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ABSTRACT 

A new non-cubic equation of state (EOS) has been developed for pure substances. The 

density dependence of the equation was devised by fitting critical isotherms of test 

substances while reproducing the critical point, and enforcing van der Wads' conditions 

of criticality. Temperature dependence was determined for three of the parameters by 

forcing reproduction of saturation pressures and saturated Liquid and vapour specific 

volumes at subcritical temperatures. The EOS was completed by developing Functions to 

fit the calculated temperature dependence. A van der Waals-type covolume parameter 

was included to provide a non-zero density limit, and to avoid generating spurious 

volume roots. 

The new equation was compared to the BWRS equation of state (Starling, 1973) and the 

Soave-BWR equation (Soave, 1995). The new equation generally showed improvement 

over the BWRS equation for fitting pure-substance critical isotherms, and for cdculating 

saturation- md other thermodynamic properties, but performed better than the Soave- 

B WR EOS in only a few areas. 
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1.0 INTRODUCTION 

Equations of state are one of the most p o w e m  tools available for calculating fluid 

thermodynamic properties. In its simplest form, an equation of state (EOS) is a 

functional relationship between a fluid's pressure, temperature, and density. However, 

by applying fundamental thermodynamic relations to the basic EOS form, the departures 

from ideality of all thermodynamic properties can be derived as functions of temperature 

and density. Equations of state can be applied to both vapour and liquid phases, and 

when written in pressure-explicit form, a single EOS can represent coexisting vapour and 

liquid phases simultaneously through multiple density roots. 

In order to predict fluid thermodynamic and phase-equilibrium properties accurately, an 

equation of state (EOS) must first be able to properly represent the pressure-volume- 

temperature (PVT) behavior of pure substances. Pure-substance PVT behavior in the 

vicinity of the critical point is particularly difficult to reproduce, and an EOS's ability to 

fit data in this region depends largely upon its bctional form. 

Traditionally, cubic equations of state based on the van der Waals equation have been 

most popular for chemical process design work. However, these equations have 

limitations that justify consideration of more complex forms. In particular, they are 

unable to properIy represent thermodynamic behavior near the pure-component critical 

point, especially along the critical isotherm. 

Two-parameter cubic equations Like the Peng-Robinson (PR) or Soave-Redlich-Kwong 

(SRK) EOS have too few parameters to simdtaneously match all the required conditions 

at the critical point. Consequently, they normally match van der Wads' derivative 
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conditions (~P/~v=#P/~~v~=o)  by forcing the parameters a and b to match critical 

pressure and temperature, at the expense of the predicted critical volume. Saturated 

liquid density predictions are poor, and compressed liquid densities are often 

unsatisfactory as well. 

By contrast, non-cubic equations of state have higher-order density terms or exponential 

terms that potentially provide greater flexibility for expressing near-critical behavior. 

Non-cubic equations also have many more adjustable parameters than cubic equations. 

allowing them to match critical point PVT and derivative conditions, as well as saturation 

properties simultaneously. For these reasons, carefully developed non-cubic EOS have 

the potential to make better predictions of saturated liquid densities, compressed liquid 

densities, and fluid thermodynamic properties. 

Historically, non-cubic EOS have developed alongside cubics for over 100 years. During 

that time, their greatest drawback has perhaps been that they typically have many more 

adjustable constants than cubic EOS, requiring extensive use of data regression to 

determine best-fit values for the constants. As a rule, the more constants in the equation, 

the more difficult it becomes to not only determine values for pure-component 

parame ten, but to develop generalized correlations, assign temperature dependence 

fimctions, and establish mixing rules. And aside fkom quartic polynomial equations. 

analytical solutions are not available for determining density fiom non-cubic EOS at a 

given pressure and temperature. thus robust numerical root-solving procedures are 

required. In the past, these difficulties meant that more computer time was needed to 
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develop and use non-cubic EOS than was required for simpler equations, and their use 

has consequently been Limited. 

Although development, generalization, and implementation of non-cubic EOS all pose 

serious challenges, technological advances over the last decade have signScantly 

improved the speed and storage capacity of desktop computers, making viable the 

commercial application of non-cubic equations of state. 



2.0 NON-CUBIC EQUATIONS OF STATE 

2.1 The Viriai Equation of State 

Although cubic equations of state have traditionally been more popular for chemical 

process design applications, non-cubic EOS date back just as far. One of the earliest and 

perhaps best-known equations of state is the Virial EOS, first developed by Thiesen as 

early as 1885, and modified firher by kun.merlingh-O~es in 1901 (Mason and 

Spurling, 1969). While the original basis for the equation was empirical, it was later 

shown that the equation could be derived theoretically by considering the effects of 

intermolecular forces (Mason and Spurling, 1969). 

The Virial EOS is essentially an infinite series in either volume (pressure-explicit form) 

or pressure (volume-explicit €om). The pressure-explicit form of the equation is written 

RT RTB RTC p=-  +-+,+... 
v v- v 

where V is specific volume, and B and C are called virial coefficients. The virial 

coefficients take on different values for different gases, but depend only on temperature, 

and not on pressure or density (Mason and Spurling, 1969). While the Virial EOS does 

have a theoretical basis, it is valid only for the vapour phase at densities below the critical 

density (Mason and Spurhg, 1969), and therefore cannot be used to represent vapour- 

liquid equilibrium. And although virial coefficients can be determined experimentaIly, 

only the second virial coefficient B can be calculated Eom experimental measurements 

with reasonable accuracy (Mason and Spurling, 1969). 



2.2 BWR-Type Equations of State 

Of the many non-cubic EOS developed after the Virial equation of state, the original 

Benedict-Webb-Rubin (BWR) EOS and its many variations have perhaps been the best 

known and most widely used. The BWR equation can be written as: 

where B, C, D, E, and F are parameters (not to be confused with the virid coefficients in 

Eq. (1)) whose values, with the exception of F, are temperature dependent. These five 

constants are used to express the equation's density dependence at constant temperature. 

The temperature dependence of these parameters is as follows: 

The BWR EOS was proposed as an improvement to the Beattie-Bridgeman EOS, 

enabling it to represent high-density fluid properties more accrtlateIy (Benedict et al, 
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1940). While the Beattie-Bridgeman equation was essentially a quartic polynomiai in 

volume with temperature-dependent coefficients, the BWR EOS was unique in that it 

introduced an exponential term to better represent liquid-phase hacit ies at high 

densities and low temperatures (Benedict et al, 1940). In a sense, the exponential term 

accounts for the contributions of higher-order virial coefficients, resulting in a compact 

yet flexible non-cubic form capable of accurately fitting pure-substance critical 

isotherms, and thus improving PVT predictions-in particular, liquid densities-ver 

those of cubic equations. 

Many modifications of the B W R  EOS have been developed since the original equation 

was proposed. One of the best-known was that of Starling (1973), who used the same 

volume dependence expressed in Eq. (2), but modified Eqs. (3a-d) to arrive at different 

expressions for the temperature dependence of the parameters in Eq. 2. Starling also 

introduced a generalization of the pure component parameters in terms of critical 

properties and acentric factor (Han, 1972; Starling and Han, 1973). 

Other modifications have added terms in powers of density not represented in the original 

equation, or have added additional constants in the temperature dependence expressions. 

A recent BWR modification was developed by Soave (1995), who proposed the form: 

where 



Aside from being written in terms of non-dimensional parameters, the essential difference 

between Eqs, (2) and (4) is that the fourth term in Eq. (4+6g-is equivalent to having 

a fifi-power term in reciprocal volume in the pressure-explicit form of the equation, 

instead of the sixth power shown in Eq. (2). 

Soave proposed new generalized functions to express the temperature dependence of the 

parameters p, y, 6, and E as follows: 
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where p,, y,, and E~ are values calculated at the substance critical temperature, and bl, 

b2, cl, cl, c3, el, ez, and e-j can be expressed as functions of acentric factor. Parameter 6 in 

Eq. (4) takes on a constant value that is the same for all substances. 

[n developing this B WR modification, Soave paid particular attention to fining PVT data 

along critical isotherms of the substances of interest, to promote accuracy in the near- 

critical region. 

Other BWR modifications have included the equation of Nishiumi (1 975), a fifteen- 

constant equation that extended the range of applicability of the BWRS equation to lower 

reduced temperatures. This equation was later extended to polar pure substances using 

three new polar parameters (Nishiumi, 1980). 

Platzer and Mauer (1989) also developed a generalization for the Bender EOS (Bender, 

L971), a 20-constant modification of the BWR equation. The generalized equation was 

applied to polar substances as well, through a polar factor. Their generalization generally 

performed better than Pitzer-type interpolation procedures, such as the Lee-Kesler 

method as applied to the Bender equation. 

2.3 Repulsive Terms 

Considerable work has been done recently to better represent the contributions of 

repulsive intermolecular forces in EOS predictions. It has long been recognized that the 

repulsive term in the van der Wads-type cubic EOSs 



does not properly represent the high-density behavior of hard-sphere fluids (Carnahm 

and Starling, 1972). One approach to deveIoping a better repulsive term has been 

through computer simulation, using simplified intermolecular potential functions to 

model molecular interactions. The results are then fit using a semi-empirical expression. 

Camahan and Starling (1969) developed an empirical equation that accurately fit results 

of computer simulations of molecules that interact via a hard-sphere potentid function. 

The equation is written as 

where 

and b is a covoIume parameter related to the volume occupied by the molecules. 

Carnahan and Starling (1972) showed that a complete equation of state can be 

constructed by adding a suitable term to the hard-sphere expression to represent attractive 

forces. They found that when Eq. (7) was used instead of Eq. (6) in the van der Wads 

and Reach-Kwong equations, calculated enthdpy departures and densities were 

generally improved for fight hydrocarbons and a few non-hydrocarbons commonly found 
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in natural gas. They also noted some improvement in hgacities for five light 

hydrocarbons. 

Scott ( 197 1) proposed a simpler hard-sphere repulsive EOS : 

which approximates Eq. (7), but facilitates the possibility of a cubic EOS. 

2.4 Recent Developments 

Most BWR-type equations of state are empirical in nature-emphasis is placed on fitting 

experimental data, rather than on attaching theoretical significance to the various terms. 

Recently, however, a trend has emerged where new equations o f  state are developed 

based on theoretical considerations. Generally, the dependent quantity-usually pressure 

or Helmholtz energy-is assumed to comprise a series of terms, each accounting for a 

particular thermodynamic phenomenon or behavior. Often, the equations include a 

repulsive reference term that is based on the results of molecular simulations using some 

type of simplified potential function-hard sphere, hard chains, or Lennard-Jones, for 

example. Other terms then account for phenomena such as polarity and association. 

Once terms have been included for dl desired phenomena, the form of each term is 

established. The SAFT EOS (Chapman et al., 1989) is an example of this type of 

equation. 
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Recently, there has been a resurgence of interest in fluids obeying the Lennard-Jones 

intermolecular potential hction. Johnson et al. (1 993) carried out molecular-dynamics 

computer simulations on Le~ard-Jones molecules, and used a 32-constant modified 

BWR EOS to fit the simulated results. Kolafa aad Nezbeda (1994) regressed an equation 

combining a hard-sphere repulsive term (slighrly different in form to Eq. (7)) with a 

complex multi-constant attractive term. 



3.0 DEVELOPMENT OF THE NEW EQUATION OF STATE 

A new non-cubic equation of state has been developed to correlate PVT data for pure 

substances. Emphasis has been placed on accurate reproduction of PVT data in the 

vicinity of pure component critical points. 

3.1 Objectives and General Approach 

The main objective of the current project was to effort to develop a new non-cubic 

equation of state suitable for use in engineering applications, having the following 

characteristics : 

1 Accurate reproduction of PVT data in the vicinity of pure-component critical 

points, more accurately than other commonly used non-cubic EOS of similar 

complexity. In particular, superior reproduction of pure-component critical 

isotherms using as few adjustable constants as possible. 

. * 
11. Accurate reproduction of pure component saturation PVT data, using as few 

adjustable constants as possible to represent the temperature dependence of the 

critical-isotherm adjustable constants described in (i) above. 

A firrther objective was to assess how modifying the basic equation to include a hard- 

sphere repulsive tenn, either of the van der Waals type [Eq. (@] or the perturbed hard 

sphere type pqs. Q, (8), (9)], wouid affiect the accuracy with which the equation could 

reproduce pure-component critical isotherm data 
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There are many ways to develop a new equation of state. The approach adopted for the 

new equation was to treat the influences of volume and temperature on predicted 

pressures separately. The first part of this work focused on establishing a functional form 

to express the pressure as a function of volume (or density) at constant temperature. 

Once the density-dependent form of the EOS had been established, the effect of 

temperature was incorporated by examining how the EOS constants in that form would 

have to vary in order to match pure-substance saturation- and supercritical PVT data. 

The overall procedure was recursive, because results fkom the temperature dependence 

study uncovered weaknesses in the original density-dependent form that had to be 

rectified before temperature dependence could be finalized. 

3.2 Density Dependence: Fitting the Critical Isotherm 

For a pure substance, the critical isotherm is probably the most difficult to fit using an 

equation of state. The critical isotherm for methane is shown on logarithmic coordinates 

in Figure 3-1. The figure clearly shows the three distinct regions that a successfil EOS 

must reproduce: a liquid-like (high density) region to the left of the critical point where 

small changes in density result in large changes in pressure, a near-critical region, and a 

vapour-like (low density) region to the right of the critical point, where the slope is much 

more gentle. Perhaps the most severe restriction imposed on an EOS when fitting the 

critical isotherm arises fkom what are commonly called van der Wuufs conditions: the 

first and second derivatives of pressure with respect to volume at constant temperature 

both take on zero vaiues at the critical point. This can be expressed mathematically as: 



Eqs. (10a,b) indicate that the critical isotherm has an inflection point, located at the 

critical point. As a result of these two conditions, the critical isotherm is extremely "flat" 

in the vicinity of the critical point, and a very flexible equation of state is required to fit 

the isotherm within acceptable accuracy while strictly observing the conditions expressed 

in Eqs. (10a,b). The EOS must also match ideal gas behavior at low densities. The ideal 

gas limit may be expressed mathematically as 

The accuracy with which the EOS is able to predict the second virial coefficient serves as 

a measure of how well the equation is able to fit the vapour-like region of the PVT space, 

not only for the critical isotherm, but over a wide range of temperature. 

la theory, the EOS's required flexibility can be attained by expressing pressure as a 

polynomial fitnction of volume. In practice, however, attempts to fit critical isotherms in 

this way require a large number of polynomial terms which in turn result in a large 

number of adjustable coustants. In order to represent saturation PVT data accurately, it is 

necessary to allow the values of some of these constants to vary with temperature, 

introducing still more constants. As well, the greater the number of polynomial terms 
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that are included in the form used to fit the critical isotherm, the higher the degree of the 

polynomial, potentially resulting in undesirable and unpredictable behavior when the 

equation is solved implicitly for volume, as well as possible cross-correlation problems. 

The net result is that a polynomial equation of state would quickly become unwieldy and 

impractical for engineering use. Developing an EOS with only low-degree polynomial 

terms and with as few adjustable constants as possible therefore requires consideration of 

other types of mathematical functions, such as exponential or rational hctions. 

1 10 I00 
Reduced Volume 

Figure 3-1 Critical isotherm of methane 

At the outset of this work, the approach to fitting the critical isotherm had three 

components: 

Identi@ c o ~ t s  that the EOS must observe. 



Fit a reference function to the critical isotherm for a particular test substance, 

observing the identified constraints. 

Develop a function to fit the error between the critical isotherm PVT data and the 

pressure predicted by the fitted reference function. The resultant EOS form 

would consist of the sum of the reference hc t ion  and the error function. 

In addition to the van der Wads conditions expressed in Eqs. (lo), and the ideal gas limit 

of Eq. (1 I), two additional constraints were identified: 

Eq. (12) is essentially a third van der Waals condition, which is suggested by 

experimental data (Martin and Hou, 1955). It was thought that inclusion of this condition 

would improve EOS predictions near the critical point, helping the EOS to reproduce the 

"flatness" of the critical isotherm in this region. It was also known that additional 

specifications or constraints will reduce the number of adjustable constants whose values 

must be determined fiom empirical data regression. From this perspective, it is desirable 

to identify as many different physical constraints as possible. One additional 

specification-the second virid coefficient at the critical temperature-was identified as 

a possible constraint, but was not investigated untiI alfer the EOS form had been 

developed. This aspect of the work is discussed later. 
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Eq. (13) states that the pressure predicted by the EOS must equal the experimental value 

of critical pressure exactly, when experimentai values of critical temperature and volume 

are used as inputs. 

Eqs. (10)-(13) pose five constraints that the new EOS must observe when reproducing the 

critical isotherm of a given substance. To meet these constraints, the EOS would have to 

have at least five parameters (i.e. four adjustable constants plus the ideal gas term). Even 

then, the values of these parameters would be completely determined by the imposed 

constraints, leaving no adjustable parameters for data fitting. Regressing the equation to 

critical isotherm data would therefore require more than four adjustable parameters. 

Remession Procedure 

In order to determine substance-specific vdues for the adjustable constants in various 

equations of state, and to re-fit existing equations of state to the same data to allow fair 

comparisons, it was necessary to develop an appropriate data-fitting method. While 

polynomiaI fimctions are linear with respect to their adjustable constants, an EOS 

containing exponential terms (such as in Eqs. (2) and (4) ) or rational fuactions (such as 

Eqs. (7) or (9)) becomes non-linear in at least some of the parameters. For this reason, a 

non-linear least-squares method was chosen as the basis for data regression. Initially, an 

algorithm based on the Gauss-Newton method -per and Smith, 1981) was used, but 

was eventudy abandoned in favour of a more reliable method based on the Levenberg- 

Marquart algorithm mess et aI., 1986). 
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It was necessary to modify the non-linear least-squares algorithm to enforce the 

constraints posed by Eqs. (10)-(13). The ideal-gas limit of Eq. (11) was enforced by 

including a term of first degree in inverse specific volume such as the first term in the 

right-hand side of Eq. (I), with the constant being numerically equal to RT. Initially, the 

van der Wads conditions of Eqs. (10) and (1 2) were enforced by including a penalty 

Function in the least-squares objective Function that was to be minimized. The penalty 

function was computed by determining the associated derivatives numerically at each 

iteration, and multiplying them by a large number; minimization of the objective function 

thereby had the effect of forcing the three derivatives to take on very small values. Also, 

the condition of matching the critical point expressed in Eq. (13) was enforced by 

applying a large weighting factor in the objective function to the pressure error computed 

at the critical volume. 

Using penalty functions and weighting factors to force compliance with the constraints 

introduced a tedious trial-and-error procedure that had to be followed to determine 

appropriate values of these factors. In addition, these methods did not force exact 

compIiance with the constraints-the critical-point derivatives and the difference 

between the predicted and actual critical pressure still retained small non-zero residual 

vaIues. It was decided that a more effective method would be to enforce these constmints 

algebraically by setting the equations for the residual pressure (i.e. the difference between 

the actual critical pressure and that predicted by the EOS) and its derivatives to zero at 

the critical point, and solving the resuiting system of equations simultaneously. By using 

this method to determine values only for constants m the ref-ce polynomial term, the 
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resulting system of equations is linear, and their solution, carried out repeatedly after a 

given number of iterations in the non-linear least-squares algorithm, is straightforward. 

Although the EOS is written in pressure-explicit form, it is common when calculating 

thermodynamic properties or phase equilibrium to specify pressure and solve the EOS 

implicitly for the corresponding density. Since the critical isotherm is very flat in the 

vicinity of the critical point, small differences in the specified pressure will cause a large 

variation in the corresponding density predicted by the EOS. For this reason, accurate 

prediction of density in the vicinity of the critical point requires that the EOS's adjustable 

constants be determined using a regression procedure that minimizes erron in density as 

well as pressure. This procedure is referred to herein as simultaneous regression. One 

drawback of the simultaneous regression procedure is that it requires implicit solution of 

the EOS lor density at a given pressure. It was found, however, that since the number of 

near-critical data points along the critical isotherms of the substances of interest was 

small compared to the total number of data points, simultaneous regression had a 

relativeIy srndl effect on the h a l  values of the adjustable constants. For this reason, the 

regression procedure used to develop the new EOS form was based on pressure errors 

only. Simultaneous regression was used only once the form of the new EOS was 

finalized, to determine final values for the adjustable constants. Constants obtained from 

the pressure-regression were used as initial guesses. 



For the tint attempt at fitting the critical isotherm, a sixth degree polynomial in volume 

was chosen as a reference term 

It had been observed in this work that a sixth degree polynomial was able to fit the 

critical isotherm of test substances with high accuracy Eom low densities all the way up 

to the critical point. Also, the error between the predicted and experimental pressures 

appeared very regular at densities greater than critical, indicating that this error could 

possibly be fit by adding a relatively simple error term to the reference EOS. By contrast, 

when the BWR EOS [Eq. (2)] was fit to the critical isotherm of methane while observing 

the constraints of Eqs. (10)-(13), the error was irregular and difficult to fit, making it 

difficult to develop a suitable error term. With five adjustable constants plus an ideal gas 

term, the sixth degree polynomial was capable of meeting the five constraints of Eqs. 

(10)-(13) while still leaving one adjustable constant for regression of the test-substance 

PVT data. Methane was chosen as the tea substance, largely because it is the major 

component of natural gas, and because it has a reasonable critical compressibility and its 

acentric factor is nearly zero. 

Smoothed critical isotherm data for methane, obtained fiom an accurate 33-constant EOS 

(Angus et al., 1976a), was used for the regression. During the development of the tables 

of smoothed properties in that refefence, the authors fit the 33-constant EOS to a large 

number of independent sets of experimental data Although the experimental errors for 
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the individual data sets were not reported in detail, the authors did compare the errors 

bemeen their equation and the data for several different properties. For single-phase 

pressure and density measurements, the majority of the smoothed data was within 1 

percent of the experimental values, and much of it was within 0.5 percent. With the 

exception of a few points, the smoothed vapour pressures were within approximately 0.4 

percent of the data Smoothed saturated Liquid densities were largely within 0.5 percent, 

and saturated vapour densities were mainly within I percent of the data except near the 

critical point. For enthalpy of vaporization, the maximum difference was 102.8 J/moI at 

180 K, which corresponded to 2.54 percent of the experimental value, with the majority 

of the points being within 1 percent. 

For this work, the values of pressure and volume along the critical isotherm were 

interpolated between smoothed values at tabulated temperatures of 190 K and 195 K. 

Since the lower isotherm was less than 0.6OC away &om the critical temperature of 

190.55 EC, it was expected that errors introduced by the interpolation would be negligible. 

Once the reference term had been fitted to the PVT data for methane, the error between 

the pressure predicted by the reference term and the pressure from the PVT data was 

plotted on a Iogaritbmic scale as a function of volume. At densities greater than the 

critical density, the pressure error appeared as a straight h e  on the plot, so an error- 

fitting term expressing the logarithm of the error as a linear function of volume was 

added to the reference term, written equivalentIy as 
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The combination of reference term and error term was then able to fit the critical 

isotherm well, except in the immediate vicinity of the critical point. 

To fit the error in critical region, a second error term was developed. It was desired that 

this term fit the error near the critical point, but not afKect the data fit at sub-mitical 

densities, which was already very good using only the reference term. For this purpose, a 

fourth degree polynomial in density was used. The density in this term was shifted by an 

amount equal to the critical density, in order to take on a value of zero at the critical 

point, since exact prediction of the critical pressure-as expressed in Eq. (13)-was a 

constraint already imposed on the reference term. In order to force this term to vanish at 

densities lower than the critical density where its contribution was not required, it was 

multiplied by a "switching function"-essentially an S-shaped curve that switches 

between a value of 0 and a value of 1 over a very short range of density in the vicinity of 

the critical point. 

The resulting overall EOS was obtained by summing the reference term [Eq. (14)], the 

k t  error term [Eq. (IS)], and the second emr term, and was written as 

P = RTp + a2p2 + a3p3 + arp4 + asp5 + asp6 



23 

Percent error in pressure dong the criticai isotherm of methane is shown for Eq. (16) as a 

function of reduced volume in Figure 3-2. The figure shows that while the error is fairly 

low at high densities (low reduced volumes), it becomes unacceptably large in the 

vicinity of the criticai point, and at low-to-intermediate volumes to the right of the critical 

point. It was also decided that the resulting EOS had too many adjustable parameters, 

and that inclusion of the second error term (i.e. the density-shifted polynomial multiplied 

by the switching function) made the equation too complex. Subsequently, ways in which 

Eq. (16) could be simplified were considered. 

Closer examination showed that the second term in Eq. (16Fplotted on a logarithmic 

scale as a function oEspecific volume-appeared approximately as a straight line. This 

indicated that the term could be equivalently represented by an exponential function of 

density of the same form as Eq. (IS), but having different values for the adjustable 

constants. The modified equation retained the sixth-degree polynomial as the reference 

term, and was written 

Percent error in pressure along the critical isotherm of methane is shown for Eq. (17) in 

Figure 3-3 as a fimction of reduced volume. While the form of Eq. (17) is less complex 

than that of Eq. (16), Figure 3-3 shows that its use provides only a slight improvement m 

the fit to the data for volumes less than the critical volume, but worsens the fit at volumes 

greater than the critical voIume. 
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Figure 3-2 Error in pressure along C I criticai isotherm for Eq. (1 6 )  

At this point, a different approach was taken. First, the degree of the reference 

polynomial term was reduced to five by dropping the last term in Eq. (14). As the 

reference term now contained only four adjustable constants in addition to the ideal gas 

tern, values of these constants would be completely specified by enforcing the conditions 

in Eqs. (lo)-( 13). Now, the only adjustable constants available for fitting the data would 

be those found in the error terns. 

The second step was to re-examine the error t m s  in Eq. (17). Before doing so, 

however, values for the four adjustable constants in the reference term were determined 

for methane by enforcing the conditions, and the pressure error of the reference term 

dative to the critical isotherm data was examined, again on logarithmic coordinates. It 

was found that for this simplified reference term, the pressure error away hrn the critical 



point was a smooth curve-not quite a straight h e ,  but close enough that a low degree 

polynomial in volume, placed inside the exponential, would Likely provide a good fit. 
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Figure 3-3 Error in pressure along Cl critical isotherm for Eq. (1 7) 

This effectively allowed the two exponential terms in Eq. (17) to be combined into a 

sinde term. Near the critical point, the pressure error curved more sharply, tending to 

zero error at the critical point itselt To account for this, extra higher-degree terms were 

added to the voiume polynomial inside the new exponential enor Function. Initially, a 

fifth-degree polynomial in volume was chosen, leading to another EOS form as fouows: 

P = RTp + a,p2 + a,p3 + a,p4 + asp5 
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Eq. (18) was fit to data for methane, and the pressure error-shown in Figure 3-4 as a 

function of volume-was again examined. It began to appear that enforcing the third- 

derivative condition of Eq. (12) was overly restrictive, and was probably degrading the 

quality of the fit in the vicinity of the critical point, rather than improving it. For all 

subsequent trials, it was dropped corn use as a specification. 

At this point, it was decided as a next step to examine variations on the basic form 

expressed in Eq. ( 18), but with fewer adjustable parameters. For both the reference term 

and the polynomial term inside the exponential, two approaches were taken: drop the 

terms with the highest degree in volume, and drop terms with even powers of volume. 

Comparison of these and other variations on Eq. (1 8) led to new forms as follows: 
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Average absolute errors in pressure along the critical isotherm of methane were as 

follows: Eq. (19a)-0.78%, Eq. (19b)-0.62%, Eq. (19ck21.8%, Eq. (19d)-0.49%, 

Eq. (19+1.13%. The AAD% for Eq. (19e) was lower than that of Eq. (19c), but higher 

than the AAD% of the other equations. 

1 10 100 1000 

Reduced Volume 

Figure 3-4 Error in pressure along CI critical isothenn for Eq. ( 1  8) 

Of the six equations, Eq. (I9d) resulted in the best fit for methane, and was selected for 

fiuther development. 

The pressure error exhibited by Eq. (19d) showed considerable improvement over earlier 

forms-Eqs. (1 6) and (1 +being essentially the first of the many forms examined that 

could fit the critical isotherm of a test substance within acceptable error limits. At this 

point, a sensitivity analysis was carried out in an attempt to M e r  reduce the number of 

adjustable parameters in the equation. Each of the six parameters in Eq. (19d) was 
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perturbed by 2% of its best-fit value, and the effect on the equation's pressure error was 

examined It was found that the pressure error was sensitive to perturbations in 

parameters a? to ad in the equation, but showed very Little sensitivity to perturbations in 

a;--the equation was modified thereafter to exclude parameter a;r, resulting in the 

following equation: 

Figure 3-5 shows the error in pressure for Eq. (20) along the critical isotherm of methane. 

In this figure-and in others presented later in the text for other equations-the e m r  

takes on a definite negative bias, especially at reduced volumes greater than unity. This 

is mainly because the best-fit value of the second virid coefficient, which is directly 

proportional to parameter a*, differs &om the experimental value, as discussed in Section 

5.1. Shortly after Eq. (20) was devised, a flaw was identified in its form. The equation 

was regressed to critical isotherms for additional substances, and in all cases, it was 

observed that the adjustable constants alternated in sign--az took on a negative value, a3 

was positive, and a4 was negative. This meant that in the limit, as specific volume 

approached a value of zero, the reference polynomial would tend to 4, since the 

coefficient of the highest power in specific volume took on a negative value. The 

exponential term's zero-volume limit, however, takes on a finite value, equal to the 

constant as. The r d t  was that the pressure predicted by the overall EOS tended to -oo as 

specific volume approached zero. 
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Figure 3-5 Error in pressure along Cl critical isotherm for Eq. (20) 

In practical terms, the equation was able to fit the critical isotherm for test substances, but 

at some low specific volume-and correspondinply high pressure-the predicted 

isotherm would "tum-around", as shown in Figure 3-6. Correcting the problem would 

have to rely on one of two solutions: 

Modifylng the reference term to take on a zero-volume limit of +a. 

Modifylng the error term to take on zero-volume limit of +a, which it would have to 

approach more rapidly than the reference t e m  approached -a. 

Attempts to modify the error term tended to degrade the equation's ability to fit critical 

isotherms, and so were abandoned. It was found that the simplest and most effective 

solution was to add another volumetric term to the polynomial portion of the equation. 

The new term would then have the highest power in reciprocal volume, and as Iong as it 



had a positive-valued coefficient, the reference term-and therefore the overall EOS- 

would approach the correct Limit as volume tended to zero. After trying different powers 

of V, a seventh-degree term was chosen. Fortunately, this added only one extra 

parameter to the equation. 
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Figure 3-6 Critical isotherm oCC predicted by Eq. (20) 

With the new seventh-degree term being added to the equation, the power of the second- 

highestdegree term was re-examined. It was found that changing the degree of this term 

from f i e  to sir reduced the overall average deviation in pressure dong the critical 

isotherm of the test substance, methane, and so the change was adopted. At that point, 

the basic volumedependent form of the equation could then be written as 



This version of the EOS was reported by Kedge and Trebble (1999). 

3.2.4 Alternate Re~uisive Terms 

For an empirical EOS, greater emphasis is normally placed on the equation's ability to fit 

thermodynamic property data, than on the theoretical significance of its terns. This does 

not mean, however, that empirical equations cannot represent the contributions of 

attractive and repulsive intermolecular forces, at least in an approximate and qualitative 

way. Indeed, van der Waals' original cubic EOS was based on the concept that 

macroscopic deviations from the ideal gas law could be attributed to the separate 

contributions of attractive and repulsive forces. Here, attractive forces were incorporated 

into the equation through a term representing a negative deviation from the ideal gas 

pressure, while repulsive forces were thought to arise fiom the volume occupied by the 

molecules themselves-or erciuded volume-as represented by the "covolurne" 

parameter, b. Substituting V-b in an EOS instead of V-and thereby creating a vertical 

asymptote at V=b-is perhaps the simplest way of representing the effect of excluded 

volume on PVT behavior. 

Unlike common cubic EOS, LittIe attention has been paid to representing repulsive forces 

directly in non-cubic equations of state. Most B WR-type EOS simply use the ideal gas 

equation as the leading term, without incorporating a co-volume parameter. To 

determine whether there would be any advantage to including some representation of 

repulsive forces m the new EOS-either through a covolume parameter, or a hard-sphere 

type term-three alternate versions of Eq. (21) were derived and were fit to the critical 
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isotherm of methane for comparison. The three alternate equations were written as 

follows: 

where, again, y = b/4V, and b is a covolume parameter. In Eq. (22a,b), repulsive forces 

are represented by a van der Waals-type covolume, whereas in Eq. (22c), the repulsive 

forces are incorporated by using the Scott Hard-Sphere expression as the leading term in 

the equation. 

Figure 3-7 shows the error in predicted pressure along the critical isotherm of methane 

for Eq. (21), as well as the three alternate versions (Eqs. (22)). Eq. (21) gave the lowest 

Average Absolute Deviation (%AAD: 0.379%), mainly because it gave the best fit in the 

liquid-like region. All three alternate equations gave better fits, however, in the vapour- 

like region (greater-than-critical volumes). 

Figure 3-8 shows the error in the predicted specific volume, again for the critical 

isotherm of methane. In this case, Eq. (21) gives the highest YoAAD. The pattern is the 

same as for pressureEq. (21) performs best m the Iiquid-like region, while all three 

alternatives perform better in the vapour-like region. The difference, however, is that 



here, the deviations in the vapour-like region are much greater than in the Liquid-Like 

region, and make a larger contribution to the %M. For the pressure errors, Iow errors 

in the liquid-like region tended to offset the deviations in the vapour-like region. 

Comparing the two alternatives where only the leading term was modified to incorporate 

hard-sphere repulsions (Eq. (22% c)), both figures show that using the Scott HS term 

results in a better critical isotherm fit than simply using the van der Waals covolume. 

When a covolume parameter is used, however, a cornparision of the curves for Eq. (22a, 

b) shows that better fits are obtained by including the covolume in each term, rather than 

in the fmt term only. 
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Figure 3-7 Error in pressure dong CI critical isotherm for alternate 
versions of the new EOS 
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Figure 3-8 Error in specific volume along CI critical isotherm for 
aiternate versions of the new EOS 

It is interesting to note how the regressed values of parameter b vary between the 

alternate equations. First, the way the Scott equation [Eq. (9)] is written results in a 

vertical asymptote at V = K bSCom. AS a consequence, we would expect the value of 

bScorr to be approximately twice the value of that used in the van der Wads co-volume 

term, in order for the two terms to have approximately the same asymptote. 

Table 3-1 shows the best fit values for parameter 'b' m each of the three alternate 

equations, obtained by simultaneous regression along the critical isotherm of methane. 

As expected, the value of b in Eq. (22c) is approximately twice that in Eq. (224, 

indicating that each of these versions of the EOS would have a vertical asymptote at 

approximately the same value of V. The best-fit value of b for Eq. (22b) was lower than 



that of Eq. (22a) by approximately a factor of 10. At the same time, this equation yielded 

the lowest overall value for the regression objective hction. 

Table 3-1 Values of 'b' 
parameter for alternate 
versions of the new EOS 

- 

Equation 'b ' 
(cm3/mo 11 

3 2 . 5  Additional S~ecifications: Second Virid Coefficients and Third Derivatives 

Equations (lo), (I  1), and (13) express three constraints that were enforced when fining 

candidate equations of state to pure-component critical isotherms. Each consaaint that is 

specified reduces by one the number of adjustable constants whose values must be 

determined from data regression. Additional constraints are possible, but were not 

included in the EOS development phase of the project. In this section, two additional 

constraints-enforcing the second virial coeacient at the critical temperature, and 

forcing the third derivative of pressure with respect to volume to zero at the critical 

point-are investigated to determine their effects on the quality of critical isotherm dts 

obtained using the new EOS. 

The k t  additional constraint considered was the second virial coeEcient, B, which is 

the coefficient of the reciprocal-voIume-squared term in the Virial EOS Fq. (I)]. This 

term represents the first deviations fiom ideal gas behavior that are observed as pressure 
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is increased. We would therefore expect that forcing the EOS to take on the correct value 

of B would improve the equation's fit in the vapour-like region along the critical 

isotherm. Conversely, we would expect that if the correct value of B were not forced, but 

rather left as an adjustable parameter, accurate fitting would require the value obtained 

&om regression to be close to the correct value. 

Figure 3-9 shows the deviations in pressure along the critical isotherm of methane, when 

Eq. (21) is forced to take on the correct vaiue of B. The relationship between B and the 

second coefficient of Eq. (2 1) is as follows: 

B, = RTB (224 

An experimental value of B was not available for methane at its critical temperature. 

Instead, the EOS was forced to match a value calculated &om the correlation of 

Tsonopolous (1974). The figures show that forcing the correct value of B greatly 

improves the fit along the vapour-like portion of the critical isotherm, but drastically 

degrades the fit in the Liquid-like region. This result is not surprising, considering that 

Eq. (21) was not specifically developed to fit the error that results when the correct B is 

enforced. Another difficulty encountered when B is forced is that the alternating 

sequence of signs for successive polynomial terms is not preserved-as a result, the 

highest-degree polynomial term in Eq. (21) takes on a negative d u e ,  which re- 

introduces the critical isotherm 'turn-arolmd' problem described in Section 3.2.3. While 

these results indicate that forcing a correct value of B is not a successll strategy for Eq. 
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(21), this does not necessarily mean that a suitable error term could not be developed to 

replace the existing exponential term. 
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Figure 3-9 Error in pressure along CI critical isotherm for new EOS with 
forced second virid coefficient 

The second additional constraint examined was to force the third derivative of pressure 

with respect to volume to take on a value of zero at the critical point, described by Eq. 

(12). As discussed in Section 3.2.1, this constraint was originally included as one of the 

conditions to be enforced during development of the new EOS, but was dropped after it 

proved too detrimental to fitting pure-component critical isotherms. At this point, the 

third-derivative constraint was re-examined to observe its effects on the finished EOS. 

Figure 3-10 shows the deviations in pressure dong the critical isotherm of methane, 

whe-in addition to the three constraints descn'bed by Eq. (10) and (13)-the third 
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derivative of Eq. (21) is forced to take on a value of zero at the critical point. It is worth 

noting that the deviations in both pressure and volume exhibited under these conditions 

are similar to those shown in Figure 9, for enforcement of the critical second virid 

coefficient. The fit in the vapour-like region to the right of the critical point is very good, 

whereas large deviations occur in the liquid-like region left of the critical point. 

1 

Reduced Volume 

Figure 3-10 Error in pressure along CI critical isotherm for new EOS with 
third derivative forced to zero at critical point 

The similarities between the critical isotherm fits obtained with the two constraints 

separately occur because forcing the EOS to take on the correct B value results in a third 

derivative that is nearly zero. At the same time, forcing the third derivative to zero at the 

critical point results in a best-fit B value that is very near the correct value. It is not 

known whether this is a general result, applicable to all nou-cubic EOS, or whether it is 

unique to Eq- (21). 



3 2.6 Sensitivitv Analysis 

To understand the behavior of the new EOS along purecomponent critical isotherms, it is 

usehl to determine which parameters contribute most to the calculated pressure over 

various ranges of specific volume. A parameter sensitivity analysis can help in this 

regard. 

In the analysis, each EOS parameter is increased one at a time by 1% of its value. The 

incremental percent deviation in pressure, or d~flerential enor-that is, the difference 

between the pressure error calculated with best-fit parameters and that calculated with the 

perturbed parameter-is then plotted as a function of reduced volume. The resulting plot 

shows the ranges of specific volume where the contribution of the term in the EOS 

associated with the selected parameter is significant to the calculated pressure. 

Figures 3-1 1 (a-f) show results of the sensitivity analysis carried out for Eq. (21). Figure 

3-1 1 (a) shows that a I% forward perturbation in parameter Bo has its greatest impact in 

the liquid-like region near the critical point, at a reduced volume of approximately 0.66. 

It also shows that the second-degree term in Eq. (21) makes a significant contribution to 

the calculated pressure between VR = 1 and VR = 10, which is as expected, since this tenn 

essentially represents the second virial coefficient. 
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Figure 3-ll(a) Sensitivity of fit along C, critical isotherm to 1% 
perturbation in Bo [Eq. (21)] 
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Figure3-ll(b) Sensitivity of fit along CI crit ical isotherm to 1% 
pemnbation in Ca @5q. (21)] 
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Figure3-ll(c) Sensitivity of fit dong CI critical isotherm to 1% 
perturbation in Do [Eq. (2 1 )] 
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Fignre 3-ll(d) Sensitivity of 5t dong CI critical isotherm to 1% 
perturbation in Fo [Eq. (21)] 
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Figure3-ll(e) Sensitivity of fit along CI critical isotherm to 1% 
perturbation in Go [Eq. (21)] 
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Figure 3-ll(f) Sensitivity of fit along CI critical isotherm to 1% 
perturbation m Eo pq. (21)] 
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Figure 3- 1 1 (b) shows the results of a 1 % forward perturbation in parameter Co. The 

EOS term associated with this parameter makes almost no contribution to the calculated 

pressure in the vapour-Like region, starting only to contribute significantly immediately 

near the critical point itself. This term's contribution to the calculated pressure is greatest 

in the same vicinity as the second-degree term, near VR = 0.6 1. 

Figure 3-1 1 (c) shows results of the analysis for parameter Do. Here, we see that the EOS 

term associated with this parameter again makes virtually no contribution to the 

calculated pressure in the vapour-like region. The strength of this tern's contribution 

increases with decreasing volume, darting at the critical point. 

The differential error at the critical point resulting from a 1 % forward perturbation in Do 

is less, however, than born the same perturbation in parameter Co. We can also see that 

the peak of the curve has shifted left, indicating that successive polynomial terms make 

their maximum contributions to pressure at lower and lower volumes. 

Figures 3-1 1 (d) and (e) show results of fonvard perturbations to parameters Fo and Go, 

the two parameters associated with the exponential term. Perturbations to either term has 

no effect on calculated pressures in the vapour-like region, or at the critical point. The 

maximum sensitivity to perturbations in both parameters occurs at approximately the 

same value of VRapproxhately 0.44. The figure aIso shows that of these two 

parameters, the calculated pressure is more sensitive to perturbations in parameter Go, the 

parameter inside the exponential. 
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Finally, Figure 3-1 1 (0 shows results of perturbations in parameter Eo, the coefficient of 

the highest-degree polynomial term in Eq (21). The figure shows that this term makes no 

contribution to the calculated pressure in the vapour-like region, and very little at the 

critical point. The differential error reaches a plateau between VR = 0.39-0.46, and 

begins to increase again with decreasing VR, as this EOS term begins to dominate the 

pressure calculation. 

3.3 Temperature Dependence of EOS Parameters 

The first step in the EOS development process, which was the subject of Section 3.2, led 

to Eq. (21)-a functional form expressing the variation of pressure with specific volume 

at constant temperature. For the equation to be complete, however, it must incorporate 

the effects of temperature as well as volume. Eq. (21) was developed by fitting data at 

only one temperature-the critical temperature-but, since this isotherm is the most 

difficult to fit, we should expect the resulting form to be able to fit data at any other 

temperature as well. 

Eq. (21) contains six adjustable parameters, whose values can be selected optimally to fit 

P-V data along a given isotherm. In developing Eq. (21), best-fit vaIues were determined 

for these parameters along the critical isotherm of methane. These values represent the 

optimum fit to P-V data at the critical temperature, but only at this temperature. In Eq. 

(21), the only term expressing the effect of temperature on pressure is the ideal gas term, 

which is cleariy not sufficient to represent temperature effects in red fluids. This is 

particularly true at sub-critical temperatures, where calculated isotherms must exhibit 
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multiple volume roots in order to represent both vapour and Liquid phases simultaneously. 

By allowing some of the coefficients in the equation of state to vary with temperature, the 

EOS can represent both sub- and super-critical isotherms, and can reproduce pure- 

substance vapour pressure behavior as well. To complete the development of the new 

equation of state, it was necessary to express some of these parameters as analyacal 

bct ions  of temperature. This was the second stage in the development of the new EOS. 

3.3.1 General Approach 

The objective of the second part of the EOS development process was to express the 

coefficients in the new equation as fimctions of temperature. Before analytical functions 

could be developed, it was first necessary to determine how the values of the EOS 

parameters would have to vary with temperature. This was accomplished by reproducing 

saturation data-vapour pressures, and saturated liquid and vapour specific volumes-for 

one test substance at sub-critical temperatures, and by fitting PVT data at supercritical 

temperatures. At each temperature where data was available, new values were obtained 

for those parameters that were allowed to vary with temperature. Once the variation of 

these parameters with temperature had been established, a trial-and-error procedure was 

carried out to find anaiytical functions that could fit the parameters as functions of 

temperature. 

At the beginning of this stage of development, the basic form of the new EOS pq. (21)] 

was used. However, as the work proceeded, it became necessary to adopt the m o a e d  

form of Eq. (22a), incorporating a van der WaaIs-type covoIume to overcome probIerns 
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with spurious roots at sub-critical temperatures. This decision is discussed M e r  in 

Section 3.3.5 

3.3 -2 Determining Tem~erature De~endence 

The first step toward incorporating temperature dependence into the new EOS was to 

determine the variation of the EOS parameters with temperature. To determine how the 

parameters would have to vary, it was decided to focus on reproducing pure-component 

saturation envelopes for sub-critical temperatures, and on fitting single-phase PVT data at 

supercri tical temperatures. 

At each sub-critical temperature, three conditions must be reproduced-the vapour 

pressure, and the saturated vapour and liquid specific volumes. Since the density- 

dependent form of the new EOS contains six adjustable pararneters, it was only necessary 

for three of these parameters to be made temperature dependent in order to match these 

three conditions exactly at each temperature* On this basis, a procedure was devised to 

determine the values for three selected parameters at each temperature that would allow 

Eq. (21) to match vapour pressure and saturated specific volumes exactly. Values for the 

remaining three parameters, which were not made temperature dependent, were held 

constant at their critical-isotherm values, 

Before proceeding, it had to be decided which three parameters would be temperature 

dependent. Since virid coefficients are known to vary with temperature, and some 

understanding of how second and third virid coefficients has been established @ymond 

& Smith, 1969), the EOS parameters corresponding to these coefficients-Bo and Cr 
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were chosen first. It was decided initially that the third temperature-dependent parameter 

should be one of the two associated with the exponential term-either Fo or Go. Since the 

exponential term makes a large contribution to the calculated pressure at liquid-like 

densities, and since the slope of the linear expression inside the exponential could be 

loosely related to the fluid's isothermal bulk modulus-a quantity known to vary with 

temperature-Go was selected as the third parameter. It was decided that a second 

combination of temperature-dependent parameters-Bo, Co, and &--would be 

considered for comparison as well, to ensure the best choice of the third parameter. 

To determine values of the three temperature-dependent parameters at each temperature, 

the EOS was written twice-once expressing the saturation pressure in terms of the 

known saturated liquid specific volume, and once in terms of the saturated vapour 

specific volume. M e r  rearranging these equations, and substituting one into the other, 

we have equations for two EOS parameters in Eq. 22a (Ba and Co) in terms of the 

remaining parameters. 

where 



and x designates either Liquid (L) or vapour (V). 

We can then iterate to find the value of a third parameter at which the hgacities at the 

saturated liquid and vapour specific volumes are equal. The final result is a set of 

parameters Bo, Co, and a third parameter, that exactly matches the experimental vapour 

pressure, and saturated vapour and liquid specific volumes. 

Following this procedure, the temperature dependence of the two sets of parameters was 

calculated for methane. Using these parameter sets, the ability of the EOS to reproduce 

subcritical single-phase PVT data was examined. It was found that using Do as the third 

term resulted in better reproduction of subcritical isotherms then when Go was used. It 

was thereafter decided that Do would be the third temperature-dependent parameter. 

When these calculations were carried out originally, the form of the EOS had not yet 

been modified to use the sixth power of inverse specific volume instead of the fifth 

power, so the temperature calculations were carried out using the fifth-power version, 

which is equivalent to Eq. (20) with a v7 term added to it. 

At supercritical temperatures (220K. 300K, 4 5 0 5  and 600K), the EOS was fit to single- 

phase PVT data by linear least-squares fits, with BoT Co, and Do as adjustable parameters. 

Figure 342  (a-c) show the results of the temperature dependence caictdations for Bo, Co, 

and Do respectively, carried out with the form of Eq. (20) with a V? term added to it. 

The plots are shown on reduced coordinates. In all of the figures, we see that the values 

take a sharp upward tum near the critical point, with the effiect being most pronounced for 

parameter Co. It is likely that the turn is related to each term's contribution toward 



meeting the critical c o ~ t s  of Eqs. (10) and (13), and if these c o n ~ t s  had not been 

enforced, we would expect a snoother variation through the critical region. 

This forewarns of a difficulty associated with developing analytical functions to express 

the temperature dependence of the three EOS parameters: the unusual behavior near the 

critical point would clearly be difficuIt to fit with any reasonable function. 

To preserve the critical conditions that were enforced at the critical point when 

the critical isotherm was fit-which means exactly reproducing critical values for 

the three parameters-we do so at the expense of accuracy near the critical point. 

At this point, the challenge was to develop simple functions that could still 

accurately reproduce saturation data when forced to match critical values of the 

three temperature-dependent parameters. 

Reduced Temperature 

Figure 3-12(a) Temperature dependence of parameter Bo in Eq. (20) 
modified to include V' term 



Reduced Temperature 

Figure 3-t2@) Temperature dependence of parameter Co in Eq. (20) 
modified to include V' term 
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Figure 3-12(c) Temperature dependence of parameter Do m Eq. (20) 
modified to include v7 term 



3.3.3 Temperature Function Develo~ment 

Section 3.3.2 described the procedure by which the required temperature dependence of 

the parameters in Eq. (21) was determined. For each parameter, the procedure resulted in 

a set of calculated data expressing the value of the parameter at discrete temperatures. To 

complete the equation of state, it was necessary to devetop mathematical functions that 

would be capable of fitting the temperature dependence data, referred to herein as 

temperature functions. 

As mentioned briefly in Section 3.3.2, the behavior of the EOS parameters in the vicinity 

of the critical point would be difficult to fit with an analytical function-there wouId 

necessarily be a tradeoff between achieving accuracy near the critical point, and 

predicting the critical point itself. It was decided that the temperature functions must 

reproduce the critical values ofthe parameters exactly, in order to reproduce the critical 

point and preserve the enforcement of the van der Wads critical conditions-both of 

which had been emphasized during initial EOS development. 

The first types of temperature fimctions considered were based on n priori expressions 

For second and third virid coefficients. Since parameters Bo and Co essentially 

correspond to second and third virial coefficients, it was thought that perhaps known 

empirical relations expressing these coefficients as fimctioas of temperature could be 

adopted. 

One weLt-known empiricaI expression for the second virid coefficient of polar and non- 

poIar gases is the corresponding-states correlation of Tsonopolous (1 974). This 
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correlation expresses the reduced second virial coefficient as a polynomial function of 

inverse reduced temperature. Tsonopo lo us gives numerical values for the coefficients, 

but in this work, the coefficients were taken as adjustable parameters. 

A similar empirical corresponding-states correlation for third virial coefficients was 

proposed by Orbey and Vera (1983), and was written as a polynomial fhction of inverse 

reduced temperature. Again, it was assumed that the expression's coefficients could be 

considered adjustable. 

Preliminary examination of these two forms revealed that each would contribute five 

adjustable constants to the EOS. This number was considered too high, and the idea of 

using a prion' virial coefficient forms was abandoned in favor of tinding simpler 

expressions. 

One characteristic of the two virial coefficient expressions was retained for further study: 

the expansion of the virial coefficients in powers of reciprocal temperature, instead of the 

temperature directly. An initid screening quickly revealed that the curves expressing 

temperature dependence of the EOS parameters [Figs. 3- 12 (a-c)] were fit better using 

polynomials in reciprocal temperature. This approach was therefore adopted in the 

search for temperature functions. 

It was also realized that dividing the temperature-dependent EOS parameter values by 

various powers of temperature might be able to smooth the curves shown in Figs. 3-12 (a- 

c), making them easier to fit with simple expressions. Based on these considerations, the 

first temperature fimctions investigated were of the form: 



where KR is the reduced EOS parameter at reduced temperature TL x and y are adjustable 

constants, and ki is the ? polynomial coefficient of the temperature function. Candidate 

functions were screened by plotting (KR/TRX) VS. TRY, and fitting various truncations of 

Eq. (24) to the plots using linear regression. Parameters x and y were varied manually to 

identify optimum values. 

Initial screening led to selection of x = 0.8 and y = 1.5 for Bo, x = 6 and y = 6.5 for Co, 

and x = 0 and y = 1 for Do. For Ba and Do, Eq. (24) was truncated after the fourth term, 

whereas for Coy it was truncated after the third term. The leading constant-kl-in Eq. 

(24) was expressed as 1-kr-k3-h-. . . to ensure that the critical values of the parameters 

were preserved at TR = 1. These considerations led to initial expressions as follows: 



54 

Initially, the values of the adjustable constants bi, Ci, and di were determined by fitting Eq. 

(25)-(27) directly to the h o w n  values of Bo, Co, and Do at discrete temperatures, as 

calculated by the method described later in Section 3.32. 

Although Eq. (25)-(27) gave good fits, it was thought that the non-integer exponents in 

Eq. (25) & (26) might not apply well to other substances besides methane. For 

comparison, a second set of functions was devised for the three EOS parameters, setting 

parameter y = 1 in Eq. (24), and restricting parameter x to integer values only. It was 

found that truncating Eq. (24) after the fourth term on the right-hand side was suf£icient 

for all three EOS parameters. 

After several trials, a second set of expressions was devised, as follows: 

The same expression was used for parameters Bo and Do, corresponding to setting x = 1 

in Eq. (24). The expression for Co, Eq. (29), is similar to the other two, except that it has 

an additional term (the T R ~  term) which results from setting x = 2 in Eq. (14). 



Figures 3-1 3 to 3-15 show fits of both sets of expressions, represented by Eq. (25)-(27) 

and Eq. (28)-(30), to the calculated values of each of the three EOS parameters as 

functions of temperature. These fits were carried out by minimizing the sum of squares 

of enon  directly, as opposed to the sum of squares of percent errors, because the 

program used for these regressions (Microsoft Excel 97) was not able to regress percent 

errors. Table 3-2 shows for each temperature-dependent parameter the error between the 

known (calculated) reduced parameter value and the value predicted using the fitted 

temperature functions. As the table and figures show, the second set of temperature 

functions produced a better fit to the temperature-dependent EOS parameters, particularly 

at subcritical temperatures. For this reason, and because of their greater simplicity and 

lower order, the second set of temperature functions represented by Eq. (28)-(30) was 

selected over the origind set. 

Table 3-2 Comparison of erron for two 
sets of temperature functions 

-- 

W t e r  Absolute Average hiation 
Set1 Set 2 

[Eqs (uHnll (28)-(30)1 
% 0.016 0.0 12 
co 0.037 0.023 
IXI 0.055 0.026 

To complete the comparison, a set of logarithmic expressions was briefly considered, 

having the general form 



Reduced Temperature 

Figure 3-13 Comparison of temperature functions for fitting Bo(T) for 
methane 

Reduced Temperature 

Figure 3-14 Comparison of temperame functions for fitting Co(T) for 
methane 
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Figure 3-15 Comparison of temperature functions for fitting Do(T) for 
methane 

A version ofthis expression was applied to parameter Coy but it was found necessary to 

include terms up to and including the fourth power in inverse reduced temperature in 

order to fit as well as Eq. (29), and so Eq. (31) was dropped &om fiuther consideration. 

As well, a temperature function of the form 

was tried for parameter Do. It was found, however, that when this equation-along with 

best-fit values for dl, d2, and d3-was used in conjunction with Eq. (28) & (29) to predict 

saturation properties of methane, the resulting saturation specific volumes were less 

accurate than when Eq. (30) was used for Do. It was then decided that expressions such 

as Eq. (32), written in terms of reduced temperature directly rather than inverse reduced 

temperaturey would not be considered fkther. 



3.3.4 Tem~erature Function Rerrression 

While the temperature functions were being developed, values of the temperature- 

h c t i o n  constants be Ci, and di were determined by fitting the temperature functions to 

the calculated EOS parameters at several discrete temperatures. This was necessary in 

order to determine the fonns of the temperature functions, but it is not the best way to 

obtain values for the temperature-fhction constants. Ultimately, we are more concerned 

with matching saturation pressures and specific volumes than with reproducing exact 

values of the EOS constants at individual temperatures-calculating the temperature- 

dependent vaiues of EOS constants merely represents an intermediate step on the way to 

calculating fluid properties. As a result, true best-fit values of temperature-function 

constants are obtained only when errors between predicted and experimental saturation 

properties are minimized directly. 

A regression program was developed to carry out this minimization. The objective 

fitnction was defined as 

where summations are camed out over all experimental (or smoothed) data points. 

Minimization of s2 in Eq. (33) represents a non-hear least-squares regression problem, 

for which the Marquart-Levenberg algorithm was again empIoyed. Evaluation of s2 
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entails calculating saturation pressure, saturation specific volumes, and supercritical 

pressures at each data point. Other key parameters that must be calculated in the 

minimization routine are the derivatives of S' with respect to the regression variables-in 

this case, the temperature-function constants. These derivatives were calculated 

numerically using a forward difference approximation. Values of the constants obtained 

Eom regressing the temperature functions to the EOS parameters calculated at discrete 

temperatures were used as initial guesses for the direct regression to the fluid properties 

database. This procedure was camed out for methane, and allowed re-regression of the 

constants in previously published equations of state, to ensure a fair comparison with the 

new EOS. 

3.3.5 S~urious Roots 

Once the temperature Functions describing the temperature dependence of the new 

equation's parameters were developed, the new EOS was fit to two other substances- 

sulfur dioxide and n-pentane. While the EOS was being fit to n-pentane, it was found 

that the equation produced very large errors in calculated saturation properties for a few 

low-pressure points, but performed well otherwise. Further investigation revealed the 

cause: the EOS was generating spurious roots at low reduced temperatures. Mead of 

exhibiting three volume roots at sub-critical temperatures, the equation had five roots. 

In itself, this does not present a problem, as long as the smallest volume root occurs 

within the specified tolerance of the experimental saturated liquid specific volume. The 

problem lies with the abrupt transition between the three-root and five-root conditions. 
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The additional roots do not just suddenly appear within the calculated satwation 

envelope, but rather begin as an inflection in the isotherm at pressures somewhat above 

the saturation pressure. The inflection represents a non-physical condition, but since the 

magnitude of the inflection is mall at first, it does not actually contribute extra roots at 

the saturation pressure of interest. As the temperature is decreased, the magnitude of the 

inflection becomes larger and larger until finally, the bottom of the inflection intersects 

the saturation pressure, giving rise to two extra roots. Isotherms exhibiting these 

inflections are shown in Figure 3-16 (a,b) for Eq. (21). In Figure 3-16 (a), the inflections 

do not give rise to spurious volume roots at the vapour pressure until the temperature fails 

below approximately 433K. Figure 3-16 (b) provides a magnified view of the 433K 

isotherm, and clearly shows the spurious roots in relation to the actual physical roots. 

This behavior presents two problems. First, within the range of temperatures between 

where the inflection in the isotherm first appears, and where the inflection actually 

intersects the saturation pressure, the calculated isotherm does not properly represent the 

true thermodynamic behavior of the fluid-multiple volume roots are not actually found 

along red fluid isotherms outside the two-phase region at pressures above the saturation 

pressure. 

The second problem is that if the temperature functions are smooth and continuous across 

the temperature at which the sudden transition occurs between the three- and five-root 

conditions, the root representing the saturated Liquid specific volume will not correspond 

to the lowest voIume root, but rather to the third-lowest root, As such, the new roots are 

spurious and not physically possible. 
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Figure 3-16 (a) Spurious inflections in sub-critical isotherms of n-pentane 
with Eq. (2 1) 

1 

Reduced Volume 

Figure 3-16 @) Spurious roots dong 433 K isotherm of n-pentane with 
Eq* (21) 
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It is conceivable that a set of values could be chosen for the temperature-dependent EOS 

parameters so that the lowest volume root does correspond to the experimental saturated 

liquid volume, but this would Likely result in discontinuities in the temperature Functions. 

And even if such discontinuities were acceptable, this would not eliminate the problem of 

inflections in the isotherm above the saturation pressure. 

At this point, it was decided that the new EOS should be modified to prevent spurious 

root formation. These roots form because the large negative contributions to pressure 

£iom some polynomial terms in the EOS briefly dominate the calculated pressure, until 

the specific volume becomes low enough for the v7 term-which has a positive-valued 

coefficient-to cancel this negative contribution and again introduce the proper slope. 

The first approach to eliminating the spurious roots was therefore to increase the value of 

the coefficient of the V' term at the temperatures where the inflections would normally 

occur. This would compensate for the increasing negative contributions of the Vd tern 

with decreasing temperature, thus avoiding the formation of isotherm inflections and 

spurious roots altogether. Since adding new parameters to the EOS was undesirable, it 

was decided that the temperature dependence of the term would be represented 

simply by dividing the term by the reduced temperature raised to an unspecified power n: 

The value of the exponent would then be determined by trial and error as the minhnum 

value required to eliminate inflections in the isotherm. This type of ternperatme 
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dependence is similar to that found for the \T' term in the Soave-BWR equation, and for 

the exponential term in the BWRS equation. For n-pentane, it was found that a value of 

n=2 was sufficient in Eq. (34) to eliminate spurious mots. This created a new problem, 

however: for both methane and n-pentane, the average absolute deviations in the 

calculated saturation properties were now higher than both the BWRS and Soave-BWR 

equations. Since this would eliminate the new EOS as a candidate for M e r  

development, other solutions were sought. 

The next solution that was investigated was to incorporate a van der Wads-type 

covolume into the equation. It was thought that if the EOS had a vertical asymptote at a 

volume somewhat greater than zero, the spurious roots would not be as likely to form. 

Versions of the new EOS with covolumes and hard-sphere terns were already 

investigated and described in Section 3 2.4. It was decided that the version having a 

covolurne in only the first term would be considered. Of the three equations examined in 

Section 3.2.4, Eq. (22a) did not produce the best fit to the critical isotherm of the test 

substance, methane. However, the other equations were ruled out for two reasons: 

Eq. (22a) is mathematically simpler than the hard-sphere version [Eq. 22~1. 

The best-fit value of the covolume parameter in Eq. (22b)-which incorporates the 

covolume into the denominator of each polynomial term-is an order of magnitude 

lower than that of Eq. (22a). With the vertical asymptote occurring at such a small 

specific volume, it is unlikely that using Eq. (22b) would overcome the spurious root 

problem at all. 
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In any case, it was shown in Section 3.2.4 that incorporating a covolume even in the first 

term improved the fit of the critical isotherm for methane. And using a covolume instead 

of allowing the r7 term to vary with tempera- has the benefit of adding only one extra 

parameter to the EOS-one that is temperature independent, physically sensible, and 

easily generalizable. 

For the investigation, values of the EOS parameters were determined by fitting the EOS 

to saturation data and supercritical PVT data by the same procedure used originally for 

Eq. (31), descnied in Section 3.3.4. The temperature hct ions  were not modified-the 

forms remained as written in Eqs. (28)-(30). 

Subcritical isotherms of n-pentane, calculated using the temperature-dependent form of 

Eq. (22a), were examined. It was found that with the covolume parameter, spurious roots 

and other isotherm inflections do not occur within the range of the data used in this work. 

At this point, the form of the new EOS was finalized, using Eq. (22a) to express the 

equation's volume dependence, and Eqs. (28)-(30) to express its temperature dependence. 

It is important to note that although incorporating a covolume into the first term of the 

EOS prevented spurious roots from forming in the three substances investigated here, this 

solution may not work for all substances. in particular, during regression of the EOS to 

pure-substance criticaI isotherms, the best-fit covolumes for some substances-water and 

COrtended toward negative values. Since negative covolumes have no physicd 

meaning, the regressions were repeated, this time limiting the covolume to positive 
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values. In both cases, the best-fit vahe tended toward zero, and this may expose these 

substances to spurious root problems. 

It is also worth mentioning that a second unrelated cause of spurious roots was 

discovered as well. la the regression procedure €or determining values €or the EOS 

parameters, the equation is fit not only to saturation data, but to PVT data at supercritical 

temperatures as well. The supercritical PVT data was included to ensure that the EOS 

would perform we11 as supercritical temperatures. It was found, however, that when the 

regression was carried out without the supercriticd PVT data, the EOS performed poorly 

at supercriticd temperatures-so poorly that spurious inflections appeared along the 

liquid-like portions of the isotherms. These inflections were severe enough to give rise to 

multiple volume roots, which in reality do not exist at supercritical temperatures. When 

the supercritical PVT data was included in the regression, no such inflections appeared. 

3.4 Thermodynamic Properties from the New EOS 

The most important use of an equation of state is to calculate fluid thermodynamic 

properties. Expressions for these properties as functions of temperature and specific 

volume can be derived using fundamental thermodynamic relations between properties- 

hgacity, enthdpy, or entropy, for example-and state variables: pressure, temperature, 

and specific volume. The problem with these fundamental relations, however, is that 

they are normally expressed in terms of integrals and derivatives of state variables. The 

EOS provides an analytical relationship between pressure, temperature, and specific 
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volume, which allows us to derive direct functional expressions for thermodynamic 

properties fkom the hdamental relations. 

Like any equation of state, the new EOS [Eq. (22a) and Eqs. (28)-(30)] can be used to 

derive expressions for thermodynamic properties. And because these expressions are 

derived using a unique PVT relationship (the EOS), the expressions for the properties are 

unique to that EOS. In the present work, expressions were derived for two 

thermodynamic properties: fugacity, required to calculate vapour pressures to determine 

the temperature dependence of EOS parameters, and enthalpy, used to assess the 

adequacy of the temperature dependence of the new EOS's parameters. 

3.4.1 Fueaci 

Pure-component fugacity is obtained using the following hdarnental thennodyamic 

relation: 

from which the pure-component fugacity expression for the new EOS can be written: 

where t) is the fugacity coefticient, defined asfP,  and Z is the compressibility factor. 



3-42 Enthal~v Residual 

Enthalpy residual-the deviation of a real fluid's enthalpy fiorn the corresponding ideal 

gas value-can be derived &om the following fundamental relation: 

leading to the enthalpy departure expression for the new EOS, which, after algebraic 

rearrangement, is written as 

In these equations, Hm is the enthalpy residual, H'"' is the ideal gas enthalpy at the 

temperature of interest, and H is the actual enthalpy of the fluid at the temperature and 

pressure of interest. 
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The enthaipy of vaporization at a given saturation temperature can then be calculated as 

the difference between the saturated--liquid and saturated-vapour enthdpy residuals at that 

temperature: 
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4.0 COMPARISON WITH PREVIOUSLY PUBLISHED NON-CUBIC EOS 

To compare the new EOS with previously published equations, several different 

thermodynamic quantities were calculated for a number of substances. The new equation 

was compared to both Starling's version of the B W R  equation (BWRS: Starling, 1973), 

and Soave's modification (SBWR: Soave, 1995). 

The BWRS equation used here was modified slightly: in Starling's original version, two 

of the parameten used to express the temperature dependence of the parameter C in Eq. 

(2) are also used to express the temperature dependence of the coefficient D, as follows: 

The effect of this constraint is that these two parameters are not independent of  one 

another. In the Soave BWR equation, however, these parameters are independent. Since 

one of the goals of this work was to identify the best functional form for fitting pure- 

component critical isotherms and saturation properties, it was decided that the 

comparison would be more reliable if parameters C and D were independent of one 

another in the BWRS equation, rather than being constrained to vary together m a 

seemingly arbitrary way. 
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This move makes the BWRS equation slightly more flexible, and ensures that any 

deficiencies in its performance compared to the other two EOS cannot be attn'buted to an 

explicit dependence between C and D. 

Starling's expressions for the temperature hctions were also rearranged to force 

reproduction of the critical values obtained fiom regression of the critical isotherm. This 

ensures that the critical point is reproduced exactly, and that the van der Wads conditions 

Eq. (10a,b)] are preserved at the criticai point. The temperature functions used for the 

modified B WRS equation were as follows: 

4.1 Pure-Component Criticrl Isotherms 

The new EOS [Eq. (22a). Eqs. (28)-(30)], and the two BWR modifications were fit to the 

critical isotherms of seven substancet+methane (Angus et al., 1976a), propane 
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(Goodwin and Haynes, 1982), n-pentane (Canjar and Manning, 1967), hydrogen 

(McCarty et al., 198 11, carbon dioxide (Angus et al., 1976b), sulfiu dioxide (Kaag et al., 

1961), and water (Keenan et al., 1978)-in order to compare average and maximum 

absolute deviations in both pressure and volume from smoothed data or experimental 

data. The three critical conditions, represented by Eq. (10) and (13), were enforced in the 

fitting procedure. Figures +1(a,b) through 4-7(a,b) show errors in pressure and specific 

volume along the criticai isotherms of the seven substances of interest. Table 4-1 shows 

the results of the comparisons in terms of average and maximum deviations. 

Comparing Average Absolute Percent Deviations (%Am)  in Table 4-1, we see that for 

pressure, the new EOS has the lowest values overall, while for specific volume, the 

SBWR equation has the lowest overall values. For specific volume, the SBWR equation 

is followed very closely by the new EOS. For BWRS, the overall %AADs-averaged 

over all seven substances-were higher than those of both SBWR and the new EOS. For 

all three equations, average values of %AAD were less than 1 percent in both pressure 

and specific volume. 

The new EOS had the lowest overall Maximum Absolute Percent Deviation (%MAD) for 

pressure, while SBWR had the highest. For specific volume, the new EOS's value was 

also lowest, followed by SBWR. For both pressure and specific volume, the new EOS 

had lower %MAD values than the BWRS equation. Maximum deviations tended to 

occur in the immediate vicinity of the critical point. 
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Figure 4-1 (b) Comparison of errors in specific volume dong Ci critical 
isotherm for new EOS and modified BWR equations 
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Figure 4-2 (a) Comparison of errors in pressure along C3 critical 
isotherm for new EOS and modified B WR equations 
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Figure 4-2 @) Comparison of erron in specific voIume dong C3 critical 
isotherm for new EOS and modified BWR equations 
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Figure 4-3 (a) Comparison of errors in pressure along n-C5 critical 
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Figure 4-4 (b) Comparison of errors in specific volume dong Hz critical 
isotherm for new EOS and modified BWR equations 
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Table 4 1  Comparison of erron between predicted and experimental 
pressures and specific volumes dong pure substance critical 
iso thenns 

Substance EOS Pressure Volume 
%AAD %MAD %&ID %MAD 

Me ane New EO 0 0.357 2,775 
BWRS 0.44 1 1.306 0.386 3.1 16 
Soave-B W R  0.948 3,813 0.3 14 1.359 

Propane New EOS 0.345 0.972 0.276 1.326 
BWRS 0.427 1373 0.5 13 3.767 
Soave-B WR 0.302 0.843 0.248 1.679 

n-Pentane New EOS 0.65 1 4.527 0.330 1.088 
BWRS 0.786 5.061 0.63 7 3 -3 65 
Soave-B W R  0.652 4.858 0.393 1.567 

H2 New EOS 0.499 I .475 0.378 2.655 
BWRS 1,357 4.11 1 0.836 3.769 
Soave-BWR 0.708 2.022 0.5 1 6 2,653 

C02 New EOS 0.870 6.830 0.442 4.775 
BWRS 0.665 7.093 0.498 6.028 
Soave-B WR 0,582 7.574 0.376 6.417 

SO2 New EOS 1.053 7.525 0.344 1.800 
BWRS 1.135 7.5 15 0.576 2.5 1 1 
Soave-B W R  1.057 7.773 0.40 8 1.898 

Water New EOS 0.71 1 2.400 0.630 7.0 14 
BWRS 0.409 2.933 0.519 7.127 
Soave-BWEl 0.415 2.923 0.519 7.0 18 

Average New EOS 0.645 3.603 0.408 3.062 
BWRS 0.746 4.242 0.566 4.24 2 
Soave-BWR 0.666 4.258 0.396 3 227 

For dl three equations, the largest maximum deviations (%MAD) in pressure occurred 

for Cot and SOz, while the largest %MAD in specific volume occurred for water. 

4.2 Saturation Properties 

Using the new EOS and the two BWR modifications, saturation properties were 

calculated for three substances: methane (Angus et d., I976a), n-pentane (Canjar and 

M*gJ 1967), and s u b  dioxide (Kaag et d., 196 I), chosen respectively to represent 



light hydrocarbons, intermediate-weight hydrocarbons, and polar substances. Selected 

saturation properties were saturation pressure, saturated vapour specific volume, and 

saturated Liquid specific volume. The adjustable parameters of each EOS were 

determined using the least-squares procedure described in Section 3.3.4. Table 4-2 

shows average and maximum deviations tiom data for the three equations. 

Table 4-2 Comparison of erron between predicted and smoothed 
experimental saturation properties of methane, n-pentane, 
and s u l h  dioxide 

Substance EOS Saturation Specific Volume 
Pressure Saturated Liquid Saturated Vapour 

AAD% MAD% W% MAD% AAD% MAD% 
Methane New E O S ( E ~ .  22a) 0.1 3 0.27 0.17 2.67 0.32 4.03 

BWRS 0.17 0.38 0.34 3.76 0.39 5.20 
Soave-B WR 0.02 0.08 0.36 3.31 0.24 322 

n-Pentane New EOS (Eq. 22a) 1. I4 3 -09 1.08 2.66 1.70 10.83 
BWRS 3 3.70 0.70 1.47 1.79 6.63 
Soave-B WR 0.33 0.56 0.19 0.81 0.56 4.90 

S u l k  New EOS (Eq. 22a) 0.27 0.68 0.89 2.29 1.89 8-14 
Dioxide BWRS 4.57 8.47 1.97 3.50 6.36 11.85 

Soave-BWR 0.43 1.33 0.3 1 1-02 0.62 1.23 

For all three substances, the Soave BWR equation gave the best overall fits. In terms of 

average deviations, the new EOS generally performed better than the BWRS equation, 

with the exception of the saturation pressure and saturated liquid volume for n-Pentane. 

For maximum deviations, the new EOS petformed better than BWRS as well, except for 

the saturated liquid and vapour specific volumes for n-Pentane. The only two cases 

where the new EOS performed better than the Soave BWR equation were for the 
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saturated Liquid volume of methane and the saturation pressure of sulfur dioxide-both 

average and maximum deviations. 

Figures 4-8 to 4-16 show percent error as functions of temperature for saturation 

pressure, and saturated liquid and vapour specific volumes, for the three substances of 

interest. 

Generally, the deviations in saturation pressure for all equations and substances (Figures 

4-8 to 4-10) tend to oscillate smoothly between positive (overprediction) and negative 

(underprediction) errors. the difference between equations being the magnitude of the 

oscillation peaks. 
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Figure 4-8 Error in saturation pressure for methane 
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Figure 4-10 Error in saturation pressure for SO2 
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Figure 4-12 Error in saturated Liquid specific voiume for n-pentane 
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Figure 4-13 Error in saturated liquid specific volume for SOt 
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Deviations for saturation specific volumes are generally not as regular. As shown in 

Figures 4-1 1 to 4-15, the error c w e s  for both saturated Liquid and vapour specific 

volumes exhibit sharp peaks at subcritical temperatures immediately below the critical 

point. For most equations and substances, the maximum deviations over the range of  

reduced temperatures considered occurred at these peaks, with the exception of the 

BWRS equation for SO2. At subcritical temperatures away from the near-critical peaks, 

the deviations tended to oscillate between positive and negative values. 

4.3 Single-Phase PVT 

Pressures along supercritical isotherms were calculated for three substances-methane, 

sulfur dioxide, and n-pentane-using the new EOS and the two BWR modifications, and 

were compared to smoothed and experimental data for those substances. Table 4-3 

shows the results of the comparisons. 

Table 4-3 Comparison of errors between predicted and experimental 
pressures along supercritical isotherms of methane, pentane, 
and sulfur dioxide 

Substance Max Tr Max Pr New EOS (Eq. 22a) BWRS Soave-B WR 
AAD% MAD% AAD% MAD% AAD% MAD% 

Methane 2.36 152 4.26 26. f t 1.29 5.28 0.57 5.13 
n-Pentane 1.73 7-15 2.00 14.98 1.12 8.81 4.3 1 15.60 
S d f h  Dioxide 1.21 4.05 0.56 3.2 1 4-10 28.43 4.96 18.37 

The table shows that in terms of both average and maximum absolute deviations, the new 

EOS performs better than the Soave BWR equation for two of the three substances 

(sulfur dioxide and n-pentane), but perform better than the BWRS equation for only one 



of the three substances ( s u k  dioxide). The maximum errors tended to occur on the 

steep liquid-like portions of the isotherms, and at high pressures. 

4.4 Enthalpy of Vaporization 

The enthalpy of vaporization was calculated For methane using the new equation as well 

as the two modified BWR equations. Table 4-4 shows the average and maximum 

absolute errors between calculated values and smoothed data for the three EOS. While 

the Soave BWR equation had the lowest average deviation, the AAD for new EOS was 

very close behind. The AAD for the BWRS equation was somewhat higher than for the 

other two equations, but the AAD for all three equations was small compared with the 

average magnitude of the vaporization enthalpy. The new EOS had the lowest maximum 

deviation, with the Soave BWR equation close behind. The MAD lor the BWRS 

equation was considerably higher than for the other two equations. 

Table 4-4 Error in vaporization enthalpy for methane 
- - 

EOS Vaporization Enthalpy 
AAD (J/rnoI) MAD (J/mol 

New 20.0 176.5 
BWRS 24.8 242.6 
Soave BWR 15.2 182.8 

Figure 4-1 7 shows the error between calculated vaporization enthalpy and smoothed data 

as a function of reduced temperature for methane. For all three EOS, the error oscillates 

between positive and negative values for the I11 range of temperatures, except near the 

critical point. The maximum errors o c c d  in the immediate vicinity of the critical 

point, where al l  three EOS tended to underpredict the vaporization enthdpy. 
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Figure 4-17 Error in vaporization enthalpy of methane 

4.6 Comparing Exponential Terms 

Upon £ k t  inspection, the new EOS may appear similar to the BWR equatiowboth are 

essentially polynomial expansions in specific volume added to an exponential term. This 

similarity is superficial, however, because the exponential term in the new equation 

serves a different purpose than the one in the BWR equation and its modifications. 

Figure 4-18 shows the contributions to calculated pressure of the exponential terms for 

three equations-the new EOS [Eq. (22a)], the BWRS equation, and the Soave BWR 

equation-as functions of reduced volume dong the critical isotherm of methane. The 

critical isotherm is superimposed on the figure to show the relative magnitude of each 

exponential term compared to the actual pressure that the EOS must predict 
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Reduced Volume 

Figure 4-18 Comparison of EOS exponential terms along methane critical isotherm 

The figure shows that in the two B\KR modifications, the exponential term makes its 

most significant contribution near the critical point, and in the liquid-like part of the near- 

critical region. For the BWRS equation, the exponential term contributes 95.3 percent of 

the calculated critical pressure, meaning that the remaining terms make only a minor 

positive contribution equal to 4.7 percent of the computed value. For the Soave-BWR 

equation, the exponential term makes an even larger contri%ution at the critical point, 

equal to 154.2 percent of the calculated pressure. This means that the sum of the 

remaining terms in the equation make a negative contribution equal to -54.2 percent of 

the calcuIated value. 

As specific volume is decreased below the critical value, the exponential terms in these 

two equations rise to reach a maximum, and then fall off again as the critical isothenn 
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becomes steeper. This maximum occurs at a reduced volume of approximately 0.58 for 

methane. 

By contrast, the exponential term in the new EOS makes almost no contniution at 

specific volumes equal to or greater than the critical volume, and does not start making a 

significant contribution to the pressure calculated by the EOS until the reduced volume 

falls below approximately 0.75. Below this value, the exponential term increases rapidly, 

reaching a value equal to 100 percent of the calculated pressure at a reduced volume of 

0.47. In this way, the purpose of the exponential term is to improve the equation's fit 

along the steep liquid-like branch of the isotherm. This is quite unlike the role played by 

the exponential term in the modified BWR equations, where it contributes IittIe to the 

calculated pressure along this portion of the isotherm. 



5.0 DISCUSSION 

For a new EOS to be useful, it must have some redeeming feature that makes it preferable 

to use over other established equations. No comparison of equations of state would be 

complete without considering how they perform for fluid mixtures-by far the most 

common EOS application. But if a new EOS does not clearly show some improvement 

over established equations for predicting the properties of pure components, then there is 

no point developing it fbrther to apply to mixtures. It would instead be better to focus on 

improving the generalizations or the mixing rules for existing equations. For this reason, 

the first stage in developing a new empirical EOS should center exclusively on fitting 

pure component properties. This was the focus of the present work. 

Developing a new EOS that performs better than existing equations is more difficult than 

it may seem. The difficulty is that while the EOS itself is written in terms of pressure, 

volume, and temperature, it must also make accurate predictions of thermodynamic 

properties when fundamental thermodynamic relations are applied to it. And considering 

the number of different properties that the EOS must be able to predict over a wide range 

of pressure and temperature-including the region near the critical point-it is not hard 

to understand why this is difficult even for a non-cubic EOS with I0 or more parameters. 

But the greater the number of parameters in the EOS, the more difficult it will be to 

develop generalized correlations and mixing d e s  for the equation. The result is that a 

new non-cubic EOS must strike a balance between accuracy-wbich generally tends to 

increase the number of parameters-and ease of application to mixtures, for which fewer 

parameters is better. 
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In the present work, an attempt has been made to identify the non-cubic EOS € o m  that 

best strikes this balance, with the intention of selecting one form-ither the new EOS or 

an existing BWR modification-for further development for application to fluid 

mixtures. And while the new EOS clearly showed improvements in some areas over two 

modified BWR equations that were selected for comparison, the results of the 

comparisons did not point unambiguously toward any one of the three equations. A 

discussion of the relative merits and drawbacks of the new EOS follows herein, in terms 

of the major stages of its development. 

5.1 Fitting the Critical Isotherm 

Establishing density dependence by fitting the critical isotherm of a pure component is 

perhaps the greatest challenge in developing a non-cubic equation of state. And by far 

the most difficult aspect of this challenge is obtaining good fits in the near-critical region 

while observing critical constraint+matching the m*tical pressure and setting first and 

second volume derivatives to zero at T=Tc and V=V,. The degree of success here affects 

not only the calculation of density at T=Tc, but also afTects the equation's fit to saturation 

and thermodynamic property data at subcritical temperatures near the critical point. 

This work has shown that for a good fit to the critical isotherm, it is first necessary that 

the regressed value of the coefficient of the v2 term provide a good prediction of the 

second vLid coefficient at the critical temperature. A sensitivity analysis showed 

(Figures 3-1 1(a-f)) that in the vapour-like region dong the critical isotherm of methane. 

ody the V' makes a significant contniution to the predicted pressure- It follows, then, 
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that errors in pressure and specific volume dong the vapour-like region of the critical 

isotherm--especially in the region leading up to the critical point-are largely due to 

discrepancies between the best-fit value of the v2 term's coefficient (Bo) and the fluid's 

actunl second virial coefficient. Conversely, we would expect that the closer the best-fit 

value is to the actual second virial coefficient, the lower would be the error along the 

vapour-like portion of the isotherm. This was verified for methane in Section 3.2.5, as 

shown in Figure 3-9. In this case, where the value of Bo in Eq. (21) was set equal to BRT 

(where B is the second virial coefficient of methane, calculated using the Tsonopolous 

(1974) correlation), the maximum error in pressure along this part of the critical isotherm 

was 0.25%. This value is lower than the maximum errors in the same region for the new 

EOS (1 -2%) and the two B WR modifications (B WRS: 1 -3%; SBWR: 0.5%), all of whose 

best-fit values of Bo deviated from the "correct" value. And for these three equations, the 

larger the deviation fkom BRT, the higher was the error in the calculated pressure. 

By contrast to the vapour-like region, four of the seven parameters in the new EOS 

contribute significantly to the calcdated critical pressure: b, Bo, Co, and to a lesser extent 

Do. And all parameters make significant contributions in the liquid-like region. As a 

consequence, the terms that do not contribute at critical md vapour-like volumes-the 

exponential term, and the V? term-have to be flexible in the liquid-like region. 

Otherwise, the coefficients of the remaining terms will be forced to take on values that 

compromise accuracy in the vapour-like and near-critical regions, where only they 

contribute. For example, if the accuracy of the equation's fit in the liquid-like region 

requires the coefficient Bo to take on a vdue different fiom BRT, then accuracy in the 
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vapour-like region will suffer. Lf, however, the exponential and higher-order terms are 

flexible and can accommodate a wide range ofBo values while still maintaining the same 

accuracy in the liquid-like region, the Bo term will be less impoamt here, and Bo will 

tend toward the value that improves accuracy in the vapour-like region-a region where 

accuracy depends solely on the value of Bo, since it's the only term that contributes there. 

With these considerations in mind, it can be seen Eom Figures 4-l(a,b) to 4-7(a,b) that 

the new EOS achieves a good balance between accuracy in the vapour-like, near-critical, 

and liquid-like regions of pure-component critical isotherms. It gave lower average 

errors in pressure than the BWRS equation for five of the seven substances, and lower 

average errors in specific volume for six of the substances. It also gave lower average 

errors in both pressure and specific volume than the Soave-B WR equation for three of the 

seven substances. The figures show in most cases that improving the fits in the vapour- 

like regions of the isotherms, especially near the critical point, would likely make the 

largest reductions in the overaII average errors. And as dacribed above, such 

improvements would only come tiom improving the EOS's prediction of the second 

virial coefficient at T=Tc. 

One way to achieve this might be to reconsider forcing the coefficient Bo to take on the 

correct value corresponding to the substance's second virid coefficient at T=Tc. 

Although this approach was tried briefly for the new EOS, and gave poor results in the 

Liquid-like region of methane (Figure 3-9), this was likely because the exponential term- 

which was essentially an attempt to fit the m r  between the smoothed experimental data 

and the sum of the low-degree poIynomial terms in the EOS-was not specificalIy 
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designed for this case. It is quite possible that this problem could be overcome, and 

overall errors in pressure and volume could be reduced along the critical isotherm, by 

modifying the form of the exponential term slightly-perhaps by re-including some 

higher-order volume terms that were dropped after performing a sensitivity analysis. 

The regression procedure used to fit the critical isotherms yielded the variance- 

covariance matrix for the parameters being regressed. Normalizing this matrix gives the 

correlation mapi t ,  which indicates the strength of the cross correlation between the 

regressed parameters. In some cases, examination of these cross correlations can be 

useful---even preferable to the sensitivity analysis performed here-for determining 

whether an equation has more parameters than it needs to fit the data. However, in this 

work, even though the correlation matrix was examined, the sensitivity analysis was 

preferred for three reasons: 

The sensitivity analysis showed the range of reduced volume where each 

parameter makes its most significant contribution to the calculated pressure. This 

cannot be ascertained from the correlation matrix. 

The sensitivity analysis can yield information about ail parameters in the 

equation, including those whose values are fixed by the critical constrakts. The 

correlation matrix only shows cross correlation between the regressed parameters. 

• Examination of the correlation matrix showed strong cross cornlatiom (greater 

than 0.9) between the regressed parameters in Eq. (22a)-b, b, Fo, and Go. But 

this is not unexpected, since these parameters all make their most significant 
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contributions over a similar range of volumes-the liquid-like portion of the 

critical isotherm. And each of these parameters was included in the EOS for a 

specific reason: b to avoid spurious volume roots, Eo to avoid the 'k-around" 

problem at high densities, and Fo and Go as the minimum number of terms 

required inside the exponential to fit the observed behavior. For this reason, even 

strong cross correlation does not indicate overparameterization of the EOS in this 

case. 

5.2 The Covolume Parameter 

As detailed in Section 3.3.5, a van der Waals-type covolume was adopted in the first term 

of the new EOS to solve the problem of spurious root formation, at least for the three 

substances examined. Prior to being included in the equation on these grounds, the 

covolume had been examined as one of three alternatives for representing repulsive 

intermolecular forces within the equation. It was shown that incorporating a covolume 

into the first term not only solved the spurious root problem, but also improved the 

equation's fit to the critical isotherm of methane. 

Part of the appeal of adding a covolurne to the equation is that without some 

representation of repulsive forces, the EOS has a zero volume at infinite pressure. 

Although the new EOS is empirical, and it could perhaps be argued that its behavior at 

extremely high pressures is unimportant, it seems that some kind of non-zero density 

limit, however approximate, improves the equation's d 'bi l i ty as a model of fluid 

behavior. 
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It can also be seen firom Figures 3-7 and 3-8 that incorporating a hard-sphere term [Eq. 

(9)] instead of a simple van der Wads term, would make very Little difference to the 

quality of the fit to the critical isotherm. In fact, while the %AAD in specific voolume for 

the hard-sphere version of the new EOS [Eq. (22c)l was slightly less than for the h t -  

term covolume version [Eq. (22a)], the %AAD in pressure was slightly higher. Unless a 

simple repulsive term was developed that had a strong theoretical basis, and showed 

significant improvements toward fitting pure-component critical isotherms, there is no 

reason at the moment to adopt a more complicated expression than the simple van der 

Waals term. 

5.3 Temperature Dependence 

The procedure used here for developing hctions to represent the temperahue 

dependence of the EOS parameters is relatively straightforward: calculate values of three 

EOS parameters at several sub-critical temperatures by forcing the EOS to match 

saturation pressure and saturated liquid and vapour specific volumes; at supercritical 

temperatures, fit the EOS to PV data along individual isotherms making o d y  the chosen 

three EOS parameters adjustable; then, by trial and error, develop algebraic functions that 

fit the calculated values of the EOS parameters as functions of temperature. 

While the process itself may seem simple, the problem is actudy trying to fit the 

calculated curves of the EOS parameters as hctioas of temperature. The difficulty 

arises because of the unusual shape these curves take on near the critical point, as shown 

in Figures 3-I2(a-c). The figures show that the EOS parameters tum upward suddenly as 
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temperature is increased from subcritical values. This behavior is apparently Limited to 

the near-critical region only, since the parameter values shown in the figures at 

supercritical temperatures appear to line up smoothly with the values at subcritical 

temperatures away fiom the critical point. The difficdty this behavior creates is that in 

order to preserve the exact prediction of the cridcai point and enforcement of van der 

Waals conditions, any temperature function used to fit the curves in Figures 3-12(a-c) 

must pass through the value at the critical temperature. And as shown in Figure 5-1, a 

magnification of Figure 3-IZ(b) near the critical temperature, passing through this point 

comes at the expense of accuracy in the near-critical region. 

0.8 
0 -7 0.8 0.9 I .O 1 .I t -2 

Reduced Temperature 

i 0 Calculated Values 

t t 

Figore 5-1 E.upanded view of the fit of Eq. (29) to calculated values of 
Cu(T) near the critical temperature for methane 

Regardless of the form of the temperature fbnctions used to fit these curves, the same 

problem wiII arise, unIess the basic EOS is altered in some way to reduce or eliminate the 
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anomalous near-critical behavior of the EOS parameters. One way may be to let more 

than three EOS parameten vary with temperature. Another way may be to incorporate an 

extra term into Eq. (Ua) that becomes active only at the critical point and in its 

immediate vicinity. In theory, such a term could relieve some of the burden on 

parameters Bo, Co, and Do that now arises from forcing the EOS to match the critical 

point and meet critical conditions. If in doing so, a near-critical term could smooth out 

the curves shown in Figures 3-12(a-c) and 5-1, it would be much easier to fit the 

temperature dependence of the EOS parameters, perhaps with simpler functions requiring 

fewer parameters. We would consequently expect an improvement in prediction of 

properties such as saturated tiquid and vapour specific volumes, and enthalpy, near the 

critical point. 

5.4 Further Development 

In absolute terms, the new EOS fits pure-component properties very well. Its 

performance is comparable to and often better than established non-cubic EOS such as 

the BWRS equation and the Soave-BWR equation. However, on average, the Soave- 

BWR equation fits pure-component properties better than the new equation. As wen, the 

new EOS has 17 parameters in total, including the covolume--five more than the 

modified B WRS equation used here, and four more than the Soave-BWR equation. 

Despite these concerns, the new EOS shows enough promise to warrant further 

development This development should focus on three areas: 
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a Improving the prediction of the second virial coefficient at the critical 

temperature, perhaps by forcing the EOS to take on the correct value. 

Improving the equation's fit near the critical point, possibly by adding a term that 

becomes active only in the vicinity of the critical point. 

a Reducing the number of parameters used to express temperature dependence of 

the EOS parameters. 

Improvements in these areas would make the new EOS an excellent candidate for 

generalization and extension to fluid mixtures. It must be considered, however, that with 

a non-cubic equation of state, the adjustable parameten may be strongly correlated. Such 

cross correlation can lead to non-unique regressed values for the parameters, making it 

difficult to develop generalizations and mixing rules. In this regard, the 

recommendations described aboveimproving prediction of critical second virial 

coefficients, and reducing the number of adjustable parameters-may help to make 

generalization easier. 



6.0 CONCLUSIONS 

From this work, the following conclusions can be dram: 

1. The method used to develop the new non-cubic EOS-adding a low-degree 

polynomial reference term to an exponential term to fit the error between the 

reference term and experimental (or smoothed) PV data dong a pure-component 

critical isotherm-works well for fitting critical isotherms accurately. 

3 . When a low-degree polynomial reference term is fit to the vapour-iike portion of 

a pure-component critical isotherm including the critical point, the error along the 

isotherm between the data and the reference term is confined to the liquid-like 

region of the isotherm. If the error is then plotted on semilogarithmic coordinates 

(Y-axis on log scale) as a Function of specific volume, the resulting curve is 

closely approximated by a straight line, meaning that a linear function of volume 

can be placed inside the exponential error term. 

3. The Levenberg-Marquart method of non-linear regression provides an efficient 

means of fitting a non-cubic EOS containing non-hear terms to a pure- 

component critical isotherm. This applies not only to the new EOS, but to the two 

moditications of the BWR EOS that were investigated. 

4. Using an algebraic method within the non-hear regression to enforce critical 

pressure and van der WaaIs conditions at the criticd point, and solving the 

resulting equations simultaneously for values of some of the EOS parameters, is 
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simpler and more reliable than using penalty fimctions combined with large 

weighting factors. 

5. Simultaneously minimizing errors in both pressure and specific volume along the 

critical isotherm during EOS regression improves the equation's specific volume 

predictions near the critical point. Using simultaneous regression instead of 

regression based on pressure done makes only a small difference in the actual 

numerical values of the regressed EOS parameters. 

6. Considering that the exponential term in the new EOS has a finite value when 

specific volume is zero, it is necessary for the reference term to tend to positive 

infinity as  specific volume tends to zero (or to a value of b when the EOS includes 

a covolurne parameter). Otherwise, the new EOS will not exhibit the proper high- 

density limit, tending instead toward negative infinity as specific volume reaches 

its minimum value. This can be achieved in two ways: by incorporating a 

covolume parameter into the tirst term of the equation, or by ensuring that the 

coefficient of the highest-degree term in the reference polynomial has a positive 

value. This observation also applies to BWR-type equations, whose exponential 

term tends to zero at low specific volumes. 

7. Modifjmg the EOS's representation of repulsive intermoIecular forces-either 

through a van der Wads-type covolume, or a hard-sphere term-improves the 

equation's fit to specfic volumes dong the critical isotherm of methane. 
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A greater improvement was observed when a covolume was placed in each 

polynomial term than when it was placed in only the first term, or when a hard- 

sphere term was used. However, the resulting best-fit covolume was an order of 

magnitude lower than the values that resulted for the other two methods, which 

had the expected order of mapmde. 

8. lnciuding a Scott hard-sphere term in the EOS made almost no difference to the 

fit along the critical isotherm of methane, when compared to the version of the 

EOS with a covolume in the first term. 

9. For the current form of the new EOS, having a linear h c t i o n  of specific volume 

inside the exponential term, forcing the EOS to take on the correct value of  the 

second virid coefficient improved the fit along the vapour-like portion of the 

critical isotherm, but degraded the fit severely along the liquid-like portion. 

Forcing the EOS to take on a zero value for the third derivative of pressure with 

respect to volume at the critical point produced similar results. 

10. Along the vapour-Eke portion of the critical isotherm, only the term with 

coefficient Bo contributes significantly to the calculated pressure. At the critical 

point, three polynomial terms-Bo, Co, and D-as well as  the covolurne 6, make 

significant contributions to the pressure. All terms in the EOS contribute 

significantly dong the liquid-like portion of the isotherm. 

11. When three parameters are selected to vary with temperature, plots of the 

parameters as fimctions of temperature behave anomalously near the criticai 
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point, turning upward sharply over a small range of temperature. It is difticult to 

match the required values at the critical temperature using analytical temperature 

hnctions, and still achieve a good fit at near-critical temperatures. 

1 2. Analytical temperature functions expressing the temperature dependence of EOS 

parameters in terms of reciprocal temperature generally give better fits than 

hct ions written in terms of temperature directly. 

13. Spurious inflections and volume roots can form dong subcritical and supercritical 

isotherms predicted by non-cubic equations of state. Incorporating a covolume 

parameter into the first term of the EOS eliminated the problem OF spurious 

volume roots at subcritical temperatures for the three substances examined in this 

work. Spurious volume roots at supercritical temperatures were encountered 

when EOS parameters were regressed using saturation data only. These roots 

were prevented fkom forming when supercritical PVT data was included in the 

EOS parameter fining procedure along with the saturation data. 

15. The Levenberg-Marquart method for non-linear regression was also robust and 

reliable for the overall fitting of EOS parameters directly to the database of 

saturation data and supercritical PVT data. 

16. The new EOS generally performs better for fitting pure component properties 

than the 12-constant version of the B W  equation investigated here, but only 

performed better than the Soave-BWR equation in select instances. Further work 

should focus on improving the new EOS's prediction of criticd second viriaI 
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coefficients, and on mhimhhg the anomalous behavior of the values of the EOS 

constants at the critical point, perhaps by developing a special term that becomes 

active only in the near-critical region. 
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APPENDLX: EOS Constants for Selected Pure Components 

The EOS constants shown in the tables are for pressure in atmospheres, temperature in 

degrees Kelvin, and specific volume in cm3/mol: 

Tabie A-1 Pure-component critical constants for new EOS pq. (22a)l 
- - 

Constant Value 
Methane Propane n-Pentane Hydrogen Cubon Sulfirr Water 

Dioxide Dioxide 
Tc (K) 190.56 369.85 469.77 32.98 304.21 430.65 647.29 
b 22. I39 66.186 107.132 f 6.473 0 43.3 12 0 
Bo -22443 19 -95585 18 -19389593 -2429 14 -2863029 -7098559 -4562 I48 
cu 75 179745 392796259 1548256033 4294569 94521554 229082860 1424 13078 
Do -8.589E+12 -3.755E-t-14 -4,184E+15 -9,828E+IO -8.552E+12 -6.495E+13 -3,738E+12 
61 2.329Ei-14 -2.227E+ 16 -6.322.E+17 ?.214E+ll 1.116E+14 -4.8 13E+ 14 5.596E-i-13 
Fo 590868 1208320 10 14273 206186 480 876597 1067131 
Gn -0.16542 -0.08 1 85 -0,05200 -0.258 1 1 -0.03206 -0.1 1993 -0.23383 

Table A-2 Pure-component critical constants for Soave-B WR equation pq. (4)] 

Constant Value 
Methane Ropane n-Pentane Hydrogen Carbon S u l f i  Water 

Dioxide Dioxide 



Table A-3 Pure-component critical constants for BWRS equation @q. (2)J 

Coastant VaIue 
Methane Propane n-Pentane Hydrogen Carbon S u k  Water 

Dioxide Dioxide 
B - 1902789 -7760526 -15729256 -202908 -3022 143 -5699602 -4545263 
C 3305058 1 204575267 542265045 34 13955 50678667 1724352 I8 94269269 
D 4.088E+12 3.246E+ 14 3.987E+15 5.671E+10 5.029E+ 12 1.8 I6E+ 13 -2,297E+10 
E 504930 12 509324592 1757912940 2 146833 8 1 t 77960 16 1007423 42398522 
F 7283 28362 6667 1 3901 6568 12415 3377 

Table A-4 Pure-component temperature constants 
for new EOS [Eqs. (28)-(30)] 

Constant Value 
Methane n-Pentane S u k  

Dioxide 



I l l  

Table A-5 Pure-component temperature constants for 
Soave-B WR equation @qs. (31, c, e)] 

Constant Value 
Methane n-Pentane S u k  

Dioxide 

Table A d  Pure-component temperature constants for 
BWRS equation [Eqs. (42% b, c)] 

-- . - - - -  

Constant VaIue 
Methane n-Pentane S u I h  

Dioxide 




