
THE UNIVERSITY OF CALGARY

Nonstandard Factoring Methods for Cryptographic Applications

by

Raymond Ball

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

CALGARY, ALBERTA

January, 2009

© Raymond Ball 2009

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "NONSTANDARD FACTORING

METHODS FOR CRYPTOGRAPHIC APPLICATIONS" submitted by Raymond

Ball in partial fulfillment of the requirements for the degree of M.Sc. IN COMPUTER

ENGINEERING.

Vs 4A)
Supervisor, Dr. Vassil Dimitrov
Department of Electrical and Computer Engineering

Dr. Svetlana Yanushkevich
Department of Electrical and Computer Engineering

zkt--j ••-
Dr. Laleh Behjat
Department of Electrical and Computer Engineering

a1
Dr. Rei Safavi-Naini
Department of Computer Science

/ 7
(.1

Date

11

Abstract

In the information age, cryptography is becoming an important part of efficiently

transmitting data securely. The RSA cryptosystem is a popular system used to

transmit secure information over insecure channels. To allow secure communication

over these insecure channels, analysis regarding the strength of the RSA cryptosystem

is important to stay one step ahead of those who wish to break it. At the heart of the

RSA cryptosystem is the intractable problem of factoring. State-of-the-art methods

of factoring, such as the General Nuthber Field Sieve (GNFS) show good potential

at factoring; however, few consider the problem as a general optimization problem.

Several optimization models will be covered and how the models lead to a well known

difficulty in factoring, solving the Diophantine equation. This thesis gives evidence

that some chosen nonstandard algorithms, such as optimization, cannot be used as

a viable method for efficiently factoring large numbers.

111

Acknowledgements

I'd like to thank my mom for all her support, patience, and wisdom. I'd like to thank

my family for all their loving support.

iv

Table of Contents

Approval Page

Abstract .

Acknowledgements iv

Table of Contents v

1 Introduction and Background for Factoring in Cryptography 1
1.1 Basic Introduction and Motivation 1
1.2 Number Theory 4

1.2.1 Divisibility 4
1.2.2 Fundamental Theorem of Arithmetic 5
1.2.3 Greatest Common Divisor 5
1.2.4 Modular Arithmetic 6
1.2.5 Euler's Theorem 8
1.2.6 The RSA Cryptosystem 8
1.2.7 An Example of the RSA Cryptosystem 13

1.3 Optimization 14
1.4 Goals 20

2 Current State-of-the-Art Factoring 22
2.1 Quadratic Sieve 23

2.1.1 An Example of the Quadratic Sieve 36

3 Optimization Factoring 38
3.1 Optimization Factoring in the Reals 38

3.1.1 Unconstrained Digitizer Addition 39
3.1.2 Constrained Digitizer Addition 49
3.1.3 Integer Persuasion Scaling 53
3.1.4 Multiplication Logic 55

3.2 Factoring Bit Game 59
3.2.1 Bit-Board Simplification 63

3.3 Branch and Bound Multiplication Logic 67

v

4 Discussion and Conclusion 71
4.1 Discussion 71
4.2 Future Work 74
4.3 Conclusion 75

Bibliography 76

A Experiment Code 79
A. 1 Real Optimization in MATLAB 79

A.1.1 Direct Factorization Code 79
A.1.2 Bit Factorization Code 81
A.1.3 Constrained Bit Factorization Code 84
A.1.4 Scaled Factorization Code 87
A.1.5 Multiplication Logic Equations and Code 89

A.2 Integer Optimization 98
A.2.1 Factoring Bit Game 98
A.2.2 Branch and Bound Multiplication Code 98

vi

List of Tables

2.1 Fermat's factoring algorithm factoring 3131 with square testing elim-
inated 27

2.2 Factor base and solutions for an example using the quadratic sieve . 36
2.3 System of quadratic residues needed to construct a larger congruence

of squares 37

3.1 Table of direct optimization success and timing results 43
3.2 Table of binary multiplication for 3-bit multiplier 55
3.3 A sample bit-board configuration for 481 60
3.4 Table of term totals for RM matrix representation of multiplication

logic 69

vii

List of Figures

1.1 The Internet communication paradigm 2
1.2 A simple minimization of f(x) = (x2 - x)2 such that x < 1. 16

3.1 A sinusoid as a digitizer 40
3.2 Equation 3.2 is graphed 41
3.3 Results of direct optimization equation 3.2 factoring 481 42
3.4 Results of the direct optimization equation 3.2 factoring 102313 . . 43
3.5 Detailed result of the direct optimization equation 3.2 factoring 481 44
3.6 Results of the direct optimization equation 3.2 factoring 481 and ad-

justed scaling variables 45
3.7 Results of the Fermat optimization equation 3.3 factoring 481 . . 46
3.8 Graph of the function f(x) = (x2 - 48
3,9 Results of the bit optimization equation 3.4 factoring 481 49
3.10 Results of the constrained direct optimization equations 3.6 factoring

481 50
3.11 Detailed results of the constrained direct optimization equations 3.6

factoring 481 51
3.12 Results of the constrained direct optimization equations 3.7 factoring

481 52
3.13 Results of the constrained Fermat optimization equations 3.8 factoring

481 53
3.14 Results of the constrained bit optimization equations 3.9 factoring 481 54
3.15 Effects of varying the scaling variable of the digitizer function 55
3.16 Results of equation 3.11 factoring 481 56
3.17 Results of using bit multiplication logic via equation 3.24 factoring 481 60
3.18 Graph of potential solution ratio for odd 20 bit biprimes 66
3.19 RM matrix visualization of 1, 2, 3, and 4 bit multiplications 70

vii'

Chapter 1

Introduction and Background for Factoring in

Cryptography

1.1 Basic Introduction and Motivation

Cryptography is used all over the world to keep private data secret. It is becoming a

necessity for the new age of information and without it, many virtual infrastructures

would not be possible. For example, e-businesses and online shopping require that

billing information be encrypted and verified to ensure the person requesting the

purchase is the proper person. If the shopper were to send their billing information

in the clear, it would be easy to forge another request using the same information,

resulting in possible theft of funds and drastically increasing the costs of shopping

online.

Figure 1.1 shows a popular communication paradigm when considering traffic

over the Internet.

In this setup, we consider Alice and Bob as the people that wish to securely

communicate with each other, perhaps to make a purchase. Unfortunately, the

nefarious Eve wishes to listen in on Alice and Bob, recording any billing information

that may come up in the communication. If Alice and Bob wish to communicate with

each other, they must encrypt their traffic using an algorithm called a cipher, thereby

making the message unintelligible to Eve. When Alice uses the chosen cipher on her

1

2

Alice

I

Eve

S
I
I

Bob

I

Figure 1.1: The Internet communication paradigm

plaintext message, it is transformed into ciphertext which Eve cannot understand.

She may then send the ciphertext over the channel to Bob, provided the cipher she

used is reasonably secure.

While encrypting the message, the algorithm performs operations on the plaintext

based on a seed called an encryption key. A decryption key can be used to reverse

the operations applied to the plaintext to retrieve the message. In some ciphers,

the encryption and decryption keys are the same and are called symmetric ciphers.

Ciphers that have different encryption and decryption keys are said to be asymmetric.

By having a different decryption and encryption key, Alice needs only send her

encryption key to Bob who can then use the key to encrypt a message and send the

ciphertext to Alice. Alice is then confident that only she can decrypt the ciphertext

and read the message because the decryption key was never sent over the insecure

channel.

3

The advantage of an asymmetric cipher is the ability to use the insecure channel

to transmit key information without compromising the security of the system; how-

ever, in practice asymmetric ciphers are slower than the symmetric ciphers. In the

paradigm discussed above, if Alice chooses a symmetiic cipher for speed, there is no

way to send the key to Bob without Eve potentially intercepting the key and using

it to decrypt all the traffic. Her only alternative is to use a special secure channel

to send the key. However, in practice, secure channels are very expensive or infeasi-

ble. This problem was solved by Whitfield Diffie and Martin Heilman using the first

asymmetric algorithm called the Diffie-Heilman key exchange algorithm [24]. Later,

this algorithm was replaced by a more versatile cipher called the RSA cipher. In the

RSA cipher, the algorithm is secured by the difficulty of factoring large integers and

will be the main focus of this thesis.

While asymmetric ciphers are more versatile, for most real world applications,

both cipher types are use. When both cipher are used, an asymmetric cipher encrypts

a set of randomly chosen symmetric keys. The set of symmetric keys are then used to

encrypt the body of the message. The use of both cipher types allows the versatility

of asymmetric ciphers with the speed of symmetric ciphers.

The purpose of this thesis is to investigate how the RSA cipher withstands to

opimization techniques and contrasts those techniques against with current state-of-

the-art methods of breaking the cipher. The thesis will cover several experiments

attempting to break the RSA cipher using optimization in both the integer and real

number sets.

The thesis is broken into four chapters. In the first chapter, background in the

number theory and optimization fields of mathematics are given. The second chapter

4

covers some current state of the art. Chapter three contains the experiments and

briefly discusses the steps taken to perform the computation. Chapter four is the

final chapter and it provides a discussion and conclusion from the experiements.

Future work is also given in the fourth chapter.

1.2 Number Theory

To understand the RSA cipher, a bit of number theory is required. This section will

cover background needed to understand the RSA cipher.

Number theory is one of the oldest mathematics known to man. Its origins date

back as far as 800 BC. In number theory, the focus is on the properties of numbers

and how they relate to each other. In particular, the integer numbers are focused on.

This section will very briefly cover some basic number theory required to understand

the upcoming concepts.

1.2.1 Divisibility

The first concept usually covered in number theory is the idea of divisibility [6, 8].

A number n is divisible by d if d divides evenly in n so that there is no remainder.

It is denoted dirt and is read "d divides n". For example, 3115 and 6142 but 12 125.

If a number p> 1 can not be divided by any number except itself and 1 it is called

prime. If a number does have a divisor other than 1 or itself, it is called composite.

For example, all even numbers greater than 2 are composite because they are all

divisible by 2. A biprime or semiprime is a product of two primes. Furthermore, if

a prime p can divide m, k times, it is written pk In and is read "p' fully divides n".

5

1.2.2 Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic (FTA) says that all numbers can be uniquely

represent as a product of primes [8]. Mathematically, this can be written as

'yl c1 a
I(1 VnEZ,k≥1,a≥1.

Representing n as a product of primes is called the canonical factorization (or simply

factorization) of n. With the FTA, it becomes clear that when n = ab and pjn where

p is prime, p divides either a or b or both. Also, if both a and b are prime, either

p = a or p = b or both (in the case that n is a perfect square).

1.2.3 Greatest Common Divisor

The concept of greatest common divisor (or GCD) is central to the study of num-

ber theory [11]. As the name suggests, the GCD finds the largest common factors

between two numbers. Common notation for the GOD function is gcd(m, n) =

where d is the largest common factor between m and n. If d is 1, it is said that m

and n are relatively prime, or coprime. Some properties of the GCD function are

given below.

1. If p is prime, then gcd(, m) = 1 or gcd(p, n) = p.

2. Ifgcd(m,n)= d,m— dt,m — ds then gcd(s,t) = 1.

3. If d is a common divisor of m and n. then dl gcd(m, n).

4. If m= nq+ r, then gcd(m,n) = gcd(n,r).

To efficiently compute the GCD of two numbers, the Euclidean algorithm can be

used. Another way of finding the GOD is looking at the canonical factorization of

6

the two numbers; however, factoring large numbers can be a difficult. The Euclidean

algorithm is performed by dividing the reminder until the remainder is zero. It is

shown below how these divisions are done:

m = nq1+r1,1≥r1<n,

n = r1q + r2, 1 ≥ r2 <r1,

'rk-2 = rk_lqk + rk, 1 ≥ rk <Tk_1,

rj_1 = rq1 + rk+1, rk+1 = 0.

The last nonzero remainder rk is the GCD of m and n.

1.2.4 Modular Arithmetic

Modular arithmetic is another central concept to number theory. It allows the com-

putation on a finite subset of integer numbers in a circular manner. In this system

the numbers "wrap around" so that all computation is limited in this subset. This

wrap around is achieved by considering the remainder in division. A relation called

a congruence relation is used in the notation of modular arithmetic and is expressed

as

ar (mod d)

and is read "a is congruent to r modulo d". This expression says that after removing

(or adding) multiples of d in a, we are left with r. Note that neither a nor r have

to be less than d. The congruence relation says that two number are equivalent if

they were mapped onto a circle of d points. For example, 3 10 17 . 3 + 7k

7

(mod 7). In practice, when doing modular arithmetic only the numbers less than

d are considered because smaller numbers are typically easier to work with. Some

properties of congruences are given below:

1. aa (mod d).

2. Ifab (mod d) and bc (mod d) then ac (mod d).

3. If a b (mod d) then b a (mod d).

4. Ifa1 b1 (mod d) and a2 b2 (mod d) then ai+a2 bi+b2 (mod d).

5. Ifa1 b (mod d) and a2 b2 (mod d) then ai*a2=b1*b2 (mod d).

6. If a b (mod d) then for any integer k, ka kb (mod d).

One interesting property of this arithmetic is the use of modular exponentia-

tion. In standard arithmetic, computing large exponentials results in large numbers.

However, in modular arithmetic numbers can be reduced to be more manageable be-

cause of the circular nature of the arithmetic. By considering property 5, it follows

that c a * b (mod d) is equivalent to c (a (mod d))(b (mod d)) (mod d). For

example,

117649 = 76 = (73)(73) (2)(2) (mod 31)

because

73 = 343 2 (mod 31).

To further speed up the process, considering the binary representation of the ex-

ponent tells when to multiply and reduce. In the above example, the exponent of

8

6 = 1102 is read from right to left and the result is multiplied by 72 (mod 31) and

reduced by 31 every time there is a 1. This results in

(7 20 (mod 31))0(7 2' (mod 31))1(722 (mod 31))' (1)(18)(14) 4 (mod 31).

In general, modular exponentiation then takes less than O(logn) multiplications.

1.2.5 Euler's Theorem

One of the most famous results of number theory is Euler's theorem [20]. It states

that

1 (mod m).

In this theorem, a and m are relatively prime positive integers, and q5(m) is Euler's

totient function which computes the number of positive integers less than and rel-

atively prime to m. Clearly, if im is some prime p, then q5(p) = p - 1 because all

numbers are relatively prime to a prime number. Another famous theorem that is

related to Euler's Theorem is Fermat's little theorem [20]. It states that

a1'a (molp)

where p is prime. By multiplying both sides by a 1, it becomes clear how this is a

special case of Euler's theorem.

1.2.6 The RSA Cryptosystem

One of the most popular cryptosystem used today is the RSA cryptosystem. The

system is named RSA after the last names of the authors Ron Rivest, Adi Shamir,

and Len Addleman [17]. In this system, the security relies on the computational

9

intractability of two problems: factoring a large composite integer into its primes

and the RSA number problem. The intractability is achieved with the use of a

one-way function. In a one-way function like multiplication, it is easy to multiply

two prime numbers together and return the result, but difficult to factor the result

returning the prime numbers. If the primes could be factored fast enough, then

the cryptosystem would no longer become intractable and the system would fail to

keep the information safe. Motivations of research into factoring algorithms test the

strength of the intractable problems such as factoring and allow us to stay ahead of

people who wish to break the system for malicious reasons.

An interesting aspect of the cryptosystem is that its security is entirely based on

the assumption that factoring and the RSA number problem has no efficient solution.

There is no known unclassified proof regarding the security of the cryptosystem.

Thus, it is unknown whether or not the system is truly secure. The only proofs that

are available are proofs that show factoring is equivalently secure to other unproven

intractable problems, such as the Diffie-Hellman key exchange algorithm [13]. This

means that the security of the system is entirely based off the continuous failure of

any algorithm to factor a large biprime and is merely a universally accepted hunch.

As described above, the RSA cipher is an asymmetric cipher. As an asymmetric

cipher, two keys are generated: a public encryption key, and a private decryption

key. The keys themselves consist of a few integers. How these keys are generated

are given below, followed by a more detailed discussion.

1. Choose two large prime numbers p and q.

2. Compute the product of p and q, n = pq.

10

3. Compute Euler's totient function on n as q(n) = (p - 1) (q - 1).

4. Choose a value e such that 1 <e < q(n) and such that e is relatively prime to

çb(n).

5. Compute d so that it satisfies the congruence

de1 (mod q(ri)).

The encryption key is then the pair (n, e) and the decryption key is the remaining

information (p, q, d). While some steps seem trivial, when computed at the scale of

2512 the task is not trivial from a computation perspective.

In the first step, two prime numbers are required. However, guaranteeing a prime

number is a difficult task and would reduce the system to unusable at a practical level

of security. With current algorithms, generating prime numbers in the 2512 range

would take too long for practical use. The fastest known primality test to date is the

Elliptic Curve Primality Proving algorithm [1]. It has an approximate complexity

of O((lnn)5). Its worse-case complexity is not yet known. Computing a prime with

this method would be impractical for a general encryption suite. To get around

this problem, probabilistic prime testing is used to find large primes. Probabilistic

primality testing is much faster than deterministic methods. This speed increase

comes at the cost of returning a pseudoprime. A pseudoprime is a number that

passes a probabilistic primality testing algorithm but is not necessarily truly prime.

One such algorithm that is used to find pseudoprimes is Fermat's primality test.

While this does not guarantee that p and q will be prime, the probability of the

number not being prime can be reduced to a quantity that is negligible without

11

much effort. The last two steps make use of the Euclidean and extend Euclidean

algorithms to quickly satisfy the conditions. Once the keys have been generated,

(n, e) is published and used to encrypt the message.

To encrypt the message the sender does the following.

1. Breaks the message into blocks such that a numerical representation of the

block of data m, is such that m <n.

2. Compute

c=me mod

where c is the ciphertext.

3. Stores all the ciphered c values so that the receiver knows how to apply the

decryption algorithm.

The exponential in the second step can use modular exponentiation properties to

quickly find c.

To decrypt the message, the receiver does the following.

1. Retrieve c from the storage structure of the sender.

2. Compute

m=c 1 mod n.

3. Reassembles the message with the computed m values.

To see that this cipher works, we put the encryption and decryption computations

together:

cd (M ,)d ned (mod n)

12

But we know that

ed1 (mod (p-1)(q-1))

so by Fermat's little theorem

med = m (mod p)

and

med = m (mod q).

By applying the Chinese Remainder Theorem

M (mod pq).

Thus,

m (mod rt)

With the private key (p, q, d) never transmitted and kept safe, there is no way

for Eve, the eavesdropper, to directly decrypt the message. To get the private key

indirectly, Eve would have to calculate the private key from the public key via fac-

toring n into p and q. This computation is where the importance of factoring comes

in. If an efficient algorithm for factoring exists, then the cipher no longer would be

considered secure. State-of-the-art factoring methods do not factor quick enough to

consider them efficient. These algorithm take more time to complete than the mes-

sage is considered valid for. Thus, a better factoring algorithm is required for a direct

attack on this cipher. More discussion on the state-of-the-art factoring techniques

follows in the next chapter.

It is worth mentioning that while computing the private key from the public is

one way to break the cipher, it is not the only way to attack the cryptosystem in

13

general. There are many other ways to attack this cryptosystem that are beyond the

scope of this thesis. Some methods include attacking the random number generator

used to find p, q, and e. By using a weak random number generator, Eve can make

good guesses on what the next number would be and circumvent the cryptosystem.

Other methods include attacking how the RSA cryptosystem is implemented. For

example, if the primes chosen are of a certain form, n can be easily factored.

From a mathematical and computational perspective, factoring n is the most

direct approach to defeating the cryptosystem. By factoring n, p and q become

known and the equation de 1 (mod q(n)) can be solved in the same manner

as the key generator. With the congruence solved, the decryption key (d, p, q) is

available for decryption.

1.2.7 An Example of the RSA Cryptosystem

An example of the RSA cryptosystem is provided below. Suppose that Alice wants

to send Bob the message

I'd rather be researching.

On your standard PC, this would be represented in ASCII as

73 39 100 32 114 97 116 104 101 114 32 98 101 32 114 101 115 101 97

115 99 104 105 110 103 46.

To keep the calculations simple, the message will be encrypted byte by byte. Doing

byte-by-byte encryption means n > 255 to ensure m < n, but because all of our

values are less than 127, we will find an m such that 127 < n. < 256. The biprime

11 * 13 = 143 satisfies this condition nicely. To obtain d, e is chosen at random

14

such that 1 < e < q(n) or 1 < e < 120 in this case. Recall that e must also be

relatively prime to (n), so e = 7 will be sufficient. To compute ci, 7d 1 (mod 120)

is solved by d = 103. The public key is then (n = 143, e = 7) and the private key

is (p = 11, q = 13, d = 103). Continuing with the example, the plain text message

needs to be encrypted before transmission. To encrypt, Alice takes each byte m

and computes ci = Mi7 mod 143. By doing the encryption, the plaintext message is

transformed into the ciphertext

97 39 40 8 24 73 56 104 101 24 8 32 101 8 24 101 115 101 73 115 99

104 105 80 7 16

which reads

a'(. .I8he.. e. .eselschiP..

where dots represent some non-symbolic ASCII characters. The ciphertext is then

sent to Bob and it is decrypted using the private key in the same manner as it was

encrypted.

An important note is that this method of encryption is by no means secure. This

example breaks several basic rules of information security. It is here just to illustrate

the mathematics used to encrypt a message using an RSA cipher.

1.3 Optimization

The following section covers a field of mathematics called optimization. By mod-

elling factoring as an optimization problem, an attempt can be made to intelligently

step towards a solution of a factoring problem. This is fundamentally different from

15

the current factoring methods that use guessing. Optimization is provided here as

background for experiments conducted in chapter 3. Several different types of opti-

mization are attempted in the experiments section and discussed in the conclusion

section. They are briefly covered here.

The purpose of optimization is to find an optimal solution to a given mathemat-

ical problem [19]. Problems are presented as a minimization or maximization of a

function called a cost function. In this section, only minimization of cost functions

will be considered because the same principles can be applied to maximization. This

cost function f takes inputs x from some set A and computes a value of the input.

Typically, A is a subset of]R'but is also frequently a subset of F. In addition to the

cost function, the problem may also have limitations or conditions such as g(x) ≥ 0.

These conditions also restrict A to a subset of valid inputs. The subset of allowable

inputs is known as the feasible solutions. A feasible solution in A that minimizes

the cost function is known as an optimal solution. To illustrate these definitions an

example is provided. For the minimization problem

mm. f(x) = (x2 - x)2, x E J1

s.t. x< 1

has a cost function f(x) = (x2 —x)2 and a condition on x such that x < 1. Figure 1.2

shows the graph of f(x) = (x2 - x)2. In Figure 1.2, it is shown that the cost

function f(x) has two minimums at 0 and 1. With the condition of x < 1, the

point (1, 0) is not a feasible solution and it follows that the only optimal solutions

is (0, 0). In this example the solution can be found using simple analysis. However,

16

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0
-02 0 0.2 0.4 0.6

X
0.8 12

Figure 1.2: A simple minimization of f(x) = (x2 - x)2 such that x < I.

most optimization problems deal with complicated or multi-solution systems, where

analysis may not be possible. Also, in many real world problems, such as dynamical

systems, finding the overall best solution may not be necessary. In these cases, where

the system's complexity is beyond direct analysis, numerical analysis is used and can

be an effective tool for solving most optimization problems.

For complex systems, optimization methods generally start by selecting an initial

point XO at random, with the limited knowledge of the system. This could be as

simple as choosing a random point within an interval the solution is excepted to fall

in. Once an initial point is chosen, the initial point is then moved to a point that

results in a better solution than the original guess. It is important to note that in

some complex systems, a bad movement could be made in hopes of getting to a more

advantageous path to an optimum solution. This seemingly bad movement can be

illustrated in 1.2. If the system were to start at 0.9, the only movement that would

17

allow the system to find the globally optimum point is to move away from the local

minimum near 1. It is easy to see that a seemingly bad movement to x <0.5 would

make it easy for the system to find the global minimum. The point exactly at x = 0.5

where both directions seem to look equally good, is called a local maximum.

Regardless of how the system moves, the general objective of an optimization

method is to start at some initial point x0 and calculate movements within the set

of feasible solutions to eventually find a satisfactory solution.

In general, an optimization problem is approached by first classifying its type.

This is done to exploit some property already discovered for that type of optimization

problem. Below is a list of some classes of optimization types that are relevant to

this thesis.

. Linear Programming. In linear programming, the optimization problem has

the form

mm. f(x) = cTx

s.t. Ax≤b,x≥0

where x is the current solution, c is a vector of cost coefficients, and A is a

matrix of constraint coefficients [3, 21]. Linear programming problems fre-

quently come up in business and economic fields. Algorithms for solving lin-

ear programming problems include the simplex, interior point, and projective

methods.

• Integer Programming. Integer programming is exactly what the name suggests;

optimization in the set of integers. While most methods are concerned with

linear problems such as branch-and-bound, there are few efficient methods for

18

nonlinear integer optimization problem and are usually made for a specific

problem [21].

• Quadratic Programming. As one would expect, quadratic programming is a

set of methods tailored towards optimization problems that have the quadratic

form of

mm. f(x) = xTQx + cTx

s.t. Ax<b

Ex=d.

Clearly, this is a generalization of a linear programming problem. If Q is zero,

the system becomes linear and can be solved with linear programming. If Q

is nonzero, different methods can be used depending on whether it is positive

definite, positive semi definite, or negative definite. Methods for solving this

class of optimization include interior point, active set, and conjugate gradient

methods[3, 9].

• Nonlinear Programming. The nonlinear programming class covers nonlinear

cost functions and constraints. One of the major challenges with nonlinear pro-

gramming is local minima[9]. In nonlinear programming, often the algorithms

are able to find a local minima but not the global minimum. Algorithms tend to

get trapped in a local minima before finding a global minimum. This presents a

challenge when applying these methods to cryptographic applications because

they require global solutions that must be transformed into integers.

These types of optimization are usually very difficult as they can have very little

predictability or present the method with many undesirable local minima [9].

:1.9

Methods for solving this class of optimization problem depend greatly on what

type of cost function and constrains are involved. Very few algorithms consider

finding the global optimum solution because of the difficulty in evaluating or

formulating the cost function. Most algorithms attempt to find a local minima

in an area of the function that can be approximated by a well-known function.

However, this approach means that only a decent solution will be found and not

a perfect solution. Unfortunately, cryptography requires that exact solutions

be found. Thee leaves few nonlinear optimization algorithm available for use

in this topic.

Other approaches include Newton, quasi-Newton and secant methods [9]. These

also suffer from the problem of not identifying global minimums.

• Simulated Annealing Simulated annealing is an optimization method that was

developed from the idea of forming crystals from heating and cooling metal.

The general idea of annealing is that when the metal is heated, the molecules

become excited, giving them a better chance to find a place in the lattice

of the metal. Analogous to how the properties of a metal can be altered by

continuously heating and cooling a metal, simulated annealing uses probability

to help find a solution. The simulated annealing algorithm utilizes a random

number to perturb a potentially stuck solution into new possible pathways

of finding a solution. While this can be applied to finding global minimum,

its random nature makes it difficult for the system to find the best solution

[18]. This method can be used together with other algorithms to escape poor

solutions.

20

One algorithm that is used in this thesis is the line search algorithm. In this al-

gorithm the function is approximated as a linear decent to a solution. The algorithm

operates as follows:

1. Compute the decent direction PK -

2. Find an ak E JR such that q(c) = f(xk + apk) is minimized within some

acceptable error.

3. Set Xk+1 = Xk + akPk.

4. Do this until IIVf(xk)II is sufficiently small.

This algorithm requires a initial guess x0 as a starting point for the optimization.

Every iteration of the algorithm increments k by one. One major drawback for this

algorithm is that it is inefficient compared to other more specific algorithms. Another

drawback is that it has no way of escaping local minima on its own.

One interesting optimization algorithm already present in this thesis is the Eu-

clidean algorithm. Although few seem to suggest it, the Euclidean algorithm exhibits

many similarities with an integer programming algorithm using a recursive cost func-

tion. It terminates when the GCD cost function is 1.

.1.4 Goals

The goal of this thesis is explore the use of optimization to break the RSA cipher by

factoring n into p and q. The optimization method of factoring will also be compared

to the state of the art. While many believe that optimization will not perform as

well as current methods, their is little literature to support this claim. This thesis

21

will explore this claim by providing several experiments with optimization factoring.

Several different approaches to the problem of factoring are given. Experiments in

real and integer number sets are covered. Following the experiments, the thesis will

conclude with possible reasons why optimization methods lack the means to factor

quickly.

Chapter 2

Current State-of-the-Art Factoring

As stated previously, the security of the RSA cryptosystem is heavily reliant on the

difficulty of factoring large numbers. While there are many other ways to attack the

cryptosystem, factoring is considered the heart of the problem. Currently, there it

is no publicly known factoring algorithm available that can factor in a reasonable

amount of time [17]. Developing an efficient method for factoring would also lead to

other consequences, such as a compromise of the Rabin's digital signature method

[16] and its variants [25].

Interestingly, it is unknown whether factorization is intractable. The trust of

security is held together by the system's resistance to a barge of failed factoring

methods. The strength of security for the RSA cryptosystem is a belief [12, 14] and

not necessarily a truth. Furthermore, if a proof of intractability for factorization is

developed, this would show that there is no method that can factor any arbitrary

number in a reasonable amount of time. However, this still does not rule out the

quick factorization of all numbers. For some numbers of a particular form, heuristic

methods can be used to factor, regardless of a proof for intractability. A simple

example of such an algorithm is developed in section 3.2.

The current record for integer factoring is a 663 bit biprime on May 9th, 2005.

This record was part of an RSA Factoring challenge and used an algorithm called

the general number field sieve (GNFS) [7].

Properly covering the GNFS is well beyond the scope of this thesis. Therefore,

22

23

this section will cover the near current state-of-the-art, the quadratic sieve (QS). The

quadratic sieve is the second fastest factoring algorithm and is similar to the GNFS

[14].

2.1 Quadratic Sieve

To understand the quadratic sieve (QS), it is necessary to understand the algorithms

it was built on. The start of the QS begins with Fermat. Fermat suggested that

instead of factoring directly as

m= ax b

n can be factored using a difference of squares [15, 2]

n = -

Clearly, n can be factored as

n = (x — y)(x + y).

Notice that (x - y) and (x + y) may not necessarily be prime. Furthermore, it

turns out that x and y will always exist with the exception of a couple trivial cases.

Consider x and y as

a + b

2

and

a—b
y=2.

24

As long as a or b are not divisible by 2, this holds true because

x2—y2 =

(a+b 2 (a— b 2

2) 2)
(a+b)2—(a—b)2

4
a2-i-2ab-i-b2 —a2+2ab—b2)2

4
4ab

4

a x b

= n.

If 21a or 21b then it would be possible for one to be even while the other is not,

making x and y a fraction. The solutions for x and y will then yield non-integer

results. Thus, we restrict a and b to odd integers. This is a reasonable restriction

because n can be easily checked to be even. If n is found to be even then divide out

two until it is not.

The problem is now finding x and y such that their squared difference is n. In

Fermat's algorithm, we start x at [\/] and find y until n = - y2. An important

note about this algorithm is that in general, it does not run faster than a trial by

division [2]. However, we can gain some interesting results when implementing the

algorithm. First, lets consider solving for y2 given an x2

This reduces the problem to deciding when y2 is a perfect square, given some x. If y2

is a perfect square then a solution has been found. If y2 is not, another x is chosen.

25

Suppose y2 = d. and that d' is the next trial of x, increasing x means

d = x2—n

d = (x+1)2—m

= x2+2x+1—n

= d+2x+1

so subsequent trails can be found simply by adding 2 to a temporary variable and

then adding that. To see how this works, the basic Fermat factoring method is given

below.

mt factor(int n)

mt sqrt_n, u;

sqrt..n = ceil(sqrt(n));

d = sqrt...n*sqrt...n - n;

for (u2*sqrt_n+1; d<n; u+2)

if (is-square(d)) return sqrt(d-l-n) - sqrt(d);

d+u;

}

return n;

}

26

As stated above, the problem is checking d to be a perfect square. To improve

performance of the function that checks d, the last digits can be used to quickly

determine if it is not a perfect square. In particular, the last digit of a square can

not be 2, 3, 7, or 8. Similarly, there are only 22 possible values for the last two digits.

Another speed increase can also be added. Consider varying both x and y such

that some value r = - - n is zero. The variables x and y are varied to

find a solution r = 0. Using the same idea of increasing x by one, two alternate

variables u = 2x + 1 and v = 2y + 1 are used to speed up the incrementing process.

The following pseudo-C code can be developed which eliminates the square finding

function.

mt factor(int n)

{

mt sqrt_n, u, v, r;

sqrt_n = ceil(sqrt(n));

u 2*sqrt_n + 1;

V 1;

r = sqrt_n*sqrtn -

while (r 0) -C

if (r > 0) -C

II use y to match x

for (; r > 0; v += 2)

27

r - v; //rr - (2y+l)

}

if (r < 0) -C

r+u; //rr+(2x+1)

U += 2;

}

}

return (u - v)/2; II = b

//return (u + v - 2)/2; II = a

}

In this algorithm, x is incremented like in the previous version, and y is in-

cremented to see if its square will match the square of x. The advantage of this

algorithm is that both division and multiplications have been removed, resulting in

faster loop cycles. Table 2.1 shows an example of the algorithm factoring 3131.

r
U

V

X

Y

—4 —3 —23 —11 —15 —35 —16 —3 —59 —62 0
113 115 117 119 121 123 125 127 129 131 133
7 23 33 39 45 51 55 59 65 69 66
56 57 58 59 60 61 62 63 64 65 66
3 11 16 19 22 25 27 29 32 34 35

Table 2.1: Fermat's factoring algorithm factoring 3131 with square testing eliminated

In the example shown in Table 2.1, y is increased to match the increasing a; in

hopes of finding a solution to x2—y2 = n. A solution is found when r = x2—y2—m = 0,

seen in the last column when a; = 66 and y = 35. This is because 66 - 35 = 31 and

3131 = 31 * 101.

28

While Fermat's factoring algorithm as a whole is slower than trial division, it lays

the ground work for the next algorithm: Dixon's algorithm [5]. Before getting into

Dixon's algorithm, it is important to take a look at an improvement on Fermat's

algorithm realized by Maurice Kraitchik [23]. Kraitchik's idea was to look for x and

y to satisfy

Y2 (mod n)

instead of a difference of squares [2]. If a solution to the congruence can be found and

n is odd and contains at least two different primes, there is a 50 percent chance that

it will yield a nontrivial factor of n. The congruence will give us a factor because

0 (mod n)

n x2 -

(x - V) (Y + x)

We expect the divisors of n to spread evenly among (x - y) (y + x). If the factors

are spread evenly, there is then a 50 percent chancç that

gcd(n,x —y)=a

will yield a nontrivial factor a of m. The trick then becomes finding the x and y

values. To ensure at least one side is a squares, a number r is selected and squared

modulo n such that

f(r) = r2 (mod n).

If f(r) is a perfect square then we got lucky. Unfortunately, this is usually not the

case, so picking these numbers at random is not feasible. However, if we look at the

factorization of a several f(r) 's, we see that it is possible to construct a congruence

29

of squares from two or more non-square f(r)'s. To construct the relation x2

y2 (mod n), Kraitchik made use of the following property concerning congruences.

Given the congruences

a b (mod n)

c d (mod n)

we know that from the previous chapter we can multiply them together to get

acbd (mod n)

So with a bunch of smaller non-square congruences, a much larger solution to the

congruence of squares can be found by combining the smaller ones together. This ba-

sic idea led to the first industrial strength factoring algorithms. Among them was one

called continued fraction (CFRAC) algorithm [4], which was arguably one of the first

truly large factoring algorithms. This improvement also led to Dixon's algorithm. It

was yet another stepping stone to even more powerful factoring algorithms.

Dixon built on this idea by using a more systematic approach than Kraitchik

originally proposed. Dixon used the properties of linear algebra to find a combination

of the factored exponents to satisfy that a product of f(r)'s be a perfect square [5].

The exponents work linearly because multiplying two congruency together results in

an addition of exponents. For example,

2 4 x 32 = 144 1 (mod 143)

and

32 X 52 = 225 82 (mod 143)

30

can be multiplied together to make

2 4 x 32+2 x 52 32400 - 82 - 82*1 (mod 143).

Using this property, non-square congruences can be put together to make a large

congruency of squares. With both sides being squares, their difference can be tested

with the gcd for factors of n as proposed by Kraitchik. The steps performed in

Dixon's algorithm are given below.

1. Generate a set of completely factored smaller congruences which can be used

to construct a larger solution to x2 = y2 (mod n).

(a) Choose a random integer ri and compute

f(r) = r (mod m).

(b) Attempt to find trivial factors for f(r) up to some divisor d. If it is prime

or has factors above d, choose another ri and try again.

(c) If f(r) factors easily, record the number of times each prime factors out

modulo 2. For example, if f(r) = 30870 = 21 x 32 x 51 x 73, record

1 1

2 0
Vi =

1 1

3 1

(mod 2).

(d) Loop at least d times to gather enough factors for construction.

31

2. Solve the equation

Vii V12 Vin

V21 V22 . . Vn

_Vn1 Vn2 ... V n

Cl

Cm

0

0

0

(mod 2)

where vi are the factorizations in 1.c and c is a solution to make the congruence

a square. This can be solved using Gaussian elimination. Although typically,

more sophisticated algorithms are used in practice.

3. The potential solution to x2 = y2 (mod n) is then given as

flf(rk)_flr (mod n)

where the products are taken over all k for which Ck = 1.

4. Check gcd for non-trivial factor of n.

5. If the algorithm fails to produce a factor, start over with a different set of r 's.

In step 1.c, the factored exponents are recorded modulo 2 because the only in-

teresting part is if all the exponents have the same parity. For example, if we factor

a number to be 22325625 = 36 X 54 X 72 then we know it is a square because

22325625 = (33 x 52 >< 7)2 = 47252. By doing this we can simplify the complexity of

solving the system of equations in step 2 by taking advantage of binary values and

the sparsity of the matrix. In step 2, a linear combination of the exponents from the

factored numbers is used to construct a large product of squares.

In this algorithm, most of the work is done factoring all the f(r) 's, followed by

the work required to solve the V matrix. Although, the matrix V will be very large,

32

it will be sparse and contain only binary entries. Recall that only binary values will

be present in the matrix because the computation is done modulo 2. Specialization

on current algorithms can be used to take advantage of these properties. Gaussian

elimination is commonly suggested for solving the V matrix for simplicity; however,

more efficient methods such as structured Gaussian elimination, the Wiedemann

algorithm, and conjugate gradient methods exist [5, 2].

Not surprisingly, this algorithm has a large overhead cost from all the factoring

needed to build up the V matrix and thus, is not suited for small m. In fact, for the

case where n is large but made up of both small and large primes, it is worth trying

simpler algorithms first. By using methods that are simpler, the smaller factors can

be quickly removed without the overhead. At this point, if a large n still remains and

is tested to be composite with a primality testing algorithm, then using an algorithm

such as Dixon's algorithm can be considered.

The quadratic sieve (QS) [15] is known to be the second fastest factoring algo-

rithm to date. It was invented by Carl Pomerance in 1981 by building on top of

Dixon's algorithm. By incorporating a sieve into Dixon's algorithm, the V matrix

can be constructed much faster than by selecting integers to factor at random. The

name of the quadratic sieve comes from the sieving process used to remove factors

that will not factor easily. The quadratic part of the name refers to the squaring

done while generating number to be factored.

There are many different variations on the QS [2, 15, 14], ranging from changes

in the sieving process, to changes in the function generator of the number to be

factored. The variation chosen for this discussion is one that sieves factors using

something similar to the sieve of Eratosthenes.

33

To begin with the QS, a list of primes needs to be found, known as the factor base.

To construct our factor base, some brief discussion on Legendre symbols is required.

During the late 18 t and early 19th centuries, mathematicians were concerned with

finding solutions to problem of quadratic residues. A quadratic residue is a integer

n that can be expressed as

x2 m (mod p).

The Legendre symbol [8] is then defined to be

if plm

if n is a quadratic residue modulo p

1. if n is a not quadratic residue modulo p

By considering the Legendre symbol, a list of d primes are found for which

quadratic residues are possible. With this list of primes, we solve the quadratic

residue associated with the prime. The Legendre symbol is considered first because

theorems associated with Legendre symbols can be used to determine if a prime is a

quadratic residue quicker than solving the quadratic residue itself [2]. The quadratic

residue

t2 n (mod pi)

will yield two values, t and —t. The factor base and the solution are stored for later

use in the sieving process. With the factor base prepared, we begin to generate the

list of numbers that could be potentially factorized. Similar to Dixon's algorithm,

numbers of the form

f (r) = -

34

are generated. Normally, r is started at k/1i.j and increased by one until d+ 1 factors

have been found [15, 2]. Starting r at k/j causes f(r) to be smaller and have a

better chance of being factored. A sieve is then used to find integers that can be

factored completely over the factor base.

There are many ways to approach this sieving process. One such method is

simply to factor each number and check its prime components. However, a better

approach is to make use of the ideas from the sieve of Eratosthenes. Beginning with

the first prime in the factor base, we locate the first number r in the factor set such

that r t (mod p1), where t is one of the solutions to the quadratic residue of pl.

The corresponding value f(r) will contain the prime factor p, because

r2 t2 n (mod pi)

so

pIr2— n=f(r)

and every p number after that will also divisible by pi. All of the number that are

pl. steps from the first, as well as all the matches for the alternative solution —t are

then divided by pi until no p, factors remain in that number. This same process is

done for each pi in the factor base. The resulting list will contain l's only where the

f (r) 's can be completely factored by the factor base. All of these numbers are then

completely factored and exponents recorded modulo 2. Alternatively, the number

of times the number was divided by pi can be recorded during the sieving process

to avoid doing the factoring work twice. Finally, the system is solved for a linear

combination of the factored number in the same manner as Dixon's algorithm.

A more concise summary of the algorithm is given below.

35

1. Find a factor base of primes (pi) which satisfy

t2 n (mod pi)

or in other words, primes whose Legendre symbol equals 1 or

(n)P

2. Solve the congruences

t2 n (mod pi)

for each pi in the factor base found in the previous step.

3. Using a sieve, find r and f(r) = - n pairs such that f(,r) can be completely

factored by the factor base. If the factor base uses d primes, then d +1 factored

f (r) 's are needed for to solve the system.

4. Solve the system

Vc=O

using the factored f(r)'s found from the sieving process.

5. Use the solution to V to construct a large product yielding a perfect square.

6. Check the congruence of squares with the gcd for a factor in m.

7. If the process fails to find a factor, try a different f(r) generator or try a

different range for r.

36

2.1.1 An Example of the Quadratic Sieve

An example is provided to get a better understanding of the process. Suppose the

number n = 1817 is to be factored using an f(r) = r2 - n, where r starts at

= 42.

1. To find a factor base of primes, the Legendre symbol of each prime starting

from 2 is checked' and the primes

F= {2,7,13}

are found to have a Legendre symbol of 1.

2. To help with the sieving in the next step, the quadratic residues for the factor

base are solved. The solutions for the factor base are shown in table 2.2.

P
2
7
13

X —x
11
25
67

Table 2.2: Factor base and solutions for an example using the quadratic sieve

3. With 3 factors in the factor base, 4 solutions will be needed. The (r, f(r)) pairs

(43,32), (45, 208), (51, 784), (123) 13312) are found from sieving. Each can be

factored with the factor base and are shown in table 2.3.

4. The V matrix is then constructed from the system of quadratic congruences

'Usually this list of primes starts at -1 to realize f(r) 's that are negative.

37

r f(r)
43 2 5 7° 130

45 2 4 7° 13'
51 2 4 72 130

123 2'° 7° 13'

Table 2.3: System of quadratic residues needed to construct a larger congruence of
squares

and then reduced modulo 2.

v=

500

401

420

10 0 1_

100

001

000

_0 0

(mod 2)

By inspection, row three gives a solution right away because

f(51) = (5 1)2 - 1817 = 784 = 282 512 (mod 1817)

is already a congruence of squares.

5. Checking the gcd of this result gives

gcd(51+28,1817)=79

and

gcd(51— 28, 1817) = 23

so there is no need to try something else.

Chapter 3

Optimization Factoring

In contrast to current state-of-the-art methods, this thesis approaches the factoring

problem from the perspective of optimization. Instead of attempting to make an

intelligent guess at a solution as seen in the quadratic sieve, optimization factoring

uses directed movement towards a goal.

Two types of factoring optimization were considered. The first type of factoring

was done in the reals. Releasing the restriction of keeping p and q only in the integers

allows the use of standard optimization techniques. The second type of factoring is

done within the integers but considers the binary representation in matrix form and

attempts to factor using a bit moving game.

In all the cases covered, it is assumed that n is a biprime. If n was not a biprime, a

modern primality test can be used to quickly determine the primality of the factors.

If any of the factors fail the primality test, the algorithm can be recursed on the

composite factor until the prime factors are found.

3.1 Optimization Factoring in the Reals

Finding the factors of a biprime using optimization in the reals presents two major

problems. The first problem is the definition of the cost function that allows the

minimization to get closer to a solution each iteration. For example, a cost function

could be E = - xyl, where x and y are the potential solutions. As this thesis

38

39

will discuss, this cost function alone is insufficient to locate factors of n. The second

problem is finding a solution that is in or near the integers. This process will be

called digitization because it is responsible for bringing the solution back into an

integer or digit. In this approach, the digitization of the solution is done by using

either conditional optimization or building it into the cost function.

To test the functions quickly, MATLAB was used to compute the convergence of

the optimization. The functions fminunc and fmincon were used to compute uncon-

ditional and conditional optimization problems, respectfully. The specific method of

optimization was chosen by MATLAB as a line search unless otherwise stated.

3.1.1 Unconstrained Digitizer Addition

The first group of systems that were considered primarily use addition to obtain the

contour. They all have the form

f(x, y) = s1e(x, y) + s2d(x, y) (3.1)

where x and y are the attempted factors of the optimization, e(x, y) is an error

function, d(x, y) is a digitization function, and s and s2 are scaling factors for the

error and digitization functions, respectively. Several different types of e(x, y) and

d(x, y) were chosen for testing.

The first function tested was

f(x, y) = si(n - wy)2 + 82(2 - cos(2irx) - cos(2iry)). (3.2)

In this function, the error portion e(x, y) = (n - wy)2 calculates the error directly

and sinusoids as d(x, y) = 2 - cos(2irx) - cos(2iry) persuade x and y into integer

40

values. To help visualize how the sinusoids are working, f(x) = 1 - cos(2irx) is

graphed in Figure 3.1. The cost function in equation 3.2 was primarily chosen for

*1

0.8

0.6

0.4

0.2

/
0 V

0.5

A

1.5
V
2

A

2.5
x

V
3

A

3.5
V
4 4.5

Figure 3.1: A sinusoid as a digitizer

5

its simplicity. The function only has two variables. Thus, it is easy to graph and

visualize. Figure 3.2 shows the function graphed. It is easy to see that the slope

is contributed by the error function portion e(x, y) = (n - xy)2. The digitization

function contributes by adding bumps to the contour. In Figure 3.2, the scaling

values of 82 is increased to show the contribution of the digitization function. The

bottom of the trench or trough made by e(x, y) on the graph represents solutions in

the reals. By adding d(x, y) the function is limited to only the (p, q) and (q, p). Also,

notice in Figure 3.2 that there is some symmetry in the graph and that the solutions

to the system are similar distances from the edge of the graph. This symmetry

comes from the commutativity property of multiplication. Looking at the graph,

this mirror means that everything on one side of the x y line is the same as on

41

y

10

x

Figure 3.2: Equation 3.2 is graphed

the other side. The number of solutions is guaranteed by the uniqueness of prime

factorization and the assumption that n is a biprime.

In the computations, the scaling variables s1 and 82 were set to 1 and 2, respect-

fully. The scaling variables were arbitrarily chosen as a starting point for designing

the system. The starting point for the optimization is picked at random between

zero and slightly higher than the largest expected prime. The initial points were

selected slightly higher than the highest expected prime to evaluate the robustness

of the system and to see how the optimization would behave around the local min-

ima found near the highest prime. For the biprirne 481, the range of initial vectors

is [0, 40] as the expected factors are 13 and 37. Figure 3.3 shows the results of the

system as a histogram of 1000 trials attempting to factor the biprirne 481. Figure 3.3

42

140

120

100

80

0
0

60

40

20

0
0 20 40 60

Factor
80 100 120

Figure 3.3: Results of direct optimization equation 3.2 factoring 481

shows that 13 is found 130 times and 37 is found 30 times, giving an approximate

16% success rate. This result is promising for a first attempt, but insufficient for

practical use. While this system shows success 16% of the time, this is just good

luck. However, it is clear that the system is trying to find a correct answer as there

is a collection of solutions around 13 and 37. A second experiment was run on the

larger biprime of 102313 which is the product of 101. and 1013. In contrast to the

previous experiment, the factors were only found approximately 0.04% of the time.

Finally, to get an idea how this approach works for a range of biprimes, a list

of biprimes was factored for success rate and timing. Table 3.1 shows the optimiza-

tion attempting to factor increasingly larger biprimes. The timing was recorded by

MATLAB's profiling functionality. It reported the amount of time the CPU spent

in the main program. The success rate was computed from the number of times the

optimization found a solution near a correct biprime. A correct solution was defined

43

35

30

25

20
C

0
C.)

15

10

5

0
40 60 80 100 120 140 160 180 200 220 240

Factor

Figure 3.4: Results of the direct optimization equation 3.2 factoring 102313

.Biprime Factors Success(%) Time(s)
35 5 x 7 3 59.801
481 13 x 37 16 76.341
1243 11 x 113 0.06 81.580
11413 101 x 113 0.05 88.958
102313 101 x 1013 0.04 116.191
1571099 157 x 10007 0.01 254.776

Table 3.1: Table of direct optimization success and timing results

as the correct factor with the faction part truncated. Table 3.1 shows an increase in

time of the computations as the size of the number grows. The success rate is also

dropping off as the biprime increases in size.

To investigate why the optimization was failing, a more detailed look of the results

were generated. Figure 3.5 shows a more detailed histogram of the results for the

biprime 481. In Figure 3.5, it can be observed that some of the solutions are failing

to be persuaded into integers. Solutions between 5 and 20 frequently do not have

44

40

35

30

25

C

20
0

0 30 40 50
Factor

60 70
Iii II ii

80 90

Figure 3.5: Detailed result of the direct optimization equation 3.2 factoring 481

integer solutions. To correct this, experiments with the scaling variables 81 and 32

were conducted.

Adjusting S2 modifies the systems tendency to find integer values and produces

the same overall results. In Figure 3.6, s2 is increased from 2 to 10. These values

for s and 82 are chosen arbitrarily to see how the system would react. When 82 is

modified, no clear factor is identified. It is clear that more sophisticated methods for

scaling the optimization would be needed. These are covered in the next subsection

with constrained optimization. Before that is done, a comparison between the results

of 481 and 102313 show that these two numbers have similar distributions. These

two biprimes are expected to have different solutions at different locations. More

specifically, 481 is expected to have more solutions around 13 and 37, and 102313

is expect to have solutions around 101 and 1013. Looking at both graphs shows a

decrease in the optimization's tendency to find larger numbers in general. Most of

45

90

80

70

60

- 50
C

0

0 40

30

20

10

0-
0 10 20 30 40

Factor
50 60 70 80

Figure 3.6: Results of the direct optimization equation 3.2 factoring 481 and adjusted
scaling variables

the solutions tend to be within the lower valued sections of the figures. Recall that

when constructing the cost function, the error function e(x, y) was responsible for

solving for the factors of n. This suggests a failure of the error function portion

c(x, y).

With the results of the direct approach failing to identify factors, a different error

function was considered. The next cost function that was tried was

f(x, y) = s1(n - x2 + y2)2 + S2 (2 - cos(2irx) - cos(2iry)). (3.3)

Instead of solving for p and q directly, like in equation 3.2, Fermat's factoring method

is incorporated into the optimization. Recall that any composite n not divisible by 2

can be written as a difference as squares n = - y2. The difference of squares can

then be factored n = (x + y)(x - y). If the number 481 is to be factored, then the

answers return from the optimization would be 3713 = 25 and 3713 = 12. Using

46

this idea, equation 3.3 is constructed and run in the same experiment as equation 3.2.

The results of the experiment are given in Figure 3.7. As Figure 3.7 shows, there is

100

90

80

70

60

C

5 50
0

40

30

20

10

0
20 30 40 50

Factor
60 70 80

Figure 3.7: Results of the Fermat optimization equation 3.3 factoring 481

not much evidence that the number 481 is being factored properly. Figure 3.7 also

bears some similarity with Figure 3.3. This suggests that the change in cost function

has not given the system any advantage in finding factors of n.

Finally, in an effort to change both the error function and digitization function,

the problem is transformed into a binary representation. The last equation discussed

using the addition form is

f(x,y) = [si(n—
i=1 j=1

i—i) + S2(

i=1

—x)2+
j=1

(y.; -)2)]2. (3.4)

In equation 3.4, the factors are found by considering the binary representation of x

as

x=
L

i=1

i—i (3.5)

47

where i is the jth bit, L is the total number of expected bits, and xi is an entry in

vector x that is a potential solution. The vector y is considers in the same manner

as x. Also, in equation 3.4 the scalars s and s2 are used as scaling variables as in

the first two experiments.

It is worth noting that because the factors are unknown, the length of the vector

L must be large enough to hold the largest prime in the biprime. This means that

[1`22-i <L < 11092 n] because we expect one factor to be less than or equal to Vrn-

and the other greater than or equal to \/i. It is also unknown which factor will end

up in which variable. Thus, both x and y are of size L. For simplicity reasons, some

cheating is done with regards to choosing the size of L. Instead of calculating L from

n alone, the maximum of the two chosen prime factors is used for the bit length L.

The size of L is then simply the length of the largest binary represent prime factor.

By considering equation 3.5, an integer solution can be found if each bit is either

zero or one. This can be achieved by considering a variable that is "pulled" into zero

or one. In the case of equation 3.4, the function

f(x)= (x2_x)2

is used to cause the bits to tend towards zero or one. The graph of f(x) above is

shown in Figure 3.8 As Figure 3.8 shows, the function has two global minimum at

o and 1. The function makes for a good digitizer of binary numbers because the

function is zero at both global minima. The function also tends towards either of

these minima except at precisely 1. Considering f (x) for all bits causes the entire

system to tend towards an integer solutions. Summing up all digitizers yields the

48

0.07

0.05

0.05

0.04

0.03

0.02

0.01

0
-02 0 0.2 0.4 0.6

X
0.8

Figure 3.8: Graph of the function f(x) = (x2 -

first half of equation 3.4

i=1

12

and is nonzero for all xi 0 0 or xi 0 1.

The error of the factorization is similar to equation 3.2, except that the binary

represented vector x and y are converted to its corresponding value. Considering

the summation of 3.5 makes it easy to see that

e(x, y) = n - xy = n -

i=1 j=1

For the optimization experiments on equation 3.4, the scaling variables 81 and

2 were both set to 1. To compute the results, 1000 trials were done on the biprime

481 and are shown in Figure 3.9. The initial vector was chosen at random within

the range [0, 1] for each bit. This system also fails to factor 481. However, the

distribution of the chosen solutions has changed.

49

160

140

120

100

C

80
0

60

40

20

10 20 30 40 50 60 70
Factor

Figure 3.9: Results of the bit optimization equation 3.4 factoring 481

3.1.2 Constrained Digitizer Addition

By considering the integer persuasion function as a constraint and not as part of the

cost function, the problem can be rewritten as a constrained optimization problem.

In the previous section, scaling variables were used to amplify different potions of the

unconstrained cost function. In constrained optimization, those scaling variables are

built into the optimization itself. This is accomplished as a Lagrangian multiplier

within KKT conditions{1O].

In the context of the previous experiments, the digitizer portion d(x, y) of equa-

tion 3.1 is treated as a set of constraints instead of part of the cost function. This

section goes over all the optimizations done in section 3.1.1 as constrained optimiza-

tions. Each experiment is conducted in the same manner as the unconstrained case.

Note that no scaling factors s1 and 82 were necessary because they are included as

part of the KKT conditions used in constrained optimization.

50

The direct optimization given in equation 3.2 is transform into

min. f(x,y)= (n—xy)2

s.t. d(x) = 1 - cos(2irx) (3.6)

d(y) = 1 - cos(2iry).

Figure 3.10 shows the results of the constrained direct optimization. By using con-

200

180

160

140

120

C

100
C)

80

60

40

20

LI.

50 100 150
Factor

200 250 300

Figure 3.10: Results of the constrained direct optimization equations 3.6 factoring
481

straints, Figure 3.10 shows the results are still similar to the methods use in the

unconstrained optimization. However, a couple differences are observed. First, the

optimization chose a couple very large valued solutions. Second, the values were

strictly in the integers. Looking at a more detailed view of the results show that the

solutions are integers.

Figure 3.11 shows a detailed view of the experiment and gives a better view of the

distribution as all the large solutions that were greater than 40 have been removed

51

30 -

25 -

20 -

0
U

15 -

10

10 15 20 25 30 35 40
Factor

Figure 3.11: Detailed results of the constrained direct optimization equations 3.6
factoring 481

from view. Figure 3.11 shows that all the solutions were integers. Figure 3.11 also

shows that the factors 13 and 37 and not identified by the optimization. While the

solutions are successfully identifying numbers in the integers, the factors are not.

In an attempt to take advantage of the success in the constraints, the constraints

and cost function are switched. The optimization would then be

mm. f(x, y) = 2 - cos(2irx) - cos(2iry)

s.t. d(x, y) = n - xy.

In this optimization the square is removed in the expression (n - xy)2 because the

constraint can be expressed as an equality constraint. Figure 3.12 shows the results of

the constrained direct optimization with the cost function and constrains switched.

The results shown in Figure 3.12 look similar to other experiments. Figure 3.12

shows 13 being found approximately 110 times and and 37 found approximately 25

times, giving an approximate 14% success rate. These results are similar to the

(3.7)

52

Figure 3.12: Results of the constrained direct optimization equations 3.7 factoring
481

results given in the first experiment shown in Figure 3.3.

The constrained Fermat optimization is done next, equation 3.3 is transformed

into

mm. f(x,y)= (n—x2+y2)2

s.t. d(x) = 1 - cos(2irx) (3.8)

d(y) = 1 - cos(2iry).

Running the experiment on this system yielded the results shown in Figure 3.13. By

Figure 3.13, it is clear that no advantage is gained by using this approach.

Lastly, the bit represented constrained optimization is transformed from equa-

tion 3.4 as

mm. f(x, y) = n - >I x2' E j=, 2j-1

s.t. d(x) (X? - x)2 = 0

d(y)= (y—y)2=0.

(3.9)

53

50

45

40

35

30

25

20

15

10

5 10 15 20 25
Factor

30 35 40

Figure 3.13: Results of the constrained Fermat optimization equations 3.8 factoring
481

Figure 3.14 shows a histogram of the factors chosen during the optimization. Again,

Figure 3.14 shows factors are not being identified any better.

3.1.3 Integer Persuasion Scaling

A second form for factoring in the reals was considered. In this form, the digitizer

from equation 3.1 is divided by the entire system to create amplification of the global

minima. The idea is to create a more prominent global minima for the optimization

to find. Consider the scaling variable 82 from equation 3.1. By putting emphasis

on the digitizer only at the solution point, the system can move freely towards a

solution. Thus, can consider the form

f(x, y) = sie(x, y) + 82 d(x, y)
e(x,y)+d(x,y)+f

(3.10)

54

140

120

100

80

0
(.)

60

40

20

0
—10 0 10 20 30 40 50 60 70

Factor

Figure 3.14: Results of the constrained bit optimization equations 3.9 factoring 481

and a specific cost function for the optimization using the same approach as equa-

tion 3.2 can be written as

f(x,y) = si(n - wy)2 + S2 2 - cos(2irx) + cos(2iry) (3.11)
(- wy)2 + 2— cos(2x) +cos(2y) + €

In Figure 3.15, equation 3.11 is graphed for n = 143 and the interesting part of

the trench is shown. It should also be noted that s1 and 82 are set to 1 and 100

respectively. In this graph, 82 is set to [00 to indicate the effects of the variable

scaling. In Figure 3.15, one of the solutions is marked. The solution is clearly

visible on the graph by a break in the hill within the trench. Figure 3.16 shows

an experiment run on the biprime 481 with both scaling variables set to 1 using

1000 trials. In Figure 3.16, the results look very similar to the direct method used in

equation 3.2. This is likely from the created local minima by the scaling contribution

added to the equation. These local minima can be seen in Figure 3.15 on either sides

of the hill created within the trench.

55

qui 1.l SIN l•ililill11

10 11

\ \
12 13

Figure 3.15: Effects of varying the scaling variable of the digitizer function

3.1.4 Multiplication Logic

Taking a closer look at the multiplication of p and q brings about the multiplication

algorithm. It is a similar to the approach done in [3]. Multiplication in binary is done

with shifts and adds. Table 3.2 shows binary multiplication for two 3-bit numbers.

In Table 3.2, ni is the i14 bit of n, xi and yj are the i1h bits of the primes p and q

respectfully, and ci are binary carries from previous additions. The carry bits, c1,

C4

C5 C3 C2 C1

X3 x2 x1
x3 x2 x1

X3 X2 X1

Y1

Y2

Y3
fl6 n5 n4 n3 fl2 fli

Table 3.2: Table of binary multiplication for 3-bit multiplier

56

180

160

140

120

- 100

80

60

40

20

0
0 20 40 60

Factor
80 100 120

Figure 3.16: Results of equation 3.11 factoring 481

C2, c3 and c5 are the carry bits from the previous row and c4 is a carry from the two

rows previous it. This configuration allows the equations for ni to be written as a

57

sum of all bits in the jth row modulo 2. The equations are

=

= X2y1EX1y2,

n3 = x3y1Ex2y2Eix1y3c1,

fl4 = X27J3

n5 =

= C5,

x2y1 + x1y2
ci = L mod 2, 2

[Ci + XSYl + X2Y2 + XiYsj
2

C2

C3 Lc2+x32+x23 1 mod 2,
- 2

ci + x3y1 + x2y2 + x1y3
C4 4 J mod 2,
C5 - L C3 + C4 + X3y3 mod 2.

- 2

mod 2,

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

In these equation for n, the exclusive OR symbol ED is used to denote addition modulo

2. Recall that two congruences a b (mod m) and c d (mod m) can be added

together to make a + c b + d (mod 2).

To eliminate the carry variables and avoid tedious substitutions, some logic design

is used to create a system of equations with 6 variables and 6 unknowns. The system

of equations needs to be differentiable, if optimization is to be used, so the exclusive

OR is transformed into an equivalent arithmetic equation. For example, f = a ED b

can be written f = a+b-2ab, if a, b E 0, 1. It turns out that an arithmetic expression

can be quickly found from the sum-of-products (SOP) truth table[22].

58

Consider a general arithmetic expression of the form

i=1

where m is the number of inputs, ai is an arithmetic coefficient, x21s the jth input

variable, and jj is the j1h bit of i. For example, a function with two inputs, the

arithmetic expression is

f = a1 + a2x1 + a3x2 + a4x1x2.

Using the general arithmetic expression above, the function can be expressed in

matrix form as

f=JCP

where k is a vector of input variables and P is a vector of coefficients. Note that

P can also be a matrix to represent multiple functions. To represent 6 equations, P

will be a matrix of size 26 x 6. In the function with two inputs .k is

.k = [1 X2 X1 X1X2].

In general, X is
n

X=®[lxj].
i1

To construct the P matrix, an arithmetic transform is used to transform a SOP truth

table into coefficients. The transformation is

M 10
(3.23)

where P2 is the transformation for a single variable, and F is the SOP truth table

for the function.

59

The truth table for the bit multiplication was mapped out using equations con-

structed from table 3.2 and then transformed using equation 3.23. The tables as

discussed above were of size 26 x 6 so they are shown in the appendix. The actual

equations can also be found in the appendix. With the equations computed as

f6

f5

f4

f3

f2

fl

an optimization problem is constructed

mm. f(x,y)= > =1 (ni_fi) 2

s.t. d(x) = (x - x) 2

d(y) = (y? -

(3.24)

The optimization is tested against factoring 15. The experiment is ran 1000 times

with initial conditions chosen randomly between [0, 1.4]. The results are shown in

figure 3.17 as a histogram. Figure 3.17 shows no promise of factoring because neither

3 nor 5 is found with any usable probability.

3.2 Factoring Bit Game

A very different but related approach is to construct a bit factoring game. In this

game, the game board consists of rows and columns representing a term of 2i2j. The

60

0 2 3 4
Factor

5 S 7 8

Figure 3.17: Results of using bit multiplication logic via equation 3.24 factoring 481

- 2 2' 22 21 2 4 2
20 1 0 0 0 0 1
2' 0 0 0 0 0 0
22 0 0 0 1 0 1
2 3 0 0 1 0 0 0
2 4 0 0 0 0 1 0
2 0 0 0 0 0 0

Table 3.3: A sample bit-board configuration for 481

entire board is summed up to represent the number in question. Table 3.2 shows an

example of a bit-board for the number 481.

An entry of 1 in the matrix represents the existence of that term. The number

represented can be written as

n=
L

i=1

where bij is the entry in the i'' row and jth column, and L is sufficiently large to

61

cover all the bits. In the case of Table 3.2, the number 481 is represented because

2020+2520+2322+2223+2522+2424=481

Bits can be moved using certain rules. These rules ensure that the value of the

number n is fixed. The game rules are:

1. Bits can be moved up or down along a diagonal, starting at the top right and

ending at the bottom left. Mathematically, this means

2'+'2j-1 =

and visually this means

0 1

0 0

0 0

1 0

2. Bits can be moved left or right by scaling by 2. Mathematically, this means

= 2 x 2'-'2j = x 2i+12i

and visually, if values larger than 1 are allowed in the system, this means

2 0

0 0

0 1

0 0

If the system is to be restricted to values of only 1, the first rule from above

can be used to split the bit in either direction. This looks like

0 0 0

0 0 1

0 0 0

0 0 0

0 1 0

0 0

0 0 1

0 1 0

0 0 0

62

With the rules defined, the conditions for factoring can be examined. The factors

of 481 are 13 and 37. In base 2, 481 = 13 x 37 = (001101)2 x (100101)2. From binary

multiplication, we know that

(001101)2 x (100101)2 = 2(100101)2 + 22(100101)2 + 2°(100101)2

= (22 5 +2 3 2 2 +2 3 20)+(2225+ 2 2 2 2 +2 2 20)+(2°2 +202 2 +2020)

Putting this result on the bit-board yields

101001

000000

101001

101001

000000

000000

Notice in the above bit-board that the configuration of the bits shows the factors

of 481. Along the top row is the factor of 37 and along the leftmost column is the

factor of 13. These factors can be seen by considering the binary number represented

with the least significant bit in the top left corner of the board. This results brings

an interesting game that can be used to factor biprimes. By using the rules discussed

above, if bits can be moved into a similar form as above, the factors of the biprime

can be found. In the factored bit-board, notice that all the rows are 37 or 0. This

configuration exists for every biprime.

Approaching this problem is not an easy task. The complexity of the moves

becomes very high because of rule 2. Even without rule 2, the complexity is very

high. To help cope with the high complexity, a simplification is imposed.

63

3.2.1 Bit-Board Simplification

The high complexity of the bit-board game generates a need to simplify the problem.

The rules of the game require that each row represent a factor or be zero because

n is a biprime. However, the extra details of which bits are moved can be hidden

by considering the bit-board as simply a vector of term values. For example, the

bit-board for 481 can be rewritten as

101001

000000

101001

101001

000000

0 0 00 0 0

37

0

37

37

0

0

The game then becomes: balance the existing number such that each entry is

either a factor of n or 0 and nothing else in between. This simplifies the game

greatly as the individual bit movements are hidden by the distribution of the values.

Writing a program to handle this new version of the game also becomes much simpler.

Individual bit movements no longer need to be tracked or considered.

Rules for this new game are simplified to:

1. Any value can be move down a row by multiplying by a factor of 2. Below the

movement is shown visually.

0

2

4

0

64

2. Any multiple of 2 can be moved up one row after being divided by 2. Again,

a visualization of the movement is given below.

2

0

0

1

The game can start in any random configuration. Depending on the strategy

of the solution, many configurations can be used as a starting point. For the first

strategy, it is assumed that the smaller of the two factors of n will fall in the columns

of the board. With this assumption, the number of rows can be limited to L =

After choosing the number of rows, the rows are filled such that each row

only differs by I. For example, the starting point of 481 would be

33

32

32

32

A balance for the vector can be found with the following formulae.

t = [2L n

r = n mod2L_1

(3.25)

(3.26)

All rows have the value of t except those that have a 1 in the binary representation

for n. For 481, we have

L = [1092 481] =4

481 I
t = _1j 32 124

r = 481 (mod 2 - 1) = 1 = (0001)2

65

32

32
+

32

32

1

0

0

0

33

32

32

32

Now that the vector is balanced, the next step is to choose a row to clear. When

clearing a row, the value in the row is distributed among the other rows. From

previous discussions it is easy to see the second row from the top gives the results

we require to factor. In this case factoring is a single step away. Unfortunately, this

is equivalent to guessing each bit of the smallest factor of n and therefore inefficient.

This method was explored to observe how the other terms changed as bits were

chosen to clear.

To see how viable an optimization using bit manipulations would be, an exper-

iment was constructed. In this experiment, the cost function f(x) = n (mod x) is

used while each bit in x is changed. The optimization then follows the path of bit

manipulations that decreases the cost function. The program iterates through all

potential solutions of x and tests to see if there exists a decreasing cost path to the

real solution. Each number in the solution space of 2 < x < 2L, where L is a suffi-

ciently large bit length of a potential solution x, is tested. If there exists a path from

a potential solution x to the real solution p, it is marked as nonisolated. The ratio

of solution space to nonisolated solutions is calculated for all odd 20 bit biprimes

and shown in figure 3.18. Figure 3.18 shows that most biprimes have initial points

that can not reach the solution; however, there is a high probability that there does

exist a path, depending on the biprime. It is clear that the cost function f(x) = n

66

0.9

0.8

0.7

o 0.6

g 0.5

0

0.4

2000 4000 6000 8000
Odd Biprime Number

10000 12000 14000

Figure 3.18: Graph of potential solution ratio for odd 20 bit biprimes

(mod x) is insufficient to find a path.

An interesting result of this approach is the quick factorization of special cases

that have particular forms. Which form to take advantage of is dependent on the type

of moves made. For example, biprimes constructed with a prime in the Mersenne-like

form p = 2 - 1 factor trivially because of the calculations done in the balancing

stage. If the remainder r is zero, a factor has already been found.

Another interesting result is with the original bit-board. If one of the primes has

the form p = 2 + 1, the solution can be found by only moving bits (rule 1).

These methods are impractical because knowing which method to use depends

on knowing the prime factors.

67

3.3 Branch and Bound Multiplication Logic

Revisiting the multiplication logic covered in section 3.1.4, a closer look at the equa-

tions created by Table 3.2 promoted a method inspired by branch and bound integer

optimization. Looking at Table 3.2, it is clear that there is a lot of terms that dis-

appear when a variable is zero. It is easy to see that a zero in a yj variable would

cause an entire row to disappear. In this section, a method is constructed that makes

systematic assumptions based on the logic equations to find a solution. The appeal

of this method is the simplification of the equations as more assumptions are intro-

duced. If a contradiction in the, equations is found, the last assumption is changed

and a different assumption is tried.

To see in more detail how this works, some more logic design is used. It turns

out that frequently, Reed-Muller (RM) expressions tend to have a smaller number

of terms compared to other types of logical expression. Equations 3.22 also show

that the addition logic uses the exclusive OR operation which is a basis for RM

expressions. A Reed-Muller expression has the form

2"-1

f=r (X1 ... Xm'
7Th /

i=1

where ri is a binary coefficient, xi is the i1h input variable, and ij is the j1h bit of i.

For a logic function with two inputs, the Reed-Muller equation is then

f = rl r2x1 r3x2 r4x1x2.

Similarly to multiplication logic equations solved in section 3.1.4, this form allows

the function to be written in matrix form

f=XR

68

where) is a vector of input variables same as in section 3.1.4 and R is a vector

of binary coefficients. Again, R can be a matrix for multi-output systems. The

R matrix is calculated in the same manner as the P matrix in section 3.1.4. The

transformation is

R=[®R2]F,R2=
10

11

where R2 is the transformation for a single variable, and F is the sum-of-products

truth table for the function. The resulting matrix can also be computed modulo 2

because x ED x = 0.

Solving for the R matrix for a 2-bit multiplier gives

R= [®R2]F

100000000o0000oo - 0000
1100000000000000 0000
1010000000000000 0000
1111000000000000 0000
1000100000000000 0000
1100110000000000 1000
1010101000000000 0100
1111111100000000 1100
1000000010000000 0000
1100000011000000 0100
1010000010100000 0010
1111000011110000 0110
1000100010001000 0000
1100110011001100 1100
1010101010101010 0110
_1111111111111111... _1001_

Reading off the R matrix, the equations are then

fl

f2

f3

f4

mod 2=

= x1y1,

= x2y1 x1y2,

= X1Y2EBX1YlX2y2,

= x1y1x2y2.

0000 -
00 00
0000
0000
0000
1000
0100
0000
0000
0100
0010
0000
0000
0000
0000
001 1_

Notice that the assumption of Yi = 0 changes all ones to zeroes in 8 rows. Also, an

assumption of Yi = 0 moves a one up the matrix into a simpler term. The algorithm

69

n/2 1 2 3 4 5 6 7 8
ni 1 1 1 1 1 1 1 1
'2 0 2 2 2 2 2 2 2
n3 2 4 4 4 4 4 4
n4 1 8 10 10 10 10 10
n5 9 24 26 26 26 26
fl6 3 37 76 78 78 78
n7 41 155 286 288 288
fl8 19 187 659 1130 1132
n9 139 841 2803 4658
nio 71 745 3847 12095
nil 583 3829 16959
12 303 3123 17645

fl,3 2079 16007
991 12527

8517
fl16 4055

Total 1 6 27 138 671 3538 18211 94004
Eqns. 2 4 6 8 10 12 14 16
Terms 4 16 64 256 1024 4096 16384 65536
Ratio 0.13 0.09 0.07 0.07 0.07 0.07 0.08 0.09

Table 3.4: Table of term totals for RM matrix representation of multiplication logic

manipulates the matrix in this way until all variables xi and Yj are solved for and no

contradiction can be found. All assumptions are recorded on a stack so that when a

contradiction is found, the system can pop the last assumption used to simplify the

equations and try the negative of the assumption. This is essentially a branch and

bound optimization approach.

The major drawback to this approach is the memory used to store the matrix to

be solved. An experiment was conducted to compute the number of terms used in

a RM representation of the multiplication logic. Table 3.4 shows a computation for

the number of terms used in the RM matrix for multipliers up to 8 bits. Table 3.4

70

shows that the number of terms used for multiplication of numbers under 8 bits is

roughly 8% of the matrix size of n x 2. The slightly increasing trend of this ratio

over increasing n rules out storing the matrix as a list of bits. Unless a more compact

way for representing the matrix can be found, this method is unusable for large n.

Fortunately, the matrix seems to have a pattern, making it a likely candidate for

compression. Figure 3.19 shows a visualization of the RM matrix for multiplication

up to 4 bits. In Figure 3.19, a black dot represents a 1 in the RM matrix. A pattern

1LII

2

3

4

 a

•• • I r.

•r •,. uj,. 'r an

Figure 3.19: RM matrix visualization of 1, 2, 3, and 4 bit multiplications

can be seen in the distribution of the is. Within the matrices themselves, there is

a repeated pattern that occurs at the beginning of matrix, starting from the left.

Also, as n increases, the top of the matrix represented in Figure 3.19 shows there

are no terms after a certain point for lower equations. This can also be seen in the

numbers given in Table 3.4. As n increases, the terms for the lower significant bits

stop producing terms. This is because of the dependence of carry bits on previous

equations, as shown in the equations 3.22. Lastly, their are similarities between each

of the matrices. Each next increasing n contains the same terms as before plus new

terms introduced by the new equations. These similarities could be used to help

compress the resulting R matrix used to determine the correct assumptions when

running the branch and bound algorithm discussed above.

Chapter 4

Discussion and Conclusion

4.1 Discussion

The first experiments involved unconstrained optimization. In the unconstrained

optimization experiments, the simplest cost function had the best chance of factoring.

Most of the solutions found by the system, as shown in Figure 3.3, are around 13 and

37. The optimization of equation 3.2 correctly factored 481 approximately 16% of

the time. Attempts to improve the success rate shown in Figure 3.7 and Figure 3.9

show decreased rate of factoring. In Figure 3.7, the results show unconstrained

Fermat optimization correctly factoring approximately 5% of the time and Figure 3.9

shows the unconstrained bit optimization factoring < 1% of the time. In all the

experiments, MATLAB chose to use line search for these experiments.

In an attempt to improve the component of the system that is responsible for per-

suading solutions into integer values, constrained optimization was used. Figure 3.11

showed that the constrained optimization successfully found integer solutions but did

not find proper factors. This suggests that the method used to solve the constraint

problem was putting too much focus on the constraint and inhibited the random

nature of the initial point from finding a good solution. The inability to find a good

solution can be visualize by imagining the digitization bumps seen in Figure 3.2

being too large to traverse the solution create by the trench, namely x = a.

To correct the emphasis on the digitizer of the optimization, the next system

71

72

varied the scale of the digitizer, similar to 82 seen in equation 3.1. This varied

scaling of the integer persuasion function d(x, y) eliminated local minima outside

the solution area of x = . However, the similarity between the results shown in

Figure 3.3 and Figure 3.16 suggest that local minima induced by the digitization

is not the problem. After several different trials with the system outlined by the

integer persuasion scaling equation 3.11, it was evident that the system had no

where to go within the trench itself. All of the above systems fail because they

lack a global attractor to a solution of n = xy itself. For the simple cost function

of f(x, y) = n - xy, no manner of digitizing or local minima escape will assist the

system to find the solution efficiently. This problem is even more prominent when

considering the solution space for a practical key of 1024 bits. Without a global

attractor the system cannot be pulled towards the correct solution and the system

breaks down into a brute force attack. Employing local minima escape methods

would not fix the problem of pulling the system to the correct solution. To find a cost

function that would attract the solution globally would require a deeper understand

of number theory itself.

In an attempt to deconstruct multiplication and take a slightly different approach

than in [3], equation 3.22 was created using logic design and solved for the carry bits.

The results were unfavorable; however, the experiment did give an insight into the

complexity of factoring. When constructing the equations for a 3-bit multiplier, the

number of terms required to represent the logic was very high: This large number

of terms makes the system infeasible at large n. However, because all the equation

solving is precomputation, clever methods may still make the approach possible.

The bit-board optimization was developed simultaneously with the real optimiza-

73

tion experiments. It offers an integer optimization perspective to factoring. Interest-

ingly, it suffers from the same problem as the real optimization experiments. It lacks

an effective cost function. Without an effective cost function, the optimization fails

to direct the movements towards the solution. However, it does offer some interest-

ing results regarding the chance of factoring given a similar cost function to the real

optimization. If an analogy can be drawn between the real and integer programming

experiments, then the initial points that have no path towards the solution can be

thought of as starting in a local minima of a real optimization. Interpolating on this

analogy sheds some light on the probability of the real cost function. However, this

result does not suggest anything about avoiding minima, which is a difficult task. It

simply gives insight into the chances of starting in a local minima.

Results shown in Figure 3.3 suggest that many trials could loosely identify where

the factors may be. This approach, as well as simulated annealing, was consid-

ered. However, both methods require many iterations of an already complex process.

Moreover, without a cost function directing the optimization, this approach would

break down to brute force by guessing. All the optimization experiments took over a

minute to complete 1000 trials of the relatively small number 481. For practical key

sizes the time to find a solution would be much too large. The purpose of applying

optimization to factoring is to make complex but intelligent movements towards a

potential solution. If there are many local minima as expected with a large key, the

system will likely be slower than current methods that use many small unintelligent

guesses, such as the quadratic sieve.

None of the algorithms in this thesis compare to the effectiveness of constructing

a difference of squares from many well picked smaller guesses. The probability of

74

getting a correct factor is also much higher in the QS than in factoring optimiza-

tion. Clearly, the choice is to use standard factoring methods over the non-standard

methods presented in this thesis. While the methods presented in this thesis do

not present methods to factor better, they do cover interesting approaches to the

problem. Many new methods could be researched.

4.2 Future Work

There are many avenues for future development in the area of factoring optimization.

One obvious and mentioned route is in the research of an effective cost function. How-

ever, finding one such cost function would require further analysis in number theory.

This would most likely produce a more specific method than a cost function for gen-

eral optimization. A similarity can be seen in the Euclidean algorithm, which is - in

essences - a specialized optimization algorithm for finding the GCD. Further study

into Diophantine equations would likely give a better understanding of constructing

an effective cost function.

Another area that may be fruitful is neural networks. The advantage of using

neural nets is that the cost function can be found by training the net. To be efficient

the neural net would have to find a cost function that finds the global minimum fast

enough that it could overcome the massive number of calculations required for large

keys. Unfortuntely, like the many local minima created by a cost function, finding

a cost function itself, would likely have many local minima and finding an effective

cost function via neural net may also prove to be a difficult task.

75

4.3 Conclusion

The use of encryption is becoming more important as information becomes more

available. Without it many businesses and new ideas would not be possible. These

applications rely on encryption to help police valuable information. One of the most

effective and widely used cryptosystem is the RSA cryptosystem. Consequently,

much of todays infrastructure is built on this cryptosystem. With so much counting

on the success of the cryptosystem, it is imparative that the cryptosystem stay secure.

However, the security comes from the apparent intractibility of factoring. Many

believe that it is secure through its intractibility because of its current resistance to

attacks but that this is not enough for critical applications. For this reason, if a flaw

in the cryptosystem is present, it is very important that the information be made

available so that it can be substituted before too much damage is done.

While methods like the general number field sieve and the quadratic sieve show

some promise at factoring efficiently, optimization factoring in this thesis does not.

This failure is largely because of an inadequate cost function. If a cost function that

directs movements at the global level can be found then an optimization approach

may be viable. On the other hand, finding this cost function may not be an easy

task. Until an efficient algorithm can be found, the RSA cryptosystem will remain

secured by its mystery.

Even though the results of this thesis proved to be unsuccessful, many interesting

ideas were touched on and most importantly, much was learned.

Bibliography

[1] Francois Morain Arthru 0. L. Atkin. Elliptic curves and primality proving.

Math. Comput, 61:29-68, 1993.

[2] David M. Bressoud. Factorization and Primality Testing. Springer-Verlag, 1989.

[3] Christopher J.C. Burges. Factoring as optimization. Microsoft Technical Report

MSR- TR-2OO-83, 2002.

[4] R. E. Powers Derrick H. Lehmer. On factoring large numbers. 37:770-776,

1931.

[5] John D. Dixon. Asymptotically fast factorization of integers. Mathemicatical

Computation, 36, 1981.

[6] Titu Andreesscu et al. 104 Number Theory Problems. Birkhauser, 2007.

[7] J. Franke F. Bahr, M. Boehm and T. Kleinjung. Factorization of rsa-200. Public

announcement.

[8] Edward M. Wright Godfrey. H. Hardy. An Introduction to the Theory of Num-

bers (fifth ed.). Oxford University Press, 1979.

[9] Stephen J. Wright Jorge Nocedal. Numerical Optimization. Springer, 1999.

[10] W. Karush. Minima of functions of several variables with inequalities as side

constraints. Master's thesis, M.Sc. Dissertation. Dept. of Mathematics, Univ. of

Chicago, Chicago, Illinois, 1939.

76

77

[11] Donald Knuth. The Art of Computer Programming, Volume 2: Seminumerical

Algorithms. Addison-Wesley, third edition, 1997.

[12] Kevin McCurley Leonard Adleman. Open problems in number theoretic com-

plexity. Proceedings of the Algorithmic Number Theory Symposium, 1:3-13,

1997.

[13] Kevin S. McCurley. A key distribution system equivalent to factoring. 1.

[14] Peter Montgomery. A survey of modern integer factorization algorithms. CWI

Quarterly, 1996.

[15] Carl Pomerance. A tale of two sieves. Notices of the AMS, 1996.

[16] Michael Rabin. Digital signature and public-key functions as intractable as

factorization. Technical Report 212, MIT, 1979.

[17] Leonard Adleman Ronald Rivest, Adi Shamir. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2),

1987.

[18] M. P. Vecchi Scott Kirkpatrick, C. D. Gelatt. Optimization by simulated an-

nealing. 220:671-680, 1983.

[19] Lieven Vandenberghe Stephen Boyd. Convex Optimization. Cambridge Univer-

sity Press, 2004.

[20] Raymond Sroul. Programming for Mathematicians. Berlin: Springer-Verlag,

2000.

78

[21] Ronald L. Rivest Clifford Stein Thomas H. Cormen, Charles E. Leiserson. In-

troduction to Algorithms. McGraw-Hill, second edition, 2001.

[22] Masahiro Fujita Tsutomu Sasao. Representations of Discrete Functions.

Springer, 1996.

[23] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press,

2003.

[24] Martin E. Hellman Whitfield Diffie. New directions in cryptographyy. IEEE

Trans. Info. Th. 2, pages 644-654, 1976.

[25] Hugh C. Williams. Some public-key crypto-functions as intractable as factor-

ization. Proceedings of CRYPTO 84, 196:66-70, 1985.

Appendix A

Experiment Code

A.1 Real Optimization in MATLAB

The following is the code used to conduct factorization experiments in MATLAB.

Many of the experiments used similar code so not all functions will be given here.

A.1.1 Direct Factorization Code

The follow code was used to generate data for the equation 3.2 experiment. The

code is split in two files. The first file is the main program, and the second file is the

minimization function required by the fminunc function in MATLAB.

cap = 100; % use all primes less than cap

opt-iterations = 1000; % number of iterations to minimize

err_data=0; % store error data in here

% generate a range of biprime to test over

bip = [00];

1=1;

for p = primes(cap)

for q = primes(cap)

% exclude the case of p2 and q2 and when bip =

if p == q I intersect (err_data(:,1), p*q) == p*q

continue

end

bip(i,:) = I p q];

± = 1+1;

end

79

q*p

80

end

7. uncomment to test only a single biprime

bip = [13 37];

for i = 1:size(bip,1)

p = bip(i, 1);

q = bip(i, 2);

X first column of err-data is the biprime

err_data(i,1) = p*q;

7. the following columns will be minimization trials on

'h random starting points

for j2:opt_iterations+1

% form a vector of random numbers between 0.0 and some max

initpq = rand(2,i)*i.1*max(p,q);

% do the minimization

£pq, mm, £] = fmmnunc(Ex) factsin(x,p*q), initpq,

optimset('Gradobj','on', 'Display', off'));

'h store the average error

err_data(i,j) = sum(abs([p; q] pq));

7. store the solution

err-data (i,j+opt_iterations) = pq(1);

j-1

end

end

'h make sure the data is in order

err-data = sortrows(err_data,1);

81

The minimization function is given below.

function [f, g] = factsin(x,bip)

scale-err = 1;

scale-sin = 10;

f = scale_err*(bip x(1)*x(2))2 +

scale_sin*(sin(pi*(2*x(1)+1/2)) + sin(pi*(2*x(2)+1/2)) + 2);

g = [2*scale_err*(bip - x(1)*x(2))*-x(2) +

scale_sin*cos (pi* (2*x(1)+1/2))*2*pi;

2*scale_err*(bip - x(1)*x(2))*-x(1) +

scale_sin*cos(pi*(2*x(2)+1/2))*2*pi];

7. f = (bip -

•1. •/. f = (x(1)*z(2))2 - 2*bip*x(1)*x(2) + b1p2

7. 7. g = [2*x(1)*x(2)2 - 2*bip*x(2); 2*x(1)*2*x(2) - 2*bip*x(1)];

7. % g = [2*x(2)*(x(1)*x(2) - bip); 2*x(1)*(x(1)*x(2) - bip)];

'I. g = [2*(bip - x(1)*x(2))*-x(2);

2*(bip - x(i)*x(2))*-x(1)];

A.1.2 Bit Factorization Code

The follow code was used to generate data for the equation 3.4 experiment. The

code is split in two files. The first file is the main program, and the second file is the

minimization function required by the fminunc function in MATLAB.

cap = 100; h use all primes less than cap

opt-iterations = 1000; 7. number of iterations to minimize

err_data=0; % store error data in here

X generate a range of biprime to test over

bip = [00];

i1;

for p = primes(cap)

82

for q = primes(cap)

•h exclude the case of p2 and q2 and when bip = q*p

if p == q I intersect(err_data(:,1),

continue

end

bip(i,:) = [p q];

I = i+1;

end

end

7. uncoinment to test only a single biprinie

bip = [13 37];

%bip = [101 1013];

for i = i:size(bip,1)

p = bip(i, 1);

q = bip(i, 2);

p*q) == p*q

7. binarize will turn p in an array of ones and zeros

bp = binarize(p);

bq = binarize(q);

use the largest binary representation for storing put correct

V. factorization of p and q in variable correct

if length(bp) > length(bq)

correct = [bp bq zeros(1length(bp)-length(bq))]';

elseif length(bp) < length(bq)

correct = [bp zeros(1,length(bq)-length(bp)) bq]';

else

correct = [bp bq]';

end

7. first column of err-data is the biprime, second is the

'h length of p (or q)

err_data(i,1) = p*q;

err_data(i,2) = length(correct)/2;

83

'/ the following columns will be minimization trials on random

% starting points

for j3: opt_iterations+2

h form a vector of random numbers between 0.0 and 1.0

initpq = rand(size(correct))*1.4;

h do the minimization

[pq, min, f] = fminunc(t(x) factquad(x,p*q), initpq,

optimset('GradObj','on', 'Display', 'off'));

i store the average error per bit

err_data(i,j) = sumn(abs(correct - pq));

X store the solution

err_data(i , j+opt_iterations) =

2.(0:err_data(i,2)-1)*pq(1:err_data(i,2));

J-2

end

end

'h make sure the data is in order

err-data = sortrows(err_data,1);

The minimization function is given below.

function [f, g] = factquad(x,bip)

x is bits of p and then q, and bip is the biprime

scale-err = 1;

scale-bit = 1;

(sn, sm) = size(x);

n = sn/2; 'h half the bits are p the other half are q

84

r = 2.(O:n-1); % sequence 1 1 2 4 8 16 ...] for bits

7. result of f

V.a = scale_err*(bip - (r*x(1:n))*(r*z(n+1:sn))) +

scale_bit*sum((x.2-x).2);

V. compute the gradient needed by fminunc()

V.p = sum(r.*x(1:n)');

7.q = sum(r.*x(i+1:sn)');

V.b = -scale_err*[r'*q; p*r'] + scale_bit*2*(x.2-x).*(2*x-1);

V.-scale_err* [r'*q; p*r']

%scale_bit*2*(x. 2-x) .*(2*x-1)

7.f = a2;

Y.g = 2*a.*b;

P sum(r.*x(1:n)');

q = surn(r.*x(n+1:sn)');

= scale_err*(bip - p*q)2 + scale_bit*suin((x.2-x).2);

g = scale_err*(bip - p*q)*2*- [r'*q; p*r'] +

scale_bit*2*(x. 2-x) .*(2*x-1);

A.1.3 Constrained Bit Factorization Code

The follow code was used to generate data for the equation 3.9 experiment. The code

is split in three files. The first file is the main program, and the second and third files

are the minimization function and constrain vector required by the fmincon function

in MATLAB.

cap = 100; 7. use all primes less than cap

opt-iterations = 1000; 7. number of iterations to minimize

err_data=0; V. data store in here

V. generate a range of biprime to test over

85

bip = [00];

11;

for p = primes(cap)

for q = primes(cap)

% exclude the case of p2 and q2 and when bip = q*p

if p == q I intersect(err_data(:,1), p*q) == p*q

continue

end

bip(i,:) [p q];

j = j+j

end

end

h unconunent to test only a single biprime

%bip = [13 37);

bip = [101 1013];

for i = 1:size(bip,1)

p = bip(i, 1);

q = bip(i, 2);

% binarize will turn p in an array of ones and zeros

bp = binarize(p);

bq = binarize(q);

use the largest binary representation for storing put correct

% factorization of p and q in variable correct

if length(bp) > length(bq)

correct = [bp bqzeros(1,length(bp)-length(bq))] J;

elseif length(bp) < length(bq)

Correct = [bp zeros(1,length(bq)-length(bp)) bq]';

else

end

correct = [bp bq)';

% first column of err-data is the biprinie, second is the

86

'h length of p (or q)

err_data(i,1) = p*q;

err_data(i,2) = length(correct)/2;

h the following columns will be minimization trials on random

'I. starting points

for j=3 : opt_iterations+2

% form a vector of random numbers between 0.0 and 1.0

initpq = rand(size(correct))*1.4;

h do the minimization

[pq, mm, f] = fmincon(@(x) factquad(x,p*q), initpq,

Q(x) factquadcon(x),

optimset('Gradobj','on', 'Display', 'off'));

'h store the average error per bit

err_data(i,j) = suxn(abs(correct - pq));

% store the average error

err_data(i ,j+opt_iterations) =

2.(0:err_data(i,2)-1)*pq(1:err...data(i,2));

j-2

end

end

'h make sure the data is in order

err-data = sortrows(err_data,1);

The following code is the minimization function.

function [f, g] = factquad(x,bip)

% x is bits of p and then q, and bip is the biprime

87

Csn, am) = size(x);

n = sn/2; h half the bits are p the other half are q

r = 2.(O:n-1); % sequence C 1 2 4 8 16 ...] for bits

7. result of f

a = bip - (r*x(1:n))*(r*x(n+1:sn));

Y. compute the gradient needed by fmincon()

p = sum(r.*x(1:n)');

q = sum(r,*x(ni-1:sn)');

b = -[r'*q; p*r');

f = a2;

g = 2*a.*b;

The following code is the constraint vectors for the fmincon function.

function (c, coq] = factquadcon(x)

% inequality constraints

C = C];

h equality constraints

Y.ceq = sum ((x .*2_x).2) ;

ceq = (x.2-x).2;

A.1.4 Scaled Factorization Code

The code for the experiment involving equation 3.11 is similar to that of the direct

method used in the experiment with equation 3.2. The main program is identical to

the direct method with the exception of the minimization function. The minimization

function used is given below.

function [f, g] = factsin(x,bip)

epsilon = 0.000001;

88

c = (bip-x(1)*x(2))2;

d = sin(2*pi*(x(1)-1/4)) + sin(2*pi*(x(2)-1/4)) + 2;

f = c + dl(c + epsilon);

dcl = 2*(bip -

ddl = cos(pi*(2*x(1)+1/2))*2*pi;

dc2 = 2*(bip -

dd2 = cos(pi*(2*x(2)+l/2))*2*pi;

g = [dcl + ((c+epsilon)*ddl - d*dcl)/(c+epsilon) -2;

dc2 + ((c+epsilon)*dd2 - d*dc2)/(c+epsilon)^2];

89

A.1.5 Multiplication Logic Equations and Code

The following are the matrices for the truth table and resulting arithmetic coeffi-

cients, respectfully.

F =

000000-
000000
000000
000000
000000
000000
000000
000000
000000
000001
000010
000011
000100
000101
000110
000111
000000
000010
000100
000110
001000
001010
001100
001110
000000
000011
000110
001001
001100
001111
010010
010101
000000
000100
001000
001100
010000
010100
011000
011100
000000
000101
001010
001111
010100
011001
011110
100011
000000
000110
001100
010010
011000
011110
100100
101010
000000
000111
001110
010101
011100
100011
101010
1 1000 1-

-000000
000000
000000
000000
000000
000000
000000
000000
000000
000001
000010
000000
000100
000000
000000
000000
000000
000010
000100
000000
001000
000000
000000
000000
000000
000000
000000
001100
000000
000000
011000
001000
000000
000100
001000
000000
010000
000000
000000
000000
000000
000000
000000
000000
000000
001000
000000
110000
000000
000000
000000
011000
000000
000000
110000
010000
000000
000000
000000
001000
000000
110000
010000
-010000

The resulting arithmetic matrix represents the following equations.

90

nl = Y1X1

fl2 = y1x2+y2x1

n3 = y1x3+y2x2+y3x1+y2y1x2x1

fl4 = Y3Y2Y1X2X1 + Y2YiX3X2 + y2x3 + y3x2 + y2y1x2x1 + y3y1x3x1

+ y3y2X2Xi+y2yiX3X2Xi

= Y3 1lX3X2Xl + /3J2X3X2X1 + Y3Y2Y1X3X1 + y3y2y1x3x2x1

+ Y2YlX3X2 + y3y2x3X2 + y3y2y1x3x2 + Y3X3 + Y3Y2X2Xl

fl3 = 7j3jlX3X2Xl + y3y2y1x3x1 + y3y2x3x2

The code used to conduct the multiplication logic optimization experiment is

shown below. The code is split in three files. The first file is the main program,

and the second file is the minimization function required by the fminunc function in

MATLJAB. The third file is the constraints used for the function in the second file.

cap = 100; % use all primes less than cap

opt-iterations = 1000; 7. number of iterations to minimize

err_data=0; h data store in here

V generate a range of biprime to test over

bip = [0 0];

i=1;

for p = primes(cap)

for q = primes(cap)

h exclude the case of p2 and q2 and when bip = q*p

if p == q I intersect(err_data(:,1), p*q) == p*q

continue

end

91

bip(i,:) = [p q];

i = 1+1;

end

end

h uncomment to test only a single biprime

bip = [35];

for i = 1:size(bip,1)

p = bip(i, 1);

q = bip(i, 2);

X binarize will turn p in an array of ones and zeros

bp = binarize(p);

bq = binarize(q);

use the largest binary representation for storing put correct

% factorization of p and q in variable correct

if length(bp) > length(bq)

correct = [bp bq zeros(1,length(bp)-length(bq))]';

elseif length(bp) < length(bq)

correct = [bp zeros(1,length(bq)-length(bp)) bq]';

else

end

correct = [bp bq]';

/ first column of err-data is the bipriine, second is the length

h of p (or q)

err_data(i,1) = p*q;

err_data(i,2) = length(correct)/2;

X the following columns will be minimization trials on random

V. starting points

for j =3: opt_iterations+2

h form a vector of random numbers between 0.0 and 1.0

92

initpq = rand(size(correct))*1.4;

h do the minimization

[pq, mm, f] = fminunc((x) factmltlog(x,p*q), initpq,

optimset('GradObj','on', 'Display', 'off'));

% store the average error per bit

err_data(i,j) = sum(abs(correct - pq));

% Store the average error

err_data(i , j+opt_iterations) =

2.'(O:err_data(i,2)-1)*pq(1:err_data(i,2));

j-2

end

end

% make sure the data is in order

err-data = sortrows(err_data,i);

The minimization function for the experiment is given below.

function [f, g] = factmltlog(x,bip)

a C mod(floor(bip/2O),2);

mod(floor(bip/21) ,2);

mod(floor(bip/22) ,2);

mod(floor(bip/23) ,2);

mod(f1oor(bip/24) ,2);

mod(floor(bip/25) ,2));

a = (n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-

x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))2+(n(5)-x(6)*x(3)-

x(5) *x(4) (3) *x(2)+x (6) *x(5) (3) (2) *x (1)+

x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-

93

x(6)*x(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*z(3)*x(2)*x(1)+

z(6)*x(5)*x(4)*x(3)*x(2))2+(n(4)+x(5)*x(4)*x(3)*x(2)-

2*x(G)*x(5)*x(3)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*x(1)+

2*x(6)*x(5)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-

x(6)*x(2)-x(5)*x(3)+x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+

x(6)*x(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(2)+

2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)-

x(5) *x(4) *x(2) *x(1) Y2+(n(3)+2*x(5) *x(4) (3) (2)-

2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3)*x(2)*x(1)+

2*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)+x(5)*x(4)*x(2)*x(1)-

x(6)*x(1)-x(5)*x(2)Y2+(n(2)+2*x(5)*x(4)*x(2)*x(1)-x(5)*x(1)-

x(4)*x(2)Y2+(n(1)-x(4)*x(1)) 2;

% these are much to long to format nicely

b

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))*(-x(5)*x(

4)*x(3)*x(1)+2*x(5)*x(4)*x(3)*x(2)*x(1)-x(5)*x(3)*x(2)-x(4)*

x(3)*x(2)*x(1))+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x

(5)*x(3)*x(2)*x(i)+x(6) *x(5)*x(4)*x(3)*x(j)-3*x(6)*x(5)*x(4)

(3)*x(2)*x(1)+x(5)*x(4)*x(3)*x(1)-3*x(5)*x(4)*x(3)*x(2)*x(1)

-x(5)*x(2)*x(1)+x(5)*x(3)*x(2)+x(4)*x(3)*x(2)*x(1)+x(5)*x(4)

)*x(i)+x(6)*x(5)*x(4)*x(2)*x(i)+2*x(6)*x(5)*x(4)*x(3)*x(i)-2

*x(6)*x(5)*x(4)*x(3)*x(2)*x(j)-x(6)*x(2)-x(5)*x(3)+x(5)*x(4)

*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(6)*x(5)*x(2)*x(1)+2*x(

6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4

)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1))*(-2*x(5)*x(3)*x(2)*x(1)+x(5

)*x(4)*x(2)*x(1)+2*x(5)*x(4)*x(3)*x(i)-2*x(5)*x(4)*x(3)*x(2)

*x(1)-x(2)-x(4)*x(3)*x(1)+x(5)*x(2)*x(1)+2*x(5)*x(3)*x(2)+2*

x(4)*x(3)*x(2)*x(1)-2*x(5)*x(4)*x(3)*x(2))+2*(n(3)+2*x(5)*x(

4)*x(3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4

)*x(3)*x(2)*x(1)+2*x(6) *x(4)*x(3) *x(1)+2*x(6)*(5)*x(2)*x(1)

+x(5)*x(4)*x(2)*x(i)-x(6)*x(1)-x(5)*x(2))*(-2*x(5)*x(4)*x(2)

94

*x(1)+2*x(4)*z(3)*z(1)+2*x(5)*x(2)*x(1)-x(1));

2*(n(6)-x(6)*z(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*

x(1)x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))*(-x(6)*x(

4)*x(3)*x(1)+2*x(6)*x(4)*x(3)*x(2)*x(1)-x(6)*x(3)*x(2))+2*(n

(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x(1)+x

(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6)

(4) *x(3) *x(2))* (-x(4) (3) (2) +x(6) *x(3) *z(2)

(1)+x(6)*x(4)I'x(3)*x(1) -3*(6)*x(4)*x(3)*x(2)*x(1)-x(6)*x(2)

*x(1)+x(6)*x(3)*x(2)+x(6)*x(4)*x(3)*x(2))+2*(n(4)+x(5)*x(4)*

x(3)*x(2)-2*x(6)*x(5)*x(3)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)'x(1

)+2*x(6)*x(5)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)

-x(6)*x(2)-x(5)*x(3)+x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)

*x(1)+x(6)*x(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*

x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1

))*(x(4)*x(3)*x(2)-2*x(6)*x(3)*x(2)*x(1)+x(6)*x(4)*x(2)*x(1)

x(3)*x(2)*x(1)+x(6)*x(2)*x(1)+2*x(6)*x(3)*x(2)-2*x(6)*x(4)*x

(3)*x(2)-x(4)*x(2)*x(1))+2*(n(3)+2*x(5)*x(4)*x(3)*x(2)-2*x(6

)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3)*x(2)*x(1)+2

*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)+x(5)*x(4)*x(2)*x(

1)-x(6)*x(1)-x(5)*x(2))*(2*x(4)*x(3)*x(2)-2*x(6)*x(4)*x(2)*x

(1)-2*x(4)*x(3)*x(2)*x(1)+2*x(6)*x(2)*x(1)+x(4)*x(2)*x(1)-x(

2))+2*(n(2)+2*x(5)*x(4)*x(2)*x(1)-x(5)*x(1)-x(4)*x(2))*(2*x(

4)*x(2)*x(1)-x(1));

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))*(-z(6)*x(

5)*x(3)*x(1)+2*x(6)*x(5)*x(3)*x(2)*x(1)-x(6)*x(3)*x(2)*x(1))

+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x

(1)+x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)

-x(6)*x(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*x(3)*x(2)

*x(1)+x(6)*x(5)*x(4)*x(3)*x(2))*(-x(5)*x(3)*x(2)+x(6)*x(5)*x

(3)*x(1)-3*x(6)*x(5)*x(3)*x(2)*x(1)-i-(6)*x(3)*x(2)*x(1)+x(6)

*x(5)*x(3)*x(2))+2*((4)+x(5)*x(4)*x(3)*x(2)-2*x(6)*(5)*x(3

95

)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x

(1)2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)x(6)*x(2)x(5)*x(3)+x(5)

*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(G)*x(5)*x(2)*x(1)

+2*x(6)*x(5)*(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5

)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1))*(x(5)*x(3)*x(2)+x(6)*x

(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(1)-2*x(6)*x(5)*x(3)*x(2)*x(

1)+x(5)*x(3)*x(2)*x(1)-x(6)*x(3)*x(1)+2*x(6)*x(3)*x(2)*x(1)-

2*x(6)*x(5)*x(3)*x(2)-x(5)*x(2)*x(1))+2*(n(3)+2*x(5)*x(4)*x(

3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3

)*x(2)*x(1)+2*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)-i-x(5)

*x(4)*x(2)*x(1)-x(6)*x(1)-x(5)*x(2))*(2*x(5)*x(3)*x(2)-2*x(6

)*x(5)*x(2)*x(1)-x(3)-2*x(5)*(3)*x(2)*x(1)+2*x(6)*x(3)*x(1)

+x(5)*x(2)*x(1))+2*(n(2)+2*x(5)*x(4)*x(2)*x(1)-x(5)*x(1)-x(4

)*x(2))*(2*x(5)*x(2)*x(1)-x(2))-2*(n(1)-x(4)*x(1))*x(j);

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))*(-x(6)*x(

5)*x(4)*x(1.)+2*x(6)*x(5)*x(4)*x(2)*x(j)-x(5)*x(5)*x(2)-x(6)*

,c(4)*x(2)*x(1))+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x

(5)*x(3)*x(2)*x(j)+x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*z(5)*x(4)

(4)*x(2)+x(G)*x(5)*x(2)*x(j.)+x(6)*c(5)*x(4)*x(1)-3*x(6)*x(5)

)*(1)+(6)*z(5)*x(4)*x(2)*x(1)+2*(6)*x(5)*(4)*x(3)*x(1)-2

*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(2)-x(5)*x(3)+x(5)*x(4)

*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(6)*x(5)*x(2)*x(1)+2*x(

6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5)*x(4

)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1))*(x(5)*x(4)*x(2)-2*x(6)*x(5)

*x(2)*x(1)+2*x(6)*x(5)*(4)*x(1)-2*x(6)*x(5)*x(4)*x(2)*x(1)-

x(5)+x(5)*x(4)*x(2)*x(1)-x(G)*x(4)*x(1)+2*x(6)*x(5)*x(2)+2*x

(G)*x(4)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(2))i-2*(n(3)+2*x(5)*x(4

)*x(3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)

*x(3)*x(2)*x(1)+2*x(6)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(2)*x(1)i-

x(5)*x(4)*x(2)*x(1)-x(6)*x(1)-x(5)*x(2))*(2*x(5)*x(4)*x(2)-x

96

(4) -2*x(5) *x(4) *x(2) *x (1) +2*x(6) *x(4) *x(1))

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))*(2*x(6)*x

(5)*x(4)*x(3)*x(1)-x(6)*x(5)*x(3)-x(6)*x(4)*x(3)*x(1))+2*(n(

5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x(1)+x(

6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*

(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*(3)*x(2)*x(1)+

x(6)*x(5)*x(4)*x(3)*x(2))*(-x(5)*x(4)*x(3)l-x(6)*x(5)*x(3)*x(

1)3*x(6)*x(5)*x(4)*x(3)*x(1)x(6)*x(5)*x(1)+x(6)*x(5)*x(3)+

x(6)*x(4)*x(3)*x(1)+x(6)*x(6)*x(4)*x(3))+2*(n(4)+x(5)*x(4)*x

(3)*x(2)-2*(6)*x(5)*x(3)*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*x(1)

+2*x(6)*x(5)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2) *x(1)-

x(6)*x(2)-x(5)*x(3)+x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*

x(i)+x(6)*x(5)*x(2)*x(1)+2*x(6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x

(3)*x(2)*x(1)-2*x(6)*x(5)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*x(1)

)*(x(5)*x(4)*x(3)-2*x(6)*x(5)*x(3)*x(1)+x(6) *x(5)*x(4)*x(1)-

2*x(6)*x(5)*x(4)*x(3)*x(1)-x(6)+x(5)*x(4)*x(3)*x(1)+x(6)*x(5

)*x(1)+2*x(6)*x(5)*x(3)+2*x(6)*x(4)*x(3)*x(1)-2*x(6)*x(5)*x(

4)*x(3)-x(5)*(4)*(1))+2*(n(3)+2*z(5)*z(4)*x(3)*x(2)-2*x(6)

x (6) *x(4) *x(3) *z(1) (6) *x(5) (2) *x(1)+x(5) *x(4) *x(2) (1

)-x(6)s&(1)-x(5)*x(2))*(2*x(5)*x(4)*x(3)-2*x(6)*x(5)*x(4)*x(

1)-2*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(1)+x(5)*x(4) *x(1)-x(5

))+2*(n(2)+2*(5)*x(4)*(2)*(1)-(5)*x(1)-x(4)*x(2))*(2*x(5

)*x(4)*x(1)-x(4));

2*(n(6)-x(6)*x(5)*x(4)*x(3)*x(1)+2*x(6)*x(5)*x(4)*x(3)*x(2)*

x(1)-x(6)*x(5)*x(3)*x(2)-x(6)*x(4)*x(3)*x(2)*x(1))* (-x(6)*x(

5)*x(4)*x(3)+2*x(6)*x(5)*x(4)*x(3)*x(2)-x(6) *x(4)*x(3) *x(2))

+2*(n(5)-x(6)*x(3)-x(5)*x(4)*x(3)*x(2)+x(6)*x(5)*x(3)*x(2)*x

(1)+x(6)*x(5)*x(4)*x(3)*x(1)-3*x(6)*x(5) *x(4)*x(3)*x(2)*x(1)

-x(6)*x(5)*x(2)*x(1)+x(6)*x(5)*x(3)*x(2)+x(6)*x(4)*x(3)*x(2)

*x(1)+x(6)*x(5)*x(4)*x(3)*x(2))*(x(6)*x(5)*x(3)*x(2)+x(6)*x(

5)*x(4)*x(3)-3*x(6)*x(5)*x(4)*x(3)*x(2)-x(6) *x(5)*x(2)+x(6)*

x(4)*x(3)*x(2))+2*(n(4)+x(5)*x(4)*x(3)*x(2)-2*x(6)*x(5)*x(3)

97

*x(2)*x(1)+x(6)*x(5)*x(4)*x(2)*(1)+2*x(6)*x(5)*x(4)*x(3)*(

1)-2*x(6)*x(5)*x(4)*x(3)*x(2)*x(1)-x(6)*x(2)-x(5)*x(3)+x(5)*

x(4)*x(3)*x(2)*x(1)-x(6)*x(4)*x(3)*x(1)+x(6)*x(5)*x(2)*x(1)+

2*x(6)*x(5)*x(3)*x(2)+2*x(6)*x(4)*x(3)*x(2)*x(1)-2*x(6)*x(5)

*x(4)*x(3)*x(2)-x(5)*x(4)*x(2)*(1))*(-2*x(6)*x(5)*x(3)*x(2)

+x(6)*x(5)*x(4)*x(2)+2*x(6)*x(5)*x(4)*x(3)-2*x(6)*x(5)*x(4)*

x(3)*x(2)+x(5)*x(4)*x(3)*x(2)-x(6)*x(4)*x(3)±x(6)*x(5)*x(2)+

2*x(6)*x(4)*x(3)*x(2)-x(5)*x(4)*x(2))+2*(n(3)+2*x(5)*x(4)*x(

3)*x(2)-2*x(6)*x(5)*x(4)*x(2)*x(1)-x(4)*x(3)-2*x(5)*x(4)*x(3

1)+2*x(6) *x(4) (3) *(1) i-2*x (6) *x(5) (2) (1) +x(5)

*x(4)*x(2)*x(1)-x(6)*x(1)-x(5)*x(2))*(-2*x(6)*x(5)*x(4)*x(2)

-2*x(5) (4) (3) (2) +2*x (6) *x(4) *x(3) i-2*x(6) *x(5) *x(2) (5

)*x(4)*x(2)-x(6))+2*(n(2)+2*x(5)*x(4)*x(2)*x(i)-x(5)*x(1)-x(

4)*x(2))*(2*x(5)*x(4)*x(2)-x(5))-2*(n(1)-x(4)*x(i))*x(4)J;

scale_bit = 2;

= a + scale_bit*(sm((x.2-x).2));

g = b + scale_bit*2*(x.2-x).*(2*x-1);

Finally, the constraints for the minimization function is as follows.

function (c, ceq] = factmltlogcon(x)

X inequality constraints

C =

% equality constraints

%ceq = sum((x.2-x).2);

ceq = (x.2-x).2;

98

A.2 Integer Optimization

A.2.1 Factoring Bit Game

The code for the factoring bit game experiment is not listed here because it was over

5, 000 lines of code. Please contact the author for a compressed tarball of the code.

A.2.2 Branch and Bound Multiplication Code

The following C code was used to count the number of terms used in the branch and

bound multiplication experiment.

#include <stclio .h>

#include <stdlib . h>

#define p0w2(a) ((unsigned long)1<<a)

/****

* returns the bit b of the multiplication of x and y

mt bitmult(unsigned mt x, unsigned mt y, unsigned char b)

{

return x*y>>b&1;

* returns the entry at (i,j) in knokecker product matrix with a

* 2x2 base matrix to the exponent of pow.

mt kronpow(mnt *base, char pow, unsigned long i, unsigned long

{

unsigned long k, size = 1<<pow;

mt entry=1;

for (k=O; k<size && entry != 0; k++) {

entry *= base[2*(j&1)+(m&1)];

j)

99

return entry;

}

mt main(int argc, char *argv[])

{

mt R2[4] = { 1, 0, 1, 1)-;

unsigned long i, j, Ic;

unsigned long entry;

unsigned mt size, *terms;

unsigned mt bitstream;

FILE *iinm = NULL;

/* get the size argument or assume size = 2. size is the number of bit

in n. open a file to store actual matrix *1

if (argc > 1) {

size = 2*atoi(argv(1]);

if (size < 1) size = 2;

if (argc > 2)

imm fopen(argv[2], 'w+");

} else

size 2;

1* create some space to store the number of total terms and initialize */

terms = (unsigned mt *) malloc(sizeof (unsigned long)*size);

for (k=0; k<size; k++)

terms[k] = 0;

bitstream = 1;

for (j'0; j<pow2(size); j+i-) {

/* display progress every 100th j */

if (j%100==O) {

100

printf("[%2.fV/.]: ", ((float) j I p0w2(size)*100));

for (k=0; k<size; k++)

printf("Y.4.ld ", terms[k]);

printf("\n");

}

for (k'0; k<size; k++) {

entry=0;

for (1=0; i<p0w2(size); i++)

1* main matrix calculation of R = K(R2,2*n)*P *1

entry += kronpow(R2, size, i, j)*

bitmult(i>>size/2, i&p0w2(size/2)-1, k);

//printf ("%d ", entry'/.2);

terms[k] += entryY.2;

/* if we're using a matrix file, spit out the results *1

if (imm) {

1* spit out as 0 or -1 *1

fputc(oxff*(entryY.2), imm);

1* spit out as a byte bundle of bits *1

bitstream 1= entry'/.2;

bitstream << 1;

if (bitstream > 0xff) {

fputc(bitstrearn, imm);

bitstream = 1;

}

}

}

1* done, print total *1

printf ("total terms: ");

for (k'0; k<size; k++)

101

printf("Y.4.ld ", terms[k]);

printf (" \n") ;

free (terms);

if (imm) {

if (bitstream > 1)

fputc(bitstreain, imm);

fclose(imm);

}

