
UNIVERSITY OF CALGARY

Towards Automatic Generation of Anti-Virus Emulators

by

Daniel Medeiros Nunes de Castro

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

December, 2010

© Daniel Medeiros Nunes de Castro 2010

UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled "Towards Automatic Generation of Anti-Virus

Emulators" submitted by Daniel Medeiros Nunes de Castro in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE.

Supervor, Dr. John D. Aycock
Department of Computer Science

Dr.vMichael E. Locasto

Department of Computer Science

Dr. Mark L. Bauer
Department of Mathematics &

Statistics

Date

Abstract

Computer viruses and malicious software (malware) in general are a prevalent threat in

today's world. While widely used, static based detection of malware, such as signature

detection, is not sufficient to fight this threat. We need to also adopt dynamic approaches.

One of the dynamic approaches is code emulation, specifically using anti-virus emula-

tors. Anti-virus emulators have a strong focus on malware detection and analysis instead

of on emulating code to its completion.

However, most anti-virus emulators are unavailable for researchers. Most of them are

proprietary and when not embedded in an anti-virus product, they are limited to anti-

virus companies' laboratories. In this work, we present AGAVE, a step towards automatic

generation of anti-virus emulators. AGAVE is flexible and customizable. Using Python

syntax, the researcher can customize library and system calls and even CPU instructions.

To simplify use by the researcher, AGAVE uses previously collected program execution

traces as a base of information about system and library calls. This information is

accessed using Case-Based Reasoning(CBR), so even when an unknown call is found

during the emulation, the emulator can respond to the call properly and the emulation

is not interrupted.

In order to emulate low-level CPU instructions, AGAVE uses a third-party CPU

emulator. The researcher, the intended user of AGAVE, can choose to change the CPU

emulator to the one of their preference. AGAVE provides a common interface for the

CPU emulator that can be customized so the researcher can use the chosen emulator.

In this thesis, we discuss the design and implementation of AGAVE, including its CBR

modules and how a researcher would use it in a practical example. We also evaluate our

implementation, discuss some limitations of AGAVE and propose some future work.

II

Acknowledgements

I would like to dedicate this thesis to Raquel, Melissa and Iraci.

Most of all, I would like to thank Raquel for her immense patience and understanding,

especially during the last couple of months before my defense, when she had most of the

work to take care of our "best production of the year", Melissa. Thanks to my mom,

Iraci, for all her support, including trying and helping me to see the bright side when I

missed the opportunity of traveling to meet her: "At least now you can focus on your

work." And, of course, thanks Melissa, definitely my best production of 2010, for her

precious smiles when seeing daddy coming home.

Special thanks also to Dr. John Aycock, more than a supervisor, an adviser. His

comments and suggestions, either related to studies or to life in general, have always

been invaluable.

I also would like to thank my friends from the Double-Secret Security Lab/Program-

ming Languages Lab for their support and interesting discussions.

And last but not least, I would like to thank the force that keeps us going on, in the

right direction and doing the right things, independent of religious denomination.

111

iv

Table of Contents

Abstract
Acknowledgements
Table of Contents iv
List of Tables vi

List of Figures vii
1 Introduction 1

1.1 AGAVE at a glance 7

2 Overview 10
2.1 Code emulation 11
2.2 Malware detection and analysis using emulation 13

2.3 Anti-virus emulators 15

2.4 Describing AGAVE 17
2.5 CPU and memory emulation 19

2.5.1 CPU emulator interface 20

2.6 Controller 24
2.7 Related work 27
2.8 Summary 28

3 Case-Based Reasoning within AGAVE 29
3.1 Basic concepts 31

3.1.1 The CBR cycle 32
3.2 Modelling cases 33

3.2.1 Collecting data 33

3.2.2 From "Calls" to cases 36

3.2,3 Defining similarity 39
3.3 Generating our casebase 44
3.4 Applying the "4 REs" 46

3.4.1 Retrieving 46

3.4.2 Reusing 49
3.4.3 Revising 51

3.4.4 Retaining 52
3.5 Testing CBR 53

3.5.1 Evaluating accuracy 55
3.5.2 Evaluating performance 57

3.5.3 Casebase sizes 59

3.6 Summary 59
4 AGAVE Usage and Testing 61
4.1 Configuration 61

4.1.1 Section "emulator" 62

4.1.2 Section "cbr" 62
4.1.3 Section "scripts" 64

4.1.4 Section "heuristics" 65

4.2 Testing AGAVE emulation 66
4.2.1 Hello EICAR 67
4.2.2 Packing Hello EICAR 68
4.2.3 First attempt at emulation 70
4.2.4 Implementing a system call 71
4.2.5 Implementing x86 instructions 75
4.2.6 Implementing a library call 78
4.2.7 A simple heuristic 79
4.2.8 Discussion 81

4.3 Summary 82

5 Conclusion and Future Work 83
5.1 Outline of contributions 84
5.2 Future work 86

5.2.1 CBR 86
5.2.2 Emulation 87
5.2.3 AGAVE in general 87

References 89
A List of Linux commands used for casebase generation 98
B List of functions 99
B.1 Functions implemented in AGAVE 99
B.2 Functions implemented in CPU emulator interface 100
C Implementation of interface to CPU emulator (PyEmu) 101
D Implementation of instructions within AGAVE 116
D.1 Implementing STOSD 116
D.2 Implementing BTR 116
E Implementation of heuristics within AGAVE 118

List of Tables

2.1 Mandatory emulator-specific methods to be implemented for interface . . 22
2.2 Mandatory executable-specific methods to be implemented for interface . 22

2.3 Optional methods to be implemented for interface 23

3.1 "Fish and Shrink" example: Similarities in casebase 47

3.2 "Fish and Shrink" example: Comparing new case 48
3.3 Types of call in testing traces 55

vi

List of Figures

1.1 Movie set scenery 3
1.2 Conceptual view of AGAVE 8

2.1 Overview of AGAVE 18
2.2 Starting implementation of an emulator interface 21
2.3 Pseudo-code for the main emulation loop. 25
2.4 Redefining x86 instruction LODSD 26

3.1 Code execution with shared library and system calls 29
3.2 Sample of itrace output 34

3.3 Example of clustering by frequency 38
3.4 Pseudo-code for calculating general similarity 42

3.5 Pseudo-code for calculating "syntax" similarity 43
3.6 Pseudo-code for casebase generation 45

3.7 Pseudo-code for casebase search 50
3.8 Evaluating accuracy 57
3.9 Evaluating performance 58

3.10 Evaluating casebase sizes 59

4.1 Emulator section in agave.conf 62
4.2 CBR section in agave.conf 63
4.3 Scripts section in agave.conf 64
4.4 Configuring heuristics 66

4.5 Source code for helloeicar 67
4.6 Packing hello_eicar 69

4.7 Source code for hello..eicar with NOPs 69
4.8 CBR result for SYS...mmap 71
4.9 mmap_arg.structure, used as parameter for SYSmmap 72

4.10 Implementation of SYS.mmap for AGAVE 74

4.11 Implementation of the instruction LODSD for AGAVE 75
4.12 Implementation of the instruction REP for AGAVE 77

4.13 Implementation of __libc..start.main 79
4.14 Simple heuristics 80

vii

I

Chapter 1

Introduction

Computers have become impressively prevalent, more notably in the last three decades.

We do not only find them in universities and companies but also in our very homes, with

uses varying from games to home banking, and now even wherever we are, as celiphones

and PDA's. However, with all the benefits we have from computers and computing

devices, they have also introduced a new concern into our lives: malicious software.

Malicious software (malware) is a generic term that includes all kinds of malicious

programs. Some examples are:

• The infamous viruses that, as their biological counterpart does, can "reproduce"

themselves by copying their (genetic) code into other programs and that are some-

times considered by media as a synonym for malware; and

• Trojan horses. Inspired by Greek history, these programs seem like a gift (such as

a free graphic editor or a fun game), but are hiding a secret danger. Secretly, they

may look at our files or detect keystrokes, trying to gather sensitive information,

like passwords to our favorite websites or even to our bank accounts.

During this work, the differences between types of malware (virus, Trojan horses,

worms and others) are irrelevant and, in order to keep expressions and names as used in

the original sources, the words "virus" and "malware" might sometimes be interchanged,

sharing the same basic concept of "malicious software". The exception is when "viral

code" is mentioned specifically, which refers to the ability of a computer virus to replicate

itself.

Detecting, and eventually eliminating, malware is a problem that has been becoming

2

increasingly harder, as the motivation for writing malware has also changed[24]. While

the first malware writers did so only for learning how things work, for fun or, in some

cases, for fame, nowadays it is used mainly for profit, sometimes with criminal organiza-

tions behind them, funding their development [34].

One of the earliest approaches for detection is the use of static analysis[62]. This

includes looking at the code being analyzed to understand how it works, using tools like

disassemblers (programs that can translate the machine language code in an executable

back to code in a higher level language, such as assembly) and also searching for specific

sequences of characters (usually called signatures). Signature detection is, by itself, a

quite difficult problem, as the number of possible signatures to be found tends to be

incredibly high'.

While still being largely used, static analysis has lost some of its efficacy as malware

writers now use different techniques to avoid it. Obfuscation techniques, including the

application of cryptography, can be used to hide malicious code until the moment when

it is really necessary[21], avoiding earlier detection. It is also possible to create code

that is able to adapt itself, essentially changing from one generation to another, making

detection, in special signature-based techniques, even harder while still preserving the

malicious capabilities. This is achieved by using techniques known as polymorphism or

metamorphism [6].

When static analysis fails, security researchers must adopt what are called dynamic

approaches. An example consists in executing any suspicious code in a controlled, moni-

tored, and preferably isolated, environment. By doing this, whenever something consid-

ered "bad" happens (as an unexpected file change or removal, or a network connection),

no harm to the production system is done and information about the code, as what it

'Symantec's website reports a total of over 8.7 million signatures in their signature file in October
2010. Source: http://www. symantec. com/business/security_response/def initions/certif led!
index. jsp

3

has been doing or what it saved in memory or disk, can be collected to allow further

identification and analysis.

It must be noted that, for each time an analysis is performed, the machine would need

to be returned to an "initial state", a state when it is considered safe, with no infection

(no maiware was installed). Depending on the case, a task that might require quite some

time to be performed properly, as not only files in the disk can be infected, but there

are also cases of malware attacking the BIOS (Basic Input/Output System), the built-in

software in all computers that is responsible for the very task of accessing disks and other

devices.

Instead of executing the code in a controlled environment, an even safer approach

would be emulating its execution.

Figure 1.1: Movie set scenery

We can think of emulation as a movie set (Figure 1.1) when you look around, ev-

erything seems quite real, but behind a door there is just a wall and a window provides

4

a view to a nice picture. In order to emulate code execution, we need to provide an

environment with enough elements so the malware is able to run without noticing that

it is only a facade, and the emulated programs become actors in a play, acting as if the

facade was real, but with no impact in the real world, other than knowledge, of course.

Still in the realm of movies, we can recall the 1998 movie "The Truman Show", where

the main character (Jim Carrey), was part of a TV show for his entire life (30 years)

without being aware of it. The entire city was scenery and all the people there, but him,

were actors. He lived his life as it was the real world in front of his eyes, and not a TV

show with scripts, where even the weather was controlled by people outside that bubble.

This is basically what we want in an emulated environment, the program being emulated,

our suspicious malware, must not have any hint that it is in an emulation and not in an

actual system.

Emulation can be used in several ways and there are several different tools available.

A common approach for many security researchers is running suspicious code in virtual

machines, which are, in this context, hardware emulators (programs that emulate only

the hardware, including processors, memory and video cards) that are able to execute

common operating systems. This approach not only removes the need of purchasing

new equipment for tests, but it also provides a level of isolation necessary for tests and

even allows the researcher to return to the initial state in a short time. However some

problems still persist[6]:

• The actual operating system is executed in the virtual machine, so while this assures

that the environment reflects a real one, there might be some issues concerning

compatibility to the hardware being emulated and also OS copyright and licensing.

• Monitoring capabilities are not usually included or are not designed for the specific

task of detecting malware.

5

• Booting the operating system requires an amount of time that delays the actual

task of emulating the code, decreasing productivity. 2

Another use of emulation may happen internally to some anti-virus products. In

order to provide dynamic analysis, they send part of the suspicious code to a secure

environment' and then emulate the code, so malicious activities can be detected[55,

p.164]. In some cases this process can also help to detect malware signatures that were

encrypted until then and in order to be used, need to be decrypted in memory. The

mentioned "secure environment", known as "anti-virus emulator", sometimes also called

a sandbox, is not capable of running a full emulation (as graphic operations, among

others, are usually nonexistent), but it is still able to emulate some hardware and software

operations and this allows it to achieve its main purpose: malware detection.

A drawback for emulating both hardware and software, however, is the fact that,

sometimes, an emulation is not able to understand some instructions, in particular un-

documented or fairly uncommon ones[56] and, by introducing software emulation (e.g.,

operating system) to the hardware emulation, we also introduce more chances of having

such failures in emulation.

One big challenge in producing emulators for malware detection, especially in the re-

search setting, is that there are a vast number of possible hardware and software charac-

teristics that need to be emulated in order to create an environment able to run suspicious

code and identify its malicious features.

Making this challenge even harder is the fact that most of the research on emulation

for malware detection happens within anti-virus companies, thus new and innovative

methods are usually not publicly (or academically) available, being published just as

2A feature that helps on this and that are present in some virtual machines is the capability of using
"snapshots". Users can save states of the machine, whatever is in memory and in the processor registers,
and eventually return to them, continuing the execution from that point.

3An environment where programs can be executed without causing harm to the hosting system,
regardless of whether or not the harm is intentional.

6

patents. Sometimes those companies release information about their results, but with

few exceptions, that information is usually embedded into marketing material, which

makes the results not too reliable nor repeatable from the point of view of an independent

researcher.

This work is motivated by the need for a framework in which researchers, academics

or otherwise, can develop new techniques for dynamic malware detection and analysis

and also to evaluate existing techniques in an unbiased context. As an additional ben-

efit, we want this framework to allow not only the implementation and testing of novel

heuristics in a standalone mode, but also to give the researcher a possibility to "plug"

this framework into an existing product, extending its functionality.

In this thesis, we describe AGAVE, a tool designed for automatic generation of anti-

virus emulators and that provides an environment for malware analysis. This environ-

ment includes hardware and operating system emulation.

AGAVE is meant to be a framework to develop and test new techniques for malware

analysis and detection on end-user machines. AGAVE was not designed to be used as a

primary tool for malware analysis. Nor was it designed to use all the resources that might

be available in an anti-virus laboratory and that are unlikely to be found in computers

used by non-experts. The general end-user, the one with little or no expertise with

computers, must be kept in mind as the main beneficiary of the techniques and methods

that can be developed by using AGAVE.

Like any usual code, malicious software is basically a sequence of instructions, which

includes calls to libraries, that provide several resources, and also directly to the operating

system, known as system calls. AGAVE is meant to be used by security researchers and,

to do so, it also allows implementation of system and library calls, and even low-level

instructions, which gives the researcher the ability to customize the environment.

We believe that AGAVE can be used in different scenarios. Security researchers can

7

use AGAVE interactively for maiware analysis, so they can learn how malicious software

works and how it can be better prevented or detected. Security researchers can also use

AGAVE as a testbed for new heuristics for maiware detection. AGAVE can be used

embedded into anti-maiware (anti-virus) products, allowing emulation of suspicious code

to detect variations of known maiware, using the heuristics already included within those

products or ones created in AGAVE.

1.1 AGAVE at a glance

AGAVE is a framework that produces a secure environment for emulating the execution of

suspicious code. We believe that one of its most important characteristics is its flexibility,

as it not only allows researchers to choose the hardware and operating system to be

emulated, but also allows customization of both, as well as development of heuristics and

interfaces to third-party products.

Conceptually, the researcher provides information about how the operating system

works, what hardware it should emulate and also any customization that should be

applied. AGAVE, then, provides an environment where the researcher can emulate sus-

picious code for analysis and eventual detection of maiware. As shown in Figure 1.2, this

environment consists of basically three components:

• OS Emulator

• Hardware Emulator

• Controller

In order to provide OS Emulation, we have to understand how an operating system

works. In a usual anti-virus emulator, the researcher either implements each and every

function that is called by a program or returns a default value for those that are unknown.

8

Custom
Code and/or
Specifications

Libraries/OS
Queries

A.G.A.V.E.

Controller

CPU/Memory
Emulator

Emulation Environment

OS Emulator

Figure 1.2: Conceptual view of AGAVE

In anti-virus laboratories, sometimes tests are interrupted due to a missing function. So

the researcher should implement the function and restart the emulation. To avoid this

in AGAVE, prior to the actual emulation, the researcher needs to provide information

about the operating system. This information consists of traces of library and system

calls, that are parsed and stored in a database. During the emulation, when a call to

the operating system is requested, we use Case-Based Reasoning (CBR) to decide how

the emulator will respond to it. The researcher can override and customize responses if

desired. We provide details on how CBR was implemented in AGAVE in Chapter 3.

Even though it was desirable, AGAVE currently does not produce a CPU emulator

due to time constraints; instead we provide an interface from which AGAVE can inter-

act with existing products. While we used a specific emulator for this proof-of-concept

(PyEmu), we developed an interface that is general enough to allow researchers to use

9

other hardware emulators, provided some features are available, like the access to memory

and CPU and also the execution of a single instruction at a time.

In Chapter 2, we explain how emulation is used within AGAVE. In Chapter 4 we

demonstrate the use of AGAVE and also describe some of the problems we faced, demon-

strating how to solve these problems.

The Controller is responsible for the flow of execution within the emulation, directly

controlling the other two components, and also for the user interface.

The user interface is text-based, where we tried to incorporate elements from both

the Python IDE and GDB, a popular debugger used by developers and researchers for

debugging and code analysis. Our interface, thus, allows the user to transparently enter

not only usual Python commands but also commands and functions that are part of

AGAVE itself, allowing access to information about CPU status and to read from and

write into the emulated memory.

Researchers can develop code in Python for controlling the code execution, heuristics

for detecting malware and interface to third-party products. The AGAVE Controller

offers a set of functions (also described in Chapter 2) to help the researcher. These func-

tions, from the programmer's point of view, seem like built-in functions and commands.

Finally, in Chapter 5, we present our conclusions and also suggest some future work.

10

Chapter 2

Overview

As with many technological developments (artificial satellites, space stations, gene ther-

apy, etc.), the idea of computer viruses was first introduced by science fiction novelists'.

However, what seemed to be just science fiction now affects our everyday lives.

The idea of computer viruses and how to defend against them was first academically'

discussed by Red Cohen[15] and since then, computer viruses, and malware in general,

have quickly become a prevalent threat for computers and other devices, such as cell-

phones or FDA's. The good news is that anti-virus technologies have also advanced at a

similar pace, as noticed and discussed by Nachenberg[45].

One approach for detecting maiware is the use of static analysis, in particular, signa-

ture scanning. This technique consists of looking for specific sequences of characters in

files that would indicate the presence of maiware.

While rather efficient for a limited number of signatures, both its efficiency and its

efficacy are compromised by the increasing number of signatures that are constantly

added to the list. In fact, thousands of new signatures are found every day3. (Some of

these new signatures, however, do not describe new threats, but previously known ones.)

Detection by signatures can be avoided by many ways. Malicious code can be hidden,

for example, encrypted, inside an executable. Then, only when the infected executable

is running is the malicious code decrypted and executed. Another common practice,

'In 1970, Gregory Benford published "The Scarred Man" and, in 1972, David Gerrold published
"When Harlie was One", stories that mention not only a computer virus, but also a program to defeat
it, thus mentioning "anti-viruses" as well.[6]

'Some researchers also refer to John Von Neumann's work "Theory of self-reproducing automata" as
the first discussion about computer viruses, e.g., [62].

3According to Symantec's website, 259246 new signatures were added to in their "certified" list of
signatures during October 2010, an average of over 8,000 new signatures daily. Source: http://www.

symantec . com/business/security_response/def initions/certif led/index. jsp.

11

inspired by biological mutations, is self-mutating code, by using techniques such as poly-

morphism and metamorphism. With these techniques, every instance of a program can

potentially be different from previous ones, thus having different signatures[46, 59].

Dynamic methods of analysis and detection have, then, been developed not only as

an alternative, but as a complement to static approaches. For example, we can observe

the behavior of a program (the sequence of actions the program performs) to identify

suspicious activities.

In this chapter, we are going to discuss one dynamic approach: the use of emulation

for malware detection and analysis. First, we will review what emulation is and some of

the ways emulation can be used when working with maiware, then we give an overview

of AGAVE.

2.1 Code emulation

The idea of emulation can be traced back to the 1960's, originally used to make the

new and smaller systems (still mainframes at that time) behave like the large and old

ones [63]. The objective was keeping existing programs running without adaptation to

the new equipment, that was usually not compatible with its predecessors. The basic

idea was providing a scenario that programs would recognize as their actual environment

and would be able to run normally.

Emulation allows us to run code written for a specific processor in a different type of

machine, or code written for a specific operating system can be executed in a different

one, sometimes with the entire environment (CPU, memory, devices) also being emu-

lated. This type of emulation is usually called "virtualization", as the main motivation is

basically the original motivation for emulation, the creation of a "virtual machine". The

virtual machine can be used to execute code that would be incompatible with the avail-

12

able equipment. In this type of application, low-level instructions can be either emulated

or translated to the host machine.

Tools as QEMU[1O] and Bochs[40] are some of the examples that allow the emulation

of a machine within another operating system. Xen[7] and VMWare[66] can go even

further, providing the emulation of several machines in one single system, ideal for hosting

services.

Virtualization implies emulating an entire environment and in recent years has in-

creased in complexity as the users request new features[35], thus also draining more

resources from the host computer. However, virtualization is not suitable for maiware

detection. Maiware detection, especially when performed by anti-virus products, should

be efficient and with as little overhead as possible.

However, some researchers have successfully used virtualization tools for maiware

analysis (e.g., [9], [33]). The environment can be monitored, allowing capture of library

calls or detection of changes in registers, memory and stack. Differences from the ma-

chine status before and after maiware execution can be collected for comparison, so the

researcher can understand how the maiware works, how it infects the machine and maybe

even how to remove it safely.

Virtualization is not the only way of using emulation to fight maiware. The impor-

tance of emulation in the fight against maiware is that emulation provides a way of safely

observing what suspicious code is doing. This safety comes from the fact that the en-

vironment that runs within the emulation is completely different and isolated from the

host.

Sometimes, the idea of emulation being an isolated environment can be confused with

sandboxes, but these are different concepts. In a sandbox[51] the code runs in the actual

machine, but in a protected and fairly isolated environment, that, ideally, would not

affect other programs in the same computer. However, some resources are still shared

13

with other applications (e.g., processor, memory, disk) and, sometimes, they can be

used to provoke system interruption. On the other hand, emulation provides an entirely

isolated and fake environment, where even access to devices like disks or video has no

impact on the real devices, as some of them do not even exist in reality.

We must emphasize, however, that a balance must exist between the use of static

and dynamic analysis (emulation). On one hand, emulation techniques are considered

more effective and less risky than static analysis, but it is also more complex and, thus,

slower. On the other hand, static analysis can help emulation because of its speed and of

its ability to discover anti-emulation measures[16]. Also, we must remember that, unless

within an anti-virus laboratory, it is not always possible to emulate a whole program for

detection. Some prograths (e.g., a word processor) simply never finish, unless requested

by the user. So, just a limited number of instructions must be emulated[6].

2.2 Maiware detection and analysis using emulation

Emulation allows the use of a huge variety of techniques for malware detection[6]. The

techniques are commonly based on generic decryption, heuristics or program behavior

profiles.

As previously mentioned, static detection, especially signature scanning, has lost

some of its efficacy. In part, this is due to the development of polymorphic viruses,

capable of mutating from one generation to another. The common way of "mutating" is

by encrypting the viral code, so a previously determined signature would not be valid

for that particular instance of the virus. In order to be executed, however, it becomes

necessary to include into the target program what is called a "decryptor loop". The

decryptor loop is responsible for decrypting the viral code (either in memory or on disk)

4The concept of encryption here is rather loose. Malware writers call "encryption" techniques such as
a simple XOR operation or techniques of code obfuscation. However, actual application of cryptographic
algorithms may happen sometimes.

14

and then executing it. A detailed description of how the code can mutate is beyond

the scope of this work, but polymorphism is formally described by Filiol[22] and a more

practical approach can be found in [62].

In generic decryption[48], execution of a suspicious program is emulated, looking for

signatures (sequence of characters) in the emulated memory to detect when malicious

code has been decrypted. In our experiments, we have implemented a simple variation

of this approach, as can be seen in Chapter 4.

Heuristics based approaches rely on a set of rules used to define what should be con-

sidered a threat [3]. Those rules can help to identify malicious characteristics in unknown

programs, for which signature based detection would fail. Heuristics can be used to select

events. Sequences of these events can be then compared to previously collected malicious

sequences to identify malicious code[31]. We can also emulate a predefined number of

instructions of a program, collecting operands, operators and states of registers after each

instruction. Then, using a heuristic analyzer to evaluate this data, we could determine a

probability of the program containing viral code[69]. Another heuristic approach involves

producing histograms based on active instructions (i.e., instructions that modify mem-

ory) or on sequences of them. These histograms can be used to identify some obfuscated

malicious code [47].

A program's behavior profile can be described as a sequence of actions it performs.

Examples of actions considered when building a behavior profile are: a process creation or

termination, file opening or deleting, making a network connection. In practice, system

calls made by the program are collected to build its behavior profile[23]. One approach is

monitoring and storing the behavior of a program when it is first executed. Every time

that program is updated, its behavior is again monitored and compared to the original

one. Any differences can be then compared to behaviors of known malicious software for

identification [64].

15

Using a different approach, we can emulate code, building a model that characterizes

its behavior. The model describes information flow between system calls. The model is

compared to a database of previously recorded malicious behaviors (similar to a signature

database) [38].

It is also important to keep in mind that emulation does not need to be done entirely

by software. Hardware-virtualization extensions, as provided by Intel-VT, may be used

to analyze malware, while the analyzer remains transparent and cannot be detected by

the malware[17].

A slightly different use of emulation for malware detection is in Network Intrusion

Detection Systems (NIDS) or Network Intrusion Prevention System (NIPS) [41]. In this

type of application, code is still emulated to identify the presence of malware, but now

the suspicious code comes from network devices instead of coming from disk or memory.

For example, a CPU emulator can try to emulate code directly from network streams

looking for signs of buffer overflow attacks or attempts of shell-code injection[27]. In

order to find attempts of shell-code injection, another approach is the use of "forensics

shelicode" to monitor operations[54].

Virtual machine inputs can also be logged and replayed on a separate analysis plat-

form, so input and logs can be used for intrusion detection, bug finding or, in the worst

case, forensics[14, 18].

2.3 Anti-virus emulators

"Anti-virus emulator" refers to the use of emulation techniques specifically for malware

detection. Note that they are different from traditional emulators, whose main goal is the

ability to execute code from one platform on a different one, thus correct and complete

code execution is demanded. Platforms, in this case, might refer to different processor

16

architectures or simply to different operating systems.

Code executed by an anti-virus emulator may not have the same results as if exe-

cuted by another type of emulation or in a real environment, so the problem posed by

Martignoni et al. [42] (which presents a fuzzing-based methodology used to test four dif-

ferent CPU emulators and that found errors in all of them, some even preventing proper

execution), is not really a concern when thinking about emulators for malware detection.

The anti-virus emulator only requires that the emulation be just accurate enough to keep

malware running.

Aycock[6, pp.75-77] describes an anti-virus emulator as having five conceptual parts:

1. CPU emulation: that interprets and emulates the execution of instructions.

2. Memory emulation: used for mapping and controlling emulated memory allocation.

3. Hardware and operating system (OS) emulation: Actual OSs are not actually used

in anti-virus emulation. Among reasons, Aycock cites startup time, size, licensing

issues and specific monitoring capabilities.

4. Emulation controller: responsible for controlling the flow of the emulation, when

the emulation should stop and what to do if something is detected.

5. Modules for extra analysis: allowing the researcher to deal with special cases and

also to include new approaches of malware analysis and detection in the emulator.

When talking about anti-virus emulators, we must mention that there are, at least,

two types of applications for anti-virus emulators. They can be used in an anti-virus

laboratory, as a tool for malware detection, for testing detection and for malware analysis.

It also can be embedded in anti-virus products on user machines, providing a more

powerful anti-virus approach than static signature detection.

17

This thesis focuses on anti-virus emulators. We visualize the anti-virus emulator as

a way of providing a scenario to the malware, a representation of the environment it

would find when being executed in an actual machine. However no access to any actual

device neither to any real application nor files should be made available to the suspicious

program.

Unfortunately, there is not much academic work related to anti-virus emulators. The

research on anti-virus emulators is usually done within anti-virus or anti-malware com-

panies. Thus, most of the available discussion and results in this area can only be found

in the form of patents (including patent applications), or in "white-papers" (with the

actual data surrounded by or mixed with marketing information).

AGAVE intends to be a tool to help researchers, especially from academia, to become

more familiar with techniques and methods used to dynamically detect malware. It can

also be used as a testbed for new methods, allowing the researcher to "plug-in" their new

methods into existing products.

2.4 Describing AGAVE

AGAVE, our tool for automatic generation of anti-virus emulators, is designed to be

used by malware researchers. The ultimate goal of AGAVE is that, for a given pair

(Hardware, OperatingSystem) , AGAVE should produce an anti-virus emulator that can

be used either for malware analysis or for malware detection.

AGAVE is intended to be used both in a "standalone" mode, where a researcher

can interactively analyse suspicious code, or embedded in a third-party tool, such as an

anti-virus product, so new heuristics can be developed and tested.

Currently, AGAVE is implemented as shown in Figure 2.1. A third-party emulator

(1) is responsible for CPU and memory emulation, as described by Aycock[6]. AGAVE

18

(suspicious)
Executable

AGAVE Heuristics +
Controller $ Customization
(4) (5)

Emulator
Interface

(2)

Third-Party
Emulator

(1)

Emulation

Library/OS
traces

Retriever

CBR Modules (3)

AGAVE
Lea ner

Casebase

 -,

Figure 2.1: Overview of AGAVE

accesses this third-party emulator by an interface (2). A skeleton for writing a new

interface is provided and we currently have a working implementation of an interface to

PyEmu5, an x86 CPU emulator written in Python.

Hardware and OS emulation is provided by the CBR modules (3), which are respon-

sible for generating responses to system and library calls. Some functions, however, must

be implemented by the researcher, in order to allow correct emulation and, consequently,

a correct analysis.

Between the CPU emulator and the CBR modules, we have the AGAVE Controller

(4), which is responsible for loading the executable and controlling the flow of execution

and the access to OS functions, either by calling implemented functions or by doing re-

quests to the CBR modules. The CBR functions are accessed through the CBR retriever,

a module specialized for responding to queries. Heuristics to control the flow of execution

5PyEmu Revision r19

19

and also call extra modules for analysis, mentioned by Aycock, can be implemented by

the researcher and called by AGAVE as necessary (5).

The remainder of this chapter discusses CPU and memory emulation and also the

AGAVE Controller. A discussion about the CBR Modules is in Chapter 3.

2.5 CPU and memory emulation

Writing a CPU emulator from scratch would obviously take a really long time. Due to

time constraints, we decided to use a tool that is already available.

Some characteristics, however, should be present in the product we use:

• It should be preferably open source. Not only would this help to understand how

the CPU emulator works, but also it could be necessary to make minor changes, in

order to allow an interface to our code6.

. It should be well documented, both in terms of user manual and also code docu-

mentation.

• It should allow easy access to registers and memory, thus allowing the researcher

to read and modify them as necessary.

Its fairly good documentation and the fact that it was written in Python, a program-

ming language that was familiar to us, made PyEmu our choice of CPU emulator for this

proof-of-concept. Even when the documentation was not complete, the code was clear

enough to provide a good understanding.

Our familiarity with Python even allowed us to easily solve some problems that hap-

pened because of this specific emulator. We had several interruptions in our experiments,

61t turned out that we did have to make small changes, due to some bugs. Bugs that also motivated
another feature for AGAVE: Custom implementation for low-level instructions.

20

especially when trying to emulate the execution of statically compiled code, because of

some instructions that were missing. We also found a bug in the PyEmu implementation

of the instruction SCASD, which caused us another interruption.

Initially, we added the missing instructions to the emulator code. However, missing

instructions were a possibility for any third-party emulator. This motivated us to allow

AGAVE's users to implement instructions. This new feature not only helped code to run

to its completion, it also gave the user the ability to execute custom code at an instruction

level, which can be used, for example, to set up triggers when a specific instruction is

called.

A major disadvantage of our choice was definitely speed. An actual processor can

execute millions of instructions per second. Our implementation, however, has that speed

reduced to approximately 1,000 instructions per second. We believe that it was mainly

caused by the fact that both our controller and the emulator are implemented in Python,

an interpreted language. Also, the instructions are interpreted sequentially. We have not

implemented any sort of optimization or parallelism for the emulation7.

2.5.1 CPU emulator interface

AGAVE currently uses PyEmu for CPU and memory emulation. A researcher might

want to use a different emulator. In order to do this, it is necessary to implement an

interface to access the new emulator.

The new emulator should provide:

1. Means to allow interaction with third-party tools (e.g., ability to control the emu-

lator by commands sent by a socket).

7There was, however, some optimization in our Python code. We were actually able to increase
the processing speed by around 65%. Our original implementation could only interpret around 600
instructions per second.

21

2. Ideally, a minimum set of functions, that includes means to retrieve information

such as registers, stack and memory.

3. Translation instructions from op-codes to mnemonics is also desirable.

To implement an interface to a new emulator, the researcher must create a class

derived from class AGAVE and then implement the methods necessary for accessing the

emulator. Figure 2.2 shows an example of code necessary to start an implementation of

a new interface.

from agave import *

class Agave2MyEmulator(AGAVE):

(...) Defining methods

Figure 2.2: Starting implementation of an interface to a new, emulator

It is also necessary to implement the methods to access information from that emu-

lator. These methods include loading code into memory and initialization, and reading

and writing of memory and registers8.

Some methods depend on the emulator being used and some methods depend on the

type of executable being used (so it can be correctly parsed). Table 2.1 describes the

methods that must be implemented and that are emulator specific. Table 2.2 describes

the executable specific methods that must be implemented. We have developed a loader

for ELF files that can be used. In this case, the executable-specific methods are already

implemented. Finally, Table 2.3 describes methods that are not necessary for emulation,

but that might provide extra information about the emulator (such as the status of the

stack or a list of registers) or extra features (such as snapshots). These extra methods,

if implemented, might also be useful for implementing heuristics or monitoring tools.

8From this point, any reference to the terms "memory" or "registers" refers to "emulated memory"

22

Method Description

get-context(Returns the CPU context (registers and
flags) in a Python dictionary with pairs (reg-

ister, value). In this case, a register is a key
of the Python dictionary.

get-instruction(Returns the mnemonic for the current in-
struction.

getinstruction_pointer() Returns the value of the instruction pointer.
get..memory(address, [n]) Read n bytes from address in memory. If n

is not supplied, reads a word (4 bytes)-
get-register(register) Returns the value stored in register.

get-stack-pointer(Returns the value of the stack pointer.

set_instruction_pointer(address) Sets the instruction pointer to address.

setmemory(address, value, [n]) Save n bytes of value in address of memory.
If n is not given, save the length of value.

set..register(register,value) Stores value into register.

set-return-code (value) Sets return code for a function that was em-
ulated.

set_stack_pointer(address) Sets the stack pointer to address.
skip(n) Skips n bytes. Equivalent to adding n to the

instruction pointer. (Useful for when an in-

struction is implemented by the researcher.)

step() Executes a single instruction.

Table 2.1: Mandatory emulator-specific methods to be implemented for interface

Method Description

load(filename) Loads the executable filename into mem-
ory. (It might be necessary to parse the exe-
cutable, for example, to find the entry point.)

check-library-call(instruction) Check if a library call was made and, if neces-

sary, invokes the controller to either emulate
or execute it.

check..systemca11(instruction) Similar to the previous, but for system calls.

check-custom-instructions

(instruction)
Similar to the previous, but for custom in-
structions.

Table 2.2: Mandatory executable-specific methods to be implemented for interface

23

Method Description

load_snapshot([filename]) Load snapshot. If filename is not given, reads
the last one with auto-generated name.

savesnapshot([filename]) Save snapshot. If filename is not supplied,
automatically generates a filename using se-
quential numbers.

get-memory-pages(Return a list of allocated memory pages.
registersQ Print list of registers for debugging purposes.
stack() Print stack for debugging purposes.

Table 2.3: Optional methods to be implemented for interface

It must be noted that we have special functions to deal with the "instruction pointer"

and the "stack pointer", as we do not assume which register is used for each case. We do

assume, however, that every architecture must have an instruction pointer and a stack

pointer, thus the emulator should allow us to read them.

The researcher must also define two variables within the interface.

1. SYSCALLJNSTRUCTION: a mnemonic for the instruction that executes a system

call. For Linux on x86, for example, we use "mt 0x80".

2. LIBCALLJNSTRUCTION: a mnemonic for the instruction that executes a library

call. For an ELF file on x86, we have used "call".

These variables do not need to store the entire mnemonic (including operands), as

long as the methods that implement the system and library calls are capable of dealing

with this. For example, for dealing with library calls, we look for an instruction "call". If

the address does not point to an address in the ELF relocation table, we perform the call,

otherwise, we let AGAVE controller decide what to do. (If the function was implemented

by the researcher, call the implementation, otherwise, AGAVE controller calls the CBR

or "emulated registers", respectively.

24

retriever9 to emulate that function.)

As an example of implementing an emulator interface, defining the aforementioned

methods and variables, Appendix C shows our implementation of an interface to PyEmu.

2.6 Controller

As we previously mentioned, the controller is responsible for the flow of execution (emu-

lation). It is implemented as two components: An interpreter and the actual controller.

The interpreter is responsible for executing user-implemented code". The controller

component is responsible for calling the emulator (through the interface) to execute in-

structions, calling the interpreter to execute the user's code and calling the CBR. retriever

to emulate library- and system calls that are not implemented.

To emulate an executable, we have a loop that reads one instruction from the exe-

cutable at a time. The pseudocode for the loop is described in Figure 2.3.

The pre-execution(and post-execution(functions call user defined code, as

specified in AGAVE configuration files (described in Chapter 4). This user defined code

can be heuristics for maiware detection, monitoring tools or any other code the user

might want to execute prior to or after an instruction is emulated.

The emulation, by default, starts with batch mode enabled, i.e., the emulator will

emulate all the instructions without user intervention. The batch mode can be disabled

by a break point, previously defined by the researcher or by code implemented by the

researcher, by calling the AGAVE command pause 0. The batch mode can be re-enabled

by the AGAVE command run 0.

In order to redirect a call or instruction, the user must first define the function, in

Python, that is going to implement that call or instruction. This function must deal with

9CBR module responsible for searches.
'°We assume the user is a security researcher, thus with some programming and maiware analysis

background.

25

enable batch mode

initial_checking 0

while not finished:

if not in batch mode:

call interpreter for user input

read instruction from emulator

pre_executionO

if instruction is system call:

if system call is implemented:

call interpreter for system call

else:

call CBR retriever for system call

else if instruction is library call:

if library call is implemented:

call interpreter for library call

else:

call CBR retriever for library call

else if instruction is in list of custom instructions:

call interpreter for instruction

else:

executes instruction using emulator ## Method step 0

post-execution(

if break point is reached:

disables batch mode

Figure 2.3: Pseudo-code for the main emulation loop.

26

issues like reading parameters (either from stack or from registers) and returning a result

(usually by calling set-return-value()).

A call to set-system-call(), set_library_call() or set_custom_instruction()

should then be done to bind the defined function to the call or instruction, set-system-call 0

and set-library-call 0 receive two parameters. The first is the function name; system

calls are prepended with "SYS_". The second is a call to the defined function. Addition-

ally to these two parameters, set_custom_instruction() receives a third one, which is

the number of bytes the instruction pointer will be incremented".

For example, a redefinition of the instruction LODSD 12 can be found in Figure 2.4.

Description of LODSD from: http://faydoc.tripod.com/cpu/lodsd.htm

def LODSD O:

interface, log, debug (" Executing custom instruction LODSD")

esi = get_register("ESI")

df = interface. emu. get_register("DF")

addr = esi

data = get_memory(addr, 4)

interface.log.debug("\tMoving \°h08x(VhO8x) to EAX"\%(addr, data))

set_register("EAX" , data)

if df == 0:
set_register (h1ESIH , esi+4)

else:

set_register("ESI" , esi-4)

set_custom_instruction("lodsd", " LODSD()", 1)

Figure 2.4: Redefining x86 instruction LODSD.

A malware detection heuristic is also implemented as a Python function. The main

difference here is where the function is going to be evaluated. Our options are calling the

heuristic at the beginning of the emulation, before an instruction is emulated or after its

11111 some cases, it turned out be necessary to increment the instruction pointer inside the implemen-

tation, as the number of bytes would depend on the op-code and not on the mnemonic. In these cases,
the third parameter should receive 0 (zero).

12x86 instruction "LOAD STRING". Its implementation was actually necessary to our tests, as it was
not implemented by PyEmu.

27

emulation (respectively, initial_checking 0, pre_execut ion 0 or post_execution 0

steps). This is defined by the AGAVE configuration and we describe it in Chapter 4.

2.7 Related work

Several tools were recently developed that use emulation for malware analysis. Those

tools provide services like unpacking, disassembling, tracing and others. One of them

can even be accessed via the Internet.

Probably the work closest to AGAVE is PyEmu[52], the very emulator we use in our

proof of concept. PyEmu was designed as a tool for malware analysis. AGAVE, on the

other hand, can be used for malware analysis but also for malware detection, embedded

within an anti-virus product. While PyEmu is designed to support other operating

systems, it is only able to work with Windows PE executables". Different from AGAVE,

that uses CBR for emulating operating system functions, PyEmu uses actual Windows

libraries (DLLs) for emulating code.

Similar to PyEmu, in the sense that the code runs in an emulated operating sys-

tem environment, with Windows API and native system calls being monitored, in order

to provide understanding of the program's behavior, TTAnalyze[9] was developed for

dynamic analysis of Windows executables.

A similar approach is also found in Anubis[8]. Anubis is a platform for dynamic

malware analysis, on which binaries are submitted by a web interface and then emulated.

Anubis monitors Windows API calls, system services, network traffic and data flow,

resulting in a report of the activities.

AGAVE uses traces of execution as input to its learning system. Program execution

traces have also been used to improve emulations[33]. A system compares traces from

13 There are references within the PyEmu source code to emulating a Linux environment, however
there is no actual code developed for emulating Linux.

28

emulated execution of a suspicious program to traces of the same program executed on

actual hardware. The emulator then is automatically corrected to a better approximation

of the actual platform. A variation of this approach is found in Renovo [32], where, instead

of using traces, an executable runs in an emulated environment and is monitored by an

"Execution monitor". The same code is also monitored outside the emulated environment

and any difference between the two executions might indicate some obfuscation or anti-

emulation technique is being applied, so the code is extracted for future analysis..

2.8 Summary

In this chapter, we discussed the importance of emulation for maiware analysis and

detection. We also presented an overview of AGAVE, a tool that we have developed for

both maiware analysis and also as a testbed for research on malware detection.

AGAVE uses a CPU and memory emulator for interpreting low-level instructions.

While our proof-of-concept makes use of the open-source emulator PyEmu, researchers

can customize AGAVE to use the emulator of their choice. For emulating operating

system functions and library calls, AGAVE relies on a machine learning technique called

CBR (Case Based Reasoning), that will be discussed in depth in Chapter 3.

AGAVE's controller is the component responsible for controlling the flow of execution

during the emulation. The controller is also capable of interpreting Python code, so

researchers can customize OS calls and even CPU instructions as necessary. Examples

of custom code are presented in Chapter 4.

29

Chapter 3

Case-Based Reasoning within AGAVE

In order to emulate a program's execution, it is necessary to understand how the program

interacts with the environment, i.e., the operating system (OS) that the program is meant

to work in.

The interaction between a program and the operating system can be loosely described

by Figure 3.1. A program consists of instructions that can call functions (1) from the

operating system's library, a collection of files that contain code and data and that are

shared by different programs. Those functions from the operating system's library, after

executing some tasks, which include executing other library functions(2) or requesting for

a low level operation from the operating system kernel(3), return to the calling function

a result that indicates what was done(4). This result can have different meanings: a

memory address, the result of an arithmetic operation or even an error code. A program

can also directly request the kernel to execute operat ions (5).

User Space
open_s tdout U

Hello, world!

puts ("Hello")

sys_exit (0)

(1)

I

(4)

 tnt puts(xssg) (

open_stdoutO;
(2)

sys_write(stdout,msg) 4_

Z n(OK);)

Shared Library

(3)

OS Kernel

Figure 3.1: Code execution with shared library and system calls

30

However, according to our observations, those direct requests are not really common

for legitimate programs. Legitimate programs usually rely on the shared libraries, for

those contain error checking and other operations that might be necessary for correct

operation.

In this work, we will refer to the execution of a function within the operating system

library as a "library call" and the request for a low-level operation within the kernel as a

"system call". System calls do not necessarily need to be executed by library functions,

but can also be directly executed by any program.

Our system needs to be capable of inferring how to respond to a call for a library

or OS function. This allows a program to run, in our context a suspicious program, as

smoothly as possible, without anything unexpected happening.

It must be noted, however, that some calls cannot be learned automatically, due to

the.obvious complexity of some code. Other calls will require an implementation by the

user (that we assume to be a security researcher, with sufficient background for such

task), as some basic functionalities must be present to allow actual and effective malware

detection, which is one of the main goals of AGAVE. As an example of such required

functionalities, we can mention I/O operations, which are essential to allow static-based

analysis such as signature detection. The specifics about how a researcher can implement

code within AGAVE will be discussed later in this thesis.

In this work, we have used a machine learning technique called "Case-Based Reason-

ing" or CBR, that applies knowledge from previous experiences to the decision making

process. This is analogous to judicial trials, where a judge takes into consideration pre-

vious cases in order to decide whether defendants are guilty or innocent.

This chapter is organized as follows: Section 3.1 presents some background on CBR,

Section 3.2 describes how cases are defined in AGAVE, followed by a discussion about

implementation in Sections 3.3 and 3.4. Finally, in Section 3.5 we evaluate our imple-

31

mentation of CBR.

3.1 Basic concepts

Kolodner[39, p.13] formally defines a case as "a contextualized piece of knowledge rep-

resenting an experience that teaches a lesson fundamental to achieving the goals of the

reasoner". An important keyword in this definition is "contextualized". The context of

each case must be clearly defined, otherwise CBR would not be a successful approach.

Some examples of the application of CBR [2] include:

• A physician that is able to diagnose a disease, by observing relevant symptoms. Or

that prescribes treatment for a patient, taking into account the patient's history,

that includes allergies and reactions to certain medications; or

• A financial analyst that, by observing the economic situation of a certain company

and comparing to what has happened to other companies in the same (or quite sim-

ilar) situation, is able to decide whether or not to recommend if a loan application

should be approved.

Note that, in both examples, previously unseen events can happen: Patients can have

allergies to a prescribed medication without either patient or physician being aware of it;

a new economic crisis can affect the entire world. Even for these situations, each one in

its own domain, some previous knowledge is necessary to form a decision. Depending on

the situation, the decision process can be rather complicated and retaining information

both about the problem and about the decision can be important to help future decisions.

Thus, for a specific context, each one of the situations that we have some knowledge

about and also the situation that is being evaluated are considered "cases". The collection

of cases we know is usually called a "knowledge base" or a "case base".

32

But, simply retaining cases, having a large casebase, does not help much if we do not

know how to relate those cases to the one we are evaluating.

One of the most important concepts in CBR is the idea of similarity[12]. Defining how

to compare two different entities (whatever these two entities are), in order to measure

objectively how similar they are, is a key component when designing a CBR system.

Directly related to similarity is the idea of distance. The distance indicates how

different two entities are. So, it is said that two entities are close, if they are, up to some

level and in a specific context, similar. On the other hand, the distance between two

entities is high, i.e., they are far away from each other, if they are really different.

Similarity (and distance) within AGAVE is discussed in Section 3.2.3.

3.1.1 The CBR cycle

Solving a problem using CBR involves four basic steps, or processes, as described by

Aamodt[2], that is also referred to as "the four REs":

1. Retrieving: search in the knowledge base for a case or cases that are most similar

to the situation to be solved.

2. Reusing: apply the retrieved information to the current problem. This can vary

from simply copying the exact same solution as it is, in the knowledge base, to

modifying it, adapting the solution to the new problem.

3. Revising: evaluate whether or not the proposed solution is valid for the problem in

question.

4. Retaining: add what was learned to the knowledge base, so it can be used for later

cases.

We used this cycle as a base for developing our implementation of CBR for AGAVE,

as described in Section 3.4.

33

3.2 Modelling cases

Our first task to implement CBR in AGAVE is defining what we call a "case" in our

context.

To allow code emulation, besides emulating low-level instruction execution, which is

already provided by the CPU emulator, we need to emulate library and system calls, thus

emulating the presence of an OS. Those calls can be described, in their simplest form, as

functions that receive parameters as input and return some value as output.

Some functions, in addition to returning a value as output, may also use another

mechanism to return information. These functions receive, as parameter, an address

pointing to a position in memory. The function can, then, write information there. This

mechanism is mainly used for returning structures, objects or strings. Our implemen-

tation of CBR for AGAVE does not deal directly with this form of return. However,

AGAVE allows researchers to implement functions when necessary or desired. In fact,

if a function that uses parameters to return data is important for analysis, it should,

ideally, be implemented by the researcher. This implementation would ensure a more

precise analysis.

In the remainder of this section, we describe how we collected data and what decisions

were made for modelling our data in cases that could be used for our CBR implementa-

tion.

3.2.1 Collecting data

As a source of data, we decided to use library and system traces. In a Linux environment,

which was chosen to be our proof-of-concept, these data can be collected by using the

"itrace" utility'.

As we wanted as much information as possible, we used some options provided by

'There are tools for gathering the same type of information for other operating systems as well.

34

8417 __errno_location()

8417 malloc(128 <unfinished ...>

8417 SYS_brk(NULL)

8417 SYS_brk(0x08955000)

8417 <... malloc resumed>)
8417 gethostname(<unfinished ...>

8417 SYS_uname (0xbf8cbcc6)

8417 <... gethostname resumed> " agave-host", 128)

= 0xb76f 2898 <0.000036>

= 0x08934000 <0.000013>

= 0x08955000 <0.000013>

= 0x08934008 <0.000208>

= 0 <0.000011>

= 0 <0.000081>

Figure 3.2: Sample of ltrace output

itrace. For collecting information about a program, we used the following command:

itrace -f -T -s -s 1024 -A 64 -o EXEC.ltrace EXEC

where:

• -f: traces child processes.

• - T: shows the time spent in each call.

• -S: also lists system calls. System calls will always be indicated by the prefix

"sYs_".

• -s 1024: maximum number of characters in strings.

• -A 6: maximum number of elements in an array to be displayed.

• - 0: writes itrace output into a file.

• EXEC: this is the name of the executable being traced. The same name, with the

extension ".ltrace" appended, is also used for the output.

A sample of an actual output can be seen in Figure 3.2. A close look at this sample

shows us a rather interesting situation: a call to malloc is shown as "unfinished", two

system calls are executed internally to malloc, and malloc is finally resumed. Only then

does the execution time for malloc become available.

35

That situation shows the importance of having the process id (PID)2 for parsing.

When a process forks, both parent and child process share the same trace file, and the

PID helps us to discern which instruction belongs to each process, especially in the case

of "unfinished" calls.

Unfinished calls can also happen when a signal is sent to the process or when the

process pauses to allow the execution of its parent or child.

In our very first implementation in order to evaluate the viability of using CI3R for our

problem, we decided to work only with system calls (which is a reduced set of functions).

In that implementation we also included a sequence number in our data. This se-

quence number indicated when in the execution each call was made. The idea was that

some functions would return different values depending on where in the code they were

called. That is specifically true for functions that deal with I/O operations. For instance,

a call to open, when successful, returns a "file descriptor", a number that represents the

file opened. This number is usually sequential. So, if there was a call to open, it would

probably return a lower number if it happened in the beginning of the code, and a higher

number if in more advanced stages of execution.

However, it must be mentioned that this sequence number is no longer part of our

data, as its main benefit was increasing accuracy for I/O related calls. As I/O related

calls are usually essential for malware detection, they should be preferably implemented

by the researcher within AGAVE. The experiments discussed below do not include a

sequence number.

The traces, as we have shown in Figure 3.2, have given us an obvious framework for

describing a function call. A call consists of:

. a function name, a string that identifies the function and that can be considered a

2Process id: a number that is given by the operating system to each process that is executed. In our
example (Figure 3.2), the PID is 8417.

36

short description of that function's purpose;

• a list of parameters (shown between brackets) passed to that function, that can be

empty, i.e., some functions might not require any parameters;

• a solution (shown just after the equal sign); and

• an execution time (shown at the end of the line, between angle brackets).

There are, however, other features that are not so obvious, as to define if it is a

library or a system call (itrace renames system calls by adding "SYS' to their names)

and a sense of dependency, i.e., what system calls, or library calls, are requested inside

another function call. Currently, we do not use this dependency information in our

implementation.

3.2.2 From "Calls" to cases

In our earliest experiments, our cases were identified by the function name and for each

value passed as a parameter. While that would provide a high level of accuracy (some-

times close to 100%), it was also generating a huge casebase, and search operations tended

to be extremely slow. In the worst case, a search for a call would last up to 5 minutes

for a knowledge base of around 19,000 cases.

That search time may seem rather surprising, but we must keep in mind that, when

using CBR, the searches in our knowledge base are quite different from a search in an

usual database (say, a relational database). We are not looking for an exact match, but

for similar cases, so our query does not have parameters that can be optimized in some

sort of index to speed up the search. This implies a sequential search, thus, quite slow

3Accuracy refers to how close the result we found is to the result we would be expecting. Strings
were compared by using n-grams and numbers by dividing the lower number by the higher and finding
a percent value. Values close to 1.0 would represent similar values.

37

and computationally expensive. Some measures can be done to avoid a search of the

entire casebase, and these measures will be discussed later in the chapter

One idea to improve performance was grouping cases; fewer cases, less to search.

Instead of identifying cases by function name and parameters, we had function names

and types of parameters. For instance, f, (1, 2) and f, (2, 3), instead of two cases, would

now be considered a single case fi (numeric, numeric). Our search operation would give

us the most frequent returning value for that case as a result.

We also wanted to consider some special cases. Some values tend to be more frequent

than others. Values of 0 (that may also mean "False"), 1 (that usually indicates "True")

and -1 (which is a common value for errors), were also designated their own "type". By

doing this, we reduced significantly the size of our casebase from around 19,000 to about

300 cases. The significant reduction, however was also due to the fact that by then we

were only working with system calls, that were not more than 2001. This also brought

us an important loss of accuracy, from around 85-95% to around 60-70%.

We had this clear trade-off to consider: granularity (number of cases) versus accuracy.

And, ideally, we needed to find a balance. We then decided that, when defining the case,

we would keep types for non-numeric parameters, such as strings, structures or arrays,

and we would cluster the numeric values in ranges. For our implementation, we have

created special clusters for non-numeric types (e.g., StringCluster, ArrayCluster), so we

can maintain consistency, working with clusters instead of alternating types and clusters.

For defining the numeric ranges, we looked at the numeric parameters of all the calls

in our knowledge base, counting the frequency of each one of them. Then, we used

DBScan[20] to generate the clusters. We decided to use this specific algorithm as it does

not require us to define a fixed number of clusters in advance, the cluster definition being

a matter only of the frequency of each value.

41t must be noted that our cases take into account the parameters passed to the function, hence the
higher number of cases if compared to the number of system calls.

38

Using DBScan, however, brought us an unexpected problem. It is a quite expensive

algorithm, and, with fairly large databases (sometimes in the order of hundreds of thou-

sands of values to compare), it may take a long time to process. The time for generating

clusters was around 10 minutes for a collection of 45,000 calls and resulted in around

1700 clusters.

In order to speed up the process, we organized the frequency of all the values, ordered

by the frequency and divided into 5 groups (or five quantiles, as those groups are named

in statistics).5 Figure 3.3 shows an example with the frequency of 25 different values.

If the frequency of a value belonged to the last group (marked in red in our example),

that value would become a cluster by itself (a cluster of one single element). Numbers

that were not in one of those single-element clusters would then be given to DBScan as

a range to be grouped into clusters. In our actual data, this process resulted in around

2,400 clusters created in less than one minute.

I...
20 1257 1532 28

ii
21 99 I i' i 12 258 128

1.

Figure 3.3: Example of clustering by frequency

I I'
With the definition of such clusters, that are represented by their limits (highest and

lowest value), we can now describe what we consider cases within AGAVE. A case is

5 W have previously tested different number of quantiles, however if the number was too small, we
had clusters for almost every single value, increasing the granularity of our database and, consequently,
increasing the number of cases, going back to our original problem. And, if the number of quantiles were
too high, we would still have the long process of defining clusters.

8

39

defined as having the following features:

• Function name: a string that identifies a function.

• List of clusters: instead of list of parameters, we convert those parameters into

clusters.

• List of possible solutions to the case being considered and the frequency of each

solution: when generating our casebase, we will store all the solutions for each in-

stance, so we can either return the most frequent solution or use some algorithm

based on probability, to return solutions that reflect the behavior of the environ-

ment.

At this point, we are still not using the time of execution in our casebase, however

we believe that this might be an important information to avoid some anti-emulation

techniques, in particular those based on time checking[13].

3.2.3 Defining similarity

As our cases are rather simple, with not many features, we do not have many elements

to compare and define similarities. In fact, during emulation of an actual call, the only

information available is the name of the function being called and, sometimes, its param-

eters.

(For completely unknown functions, we cannot really affirm how many parameters

are being passed, if any. We used some heuristics to infer that information, but it is not

an accurate process at all, as some obfuscation techniques can be applied in malicious

code. These heuristics are discussed later on in this section.)

In order to define the similarity, we assumed that legitimate OS developers tend to

name their functions in a somewhat meaningful manner[60]. That good practice allows

40

other developers to infer what a function does based on its name. It also means that

functions with similar goals, or similar tasks, should also have similar names. So, we

decided to compare function names by using 3-grams[36], which is a rather common way

of comparing strings, in order to measure how similar those function names are. For our

implementation, we used the package ADVAS[26] that, among other features, provides

methods to compare strings using n-grams.

Concerning parameters, we can compare number, types and actual values of them.

We have defined two different ways of comparing parameters. For functions that are

already known by our system, we know (or at least suppose) how many parameters there

are. However, for unknown functions, we need some heuristics to essentially guess them.

So, we defined a similarity measure for general use (when we have a function name

that exists in our casebase) and a similarity measure for inferring syntax, which means

that we are not sure about number of parameters or even their types (sometimes, what

we see as a number can actually mean where in memory a string is stored, for instance).

The similarity measure is used both when generating the casebase as well as when

emulating a program. When generating the casebase, it is used to find neighbors that will

be removed during the "Fish and Shrink" algorithm (Figure 3.7). During the emulation,

if we are to emulate a function call whose name is not in our casebase, we first use the

syntax similarity to look for a function with a similar syntax and assume the number of

parameters. Then we use the general similarity measure to find the best match. In both

interactions the same "Fish and Shrink" algorithm is used.

Both measures take into consideration the name of functions and also, when compar-

ing parameters, they are compared in pairs by their position in the function, e.g., the

first parameter of the query is compared to the first parameter of the element in our

casebase. The difference between the two types of similarity is in how the parameters

are compared. For general similarity, we also consider the number of parameters and

41

their clusters and for the syntax similarity we compare only the types of parameters.

Currently, we assume that a parameter can either be a string or a number. Data struc-

tures (an array, for example), would be represented as a memory address, which we also

treat simply as a number. When considering syntax similarity, for each parameter of the

function in our casebase, we compare to see if the type is the same as the parameter the

query has.

For a general similarity, the values of parameters are first converted into clusters'. If

the information cannot be placed within a cluster, we look for the closest ones, i.e., those

which one of the limits are numerically closer to the parameter value. The comparison

then happens between clusters and not between absolute values. We consider it a match

if two parameters are in the same cluster. Otherwise, we calculate the distance from one

cluster to another.

The distance is a number between 0 and 1. If the clusters are not the same and

at least one of them is not numeric, the distance is maximum, i.e., 1. For calculating a

distance between two numeric clusters, we have a list of clusters sorted by the ranges they

represent. The distance between two clusters is a value given by the difference between

their positions in the list divided by the number of clusters in the list.

Finally, the accumulated parameter similarity (as the inverse of distance7, in case

of numeric clusters) is divided by the number of comparisons' to result in an average,

that will be used to calculate the total similarity. Pseudo-code for calculating general

similarity can be seen in Figure 3.4.

For syntax similarity used for unknown functions, we use a simplified process. When

comparing parameters, we simply compare if their types are the same (by checking the

6 A previously mentioned, strings, arrays and structures have special clusters that identify the type
of information.

7"Inverse" using the mathematical sense of multiplicative inverse or reciprocal for a number, i.e.,

similarity = distance

8The number of comparisons depends on the minimum number of parameters between two functions.

42

Query and elements are AGAVE cases

Query is the case we are looking for

Element refers to a case stored in our casebase

function GeneralSimilarity(query, element):

similarityNanie +- CompNgrams(query.Name, element.Name)

nu.mParams +- number of parameters in query

if numParams > number of parameters in element:

nuniParams f- number of parameters in element

matches +- 0

Compare clusters of each parameter

for i in 0. . numParameters-1:

q +- query.Parameters[i]

e 4- element.ParanietersEi]

if both q and e are numeric:

if Cluster(q) is equal to Cluster(e):

matches 4- matches + 1

else:

distance 4- ClusterDistance(Cluster(e), Cluster(q))

matches f- matches + (1 - distance)

else if q and e have the same type:

matches +- matches + 1

similarityParameters +- matches / numParanis

Our formula for similarity

similarity 4- (3 * similarityNaine + 2 * similarityParameters) / 5
return similarity

end function

Figure 3.4: Pseudo-code for calculating general similarity

43

Query and elements are AGAVE cases

Query is the case we are looking for

Element refers to a case stored in our casebase

function SyntaxSimilarity(query, element)

similarityName 4— CompNgrams (query. Name, element. Name)

numParams 4- number of parameters in query

if numParams > number of parameters in element:

numParams 4— number of parameters in element

matches 4— 0

for i in O. .numParams-1:

q +- query.Parameters[i]

e +- element.Parameters[i]

We compare the type of each parameter, according to our heuristic

if type(q) == type(e):

matches 4— matches + 1

similarityParameters 4- matches / numParams
similarity 4- (3 * similarityName + 2 * similarityParameters) I 5
return similarity

end function

Figure 3.5: Pseudo-code for calculating "syntax" similarity

type of the clusters). The idea here is finding a function that resembles the one in our

query and not to find a specific case. We want to try and infer how many parameters

our query has and what their types are. So, if necessary, we will convert values (memory

addresses into strings) for the actual search for the best case in our casebase.

The parameters are either read from the stack or from registers, depending oh if it is

a library or a system call. As we do not know how many parameters our query has, we

configured AGAVE to assume it has 5 parameters. This number can be modified by the

researcher, but it was initially chosen after examination of our training set. The number

of calls with more than 5 parameters turned out to be quite small'.

Finally, in order to calculate the similarity measure between two functions, we consider

that, as the number of parameters and their types are less reliable information than

90ut of 45,000 calls, there were only 96 calls with 6 parameters, all of them to snprintf and only
one with 7 parameters, calling getnameinf 0.

44

the function name, we give more weight to how similar their names are than to their

parameters' similarity. The weights as shown in Formula 3.1 were defined after some

preliminary experiments and follow this rationale. However, we might note that defining

how similar two strings are is still an open problem. As we so strongly rely on the

function name, we might revisit our metric in the future in order to provide a more

effective comparison.

3 * NameSimilarity + 2 * ParameterSimilarity
Similarity =

3.3 Generating our casebase

5
(3.1)

Our process of creation of a case base can be described by the pseudo-code in Figure 3.6.

AGAVE deals with system calls and library calls differently, so we decided to store them

as two separate case bases.

While it is a simple and straightforward process, depending on the number of calls

being evaluated, it can take quite a long time to finish, especially due to the operations

that require disk access: looking for the best cluster, checking whether a case is already

inserted, and updating or storing a case.

In an earlier implementation of our proof-of-concept, working with a relatively large

database (around 35,000 calls), we decided to keep everything in memory, thus avoiding

disk access. We then faced a surprising and unexpected problem. In some occasions, we

noticed that the computer (a laptop) had restarted, but the problem was intermittent,

and usually happened when we left the computer working, but unmonitored. In one of

the occasions, however, we witnessed the system restarting during the process. We then

noticed that the keyboard was warmer than normal. We immediately installed a temper-

ature monitor and let the process run again. It quickly went over 85 degrees Celsius, and

45

function CasebaseGenerationO:

Initialize casebase of system and library calls

syscall_cb
libcall_cb

list-of-calls — traces converted into calls

Generate clusters based on DBScan

GenerateClusters 0
for each call in list-of-calls:

new-case - new Case(call)

solution 4- new_case.solution

if new_case.names starts with CCSYS

if new-case is not in syscall_cb:

insert new-case in syscall_cb

existing-case 4- syscall_cb [new- case]

existing-solutions 4-- list of solutions in existing-case

if solution is in existing-solutions:

increments solution-counter in existing—solutions[solution]

else:

inserts solution into existing-solution

solution-counter in existing—solutions[solution] - 1

update existing-case with existing-solutions

update syscall_cb with existing-solutions

else: # new-case is LibraryCall

if new-case is not in libcalLcb:

insert new-case in libcall_cb

existing-case +- libcall_cb [new_case]

existing-solutions 4- list of solutions in existing-case

if solution is in existing-solutions:

increments solution-counter in existing—solutions[solution]

else:

inserts solution into existing-solution

solution-counter in existing-solutions[solution] +- 1

update existing-case with existing-solutions

update libcall_cb with existing-solutions

generate_neighborhoods 0
end function

Figure 3.6: Pseudo-code for casebase generation

46

we decided to stop as temperatures over 100 degrees can damage the processor, according

to specification [28, p.10] and the maximum component temperature should be under 105

degrees (over 125 degrees Celsius can result in permanent silicon damage[29, p.29]).

We then decided to include a check for temperature during the casebase generation:

when the limit of 87 degrees Celsius was reached, a delay of 5 seconds was introduced

(calling OS function sleep 0), which allowed the processor to briefly cool down. This

extra delay obviously increased the time to generate a casebase, so additional fans were

also attached to the laptop, as an extra protection against high temperatures.

3.4 Applying the "4 REs"

Having a casebase to work on, we will now focus on the "4 REs" from the CBR cycle:

Retrieving, Reusing, Revising and Retaining.

3.4.1 Retrieving

Retrieving a case in CBR consists of finding the most similar case to the case in question'°.

The case we eventually find will then be used to produce a solution to the case in question.

A common problem, however, is the performance of search and match operations when

the number of cases are in the order of several thousands, as the comparison between

cases might slow down the process to the point where it becomes unacceptable [39].

A common approach is reducing the number of comparisons, by selecting just a subset

of elements of the casebase. Among the different approaches are ones using genetic-

algorithms[30] and fuzzy-logic[4] for self-optimization.

For this project, however, we decided to implement Jörg Schaaf's "Fish and Shrink"

algorithm[57]. This algorithm assumes that, if a case being compared to a query has

10The "case in question" is often referred to as a "query" in CBR.

47

B C D

B 100% 75% 55%
C 75% 100% 80%
D 55% 80% 100%

Table 3.1: "Fish and Shrink" example: Similarities in casebase

a similarity measure too low, then other cases similar to that one will also have a low

similarity to the query, so we can skip them.

We implemented this algorithm by precomputing the similarity between all the cases

in our casebase, creating a graph of "neighbors" (nodes that are more similar to each

other). We then perform a sequential search, but if a case of low similarity is tested, we

identify all of its neighbors (or "fish" them) and eliminate them from our search space

("shrinking" it).

This conceptual graph" of "neighbors" must be created before the code emulation.

For testing purposes, we have created several of these graphs, each one with a different

pair (Number of nodes, Minimum Similarity). The number of nodes indicate how many

cases are eliminated on each step of the "Fish and shrink" algorithm, thus a high number

of nodes in the graph (that we sometimes call a "neighborhood") should result in a faster

search. The minimum similarity, on the other hand, limits the number of neighbors. To

understand why this minimum similarity matters, let us consider the following example.

Consider a new case A, and known cases B, C, D that are in our casebase. Table 3.1

shows the similarity between the cases in our casebase. Table 3.2 shows the similarity

between our new case and each one of the elements in the casebase (for demonstration

purposes, during emulation this would be calculated as necessary). The cells in these

tables indicate similarity between the element in the row and the element in the column.

111n our implementation, however, the graph is stored as a list of lists. Each index represents a node
and it stores a list of neighbors of that node.

48

B C D

A 35% 85% 65%

Table 3.2: "Fish and Shrink" example: Comparing new case

If we consider a minimum similarity of 75%, we would have the following list of

neighbors for each node:

Neighbors(B) : {C}

Neighbors(C) : {B,D} (3.2)

Neighbors (D) : {C}

When we try to perform a search for A, as the search is sequential, we would first

calculate its similarity to B (finding 35% as a result). As the result is too low, it would

remove all the its neighbors from the search space, i.e., it would remove C. Then we

would compare A to D, finding a similarity of 65% (the best so far). With no more

elements, D would be considered the "most similar" node, even though node C is more

similar to A.

By increasing the minimum similarity between nodes in a graph to, in this case, 80%,

we would have the following list of neighbors:

Neighbors (B) : f

Neighbors(C) : {D} (3.3)

Neighbors (D) : {C}

Note that the node B does not have any neighbors now. So, the first step would,

again, calculate the similarity with B, following by the similarity with C. Now that C is

considered during the search and we could find a better result (85% of similarity).

So, we can conclude that the value for minimum similarity avoids that, during the

search, we eliminate cases that could be otherwise considered even more similar than the

49

current node being compared to the query. We believed that a higher required similarity,

while reducing performance, would tend to increase accuracy.

We understand that this is a contrived example, but it does illustrate the importance

of the minimum similarity when generating our graphs of similarity.

In order to increase performance, however, our retrieval algorithm first attempts to

find an exact match to the case in question. This search for an exact match is indexed,

thus virtually instantaneous. If nothing is found, then we look for similar cases using

"Fish and Shrink", as described by the pseudo-code in Figure 3.7.

Currently, during initialization of the system, AGAVE checks if the configured graph

is already generated, generating it on-demand if necessary.

3.4.2 Reusing

Reusing a solution can mean one of two different approaches:

1. Using the exact same solution for different instances; or

2. Adapting a previously seen solution to a new instance.

As a general rule, our search for results always returns the most frequent solution

for a given case. However, there is, in our implementation, one case that involves some

adaptation.

We have noticed that a common occurrence was that some functions would return,

quite often, the value of one of the parameters passed. For example, the function inmap

receives as a first parameter a memory address. If that parameter is not NULL (zero),

the kernel should try to map memory around that address. While it does not happen

always, in most cases when a memory address was specified, the function would return the

same value, or some number close to it. So, we implemented that particular situation by

creating an object called ReturnParameter, that would contain the index of a parameter

50

query is the case we are searching for

type-similarity indicates if general or syntax should be used

threshold is the minimum similarity

function FishAndShrink(query, type-similarity):

if query is Syscall:

base 4— syscall_cb

else:

base 4- libcall_cb

list-cases 4— list of keys from all cases in base

if query is in list-cases: #Exact match

return existing-solutions from list—cases[query]

best-similarity +- 0

best-case 4— {}
while list-cases is not empty:

case 4— first case on list-cases

remove case from list-cases

if type-similarity is " General "

similarity +- GeneralSimilarity(query, case)

if best-similarity < similarity:

best-similarity 4— similarity

best-case 4-- case

else:

if similarity < threshold:

for each neighbor of neighborhood(case)

remove neighbor from list-cases

return existing-solutions from best-case

end function

Figure 3.7: Pseudo-code for casebase search

51

used to call that function. When reading the traces, for each time the return value

matches one of the parameter, we include ReturnParameter as a possible solution. During

the request, if that object is the most frequent solution, then it would be used as the

chosen solution. If an object ReturrtParameter is returned by the search, the solution

that we will give to the caller is the value of the indicated parameter.

3.4.3 Revising

Due to the number of times CBR is called during the emulation, and as our system

should be as automatic as possible, revising solutions during the emulation phase would

introduce a significant delay for execution. Instead, we decided to revise solutions during

the training phase.

After we generate our casebase, we start a validation process, where we read all the

calls used for generation and check what solution the system returns. The solution is

then compared to what was in the initial trace and, if the similarity between the two

solutions is below a predefined threshold (currently 50%), the system will simply store

that call as problematic, but no actual change is performed in the casebase.

With this list of "problematic" calls, the researcher can decide whether it is only an

exception that requires no correction or if it is necessary to implement the problematic

call, in order to achieve the desired result.

It must be noted that, in this case, the researcher can choose to implement the call

in a way that it actually performs some actions (which should be seriously considered,

especially for I/O operations), or simply implement it to return the correct result.

As an example of these two options, let us consider a call to puts, a function that

writes a string to the standard output, returning the number of characters written. The

researcher could implement puts in a function that actually writes a string into a file,

so it can be checked later, or on screen, returning the number of characters saved. The

52

researcher could also implement a function that simply returns the number of characters

in that string, to assure the correct execution of the code under analysis.

While the first option is, in general, essential for functions that involve some I/O

operation, the second allows us to keep the system running even when we have no need

to record the operations performed by a function.

3.4.4 Retaining

Our task of retaining cases can be described as having two sub-tasks:

1. Deciding when a new case should be retained

2. Actual retaining process

Not all the cases we encounter need to be stored again, especially considering that

our revising step depends strongly on the researcher, so we only want to store new

cases when they can bring some positive impact to our system. Correctness cannot be

evaluated in run-time (at least not at this point), so we decided to retain cases that can

bring speed to our process. When we search for a solution to a problem that is unknown,

we will store that problem, and associate the solution with it. We defined that, when

the best similarity found was lower than a minimum threshold (currently 50%12), this

problem would be considered unknown. The definition of this threshold, however, can

be configured by the researcher within AGAVE.

The main impact of this retaining operation is on the retrieval step. As, in that step,

we first look for an exact match we can speed up that process from several seconds to an

almost immediate search by including unknown cases in our casebase.

"According to our formula for similarity (Equation 3.1), 50% of similarity would indicate that, in the
chosen element, the name, the parameters or both are very different to those from the query.

53

3.5 Testing CBR

We have tested just the CBR components isolated from the rest of the system in order

to answer the following two questions:

1. Is CBR suitable to assist the OS emulation? In other words, would we have enough

accuracy so we can test code without having to implement OS emulation?

2. Is it efficient? Or how can we tune our systems to maximize efficiency without

losing much accuracy?

Directly related to this tuning process is another factor we wanted to evaluate, even

though it was not, by any means, decisive for the success of AGAVE: the size of generated

casebases and how the number of neighbors would affect it.

Development and tests of the code, as well as database creation and initial experiments

were done on a laptop. However, the experiments presented here required a rather long

period of execution (several days). For these experiments we used a desktop computer,

equipped with an Intel Core2 2.4GHz processor and 4GB of RAM, running Scientific

Linux SL 5.3 and Python interpreter version 2.7.

For our experiments, we collected traces during the execution of 56 Linux commands'

(listed in Appendix A), storing a total of 45,000 calls. The limit of 45,000 calls was

chosen to reduce the time for generating the casebase during our tests. Those calls were

converted into 2,008 cases for library calls and 2,355 cases for system calls. All the

executables used for generating our casebase consisted of text-based commands. This

was done purposely. We speculated that it would be useful to evaluate how our system

"We selected text-based commands from the directory /bin. From those, we discarded some that
would run indefinitely (e.g., bash, dash). However, as we limited the number of calls, only those 56
commands were used to generate our casebase. In order to allow a more realistic emulation, we suggest
that the traces include all commands, when possible. Other programs, such as those with a graphical
interface (X-based, Gnome, etc.) should also be included when possible and necessary.

54

behaves for unknown calls, and a natural source for unknown calls would be executables

with a graphical interface.

Our evaluation considered three different situations:

• Only system calls: as their number is quite limited (336 system calls in our version

of Linux), we expected a high accuracy.

• Only library calls: we believed that a difference between libraries accessed by our

training set and the libraries used by the testing set would reduce accuracy.

• Both system and library calls: A balance between the two previous situations, thus

an accuracy intermediate between those two situations.

We then generated casebases with different minimum similarity for two cases to be

considered neighbors and different maximum number of neighbors for each case. We used

graphs (that we sometimes called "neighborhoods") of 50, 100, 250, 500 and 750 nodes,

with minimum similarity of 70%, 75%, 80%, 85%, 90% and 95%

For testing sets, we collected traces of the execution of 4 different programs:

• is: Unix command for listing directories. While an execution of is is part of the

training set, for testing we are using a different trace of the same command. The

sequence of calls, however, should be the same and, even though the results are

different, we expect a high level of accuracy in this test.

• ping: TCP/IP standard command for sending ICMP messages through the net-

work.

• who: Unix command for listing on-line users.

• xcaic: a Xli based calculator. This program uses libraries that are not likely to

be used by the previous ones.

55

Program Syscalls Lib calls Total

is 181 291 472

ping 163 86 249

who 217 144 361

xcalc 870 88 958

Table 3,3: Types of call in testing traces

Table 3.3 shows the number, on each trace, of system and library calls, so we can

understand the impact of each one in the results.

There is one other factor that was considered for increasing performance and it is a

minimum threshold of similarity, for comparing a query case and our case base. During

a search in our casebase, when this threshold of similarity is reached, we have found an

acceptable similarity level, i.e., the element we compared is "similar enough" to the one

we are searching for.

This threshold should not be confused with the minimum similarity for generating

neighborhoods. In that case, a high similarity increases performance, as that similarity

is used for reducing the search space. Here the opposite happens. A low threshold would

actually result in a quicker, but more inaccurate response, as we would interrupt the

search earlier. The tested thresholds were 70%, 80%, 85%, 90%, 95% and 100%. The

last one (100%) meaning that we either would find an exact match or all the graphs

would be checked.

3.5.1 Evaluating accuracy

Our tests consisted in reading the traces from the testing set, converting each trace into

a case. We then made our CBR module to search for that case in the casebase and return

what solution that call would be resulting on. That result was compared to the trace.

Accuracy is, thus, given by how similar the result is to the trace it originated from.

56

For discussing accuracy in our implementation of CBR, we will be using one single

neighborhood. The implementation of different neighborhood sizes had the main ob-

jective of improving performance. While we believe that tuning performance has some

impact on accuracy, we first only wanted to evaluate what degree of accuracy we could

achieve. Only then we would deal with performance issues.

By Figure 3.8a, we can see that is achieved a high accuracy, around 90%. This was

expected as we had an example of is in our training set, so all the calls were in our

casebase. In the case of ping and who, while they were not in our training set, they are

text-based, and we still could keep an accuracy that varied from 60% to 80%.

For xcaic, however, due to its graphical interface, we were expecting a lower accuracy.

In this particular case, the number of library calls in this case was only about 10% of

the number of system calls. Because of this difference, the impact of the bad accuracy

when searching for library calls (Figure 3.8b) was compensated by a better accuracy for

system calls (Figure 3.8c).

Library calls, in general, will be executing system calls internally. Thus, we tend to

find a higher number of system calls than library calls. We believe that this will allow

us to keep an acceptable accuracy, if considering traces of executions.

A problem we would face, however, is the fact that for actual execution, we do not

have all the information, i.e., most programs have calls to the operating system library,

not to system calls. Even though we are currently storing what calls (either library or

system calls) are executed inside a library call, we are not yet using this information.

Thus, if we were exclusively using our current implementation of CBR for emulating

xcaic within AGAVE, our accuracy would be actually reflected by Figure 3.8b.

For our current implementation of AGAVE, there would be two ways of improving

this accuracy. The researcher could implement the functions that are missing (or at least

those that are relevant), or the researcher could collect traces of trustworthy programs

57

100-1 10 109
9

601 60

(a) All calls

Threshold (%)

(b) Library Calls

Figure 3.8: Evaluating accuracy

Threshold (¼)

(c) System calls

that use the same library and process these traces within AGAVE. (The program xcalc,

for example, could have its accuracy improved by the use of traces from other X1 based

programs).

3.5.2 Evaluating performance

Thus, our experiments confirmed our expectations. There are two factors that impact

performance:

1. The threshold used to indicate that a "similar enough" element was found, which

could interrupt the operation without necessarily looking at the entire search space.

2. The neighborhood definition, defined as a pair (Number of Neighbors, Minimum

Similarity). As previously discussed, a higher number of neighbors would provide

a better performance for search operations. More elements would be removed from

the search space, during the "Fish and Shrink" algorithm, limiting the number

of comparisons, but negatively impacting accuracy. On the other hand, the min-

imum similarity for elements to be considered neighbors keeps us from removing

potentially good results, but reduces performance and improves accuracy.

First, we look at the impact on the threshold. In Figure 3.9a, the y-axis represents

the average time to look for a call, in milliseconds. All the programs in this test used the

58

300.0

,E 200.0

E
I-

100.0

0.0

Threshold (%)

160.OH

150.0-

140-07

130.0-

120.0-

. 110.0-

I-

90.

80.

70.

0- Is
.a ping

who
xcalc

Neighbors

(a) Impact of the threshold on performance (b) Impact of the number of neighbors on perfor-

mance

Figure 3.9: Evaluating performance

same parameters for the neighborhood'4.

As for evaluating the impact of changing the neighborhood parameters, we defined

the threshold at 100%, thus forcing the search in the entire database unless a perfect

match was found. In Figure 3.9b, we have the emulation of the commands with different

configurations for neighborhoods when keeping the minimum similarity at 85%.

The good performance presented by xcalc might seem surprising. Xcalc uses calls

from libraries that were not in the training set, so most of the library calls were unknown.

The system, then, retained the results for those calls, and when they were later needed,

it would use the results just retained. We should remember, however, that this rather

good performance was accompanied by a low accuracy (Figure 3.8).

As we previously discussed, the minimum similarity does have some impact on per-

formance, but not directly. The actual impact on the minimum similarity is by reducing

the actual neighborhood size for some of the function calls. The minimum similarity is,

therefore, more related to the casebase size (which obviously impacts on performance).

A discussion about the casebase size is in the following section.

14500 Neighbors with 85% of minimum similarity.

59

50

0

similarity (%)

(a) All calls

3.5.3 Casebase sizes

• 50
• 100
• 250
• 500

750

80 -

70 -
60

50

40

30_

20

10 r, i• • Ir •
• 50
• 100
• 250
• 500
I 750

80

70

60

50

40

30 01

20

10

Similarity (%) Similarity (%)

(b) Library Calls (c) System calls

Figure 3.10: Evaluating casebase sizes

•50
• 100
• 250
• 500

750

Figure 3.10 shows us the size of the files that store our casebases (neighborhoods). As

expected, the higher number of neighbors, the bigger our casebase will be. An alternative

to reduce the casebase size would be by increasing the minimum similarity for entities to

be considered neighbors. The expected trend, however, only can be observed for system

calls (Figure 3.l0c).

For library calls (Figure 3.lob), and consequently for the total size of our casebases

(Figure 3.8a), we observe a significant reduction in the casebase size for 750 neighbors

with a minimum similarity of 95% between them. The number of different names is

higher for library calls than for system calls and the names have a strong impact on the

similarity measure. So, the number of 750 neighbors for library calls is rarely achieved

and the actual neighborhood has less neighbors than expected.

3.6 Summary

In this chapter, we discussed how CBR was implemented within AGAVE. We first pre-

sented the definition of a case for AGAVE, then discussed details of decision and imple-

mentation and also some of the problems that we faced during the development.

Finally, we discussed tests that were performed to evaluate accuracy and performance

60

under different conditions. Our tests showed promising results for a proof-of-concept;

however, there is still a lot of improvement necessary. Not only are there some features

that should be explored, but there is information that could be collected and was not

considered during this project.

An important source of information, for instance, is the relation between calls. We

are able to collect which calls are performed during the execution of a function. This

information could be used for inferring more details of execution, which would lead the

researcher to a better understanding of the code under analysis.

Another clear limitation of CBR in AGAVE is that, by using only traces as a source

of information, we are not able to deal with functions that return information in one of

their parameters. We believe that this information returned in parameters can be possibly

inferred by other means, but we have not yet explored this alternative. However, when

necessary for analysis, the researcher can implement the function within AGAVE. This

would assure a correct code execution and a more precise analysis.

61

Chapter 4

AGAVE Usage and Testing

During this thesis, we have presented how AGAVE is organized and how CBR is imple-

mented for allowing emulation. In this chapter, we will discuss how the researcher can

use AGAVE to detect maiware.

First, we present how AGAVE can be configured, using a configuration file and, for

some options, the command line. The configuration file is similar to what is frequently

found for various programs. The command line can allow the user to easily modify the

behavior of AGAVE for a specific session of emulation.

We then discuss how to program AGAVE, either for implementing a system or library

call to achieve a more correct emulation or for implementing means for detection. This

discussion is presented in the form of a tutorial, so the reader can have an insight of the

AGAVE experience. As part of this, we describe AGAVE testing.

4.1 Configuration

The AGAVE configuration file is a standard text file, divided in sections, similar to ". INI"

files found on Windows. Each section has a header, identified by the name of the section

between square-brackets (e.g., [SectionName]) and the parameters in each section are in

the form "parameter=value".

By default, AGAVE looks for a configuration file named "agave.conf". In order to

provide a different file, the user must call AGAVE using the option "-c":

user@host $./run-agave -c MY_CONFIG SUSPICIOUSEXE

62

The remainder of this section presents the options that can be used to configure

AGAVE.

4.1.1 Section "emulator"

This section is responsible for configuring which hardware emulator we will use, by choos-

ing the emulation interface. Details on how to implement this interface were previously

discussed in Chapter 2.

[emulator]
modul e=agave _pyemu

name=Agave2PyEmu

log_level=DEBUG

Figure 4.1: Emulator section in agave.conf

In Figure 4.1, we have an example with the available options, which are:

• module: name of the module file where the interface was implemented. It must

be a valid Python module (so we assume ".py" or ".pyc", as extension). A module

file must contain one or more interfaces.

. name: the name of the interface that must be used within the module file.

• log-level: level of logging for the emulator. Valid levels are: "DEBUG", "INFO",

"WARN" and "ERROR", in this order. For example, if a level of "INFO" is defined,

no debugging information is logged. If "ERROR" is chosen as the log level, only

error messages will be logged.

4.1.2 Section "cbr"

The parameters for the CBR module are specified in this section, defining three things.

First, the parameters for the fish-and-shrink algorithm. Second, a minimum threshold

63

for similarity value, that, when achieved, interrupts the search and returns the result

that was found. Third, the logging level specific for the CBR module. This is similar to

the configuration for the emulator that was previously presented.

An example of this section can be seen in Figure 4.2.

[cbr]
casebase=Linux-x86

neighbors=500

neighbor_similarity=75

threshold=75

log_level=DEBUG

Figure 4.2: CBR section in agave.conf

The available options are:

• casebase: indicates the name of the casebase to be used. We assume that a

researcher might work with different operating systems and different versions of

them. So, for each operating system we generate a casebase. If the researcher wants

to experiment with code in a different operating system, changing this parameter

would select a different casebase.

• neighbors: the number of neighbors used when generating the neighborhoods for

the Fish-and-Shrink algorithm.

• neighbor-similarity: the minimum similarity for neighbors, also used for neigh-

borhood generation.

• threshold: the minimum similarity for searches. When a case with similarity

greater or equal to this parameter is found, its result is returned.

• log-level: level of logging for the CBR module.

64

The values for neighbors and neighbor-similarity are used to select the casebase the

fish-and-shrink algorithm will search in. If the casebase does not exist, it will be gen-

erated. It is important to be aware that this generation might take a long time, up to

several hours, depending on the number of cases stored and the parameters used, but

this is precomputation that is not repeated for each emulator run.

4.1.3 Section "scripts"

[scripts]
1=libc . agave

2=linux_syscalls . agave

3=instruct ions . agave

Figure 4.3: Scripts section in agave.conf

This section contains scripts to be executed during the initialization of AGAVE. These

scripts contain definitions of functions that are used for customizing the emulation (OS

or CPU) and also for other purposes, such as initializing memory for specific operations.

The scripts must be stored in the scripts directory. Even though the scripts can be

considered valid Python code, we suggest the extension . agave for such files, as they

contain AGAVE-specific code.

The parameter name (which we suggest to be a sequential number) indicates in which

order the scripts will be executed, as some scripts might depend on others. If two scripts

are referenced by the same value, only the last one will be considered valid (the first one

will be ignored).

Scripts can also be loaded by using "--load-script" or "-is" in command line.

user@host $./run-agave --load-script SCRIPT1.agave --load-script

SCRIPT2 . agave EXECUTABLE

65

or

user@host $./run-agave -is SCRIPT1.agave -is SCRIPT2.agave EXECUTABLE

Scripts that are supplied on the command line will have higher precedence than those

specified by configuration file. AGAVE first loads scripts specified in configuration files

and only then the ones given on the command line. This means that if a function is

declared twice (in a configured script and in a script passed by the command line),

the last declaration will override the first, i.e., the definition in the file given on the

command line will prevail. This approach gives the researcher the flexibility of changing

the execution for a single session of emulation without modifying the configuration file.

4.1.4 Section "heuristics"

Heuristics are sets of rules that guide how an activity is performed. In malware analysis,

the term heuristics sometimes refers to methods used for detection.

Configuring heuristics within AGAVE requires the researcher to perform two steps:

1. Implement heuristics within AGAVE, preferably using a script file, and declare

them using the command set-heuristics.

2. Modify the configuration file to inform AGAVE when the heuristics will be evalu-

ated.

An implementation of a simple heuristic is presented later in this chapter.

For the configuration file, a "heuristics" section is used. Each entry in this section is

in the form "NAME=EVENT[, . . .]". NAME is the name of the heuristic as defined by

the command set_heuristics(its first parameter). EVENT informs AGAVE when the

heuristic will be evaluated and can be one or more of the following:

9 begin-execution: the heuristic is evaluated before the emulation starts.

66

• before-step: the heuristic is evaluated before an instruction is executed.

• after-step: the heuristic is evaluated after the execution of an instruction.

For example, in Figure 4.4, findEICAR will be performed at the beginning of the

emulation and after each instruction is executed. CheckStack, on the other hand, will

be performed before the execution of each instruction.

[heuristics]

findEICAR=begin_execution, after_step

CheckStack=bef ore_step

Figure 4.4: Configuring heuristics

4.2 Testing AGAVE emulation

As we previously mentioned, programming AGAVE is quite simple, in the sense that it

uses the Python interpreter, on which AGAVE is interpreted, to interpret user code as

well. AGAVE, however, provides some functions to be used by the researcher to access

information about the CPU and memory that are necessary to achieve their objective:

detecting malware.

A comprehensive list of the functions provided to allow the researcher to program

AGAVE is in Appendix B but, instead of going over each one of them, we believe that a

demonstration by example is a more effective approach.

In the remainder of this chapter, we will demonstrate a case of maiware detection.

In our demonstration, we will encounter some of the problems a researcher would have

to face, and demonstrate how AGAVE customization can overcome those problems. For

67

#include <stdio.h>

mt mainO -C
puts("This is the EICAR File content:\n

X50 P%@APC4i\PZX54(P)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*");

}

Figure 4.5: Source code for hello_eicar

this demonstration, we assume Linux as the operating system, running on an x86 (32

bit) platform.

4.2.1 Hello EICAR

Our final goal is using AGAVE for maiware detection. One of the standard tests for

malware detection, specially for signature detection, is detecting the EICAR test file.

The "EICAR Standard Anti-Virus Test File" [19] is a valid DOS executable, con-

sisting only of ASCII human readable characters that, when executed, prints "EICAR-

STANDARD-ANTIVIRUS-TEST-FILE!". The European organization EICAR proposed

the use of this file as good practice to test anti-virus and anti-maiware products without

risk of real infection. The EICAR file is successfully detected by a great majority of

anti-virus products on the market.

However, this file is meant to be executed in a DOS/Windows environment and we

have developed a proof-of-concept having ELF files in mind, i.e., it would interpret and

emulate only ELF files, so our system was not able to deal with the EICAR file as it is

distributed. Instead, we created a small program in C that prints the EICAR file content

(Figure 4.5) and compiled it using gcc'. By doing this, we have an ELF executable that

contains the EICAR string.

Note that traditional anti-virus will not detect our executable as having the EICAR

signature. According to the EICAR specification, the EICAR test file must appear as

1gcc (TJbuntu 4.4.3-4ubuntu5) 4.4.3

68

the first 68 bytes of a file, while ours is in the ELF file. However, as our objective is

finding the EICAR file in memory, we believe that our implementation actually follows

the original motivation: a safe alternative for testing anti-virus products.

Detecting the EICAR file string in our executable is trivial. A simple string search

would find it. A maiware writer would likely use some sort of obfuscation to avoid

detection.

4.2.2 Packing Hello EICAR

Packing is essentially the process of compacting, combining and/or obfuscating an ex-

ecutable, while still keeping it executable[61]. Packing can be used for saving storage

space, to create an installer, or to avoid reverse engineering of proprietary code. The

actual code must be unpacked to be executed, so, in general, what happens is that the

code is compressed and an executable stub is added. This stub decompresses the file (or

parts of it) in memory and then executes it.

While the technique of packing has its legitimate uses, it is also often used by malware

writers to make analysis by researchers more difficult.

We want to know if AGAVE was capable of allowing us to detect packed maiware.

We are assuming that we could run the emulation of the stub, it would unpack the actual

malicious code in memory and, just before it was executed, we would be able to easily

detect (by looking for signatures, for example) the maiware in memory.

One of the most common[25] tools for packing is called UPX (standing for Ultimate

Packer for eXecutables)[50], and we would use UPX' to pack our hello_eicar and test if

we could use AGAVE to detect the EICAR file.

However, simply packing our hello_eicar executable did not work. We received an

intriguing error message from UPX, shown in Figure 4.6. That message was not explained

2UPX version 3.04

69

daniel@dssl$ upx test

UPX 3.04

Ultimate Packer for eXecutables

Copyright (C) 1996 - 2009

Markus Oberhumer, Laszlo Molnar & John Reiser Sep 27th 2009

File size Ratio Format Name

upx: test: NotCompressibleException

Packed 1 file: 0 ok, 1 error.

Figure 4.6: Packing hello_eicar

#include <stdio . h>

mt main() {
puts("This is the EICAR File content:\n

X50 P°h@AP[4i\PZX54(P)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*");

__asm__ ("nop\nnop\nnop\nnop\nnop\nnop\rmop\nnop\nnop\nnop\n"); II 10 NOPs

__asm__ ("nop\nnop\miop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\nt'); 1/ +10 NOPs
II ... line above was repeated 180 times

..._asm__ ("nop\nnop\xmop\nnop\nnop\nnop\nnop\nnop\nnop\nnop\n"); II +10 NOPs
}

Figure 4.7: Source code for hello_eicar with NOPs

anywhere in the UPX documentation. We downloaded UPX source code and analysed

it, so we found that UPX tests how the . data section, with the stub, was compressed,

returning the error where the compressed version has the same size of the original. This

may be indicative that the main focus of UPX was for compacting not for obfuscation.

To work around this problem, we decided to simply increase the size of our data sec-

tion. We edited our C code to include NOP instructions (as we can see in Figure 4.7).

We decided to use this approach because we wanted to guarantee that we had an exe-

cutable with exactly the same functionality as the original, although just a bit larger,

almost 2 kilobytes larger.

Operation" instructions

70

4.2.3 First attempt at emulation

Having an executable to use in our tests, the next step is trying to emulate its execution.

We run AGAVE, passing our packed "helloeicar" as a parameter.

user@host $./run-agave hello..eicar

Our "hello_eicar" is loaded by AGAVE, the user receives a series of messages and

a prompt ("AGAVE)") is shown. In interactive mode, AGAVE presents a text-based

interface, where a prompt is displayed and the user can type commands. Python com-

mands as well as the functions listed in Appendix B can be used in this interface. The

user can, then, start the emulation by using the AGAVE command run().

AGAVE > run()

Here a great weakness of AGAVE becomes evident. While the non-emulated code is

normally unpacked and executed in a few milliseconds, AGAVE runs for several minutes.

As previously mentioned, having AGAVE on top of PyEmu turned out to be a bad

combination. In tests, we rarely could emulate more than 1,000 instructions per second.

When CBR was necessary it would be even worse. For comparison, a 8088 processor in

the early 1980's could execute more than 500 times faster than our current version of

AGAVE.

The emulation then is interrupted by a memory access error. A quick analysis shows

that the program tried to push a value onto the stack. However the stack pointer was

pointing to an address in memory that was not initialized yet.

Looking further in the logs, we find that there were early attempts of performing a

system call to SYS..mmap. SYS..mmap's main purpose is mapping a file into memory.

However, when SYS..inmap is executed in "anonymous" mode, a virtual memory page

(from a swap file) will be mapped into memory, essentially allocating memory. As we

71

do not have SYS_mmap actually implemented, AGAVE simply calls its CBR retriever

that returned the requested address to the program. In fact, the result returned to the

program is exactly the one the program was expecting, as shown in the excerpt from the

log in Figure 4.8. However, AGAVE did not perform any actual operation in memory,

which finally resulted in an attempt of accessing memory that was not allocated.

[INFO] SYSCALL TO SYS_mmap at O0c01cO0

[INFO] Executing code for SYS_mmap from casebase

[INFO] Executing SYS_mmap('9824212', ' 4096', ' 12587008', ' 12590116', ' 2572')

[INFO] Results from retriever: 9824212

Figure 4.8: CBR result for SYS.inmap

4.2.4 Implementing a system call

Our next step to have the code running is to implement SYS.mmap. A researcher may

not always have complete information to perfectly implement a third-party function. So,

for this particular example, we will not implement SYS..mmap to its full functionality,

only what is necessary to allow us to execute our "hello_eicar".

Implementing a system call within AGAVE means implementing a simple Python

function and then declaring it as a system call.

It must be noticed that implementing system calls depends on the operating system

being emulated. Each operating system deals with system calls differently: assembly

instructions are different (for example, mt 0x2e on Windows and mt 0x80 on Linux),

CPU registers and flags are configured differently, memory is managed differently and,

something that will directly affect our example of implementation, parameters are passed

to system calls by different mechanisms.

For example, in both Windows and Linux, the CPU register EAX is used to indicate

72

what system call is being performed. However, parameters are passed using different

registers. On Windows NT, for example, only the CPU register EDX is used to pass

parameters to a system call. The parameters are pushed onto the user stack and EDX

receives the memory address that points to the parameters' location in the user stack[53].

On Linux, on the other hand, several registers are used to pass parameters to a system

call. The first parameter is referenced by EBX, the second by ECX, the third by EDX. If

more parameters are necessary the registers ESX and EDT are also used (in this order). In

some cases, either because the registers are not enough for all the necessary parameters or

for organization purposes, instead of storing actual values, the registers are used to store

memory addresses. These addresses point to structures that contain all the information

and those structures are stored on the user stack.

SYS.mmap, the system call we are going to implement, receives only one parameter

(thus we will only need to read EBX), that points to an mmap_argstructure(Figure 4.9),

as defined in Linux source code4.

struct minap_arg_struct {
unsigned long addr;

unsigned long len;

unsigned long prot;

unsigned long flags;

unsigned long fd;

unsigned long offset;

Figure 4.9: mmap..arg..structure, used as parameter for SYS.mmap

For this example, our implementation of SYS..mmap will only able to deal with anony-

mous mapping (when a flag MAP-ANONYMOUS is used). This is different from the

mapping of files into memory. An anonymous mapping has the same basic functionality

4This type definition can be found at /usr/src/linux/arch/x86/kernel/sysJ386..32.c.

73

of memory allocation and initialization, with the contents initialized to zero'.

Our implementation of SYS_mmap can be seen in Figure 4.10. Some details about

this implementation must be noticed:

• When an address is not explicitly given, we need to dynamically allocate a page.

For this implementation we directly accessed the PyEmu memory object to find an

available memory page. Memory management, allowing AGAVE direct emulated

memory access without relying on the emulator being used and having the ability

of pointer tainting[68], is a feature that we want to add to AGAVE in the future.

• We used the AGAVE command set.mémory 0 to initialize the memory, setting the

content to zeroes. This command also allocates memory pages if necessary.

To define the function "sys..mmap" to be executed as the system call "SYS.mmap",

we use the AGAVE command set-system-call. The first parameter is the system call

name and the second parameter is a call to our function.

This code is saved in a file called "demo. agave", and we try to emulate our "hello_eicar"

again. But now, we will inform AGAVE to load the file we just created with our

SYS.mmap6.

user@host.$./run-agave --load-script demo.agave hello_eicar

AGAVE> runO

Different from the first attempt, the code now crashes almost immediately. The

reason now is different: an "unsupported instruction". Most CPU emulators do not offer

support to all the possible instructions defined by the architecture they emulate. In fact,

5According to the mmap manual page.
6A different option would be include the script in the AGAVE configuration file, as explained earlier

in this chapter.

74

def sys_imnapO:
ebx = get_register("EBX") # Reads first parameter of sys_mmap

parameters = 0
address = ebx

for i in range(6): # Reads structure from memory

data = get_memory(address, 4)

parameters. append(data)

address = address + 4

(addr, length, protection, flags, fd, offset) = parameters

If address not supplied, get the first available page

if addr == 0:

addr = interface . emu . memory. get_available_page (0x08000000)

if flags & 0x20: # Checks if it is an anonymous mapping

data = '\xOO' * length

set_memory(addr, data, length) # Initialize memory with zeroes.

else:

Not an anonymous mapping, do nothing for now

pass

set-return-code(addr) # Returns the address

set_system_call (" SYS_nunap", "sys_mniapO")

Figure 4.10: Implementation of SYSmmap for AGAVE

75

a common technique used by maiware writers to detect if emulation is taking place, and

then avoid analysis, is attempting to execute obscure or unusual instructions [13]. This

is no different for PyEmu, the emulator we are using for our proof-of-concept.

The instruction responsible for the crash is LODSD. This instruction is not imple-

mented in PyEmu and, as we will see later, this is not the only one. To continue our

emulation, then, we need to implement this instruction.

4.2.5 Implementing x86 instructions

LODSD is a mnemonic for "Load String". This instruction is used to load a string from

ESI into EAX. The instruction also increments or decrements ESI, depending on the

bit DF being enabled in the CPU register EFLAGS. In practical terms, we simply need

to store the address from ESI to EAX and then modify ESI. The implementation is in

Figure 4.11. We increment (or decrement) ESI by 4 because LODSD assumes addresses

are double words (4 bytes).

def LODSDO:

esi = get_register("ESI")

df = get_register("DF")

data = get_memory(esi, 4)

set_register("EAX" , data)

if df == 0:

set_register("ESI" , esi+4)

else:

set_register("ESI" , esi-4)

set_custominstruction("lodsd", "LODSDO", 1)

Figure 4.11: Implementation of the instruction LODSD for AGAVE

To declare our function "LODSD" as a custom instruction for AGAVE, we use the

76

AGAVE command set_custom_instruction. This command is similar to the previously

seen set-system-call, but, as mentioned in Chapter 2, an additional parameter is nec-

essary and it is the length of the instruction in bytes, so the instruction pointer can be

incremented accordingly.

As we briefly mentioned, this is not the only instruction that is unimplemented by

PyEmu. And to successfully emulate our "hello_eicar", it is also necessary to implement

STOSD and BTR.

STOSD (Store string) performs the reverse operation to LODSD, i.e., it stores a string

from EAX into EDI. BTR (Bit Test and Reset) is an instruction that selects a bit from

a bit string and stores it in the bit CF from the register EFLAGS. Implementing these

instructions is similar to the implementation of LODSD and, for reference, can be found

in Appendix D.

Additionally to these instructions that were not implemented by PyEmu, we have

a case of an instruction that was implemented but had to be overwritten. This is the

instruction REP, which repeats the following instruction according to the number stored

in the register ECX. During the emulation of our "hello_elcar", there are some calls for

"REP LODSD" or "REP STOSD" (part of the unpacking code for UPX). While PyEmu

has an implementation for REP, it does not recognize our LODSD and STOSD, imple-

mented within AGAVE. The solution is, thus, implementing the repetition instruction•

for those.

We decided to mention this implementation (Figure 4.12) because it also has some

interesting details of implementation:

• We have one single function for two different instructions. AGAVE allows us to use

parameters when defining functions that are used as instructions. The same can

also be used for defining system calls, library calls or heuristics (example of these

last two will be seen shortly).

77

def REP(instruction):

ecx = get_register("ecx")

while ecx > 0:

(command, size) = get-custom-instruction(instruction)

eval (command)

ecx = ecx -1

set_register (" ECX" , O)

set_custom_instruction("rep lodsdtt , "REP('lodsd')", 2)

set_custom_instruction("rep stosd" ," REP('stosd')" , 2)

Figure 4.12: Implementation of the instruction REP for AGAVE

• We use the AGAVE function get_custom_instruction 0. This function returns a

tuple (command, size of instruction) and this information can also be used for our

implementation.

With all these instructions implemented and saved in the file that we previously

created ("demo.agave")7. Then, we try to emulate our code again:

user@host $./run-agave --load-script demo.agave hello_eicar

AGAVE> run()

Again, the emulation takes a while to run (around 2 long minutes) and finally ends

gracefully. The long time is due to the number of instructions being executed for the

unpacking process (allied to our slow speed). During the execution we observe requests

to the CBR retriever for system calls that we did not implement (such as SYSmprotect

or SYS..munmap).

7ldeally, we would recommend the researcher create different files for instructions, system calls, library
calls and heuristics, as it would allow a better customization. For example, Linux system calls are
independent of processor-specific instructions and keeping them separate from each other would allow
to easily perform tests of a 32 bit processor running a version of Linux and then the same tests of a 64
bit processor using the same version of Linux.

78

But, then, something different happens. AGAVE finds a call to "_Jibcstartmain",

a function defined in the shared library "libc". As it is not implemented within our

"hello_eicar" and AGAVE does not know what to do, it calls the CBR retriever for that

library call.

That function is part of the initialization process for an ELF file and should, among

other actions, call the main function in our "hello_eicar". In fact, reading this call shows

us that our original code for "hello_eicar" is running. Until now, all the code emulated

was for the unpacking process inserted by UPX.

And, again, our CBR retrieves and returns a value that is consistent to what the code

was expecting, but as no action was really performed, the program ends when it finds

the next instruction, a hlt (for Halt). We need, thus, to implement "_Jibc.starLmain".

4.2.6 Implementing a library call

The function _Jibc..start...main is responsible for initializing the environment to execute

code in Linux. It should perform tasks such as thread initialization and registering

handlers for a clean exit. It also must appropriately call the "main" function of an

executable and, when "main" is finished, the "exit" function[1].

For simplicity, our implementation of _Jibc_start..niain simply calls the main function,

as shown in Figure 4.1.3. This implementation is also saved in our "demo.agave" file. The

implementation is straightforward: _Jibc.startmain receives as parameter the memory

address for the "main" function. We simply move that address to the instruction pointer.

Now our "hello_eicar" can run to its completion. Looking at the emulation output,

we see a call to "puts" (emulated by our CBR module) and then a sequence of NOPs.

However, completely emulating this program is not our goal. Our goal is detecting

maiware, which, in this experiment, is represented by the EICAR file signature. In order

to do this, we will implement a simple and basic heuristic.

79

def start_mainO:

stack = get-stack-pointer(

main-address = get_memory(stack+4, 4)

set_instruction_pointer (main_address)

set_library_call("__libc_start_main", " start_mainO")

Figure 4.13: Implementation of __libc_start_main

4.2.7 A simple heuristic

For this proof of concept, we demonstrate by performing a string search in memory. Our

executable is packed with UPX, so we only will find the string when the decryption is

complete. It does not make sense to try to perform the search after every emulated

instruction, so we need to detect the end of the decryption phase.

A good indicator of decryption being complete is detecting when an instruction is

being executed from a position in memory that was recently written. And, for our

heuristic, we use this indicator as a trigger to perform the string search.

The AGAVE code used for our heuristic can be seen in Figure 4.14. The function

jumping-to-data keeps a list of the pages of memory that were used during the execution

(when the code emulation starts, a list is created with the pages currently allocated for

the process). For this implementation, jumping-to-data is specific to PyEmu. If our

code tries to execute from a page that is not in that list, it returns True (and adds all the

currently allocated pages to the list). Again for simplicity, elf -in-memory is also specific

for the problem we are tackling, in this case, UPX. UPX decompresses the entire ELF

file in memory. So, we search for an ELF header in the new pages. Those two conditions

were sufficient to detect the end of decryption.

Finally, the search-EICAR function is a simple string search, returning "True" when

the EICAR file is found. Our simple heuristic prints a message informing that EICAR

80

def find_eicarQ:

if jumping-to-data(and elf_in_memoryO:

print " Jumping into data section"

if search...EICARO:

print "EICAR Standard Test File was found"

pause()

set_heuristics("FindEICAR", " find_eicarO")

Figure 4.14: Simple heuristics

was detected and executes the AGAVE command pause 0, which stops the emulation.

This command is particularly useful for testing purposes.

As we have done with system calls, library calls and CPU instructions, we need to de-

clare the function as a heuristic. For this, we use the AGAVE command set-heuristics.

The complete implementation of "findEICAR" can be found in Appendix E.

In order for this heuristic to be executed, we also need to configure AGAVE. This

configuration is necessary to define when the detection will be performed. As we men-

tioned earlier in this chapter, this is done by modifying the "heuristics" section in the

AGAVE configuration file. There is no command line option for configuring heuristics.

For our detection, we decided to perform the detection of EICAR after the execution

of an instruction. So, in the configuration file, under the section "Heuristics", we include

the following line:

FindEICAR=after_step

Running our emulation for the last time, it takes around 4 minutes, ending with the

message "EICAR Standard Test File was found" and the AGAVE prompt is displayed.

81

4.2.8 Discussion

While detection using AGAVE is possible, it is still a really slow operation. We believe

that another emulator might help to improve speed. Some optimizations for emulation

within AGAVE might also be an alternative.

During our experiments, we attempted to emulate a statically compiled program. It

was an interesting test case for the emulator speed and it was when we could achieve the

best performance. During that experiment, there were no CBR requests for library calls.

System calls, on the other hand, were frequent and, to allow a correct emulation, many

of them needed to be actually implemented. We also encountered a higher number of un-

supported instructions. Due to time constraints, we decided to abandon that experiment

for now. Further tests, using statically compiled executables, will be necessary.

The total time for emulation was rather long. And if a researcher tries to follow

this chapter, the use of snapshots can prove to be quite efficient. For example, after an

unsupported instruction is found, the researcher can save a snapshot of the emulation,

exit AGAVE, implement that instruction, restart AGAVE and restore the snapshot,

returning to the point where the emulation failed. This simple strategy might save a lot

of time for the researcher.

Implementation of system calls and library calls are not exclusive to AGAVE. When

using emulation for research purposes, including within anti-virus companies, the im-

plementation of those calls is usually necessary. The process is basically, to try to run

the emulation until it fails, implement what is missing and then resume the emulation.

AGAVE, however, by using CBR to emulate some of the functions that were not im-

plemented, allows the researcher to perform emulation without necessarily implementing

every function that is called. This characteristic of AGAVE potentially reduces the time

required for performing analysis.

82

4.3 Summary

In this chapter we presented how to configure and use AGAVE. We used a "tutorial"

approach to demonstrate, step by step, some of the tasks a researcher would have to do

while using AGAVE.

These tasks include implementing library calls, system calls and even CPU-specific

instructions. We also implemented a simple heuristic to search for the EICAR file in

memory as an example of dynamic detection.

During this experiment, the emulation using AGAVE with PyEmu achieved poor

performance. Even without the extra overhead for operations using the CBR retriever,

we rarely had more than 1,000 instructions processed per second. Some optimization is

definitely necessary and experiments with other emulators are recommended to evaluate

performance.

However, even with the problem of bad performance and frequent interruptions due

to instructions that were not supported by the emulator, we were able to successfully

detect the EICAR signature in memory, before it was executed. This demonstrates that

AGAVE can be used for dynamic detection.

83

Chapter 5

Conclusion and Future Work

In this thesis, we described AGAVE, a tool designed as a step towards automatic gener-

ation of anti-virus emulators.

This particular type of emulator has a strong focus on malware detection or analysis,

depending on how it is used. Anti-virus emulators can be embedded in an anti-virus

product or they can be a tool for maiware analysis, in research labs (likely inside an

anti-maiware company).

AGAVE currently relies on a third-party CPU emulator for CPU and memory emula-

tion. We implemented a general interface that allows the integration of AGAVE to these

third-party CPU emulators. For our proof-of-concept, we implemented an interface for

the open source CPU emulator PyEmu.

The operating system and library calls are emulated by an implementation that re-

lies by default on case-based reasoning (CBR). Usually, researchers must implement all

system and library calls for emulating an operating system. Even though precision is not

always a requirement, it is still necessary in some implementations. By using CBR, on

the other hand, AGAVE takes this burden off the researchers, restricting implementation

to a minimum. Our CBR modules reply to system and library calls based on previously

collected program execution traces in the operating system it intends to emulate. We

have achieved an average accuracy rate over 60%, with cases of over 90% accuracy. This

accuracy depends on the training set of collected traces (our tests used traces from text-

based Linux commands; a more varied training set might achieve even better average

accuracy).

In this thesis, we also demonstrated the use of AGAVE. The demonstration was based

84

on a case study: an attempt to dynamically identify a malware signature in memory

before the malware is executed. For demonstration purposes, the malware signature was

the ETCAR file signature and the executable was packed with UPX. Our demonstration

showed some of the problems that a researcher may face, as well as some mechanisms of

AGAVE to deal with those problems.

We understand that AGAVE still suffers from a number of limitations. Performance

issues must be addressed to turn AGAVE into a more useful tool. Our implementation

of CBR also needs some improvements for accuracy and even for completeness (e.g.,

returning information in one of the parameters). However, our experiments show that,

even with those limitations, AGAVE is a viable approach.

5.1 Outline of contributions

Anti-virus emulators are a powerful and important tool for both malware analysis and

for malware detection. Their continued development is essential for improving anti-virus

and anti-malware efficacy.

However, most of the work in this area is restricted to anti-virus or anti-malware

companies. There are few results published in academic papers. Publications such as

white-papers and press releases do give us an insight of what is happening in the industry,

but those are not always a reliable source of information, as results can be masked for

publicity purposes.

In fact, during the time we were involved in this research, we realized that there

seems to be a gap between industry and academia. In informal discussions with other

researchers from academia, we noticed that for many of them malware analysis can

be resumed as static analysis of code or running malware on a virtual environment to

monitor its activities. It actually seemed that some of them even considered the use

85

of anti-virus emulators an outdated approach, taking a strong stand for virtualization

methods instead. On the other hand, researchers from anti-virus companies were not

only more familiar with this subject but they seemed more receptive to research in this

field.

We believe that our work can help to make the still obscure world of anti-virus emula-

tors more accessible for researchers from outside the anti-virus and anti-maiware industry.

By giving researchers a tool for experimenting and developing heuristics, we expect that

novel methods of detection can be created and implemented.

We consider that the main specific contributions of this work are:

1. The design and implementation of a framework that allows both maiware detection

and maiware analysis. Our framework includes over 6,000 lines of Python code'.

Code was implemented to make AGAVE highly configurable and flexible, and give

it mechanisms for both maiware detection and analysis.

2. A novel use of Case-Based Reasoning. CBR has often been used to predict the

behavior of customers[65], the behavior of computer users[58] and even pure human

behavior[43] [11.]. However, to the best of our knowledge, this is the first time CBR is

used to predict the behavior of software, more particularly, of an operating system.

Using CBR within AGAVE takes from the researcher the need for implementing

code for each and every unknown function that is encountered. We believe that

this can bring a significant increase of productivity for the researcher working with

maiware analysis and detection2.

'This line count does not include PyEmu and other code that we did not develop ourselves.
20ne could argue that implementing library and system calls is an one-time cost that would provide

a better result, as the emulation would be more accurate. However, we would still be subject to the
problem of unknown functions, for example, in case of a new version of the operating system or any of
its libraries.

86

5.2 Future work

AGAVE is not a mature tool yet. During our experiments, we identified a number of

limitations. We want to make AGAVE a more robust tool and several improvements are

definitely necessary, especially in regards to performance. Some of these improvements

are already under development; others will come later.

5.2.1 CBR

In our CBR modules , several improvements are necessary or desired.

For this project, our casebase is stored using the "Flat memory" scheme[39], where

cases are stored in the form of a list and the search is performed sequentially. In our case,

by using the "Fish and Shrink" algorithm, we are able to reduce the number of cases that

are compared, but it is still a sequential search. We want to be able to perform parallel

searches, in order to improve performance on the CBR modules.

Integration of our casebase with a relational database, such as MySQL or SQLite,

is currently under development. Integrating a casebase with a database has been done

before (e.g., [5]) and we expect to use the resources provided by a mature database

system to achieve better performance, simplify development and provide a more intuitive

platform for case retrieval.

While our CBR modules are already capturing the hierarchical relation between calls

(library calls that call other library functions or that perform system calls), we have not

used this information in our implementation. We believe that accuracy could be improved

using this extra context, as this information can provide us a better understanding of

how the operating system works.

Also, the ability of returning values within parameters that were passed to a function

call is a feature that we want to implement in the future. The use of traces as input for

our learning system makes this a non-trivial problem. We believe that this can be inferred

87

by analysing the relation between calls, but further investigation is still necessary.

5.2.2 Emulation

On the emulation portion of AGAVE, there are also a number of features that we want

to implement.

One of the methods used by maiware writers to avoid analysis, or to make it harder,

is to check for specific circumstances to execute the malicious activity; this method is

known as "multiple execution paths". For example, if the maiware detects that is running

on an emulation, the code will not perform any malicious activity. Another approach is

having malicious code that is activated only occasionally. For example, a maiware may

only perform its malicious tasks one tenth of the times it is executed[6]. We want AGAVE

to be able to explore those multiple execution paths, checking for when a condition was

not met and forcing the execution of the alternative path[44].

To deal with the poor performance of emulating CPU instructions, we want to im-

plement our interface for other CPU emulators. JPC, for instance, a CPU emulator

that is written in Java, claims to have a huge gain in performance over its original

implementation [49]. We consider JPC an interesting candidate for the next emulator to

have an interface in AGAVE.

A module for memory management within AGAVE, as we mentioned previously, is

another feature that we want to implement. Currently, the memory is managed directly

by the CPU emulator. This is not desirable because we lose portability, i.e., code im-

plemented within AGAVE that deals with memory might be tied to the CPU emulator

being used. This module ideally will also offer support to pointer tainting.

5.2.3 AGAVE in general

There is also some work to be done that is not specific to any module of AGAVE.

88

Currently, AGAVE can be used for malware analysis and for developing new methods

of detection. However, we also want to implement a mechanism which will allow the

researcher to embed AGAVE into third-party tools, such as an anti-virus product like

ClamAV[37].

Another approach for addressing the performance problem would be a partial refac-

toring of AGAVE. We believe that the use of Python does give important flexibility

for the researcher, that they can easily write their own code and customize AGAVE to

their own needs. So, in order to keep this flexibility, we want to rewrite some of the

AGAVE modules in C, especially the controller and the CBR modules, but keeping them

as Python modules.

All of our tests with AGAVE were based on Linux. However, most of the malware

found in the wild is for Windows platforms. A natural evolution for AGAVE is its

adaptation to work with Windows. However, a number of challenges will have to be

faced, such as lack of documentation and the number of available system and library

calls. For example, while Linux has around 300 system calls defined, Windows has at

least three times this number of system calls[67], many of them not well documented or

not documented at all.

Finally, more immediate work will be the implementation of more complex heuristics

for malware detection. One of the goals of AGAVE is to be a testbed for heuristics,

providing an unbiased environment for evaluation and experimentation. From this im-

plementation, we also want to evaluate how much effort from the researcher the use of

AGAVE can save, when compared to implementing such heuristics using other tools for

malware analysis.

References

[1] Linux standard base core specification 3.1. available online at: http: //ref specs.

freestandards. org/LSB_3. 1 . O/LSB-Core-generic/LSB-Core-generic/bookl.

html.

[2] Agnar Aamodt and Enric Plaza. Case-based reasoning; foundational issues, method-

ological variations, and system approaches. Al Communications, 7(1):39-59, 1994.

[3] Randy Abrams. Understanding and teaching heuristics. In Proceedings of 10th

Annual AVAR International Conference, 2007.

[4] Kareem Aggour, Marc Pavese, Piero Bonissone, and William Cheetham. Soft-CBR:

A self-optimizing fuzzy tool for case-based reasoning. In Kevin Ashley and Derek

Bridge, editors, Case-Based Reasoning Research and Development, volume 2689 of

Lecture Notes in Computer Science, pages 1065-1065. Springer Berlin / Heidelberg,

2003. 10.1007/3-540-45006-84.

[5] Jonathan R. C. Allen, David W. Patterson, Maurice D. Mulvenna, and John G.

Hughes. Integration of case based retrieval with a relational database system in

aircraft technical support. In Proceedings of the First International Conference on

Case-Based Reasoning Research and Development, ICCBR '95, pages 1-10, London,

UK, 1995. Springer-Verlag.

[6] John Aycock. Computer Viruses and Malware (Advances in Information Security).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[7] Paul Barham, Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In

19th ACM Symposium on Operating Systems Principles (SOSP), October 2003.

89

90

[8] Ulrich Bayer, Imam Habibi, Davide Baizarotti, Engin Kirda, and Christopher

Kruegel. A view on current maiware behaviors. In 2nd USENIX Workshop on

Large-scale Exploits and Emergent Threats (LEET), April 2009.

[9] Ulrich Bayer, Andreas Moser, Chirstopher Kruegel, and Engin Kirda. Dynamic

analysis of malicious code. Journal in Computer Virology, 2(1), August 2006.

[10] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In ATEC '05: Pro-

ceedings of the annual conference on USENIX Annual Technical Conference, pages

41-41, Berkeley, CA, USA, 2005. USENIX Association.

[11] W. Boehmer. Analyzing human behavior using case-based reasoning with the help of

forensic questions. In Advanced Information Networking and Applications (AINA),

2010 24th IEEE International Conference on, pages 1189 —1194, April 2010.

[12] Hans-Dieter Burkhard and Michael M. Richter. Soft Computing in Case Based

Reasoning, chapter 2: "On the notion of similarity in case based reasoning and

fuzzy theory", pages 29-45. Springer-Verlag, London, UK, 2001.

[13] Xu Chen, J. Andersen, Z.M. Mao, M. Bailey, and J. Nazario. Towards an under-

standing of anti-virtualization and anti-debugging behavior in modern maiware. In

Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008. IEEE

International Conference on, pages 177 —186, June 2008.

[14] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program analysis from

execution in virtual environments. In USENIX Annual Technical Conference, pages

1-14, 2008.

[15] F. Cohen. Computer viruses: theory and experiments. Computers and Security,

6(1):22-35, 1987.

91

[16] Drew Copley. Computer behavioural management using heuristic analysis. Patent

Application, April 2007. Patent Application US 2007/0,079,375.

[17] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware

analysis via hardware virtualization extensions. In CCS '08: Proceedings of the

15th ACM conference on Computer and communications security, pages 51-62, New

York, NY, USA, 2008. ACM.

[18] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.

Chen. Revirt: enabling intrusion analysis through virtual-machine logging and re-

play. SIGOPS Oper. Syst. Rev., 36:211-224, December 2002.

[19] EICAR. The Anti-Virus or Anti-Maiware test file (version of 7 September 2006).

Published on-line at : http://www.eicar.org/anti-virus-test-file.htm, 2006.

[20] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based al-

gorithm for discovering clusters in large spatial databases with noise. In Proceedings

2nd International Conference on Knowledge Discovery and Data Mining Portland

OR AAAI Press, pages 226-231. AAAI Press, 1996.

[21] Eric Filiol. Strong cryptography armoured computer viruses forbidding code anal-

ysis: the BRADLEY VIRUS. In V. Broucek ed., Proceedings of the 14th EICAR

Conference, 2005.

[22] Eric Filiol. Metamorphism, formal grammars and undecidable code mutation. In-

ternational Journal of Computer Science, 2(l):pp. 70-75, April 2007.

[23] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning program be-

havior profiles for intrusion detection. In Conference on Workshop on Intrusion

Detection and Network Monitoring, pages 51-62. USENIX Association, 1999.

92

[24] Sarah Gordon. Technologically enabled crime: Shifting paradigms for the year 2000.

Computers & Security, 14(5):391-402, 1995.

[25] Fanglu Guo, Peter Ferrie, and Tzi-cker Chiueh. A study of the packer problem and

its solutions. In Richard Lippmann, Engin Kirda, and Ari Trachtenberg, editors,

Recent Advances in Intrusion Detection, volume 5230 of Lecture Notes in Computer

Science, pages 98-115. Springer Berlin / Heidelberg, 2008.

[26] Frank Hofmann. AdvaS Advanced Search - version 0.2.3. Available on-line at

http://advas.sf.net, January 2005.

[27] Hsiang-Lun Huang, Tzong-Jye Liu, Kuong-Ho Chen, Chyi-Ren Dow, and Lih-Chyau

Wuu. A polymorphic shelicode detection mechanism in the network. In InfoS-

cale '07: Proceedings of the 2nd international conference on Scalable information

systems, pages 1-7, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering).

[28] Intel. InteM Core TM 2 Duo Mobile Processors on 45-nm process for Embedded Ap-

plications —Thermal Design Guide, June 2008. Order Number: 320028-001.

[29] Intel. Intel® CoreTM2 Duo Mobile Processor, Intel® Core TM2 Solo Mobile Proces-

sor and IntePCoreTM2 Extreme Mobile Processor on 45-nm Process - Datasheet,

March 2009. Document Number: 320120-004.

[30] Jacek Jarmulak, Susan Craw, and Ray Rowe. Genetic algorithms to optimise CBR

retrieval. In Enrico Blanzieri and Luigi Portinale, editors, Advances in Case-Based

Reasoning, volume 1898 of Lecture Notes in Computer Science, pages 159-194.

Springer Berlin / Heidelberg, 2000. 10.1007/3-540-44527-7J3.

[31] Myles Jordan. System and method for computer virus detection utilizing heuristic

analysis. Patent, June 2007. US Patent 7,231,667.

93

[32] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Renovo: a hidden code

extractor for packed executables. In WORM '07: Proceedings of the 2007 ACM

workshop on Recurring malcode, pages 46-53, New York, NY, USA, 2007. ACM.

[33] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn Song.

Emulating emulation-resistant maiware. In VMSec '09: Proceedings of the 1st ACM

workshop on Virtual machine security, pages 11-22, New York, NY, USA, 2009.

ACM.

[34] Sandeep Karauth, Srivatsan Laxman, Prasad Naldurg, Ramarathnam Venkatesan,

J Lambert, and Jinwook Shin. Pattern mining for future attacks. Technical Report

MSR-TR-2010-100, Microsoft, July 2010. available online at: http : //research.

microsoft.com/apps/pubs/default .aspx?id=135599.

[35] P.A. Karger and D.R. Safford. I/O for virtual machine monitors: security and

performance issues. Security & Privacy, IEEE, 6(5):16 —23, September/October

2008.

[36] Jong Yong Kim and John Shawe-Taylor. Fast string matching using an n-gram

algorithm. Software - Practice and Experience, 24:79-83, 1994.

[37] Tomasz Kojm. http://www.clamay.org.

[38] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,

Xiaoyong Zhou, and Xiaofeng Wang. Effective and Efficient Maiware Detection at

the End Host. In 18th USENIX Security Symposium, 2009.

[39] Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc., 1993.

[40] Kevin P. Lawton. Bochs: A portable PC emulator for Unix/X. Linux Journal, 29:7,

1996.

94

[41] Michael Locasto, Ke Wang, Angelos Keromytis, and Salvatore Stolfo. Flips: Hybrid

adaptive intrusion prevention. In Alfonso Valdes and Diego Zamboni, editors, Recent

Advances in Intrusion Detection, volume 3858 of Lecture Notes in Computer Science,

pages 82-101. Springer Berlin / Heidelberg, 2006. 10.1007/11663812_5.

[42] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo Bruschi.

Testing CPU emulators. In ISSTA '09: Proceedings of the, eighteenth international

symposium on software testing and analysis, pages 261-272, New York, NY, USA,

2009. ACM.

[43] Y. Miyanokoshi, E. Sato, and T. Yamaguchi. Suspicious behavior detection based

on case-based reasoning using face direction. In SICE-ICASE, 2006. International

Joint Conference, pages 5429 —5432, October 2006.

[44] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple execu-

tion paths for maiware analysis. In Proceedings of the 2007 IEEE Symposium on

Security and Privacy, SF '07, pages 231-245, Washington, DC, USA, 2007. IEEE

Computer Society.

[45] Carey Nachenberg. Computer virus-antivirus coevolution. Communications of the

ACM, 40(1):46-51, 1997.

[46] Carey Nachenberg. Understanding and managing polymorphic viruses. Available

online at: http://www.symantec.com/avcenter/reference/striker.pdf, July

1999. Symantec Whitepaper.

[47] Carey Nachenberg. Histogram-based virus detection. Patent, November 2005. US

Patent 6,971,019.

[48] Carey Nachenberg and Alex Haddox. Generic decryption scanners: The problems.

Virus Bulletin Magazine, 8:6-8, August 1996.

95

[49] Rhys Newman and Chris Dennis. Beautiful Architecture: Leading Thinkers Reveal

the Hidden Beauty in Software Design, chapter 9: "JPC: An x86 Emulator in Pure

Java". O'Reilly, 2009.

[50] Markus Franz Xaver Johannes Oberhumer, László Molnár, and John F.

Reiser. UPX - The Ultimate Packer for eXecutables. Published on-line at

http://upx.sourceforge.net, 2010.

[51] David S. Peterson, Matt Bishop, and Raju Pandey. A flexible containment mech-

anism for executing untrusted code. In Proceedings of the 11th USENIX Security

Symposium, pages 207-225, Berkeley, CA, USA, 2002. USENIX Association.

[52] Cody Pierce. PyEmu: A multi-purpose scriptable IA-32 emulator. In Blackhat Con-

ference, 2007. Available online at: https://www.blackhat.coin/presentations/

bh-usa-07/Pierce/Whitepaper/bh-usa-07-pierce-WP . pdf,.

[53] Matt Pietrek. Poking Around Under the Hood: A Programmer's View of Windows

NT 4.0. Microsoft Systems Journal, August 1996. Available online at: http: II

www.microsoft.com/msj/archive/S413.aspx.

[54] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an emulator for

fingerprinting zero-day attacks for advertised honeypots with automatic signature

generation. In EuroSys '06: Proceedings of the 1st ACM SIGOPS/EuroSys European

Conference on Computer Systems 2006, pages 15-27, New York, NY, USA, 2006.

ACM.

[55] Nicolas Puech and Eric Filiol. Computer viruses and applications. In Com-

puter viruses: from theory to applications, Collection IRIS. Springer Paris, 2005.

10. 1007/2-287-28099-5-11.

96

[56] Joanna Rutkowska. Red pill.., or how to detect vmm using (almost) one cpu instruc-

tion. Available online at http : // invisiblethings . org/papers/redplll . html,

November 2004.

[57] Jörg Schaaf. Fish and shrink, a next step towards efficient case retrieval in large

scaled case bases. In Ian Smith and Boi Faltings, editors, Advances in Case-Based

Reasoning, volume 1168 of Lecture Notes in Computer Science, pages 362-376.

Springer Berlin / Heidelberg, 1996. 10.1007/BFb0020623.

[58] Silvia Schiaffino and Analia Amandi. User profiling with Case-Based Reasoning and

Bayesian Networks. In Open Discussion Track Proceedings of the International Joint

Conference IBERAMIA-SBIA 2000, pages 12-21, 2000.

[59] Yingbo Song, Michael B. Locasto, Angelos Stavrou, Angelos D. Keromytis, and

Salvatore J. Stolfo. On the infeasibility of modeling polymorphic shelicode. In

Proceedings of the 14th ACM conference on Computer and communications security,

CCS '07, pages 541-551, New York, NY, USA, 2007. ACM.

[60] Richard Stallman et al. GNU Coding Standards. Free Software Foundation, Septem-

ber 2010.

[61] Gabor Szappanos. Exepacker blacklisting. Virus Bulletin, October 2007.

[62] Peter Szor. The Art of Computer Virus Research and Defense. Addison-Wesley

Professional, 2005.

[63] S. G. Tucker. Emulation of large systems. Communications of the ACM, 8(12):753-

761, 1965.

[64] Peter A. J. van der Made. Computer immune system and method for detecting

unwanted code in a computer system. Patent, August 2006. US Patent 7,093,239.

97

[65] Mark van Setten, Mettina Veenstra, Anton Nijholt, and Betsy van Dijk. Case-Based

Reasoning as a Prediction Strategy for Hybrid Recommender Systems. In Jesus

Favela, Ernestina Menasalvas, and Edgar Chvez, editors, Advances in Web Intelli-

gence, volume 3034 of Lecture Notes in Computer Science, pages 13-22. Springer

Berlin / Heidelberg, 2004.

[66] Vmware, 1998. http://www.vmware.com/.

[67] Miao Wang, Cheng Zhang, and Jingjing Yu. Native API based Windows anomaly

intrusion detection method using SVM. In Sensor Networks, Ubiquitous, and Trust-

worthy Computing, 2006. IEEE International Conference on, volume 1, June 2006.

[68] Jun Xu and Nithin Nakka. Defeating memory corruption attacks via pointer tainted-

ness detection. In Proceedings of the 2005 International Conference on Dependable

Systems and Networks, DSN '05, pages 378-387, Washington, DC, USA, 2005. IEEE

Computer Society.

[69] Trevor Yann and Oleg Petrovsky. Detection of polymorphic virus code using

dataflow analysis. Patent, 6 2006. US Patent 7,069,583.

98

Appendix A

List of Linux commands used for casebase generation

bzcat lsmod

bzip2 mknod

bzip2recover mount

cat my

chgrp nano

chown nc . traditional

chvt netstat

cpio ntfs-3g

dbus-cleanup-sockets ntfs-3g. probe

dbus-daemon openvt

dbus-uuidgen ping

dd ping6

df PS

dnsdomainnanie pwd

egrep readlink

false rm

fgconsole rmdir

fuser sed

fusermount setfont

ip sleep

kb&.mode stty

kill su

less sync

lessecho tar

lesskey tempfile

ln touch

login true

ls ulockmgr_server

99

Appendix B

List of functions

B.1 Functions implemented in AGAVE

• execute (command)

• exit()

• get_breakpointiist()

• get_custominstruction(instruction)

• get-heuristic-list()

• getiibrary_call(name)

• get_librarycalUist()

• get_system_call(name)

• get-system-call-list ()

• load(scripLname)

• memory_dump(address, size)

• memory.save(filename, address, size=4096, append=False)

• next

• pause()

• remove-breakpoint(breakpoint)

• runQ

• set-breakpoint(breakpoint)

• set_custom_instruction(instruction, action, size)

• set_heuristics(name, action, before=True)

• set_opcode (name, action, parameters=None)

• set_register(register, value)

100

• set_library_call(name, action, parameters=None)

• set_system_call(name, action, parameters=None)

• stop()

• get-arguments(

• set_arguments(args)

B.2 Functions implemented in CPU emulator interface

• get-context(

• getinstruction_pointer()

• getmemory(address, size=4)

• getegister(register)

• getinstruction_pointer()

• set_instruction_pointer(addr)

• get-stack-pointer(

• load-snapshot (filename= None)

• set_stack_pointer (addr)

• restart()

• set_return_code(return_value)

• savesnapshot (filename= None)

• set_memory(address, value, size=4)

• stack(size=64)

• startenvQ

• stepQ

101

Appendix C

Implementation of interface to CPU emulator (PyEmu)

#!/usr/bin/env python

import os, sys

sys . path. append("third-party")

sys . path. append("third-party/pyemu")

sys . path. append("third-party/pyemu")

sys . path. append (" learner")

import cPickle

import re

from agave import *

class Agave2PyEmu(AGAVE):

def save- snapshot (self , filename=None):

if filename == None:

filename = self.get_snapshot_name()

exe = self.executable

crc = self.header_hash

memory = {)­
for page_addr in self.emu.memory.pages:

page = self . emu.memory.pages[page_addr]

memory[page_addr] = {" Address":page.address,

Permissions":page.permissions, " Data":page.data

[::-1]}

context = self . emu. cpu. get-context ()

registers = {}
for register in dir(context):

value = getattr(context, register)

if type(value) in [type(0) , type(OL)]

registers[register] = value

filepath = "% s/ °hs%s"%(self.SNAPSHOT_DIR,filename, self.

SNAPSHOT-EXTENSION)

cPickle.dump([exe, crc, registers,memory, self.

--CODE-PAGES--, self.emu.os.TLS] , open(filepath ," w"))

self.log.info("Snapshot saved as % s"°hfilename)

102

def load- snapshot (self , filename=None)

if filename == None:

filename = self . get_last_snapshot ()
if filename == None:

self.log.error("No snapshot found for this

executable")

return False

self. startenv(False)

filepath = "% s/%s%s"%(self.SNAPSHOT_DIR, filename, self.

SNAPSHOT-EXTENSION)

[exe, crc, new-context, memory, self . --CODE-PAGES-- , self

.emu.os.TLS] = cPickle.load(open(filepath ," r"))

if exe self.executable or crc != self.header_hash:

self.log.error("Invalid snapshot for this executable"

)
return False

self.emu.memory.pages = {}

for page_addr in memory:

page = memory [page_addr]

self . set-memory (page_addr, page [" Data"] , len(page["

Data"]))

self . emu. memory. pages [page_addr].permissions = page["

Permissions"]

context = self . emu. cpu. get-context ()
for reg in new_context.keys()

value = new-context[reg]

setattr(context , reg, value)

self. emu. cpu. set_context (context)

self . log. info("Snapshot loaded from % s"%filename)

def get- context (self)

cpu_context = self.emu.cpu.get_context()

context = {}
for register in dir(cpu_context):

if "_" not in register:

context [register]=getattr(cpu_context , register)

return context

103

def __ init__ (self, exename, address=0x80000000)

AGAVE. __ init__(self) # Starts AGAVE variables

self.executable = exename

self.load(exename, address)

self startenv 0
self.count_pushes = 0

self.SYSCALL_INSTRUCTION = "mt 0x80"
self . RELOCATION_INSTRUCTION = "call"

self.header_hash = self.get_header_hash() # Doing this to

improve

def set_return_code(self, return-value):

self.log.debug(" Returning %d (setting EAX)"%return_value

)
self.emu.set_register("EAX", return-value)

def get_memory(self , address , size=4)

data=None

try:

data = self.emu.get_memory(address, size)

except:

self.log.error("Error reading memory")

data=O

return data

def get_memory_pages (self):

return self.emu.memory.pages.keys()

def set-memory (self , address, value, size=4)

return self. emu. set-memory (address , value, size)

def step (self):

if self. check_jump_to_data()

self. check_for_elf C)
try:

result = self.emu.execute()

except Exception as exc:

(type_exc , value, traceback) = sys.exc_info()

self.log.error(" Unexpected error(°hs): % s"%(type_exc

value))

sys exc_clear C)
self.set_batch(False) ft Forces a pause

104

if self.LOG_ALL:

self. stack (16)

self . registers ()
result = False

return result

def stack (self , size=64):

self.emu.dump_stack(size)

def registers (self)

self . emu. dump_regs ()

def get-instruction(self)

if self.emu == None:

return False

instruction = self.emu.cpu.get_disasm()

return instruction

def get-stack-pointer(self)

if not self.emu.frame_pointer:

return self.get_register("EBP")

else:

return self.get_register("ESP")

def set_stack_po inter (self , addr) :

if not self.emu.frame_pointer:

self.set_register("EBP",addr)

else:

self.set_register("ESP",addr)

def load_relocation_table (self , elf-addr) :

get one page of data. Sufficient for header?

data = self.get_memory(elf_addr, 4096)

elf = elffile.ELF(data = data, parse- all = False)

elf ,. parse_program_headers (elf . ELF_HEADER. e_phoff, elf.

ELF_HEADER.e_phnum, elf . ELF_HEADER. e_phentsize)

addr = 0

size = 0

for x in xrange(len(elf.program_headers)):

ph = elf.program_headers[x]

if ph.p_type == elffile. SEGMENT_TYPES [" PT_DYNAMIC"]:

(addr, size) = (ph.p_vaddr, ph.p_memsz)

segment = self.get_memory(addr, size)

elf . parse_dynamic_segment (segment)

break

if elf.dynamic_tags == []:

105

return False

tags

for tag in elf.dynamic_tags:

if tag.d_tag in elffile.DYNAMIC_TAGS:

tags[elffile.DYNAMIC_TAGS[tag.d_tag]] = tag.d_val

relocation = {}

try:

if " DT_REL" in tags:

addr = tags C"DT_REL"]

size = tags["DT_RELENT"]

numb = tags["DT_RELSZ"]

else:

addr = tags [" DT_RELA"]

size = tags [" DT_FtELAENT"]

numb = tags [" DT_RELASZ"]

addr = tags C"DT_JMPREL"]

previous- offset = None

for reloc in xrange(numb):

offset = self.get_memory(addr,4)

if previous- offset 1= None:

if offset previous- offset + 0x04:

break

previous- offset = offset

info = self.get_memory(addr+4,4)

symbol = info >> 8

symbol-addr = tags["DT_SYMTAB"] + tags C"DT_SYMENT

"]* symbol

symbol-data = self.get_memory(symbol_addr, 4)

symbol-name = self.get_string(tags["DT_STRTAB"]+

symbol_data , 256)

relocation[offset] = symbol-name

addr += size

except:

return False

for addr in relocation:

self. library_calls [addr] = relocation [addr]

return True

106

def check_library_call (self, instruction)

if self.RELOCATION_INSTRUCTION not in instruction:

return False

(call, addr) = instruction.split()

try:

address = int(addr[2:] , 16)

except:

return False # If I cannot; do that, there's no chance

of relocation

self.log.info("Checking relocation instruction for % s"%(

instruction))

data = self . get-memory (address , 16)

Checking if the next instructions match a stub

signature from ELF

ff 25 XX XX XX XX jmp (XXXXXXXXJ (GOT -> Next

instruction)

68 XX XX XX XX push dw or d XXXXXXXX

e9 XX XX XX XX jmp (XXXXXXXXJ (PLT)

if not (data[O] == chr(Oxff) and data[1]=chr(0x25) and

data[6] == chr(0x68) and data[113 == chr(0xe9)):

self . log.debug("Stub signature doesn't match")

return False

GOT- address = self . get-memory (address +2,4)

GOT.instr = self. get_memory(GOT_address , 4)

if GOT_instr != (address + 6):

self.log.debug("Address doesn't match (%08x %08x)"

%(GOT_instr, address +6)

return False

offset = self.get_memory(address+7,4)

PLTO_offset = self . get_memory(address+12,4)

PLTO_address = (address + 16 + PLTO_offset)&Oxffffffff

16 is total size of the stub

self . log. debug (" GOT Address: °h08x"%GOT_address)

self.log.debug("Offset : °h08x" °hoffset)

self.log.debug("PLTO Addr : °h08x"%PLTO_address)

if GOT- address in self . library- calls . keys O:

self . emu. execute ()
return self.emulate_library_call(GOT_address)

else:

return False

107

def check_system_call (self, instruction)

if self.SYSCALL_INSTRUCTION in instruction:

call = self.get_register("EAX")

syscall = self.retriever.get_system_call(call)

if len(syscall) != 0:

name = syscall[O].name

self.log.info(" SYSCALL TO °hs at °h08x"%(name,

self get_register (" El?")))

if name in self.system_calls.keysO:

self.set_register("EIP", self.get_register("

EIP")+2) # TODD: improve this adding 2 to

EIP (mt 0m80 = 2 bytes)
self.log.info(" Executing user code for %s as

%s at EIP=%08x" °J,(name, self.system_calls[

name] [0], self.get_register("EIP")))
self . process_command(self . system_calls [name

] [0])
return True

else:

parameters = [I
for register in (" EBX" , "ECX" , "EDX" , "ESI" , "EDI

It)
parameters . append (self . get_register (

register))

self.set_register("EIP", self.get_register("

EIP")+2) # TODD: improve this adding 2 to

EIP (mt 0m80 = 2 bytes)
self.log.info(" Executing code for '1,5 from

casebase" °h(name))
return self.learned_exec(name, parameters,

SYSCALLS=True)

else:

self. log. error("System call %d was not identified

"°hcall)

return False

def check_custom_instructions(self, instruction):

if instruction in self.custom_instructions:

self.process_command(self.custom_instructions[

instruction] [0])

self.set_register("EIP", self.get_register("EIP")+

self . custom_instructions [instruction] [1])

return True

else:

cmd = instruction, split 0 [0]

108

if cmd in self.custom_instructions:

self.process_command(self.custom_instructions[cmd

1 [0])
self.set_register('tEIP", self.get_register("EIP")

+self custom_instructions [cmd] [1])

return True

return False

def skip (self , n)

self. set_register("EIP", self.get_register("EIP")+n)

def get_parameters_from_stack(self, max_parameters=5)

address = self.get_register("ESP") ## Return address

self.log.fine("ESP = °h08x" °haddress)

parameters = [1
for i in xrange(max_parameters):

address += 4

data = self.get_memory(address, 4)

self.log.debug(" Parameter %d from stack at °h08x: % 08

x" °h(len(parameters), address, data))
parameters . append(data)

return parameters

def guess_syntax(self, max-parameters = 5):

syntax = Li

entrypoint = self . elf . ELF_HEADER. e_entry

intervals = [3

parameters = self . get_parameters_from_stack(

max-parameters)

for table in (". strtab",".dynstr"):

if table in self.elf.sections:

start_strtable = entrypoint + self.elf.sections[

table] sh_off set

end_strtable = start_strtable + self.elf.sections

[table] sh_size

intervals . append ((start_strtable, end_strtable))

for i in xrange(len(parameters)):

109

data = parameters[i]

if data < entrypoint: # This should be a number

syntax. append (agave -types . AgaveType (" NUMERIC"))

else:

is- string = False

for (start , end) in intervals:

if start <= data <= end:

syntax. append (agave_types AgaveType ("

STRING"))

is- string = True

if not is- string: # Large number or address

syntax. append(agave_types AgaveType (" NUMERIC"

))
self . log. debug (" Guessed syntax: °hs"%syntax)

return syntax

def get- syntax (self , name, parameters=[], SYSCALLS=False):

self . log. debug (" Getting syntax for % s" °hname)

if name == "puts" and 1 == 2:

self.log debug(" Special case for testing: PUTS")
syntax = [agave_types.AgaveType("STRING")]

syntaxes = [syntax]

else:

syntaxes = self.retriever.get_syntax(name, SYSCALLS=

SYS CALLS)

if len(syntaxes) > 0:

for syntax in syntaxes:

self.log.debug(" Syntax found: % s"%syntax)
else:

self . log. debug (" Syntax for this call was not found"

)
syntax = self.guess_syntax()

return syntaxes

def finish_call(self , , n_parameters):

return- address = self.pop() # Removing return address

from stack

self.log.debug("Return address: %08x"%return_address)

for i in xrange(n_parameters):

self.pop() # Removing each parameter from

110

stack

self emu. set- register (" EIP" , return- address)

def get- string (self , address, max- string- size =2048):

_len = len

_chr = chr

string =

char = self . get_memory(address , 1)

while char != 0 and _ len(string) < max- string- size:

string = string + _chr(char)

address += 1

char = self.get_memory(address , 1)

return string

def load (self , exename, address =0x800000):

if exename:

self.executable = exename

try:

elf = elffile.ELF(exename)

except:

self.log.error(" Invalid executable")

sys. exit (1)

else:

self.log.error(" Blank filename specified")
sys . exit (2)

self.elf = elf

def get-instruction-pointer(self)

return self.get_register("EIP")

def set_instruction_pointer(self , addr)

self. set_register (" EIP" , addr)

def startenv (self , initial=True):

elf = self.elf

entrypoint = elf . ELF_HEADER. e_entry

self.log.debug(" Entry Point Addr: Ox °h08x\n" % (
entrypoint))

self.emu = elfpyemu.ELFPyEmu()

for x in xrange(len(elf.program_headers)):

111

ph = elf.program_headers[x]

segment = elf.segments[x]

self.log.debug(" Loading segment % d (size=°hx/%x) at °h
x"(x,1en(segment),ph.p_memsz, ph.p_vaddr))

if ph.p_type not in elffile.SEGMENT_TYPES:

segment-type = "UNKNIJWN(%s)"%ph.p_type

else:

segment-type = elffile. SEGMENT_TYPES [ph. p_type]

self. log.debug(" °h-20s\t%08x\t%08x\t °h08x\t%08x\t%08x"

%(segment_type, ph.p_offset, ph.p_vaddr, ph.

p_paddr, ph. p_f ilesz, ph. p_memsz))

if initial:

for i in xrange(len(segment)):

c = segment[i]

self.emu.set_memory(ph.p_vaddr+i, int(ord(c))

sizel)

for section-name in elf.sections:

section = elf.sections[section_name]

self.log.debug(" Loading section % s (size=%x/%x) at %
x"%(section_name,len(section.data),section.sh_size

section.sh_addr))
data = section.data

address = section.sh_addr

if initial:

for i in xrange(max(len(data), section.sh_size)):

if i >= len(data)

c = chr(0)

else:

c = data[i]

self . emu. set-memory (address + i, int(ord(c)),

size=1)

self . emu. set-register (" EIP", entrypoint)

if initial:

self . start_stack C)

self.__CODE_PAGES__ = self.emu.memory.pages.keys()

self.finished = False

112

def start_stack(self)

self . log. debug (" Initializing stack with args and

environment variables...")

addr = self.emu.memory.get_available_page(OxOOff0000)

self push(0) # NULL (ending list of environment

variables)

env-path = "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin

/usr/bin :1 sbin : ibm / usr/games"
self.set_memory(addr, "% s\xOO"%env_path, len(env_path)+1)

self,push(addr) # argv

self . push (0) # NULL (ending list of arguments)

addr = addr + len(env_path)

self.set_memory(addr, " °hs\xOO"%self.executable[::-lj , len

(self. executable)+1)

self.push(addr) # argv(OJ

addr = addr + len(self.executable)+i.

self.push(1) # argc

def check-jump-to-data(self)

EIP=self . get_register (" EIP")

if EIP & Oxfffff000 not in self.--CODE-PAGES--:

self.__CODE_PAGES__ = self.emu.memory.pages.keys()

self . save_snapshot C)
return True

return False

Check for ELF necessary for reload relocation table

def check- for- elf (self)

result = False

if "-- ELF-PAGES--" not in dir(self)

self . __ ELF_PAGES__= []
for page in self.emu.memory.pages.keysO:

data = self.get_memory(page, len(elffile.

ELF- SIGNATURE))

if data == elffile.ELF_SIGNATURE:

if page not in self.--ELF-PAGES--:

self. __ ELF_PAGES__ . append(page)

self . load_relocation_table (page)

result = True

return result

def pop (self , size=4)

113

self.log.debug("Frame pointer? Ox%08x"%self.emu.

frame-pointer)

if not self.emu.frame_pointer:

address = self.emu.get_register("EBP")

else:

address = self.emu.get_register("ESP")

self.log.debug("Address = °h08x" °haddress)

value = self.get_memory(address, size)
self.emu.set_memory(address, OxOO, size)

address += size

if not self.emu.frame_pointer:

self.emu.set_register("EBP", address)

else:

self.emu.set_register("ESP", address)

return value

def push(self , value , size=4)

if not self emu.frame_pointer:

address = self.emu.get_register("EEP")

else:

address = self.emu.get..register("ESP")

address -= size

self . emu. set-memory (address, value, size)

if not self.emu.frame_pointer:

self.emu.set_register("EBP", address)

else:

self.emu.set_register("ESP", address)

return value

def show-instruction(self)

address = self.emu.get_register("EIP")

if address == 0:

self.log.info("%08x\tProgram finished\n"%(address))

self.finished = True

self. set_batch(False)

else:

raw- instruction = self.get_memory(address, 32)

if type(raw_instruction) !=

self.log. error(" Error reading instruction at Ox

114

°h08x (% s)" °h(address,raw_instruction))

return

instruction = pydasm. get -instruction (raw_ instruct ion,

pydasm . MODE_32)
bytes = lilt

for i in xrange(instruction.length):

bytes += ("%02x "% ord(raw_instruction[i]))

disasm = self. emu. get_disasm()

self . log. info("[ASM] %08x\t%-30s\t°hs"°h(address, bytes

disasm))

def check_finished(self , instruction):

if " hit" in instruction:

self.log.debug(" Program execution completed.")
return True

elif self.emu.get_register("EIP") == 0:

self.log.debug(" Instruction pointer is empty. ")
return True

return False

def check-stack(self)

esp = self.get_register("ESP")

stack-page = (esp & Oxfffff000)

if stack-page not in self.emu.memory.pages:

self.log.warn("Memory page for stack not available...

Initializing %08x for %08x. . .\ n"%(stack_page, esp

))
empty-page = "\ xOO"*4096

self. set_memory(stack_page , empty-page, 4096)

def set-register (self , register, value):

if type(register) == type(False) and reg == False:

self.log.error(" Invalid register % s"%register)

self. set_batch(False)

return

else:

if type(value) ==

if value [0:2] == "Ox":

if not self.emu.set_register(register, int(

value [2:] , 16)):

self.log.error(" Error setting register

s=%d(%08x) "%(register, value, value)

elif not self. get-register (value) and type(seif

115

get_register(value)) == type(False)

source = value.upper()

value = self.get_register(source)

if not value:

self.log.debug(" Invalid register: °hs" °h

source)
return

else:

if not self.emu.set_register(register,

value)

self.log.debug(" Error setting

register %s=°hs(%08x)"%(register,

source , value))

else:

if not self . emu. set-register (register , value) :

self.log.debug(" Error setting register %s%d

(°h08x)"%(register, value, value))

def get-register (self , register):

reg = self.emu.get_register(register)

if type(reg) == type(False) and reg == False:

self.log.error(" Error getting register %s"%register

)
return 0

else:

return reg

116

Appendix D

Implementation of instructions within AGAVE

D.1 Implementing STOSD

def STOSD ()
edi = get_register("EDI")

df = get_register("DF")

eax = get_register("EAX")

set-memory(edi, eax,4)

if df == 0:

set_register("EDI" , edi+4)

else:

set_register("EDI" , edi-4)

set_custom_instruction("stosd", " STOSDO", 1)

D.2 Implementing BTR

def ETRO:

Return instruction as a, mnemonic

instruction = get-instruction(

(cmd, operand- list) = instruction. split()

operands = operand_list.split(",")

values = []
debug_msg = [1
for op in operands:

try:

value = get-register(op)

except:

interface.log.error("ERROR geting op%s" °hop)

value = 0

if value == None:

value = 0

values. append(value)

117

base = values [0]

bit- offset = 2 ** values [1]

if (base & bit_offset) > 0:

base = base - bit- offset

cf = 1

else:

cf = 0

set _ register (CF , cf)
set_register(operands[O] , base)

3 bytes, instruction + 2 operands

set..custom_instruction("btr","BTRO",3)

118

Appendix E

Implementation of heuristics within AGAVE

from elffile import ELF- SIGNATURE

def jumping_to_data()

if " CODE- PAGES" not in dir():

CODE- PAGES = U
EIP=get_instruction_pointer ()
if EIP & 0xfffff000 not in CODE-PAGES:

CODE-PAGES = get-memory-pages(

return True

return False

def elf_in_memory()

if " ELF- PAGES" not in dirO:

ELF_PAGES= []
for page in get-memory-pages(:)

data = get_memory(page, len(ELF_SIGNATURE))

if data == ELF- SIGNATURE:

if page not in ELF-PAGES:

ELF_PAGES. append (page)

result = True

return result

def search_EICAR()

EICAR-SIGNATURE =

for page in get-memory-pages(:)
if EICAR-SIGNATURE in get_memory(page, 4096):

print " Found"

return True

return False

def find_eicar():

print " Find EICAR",

if jumping-to-data(and elf_in_memoryO:

print " Jumping into data section"

if search_EICAR()

print " EICAR Standard Test File was found"

pause ()
else:

119

print " Nothing yet"

set_heuristics("FindEICAR", " find_eicarO")

