibility for any third-party emulator. This motivated us to allow 

AGAVE's users to implement instructions. This new feature not only helped code to run 

to its completion, it also gave the user the ability to execute custom code at an instruction 

level, which can be used, for example, to set up triggers when a specific instruction is 

called. 

A major disadvantage of our choice was definitely speed. An actual processor can 

execute millions of instructions per second. Our implementation, however, has that speed 

reduced to approximately 1,000 instructions per second. We believe that it was mainly 

caused by the fact that both our controller and the emulator are implemented in Python, 

an interpreted language. Also, the instructions are interpreted sequentially. We have not 

implemented any sort of optimization or parallelism for the emulation7. 

2.5.1 CPU emulator interface 

AGAVE currently uses PyEmu for CPU and memory emulation. A researcher might 

want to use a different emulator. In order to do this, it is necessary to implement an 

interface to access the new emulator. 

The new emulator should provide: 

1. Means to allow interaction with third-party tools (e.g., ability to control the emu-

lator by commands sent by a socket). 

7There was, however, some optimization in our Python code. We were actually able to increase 
the processing speed by around 65%. Our original implementation could only interpret around 600 
instructions per second. 
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2. Ideally, a minimum set of functions, that includes means to retrieve information 

such as registers, stack and memory. 

3. Translation instructions from op-codes to mnemonics is also desirable. 

To implement an interface to a new emulator, the researcher must create a class 

derived from class AGAVE and then implement the methods necessary for accessing the 

emulator. Figure 2.2 shows an example of code necessary to start an implementation of 

a new interface. 

from agave import * 

class Agave2MyEmulator(AGAVE): 

# ( ... ) Defining methods 

Figure 2.2: Starting implementation of an interface to a new, emulator 

It is also necessary to implement the methods to access information from that emu-

lator. These methods include loading code into memory and initialization, and reading 

and writing of memory and registers8. 

Some methods depend on the emulator being used and some methods depend on the 

type of executable being used (so it can be correctly parsed). Table 2.1 describes the 

methods that must be implemented and that are emulator specific. Table 2.2 describes 

the executable specific methods that must be implemented. We have developed a loader 

for ELF files that can be used. In this case, the executable-specific methods are already 

implemented. Finally, Table 2.3 describes methods that are not necessary for emulation, 

but that might provide extra information about the emulator (such as the status of the 

stack or a list of registers) or extra features (such as snapshots). These extra methods, 

if implemented, might also be useful for implementing heuristics or monitoring tools. 

8From this point, any reference to the terms "memory" or "registers" refers to "emulated memory" 
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Method Description 

get-context( Returns the CPU context (registers and 
flags) in a Python dictionary with pairs (reg-

ister, value). In this case, a register is a key 
of the Python dictionary. 

get-instruction( Returns the mnemonic for the current in-
struction. 

getinstruction_pointer() Returns the value of the instruction pointer. 
get..memory(address, [n]) Read n bytes from address in memory. If n 

is not supplied, reads a word (4 bytes)-
get-register(register) Returns the value stored in register. 

get-stack-pointer( Returns the value of the stack pointer. 

set_instruction_pointer(address) Sets the instruction pointer to address. 

setmemory(address, value, [n]) Save n bytes of value in address of memory. 
If n is not given, save the length of value. 

set..register(register,value) Stores value into register. 

set-return-code (value) Sets return code for a function that was em-
ulated. 

set_stack_pointer(address) Sets the stack pointer to address. 
skip(n) Skips n bytes. Equivalent to adding n to the 

instruction pointer. (Useful for when an in-

struction is implemented by the researcher.) 

step() Executes a single instruction. 

Table 2.1: Mandatory emulator-specific methods to be implemented for interface 

Method Description 

load(filename) Loads the executable filename into mem-
ory. (It might be necessary to parse the exe-
cutable, for example, to find the entry point.) 

check-library-call(instruction) Check if a library call was made and, if neces-

sary, invokes the controller to either emulate 
or execute it. 

check..systemca11(instruction) Similar to the previous, but for system calls. 

check-custom-instructions 

(instruction) 
Similar to the previous, but for custom in-
structions. 

Table 2.2: Mandatory executable-specific methods to be implemented for interface 
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Method Description 

load_snapshot([filename]) Load snapshot. If filename is not given, reads 
the last one with auto-generated name. 

savesnapshot([filename]) Save snapshot. If filename is not supplied, 
automatically generates a filename using se-
quential numbers. 

get-memory-pages( Return a list of allocated memory pages. 
registersQ Print list of registers for debugging purposes. 
stack() Print stack for debugging purposes. 

Table 2.3: Optional methods to be implemented for interface 

It must be noted that we have special functions to deal with the "instruction pointer" 

and the "stack pointer", as we do not assume which register is used for each case. We do 

assume, however, that every architecture must have an instruction pointer and a stack 

pointer, thus the emulator should allow us to read them. 

The researcher must also define two variables within the interface. 

1. SYSCALLJNSTRUCTION: a mnemonic for the instruction that executes a system 

call. For Linux on x86, for example, we use "mt 0x80". 

2. LIBCALLJNSTRUCTION: a mnemonic for the instruction that executes a library 

call. For an ELF file on x86, we have used "call". 

These variables do not need to store the entire mnemonic (including operands), as 

long as the methods that implement the system and library calls are capable of dealing 

with this. For example, for dealing with library calls, we look for an instruction "call". If 

the address does not point to an address in the ELF relocation table, we perform the call, 

otherwise, we let AGAVE controller decide what to do. (If the function was implemented 

by the researcher, call the implementation, otherwise, AGAVE controller calls the CBR 

or "emulated registers", respectively. 
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retriever9 to emulate that function.) 

As an example of implementing an emulator interface, defining the aforementioned 

methods and variables, Appendix C shows our implementation of an interface to PyEmu. 

2.6 Controller 

As we previously mentioned, the controller is responsible for the flow of execution (emu-

lation). It is implemented as two components: An interpreter and the actual controller. 

The interpreter is responsible for executing user-implemented code". The controller 

component is responsible for calling the emulator (through the interface) to execute in-

structions, calling the interpreter to execute the user's code and calling the CBR. retriever 

to emulate library- and system calls that are not implemented. 

To emulate an executable, we have a loop that reads one instruction from the exe-

cutable at a time. The pseudocode for the loop is described in Figure 2.3. 

The pre-execution( and post-execution( functions call user defined code, as 

specified in AGAVE configuration files (described in Chapter 4). This user defined code 

can be heuristics for maiware detection, monitoring tools or any other code the user 

might want to execute prior to or after an instruction is emulated. 

The emulation, by default, starts with batch mode enabled, i.e., the emulator will 

emulate all the instructions without user intervention. The batch mode can be disabled 

by a break point, previously defined by the researcher or by code implemented by the 

researcher, by calling the AGAVE command pause 0. The batch mode can be re-enabled 

by the AGAVE command run 0. 

In order to redirect a call or instruction, the user must first define the function, in 

Python, that is going to implement that call or instruction. This function must deal with 

9CBR module responsible for searches. 
'°We assume the user is a security researcher, thus with some programming and maiware analysis 

background. 
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enable batch mode 

initial_checking 0 

while not finished: 

if not in batch mode: 

call interpreter for user input 

read instruction from emulator 

pre_executionO 

if instruction is system call: 

if system call is implemented: 

call interpreter for system call 

else: 

call CBR retriever for system call 

else if instruction is library call: 

if library call is implemented: 

call interpreter for library call 

else: 

call CBR retriever for library call 

else if instruction is in list of custom instructions: 

call interpreter for instruction 

else: 

executes instruction using emulator ## Method step 0 

post-execution( 

if break point is reached: 

disables batch mode 

Figure 2.3: Pseudo-code for the main emulation loop. 
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issues like reading parameters (either from stack or from registers) and returning a result 

(usually by calling set-return-value()). 

A call to set-system-call(), set_library_call() or set_custom_instruction() 

should then be done to bind the defined function to the call or instruction, set-system-call 0 

and set-library-call 0 receive two parameters. The first is the function name; system 

calls are prepended with "SYS_". The second is a call to the defined function. Addition-

ally to these two parameters, set_custom_instruction() receives a third one, which is 

the number of bytes the instruction pointer will be incremented". 

For example, a redefinition of the instruction LODSD 12 can be found in Figure 2.4. 

# Description of LODSD from: http://faydoc.tripod.com/cpu/lodsd.htm 

def LODSD O: 

interface, log, debug (" Executing custom instruction LODSD") 

esi = get_register("ESI") 

df = interface. emu. get_register("DF") 

addr = esi 

data = get_memory(addr, 4) 

interface.log.debug( "\tMoving \°h08x(VhO8x) to EAX"\%(addr, data)) 

set_register("EAX" , data) 

if df == 0: 
set_register (h1ESIH , esi+4) 

else: 

set_register("ESI" , esi-4) 

set_custom_instruction("lodsd", " LODSD()", 1) 

Figure 2.4: Redefining x86 instruction LODSD. 

A malware detection heuristic is also implemented as a Python function. The main 

difference here is where the function is going to be evaluated. Our options are calling the 

heuristic at the beginning of the emulation, before an instruction is emulated or after its 

11111 some cases, it turned out be necessary to increment the instruction pointer inside the implemen-

tation, as the number of bytes would depend on the op-code and not on the mnemonic. In these cases, 
the third parameter should receive 0 (zero). 

12x86 instruction "LOAD STRING". Its implementation was actually necessary to our tests, as it was 
not implemented by PyEmu. 
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emulation (respectively, initial_checking 0, pre_execut ion 0 or post_execution 0 

steps). This is defined by the AGAVE configuration and we describe it in Chapter 4. 

2.7 Related work 

Several tools were recently developed that use emulation for malware analysis. Those 

tools provide services like unpacking, disassembling, tracing and others. One of them 

can even be accessed via the Internet. 

Probably the work closest to AGAVE is PyEmu[52], the very emulator we use in our 

proof of concept. PyEmu was designed as a tool for malware analysis. AGAVE, on the 

other hand, can be used for malware analysis but also for malware detection, embedded 

within an anti-virus product. While PyEmu is designed to support other operating 

systems, it is only able to work with Windows PE executables". Different from AGAVE, 

that uses CBR for emulating operating system functions, PyEmu uses actual Windows 

libraries (DLLs) for emulating code. 

Similar to PyEmu, in the sense that the code runs in an emulated operating sys-

tem environment, with Windows API and native system calls being monitored, in order 

to provide understanding of the program's behavior, TTAnalyze[9] was developed for 

dynamic analysis of Windows executables. 

A similar approach is also found in Anubis[8]. Anubis is a platform for dynamic 

malware analysis, on which binaries are submitted by a web interface and then emulated. 

Anubis monitors Windows API calls, system services, network traffic and data flow, 

resulting in a report of the activities. 

AGAVE uses traces of execution as input to its learning system. Program execution 

traces have also been used to improve emulations[33]. A system compares traces from 

13 There are references within the PyEmu source code to emulating a Linux environment, however 
there is no actual code developed for emulating Linux. 



28 

emulated execution of a suspicious program to traces of the same program executed on 

actual hardware. The emulator then is automatically corrected to a better approximation 

of the actual platform. A variation of this approach is found in Renovo [32], where, instead 

of using traces, an executable runs in an emulated environment and is monitored by an 

"Execution monitor". The same code is also monitored outside the emulated environment 

and any difference between the two executions might indicate some obfuscation or anti-

emulation technique is being applied, so the code is extracted for future analysis.. 

2.8 Summary 

In this chapter, we discussed the importance of emulation for maiware analysis and 

detection. We also presented an overview of AGAVE, a tool that we have developed for 

both maiware analysis and also as a testbed for research on malware detection. 

AGAVE uses a CPU and memory emulator for interpreting low-level instructions. 

While our proof-of-concept makes use of the open-source emulator PyEmu, researchers 

can customize AGAVE to use the emulator of their choice. For emulating operating 

system functions and library calls, AGAVE relies on a machine learning technique called 

CBR (Case Based Reasoning), that will be discussed in depth in Chapter 3. 

AGAVE's controller is the component responsible for controlling the flow of execution 

during the emulation. The controller is also capable of interpreting Python code, so 

researchers can customize OS calls and even CPU instructions as necessary. Examples 

of custom code are presented in Chapter 4. 
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Chapter 3 

Case-Based Reasoning within AGAVE 

In order to emulate a program's execution, it is necessary to understand how the program 

interacts with the environment, i.e., the operating system (OS) that the program is meant 

to work in. 

The interaction between a program and the operating system can be loosely described 

by Figure 3.1. A program consists of instructions that can call functions ( 1) from the 

operating system's library, a collection of files that contain code and data and that are 

shared by different programs. Those functions from the operating system's library, after 

executing some tasks, which include executing other library functions(2) or requesting for 

a low level operation from the operating system kernel(3), return to the calling function 

a result that indicates what was done(4). This result can have different meanings: a 

memory address, the result of an arithmetic operation or even an error code. A program 

can also directly request the kernel to execute operat ions (5). 

User Space 
open_s tdout U 

Hello, world! 

puts ("Hello") 

sys_exit ( 0)   

(1) 

I 

(4) 

 tnt puts(xssg) ( 

open_stdoutO; 
(2) 

sys_write(stdout,msg) 4_ 

Z n(OK);) 

Shared Library 

(3) 

OS Kernel 

Figure 3.1: Code execution with shared library and system calls 
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However, according to our observations, those direct requests are not really common 

for legitimate programs. Legitimate programs usually rely on the shared libraries, for 

those contain error checking and other operations that might be necessary for correct 

operation. 

In this work, we will refer to the execution of a function within the operating system 

library as a "library call" and the request for a low-level operation within the kernel as a 

"system call". System calls do not necessarily need to be executed by library functions, 

but can also be directly executed by any program. 

Our system needs to be capable of inferring how to respond to a call for a library 

or OS function. This allows a program to run, in our context a suspicious program, as 

smoothly as possible, without anything unexpected happening. 

It must be noted, however, that some calls cannot be learned automatically, due to 

the.obvious complexity of some code. Other calls will require an implementation by the 

user (that we assume to be a security researcher, with sufficient background for such 

task), as some basic functionalities must be present to allow actual and effective malware 

detection, which is one of the main goals of AGAVE. As an example of such required 

functionalities, we can mention I/O operations, which are essential to allow static-based 

analysis such as signature detection. The specifics about how a researcher can implement 

code within AGAVE will be discussed later in this thesis. 

In this work, we have used a machine learning technique called "Case-Based Reason-

ing" or CBR, that applies knowledge from previous experiences to the decision making 

process. This is analogous to judicial trials, where a judge takes into consideration pre-

vious cases in order to decide whether defendants are guilty or innocent. 

This chapter is organized as follows: Section 3.1 presents some background on CBR, 

Section 3.2 describes how cases are defined in AGAVE, followed by a discussion about 

implementation in Sections 3.3 and 3.4. Finally, in Section 3.5 we evaluate our imple-
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mentation of CBR. 

3.1 Basic concepts 

Kolodner[39, p.13] formally defines a case as "a contextualized piece of knowledge rep-

resenting an experience that teaches a lesson fundamental to achieving the goals of the 

reasoner". An important keyword in this definition is "contextualized". The context of 

each case must be clearly defined, otherwise CBR would not be a successful approach. 

Some examples of the application of CBR [2] include: 

• A physician that is able to diagnose a disease, by observing relevant symptoms. Or 

that prescribes treatment for a patient, taking into account the patient's history, 

that includes allergies and reactions to certain medications; or 

• A financial analyst that, by observing the economic situation of a certain company 

and comparing to what has happened to other companies in the same (or quite sim-

ilar) situation, is able to decide whether or not to recommend if a loan application 

should be approved. 

Note that, in both examples, previously unseen events can happen: Patients can have 

allergies to a prescribed medication without either patient or physician being aware of it; 

a new economic crisis can affect the entire world. Even for these situations, each one in 

its own domain, some previous knowledge is necessary to form a decision. Depending on 

the situation, the decision process can be rather complicated and retaining information 

both about the problem and about the decision can be important to help future decisions. 

Thus, for a specific context, each one of the situations that we have some knowledge 

about and also the situation that is being evaluated are considered "cases". The collection 

of cases we know is usually called a "knowledge base" or a "case base". 
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But, simply retaining cases, having a large casebase, does not help much if we do not 

know how to relate those cases to the one we are evaluating. 

One of the most important concepts in CBR is the idea of similarity[12]. Defining how 

to compare two different entities (whatever these two entities are), in order to measure 

objectively how similar they are, is a key component when designing a CBR system. 

Directly related to similarity is the idea of distance. The distance indicates how 

different two entities are. So, it is said that two entities are close, if they are, up to some 

level and in a specific context, similar. On the other hand, the distance between two 

entities is high, i.e., they are far away from each other, if they are really different. 

Similarity (and distance) within AGAVE is discussed in Section 3.2.3. 

3.1.1 The CBR cycle 

Solving a problem using CBR involves four basic steps, or processes, as described by 

Aamodt[2], that is also referred to as "the four REs": 

1. Retrieving: search in the knowledge base for a case or cases that are most similar 

to the situation to be solved. 

2. Reusing: apply the retrieved information to the current problem. This can vary 

from simply copying the exact same solution as it is, in the knowledge base, to 

modifying it, adapting the solution to the new problem. 

3. Revising: evaluate whether or not the proposed solution is valid for the problem in 

question. 

4. Retaining: add what was learned to the knowledge base, so it can be used for later 

cases. 

We used this cycle as a base for developing our implementation of CBR for AGAVE, 

as described in Section 3.4. 



33 

3.2 Modelling cases 

Our first task to implement CBR in AGAVE is defining what we call a "case" in our 

context. 

To allow code emulation, besides emulating low-level instruction execution, which is 

already provided by the CPU emulator, we need to emulate library and system calls, thus 

emulating the presence of an OS. Those calls can be described, in their simplest form, as 

functions that receive parameters as input and return some value as output. 

Some functions, in addition to returning a value as output, may also use another 

mechanism to return information. These functions receive, as parameter, an address 

pointing to a position in memory. The function can, then, write information there. This 

mechanism is mainly used for returning structures, objects or strings. Our implemen-

tation of CBR for AGAVE does not deal directly with this form of return. However, 

AGAVE allows researchers to implement functions when necessary or desired. In fact, 

if a function that uses parameters to return data is important for analysis, it should, 

ideally, be implemented by the researcher. This implementation would ensure a more 

precise analysis. 

In the remainder of this section, we describe how we collected data and what decisions 

were made for modelling our data in cases that could be used for our CBR implementa-

tion. 

3.2.1 Collecting data 

As a source of data, we decided to use library and system traces. In a Linux environment, 

which was chosen to be our proof-of-concept, these data can be collected by using the 

"itrace" utility'. 

As we wanted as much information as possible, we used some options provided by 

'There are tools for gathering the same type of information for other operating systems as well. 
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8417 __errno_location() 

8417 malloc(128 <unfinished ...> 

8417 SYS_brk(NULL) 

8417 SYS_brk(0x08955000) 

8417 <... malloc resumed> ) 
8417 gethostname( <unfinished ...> 

8417 SYS_uname (0xbf8cbcc6) 

8417 <... gethostname resumed> " agave-host", 128) 

= 0xb76f 2898 <0.000036> 

= 0x08934000 <0.000013> 

= 0x08955000 <0.000013> 

= 0x08934008 <0.000208> 

= 0 <0.000011> 

= 0 <0.000081> 

Figure 3.2: Sample of ltrace output 

itrace. For collecting information about a program, we used the following command: 

itrace -f -T -s -s 1024 -A 64 -o EXEC.ltrace EXEC 

where: 

• -f: traces child processes. 

• - T: shows the time spent in each call. 

• -S: also lists system calls. System calls will always be indicated by the prefix 

"sYs_". 

• -s 1024: maximum number of characters in strings. 

• -A 6: maximum number of elements in an array to be displayed. 

• - 0: writes itrace output into a file. 

• EXEC: this is the name of the executable being traced. The same name, with the 

extension ".ltrace" appended, is also used for the output. 

A sample of an actual output can be seen in Figure 3.2. A close look at this sample 

shows us a rather interesting situation: a call to malloc is shown as "unfinished", two 

system calls are executed internally to malloc, and malloc is finally resumed. Only then 

does the execution time for malloc become available. 
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That situation shows the importance of having the process id (PID)2 for parsing. 

When a process forks, both parent and child process share the same trace file, and the 

PID helps us to discern which instruction belongs to each process, especially in the case 

of "unfinished" calls. 

Unfinished calls can also happen when a signal is sent to the process or when the 

process pauses to allow the execution of its parent or child. 

In our very first implementation in order to evaluate the viability of using CI3R for our 

problem, we decided to work only with system calls (which is a reduced set of functions). 

In that implementation we also included a sequence number in our data. This se-

quence number indicated when in the execution each call was made. The idea was that 

some functions would return different values depending on where in the code they were 

called. That is specifically true for functions that deal with I/O operations. For instance, 

a call to open, when successful, returns a "file descriptor", a number that represents the 

file opened. This number is usually sequential. So, if there was a call to open, it would 

probably return a lower number if it happened in the beginning of the code, and a higher 

number if in more advanced stages of execution. 

However, it must be mentioned that this sequence number is no longer part of our 

data, as its main benefit was increasing accuracy for I/O related calls. As I/O related 

calls are usually essential for malware detection, they should be preferably implemented 

by the researcher within AGAVE. The experiments discussed below do not include a 

sequence number. 

The traces, as we have shown in Figure 3.2, have given us an obvious framework for 

describing a function call. A call consists of: 

. a function name, a string that identifies the function and that can be considered a 

2Process id: a number that is given by the operating system to each process that is executed. In our 
example (Figure 3.2), the PID is 8417. 
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short description of that function's purpose; 

• a list of parameters (shown between brackets) passed to that function, that can be 

empty, i.e., some functions might not require any parameters; 

• a solution (shown just after the equal sign); and 

• an execution time (shown at the end of the line, between angle brackets). 

There are, however, other features that are not so obvious, as to define if it is a 

library or a system call (itrace renames system calls by adding "SYS' to their names) 

and a sense of dependency, i.e., what system calls, or library calls, are requested inside 

another function call. Currently, we do not use this dependency information in our 

implementation. 

3.2.2 From "Calls" to cases 

In our earliest experiments, our cases were identified by the function name and for each 

value passed as a parameter. While that would provide a high level of accuracy  (some-

times close to 100%), it was also generating a huge casebase, and search operations tended 

to be extremely slow. In the worst case, a search for a call would last up to 5 minutes 

for a knowledge base of around 19,000 cases. 

That search time may seem rather surprising, but we must keep in mind that, when 

using CBR, the searches in our knowledge base are quite different from a search in an 

usual database (say, a relational database). We are not looking for an exact match, but 

for similar cases, so our query does not have parameters that can be optimized in some 

sort of index to speed up the search. This implies a sequential search, thus, quite slow 

3Accuracy refers to how close the result we found is to the result we would be expecting. Strings 
were compared by using n-grams and numbers by dividing the lower number by the higher and finding 
a percent value. Values close to 1.0 would represent similar values. 
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and computationally expensive. Some measures can be done to avoid a search of the 

entire casebase, and these measures will be discussed later in the chapter 

One idea to improve performance was grouping cases; fewer cases, less to search. 

Instead of identifying cases by function name and parameters, we had function names 

and types of parameters. For instance, f, (1, 2) and f, (2, 3), instead of two cases, would 

now be considered a single case fi (numeric, numeric). Our search operation would give 

us the most frequent returning value for that case as a result. 

We also wanted to consider some special cases. Some values tend to be more frequent 

than others. Values of 0 (that may also mean "False"), 1 (that usually indicates "True") 

and -1 (which is a common value for errors), were also designated their own "type". By 

doing this, we reduced significantly the size of our casebase from around 19,000 to about 

300 cases. The significant reduction, however was also due to the fact that by then we 

were only working with system calls, that were not more than 2001. This also brought 

us an important loss of accuracy, from around 85-95% to around 60-70%. 

We had this clear trade-off to consider: granularity (number of cases) versus accuracy. 

And, ideally, we needed to find a balance. We then decided that, when defining the case, 

we would keep types for non-numeric parameters, such as strings, structures or arrays, 

and we would cluster the numeric values in ranges. For our implementation, we have 

created special clusters for non-numeric types (e.g., StringCluster, ArrayCluster), so we 

can maintain consistency, working with clusters instead of alternating types and clusters. 

For defining the numeric ranges, we looked at the numeric parameters of all the calls 

in our knowledge base, counting the frequency of each one of them. Then, we used 

DBScan[20] to generate the clusters. We decided to use this specific algorithm as it does 

not require us to define a fixed number of clusters in advance, the cluster definition being 

a matter only of the frequency of each value. 

41t must be noted that our cases take into account the parameters passed to the function, hence the 
higher number of cases if compared to the number of system calls. 
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Using DBScan, however, brought us an unexpected problem. It is a quite expensive 

algorithm, and, with fairly large databases (sometimes in the order of hundreds of thou-

sands of values to compare), it may take a long time to process. The time for generating 

clusters was around 10 minutes for a collection of 45,000 calls and resulted in around 

1700 clusters. 

In order to speed up the process, we organized the frequency of all the values, ordered 

by the frequency and divided into 5 groups (or five quantiles, as those groups are named 

in statistics).5 Figure 3.3 shows an example with the frequency of 25 different values. 

If the frequency of a value belonged to the last group (marked in red in our example), 

that value would become a cluster by itself (a cluster of one single element). Numbers 

that were not in one of those single-element clusters would then be given to DBScan as 

a range to be grouped into clusters. In our actual data, this process resulted in around 

2,400 clusters created in less than one minute. 

I... 
20 1257 1532 28 

ii 
21 99 I i' i 12 258 128 

1. 

Figure 3.3: Example of clustering by frequency 

I I' 
With the definition of such clusters, that are represented by their limits (highest and 

lowest value), we can now describe what we consider cases within AGAVE. A case is 

5 W have previously tested different number of quantiles, however if the number was too small, we 
had clusters for almost every single value, increasing the granularity of our database and, consequently, 
increasing the number of cases, going back to our original problem. And, if the number of quantiles were 
too high, we would still have the long process of defining clusters. 

8 
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defined as having the following features: 

• Function name: a string that identifies a function. 

• List of clusters: instead of list of parameters, we convert those parameters into 

clusters. 

• List of possible solutions to the case being considered and the frequency of each 

solution: when generating our casebase, we will store all the solutions for each in-

stance, so we can either return the most frequent solution or use some algorithm 

based on probability, to return solutions that reflect the behavior of the environ-

ment. 

At this point, we are still not using the time of execution in our casebase, however 

we believe that this might be an important information to avoid some anti-emulation 

techniques, in particular those based on time checking[13]. 

3.2.3 Defining similarity 

As our cases are rather simple, with not many features, we do not have many elements 

to compare and define similarities. In fact, during emulation of an actual call, the only 

information available is the name of the function being called and, sometimes, its param-

eters. 

(For completely unknown functions, we cannot really affirm how many parameters 

are being passed, if any. We used some heuristics to infer that information, but it is not 

an accurate process at all, as some obfuscation techniques can be applied in malicious 

code. These heuristics are discussed later on in this section.) 

In order to define the similarity, we assumed that legitimate OS developers tend to 

name their functions in a somewhat meaningful manner[60]. That good practice allows 
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other developers to infer what a function does based on its name. It also means that 

functions with similar goals, or similar tasks, should also have similar names. So, we 

decided to compare function names by using 3-grams[36], which is a rather common way 

of comparing strings, in order to measure how similar those function names are. For our 

implementation, we used the package ADVAS[26] that, among other features, provides 

methods to compare strings using n-grams. 

Concerning parameters, we can compare number, types and actual values of them. 

We have defined two different ways of comparing parameters. For functions that are 

already known by our system, we know (or at least suppose) how many parameters there 

are. However, for unknown functions, we need some heuristics to essentially guess them. 

So, we defined a similarity measure for general use (when we have a function name 

that exists in our casebase) and a similarity measure for inferring syntax, which means 

that we are not sure about number of parameters or even their types (sometimes, what 

we see as a number can actually mean where in memory a string is stored, for instance). 

The similarity measure is used both when generating the casebase as well as when 

emulating a program. When generating the casebase, it is used to find neighbors that will 

be removed during the "Fish and Shrink" algorithm (Figure 3.7). During the emulation, 

if we are to emulate a function call whose name is not in our casebase, we first use the 

syntax similarity to look for a function with a similar syntax and assume the number of 

parameters. Then we use the general similarity measure to find the best match. In both 

interactions the same "Fish and Shrink" algorithm is used. 

Both measures take into consideration the name of functions and also, when compar-

ing parameters, they are compared in pairs by their position in the function, e.g., the 

first parameter of the query is compared to the first parameter of the element in our 

casebase. The difference between the two types of similarity is in how the parameters 

are compared. For general similarity, we also consider the number of parameters and 
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their clusters and for the syntax similarity we compare only the types of parameters. 

Currently, we assume that a parameter can either be a string or a number. Data struc-

tures (an array, for example), would be represented as a memory address, which we also 

treat simply as a number. When considering syntax similarity, for each parameter of the 

function in our casebase, we compare to see if the type is the same as the parameter the 

query has. 

For a general similarity, the values of parameters are first converted into clusters'. If 

the information cannot be placed within a cluster, we look for the closest ones, i.e., those 

which one of the limits are numerically closer to the parameter value. The comparison 

then happens between clusters and not between absolute values. We consider it a match 

if two parameters are in the same cluster. Otherwise, we calculate the distance from one 

cluster to another. 

The distance is a number between 0 and 1. If the clusters are not the same and 

at least one of them is not numeric, the distance is maximum, i.e., 1. For calculating a 

distance between two numeric clusters, we have a list of clusters sorted by the ranges they 

represent. The distance between two clusters is a value given by the difference between 

their positions in the list divided by the number of clusters in the list. 

Finally, the accumulated parameter similarity (as the inverse of distance7, in case 

of numeric clusters) is divided by the number of comparisons' to result in an average, 

that will be used to calculate the total similarity. Pseudo-code for calculating general 

similarity can be seen in Figure 3.4. 

For syntax similarity used for unknown functions, we use a simplified process. When 

comparing parameters, we simply compare if their types are the same (by checking the 

6 A previously mentioned, strings, arrays and structures have special clusters that identify the type 
of information. 

7"Inverse" using the mathematical sense of multiplicative inverse or reciprocal for a number, i.e., 

similarity = distance 

8The number of comparisons depends on the minimum number of parameters between two functions. 
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# Query and elements are AGAVE cases 

# Query is the case we are looking for 

# Element refers to a case stored in our casebase 

function GeneralSimilarity(query, element): 

similarityNanie +- CompNgrams(query.Name, element.Name) 

nu.mParams +- number of parameters in query 

if numParams > number of parameters in element: 

nuniParams f- number of parameters in element 

matches +- 0 

# Compare clusters of each parameter 

for i in 0. . numParameters-1: 

q +- query.Parameters[i] 

e 4- element.ParanietersEi] 

if both q and e are numeric: 

if Cluster(q) is equal to Cluster(e): 

matches 4- matches + 1 

else: 

distance 4- ClusterDistance(Cluster(e), Cluster(q)) 

matches f- matches + (1 - distance) 

else if q and e have the same type: 

matches +- matches + 1 

similarityParameters +- matches / numParanis 

# Our formula for similarity 

similarity 4- (3 * similarityNaine + 2 * similarityParameters) / 5 
return similarity 

end function 

Figure 3.4: Pseudo-code for calculating general similarity 
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# Query and elements are AGAVE cases 

# Query is the case we are looking for 

# Element refers to a case stored in our casebase 

function SyntaxSimilarity(query, element) 

similarityName 4— CompNgrams (query. Name, element. Name) 

numParams 4- number of parameters in query 

if numParams > number of parameters in element: 

numParams 4— number of parameters in element 

matches 4— 0 

for i in O. .numParams-1: 

q +- query.Parameters[i] 

e +- element.Parameters[i] 

# We compare the type of each parameter, according to our heuristic 

if type(q) == type(e): 

matches 4— matches + 1 

similarityParameters 4- matches / numParams 
similarity 4- (3 * similarityName + 2 * similarityParameters) I 5 
return similarity 

end function 

Figure 3.5: Pseudo-code for calculating "syntax" similarity 

type of the clusters). The idea here is finding a function that resembles the one in our 

query and not to find a specific case. We want to try and infer how many parameters 

our query has and what their types are. So, if necessary, we will convert values (memory 

addresses into strings) for the actual search for the best case in our casebase. 

The parameters are either read from the stack or from registers, depending oh if it is 

a library or a system call. As we do not know how many parameters our query has, we 

configured AGAVE to assume it has 5 parameters. This number can be modified by the 

researcher, but it was initially chosen after examination of our training set. The number 

of calls with more than 5 parameters turned out to be quite small'. 

Finally, in order to calculate the similarity measure between two functions, we consider 

that, as the number of parameters and their types are less reliable information than 

90ut of 45,000 calls, there were only 96 calls with 6 parameters, all of them to snprintf and only 
one with 7 parameters, calling getnameinf 0. 
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the function name, we give more weight to how similar their names are than to their 

parameters' similarity. The weights as shown in Formula 3.1 were defined after some 

preliminary experiments and follow this rationale. However, we might note that defining 

how similar two strings are is still an open problem. As we so strongly rely on the 

function name, we might revisit our metric in the future in order to provide a more 

effective comparison. 

3 * NameSimilarity + 2 * ParameterSimilarity 
Similarity = 

3.3 Generating our casebase 

5 
(3.1) 

Our process of creation of a case base can be described by the pseudo-code in Figure 3.6. 

AGAVE deals with system calls and library calls differently, so we decided to store them 

as two separate case bases. 

While it is a simple and straightforward process, depending on the number of calls 

being evaluated, it can take quite a long time to finish, especially due to the operations 

that require disk access: looking for the best cluster, checking whether a case is already 

inserted, and updating or storing a case. 

In an earlier implementation of our proof-of-concept, working with a relatively large 

database (around 35,000 calls), we decided to keep everything in memory, thus avoiding 

disk access. We then faced a surprising and unexpected problem. In some occasions, we 

noticed that the computer (a laptop) had restarted, but the problem was intermittent, 

and usually happened when we left the computer working, but unmonitored. In one of 

the occasions, however, we witnessed the system restarting during the process. We then 

noticed that the keyboard was warmer than normal. We immediately installed a temper-

ature monitor and let the process run again. It quickly went over 85 degrees Celsius, and 
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function CasebaseGenerationO: 

# Initialize casebase of system and library calls 

syscall_cb  
libcall_cb  

list-of-calls — traces converted into calls 

# Generate clusters based on DBScan 

GenerateClusters 0 
for each call in list-of-calls: 

new-case - new Case(call) 

solution 4- new_case.solution 

if new_case.names starts with CCSYS 

if new-case is not in syscall_cb: 

insert new-case in syscall_cb 

existing-case 4- syscall_cb [new- case] 

existing-solutions 4-- list of solutions in existing-case 

if solution is in existing-solutions: 

increments solution-counter in existing—solutions[solution] 

else: 

inserts solution into existing-solution 

solution-counter in existing—solutions[solution] - 1 

update existing-case with existing-solutions 

update syscall_cb with existing-solutions 

else: # new-case is LibraryCall 

if new-case is not in libcalLcb: 

insert new-case in libcall_cb 

existing-case +- libcall_cb [new_case] 

existing-solutions 4- list of solutions in existing-case 

if solution is in existing-solutions: 

increments solution-counter in existing—solutions[solution] 

else: 

inserts solution into existing-solution 

solution-counter in existing-solutions[solution] +- 1 

update existing-case with existing-solutions 

update libcall_cb with existing-solutions 

generate_neighborhoods 0 
end function 

Figure 3.6: Pseudo-code for casebase generation 
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we decided to stop as temperatures over 100 degrees can damage the processor, according 

to specification [28, p.10] and the maximum component temperature should be under 105 

degrees (over 125 degrees Celsius can result in permanent silicon damage[29, p.29]). 

We then decided to include a check for temperature during the casebase generation: 

when the limit of 87 degrees Celsius was reached, a delay of 5 seconds was introduced 

(calling OS function sleep 0), which allowed the processor to briefly cool down. This 

extra delay obviously increased the time to generate a casebase, so additional fans were 

also attached to the laptop, as an extra protection against high temperatures. 

3.4 Applying the "4 REs" 

Having a casebase to work on, we will now focus on the "4 REs" from the CBR cycle: 

Retrieving, Reusing, Revising and Retaining. 

3.4.1 Retrieving 

Retrieving a case in CBR consists of finding the most similar case to the case in question'°. 

The case we eventually find will then be used to produce a solution to the case in question. 

A common problem, however, is the performance of search and match operations when 

the number of cases are in the order of several thousands, as the comparison between 

cases might slow down the process to the point where it becomes unacceptable [39]. 

A common approach is reducing the number of comparisons, by selecting just a subset 

of elements of the casebase. Among the different approaches are ones using genetic-

algorithms[30] and fuzzy-logic[4] for self-optimization. 

For this project, however, we decided to implement Jörg Schaaf's "Fish and Shrink" 

algorithm[57]. This algorithm assumes that, if a case being compared to a query has 

10The "case in question" is often referred to as a "query" in CBR. 
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B C D 

B 100% 75% 55% 
C 75% 100% 80% 
D 55% 80% 100% 

Table 3.1: "Fish and Shrink" example: Similarities in casebase 

a similarity measure too low, then other cases similar to that one will also have a low 

similarity to the query, so we can skip them. 

We implemented this algorithm by precomputing the similarity between all the cases 

in our casebase, creating a graph of "neighbors" (nodes that are more similar to each 

other). We then perform a sequential search, but if a case of low similarity is tested, we 

identify all of its neighbors (or "fish" them) and eliminate them from our search space 

("shrinking" it). 

This conceptual graph" of "neighbors" must be created before the code emulation. 

For testing purposes, we have created several of these graphs, each one with a different 

pair (Number of nodes, Minimum Similarity). The number of nodes indicate how many 

cases are eliminated on each step of the "Fish and shrink" algorithm, thus a high number 

of nodes in the graph (that we sometimes call a "neighborhood") should result in a faster 

search. The minimum similarity, on the other hand, limits the number of neighbors. To 

understand why this minimum similarity matters, let us consider the following example. 

Consider a new case A, and known cases B, C, D that are in our casebase. Table 3.1 

shows the similarity between the cases in our casebase. Table 3.2 shows the similarity 

between our new case and each one of the elements in the casebase (for demonstration 

purposes, during emulation this would be calculated as necessary). The cells in these 

tables indicate similarity between the element in the row and the element in the column. 

111n our implementation, however, the graph is stored as a list of lists. Each index represents a node 
and it stores a list of neighbors of that node. 



48 

B C D 

A 35% 85% 65% 

Table 3.2: "Fish and Shrink" example: Comparing new case 

If we consider a minimum similarity of 75%, we would have the following list of 

neighbors for each node: 

Neighbors(B) : {C} 

Neighbors(C) : {B,D} (3.2) 

Neighbors (D) : {C} 

When we try to perform a search for A, as the search is sequential, we would first 

calculate its similarity to B (finding 35% as a result). As the result is too low, it would 

remove all the its neighbors from the search space, i.e., it would remove C. Then we 

would compare A to D, finding a similarity of 65% (the best so far). With no more 

elements, D would be considered the "most similar" node, even though node C is more 

similar to A. 

By increasing the minimum similarity between nodes in a graph to, in this case, 80%, 

we would have the following list of neighbors: 

Neighbors (B) : f  

Neighbors(C) : {D} (3.3) 

Neighbors (D) : {C} 

Note that the node B does not have any neighbors now. So, the first step would, 

again, calculate the similarity with B, following by the similarity with C. Now that C is 

considered during the search and we could find a better result (85% of similarity). 

So, we can conclude that the value for minimum similarity avoids that, during the 

search, we eliminate cases that could be otherwise considered even more similar than the 
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current node being compared to the query. We believed that a higher required similarity, 

while reducing performance, would tend to increase accuracy. 

We understand that this is a contrived example, but it does illustrate the importance 

of the minimum similarity when generating our graphs of similarity. 

In order to increase performance, however, our retrieval algorithm first attempts to 

find an exact match to the case in question. This search for an exact match is indexed, 

thus virtually instantaneous. If nothing is found, then we look for similar cases using 

"Fish and Shrink", as described by the pseudo-code in Figure 3.7. 

Currently, during initialization of the system, AGAVE checks if the configured graph 

is already generated, generating it on-demand if necessary. 

3.4.2 Reusing 

Reusing a solution can mean one of two different approaches: 

1. Using the exact same solution for different instances; or 

2. Adapting a previously seen solution to a new instance. 

As a general rule, our search for results always returns the most frequent solution 

for a given case. However, there is, in our implementation, one case that involves some 

adaptation. 

We have noticed that a common occurrence was that some functions would return, 

quite often, the value of one of the parameters passed. For example, the function inmap 

receives as a first parameter a memory address. If that parameter is not NULL (zero), 

the kernel should try to map memory around that address. While it does not happen 

always, in most cases when a memory address was specified, the function would return the 

same value, or some number close to it. So, we implemented that particular situation by 

creating an object called ReturnParameter, that would contain the index of a parameter 



50 

# query is the case we are searching for 

# type-similarity indicates if general or syntax should be used 

# threshold is the minimum similarity 

function FishAndShrink(query, type-similarity): 

if query is Syscall: 

base 4— syscall_cb 

else: 

base 4- libcall_cb 

list-cases 4— list of keys from all cases in base 

if query is in list-cases: #Exact match 

return existing-solutions from list—cases[query] 

best-similarity +- 0 

best-case 4— {} 
while list-cases is not empty: 

case 4— first case on list-cases 

remove case from list-cases 

if type-similarity is " General " 

similarity +- GeneralSimilarity(query, case) 

if best-similarity < similarity: 

best-similarity 4— similarity 

best-case 4-- case 

else: 

if similarity < threshold: 

for each neighbor of neighborhood(case) 

remove neighbor from list-cases 

return existing-solutions from best-case 

end function 

Figure 3.7: Pseudo-code for casebase search 
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used to call that function. When reading the traces, for each time the return value 

matches one of the parameter, we include ReturnParameter as a possible solution. During 

the request, if that object is the most frequent solution, then it would be used as the 

chosen solution. If an object ReturrtParameter is returned by the search, the solution 

that we will give to the caller is the value of the indicated parameter. 

3.4.3 Revising 

Due to the number of times CBR is called during the emulation, and as our system 

should be as automatic as possible, revising solutions during the emulation phase would 

introduce a significant delay for execution. Instead, we decided to revise solutions during 

the training phase. 

After we generate our casebase, we start a validation process, where we read all the 

calls used for generation and check what solution the system returns. The solution is 

then compared to what was in the initial trace and, if the similarity between the two 

solutions is below a predefined threshold (currently 50%), the system will simply store 

that call as problematic, but no actual change is performed in the casebase. 

With this list of "problematic" calls, the researcher can decide whether it is only an 

exception that requires no correction or if it is necessary to implement the problematic 

call, in order to achieve the desired result. 

It must be noted that, in this case, the researcher can choose to implement the call 

in a way that it actually performs some actions (which should be seriously considered, 

especially for I/O operations), or simply implement it to return the correct result. 

As an example of these two options, let us consider a call to puts, a function that 

writes a string to the standard output, returning the number of characters written. The 

researcher could implement puts in a function that actually writes a string into a file, 

so it can be checked later, or on screen, returning the number of characters saved. The 
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researcher could also implement a function that simply returns the number of characters 

in that string, to assure the correct execution of the code under analysis. 

While the first option is, in general, essential for functions that involve some I/O 

operation, the second allows us to keep the system running even when we have no need 

to record the operations performed by a function. 

3.4.4 Retaining 

Our task of retaining cases can be described as having two sub-tasks: 

1. Deciding when a new case should be retained 

2. Actual retaining process 

Not all the cases we encounter need to be stored again, especially considering that 

our revising step depends strongly on the researcher, so we only want to store new 

cases when they can bring some positive impact to our system. Correctness cannot be 

evaluated in run-time (at least not at this point), so we decided to retain cases that can 

bring speed to our process. When we search for a solution to a problem that is unknown, 

we will store that problem, and associate the solution with it. We defined that, when 

the best similarity found was lower than a minimum threshold (currently 50%12), this 

problem would be considered unknown. The definition of this threshold, however, can 

be configured by the researcher within AGAVE. 

The main impact of this retaining operation is on the retrieval step. As, in that step, 

we first look for an exact match we can speed up that process from several seconds to an 

almost immediate search by including unknown cases in our casebase. 

"According to our formula for similarity (Equation 3.1), 50% of similarity would indicate that, in the 
chosen element, the name, the parameters or both are very different to those from the query. 
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3.5 Testing CBR 

We have tested just the CBR components isolated from the rest of the system in order 

to answer the following two questions: 

1. Is CBR suitable to assist the OS emulation? In other words, would we have enough 

accuracy so we can test code without having to implement OS emulation? 

2. Is it efficient? Or how can we tune our systems to maximize efficiency without 

losing much accuracy? 

Directly related to this tuning process is another factor we wanted to evaluate, even 

though it was not, by any means, decisive for the success of AGAVE: the size of generated 

casebases and how the number of neighbors would affect it. 

Development and tests of the code, as well as database creation and initial experiments 

were done on a laptop. However, the experiments presented here required a rather long 

period of execution (several days). For these experiments we used a desktop computer, 

equipped with an Intel Core2 2.4GHz processor and 4GB of RAM, running Scientific 

Linux SL 5.3 and Python interpreter version 2.7. 

For our experiments, we collected traces during the execution of 56 Linux commands' 

(listed in Appendix A), storing a total of 45,000 calls. The limit of 45,000 calls was 

chosen to reduce the time for generating the casebase during our tests. Those calls were 

converted into 2,008 cases for library calls and 2,355 cases for system calls. All the 

executables used for generating our casebase consisted of text-based commands. This 

was done purposely. We speculated that it would be useful to evaluate how our system 

"We selected text-based commands from the directory /bin. From those, we discarded some that 
would run indefinitely (e.g., bash, dash). However, as we limited the number of calls, only those 56 
commands were used to generate our casebase. In order to allow a more realistic emulation, we suggest 
that the traces include all commands, when possible. Other programs, such as those with a graphical 
interface (X-based, Gnome, etc.) should also be included when possible and necessary. 
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behaves for unknown calls, and a natural source for unknown calls would be executables 

with a graphical interface. 

Our evaluation considered three different situations: 

• Only system calls: as their number is quite limited (336 system calls in our version 

of Linux), we expected a high accuracy. 

• Only library calls: we believed that a difference between libraries accessed by our 

training set and the libraries used by the testing set would reduce accuracy. 

• Both system and library calls: A balance between the two previous situations, thus 

an accuracy intermediate between those two situations. 

We then generated casebases with different minimum similarity for two cases to be 

considered neighbors and different maximum number of neighbors for each case. We used 

graphs (that we sometimes called "neighborhoods") of 50, 100, 250, 500 and 750 nodes, 

with minimum similarity of 70%, 75%, 80%, 85%, 90% and 95% 

For testing sets, we collected traces of the execution of 4 different programs: 

• is: Unix command for listing directories. While an execution of is is part of the 

training set, for testing we are using a different trace of the same command. The 

sequence of calls, however, should be the same and, even though the results are 

different, we expect a high level of accuracy in this test. 

• ping: TCP/IP standard command for sending ICMP messages through the net-

work. 

• who: Unix command for listing on-line users. 

• xcaic: a Xli based calculator. This program uses libraries that are not likely to 

be used by the previous ones. 
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Program Syscalls Lib calls Total 

is 181 291 472 

ping 163 86 249 

who 217 144 361 

xcalc 870 88 958 

Table 3,3: Types of call in testing traces 

Table 3.3 shows the number, on each trace, of system and library calls, so we can 

understand the impact of each one in the results. 

There is one other factor that was considered for increasing performance and it is a 

minimum threshold of similarity, for comparing a query case and our case base. During 

a search in our casebase, when this threshold of similarity is reached, we have found an 

acceptable similarity level, i.e., the element we compared is "similar enough" to the one 

we are searching for. 

This threshold should not be confused with the minimum similarity for generating 

neighborhoods. In that case, a high similarity increases performance, as that similarity 

is used for reducing the search space. Here the opposite happens. A low threshold would 

actually result in a quicker, but more inaccurate response, as we would interrupt the 

search earlier. The tested thresholds were 70%, 80%, 85%, 90%, 95% and 100%. The 

last one (100%) meaning that we either would find an exact match or all the graphs 

would be checked. 

3.5.1 Evaluating accuracy 

Our tests consisted in reading the traces from the testing set, converting each trace into 

a case. We then made our CBR module to search for that case in the casebase and return 

what solution that call would be resulting on. That result was compared to the trace. 

Accuracy is, thus, given by how similar the result is to the trace it originated from. 
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For discussing accuracy in our implementation of CBR, we will be using one single 

neighborhood. The implementation of different neighborhood sizes had the main ob-

jective of improving performance. While we believe that tuning performance has some 

impact on accuracy, we first only wanted to evaluate what degree of accuracy we could 

achieve. Only then we would deal with performance issues. 

By Figure 3.8a, we can see that is achieved a high accuracy, around 90%. This was 

expected as we had an example of is in our training set, so all the calls were in our 

casebase. In the case of ping and who, while they were not in our training set, they are 

text-based, and we still could keep an accuracy that varied from 60% to 80%. 

For xcaic, however, due to its graphical interface, we were expecting a lower accuracy. 

In this particular case, the number of library calls in this case was only about 10% of 

the number of system calls. Because of this difference, the impact of the bad accuracy 

when searching for library calls (Figure 3.8b) was compensated by a better accuracy for 

system calls (Figure 3.8c). 

Library calls, in general, will be executing system calls internally. Thus, we tend to 

find a higher number of system calls than library calls. We believe that this will allow 

us to keep an acceptable accuracy, if considering traces of executions. 

A problem we would face, however, is the fact that for actual execution, we do not 

have all the information, i.e., most programs have calls to the operating system library, 

not to system calls. Even though we are currently storing what calls (either library or 

system calls) are executed inside a library call, we are not yet using this information. 

Thus, if we were exclusively using our current implementation of CBR for emulating 

xcaic within AGAVE, our accuracy would be actually reflected by Figure 3.8b. 

For our current implementation of AGAVE, there would be two ways of improving 

this accuracy. The researcher could implement the functions that are missing (or at least 

those that are relevant), or the researcher could collect traces of trustworthy programs 
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that use the same library and process these traces within AGAVE. (The program xcalc, 

for example, could have its accuracy improved by the use of traces from other X1  based 

programs). 

3.5.2 Evaluating performance 

Thus, our experiments confirmed our expectations. There are two factors that impact 

performance: 

1. The threshold used to indicate that a "similar enough" element was found, which 

could interrupt the operation without necessarily looking at the entire search space. 

2. The neighborhood definition, defined as a pair (Number of Neighbors, Minimum 

Similarity). As previously discussed, a higher number of neighbors would provide 

a better performance for search operations. More elements would be removed from 

the search space, during the "Fish and Shrink" algorithm, limiting the number 

of comparisons, but negatively impacting accuracy. On the other hand, the min-

imum similarity for elements to be considered neighbors keeps us from removing 

potentially good results, but reduces performance and improves accuracy. 

First, we look at the impact on the threshold. In Figure 3.9a, the y-axis represents 

the average time to look for a call, in milliseconds. All the programs in this test used the 
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Figure 3.9: Evaluating performance 

same parameters for the neighborhood'4. 

As for evaluating the impact of changing the neighborhood parameters, we defined 

the threshold at 100%, thus forcing the search in the entire database unless a perfect 

match was found. In Figure 3.9b, we have the emulation of the commands with different 

configurations for neighborhoods when keeping the minimum similarity at 85%. 

The good performance presented by xcalc might seem surprising. Xcalc uses calls 

from libraries that were not in the training set, so most of the library calls were unknown. 

The system, then, retained the results for those calls, and when they were later needed, 

it would use the results just retained. We should remember, however, that this rather 

good performance was accompanied by a low accuracy (Figure 3.8). 

As we previously discussed, the minimum similarity does have some impact on per-

formance, but not directly. The actual impact on the minimum similarity is by reducing 

the actual neighborhood size for some of the function calls. The minimum similarity is, 

therefore, more related to the casebase size (which obviously impacts on performance). 

A discussion about the casebase size is in the following section. 

14500 Neighbors with 85% of minimum similarity. 
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Figure 3.10: Evaluating casebase sizes 
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Figure 3.10 shows us the size of the files that store our casebases (neighborhoods). As 

expected, the higher number of neighbors, the bigger our casebase will be. An alternative 

to reduce the casebase size would be by increasing the minimum similarity for entities to 

be considered neighbors. The expected trend, however, only can be observed for system 

calls (Figure 3.l0c). 

For library calls (Figure 3.lob), and consequently for the total size of our casebases 

(Figure 3.8a), we observe a significant reduction in the casebase size for 750 neighbors 

with a minimum similarity of 95% between them. The number of different names is 

higher for library calls than for system calls and the names have a strong impact on the 

similarity measure. So, the number of 750 neighbors for library calls is rarely achieved 

and the actual neighborhood has less neighbors than expected. 

3.6 Summary 

In this chapter, we discussed how CBR was implemented within AGAVE. We first pre-

sented the definition of a case for AGAVE, then discussed details of decision and imple-

mentation and also some of the problems that we faced during the development. 

Finally, we discussed tests that were performed to evaluate accuracy and performance 
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under different conditions. Our tests showed promising results for a proof-of-concept; 

however, there is still a lot of improvement necessary. Not only are there some features 

that should be explored, but there is information that could be collected and was not 

considered during this project. 

An important source of information, for instance, is the relation between calls. We 

are able to collect which calls are performed during the execution of a function. This 

information could be used for inferring more details of execution, which would lead the 

researcher to a better understanding of the code under analysis. 

Another clear limitation of CBR in AGAVE is that, by using only traces as a source 

of information, we are not able to deal with functions that return information in one of 

their parameters. We believe that this information returned in parameters can be possibly 

inferred by other means, but we have not yet explored this alternative. However, when 

necessary for analysis, the researcher can implement the function within AGAVE. This 

would assure a correct code execution and a more precise analysis. 
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Chapter 4 

AGAVE Usage and Testing 

During this thesis, we have presented how AGAVE is organized and how CBR is imple-

mented for allowing emulation. In this chapter, we will discuss how the researcher can 

use AGAVE to detect maiware. 

First, we present how AGAVE can be configured, using a configuration file and, for 

some options, the command line. The configuration file is similar to what is frequently 

found for various programs. The command line can allow the user to easily modify the 

behavior of AGAVE for a specific session of emulation. 

We then discuss how to program AGAVE, either for implementing a system or library 

call to achieve a more correct emulation or for implementing means for detection. This 

discussion is presented in the form of a tutorial, so the reader can have an insight of the 

AGAVE experience. As part of this, we describe AGAVE testing. 

4.1 Configuration 

The AGAVE configuration file is a standard text file, divided in sections, similar to ". INI" 

files found on Windows. Each section has a header, identified by the name of the section 

between square-brackets (e.g., [SectionName]) and the parameters in each section are in 

the form "parameter=value". 

By default, AGAVE looks for a configuration file named "agave.conf". In order to 

provide a different file, the user must call AGAVE using the option "-c": 

user@host $ ./run-agave -c MY_CONFIG SUSPICIOUSEXE 
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The remainder of this section presents the options that can be used to configure 

AGAVE. 

4.1.1 Section "emulator" 

This section is responsible for configuring which hardware emulator we will use, by choos-

ing the emulation interface. Details on how to implement this interface were previously 

discussed in Chapter 2. 

[emulator] 
modul e=agave _pyemu 

name=Agave2PyEmu 

log_level=DEBUG 

Figure 4.1: Emulator section in agave.conf 

In Figure 4.1, we have an example with the available options, which are: 

• module: name of the module file where the interface was implemented. It must 

be a valid Python module (so we assume ".py" or ".pyc", as extension). A module 

file must contain one or more interfaces. 

. name: the name of the interface that must be used within the module file. 

• log-level: level of logging for the emulator. Valid levels are: "DEBUG", "INFO", 

"WARN" and "ERROR", in this order. For example, if a level of "INFO" is defined, 

no debugging information is logged. If "ERROR" is chosen as the log level, only 

error messages will be logged. 

4.1.2 Section "cbr" 

The parameters for the CBR module are specified in this section, defining three things. 

First, the parameters for the fish-and-shrink algorithm. Second, a minimum threshold 
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for similarity value, that, when achieved, interrupts the search and returns the result 

that was found. Third, the logging level specific for the CBR module. This is similar to 

the configuration for the emulator that was previously presented. 

An example of this section can be seen in Figure 4.2. 

[cbr] 
casebase=Linux-x86 

neighbors=500 

neighbor_similarity=75 

threshold=75 

log_level=DEBUG 

Figure 4.2: CBR section in agave.conf 

The available options are: 

• casebase: indicates the name of the casebase to be used. We assume that a 

researcher might work with different operating systems and different versions of 

them. So, for each operating system we generate a casebase. If the researcher wants 

to experiment with code in a different operating system, changing this parameter 

would select a different casebase. 

• neighbors: the number of neighbors used when generating the neighborhoods for 

the Fish-and-Shrink algorithm. 

• neighbor-similarity: the minimum similarity for neighbors, also used for neigh-

borhood generation. 

• threshold: the minimum similarity for searches. When a case with similarity 

greater or equal to this parameter is found, its result is returned. 

• log-level: level of logging for the CBR module. 
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The values for neighbors and neighbor-similarity are used to select the casebase the 

fish-and-shrink algorithm will search in. If the casebase does not exist, it will be gen-

erated. It is important to be aware that this generation might take a long time, up to 

several hours, depending on the number of cases stored and the parameters used, but 

this is precomputation that is not repeated for each emulator run. 

4.1.3 Section "scripts" 

[scripts] 
1=libc . agave 

2=linux_syscalls . agave 

3=instruct ions . agave 

Figure 4.3: Scripts section in agave.conf 

This section contains scripts to be executed during the initialization of AGAVE. These 

scripts contain definitions of functions that are used for customizing the emulation (OS 

or CPU) and also for other purposes, such as initializing memory for specific operations. 

The scripts must be stored in the scripts directory. Even though the scripts can be 

considered valid Python code, we suggest the extension . agave for such files, as they 

contain AGAVE-specific code. 

The parameter name (which we suggest to be a sequential number) indicates in which 

order the scripts will be executed, as some scripts might depend on others. If two scripts 

are referenced by the same value, only the last one will be considered valid (the first one 

will be ignored). 

Scripts can also be loaded by using "--load-script" or "-is" in command line. 

user@host $ ./run-agave --load-script SCRIPT1.agave --load-script 

SCRIPT2 . agave EXECUTABLE 
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or 

user@host $ ./run-agave -is SCRIPT1.agave -is SCRIPT2.agave EXECUTABLE 

Scripts that are supplied on the command line will have higher precedence than those 

specified by configuration file. AGAVE first loads scripts specified in configuration files 

and only then the ones given on the command line. This means that if a function is 

declared twice (in a configured script and in a script passed by the command line), 

the last declaration will override the first, i.e., the definition in the file given on the 

command line will prevail. This approach gives the researcher the flexibility of changing 

the execution for a single session of emulation without modifying the configuration file. 

4.1.4 Section "heuristics" 

Heuristics are sets of rules that guide how an activity is performed. In malware analysis, 

the term heuristics sometimes refers to methods used for detection. 

Configuring heuristics within AGAVE requires the researcher to perform two steps: 

1. Implement heuristics within AGAVE, preferably using a script file, and declare 

them using the command set-heuristics. 

2. Modify the configuration file to inform AGAVE when the heuristics will be evalu-

ated. 

An implementation of a simple heuristic is presented later in this chapter. 

For the configuration file, a "heuristics" section is used. Each entry in this section is 

in the form "NAME=EVENT[, . . .]". NAME is the name of the heuristic as defined by 

the command set_heuristics(its first parameter). EVENT informs AGAVE when the 

heuristic will be evaluated and can be one or more of the following: 

9 begin-execution: the heuristic is evaluated before the emulation starts. 



66 

• before-step: the heuristic is evaluated before an instruction is executed. 

• after-step: the heuristic is evaluated after the execution of an instruction. 

For example, in Figure 4.4, findEICAR will be performed at the beginning of the 

emulation and after each instruction is executed. CheckStack, on the other hand, will 

be performed before the execution of each instruction. 

[heuristics] 

findEICAR=begin_execution, after_step 

CheckStack=bef ore_step 

Figure 4.4: Configuring heuristics 

4.2 Testing AGAVE emulation 

As we previously mentioned, programming AGAVE is quite simple, in the sense that it 

uses the Python interpreter, on which AGAVE is interpreted, to interpret user code as 

well. AGAVE, however, provides some functions to be used by the researcher to access 

information about the CPU and memory that are necessary to achieve their objective: 

detecting malware. 

A comprehensive list of the functions provided to allow the researcher to program 

AGAVE is in Appendix B but, instead of going over each one of them, we believe that a 

demonstration by example is a more effective approach. 

In the remainder of this chapter, we will demonstrate a case of maiware detection. 

In our demonstration, we will encounter some of the problems a researcher would have 

to face, and demonstrate how AGAVE customization can overcome those problems. For 
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#include <stdio.h> 

mt mainO -C 
puts("This is the EICAR File content:\n 

X50 P%@APC4i\PZX54(P)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*"); 

} 

Figure 4.5: Source code for hello_eicar 

this demonstration, we assume Linux as the operating system, running on an x86 (32 

bit) platform. 

4.2.1 Hello EICAR 

Our final goal is using AGAVE for maiware detection. One of the standard tests for 

malware detection, specially for signature detection, is detecting the EICAR test file. 

The "EICAR Standard Anti-Virus Test File" [19] is a valid DOS executable, con-

sisting only of ASCII human readable characters that, when executed, prints "EICAR-

STANDARD-ANTIVIRUS-TEST-FILE!". The European organization EICAR proposed 

the use of this file as good practice to test anti-virus and anti-maiware products without 

risk of real infection. The EICAR file is successfully detected by a great majority of 

anti-virus products on the market. 

However, this file is meant to be executed in a DOS/Windows environment and we 

have developed a proof-of-concept having ELF files in mind, i.e., it would interpret and 

emulate only ELF files, so our system was not able to deal with the EICAR file as it is 

distributed. Instead, we created a small program in C that prints the EICAR file content 

(Figure 4.5) and compiled it using gcc'. By doing this, we have an ELF executable that 

contains the EICAR string. 

Note that traditional anti-virus will not detect our executable as having the EICAR 

signature. According to the EICAR specification, the EICAR test file must appear as 

1gcc (TJbuntu 4.4.3-4ubuntu5) 4.4.3 
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the first 68 bytes of a file, while ours is in the ELF file. However, as our objective is 

finding the EICAR file in memory, we believe that our implementation actually follows 

the original motivation: a safe alternative for testing anti-virus products. 

Detecting the EICAR file string in our executable is trivial. A simple string search 

would find it. A maiware writer would likely use some sort of obfuscation to avoid 

detection. 

4.2.2 Packing Hello EICAR 

Packing is essentially the process of compacting, combining and/or obfuscating an ex-

ecutable, while still keeping it executable[61]. Packing can be used for saving storage 

space, to create an installer, or to avoid reverse engineering of proprietary code. The 

actual code must be unpacked to be executed, so, in general, what happens is that the 

code is compressed and an executable stub is added. This stub decompresses the file (or 

parts of it) in memory and then executes it. 

While the technique of packing has its legitimate uses, it is also often used by malware 

writers to make analysis by researchers more difficult. 

We want to know if AGAVE was capable of allowing us to detect packed maiware. 

We are assuming that we could run the emulation of the stub, it would unpack the actual 

malicious code in memory and, just before it was executed, we would be able to easily 

detect (by looking for signatures, for example) the maiware in memory. 

One of the most common[25] tools for packing is called UPX (standing for Ultimate 

Packer for eXecutables)[50], and we would use UPX' to pack our hello_eicar and test if 

we could use AGAVE to detect the EICAR file. 

However, simply packing our hello_eicar executable did not work. We received an 

intriguing error message from UPX, shown in Figure 4.6. That message was not explained 

2UPX version 3.04 
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daniel@dssl$ upx test 

UPX 3.04 

Ultimate Packer for eXecutables 

Copyright (C) 1996 - 2009 

Markus Oberhumer, Laszlo Molnar & John Reiser Sep 27th 2009 

File size Ratio Format Name 

upx: test: NotCompressibleException 

Packed 1 file: 0 ok, 1 error. 

Figure 4.6: Packing hello_eicar 

#include <stdio . h> 

mt main() { 
puts("This is the EICAR File content:\n 

X50 P°h@AP[4i\PZX54(P)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*"); 

__asm__ ("nop\nnop\nnop\nnop\nnop\nnop\rmop\nnop\nnop\nnop\n"); II 10 NOPs 

__asm__ ("nop\nnop\miop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\nt'); 1/ +10 NOPs 
II ... line above was repeated 180 times 

..._asm__ ("nop\nnop\xmop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\n"); II +10 NOPs 
} 

Figure 4.7: Source code for hello_eicar with NOPs 

anywhere in the UPX documentation. We downloaded UPX source code and analysed 

it, so we found that UPX tests how the . data section, with the stub, was compressed, 

returning the error where the compressed version has the same size of the original. This 

may be indicative that the main focus of UPX was for compacting not for obfuscation. 

To work around this problem, we decided to simply increase the size of our data sec-

tion. We edited our C code to include NOP instructions  (as we can see in Figure 4.7). 

We decided to use this approach because we wanted to guarantee that we had an exe-

cutable with exactly the same functionality as the original, although just a bit larger, 

almost 2 kilobytes larger. 

Operation" instructions 
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4.2.3 First attempt at emulation 

Having an executable to use in our tests, the next step is trying to emulate its execution. 

We run AGAVE, passing our packed "helloeicar" as a parameter. 

user@host $ ./run-agave hello..eicar 

Our "hello_eicar" is loaded by AGAVE, the user receives a series of messages and 

a prompt ("AGAVE )") is shown. In interactive mode, AGAVE presents a text-based 

interface, where a prompt is displayed and the user can type commands. Python com-

mands as well as the functions listed in Appendix B can be used in this interface. The 

user can, then, start the emulation by using the AGAVE command run(). 

AGAVE > run() 

Here a great weakness of AGAVE becomes evident. While the non-emulated code is 

normally unpacked and executed in a few milliseconds, AGAVE runs for several minutes. 

As previously mentioned, having AGAVE on top of PyEmu turned out to be a bad 

combination. In tests, we rarely could emulate more than 1,000 instructions per second. 

When CBR was necessary it would be even worse. For comparison, a 8088 processor in 

the early 1980's could execute more than 500 times faster than our current version of 

AGAVE. 

The emulation then is interrupted by a memory access error. A quick analysis shows 

that the program tried to push a value onto the stack. However the stack pointer was 

pointing to an address in memory that was not initialized yet. 

Looking further in the logs, we find that there were early attempts of performing a 

system call to SYS..mmap. SYS..mmap's main purpose is mapping a file into memory. 

However, when SYS..inmap is executed in "anonymous" mode, a virtual memory page 

(from a swap file) will be mapped into memory, essentially allocating memory. As we 
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do not have SYS_mmap actually implemented, AGAVE simply calls its CBR retriever 

that returned the requested address to the program. In fact, the result returned to the 

program is exactly the one the program was expecting, as shown in the excerpt from the 

log in Figure 4.8. However, AGAVE did not perform any actual operation in memory, 

which finally resulted in an attempt of accessing memory that was not allocated. 

[INFO] SYSCALL TO SYS_mmap at O0c01cO0 

[INFO] Executing code for SYS_mmap from casebase 

[INFO] Executing SYS_mmap('9824212', ' 4096', ' 12587008', ' 12590116', ' 2572') 

[INFO] Results from retriever: 9824212 

Figure 4.8: CBR result for SYS.inmap 

4.2.4 Implementing a system call 

Our next step to have the code running is to implement SYS.mmap. A researcher may 

not always have complete information to perfectly implement a third-party function. So, 

for this particular example, we will not implement SYS..mmap to its full functionality, 

only what is necessary to allow us to execute our "hello_eicar". 

Implementing a system call within AGAVE means implementing a simple Python 

function and then declaring it as a system call. 

It must be noticed that implementing system calls depends on the operating system 

being emulated. Each operating system deals with system calls differently: assembly 

instructions are different (for example, mt 0x2e on Windows and mt 0x80 on Linux), 

CPU registers and flags are configured differently, memory is managed differently and, 

something that will directly affect our example of implementation, parameters are passed 

to system calls by different mechanisms. 

For example, in both Windows and Linux, the CPU register EAX is used to indicate 
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what system call is being performed. However, parameters are passed using different 

registers. On Windows NT, for example, only the CPU register EDX is used to pass 

parameters to a system call. The parameters are pushed onto the user stack and EDX 

receives the memory address that points to the parameters' location in the user stack[53]. 

On Linux, on the other hand, several registers are used to pass parameters to a system 

call. The first parameter is referenced by EBX, the second by ECX, the third by EDX. If 

more parameters are necessary the registers ESX and EDT are also used (in this order). In 

some cases, either because the registers are not enough for all the necessary parameters or 

for organization purposes, instead of storing actual values, the registers are used to store 

memory addresses. These addresses point to structures that contain all the information 

and those structures are stored on the user stack. 

SYS.mmap, the system call we are going to implement, receives only one parameter 

(thus we will only need to read EBX), that points to an mmap_argstructure(Figure 4.9), 

as defined in Linux source code4. 

struct minap_arg_struct { 
unsigned long addr; 

unsigned long len; 

unsigned long prot; 

unsigned long flags; 

unsigned long fd; 

unsigned long offset; 

Figure 4.9: mmap..arg..structure, used as parameter for SYS.mmap 

For this example, our implementation of SYS..mmap will only able to deal with anony-

mous mapping (when a flag MAP-ANONYMOUS is used). This is different from the 

mapping of files into memory. An anonymous mapping has the same basic functionality 

4This type definition can be found at /usr/src/linux/arch/x86/kernel/sysJ386..32.c. 
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of memory allocation and initialization, with the contents initialized to zero'. 

Our implementation of SYS_mmap can be seen in Figure 4.10. Some details about 

this implementation must be noticed: 

• When an address is not explicitly given, we need to dynamically allocate a page. 

For this implementation we directly accessed the PyEmu memory object to find an 

available memory page. Memory management, allowing AGAVE direct emulated 

memory access without relying on the emulator being used and having the ability 

of pointer tainting[68], is a feature that we want to add to AGAVE in the future. 

• We used the AGAVE command set.mémory 0 to initialize the memory, setting the 

content to zeroes. This command also allocates memory pages if necessary. 

To define the function "sys..mmap" to be executed as the system call "SYS.mmap", 

we use the AGAVE command set-system-call. The first parameter is the system call 

name and the second parameter is a call to our function. 

This code is saved in a file called "demo. agave", and we try to emulate our "hello_eicar" 

again. But now, we will inform AGAVE to load the file we just created with our 

SYS.mmap6. 

user@host.$ ./run-agave --load-script demo.agave hello_eicar 

AGAVE> runO 

Different from the first attempt, the code now crashes almost immediately. The 

reason now is different: an "unsupported instruction". Most CPU emulators do not offer 

support to all the possible instructions defined by the architecture they emulate. In fact, 

5According to the mmap manual page. 
6A different option would be include the script in the AGAVE configuration file, as explained earlier 

in this chapter. 
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def sys_imnapO: 
ebx = get_register("EBX") # Reads first parameter of sys_mmap 

parameters = 0 
address = ebx 

for i in range(6): # Reads structure from memory 

data = get_memory(address, 4) 

parameters. append(data) 

address = address + 4 

(addr, length, protection, flags, fd, offset) = parameters 

# If address not supplied, get the first available page 

if addr == 0: 

addr = interface . emu . memory. get_available_page (0x08000000) 

if flags & 0x20: # Checks if it is an anonymous mapping 

data = '\xOO' * length 

set_memory(addr, data, length) # Initialize memory with zeroes. 

else: 

# Not an anonymous mapping, do nothing for now 

pass 

set-return-code( addr) # Returns the address 

set_system_call (" SYS_nunap", "sys_mniapO") 

Figure 4.10: Implementation of SYSmmap for AGAVE 
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a common technique used by maiware writers to detect if emulation is taking place, and 

then avoid analysis, is attempting to execute obscure or unusual instructions [13]. This 

is no different for PyEmu, the emulator we are using for our proof-of-concept. 

The instruction responsible for the crash is LODSD. This instruction is not imple-

mented in PyEmu and, as we will see later, this is not the only one. To continue our 

emulation, then, we need to implement this instruction. 

4.2.5 Implementing x86 instructions 

LODSD is a mnemonic for "Load String". This instruction is used to load a string from 

ESI into EAX. The instruction also increments or decrements ESI, depending on the 

bit DF being enabled in the CPU register EFLAGS. In practical terms, we simply need 

to store the address from ESI to EAX and then modify ESI. The implementation is in 

Figure 4.11. We increment (or decrement) ESI by 4 because LODSD assumes addresses 

are double words (4 bytes). 

def LODSDO: 

esi = get_register("ESI") 

df = get_register("DF") 

data = get_memory(esi, 4) 

set_register("EAX" , data) 

if df == 0: 

set_register("ESI" , esi+4) 

else: 

set_register("ESI" , esi-4) 

set_custominstruction("lodsd", "LODSDO", 1) 

Figure 4.11: Implementation of the instruction LODSD for AGAVE 

To declare our function "LODSD" as a custom instruction for AGAVE, we use the 
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AGAVE command set_custom_instruction. This command is similar to the previously 

seen set-system-call, but, as mentioned in Chapter 2, an additional parameter is nec-

essary and it is the length of the instruction in bytes, so the instruction pointer can be 

incremented accordingly. 

As we briefly mentioned, this is not the only instruction that is unimplemented by 

PyEmu. And to successfully emulate our "hello_eicar", it is also necessary to implement 

STOSD and BTR. 

STOSD (Store string) performs the reverse operation to LODSD, i.e., it stores a string 

from EAX into EDI. BTR (Bit Test and Reset) is an instruction that selects a bit from 

a bit string and stores it in the bit CF from the register EFLAGS. Implementing these 

instructions is similar to the implementation of LODSD and, for reference, can be found 

in Appendix D. 

Additionally to these instructions that were not implemented by PyEmu, we have 

a case of an instruction that was implemented but had to be overwritten. This is the 

instruction REP, which repeats the following instruction according to the number stored 

in the register ECX. During the emulation of our "hello_elcar", there are some calls for 

"REP LODSD" or "REP STOSD" (part of the unpacking code for UPX). While PyEmu 

has an implementation for REP, it does not recognize our LODSD and STOSD, imple-

mented within AGAVE. The solution is, thus, implementing the repetition instruction• 

for those. 

We decided to mention this implementation (Figure 4.12) because it also has some 

interesting details of implementation: 

• We have one single function for two different instructions. AGAVE allows us to use 

parameters when defining functions that are used as instructions. The same can 

also be used for defining system calls, library calls or heuristics (example of these 

last two will be seen shortly). 
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def REP(instruction): 

ecx = get_register("ecx") 

while ecx > 0: 

(command, size) = get-custom-instruction(instruction) 

eval (command) 

ecx = ecx -1 

set_register (" ECX" , O) 

set_custom_instruction("rep lodsdtt , "REP('lodsd')", 2) 

set_custom_instruction("rep stosd" ," REP('stosd')" , 2) 

Figure 4.12: Implementation of the instruction REP for AGAVE 

• We use the AGAVE function get_custom_instruction 0. This function returns a 

tuple (command, size of instruction) and this information can also be used for our 

implementation. 

With all these instructions implemented and saved in the file that we previously 

created ("demo.agave" )7. Then, we try to emulate our code again: 

user@host $ ./run-agave --load-script demo.agave hello_eicar 

AGAVE> run() 

Again, the emulation takes a while to run (around 2 long minutes) and finally ends 

gracefully. The long time is due to the number of instructions being executed for the 

unpacking process (allied to our slow speed). During the execution we observe requests 

to the CBR retriever for system calls that we did not implement (such as SYSmprotect 

or SYS..munmap). 

7ldeally, we would recommend the researcher create different files for instructions, system calls, library 
calls and heuristics, as it would allow a better customization. For example, Linux system calls are 
independent of processor-specific instructions and keeping them separate from each other would allow 
to easily perform tests of a 32 bit processor running a version of Linux and then the same tests of a 64 
bit processor using the same version of Linux. 
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But, then, something different happens. AGAVE finds a call to "_Jibcstartmain", 

a function defined in the shared library "libc". As it is not implemented within our 

"hello_eicar" and AGAVE does not know what to do, it calls the CBR retriever for that 

library call. 

That function is part of the initialization process for an ELF file and should, among 

other actions, call the main function in our "hello_eicar". In fact, reading this call shows 

us that our original code for "hello_eicar" is running. Until now, all the code emulated 

was for the unpacking process inserted by UPX. 

And, again, our CBR retrieves and returns a value that is consistent to what the code 

was expecting, but as no action was really performed, the program ends when it finds 

the next instruction, a hlt (for Halt). We need, thus, to implement "_Jibc.starLmain". 

4.2.6 Implementing a library call 

The function _Jibc..start...main is responsible for initializing the environment to execute 

code in Linux. It should perform tasks such as thread initialization and registering 

handlers for a clean exit. It also must appropriately call the "main" function of an 

executable and, when "main" is finished, the "exit" function[1]. 

For simplicity, our implementation of _Jibc_start..niain simply calls the main function, 

as shown in Figure 4.1.3. This implementation is also saved in our "demo.agave" file. The 

implementation is straightforward: _Jibc.startmain receives as parameter the memory 

address for the "main" function. We simply move that address to the instruction pointer. 

Now our "hello_eicar" can run to its completion. Looking at the emulation output, 

we see a call to "puts" (emulated by our CBR module) and then a sequence of NOPs. 

However, completely emulating this program is not our goal. Our goal is detecting 

maiware, which, in this experiment, is represented by the EICAR file signature. In order 

to do this, we will implement a simple and basic heuristic. 
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def start_mainO: 

stack = get-stack-pointer( 

main-address = get_memory(stack+4, 4) 

set_instruction_pointer (main_address) 

set_library_call("__libc_start_main", " start_mainO") 

Figure 4.13: Implementation of __libc_start_main 

4.2.7 A simple heuristic 

For this proof of concept, we demonstrate by performing a string search in memory. Our 

executable is packed with UPX, so we only will find the string when the decryption is 

complete. It does not make sense to try to perform the search after every emulated 

instruction, so we need to detect the end of the decryption phase. 

A good indicator of decryption being complete is detecting when an instruction is 

being executed from a position in memory that was recently written. And, for our 

heuristic, we use this indicator as a trigger to perform the string search. 

The AGAVE code used for our heuristic can be seen in Figure 4.14. The function 

jumping-to-data keeps a list of the pages of memory that were used during the execution 

(when the code emulation starts, a list is created with the pages currently allocated for 

the process). For this implementation, jumping-to-data is specific to PyEmu. If our 

code tries to execute from a page that is not in that list, it returns True (and adds all the 

currently allocated pages to the list). Again for simplicity, elf -in-memory is also specific 

for the problem we are tackling, in this case, UPX. UPX decompresses the entire ELF 

file in memory. So, we search for an ELF header in the new pages. Those two conditions 

were sufficient to detect the end of decryption. 

Finally, the search-EICAR function is a simple string search, returning "True" when 

the EICAR file is found. Our simple heuristic prints a message informing that EICAR 
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def find_eicarQ: 

if jumping-to-data( and elf_in_memoryO: 

print " Jumping into data section" 

if search...EICARO: 

print "EICAR Standard Test File was found" 

pause() 

set_heuristics("FindEICAR", " find_eicarO") 

Figure 4.14: Simple heuristics 

was detected and executes the AGAVE command pause 0, which stops the emulation. 

This command is particularly useful for testing purposes. 

As we have done with system calls, library calls and CPU instructions, we need to de-

clare the function as a heuristic. For this, we use the AGAVE command set-heuristics. 

The complete implementation of "findEICAR" can be found in Appendix E. 

In order for this heuristic to be executed, we also need to configure AGAVE. This 

configuration is necessary to define when the detection will be performed. As we men-

tioned earlier in this chapter, this is done by modifying the "heuristics" section in the 

AGAVE configuration file. There is no command line option for configuring heuristics. 

For our detection, we decided to perform the detection of EICAR after the execution 

of an instruction. So, in the configuration file, under the section "Heuristics", we include 

the following line: 

FindEICAR=after_step 

Running our emulation for the last time, it takes around 4 minutes, ending with the 

message "EICAR Standard Test File was found" and the AGAVE prompt is displayed. 
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4.2.8 Discussion 

While detection using AGAVE is possible, it is still a really slow operation. We believe 

that another emulator might help to improve speed. Some optimizations for emulation 

within AGAVE might also be an alternative. 

During our experiments, we attempted to emulate a statically compiled program. It 

was an interesting test case for the emulator speed and it was when we could achieve the 

best performance. During that experiment, there were no CBR requests for library calls. 

System calls, on the other hand, were frequent and, to allow a correct emulation, many 

of them needed to be actually implemented. We also encountered a higher number of un-

supported instructions. Due to time constraints, we decided to abandon that experiment 

for now. Further tests, using statically compiled executables, will be necessary. 

The total time for emulation was rather long. And if a researcher tries to follow 

this chapter, the use of snapshots can prove to be quite efficient. For example, after an 

unsupported instruction is found, the researcher can save a snapshot of the emulation, 

exit AGAVE, implement that instruction, restart AGAVE and restore the snapshot, 

returning to the point where the emulation failed. This simple strategy might save a lot 

of time for the researcher. 

Implementation of system calls and library calls are not exclusive to AGAVE. When 

using emulation for research purposes, including within anti-virus companies, the im-

plementation of those calls is usually necessary. The process is basically, to try to run 

the emulation until it fails, implement what is missing and then resume the emulation. 

AGAVE, however, by using CBR to emulate some of the functions that were not im-

plemented, allows the researcher to perform emulation without necessarily implementing 

every function that is called. This characteristic of AGAVE potentially reduces the time 

required for performing analysis. 
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4.3 Summary 

In this chapter we presented how to configure and use AGAVE. We used a "tutorial" 

approach to demonstrate, step by step, some of the tasks a researcher would have to do 

while using AGAVE. 

These tasks include implementing library calls, system calls and even CPU-specific 

instructions. We also implemented a simple heuristic to search for the EICAR file in 

memory as an example of dynamic detection. 

During this experiment, the emulation using AGAVE with PyEmu achieved poor 

performance. Even without the extra overhead for operations using the CBR retriever, 

we rarely had more than 1,000 instructions processed per second. Some optimization is 

definitely necessary and experiments with other emulators are recommended to evaluate 

performance. 

However, even with the problem of bad performance and frequent interruptions due 

to instructions that were not supported by the emulator, we were able to successfully 

detect the EICAR signature in memory, before it was executed. This demonstrates that 

AGAVE can be used for dynamic detection. 
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Chapter 5 

Conclusion and Future Work 

In this thesis, we described AGAVE, a tool designed as a step towards automatic gener-

ation of anti-virus emulators. 

This particular type of emulator has a strong focus on malware detection or analysis, 

depending on how it is used. Anti-virus emulators can be embedded in an anti-virus 

product or they can be a tool for maiware analysis, in research labs (likely inside an 

anti-maiware company). 

AGAVE currently relies on a third-party CPU emulator for CPU and memory emula-

tion. We implemented a general interface that allows the integration of AGAVE to these 

third-party CPU emulators. For our proof-of-concept, we implemented an interface for 

the open source CPU emulator PyEmu. 

The operating system and library calls are emulated by an implementation that re-

lies by default on case-based reasoning (CBR). Usually, researchers must implement all 

system and library calls for emulating an operating system. Even though precision is not 

always a requirement, it is still necessary in some implementations. By using CBR, on 

the other hand, AGAVE takes this burden off the researchers, restricting implementation 

to a minimum. Our CBR modules reply to system and library calls based on previously 

collected program execution traces in the operating system it intends to emulate. We 

have achieved an average accuracy rate over 60%, with cases of over 90% accuracy. This 

accuracy depends on the training set of collected traces (our tests used traces from text-

based Linux commands; a more varied training set might achieve even better average 

accuracy). 

In this thesis, we also demonstrated the use of AGAVE. The demonstration was based 
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on a case study: an attempt to dynamically identify a malware signature in memory 

before the malware is executed. For demonstration purposes, the malware signature was 

the ETCAR file signature and the executable was packed with UPX. Our demonstration 

showed some of the problems that a researcher may face, as well as some mechanisms of 

AGAVE to deal with those problems. 

We understand that AGAVE still suffers from a number of limitations. Performance 

issues must be addressed to turn AGAVE into a more useful tool. Our implementation 

of CBR also needs some improvements for accuracy and even for completeness (e.g., 

returning information in one of the parameters). However, our experiments show that, 

even with those limitations, AGAVE is a viable approach. 

5.1 Outline of contributions 

Anti-virus emulators are a powerful and important tool for both malware analysis and 

for malware detection. Their continued development is essential for improving anti-virus 

and anti-malware efficacy. 

However, most of the work in this area is restricted to anti-virus or anti-malware 

companies. There are few results published in academic papers. Publications such as 

white-papers and press releases do give us an insight of what is happening in the industry, 

but those are not always a reliable source of information, as results can be masked for 

publicity purposes. 

In fact, during the time we were involved in this research, we realized that there 

seems to be a gap between industry and academia. In informal discussions with other 

researchers from academia, we noticed that for many of them malware analysis can 

be resumed as static analysis of code or running malware on a virtual environment to 

monitor its activities. It actually seemed that some of them even considered the use 
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of anti-virus emulators an outdated approach, taking a strong stand for virtualization 

methods instead. On the other hand, researchers from anti-virus companies were not 

only more familiar with this subject but they seemed more receptive to research in this 

field. 

We believe that our work can help to make the still obscure world of anti-virus emula-

tors more accessible for researchers from outside the anti-virus and anti-maiware industry. 

By giving researchers a tool for experimenting and developing heuristics, we expect that 

novel methods of detection can be created and implemented. 

We consider that the main specific contributions of this work are: 

1. The design and implementation of a framework that allows both maiware detection 

and maiware analysis. Our framework includes over 6,000 lines of Python code'. 

Code was implemented to make AGAVE highly configurable and flexible, and give 

it mechanisms for both maiware detection and analysis. 

2. A novel use of Case-Based Reasoning. CBR has often been used to predict the 

behavior of customers[65], the behavior of computer users[58] and even pure human 

behavior[43] [11.]. However, to the best of our knowledge, this is the first time CBR is 

used to predict the behavior of software, more particularly, of an operating system. 

Using CBR within AGAVE takes from the researcher the need for implementing 

code for each and every unknown function that is encountered. We believe that 

this can bring a significant increase of productivity for the researcher working with 

maiware analysis and detection2. 

'This line count does not include PyEmu and other code that we did not develop ourselves. 
20ne could argue that implementing library and system calls is an one-time cost that would provide 

a better result, as the emulation would be more accurate. However, we would still be subject to the 
problem of unknown functions, for example, in case of a new version of the operating system or any of 
its libraries. 
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5.2 Future work 

AGAVE is not a mature tool yet. During our experiments, we identified a number of 

limitations. We want to make AGAVE a more robust tool and several improvements are 

definitely necessary, especially in regards to performance. Some of these improvements 

are already under development; others will come later. 

5.2.1 CBR 

In our CBR modules , several improvements are necessary or desired. 

For this project, our casebase is stored using the "Flat memory" scheme[39], where 

cases are stored in the form of a list and the search is performed sequentially. In our case, 

by using the "Fish and Shrink" algorithm, we are able to reduce the number of cases that 

are compared, but it is still a sequential search. We want to be able to perform parallel 

searches, in order to improve performance on the CBR modules. 

Integration of our casebase with a relational database, such as MySQL or SQLite, 

is currently under development. Integrating a casebase with a database has been done 

before (e.g., [5]) and we expect to use the resources provided by a mature database 

system to achieve better performance, simplify development and provide a more intuitive 

platform for case retrieval. 

While our CBR modules are already capturing the hierarchical relation between calls 

(library calls that call other library functions or that perform system calls), we have not 

used this information in our implementation. We believe that accuracy could be improved 

using this extra context, as this information can provide us a better understanding of 

how the operating system works. 

Also, the ability of returning values within parameters that were passed to a function 

call is a feature that we want to implement in the future. The use of traces as input for 

our learning system makes this a non-trivial problem. We believe that this can be inferred 
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by analysing the relation between calls, but further investigation is still necessary. 

5.2.2 Emulation 

On the emulation portion of AGAVE, there are also a number of features that we want 

to implement. 

One of the methods used by maiware writers to avoid analysis, or to make it harder, 

is to check for specific circumstances to execute the malicious activity; this method is 

known as "multiple execution paths". For example, if the maiware detects that is running 

on an emulation, the code will not perform any malicious activity. Another approach is 

having malicious code that is activated only occasionally. For example, a maiware may 

only perform its malicious tasks one tenth of the times it is executed[6]. We want AGAVE 

to be able to explore those multiple execution paths, checking for when a condition was 

not met and forcing the execution of the alternative path[44]. 

To deal with the poor performance of emulating CPU instructions, we want to im-

plement our interface for other CPU emulators. JPC, for instance, a CPU emulator 

that is written in Java, claims to have a huge gain in performance over its original 

implementation [49]. We consider JPC an interesting candidate for the next emulator to 

have an interface in AGAVE. 

A module for memory management within AGAVE, as we mentioned previously, is 

another feature that we want to implement. Currently, the memory is managed directly 

by the CPU emulator. This is not desirable because we lose portability, i.e., code im-

plemented within AGAVE that deals with memory might be tied to the CPU emulator 

being used. This module ideally will also offer support to pointer tainting. 

5.2.3 AGAVE in general 

There is also some work to be done that is not specific to any module of AGAVE. 
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Currently, AGAVE can be used for malware analysis and for developing new methods 

of detection. However, we also want to implement a mechanism which will allow the 

researcher to embed AGAVE into third-party tools, such as an anti-virus product like 

ClamAV[37]. 

Another approach for addressing the performance problem would be a partial refac-

toring of AGAVE. We believe that the use of Python does give important flexibility 

for the researcher, that they can easily write their own code and customize AGAVE to 

their own needs. So, in order to keep this flexibility, we want to rewrite some of the 

AGAVE modules in C, especially the controller and the CBR modules, but keeping them 

as Python modules. 

All of our tests with AGAVE were based on Linux. However, most of the malware 

found in the wild is for Windows platforms. A natural evolution for AGAVE is its 

adaptation to work with Windows. However, a number of challenges will have to be 

faced, such as lack of documentation and the number of available system and library 

calls. For example, while Linux has around 300 system calls defined, Windows has at 

least three times this number of system calls[67], many of them not well documented or 

not documented at all. 

Finally, more immediate work will be the implementation of more complex heuristics 

for malware detection. One of the goals of AGAVE is to be a testbed for heuristics, 

providing an unbiased environment for evaluation and experimentation. From this im-

plementation, we also want to evaluate how much effort from the researcher the use of 

AGAVE can save, when compared to implementing such heuristics using other tools for 

malware analysis. 
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Appendix A 

List of Linux commands used for casebase generation 

bzcat lsmod 

bzip2 mknod 

bzip2recover mount 

cat my 

chgrp nano 

chown nc . traditional 

chvt netstat 

cpio ntfs-3g 

dbus-cleanup-sockets ntfs-3g. probe 

dbus-daemon openvt 

dbus-uuidgen ping 

dd ping6 

df PS 

dnsdomainnanie pwd 

egrep readlink 

false rm 

fgconsole rmdir 

fuser sed 

fusermount setfont 

ip sleep 

kb&.mode stty 

kill su 

less sync 

lessecho tar 

lesskey tempfile 

ln touch 

login true 

ls ulockmgr_server 
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Appendix B 

List of functions 

B.1 Functions implemented in AGAVE 

• execute (command) 

• exit() 

• get_breakpointiist() 

• get_custominstruction(instruction) 

• get-heuristic-list() 

• getiibrary_call(name) 

• get_librarycalUist() 

• get_system_call(name) 

• get-system-call-list () 

• load(scripLname) 

• memory_dump(address, size) 

• memory.save(filename, address, size=4096, append=False) 

• next  

• pause() 

• remove-breakpoint(breakpoint) 

• runQ 

• set-breakpoint(breakpoint) 

• set_custom_instruction(instruction, action, size) 

• set_heuristics(name, action, before=True) 

• set_opcode (name, action, parameters=None) 

• set_register(register, value) 
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• set_library_call(name, action, parameters=None) 

• set_system_call(name, action, parameters=None) 

• stop() 

• get-arguments( 

• set_arguments(args) 

B.2 Functions implemented in CPU emulator interface 

• get-context( 

• getinstruction_pointer() 

• getmemory(address, size=4) 

• getegister(register) 

• getinstruction_pointer() 

• set_instruction_pointer(addr) 

• get-stack-pointer( 

• load-snapshot (filename= None) 

• set_stack_pointer (addr) 

• restart() 

• set_return_code(return_value) 

• savesnapshot (filename= None) 

• set_memory(address, value, size=4) 

• stack(size=64) 

• startenvQ 

• stepQ 
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Appendix C 

Implementation of interface to CPU emulator (PyEmu) 

#!/usr/bin/env python 

import os, sys 

sys . path. append("third-party") 

sys . path. append("third-party/pyemu") 

sys . path. append("third-party/pyemu") 

sys . path. append (" learner") 

import cPickle 

import re 

from agave import * 

class Agave2PyEmu(AGAVE): 

def save- snapshot (self , filename=None): 

if filename == None: 

filename = self.get_snapshot_name() 

exe = self.executable 

crc = self.header_hash 

memory = {)­
for page_addr in self.emu.memory.pages: 

page = self . emu.memory.pages[page_addr] 

memory[page_addr] = {" Address":page.address, 

Permissions":page.permissions, " Data":page.data 

[::-1]} 

context = self . emu. cpu. get-context () 

registers = {} 
for register in dir(context): 

value = getattr(context, register) 

if type(value) in [ type(0) , type(OL)] 

registers[register] = value 

filepath = "% s/ °hs%s"%(self.SNAPSHOT_DIR,filename, self. 

SNAPSHOT-EXTENSION) 

cPickle.dump([exe, crc, registers,memory, self. 

--CODE-PAGES--, self.emu.os.TLS] , open(filepath ," w")) 

self.log.info("Snapshot saved as % s"°hfilename) 
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def load- snapshot (self , filename=None) 

if filename == None: 

filename = self . get_last_snapshot () 
if filename == None: 

self.log.error("No snapshot found for this 

executable") 

return False 

self. startenv(False) 

filepath = "% s/%s%s"%(self.SNAPSHOT_DIR, filename, self. 

SNAPSHOT-EXTENSION) 

[exe, crc, new-context, memory, self . --CODE-PAGES-- , self 

.emu.os.TLS] = cPickle.load(open(filepath ," r")) 

if exe self.executable or crc != self.header_hash: 

self.log.error("Invalid snapshot for this executable" 

) 
return False 

self.emu.memory.pages = {} 

for page_addr in memory: 

page = memory [ page_addr] 

self . set-memory (page_addr, page [" Data"] , len(page[" 

Data"])) 

self . emu. memory. pages [page_addr].permissions = page[" 

Permissions"] 

context = self . emu. cpu. get-context () 
for reg in new_context.keys() 

value = new-context[reg] 

setattr(context , reg, value) 

self. emu. cpu. set_context ( context) 

self . log. info("Snapshot loaded from % s"%filename) 

def get- context ( self) 

cpu_context = self.emu.cpu.get_context() 

context = {} 
for register in dir(cpu_context): 

if "_" not in register: 

context [ register]=getattr(cpu_context , register) 

return context 
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def __ init__ ( self, exename, address=0x80000000) 

AGAVE. __ init__(self) # Starts AGAVE variables 

self.executable = exename 

self.load(exename, address) 

self startenv 0 
self.count_pushes = 0 

self.SYSCALL_INSTRUCTION = "mt 0x80" 
self . RELOCATION_INSTRUCTION = "call" 

self.header_hash = self.get_header_hash() # Doing this to 

improve 

def set_return_code(self, return-value): 

self.log.debug( " Returning %d ( setting EAX)"%return_value 

) 
self.emu.set_register("EAX", return-value) 

def get_memory(self , address , size=4) 

data=None 

try: 

data = self.emu.get_memory(address, size) 

except: 

self.log.error("Error reading memory") 

data=O 

return data 

def get_memory_pages ( self): 

return self.emu.memory.pages.keys() 

def set-memory (self , address, value, size=4) 

return self. emu. set-memory (address , value, size) 

def step (self ): 

if self. check_jump_to_data() 

self. check_for_elf C) 
try: 

result = self.emu.execute() 

except Exception as exc: 

(type_exc , value, traceback) = sys.exc_info() 

self.log.error( " Unexpected error( °hs): % s"%(type_exc 

value)) 

sys exc_clear C) 
self.set_batch(False) ft Forces a pause 
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if self.LOG_ALL: 

self. stack ( 16) 

self . registers () 
result = False 

return result 

def stack (self , size=64): 

self.emu.dump_stack(size) 

def registers ( self) 

self . emu. dump_regs () 

def get-instruction(self) 

if self.emu == None: 

return False 

instruction = self.emu.cpu.get_disasm() 

return instruction 

def get-stack-pointer(self) 

if not self.emu.frame_pointer: 

return self.get_register("EBP") 

else: 

return self.get_register("ESP") 

def set_stack_po inter (self , addr) : 

if not self.emu.frame_pointer: 

self.set_register("EBP",addr) 

else: 

self.set_register("ESP",addr) 

def load_relocation_table ( self , elf-addr) : 

# get one page of data. Sufficient for header? 

data = self.get_memory(elf_addr, 4096) 

elf = elffile.ELF(data = data, parse- all = False) 

elf ,. parse_program_headers ( elf . ELF_HEADER. e_phoff, elf. 

ELF_HEADER.e_phnum, elf . ELF_HEADER. e_phentsize) 

addr = 0 

size = 0 

for x in xrange(len(elf.program_headers)): 

ph = elf.program_headers[x] 

if ph.p_type == elffile. SEGMENT_TYPES [" PT_DYNAMIC"]: 

(addr, size) = (ph.p_vaddr, ph.p_memsz) 

segment = self.get_memory(addr, size) 

elf . parse_dynamic_segment ( segment) 

break 

if elf.dynamic_tags == []: 
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return False 

tags 

for tag in elf.dynamic_tags: 

if tag.d_tag in elffile.DYNAMIC_TAGS: 

tags[elffile.DYNAMIC_TAGS[tag.d_tag]] = tag.d_val 

relocation = {} 

try: 

if " DT_REL" in tags: 

addr = tags C"DT_REL"] 

size = tags["DT_RELENT"] 

numb = tags["DT_RELSZ"] 

else: 

addr = tags [" DT_RELA"] 

size = tags [" DT_FtELAENT"] 

numb = tags [" DT_RELASZ"] 

addr = tags C"DT_JMPREL"] 

previous- offset = None 

for reloc in xrange(numb): 

offset = self.get_memory(addr,4) 

if previous- offset 1= None: 

if offset previous- offset + 0x04: 

break 

previous- offset = offset 

info = self.get_memory(addr+4,4) 

symbol = info >> 8 

symbol-addr = tags["DT_SYMTAB"] + tags C"DT_SYMENT 

"]* symbol 

symbol-data = self.get_memory(symbol_addr, 4) 

symbol-name = self.get_string(tags["DT_STRTAB"]+ 

symbol_data , 256) 

relocation[offset] = symbol-name 

addr += size 

except: 

return False 

for addr in relocation: 

self. library_calls [ addr] = relocation [ addr] 

return True 
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def check_library_call ( self, instruction) 

if self.RELOCATION_INSTRUCTION not in instruction: 

return False 

(call, addr) = instruction.split() 

try: 

address = int(addr[2:] , 16) 

except: 

return False # If I cannot; do that, there's no chance 

of relocation 

self.log.info("Checking relocation instruction for % s"%( 

instruction)) 

data = self . get-memory (address , 16) 

# Checking if the next instructions match a stub 

signature from ELF 

# ff 25 XX XX XX XX jmp (XXXXXXXXJ (GOT -> Next 

instruction) 

# 68 XX XX XX XX push  dw or d XXXXXXXX 

# e9 XX XX XX XX jmp (XXXXXXXXJ (PLT) 

if not ( data[O] == chr(Oxff) and data[1]=chr(0x25) and 

data[6] == chr(0x68) and data[113 == chr(0xe9)): 

self . log.debug("Stub signature doesn't match") 

return False 

GOT- address = self . get-memory (address +2,4) 

GOT.instr = self. get_memory(GOT_address , 4) 

if GOT_instr != (address + 6): 

self.log.debug("Address doesn't match (%08x %08x)" 

%(GOT_instr, address +6) 

return False 

offset = self.get_memory(address+7,4) 

PLTO_offset = self . get_memory(address+12,4) 

PLTO_address = (address + 16 + PLTO_offset )&Oxffffffff 

# 16 is total size of the stub 

self . log. debug (" GOT Address: °h08x"%GOT_address) 

self.log.debug("Offset : °h08x" °hoffset) 

self.log.debug("PLTO Addr : °h08x"%PLTO_address) 

if GOT- address in self . library- calls . keys O: 

self . emu. execute () 
return self.emulate_library_call(GOT_address) 

else: 

return False 
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def check_system_call ( self, instruction) 

if self.SYSCALL_INSTRUCTION in instruction: 

call = self.get_register("EAX") 

syscall = self.retriever.get_system_call(call) 

if len(syscall) != 0: 

name = syscall[O].name 

self.log.info( " SYSCALL TO °hs at °h08x"%(name, 

self get_register (" El?"))) 

if name in self.system_calls.keysO: 

self.set_register("EIP", self.get_register(" 

EIP")+2) # TODD: improve this adding 2 to 

EIP (mt 0m80 = 2 bytes) 
self.log.info( " Executing user code for %s as 

%s at EIP=%08x" °J,(name, self.system_calls[ 

name] [0], self.get_register("EIP")) ) 
self . process_command(self . system_calls [ name 

] [0]) 
return True 

else: 

parameters = [I 
for register in (" EBX" , "ECX" , "EDX" , "ESI" , "EDI 

It ) 
parameters . append ( self . get_register ( 

register)) 

self.set_register("EIP", self.get_register(" 

EIP")+2) # TODD: improve this adding 2 to 

EIP (mt 0m80 = 2 bytes) 
self.log.info( " Executing code for '1,5 from 

casebase" °h(name) ) 
return self.learned_exec(name, parameters, 

SYSCALLS=True) 

else: 

self. log. error("System call %d was not identified 

"°hcall) 

return False 

def check_custom_instructions(self, instruction): 

if instruction in self.custom_instructions: 

self.process_command(self.custom_instructions[ 

instruction] [0]) 

self.set_register("EIP", self.get_register("EIP")+ 

self . custom_instructions [ instruction] [ 1]) 

return True 

else: 

cmd = instruction, split 0 [0] 
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if cmd in self.custom_instructions: 

self.process_command(self.custom_instructions[cmd 

1 [0]) 
self.set_register('tEIP", self.get_register("EIP") 

+self custom_instructions [ cmd] [ 1]) 

return True 

return False 

def skip (self , n) 

self. set_register("EIP", self.get_register("EIP")+n ) 

def get_parameters_from_stack(self, max_parameters=5) 

address = self.get_register("ESP") ## Return address 

self.log.fine("ESP = °h08x" °haddress) 

parameters = [1 
for i in xrange(max_parameters): 

address += 4 

data = self.get_memory(address, 4) 

self.log.debug( " Parameter %d from stack at °h08x: % 08 

x" °h(len(parameters), address, data) ) 
parameters . append(data) 

return parameters 

def guess_syntax(self, max-parameters = 5): 

syntax = Li 

entrypoint = self . elf . ELF_HEADER. e_entry 

intervals = [3 

parameters = self . get_parameters_from_stack( 

max-parameters) 

for table in (". strtab",".dynstr"): 

if table in self.elf.sections: 

start_strtable = entrypoint + self.elf.sections[ 

table] sh_off set 

end_strtable = start_strtable + self.elf.sections 

[table] sh_size 

intervals . append (( start_strtable, end_strtable)) 

for i in xrange(len(parameters)): 
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data = parameters[i] 

if data < entrypoint: # This should be a number 

syntax. append (agave -types . AgaveType (" NUMERIC")) 

else: 

is- string = False 

for ( start , end) in intervals: 

if start <= data <= end: 

syntax. append ( agave_types AgaveType (" 

STRING")) 

is- string = True 

if not is- string: # Large number or address 

syntax. append(agave_types AgaveType (" NUMERIC" 

)) 
self . log. debug (" Guessed syntax: °hs"%syntax) 

return syntax 

def get- syntax (self , name, parameters=[], SYSCALLS=False): 

self . log. debug (" Getting syntax for % s" °hname) 

if name == "puts" and 1 == 2: 

self.log debug( " Special case for testing: PUTS" ) 
syntax = [agave_types.AgaveType("STRING")] 

syntaxes = [syntax] 

else: 

syntaxes = self.retriever.get_syntax(name, SYSCALLS= 

SYS CALLS) 

if len(syntaxes) > 0: 

for syntax in syntaxes: 

self.log.debug( " Syntax found: % s"%syntax ) 
else: 

self . log. debug ( " Syntax for this call was not found" 

) 
syntax = self.guess_syntax() 

return syntaxes 

def finish_call(self , , n_parameters): 

return- address = self.pop() # Removing return address 

from stack 

self.log.debug("Return address: %08x"%return_address) 

for i in xrange(n_parameters): 

self.pop() # Removing each parameter from 
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stack 

self emu. set- register (" EIP" , return- address) 

def get- string (self , address, max- string- size =2048): 

_len = len 

_chr = chr 

string = 

char = self . get_memory(address , 1) 

while char != 0 and _ len(string) < max- string- size: 

string = string + _chr(char) 

address += 1 

char = self.get_memory(address , 1) 

return string 

def load (self , exename, address =0x800000): 

if exename: 

self.executable = exename 

try: 

elf = elffile.ELF(exename) 

except: 

self.log.error( " Invalid executable") 

sys. exit ( 1) 

else: 

self.log.error( " Blank filename specified" ) 
sys . exit ( 2) 

self.elf = elf 

def get-instruction-pointer(self) 

return self.get_register("EIP") 

def set_instruction_pointer(self , addr) 

self. set_register (" EIP" , addr) 

def startenv (self , initial=True): 

elf = self.elf 

entrypoint = elf . ELF_HEADER. e_entry 

self.log.debug( " Entry Point Addr: Ox °h08x\n" % ( 
entrypoint)) 

self.emu = elfpyemu.ELFPyEmu() 

for x in xrange(len(elf.program_headers)): 
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ph = elf.program_headers[x] 

segment = elf.segments[x] 

self.log.debug( " Loading segment % d ( size=°hx/%x) at °h 
x"(x,1en(segment),ph.p_memsz, ph.p_vaddr) ) 

if ph.p_type not in elffile.SEGMENT_TYPES: 

segment-type = "UNKNIJWN(%s)"%ph.p_type 

else: 

segment-type = elffile. SEGMENT_TYPES [ph. p_type] 

self. log.debug(" °h-20s\t%08x\t%08x\t °h08x\t%08x\t%08x" 

%(segment_type, ph.p_offset, ph.p_vaddr, ph. 

p_paddr, ph. p_f ilesz, ph. p_memsz)) 

if initial: 

for i in xrange(len(segment)): 

c = segment[i] 

self.emu.set_memory(ph.p_vaddr+i, int(ord(c)) 

sizel) 

for section-name in elf.sections: 

section = elf.sections[section_name] 

self.log.debug( " Loading section % s ( size=%x/%x) at % 
x"%(section_name,len(section.data),section.sh_size 

section.sh_addr) ) 
data = section.data 

address = section.sh_addr 

if initial: 

for i in xrange(max(len(data), section.sh_size)): 

if i >= len(data) 

c = chr(0) 

else: 

c = data[i] 

self . emu. set-memory (address + i, int(ord(c)), 

size=1) 

self . emu. set-register (" EIP", entrypoint) 

if initial: 

self . start_stack C) 

self.__CODE_PAGES__ = self.emu.memory.pages.keys() 

self.finished = False 
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def start_stack(self) 

self . log. debug (" Initializing stack with args and 

environment variables...") 

addr = self.emu.memory.get_available_page(OxOOff0000) 

self push(0) # NULL ( ending list of environment 

variables) 

env-path = "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin 

/usr/bin :1 sbin : ibm / usr/games" 
self.set_memory(addr, "% s\xOO"%env_path, len(env_path)+1) 

self,push(addr) # argv 

self . push (0) # NULL (ending list of arguments) 

addr = addr + len(env_path) 

self.set_memory(addr, " °hs\xOO"%self.executable[::-lj , len 

(self. executable)+1) 

self.push(addr) # argv(OJ 

addr = addr + len(self.executable)+i. 

self.push(1) # argc 

def check-jump-to-data(self) 

EIP=self . get_register (" EIP") 

if EIP & Oxfffff000 not in self.--CODE-PAGES--: 

self.__CODE_PAGES__ = self.emu.memory.pages.keys() 

self . save_snapshot C) 
return True 

return False 

# Check for ELF necessary for reload relocation table 

def check- for- elf ( self) 

result = False 

if "-- ELF-PAGES--" not in dir(self) 

self . __ ELF_PAGES__= [] 
for page in self.emu.memory.pages.keysO: 

data = self.get_memory(page, len(elffile. 

ELF- SIGNATURE)) 

if data == elffile.ELF_SIGNATURE: 

if page not in self.--ELF-PAGES--: 

self. __ ELF_PAGES__ . append(page) 

self . load_relocation_table ( page) 

result = True 

return result 

def pop (self , size=4) 
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self.log.debug("Frame pointer? Ox%08x"%self.emu. 

frame-pointer) 

if not self.emu.frame_pointer: 

address = self.emu.get_register("EBP") 

else: 

address = self.emu.get_register("ESP") 

self.log.debug("Address = °h08x" °haddress) 

value = self.get_memory( address, size ) 
self.emu.set_memory(address, OxOO, size) 

address += size 

if not self.emu.frame_pointer: 

self.emu.set_register("EBP", address) 

else: 

self.emu.set_register("ESP", address) 

return value 

def push(self , value , size=4) 

if not self emu.frame_pointer: 

address = self.emu.get_register("EEP") 

else: 

address = self.emu.get..register("ESP") 

address -= size 

self . emu. set-memory ( address, value, size ) 

if not self.emu.frame_pointer: 

self.emu.set_register("EBP", address) 

else: 

self.emu.set_register("ESP", address) 

return value 

def show-instruction(self) 

address = self.emu.get_register("EIP") 

if address == 0: 

self.log.info( "%08x\tProgram finished\n"%(address)) 

self.finished = True 

self. set_batch(False) 

else: 

raw- instruction = self.get_memory(address, 32) 

if type(raw_instruction) != 

self.log. error( " Error reading instruction at Ox 
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°h08x (% s)" °h(address,raw_instruction)) 

return 

instruction = pydasm. get -instruction (raw_ instruct ion, 

pydasm . MODE_32) 
bytes = lilt 

for i in xrange(instruction.length): 

bytes += ("%02x "% ord(raw_instruction[i])) 

disasm = self. emu. get_disasm() 

self . log. info("[ASM] %08x\t%-30s\t°hs"°h(address, bytes 

disasm)) 

def check_finished(self , instruction): 

if " hit" in instruction: 

self.log.debug( " Program execution completed." ) 
return True 

elif self.emu.get_register("EIP") == 0: 

self.log.debug( " Instruction pointer is empty. " ) 
return True 

return False 

def check-stack(self) 

esp = self.get_register("ESP") 

stack-page = (esp & Oxfffff000) 

if stack-page not in self.emu.memory.pages: 

self.log.warn("Memory page for stack not available... 

Initializing %08x for %08x. . .\ n"%(stack_page, esp 

) ) 
empty-page = "\ xOO"*4096 

self. set_memory(stack_page , empty-page, 4096) 

def set-register (self , register, value): 

if type(register) == type(False) and reg == False: 

self.log.error( " Invalid register % s"%register) 

self. set_batch(False) 

return 

else: 

if type(value) == 

if value [ 0:2] == "Ox": 

if not self.emu.set_register(register, int( 

value [ 2:] , 16)): 

self.log.error( " Error setting register 

s=%d(%08x) "%( register, value, value) 

elif not self. get-register (value) and type(seif 
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get_register(value)) == type(False) 

source = value.upper() 

value = self.get_register(source) 

if not value: 

self.log.debug( " Invalid register: °hs" °h 

source ) 
return 

else: 

if not self.emu.set_register(register, 

value) 

self.log.debug( " Error setting 

register %s=°hs(%08x)"%(register, 

source , value) ) 

else: 

if not self . emu. set-register (register , value) : 

self.log.debug( " Error setting register %s%d 

(°h08x)"%(register, value, value) ) 

def get-register (self , register): 

reg = self.emu.get_register(register) 

if type(reg) == type(False) and reg == False: 

self.log.error( " Error getting register %s"%register 

) 
return 0 

else: 

return reg 
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Appendix D 

Implementation of instructions within AGAVE 

D.1 Implementing STOSD 

def STOSD () 
edi = get_register("EDI") 

df = get_register("DF") 

eax = get_register("EAX") 

set-memory( edi, eax,4 ) 

if df == 0: 

set_register("EDI" , edi+4) 

else: 

set_register("EDI" , edi-4) 

set_custom_instruction("stosd", " STOSDO", 1) 

D.2 Implementing BTR 

def ETRO: 

# Return instruction as a, mnemonic 

instruction = get-instruction( 

(cmd, operand- list) = instruction. split() 

operands = operand_list.split(",") 

values = [] 
debug_msg = [1 
for op in operands: 

try: 

value = get-register(op) 

except: 

interface.log.error("ERROR geting op%s" °hop) 

value = 0 

if value == None: 

value = 0 

values. append(value) 
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base = values [ 0] 

bit- offset = 2 ** values [ 1] 

if ( base & bit_offset) > 0: 

base = base - bit- offset 

cf = 1 

else: 

cf = 0 

set _ register ( CF , cf ) 
set_register(operands[O] , base) 

# 3 bytes, instruction + 2 operands 

set..custom_instruction("btr","BTRO",3) 
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Appendix E 

Implementation of heuristics within AGAVE 

from elffile import ELF- SIGNATURE 

def jumping_to_data() 

if " CODE- PAGES" not in dir(): 

CODE- PAGES = U 
EIP=get_instruction_pointer () 
if EIP & 0xfffff000 not in CODE-PAGES: 

CODE-PAGES = get-memory-pages( 

return True 

return False 

def elf_in_memory() 

if " ELF- PAGES" not in dirO: 

ELF_PAGES= [] 
for page in get-memory-pages(:) 

data = get_memory(page, len(ELF_SIGNATURE)) 

if data == ELF- SIGNATURE: 

if page not in ELF-PAGES: 

ELF_PAGES. append ( page) 

result = True 

return result 

def search_EICAR() 

EICAR-SIGNATURE = 

for page in get-memory-pages(:) 
if EICAR-SIGNATURE in get_memory(page, 4096): 

print " Found" 

return True 

return False 

def find_eicar(): 

print " Find EICAR", 

if jumping-to-data( and elf_in_memoryO: 

print " Jumping into data section" 

if search_EICAR() 

print " EICAR Standard Test File was found" 

pause () 
else: 
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print " Nothing yet" 

set_heuristics("FindEICAR", " find_eicarO") 


