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Abstract 

In the information age, cryptography is becoming an important part of efficiently 

transmitting data securely. The RSA cryptosystem is a popular system used to 

transmit secure information over insecure channels. To allow secure communication 

over these insecure channels, analysis regarding the strength of the RSA cryptosystem 

is important to stay one step ahead of those who wish to break it. At the heart of the 

RSA cryptosystem is the intractable problem of factoring. State-of-the-art methods 

of factoring, such as the General Nuthber Field Sieve (GNFS) show good potential 

at factoring; however, few consider the problem as a general optimization problem. 

Several optimization models will be covered and how the models lead to a well known 

difficulty in factoring, solving the Diophantine equation. This thesis gives evidence 

that some chosen nonstandard algorithms, such as optimization, cannot be used as 

a viable method for efficiently factoring large numbers. 
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Chapter 1 

Introduction and Background for Factoring in 

Cryptography 

1.1 Basic Introduction and Motivation 

Cryptography is used all over the world to keep private data secret. It is becoming a 

necessity for the new age of information and without it, many virtual infrastructures 

would not be possible. For example, e-businesses and online shopping require that 

billing information be encrypted and verified to ensure the person requesting the 

purchase is the proper person. If the shopper were to send their billing information 

in the clear, it would be easy to forge another request using the same information, 

resulting in possible theft of funds and drastically increasing the costs of shopping 

online. 

Figure 1.1 shows a popular communication paradigm when considering traffic 

over the Internet. 

In this setup, we consider Alice and Bob as the people that wish to securely 

communicate with each other, perhaps to make a purchase. Unfortunately, the 

nefarious Eve wishes to listen in on Alice and Bob, recording any billing information 

that may come up in the communication. If Alice and Bob wish to communicate with 

each other, they must encrypt their traffic using an algorithm called a cipher, thereby 

making the message unintelligible to Eve. When Alice uses the chosen cipher on her 
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Figure 1.1: The Internet communication paradigm 

plaintext message, it is transformed into ciphertext which Eve cannot understand. 

She may then send the ciphertext over the channel to Bob, provided the cipher she 

used is reasonably secure. 

While encrypting the message, the algorithm performs operations on the plaintext 

based on a seed called an encryption key. A decryption key can be used to reverse 

the operations applied to the plaintext to retrieve the message. In some ciphers, 

the encryption and decryption keys are the same and are called symmetric ciphers. 

Ciphers that have different encryption and decryption keys are said to be asymmetric. 

By having a different decryption and encryption key, Alice needs only send her 

encryption key to Bob who can then use the key to encrypt a message and send the 

ciphertext to Alice. Alice is then confident that only she can decrypt the ciphertext 

and read the message because the decryption key was never sent over the insecure 

channel. 
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The advantage of an asymmetric cipher is the ability to use the insecure channel 

to transmit key information without compromising the security of the system; how-

ever, in practice asymmetric ciphers are slower than the symmetric ciphers. In the 

paradigm discussed above, if Alice chooses a symmetiic cipher for speed, there is no 

way to send the key to Bob without Eve potentially intercepting the key and using 

it to decrypt all the traffic. Her only alternative is to use a special secure channel 

to send the key. However, in practice, secure channels are very expensive or infeasi-

ble. This problem was solved by Whitfield Diffie and Martin Heilman using the first 

asymmetric algorithm called the Diffie-Heilman key exchange algorithm [24]. Later, 

this algorithm was replaced by a more versatile cipher called the RSA cipher. In the 

RSA cipher, the algorithm is secured by the difficulty of factoring large integers and 

will be the main focus of this thesis. 

While asymmetric ciphers are more versatile, for most real world applications, 

both cipher types are use. When both cipher are used, an asymmetric cipher encrypts 

a set of randomly chosen symmetric keys. The set of symmetric keys are then used to 

encrypt the body of the message. The use of both cipher types allows the versatility 

of asymmetric ciphers with the speed of symmetric ciphers. 

The purpose of this thesis is to investigate how the RSA cipher withstands to 

opimization techniques and contrasts those techniques against with current state-of-

the-art methods of breaking the cipher. The thesis will cover several experiments 

attempting to break the RSA cipher using optimization in both the integer and real 

number sets. 

The thesis is broken into four chapters. In the first chapter, background in the 

number theory and optimization fields of mathematics are given. The second chapter 
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covers some current state of the art. Chapter three contains the experiments and 

briefly discusses the steps taken to perform the computation. Chapter four is the 

final chapter and it provides a discussion and conclusion from the experiements. 

Future work is also given in the fourth chapter. 

1.2 Number Theory 

To understand the RSA cipher, a bit of number theory is required. This section will 

cover background needed to understand the RSA cipher. 

Number theory is one of the oldest mathematics known to man. Its origins date 

back as far as 800 BC. In number theory, the focus is on the properties of numbers 

and how they relate to each other. In particular, the integer numbers are focused on. 

This section will very briefly cover some basic number theory required to understand 

the upcoming concepts. 

1.2.1 Divisibility 

The first concept usually covered in number theory is the idea of divisibility [6, 8]. 

A number n is divisible by d if d divides evenly in n so that there is no remainder. 

It is denoted dirt and is read "d divides n". For example, 3115 and 6142 but 12 125. 

If a number p> 1 can not be divided by any number except itself and 1 it is called 

prime. If a number does have a divisor other than 1 or itself, it is called composite. 

For example, all even numbers greater than 2 are composite because they are all 

divisible by 2. A biprime or semiprime is a product of two primes. Furthermore, if 

a prime p can divide m, k times, it is written pk In and is read "p' fully divides n". 
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1.2.2 Fundamental Theorem of Arithmetic 

The fundamental theorem of arithmetic (FTA) says that all numbers can be uniquely 

represent as a product of primes [8]. Mathematically, this can be written as 

'yl c1 a 
I(1 VnEZ,k≥1,a≥1. 

Representing n as a product of primes is called the canonical factorization (or simply 

factorization) of n. With the FTA, it becomes clear that when n = ab and pjn where 

p is prime, p divides either a or b or both. Also, if both a and b are prime, either 

p = a or p = b or both (in the case that n is a perfect square). 

1.2.3 Greatest Common Divisor 

The concept of greatest common divisor (or GCD) is central to the study of num-

ber theory [11]. As the name suggests, the GCD finds the largest common factors 

between two numbers. Common notation for the GOD function is gcd(m, n) = 

where d is the largest common factor between m and n. If d is 1, it is said that m 

and n are relatively prime, or coprime. Some properties of the GCD function are 

given below. 

1. If p is prime, then gcd(, m) = 1 or gcd(p, n) = p. 

2. Ifgcd(m,n)= d,m— dt,m — ds then gcd(s,t) = 1. 

3. If d is a common divisor of m and n. then dl gcd(m, n). 

4. If m= nq+ r, then gcd(m,n) = gcd(n,r). 

To efficiently compute the GCD of two numbers, the Euclidean algorithm can be 

used. Another way of finding the GOD is looking at the canonical factorization of 



6 

the two numbers; however, factoring large numbers can be a difficult. The Euclidean 

algorithm is performed by dividing the reminder until the remainder is zero. It is 

shown below how these divisions are done: 

m = nq1+r1,1≥r1<n, 

n = r1q + r2, 1 ≥ r2 <r1, 

'rk-2 = rk_lqk + rk, 1 ≥ rk <Tk_1, 

rj_1 = rq1 + rk+1, rk+1 = 0. 

The last nonzero remainder rk is the GCD of m and n. 

1.2.4 Modular Arithmetic 

Modular arithmetic is another central concept to number theory. It allows the com-

putation on a finite subset of integer numbers in a circular manner. In this system 

the numbers "wrap around" so that all computation is limited in this subset. This 

wrap around is achieved by considering the remainder in division. A relation called 

a congruence relation is used in the notation of modular arithmetic and is expressed 

as 

ar (mod d) 

and is read "a is congruent to r modulo d". This expression says that after removing 

(or adding) multiples of d in a, we are left with r. Note that neither a nor r have 

to be less than d. The congruence relation says that two number are equivalent if 

they were mapped onto a circle of d points. For example, 3 10 17 . 3 + 7k 
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(mod 7). In practice, when doing modular arithmetic only the numbers less than 

d are considered because smaller numbers are typically easier to work with. Some 

properties of congruences are given below: 

1. aa (mod d). 

2. Ifab (mod d) and bc (mod d) then ac (mod d). 

3. If a b (mod d) then b a (mod d). 

4. Ifa1 b1 (mod d) and a2 b2 (mod d) then ai+a2 bi+b2 (mod d). 

5. Ifa1 b (mod d) and a2 b2 (mod d) then ai*a2=b1*b2 (mod d). 

6. If a b (mod d) then for any integer k, ka kb (mod d). 

One interesting property of this arithmetic is the use of modular exponentia-

tion. In standard arithmetic, computing large exponentials results in large numbers. 

However, in modular arithmetic numbers can be reduced to be more manageable be-

cause of the circular nature of the arithmetic. By considering property 5, it follows 

that c a * b (mod d) is equivalent to c (a (mod d))(b (mod d)) (mod d). For 

example, 

117649 = 76 = (73)(73) (2)(2) (mod 31) 

because 

73 = 343 2 (mod 31). 

To further speed up the process, considering the binary representation of the ex-

ponent tells when to multiply and reduce. In the above example, the exponent of 
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6 = 1102 is read from right to left and the result is multiplied by 72 (mod 31) and 

reduced by 31 every time there is a 1. This results in 

(7 20 (mod 31))0(7 2' (mod 31))1(722 (mod 31))' (1)(18)(14) 4 (mod 31). 

In general, modular exponentiation then takes less than O(logn) multiplications. 

1.2.5 Euler's Theorem 

One of the most famous results of number theory is Euler's theorem [20]. It states 

that 

1 (mod m). 

In this theorem, a and m are relatively prime positive integers, and q5(m) is Euler's 

totient function which computes the number of positive integers less than and rel-

atively prime to m. Clearly, if im is some prime p, then q5(p) = p - 1 because all 

numbers are relatively prime to a prime number. Another famous theorem that is 

related to Euler's Theorem is Fermat's little theorem [20]. It states that 

a1'a (molp) 

where p is prime. By multiplying both sides by a 1, it becomes clear how this is a 

special case of Euler's theorem. 

1.2.6 The RSA Cryptosystem 

One of the most popular cryptosystem used today is the RSA cryptosystem. The 

system is named RSA after the last names of the authors Ron Rivest, Adi Shamir, 

and Len Addleman [17]. In this system, the security relies on the computational 
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intractability of two problems: factoring a large composite integer into its primes 

and the RSA number problem. The intractability is achieved with the use of a 

one-way function. In a one-way function like multiplication, it is easy to multiply 

two prime numbers together and return the result, but difficult to factor the result 

returning the prime numbers. If the primes could be factored fast enough, then 

the cryptosystem would no longer become intractable and the system would fail to 

keep the information safe. Motivations of research into factoring algorithms test the 

strength of the intractable problems such as factoring and allow us to stay ahead of 

people who wish to break the system for malicious reasons. 

An interesting aspect of the cryptosystem is that its security is entirely based on 

the assumption that factoring and the RSA number problem has no efficient solution. 

There is no known unclassified proof regarding the security of the cryptosystem. 

Thus, it is unknown whether or not the system is truly secure. The only proofs that 

are available are proofs that show factoring is equivalently secure to other unproven 

intractable problems, such as the Diffie-Hellman key exchange algorithm [13]. This 

means that the security of the system is entirely based off the continuous failure of 

any algorithm to factor a large biprime and is merely a universally accepted hunch. 

As described above, the RSA cipher is an asymmetric cipher. As an asymmetric 

cipher, two keys are generated: a public encryption key, and a private decryption 

key. The keys themselves consist of a few integers. How these keys are generated 

are given below, followed by a more detailed discussion. 

1. Choose two large prime numbers p and q. 

2. Compute the product of p and q, n = pq. 
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3. Compute Euler's totient function on n as q(n) = (p - 1) (q - 1). 

4. Choose a value e such that 1 <e < q(n) and such that e is relatively prime to 

çb(n). 

5. Compute d so that it satisfies the congruence 

de1 (mod q(ri)). 

The encryption key is then the pair (n, e) and the decryption key is the remaining 

information (p, q, d). While some steps seem trivial, when computed at the scale of 

2512 the task is not trivial from a computation perspective. 

In the first step, two prime numbers are required. However, guaranteeing a prime 

number is a difficult task and would reduce the system to unusable at a practical level 

of security. With current algorithms, generating prime numbers in the 2512 range 

would take too long for practical use. The fastest known primality test to date is the 

Elliptic Curve Primality Proving algorithm [1]. It has an approximate complexity 

of O((lnn)5). Its worse-case complexity is not yet known. Computing a prime with 

this method would be impractical for a general encryption suite. To get around 

this problem, probabilistic prime testing is used to find large primes. Probabilistic 

primality testing is much faster than deterministic methods. This speed increase 

comes at the cost of returning a pseudoprime. A pseudoprime is a number that 

passes a probabilistic primality testing algorithm but is not necessarily truly prime. 

One such algorithm that is used to find pseudoprimes is Fermat's primality test. 

While this does not guarantee that p and q will be prime, the probability of the 

number not being prime can be reduced to a quantity that is negligible without 



11 

much effort. The last two steps make use of the Euclidean and extend Euclidean 

algorithms to quickly satisfy the conditions. Once the keys have been generated, 

(n, e) is published and used to encrypt the message. 

To encrypt the message the sender does the following. 

1. Breaks the message into blocks such that a numerical representation of the 

block of data m, is such that m <n. 

2. Compute 

c=me mod  

where c is the ciphertext. 

3. Stores all the ciphered c values so that the receiver knows how to apply the 

decryption algorithm. 

The exponential in the second step can use modular exponentiation properties to 

quickly find c. 

To decrypt the message, the receiver does the following. 

1. Retrieve c from the storage structure of the sender. 

2. Compute 

m=c 1 mod n. 

3. Reassembles the message with the computed m values. 

To see that this cipher works, we put the encryption and decryption computations 

together: 

cd (M ,)d ned (mod n) 
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But we know that 

ed1 (mod (p-1)(q-1)) 

so by Fermat's little theorem 

med = m (mod p) 

and 

med = m (mod q). 

By applying the Chinese Remainder Theorem 

M (mod pq). 

Thus, 

m (mod rt) 

With the private key (p, q, d) never transmitted and kept safe, there is no way 

for Eve, the eavesdropper, to directly decrypt the message. To get the private key 

indirectly, Eve would have to calculate the private key from the public key via fac-

toring n into p and q. This computation is where the importance of factoring comes 

in. If an efficient algorithm for factoring exists, then the cipher no longer would be 

considered secure. State-of-the-art factoring methods do not factor quick enough to 

consider them efficient. These algorithm take more time to complete than the mes-

sage is considered valid for. Thus, a better factoring algorithm is required for a direct 

attack on this cipher. More discussion on the state-of-the-art factoring techniques 

follows in the next chapter. 

It is worth mentioning that while computing the private key from the public is 

one way to break the cipher, it is not the only way to attack the cryptosystem in 
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general. There are many other ways to attack this cryptosystem that are beyond the 

scope of this thesis. Some methods include attacking the random number generator 

used to find p, q, and e. By using a weak random number generator, Eve can make 

good guesses on what the next number would be and circumvent the cryptosystem. 

Other methods include attacking how the RSA cryptosystem is implemented. For 

example, if the primes chosen are of a certain form, n can be easily factored. 

From a mathematical and computational perspective, factoring n is the most 

direct approach to defeating the cryptosystem. By factoring n, p and q become 

known and the equation de 1 (mod q(n)) can be solved in the same manner 

as the key generator. With the congruence solved, the decryption key (d, p, q) is 

available for decryption. 

1.2.7 An Example of the RSA Cryptosystem 

An example of the RSA cryptosystem is provided below. Suppose that Alice wants 

to send Bob the message 

I'd rather be researching. 

On your standard PC, this would be represented in ASCII as 

73 39 100 32 114 97 116 104 101 114 32 98 101 32 114 101 115 101 97 

115 99 104 105 110 103 46. 

To keep the calculations simple, the message will be encrypted byte by byte. Doing 

byte-by-byte encryption means n > 255 to ensure m < n, but because all of our 

values are less than 127, we will find an m such that 127 < n. < 256. The biprime 

11 * 13 = 143 satisfies this condition nicely. To obtain d, e is chosen at random 
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such that 1 < e < q(n) or 1 < e < 120 in this case. Recall that e must also be 

relatively prime to (n), so e = 7 will be sufficient. To compute ci, 7d 1 (mod 120) 

is solved by d = 103. The public key is then (n = 143, e = 7) and the private key 

is (p = 11, q = 13, d = 103). Continuing with the example, the plain text message 

needs to be encrypted before transmission. To encrypt, Alice takes each byte m 

and computes ci = Mi7 mod 143. By doing the encryption, the plaintext message is 

transformed into the ciphertext 

97 39 40 8 24 73 56 104 101 24 8 32 101 8 24 101 115 101 73 115 99 

104 105 80 7 16 

which reads 

a'(. .I8he.. e. .eselschiP.. 

where dots represent some non-symbolic ASCII characters. The ciphertext is then 

sent to Bob and it is decrypted using the private key in the same manner as it was 

encrypted. 

An important note is that this method of encryption is by no means secure. This 

example breaks several basic rules of information security. It is here just to illustrate 

the mathematics used to encrypt a message using an RSA cipher. 

1.3 Optimization 

The following section covers a field of mathematics called optimization. By mod-

elling factoring as an optimization problem, an attempt can be made to intelligently 

step towards a solution of a factoring problem. This is fundamentally different from 
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the current factoring methods that use guessing. Optimization is provided here as 

background for experiments conducted in chapter 3. Several different types of opti-

mization are attempted in the experiments section and discussed in the conclusion 

section. They are briefly covered here. 

The purpose of optimization is to find an optimal solution to a given mathemat-

ical problem [19]. Problems are presented as a minimization or maximization of a 

function called a cost function. In this section, only minimization of cost functions 

will be considered because the same principles can be applied to maximization. This 

cost function f takes inputs x from some set A and computes a value of the input. 

Typically, A is a subset of ]R'but is also frequently a subset of F. In addition to the 

cost function, the problem may also have limitations or conditions such as g(x) ≥ 0. 

These conditions also restrict A to a subset of valid inputs. The subset of allowable 

inputs is known as the feasible solutions. A feasible solution in A that minimizes 

the cost function is known as an optimal solution. To illustrate these definitions an 

example is provided. For the minimization problem 

mm. f(x) = (x2 - x)2, x E J1 

s.t. x< 1 

has a cost function f(x) = (x2 —x)2 and a condition on x such that x < 1. Figure 1.2 

shows the graph of f(x) = (x2 - x)2. In Figure 1.2, it is shown that the cost 

function f(x) has two minimums at 0 and 1. With the condition of x < 1, the 

point (1, 0) is not a feasible solution and it follows that the only optimal solutions 

is (0, 0). In this example the solution can be found using simple analysis. However, 
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Figure 1.2: A simple minimization of f(x) = (x2 - x)2 such that x < I. 

most optimization problems deal with complicated or multi-solution systems, where 

analysis may not be possible. Also, in many real world problems, such as dynamical 

systems, finding the overall best solution may not be necessary. In these cases, where 

the system's complexity is beyond direct analysis, numerical analysis is used and can 

be an effective tool for solving most optimization problems. 

For complex systems, optimization methods generally start by selecting an initial 

point XO at random, with the limited knowledge of the system. This could be as 

simple as choosing a random point within an interval the solution is excepted to fall 

in. Once an initial point is chosen, the initial point is then moved to a point that 

results in a better solution than the original guess. It is important to note that in 

some complex systems, a bad movement could be made in hopes of getting to a more 

advantageous path to an optimum solution. This seemingly bad movement can be 

illustrated in 1.2. If the system were to start at 0.9, the only movement that would 
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allow the system to find the globally optimum point is to move away from the local 

minimum near 1. It is easy to see that a seemingly bad movement to x <0.5 would 

make it easy for the system to find the global minimum. The point exactly at x = 0.5 

where both directions seem to look equally good, is called a local maximum. 

Regardless of how the system moves, the general objective of an optimization 

method is to start at some initial point x0 and calculate movements within the set 

of feasible solutions to eventually find a satisfactory solution. 

In general, an optimization problem is approached by first classifying its type. 

This is done to exploit some property already discovered for that type of optimization 

problem. Below is a list of some classes of optimization types that are relevant to 

this thesis. 

. Linear Programming. In linear programming, the optimization problem has 

the form 

mm. f(x) = cTx 

s.t. Ax≤b,x≥0 

where x is the current solution, c is a vector of cost coefficients, and A is a 

matrix of constraint coefficients [3, 21]. Linear programming problems fre-

quently come up in business and economic fields. Algorithms for solving lin-

ear programming problems include the simplex, interior point, and projective 

methods. 

• Integer Programming. Integer programming is exactly what the name suggests; 

optimization in the set of integers. While most methods are concerned with 

linear problems such as branch-and-bound, there are few efficient methods for 
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nonlinear integer optimization problem and are usually made for a specific 

problem [21]. 

• Quadratic Programming. As one would expect, quadratic programming is a 

set of methods tailored towards optimization problems that have the quadratic 

form of 

mm. f(x) = xTQx + cTx 

s.t. Ax<b 

Ex=d. 

Clearly, this is a generalization of a linear programming problem. If Q is zero, 

the system becomes linear and can be solved with linear programming. If Q 

is nonzero, different methods can be used depending on whether it is positive 

definite, positive semi definite, or negative definite. Methods for solving this 

class of optimization include interior point, active set, and conjugate gradient 

methods[3, 9]. 

• Nonlinear Programming. The nonlinear programming class covers nonlinear 

cost functions and constraints. One of the major challenges with nonlinear pro-

gramming is local minima[9]. In nonlinear programming, often the algorithms 

are able to find a local minima but not the global minimum. Algorithms tend to 

get trapped in a local minima before finding a global minimum. This presents a 

challenge when applying these methods to cryptographic applications because 

they require global solutions that must be transformed into integers. 

These types of optimization are usually very difficult as they can have very little 

predictability or present the method with many undesirable local minima [9]. 
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Methods for solving this class of optimization problem depend greatly on what 

type of cost function and constrains are involved. Very few algorithms consider 

finding the global optimum solution because of the difficulty in evaluating or 

formulating the cost function. Most algorithms attempt to find a local minima 

in an area of the function that can be approximated by a well-known function. 

However, this approach means that only a decent solution will be found and not 

a perfect solution. Unfortunately, cryptography requires that exact solutions 

be found. Thee leaves few nonlinear optimization algorithm available for use 

in this topic. 

Other approaches include Newton, quasi-Newton and secant methods [9]. These 

also suffer from the problem of not identifying global minimums. 

• Simulated Annealing Simulated annealing is an optimization method that was 

developed from the idea of forming crystals from heating and cooling metal. 

The general idea of annealing is that when the metal is heated, the molecules 

become excited, giving them a better chance to find a place in the lattice 

of the metal. Analogous to how the properties of a metal can be altered by 

continuously heating and cooling a metal, simulated annealing uses probability 

to help find a solution. The simulated annealing algorithm utilizes a random 

number to perturb a potentially stuck solution into new possible pathways 

of finding a solution. While this can be applied to finding global minimum, 

its random nature makes it difficult for the system to find the best solution 

[18]. This method can be used together with other algorithms to escape poor 

solutions. 
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One algorithm that is used in this thesis is the line search algorithm. In this al-

gorithm the function is approximated as a linear decent to a solution. The algorithm 

operates as follows: 

1. Compute the decent direction PK - 

2. Find an ak E JR such that q(c) = f(xk + apk) is minimized within some 

acceptable error. 

3. Set Xk+1 = Xk + akPk. 

4. Do this until IIVf(xk)II is sufficiently small. 

This algorithm requires a initial guess x0 as a starting point for the optimization. 

Every iteration of the algorithm increments k by one. One major drawback for this 

algorithm is that it is inefficient compared to other more specific algorithms. Another 

drawback is that it has no way of escaping local minima on its own. 

One interesting optimization algorithm already present in this thesis is the Eu-

clidean algorithm. Although few seem to suggest it, the Euclidean algorithm exhibits 

many similarities with an integer programming algorithm using a recursive cost func-

tion. It terminates when the GCD cost function is 1. 

.1.4 Goals 

The goal of this thesis is explore the use of optimization to break the RSA cipher by 

factoring n into p and q. The optimization method of factoring will also be compared 

to the state of the art. While many believe that optimization will not perform as 

well as current methods, their is little literature to support this claim. This thesis 
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will explore this claim by providing several experiments with optimization factoring. 

Several different approaches to the problem of factoring are given. Experiments in 

real and integer number sets are covered. Following the experiments, the thesis will 

conclude with possible reasons why optimization methods lack the means to factor 

quickly. 



Chapter 2 

Current State-of-the-Art Factoring 

As stated previously, the security of the RSA cryptosystem is heavily reliant on the 

difficulty of factoring large numbers. While there are many other ways to attack the 

cryptosystem, factoring is considered the heart of the problem. Currently, there it 

is no publicly known factoring algorithm available that can factor in a reasonable 

amount of time [17]. Developing an efficient method for factoring would also lead to 

other consequences, such as a compromise of the Rabin's digital signature method 

[16] and its variants [25]. 

Interestingly, it is unknown whether factorization is intractable. The trust of 

security is held together by the system's resistance to a barge of failed factoring 

methods. The strength of security for the RSA cryptosystem is a belief [12, 14] and 

not necessarily a truth. Furthermore, if a proof of intractability for factorization is 

developed, this would show that there is no method that can factor any arbitrary 

number in a reasonable amount of time. However, this still does not rule out the 

quick factorization of all numbers. For some numbers of a particular form, heuristic 

methods can be used to factor, regardless of a proof for intractability. A simple 

example of such an algorithm is developed in section 3.2. 

The current record for integer factoring is a 663 bit biprime on May 9th, 2005. 

This record was part of an RSA Factoring challenge and used an algorithm called 

the general number field sieve (GNFS) [7]. 

Properly covering the GNFS is well beyond the scope of this thesis. Therefore, 

22 
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this section will cover the near current state-of-the-art, the quadratic sieve (QS). The 

quadratic sieve is the second fastest factoring algorithm and is similar to the GNFS 

[14]. 

2.1 Quadratic Sieve 

To understand the quadratic sieve (QS), it is necessary to understand the algorithms 

it was built on. The start of the QS begins with Fermat. Fermat suggested that 

instead of factoring directly as 

m= ax b 

n can be factored using a difference of squares [15, 2] 

n = - 

Clearly, n can be factored as 

n = (x — y)(x + y). 

Notice that (x - y) and (x + y) may not necessarily be prime. Furthermore, it 

turns out that x and y will always exist with the exception of a couple trivial cases. 

Consider x and y as 

a + b 

2 

and 

a—b 
y=2. 
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As long as a or b are not divisible by 2, this holds true because 

x2—y2 = 

(a+b 2 (a— b 2 

2 ) 2 ) 
(a+b)2—(a—b)2  

4 
a2-i-2ab-i-b2 —a2+2ab—b2)2 

4 
4ab 

4 

a x b 

= n. 

If 21a or 21b then it would be possible for one to be even while the other is not, 

making x and y a fraction. The solutions for x and y will then yield non-integer 

results. Thus, we restrict a and b to odd integers. This is a reasonable restriction 

because n can be easily checked to be even. If n is found to be even then divide out 

two until it is not. 

The problem is now finding x and y such that their squared difference is n. In 

Fermat's algorithm, we start x at [\/] and find y until n = - y2. An important 

note about this algorithm is that in general, it does not run faster than a trial by 

division [2]. However, we can gain some interesting results when implementing the 

algorithm. First, lets consider solving for y2 given an x2 

This reduces the problem to deciding when y2 is a perfect square, given some x. If y2 

is a perfect square then a solution has been found. If y2 is not, another x is chosen. 
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Suppose y2 = d. and that d' is the next trial of x, increasing x means 

d = x2—n 

d = (x+1)2—m 

= x2+2x+1—n 

= d+2x+1 

so subsequent trails can be found simply by adding 2 to a temporary variable and 

then adding that. To see how this works, the basic Fermat factoring method is given 

below. 

mt factor(int n) 

mt sqrt_n, u; 

sqrt..n = ceil(sqrt(n)); 

d = sqrt...n*sqrt...n - n; 

for (u2*sqrt_n+1; d<n; u+2) 

if (is-square(d)) return sqrt(d-l-n) - sqrt(d); 

d+u; 

} 

return n; 

} 
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As stated above, the problem is checking d to be a perfect square. To improve 

performance of the function that checks d, the last digits can be used to quickly 

determine if it is not a perfect square. In particular, the last digit of a square can 

not be 2, 3, 7, or 8. Similarly, there are only 22 possible values for the last two digits. 

Another speed increase can also be added. Consider varying both x and y such 

that some value r = - - n is zero. The variables x and y are varied to 

find a solution r = 0. Using the same idea of increasing x by one, two alternate 

variables u = 2x + 1 and v = 2y + 1 are used to speed up the incrementing process. 

The following pseudo-C code can be developed which eliminates the square finding 

function. 

mt factor(int n) 

{ 

mt sqrt_n, u, v, r; 

sqrt_n = ceil(sqrt(n)); 

u 2*sqrt_n + 1; 

V 1; 

r = sqrt_n*sqrtn - 

while (r 0) -C 

if (r > 0) -C 

II use y to match x 

for (; r > 0; v += 2) 
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r - v; //rr - (2y+l) 

} 

if (r < 0) -C 

r+u; //rr+(2x+1) 

U += 2; 

} 

} 

return (u - v)/2; II = b 

//return (u + v - 2)/2; II = a 

} 

In this algorithm, x is incremented like in the previous version, and y is in-

cremented to see if its square will match the square of x. The advantage of this 

algorithm is that both division and multiplications have been removed, resulting in 

faster loop cycles. Table 2.1 shows an example of the algorithm factoring 3131. 

r 
U 

V 

X 

Y 

—4 —3 —23 —11 —15 —35 —16 —3 —59 —62 0 
113 115 117 119 121 123 125 127 129 131 133 
7 23 33 39 45 51 55 59 65 69 66 
56 57 58 59 60 61 62 63 64 65 66 
3 11 16 19 22 25 27 29 32 34 35 

Table 2.1: Fermat's factoring algorithm factoring 3131 with square testing eliminated 

In the example shown in Table 2.1, y is increased to match the increasing a; in 

hopes of finding a solution to x2—y2 = n. A solution is found when r = x2—y2—m = 0, 

seen in the last column when a; = 66 and y = 35. This is because 66 - 35 = 31 and 

3131 = 31 * 101. 
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While Fermat's factoring algorithm as a whole is slower than trial division, it lays 

the ground work for the next algorithm: Dixon's algorithm [5]. Before getting into 

Dixon's algorithm, it is important to take a look at an improvement on Fermat's 

algorithm realized by Maurice Kraitchik [23]. Kraitchik's idea was to look for x and 

y to satisfy 

Y2 (mod n) 

instead of a difference of squares [2]. If a solution to the congruence can be found and 

n is odd and contains at least two different primes, there is a 50 percent chance that 

it will yield a nontrivial factor of n. The congruence will give us a factor because 

0 (mod n) 

n x2 - 

(x - V) (Y + x) 

We expect the divisors of n to spread evenly among (x - y) (y + x). If the factors 

are spread evenly, there is then a 50 percent chancç that 

gcd(n,x —y)=a 

will yield a nontrivial factor a of m. The trick then becomes finding the x and y 

values. To ensure at least one side is a squares, a number r is selected and squared 

modulo n such that 

f(r) = r2 (mod n). 

If f(r) is a perfect square then we got lucky. Unfortunately, this is usually not the 

case, so picking these numbers at random is not feasible. However, if we look at the 

factorization of a several f(r) 's, we see that it is possible to construct a congruence 
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of squares from two or more non-square f(r)'s. To construct the relation x2 

y2 (mod n), Kraitchik made use of the following property concerning congruences. 

Given the congruences 

a b (mod n) 

c d (mod n) 

we know that from the previous chapter we can multiply them together to get 

acbd (mod n) 

So with a bunch of smaller non-square congruences, a much larger solution to the 

congruence of squares can be found by combining the smaller ones together. This ba-

sic idea led to the first industrial strength factoring algorithms. Among them was one 

called continued fraction (CFRAC) algorithm [4], which was arguably one of the first 

truly large factoring algorithms. This improvement also led to Dixon's algorithm. It 

was yet another stepping stone to even more powerful factoring algorithms. 

Dixon built on this idea by using a more systematic approach than Kraitchik 

originally proposed. Dixon used the properties of linear algebra to find a combination 

of the factored exponents to satisfy that a product of f(r)'s be a perfect square [5]. 

The exponents work linearly because multiplying two congruency together results in 

an addition of exponents. For example, 

2 4 x 32 = 144 1 (mod 143) 

and 

32 X  52 = 225 82 (mod 143) 
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can be multiplied together to make 

2 4 x 32+2 x 52 32400 - 82 - 82*1 (mod 143). 

Using this property, non-square congruences can be put together to make a large 

congruency of squares. With both sides being squares, their difference can be tested 

with the gcd for factors of n as proposed by Kraitchik. The steps performed in 

Dixon's algorithm are given below. 

1. Generate a set of completely factored smaller congruences which can be used 

to construct a larger solution to x2 = y2 (mod n). 

(a) Choose a random integer ri and compute 

f(r) = r (mod m). 

(b) Attempt to find trivial factors for f(r) up to some divisor d. If it is prime 

or has factors above d, choose another ri and try again. 

(c) If f(r) factors easily, record the number of times each prime factors out 

modulo 2. For example, if f(r) = 30870 = 21 x 32 x 51 x 73, record 

1 1 

2 0 
Vi = 

1 1 

3 1 

(mod 2). 

(d) Loop at least d times to gather enough factors for construction. 
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2. Solve the equation 

Vii V12 Vin 

V21 V22 . . Vn 

_Vn1 Vn2 ... V n 

Cl 

Cm 

0 

0 

0 

(mod 2) 

where vi are the factorizations in 1.c and c is a solution to make the congruence 

a square. This can be solved using Gaussian elimination. Although typically, 

more sophisticated algorithms are used in practice. 

3. The potential solution to x2 = y2 (mod n) is then given as 

flf(rk)_flr (mod n) 

where the products are taken over all k for which Ck = 1. 

4. Check gcd for non-trivial factor of n. 

5. If the algorithm fails to produce a factor, start over with a different set of r 's. 

In step 1.c, the factored exponents are recorded modulo 2 because the only in-

teresting part is if all the exponents have the same parity. For example, if we factor 

a number to be 22325625 = 36 X 54 X 72 then we know it is a square because 

22325625 = (33 x 52 >< 7)2 = 47252. By doing this we can simplify the complexity of 

solving the system of equations in step 2 by taking advantage of binary values and 

the sparsity of the matrix. In step 2, a linear combination of the exponents from the 

factored numbers is used to construct a large product of squares. 

In this algorithm, most of the work is done factoring all the f(r) 's, followed by 

the work required to solve the V matrix. Although, the matrix V will be very large, 
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it will be sparse and contain only binary entries. Recall that only binary values will 

be present in the matrix because the computation is done modulo 2. Specialization 

on current algorithms can be used to take advantage of these properties. Gaussian 

elimination is commonly suggested for solving the V matrix for simplicity; however, 

more efficient methods such as structured Gaussian elimination, the Wiedemann 

algorithm, and conjugate gradient methods exist [5, 2]. 

Not surprisingly, this algorithm has a large overhead cost from all the factoring 

needed to build up the V matrix and thus, is not suited for small m. In fact, for the 

case where n is large but made up of both small and large primes, it is worth trying 

simpler algorithms first. By using methods that are simpler, the smaller factors can 

be quickly removed without the overhead. At this point, if a large n still remains and 

is tested to be composite with a primality testing algorithm, then using an algorithm 

such as Dixon's algorithm can be considered. 

The quadratic sieve (QS) [15] is known to be the second fastest factoring algo-

rithm to date. It was invented by Carl Pomerance in 1981 by building on top of 

Dixon's algorithm. By incorporating a sieve into Dixon's algorithm, the V matrix 

can be constructed much faster than by selecting integers to factor at random. The 

name of the quadratic sieve comes from the sieving process used to remove factors 

that will not factor easily. The quadratic part of the name refers to the squaring 

done while generating number to be factored. 

There are many different variations on the QS [2, 15, 14], ranging from changes 

in the sieving process, to changes in the function generator of the number to be 

factored. The variation chosen for this discussion is one that sieves factors using 

something similar to the sieve of Eratosthenes. 
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To begin with the QS, a list of primes needs to be found, known as the factor base. 

To construct our factor base, some brief discussion on Legendre symbols is required. 

During the late 18 t and early 19th centuries, mathematicians were concerned with 

finding solutions to problem of quadratic residues. A quadratic residue is a integer 

n that can be expressed as 

x2 m (mod p). 

The Legendre symbol [8] is then defined to be 

if plm 

if n is a quadratic residue modulo p 

1. if n is a not quadratic residue modulo p 

By considering the Legendre symbol, a list of d primes are found for which 

quadratic residues are possible. With this list of primes, we solve the quadratic 

residue associated with the prime. The Legendre symbol is considered first because 

theorems associated with Legendre symbols can be used to determine if a prime is a 

quadratic residue quicker than solving the quadratic residue itself [2]. The quadratic 

residue 

t2 n (mod pi) 

will yield two values, t and —t. The factor base and the solution are stored for later 

use in the sieving process. With the factor base prepared, we begin to generate the 

list of numbers that could be potentially factorized. Similar to Dixon's algorithm, 

numbers of the form 

f (r) = - 
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are generated. Normally, r is started at k/1i.j and increased by one until d+ 1 factors 

have been found [15, 2]. Starting r at k/j causes f(r) to be smaller and have a 

better chance of being factored. A sieve is then used to find integers that can be 

factored completely over the factor base. 

There are many ways to approach this sieving process. One such method is 

simply to factor each number and check its prime components. However, a better 

approach is to make use of the ideas from the sieve of Eratosthenes. Beginning with 

the first prime in the factor base, we locate the first number r in the factor set such 

that r t (mod p1), where t is one of the solutions to the quadratic residue of pl. 

The corresponding value f(r) will contain the prime factor p, because 

r2 t2 n (mod pi) 

so 

pIr2— n=f(r) 

and every p number after that will also divisible by pi. All of the number that are 

pl. steps from the first, as well as all the matches for the alternative solution —t are 

then divided by pi until no p, factors remain in that number. This same process is 

done for each pi in the factor base. The resulting list will contain l's only where the 

f (r) 's can be completely factored by the factor base. All of these numbers are then 

completely factored and exponents recorded modulo 2. Alternatively, the number 

of times the number was divided by pi can be recorded during the sieving process 

to avoid doing the factoring work twice. Finally, the system is solved for a linear 

combination of the factored number in the same manner as Dixon's algorithm. 

A more concise summary of the algorithm is given below. 
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1. Find a factor base of primes (pi) which satisfy 

t2 n (mod pi) 

or in other words, primes whose Legendre symbol equals 1 or 

(n)P  

2. Solve the congruences 

t2 n (mod pi) 

for each pi in the factor base found in the previous step. 

3. Using a sieve, find r and f(r) = - n pairs such that f(,r) can be completely 

factored by the factor base. If the factor base uses d primes, then d +1 factored 

f (r) 's are needed for to solve the system. 

4. Solve the system 

Vc=O 

using the factored f(r)'s found from the sieving process. 

5. Use the solution to V to construct a large product yielding a perfect square. 

6. Check the congruence of squares with the gcd for a factor in m. 

7. If the process fails to find a factor, try a different f(r) generator or try a 

different range for r. 
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2.1.1 An Example of the Quadratic Sieve 

An example is provided to get a better understanding of the process. Suppose the 

number n = 1817 is to be factored using an f(r) = r2 - n, where r starts at 

= 42. 

1. To find a factor base of primes, the Legendre symbol of each prime starting 

from 2 is checked' and the primes 

F= {2,7,13} 

are found to have a Legendre symbol of 1. 

2. To help with the sieving in the next step, the quadratic residues for the factor 

base are solved. The solutions for the factor base are shown in table 2.2. 

P 
2 
7 
13 

X —x 
11 
25 
67 

Table 2.2: Factor base and solutions for an example using the quadratic sieve 

3. With 3 factors in the factor base, 4 solutions will be needed. The (r, f(r)) pairs 

(43,32), (45, 208), (51, 784), (123) 13312) are found from sieving. Each can be 

factored with the factor base and are shown in table 2.3. 

4. The V matrix is then constructed from the system of quadratic congruences 

'Usually this list of primes starts at -1 to realize f(r) 's that are negative. 
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r f(r) 
43 2 5 7° 130 

45 2 4 7° 13' 
51 2 4 72 130 

123 2'° 7° 13' 

Table 2.3: System of quadratic residues needed to construct a larger congruence of 
squares 

and then reduced modulo 2. 

v= 

500 

401 

420 

10 0 1_ 

100 

001 

000 

_0 0 

(mod 2) 

By inspection, row three gives a solution right away because 

f(51) = (5 1)2 - 1817 = 784 = 282 512 (mod 1817) 

is already a congruence of squares. 

5. Checking the gcd of this result gives 

gcd(51+28,1817)=79 

and 

gcd(51— 28, 1817) = 23 

so there is no need to try something else. 



Chapter 3 

Optimization Factoring 

In contrast to current state-of-the-art methods, this thesis approaches the factoring 

problem from the perspective of optimization. Instead of attempting to make an 

intelligent guess at a solution as seen in the quadratic sieve, optimization factoring 

uses directed movement towards a goal. 

Two types of factoring optimization were considered. The first type of factoring 

was done in the reals. Releasing the restriction of keeping p and q only in the integers 

allows the use of standard optimization techniques. The second type of factoring is 

done within the integers but considers the binary representation in matrix form and 

attempts to factor using a bit moving game. 

In all the cases covered, it is assumed that n is a biprime. If n was not a biprime, a 

modern primality test can be used to quickly determine the primality of the factors. 

If any of the factors fail the primality test, the algorithm can be recursed on the 

composite factor until the prime factors are found. 

3.1 Optimization Factoring in the Reals 

Finding the factors of a biprime using optimization in the reals presents two major 

problems. The first problem is the definition of the cost function that allows the 

minimization to get closer to a solution each iteration. For example, a cost function 

could be E = - xyl, where x and y are the potential solutions. As this thesis 

38 
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will discuss, this cost function alone is insufficient to locate factors of n. The second 

problem is finding a solution that is in or near the integers. This process will be 

called digitization because it is responsible for bringing the solution back into an 

integer or digit. In this approach, the digitization of the solution is done by using 

either conditional optimization or building it into the cost function. 

To test the functions quickly, MATLAB was used to compute the convergence of 

the optimization. The functions fminunc and fmincon were used to compute uncon-

ditional and conditional optimization problems, respectfully. The specific method of 

optimization was chosen by MATLAB as a line search unless otherwise stated. 

3.1.1 Unconstrained Digitizer Addition 

The first group of systems that were considered primarily use addition to obtain the 

contour. They all have the form 

f(x, y) = s1e(x, y) + s2d(x, y) (3.1) 

where x and y are the attempted factors of the optimization, e(x, y) is an error 

function, d(x, y) is a digitization function, and s and s2 are scaling factors for the 

error and digitization functions, respectively. Several different types of e(x, y) and 

d(x, y) were chosen for testing. 

The first function tested was 

f(x, y) = si(n - wy)2 + 82(2 - cos(2irx) - cos(2iry)). (3.2) 

In this function, the error portion e(x, y) = (n - wy)2 calculates the error directly 

and sinusoids as d(x, y) = 2 - cos(2irx) - cos(2iry) persuade x and y into integer 
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values. To help visualize how the sinusoids are working, f(x) = 1 - cos(2irx) is 

graphed in Figure 3.1. The cost function in equation 3.2 was primarily chosen for 
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Figure 3.1: A sinusoid as a digitizer 

5 

its simplicity. The function only has two variables. Thus, it is easy to graph and 

visualize. Figure 3.2 shows the function graphed. It is easy to see that the slope 

is contributed by the error function portion e(x, y) = (n - xy)2. The digitization 

function contributes by adding bumps to the contour. In Figure 3.2, the scaling 

values of 82 is increased to show the contribution of the digitization function. The 

bottom of the trench or trough made by e(x, y) on the graph represents solutions in 

the reals. By adding d(x, y) the function is limited to only the (p, q) and (q, p). Also, 

notice in Figure 3.2 that there is some symmetry in the graph and that the solutions 

to the system are similar distances from the edge of the graph. This symmetry 

comes from the commutativity property of multiplication. Looking at the graph, 

this mirror means that everything on one side of the x y line is the same as on 
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x 

Figure 3.2: Equation 3.2 is graphed 

the other side. The number of solutions is guaranteed by the uniqueness of prime 

factorization and the assumption that n is a biprime. 

In the computations, the scaling variables s1 and 82 were set to 1 and 2, respect-

fully. The scaling variables were arbitrarily chosen as a starting point for designing 

the system. The starting point for the optimization is picked at random between 

zero and slightly higher than the largest expected prime. The initial points were 

selected slightly higher than the highest expected prime to evaluate the robustness 

of the system and to see how the optimization would behave around the local min-

ima found near the highest prime. For the biprirne 481, the range of initial vectors 

is [0, 40] as the expected factors are 13 and 37. Figure 3.3 shows the results of the 

system as a histogram of 1000 trials attempting to factor the biprirne 481. Figure 3.3 
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Figure 3.3: Results of direct optimization equation 3.2 factoring 481 

shows that 13 is found 130 times and 37 is found 30 times, giving an approximate 

16% success rate. This result is promising for a first attempt, but insufficient for 

practical use. While this system shows success 16% of the time, this is just good 

luck. However, it is clear that the system is trying to find a correct answer as there 

is a collection of solutions around 13 and 37. A second experiment was run on the 

larger biprime of 102313 which is the product of 101. and 1013. In contrast to the 

previous experiment, the factors were only found approximately 0.04% of the time. 

Finally, to get an idea how this approach works for a range of biprimes, a list 

of biprimes was factored for success rate and timing. Table 3.1 shows the optimiza-

tion attempting to factor increasingly larger biprimes. The timing was recorded by 

MATLAB's profiling functionality. It reported the amount of time the CPU spent 

in the main program. The success rate was computed from the number of times the 

optimization found a solution near a correct biprime. A correct solution was defined 
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Figure 3.4: Results of the direct optimization equation 3.2 factoring 102313 

.Biprime Factors Success(%) Time(s) 
35 5 x 7 3 59.801 
481 13 x 37 16 76.341 
1243 11 x 113 0.06 81.580 
11413 101 x 113 0.05 88.958 
102313 101 x 1013 0.04 116.191 
1571099 157 x 10007 0.01 254.776 

Table 3.1: Table of direct optimization success and timing results 

as the correct factor with the faction part truncated. Table 3.1 shows an increase in 

time of the computations as the size of the number grows. The success rate is also 

dropping off as the biprime increases in size. 

To investigate why the optimization was failing, a more detailed look of the results 

were generated. Figure 3.5 shows a more detailed histogram of the results for the 

biprime 481. In Figure 3.5, it can be observed that some of the solutions are failing 

to be persuaded into integers. Solutions between 5 and 20 frequently do not have 
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Figure 3.5: Detailed result of the direct optimization equation 3.2 factoring 481 

integer solutions. To correct this, experiments with the scaling variables 81 and 32 

were conducted. 

Adjusting S2 modifies the systems tendency to find integer values and produces 

the same overall results. In Figure 3.6, s2 is increased from 2 to 10. These values 

for s and 82 are chosen arbitrarily to see how the system would react. When 82 is 

modified, no clear factor is identified. It is clear that more sophisticated methods for 

scaling the optimization would be needed. These are covered in the next subsection 

with constrained optimization. Before that is done, a comparison between the results 

of 481 and 102313 show that these two numbers have similar distributions. These 

two biprimes are expected to have different solutions at different locations. More 

specifically, 481 is expected to have more solutions around 13 and 37, and 102313 

is expect to have solutions around 101 and 1013. Looking at both graphs shows a 

decrease in the optimization's tendency to find larger numbers in general. Most of 
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Figure 3.6: Results of the direct optimization equation 3.2 factoring 481 and adjusted 
scaling variables 

the solutions tend to be within the lower valued sections of the figures. Recall that 

when constructing the cost function, the error function e(x, y) was responsible for 

solving for the factors of n. This suggests a failure of the error function portion 

c(x, y). 

With the results of the direct approach failing to identify factors, a different error 

function was considered. The next cost function that was tried was 

f(x, y) = s1(n - x2 + y2)2 + S2 (2 - cos(2irx) - cos(2iry)). (3.3) 

Instead of solving for p and q directly, like in equation 3.2, Fermat's factoring method 

is incorporated into the optimization. Recall that any composite n not divisible by 2 

can be written as a difference as squares n = - y2. The difference of squares can 

then be factored n = (x + y)(x - y). If the number 481 is to be factored, then the 

answers return from the optimization would be 3713 = 25 and 3713 = 12. Using 
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this idea, equation 3.3 is constructed and run in the same experiment as equation 3.2. 

The results of the experiment are given in Figure 3.7. As Figure 3.7 shows, there is 
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Figure 3.7: Results of the Fermat optimization equation 3.3 factoring 481 

not much evidence that the number 481 is being factored properly. Figure 3.7 also 

bears some similarity with Figure 3.3. This suggests that the change in cost function 

has not given the system any advantage in finding factors of n. 

Finally, in an effort to change both the error function and digitization function, 

the problem is transformed into a binary representation. The last equation discussed 

using the addition form is 

f(x,y) = [si(n— 
i=1 j=1 

i—i) + S2( 

i=1 

—x)2+ 
j=1 

(y.; - )2)]2. (3.4) 

In equation 3.4, the factors are found by considering the binary representation of x 

as 

x= 
L 

i=1 

i—i (3.5) 



47 

where i is the jth bit, L is the total number of expected bits, and xi is an entry in 

vector x that is a potential solution. The vector y is considers in the same manner 

as x. Also, in equation 3.4 the scalars s and s2 are used as scaling variables as in 

the first two experiments. 

It is worth noting that because the factors are unknown, the length of the vector 

L must be large enough to hold the largest prime in the biprime. This means that 

[ 1`22-i <L < 11092 n] because we expect one factor to be less than or equal to Vrn-

and the other greater than or equal to \/i. It is also unknown which factor will end 

up in which variable. Thus, both x and y are of size L. For simplicity reasons, some 

cheating is done with regards to choosing the size of L. Instead of calculating L from 

n alone, the maximum of the two chosen prime factors is used for the bit length L. 

The size of L is then simply the length of the largest binary represent prime factor. 

By considering equation 3.5, an integer solution can be found if each bit is either 

zero or one. This can be achieved by considering a variable that is "pulled" into zero 

or one. In the case of equation 3.4, the function 

f(x)= (x2_x)2 

is used to cause the bits to tend towards zero or one. The graph of f(x) above is 

shown in Figure 3.8 As Figure 3.8 shows, the function has two global minimum at 

o and 1. The function makes for a good digitizer of binary numbers because the 

function is zero at both global minima. The function also tends towards either of 

these minima except at precisely 1. Considering f (x) for all bits causes the entire 

system to tend towards an integer solutions. Summing up all digitizers yields the 
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Figure 3.8: Graph of the function f(x) = (x2 - 

first half of equation 3.4 

i=1 

12 

and is nonzero for all xi 0 0 or xi 0 1. 

The error of the factorization is similar to equation 3.2, except that the binary 

represented vector x and y are converted to its corresponding value. Considering 

the summation of 3.5 makes it easy to see that 

e(x, y) = n - xy = n -

i=1 j=1 

For the optimization experiments on equation 3.4, the scaling variables 81 and 

2 were both set to 1. To compute the results, 1000 trials were done on the biprime 

481 and are shown in Figure 3.9. The initial vector was chosen at random within 

the range [0, 1] for each bit. This system also fails to factor 481. However, the 

distribution of the chosen solutions has changed. 
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Figure 3.9: Results of the bit optimization equation 3.4 factoring 481 

3.1.2 Constrained Digitizer Addition 

By considering the integer persuasion function as a constraint and not as part of the 

cost function, the problem can be rewritten as a constrained optimization problem. 

In the previous section, scaling variables were used to amplify different potions of the 

unconstrained cost function. In constrained optimization, those scaling variables are 

built into the optimization itself. This is accomplished as a Lagrangian multiplier 

within KKT conditions{1O]. 

In the context of the previous experiments, the digitizer portion d(x, y) of equa-

tion 3.1 is treated as a set of constraints instead of part of the cost function. This 

section goes over all the optimizations done in section 3.1.1 as constrained optimiza-

tions. Each experiment is conducted in the same manner as the unconstrained case. 

Note that no scaling factors s1 and 82 were necessary because they are included as 

part of the KKT conditions used in constrained optimization. 
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The direct optimization given in equation 3.2 is transform into 

min. f(x,y)= (n—xy)2 

s.t. d(x) = 1 - cos(2irx) (3.6) 

d(y) = 1 - cos(2iry). 

Figure 3.10 shows the results of the constrained direct optimization. By using con-
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Figure 3.10: Results of the constrained direct optimization equations 3.6 factoring 
481 

straints, Figure 3.10 shows the results are still similar to the methods use in the 

unconstrained optimization. However, a couple differences are observed. First, the 

optimization chose a couple very large valued solutions. Second, the values were 

strictly in the integers. Looking at a more detailed view of the results show that the 

solutions are integers. 

Figure 3.11 shows a detailed view of the experiment and gives a better view of the 

distribution as all the large solutions that were greater than 40 have been removed 
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Figure 3.11: Detailed results of the constrained direct optimization equations 3.6 
factoring 481 

from view. Figure 3.11 shows that all the solutions were integers. Figure 3.11 also 

shows that the factors 13 and 37 and not identified by the optimization. While the 

solutions are successfully identifying numbers in the integers, the factors are not. 

In an attempt to take advantage of the success in the constraints, the constraints 

and cost function are switched. The optimization would then be 

mm. f(x, y) = 2 - cos(2irx) - cos(2iry) 

s.t. d(x, y) = n - xy. 

In this optimization the square is removed in the expression (n - xy)2 because the 

constraint can be expressed as an equality constraint. Figure 3.12 shows the results of 

the constrained direct optimization with the cost function and constrains switched. 

The results shown in Figure 3.12 look similar to other experiments. Figure 3.12 

shows 13 being found approximately 110 times and and 37 found approximately 25 

times, giving an approximate 14% success rate. These results are similar to the 

(3.7) 
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Figure 3.12: Results of the constrained direct optimization equations 3.7 factoring 
481 

results given in the first experiment shown in Figure 3.3. 

The constrained Fermat optimization is done next, equation 3.3 is transformed 

into 

mm. f(x,y)= (n—x2+y2)2 

s.t. d(x) = 1 - cos(2irx) (3.8) 

d(y) = 1 - cos(2iry). 

Running the experiment on this system yielded the results shown in Figure 3.13. By 

Figure 3.13, it is clear that no advantage is gained by using this approach. 

Lastly, the bit represented constrained optimization is transformed from equa-

tion 3.4 as 

mm. f(x, y) = n - >I x2' E  j=, 2j-1 

s.t. d(x) (X? -  x)2 = 0 

d(y)= (y—y)2=0. 

(3.9) 
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Figure 3.13: Results of the constrained Fermat optimization equations 3.8 factoring 
481 

Figure 3.14 shows a histogram of the factors chosen during the optimization. Again, 

Figure 3.14 shows factors are not being identified any better. 

3.1.3 Integer Persuasion Scaling 

A second form for factoring in the reals was considered. In this form, the digitizer 

from equation 3.1 is divided by the entire system to create amplification of the global 

minima. The idea is to create a more prominent global minima for the optimization 

to find. Consider the scaling variable 82 from equation 3.1. By putting emphasis 

on the digitizer only at the solution point, the system can move freely towards a 

solution. Thus, can consider the form 

f(x, y) = sie(x, y) + 82 d(x, y)  
e(x,y)+d(x,y)+f 

(3.10) 
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Figure 3.14: Results of the constrained bit optimization equations 3.9 factoring 481 

and a specific cost function for the optimization using the same approach as equa-

tion 3.2 can be written as 

f(x,y) = si(n - wy)2 + S2 2 - cos(2irx) + cos(2iry)  (3.11) 
( - wy)2 + 2— cos(2x) +cos(2y) + € 

In Figure 3.15, equation 3.11 is graphed for n = 143 and the interesting part of 

the trench is shown. It should also be noted that s1 and 82 are set to 1 and 100 

respectively. In this graph, 82 is set to [00 to indicate the effects of the variable 

scaling. In Figure 3.15, one of the solutions is marked. The solution is clearly 

visible on the graph by a break in the hill within the trench. Figure 3.16 shows 

an experiment run on the biprime 481 with both scaling variables set to 1 using 

1000 trials. In Figure 3.16, the results look very similar to the direct method used in 

equation 3.2. This is likely from the created local minima by the scaling contribution 

added to the equation. These local minima can be seen in Figure 3.15 on either sides 

of the hill created within the trench. 
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Figure 3.15: Effects of varying the scaling variable of the digitizer function 

3.1.4 Multiplication Logic 

Taking a closer look at the multiplication of p and q brings about the multiplication 

algorithm. It is a similar to the approach done in [3]. Multiplication in binary is done 

with shifts and adds. Table 3.2 shows binary multiplication for two 3-bit numbers. 

In Table 3.2, ni is the i14 bit of n, xi and yj are the i1h bits of the primes p and q 

respectfully, and ci are binary carries from previous additions. The carry bits, c1, 

C4 

C5 C3 C2 C1 

X3 x2 x1 
x3 x2 x1 

X3 X2 X1 

Y1 

Y2 

Y3 
fl6 n5 n4 n3 fl2 fli 

Table 3.2: Table of binary multiplication for 3-bit multiplier 
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Figure 3.16: Results of equation 3.11 factoring 481 

C2, c3 and c5 are the carry bits from the previous row and c4 is a carry from the two 

rows previous it. This configuration allows the equations for ni to be written as a 
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sum of all bits in the jth row modulo 2. The equations are 

= 

= X2y1EX1y2, 

n3 = x3y1Ex2y2Eix1y3c1, 

fl4 = X27J3 

n5 = 

= C5, 

x2y1 + x1y2  
ci = L mod 2, 2  

[Ci + XSYl + X2Y2 + XiYsj 
2 

C2 

C3 Lc2+x32+x23 1 mod 2, 
- 2 

ci + x3y1 + x2y2 + x1y3  
C4 4 J mod 2, 
C5 - L C3 + C4 + X3y3 mod 2. 

- 2 

mod 2, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

In these equation for n, the exclusive OR symbol ED is used to denote addition modulo 

2. Recall that two congruences a b (mod m) and c d (mod m) can be added 

together to make a + c b + d (mod 2). 

To eliminate the carry variables and avoid tedious substitutions, some logic design 

is used to create a system of equations with 6 variables and 6 unknowns. The system 

of equations needs to be differentiable, if optimization is to be used, so the exclusive 

OR is transformed into an equivalent arithmetic equation. For example, f = a ED b 

can be written f = a+b-2ab, if a, b E 0, 1. It turns out that an arithmetic expression 

can be quickly found from the sum-of-products (SOP) truth table[22]. 
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Consider a general arithmetic expression of the form 

i=1 

where m is the number of inputs, ai is an arithmetic coefficient, x21s the jth input 

variable, and jj is the j1h bit of i. For example, a function with two inputs, the 

arithmetic expression is 

f = a1 + a2x1 + a3x2 + a4x1x2. 

Using the general arithmetic expression above, the function can be expressed in 

matrix form as 

f=JCP 

where k is a vector of input variables and P is a vector of coefficients. Note that 

P can also be a matrix to represent multiple functions. To represent 6 equations, P 

will be a matrix of size 26 x 6. In the function with two inputs .k is 

.k = [1 X2 X1 X1X2]. 

In general, X is 
n 

X=®[lxj]. 
i1 

To construct the P matrix, an arithmetic transform is used to transform a SOP truth 

table into coefficients. The transformation is 

M 10 
(3.23) 

where P2 is the transformation for a single variable, and F is the SOP truth table 

for the function. 
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The truth table for the bit multiplication was mapped out using equations con-

structed from table 3.2 and then transformed using equation 3.23. The tables as 

discussed above were of size 26 x 6 so they are shown in the appendix. The actual 

equations can also be found in the appendix. With the equations computed as 

f6 

f5 

f4 

f3 

f2 

fl 

an optimization problem is constructed 

mm. f(x,y)= > =1 (ni_fi) 2 

s.t. d(x) = (x - x) 2 

d(y) = (y? - 

(3.24) 

The optimization is tested against factoring 15. The experiment is ran 1000 times 

with initial conditions chosen randomly between [0, 1.4]. The results are shown in 

figure 3.17 as a histogram. Figure 3.17 shows no promise of factoring because neither 

3 nor 5 is found with any usable probability. 

3.2 Factoring Bit Game 

A very different but related approach is to construct a bit factoring game. In this 

game, the game board consists of rows and columns representing a term of 2i2j. The 
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Figure 3.17: Results of using bit multiplication logic via equation 3.24 factoring 481 

- 2 2' 22 21 2 4 2 
20 1 0 0 0 0 1 
2' 0 0 0 0 0 0 
22 0 0 0 1 0 1 
2 3 0 0 1 0 0 0 
2 4 0 0 0 0 1 0 
2 0 0 0 0 0 0 

Table 3.3: A sample bit-board configuration for 481 

entire board is summed up to represent the number in question. Table 3.2 shows an 

example of a bit-board for the number 481. 

An entry of 1 in the matrix represents the existence of that term. The number 

represented can be written as 

n= 
L 

i=1 

where bij is the entry in the i'' row and jth column, and L is sufficiently large to 
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cover all the bits. In the case of Table 3.2, the number 481 is represented because 

2020+2520+2322+2223+2522+2424=481 

Bits can be moved using certain rules. These rules ensure that the value of the 

number n is fixed. The game rules are: 

1. Bits can be moved up or down along a diagonal, starting at the top right and 

ending at the bottom left. Mathematically, this means 

2'+'2j-1 = 

and visually this means 

0 1 

0 0 

0 0 

1 0 

2. Bits can be moved left or right by scaling by 2. Mathematically, this means 

= 2 x 2'-'2j = x 2i+12i 

and visually, if values larger than 1 are allowed in the system, this means 

2 0 

0 0 

0 1 

0 0 

If the system is to be restricted to values of only 1, the first rule from above 

can be used to split the bit in either direction. This looks like 

0 0 0 

0 0 1 

0 0 0 

0 0 0 

0 1 0 

0 0 

0 0 1 

0 1 0 

0 0 0 
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With the rules defined, the conditions for factoring can be examined. The factors 

of 481 are 13 and 37. In base 2, 481 = 13 x 37 = (001101)2 x (100101)2. From binary 

multiplication, we know that 

(001101)2 x (100101)2 = 2(100101)2 + 22(100101)2 + 2°(100101)2 

= (22 5 +2 3 2 2  +2 3 20)+(2225+ 2 2 2 2 +2 2 20)+(2°2 +202 2  +2020) 

Putting this result on the bit-board yields 

101001 

000000 

101001 

101001 

000000 

000000 

Notice in the above bit-board that the configuration of the bits shows the factors 

of 481. Along the top row is the factor of 37 and along the leftmost column is the 

factor of 13. These factors can be seen by considering the binary number represented 

with the least significant bit in the top left corner of the board. This results brings 

an interesting game that can be used to factor biprimes. By using the rules discussed 

above, if bits can be moved into a similar form as above, the factors of the biprime 

can be found. In the factored bit-board, notice that all the rows are 37 or 0. This 

configuration exists for every biprime. 

Approaching this problem is not an easy task. The complexity of the moves 

becomes very high because of rule 2. Even without rule 2, the complexity is very 

high. To help cope with the high complexity, a simplification is imposed. 
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3.2.1 Bit-Board Simplification 

The high complexity of the bit-board game generates a need to simplify the problem. 

The rules of the game require that each row represent a factor or be zero because 

n is a biprime. However, the extra details of which bits are moved can be hidden 

by considering the bit-board as simply a vector of term values. For example, the 

bit-board for 481 can be rewritten as 

101001 

000000 

101001 

101001 

000000 

0 0 00 0 0 

37 

0 

37 

37 

0 

0 

The game then becomes: balance the existing number such that each entry is 

either a factor of n or 0 and nothing else in between. This simplifies the game 

greatly as the individual bit movements are hidden by the distribution of the values. 

Writing a program to handle this new version of the game also becomes much simpler. 

Individual bit movements no longer need to be tracked or considered. 

Rules for this new game are simplified to: 

1. Any value can be move down a row by multiplying by a factor of 2. Below the 

movement is shown visually. 

0 

2 

4 

0 
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2. Any multiple of 2 can be moved up one row after being divided by 2. Again, 

a visualization of the movement is given below. 

2 

0 

0 

1 

The game can start in any random configuration. Depending on the strategy 

of the solution, many configurations can be used as a starting point. For the first 

strategy, it is assumed that the smaller of the two factors of n will fall in the columns 

of the board. With this assumption, the number of rows can be limited to L = 

After choosing the number of rows, the rows are filled such that each row 

only differs by I. For example, the starting point of 481 would be 

33 

32 

32 

32 

A balance for the vector can be found with the following formulae. 

t = [2L n  

r = n mod2L_1 

(3.25) 

(3.26) 

All rows have the value of t except those that have a 1 in the binary representation 

for n. For 481, we have 

L = [1092 481] =4 

481  I 
t = _1j 32 124  

r = 481 (mod 2 - 1) = 1 = (0001)2 
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32 

32 
+ 

32 

32 

1 

0 

0 

0 

33 

32 

32 

32 

Now that the vector is balanced, the next step is to choose a row to clear. When 

clearing a row, the value in the row is distributed among the other rows. From 

previous discussions it is easy to see the second row from the top gives the results 

we require to factor. In this case factoring is a single step away. Unfortunately, this 

is equivalent to guessing each bit of the smallest factor of n and therefore inefficient. 

This method was explored to observe how the other terms changed as bits were 

chosen to clear. 

To see how viable an optimization using bit manipulations would be, an exper-

iment was constructed. In this experiment, the cost function f(x) = n (mod x) is 

used while each bit in x is changed. The optimization then follows the path of bit 

manipulations that decreases the cost function. The program iterates through all 

potential solutions of x and tests to see if there exists a decreasing cost path to the 

real solution. Each number in the solution space of 2 < x < 2L, where L is a suffi-

ciently large bit length of a potential solution x, is tested. If there exists a path from 

a potential solution x to the real solution p, it is marked as nonisolated. The ratio 

of solution space to nonisolated solutions is calculated for all odd 20 bit biprimes 

and shown in figure 3.18. Figure 3.18 shows that most biprimes have initial points 

that can not reach the solution; however, there is a high probability that there does 

exist a path, depending on the biprime. It is clear that the cost function f(x) = n 
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Figure 3.18: Graph of potential solution ratio for odd 20 bit biprimes 

(mod x) is insufficient to find a path. 

An interesting result of this approach is the quick factorization of special cases 

that have particular forms. Which form to take advantage of is dependent on the type 

of moves made. For example, biprimes constructed with a prime in the Mersenne-like 

form p = 2 - 1 factor trivially because of the calculations done in the balancing 

stage. If the remainder r is zero, a factor has already been found. 

Another interesting result is with the original bit-board. If one of the primes has 

the form p = 2 + 1, the solution can be found by only moving bits (rule 1). 

These methods are impractical because knowing which method to use depends 

on knowing the prime factors. 
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3.3 Branch and Bound Multiplication Logic 

Revisiting the multiplication logic covered in section 3.1.4, a closer look at the equa-

tions created by Table 3.2 promoted a method inspired by branch and bound integer 

optimization. Looking at Table 3.2, it is clear that there is a lot of terms that dis-

appear when a variable is zero. It is easy to see that a zero in a yj variable would 

cause an entire row to disappear. In this section, a method is constructed that makes 

systematic assumptions based on the logic equations to find a solution. The appeal 

of this method is the simplification of the equations as more assumptions are intro-

duced. If a contradiction in the, equations is found, the last assumption is changed 

and a different assumption is tried. 

To see in more detail how this works, some more logic design is used. It turns 

out that frequently, Reed-Muller (RM) expressions tend to have a smaller number 

of terms compared to other types of logical expression. Equations 3.22 also show 

that the addition logic uses the exclusive OR operation which is a basis for RM 

expressions. A Reed-Muller expression has the form 

2"-1 

f=r (X1 ... Xm' 
7Th / 

i=1 

where ri is a binary coefficient, xi is the i1h input variable, and ij is the j1h bit of i. 

For a logic function with two inputs, the Reed-Muller equation is then 

f = rl r2x1 r3x2 r4x1x2. 

Similarly to multiplication logic equations solved in section 3.1.4, this form allows 

the function to be written in matrix form 

f=XR 



68 

where ) is a vector of input variables same as in section 3.1.4 and R is a vector 

of binary coefficients. Again, R can be a matrix for multi-output systems. The 

R matrix is calculated in the same manner as the P matrix in section 3.1.4. The 

transformation is 

R=[®R2]F,R2= 
10 

11 

where R2 is the transformation for a single variable, and F is the sum-of-products 

truth table for the function. The resulting matrix can also be computed modulo 2 

because x ED x = 0. 

Solving for the R matrix for a 2-bit multiplier gives 

R= [®R2]F 

100000000o0000oo - 0000 
1100000000000000 0000 
1010000000000000 0000 
1111000000000000 0000 
1000100000000000 0000 
1100110000000000 1000 
1010101000000000 0100 
1111111100000000 1100 
1000000010000000 0000 
1100000011000000 0100 
1010000010100000 0010 
1111000011110000 0110 
1000100010001000 0000 
1100110011001100 1100 
1010101010101010 0110 
_1111111111111111... _1001_ 

Reading off the R matrix, the equations are then 

fl 

f2 

f3 

f4 

mod 2= 

= x1y1, 

= x2y1 x1y2, 

= X1Y2EBX1YlX2y2, 

= x1y1x2y2. 

0000 -
00 00 
0000 
0000 
0000 
1000 
0100 
0000 
0000 
0100 
0010 
0000 
0000 
0000 
0000 
001 1_ 

Notice that the assumption of Yi = 0 changes all ones to zeroes in 8 rows. Also, an 

assumption of Yi = 0 moves a one up the matrix into a simpler term. The algorithm 
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n/2 1 2 3 4 5 6 7 8 
ni 1 1 1 1 1 1 1 1 
'2 0 2 2 2 2 2 2 2 
n3 2 4 4 4 4 4 4 
n4 1 8 10 10 10 10 10 
n5 9 24 26 26 26 26 
fl6 3 37 76 78 78 78 
n7 41 155 286 288 288 
fl8 19 187 659 1130 1132 
n9 139 841 2803 4658 
nio 71 745 3847 12095 
nil 583 3829 16959 
12 303 3123 17645 

fl,3 2079 16007 
991 12527 

8517 
fl16 4055  

Total 1 6 27 138 671 3538 18211 94004 
Eqns. 2 4 6 8 10 12 14 16 
Terms 4 16 64 256 1024 4096 16384 65536 
Ratio 0.13 0.09 0.07 0.07 0.07 0.07 0.08 0.09 

Table 3.4: Table of term totals for RM matrix representation of multiplication logic 

manipulates the matrix in this way until all variables xi and Yj are solved for and no 

contradiction can be found. All assumptions are recorded on a stack so that when a 

contradiction is found, the system can pop the last assumption used to simplify the 

equations and try the negative of the assumption. This is essentially a branch and 

bound optimization approach. 

The major drawback to this approach is the memory used to store the matrix to 

be solved. An experiment was conducted to compute the number of terms used in 

a RM representation of the multiplication logic. Table 3.4 shows a computation for 

the number of terms used in the RM matrix for multipliers up to 8 bits. Table 3.4 
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shows that the number of terms used for multiplication of numbers under 8 bits is 

roughly 8% of the matrix size of n x 2. The slightly increasing trend of this ratio 

over increasing n rules out storing the matrix as a list of bits. Unless a more compact 

way for representing the matrix can be found, this method is unusable for large n. 

Fortunately, the matrix seems to have a pattern, making it a likely candidate for 

compression. Figure 3.19 shows a visualization of the RM matrix for multiplication 

up to 4 bits. In Figure 3.19, a black dot represents a 1 in the RM matrix. A pattern 

1LII 

2 

3 

4 

 a 

•• • I r. 

•r •,. uj,. 'r an 

Figure 3.19: RM matrix visualization of 1, 2, 3, and 4 bit multiplications 

can be seen in the distribution of the is. Within the matrices themselves, there is 

a repeated pattern that occurs at the beginning of matrix, starting from the left. 

Also, as n increases, the top of the matrix represented in Figure 3.19 shows there 

are no terms after a certain point for lower equations. This can also be seen in the 

numbers given in Table 3.4. As n increases, the terms for the lower significant bits 

stop producing terms. This is because of the dependence of carry bits on previous 

equations, as shown in the equations 3.22. Lastly, their are similarities between each 

of the matrices. Each next increasing n contains the same terms as before plus new 

terms introduced by the new equations. These similarities could be used to help 

compress the resulting R matrix used to determine the correct assumptions when 

running the branch and bound algorithm discussed above. 



Chapter 4 

Discussion and Conclusion 

4.1 Discussion 

The first experiments involved unconstrained optimization. In the unconstrained 

optimization experiments, the simplest cost function had the best chance of factoring. 

Most of the solutions found by the system, as shown in Figure 3.3, are around 13 and 

37. The optimization of equation 3.2 correctly factored 481 approximately 16% of 

the time. Attempts to improve the success rate shown in Figure 3.7 and Figure 3.9 

show decreased rate of factoring. In Figure 3.7, the results show unconstrained 

Fermat optimization correctly factoring approximately 5% of the time and Figure 3.9 

shows the unconstrained bit optimization factoring < 1% of the time. In all the 

experiments, MATLAB chose to use line search for these experiments. 

In an attempt to improve the component of the system that is responsible for per-

suading solutions into integer values, constrained optimization was used. Figure 3.11 

showed that the constrained optimization successfully found integer solutions but did 

not find proper factors. This suggests that the method used to solve the constraint 

problem was putting too much focus on the constraint and inhibited the random 

nature of the initial point from finding a good solution. The inability to find a good 

solution can be visualize by imagining the digitization bumps seen in Figure 3.2 

being too large to traverse the solution create by the trench, namely x = a. 

To correct the emphasis on the digitizer of the optimization, the next system 
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varied the scale of the digitizer, similar to 82 seen in equation 3.1. This varied 

scaling of the integer persuasion function d(x, y) eliminated local minima outside 

the solution area of x = . However, the similarity between the results shown in 

Figure 3.3 and Figure 3.16 suggest that local minima induced by the digitization 

is not the problem. After several different trials with the system outlined by the 

integer persuasion scaling equation 3.11, it was evident that the system had no 

where to go within the trench itself. All of the above systems fail because they 

lack a global attractor to a solution of n = xy itself. For the simple cost function 

of f(x, y) = n - xy, no manner of digitizing or local minima escape will assist the 

system to find the solution efficiently. This problem is even more prominent when 

considering the solution space for a practical key of 1024 bits. Without a global 

attractor the system cannot be pulled towards the correct solution and the system 

breaks down into a brute force attack. Employing local minima escape methods 

would not fix the problem of pulling the system to the correct solution. To find a cost 

function that would attract the solution globally would require a deeper understand 

of number theory itself. 

In an attempt to deconstruct multiplication and take a slightly different approach 

than in [3], equation 3.22 was created using logic design and solved for the carry bits. 

The results were unfavorable; however, the experiment did give an insight into the 

complexity of factoring. When constructing the equations for a 3-bit multiplier, the 

number of terms required to represent the logic was very high: This large number 

of terms makes the system infeasible at large n. However, because all the equation 

solving is precomputation, clever methods may still make the approach possible. 

The bit-board optimization was developed simultaneously with the real optimiza-
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tion experiments. It offers an integer optimization perspective to factoring. Interest-

ingly, it suffers from the same problem as the real optimization experiments. It lacks 

an effective cost function. Without an effective cost function, the optimization fails 

to direct the movements towards the solution. However, it does offer some interest-

ing results regarding the chance of factoring given a similar cost function to the real 

optimization. If an analogy can be drawn between the real and integer programming 

experiments, then the initial points that have no path towards the solution can be 

thought of as starting in a local minima of a real optimization. Interpolating on this 

analogy sheds some light on the probability of the real cost function. However, this 

result does not suggest anything about avoiding minima, which is a difficult task. It 

simply gives insight into the chances of starting in a local minima. 

Results shown in Figure 3.3 suggest that many trials could loosely identify where 

the factors may be. This approach, as well as simulated annealing, was consid-

ered. However, both methods require many iterations of an already complex process. 

Moreover, without a cost function directing the optimization, this approach would 

break down to brute force by guessing. All the optimization experiments took over a 

minute to complete 1000 trials of the relatively small number 481. For practical key 

sizes the time to find a solution would be much too large. The purpose of applying 

optimization to factoring is to make complex but intelligent movements towards a 

potential solution. If there are many local minima as expected with a large key, the 

system will likely be slower than current methods that use many small unintelligent 

guesses, such as the quadratic sieve. 

None of the algorithms in this thesis compare to the effectiveness of constructing 

a difference of squares from many well picked smaller guesses. The probability of 
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getting a correct factor is also much higher in the QS than in factoring optimiza-

tion. Clearly, the choice is to use standard factoring methods over the non-standard 

methods presented in this thesis. While the methods presented in this thesis do 

not present methods to factor better, they do cover interesting approaches to the 

problem. Many new methods could be researched. 

4.2 Future Work 

There are many avenues for future development in the area of factoring optimization. 

One obvious and mentioned route is in the research of an effective cost function. How-

ever, finding one such cost function would require further analysis in number theory. 

This would most likely produce a more specific method than a cost function for gen-

eral optimization. A similarity can be seen in the Euclidean algorithm, which is - in 

essences - a specialized optimization algorithm for finding the GCD. Further study 

into Diophantine equations would likely give a better understanding of constructing 

an effective cost function. 

Another area that may be fruitful is neural networks. The advantage of using 

neural nets is that the cost function can be found by training the net. To be efficient 

the neural net would have to find a cost function that finds the global minimum fast 

enough that it could overcome the massive number of calculations required for large 

keys. Unfortuntely, like the many local minima created by a cost function, finding 

a cost function itself, would likely have many local minima and finding an effective 

cost function via neural net may also prove to be a difficult task. 
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4.3 Conclusion 

The use of encryption is becoming more important as information becomes more 

available. Without it many businesses and new ideas would not be possible. These 

applications rely on encryption to help police valuable information. One of the most 

effective and widely used cryptosystem is the RSA cryptosystem. Consequently, 

much of todays infrastructure is built on this cryptosystem. With so much counting 

on the success of the cryptosystem, it is imparative that the cryptosystem stay secure. 

However, the security comes from the apparent intractibility of factoring. Many 

believe that it is secure through its intractibility because of its current resistance to 

attacks but that this is not enough for critical applications. For this reason, if a flaw 

in the cryptosystem is present, it is very important that the information be made 

available so that it can be substituted before too much damage is done. 

While methods like the general number field sieve and the quadratic sieve show 

some promise at factoring efficiently, optimization factoring in this thesis does not. 

This failure is largely because of an inadequate cost function. If a cost function that 

directs movements at the global level can be found then an optimization approach 

may be viable. On the other hand, finding this cost function may not be an easy 

task. Until an efficient algorithm can be found, the RSA cryptosystem will remain 

secured by its mystery. 

Even though the results of this thesis proved to be unsuccessful, many interesting 

ideas were touched on and most importantly, much was learned. 
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Appendix A 

Experiment Code 

A.1 Real Optimization in MATLAB 

The following is the code used to conduct factorization experiments in MATLAB. 

Many of the experiments used similar code so not all functions will be given here. 

A.1.1 Direct Factorization Code 

The follow code was used to generate data for the equation 3.2 experiment. The 

code is split in two files. The first file is the main program, and the second file is the 

minimization function required by the fminunc function in MATLAB. 

cap = 100; % use all primes less than cap 

opt-iterations = 1000; % number of iterations to minimize 

err_data=0; % store error data in here 

% generate a range of biprime to test over 

bip = [00]; 

1=1; 

for p = primes(cap) 

for q = primes(cap) 

% exclude the case of p2 and q2 and when bip = 

if p == q I intersect (err_data(:,1), p*q) == p*q 

continue 

end 

bip(i,:) = I p q ]; 

± = 1+1; 

end 
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end 

7. uncomment to test only a single biprime 

bip = [13 37]; 

for i = 1:size(bip,1) 

p = bip(i, 1); 

q = bip(i, 2); 

X first column of err-data is the biprime 

err_data(i,1) = p*q; 

7. the following columns will be minimization trials on 

'h random starting points 

for j2:opt_iterations+1 

% form a vector of random numbers between 0.0 and some max 

initpq = rand(2,i)*i.1*max(p,q); 

% do the minimization 

£pq, mm, £] = fmmnunc(Ex) factsin(x,p*q), initpq, 

optimset('Gradobj','on', 'Display', off')); 

'h store the average error 

err_data(i,j) = sum(abs([p; q] pq)); 

7. store the solution 

err-data (i,j+opt_iterations) = pq(1); 

j-1 

end 

end 

'h make sure the data is in order 

err-data = sortrows(err_data,1); 
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The minimization function is given below. 

function [f, g] = factsin(x,bip) 

scale-err = 1; 

scale-sin = 10; 

f = scale_err*(bip x(1)*x(2))2 + 

scale_sin*(sin(pi*(2*x(1)+1/2)) + sin(pi*(2*x(2)+1/2)) + 2); 

g = [2*scale_err*(bip - x(1)*x(2))*-x(2) + 

scale_sin*cos (pi* (2*x(1)+1/2) )*2*pi; 

2*scale_err*(bip - x(1)*x(2))*-x(1) + 

scale_sin*cos(pi*(2*x(2)+1/2) )*2*pi]; 

7. f = (bip - 

•1. •/. f = (x(1)*z(2))2 - 2*bip*x(1)*x(2) + b1p2 

7. 7. g = [2*x(1)*x(2)2 - 2*bip*x(2); 2*x(1)*2*x(2) - 2*bip*x(1)]; 

7. % g = [2*x(2)*(x(1)*x(2) - bip); 2*x(1)*(x(1)*x(2) - bip)]; 

'I. g = [2*(bip - x(1)*x(2))*-x(2); 

2*(bip - x(i)*x(2))*-x(1)]; 

A.1.2 Bit Factorization Code 

The follow code was used to generate data for the equation 3.4 experiment. The 

code is split in two files. The first file is the main program, and the second file is the 

minimization function required by the fminunc function in MATLAB. 

cap = 100; h use all primes less than cap 

opt-iterations = 1000; 7. number of iterations to minimize 

err_data=0; % store error data in here 

X generate a range of biprime to test over 

bip = [00]; 

i1; 

for p = primes(cap) 
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for q = primes(cap) 

•h exclude the case of p2 and q2 and when bip = q*p 

if p == q I intersect(err_data(:,1), 

continue 

end 

bip(i,:) = [ p q ]; 

I = i+1; 

end 

end 

7. uncoinment to test only a single biprinie 

bip = [13 37]; 

%bip = [101 1013]; 

for i = i:size(bip,1) 

p = bip(i, 1); 

q = bip(i, 2); 

p*q) == p*q 

7. binarize will turn p in an array of ones and zeros 

bp = binarize(p); 

bq = binarize(q); 

use the largest binary representation for storing put correct 

V. factorization of p and q in variable correct 

if length(bp) > length(bq) 

correct = [bp bq zeros(1length(bp)-length(bq))]'; 

elseif length(bp) < length(bq) 

correct = [bp zeros(1,length(bq)-length(bp)) bq]'; 

else 

correct = [bp bq]'; 

end 

7. first column of err-data is the biprime, second is the 

'h length of p (or q) 

err_data(i,1) = p*q; 

err_data(i,2) = length(correct)/2; 
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'/ the following columns will be minimization trials on random 

% starting points 

for j3: opt_iterations+2 

h form a vector of random numbers between 0.0 and 1.0 

initpq = rand(size(correct))*1.4; 

h do the minimization 

[pq, min, f] = fminunc(t(x) factquad(x,p*q), initpq, 

optimset('GradObj','on', 'Display', 'off')); 

i store the average error per bit 

err_data(i,j) = sumn(abs(correct - pq)); 

X store the solution 

err_data(i , j+opt_iterations) = 

2.(0:err_data(i,2)-1)*pq(1:err_data(i,2)); 

J-2 

end 

end 

'h make sure the data is in order 

err-data = sortrows(err_data,1); 

The minimization function is given below. 

function [f, g] = factquad(x,bip) 

x is bits of p and then q, and bip is the biprime 

scale-err = 1; 

scale-bit = 1; 

(sn, sm) = size(x); 

n = sn/2; 'h half the bits are p the other half are q 
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r = 2.(O:n-1); % sequence 1 1 2 4 8 16 ... ] for bits 

7. result of f 

V.a = scale_err*(bip - (r*x(1:n))*(r*z(n+1:sn))) + 

scale_bit*sum((x.2-x).2); 

V. compute the gradient needed by fminunc() 

V.p = sum(r.*x(1:n)'); 

7.q = sum(r.*x(i+1:sn)'); 

V.b = -scale_err*[r'*q; p*r'] + scale_bit*2*(x.2-x).*(2*x-1); 

V.-scale_err* [r'*q; p*r'] 

%scale_bit*2*(x. 2-x) .*(2*x-1) 

7.f = a2; 

Y.g = 2*a.*b; 

P sum(r.*x(1:n)'); 

q = surn(r.*x(n+1:sn)'); 

= scale_err*(bip - p*q)2 + scale_bit*suin((x.2-x).2); 

g = scale_err*(bip - p*q)*2*- [r'*q; p*r'] + 

scale_bit*2*(x. 2-x) .*(2*x-1); 

A.1.3 Constrained Bit Factorization Code 

The follow code was used to generate data for the equation 3.9 experiment. The code 

is split in three files. The first file is the main program, and the second and third files 

are the minimization function and constrain vector required by the fmincon function 

in MATLAB. 

cap = 100; 7. use all primes less than cap 

opt-iterations = 1000; 7. number of iterations to minimize 

err_data=0; V. data store in here 

V. generate a range of biprime to test over 
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bip = [00]; 

11; 

for p = primes(cap) 

for q = primes(cap) 

% exclude the case of p2 and q2 and when bip = q*p 

if p == q I intersect(err_data(:,1), p*q) == p*q 

continue 

end 

bip(i,:) [p q ]; 

j = j+j 

end 

end 

h unconunent to test only a single biprime 

%bip = [13 37); 

bip = [101 1013]; 

for i = 1:size(bip,1) 

p = bip(i, 1); 

q = bip(i, 2); 

% binarize will turn p in an array of ones and zeros 

bp = binarize(p); 

bq = binarize(q); 

use the largest binary representation for storing put correct 

% factorization of p and q in variable correct 

if length(bp) > length(bq) 

correct = [bp bqzeros(1,length(bp)-length(bq))] J; 

elseif length(bp) < length(bq) 

Correct = [bp zeros(1,length(bq)-length(bp)) bq]'; 

else 

end 

correct = [bp bq)'; 

% first column of err-data is the biprinie, second is the 
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'h length of p (or q) 

err_data(i,1) = p*q; 

err_data(i,2) = length(correct)/2; 

h the following columns will be minimization trials on random 

'I. starting points 

for j=3 : opt_iterations+2 

% form a vector of random numbers between 0.0 and 1.0 

initpq = rand(size(correct))*1.4; 

h do the minimization 

[pq, mm, f] = fmincon(@(x) factquad(x,p*q), initpq, 

Q(x) factquadcon(x), 

optimset('Gradobj','on', 'Display', 'off')); 

'h store the average error per bit 

err_data(i,j) = suxn(abs(correct - pq)); 

% store the average error 

err_data(i ,j+opt_iterations) = 

2.(0:err_data(i,2)-1)*pq(1:err...data(i,2)); 

j-2 

end 

end 

'h make sure the data is in order 

err-data = sortrows(err_data,1); 

The following code is the minimization function. 

function [f, g] = factquad(x,bip) 

% x is bits of p and then q, and bip is the biprime 
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Csn, am) = size(x); 

n = sn/2; h half the bits are p the other half are q 

r = 2.(O:n-1); % sequence C 1 2 4 8 16 ... ] for bits 

7. result of f 

a = bip - (r*x(1:n))*(r*x(n+1:sn)); 

Y. compute the gradient needed by fmincon() 

p = sum(r.*x(1:n)'); 

q = sum(r,*x(ni-1:sn)'); 

b = -[r'*q; p*r'); 

f = a2; 

g = 2*a.*b; 

The following code is the constraint vectors for the fmincon function. 

function (c, coq] = factquadcon(x) 

% inequality constraints 

C = C]; 

h equality constraints 

Y.ceq = sum ((x .*2_x).2) ; 

ceq = (x.2-x).2; 

A.1.4 Scaled Factorization Code 

The code for the experiment involving equation 3.11 is similar to that of the direct 

method used in the experiment with equation 3.2. The main program is identical to 

the direct method with the exception of the minimization function. The minimization 

function used is given below. 

function [f, g] = factsin(x,bip) 

epsilon = 0.000001; 
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c = (bip-x(1)*x(2))2; 

d = sin(2*pi*(x(1)-1/4)) + sin(2*pi*(x(2)-1/4)) + 2; 

f = c + dl(c + epsilon); 

dcl = 2*(bip - 

ddl = cos(pi*(2*x(1)+1/2))*2*pi; 

dc2 = 2*(bip - 

dd2 = cos(pi*(2*x(2)+l/2))*2*pi; 

g = [dcl + ((c+epsilon)*ddl - d*dcl)/(c+epsilon) -2; 

dc2 + ((c+epsilon)*dd2 - d*dc2)/(c+epsilon)^2]; 
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A.1.5 Multiplication Logic Equations and Code 

The following are the matrices for the truth table and resulting arithmetic coeffi-

cients, respectfully. 

F = 

000000-
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000001 
000010 
000011 
000100 
000101 
000110 
000111 
000000 
000010 
000100 
000110 
001000 
001010 
001100 
001110 
000000 
000011 
000110 
001001 
001100 
001111 
010010 
010101 
000000 
000100 
001000 
001100 
010000 
010100 
011000 
011100 
000000 
000101 
001010 
001111 
010100 
011001 
011110 
100011 
000000 
000110 
001100 
010010 
011000 
011110 
100100 
101010 
000000 
000111 
001110 
010101 
011100 
100011 
101010 
1 1000 1-

-000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000001 
000010 
000000 
000100 
000000 
000000 
000000 
000000 
000010 
000100 
000000 
001000 
000000 
000000 
000000 
000000 
000000 
000000 
001100 
000000 
000000 
011000 
001000 
000000 
000100 
001000 
000000 
010000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
001000 
000000 
110000 
000000 
000000 
000000 
011000 
000000 
000000 
110000 
010000 
000000 
000000 
000000 
001000 
000000 
110000 
010000 
-010000 

The resulting arithmetic matrix represents the following equations. 
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nl = Y1X1 

fl2 = y1x2+y2x1 

n3 = y1x3+y2x2+y3x1+y2y1x2x1 

fl4 = Y3Y2Y1X2X1 + Y2YiX3X2 + y2x3 + y3x2 + y2y1x2x1 + y3y1x3x1 

+ y3y2X2Xi+y2yiX3X2Xi 

= Y3 1lX3X2Xl + /3J2X3X2X1 + Y3Y2Y1X3X1 + y3y2y1x3x2x1 

+ Y2YlX3X2 + y3y2x3X2 + y3y2y1x3x2 + Y3X3 + Y3Y2X2Xl 

fl3 = 7j3jlX3X2Xl + y3y2y1x3x1 + y3y2x3x2 

The code used to conduct the multiplication logic optimization experiment is 

shown below. The code is split in three files. The first file is the main program, 

and the second file is the minimization function required by the fminunc function in 

MATLJAB. The third file is the constraints used for the function in the second file. 

cap = 100; % use all primes less than cap 

opt-iterations = 1000; 7. number of iterations to minimize 

err_data=0; h data store in here 

V generate a range of biprime to test over 

bip = [0 0]; 

i=1; 

for p = primes(cap) 

for q = primes(cap) 

h exclude the case of p2 and q2 and when bip = q*p 

if p == q I intersect(err_data(:,1), p*q) == p*q 

continue 

end 
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bip(i,:) = [ p q ]; 

i = 1+1; 

end 

end 

h uncomment to test only a single biprime 

bip = [35]; 

for i = 1:size(bip,1) 

p = bip(i, 1); 

q = bip(i, 2); 

X binarize will turn p in an array of ones and zeros 

bp = binarize(p); 

bq = binarize(q); 

use the largest binary representation for storing put correct 

% factorization of p and q in variable correct 

if length(bp) > length(bq) 

correct = [bp bq zeros(1,length(bp)-length(bq))]'; 

elseif length(bp) < length(bq) 

correct = [bp zeros(1,length(bq)-length(bp)) bq]'; 

else 

end 

correct = [bp bq]'; 

/ first column of err-data is the bipriine, second is the length 

h of p (or q) 

err_data(i,1) = p*q; 

err_data(i,2) = length(correct)/2; 

X the following columns will be minimization trials on random 

V. starting points 

for j =3: opt_iterations+2 

h form a vector of random numbers between 0.0 and 1.0 
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initpq = rand(size(correct))*1.4; 

h do the minimization 

[pq, mm, f] = fminunc((x) factmltlog(x,p*q), initpq, 

optimset('GradObj','on', 'Display', 'off')); 

% store the average error per bit 

err_data(i,j) = sum(abs(correct - pq)); 

% Store the average error 

err_data(i , j+opt_iterations) = 

2.'(O:err_data(i,2)-1)*pq(1:err_data(i,2)); 

j-2 

end 

end 

% make sure the data is in order 

err-data = sortrows(err_data,i); 

The minimization function for the experiment is given below. 

function [f, g] = factmltlog(x,bip) 

a C mod(floor(bip/2O),2); 

mod(floor(bip/21) ,2); 

mod(floor(bip/22) ,2); 

mod(floor(bip/23) ,2); 

mod(f1oor(bip/24) ,2); 

mod(floor(bip/25) ,2)); 

a = (n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-

x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))2+(n(5)-x(6)*x(3)-

x(5) *x(4) (3) *x(2)+x (6) *x(5) (3) (2) *x ( 1)+ 

x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-
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x(6)*x(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*z(3)*x(2)*x(1)+ 

z(6)*x(5)*x(4)*x(3)*x(2))2+(n(4)+x(5)*x(4)*x(3)*x(2)-

2*x(G)*x(5)*x(3)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*x(1)+ 

2*x(6)*x(5)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-

x(6)*x(2)-x(5)*x(3)+x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+ 

x(6)*x(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(2)+ 

2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)-

x(5) *x(4) *x(2) *x( 1) Y2+(n(3)+2*x(5) *x(4) (3) (2)-

2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3)*x(2)*x(1)+ 

2*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)+x(5)*x(4)*x(2)*x(1)-

x(6)*x(1)-x(5)*x(2)Y2+(n(2)+2*x(5)*x(4)*x(2)*x(1)-x(5)*x(1)-

x(4)*x(2)Y2+(n(1)-x(4)*x(1)) 2; 

% these are much to long to format nicely 

b 

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)* 

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1) )*(-x(5)*x( 

4)*x(3)*x(1)+2*x(5)*x(4)*x(3)*x(2)*x(1)-x(5)*x(3)*x(2)-x(4)* 

x(3)*x(2)*x(1))+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x 

(5)*x(3)*x(2)*x(i)+x(6) *x(5)*x(4)*x(3)*x(j)-3*x(6)*x(5)*x(4) 

(3)*x(2)*x(1)+x(5)*x(4)*x(3)*x(1)-3*x(5)*x(4)*x(3)*x(2)*x(1) 

-x(5)*x(2)*x(1)+x(5)*x(3)*x(2)+x(4)*x(3)*x(2)*x(1)+x(5)*x(4) 

)*x(i)+x(6)*x(5)*x(4)*x(2)*x(i)+2*x(6)*x(5)*x(4)*x(3)*x(i)-2 

*x(6)*x(5)*x(4)*x(3)*x(2)*x(j)-x(6)*x(2)-x(5)*x(3)+x(5)*x(4) 

*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(6)*x(5)*x(2)*x(1)+2*x( 

6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4 

)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1))*(-2*x(5)*x(3)*x(2)*x(1)+x(5 

)*x(4)*x(2)*x(1)+2*x(5)*x(4)*x(3)*x(i)-2*x(5)*x(4)*x(3)*x(2) 

*x(1)-x(2)-x(4)*x(3)*x(1)+x(5)*x(2)*x(1)+2*x(5)*x(3)*x(2)+2* 

x(4)*x(3)*x(2)*x(1)-2*x(5)*x(4)*x(3)*x(2))+2*(n(3)+2*x(5)*x( 

4)*x(3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4 

)*x(3)*x(2)*x(1)+2*x(6) *x(4)*x(3) *x(1)+2*x(6)*(5)*x(2)*x(1) 

+x(5)*x(4)*x(2)*x(i)-x(6)*x(1)-x(5)*x(2) )*(-2*x(5)*x(4)*x(2) 
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*x(1)+2*x(4)*z(3)*z(1)+2*x(5)*x(2)*x(1)-x(1)); 

2*(n(6)-x(6)*z(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)* 

x(1)x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1) )*(-x(6)*x( 

4)*x(3)*x(1)+2*x(6)*x(4)*x(3)*x(2)*x(1)-x(6)*x(3)*x(2))+2*(n 

(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x(1)+x 

(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6) 

(4) *x(3) *x(2) )* (-x(4) (3) (2) +x(6) *x(3) *z(2) 

(1)+x(6)*x(4)I'x(3)*x(1) -3*(6)*x(4)*x(3)*x(2)*x(1)-x(6)*x(2) 

*x(1)+x(6)*x(3)*x(2)+x(6)*x(4)*x(3)*x(2))+2*(n(4)+x(5)*x(4)* 

x(3)*x(2)-2*x(6)*x(5)*x(3)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)'x(1 

)+2*x(6)*x(5)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1) 

-x(6)*x(2)-x(5)*x(3)+x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3) 

*x(1)+x(6)*x(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(2)+2*x(6)*x(4)* 

x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1 

))*(x(4)*x(3)*x(2)-2*x(6)*x(3)*x(2)*x(1)+x(6)*x(4)*x(2)*x(1) 

x(3)*x(2)*x(1)+x(6)*x(2)*x(1)+2*x(6)*x(3)*x(2)-2*x(6)*x(4)*x 

(3)*x(2)-x(4)*x(2)*x(1))+2*(n(3)+2*x(5)*x(4)*x(3)*x(2)-2*x(6 

)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3)*x(2)*x(1)+2 

*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)+x(5)*x(4)*x(2)*x( 

1)-x(6)*x(1)-x(5)*x(2))*(2*x(4)*x(3)*x(2)-2*x(6)*x(4)*x(2)*x 

(1)-2*x(4)*x(3)*x(2)*x(1)+2*x(6)*x(2)*x(1)+x(4)*x(2)*x(1)-x( 

2))+2*(n(2)+2*x(5)*x(4)*x(2)*x(1)-x(5)*x(1)-x(4)*x(2))*(2*x( 

4)*x(2)*x(1)-x(1)); 

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)* 

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1) )*(-z(6)*x( 

5)*x(3)*x(1)+2*x(6)*x(5)*x(3)*x(2)*x(1)-x(6)*x(3)*x(2)*x(1)) 

+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x 

(1)+x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1) 

-x(6)*x(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*x(3)*x(2) 

*x(1)+x(6)*x(5)*x(4)*x(3)*x(2) )*(-x(5)*x(3)*x(2)+x(6)*x(5)*x 

(3)*x(1)-3*x(6)*x(5)*x(3)*x(2)*x(1)-i-(6)*x(3)*x(2)*x(1)+x(6) 

*x(5)*x(3)*x(2))+2*((4)+x(5)*x(4)*x(3)*x(2)-2*x(6)*(5)*x(3 
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)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x 

(1)2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)x(6)*x(2)x(5)*x(3)+x(5) 

*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(G)*x(5)*x(2)*x(1) 

+2*x(6)*x(5)*(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5 

)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1))*(x(5)*x(3)*x(2)+x(6)*x 

(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(1)-2*x(6)*x(5)*x(3)*x(2)*x( 

1)+x(5)*x(3)*x(2)*x(1)-x(6)*x(3)*x(1)+2*x(6)*x(3)*x(2)*x(1)-

2*x(6)*x(5)*x(3)*x(2)-x(5)*x(2)*x(1))+2*(n(3)+2*x(5)*x(4)*x( 

3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3 

)*x(2)*x(1)+2*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)-i-x(5) 

*x(4)*x(2)*x(1)-x(6)*x(1)-x(5)*x(2))*(2*x(5)*x(3)*x(2)-2*x(6 

)*x(5)*x(2)*x(1)-x(3)-2*x(5)*(3)*x(2)*x(1)+2*x(6)*x(3)*x(1) 

+x(5)*x(2)*x(1))+2*(n(2)+2*x(5)*x(4)*x(2)*x(1)-x(5)*x(1)-x(4 

)*x(2))*(2*x(5)*x(2)*x(1)-x(2))-2*(n(1)-x(4)*x(1))*x(j); 

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)* 

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))*(-x(6)*x( 

5)*x(4)*x(1.)+2*x(6)*x(5)*x(4)*x(2)*x(j)-x(5)*x(5)*x(2)-x(6)* 

,c(4)*x(2)*x(1))+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x 

(5)*x(3)*x(2)*x(j)+x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*z(5)*x(4) 

(4)*x(2)+x(G)*x(5)*x(2)*x(j.)+x(6)*c(5)*x(4)*x(1)-3*x(6)*x(5) 

)*(1)+(6)*z(5)*x(4)*x(2)*x(1)+2*(6)*x(5)*(4)*x(3)*x(1)-2 

*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(2)-x(5)*x(3)+x(5)*x(4) 

*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(6)*x(5)*x(2)*x(1)+2*x( 

6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4 

)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1))*(x(5)*x(4)*x(2)-2*x(6)*x(5) 

*x(2)*x(1)+2*x(6)*x(5)*(4)*x(1)-2*x(6)*x(5)*x(4)*x(2)*x(1)-

x(5)+x(5)*x(4)*x(2)*x(1)-x(G)*x(4)*x(1)+2*x(6)*x(5)*x(2)+2*x 

(G)*x(4)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(2))i-2*(n(3)+2*x(5)*x(4 

)*x(3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4) 

*x(3)*x(2)*x(1)+2*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)i-

x(5)*x(4)*x(2)*x(1)-x(6)*x(1)-x(5)*x(2) )*(2*x(5)*x(4)*x(2)-x 
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(4) -2*x(5) *x(4) *x(2) *x (1) +2*x(6) *x(4) *x( 1) ) 

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)* 

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))*(2*x(6)*x 

(5)*x(4)*x(3)*x(1)-x(6)*x(5)*x(3)-x(6)*x(4)*x(3)*x(1))+2*(n( 

5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x(1)+x( 

6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6)* 

(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*(3)*x(2)*x(1)+ 

x(6)*x(5)*x(4)*x(3)*x(2))*(-x(5)*x(4)*x(3)l-x(6)*x(5)*x(3)*x( 

1)3*x(6)*x(5)*x(4)*x(3)*x(1)x(6)*x(5)*x(1)+x(6)*x(5)*x(3)+ 

x(6)*x(4)*x(3)*x(1)+x(6)*x(6)*x(4)*x(3))+2*(n(4)+x(5)*x(4)*x 

(3)*x(2)-2*(6)*x(5)*x(3)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*x(1) 

+2*x(6)*x(5)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2) *x(1)-

x(6)*x(2)-x(5)*x(3)+x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)* 

x(i)+x(6)*x(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x 

(3)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1) 

)*(x(5)*x(4)*x(3)-2*x(6)*x(5)*x(3)*x(1)+x(6) *x(5)*x(4)*x(1)-

2*x(6)*x(5)*x(4)*x(3)*x(1)-x(6)+x(5)*x(4)*x(3)*x(1)+x(6)*x(5 

)*x(1)+2*x(6)*x(5)*x(3)+2*x(6)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x( 

4)*x(3)-x(5)*(4)*(1))+2*(n(3)+2*z(5)*z(4)*x(3)*x(2)-2*x(6) 

x (6) *x(4) *x(3) *z(1) (6) *x(5) (2) *x(1)+x(5) *x(4) *x(2) (1 

)-x(6)s&(1)-x(5)*x(2) )*(2*x(5)*x(4)*x(3)-2*x(6)*x(5)*x(4)*x( 

1)-2*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(1)+x(5)*x(4) *x(1)-x(5 

))+2*(n(2)+2*(5)*x(4)*(2)*(1)-(5)*x(1)-x(4)*x(2) )*(2*x(5 

)*x(4)*x(1)-x(4)); 

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)* 

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))* (-x(6)*x( 

5)*x(4)*x(3)+2*x(6)*x(5)*x(4)*x(3)*x(2)-x(6) *x(4)*x(3) *x(2)) 

+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x 

(1)+x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5) *x(4)*x(3)*x(2)*x(1) 

-x(6)*x(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*x(3)*x(2) 

*x(1)+x(6)*x(5)*x(4)*x(3)*x(2))*(x(6)*x(5)*x(3)*x(2)+x(6)*x( 

5)*x(4)*x(3)-3*x(6)*x(5)*x(4)*x(3)*x(2)-x(6) *x(5)*x(2)+x(6)* 

x(4)*x(3)*x(2))+2*(n(4)+x(5)*x(4)*x(3)*x(2)-2*x(6)*x(5)*x(3) 
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*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*(1)+2*x(6)*x(5)*x(4)*x(3)*( 

1)-2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(2)-x(5)*x(3)+x(5)* 

x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(6)*x(5)*x(2)*x(1)+ 

2*x(6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5) 

*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*(1))*(-2*x(6)*x(5)*x(3)*x(2) 

+x(6)*x(5)*x(4)*x(2)+2*x(6)*x(5)*x(4)*x(3)-2*x(6)*x(5)*x(4)* 

x(3)*x(2)+x(5)*x(4)*x(3)*x(2)-x(6)*x(4)*x(3)±x(6)*x(5)*x(2)+ 

2*x(6)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2))+2*(n(3)+2*x(5)*x(4)*x( 

3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3 

1)+2*x(6) *x(4) (3) *(1) i-2*x (6) *x(5) (2) (1) +x(5) 

*x(4)*x(2)*x(1)-x(6)*x(1)-x(5)*x(2) )*(-2*x(6)*x(5)*x(4)*x(2) 

-2*x(5) (4) (3) (2) +2*x (6) *x(4) *x(3) i-2*x(6) *x(5) *x(2) (5 

)*x(4)*x(2)-x(6))+2*(n(2)+2*x(5)*x(4)*x(2)*x(i)-x(5)*x(1)-x( 

4)*x(2))*(2*x(5)*x(4)*x(2)-x(5))-2*(n(1)-x(4)*x(i))*x(4)J; 

scale_bit = 2; 

= a + scale_bit*(sm((x.2-x).2)); 

g = b + scale_bit*2*(x.2-x).*(2*x-1); 

Finally, the constraints for the minimization function is as follows. 

function (c, ceq] = factmltlogcon(x) 

X inequality constraints 

C = 

% equality constraints 

%ceq = sum((x.2-x).2); 

ceq = (x.2-x).2; 
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A.2 Integer Optimization 

A.2.1 Factoring Bit Game 

The code for the factoring bit game experiment is not listed here because it was over 

5, 000 lines of code. Please contact the author for a compressed tarball of the code. 

A.2.2 Branch and Bound Multiplication Code 

The following C code was used to count the number of terms used in the branch and 

bound multiplication experiment. 

#include <stclio .h> 

#include <stdlib . h> 

#define p0w2(a) ((unsigned long)1<<a) 

/**** 

* returns the bit b of the multiplication of x and y 

mt bitmult(unsigned mt x, unsigned mt y, unsigned char b) 

{ 

return x*y>>b&1; 

* returns the entry at (i,j) in knokecker product matrix with a 

* 2x2 base matrix to the exponent of pow. 

mt kronpow(mnt *base, char pow, unsigned long i, unsigned long 

{ 

unsigned long k, size = 1<<pow; 

mt entry=1; 

for (k=O; k<size && entry != 0; k++) { 

entry *= base[2*(j&1)+(m&1)]; 

j) 
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return entry; 

} 

mt main(int argc, char *argv[]) 

{ 

mt R2[4] = { 1, 0, 1, 1 )-; 

unsigned long i, j, Ic; 

unsigned long entry; 

unsigned mt size, *terms; 

unsigned mt bitstream; 

FILE *iinm = NULL; 

/* get the size argument or assume size = 2. size is the number of bit 

in n. open a file to store actual matrix *1 

if (argc > 1) { 

size = 2*atoi(argv(1]); 

if (size < 1) size = 2; 

if (argc > 2) 

imm fopen(argv[2], 'w+"); 

} else 

size 2; 

1* create some space to store the number of total terms and initialize */ 

terms = (unsigned mt *) malloc(sizeof (unsigned long)*size); 

for (k=0; k<size; k++) 

terms[k] = 0; 

bitstream = 1; 

for (j'0; j<pow2(size); j+i-) { 

/* display progress every 100th j */ 

if (j%100==O) { 
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printf("[%2.fV/.]: ", ((float) j I p0w2(size)*100)); 

for (k=0; k<size; k++) 

printf("Y.4.ld ", terms[k]); 

printf("\n"); 

} 

for (k'0; k<size; k++) { 

entry=0; 

for (1=0; i<p0w2(size); i++) 

1* main matrix calculation of R = K(R2,2*n)*P *1 

entry += kronpow(R2, size, i, j)* 

bitmult(i>>size/2, i&p0w2(size/2)-1, k); 

//printf ("%d ", entry'/.2); 

terms[k] += entryY.2; 

/* if we're using a matrix file, spit out the results *1 

if (imm) { 

1* spit out as 0 or -1 *1 

fputc(oxff*(entryY.2), imm); 

1* spit out as a byte bundle of bits *1 

bitstream 1= entry'/.2; 

bitstream << 1; 

if (bitstream > 0xff) { 

fputc(bitstrearn, imm); 

bitstream = 1; 

} 

} 

} 

1* done, print total *1 

printf ("total terms: "); 

for (k'0; k<size; k++) 
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printf("Y.4.ld ", terms[k]); 

printf (" \n") ; 

free (terms); 

if (imm) { 

if (bitstream > 1) 

fputc(bitstreain, imm); 

fclose(imm); 

} 


