
 - 1 -

ProjectorKit: Easing the Development of Interactive
Applications for Mobile Projectors

12Martin Weigel, 3Sebastian Boring, 2Jürgen Steimle, 1Nicolai Marquardt,
1Saul Greenberg & 1Anthony Tang

1Department of Computer Science
University of Calgary

2500 University Drive NW
Calgary, Alberta Canada T2N 1N4

2Max Planck Institute of Informatics
Cluster of Excellence MMCI

Campus E 1.7
66123 Saarbrücken, Germany

3Department of Computer Science
University of Copenhagen

Njalsgade 128, Bldg. 24, 5th floor
2300 Copenhagen S, Denmark

[mweigel, jsteimle]@mpi-inf.mpg.de, sebastian.boring@diku.dk, [nicolai.marquardt,saul,tonyt]@ucalgary.ca

ABSTRACT
Researchers have developed interaction concepts based on
mobile projectors. Yet pursuing work in this area –
particularly in applying projector-based techniques within
an application – is a cumbersome and time-consuming. To
mitigate this problem, we generalize existing interaction
techniques using mobile projectors. First, we identified five
interaction primitives that serve as building blocks for a
large set of applications. Second, these primitives were used
to derive a set of principles that inform the design of a
toolkit that ease and support software development for
mobile projectors. Finally, we implemented these principles
in a toolkit, called ProjectorKit, which we contribute to the
community as a flexible open-source platform.

Author Keywords
Projection Mapping, Mobile Projector, Toolkit, Framework.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI).

INTRODUCTION
In recent years, small mobile projectors have been
increasingly used as an input / output device, where their
position in the 3D physical environment affects how the
interface responds. The problem is that today’s user
interface programming tools are typically optimized for 2D
GUIs, which does not map well to the 3D projection
environment. Using mobile projectors as part of an
interface require a different set of development tools,
including functionality that reacts to the projector position
and that correctly projects its scene on a physical surface.
Because there is a lack of tools, interactive applications for
mobile projectors are typically developed from scratch – a
time-consuming and complex task. While some toolkits for
developing 3D real-world interfaces are emerging [5], they
do not yet offer support for mobile projection.

To remedy this problem, we pursued the goal of developing
a toolkit that simplifies how interaction designers and
researchers can rapid prototype applications incorporating
mobile projectors. We began by analyzing prior work in
the area, where we identified five conceptual interaction
primitives with mobile projectors. In turn, we derive a set of
generic design principles for such toolkits, which address
fundamental projection challenges that underlie all

applications. We also present a general set of semantically
meaningful events that encapsulate interactive functionality.
Finally, we implemented these principles as the open-
source ProjectorKit. Details are described below.

INTERACTION PRIMITIVES OF MOBILE PROJECTIONS
We began by analyzing prior research on mobile projector
interaction, where our goal was to identify a set of common
interactions. Our set is largely inspired from [7], yet focuses
on activities to yield primitives that can be operationalized
as design principles of the toolkit.

Project. The most basic purpose of a projector is to project
content onto a surface, where projection is constrained and
bound by how the user is holding it. Ideally, projection
creates a display on any surface and at variable sizes, where
it is typically visible to multiple people. For example, a user
may project pictures or movies onto a wall to show them to
friends. Projectors can move, and this can be used as a form
of input. For example, the projector’s motion can influence
the projected content as a motion beam [9] to steer a virtual
character.

Augment. Projectors can also serve to augment real-world
objects by projecting additional digital information onto
them. Virtual contents are bound to the real-world object
(projection mapping), where content is revealed when the
user projects onto the object(s). For example, a mobile
projection could show up-to-date information on a flight
ticket, such as the expected delay of the flight [6].

Select. The projector can act as a selection device, i.e.,
where the user can select a virtual item to perform an
activity bound to that item. For example, selecting a virtual
button can trigger an event. Selection can be performed in
various ways: by targeting with the projector [1, 8]; by
directly touching a portion of the projection surface [10]; or
by interacting in the light beam [3].

Command. People want to interact with the shown
information by executing commands. Examples include
zooming, rotating, and moving content. Those commands
can be executed through item selection, as described above,
or with gestures, which are performed with the projector or
the object that is projected upon [4].

Cite as:
Weigel, M., Boring, S., Steimle, J., Marquardt, N., Greenberg, S. and Tang, A. ProjectorKit: Easing the Development of Interactive
Applications for Mobile Projectors. Report 2013-1041-08, Dept. Computer Science, University of Calgary, Calgary, AB Canada T2N 1N4

 - 2 -

Share. Sharing allows multiple users to combine and
exchange information. For example, two people can overlap
two projections of calendar events to merge them, or use
overlap to swap pictures in a shared workspace [2].

TOOLKIT DESIGN PRINCIPLES
We then used these five interaction primitives to derive a
set of design principles that would ultimately inform the
design of our toolkit. The first two encapsulate the base
functionality for a projection’s visual appearance. The last
three define a projection’s interactive behavior as three
fundamental events.

Handling a Projection’s Visual Appearance
Project: Correcting for Jitter and Keystone Effects.
Because of their portable nature, mobile projections suffer
from two fundamental effects that impact the image quality.
(1) Jitter occurs due to the natural hand tremor. (2)
Keystone effects appear when the axis of projection is not
perpendicular to the projection surface. To counter this (and
thus improve a projection’s image quality), a toolkit should
automatically remove jitter by stabilizing the image and
remove keystone effects by warping the image (Figure 1a).

Augment: Automated Mapping of Projection. Mobile
projectors can be used to augment real-world objects. Such
augmentation requires that projections are correctly shown
on their surfaces, i.e. by mapping them as virtual textures
onto them. At the same time, these textures should remain
correctly positioned, regardless of the projector’s
movement (which will change the spatial relationship
between the projector and that object). Implementing such
functionality requires both objects and the projector to be

represented in a 3D world. That is, correct imagery can be
calculated from their respective poses and by 3D raytracing
(Figure 1b).

The low level programming to perform both of the above is
complex. Thus a toolkit should include this low-level
functionality, where it is presented as an abstraction layer to
ease implementation. For example, through automated
projection mapping, developers should be able to easily
bind textures onto real-world objects. The toolkit itself
would then automatically render and project that texture
correctly from the projector’s perspective.

Select: Hotspot and Targeting Events
Hotspot and targeting events are a semantically meaningful
abstraction layer for the “selection” interaction primitive,
where can be implemented using proxemic properties.

Hotspots define an interactive area on a visual texture
(Figure 1c, top). Hotspot areas are activated when they are
fully or partially inside the projection. If a hotspot area is
activated by the projection, a corresponding event is
triggered. This allows application developers to easily
implement interactive behaviors on projected textures, e.g.
a button, a menu item or animations that start when the
object is in the projection.

In contrast, a targeting event tells the developer which
texture or real-world object (or which part of it) is currently
targeted and therefore selected by the projection (Figure 1c,
bottom). However, developers must be able to specify what
exactly the targeting area is, i.e., the entire projection, or
just a specific part of it, or even a single pixel.

Figure 1. Five toolkit design principles derived from the interaction primitives. (A) Improving projection quality, here keystone and hand
jitter; (B) Automated Projection Mapping, where textures are bound to a book and are revealed as soon as they are (partially) in the projection;
(C) Targeting (top) and hotspot (bottom) events; (D) Gesture events with the projector and object; and (E) Overlapping Events.

 - 3 -

Proxemic properties are essential to implement both event
classes, as they can specify or modify the selection event.
Proxemic properties comprise the distance and orientation
between the projector and the projection surface. For
example the distance between projector and projection
surface can be used to adjust the level of detail of projected
contents [1]. Orientation can adapt the perspective of a
rendering [9]. Given those proxemics and the intrinsic
parameters of the projector, further projection properties,
such as the pixel density on the surface, should be provided.
Table 1 shows a basic set of properties which should be
supported by the event system.

Gesture Events
Commands as gestures are one way to execute commands.
A toolkit should automatically trigger events for a set of
basic gestures, e.g., shaking, wiping and rotating. These
gestures are performed either with the projector itself or
with objects the user is projecting on (Figure 1d).

Display Overlapping Events
Sharing via overlap. Multiple projections can overlap in
various ways. A projector can overlap another projector, or
a projector can overlap an active screen (e.g. a wall-sized
display. Overlap can be full or partial (Fig. 1e). Overlapped
regions can be exploited as a common display space, e.g., to
merge and share information. An event system should
trigger events when overlapping of two or more projections
starts, changes or ends. The events should contain
information about the proxemics of each participating
projection and about the geometry of the overlap.

Events Properties

Gestures Object, start, duration, used area.

Hotspot
Projector, distance, rotation, pixel density,
visible part of the hotspot.

Overlap

Surface, overlapping coordinates, area size.

For both displays: overlapping pixels,
average pixel density, number of
overlapping pixels, percentage of the
display, displayed content

For projections: distance, rotation,
intersection angles, max/min pixel density.

Targeting
Target, distance, rotation, intersection
angles, targeting pixels, pixel density.

Table 1. Basic properties of the events.

PROJECTORKIT IMPLEMENTATION
We developed a toolkit that implements our design
principles, which developers can use to create applications
in any of the .NET languages. The developer first creates a
server application, which imports the toolkit and will hold
the application logic. In a one-time procedure, the
developer then registers physical objects and surfaces that

are present in the scene. The toolkit automatically manages
the model of the virtual scene, tracks moveable objects,
triggers events for the application logic, and updates the
clients. A lightweight client application that is part of the
toolkit then runs on mobile devices to render the
visualization that is going to be projected.

Internally, the implementation relies on the Proximity
Toolkit [5] for tracking the spatial relationships between
physical objects and projectors. It currently supports
infrared marker tracking with Vicon and OptiTrack
systems; these systems are nowadays widely available in
academia and industry and can be effectively used for
prototyping purposes. Since the tracking system is modular,
other tracking approaches (e.g., depth sensors) can be
implemented and used without modification of the toolkit
or the applications. The current implementation only
supports planar surfaces in the scenery.

The following running example shows how a rich projector-
based interaction on an augmented book can be
implemented by using all prior described design principles.
A texture on the book contains a zoomable map that
changes its zoom level with the distance to the projector.
Shaking the book changes the texture to show different
information, like reviews and related books in the users
library. Overlapping two projections on the book combines
the related books of both users in one sorted list.

Adding a Texture to a Real-World Object
The following code snippet maps a texture onto a region of
a real-world object, for example a book that is tracked by
the tracking system:

var book = env.World.Get(“Book”);
// Load image with size 2000x1600mm
var image = new ImageElement(2000,1600, @"image.jpg");
image.PositionOn(book, 0, 0);
image.SetRelativeTo(book);
env.World.Add(image);

The texture is mapped in three steps: (1) positioning it on
the book; (2) setting it relative to the book so that it stays at
the position when the book changes; and (3) the texture is
added into the world to be automatically shown when it is
inside the projection.

Reacting on Projector Distance for Semantic Zooming
A picture that is part of the books texture shows the
location of the books’ story on a map. A hotspot event
indicates the visibility of the map and provides proxemic
information (distance) between the projection device and
the surface. This is used here to control zooming to show
map detail as the projector is moved closer to the map.

var hotspot = new Hotspot(image,mapregion, projector);
hotspot.Changed += HotspotEvent;
void HotspotEvent (object sender, HotspotEventArgs e)
{
 if(e.Distance < 200) // Distance in mm
 // Zoom with the distance
}

 - 4 -

Registering a Shake Gesture
Shaking the book is used to change the information that is
displayed on its cover. The following code binds a 2 second
shake gesture to the book.

var shaking = new ShakeGesture(book, 2.0);
shaking.Recognized += ShakingEvent;

void ShakingEvent (object sender, ShakingEventArgs e)
{
 // Code to change the cover information
}

Creating a Common Workspace
When discussing the book with other users, multiple
overlapping projections can combine friends who liked the
book or show related books that both users have read.

The toolkit supports overlapping workspaces, while at the
same time also avoids potential interference of one
projection on other projections or active displays. It does so
through two techniques. The first technique blacks out the
complete overlapping area (or specific parts) of one
projection, i.e., so that the other projection displays without
interference in that area. The following example illustrates
this, where it considers the overlap of a mobile projector
and a fixed display (such as a wall-sized display). It
calculates which would have the lower resolution of the two
(which depends upon the distance of the projector from the
display), and blacks that one out dynamically. The effect is
that the projector can serve as a high-resolution magic lens
when brought close to the fixed display. However, the code
below only shows how the lackout region is determined.

var overlap=new OverlappingDisplays(projector,display);
overlap.OverlappingChanged += OverlappingEvent;
void OverlappingEvent(object s, OverlappingEventArgs e)
{
 if (e.Display1.PixelDensity<=e.Display2.PixelDensity)
 e.Display1.BlackoutOverlapWith(Display2);
 else
 e.Display2.BlackoutOverlapWith(Display1);
}

A second technique to handle interference is to black out
only specific parts of the overlap area rather than the whole
regions. While we do not show an example of its use, it is
implemented in the toolkit and only somewhat more
complex than the above example.

USER FEEDBACK
We tested and collected feedback in two prototyping
workshops with 7 computer scientists (6m, 1f; median age
25) and two longer-term projects with 3 developers (2m, 1f;
median age 24). Participants developed a wide variety of
applications for mobile projectors, including a multi-user
game, a book browser, projection of personal content on a
public display and a map interface with focus plus context

behavior. Each of these applications was implemented with
a small number of statements (less than 100). All projects
could be realized without any major obstacles.

Overall, we received very positive feedback from the
participants. All participants appreciated the ease of
augmenting the environment and the possibility of using
events to easily respond to projector-based interactions.
One participant suggested that providing dedicated UI
controls and labels would further ease application
development. Another participant reported that better
support for visual debugging of the 3D environment would
be helpful.

CONCLUSION
Based on an analysis of prior work, we presented principles
for the design of toolkits that ease developing interactive
applications that make use of mobile projectors. We used
these principles to design and implement a software toolkit,
ProjectorKit.

Acknowlegements. Funding was provided in part by the
NSERC SURFNET Network Grant, and by that
AITF/NSERC/SMART Technologies Industrial Chair.

REFERENCES
1. Cao, X. and Balakrishnan, R. Interacting with dynamically

defined information spaces using a handheld projector and a
pen. In Proc. UIST’07.

2. Cao, X., Forlines, C., and Balakrishnan, R. Multi-user
interaction using handheld projectors. In Proc. UIST’07.

3. Cowan, L. and Li, K. ShadowPuppets: supporting collocated
interaction with mobile projector phones using hand shadows.
In Proc. CHI '11.

4. Huber, J., Steimle, J., Liao, C., Liu, Q., and Mühlhäuser, M.
LightBeam: Interacting with Augmented Real-World Objects
in Pico Projections. In Proc MUM’12.

5. Marquardt, N., Diaz-Marino, R., Boring, S., and Greenberg, S.
The Proximity Toolkit: Prototyping proxemic interactions in
ubiquitous computing ecologies. In Proc. UIST’11.

6. Mistry, P., Maes, P., and Chang, L. WUW - wear Ur world: a
wearable gestural interface. In Proc. CHI EA'09.

7. Rukzio, E., Holleis, P., and Gellersen, H. Personal projectors
for pervasive computing. Pervasive Computing, IEEE, 11(2),
30-37.

8. Schmidt, D., Molyneaux, D., and Cao, X. PICOntrol: Using a
Handheld Projector for Direct Control of Physical Devices
through Visible Light. In Proc. UIST’12.

9. Willis, K., Poupyrev, I., and Shiratori, T. Motionbeam: a
metaphor for character interaction with handheld projectors. In
Proc. CHI '11.

10. Winkler, C., Reinartz, C., Nowacka, D., and Rukzio, E.
Interactive phone call: synchronous remote collaboration and
projected interactive surfaces. In Proc. ITS' 11

