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Chapter 1

Introduction

[n this introduction. we describe the process by which this dissertation was
conceived, and discuss literature that plaved a role.

Reduction

We began the work leading to this dissertation by learning the theory of
reditction in Hamiltonian svstems. as described in the text by Arnold [2].
and by Abraham and Marsden {l].

These texts (particularly [1]) emploved the methods of differential geom-
etry. with a level of abstraction that caused some uneasiness to this writer.
who had learned mechanics from classical texts. such as Whittaker [34] and
Goldstein [17]. The frustration arose because. although the mathematics
was elegant. it was difficult to tind correspondences between the mathemat-
ical viewpoint and “physical” viewpoint.

Nonholonomic Reduction, Quasi-Velocities

The work then turned to understanding recent attempts to develop a
general theory of reduction for nonholonomic systems.

Loosely speaking. a nonholonomic mechanical svstem is one in which
there are linear constraints among the “velocities™. which cannot be removed
by choosing coordinates for some suhspace of the full configuration space.
The question of what the equations of motion are. for such systems. is of
some physical interest. Whittaker [34. article 87] attributes the extension
of Lagrange’s equations to nonholonomic systems to Ferrers [14. 1871]. Neu-
mann [26. 1888] and Vierkandt [32. 1892].
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The paper by Bates and Sniatycki [5] proposed a reduction scheme for
nonholonomic systems using the Hamiltonian formulation. Once again. we
found it difficult to reconcile the mathematical abstraction with a physical
viewpoint.

The paper by Koiller [23] used the Lagrangian formulation. to present a
reduction scheme for non-Abelian Chaplygin systems (a subclass of nonholo-
nomic svstems).

KNoiller’s paper also used the concept of quasi-velocities. The notion of
quasi-velocities is a fundamental tool in the theoretical discussion in this dis-
sertation. [oiller indicates that quasi-velocities were advocated strongly by
Hamel. Whittaker [3-. article 30] gives credit for first finding ~the Lagrangian
equations for quasi-coordinates™ to Boltzmann [8. 1902] and to Hamel [LS.
1904]. Whittaker’s description of quasi-coordinates and the associated equa-
tions of motion is not easily recognized as being the same concept as that
used in this dissertation. Arnold. Kozlov and Nieshtadt {3. section 2.4 of
chapter 1] give a more modern description of quasi-velocities. These authors
give credit for finding the equations of motion for quasi-velocities to Poincare.
citing a date of 1901. [n this dissertation. we call the equations of motion
for quasi-velocities Poincare’s equations.

The paper by Bloch. Krishnaprasad. Marsden and Murray [7] also used a
Lagrangian formulation. to discuss reduction and related ideas. The reduc-
tion procedure given there is essentially the same as the procedure appearing
in Koiller. but the discussion uses a more geometric language to achieve
greater conciseness. [his paper also introduces the subspaces S and H. of
the tangent space. which are used extensively in this dissertation (see chapter
G). Bloch et al. use this decomposition to obtain what they call the momen-
tum equation. This momentum equation is closely related to the adjoint
equation used in this dissertation.

Examples of Nonholonomic Systems

Another aspect our work was to look at specific examples of nonholonomic
svstems. with a view to seeing whether these reduction procedures could be
applied to them. [n particular. we were directed by our advisors towards the
~C'haplygin sphere™. the “tippe top™ and the “rolling disk™.



The Chaplygin Sphere

Arnold. Kozlov and Nieshtadt [3. section 1.2 of chapter 3 and section 4.1
of chapter 1] make some comments on the Chaplygin sphere. Theyv do not
however explain the solution of this problem in detail. A complete solution
is given in Chaplygin [10]. which unfortunately is written in Russian.

The Tippe Top

Many papers were written about the tippe top in the vears from 191 to
1994, including Fokker [15. 1941]. Braams [9. 1952]. Hugenholtz [20. 1952].
Pliskin [30. 1954]. Parkyn [28. 1958]. Cohen [L1. 1977]. Kane and Levinson
[23. 1978] and Or [27. 1994]. We could have listed several more. The tippe
top appears to have spawned a small industry.

All of these authors. with the exception of Kane and Levinson. were
apparently unaware of the analysis in Routh [31. article 243. 1905]. which
showed definitively that the rising behaviour could not be explained by a
model with rolling without slipping. They were also apparently unaware of
the paper by Gallop [16. 1903]. which showed that the behaviour could be
explained as a consequence of dissipation of energy by allowing slipping.

As we are concerned in this dissertation with nonholonomic svstems
(which would require rolling without slipping). we will not discuss the tippe
top at any length. For a modern (and more exhaustive) treatment. we refer
the reader to Ebenfeld and Scheck [13].

The Rolling Disk

[t was shown by Kemppainen {24] that the reduction procedure of Bates
and Sniatycki could be applied to the problem of the rolling disk. However.
the procedure did not reduce the svstem to the fullest extent possible. That
redluction procedure leads to a system on a -l-dimensional manifold.

[n Pars [29. Section 3.12] and Routh [31. Article 24-a]. it was shown that
this system could be reduced to an ODE involving 8 and its time derivative
f. where  is the angle between the vertical. and the line perpendicular to
the disk. through its center (see figure 9.1 on page 72 and the examples
following). This ODE involved the solution functions of another linear ODE
svstem. This latter system gave rise to two constants of the motion. which
were linear in the velocities.



Kemppainen (in effect) observed that the (B.é)-system. obtained for each
value of the constants. was a L-degree of freedom Hamiltonian system. From
Kemppainen's point of view. the 4-dimensional “reduced space” was foliated
by a ~2-parameter family of |-degree of freedom Hamiltonian systems™. This
point of view is also used in Cushman. Hermans and Kemppainen [12].

Symmetric Sphere on a Surface of Revolution

At about the same time. Hermans [19] was examining the geometry of
a svmmetric sphere rolling on a surface of revolution (with the central axis
vertical).

This led us to the classical analvsis of a svmmetric sphere rolling on a
surface of revolution (Routh [31. Article 230]). This analysis is strikingly
similar to the analysis of the rolling disk. The angle § is replaced in Ronth’s
treatment by the angle between the vertical and the normal to the surface.
As this angle may not uniquely identify a latitude of the surface. we prefer
to use another. more robust quantity (sce figure 10.1 on page L10). in onr

presentation.
Axially Symmetric Body On a Horizontal Plane

We were also led by Hermans to the classical analysis of a hody of revolu-
tion rolling on a horizontal plane (Gallop [16. page 371] or Routh [31. Article
211a]).

The rolling disk is in fact just a special case of a body of revolution. as is
the tippe top. The body of revolution may be solved (at least in the formal
sense) by the same approach as the rolling disk. The line through rhe center
of the disk is replaced by the axis of svmmetry of the body.

The Direction Taken by This Dissertation

Several questions now arise:

e [s the reduced system. produced by these analvses. Hamiltonian in
general. as it is for the rolling disk?

e What underlving geometric structure might be present in each of these
two problems. and others. and led to this reduction?



e [n conventional mechanical systems. constants of the motion can typi-
callv be associated. using Noether's theorem. with the momentum gen-
erated by some ~action” on the configuration space. [s it possible to
give a similar interpretation for the constants of the motion that arise

in these analvses?

The consideration of these questions gave rise early on to the paper by Bates.
Graumann and MacDonnell [-l]. and now. to this dissertation.

The Examples

[n addition. we provide several specific examples of mechanical systems.
In these examples. we use a somewhat unique approach to doing the calci-
lations.

We believe our method makes it easier to avoid errors commouly mare
in the formulation of problems. by avoiding the need to consider fictional
forces (easv to neglect) and to resolve forces into various components. Our
approach also permits calculations to be advanced without the need to inject
arguments involving ~vector diagrams” (also prone to errors).

After an initial excursion into mathematical abstraction. we have at-
tempted to bring a physical viewpoint to the examples.

Contributions to Knowledege by this Dissertation

As is common with doctoral dissertations. some final amendments and ad-
ditions were made to this dissertation. at the request of the oral examination
committee. This subsection is one such addition.

Much of this thesis is concerned with the analvsis of an axially svminetric
hody rolling on a flat plane. and of a balanced sphere rolling on a surface of
revolution about the vertical. Each of these problems has ~classical™ solu-
tions.

[n particular. the essential features of the reditced system for the axially
symmetric body were known to Routh[31. article 243. [905] and Gallop [16.
1903]. However. this knowledge was largely forgotten by 1950. as evidenced
by the plethora of papers on the tippe top listed earlier.

To begin then. the author feels that the act of restoring this knowledge
to currency has some value in itself.

Moreover. this knowledge has not simply been regurgitated from classical
sources. This dissertation invents a modern method of reduction. This
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modern theory uses the concepts of Lie groups and differential geometry.
which were not used classicallv. This theory is then applied to the axial
svmmetry problem and to the surface of revolution problem.

The recasting of the problems of the Lagrange top and the free body in a
similiar framework. in recent decades. has certainly been regarded as having
value. There is every reason to think that this should also be true for the
problems dealt with here.

[n addition. these treatments of the Lagrange top and free body used
reduction in the Hamiltonian framework. This dissertation uses a method
of reduction in the Lagrangian framework. invented for this purpose. The
notions of the flatness conditions and the adjoint equation which are funda-
mental to this Lagrangian reduction method are new. to the best knowledge
of the author.

At the time the author was beginning this work. several persons interested
in nonholonomic mechanical systems had observed the striking similarity be-
tween the classical solutions for the rolling disk and for the sphere on a surface
of revolution. Some felt it was only a coincidence. This dissertation. using its
Lagrangian reduction procedure. has revealed clearly the common geometric
structure. shared by these svstems. that results in their reducibility. as well
as that of the more general axially symmetric body problem.

The Lagrangian reduction procedure put forward in this dissertation was
invented with the axially svmmetric body and surface of revolution prob-
lems in mind. [t was not anticipated that it would have application to the
("haplygin sphere problem. However it does. and allows one to conclude that
this svstem may be reduced to a Hamiltonian system on the tangent bun-
dle of the surface of a sphere (T'S?). This result is significant. because the
existence of a constant of the motion for this reduced problem. independent
of the energy. allows one to conclude that the Chaplygin sphere problem is
integrable by quadratures. To the best knowledge of the author. this is a new
result. Arnold. Kozlov and Nieshtadt [3. section 1.1 of chapter 4]. discuss
the integrability of this problem. with no mention of this fact.

Finally. the detailed analvsis of the behaviour of a basketball also ap-
pears to be new. The merit of the approach used in this dissertation. is that
a rigorous method had bheen used to obtain the reduced system. so that in
the end. only a single first order system of ordinary differential equations
needs to be solved numerically. The author is inclined to regard conclusions
drawn from this approach as much more reliable than an approach involving
the numerical solution of the full equations of motion. Certainly the rigor-



ous reduction of the problem provides insight not obtainable from a purely
numerical method.



Chapter 2

Physical Context and
Background

[n this section we provide a review of the physics motivating the mathemat-
ical structures discussed in this thesis.

2.1 Gravitational and Electromagnetic Forces

We will deal with mechanical systems that involve rigid bodies. However. to
simplify matters in the beginning. we will first consider a system consisting
of point particles. each with mass and possibly electric charge.

We suppose there to be .V particles. The /-th particle has mass m,.
and electric charge q;. We take a set of right-handed cartesian axes. and
suppose the coordinates of the /-th particle with respect to these axes to be
J£,= (.l"[..l';-)..l’,g}.

We suppose there to be static gravitational. electric. and magnetic fields
present. The assumption that these fields are static is of course an ide-
alization. But this assumption is commonly made in posing problems in
mechanics.

["nder these assumptions. we may suppose that there exists a scalar grav-
itational potential o. a scalar electric potential ¢ and a vector magnetic field
B = (B,. Bs. B3). If we define

[,’(.l‘“..1'12..1‘[3..1'21. T2, L3300 0 ) =
Z{m.‘O(I;t.l’iz--l‘ia) +qu(ri.riria)}
;

8



and introduce the 3-index permutation symbol. &z then the j-th component
P, of the force P; on the i-th particle due to gravity and the electro-magnetic
tield is given by
ot i
P =- + Z Zemdi B (2. L2 i3)-

@J’;_,‘

k.m

2.2 The Lagrangian and Generalized Forces

[f we use F, to represent any other force on the i-th particle. Newton's second

law becomes

. at i
(2.1) mpr, = ———+ Z Siem Lk B (Liporopc b+ F.
ar,,
kan
where *- " indicates differentiation with respect to time. Define the kinetic

cnergy KN by

. [ T 1 s
KNr.r)= 5 E m,.rl-T.r,- =3 Z TE
- T oy

and then the Lagrangian by
Lir.#) = K(r.i)—(r).

Then equation 2.1 may be rewritten

( ()L ) B ()L - ZEJI"“‘E.I-;JBnl(--'-',’l'Iiz"‘l.i:i) = EJ'
k.m

i).l"u' f).l‘,‘_,’

where *’ " denotes ditferentiation with respect to time.

Now suppose that we wish to use an alternative set of generalized coor-
dinates {q.... .q3x'} to describe the configuration of the system. Then a
straight forward calculation will vield

aLN\'  aL
-_— -— - R} ,".'= i-
(a(h) dqz Zj: [J(I'J Q




L0

is called the generalized force. and

a.l‘ km a.l'kr

-I[ij = Z 5mrsBs(~rkl-'rk2“rk3)

k.n.r.s

dq; dq,

is called the generalized magnetic field. If we make another change of coor-

dinates to the set {q,.... .7;\}- the equation of motion will beconie
oL\ oL _ - =
(.—.- __— "[Uﬁj :Q".
aq, dq; =
with

0 = Z 0,2

dq;

and

- d( () m
Ty=Y Min df‘ d((’[ .
k.m

Equations 2.2 are called Lagrange s equations.
Whatever coordinates we use for the system. the Lagrangian will have
the form L = R — {". while the kinetic energy will take the general form

.. I . . .
KNiq.q) = 5 Z K (q)qiq;-

W)
2.3 Holonomic Constraints and Associated Forces
Now suppose that there are constraints of the form
(2.3) Gi(t.q) =0

for the svstem. where ¢ represents time. We will call such constraints holo-
nomic. The constraints could for example require that the distance hetween
any two particles remains fixed. or that a particle is constrained to remain
on a surface.
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[n the presence of such a constraint. there must be forces included in
the generalized forces appearing in equation 2.2. which serve solely to en-
force these constraints. We will call these forces of constraint. In order to
distingnish these forces. we will rewrite equation 2.2 as

arN’  dL
- - -‘ iy l, = i re
(f)fh) o» EJ [i;q, R, +0Q

in which R; represents the forces of constraint. and Q; represents other er-
ternal forces. not derived from the potentials already embodied in L.
Suppose now that the solution manifold to equation 2.3 can be parame-

terized locally as
q=q(t.q).

Then by a calculation identical to the one used above for the change of

coordinates. we may obtain
aL\  IL ()([J —
(F&;)“——Z"u% > g + 0

[n typical problems to which Lagrange’s Equations are applied. the external
forces Q; (and therefore @;) are clearly zero. and there is no magnetic feld.
However. the term involving the constraint force is also normally assumed to
be zero. This requires some justification.

The assumption that

X dq
(2.4) Z R ()q’ =

holds is called D Alembert’s principle. This principle is often expressed by a
statement such as “the virtual work done by the forces of constraint is zero™.
The physical rationale for D'Alembert’s principle is illustrated by the

following examples:

e point mass on a surface
D Alembert’s principle in this context asserts that the forces that keep
the particle on the surface do not push the particle around on the
surface.



e rigid body on an axle

The forces of constraint here hold the body together. and prevent the
hody from moving. except for rotating on the axle. D Alembert’s prin-
ciple asserts that these forces will not make the body spin faster or

slower ahout this axis.

Whittaker ([34. Article 25]) describes a holonomic dynamical system as
one ~for which a displacement represented by arbitrary infinitesimal changes
in the coordinates is in general a possible displacement™. When this condition
is not satisfied. he refers to the svstem as nonholonomic.

This description is in fact ambiguous. In terms of the original q; coordi-
nates above. our hypothetical system does not satisfy Whittaker’s condition.
[n terms of the §, coordinates. it does.

Thus our hyvpothetical system may be regarded as a holonomic system
only if we think of the configuration manifold as being the solution manifold
of equation 2.3. Otherwise it is a nonholonomic system.

We discuss nonholonomic systems at greater length in the next subsection.

2.4 Nonholonomic Constraints and Associated
Forces

[n the previous section. we introduced constraints (equation 2.3) of the form
(r"‘(t. ([) =0.

and called these holonomic. [n physical problems. it is possible to have

constraints of the form

(2.5) > Byla)g; +bilq) = 0.
J

We will call constraints of this form nonholonomic. As for holonomic con-
straints. there must be forces of constraint present in Lagrange's equations
to enforce the constraints. For holonomic constraints. we were able to find
(in principle at least) an alternate set of coordinates. such that we could just
ignore the forces of constraint. For nonholonomic constraints. there may not
be such a set of coordinates.



[t 1s helpful in this context to consider how we could handle the forces of
constraint for holonomic constraints. without using local coordinates for the

solution manifold.
If we differentiate our holonomic constraints with respect to time we ob-

tain

aG, . IG,
2.6 _— — =0
(=) Z dq, Ul ot
4

This has the same form as equation 2.5. OQur approach will be to include these
equations with Lagrange’s equations. and to seek a solution of this larger
svstem. The difficulty that remains. is that the (as vet unknown) forces of
constraint appear in the equations. Our system of equations must permit
the determination of these forces simultaneously with the determination of
the trajectory.
Towards this end. observe that differentiating our original liolonomic con-
straints with respect to local coordinates for the solution manifold gives
()(r', a([J _
2 50, 9, -

At this point we will use some basic concepts from linear algebra. The
equation above sayvs that the row vectors

M7, HIeA -
Tiey g

(one for each value of 7). lie in the left null space of the matrix

RTINS
TR
“Hpo .'I;,_)
T N -

But these row vectors are linearly independent. and therefore span the left
null space. D'Alembert’s principle.

dq;
Y R =0
~dq;,
J
sayvs that the row vector

[Re Ba -]
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also lies in the left null space. [t follows that there is a set of multipliers
{A1-Aa.. ..} such that

G,

J

holds. With this result. our syvstem of equations becomes

aL\'  aL . oG
(3) -5~ Toua = 5
J

_r)_([_,. dq; -

Za(;,(, L5

- s T "ot

Solving this system involves finding both ¢ and A as functions of time.

We now return to the question of the forces of constraint needed to enforce
the nonholonomic constraints in equation 2.5. A comparison of equation 2.5
with equation 2.6 leads one to suspect that these forces should satisfy

Ri=) \B,.

J

There is also a physical rationale for making this assumption. The con-
straint provided by equation 2.5. or equation 2.6. is that at each point ¢ in
the configuration manifold. there is a plane in the tangent space to which
q is restricted. [t appears natural to suppose that the forces of constraint
should depend only on ¢. ¢ and the plane at ¢q. They should not depend on
the plane at some other point. This is consistent with the local quality of
physical laws. which appears to be quite general in physics.

The system of equations we are ultimately led to is

oL\’ oL )
(%) - 9, —g-l’lqu N XJ:AJBﬁ

Z Bjk(]k-i-bj = 0.
k

[n practise. these equations seem to lead to physically reasonable equa-
tions of motion. Some other schemes do not (see for example the discussion
of vakonomic mechanics in [3]).
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Whittaker ([34. Article 87]) calls these equations Lagrange s equations
with undetermined multipliers. and attributes the extension of Lagrange's
equations to nonholonomic systems to Ferrers. citing a paper from 1371 ([14]).
Neumann. citing a paper from 1338 ([26]). and Vierkandt. citing a paper from
1392 ([32]).

2.5 The Kinematics of a Rigid Body

In this section we review the kinematics of rigid bodies. and seek to familiarize
the reader with the notation which will be used in cur examples.

We will use the notation of linear algebra. A vector will normally be
represented as a column vector. We will regard R* as containing column
vectors. We represent the identity matrix by . For the standard unit column

vectors we use

[ 0 0
€] = O €2 = ]. an(l €3 = U
0 0 l

We will frequently use the map A : R — s0(3) defined by

1 0 -3 <2
{ 2 = gy 0 -2t
3 -2 I 0

The expression A(y)z will thus be equivalent to taking the cross product of

g and =. The properties

Aty = —A{)y.

AW ) = WALWT Y € SO(3).
A A(z) = zpf —(yTo) and
A(Ay)s) = Ay)Az)— A=) Aly)

hold. We will also use the map R : ® — SO(3) defined by
R(z) = exp A(=).
For - € R? and o € R. observe that

JR(0z)

3 = A(z)R{0z) = R{oz)A(=)
o)
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holds.

For = € R® a unit vector and o € R. R(oz) corresponds to a rotation
throngh an angle of magnitude o. about the direction given by : (using the
~right-handed rule™). We will also use the short hand notation

R.(0) = Rloe,).

We assume there to be a set of cartesian axes fixed in space. Associated
with these fixed axes we have a set of orthonormal vectors. given by the
standard unit column vectors with respect to the fixed axes.

We now consider a rigid body. Let the position of the center of mass be
given with respect to the fixed axes by

I= | = .r€1 + ra€r 4 ra€a.

We assume there to be another set of cartesian axes fixed in the body.
with the origin lving at the center of mass. Associated with these moving
axes we have a corresponding moving set of orthonormal vectors. given by
wy. 13 and wa with respect to the fixed axes.

The orientation of the body is given by the special orthogonal matrix
I e SO(3) with . w> and w3 as columns.

= [u‘l w, u‘:;] .

Denote the angular velocity vector of the body with respect to the fixed
axes by v. and with respect to the body (moving) axes by «. These vectors
are cetermined by

= 4(e) = A(v)H1
and will always be related by
v=MWne.

Suppose points in the body have positions given by a vector y with respect
to the moving axes. Then the position of each point with respect to the fixed
axes is given by the vector = determined by

r=r+ Wy
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Differentiating with respect to time we get
2 = r+iAlely.
ot alternatively

S = r+ Aty
(2.8} = r+ A)f{:—r}

Let the total mass of the body be . Let p = ply) give the density of
the bory. Then

/(1,{/3,9(;;] = m and

/ dy'ypty) = 0

hold.
We may now calculate. for the kinetic energy of the body-.
- I- " 3 . T -
K= 5 [dy'ply)iy) Hy)
l - . . Tr. .
= 3 /rly';p(y)[.r + I :l(u.’)!]]r[.r + H A< }y]

(2.9) = ém.i'-r.i' + %;.‘:T./..c
with

J = - / dyply) ALy) A y)

N ./"[y:‘p(y)[(yry)f-y!f]-

J s the inertia matrir of the body with respect to the body axes. .J is
constant in time. and symmetric. By choosing the body axes to be the
principal axes of .J. we may take .J to be diagonal.

Jyo 0
s

J=10
0 0

Boalils IR
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where .J,. ./ and .J3 are the principal moments of inertia of the body.

Another quantity often used in mechanics. is the angular momentum with
respect to a point in space. For simplicity. suppose the point to be the origin.
The angular momentum is

P = /tl.tf’p(y):l(:(.t/))i(.f/)
= / dy’p(y) Alr + Wy)[k + W A(w)yl]
= mA(r)r+ / dy’p(y)W Aly) Aw)y]
(2.10) = mA(r)r+W./e.

The second term in this expression. H'.Je. which does not depend on the
choice of reference point. is regarded as the angular momentumof t he body. in
spatial coordinates. The expression .Jw is regarded as the angular momentum
of the body in body coordinates. The first term we regard as the angular
momentum of the center of mass.



Chapter 3

Basic Mathematical Definitions

In this section. we use the ideas of the previous section to motivate a more
precise mathematical framework. All manifolds will be assumed to be of

finite dimension.

3.1 Preliminary Definitions

Definition 3.1.1. Lect QQ be a manifold. and L : TQ — R a function. The
Legendre transformation of L is the function FL:TQ — T°Q given by

. d
(FL(T).p) = 71 L(7 +2p).
as $=0
Observe that FFL : TQ — T~Q is fibre preserving. That is to say. if
:TQ — Q and 7= : T"Q — Q are the respective bundle projections. then
“oFL =nw.

Definition 3.1.2. Lef Q be a manifold. and L : TQ — R a function. The
Hessian transformation of L is the function F*L : TQ — T7Q given by

T
s

N 1
FL(r)p.o) = —| (FL(r+ua).p)
u u=0
d d
= a—u—u=o{as=0 L(I +t10'+.>p)}
_ 7 L(7 + uo + sp)
- é)uas 1©=0.s=0 I ¢ P
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Observe that F2L(7) is symmetric for each 7. and that F*L : TQ — TYQ
is tibre preserving.
Definition 3.1.3. Lef Q be a manifold. and L : TQ — R a function. Then
[ is a Lagrangian on Q if and only F?L(7) is positive definite for each r.
Many authors call any function L : TQ — R a Lagrangtan. What we
have called a Lagrangian they refer to as a regular Lagrangian.

Definition 3.1.4. A nonholonomicsvstem is a 3-fuple (Q. L. M. D. 3). where
o Q is a manifold.
o [ :TQ — R isa Lagrangian on Q.
o I isal-form on Q.
e D is a distribution on QQ and

o 7 is a vector field on Q.

We call M the magnetic 2-form.

We call D the conséraint distribution. Associated with D we define D; =
{(reTQ|r— foxm(t) € D}.

Associated with anv nonholonomic system there is a collection of systems
of equations for a trajectory. ¢ = ¢(t) in Q. which we describe below. These
equations will have the effect of restricting the trajectory to lic in D ;.

3.2 Lagrange’s Equations

To describe a tvpical system of equations in the collection referred to in
definition 3.1.-L let ¢ : I* — R be local coordinates on Q. We will use the
notation ¢' for d¢'. as normally done in mechanics.

Also. let {B'.....B"} be a set of independent l-forms on | that locally
determine D. That is to say. we have DN TV = {r € TV|(B'.7) = 0.Vi}.
We may of course need to reduce the size of 1" in order to make such a choice.

Then define M;; = M(3/0¢'.d/dq¢’). B: = (B*.0/dq’) and b' = (B*. 3).

The system of equations in question is (using the summation convention)
aL\' oL . .
3.1 — | ———M;¢ = A\B}
( ) (()('Ix) 0qt -’qJ R
(3.2) Bi¢d = b.



These are called Lagrange s equations.
[n these equations. \i.... .\, are called undetermined multipliers. and
are to be determined as functions of ¢ along with the ¢'.

Proposition 3.2.1. Forcach qo € Q. the collection of Lagrange s Equations
for a nonholonomic system uniquely determines a trajectory q = q(t) with

q(0) = qo.
Note that we do not claim that A = A\(¢#) is uniquely determined.
Proof. We proceed in three steps.

1. First we show that in a local coordinate system. the A variables may be
eliminated. thereby leaving an ODE (Ordinary Differential Equation).

Observe that in coordinates.

ap, L
F°L(t) = i)(}"(')(}f(‘ )dq' = dg’

holds. and so the matrix A. with coefficients given by

_PL
- 9q'a¢

A,

must be positive definite on T'V'. Then. from the calculation

(f)L)' L dL

Dt - i)(}lf)(}‘( * f)qﬁ)(}‘r ’

we see that equation 3.1 has the general form
Ao =X, B! + filq.q)-

Differentiating equation 3.2 we obtain an equation with the general
form

i .
B/q' =g'(q.9).
['sing matrix notation in an obvious manner. these two forms give us

BAT'BTA = —-BA 'f+g.



But the matrix BA~'BT is non-singular. by the sequence of inferences

BA'BTA=0 = (A'B™HW 4 'BT ) =0

= A7'BTrA=0
= AMB=0
= 1\ =0

ence the A variables may be expressed in terms of ¢ and 4. so that we
have a second order ODE for ¢.

2. Next we show that the trajectory found is independent of the choice of

coordinates. To this end let § = F(¢) be a coordinate transformation.

This induces a coordinate transformation
X . (}ﬁl .l
[¢ . = —\q)q
7(q.q) (.)(Ik( 1)q
on TQ. Let L(7.q) be the expression for the Lagrangian and M, ,(7)

for the magnetic 2-form coefficients. in the new coordinates. so that we

have
i —(_, . Jq
Lig.q) = L (q(q) 4 L(qlq ) and

Mi(q) = ‘[Lr(fl(q))()?(nd?(l)

A simple calculation then yields

(BL '_HL_\[.r?J_ ﬁl_if__vu f)f[i
Aq dgi T T ()F[L ot~ M 1 Jdq'

Since. in addition. we have

. g
) = J
& <B ' ?""> dq'

10_"
Laq

we see that equations 3.1 and 3.2 hold in the new coordinates.
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3. Finally we show that the trajectory found is independent of the choice
of I-forms B'.... .B". To this end let B'.....B be another choice.

Bv reducing. if necessary. the size of the neighborhood 1" on which
the coordinates and l-forms are defined we may assume that there are

. . = .
functions o : I~ — R. such that B/ = ;B on V" holds. and such that
the matrix P with coefficients given by P = aj. is non-singular.

We then have
k

B! = <oi_§k.0/i)q‘> = alB,

1

and

b = <ai_§k..f) = aif—)k.

We see now that equation 3.2 holds for the new L-forms. using the same
trajectory ¢ = q(!).
Also. equation 3.1 holds with ¢ = q(t). if we replace A, by Aol

This completes the proof. d

Definition 3.2.1. The energy function for L on TQ. which we denote £ :
TQ — R. is defined by

E{ry=(FL(r).7)— L(7).

For manyv important nonholonomic systems. .3 = 0 holds. For such sys-
tems we have:

Proposition 3.2.2. For the trajectory of a nonholonomic system with 3 =
0. the energy remains constant. That is to say. Eog{t) is a constant function
of t.

Proof. Observe that in coordinates.

aL, .
E(r) = ‘a—.—i(T)(ll(T) - L(7)
q



holds. and so we may calculate

E!

aLN ., IL
(&) 7+ 5
L ., I
_{aq‘q +Wq}

aL\  ILY
- {Ge) -
Mq'¢ + N, Bl
= A, (B'.3)=0.

3.3 Intrinsic Form of Lagrange’s Equations

[t is possible to formulate the equations for the trajectory of a nonholonomic
svstem entirely in terms of globally defined geometric objects. We include
the basic ideas used in this approach here for the sake of completeness.
Let #7 : T(TQ) — TQ be the tangent bundle projection map. Also. recall
that from 7 : TQ — @Q we may form the tangent map 7'z : T(TQ) — T(Q.
Recall too that we mayv use = to pull the magnetic 2-form M on Q back
to a 2-form =~ M on T7{TQ) (that is. (7~ W)(E.¢) = M(T=(&). T=(C))).

Definition 3.3.1. 7The canonical [-form for L on T'Q. which we denote 8y,
is defined by

(0r-8) = (FLox"(8).T=(8)).

Definition 3.3.2. The constraint co-distribution on TQ. which we denote
DY, is defined by

D’ ={oeT(TQ)|{o.£) =0.VE € (Tx)~ (D)}

Definition 3.3.3. The intrinsic form of Lagrange's equations consists of the
two requirements

q(f)a ((lﬂ[_ + éﬁ'.\[) +dE € D°



and
q(t) € Dj.

In these expressions. £ : TQ — R is the energy function introduced
earlier. Again. this function is given by

E(v)=(FL(7).7)y— L(7).
Proposition 3.3.1. Lagrange s Equations are a local consequence of the in-
trinsic form of Lagrange s Equations.

Proof. It is obvious that the second intrinsic condition leads to equation 3.2.

[t remains to obtain equation 3.1.
For the purposes of this proof. we will denote the local coordinates on Q

by . We then introcduce coordinates on TQ by r* = = o 7 and ¢* = dz*.
We now introduce the functions p; defined by
aL

pi(T) = ﬁ(’-)‘
from which we have
FL(T) = pi(7)d=".
This leads immediately to
E(r) = pi(7)c'(T) = L(7).
giving
oL

dE = o' dp; — T(l.z‘i.
.l..‘

Next note that we have

9\ _ (2 1.2
(o) = (ruoer () (2)

= 0.

d
re(2) =

since



holds. We also have

d ; d - d
. — ) = =T = ).T#{ =—
<)L i).l"> <FL ° (?).r') r (?).z">>

) . ‘
= <pJ d=. P

= p‘_
Thus we obtain

B = p; de'.

From this we calculate
dfp =dp, A drt.

[n a similiar fashion. if we introduce the functions 1/;; hy

g o
My =M —.—].
[l ! (f):,’ (.):'J,)

T M =(M,o0 Tydor' A da .

we have

We mav now calculate

q(t) (r[(}L + én".\[) +dE
= {G(t)adp; } dr' — {G(t)2dx'} dp;

+ é_"v[,‘_,’(([(f}){[('{'(l)..l(l.l'i]d.l"l —[g(H)adr]da'}

+ () dpi — 3—5;(6{([))([1-‘

aL A
{ﬁi(t) - g_r—,»(f?(f)) - -U.';(f{(f))-i‘J} dr'
+ {v'(t) — #(O)} dps

aL\' aL : : :
ndiadil BN f O g d_ Y dps
{(BL") I M } dr' + {v' — '} dp.



This last expression must be in D°. But (0.d/dv/).Vo € D° holds. so

we must have

dvd
d*L

deidet”

I
—~—

‘.:-.

I
—_

Thus ' = .&* must hold.

Now let {B'.....B"} be a set of independent l-forms locally determining
D. Then {z"B'.... .7"B"} is a local basis for D". So for some nndetermined
multipliers X.... . A.. we must have

arL\' oL :
—_ _ Lyt -4 — T' J
{(i):" ) E M; } det = N7°B

The desired result now follows. |

3.4 Hamilton’s Principle

[n this subsection we show that the problem of finding a trajectory for a
nonhiolonomic system is equivalent to solving a variational problem. What we
describe here is not quite what is usually referred to as Hamilton's Principle.
but is closely related.

Suppose we have a trajectory ¢ = q(¢). Choose times {, and ¢,. Consider
the integral j,:‘ L dt. Supposing for the moment that the trajectory remains
in one coordinate neighborhood between ¢; and f,. we may calculate the
effect of an infinitesimal variation of this trajectory on the integral:

" “r9L Il _fdg¢
()Xl Lclt = /tl <ﬁ6([ +5q70(z~)) ([f
2 /9L . L d(Sq')
/h (aq‘ TG & )
9L oL oL r
= dq' dt —d
/n (061 (061)) ¢ +[01 ¢ t

AP Y " pie
_ [Féq.} _ / Mgt — [ A, BIoq dt
n &y




Observing that in coordinates.

FL = ——=dq¢

holds. we may write our result as
t> ts t> )
5[ Ldt +/ M(q.8q)dt = (FL.3q) | —/ A Bldq dt.
f t ty

[f we restrict the variation to dq € D. we have

53
4]

L2
(3.3) 45-/ Ldt -I-/ M(q.dq)dt = {(FL.dq) |£f

This result is now coordinate independent. and may be extended hevond a
single coordinate neighborhood.
The result following from this calculation is:

Proposition 3.4.1. For a trajectory q = q(t). the requirement that the tra-
Jectory satisfy Lagrange s Equations is equivalent to requiring that:

o The trajectory satisfies equation 3.3 for all values of t\ and t, in ifs
domain. when the variation of the trajectory satisfies dq € D.

e The condition dgq/dt € D; holds.

3.5 Natural Lagrangians

Definition 3.5.1. - natural Lagrangian is a Lagrangian defined by

-~

l .
Lit)= _—)-[\'(T. T)— U ow(T).

where {7 : Q — R is the potential energy function and K € TYQ is a metric
on Q. which we will call the kinetic inner product.
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Definition 3.5.2. The kinetic energy function N : TQ — R for a natural
Lagrangian is defined by
. L.
h(7) = 3[\(7'.7).

Here. N appearing with two arquments is the kinetic inner product. [t will
be clear from contert which K is intended.

Lemma 3.5.1. For a natural Lagrangian we have
(FL(7).p) = R{r.p). Y7.p e TQ.

Proof. We may calculate

{
(FL(t).p) = —
ds
! LR+ spor s
dsf o L2 LT T+ )

= RK(7.p).

L(7 + sp)

s=0

|
Lemma 3.5.2. For a natural Lagrangian. FL : TQ — T~Q is a diffeomor-
phism.

Proof. This follows from the previous lemma. the positive definiteness of i’
and the finite dimension of Q. a

Lemma 3.5.3. For a natural Lagrangian we have
F’L(7)=K.VreTQ.
Proof. \We may calculate

P
duds

?
duds
= K(p.o).

FAL(T)(p.7) L(7 + uo + sp)

Il

u=0.s=0

L.
{;[\ (r+uc+sp.t+uc+ sp)}
u=0.s=0
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The last lemma shows that L is indeed a Lagrangian.
Lemma 3.5.4. For a natural Lagrangian L. we have
E(r) = AN(7)+ [ ow(T).
Proof. We simply calculate
E(ry = (FL{m).7)y— L(T)
K(r.m)— {é[\' r.r)—=0"0 :r(r)}

= h(7)4+ (7).

|

3.6 Hamiltonian Systems

Definition 3.6.1. A Hamiltonian system is a nonholonomic system for which
FL : TQ = T7@Q is a diffcomorphism. the magnetic form M s closed
(dN =0 ererywhere) and D = TQ holds.

["nder these conditions. the intrinsic form of the equations of motion
becomes

q(t)- ((lf)L +

éﬁ‘.\[) +dE =0.

The 2-form w = df; + %7."‘}[ is a symplectic form for the manifold TQ. The

energy function E on TQ is called the Hamiltonian function for the system.
Hamiltonian svstems have been widely studied. and have many impor-

tant properties. which we will not discuss here. We wish only to point out

that it is very significant when a nonholonomic system can be reduced to a

Hamiltonian system.



Chapter 4

Quasi-Velocities

We use the svmbols and notation of chapter 3.

4.1 Momentum

The notion of momentum is a useful reference point in discussions of me-
chanical syvstems.

Definition 4.1.1. Lef o be a vector field defined on some region W CQ. The
momentum assoctated with the vector a is the function p* : TV — R defined

hy
pir)=(FL(T).aow(T)).

4.2 Quasi-Velocities

Suppose 3 vector fields a;. ... a, defined on some region [$'CQ. n being the
dimension of Q. such that the vector fields are linearly independent at each

point of 1",
At this point. we ask the reader to recall the definition of the Lie bracket

of two vector fields. (see for example [33] or [6]). Let C'F : 1" — R be the
structure functions given by

[oi.e)] = Clox.
Define functions g* : TH™ — R by
T = p(T)ai. VT e TW.

31



32

Observe that given local coordinates ¢' : HCW — R. we have

i

T

D .
q (T)EIT.VT € T”’Q.

Introducing the notation af = ¢/(q;). as is usually done. we have

¢lm) = ¢(7)o,)
= ,u-'('r)aj-.
The u* are called quasi-velocities. We will call {ay.... .a,} a quasi-velocity

basis.
Example. Body Angular Velocity

Recall the description of body angular velocity in section 2.5. The mani-
fold there is SO(3) x R®. which we have parameterized by (1" rj. If( (0 r)is
in the tangent space at (}V..r) (the differentiation here would be with respect
to the parameter of an appropriate curve). then the functions wy. ws. w3. ry.
Iy and 3. determined by

I-['. = ”'-.‘1(..:.'161 + W€ + u.':;f:;)

and
£r= .I-'[([ -+ .I}gfz + .i‘gf(;.

are quasi-velocities. The basis vector fields are (1" A(e).0). (I A(e2).0).
(H7.1(€3).0). (0.€,). (0.€2) and (0. e3). respectively. These vector fields are
globally defined. We will call this basis the body frame basis.

[n order to calculate the structure functions. (,‘J we must calculate Lie
brackets. [n order to do this we must think of the basis vector fields as

operators of differentiation. We will use the notation (I .A(¢;).0) and (0.¢;)
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to identify this interpretation. The most complex of these calculations is

N 0). (1 1)), 0)] (1)
(W Aten {(T (e (c)) 0)(H" )
T e 0 {(W (e 00 1)}

rm——"— r————
= (H ;). 001 Ale,).0) — (FH A(e,). 0) (1 Al€,). 0)
= (M A(e;)A(e,).0) — (H A(e,) A(e:). 0)
= (I {A(e;)Ale,) — A €,)A(ei)}.0)
= (H A(A(e;)e,). 0)
= (W A(F e4).0)

f_/—
= 5 (117 A>e). 0) (11 2).

where =¥ is the three index permutation symbol. with its parity fixed by

<

requiring =7, = L. All other brackets vanish. O

Example. Spatial Angular Velocity
[n the previous example. we could instead have determined functions .

1. . . I and I3 by
H = Avey + raes + 1ae3) IV
and
r= ‘i.lfl + .i'26~_) + .l:'_";f:;.

These again are quasi-velocities. The basis now includes (A(e,}I1.0).
(A(e2)1120). (A(e3)1H7.0). (0.€,). (0.€2) and (0.€3). We will call this basis

the spatial frame basis. 0

4.3 Poincaré’s Equations

Now Lagrange’s equations are
aL\' IL : ;
— ) -—-M;¢d = M\B
(a(r> (»)q, [JqJ J
Bij = b.
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where we think of £ in this equation as being of the form L = L(q. q).
We could also think of L as depending on ¢ and p. To this end we write

L = Liq.u)
= L(q-q(q-p))
= L(q.pei(q)).
Then we obtain
L aL 9L ,da
— =+ T
dqgt  dgt  dg dg

and
oL _ aL

— = —a’.
At dgr !

(F0) - (2LY o 2Lty
et dq ‘¢ IgF
oL\ ,  ALaal .
B (W) “ T 9 gt

and so

\We may now calulate

TS c m g
A Bial + Minmaiap

= {\, Bl + Minq™} af

oL )’ aLyY
dq Aq ‘

Q)’ ILda? . . OL , IL , dal

il

!

%

s QD
-

=

.

Qe
=~ R

TN TN TN TN
Q
. = =g R
e’ N
Q
h
“
.
Q
™~

v
T
=
3
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[ we write

O“Z = O'f :)—L'.
dq’
B = <BJ.0,~> = B,{af" and
M, = Mo,.a,)= .\[L.,,,af-"a"’“.

then on M. we have the equations

4

VN T . o~
4. — —(" — M —ao;l = ANB
(+.1) (?}p‘) +i)yk(”# [, — ol Bl
{1.2) BJ-,LIJ = &

These equations are called Poincare’s equations.

[n light of the manner in which a! transforms under coordinate trans-
formations. o;L mayv be extended to all of I¥". We may also shrink I to
the extent necessary for B'.....B" to be extended to all of H". Thus B; is
defined on all of H".

So Poincaré’s Equations apply to all of . the intersection of the domains
of o; and B-.

Note also that

) (')Z_ _d .
(-1.:3) %[J) = I:—szuL(‘ + s o (7))
= (FL(7).a;0x(7))
pu,(_l_)

holds (recall chapter 4.1. and the last expression is also defined on all of 11",

Example. Euler’s Equations
We will build on the preceding example. We consider a rigid body with
no constraints or potentials present. The Lagrangian (equation 2.9 on page
17) is
| T |
L = :;ITI.I'T.I.’ + 3LJT.]w'.

We have previously found the structure functions. Equations 4.1 and 4.2

become
Joe+ A(e)Je = 0 and

mr =
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The first of these constitutes Euler’s equations (see for example [2]). which
more tyvpically are written

Jrer = (S2 = S3)erws.
.[-3\.4.}2 = ‘ .13 - -/[ )u.':;q..'[ and
Jaws = Sy = Ja)erwn.

Example. Body Angular Momentum
We will again build on the rigid body/angular velocity example.
Equation -1.3 provides a convenient way to find the momenta associated
with the basis vector fields. The momentum associated with (" 4(¢;).0) is
i =l Jo
dut T
The vector J is usually called the body angular momentum. or angular
momentum in the body reference frame. The momentum associated with

(0.(,‘) is

dL .
— =muda.
dr
The vector m.r is the usual momentum for the center of mass. d

Example. Spatial Angular Momentum
We expand once more on the rigid body/angular velocity example.
[n terms of the spatial frame basis. the Lagrangian (equation 2.9 on page
17) s
L .r. T
L = SMITE+ e Jw

I .. 1 e
= ;m.rT.r + ;UTH JUTy.

The momentum associated with (.A(e;)1.0) is
,—d£ = efWJWTy
avt

= elW.Jw.

The vector i .Jw is usually called the spatial angular momentum. or angular
momentum in the spatial reference frame. a
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4.4 Natural Lagrangians

We suppose now that L is a natural Lagrangian. as in definition 3.5.1. We

have
| - .
Lim)= 3[\(;‘.7‘) -~ om(7).
Then we have

—L_(q-‘u] = L(p'oilq))
L. - .
= ;[\(a,-(q).al(q))u‘;ﬂ —{(q).

But now

ar )

0‘7 = N(ag.a, ).
so the left side of equation 1.1 is

[.S. = {[‘:(Oi-ﬂj)ﬁj},'f'{[\’(Ok-am)/‘m}c'{;'uj

l . . )
—W{a,. o,y - 30;{[\(aj.ok)};tJ;z" +a;l

- 7 - m L - g
= {K(o;.o,)p} + KNiap.[aia, )™ 1! — ;n;{[\(al.o;\.)};r’pl‘
Moo + a0l
= {K(a,.o, )}
1. . . .
+§{[‘ (foc.a,].ax) + Ko, foag]) = oi{ Ko, o) e
- Mo, a,)¢ +a;l.
At this point. we ask the reader to recall the definition of the Lie dericative
of a tensor with respect to a vector field, and the definition of the erferior

derivative of a form (see for example [33] or [6]). Using weil known formulae
for the Lie derivative. we have

o {(a;.ar)} = L, {K(aj.a)}
= (La.[\')(aj-ak) + [\'(La,aj-ak) + [\-(QJFLQ.OI:)
= (Lo, ANaj.ar) + K([ai.aj].ar) + K(a;. [ai. ak])
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Chapter 5

Noether’s Theorem

We again use the symbols and notation of chapter 3.

5.1 The General Result

[irst. observe that in coordinates.

aLr
FL = i)(}‘([(l
JaL

holds. Then recall that Lagrange’s equations are

oL\ dL
-_ _—-— .‘ ‘ 7 = 7/ J
(Ut]‘) Jdg fud LB

Bl¢ = b.

Let & be a vector field on Q. with flow o,. Writing g(s.q) = 7(¢). so that
7 = To,(q) holds. or in local coordinates

— ¢

. . C) L
q'(s.q) = ;)% (5.9)¢’(q).

39



10

we may calculate
(2L
g [f)s
JL agt JdL - 3 [IF\ .
= (;},‘((1)) o= T Ef(q)(’)_r}; (i)* ) 7
)L d-' i)L;i) JF .

_ ( - = ()F[;J nii= (ql
= i)s([,(([)) + .1[.1((1]6_\. q +AJBE((”(’.- .

Evaluating this at s = 0 we have

(p"(q)) = (FL(q).a(q))

/L '
= (()(,(q) ())

7B
( (LoTay(q))+ M(a(q).q) + A, (BJ(q).(f(q)> .

s=0

PR

where p” is the momentum associated with o.
We need a couple of definitions before stating the result following from

this calculation.
Definition 5.1.1. We say that o fully preserves L if
d

ds

(LoTo (7)) =0.Y7T € TQ.

Definition 5.1.2. Ve say that o partially preserves L if
d

- (LoTo,7))=0.Y7 € D;.
s

s=0
where. as before. Dy = {7 € TQ|T — Jox(7) € D}.

We will only apply Noether's theorem to systems for which the magnetic
field is identically zero.

Proposition 5.1.1. For the M = 0 case. if 0 € D at each point. and o
partially preserves L. then the momentum p°(q) = (FL(q).o(q)) associated
with o is a constan! of the motion.



+1

The case in which M = d\ holds with

_()_. No T(_rs(,-) =0.Vre D,;.

()5 s=0

can also be shown to result in a constant. The constant in this case is
p7(q) + N(q). When M is not exact. the situation is more complex. and we
will not address it here.

5.2 Natural Lagrangians

We suppose now that [ is a natural Lagrangian as in definition 3.5.1. so we

have
l . .
Li7)= ;[\(T.T) - ox(T).
Then we have
LoTo,7m) = .l)[\'(Ta's(r). ToJt))—= oxoTa,(7)
= _L)[\'(Trr,(r). ToJr)—10 oa,0x(7).
Recalling again the definition of the Lie derivative ([33] or [6]). this gives

d L . .
— (LoTa’,(r)):;(L,[\)(T.T)—(a'[ ) o w(7).

ds| _,
So we ubtain a constant of the motion. providing that we have
o I/ =0.
eogeD and
o HL,RK)7.7)—(al)om(r)=0.Y7 € D,.

Observe also. that for natural Lagrangians. the conserved momentum p’(1) =
(FL(t).00m(7T)) becomes p’(7) = N(7.0 0 7(T)).



Chapter 6

Nonholonomic Systems with
Symmetry

As usual. we use the symbols and notation of chapter 3.

6.1 Definition of Group Symmetry

Let (¢ be a Lie group with a left action. GxQ — Q.on Q. Let A\ : Q@ — Q/(¢
be the quotient projection.

We assume the Q/(; has a manifold structure. except on a finite set P of
isolated points (in the topological sense). and that local sections exist at all
points in Q — A\~ P). We also assume that the action (GxQ — @ is free at
all points in Q — \"Y(P).

Definition 6.1.1. e say that a vector field o is group invariant if and only
ifaol,=Tl,0a. Vg € G holds. where I, : Q — Q is given by q — gq.

Definition 6.1.2. W say that G is a symmetry group for the nonholonomic
system (Q. L. M. D..3) if and only if:

[. L is group invariant. That is to say that Lo Tl, = L.¥g € G holds.

2. M is group invariant. That is to say that M(TL,(€).T1,(C}) = M(£.¢).
Vge G.E€TQ.C € TQ holds.

4. The constraint distribution D is group invariant. That is to say that
7€ D implies Tl,(t) € D.Vg e G.

42
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1. The vector field 3 is group invariant.
Recall that a natural Lagrangian is one of the form

I .
L) = 3[\(7'.7') — [ ox(7).

Proposition 6.1.1. .\ natural Lagrangian L is group invariant if and only
if the kinetic inner product K and the potential energy U are each group
mvariant. That is to say if and only if

o N(TI(m).Tl(T))=R(r.7).Vge CG.7€TQ and
e l'0l,=0U.Vgei
cach holds.

Proof. We must have
| .
5.«'[\([7”(7). Tl(7)+ L ol,oxr(r)=
1, . . .
53 R(r.7))+ U om(7).Vg€ G.teTQ.se R.

But two polynomials are identical only if their coefficients are. a

Observe that in the presence of such a symmetry. D will also be group
invariant. and that we have

. ; d
(FLoTl(7).Tl(p)) = N
d
a i LT+ sp)

= (FL(7).p).¥Yg.T.p.

L(TL,(7) + s(Tly(p))

s=0

Proposition 6.1.2. The action of a symmetry group takes a trajectory of
the nonholonomic system to another trajectory.

Proof. This follows in an obvious way from Hamilton's Principle. proposition
3.4.1 on page 28. when one realises that. for a trajectory ¢ = ¢(t). d({,0q) =

T'l,(dq) and d(l, o q}/dt = Tl,{dq/dt) hold. a
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So we see that we can. in principle. reduce the problem of finding tra-
jectories to a problem on TQ/( rather than TQ. The trajectories in TQ/(s
will of course be restricted to lie in D;/G.

Example. Nonholonomically Constrained Particle in R*
We introduce now an example which we will use to illustrate the ideas

that follow.

This example has previously been used both in [3}. and also in [7] to
illustrate symmetry related theories for nonholonomic systems.

In this case Q is R2. We use (.r.y. =) to parameterize Q. The Lagrangian

Lo, 5 5
L= ;(.r“ +y-+ 3°).
The constraint is
= yr.

The symmetry group G is £2. We parameterize (¢ by (Ar.Az). The group
action is given by the map

(T.7.2) = (r+ A y. =+ Az).
Differentiating in order to lift the action to TQ we have
(F.7.3) = (£.4.2).

which shows that L and the constraint are preserved. d

6.2 Distributions Associated with Group Sym-
metry

Let g be the Lie algebra of (¢. Recall the following well known definition.

Definition 6.2.1. Let £ € g. The fundamental vector field & on Q associ-

ated with € is defined by

d
fola) = —|  (lexpsf)q). Vg€ Q.

“ls=0



Definition 6.2.2. The vertical distribution V" on Q is given by
V= {&(q)l€ €a.q€ Q}

This last definition is perhaps a contradiction in terms. Since the group
action is not necessarily free everywhere on Q. the dimension of ™ may
collapse at points in A7 P). We will nevertheless call I~ a distribution.

Observe that {” is group invariant. since T4,(&(q)) = (Ad,&)q(9q).Yg €
(i.q € Q holds.

Definition 6.2.3. The distribution S on Q is given by S = 1" N D.

Observe that the dimension of § may also collapse at points in A\™'(P).
and that S is also group invariant.

Recall that for natural Lagrangians. there is an associated kinetic in-
ner product K. We may define the kinetic inner product A" for a general
Lagrangian L by A'(q) = F?L(0,). where 0, is the zero vector at q.

Definition 6.2.4. The horizontal distribution # on Q is given by H =
DNSL. where the kinetic inner product K is used to determine orthogonality.

Observe that H is also group invariant. that D = # = S holds. and that
the dimension of // may jump at points in A7 P).

Definition 6.2.5. The distribution N on Q is given by N =V N S+ where
the kinetic inner product K is used to determine orthogonality.

Observe that \ is also group invariant. that V" = 5= .V holds. and that
the dimension of N may jump or collapse at points in A\™'(P).

Lemma 6.2.1. The distributions H. S and N satisfy H-=S-=N =D+ 1.

Proof. We have already observed that D = H =S and V"= 5-= .V hold. But
we also have HN N C DNV =S.sothat HN.NC HN S =0 holds. O

Definition 6.2.6. The distribution R on Q is given by R = (D+\V")%. where
the kinetic inner product K is used to determine orthogonality.

Observe that R is also group invariant. that TQ = (D + V") = R holds.
and that the dimension of R may jump on \7!(P).



10

Proposition 6.2.1. [f the set P of singular points in Q/(7 is empty. then
the distribution H — R on Q determines a principal bundle connection on

A Q= QG
Proof. It 1s clear that H = R is group invariant. and that TQ = (H - R) =V’
tolds. O

Even if P is not empty. we will have T\(H = R) = T(Q/(r) elsewhere,
and mauny of the concepts of principal bundles. such as horizontal lifts. may

be used on Q7 — P.

Definition 6.2.7. e say that the group symmetry salisfies the dimension
assumption i D+ V = T1TQ (that s dim R = 0) holds.

[f the dimension assumption is satisfied and the set P is empty. then H
will be the horizontal distribution for a principal bundle connection. This is
the rationale for the expression horizontal distribution for H.

Example. Nonholonomically Constrained Particle in ®*
Recall that. for this example. we had

Lo,
L = ;(.i-' +y°+ 7).
I o= yr and
(F.¥4.T) = (e+Ar.y. 2+ Az).

The distribution D is spanned by the vector fields (.r.g.2) = (1.0.y) and
{£.9.2) =(0.1.0). The distribution " is spanned by (r.y.2) = (1.0 0) and
{(#.g.2) = (0.0.1). The distribution § = V"N D is spanned by (r.g.3) =
(L.0.g).

The kinetic inner product is given by

RUCE 5. 2). (6§ 2)) = B2+ 4y
The distribution # = D N S+ is thus spanned by (#.y.2) = (0.1.0). The

distribution .V = V"N S+ is spanned by (r.§.3) = (—y.0.1).
[n this case the dimension assumption is satisfied. a
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6.3 Local Bases Aligned with the Symmetry

For the next definition. we use the ideas introduced in chapter 4.

Definition 6.3.1. A quasivelocity basis {Ky.Kae .. c51cY20c0 o \1o 200 e -
Cl-S2....} is said to be aligned with the group symmetry if and only if

e Fach rvector field in the basis is group invariant.
o {~i.ma. .} s a local basis for H.

o {~1.72....} is a local basis for S.

o {\1.-\2....} is a local basis for N.
o {Gi.<2....} &5 a local basis for R.

\WWe may on occasion introduce such a basis without distinguishing the \
vector lields from the ¢ vector fields.

Proposition 6.3.1. There is a local basis aligned with the symmetry at cach
@ € Q — \THP).

Proof. Let © : " C Q/(G — Q be a local section of \ : Q = @/ at qu. So
we have \ oY = id and Yo \(q) = q. Let [ : AHIE) = G be the map
such that [{(g)(X o \(q)) = q.Vg € \7Y(I}") holds. By this we mean that
(N.T): ATHIE) = 18 < (7 gives the local trivialisation.

Observe now that any vector fieid o : Hy € A7 (") = TQ may be used
to define a group invariant vector field @ : A HEYHY)) = TQ by

a(q) = Tlrepla(X o A(q)))

The linear independence of a set of vector fields will be preserved since
1'lr(,y is non-singular for ¢ € \"' (W) C Q — A Y P).

So the proposition is proved by taking any local basis for each of . 5.
N and R. redefining the vector fields in the above manner. and then taking
the union of these modified bases. O



Example. Nonholonomically Constrained Particle in R*
Recall that. for this example. the kinetic inner product is given by

R((&.y.2).(L.g.2)) = L+ yy + 2=

with
' = span{(0.1.0)}.
S = span{(l.0.y)}.
N = span{(—y.0.1}} and
dimR = 0.

So {(0.1.0).(1.0.y).(—y.0.1)} is a basis aligned with the symmetry. O



Chapter 7

Finding Group Invariant
Constants

7.1 Restrictions on the Vector Field

We have given in proposition 5.1.1 on page -0 a criterion for a constant of
the motion of the form

C(r)={(FL(r).00x{(tT}))

fo exist.

A constant of this sort is of greater value in a problem with a symmetry
aroup if it is group invariant - that is to say if ("o Tl, = C".¥g € (7 holds.
[n that case it induces a function C on T'Q/G which is a constant of the

recduced motion.
\We assume now that we have a symmetry group as in the previous section.
We find then. if & is itself group invariant.

(7.1) CoTl(r) = (FLoTl(7).ocoxoTl(7))
= (FLoTl,(7).0c0l,0x(T))
= (FLoTl, (7). Tl0o00w(7))
= (FL(7).c0wm(T))
= (7).

Hence we will impose the additional requirement that o be group invariant.

19
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Hereafter in this section we assume that [ is a natural La-
grangian and that there is no magnetic field (that is, M = 0 holds)
and that 3 = 0 holds.

The requirements for & now are (section 5.2):
® o is group invariant.

e o D.

0 %(L,,[\-)(T. 7)=(ol)om(r). YT € D.

The constant of the motion now is A(7.0 0 7(7)).
Since the potential (" is group invariant. we will have o(q){" = 0. Vg it
7 is vertical. Hence we now also impose the requirement o € 5. leaving us

with

(LA )7.T)=0.YT € D.
[n order to examine this criterion. let {Kj Koo 0 o5 %20 ce e o\ 1o\ 20t on o8I
Ga....} be a basis aligned with the symmetry. The criterion above is equiv-
alent to

(L”[\’)(O.p) = 0. Vﬂ.p < {H[.Hg. B 2 T 11 NP }
We may calculate
(L. N)a.p) =a(K(a.p))— (KN([o.e].p) + N(a.[o.p])).

But a( K'{a.p)) is identically zero. since o is vertical and A'(o.p) is a group
invariant function on Q. So we need

K{fr.al.p}+ Ko [m.p]) =0.Va.p € {xi.h2. .. cmpa 72 |

7.2 The Flatness Conditions

Since o is vertical. we may write 0 = o‘5;. The functions o will be group
invariant since o is. Making particular choices for a and p we require
0 = AK([o.v]-w) + K(vj-[0.74])
= ~(%0 ) K (v ) + o K[ 9] )
— (o YK (). 7i) + o K (- [7i- %))
= o' (A([v. 7] ) + K(v5. [5e- %))



and
0 = A([o.k)]. ki) + Kk [o.8e])
= —(HJO'i)[\'( Yi-Ke) + o' [\'( [“;,‘. h?j]. KL)
—(ke0' VW (K. 50) + 0 Kk, [7i-0])

= o' (N([v.5,)ome) + K(x,. [5:58])-
[f we hope to find a non-zero vector field . we are led to the conditions:
(7.2) KN([vi-v]-3) + K(jfriew]) = 0
(7.3) KN([vi-n,]-m6) + KN(r, [ieme]) = 0.
Proposition 7.2.1. [f equations 7.2 and 7.3 are satisfied for one choice of
aligned basis. they will be satisfied for any other.

Proof. Suppose {&.®»....} is another basis for /. and {F,.5,....} is an-
other basis for 5. We must have &; = alx; and 5, = b/, where af and ¥/ are
group invariant functions.

So we have

5.7 = b50™[3k. vl + 5 (5407 ) vm — 0T (7mbf )
= B kel
and then
K755 + NG [Fe-5)
= b:nb_'lll)i-( [\.( [A/'"l' A/’"]' N,'p) + [\'( ‘;'n- [A,"m- 7p] ) )
0.

So equation 7.2 holds for the new basis.
Next we have
F..%5] = bf-"a;-“[:,k.f;,,,] + bf"(‘}ka;-"}ﬁm - a;“(rcmbf-")jk
= bfa [k vm] — @7 (Kmbf )
and then
R(F.7|.7) + K(E.[7:-Fel)
= bl aSaf( K ([ym.Kn]-kp) + K(Ka.[7m-5p]))
0.

since A'(k,.7s) = 0. Vr.s holds. So equation 7.3 holds for the new basis. O



Definition 7.2.1. Ve call equations 7.2 and 7.3 the Hatness conditions. [
will say that a symmetry satisfying the flafness conditions is flat.

We will later describe physical systems of interest for which these condi-
tions are satisfied.
Finallv. observe that we have

0 = Aty u))
= (Lo, A3 ) + K)o w) + Ry [eewe])
and similarly
0 = ~(WN(k.K))
= (L. K ne) + Ko, me) + K5 [riome]).
so that the flatness conditions. equations 7.2 and 7.3 may be restated as

(7.1 (Lo, W)~y = 0
(7.9) (L. A NK,.x) = 0

Example. Nonholonomically Constrained Particle in R*
Recall that. for this example. the kinetic inner product is given by

N g.2) (2. g.2)) = &L + gy + 22
with
ke o= (0.1.0) and
o= {L.0.y).

Equation 7.2 is true since 5 has dimension l. For equation 7.3 we first

calculate

[‘:’l-h'l] = 1(0.1.0) =~ (1.0.y)
= (0.0.0) —(0.0.1})
= (0.0.-1).

and then
K([y.a] k1) + K(s[n.s]) = 0.

So the flatness condition is satisfied. O



7.3 The PDE

Making the remaining choice for o and p above. we also require
(7.6) K([o.5,]-50) + Wi, [osi]) = 0.

Proposition 7.3.1. [f equation 7.6 is salisfied for one choice of aligned ba-
sis. it will be true for any other.
Proof. Suppose {K|.F,....} is another basis for #. and {%,.%,....} is an-
other basis for 5. We must have &; = ax, and %, = &5, where «/ and b/ are
group invariant functions. So we have
KN(o.7,].7) + K(F,.[0-F])
= Ko )3 + [ 3] afin)
+R(BT 5 (Tag )k, + aglo.k,])
= apb (K [7.%m]. &a) + N(3m. o 5:]))
0.

So equation 7.6 holds for the new basis. a
Writing @ = o'+, as before. with the functions o* group invariant. we have

0 = A([o.7,]-ke) + KN~ [0 ki])
—(5;0 VK (vie k) + & K([30.3] me)
—(rkeo VN (7, 50) + 0 K (5 [0 wi])
= —A(5,.5:)(kk0") + (N ([0 ] k) + B3 [ me))-

ar
(7.7) N7, vilmno’) = o (K ([ 1] 86) + K (55 [ me]))

Observe that in this last equation. the matrix with A'(3,.3;) for coeffi-
cients is positive definite. since A" is. and therefore non-singular.

Also in equation 7.7. A'(5;. %) and N([vi. ;] 5&)+ K(5;. [7:- ni]) ave each
group invariant functions on Q. since the Lie bracket of group invariant vector
fields is group invariant. and A" is group invariant. But sio’ is also group
invariant. as follows from

kelgq)e’ = (Tlri(g))o’
= 'fk(Q)(qIOIQ)
= wi(q)o’.
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In fact. since wy is group invariant. it induces a vector field K¢ on Q/C/
such that T\ o kx = 7 0 .\ holds. Similarly. ¢’ induces a function 7 on Q
such that o' = 7@ o .\ holds. Mloreover. the function induced on @ by xio* is
precisely 5.7 .

So we see that equation 7.7 is locally a partial differential equation on

0/

\We will not discuss the integrability of this PDE in the general case.

Definition 7.3.1. W¥e say that a nonholonomic system is elementarv. or
that the system falls into the elementarv case. if:

o The flutness conditions are satisfied.
o The distribution H is of dimension I.

[n the elementary case. equation 7.7 is locally a linear ordinary differential
equation. This O.D.E. will have parameters if Q/( has dimension greater
than L. [u light of proposition 7.3.l. solutions may be extended beyvond a
local patch. to all of Q/G. perhaps excluding boundary points. There is also
the possibility of a multiple valued solution. So we have:

Proposition 7.3.2. [n the elementary case. we may obtain linearly inde-
pendent solutions of equation 7.6. equal in number to the dimension of N.

We will later describe physical systems of considerable interest which fall

into the elementary case.
As in the previous section. from

0 = (K (5;.k5))
= (L., K)(%jk6) + N([3ie %] m0) + K550 [ w1])

we may restate equation 7.7 as

oL

) K(%j.5:i)(kra’) + o (Lo, K) (5. Kk) = 0.

(7.

Example. Nonholonomically Constrained Particle in R*
Again. the kinetic inner product is given by

K((&.g.2).(L.g.2)) = £2 + gy + ==,
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with

£y = (0.1.0) and
1 = (1-0.!/).

We also had

[+1-x1] = (0.0. —1).
For equation 7.7 we calculate

K(si-m) = L+y5
and then

K51 [51-81]) = =

in order to obtain the PDE

(L+ .lf)%l = o'(—y)
This equation is solved by
) l
o= \//l—-i-l/—-’

The associated constant of the motion is
r+ys

KN((&.9.3)0') = T
viTy

7.4 Vertical Component of Trajectory

Suppose we have independent solutions of equation 7.6. equal in number to
dim S. for a system with a flat symmetry.
Then the equation

K(Q.o:(q)) = .J;
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together with Q € S. determines Q for each value of ¢ and ./ (thinking of ./
as a vector). [f we write

Q:Q(J.Q).
then from
K(TL(.q)-0gq) = K(TLIQLq).Tl, 0 olq))
KN(Q(S.q).7:(q))
g
= RK(Q.J.gq).7.9q)).

Il

I

we see that
QS gq)=TL oS q)

holds.
[f g = q(¢) is the trajectory of the system. then if we put

Ji0) = K(q(t).a;0q(8)).
J; will be a constant function of £. [f we split ¢ into its H and &~ components.
as
G=qu +¢s
with ¢y € H and qs € S. we must therefore have

qs(8) = Q(J.q(t)).

7.5 Adjoint Equation

We now show that Q. defined in section 7.-L. satisfies a PDE. which may be
described as being adjoint to equation 7.8. This PDE will be signiticant in

the next section.
Let {xi.~2.....%1.72....} be an aligned basis for D. as usual. Writing

o; = al~; and Q = Q¥+, we have. using equation 7.38.

0 = wal(h(Q.0;))
= {km(K(.5;) }0{+Qk[\’(~,*k.*,'j){ﬁm0{}
= {rm(K(Q13,)}0! — Q*{c!(Lo, K) (k- Rm) }
= o {km( K (7. Q) = (Ls, K)(km- D)}

——



We may conclude that Q satisfies
(7.M K (R (3.Q)) = (L., K)(x;. Q).
In light of

0 = w(K(x,.Q))
= (L., K)(~,.Q) + K([vi.x5,]. Q) + K(x,. [5:- Q]
equation 7.9 may be restated as
(7.10) K KNGO+ K35, D+ Kix,. [7:-9Q]) =0.
Definition 7.5.1. e call equation 7.9(or equation 7.10) the adjoint equa-
tion to equation 7.5(or equation 7.6. respectively).
One other useful form of the adjoint equation is
(LD R OR (3 3)Q8) + (R[5 8y )-) + ROk, e wDHE =0,
Proposition 7.5.1. If equation 7.10 is satisfied for one choice of aligned
basis. it will be true for any other.
Proof. Suppose {F;.Rs....} is another basis for A. and {3,.7,....} is an-
other basis for 5. We must have ®; = alx; and F; = b7, where « and b are
group invariant functions. So we have
R (N(F.Q) = alwalb K(5m.9Q))

= aj(h,,b'")[\ - + @bk (K (5. )

and at the same time
N([7,.7%1.Q + K(F,.[7.9)
= N(a}b!' [p-wa] — @H{5ab])7m- Q)
LN (@m0 [rm- Q] = (] )7m)
= —a (kb K (3. Q)
+a;-‘bf"{[\ ([m-&a]- Q) + K(Ka[3m- D}
Adding these results we have
7(KN(F.9Q) + KN([F.5].Q)+ K(FE.[5.-9)
= &b {Ka( K (5m- Q) + K([vm-£a]- Q) + K(kn [3- Q] }
= 0.
a
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The discussion of equation 7.7 in section 7.3 may be adapted to see that
equation 1.10 is locally a partial differential equation on Q/(;. As in section
7.3. in the elementary case. we may obtain independent solutions of equation
7.10. equal in number to the dimension of S.

Giiven these independent solutions to equation 7.10. we may reverse the
process used to construct Q). by using the equation

K(i(q).0) = J;
together with # € S. to construct solutions to equation 7.6.
Example. Nonholonomically Constrained Particle in R?
Again. the kinetic inner product is given by
RU(E. g 2). (£ 2)) = B+ g + 22
with

Ky = (0.1.0) and
1 = ([.0.y).

We also had
[““_.h'l] = (0.0.-[).
N(y.~1) = L+y? and
KNisi[si-/d]) = -y,
For equation 7.11 we obtain

d

g T+ yhia'} =yt

This equation is solved by

Q=S
Vi+y?

where (" is a constant of integration. Thus we have

Q = Ql"!l



Since x, has no .r or * component. throughout the motion we have

) C
I = — and
[ + y?

. Cy
A simple calculation then gives
r+yz

VAR 'L

so that ( is the constant of the motion found earlier. O

= (.



Chapter 8

Equations of Motion

In this section we exaniine the equations of motion (that is Poincaré’s equa-
tions) in the presence of a symmetry group. using a basis aligned with the
svmmetry. for the case where L is a natural Lagrangian with there
is no magnetic field (that is, M = 0 holds) and 3 = 0 holds.

8.1 Reduction to TQ/G

Recall Poincaré’s equations for natural Lagrangians. equations 1.6 and 4.7
on page 33,
] , 1 . .
{KN(a,.a, )’} — ;(L,,l I\ )(aj.ak),uﬁz“
—.\[(a;.aj)/ﬂ-{-a;['=,\J-(Bf.o,-> and
<Bi.01) =o'

If we now take the basis {0,.as....} instead to be a basis {(;.C.... .
\1-\2.--- }. such that {¢;.Cz2....} is a basis for D. and correspondingly re-
name the quasi-velocities g, according to

§'(7) = 0/ (7)¢) + = (1IN
then the constraint equation reduces to
(Bi. \j> {=/(r) — =/ (3)} =0.

Now the matrix with coefficients given by (B*. \;} is non-singular. since DN
(span {\(. \2.-.-}) = @ holds. So =’ is determined (for each j) in the general
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case. and in this case we must have =/ = 0. Using this the remaining equation
above becomes

.. , 1 .. . .o .
(R NG Y = 5L KNG Gr)87 0% — M(G. ()8 + ¢ =0.

if in place of equations 4.6 and 1.7. we use Poincaré’s equations in the form
of -L.1 and -L.5. rhis last equation becomes instead

(3.2} {K(G.)e Y
- 5{[\([@.\@,]-&/\-) + K- [G-Ge)) = G{A(G- G P Ho7 0
- -‘[((l‘gj )0', + (i(-- =0
We will later use the following:

Lemma 8.1.1. The collection of systems of equations. obtained from equa-
tion 8.1 (or from equation 8.2} by taking each local basis {(1.Co.... } of D.
determines the same trajectory in QQ as the collection of systems of Lagrange s
cquations in definition 3.1.} on page 20.

Proof. We will only sketch the proof.
[ntroduce arbitrary coordinates 4* on ). We must obtain equation 3.1
and equation 3.2. We immediately have

. )
B¢ = (B .¢=—
x <B ! 00'>

= (B'.0'¢)
= 0%(B’.¢)
= 0.
which is equation 3.2.
We now write
d

A long but straight forward calculation vields
Jd A\ Jd 9 - oU
(o= ¢ ) - M. =)¢ - —
{(A (8(1" (‘)(,J) qJ) ! (aqk 3(1’) T 0(1"} .
= {[\-( Ci- CJ )0" }l
| o e e .
- 5{[\([(.i-QJ]-Qk) + K(G- G- Gel) — G{A(G Gr) } Yo 0
- M(G. G +GU =0



But we also have
Bi¢f =0.Y).

By considering the left null space of the matrix with coefficients given by ¢F.

we see that we must have

9 0 ! Jd 9 U
| —.— ] g - — . — g =\, Bj.
{[‘ (52 aqf) v } o (aqk an) T o

for some set of multipliers {A;. As....}. But upon reflection. this is equation

3.1 O

8.2 Introducing the Symmetry

Up to this point. we have not used the symmetry. Nor have used our M = 0

assumption. We will do so now.
[f we further refine our basis for D to be a basis {~xj.~ae. ... F1-72--.. .
\1-\2.-..} aligned with the symmetry. as in definition 6.3.1 on page 47. and

correspondingly rename the quasi-velocities p; according to
¢'(T) = eHT)R) + (7)) + =TI

and use the group invariance of the potential {". equation 8.1 splits into

(S.3) {KNiyi3, )Y} — é(f. K)(k,. kp)ede*
1
- E(L”l.[\)( I ,k)--JQL
— (La K)(). 30)0? QF
= 0
and
(S.-4) {K(kir)’}Y - ;(L,\l[\)(ﬁj.hfk)l"’l‘k
1
- 5(1: K)(7. 1) QF
— (L, K)(K. )0’ QF
+ n( =0.



while equation 3

(8.9)

and

(3.6)

{A(5i3,)Y

{K(wion,)0?

}I

}I

+ +

+ 4+ 4+ +

3.2 splits into

—{[\([ oKy |ome) + K. [yieme]) bed et
l . .
ST (i3l ) + K5y (i D QF
{K([5i- 5] ) + K(r, [ s bl QF
0

l .
;{[\—([h’,'. Kl we) + A5 [h.',’.lfd)}f""l'k
| . .
S{K([Ki 2] + K5, -[h‘.’-‘;k})}QJQL
{K([r:vj)e56) + KN{w,re ] ) J'Q

h’,’(.

é{l\',‘{[\—(fij.f{k)}}v"’l_'k

1 . .
E{Ni{[\("u" 1) P O* = 0.

8.3 The Vertical Component

These conditions once again may be expressed either as

or as

K[yl + K i) = 0 and
N([vior)]ome) + K(wy. [vieme]) =

(Lo )5 o) = 0 and
(L, R)(r)ome) = 0

With this assumption. equation 3.3 becomes

{K (330} = (Lo, R)(k, )0 Q5.

(3

We now assume the flatness conditions. as in definition 7.2.1 on page 52
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This may be written as the PDE
i LR (303008} + O™ (R (ie )28} = (Lo, Rk 30O,

If we set Q = Q'~;. then Q is the vertical component of the trajectory. If.
as in section 7.3. we impose the requirement that 0 be group invariant. the
previous equation simplifies to

e, LR (i )} = (Lo, R)(K, 30 0/ Q5
We are led ro eliminate the ¢/ functions by considering instead the PDE
(R.7) W { K (i 30)QF} = (Lo, Rk, 3)Q5
which is the same as
(N.3) K AR (7 Q) ) = (L4, R)(r,.9).

We recognize at this point that equation 8.8 is the adjoint equation. equa-
tion 7.9 in section 7.5. As in section 7.5. this PDE may also be written

(3.9) K ARG+ K305 Q) + K(x,.[7..9]) =0.

which of course is identical to equation 7.10.

[n the elementary case (definition 7.3.1 on page 34). equation 3.8 hecomes
a linear ordinary differential equation. in the same manner that Pquatlon 7.6
did (see the discussion leading to proposition 7.3.2 on page ).

This ODE is precisely the ODE found in the classical analyses of the
rolling disk. the ball on a surface of revolution and the rolling axially sym-

metric bady. as we shall show later.
If ¢ = q(¢) is the trajectory of the system. we split ¢ into its H and S

components. as
q=qu +qs

with gy € H and ¢s € S. [f {g is a point in the domain of ¢(t). then © must
satisfy the initial conditions

Qfq(to)] = ¢s(ta).
and we will then have

gs(t) = Qo q(t). Vt.
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We obtain one more property of €. used in the next subsection. by using
equation 8.9 to calculate

K AKN(9Q.Q)) = (h’_,--i)[\-(“;“'.Q) + Q'n, {N(7:. D)}
= (K, (5.0Q) - O {A([vi-5,]- ) + Kiw,-[7-Q))}
= (KN (5,.9Q) — A(Q[.1,]- Q) = K(x,. 2.0}
(R, QYR (3. Q) = R([Q. k)] + (1,25 Q)
—K(x,.[Q.Q] +(Q9)7))
= A([~,;.9].9).
Applying this to
(Lo, A)Q.Q) = m; {A ()} — 2K ([x:. Q). Q)
we have

(8.10) (Lo, AN = —w {A(Q. M}

8.4 Reduction to Q/G

[n this section. we suppose a group invariant S-valued vector field @ exists
on Q — A\~ (P). such that the trajectory of our nonholonomic system satisfies
q = Qo0q. As we have seen. this supposition holds in the elementary case
(proposition 7.3.2 on page 31 and section 7.-4).

Now consider equation 8.4. This becomes

{KN(rin)?}Y — é(LN. K){(x;. wp)ed o

l .

- (L R)NQ.Q)

— (Lo, A MK, Q)

+ h’,’[’

= 0.
Using equation 8.10. equation 8.4 may be further rearranged to obtain
. » L . ke

(3.11) {K(ri.xj)'}y -~ S(L,‘I[\)(Hj.fck)v"v‘

— (Lo R)(x;. Q)
+ H;{(-'+;£-K(Q.Q)}=O.
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Lemma 8.4.1. A function U : Q/G — P — R is determined by the require-

ment

TCo\={(+ é{{(Q.Q).

Proof. The function { '+ 3A(Q2.Q}: Q — \7'(P) — R is group invariant. [

Definition 8.4.1. The function U on Q/(. in the preceding lemma. is called

the reduced potential.

Lemma 8.4.2. A metric K on Q/G is induced by the requirement
R(TA+).T\)) = K(r.7).YVT € H = R.

Proof. Recall that TA(H = R) = T(Q/() holds. and that T'\({r) = 0 with

7 € H = R implies 7 = 0 (refer to the comments following proposition 6.2.1
on page 46). And A is group invariant. 0
Definition 8.4.2. The metric K. in the preceding lemma. is called the re-
duced kinetic inner product.

Lemma 8.4.3. For each i. a vector field &, on (the appropriate portion of )
Q/ ¢ is induced by the requirement

K; 0 A=T\o K.
Proof. Each vector field x; is group invariant. d

[f we put D iT.\(D). then D is a distribution on Q/(_r (Fi.Fae ..} is
a local basis for D. and we may obtain any local basis for D in this way.

Lemma 8.4.4. The following equality holds:
(Lo, KKy 80) = {(Lz, K)(F,. ")} o \
Proof. \We calculate
(Lo K)(Kr,.hp) = wi{K(nj.ne)} — K[k r)).ve) — K(~, [KioKe])
ki{N(F; 0 \.Er 0 \)}
—R(T\([ri-xj])-Fr o \)
_R(R, 0 AT \([re.re])
= (R0 VM) {K(R;.%r)}
—R([F;io \.Ej 0 A].Kro.\)
—K(FjoA.[Rio \.Fro\])

= {(Lz K)(F.Fe)}o \.
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a

Lemma 8.4.5. There is a group invariant 2-form M on Q such that. for
any group invariant vector fields v and p with v.p € f.

Mir.p) = (L. K)(p. Q)
holds. A 2-form M on Q/G is induced by the requirement
M(TANT).TAp))= M(t.p).¥YT € H = R.

Proof. Recall that T\(H = R) = T(Q/() holds. Therefore we need only to

define M.
Let 7 and p be group invariant vector fields with 7.p € f[. We have

(LK) (p. Q) = 7{R(p. )} = ~A([r.p]- Q) — K(p.[7.9Q])
= —K([r.p].Q) — K(p.[7.Q]).

But each of these terms is linear. and anti-symmetric in 7 and p. To see this.

we have locally

K([r.pl.Q) = K([7'ri.ps,].0
= P {N([ri-5;]-Q }+("p’)[\(h, Q) = (p7 YN (K,.Q)
= 7' {N([rirx,]. )}

and

Kip-[rQD) = p' Rk [rn,. Q)

= PR )
+p' K (K (7Q)3x) = p R (i (Q77)R,)
SO K 5yl (0 K
e 1 K sy 36D

These are bilinear expressions. The coefficent in the first is clearly anti-
symmetric. The coefficient in the second is anti-symmetric due to one of the
tflatness conditions. equation 7.3 on page 31.

This serves to define the value M should take when restricted to vectors
in H. The group invariance of the coefficients. in the local expressions. show
that this definition is group invariant.

But the inner product A" may be used to project any vector to . Using
this we extend the definition of M all of TQ. The group invariance of A
ensures the group invariance of M. g
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fn light of the preceding lemmas. it is now apparent that equation .11
pushes down to
— l — '
{(K(r.7)Y = S(Le K)(F,.Re)e’ e
— WF.r) +70 =0
on Q/(;. These reduced equations on Q/( are in the same form as equation

S.1. Observe that the reduced magnetic field form M need not be closed.
["sing lemma 3.1.1. we have:

Proposition 8.4.1. Assuming

o the flatness conditions are satisfied and

o the adjoint equation is integrable.

the projection onto Q[ of the trajectory on Q. corresponds to the trajectory
of a reduced nonholonomic system on Q[(;. with constraint distribution D.
magnetic field form M and natural Lagrangian L : T(Q/() — R given by

L(7) = —-h(7r.7) -lo TQG(7).

where 7o, : T(Q/G) — QG is the tangent bundle projection.

Note that A(q) +{ om(§) = K o T\(§) + T omg;0 T-\(q) holds. so that
the energy in the reduced svstem is the same as that for the original.

Corollary 8.4.1. [fin addition to the requirements of proposition 8.{. 1. the
reduced magnetic field form is closed. and the dimension assumption. D =
TIQ/(i). is satisfied. the reduced motion on Q/( is Hamiltonian.

Finally. note that if the dimension of Q/G is 1. then M must be zero. If
the dimension of Q/G is 2. then M is necessarily closed.

Example. Nonholonomically Constrained Particle in R*
Recall that the kinetic inner product for this example is given by

K((r.g.2).(L.g.2)) =1L+ yy + 32
with a basis aligned with the symmetry given by

xy = (0.1.0) and
o= (L.0.y)



by

We also have previously found

0= o

) —Tjiﬁ

where (" is a constant of integration. The reduced potential becomes

(1.0.y).

— L.
{ = ;[\ ( Q. Q)
1 C* .
= - 1 -
21+y“ tv)
L .,
= —("’
2
while the reduced kinetic energy is
— L . .3
N = 3[\(1»:[./»:[)_(;'
1,
= 5!/ .

In this case /(7 is parameterized by y. and has dimension [. So there is no
magnetic term. The reduced equation of motion will he

y=0.

8.5 A Helpful Proposition

[n the following sections. we will examine a number of examples. In each
case. we will want to construct a group invariant basis for D. All of the cases
considered will satisfy the criteria of the next proposition.

Proposition 8.5.1. Let the configuration manifold be a cross product of two
other manifolds. Q = M x P. Let ¥ : Q — P be the associated projection

map. and suppose that
e TY(D)=TP and

o TY(v)=0 implies7 =10



0

hold. Then given a vector field € on P. there is a unique vector field €2 on
Q with €2 € D and TS 0 &P = €0 S (called the lift of £). Suppose also that
the symmetry group ¢ for Q has an action on P alone such that

° SolyzlfOS.VgéG

holds (I refers to the action on P). [f € is group invariant under the group
action on P. then &P is group invariant under the group action on Q.

Proof. The existence of a unique solution of TS 0 (2 = £ 0 ¥ at each point

of Q is clear. The proof that this solution is differentiable is tedious. and

tvpical of proofs in differential geometry. We will not provide this here.
[fin addition £ is group invariant (Tlfof = Eolf. Vg € ). then we have

]

T(Sol,)ocP
T(IFoS)oe?
= Tl oTSog?
Tlfofos

— P
= fol, 0oX

TSoTl, o&P

€o %
£o¥ol,

— T D
= TXo&"ol,

From this we have T/, 0 D =¢Dg l,. So €0 is group invariant. d



Chapter 9

Axially Symmetric Rolling
Body

[n this section we consider the example of an axjally svmmetric body rolling
without slipping on a horizontal plane in the presence of a nniform gravita-

tional Held.

9.1 Formulating the Problem

[n this subsection we formulate the Lagrangtan and the constraint equations
for this syvstem. using globally defined quasi-velocities.

(‘onsider figure 9.1 below.

The figure is a cross-section. The point (' is the center of mass. The
point A is the point of contact of the body with the horizontal plane. The
line BC" is the axis of symmetry of the bady. The line AR is perpendicular
to the horizontal plane.

The angle 8 is as shown. We regard each of the distances a. r. h and d
as an even function of #. with period 27. These distances are related by

hi#) = r(8)+ a(f)cosb and
d(8) = a(0)+ r(@)cosb.



d(8)
a(6)

h(8)

| i £(0)

\

Figure 9.1: Axially Symmetric Rolling Body

which may be solved to obtain

h(8) —~ d(#)cos 8

rd)y = — and
stn~
1(8) — h ;
w(8) = d(8) ‘h_(,(})cmﬂ‘
sin- ¢

We assume that & and d are defined evervwhere. are continuous. and have
continuous first derivatives.

By considering the appearance of the figure as # varies. we see that we
also need to assume that h and d satisfy

h{g)y > 0.v6.
h{0) = d(0) and
hix) = —d(=).

The behaviour of @ and r at multiples of = may vary.

Example. The Rolling Disk

For a rolling disk. multiples of 7 are not valid values for §. and we have
a(f) = —pcotd. r(#) = pcsch. h(8) = psind and d(f) = 0. ¥8 € (0.7).
where p is the radius of the disk. a



Example. Routh’s Model for a Top
For a sphere. a and r are constant. For an axially symmetric body with a

spherical hase. we may have a greater than r. This model was used by Jellett
[22]. Routh [31] and Gallop [16] as a model for a top. Allowing r = 0. it is
apparent intuitively that the base must be a point. and we should obtain the
Lagrange top. This will be seen to be so below. C

We will use the ideas and notation of section 2.5 in this section.

We take the fixed axes so that €3 points upwards in the figure. We take
the moving axes and their associated orthonormal vectors. w;. w» and ws. so
that w3 points along the axis of symmetry of the body. in the direction from
B to ('. The position of the center of mass be given with respect to the fixed

axes by

£y
&Ir= |Ia| =o€ + 0262 + 363,

I3
The orientation of the body is given by W™ € SO(3) with
I = [u'l ws u':;] .

The angular velocity is given by v with respect to the fixed axes. and by «
with respect to the body (moving) axes. The total mass of the hody is given
by m. The inertia matrix of the body with respect to the body axes is given
by ./. The choice of bady axes ensures that ./ is diagonal.

Jo 0 0
=10 J, 0
0 0 .4

and that .J; = ./ holds. The kinetic energy of the body is given by

Loy I .t
NN = 5= -/u.-f-;m.l

I
The potential energy of the body is given by
(= mgelr.

where ¢ is the gravitational constant.



The Lagrangian for this system is therefore given by

1 U
(9.1) L= :)-u.'T./.‘: -+ ;m.rT.l' — mge},-.r.

The rolling condition is that the velocity of the point on the body that is
in contact with the horizontal plane has zero velocity. Consider once again
figure 9.1. The vector from the point ' to - is —(aws-+re;). Using equation
2.8 on page l7. the constraint then is

0 = r— Avaws + reg)
= r— W) all ez + re;)
(9.2) = r+ AaWez + rey)itw

The angle 6 in figure 9.1 will be a function of . with values in the
interval [0.7]. In fact we have

) — T, — T11°
cosf = eywy =€z Hes

and
sin?0 = {A(e3)W e}l Ales)Hes.

Note that using r and 1™ as coordinates suggests that the configuration
space is SO(3) x R>. However. this is not really so. due to the constraint

(9.3) h(B(W)) = eXr.

The actual configuration manifold Q is therefore a submanifold in SO(3) < R>.
casily seen to be diffeomorphic to SO(3) x R*.

Also. equation 9.2 suggests that there are three linear velocity constraints.
But one of these simply requires that the tangent vector to a trajectoriy lies
in TQ. There are in fact only two linear nonholonomic constraints in 7Q.

So the configuration manifold @ is 5-dimensional. and the constraint dis-
tribution D within TQ is 3-dimensional.

Example. The Lagrange Top
Finally. observe that if r = 0 holds with « constant. then equation 4.2 is
just
0 = &+ AlaWez)Ww
= r+alVd(es)w
r—alV A{e)ea
= {.l' bl (l”'-fzg}'.



So. choosing the origin for the fixed axes to be at the point of contact. we
obtain r = al¥’e5. This was apparent from figure 9.1. This is simply the case
of the Lagrange top. I

9.2 The Group Symmetry

[n this section we describe a group symmetry of this system associated with
the Lie group

G =SE(2) x SO(2).

Recall now that the Lie group SE(3) is the manifold SO(3) < R with
the group product given by

(H.yMK.z)=(HKN.y+ H:z).

[t will be convenient for us to think of SO(2) as the Lie subgroup
[Rilo)jo € R} of SO(3). and to think of SE(2) as the Lie subgroup
{(Rs{0) (£.C.0)Ho . E.¢ € R} of SE(I).

To describe the group action. we parameterize (¢ (that is. S£(2) x SO(2))
by R using the map

(0.8.¢.¢) = ((Ra(0).(£.¢.0)). Ra(v)).

The associated group action on SO(3) x R? is given by the map (H.r) —
(7. 7). with

(9.-4) T = Ry(o)iV Ra(e)T
Ra(o)r + ey + Ces.

Il

(9.5) 7
We ohserve first that
Ir=elr
holds. Thinking of # as a function on SO(3) x R>. we also have
cosf = elWey = el Ry(o)W Ry(w) ey

el es = cos .

and so obtain

#=8.
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Lemma 9.2.1. The group action of (¢ on SO(3) x R, induces an action on
the configuration manifold Q.

Proof. Q is determined by the constraint £(8) = el.r. which is preserved by

the group action. since § = # and el T = elr hold. |
The following lemma states a well known fact. which we will use below.

Lemma 9.2.2. The map R — SO(3) : (0.6.0) = Ry(o)Ri(8)Ra(v) is
surjective. The parameters o. 8 and « are usually referred to as Euler angles.

Proposition 9.2.1. The function induced on /G by 8 : Q — [0.7] is
bijective. Hence Q/(7 is a line segment.

Proof. Suppose (F7.z,) and (5. z3) are in Q. and that we have
GH7) = 8(11).
Then we must have
el e = elli%e,.

Let

iy = Bs(o )R8 Rs(ey)
and

W = Rz(02) Ri(8:) R k)

hold. We must then have el R\(#)es = el Ry(#2)e3. which implies cos 8, =
cosf),. So we have either

Ri{0:) = Ri(b) or
R(8) = Ri(—6,).

The first case vields 15 = Ra(0s — 01)W) B3{wy — )T, Otherwise we may
use the identity

RBi(—¢) = B3(7) Ri(p) Ra(w)



to vield 113 = Ryl0r — oy + )W Ra(ey — 9 — 7)T. We may write either of

these results as
Y = Ra(0) 18 Ra(v).
Next. eIz = €Iz, must hold on Q. and so we also have
6_:{{:2 — R3(0)z} =0.

We conclude that (H7.z,) and (. =5) are in the same group orbit. O

We must show that the Lagrangian L is preserved by this group action.

Once again we have

L =

; I . .
e+ ;m.z'r.r - mge_,{.r.

| —

We immediately have

and

So the last two terms are preserved.
From equation 9.4 we have

WAz = T

Rg{O){’i"Rxl"-‘)T
Ry(o)W A(w) Rs(e)T
Ra(o)W Ra(e)T A(Ry(v)w)
= W A(R(v)e).

so that

= Ry

holds. which leads to

l —
:)-7’[ ] o

L
swRs(e)T Ra( e )

|
= ;uJTJu.'.
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since .f; = .J; holds.
Thus we obtain L = L. and so L is preserved by the group action.
We must also show that the constraint.

0=1+4+ A(all ez + res)lic.
is preserved. For this we have

AaWes + re)iTe = A(aRs(o)W Rs(v) es + reg) Ba(o) i w
= Ry(o)A(alW ez + req)lw

and then
T+ A(aWey + res)WT = Ra(o){d + AlaiVey + rez) e}

Since R3(o) is non-singular. we see that the constraint is preserved by the

group action.

9.3 A Basis Aligned with the Symmetry

We now apply the theory of chapter 6 to the current group action. given by
equation 9.1 and equation 9.5. which we repeat as

W = Ry(o)W Ry()T
T = RM(o)r+ ey + (e

To find a basis of vector fields for the distribution V. of vectors tangent
tu group orbits. we take partial derivatives. Each vector field obtained in
this wayv will be the fundamental vector field associated with an element of
the Lie algebra of S £(2) x SO(2). due to the way the parameterization was

chosen.
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Taking partial derivatives. we obtain

HW.T)
i):f (0.0.0.0) = (0al
9—(-!T—l_—) = (0.¢2).
UC (0.0.0.0) .
. T)

N = (Ale3) 1. Ales)r)
do (0.0.0.0)
= (WA Tes). Ales)r) and

M — (_[['.—1(63)0)

I8 {0.0.0.0)

= (W A(—ey).0).

We may map these to (.. .F)-space to obtain instead

7}

% — (0.6[).

7}

i)—C —¥ (0.62).

& .

— = (W Ty Aes)r) and
do

7}

-_— (—63.0).

do

Each of these vector fields will necessarily take values in TQ when eval-
nated on . These four vectors are independent except when Wley = +ey
holds. But this condition implies el 11"e3 = £1. so that I} projects to an end
point of Q/G. We would expect the basis to collapse at such points.

To find a basis of vector fields for the constraint distribution D. in
(w..')-space. we simply substitute values for « in the constraint.

0 =&+ A(aW e+ reg) W

Our choices for & are made with proposition 8.5.1 on page 69 in mind.
For « = €3 we obtain
r = —A(aWez+rez)es

= —‘I’:t( 6’3) "’V(:‘g.






["sing this we have
Kik.y) = [ "VTF:z)fs]T-/f.?
= .I:;[:u [{—Tf;} }631T63

=0
and
R(r.%) = [AMH Tes)ea] T SH Tey
= J[A(W Tesg)es] W ey
= 0.
We have used
Jez = Jze;

for the first calculation above. and
J{AW T ez)es} = S {A(HW Tes)es}

for the second. Hence {~} is a basis for H = DN St.

We have not as vet shown that 5. 52 and & are group invariant vector
tields. We defer this to the next subsection. in which we also show that this
basis satisfies the flatness conditions.

9.4 Group Invariance and the Flatness Con-
ditions

The calculations in this subsection are based on the following notion. Think-
ing of %;. 32 and ~ as differentiation operators. we have

(9.6) S = T Afes).
s = —rd(es)Wes.
wW = WA e)
= Ae3)W"
b = ad(ez)les.
e = WA Tez)es)

A(A(es)HW ez} and

ke = —des+ hlles.



e
[

To apply these differentiation operators to general expressions involving I
and .r. we must apply the usual rules for taking derivatives of products and
sums. [n particular. we may find

from which we conclude that

holds. We may also calculate

so that

holds.

1{cos 0)

12(cos §)

—sin (k)

= vi(eftey)
= el(iW)es

= e{”’.—l(e_;)e,x

0 and
= 65.4(63)”'63
= {.
"[0 = '30 = 0
= x(cosf)

= h'(f_:{”'.f;;)

= 5 Al A(e3) e ey

= —el (1 es)A(e3) 1 ey
= —{A(e3)Wes} T Ales)H ey

- -3
= —smi 6.

n8 = sind



Proposition 9.4.1. The vector fields (. v, and v are group invariant.

Proaf. For ~| we calculate

..‘II—['—'

For = we calculate

[For & we calculate

W

It

I

t

1

H1( Rato) W Ry(e)T)
RB3(o) W A(e3) Ry(v)F

R0} Rs(w) T A(Ra(v)es)

W A(es) and
1 Bz(0)r + Ee; + (e2)
Ry(o)(—=rA(eq) 1 eq)

—rA( Ry(0)ez) Ra(o) 1V Ry(w) T eq

—rA(e3) Weq.

";‘_'(R:;((D)[’[‘R:;(‘—‘)T)
Ra(o) Alez) W Ry(u)T

Al Rz(o)es) By( o)V Rs(v)

Ales) T and
J2( Ba(0)r + &y +(e2)
Ri(o)(aA(es) i es)

(l.“.( (:i)Wﬁ';.

K Ra(0) W Ra(v)T)
Ra(0) A(A(€3) W es) 1 Ry(er)T
A A(RB3(0)e3) Ra(0) W ea) Ry(0) W Bal )T

ACA(€e3) B3 (o)W Ra(e) e3) Ray(0) 11 Ry( )T
A(A(e3)Wez) W and

k(Rz(o)r + ey + (ea)
Ry(o)(—des + hiVey)
—des + hR3(0)W Ry(v) es
—deg + hiVes.

These results may now be compared with equations 9.6.

7y
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[n light of proposition 8.5.1. it would have been sufficient in this proof to
have only calculated the effects of the vectors on . but little effort would
have been saved. d

Next we find the commutators of these vector fields.

Lemma 9.4.1. The pair-wise brackets of 1. v and &k (in (. r)-space) are

(9.7) [Fi-52] = (0.rA(e3)Ale3)Hes).
(9.8) [F.s] = (0.~ r'sin @ + rcos @) A(es3)Heq) and
(9.9) [F.52] = (0.(a'sin@ — r)Ale;) i es).

where we use r' = dr/df and «’ = da/df.
Proof. To obtain equation 9.7 we calculate

(e} = nilad(es3)Wes)

= aA(es)1 A{eq)ez = 0.
w(ne) = p(—rdles)ites)

= —rd(ez)A(e3)Fes.
() = i (Ales)V)

= A(es)W A(es) and
(1) = (W Ale))

= A(ez)W A(es).



To obtain equation 9.8 we calculate

A r)

il

rRl—rA{ez}ey)

—(r'sin ) A(ez)Wes — rdles) A Alea) [ Tes)Hen
—(r'sin) A(e3) ey + rA{e) A(Wes) eq) ey
(—r'sinff + r{ "{'-636;{ — (e,{”’f;;)[) JoAles) b en
—(r'sinf + rcos #)A{es) W es.

~i(—dey + h¥ ea)

h Afez)e; = 0.

K(H A(£3))

A(AA(ez) W ex)H Ales) and
(A Alea) e}t

ACA(ea)H A(ex) ez H + A{ Ales)Heq) T A(ea)
Al A(eq)Wes) Al ea).

To obtain equation 9.9 we calculate

Kl 72e)

~a(kr)

K720

a(wit)

KlaAeq) 1 eq)

(a’sinf + a cos #)A(eq) W ey

“a{ —dey + hil e;)

hA(es)H ey

(r+acosf)A{ez) Ve,

r(Alea) )

Alea) A Ale)Weq) and

sl Al Aleg) W ez ) )

AlAlez) Alez) W ez ) + A(Alea)Heq) Ales) IV
{Alez) A(A(ea)Wes) — A(A(e3)}iV ez} Ales) IV
+A(A(ea) ¥ es) A(ea) iV

Alea) A Aes)tez) it
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We may interpret these results geometrically. The bracket of two vector
fields is a measure of the commutativity of the flows of these vector fields.
A flow which satisfies the constraints is normally called a virtual motion in
mechanics.

For the virtual motion associated with +,. the body is rotated about its
axis of symmetry. The body rolls while maintaining the orientation of its
ssmnmetry axis. [n Hgure Y.1. the body is moving perpendicular to the page.
The cross-section in the figure remains parallel to the page. and looks the
same. while moving with the body.

For 5.. the hody is rotated about the vertical axis through the point of
contact with the plane. The point of contact remains fixed.

For x. the body is rolled while keeping the axis of symmetry of the body.
and the vertical axis through the point of contact. in a constant plane. [n
figure 9.1. # changes. and the point of contact with the plane will move to
one side.

[emma 9.1 asserts that if two of these virtual motions are applied to the
hody. the change in the orientation of the body will be the same whichever
ordler the motions are applied. [t is not hard to see this intuitively.

This however is not so for the change in the position of the center of
mass. Since the orientation does not change. the change in the height of
the center of mass is the same whichever order the motions are applied. [t
is not hard to see intuitively (drawing arrows in the horizoatal plane) that
the change in the horizontal position is not the same when the order of two
motions is changed. One may visual the difference between these two changes
{draw another arrow. the difference). and ask what happens as the sizes of
the motions approach zero. while maintaining their relative size. One may
easily see that the directions in the results of lemma 9.4.1 are correct. [t
will appear below that for the flatness conditions to be satisfied. only the
directions must be as in lemma Y.-4.1.

Proposition 9.4.2. The basis {v;.v2.x} satisfies the flatness conditions.
equations 7.2 and 7.3 on page 51. which in this case become

.

and

-
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A

—

z

R
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Proof. We calculate

[\-(‘;b[‘}l-":'_’]} = m(—"-‘l(53)”"63)T{T‘-‘l(63)~Jt(€3)[’["€:3}

= 0.
KNi[n-n]) = nl((l:{(63)”’—63)T{r‘.{(f:;):l(f;;][‘{'-63}
= 0.
Kiw.[n.w]) = mi(—des + hWes)T(—r'sind — rcos @) Ae3)1 e
=0 and
KNin.[nx.%2]) = m(—des+ AW e} (a' sind — ryAles)l ey
= 0.

c

By corollary 8.1.1 on page 68. we conclude that the reduced motion on
QQ/¢: is Hamiltonian.

9.5 The Adjoint Equation

In this subsection. we will find the form of the adjoint equation. equation

v.ll on page 37. or
KR (30 50) Q) = (A ([8o %] ) + B (k[ 3] FORL

for this problem.
We will however use suffixes for the components of Q. in order to be

consistent with the notation used in this section.
We will again work from

< = W A(es).

wr = —rA(ez)Wes.

T = WA  eg)
= A(ez)i-

o = ad(ez)Wes.

-
=
Il

W A(A(WTes)es)
A(A(e3)Wel)l and
Kr = —desz+ hWes.



v
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rogether with

[3i-32] = (0.rA(es)A(e3) W es).
[K.51] = (0.—=(r'sin® + rcos8)A(e3)Wes) and
[k.32] = (0.(a'sin 8 — r)A(es)H es).

Proposition 9.5.1. The adjoint equation for the arially symmetric rolling
body becomes

w{(.]y + mr?sin® 0)Q, + (5 cos § — marsin® 7).}
= mrsin®0(r'sind + r cos 0)Q; — msin® {a(r' sin ) — r}Q,
and
w{(.J3cos @ — marsin? 0)Q, + (J3cos’ 8 + (., + ma?)sin?9)Q,}

= —mrsin® 8(a’sind + a cos ), + masin®B(a’sinh — r)Q,



Proof. We calculate

K(51.71)
A (31.32)

N (52.732)

R ([r 5] 31}
R ([r.31)32)
[\-([h'-'; ]-“;l)

K. 32 32)

1l

39

el Jes + m(—rA(es)Wes) (—rAe3)Wes)
gy + mr? sin® .
Eg.[['rrt‘:; + m(—rA(e;)Wes) (ad(es) i es)
Jycos @ — marsin® .
E;-H".I[’["TE:; + m(ad(es)it 'e;;)T(a.—l(fg)['l'eg)
ﬁfl'l’.f{(e;.['{"rrg)fg} +

E_-{”-./{”'-Tf:; — (6,{[{-7&;;)(&3} + ma’sin® @
Jycost 0 + (Jy + ma?)sin’ 0.
m{—(r'sin@ + r cos ()).-1(63)”-'6;;}T( —rAles)Hes)
mr(r' sin8 + rcos#)sin° 0.
m{—(r'sinf + rcos @) A(e3) 1 ez} N(aA(es) 1 ey)
—ma(r’sin@ + rcos)sin” 0.
m{(a’sin @ — riA(es) e} (—rA(es) T ey)
—mr(a’sin® — r)sin’ 0.
m{(a’sinf — r);l(e;,)l-i-'eg}r(a.-l{eg)l'i'e;;)

- - )
ma(d' sin® — rysin- 0

m(—dey + hey)T(rA(es)A(es) 1V es)
—mhrsin® @

—mr(r + acosf)sin® 6.

mM
[

We now ohserve that since # is group invariant. it induces a coordinate
on Q/(r. Recalling &8 = sin§ we have

Corollary 9.5.1. (sing 6 as a coordinate for Q/CG. the adjoint equation
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pushes down to

(9.10)

(9.11)

d

7] (.J3 + mr*sin®0)Q + (J3cos @ — marsin® 8)Q,}

i dr
=mrsinf (—[Esmg +r (‘OS()) (

di
— msi —sinf — Q,
msmf)(a(m sinfl —r ) »

and

;—l{ Jycos @ — marsin® 0)Q, + [J3cos? 0 + (J, + ma?)sin® §]Qs }
df

{
= —mrsiné ﬁsmﬂ -+ acos 3)
\ df

d
+ masind (—[(i:.m() — r) Q,
(

on QJG.

[n order to compare our result with various traditional results. it will be
helpful to be able to relate the quasi-velocities of our theory with the angular

velocities.
From the general theory. we know that the tangent vector to the trajec-
tory. 7(£). will be a linear combination of ¥,. ¥, and x. So we have

< Qs+ Qe+ rr) = Qaa(5) + Qawi(52) + cwin)
(ET[['Teg ) + f'{fT YW Tes)es)
)(e H7Tes) +l(fr[[ Tes)

Qs (es Tiey) -i-((f—{[‘[' €3).

Yiwa (1) + Qawa(2) + iu—l( )
L(elW Tes) + e{el AW Tes)en}
La(e; Wles) — v(ef Wes)
(63” €2) — 1(63” €1) and
Qlu-a( 1) + Qaws(52) + ves(s)
Q + Qa(ej Wes)

Q) + cos 6§ Q5.

N
'O

]
D

A Qv+ Qe + oK)

|
=2

{.
=
.
G
~)
+
o]
~
~)
v
+
X
I
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From the first two equations we have

{edWebwi(r) + {elWertun(m) = DW{(elWe)? + (el 11 ey)?}
O {1 — (el1l7e4)?)
Q. {l — cos* #}

= SEH2 f Qg.
Lemma 9.5.1. The relations
{sin?0(1)}Q,00(t) = {elW(t)e}wyor(t)+ {fgﬂ'(t)q}q:-_) o T(#)
and
:300([) = 41307-([)

hold. where = is defined by
=3 = Q) + cos 92,

Corollary 9.5.2. Fquations 9.10 and 9.11 may be rewritten using =3 and
O, in the form

{
(()l..’) (l(;—(){-/:xx:;}-{-lﬁ{/';CObaw'g-{— llhlll 00)}:-0

and
d . .
(9.13) 70—{./_»,::_-;} + mrsin 0(;—0{sm Blr=y — (a + rcos9),]}

=mrsinf(r + acos #)1),.

Proof. Equation 9.12 may be obtained as « times equation 9.10 plus r times
equation 9.11. In the first step we obtain

(l—{l';w')} +nm {r‘sin")() rQd —as)}

+r—{]3c050.~3+1151n 60,} — mr {asm (r —ala)}

. 2 dr da
= msin 0{(1;5 do}(rQl afly).

which simplifies to the desired result.
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Equation 9.13 is a rearrangement of equation 9.10. In the first step equa-
tion 9.10 becomes

{ / N
(;—0{./353} + ml;—g{r sin” 8(rQ; —af»)}

o l' 2 -
= msin” 0(7{’;(1'91 —afly) + mr-sin@(cos Q; + Q).
[{

followed by

d

{ , ) .
=7 {fs=s} + mr(;—a{sin' O(rQ; —afdy)} = mrosinf(cos 6 Q, + Q).

and then

{ {
—;,?)-{./;;I:;} + mrsin Hk{sin O(rQy —aQy)} = mrsind(r + a cos #)9,.
[{ {i

O

which simplifies to the desired result.

Equations 9.12 and 9.13 are obtained in Gallop [L6. page 371] using force
arguments. The variables used there differ slightly from those used here.
Cquivalent equations are found in Routh [31. Article 241a].

Example. The Rolling Disk

For the rolling disk. we have

0 = cos f
“f) = “Ping
l
(g) = .
r(f) sin @
da l l
_— == C
do psin"’ /] an
dr _ cosf
4 - Pante
From this we obtain
a+rcosf = 0.
r+acos = psind and

rsinfl = p.
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Equations 9.12 and 9.13 become

{ , .
—;—0-{./1 sin 80y} = Jysinf=3 and
¢

> ([‘:,'3

(J3+mp~) = m'p2 sin @ Q.
df

respectively. For =3 we have

s d . <30 2 o
Ji( S5+ mp )d—o{sm() 70 } =mp~.Jysin =;.

[f instead of # we use p = cos 8 as a coordinate for Q/(. this becomes

d a d=s Jamp?
- (l"[)-) - = =3 =0.
dp dp Ji( Sz + mp?)

This equation is obtained in Pars [29. Section 3.12] using Lagrange's Equa-
tions. and in Routh [31. Article 244a] using force arguments. [t is an equation
of Legendre tvpe. Gallop [16] observed that an equation of Legendre tyvpe
resulted in this case. but did not do the calculation. a

Example. Routh’s Model for a Top

For Routh’s model of a top. r and « are constant. and positive. We will
discuss the r = 0 case seperately below.

[n this case. equation 9.12 immediately vields

(a + I'(‘OSf))JgIg + rsin"O./l.Q-_: = ('[.

where ('} is a constant. This constant is found in Routh [31. Article 23]
using force arguments. [t is shown there that this result will also hold when
the top is subject to slipping friction at the point of contact. The constant (',
is usually called Jellett's integral. the functional expression for this having
been introduced by him [22]. although he was unaware that it was a true
constant of the motion. Jellett's integral was used by Gallop ([16]) and
Ebenfeld and Scheck ([13]). to investigate the -rising” behaviour (and. in
the case of [13]. other asymptotic behaviour) of the conventional spinning
top and of the “tippe top”. in the presence of dissipative sliding friction.
Both analyses. at their heart. determine the configuration for which the total
energy is minimized, subject to the existence of Jellett’s integral.
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Equation 9.13 becomes

d =3

do
— mrsinfcos8(a + rcos §)Q, + mrsin® 0Q,
dQ),
b
= mrsinf(r + acos §)..

-y .
+ mr-sinfcosf =,

(J2 + mr*sin” 6)

— mrsin® 8(a + rcosf)

then
(l;-:;

70 + mrisinfcos § =5

(J3 + mrsin® 0)

.- dtly
— mrsin?0{a + rcos §)—=

of)
—2mrsinfcosf(a +rcos)Q, =0

and fAnally

([..\. 3 .
+ mrisinfcosd =

b

(S5 + mr? sinzl})
d .,
—mr(a+ rcosf)—{sin 0 Q,} = 0.
do

Equation Y.12 may now be used to eliminate €1,. We obtain
(l‘:\;’:}
do

{
+ m(a + rcos 0).)'3% (¢ + rcos@)=3} =0.
«

Multiplying this by 2= results in a perfect differential. We obtain

{ 5 . 9 n_2
%9— [Ji(J2 + mr®sin® 8) + mJy(a + rcos0)’]=3} = 0.
d

This result is found in Routh [31. Article 243] using force arguments. The

solution to this is

bl -
+ Jymr-sin 8 cos 8 ==»

Ji(Jy + mrisin? 8)

C
B \/.[1(.]3 + mr?sin®8) + m.Js(a + r cos§)? )

=3

where (', is a constant. In particular we notice that =; will never be zero.
unless it has zero as its constant value.



We may now solve for (2,. obtaining

[ o C'y.Ja(a + rcos §)
r.Jysin 6 : \[l[(.]_-, + mr2sin®8) + m.J3(a + r cos 8)?

0

&

We will use this result in the following subsection to obtain an expression for
the potential energy in the reduced problem.

The constant ('} (Jellett’s integral) has an interpretation in terms of the
angular momentum of the top. We ask the reader to recall equation 2.10
on page L8. and the notation in use in that subsection. There. the angular
momentum ahout the origin was the quantity P = mA(r)r + W/, The
expression I1.Jw was called the angular momentum of the body. Also recall
lemma 9.5.1. Then we have

wh{W et = (We) W e = Sy
3

and
es{(IWe} = T { (w6 + waer) + Jrumes}
== -/3 cos 0..9'3 + Jl {(61[’1.6])»{,‘1 + (f;{["'t_))w'-_)}
= ./3('050%'3 -f-o/l sinjﬂﬂg.
So we have ('} = a(wlW o) + r(el W o). and (') is a weighted sum of

components along the vertical axis and the symmetry axis. of the angular

momentum of the body.
Also. if we let o be the vector field given in (w.r)-space by

ag=as; +r~ = (aez + riTes 0).

then o satisfies the conditions on o given in proposition 3.1.1 on page -10.
and so generates a constant of the motion. This constant is in fact (.
To see this. we have o € D hy design. and the flow of & is given by

o (W) = (. 7)

with 7© = Rs(rs)W Rs(as) and F = r. Differentiating this gives T =
Ri(as)Tw and ¥ = I. in the usual way. so that o fullv preserves the La-
grangian.
L 7 L T
L=-x"Je+ —mi't —mgesr.

2 3
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[f 7(¢) is the tangent vector to the trajectory. the constant of the motion
generated by o then must be

K(r.o) =« T)T./{a63 + er'Teg} =(.

a

Example. Lagrange Top
For the case of the Lagrange top with r = 0 and « fixed. Jellett’s integral

simply requires that =3 should be a constant. This also follows from putting
r = 0 in the expression for =3. However. we are unable to solve for Q, using
equations 9.12 and 9.13. for r = 0.
To obtain =3 and £, in the case of the Lagrange top. we return to equa-
tions 9.10 and 9.11. which for r = 0 become
(11"3

-/:zW' =0 and
i{./3('05():7:3-{-(J,-{—m(zz)sin"z()QA_»]» = 0.

g
or

v

=3 = (, and

JycosB =y + (J; + ma®)sin®0Q, = ().
We may write the solution in the form

= () and
L :
) = .-,'9{C'l —(’3-[3(.’050}.

(Jy + ma?)sin

¢
w
|

[T

-

The constants ('} and (", have an interpretation in terms of the angular
momentum of the top about the point of contact of the top with the ground.
We ask the reader to recall equation 2.10 on page 8. and the notation in use
in that subsection. There. the angular momentum about the origin was the
quantity P = mA(x)r + W.Jw. The expression H'.Jw was called the angular
momentum of the hody. We take the origin to be at the point of contact. so
that = = aws = aWe3 holds. Also recall lemma 9.5.1. Then we have

wl P =mul A(e)i + el (WJw) = (We)TW Sw = Jawy = JoC.
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Thus .3’ is the component of angular momentum along the axis of sym-

metry. We also have

f,fP = male};-i.( Hea) IV A(w)es + 6_-;1'['{".]@ =
—ma? eI W Yes) A ez)e + el WS =
— ma*cos s + e;{['V(.[ +ma*le =
JycosB g+ (J + m(t"’){(f},-”'fl Jy + (FEI‘I-.E-_))..U-_;} =
JycosOun + (J; + ma*)sin 9 Q, =
.

Thus (") is the component of angular momentum along the vertical axis.

Stnce the Lagrange top is a limiting case of the Routh top. it is possible
to obtain this solution from the Routh top solution. by letting r approach
zero. while adjusting the constants of integration. One wayv of choosing the
constants is to ptit

I'-]l

(, = ———C+alsC,
! Jy+ma* ! Tkl
and
¢, = \ﬁl Sy + Jymr? + Jama? Ca

into the Routh top solution. and take the limit. The calculation is not
difficult. but alse not verv instructive. The quantities (| and (' become the
constants in the Lagrange top solution above. This choice for ("} and ', is

the one that ensures that
T T
=" (3) and Q-_v (_7)

have the same value for each value of r. O

9.6 The Reduced Kinetic Energy and Poten-
tial Function

[n this subsection. we will find the form of the kinetic energy and the potential
function for the reduced problem.



h
Recall (lemma 8.1.1) that the reduced potential function [ is determined
by

Tol=(+ ;;K(Q.Q).

while the reduced kinetic energy inner product A" is induced by the require-
ment (lemma 8.-1.2)

R(TN7).TXNr)=NKir.7). VT € H = R.

For the axially symmetric rolling body the potential function may be

written as
{7 = mg(r+ acosf).
The kinetic energy inner product once again is given by
R((Aul (p.r)) = ,\TJ,u +mule.

We also have

o

(Z3 —cos08y)7 + My
= =371 + Qal—cos 5 + 32).

and the elements of our aligned basis are

%1 = (e3.—rAlez)leq).

Y = (”‘—TE:;.(l.'l(fg}[‘['.fg) and
k= (A Tes)ey. —des + A es)

First we will examine the kinetic energy. We have earlier seen that. for
the axially symmetric rolling body.

k8 =sind

holds. when « is thought of as a differentiation operator. This means that «
is the horizontal lift of sin#2/98. Therefore we have

(2. 2Y 2 L pen
‘\90°90) = sazgt (KR)
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with
ko= (A [’t"TF.:;)Ej;. —(a+ rcosflez + (r+acos8)es)
= (AW eq)es. a(—eq + cos8 Wes) + r(— cos b e5 + Fes)).

Observe that A(H Tez)es is a vector of magnitude sin §. orthogonal to €3. and
so an eigenvector of ./ with eigenvalue ./;. We now calculate

T(d a) l [_(. ‘)
‘\oaoa20) = st """
= - lv, {Jysin* 8 + m[a*(l — cos* &)
sin” #

|

+ 2ar(cos 8§ — cos’ 0) + r‘,( —cos* ) + l)]}
= Jy + m(a’® +2arcost + ).

To examine the reduced potential function. we need an actual solution to
the adjoint equation. So we do this for examples.

Example. Routh’s Model for a Top

Qur solutions in this case were

¢y

T VJi(Jz + mrEsin® 0) + mJs(a + rcosb)?
and
0, = 1_ e - Cy.Ja(a + rcosd) .
rJysin” 6 VA + mr2sin? 0) + m.Js(a + rcos)?

where 'y and (', are constants.
[n order to simplify the calculations. we note that (" will necessarily be
of the form
L : . .
———.__,—O{C'fP +2C,C5Q + C3R}.

U(0) = mg(r + acosf) + ——

2r2.J7 sin

and proceed to find the coefficients P. Q and R. If we put
1

3= _ .
\[/l(./;:, + mr?sin® @) + m.J3(a + r cos8)?

then we have
1

Jyrsin®6

Q {C7 + G237}



with

= —cosf~ +7

= (—-cosf)er,-*-[[ 3.(a + rcos @) A(e3)1Ves)

and

t-

= Jirsin® 0+, — J3(a + rcos8)7,
= (Jyrsin®0e; + J3(a + rcosf)(cosf ez — Hle,).
- [.Ilr'2 sin*f + Ss(a+r cos())g]_—l(eg)l-("q).
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Observe that both — cos# 4+ 11 Tey and A(e3)¥l €3 are vectors of magnitude
sin#. They are also both orthogonal to €3. and so are eigenvectors of .J with

eigenvalue ./;.

We may now calculate

N(7,.7))

sm > g

{.Jysin* 0 4+ msin® @(a + rcos 8)*}

sin®
Jy + m{a + rcosf).

K5,

sm > 6 -

——{—J1- /5l a + rcosf)sin*é
:m > f

— msin®f(a + rcos @)y r* sin® 0 + Jz(a + rcos 0)*1}
—Ha + reos 0){Jy(J3 + mrPsin®8) + mSz(a + 1 cos §)?}

—(a + rcosO)/ Ji(Js + mr? sin®#0) + m.Jy(a + r cos8)?

fz—T{.[g./frz sin? 8 + .J, /,f sin® @(a + rcos 6)*
sin” @
+ msin® 0[J,r* sin* 8 + J3{a + r cos 0)*]°}
32[Jr?sin? 0 + J3(a + rcos 9)?]
{J1.J3 + m[Jir?sin® 0 + Js(a + r cos 0)*]}

Jir?sin? 0 + J3(a + rcos ).
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Finally then. the reduced potential function is
L
2r2.fE sin® 0
C3Jy + m(a + rcosd)?]
—20,Cs(a + rcos8)

{

)y = mg(r + acosf) +

\/ll(.l;; + mrésin® ) + mJy(a + rcosf)?
+ C3[ e’ sin® 0 + Ja(a + reos 8)7] }

) i
= -’—[/_1 (';_nflgl) + mg(r + acosf)
L
+

220t sin® @

[ \/./1(.13 + mr?sin® @) + m.Js(a + rcosf)?
— CyJyla + reos 0) ).

For the total reduced energy we have

L 5 a2
E = ;{.ll + m(a® + 2ar cos 8 + r°)}0°

L/ ., (@
+E (C_; - "f/31> + mg(r + acos @)

l

+ 2r2J2 Jysin® @

'y \/./[(.l_—, + mrisin®0) + m.Jy(a + rcos §)?
— CyJyla + reosd)} .

This is effectively the same expression briefly examined in Routh [31. Article
213a]. We will analyse this expression briefly in the next subsection. |

Example. Lagrange Top
Qur solutions in this case were

=3 = C'g

and
l -
= - 3 _ ,.). 0 )
(i ¥ mat)sintg (1~ Cracostl

LD
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where ('| and (' are constants.
We note that { will he of the form

L

.S + ma?)?sin® 6

[C2P + 20,20 + CER}.

(9 = mgacost +

and proceed to find the coefficients P. @ and R. We have

L

0= —
(Ji + ma?)sin~ @

{C17 + Gt

with
1 = —cosfu+

= (—cosfeq+ H'ng. aA{ez)eq)

, = I+ nm:]sin2 8 — Jycos 07,
= ((J, + ma®)sin® 0 ey + Jy cos B(cos G ez — 1T T ey).

— Jyacos 8 Ales) i es).

We may now calculate

l
P = — A (7.7
ey, v ( 11 I)
]. » )y - 7
= —{Jisin® 8 + ma*sin” 0}
sin” ¢
= Jy + ma’.
[
- K [. ;T .T-)
¢ sin~ SARTEREL
1 ” N N
= ——{~—.J1J3cos8sin* 0 — m.J3a" cosfsin” 0}
sin” #

= —JycosB(.J, + ma*)

and
L
RE = —h (5,. 7.
sinzﬂ )8 ( 12 fZ)
I P30 I ) P .9
= ——{J3(Sy + ma’)* sin 8 + .ll./_-f cos- B sin” 8
sin”

+ mJ}a® cos® §sin’ 0}
= (Ji + ma®){Jasin® 0(J, + ma®) + J; cos’ 0}.
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The reduced potential function is

[(§) = mgacosd + A :nla")sin20
E4ARYEL =

7 =20,CyJ3cos 0
+ C3[J3sin* 8(J; + ma?) + J;cos* 0] }

[ — )
—(C'y — Cy.J5cos 8)°.
2('11 + ,71(12) Sin_ 0( 1 2 3(?05 )

{

|
= 3(_,"./3 + mgacos 6 +
For the total reduced energy we have

]' 2y ) 1 )
E = 50 +ma’)8” + 5C5)5 + mgacost
i i

« - (")- -{) -’.
(J1 + ma?)sin? ()(Cl 2.J5 cos 0)

T3

This result may be compared for example with Arnold [2. Page [52]. O
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9.7 Further Discussion of the Routh Top

[n this subsection. we will give a brief examination of the reduced system for
Routh’s model of a top. This. once again. was the case of a spherical base.
[n section 9.6. we showed that the kinetic energy of the reduced system

1s given by
h{6.0) = ;{J[ + m(a” +2arcos 8 + r°)}o°.

and the reduced potential energy by

. l ” C?
[ = — ('._:—m L + myg(r + acos @)
_).[[ IS

l
+ ——
2r2 Sy sin” 0

Civ/ Ji(ds + mr2sin? 0) + mJy(a + rcos §)?
— CyJy(a + reos §)}-.
[f we define functions P.S.Q : (—1.1) = R by
P(z) =.Jy + m(a® + 7 + 2arz).
S(z)=
Co/ I (Js+ me2(l = 22)) + mdy(a + r2)? = Codsa + r=)

and

S(z)?
Tl = 2)

Q(z) = mgaz +

this becomes

o |
K(g.0) = 3P(cos 0)8- and
. | Y (?
) = ﬁ (C'; - nqul) + mgr + Q(cos 0).

Since P is positive on [—1.1]. the qualitative behaviour of the reduced
system may be determined from the potential function. as a point sliding
on a potential curve. The constant term may be adjusted to any value by
choice of the total energy. So the shape of the function {7 will determine the
possible reduced motions.

What we need to know are



e the limitsof { "as & — 0. = and

® the local minima. maxima and other critical points of {~
Case 1: S(—1)=5(+1)=0

Obhserve that

Si=1 = () \/.I[J_-; +mJy(a—r)? — CaJsla —r) and
S+ = O \/./1.13 + m.Jyla+r)2 — Cylz(a +r)

hold.

[t is not hard to see that since we have r # 0. this case requires ('} =
(', = 0. This means there is no rotation about either the symmetry axis or
the vertical axis. The top either approaches the top position but reverses
before reaching it. takes an infinite time to reach it. or passes through it.
depending upon the value for the energy.

Case 2: S{—1)#0and S(+1)#0

We have Q(z) = x as = = +l.or [ (#) = x as § — 0. 7. [n this case.
[ must have a local minimum. which corresponds to a motion of the top
with a fixed value for . There will also be periodic motions about this value

of 4.
[f {" has no other critical points. then all other motions are periodic. [f

on the other hand {™ does have other critical points. there are orbits which
approach a limit point asymptotically. [t is clear that the generic behaviour
will be periodic motion.

Figure 9.2 shows a plot of the function @) produced by the Maple math-
ematical software.

Case 3: S(—1)#0Qand S(+1)=0
S is analytic on an open interval containing [—1.+1]. So the expression

S(z=)

{1

p—

is analytic at = = +1. and therefore so is @. This in turn shows that { is
analytic on the interval (—7. 7). We must have {/(§) = >c as #§ — *7.
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Figure 9.2: Plot of the Function @
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But then from
[7(0) = ~Q'(cos f) sin §
we see that {’(0) = 0 holds. and from
[™(8) = Q"(cos §) sin® § — Q'(cos 0) cos O

that {7(0) = —Q’(+1) holds.

To evaluate this. first note that

S(=) S'(+1)

— = 2

as = — +1 holds. and applying this to

oo L S(z)8'(z) =5(z)°
Q=) = mga+ r2 iy { | — =2 + (1 - :3}2}'

gives

) S(+1)°
["(0) = =Q'(+]) = —mga + —(f;-)—
‘l"'.[l../j;

Another calculation. taking advantage of the condition S(+1) =0 vields

~CorJy[Js + mr{a + r)]
Jy+ m(a +r)? )

S(+1) =

[f the constant (' is not large. {* has a local maximum at § = 0. and for
a particular value of the energv. the orbit approaches the vertical position
asymptotically. If C'; is large. there is a local minimum. and the orbit passes
periodically through the top position for a range of values for the energy.

Case 4: S(—1)=0and S(+1)#0

The expression

S(z)
|+ =

is analytic at = = —1. and [ is analytic on the interval (0.2x). with [(§) —
x as #§ — 0.2x.



Also. ("{(m)=0and { “(x) = Q'(—1) hold. In this case we have

—_—

Stz) . S(=1)
| — =2 2

as = — —1I. which leads to

5"(—1 ).’

) = Q1) = mgn + S

with

Cor I\ [y + mr(a —r)]

S—1) =
(=1 Jy+ mia - r)?

Thus {7 has a local minimum at # = 7. and the orbit passes periodically
through the bottom position for a range of values for the energy.



Chapter 10

Sphere on a Surface of
Revolution

[n this section we consider the example of a dyvnamically symmetric sphere
rolling without slipping on a surface of revolution. in the presence of a uniform

gravitational field.

10.1 Formulating the Problem

[n this subsection we formulate the Lagrangian and the constraint equations
for this svstem. using globally defined quasi-velocities.

('onsider figure 10.1 below.

The figure is a cross-section.

We will use the notation of section 2.5 in this section. as in the preceding
one. We again rake a fixed set of cartesian axes. with associated orthonormal
vectors 1. €; and €3 as before. We take the e5 axis to be the axis of symmetry.

The distance of the center of mass from the axis of symmetry is denoted
by a. The height of the center of mass above the €; x €, plane is denoted by

In figure 10.1 we show the surface upon which the sphere rolls. and also
the surface on which the center of mass remains. The cross section of this
~center of mass” surface is shown as the dotted curve. We let s denote arc
length along this curve. so that the curve will be given by

a = afs) and

-~
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Figure 10.1: Sphere on a Surface of Revolution

in the plane of cross-section. We assume that s may vary over all of R. This
may result in a multiple covering of the configuration manifold.

if we denote the position of the center of mass by the column vector .
then we may write

r(s.8) = Ra(@) {als)e, + z(s)ea}.

where # (not shown in the figure) is the angle the projection of . onto the ¢
¢, plane makes with ¢,. The quantities «. 8 and = are cylindrical coordinates
for R
[n the figure we also show the unit vector
ar
ps.8) = Z(s0)

Js

R4(0){c'(s)e, + 2'(8)ea}

R3(0)no(s).

where we have used
no(s) = n(s.0) = &'(s)e; + ='(s)ea.
We will also use the unit vector

7(s3,0) = R3(f)es
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which is orthogonal to . and also the unit vector

(10.1) Hs.0) = Aln(s.0))7(s.0)
= R3(0)A(no(s))e
= R3(0)J(s).

where we have used
Jo(s) = 3(5.0) = A(nols))er = a'(s)eg — ()€

[t is important to recognize at this point. that for equation 10.1 to be
correct. the choice of parameter s must have a particular ortentation. In
what follows. the vector .3 must point to the side of the surface on which the

sphere rolls.
We will also find it convenient to introduce the angle o between ¢; and

3. This is given by
o(s) = argla’(s) +7='(s)].
We may calculate

i-,-?)r]

s

[a'(s)es — Hs)e]T[a"(s)ey + ="(s)€n]

r n r.n
az —-da

= coso(sino) —sino(cos o)’

o

to obtain an expression which we will use later. The (radius of) curvature of
the center of mass curve in the figure is given by /o',

As in the preceding section. we also assume there to be a set of orthonor-
mal vectors {w,. ws. w3} at the center of mass of the sphere and moving with
it. and use the orientation matrix

W = [wl ws u'3] .

We again denote the angular velocity with respect to the fixed axes by v. so
that

W = A(v)W



holds. Also. observe that

io= [Ral@){als)ey + z(s)eal]
= .;,,+é33(0).-1(63){ael+:e,~,}
= s+ 0Rs(f){ac.}
= .:';q-i-a(}‘r

holds.
Let the mass of the sphere be m. We use r to denote the radius of the

sphere. Denote the inertia of the body by .J. Observe that for a dynamically
svmmetric sphere. .f is just a number. The total kinetic energy of the hody
ix given by
. l L.
N = -./.J:Tu; + —m.ar
2 3
1 T [ -2 il
= SJviv+om(sT+ a°).

L

The potential energy of the body is given by
[ = mgelr =mg:.

where g is the gravitational constant. The Lagrangian for this system is

therefore given by
I. T l Y] B
(10.2) L= ;./u v+ ;m(.s' + a“§°) —mg:=.

The rofling condition is that the velocity of the point on the sphere that
is in contact with the surface has zero velocity. The constraint therefore is

0 = &+ Awi(—-rh
(10.3) = r+riA(3)v.

In terms of s and # this becomes

I

§4 rpl A

s—rrly and
0 = af+rrf A3

(10.5) = af+rnu.

0

I

(10.-4)
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Figure 10.2: Sphere on Horizontal Hoop

As already mentioned. the parameter s must be chosen with a particular
orientation. [f the orientation is reversed. the vector . will point in the
opposite direction. I[n the constraint above. the surface upon which the
sphere rvolls is on the opposite side of the sphere. although the surface upon
which the center of mass remains is unchanged.

The configuration manifold Q. parameterized by (V. s. #). is 5-dimensional.
and the constraint distribution D within TQ is 3-dimensional.

Example. Inside a Vertical Cylinder
For a sphere rolling on the inside of a vertical cylinder. we have a constant.

a

and =(s) = s.

Example. Outside a Horizontal Hoop
For a sphere rolling on {the outside of } a horizontal hoop (see ligure 10.2)

we have
. s
a{s) = u+ rvsin (-) and
v
s
:A(s) = veos{—).

P
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Example. Outside a Sphere
For « = 0. the expressions above for a horizontal hoop become

a(s) = vrsin (L:) and

s(s) = vcos (:) .

v
This is a parameterisation for a sphere. which mayv be regarded as a surface

of revolution. i

10.2 The Group Symmetry

[n this section we describe a group svmmetry of this syvstem associated with

the Lie group
G = S0(2) x SO(3).

We will again think of SO(2) as the Lie subgroup

{Ry(v)|e € R} of SO(3).

To describe the group action. we parameterize (7 by R x SO(3) using the

map

(. M)y — (Ry(e). M),

The associated group action on @ is given by the map (H.~.0) — (1F.5.0).

with

(10.6) T = Ry(e)W ML
(10.7) 5 = s and
(10.8) 0 = 0+e.

As a consequence of this we immediately have

R’;( l.”).l'.
Rs(w)n.
Ra(v)T and

= R(v)s

O I IS T
Il
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We must show that the Lagrangian L is preserved by this group action.
Once again we have

l l b) 3IA2
L= _-)-Juru + 5m($° +a07) — mg=.

Since s is group invariant. so is =. We also have
9 =4.
From equation [0.6 we have
AP =

= Ry(e)W M7

= Ra(v) A" MT

= A(Rs(e)v)TF.
[t follows that

V= R3(Q’)U
holds. Thus we obtain L = L. and so L is preserved by the group actiou.

We must also show that the constraint.
0=uo+rdA(S)v.
is preserved. For this we have
T+rANw = Ray(v)i+rd(Ba(v)d)Rs(ev)r
= Ry(vr+rd(d)v}.

Since R(v ) is non-singular. we see that the constraint is preserved by the

group action.

10.3 A Basis Aligned with the Symmetry

We now apply the theory of chapter 6 to the current group action. given by
equations 10.6. 10.7 and 10.8. which we repeat as

= Ry(v)WMT.
= s and

= 4.

-
) "1|
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To find a basis of vector fields for the distribution 1. of vectors tangent
to group orbits. we calculate

H BV WM 5.0+ 0}

au

= (:‘.(fg)”’..[).l)

(e M )=(0.1)
and

= (=W .A(e).0.0)

H B3(e)W R {u o< 0+ e} I
du [{eou)=(0.0)

= (A(=We)i150.0).

We may map these to {(v. 5.0)-space to obtain instead

i)

— = (e3.0.1) and
i

9 .
-f)-ﬁ.' = (—H7€;.0.0).

respectively.

These four vector fields are linearly independent everywhere.

To find a basis of vector fields for the constraint distribution D. in
(v. .é.é)—space. we sithstitute values for v in the constraints.

and

S

i
3
=
N

ad = —rplu.

For v = .1 we obtain

For v = an we obtain
(v. .é.f}) = (an.0.—r).
For v = 7 we obtain
(v.5.8) = (r.r.0).
Thus {5.%2.x} is a basis for D. with

w = (3.0.0).
s = (an.0.-r) and
k = {7m.r.0).
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[t is easily seen that +; and +; liein V. and so in § = DN V. At the
same time it is clear that x € V™ holds. So we have
S =span{s,. 12}

The kinetic energy for this system. once again is
K = é./uru + %m(.éz + (12(}2).
The associated inner product. in (v. .é.é)-space. is given by
1N ((z/. 3.0). (v. s. Q)) =JvTy +m(is+ (12()(2).
["sing this we easily obtain
KN(r.%) = 0 and
R (x.%) = 0.

so that {#} is a basis for H = D N S+,

We have not as vet shown that ;. 3> and ~ are group invariant vector
Helds. We defer this to the next subsection. in which we also show that this
basis satisfies the flatness conditions.

10.4 Group Invariance and the Flatness Con-
ditions
Thinking of 3. 32 and & as differentiation operators. we have

(10.9) S (W 0) = (A()H.0.0)
(s 8) = (Alan)W.0.-r) and
K(H.5.0) = (A(7)W.r.0).

Proposition 10.4.1. The vector fields ~,. 42 and & are group invartant.

Proof. For 5, we calculate

w(F.5.0) = W(Rs(e)W M504 0¢)
= (Ra(v)A(HWMT.0.0)
= (A(R3(w)3)Ra(v )W MT.0.0)
(A(3)T.0.0).



For -, we calculate

=2

For » we calculate

K

7.5.9)

(

.5.6)

= (Rl )W M 5.0+ )
(Ra(e ) A(an)HW MT.0.—r)
= (AMaq)W.0.=r).

= r(Ry(e)W M .0+ )
= (R3(e)A(x)W M. r0)
= (AMJHW.r.0).

These results may now be compared with equations 10.9.

Next we find the commutators of these vector fields.

Lemma 10.4.1. The pair-wise brackets of vi. 52 and & {(in (u,.&,é)-.<pa(-f)

are
(10.10) [31- 3]
(10.11) [~.51]
( [0.[2) [h’. “;3]

= (—(a+ r:z)7.0.0).
(=(1 + ro’)n.0.0) and

(rd

n+a(l +ro)3d —rhs0)e,.0.0).

Proof. To obtain equation 10.10 we calculate

~{ Alan)W .00 =r) — 52(A()H.0.0)
= (Afan)A(3)W.0.0)

[1. 3211 5.8)

or in (v. s. (})-space.

(,-l

93
— (:\ (—r%a) o+ .-l(J);l((u])['I'.0.0)

93
(a.-l(r))J + :3—0) 1498 0.0) .

(a-—\(l;)J-l» r%.ﬂ. 0)
(—a7 + ri(e3)3.0.0)

(—a7 + r(7F A(e3)3)r.0.0)
(—aT + r(—egq)r. 0.0)
(—(a + rz")7.0.0).
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To obtain equation 10.11 we calculate

. ](Wo5.0) = w(A(3).0.0) — 5, (A(7)H.r.0)

or in (v. .é.(})-space.

. ;
[k.] = (d) + A(.3)7.0. 0>

= (l( )j> W+ A(HA(T )W.0.0)
d

— (A7) A(HHH. 0.0}

a3 .
= (,-l( ) (f)t)”.0.0).

s

- ((r8)a-re)
- ({72

= (—=(l+rd)n.0.0).

To obtain equation 10.12 we calculate

[h’- ‘,3]( H s, ())

or in (v. s.#0)-space.

[x.5] =

= w(A(an)W.0.=r) — 5(A(7)H.r.0)

= (4(1(117-&(:15—) W+ - (m]).—l(T)”'.0.0)
'-1< i— W+ 4 14.0.0
—1- ,_'df) + A(7) Alan)H0.

)7
= ({(lary-{-(u()—r]-i-l(d—o-*-a l(r]):) H’.U.O) .

(ra'r] + arZT + r(c)7_0 +a -l(l])T.0.0)

(ra'n + ar (3 3”) 3+ rd(es)r + «3.0. 0>

(ra'n +a(l + ro')3 — rR3(0)e,.0.0).
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We may interpret these results geometrically. The bracket of two vector
fields is a measure of the commutativity of the flows of these vector fields.

For +;. the sphere is rotated about the axis perpendicular to the surface.
The center of mass and point of contact remain fixed.

For 7,. the sphere is rolled out of the page. with respect to figure 10.1.
The center of mass and point of contact move on circles at a fixed height. [t
is important to note that the rate of rotation varies with s. so that # varies
at the same rate no matter which circle the sphere is on.

For k. the sphere is rolled to the right. with respect to figure [0.1. The
center of mass and point of contact stay within the cross-section of the tigure.

Lemma 10.4.1 asserts that if two of these virtual motions are applied to
the sphere. the change in the position of the center of mass will be the same
whichever order the motions are applied. [t is not hard to see this intuitively.

This however is not so for the change in the orientation of the sphere.
[t is not easy to visualise intuitively what this change should be. We will
depend on lemma 10.-l.1 for this information.

Proposition 10.4.2. The basis {~.v2.x} satisfies the flatness conditions,

cquations 7.2 and 7.3 on page 31, which in this case become
R [heem]) = 0.

K (2. [0 72))

K (w fr.v1])

KNir.[k.3a]) =

0.
0 and
0

Proof. We calculate

K (vi-[32]) J 3T {—(a + r:')7}

0.

K52 [91.%2) = Jan{=(a +r:)7}
0.

JTT{~(1 + ro')n}
0

i

KN (k. [rk.91])

and
KNin[c.m]) = JrH{rd'n 4+ a(l + ro')3 — rRs3(0)e, }
0.



121

By corollary 8.1.1 on page 638. we conclude that the reduced motion on
Q/¢ s Hamiltonian.

10.5 The Adjoint Equation

[n this subsection. we will find the form of the adjoint equation. equation
.11 on page 57. or
ROR (303 Q) = { R ([ 7] 1) + K (k2 [ u])FOE

for this problem.
We will however use suffixes for the components of Q. in order to he

consistent with the notation used in this section.
We will again work from

S{Hs.0)y = (A(HIFL0.0)
w(lW.s.0) = (Mang)W.0.-r) and
w(I.s5.0) = (A7)H.r.0).

together with

[41-72] = (=(a+r:")r.0.0).
[k.s1] = (=(1+ro")n.0.0) and
[k.on] = (rdp+a(l +ro').d —rRs(6)e,.0.0).

Proposition 10.5.1. The adjoint cquation for the sphere rolling on a sur-
Jace of rccolution becomes

KQ, = r(—ad +:2)Q,

and

” Jrad
H{(!'Qg} = _l_-{-—r_nTEQl



Proof. We calculate

K (51-71)

I

KNiz.3) =

]

K (72.752)

K ([r.3d]-31)

-
—
%
]

—
]
-
~

o)
P
—
-

B
o
12

=,
)
=
-

It

KNi[k.p)3) =

KNiw.[5.0]) =

J3T3

J.

J 3 (an)

0.

./((u])T( an) + ma’(—r)?

a*(Jf + mr?)

J{—(L+ro)p}ts

0.

J{—(l + ro')r]}T(rzr/)

—aJ(l + ro').

J{ra'n + a(l +ro').3 — rRy(f)e, y g
J{a(l + ro’) — r'c;r.fo}

J{a{l +ro')y +rz'}.

J{rd'n + a(l + ro').3 — rRs(0)e, }T(m;}
at{ra’ —reTne}

0

ST {—(a + rz')7}
—S(a+rz").

Substituting into the adjoint equation gives

w{JQ}

w{a (] + mr*)Qs}

= J{—a(l+ro)+{a+r")}0
= Jr(—ad + "),

and
= J{{a(l +ro')+r]—(a+rz")}
= Jrao'Q,.

a

We now observe that since s is group invariant. it induces a coordinate
on Q/G. Recalling that xs = r holds. so that « pushes down to rd/ds on

Q/(:. we have
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Corollary 10.5.1. (sing s as a coordinate for Q/G. the adjoint equation

pushes down to

. d9), do d:
( 1013) (L~: = (—adT + I) Q'l
and
d . Ja do
- - -0') = T 2 gL
(10.1-1) ds {«*Qs} J+mrtds !

on Q/C.

[n the case where o' is never zero. we mayv use o as the independent
variable. in place of 5. [f we introduce the quantity

\=Z>_"

which is the (finite radius of)} curvature of the center of mass curve. and also
replace Q, with Q) = reQ,. we easily obtain:

Corollary 10.5.2. In terms of Q,. Q, and o the adjoint equation becomes

10 Q,( 51
(10.13) Ay _ ——'—(l— \amo)
do r a
and
[ﬁr S () — /
(10.16) T2 0, = 0
do a J+ mr?

Fquations 10.15 and 10.16 are found in Routh [31. Article 230]. using
force arguments. The variables used there differ slightly from those used

here.

Example. Inside a Vertical Cylinder
For a sphere inside a vertical cylinder we have a constant and z(s) = s.

and so have
o' =dz"—-"d"=0.

Equations 10.13 and 10.14 become

df
2 = Q, and
ds
dQ,
= 0.

ds



and are solved by

Cys + (s and
.

+
¥
-—

.

L)

v
I

g

Example. Outside a Horizontal Hoop
For a sphere rolling on (the outside of} a horizontal hoop (see figure 10.2)

we have

a(s) = u+esin (:) and

t
zls}) = rcos (ll) .

and so have

P (s)
(] = Ccos|{-—]}.
r
‘ . (s)
z = —siny—]>.
r

Y/ 4
o = d"=7Za
1
e
; U . S
ao = —— —sin|-— and
v v
u
—aod' + 7 = -

Equations 10.13 and 10.14 become

(IQ[

ds
%{[Wsm (;)yg.z} - ﬁ{_g_sm ()} e

We will examine this example more closely in a later chapter. |

u
= - and
"



Example. Outside a Sphere
As previously observed. for © = 0. the equations for a horizontal hoop

become those for a sphere. and the equations above become

(lQ[

ds

These are solved by

= 0 and

O, = (', and

= (Rt (@) rel/fe ()

[t is interesting to observe that if the ball is rolling inside the sphere. we
obtain the same adjoint equation. We place the moving sphere on the inside
by replacing the parameter s by —s (see the comments following equation
10.5). But the equations thus obtained are identical. This is not so for the
hoop. O

10.6 The Reduced Kinetic Energy and Po-
tential Function

[n this subsection. we will find the form of the kinetic energy and the potential
function for the reduced problem.
Recall (lemma 8.-1.1) that the reduced potential function {~ is determined

by
Co\=0+ é[\'(Q..Q).
while the reduced kinetic energy inner product K is induced by the require-
ment (lemma 8.-1.2)
K(T\(7).T\(7))= K(7.7).Vr € H= R.

For the sphere on a surface of revolution. the potential function may be
written as

U(s) = mg=(s).
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The kinetic energy inner product once again is given. in {v. 3.0)-space by
K ((usﬁ)(glﬂ)) =Jviv+ m(is+ a"f}é).
We also have

0= Qv + Dy

and the elements of our aligned basis are

w1 = (3.0.0).
s = (an.0.-—r) and
K = (7.r.0).

First we will examine the kinetic energy. Since
RKs =r

holds. when ~ is thought of as a differentiation operator. « is the horizontal
lift of rd/ds. Therefore we have

—f(d 9 L.
I (II) = r—__,[\(h.h)

J + mr?

2
r<

Expressed as a function of s then. the reduced kinetic energy is

= - ]- 'l .
Ais.s)=— (nz -+ -;) s,
2 re

Next we examine the potential energy. We begin with
- l 5, -
[(s) = mgz(s)+ 3{91(3]'[\ (v1-71)
+ 20 (8)Q2($) A (1. 72) + Qa(5)* K (72- 72)}
l 9 P 2 >
= mgz(s) + 3{./(2.(:5)' + (J + mr7)a(s)"Qa(s)"}.

To proceed further. we need an actual solution to the adjoint equation. So
we do this for examples.



Example. Inside a Vertical Cylinder
For a sphere inside a vertical cvlinder we have « constant and z(x) = s.
and our solution to the adjoint equation was

O = Cis+Cy and
Q. = ('[.

So we obtain
{(s) = mgs + é{.l'[("[.s + Co + (J + mrYa* )
The reduced motion is easily understood. [f (| = 0 holds. then we have
F(s) =mgs + (5.
Otherwise we have
Tis) = é./("f(s —s0)? + Oy

[n each case. (5 is a constant. determined by the initial value of s. and =g
satisfies
maqg + ./C'[("-_g
S) =m0
JCT

in the second case.
In the first case the ball simply rolls straight down the cvlinder. In the

second. it rises and falls harmonically about the height given by so. (]

Exampie. Outside a Sphere
For a sphere we have

af{s) = esin (:) and

1Al

Hs) = vcos(%).

and our solution to the adjoint equation was

Q I = C'l and

Q, = {]—-{—fr;?%l- cos (%) + C-'g}/ {sin2 (—:—)} .



So we obtain

Iz

| >
+ ;(./ + mr-)e=

{Trmme (e} fn ()

As for the adjoint equation. this result is unchanged if = is replaced by —s.
So we obtain the same result if the moving sphere is rolling inside the tixed
sphere.

[f we use o as the independent variable in place of s. for the total reduced
energy we have

[ 'I ) "o I- 2
E = < (rn + —-;) r°0” + mgrcoso + SO
- r= =

l | JC i
=(.J T — 3 Cyp.
+ '_’.( +mr sin® o {(J + mr)e cos o+ "}

This is identical in form: to that found for the Lagrange top. In fact. it
is not hard to establish that the possible trajectories for the center of mass
of the rolling sphere on the fixed sphere. are precisely the same as those for
the tip of a Lagrange top. which is of course also constrained to lie on a
sphere. (|



Chapter 11

Discussion of Basketball
Rolling on Its Hoop

[n this section. we will give an examination of the reduced system for the ball
on a hoop. for the special case of a basketball rolling on a basketball hoop.
Recall figure [0.2 on page 113. There. our parameterization was

a(s) = u+rvsin (%) and
z(s) = rcos (:—)

N
We showed that the kinetic energy of the reduced system is given by

KN(s.3) = é (m + -L,) 32

2

and the reduced potential energy by
- l ) ) ‘> 2
[(s) =mgz(s) + ;{.]Q[(.ﬁ)' + (J + mri)a(s)"Ma(s)" )

where Q, and Q, are solutions to the adjoint equation.

(IQI

ds

u
= -, and
l‘
—.J

d .
—{a(s)’N} = —————a(s)Q,.
c[.s{d( )"0y} v(.f—{-mr-?)a( )y

129
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<

Figure L1.1: Sphere on Horizontal Hoop

New Parameterization

For physical reasons. which will become clear. we make the change of

variable

We refer the reader to figure 11.1.
The equations above become

a(e') = u—rvcosu.
() = esine.
] . (J+ mrH)e? .,
I (e.v) ——-T,—"—t". and
22

((v) = m.q:(u)+é{-fnl(u~)'-’+(-l+mrﬂ)atw)lﬂz(uf}.

with Q; and Q. solutions to

dy

d . —J
— 1 2 9 — - . ) Q .
I {a(w)*Q} ) — a(e)y

(11.1)
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The shape of the function [~ will determine the possible reduced motions.
We are particularly interested in trajectories passing through ¢ = 0.

At the Horizontal Position

To gain some insight we will find the values of {’{0) and {(0). in terms
of ('y = 2,(0) and '3 = 0,(0). We begin by finding

which give

From the adjoint equation we have

I
O
al,

"

1
afl,

giving

%(0)

a{c) = esine.
Jd(e) = vcosu.
a'ley = vcosuv and
14 -
ey = —rsine.
al0) = uwu—r.
=0} = 0.
a(0) = 0.
J(0) = o
a0y = v and
Z10) = 0.
uds.
—2a'Q), — —J—;Ql.
J 4+ mr-
ufY, and
J
=3d'Y, = 24"0Q, — —————Q’l.
- ©  J4mr?
u(’'s.
J ,
(w— o) +mr2) "
ut

and

Tu =) ¥ mr2)Cl
_u.l + 2v(J + mr?)
(u— o)(J + mr?)




Finally then. differentiating the potential. we have

(" = mgz+J99Q +(J +mr*){ad'Q} + ?Q,0,}
and
[ = mgz" +J{00Q + (X} + (S +mr?)
{(1(1"Q§ + ((1')2.Q.§ + taa' 0,0, + rzz(Q.'_,)"’ + ﬂzQ-_)Qg}.

giving

[7(0) = elmg+ JCCy) and
udC?

['” = . — 26'3 .I y
. /{ ("_l')(—[+rrrr'3)+tl -}+( +mre)

; . J ok
{(“ — e+ (e =) [—(u — o)+ mr"’)(l}

ud + 200 +mr?) | }
— ('
(e =)+ mr?)

+ C3ed — mr(u — r')]} .

+u — )20, [

- {-Cl (v« —e)(J + mr?)

[t is clear that ('} and "y may be chosen so as to achieve any value for
the quantity 5 = (7(0). For the case {(0) < 0. for a range of values of
the energy. the trajectory is such that the center of the ball drops helow the

horizontal plane of the hoop. and rises again.
Now 0 < v < u must hold. We see that any value for {(0) may not be

positive. provided thar the coefficient of (7 above is negative. or

2
mr-u

v —mri(u—ve)<0=rv< T+ mr
A Basketball

For a basketball. the mass may be regarded as distributed evenly on its
surface. A straight forward calculation vields

2mr?
J=2
3
and the requirement above becomes
3u
v < —.

9
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For a basketball. the circumference of the ball is about 30 inches. the inner
diameter of the hoop (or diameter of the hole through which the ball passes)
is about I3 inches. and the thickness of the hoop is about 3/ of an inch.
["sing centimeters as the unit of length. we have r =~ [2.1276. u = 23.8125
and ¢ = [3.0801. We thus have 3u/5 = 14.2875. and so {’(0) may not be
positive.

[f we have {7(0) = 0 with ["(0) < 0. then there i1s a local maximum of
the potential at « = 0. If Q,(0) and Q,(0)} are varied from these values such

that {7(0) becomes negative. the local maximum moves lower.

Numerical Investigation

We will now describe. using a number of plots produced by the Maple
mathematical software. a numerical investigation into this effect.

[n all of the plots discussed below. the units of ¢* have been adjusted to
nnits of 7 radians.

We first require a solution to equations L1.1. in terms of 'y and (. For
the ('} = | and (' = 0 solution we will write Q, = fi1(v') and Q2 = fia(e).
For the (' = 0 and (', = | solution we will write Q, = fo;(¢) and Q. =
faa(e).

[t is easily seen from equations l1.1 that f;; and f,» are even functions.
while fi, and f; are odd functions.

Figure 11.2 shows a plot of the numerical solution obtained for ('} = |
and 'y = 0 (that is. of fi; and fi2). The plot has been done for the range
—-1 to - (that is. —47 to +4w). The tickmarks on the independent axis are
at —1. —2. 0. +2 and +.

Figure [1.3 shows a plot of the numerical solution obtained for (', = 0
and (', =1 (that is. of f5; and fs). Again. the tickmarks on the independent
axis are at —4. —2. 0. +2 and +.

[t is apparent from these plots that the solution to the adjoint equation
is not periodic.

U'sing these fundamental solutions. we have

; l 2
() = mg¢("-")+5{-/[C'lfu('~"')+C2f21(b')]“

+(J + nu"'))a(u')z[C'lf[g(u‘) + C:f'.):z('—‘)]z}
= mgz(v)+ :i—m{A(t.")Cf +2B(e)CCy + C(v)C3).
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Figure 11.2: Plot of Solution for ©;(0) = | and Q,(0) =0

Platof Q (f, ) Plotof €y (f37)

Figure [1.3: Plot of Solution for Q,(0) =0 and @»(0) = |
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Plot o’ A Plot of B Plat of C

Figure 11.4: Plot of Coetficients . B and (' in Reduced Potential

with
Aw) = FRA) +5a(e) fual e,
B(v) = g[?-fu('-’)f.’l(t')+5(1(U')2flz('-“)f_’2(f-')} and

Clv) = %—[’-’fn(u'):+5(z(ﬂ‘)2f:z(t')2]-

The functions 4 and (' are even. while the function B is odd.

Figure 11.4 shows a plot of the numerical solution obtained for . B and
(". The plot has been done for the range —1 to +1 (that is. —7 to +=). The
tickmarks on the independent axis are at —1. —0.5. 0. +0.3 and +1.

Observe that the mass. m. cancels out of the equations of motion. and so
may be set to 1. Using seconds for the unit of time (we have already chosen
centimeters for the unit of length). we have g = 930.66.

We now examine the shape of the reduced potential function (. for rea-
sonable values of the parameters ('; and (';. We first need to consider the
physical meaning of these parameters.

Recall from section 10.3. that the basis vectors for S = V"N D were

1 = (3.0.0) and
w2 = (an.0.-r).

in (v. 5. 8)-space. The symbol 3 appearing in this equation represented the
unit vector normal to the surface. The svmbol n represented the unit vector
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C=d0. C,=5 C =50, C4=3 C =60. C,=5

Figure 11.5: Plots of Reduced Potential for (*, = 0.5

pointing along the longitude of the surface (recall figure 10.1 on page [10).
This leads to

vole) = Q(e) and
fj(L') = —ri(e).

where 1, = 371 is the “normal component”™ of the angular velocity.

A value of 27 radians/secound for & corresponds to the ball going once
aronnd the hoop per second. The corresponding value for . is 27/r =
0.5181. So values for (", of 0.5 and 1.0 seem physically reasonable.

A value of 27 radians/second for v, would correpond to the ball spinning
around the normal direction once per second. The corresponding value for 2,
is 27 == 6.283. So values for "y of from 20 to 60 seem physically reasonable.

Figure L1.5 shows plots of (™ for (' = 0.5 and €'} = —10. —50 and —60.

Figure 11.6 shows plots of [ for (; = 1.0 and 'y = —20. —30 and —0.

Figure 11.7 shows a larger version of the plot of (" for (', =1 and ('} =
—40. From this plot. we see that the local maximum has been shifted to
v & —0.127. or about 21 degrees below the horizontal position. There are
trajectories which cross v = 0 with v < 0. approach the local maximum. fail
to reach it. and then change direction. passing back through the horizontal
position. From the shape of the plot of [, we see that these trajectories do
not again pass the horizontal position. The basketball has gone below the

horizontal. but has popped back out again.
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C|=-li). C: =1 Cl=‘30. C:=| C]z—‘o. Cl=l

Figure 11.6: Plots of Reduced Potential for (', = 1.0

There are trajectories of this sort that come arbitarily close to the lo-
cal maximum position. There is also one which approaches this position
asyvmptotically. taking forever to reach it.

For the trajectories which reverse their direction. we could calculate nu-
merically the number of times that the ball goes around the hoop. while
helow the horizontal position. The closer the trajectory approaches the local
maximum. the larger this number would be. For the asvmptotic trajectory
this number would be infinite. [t is not meaningful. therefore. using this
model. to ask the question “How many times does the basketball go around
the hoop before popping back out?”.

In reality of course. the basketball would not go around the hoop forever.
There is dissipative friction acting. The basketball would eventually fall
through the hoop. Any orbit that attempts to approach too close to the
local maximum will also fall through the hole.

Normal Component of Force

The limits of this model are also exceeded if the normal component of the
force between the ball and the hoop becomes non-positive during the motion.
In such a case the ball will leave the hoop. We will find an expression for
this force.

Refering once again to figure 10.1 on page L10. for this problem. the
vectors 3 (normal to the surface). n (along the longitude) and 7 (into the
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figure) may be written (see also figure 11.1)

3 = —Ra(0)Ry(v)ey.
n = R3(0)Rxv)e; and
T Ri(0)es.
and we have
()( ) = —ry(e) and

&= alv)(e)r + .
The normal force is given by
Fo = 3T{mF + mges}.

\We may calculate

3Te, = —e_jTRg(L')el = —e_;f{cos ey —sineey} =sine
and
Ti = (T8 = ()
= —("Ti

—{=0(C) R3(8) Alea) Ral e — CRa(0) Ro(v) Alen)ey }T
{a(e)0() Ry(0)es + v Ra(0) Ra(L)es }
{(}( c)A(es) Ra(e)ey — L-'H-_)(I.")E:g}r{(l(t')fj( L)es + L‘L"R;)(l.‘)(;;}
= -—a{u)()( C‘)zf-{Rg(L')T.‘uﬂ;)Cg — vt
—vh(v)cel Ry )T Ales) Ra( v )es
a( ) c)Pel Ry(e)ey — re? 4+ L'a.(l;“)l.'-'fllr.-l(f;g)Rg(L')TE;;

a(e)f(r) cos v — ve? — vﬂ-(t')c.'e.ng(L')Tr;,

af l.'}()(::)2 cos o+ — et
The normal force is
Fo. = m{a(v)0(r)? cos v — v + gsin v}

This is what one would obtain by resolving components of the two centrifugal
forces and the gravitational force. In terms of {1, this becomes

F,

m

= ale)r*Qs(e)icos v — vv? + gsine

= a(e)r?[CLfis(e) + Cofar(w)]P cos e + gsine — e
= o{N(v)—?}.



L-+0

with

a(e)r?[Cr fiale) + Cofon(w)]? cos v + g sin e

r

M) =

The ball remains on the hoop so long as the condition [¢|* < .V(¢) is satisfied.
For the trajectories we are interested in. ¢ is small in magnitude. in fact
asymptotically zero for the asymptotic trajectory. Hence we have

F.x~meN(v).

Figure 11.8 shows a plot of .V for (', =1 and (" = —10. From this plot.
we see that the ball leaves the hoop for ¢v© & —0.107. or about I3 degrees
below the horizontal position.
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Chapter 12
Three-Wheel Carf

In this section we consider the example of a three wheeled cart rolling on a

horizontal plane.

12.1 Formulating the Problem

[n this subsection we formulate the Lagrangian and the constraint equations
for this svstem.
('onsider figure 12.1 below.

he o
| - X
i A 6
‘ N
, X .
b\ |
E b\ - W,.‘/a', .
B Ne
. - - %

Figure 12.1: Three-Wheeled Cart
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The tigure is a top view.

There are three identical wheels. except that the front wheel may turn.
The radius of each wheel is r. The moment of inertia of a wheel about a
perpendicular line through its center is .Jii-. About a line through a diameter
the moment is .Jp. The angle that the front wheel makes with the axis of
the cart is a. as shown.

The wheels are labeled o. ¢* and \ in the figure. These symbols will also
represent the angle of rotation of each wheel.

The distances a. b and d are as shown.

The figure shows a set of cartesian axes. which we associate with or-
thonormal vectors €; and €, in the usual way.

The syvmbol . labels the center of the rear axis. and is also the column
vector giving its position in the plane. The symbol « is similarly associated
with the center of mass of the cart. The symbol = is the column vector giving
the position of the front wheel. The moment of inertia of the cart about a
vertical axis through u is .J. The total mass of the cart is m.

The angle that the axis of the cart makes with the ¢,-axis is denoted 6.
as shown. The angle that the front wheel makes with the € -axis is denoted

(4
-

\We also introduce the rotation matrix R. defined for a general angle « by

CoOsw —siilw
Ssinw  COSw

R(.&') = [

along with the vectors
T(w) = R(w)er
’COS-.&’
= ) ] and
| sinw
n(lw) = R(w)ey

_ |—sinw
cosw |~

There is no potential energy. so for the kinetic energy A" and Lagrangian
L we have

AN

NG| o—

N2 l- T . l- % v < l ]
SO + ~mila + sIw(0® +¢* + ) + 5/p€’.
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Observe that
a = £—46.
z = r+dr{b) and
u = r+at(f)
hold.
The configuration manifold Q. which may be parameterized by
(8.u.0.c.\.€). is T-dimensional.
We determime the nonholonomic constraints by considering each wheel.
At © we have
ror(f) = [r+bn(8)
= i — bfr(8).

At o we obtain
ror(0) = &+ b0T(0).

At \ we obtain

O
I
<
-
gug
Iy

or

M R(Eey = [r+dr(d)]
= &+ dfn(f).

From the equation at either o or t* we obtain
n(6)T =0.
and from the equation at \.

r0)': = 70T R(E)e]
rie; R(8)T R(E)es
r\'eTR(a)e[

= rycosa.



So we obtain
r =rycosar(f).
Also from the equation at \ we find
dd = n(0)T[r{R(E)e ]

= ries RIOTR(E)er

= !";E;{R(O)Fl
(2.2 = ry\sina.
and from this

dit = dlc+ar(9)

rydcosar(8)+ adf n(0)

r\ [dcos a T(#) + asin o n(4)]
(12.3) = rm RO\ (a).

I

with

Ma) = [([cos 0]

asina

Finally. from the equation at o. we have

dro = d[(9) 1—60]

= ry[dcosa — bsina]
or
(12.4) do = \[dcosa — bsinal.
tor ¢ this becomes
(12.5) dy = \[d cosa + bsina].

The constraint equations are equations 12.2. 12.3. [2.4 and 12.5. We see
that 6. i. o and v are determined by 0. £ and x. There is no constraint on
E..

The configuration manifold Q. as described above. is 7-dimensional. and

the constraint distribution D within 7°Q is 2-dimensional.
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12.2 The Group Symmetry
There is a group symmetry of this system associated with the Lie group
(7 = SE(2) < SO(2)°.

The group action is given using an obvious parameterization for (& by

(12.6) g = 6+ 76
T = R(A)u+ Au
o = o+ Jdo.
T o= et
Y= v+ A and
£ = £+

The quantity o is invariant under this action. and labels the group orbits
of the action.
Differentiating with respect to time. we have

i = 4.

u = R(A)a.

o = o

= _

Y o= and
£ = &

We see immediately that the Lagrangian (equation 12.1) and the con-
straints (equations 12.2, [2.3. [2.4 and 12.5) are preserved.

12.3 A Basis Aligned with the Symmetry

We now attempt to apply the theory of chapter 6 to the current group action.
given by equations 12.6.
[n what follows. we regard TQ as (8. &. 0. ¢. \.£)-space.
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From the constraints (equations 12.2. [2.3. 12.4 and [2.3). we easily see
that {~.wg} is a basis for D. with
~ = (rsina.rR{(0)\a).dcos a —bsina.dcosa + bsina.d.rsina)

an

ko = (0.0.0.0.0.1}.
[t is also easily seen that ~a = 0 holds. so that - lies in }". and so in
S =DnV. and that sy € 17 holds.
The tnner product obtained from equation 12.1 is
27 K (o b ko 1) =
S0 + miT i + Sy(00 + v + (1) + JpéL.
This shiows that
Kis.5) = fla) and
K(ko.7) = gla)
hold with
fley=(J+ Jp)sina +
mri(d®cos* a + a’sin*a} +
Ju(2d? cos® a + 207 sin’ o + d°)
and
gla) = Jprsina.
[f we define » by
K= frg —g7-
then w lies in = DN SE.
Proposition 12.3.1. The vector fields v and & are group invariant.

Proof. For 5 we calculate

(0. T o 1. E)
=~(0+ A RN+ du.o+ Ao v+ Avoy+ A+ AD)
= (rsina. R(AO)[r R0} a)].
dcosa — bsina.dcosa + bsina.d.rsina)
= (rsina.rR(A)Ma).dcosa — bsina.dcosa + bsina.d.0).



and for kg
ro(0. T 0. .. E)
= ro(0 + A0 R(AD)u + w0+ o e+ Av\ + A€+ A0)
=(0.0.0.0.0.1).

The group invariance of f and g then provides the group invariance of x. [J

12.4 Failure to Satisfy Flatness Conditions

We will now show that this system does not satisfy the flatness conditions.
The flatness conditions. equations 7.2 and 7.3 on page 3l. in this case

bheconie

i
=

R (k.[x.5])
First we have
[k 2] =Ko — g7.7] = flro-5]-
and then
K(x.[w.5]) = K(fro—= g7 flro.3])
= f{fK (ro.[k0.5]) —gh (5. [ro- 3D}
Our calculation may be greatly simplified by recognizing at this point

that
L,KN=0

holds. To see this. one observes that the coefficients in the inner product of
equation 12.7 do not depend on any of the parameters and that xg = d/d¢
holds. We may then calculate

’

g = ro{K(Ko.7)}
(Lo )(Ko-7) + K ([Ko- Ko]- 7) + KN (ro. [Ko-7])

= [\‘( Ko. [I'Co. ’}])



E-49

and

[ = wo{A(5.9)}
= (Le)v.%)+ K([ro-3]. 7)) + K (5. [Ko-3])

= 2R(5.[Ko.%])-

For flatness then we need
L., .
f{fy' - 59/ } = K (n.[r.3]) = 0.

which leads to
g = Cfl/z_

for some constant . This is clearly not satisfied.

\We point out now that the vector field rq satisfies the conditions on &
given in proposition 5.1.1 on page 40. and so generates a constant of the
motion.

We have g € D by design. and the flow of xg is given by

Ko ..o n\.§) = (0. u.o .\ .E+ 5).
s0 that Tk, is given by
Tﬁus(é. L. o. v \S) = (0.4.0. 0. \E)

and wy fully preserves the Lagrangian.

The constant of the motion generated by kg is Jpé. This is the angular
momentum of the front wheel about the vertical axis through its center. [t is
apparent physically that this should be constant. as the torque on the front
wheel about this axis is zero.

Moreover. this constant is group invariant. as it must be. since xg is group
invariant (recall equation 7.1 on page 49).

The short coming is that g is not vertical. and so does not lead to a
reduction of the problem using the current theory.



Chapter 13
Chaplygin Sphere

[n this section we consider the example of a balanced but dynamically asym-
metric sphere rolling without slipping on a horizontal plane. That is. the
sphere has its center of mass at its center. but the three principal moments
of inertia are (in general) all different. This problem is examined briefly in
[3]. and was completely integrated by S. Chaplygin (see [10]).

13.1 Formulating the Problem

[n this subsection we formulate the Lagrangian and the constraint equations
for this svstem. We will use the notation of section 2.5 in this section. as

tstual.
We take a fixed set of cartesian axes. with associated orthonormal vectors

¢1. €3 and es. with €3 pointing upwards. We denote the position of the center
of mass with respect to these axes by the column vector r.

We also take a set of orthonormal vectors {iw,.w,. w3} at the center of
mass of the sphere and moving with it. and use the orientation matrix

I = [wl ws Ll.'3] .
We denote the angular velocity with respect to the moving axes by w. so that
W= W A(w)

holds.
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Let the mass of the sphere be m. We use r to denote the radius of the
sphere. Denote the inertia of the body by ./. The total kinetic energy of the
boely 1s given by

1 i
A= ;J./w' + ;mi‘Ti:

The potential energy of the body is constant. and may be taken to be zero.
The Lagrangian for this system is therefore given by

[ . L
(131} L= ;u—'r-]u; + ;mi‘

- -—

Tk,
The rolling condition is that the velocity of the point on the sphere that
is in contact with the plane has zero velocity. The constraint therefore is

0 = ++ ,-l(H'u:](—rf;;)
(13.2) = it rAlen)lhe.

Note that using »r and I as coordinates suggests that the contiguration
space is SO(3) x R*. However. el.r is clearly equal to r. and so the actual
configuration manifold is Q = SO(3) x R*.

Also. equation 13.2 suggests that there are three linear velocity con-
straints. But one of these simply requires that elr be constant. There
are in fact only two linear nonholonomic constraints in TQ.

50 the configuration manifold @ is 5-dimensional. and the constraint dis-

tribution £ within TQ is 3-dimensional.

13.2 The Group Symmetry

In this section we describe a group symmetry of this system associated with
the Lie group (v = SE(2).

Recall that the Lie group S£(3) is the manifold SO(3) x R> with the
group product given by

(H.yWK.z)=(HR.y+ H=).

We will think of SE(2) as the Lie subgroup {{ B3{0).(£.¢.0)}0.£.C € R} of
SE(3).
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To describe the group action. we parameterize (¢ by R” using the map
(0.£.¢) = ((R3(0).(£.C.0))).
The associated group action on SO(3) x R? is given by the map (H..r) —
(1.7, with
(13.3) W = Ry(o)l
(13.4) T = R3(o)r+ ey + (e
Since ¢IF = eXr holds. the group action of G on SO(3) x R’. induces an

action on the configuration manifold Q.
We must show that the Lagrangian.

1 L .r

L = ;u,'T-lw' -+ ;m.i‘ .i'.

is preserved by this group action.
We immediately have

T = Ra(o)F.
From equation 13.3 we have
WAz = W
R:;(O)li-’
= R3(o)it A(x)
W A(w).
so that

holds. Thus we obtain L = L.
We must also show that the constraint.

0 =17+rid(es3)l w.
is preserved. For this we have
Aea)WT = A(ez)Ra(o)Ww
= Rz(o)A(e3)lVw
and then
T+ rA(e3)W= = Ry(o){t + rd(es)W'w}.
Since R;(o) is non-singular. we see that the constraint is preserved by the

group action.



13.3 A Basis Aligned with the Symmetry

We now apply the theory of chapter 6 to the current group action. given by

equation 13.3 and equation 13.4.
To find a basis of vector fields for the distribution 1". of vectors tangent
to group orbits. we take partial derivatives. We obtain

N . F) = (0.€)
Y - S
A& (0.0.0)

N I:[ :F] = (0.e2) and
de (U.0.0}

ar.7) = (Alea) IV Aes)r)
do {0.0.0)

= (W AW Tes). Ales)r).

We may map these to (w. .r)-space to obtain instead

ad

% —r (O.E[).

—d— — (0.€2) and
78

.i — (”'Tf:;..-l(e;,).r).

do

Fach of these vector felds will necessarily take values in T7Q when evaluated
on (). These vector fields are also independent evervwhere.

To find vector fields which span the constraint distribution D. in
(w. .I')-space. we simply substitute values for w in the constraint.

0=u0+rd(e)l .

Our choices for « are made with proposition 3.5.1 on page 69 in mind.
For « = W Te; we obtain

I = —f‘.“(Eg)Gg =0.
For & = ¢; we obtain

I = —r-A(es)He;.
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Thus D = span{gl.gg.gg} and ¥ € D hold. with
= = (HWTe;3.0) and
K, = (f,’. —!‘.-1(63)”'—6,').

Each of these vector fields will also necessarily take values in TQ when eval-

nated on Q.
Viewing these vector fields as differentiation operators. we have

(13.5) (W) = (WA Te).0) = (A(e3).0)  and
Ro(We) = (WA(e). —rAles)We).

Being somewhat loose in our notation. we see now that
d T T, J
T = + {e; }— — {er- :
Do PR

holds. so that 4 lilesin S=0nN1".
- . N 0
We orthogonally project each vector field &; onto the subspace DN+ by

- 0 - Y]
Ri=N(57.7) R —hA ("/in) eE

Then {x(.x3. 53} spans DN~L. so that {5. /). K2. K3} spans D. Moreover we
have
- LY T g 4
KEV=REV e, =Wey=2r=9=2r =0.
[t follows that {+} spans S. and {~|.~s.x3} spans H = DN St
At any point then. for some choice of / and j. {7.x,.#,} is a basis aligned

with the symmetry.

Proposition 13.3.1. The vector fields 7. k|. Ky and k3 are group invariant,

Proof. Since A is group invariant. it is sufficient to show that . n'[, x._, and
R are group invariant. In light of proposition 8.5.1. it is sufficient to compare
the effect of each vector on ¥, with its effect on ¥,

For ~ we have

W o= {R'l )”"}

Ra(0) A(ea) W
A(e3) Rz(0)W
= Afey)W.
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For «; we have

=

= #; {Ra(o)W)
Ry (o)W Ae,)

e

= WA(e;).
0
13.4 The Flatness Conditions
Lemma 13.4.1. In («w..r)-space we have
[3.8:] = (0. —rA(€a) A(ea) Wey).
Proof. We calculate
(R = 3 {WA(e) = Ry {Alea)IT)
= Ales)W A(er) — Alea)W A(er)
=0
and
[.Rle = 2 {~—rA(es)We}~ A, {0}
—rA(es)A(es) e,
|

The kinetic energy for this system. once again is

N T
[\ = ;u.‘r-/..d + ;In.l’T.l'.

The associated inner product. in (w..r)-space. is given by
N((A u). (p.v))= /\TJ,u + mule.

Proposition 13.4.1. The basis {7.x;.5;} satisfies the flatness conditions.
equations 7.2 and 7.3 on page 31. which in this case become

R ([y.r].6;)+ K ([.5j]-5i) = 0.
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But. as in the proposition on flatness. we have

[v.5,] = K (.3) [3.5,]-

and then
K([rml3) = Ko K ([R)]5) =0.

using lemma 13.4.1.

d

In this case. Q/(/ is simply the surface of a sphere. the manifold 52
Since the dimension of 52 is 2. we conclude by corollary 3.4.1 on page 63.
and the comments that follow corollary 8.4.1. that the reduced system on 5*
is Hamiltonian.

We can interpret the reduced system physically. First. if we think of 52
as {y € R|y'y = 1}. then the projection map \ : Q = SO(3) x R? = ~°
is given by (11 u) — W Tey That is. 1# 7€, labels the group orbits. But
recall that if a material point in the rolling sphere is labelled with respect
to the moving axes by y. then with respect to the fixed axes it is labelled
bv 2 = »r + Hy. If we set = to the position of the point of contact. then
r — = = rey holds. and the corresponding value for y is —ri Te;. So we may
think of S? as the surface of the rolling sphere. and then the trajectory in
the reduced svstem will be the path traced out on the surface of the rolling

sphere. by the point of contact.

13.6 Constants of the Motion

The constant (" in the previous subsection has an interpretation in terms of
the angular momentum of the sphere. We ask the reader to recall equation
2.10 on page [8. and the notation in use in that subsection. There. the
angular momentum about the origin was the quantity P = mA(r)r+ H'. e,
The expression ./ was called the angular momentum of the body.

From the general theory. we know that the tangent vector to the trajec-
torv. 7(t). will be a linear combination of ¥. x; and x;. So we have

E;{{”'.Ju.'(‘:")} = (WTex)TJw(Qy + vin, + vK;)
= w(5 )T./uu(Q[*/ + vini + vyRy)

KN (3. Qv + viki + vjKj)
= KN(7.7)

o~
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Thus (" is the component of the angular momentum of the body. along the
vertical axis.

We also point out that the vector field ~ satisfies the conditions on o given
in proposition 5.1.1 on page 40. and so generates a constant of the motion.

This constant is in fact C'.
To see this. we have v € D by design. and the How of + is given by

w(Wr) = (I.7)
with T = Ry(s)¥ and T = r. Differentiating this gives T = « and T = .
in the ususal wav. so that T+, is given in (w..t }-space by

Trglw. k) = (w. 1)
which is the identity map. So 5 fully preserves the Lagrangian.

l l ;
L= ;u.'T-/u—' + ;m.i'r.i'.

The constant of the motion generated by 5 then must be
K(r.s) =w(P) I {WTes} =esWae(r) =C.

[n fact. (' is one of three related constants. Let o be the vector field given

in (w..r)-space by
o= (WTe, riAle;)es).
For / = 3 this is just 5. We have # € D. and the fHlow of o is given by
a(W.r) = (V. F)

with I—l = R:(s)V and T = R(srA(e;)es)r. Differentiating this gives & = w
and T = R{srA(e;}es)r. so that Ty, is given in (w.Z)-space by

Tys(w. t) = (w. R(srA(ei)es) ).

We see that this fully preserves the Lagrangian. The constant of the motion
generated by o then must be

C; = K(r.o)
u;(T)TJ{H/'Te,-} + mi(m) T {rAle;)ea}
= el {WJe(r) + mA(res)(r)}.
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This last expression is very nearly the same as the expression P = m . {(.r)r+
1./ for total angular momentum. We could say that the constant is the
component along the ¢;-direction. of the total angular momentum of the hody
about the point of contact. To do so however ignores that the fact that the
point of contact is not fixed (in any Galilean coordinate system).

The additional two constants found in this way are not group invariant.

We find
= e{IWJZ + mA(res)T}

el [ Ry(o)W S + moA(res) Ra(o)t}
= el Ry(0){WJw + mA(res)i}.

™

which is only equal to (" for 1 = 3. However

I

Z(C—'.')z = {WJw+ mA(re3)i} {WJw+ mA(res)i} = Z(C'i)l

does hold.
The energy is of course also a constant of the motion. There are therefore

two constants of the motion. quadratic in the velocities. [n [10]. Chaplygin
used these constants in conjunction with elliptic coordinates on S? to inte-

grate this svstem.
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Hessian transformation. 19
holonomic constraints. 10
holonomic dyvnamical svstem. [2
horizontal distribution. 43. -6

inertta matrix. L7
inertia. principal moments of. 13

Jellett’s integral. Y3

kinetic energy. 9. 29
Kinetic inner product. 28. 43

Lagrange top. 3. 73

Lagrange’'s equations. 10. 21

Lagrange’s equations. intrinsic form
of. 24

Lagrangian. 9. 20

Lagrangian. regular. 20

Legendre transformation. 19



Lie bracket. 31
Lie cderivative. 37. 1

mormemtun. 31
moments of inertia. principal. [8
momentum of center of mass. 36

natural Lagrangian. 28
nonholonomic constraints. [2
nonholonomic dynamical system. 12
nonholonomic system. 20

parttally preserves. 10
permutation svmbol. 33
Poincaré’s equations. 35
Poiticareé’s Equations. 38
potential energy. 23

quasi-velocities. 32

reduced kinetic inner product. 66
reduced potential. 66

regular Lagrangian. 20

rolling condition. 74

spatial angular momentum. 36
spatial angular velocity. 33
spatial frame basis. 33
structure functions. 31
symplectic form. 30

top. 3
top. Lagrange. 3. 75

undetermined multipliers. 15. 21

vakonomic mechanics. 14
vertical distribution. 45
virtual motion. 86
virtual work. 1
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