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1 

Abstract' 

In this thesis we investigate perturbation problems for an analytic matrix function 

in two-parameter form. By considering one parameter as perturbation parameter 

and the other one as the eigenvalue parameter, the perturbation issue is framed in 

the study of a matrix function depending analytically on two complex parameters. 

Two methods are used. One is the Newton's diagram method, and the other is 

the generating eigenvector method. Applications are made to classical eigenvalue 

problems and to gyroscopic systems. 
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Chapter 1 

Introduction 

Consider an n x ri matrix function L(A, a) depending analytically on two complex 

parameters A and a. The parameter A can be viewed as an eigenvalue parameter 

dependent on the free "physical" parameter a that causes perturbation of L(A, ao). 

Sometimes the two parameters A and a can also be treated symmetrically. Let 

detL(A, a) = f(A, a). Then f(A, a) is a scalar analytic function in A and a, and we 

are interested in the zeros for f (A, a) = 0, they are so-called A-eigenvalues and a-

eigenvalues of L(A, a). Specifically, we can let a = a0, find the A-roots for f(A, ao) = 

0, assuming that f(A, ao) $ 0. If A = A0 is one of these roots, the main aim 

of this thesis is to study the solution function A(a) in the neighborhood of A0 for 

a in the neighborhood of a0 determined by f(A(a), a) 0, since A(a) represents 

the eigenvalue behavior under the perturbation of a close to a0. A(a) such that 

detL(A(a), a) 0 is called an eigenvalue function. 

A function of one complex variable is said to be analytic on a domain if it has a 

derivative at each point of the domain. By Abel's theorem (P.126 of [D]), a function 

f (z) which is an absolutely convergent power series, f(z) = 0 f(z - 0) in a 

neighborhood of z0 is analytic in the neighborhood of z0. This criterion of analyticity 

is often used in the whole thesis. Conversely, by Taylor's theorem (P.117 of [D]), if 

a function f(z) is analytic in a neighborhood of z0 (sometimes we call it analytic at 

zo), then f(z) has the Taylor series representation in the neighborhood of z0. For a 

function of two complex variables being analytic means that the function is analytic 
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in each variable separately. It is known that a function which is analytic at a point 

in C2 is equivalent to that it has a uniformly convergent expansion as a two-variable 

power series in a neighborhood of the point (see [T]). 

Historically, important contributions have been made to the classical perturbation 

theory by Rellich [R], Kato [K], Baumgartel[B] and several others. Special attention 

has been paid to the hermitian case, namely the case of L(A(a))* = L(, )'(see [R], 

[GLR1], [HL]). 

Some examples are: 

Example 1.1 L(A, a) = A + aH - Al, where A* = A, H is a matrix which need not 

be hermitian. This example reflects the original meaning of "perturbation". H is the 

perturbation factor to A. 

Example 1.2 L(A, a) = A(a)—AI, where A(a)* = A(). This example comes from 

[R]. 

Example 1.3 Vibrating systems frequently have transfer functions of the form L(A, a) 

A2A(a) + AB(a) + C(a). The dependence of L(A, a) on A is simply quodratic And 

the requirements of the dependence on a are generally hermitian, i.e. A(a) = A(), 

B(a)* = B() and C(a)* = C(), and often definite or semidefinite conditions on 

A(4, B(a) and C(a). (This example comes from /L31.) 

Example 1.4 To study gyroscopic system L(A) = A21 + AB + C, where B* = B, 

B is indefinite and invertible, C' = C> 0. Suppose B and C have the form B = 

B1 0' 

0 —B2 
C= 

C11 C12 

C12 C22 
where B1 > 0, B2 > 0. 
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Using perturbation theory for 

[A21+AB1+C11 

[aC 2 

aC12 

- A.B2 + C22 

or L(A, a) = A21 + ,\aB + C, some results and some simplified proofs are attained. 

(This example comes from [BEM] and [HKLP].) 

Example 1.5 Or the entries of L(A, a) can be any analytic functions in A and a. 

eA(1 a) sina 
L(A,a) = 

cosA 

The focus here is on the general functions without the hermitian conditions. It 

is well-known that if Ao is an eigenvalue of L(A, ao) with algebraic multiplicity m, 

then there exist eigenvalue functions Aj (a), j = 1, 2,... , m, for A near a0 such that 

A (ao) = A0. Assume that a0 = 0. Then the A (a) can be represented as branches 

of Puiseux series in 1q,, with natural numbers q. In other words, in general, the 

eigenvalue function A (a) can be expanded in series of fractional powers of a. In 

many applications it is important to know when there are no fractions in these 

expansions, i.e., when A depends analytically on a. If the partial multiplicities of 

the eigenvalue A0 of L(A, 0) are denoted by m1, m2,...,m9, the eigenvalue A0 is said 

to have the complete regular splitting property if for each mi from A0 there emerge 

mi eigenvalues (a) with Puiseux expansion 

A(a) = A0 + Ai,ah/mi + o(IaIh/mi) 
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for a -+ 0, j = 1, 2, . . . , m,, (hence the q, in the Puiseux expansions coincide with 

the partial multiplicities) and all the ),js are not equal to zero. So what are 

the splitting properties of the eigenvalues under perturbation? Do eigenvalue and 

eigenvector functions have analytic dependence on perturbation parameter? This 

thesis will discuss topics of this kind. 

Currently, there are two methods in studying the analytic perturbation problems 

for matrix functions. One can be called the "Newton diagram method". It was 

significantly developed by Langer and Najman. The other can be called the "gén-

erating eigenvector method". It was introduced in the paper [HL] of Hryniv and 

Lancaster. Here Chapter 3 and Chapter 4 are developed on the two methods respec-

tively. Chapter 2 is the preparation for Chapter 3. Chapter 5 and Chapter 6 are the 

applications in classical eigenvalue problems and gyroscopic systems. It shows how 

a two-parameter matrix function arises from real life problems. In Chapter 7, the 

conclusion comments, there is comparison and connection between the two methods. 

The structure of this dissertation is illustrated by Figure 1.1. Each chapter contains 

the author's contributions. In Chapter 2, although there are innovations in the 

treatment from Section 2.1 to Section 2.7, essentially they are some reorganizations 

of material from hundreds of years ago. Section 2.8 is the author's work. The basic 

ideas of Chapter 3 come from the papers of Langer, Najman and Veselic. The 

notations which are consistent with the works of Lancaster are used. And since the 

original papers of Langer, Najman and Veselic are intricate and hard to follow, it 

is the author's intention here that, with the preparation of Chapter 2 and with tl 

example-driven exposition, the method can be understood more easily. Sections 3.6 

and 3.7 are due to the author. Chapter 4 is based on the paper [LMZ2] of three 
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Chapter 2 Newton's Diagram 

Chapter 3 Perturbation Theory 
for Analytic Matrix Functions 
The Newton diagram method 

Chapter 5 Application to 
classical eigenvalue problems 

Chapter 4 Perturbation Theory 
for Analytic Matrix Functions 

The generating eigenvector method 

Chapter 6 Applications in 
gyroscopic systems 

Figure 1.1: Contents structure 

authors. Example 4.1, Example 4.2, Theorem 4.11 and Corollary 4.13 are the au-

thor's main contributions, but the author also contributed to the proof of Lemma 

4. 1, Lemma 4.4, Theorem 4.6 and Theorem 4.8. Chapter 5 is basically the author's 

work. In Chapter 6, Section 6.2 is quoted from [LMZ1], where Example 6.1 and 

Example 6.2 are the author's contributions. Sections 6.3 and 6.4 are the author's 

works. 



Chapter 2 

Newton's Diagram 

2.1 Introduction 

Let f(A, a) be a function of two complex variables A and a. Of course, if L(A, a) is a 

matrix valued function, then the determinant of L(A, a), detL(A, a) is such a scalar 

valued function. Let f(A, a) be a polynomial in A of the form 

f(A, a) = ao(a) + ai(a)A +... + a(a)A' (2.1) 

where each coefficient a(a) is itself a polynomial in a. Then a function A(a) defined 

for values a in a neighborhood of a = a0 by the equation f(A, a) 0 is called 

an algebraic function. Algebraic functions have Puiseux series expansions which 

are absolutely convergent in a deleted neighborhood of a0. The Existence Theo-
-  

rem I in Section 2.2 will show that when a1(a) are analytic at a0 (then f(A, a) is 

called pseudo-polynomial in A in [VT]), the solutions for f(A, a) 0 are functions in 

Puiseux series form. The Existence Theorem II in Section 2.6 will show that when 

f (A, a) are analytic in both A and a, some solutions of f(A, a) 0 have Puiseux 

series expansions too. Newton's diagram method is the main tool used to investigate 

solution functions of f(X, a) 0 by determining each term of their expansion series. 

Newton's diagram is also known as Newton's polygon or Newton's parallelogram. 

Further development of Newton's method and its role in modern mathematics are 

treated in many books and articles (for example, [Bl],[VT]). Although this historic 
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method has been widely studied, it is useful to develop some details for the later 

reference. Because of the fundamental role it played in the investigation of analytid 

perturbations of matrix valued functions, the whole of Chapter 2 is devoted to this 

method as a preliminary to the later chapters. The Existence Theorem I and New-

ton's diagram I assume that f(A, a) is a pseudo-polynomial in A, while the Existence 

Theorem II and Newton's diagram II are for the general analytic function f, a). 

The traditional Newton's diagram only gives the procedure to calculate the lead-

ing terms of all the expansions of the solution functions of f(A, a) 0 -and it says 

that the following terms can be calculated and so on and so forth. Theoretically 

that is true, but in practice we try to figure out what are the explicit determining 

equations for the cbefficients of the second terms. Section 2.8 includes an attempt 

in this direction. 

2.2 Existence Theorem I 

Let f(A, a) be a o1ynomial in A of the form (2.1.), where ao(a),.. . , a,(a) are analytic 

at a0, and suppose f, ao) # 0. The number p is called the A-order of f(A, a). If 

q ≤ p is the biggest integer such that aq(ao) 0, then q is called the A-order of 

f(A,a) at a0. 

Theorem 2.1 (Existence Theorem I) Let p, q be the A-order and A-order at a0 

of f(A, a) in (2. 1) respectively. Then there exist p functions A(a) of the form 

A(a) = Ai(a - ao)1 + A2(a - ao)2 +... (2.2) 

such that f(A(a), a) 0 in a neighborhood .Af of a0, where el < e2 < ... is a 

increasing sequence of rational numbers and A1,1\2.... are all different from zero 
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(unless A(a) 0). If q <p, then of these p functions, there are p - q with negative 

power terms. That is, el < 0 for these p - q functions. 

The proof is given by [Bi] and is long and technical. In [BL] the proof is for 

polynomials f, a), but is applicable to pseudo-polynomials without any change. 

Here, we summarize a few of the underlying concepts and results that will be needed 

in the sequel. 

First of all, the resultant of two polynomials 

h\) = 

g(A) = 

is the scalar 

R=det 

A'h 

Ah 

h 

AM-1 9 

Ag 

9 

m>0, h0 L0 

n>0, goO 

which stands for the determinant whose n + m rows are the coefficients of the powers 

of A in the polynomials indicated. If m = 0 or n = 0, define R = 1. 

The discriminant D of a polynomial h(A) is defined by the resultant of the deriva-

tive h'(A) and the polynomial mh - Ah' where m is the degree of h(A). Therefore 

D = 0 is a necessary and sufficient condition that h(A) has a multiple root. Hence, 
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a necessary and sufficient condition that f A, a) has no repeated irreducible factors 

involving A is D(a) 0 0, where D(a) is the discriminant of -f (A, a) as a polynomial 

in A. 

Now a = a0 is called an ordinary point if a(ao) 0 0 or D(ao) 0. Otherwise it 

is called a singular point. By the implicit function theorem, we know that near an 

ordinary point a = ao the p values of the function A(a) are defined by p convergent 

power series, 

A(a) = .X 0 + Ai(a ao) + A2(a - ao)2 + (2.3) 

where i = 1, . . . ,p and the numbers A0 are the p distinct roots of f(A, ao) = 0. It 

can also be proved that the radii of convergence for the p series in (2.3) are at least 

equal to the distance from a0 to the nearest singular point. 

If a(ao) = 0, then some negative power terms will appear in p—q functions of the 

form (2.2). Suppose a(a) = (a .-.ao)b(a) with b(ao) 0 and A(a) is an function 

such that f(A(a), a) = 0. It can be proved that in a properly chosen neighborhood of 

a = a0, (a - ao)A(a) is bounded. A corollary of this result is that in the expansion 

(2.2), the number of terms with negative exponents must be finite. 

If a(ao) 0, then none of the functions of the form (2.2) have negative power 

terms. It seems possible that the singularity D (ao) = 0 will give rise to fractional 

exponents of the form (2.2). But this is not always the case. Let us examine some 

examples. 

Example 2.1 Let f(A, a) = (A - a)2. Then D(0) = 0. In fact, D(a) 0. There 

are two identical roots A = a for f(A, a) = 0. 
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Figure 2.1: Region R is replaced by r sheets of t-plane 

Example 2.2 Let f(A, a) = (A - a)(A + a). Then D(0) = 0 and 0 is an isolated 

singular point. There are two distinct roots A = a and A = —a for f(A, a) = 0. 

Example 2.3 Let f(A, a) = A2 - a. Then D(0) = 0 and 0 is again an isolated 

singular point. This time the solution functions are A = a112 and A = —a 112. 

The fractional exponents in the expansion of a solution function are due to the 

loss of the one to one correspondence between the a plane and the A plane. Let 

a0 be an isolated singular point. Let R be a closed disk centered at a = a0 with 

boundary circle C containing no singular points except a = a0. When the one to 

one correspondence is lost, there exists a finite integer r > 1 such that we can use 

the transformation a - a0 = t', and the transformation replaces the region R by 

a "pile" of r such regions (Figure 2.1), each one corresponding to a single-valued 

function A['](a), k = 1,.. . , r. They are called r branches of a set (or a. group) of 

solution functions. These r branches can be described by power-series expansions in 

(a - ao)h/T, known as Puiseux series: 
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= A, (a - ao) r + + A_i(a - ao) + AiGr,k(a - ao) +..., (2.4) 

where k= 1,... , r, j < I2 < ... are integers, and °r,k is one of the r-th roots of 

unity. Suppose the r functions A['I(a) share the same i - 1 coefficients A',... , A_1, 

while the i-th coefficients of the r functions constitute the r r-th roots- of A. We 

may say that the i-th coefficient is the first coefficient to split. The splitting can 

occur at the first position, i.e.,i = 1. When i > 1, however, pa,... , must be 

integer multiples of r. Note that in some monographs, the r branches of the same 

set together may be called one algebraic function. 

If a E R and a ao, then a is an ordinary point, and there are p distinct values 

of A corresponding to this a such that f(A, a) = 0. Therefore the sum of the numbers 

r for the different sets is p, the A-order of f(A, a). It is possible that a set has only 

one branch, i.e., r = 1. In this case, A(a) is an analytic single-valued function on R 

except possibly when a = a0. 

To illustrate various situations, let us look at some more examples. 

Example 2.4 f(A, a) = (A3 - a2)(A2 - a)., f(A, a) = 0 determines two sets of 

solution functions. One set has S branches given by A[kl = 8ka312, 9k 

k = 1) 2,3. Another set has 2 branches given by A a112 and A = --c 112. The sum 

of all different branches is 5, which is the A-order of f(A, a). 

Example 2.5 f(A, a) = (A - a)2 - a3. The two solution functions determined by 

f(A, a) = 0 are A[1] (a) = a + a312 and A121 (a) = a - They belong to the same 

group. The splitting of coefficients happens at the second term. 
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Example 2.6 f, a) = A3 - a2 - a3. Using the Newton diagram method introduced 

in the next section, we will see that the three solution functions given by f(A, a) = 0 

are infinite Puiseux series: 

k 23 1 
A (a)=Oka C15/3 +... 

2k7r 
where Gk=e 32, k=1,2,3. 

2.3 Newton's diagram I 

Suppose f(A, a) is a pseudo-polynomial in A of the form (2.1). The purpose of 

Newton's diagram is to successively compute all the expansions for A(a) in (2.2). 

The first phase will give all the possibilities for el, then calculate the coefficients for 

those values of el. The second phase will find all the values of E2 and their coefficients 

A2, and so on. 

Suppose the coefficients in (2.1) are written as 

ao(a) = bo(a - ao)C0 + 

(2.5) 

where bi 0 0 (unless a(a) 0), Ci ≥ 0 are integers, i = 1,.. . ,p. Then substituting 

(2.5) and (2.2) in f(A(a), a) 0 gives 

f(A(a), a) = (bo(a_ao)C0+...) 

+(bi(a - ao)C1 + . . .)(A1(a - ao)61 +...) 

+... 

+(b-1(a - ao)CP1 + . . .)(Ar'(a - 

— ao)CP + . . .)(A(a - ao)P 

ao)(P_1)61 +...) 

(2.6) 
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Therefore the coefficients of all powers of (a - ao) in f (A (a), a) must vanish, 

in particular, the coefficient of the smallest power. The only possibilities for the 

smallest power are: Co, C1 + el, C2 + 2Ej, ..., and C +pe. If a, (a) 0, there is not 

a candidate like Ck + k61. 

For the sum of the coefficients of the smallest power of (a - ao) to cancel mutually, 

it is necessary that at least two of them are present. Hence E, must satisfy: 

(1) Ck+kfl ≥ C+iei,k= l,...,p, for some i, 

(2) There is j i With C +ii = qj +i. 

To find the values for el that satisfy these two conditions we can use a diagram. 

Plot the points A0 = (0, Co), A1 = (1, C1),. . . , A, = (p, C) on the Cartesian plane 

(Figure 2.2 is an example of such a diagram). Geometrically, Condition (2) gives 61 = 

tan r, where r is the angle formed by AjAj with respect to the negative horizontal 

axis. So tan'r = —slope(AA) = 3i Condition (1) means that all the other 

points should lie'above the line AjAj, since the value Ck + k tan r is exactly the 

y-intercept bf the straight line through Ak defined by the angle 'r. (There is also a 

technical requirement, that if the term ak(a)A' in f(A, a) is missing, i.e., ak(a) 0, 

then Ak cannot be viewed as (k, 0), and must be disregarded.) Connecting all AA 

for which conditions (1) and (2) are satisfied, we obtain Newton's diagram. By this 

construction, we know that Newton's diagrams are convex. 

Newton's diagram consists of three sections— the descending section, the horizon-

tal section and the ascending section. The descending section yields small solutions, 

i.e., solutions which go to zero as a - a0. The horizontal section yields the so-

lutions A = A(a) for which A(ao) = A1, i.e., the leading terms of these series are 
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nonzero constants. The ascending section yields the solutions A = A(a) for which 

lim ao A(a) = 00, i.e., their expansions include negative powers. By Theorem 2.1, 

the ascending section starts from the point (q, 0), where q is the A-order of f(A, a) at 

a0. As in Figure 2.2, A0 to A3 is the descending section, A3 to A4 is the horizontal 

section, and A4 to A5 is the ascending section. 

The slope of each segment of Newton's diagram gives a possible value of 61. To 

find the values of A1 for this e, we collect powers of a - a0 from the left hand side 

of Equation (2.6), and equate the coefficient of the lowest power of a - ao to zero. 

This equation involving A1 is called the determining equation (D.E.). (In [VT], the 

determining equation is called the defining equation.) 

To find the higher order terms in the expansions of A(a), we substitute (2.2) with 

known A1 and el, and unknown A2 and 62 into (2.1). Using the same approach we 

can obtain the second lowest terms in the expansions. Continuing the process, we 

obtain an expansion for each of the p solutions of f(A, a) = 0. 

Example 2.7 Let f(A,a) = a2 + 2a3 - (a + a2)A + aA2 + A3. Without loss of 

generality, we can always suppose a0 = 0, since the transformation a' = a - a0 

moves a0 to the origin. 

With A0 = (0, 2), A1 = (1, 1), A2 = (2, 1), A3 = (3, 0), the diagram takes the 

form of Figure 2.3. 

So we see two possibilities for el from the diagram: 61 = 1 or el = 

If el = 1, A(a) has the form 

A(a) = Ala +... (2.7) 
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C2 + 2tan 
C5 + 5 tan T 

Ci•+ tan 
C3 + 3tan 

A0 

0 1 

.7-
A3 A4 

2 3 4 5 

Figure 2.2: One example of Newton's diagram I 

2 

1 

0 1 2 3 

Figure 2.3: Newton's diagram for Example 2.7 
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To find A for el = 1, we substitute (2.7) in f(A, a): 

f a) = a2 - Aa2 + 2a3 - Aa3 + A2a3 + Ala  + (2.8) 

Making the coefficient of a2 in (2.8) equal to zero, we obtain the determining equation 

(D.E.) of A1: 1-A=O. SoA1=l. 

If el  , then A(a) = A a112 +: 

The D.E. of Al is: _Al+A3 0 and the nonzero solutions of the D.E. are: A, = 1 

and A, = —1. 

Thus we obtain three different solution functions starting with the terms 

= a+... 

A21 (a) = a1'2 + 

A31 (a) = —a'2 +... 

Example 2.8 Let f(A, a) = a + (1— 2a)A + aX2, a0 = 0. Since the coefficient of A2 

will vanish when a = 0, we expect some negative powers to appear in one expansion 

for A(a). 

The diagram for finding el is as Figure 2.4, which includes a descending section 

and an ascending section. Each section consists of one segment, and each gives one 

value of €: El = land e, = —1. 

The D.E. for 6,=1 is 1+A,=0. The D.E. for e= —1 isA,+A=0. So the 

coefficient A, = —1 for both cases. 

Continuing the procedure we have two solutions with the first few terms: 

= —a+2a2+3a3+... 

A21 = —a' +2+3a+... 
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2 

Figure 2.4: Newton's diagram for Example 2.8 

Theorem 2.2 Newton's diagram method gives all expansions of the p functions for 

f(A, a) of Theorem 

Proof: The procedure of Newton's diagram method looks for the expansions using 

only the necessary conditions. So if they exist, all of the expansions can be found by 

this method 

2.4 Special configurations of Newton's diagram I 

We shall now consider five special cases of the solution functions. They can be viewed 

as some more examples which are helpful for getting familiar with Newton's diagram. 

As in (2. 1), suppose f,a) = a0(a) + ài(a)A +... + a(a)AT). In addition, let 

a0 = 0, 0) # 0 and ) = 0 be a root of f(A, 0). Now ao(a), a1(a), ..., a(a) have 
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0 1 2 012 012 

Figure 2.5: Instances of f(0)0) = 0 

the form: 

ao(c) = boc 0 + 

al(q) = bioP1 + 

a(o) = bc' +.;. 

where bi 0 0 (unless a(o) 0), Oj are non-negative integers, and i = 1,. .. , p. 

Especially, CO > 0, because 0 is a root of f, 0) = 0. 

Case I, p = 2. * 

First observe that the origin A0 (0, 0) can never be in Newton's diagram. So 

the instances in Figure 2.5 can never happen. 

Since f(A, 0) 0, we do not need to consider the instances in Figure 2.6. 

Then there are left 9 possibilities (a) to (1) shown in Figure 2.7. We proceed to 

examine each of these 9 cases. 

I,(a), f(A, a) = (b2 + .. .)A 2 ,  .\ = 0 constitutes a double root of f, a) = 0. 
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0 1 2 01 2 0 12 

Figure 2.6: Cases of f(A, 0) 0 

I,(b), a) = (b1 + ...)A  + (b2 + . . .)A. Newton's diagram consists of only the 

horizontal section. This yields the solution function with constant leading term 

The D.E. ofA1 isb1A1+b2A=0, SOA1 = --. 

Hence f(A, a) = 0 has a solution of the form 

and also the solution A = 0. 

I, (c), f(\,a) = (b, ac, + . . .)A + (b2 + .. .)A2. The only segment in Newton's 

diagram yields the-exponent C1. One solution A(a) has the form 

A(a) = AiaC1 + 

b, The D.E. ofA1 isb1A1+b2A=0, So —u-. 
Hence f(A, a) = 0 has a solution of the form 

A(a) = _aC1 + 
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'1 2 

(?) 

012 

(d) 

1 2 

(g) 

012 

(b) 

1 2 

(e) 

(h) 

012 

(c) 

Figure 2.7: Newton's diagrams of Case I 
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and also the solution A = 0. 

I, (d), f(A, a) = (b1 + .)A + (b2aC2 + .)A2. The two solution functions in this 

instance are: 

A(a) = _ bI a_C2 + 

and A = 0. 

I, (e), f(A, a) = (bocP0 +...) + (b2 + .. .)A'.  Rom Newton's diagram, € = 

The D.E. of A1 is b0 + b2A = 0, so A = ±/—bo/b2, and the two branching 

functions are: 

A(a) = ±s/_bo/biaC0t2 +... 

I,(f), f(A,a) = (boaC0+. . .)+(b1+.. .)A + (b2 + - - .)A2. Rom Newton's diagram, 

= Co or i = 0. 

For el = CO, the D.E. is b0 + b1A1 0, and A1 = 

For = 0, the D.E. is b1A1 + b2A 0, and A1 = —b1/b2. 

The two solution functions are: 

A(a) = ._(bo/bi)aC0 +... and A(a) = —b1/b2 +. 

I,(g), f(A,a) = (b0aC0 + . .) ± (b1+ ...)/\ + (b2ad2 + . .)A2. From Newton's 

diagram, el Co or el = —C2. 

The two solution functions are: 

A(a) = _(bo/bi)aC0 +... and. A(a) = _(bi/b2)a_C2 + 

I,(h), f(A,a) = (boaC0 + ...) + (bia' + ...)A + (b2 + . . .)A2. From Newton's 

diagram, 6i = CO - C1 or ei = C1. 
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The two solution functions are: 

A(a) = _(bo/bi)aC0°1 +... and A(a) = _(bi/b2)aC1 + 

I,(i), f(A, a) = (boaco +...) + (biaC0/2 + . . .)A + (b2 + .. .)A2.  From Newton's 

diagram, € = . The D.E. is 

b0+b1A1+b2A=O 

Suppose the two complex roots 6f the D.E. are All and Al2. Then the two solution 

functions are: 

A(a) = A11a°°'2 +... and A(a) = Al2aC0/2 + 

Note that in this case, Co must be an even integer. If /\ 11 and Al2 are two differ-

ent roots, then the solution functions are independent, i.e., they belong to different 

groups, and they are analytic (by Theorem 2.4 in the next section). If All = Al2 is 

a double root, then there is still a chance that the two solution functions are two 

branches of one group, but the coefficient splitting does not happen at the leading 

term. 

Case II, f(A,a) = (boa +...)+...+ (bp +...)A, Co = 1, ap(0) 0. 

In this case p = q. Since a(0) 0 0, Newton's diagram has no horizontal and 

ascending. sections; Also, it is apparent from Figure 2.8 that 61 = 

The D.E. of A1 is b0 + bA = 0, and the p roots are A1,k = 9,k(— bo/b)", where 

&p,k = and (—bo/b) 1/p is the principle value of the p-th root of complex number 

—bo/b, k = 1,...,p. 
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P 

Figure 2.8: Newton's diagram of Case II 

The p branching solutions are X(a) = A1,kc'1 +..., where k  

Case III, CO = 2, a,, (0) 0,C = 1, and j < R, and only the points (0, 2), (j, 1) 

and '(p, 0) are plotted in Newton's diagram. 

We thus have 

f(A, c) = (boc 2 +...) +'... + (ba + . . .)A +...  + (b +.. .)A-"  

Newton's diagram takes the form of Figure 2.9. 

Hen El = or el= 

For € , the D.E. is b0 ±bA= 0. 

Denote the j roots by 

11,k = 0j,k(bO/bj) '1 , k = 1, . . . ,j. 

For el = the D.E. is bA + bA = 0. 

Denote the p - j nonzero roots by 

)'12,k = Ii.p) \1/(p-j) ifj/U k=1,...,p—j. 
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0 J 

Figure 2.9: Newton's diagram of Case III 

Then the branching functions of two groups are given by 

= A11,ka11 +..., k = 1,.. . 

= Al2,ka11j  

Case IV, Co = 2, a(0) 0, and only the points (0, 2) and (p, 0) are plotted in 

Newton's diagram. 

We thus have f(A, a) (boa2 + . . .) +... + (b + . . .)AP, and Newton's diagram 

takes the form of Figure 2.10. 

So, el = 2/p and the'D.E. is b0 + bA = 0. 

If p is odd, then the p branches constitute one group: 

A[kl(a) = Op,k(_bO/bp)hlPa2/P +..., k = 1,... 

If p is even, then the p solutions are divided into two groups, each of which 

consists of p/2 branches: 

= 9p/2,k(_bo/bp)21Pa21P +..., k = 1,... 

Al] 2 (a) = 9p,2,k (_ V. _bo/bp)21Pa21P +..., k = 1,. .. ,p/2. 
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2 

1 

0 P 

Figure 2.10: Newton's diagram of Case IV 

p 

Figure 2.11: Newton's diagram of Case V 

Case V, CO = 2, a(0) 0, p is even, p = 2j, and C = 1, only the points (0, 2), 

(j, 1) and (p, 0) are plotted in Newton's diagram. 

We thus have 

f(A, a) = (boa2 + . ..) +... + (ba + . . .)A +... + (b + .. 

and Newton's diagram takes the form of Figure 2.11. 

So, el = 1/j and the D.E. is = 0. 
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0 1 j q 

Figure 2.12: An example of Newton's diagram with three D.E.s 

Suppose A = i and X = q2 are two complex roots of the D.E.. 

If 771 5,4 i, then there are two sets of the solution functions, each of which has j 

branches: 

A 1 (c) = 11j ... , k= 1,... 

)Ekl(a) = +..., k  

If 'i = 172, then additional investigation is required. 

2.5 Determining Equations 

We shall elucidate a number of properties of the determining equations. 

Let us begin by considering an example of Newton's diagram with three D.E.s. 

In Figure 2.12, we observe that three segments determine three possible exponents 

of the leading terms in the expansions of solution functions. Let us call them , el 
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and €. They are respectively the absolute values of the slopes of the corresponding 

segments. 

It is clear that 

(2.9) 

Recall that one property of Newton's diagrams is that the graphs are convex. 

So in the descending section, the exponent given by one segment is less than the 

exponents given by the higher segments and bigger than the exponents given by the 

lower segments. 

Suppose the segment with slope —el has (i, G) and (i, c) for end points, and 

passes through the point (k, Gk). 

So 

Or 

I' 

We now compute the D.E. for 6i. 

If we substitute A(a) '= )tja +.. . into the equation f(A, a) = 0, then the smallest 

power of a in ifa)must be C+ 1i = Ck+ ell k =Y3+61j: This is because, except 

for the terms which have the corresponding points on Newton's diagram, the other 

terms- in f(A, a) are higher power terms. Suppose- (h, ch.) is a point on the segment 

from (0, Co) to (i, Ci), and (1, C1) is a point on the segment from (j, C) to (q, 0). 

So (2:9) implies that 

C, C3 C — Ck Ck — Cj 

L7 i k  3—k 

  >6i>  
i — h 1— j 
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Or 

Ci+Eli < Ch +61h 

C+€1j < C,+Ell . (2.10) 

The geometric meaning of the values Ch + E1h, C + Eli, C + Eij and C1 + Eu 

(compared with Figure 2.3) can explain the inequalities in (2.10) too. 

Hence the D.E. for el is 

b)4 + bkA + bA = 0. 

There are i zero roots of (2.11) which can be explained by the fact that among 

all the solutions, i of them start with terms higher than a. 

There are 3' - i nonzero roots of (2.11). If these roots are simple, then they give 

the first coefficients of the expansions of j - i different solutions A (a). If some roots 

are multiple, we continue the investigation for the second coefficients. 

In this example, each determining equation has as many nonzero roots as the 

length of the projection of the particular segment of the diagram onto the X-axis. 

Together, the number of the roots of all determining equations is equal to the A-order 

of f(A, a) (counting multiplicities). By Theorem 2.1 (Existence Theorem I), we know 

that the total number of solution functions determined by f(A, a) = 0 is equal to 

the A-order of f(A, a). And Theorem 2.2 shows that each of leading coefficients in 

the expansions of these solution functions is one root of a determining equation. 

Since the number of the nonzero roots of all the D.E.s is equal to the number of the 

solution functions (counting multiplicities), so there is a one to one correspondence 

between the nonzero'roots of determining equations and the first coefficients in the 
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expansions of the solution functions. We can write this result as (see Section 15 of 

[BL]): 

Theorem 2.3 The set of nonzero roots of the determining equations determines the 

first coefficients in the expansions of all nonidentically zero solution functions of 

f(A,a) 0. 

Another property of the determining equations is included here in a theorem 

without proof (see sections 2.4 and .2.5 of [VT]). 

Theorem 2.4 Suppose A is a simple root of the determining equation for el = 

s and r are integers and a is prime to r. Then all the exponents in the expansion 

for )(c) starting from A1c/' are integer multiples of 1/r. In other words, r is the 

common denominator of the exponents in the expansion. 

The next example shows that the condition that A is a simple root is necessary 

in Theorem 2.4. 

Example 2.9 fc7, ) = •4a2 - 7 c + 4cA + A2 (A + 2a2 - a. The D.E. for el = 1 

is 4 + 4A1 + A = 0. So A1 = —2 is a double root. It turns out that 2 = , where the 

denominator 2 is greater than .1. 

2.6 Existence Theorem II 

More generally, consider a function f(A, a) which is analytic in A and a, f(A, ao) 0 0. 

Let A = A0 be a zero of f(A, ao) of multiplicity m. 

Lemma 2.5 In a neighborhood of A0, the total number (counting multiplicities) of 

A-zeros of f(A, a) for a in a neighborhood of a0 is M. 
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Proof: Since A0 is an isolated zero of f(A, ao), there exists a deleted neighborhood U 

of A0 such that for A E U, f(A, ao) 0 0, and there exists a circle r in U around A0 such 

that min lf(A, ao) I= €> 0. Now the continuity of function f(A, a) on a means that 

fore, there exists aneighborhood V of a0 such that if a e V, If(A,a)—f(A, ao) I <e. 

Consider f(A, a) and f(A, ao) as functions of the single variable A. By Rouche's 

Theorem, we can conclude that the multiplicity m of A0, which is the only zero of 

f(A, ao) inside r, is equal to the total number of A-zeros of f(A, a) inside F for a E V. 

Theorem 2.6 (Existence Theorem II) Let f(A, a) be a function depending an-

alytically on complex variables A and a. Suppose f(A, ao) 0 0 and A0 is a zero of 

f(A, ao) of multiplicity m. Then for A in a neighborhood of A0, and a in a neighbor-

hood of a0, there exist m functions of the form 

A(a) = A0 + A1(a - ao)61 + 1\2(a - ao)€2 +... (2.12) 

such that f(A(a), a) 0, where 0 < 61 < e2 <... can be rational numbers, and 

Al, A2,... are all different from zero. 

Proof: For A in a neighborhood of A0 and a in a neighborhood of a0 ihe solution 

of f(A(a), a) = 0 are continuous functions. By Lemma 2.5 the number of these 

functions A(a) is m. For each of the A(a), a0 is not a pole and A(ao) = A0. Thus by 

Theorem 2.2 of [VT], each of the functions has the form (2.12). 

The underlying analysis and the connection between the Existence theorems I 

and II are given by the Weierstrass preparation theorem (Theorem 3.10 of [M], for 

example). The theorem says that in a neighborhood of A0 and a neighborhood of a0. 

f(A, a) = f, (A, a)g(A, a) (2.13) 
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where g(A, a) is analytic at (A0, ao), g(Ao, ao) 0, and f, (A, a) is a polynomial in 

A, with A-order m, i.e., 

f1(A, a) = ao(a) + a1(a)(A - A0) + . . . + am_i(a)(A - ))m1 + (A - 

where a(ao)=O,i=0,1,...,m-1. 

By Theorem 2. 1, f, (A, a) 0 determines m functions of the form (2.12). Since 

the solutions of equations f(A, a) 0 and f, (A, a) 0 are identical, these m func-

tions are the solutions of f, (A, a) 0. 

Corollary 2.7 Let f(A, a) be a function depending analytically on complex variables 

A and a. Suppose f(A, ao) # 0 and A0 is a zero of f(A, ao) of multiplicity m. Let 

g(A) be a function which is analytic at A0 and g(Ao) 0 0. Then f(A, a) = 0 and 

g(A)f(A, a) = 0 have, the same in solutions A(a) of the form (2.12) in a neighborhood 

of ao. 

Proof: Since A0 is a zero of g(A)f(A, ao) of multiplicity in, so by Theorem 2.6, 

there are m and only m solutions A(a) such that g(A)f(A, a) = 0. However, the 

m solutions A(a) of f(A, a) = 0 are solutions of g(A)f(A, a) = 0 too. Hence the 

solutions for f(A, a) = 0 and g(A)f(A, a) = Q coincide. 

2.7 Newton's diagram II 

Although the polynomial f, (A, a) in (2.13) is uniquely determined by the Weierstrass' 

preparation theorem, it is not needed in explicit form. However, the m solutions A(a) 

can be found from Newton's diagram directly constructed by f(A, a). 

Let the Taylor expansion of f(A, a) at (A0, ao) be 
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af 1 D2f f(,a) = 

1  52f  
a 

1 ô2f  
+ 32 (Ao,ao)(a - ao)2 + 

+... 
CO if 

= — (Ao,ao)(a — cio) 

00 
1 

ia&aA 

11 ô12f 
+() 2i!8&8A2 00) (Ce - co))(A - 

00 

2 

+... (2.14) 

If T   Now let us draw a picture. n 8CekaA/ (Ao, co) h 0, we can plot a point (h, k) on 

the Cartesian plane (Figure 2.13 is an example of such a diagram). Note that since 

f(A0, co) = 0, if the point (0, i) is on the graph; then i > 0. Also, if is a zero 

of f(A, ao) of multiplicity m, then (m, 0) is on the graph. As in §2.3, we are only 

concerned with the point (h, k) such that k ≤ k' for all the points (h, k') on the 

diagram with the same h. With h ≤ m, these points constitute the extremal part of 

Newton's diagram. In other words, they are the lowest points on each vertical line 

before and including the line h = m (the points with circles in Figure 2.13). 

By the same reasoning used in §2.3, among these extremal points only the pair 

which have other extremal points lying above the line passing through the pair can 

determine an exponent in the expansion. The collection of such pairs is called the 

essential part of Newton's diagram (the points with crosses in Figure 2.13). 
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k 

(0,n) .  

(0,0) 

.  

. . . 

Figure 2.13: One example of Newton's diagram II 

An easier way to find the essential points is to rotate the vertical axis couiiter-

clockwise around the extremal point (0, n) until it meets the first extremal point. 

Then rotate about the lowest extremal point on it until it meets a new extremal 

point, and so on. All the extremal'points touched by these rotating lines, including 

the points (0, n) and (m, 0), constitute the essential part (as illustrated in Figure 

2.13). The sum of the terms in fA, a) corresponding to the extremal part is called 

the extremal part of the function f(A, a). Similarly, we have the definition for the 

essential part of the function f(A, a). 
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Remark 2.7.1 Without loss of generality, it is assumed throughout that a0 = 0. 

Note as well that the transformation A' = A - A0 shifts A0 to the origin of the A-

plane, so we can also assume A0 = 0. But to avoid the ambiguity that zero is referred 

to A0 or a0, we remain the notation A0. 

Remark 2.7.2 The terms in (A - A0) with higher order than m in (2-14) play no 

part in Newton's diagram method II. In a deleted neighborhood of ao, there might 

be some functions with ceo as a pole. However, Newton's diagram II does not take 

them into consideration. Instead, Newton's diagram II only has a descending section 

which determines m solutions A(a) such that lim.. 0A(a) = A0. We call them small 

solutions (as in [N], [LN1], [LN2] and [LNS], where the descending section is called 

the falling part). 

Theorem 2.8. Let f1(A, a). and f2(A, a) be two functions which areanalytic at (A0, 0). 

If the eseitial parts of fi(A, a) arid f2(A, a) coincide, then f1(A, a) = 0 and f2(A, a) = 

0 have the sam.e leading terms •n their small solutions. 

Proof: If the essential parts of f, (A, a) and f2(A, a) coincide, then the essential 

páts'fNecvton's diagrams for the two functions are the same. This gives that the 

exponents of the leading terms of their small solutions A(a) are the same. Then 

since the terms corresponding to the essential parts of the diagrams in fi (A, a) and 

f2(A, a) coincide, the determining equations for two functions coincide, and they give 

the same solutions for the coefficients of the leading terms. 

Suppose the m small solutions of function f(A, a) have the form 

A=Ao+A1a1+... 

0. 
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In fact, the essential part of f(A, a) also determines the determining equation for Al, 

which has m solutions. 

Example 2.10 Let 

f(A,a)=A2+A3+ae>', A0=O. 

By Corollary 2.?; since is analytic at 0, instead of treating f(A, a) directly, it is 

the same to look for solutions for 

= A2+aeA 1 lA 

= A2 \2 

The essential part of this function is A2 +a. Suppose A = A,a6' +.... Hence el = 

the D.E. for A, is ) + 1, so A, = ±i. f(A, a) = 0 has two small solutions: 

A(a) = ia"2 +... and A(a) = —ia"2 +... 

2.8 Conditions for analyticity 

In this section, we shall give two sufficient conditions for the solution function A(a) 

of f(A, a) 0 to be analytic at the origin. 

Theorem 2.9 Let f(A, a) be analytic at (A0, 0) and A0 be a zero of f(A, 0) of mul-

tiplicity m. Suppose the Taylor expansion of f(A, a) at (A0, 0) is: 

00 00 

f(A,a) = ) (2.15) 
i=1,j=O 

If the following conditions hold: 

i=m 
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1 b01 = b02 = ... = bO,m_2 = b,m _i = 0, bm 0, 

bil = b12 = ... = bl,m ._2 = 0, 

bm2,1 = 0, 

All is a simple root of the D.E. of A1, 

then there is at least one solution function determined by f(A, a) = 0, 

A(a) = A0 + A11a + 

which is analytic in a neighborhood of a = 0. 

Proof: By Newton's diagram, Condition 1 guarantees that el = 1. By Theorem 2.4, 

Condition 2 implies that A(a) = A0 +,\,,a ...  is analytic in a neighborhood of a = 0. 

Now if the condition 2 is relaxed so that All is a multiple root of the D.E. of A1 

with multiplicity s > 1, then there are s solutions of f(A, a) = 0 of the form 

A(a) = A0 + A11a + A2a62 +... (2.16) 

To investigate what is Newton's diagram for €2 and what is the D.E. for A2, we 

use the transformation 

A=A—A0—A 11a. 

Equivalently, 

A - A0 = + A11a. 

Substitute (2.17) in (2.15), we have 

00 00 

f(A, a) = + A11a)a + ) b0( + Allay = f(, a). 
i=1,j=0 i=m 

(2.17) 
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If f(A, a) also satisfies condition 1, then 

(bomam + bo,m+iam+l +...) 

+(bi,m_iam_l + bimatm + . . .)( + 

+(b2,m ,2am_2 + b2,rn_ia + . . )(2 + 2A11aA + Al  

+(bm_i,ia + bm_i,2a2 + .)(' + (m - 1)Aiiam 2 +... + A-iam_i) 11 

+(bmoa + bm ia + ...)(  + m AiiaAm_l +... + Aam) 

= (am + bo,m+iam+i -...) 

+(bl, rn-i rn_ia 

+(b2,m_2arn-2 + b2,rn_iarn_l + • ) 2 

+(bs,rnsa + bs,m_s+lamT8+l + ) S 

(2.18) 

Suppose the D.E. of A1 is 

f0(A1) = born + bi,rn_1A1 + b2,rn_2A +... + brnoAr 

= (Al - A11)8g(A1) = 0 

where g(A11) 0 0. Then, in (2.18), 

bom = born + bi,rn_1A11 + b2,rn_2Ai + . .. + ArnoAii = f0(A11) = 0 

bi,m _i = bi,rn_i + 2b2,m_2A11 +... + mbrnoA' = f(A11) = 0 

b2,rn_2 = f'(A11) = 0 
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m+s 

fc(Aii) 0 0. 

m - S 

S 

Figure 2.14: Newton's diagram for 62 

Define Condition 3 as: 

bo,m+i = bO,m+2 = ... = bO,m+s_2 = b,m+s_i, bo,m+s 0, 

bi,m = bi,m+i = ... = bl,m+s_3 = 0, 

bs_2,m_s+3 = 

If condition 3 is satisfied, then Newton's diagram for 62 in (2.16) (Figure 2.14) shows 

that 62 = 2. And the D.E. for A2 may be written as 

\ 
1O,m+s + U1,m+s.2/2 +... + 1's-1,m—s+2"2S-1 + - 

with the possibility that some of bi,m+s_2i, i = 1,.. . , s - 1 vanish. 

Additionally define Condition 4 as: A21 is a simple root of the D.E. of A2. 

Now Theorem 2.9 can be refined to give the following theorem. 
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Theorem 2.10 Suppose All is a multiple root of the D.E. of )., with multiplicity 

s > 1. If conditions 1, 8 and 4 hold, then there is at least one solution function 

determined by f(A, a) = 0, 

A(a) = )o + )ua + A21a 2+ 

which is analytic in a neighborhood of a = 0. 



Chapter 3 

Perturbation Theory for Analytic Matrix 

Functions: The Newton diagram method 

3.1 Introduction 

Let a) be a matrix function with values in the n x n complex matrices depending 

analytically on complex variables )¼ and a. The value A(a) such that detL(A(a), a) = 

o is called an eigenvalue function of matrix function L(, a). Therefore it is natural 

to use Newton's diagram to investigate the eigenvalue functions of analytic matrix 

functions. It previously appeared in the book of [B]. A significant development 

of this method was given by Langer, Najmán and Veselic in their "remarks" ([N], 

[LN1], [LN2], [LN3], [LNV]). The rhain part of this chapter is only rewriting the 

basic ideas in [LN1] and [LNV], using the notations which are unified with the works 

of Lancaster([L3], [LMZ2]). The applications of the general theory to the semisimple 

case (section 3.6) and matrix polynomial (section 3.7) are new. 

3.2 Leading terms of the eigenvalue expansions for a special 

simple form 

In this section we examine the leading terms of the eigenvalues for a special g x g 

matrix function 

L(A, a) = DI (A) + aH 

40 
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where D1(\) = diag((A_Ao)m1, (A_.)4rn2,. , 0 <rn1 ≤ m2 ... <m9 

and H is a constant matrix H = (h). 

Without loss of generality, we need to discuss this special form only. This will be 

seen in the sequel. 

We need to introduce some notations which basically are inherited from [LN1]. 

We divide m1,. . . , m9 into k groups of mutually equal m, the jth group containing 

n elements: 

MI = ... = m 1 <m 1+ = ... = m 12 <... < mfll+...+flk_l+1 = ... = m9 

and define ftj = n1+. . .+n, j = 1,, . . , k. So obviously fik = g, and 0 <mn1 <m 2 < 

<mflk are k different values of m. And define k.values ej = n1m 1 +... 

j=1,...,gSoe9=m, where m:=m1+...+mg* 

Also, if 1 i1 <i2 < <i3 ≤ g, we denote byH(i1,.. . ,i) the determinant of 

the matrix obtained from H by deleting the rows and, columns with indices i1,. . . , i. 

So H(ii,.. .,ii) is a minor of H of orderg — j. 

As prparation, we need a lemma. 

Lemma 3.1 For a g x g diagonal matrix D = diag(di, d2,.. . , d9) and a g x g matrix 

H=(h), 

det(D+H) = detH+ 
i=1 

dH(i)+ d1d2H(i1,i2) 
1≤ii<i2≤g 

d1 . . . d9_1H(i1,.. . 
1≤ji< ... <i 

-i-d1 ... d9 
-1≤g 

Proof. It can be proved by induction, only the description is tedious. 

(3.1) 
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Another point of view is to regard det(D + H) as a polynomial of variables 

d1,. .. , dg, by determining the coefficients of each term of the polynomial, (3.1) can 

be proved. For example, what is the coefficient of d1d2? By the definition of the 

determinant, obviously it is H(i1, i2). Giving all the possible terms of the polynomial 

det(D + H), (3.1) is proved. 

Before we come to the general result, it may be convenient to specialize more to 

an example. 

Example 3.1 Suppose 

D, (,\) = diag((A - A0), (A - Ao), (A - Ao)2, (A - Ao)2, (A - A0)2, (A - A0)3) 

So m1 = m2 = 1, m3 = m4 = m5 = 2, m6 = 3. We have three groups of m, so 
5 

k-3. Andg=6, m=E..1mj= 11. Also, e1=rn1+m2=2, e2—Em=8, 

and e3 = m = 11. 

By Lemma 3.1, 

det(D,(A) + oH) = c6dtH + a5(A - Ao)(H(1) + H(2)) 

+a 1('\ - Ao)2(H(3) + H(4) -1- H(5)) + a5(A - \0)3 H(6) 

+a 4(A - Ao)2H(1, 2) + a4(...) 

- Ao)4(H(1, 2,3) + H(1) 2,4) + H(1, 2,5)) + a3(...) 

+a2(A—Ao)6(H(1,2,3,4)+H(1,2,3,5)+H(1,2,4,5))+a2(...) 

+a(A - Ao)8(H(1, 2,3) 4,5) + a( ... ) + (A - A0)". 

In the equation above, the brackets with the dots denote the terms with the expo-

nents of (A - A0) higher than the terms ahead. So they play no part in Newton's 
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d 
6 

5 

4 

3 

2 

1 

ev.tL 

H(2) 

2) 

5 

H(1,2,i) 

3≤ii<z2_5 

H(1,2, ii, i2) 

1,2,3,4,5) 

1 2 3 4 5 6 57 8 9 10 11 
m1+m2=2 Emi=8 m=11 

i=1 
Figure 3.1: Newton's diagram for Example 3.1 

diagram. If the coefficients of the terms in the essential part of det(Di (A) + aH) do 

not vanish, namely, if detH 0 0, H(1) +H(2) 0 0, H(1, 2) 0 0, E5=3 H(1, 2,i) 0 0, 

E3<1<2<5H(1,2,ii,i2) h 0, and H(1,2,3,4,5) =h 0, then Newton's diagram of 
it' 

det(D(A) + aH) takes the form of Figure 8.1. 

Generally, consider D1(A) = diag((A_Ao)m1, (A_A0)m2, •., (A_Ao)m9). Since m 

are ordered from small to big, on Newton's diagram of det(D1 (A) + aH), the turning 

points (including the end points) correspond to the terms of a, &' (A - Ao)d1, 

a9Th2(A - A0)e2, ..., (A - A0)m. And the coefficients of these terms are: 

detH,H(1,. .. ,ñi),H(1,. . . ,n2),. ..,1. 

Define zo det H, A1 = H(1,... , n), j = 1,.. . , k - 1. So Lj is the coefficient of 

the term g-ñj (A - Ao)ei. Note that the coefficient of (A - A0)' is always 1, so if all 
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of I..j. are not equal to zero, i.e., 

• k-1 0, (3.2) 

then on Newton's diagram of det (DI (A) +aH) there are k, the number of the groups 

of m, segments. Each segment has the slope of -i-. Especially, if 0, 

there is one segment with slope of -- on the diagram, that means there are Mfij 

eigenvalues starting from: 

A°(a) = + +..., 0 = 1,... njmn,. (3.3) 

And ), 0 = 1,... , njmfi, are njmnj roots of the D.E.: 

Ij-1 + A1 
ftj M- 

H(1,. . H(1) . . . ,n_1,i1,i2) 

nm 
+ ...+A1 L=0. (3.4) 

3.3 Local Smith normal form 

The first part of this section is quoted from [L3]. Let A(A) be an n x n analytic 

matrix-valued function of a complex variable A. Suppose detA(A) does not vanish 

identically. Then a value A0 such that detA(Ao) = 0 is defined as an eigenvalue 

of matrix function A(,\). There are two important multiplicities associated with 

A0. First, the algebraic multiplicity, denoted by m, is the multiplicity of A0 as a 

zero of the characteristic function detA(A). Then the geometric multiplicity of the 

eigenvalue A0 is the dimension of the null space, or kernel K of the matrix A(Ao) and 

is denoted by g = dim/C. When m = g = 1, A0 is said to be a simple eigenvalue of 

A). In general, m ≥ g and , to see that inequality might hold, just consider n = 1 
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and A(A) = (A - Ao)P, for integer p> I. Here m = p and g = 1. When m = g, the 

eigenvalue Ao of A(A) is said to be .semisimple. Obviously, a simple eigenvalue is also 

semisimple. 

The main features of the local Smith normal form are quoted in the next theorem 

without proof. (See chapter 1 of [BGR]) 

Theorem 3.2 Let A(A) be a matrix function analytic at an eigenvalue A0 and detA(A) 

0. Then there are matrix functions E(A), F(A) which are analytic and nonsingular 

in a neighborhood of A = A0, and such that 

(A - 

F(A)A(A)E(A) = 
(A - Ao)m9 

1 

1 

=D(A) (3.5) 

- 

where 0 <m1 m2 ≤ ... ≤ m9 are integers uniquely associated to A0 and A(A). 

In Theorem 3.2 D(A) is called the local Smith normal form of A(A) at A0. The 

positive integers m1,... , m9 are known as the partial multiplicities of A0 as aneigen-

value of A(A). Taking determinants it is seen immediately that mj = m. When 

A0 is semisimple, m1 = ... = mg = 1. 

Equation (3.5) can be used to generate a basis for JC, the kernel of the matrix 

A(A0). The vectors in IC are called eigenvectors of A(A) corresponding to eigeniralue 

A0. Let uj be the jth unit coordinate vector and, for j = 1, 2,.. . , g, denote ej = 

E(Ao)u, i.e., the jth column of E(A0). Then {ei, . . . , eg} form the required basis. 



46 

This is because detF()'..o) 0 0, so A(AO)E(A0) = F(A0)-'D(A0), thus A(Ao)e = 0, 

e E K, j = 1,... , g. On the other hand det E(Ao) 0, so e1,... , e9 are linearly 

independent. Also g = dim IC. Hence, .E(A0) can be used to construct a basis of 

the eigenvectors corresponding to A0. Similarly, after taking conjugate transposes in 

(3.5), it is found that vectors f := F(Ao)*u, j = 1, 2,.. . , g, i.e., the first g rows of 

the conjugate of F(A0), form a basis of eigenvectors for /C' := ker(A(.).o)*). 

There is a practical method to calculate the local Smith normal form D(A) and 

the associated E(A) and F(A), namely, by means of equivalence transformations. 

This is a natural extension of the auss rediction process for a constant matrix. 

First we define the elementary row and column operations on a matrix function 

which is analytic at A0. They are: 

1. Multiply any row (column) by a function a(A) which is analytic at Ao and 

a(Ao) 0 0. 

2. Interchange any two rows (columns) 

3. Add to any row(column) any other. row. (column)'multiplied by a. function b(A) 

which is analytic at A0. 

Then a finite sequence of elementary operations is called an equivalence transfor-

mation. It is easy to verify that performing an elementary row operation is equivalent 

to premultiplication of an appropriate matrix and that postmultiplication by an ap-

propriate matrix produces an elementary column operation. 

Now we use an example to illustrate the process of obtaining the local Smith 

normal form by means of equivalence transformation. 



47 

Example 3.2 Let 

A(A) = 
2A2 2A+1 

2A-1 2A2 

Since detA(.X) = (2A2-1)2 = 4(A+1/V')2.-1/v')2, AU = 1/,•'2 and A0 = —i// 

are two elgenvalues of A(A). We are going to show how to obtain the local Smith 

normal form at A0 = i// below. An operation written above the arrow presents 

an elementary row operation, while an operation written below the arrow presents 

an elementary column operation. 

A(c) * XR1 [ 2A 2+1 1 2+-2A2 

2A - 1 2A2 I I 2A - 1 2A2 

(1-2A)xR1+R2 

2(/A+1)2 xC2 

1 2+-2A2 

0 2A2+(1-2A)(2+-2A2) 

•11 0 

0 2A + (1 - 2A)(2 + I - 2A2) 

1 0 

A 1'2 
V2-

A 12 

C1C2 

0 

0 1 

0 A 1\2 

1 0 

=D(A) 

E(A) and F(A) are the products of the sequence of matrices corresponding to the 
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row and column operations respectively. 

F(A) = 

E(A) = 

1 

0 

01 

10 

1-2A 
A 

1 
A 

1 0 

1-2A 1 

2A ] 
—1 

-2A-1+2A3 1 
= 2(v'A+1)2 

A  
2(v'A+1)2 

And the first column of 

A0 = . The first row of F(), 

34 The essential parts 

I 

1 —1 

01 

1 0 

A  
' 2(A+1)2 

1/A 0 

01 

0 1] 

10 

I • 
— is an eigenvector of A(A) at 
1 

8/ 

[\ -21 

[ is an eigenvector ofTA 2A 

Let the analytic matrix function L(A, a) have the Taylor expansion at (A0, 0): 

L(A, a) L(A0, 0) + (Ao' 0)(A — A0) + j(Ao 0)(A A0)2 + 

aL 132L 
+—(A0, 0)a + aAa (A0, 0)(A — Ao)a +... 

15L 2 
+-2! aa (Ao,0)a +... 

CO 

i,j= 
( - Ao)aL, 

(3.6) 

(3.7) 
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where Lij = (i+j)' '(A0, 0). Note that in (3.6) the first line is the expansion for 

L(A, 0) and the first column is the expansion for L(A0, a). Let Ao be an eigenvalue 

of L(A, 0), i.e., det(L(Ao, 0)) = 0. We write K = kerL0 and K' = ker(L), where 

Lo := L00. Suppose the geometric multiplicity of A0 as the eigenvalue of L(A, 0) is g, 

i.e., dimK = g. Of course rankL0 = rankL, so dim/C' = g. 

Another useful notation is: for an n x n matrix M, if we choose bases {ek} for 

IC and f fj Ig for C, then we can define a matrix 

[ft,.. . ,fg]*.M[ei,. . .,e9] (3.8) 

where [e1, . . . , e9] and [fi,.. . , /9] are n x g matrices constructed by column vectors 

g and ft,.. . , f respectively. Obviously, this matrix depends on the choice 

of basis vectors, if we choose a different pair of bases B2 = {e,. . . , e}&{f, . .. , f} 

in IC and IC respectively and write [M]2, = [fit... fF]*M[ .. . , e], then there 

are nonsingular g x g matrices U and V such that [M] = U[M]2,,V. But this 

difference is not important in the sequel and is suppressed in the notation. 

As defined in section 2.7, the essential part of function detL(A, a) is needed to 

determine the leading terms of the eigenvalue functions of L(A, a). In this section, 

it turns out that under some condition the essential part of detL(A, a) is the same 

as the essential part of det(D1(A) + aH), the special simple form in Section 3.2. 

Suppose L(A, 0) has local Smith normal form 

(A - A0)m' 

D(A)= 
(A - Ao)m9 0 

(3.9) 
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By Theorem 3.2, there are n x n matrix functions E(A), F(A) which are analytic 

and invertible near A0 such that 

F(A)L, 0)E(A) = D(A). 

Also, the first g columns of E(Ao) and F(Ao)* form bases for IC and K', respectively. 

Proposition 3.3 The solution functions A(a) for detL, a) = 0 and 

00 

det(D(A) + F(A)( E (A - Ao)aL)E(A)) = 0 
i=0,j=1 

are the same. 

Proof: Since E(A) and F(A) are analytic at A0 and detE(Ao) 0, detF(Ao) 0, by 

Corollary 2.7, the result follows. 

Now we write the Taylor expansion again at (A0, 0) for 

00 

i=0,j=1 

And partition and denote' it as: 

L(A,a) D(A) + 

0 

( 

In-g I 
- 

+a 
C11 (A, a) •G12 (A, a) 

- G21 (A, a) G22 (A, a) - 

(3.10) 

Note that L01 = F(Ao)L01E(A0) and the leading term of G11 (A, a) is [L01]. 

Define H = [L01]. It plays an important role in our discussion, as in [LN3], 

it is called the perturbation matrix. Divide the partial multiplicities of eigenvalue A0 

of L(A, 0) into k groups of mutually equal ones. Then we can make the definitions 

of Aj, j = 0,..., k - 1, for H as in Section 3.2. 
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Proposition 3.4 If . 0 (condition (3.)), then the essential parts of 

functions detL(A, a) and det(D1(A) + aH) are the same. 

Proof: Since 

detL(A, a) = det( + a 
Di (A) 0 [ G 1 C12 

0 1n. g [ G 1 C22 

= det DI (A) + aC11 0 + Di (A) + aG11 
(  

aG21 - aC21 

= det(Di(A) + aGii) + o(det(D1(A) + aGii)) 

= det(Di(A) + aH) + o(det(Di(A) + aH)) 

aC12 

aG22 
) 

(3.11) 

as a —+0. 

If condition AOAl . . - k-1 0 0 is satisfied, then the Newton's diagram of detL (A, a) 

is constructed by k segments with the end points (0,g), (nimn1, g-n1),..., (nm 1 + 

-. + njmn,, g— ñ),.. - , (m, 0). And o(det(D1(A) + aH) is the part standing above 

these segments on Newton's diagram. 

The condition(3.2): LOA . . . 0 is critical for us to reduce the general 

question to the form of D1 (A) + aH. The necessity is illustrated by the next example. 

Example 3.3 Consider 

L(A,a) = 

In this extreme case H = 0, condition (3.) is not satisfied. If H 0 and condition 

(A - A0) 
(3.2) is satisfied, for D1 .) = , we expect that Newton's 

a 

A0)2 a 

a 1+a 

(A—A0)2 
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3 

Figure 3.2: Newton's diagram for Example 3.3 

diagram is constructd by (0, 2), (1, 1) and (3, 0) (shown in Figui'e 3.2 by a thin 

line). But it turns out that the real Newton's diagram of detL, a) consists of points 

(1, 2) and (3, 0) (shown in Figure 3.2 by a thick line). 

3.5 Splitting properties 

Let )o be an eigenvalue of the unperturbed matrix -function L, 0) with partial 

multiplicities m1, M2... . , m. Existence Theorem II in Chapter 2 guarantees that 

there are numbers e > 0 and 8 > 0 such that, for jal < e, the spectrum of L(A, a) 
g 

in IA - Aol <8 consists of m = L mi eigenvalues A(a) which can be represented by 
i=1 

branches of several Puiseux series 

00 

A(a) = A0 + (3.12) 
k=1 

V = 1, 2,.. . , r, q,, are positive integers. The function .A(a) is an algebraic q,-valued 

function on a cut neighborhood of a = 0 (say lal <€, —r < arga 7r). It determines 
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q values of AI (a) and a llqv,namely 

j= 0,1,—, q —1 

To be consistent with section 2.2, here r is the number of the groups of branches, 

for each group of v, there are q,, branches of algebraic functions, and q is also the 

common denominator for the exponents in (3.12) (compare with equation (2.4)). 

In general, the only connection between the numbers {m} 1 and {q,} 1 is the 

equality 
r 

(3.13) 
i'=l 

As defined by Langer, Najman and Veseliá (see [LNV]), an eigenvalue A0 of L, 0) 

with partial multiplicities m1, m2,. .. , M. has the regular splitting property (or 

the RS property), if, for each mi there emerge from A0 (in the complex plane) m 

eigenvalues 4 1 (a) with Puiseux expansions for which 

A0 + Ai,iah/mi + o(IaIlImi) (3.14) 

holds as a 0, i = 1,2,... ,g, j = 1,2,...,m, and Aj,jj 0 0 whenever mi > 1. 

If, in addition, A],jj 0 for all i, j in (3.14), then there is a complete regular 

splitting at A0, we say that A0 has the CRS property. 

Returning to the Puiseux series (3.12), if we have the RS property and the CRS 

property, in addition to the equality in (3.13), we can also conclude that r = g and 

m 1 = qj, for i = 1,... , r. The only difference between the RS and the CRS properties 

is that for mi 1, the RS property admits the possibility that the coefficient of the 

leading term, Aj,jj in (3.14), is equal to zero. 
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As an example, we think of a scalar function f(A, a). Since ri = g = 1, the only 

partial multiplicity is the multiplicity m of A0 as a zero of f(A, 0). Write the normal 

form of f., a) as (see (3.10)): 

f, a) = (A - A0)m + jia + 

If m > 1, then the necessary and sufficient condition that A0 has the RS or CRS 

property is 0. If m = 1, then f(A, a) always has the RS property at A0, but for 

the ORS property, it is still necessary that fol 0. The configuration of Newton's 

diagram in this case is the same as case II, Section 2.4, where p is the multiplicity 

of A0 = 0. 

Now we write the primary result of this chapter as a theorem. 

Theorem 3.5 For an analytic matrix function L(A, a), suppose L(A, 0) has the local 

Smith normal form (8.9) at eigenval'ae A0. Let the perturbation matrix H = [Lo1]. 

Then a sufficient condition that A0 has the CRS property is 

If the partial multiplicities of the first group is equal to .1: 

m1 = ... = m 1 = 1, (3.15) 

then a sufficient condition that A0 has the RS property can be reduced to: 

Proof: First of all, by Proposition 3.4, condition L0L . . . k-1 0 0 is a sufficient 

condition that we can reduce the problem to the normal form det (Di (A) + aH) = 0. 
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Then as in the arguments in Section 3.2, we can see that it is also a sufficient condition 

for the CRS property. When condition (3.15) is satisfied, although L.o = detH = 0, 

the slope of the first segment in Newton's diagram has absolute value not less than 

one. We can say that A0 has the RS property. 

Notice that there is an important refinement in Theorem 3.5 to [LNV]. The 

condition (3.2) is a sufficient condition for the CRS property, not only for the RS 

property. 

3.6 The semisimple case 

If AO is a semisimple eigenvalue of L(A, 0), then m1 = ... = m9 = 1. So the group 

number k = 1, the condition (3.2) is reduced to 

AO =.detH 0. 

And Theorem 3.5 gives the following corollary. 

Corollary 3.6 A semisimple eigenval'ue A0 of L(A, 0) has the RS property. If also 

the perturbation matrix at A0, H = [L01],, is nonsingular, then A0 has the CRS 

property. 

Corollary 3.6 is illustrated by Figure 3.3. If detH 0 0, Newton's diagram is 

constructed by only one segment with end points (0, g) and (9,0) (shown in Figure 

3.3 by thin line). If detH = 0, it is impossible that the real Newton's diagram lies 

lower than the thin line (the thick line in Figure 3.3 is one example). Since the 

segment AC is steeper than AB and segment CD is steeper than AC, the exponents 
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g 

Figure 3.3: Newton's diagram for the semisimple case 

determined by AC and CD are greater than one. So in this case we still can say that 

A0 has the RS property. 

When detH 0 0, the essential part of Newton's diagram of detL(A, a) = Oin-

cludes points (0, g) and (g,0) definitely, and possibly points of (1,9 - 1), (2,9 - 

2),. . .,(g - 1, 1), depending on the coefficients of terms 

(A - Ao)a', (A - Ao) 2a 2, .. •. , (A - 

namely the values of 

H(i), EH(ii,i2),.. . 

1<i<g 1≤ii≤i2<g 

H(ii,. .. . (3.16) 

being zero or not. As in equation (3.4), for the eigenvalues 

A 1 (a) = A0 + Aia + ...,' (3.17) 
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A1, j = 1,. , g, are roots of the D.E.: 

AO + A1 ) H(i) +A 2 ) -: H(ii, i2) ±. 
li≤g 1≤il≤i2≤g 

+ A' H(ii,...,ig_i)+A 91 
1≤ii< ... <i9_i≤g 

= det(A1I+H)=0 

When detH = 0, since A0 has the RS property, we can assume the eigenvalue 

functions have the form 

A(a) = Ao+/2a+o(jc) (3.18) 

Now substitute (3.18) into (3.10), examine the block structure of it as in (3.11), and 

it follows that satisfies the equation 

det(1J + H) = 0 (3.19) 

If the values of (3.16) are not all zero, suppose the highest essential point of 

Newton's diagram is (j, g - j) (see illustration Figure 3.4). Then (3.19) is the D.E. 

of p, and it has  - j nonzero roots and j zero roots. If all the values of (3.16) are 

zero, the line given by (0, g) and (g, 0) is totally missing on Newton's diagram (see 

Figure 3.3). So strictly speaking, we can not call (3.19) the D.E. of p, but it is still 

admissible to say that values of in (3.18) are given by equation (3.19), because in 

that case (3.19) only has zero roots. 

The following theorem is now established and generalizes a result of [LN1] and 

[LN2]—after reduction to the semisimple case. There it is required that detH 0 

and, here this assumption is not made. 

Theorem 3.7 Let L(A, a) be an analytic matrix function of A and a with a semisim-

ple eigenvalue A0 at a = 0 of multiplicity g. Then there are exactly g eigenvalues 



58 

9 

Figure 3.4: Newton's diagram for detH = 0 

)J 1 (a), j = 1,2,... ,g of L(A, a) for which ALl(c). - as a -+ 0. These eigen-

values have Puiseux expansionsfor which (9.17) holds and there is a one-to-one 

correspondence between the coefficients Aij and the roots of equation (9.19). 

Example 3.4 

—1+-2a . a, 

a —A+A2 a+a2 

0 A2 - 
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There is an eigenvalue A0 = 1 at a = 0. By the technique of equivalence transforma-

tion, it is found that, with 

E(A) = 

10 0 

.0 A' 0 

0 0 A-

F(A)L(A, 0)E(A) = 

F(A)= 

1 0 —A 

010 

001 

A — i 0 0 

A—i 0 0 

0 01 

the Smith normal form. Bases for IC and IC' can then be formed from E(i) and F(i): 

1 

0 

0. 

Then 

and 

0 

1 

0 }, IC' = span { 
H = = 

det(I+H)= 

—2 0 

10 

—2 0 

1 ii, 

1 

0 

To find the determining equation directly from the definition, write 

L(A,a) = L0+(A— i)L,o+aLo1+... 

and substitute A(a) = 1 + pa + o(a) to obtain 

.0 

0 
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L(A, a) = 

Then it is found that 

001 

000 

001 

+ a + (terms of o(a)). 

det L(A, a) = ,u(4u - 2)a2 + o(a2). 

Thus, the determining equation is /t(/ - 2) = 0, and agrees with the equation of 

(3.19) 

Now using the results of Section 2.8, we can analyze the analyticity of the semisim-

pie eigenvalues. 

The condition 1 in Theorem 2.9 looks complicated, but it is naturally satisfied 

for a semisimple eigenvalue with detH 0 0. So when condition 2 is also satisfied, we 

have the following theorem. 

Theorem 3.8 Let )c be..a semisimple .eigenvalue of L(A, 0) with detH 0 0. Suppose 

also that All is a simple root of det(,\iI + H) =. 0. Then there exists a simple 

eigenvalue function 

A(a) = A0 + Ali ce + o(IaI) 

which is analytic in a neighborhood of a = 0. 

3.7 Eigenvalues for matrix polynomials 

Consider matrix polynomials in A: 

L(A, a) = Ao(a) + A1(a)A +... + A(a)A2' (3.20) 
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where Ao(a),... , A, (a) are analytic matrix functions in a. 

Denote 

L(A, 0) = A0 + AA + ... + ApAP, (3.21) 

where Ai = A(0) are n x n matrices with complex entries, i = 1,. . . ,p. 

In the previous sections of this chapter, we are using Newton's diagram II to 

discuss the eigenvalues A(a) in a neighborhood of A0 which is one eigenvalue of 

L(A, 0). Now by Newton's diagram I, for a matrix polynomial L, a), we can discuss 

all the eigenvalues A(a) starting from all the finite eigenvalues Ai of L(A, 0), not only 

these small solutions, but also the eigenvalues A(a) with negative exponents of a in 

the Puiseux expansion (2.2) defined in a deleted neighborhood of a = 0. 

FromTheorem 2.1, we obtain the following conclusion: 

If detA 0 0, there are rip eigenvalues of L(A, a) with the form 

At(c4=A+o(1), j=1, ... ,m, (3.22) 

as a -+ 0, where Ai covers all the eigenvalues of L(A, 0), mi is the algebraic multi-

plicity of A. We have E mi = np. 

If detA 0, and q = deg(detL(A, 0)), then there are q eigenvalues of L(A, a) of 

the form (3.22) defined in a neighborhood of a = 0, there are rip - q eigenvalues with 

the form. 

AEkl(a) = Ak1a 1 + o(cx(6k1 ), 6k1 < 0, k = 1). . . , np - q. 
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Example 3.5 

a A 
L(A,a) = 

2a-1 1+A2 

a 0 

2a-1 1 

01 00 

00 01 

detL(A,a) = a+(1— 2a)A+aA2 

0 A 
L(A, 0) = detL(A, 0) = A 

—1 1+A2 

A2 

A = 0 is the only eigenvalue of L(A, 0), and it has multiplicity 1. By Newton's 

diagram I, there are two eigenvalues of L(A, a) defined in a deleted neighborhood of 

a 0. They are 

 = —a+o(IaI), 

A[21 (a) = —a' + o(IaI'). 



Chapter 4 

Perturbation Theory for Analytic Matrix 

Functions: The generating eigenvector method 

4.1 Introduction 

In the preceding chapter, the only concern is the eigenvalue functions of an analytic 

matrix function. Now we are going to take the corresponding eigenvector functions 

into consideration. This method is called the generating eigenvector method. The 

"generating eigenvector" method was first introduced and systematically studied by 

[HL]. Many important results of this method are given in [HL], and are quoted here. 

In this chapter, the basic idea, the related concepts and results of the generating 

eigenvector method are introduced, collected 'and deduced. The application to the 

semisimple case as developed in [LMZ2] is included. 

Part of Section 4.2 is quoted from [Z]. Theorem 4.6 is a cornerstone that the later 

analysis lays on, however it is not independent of Chapter 3. In the three authors' 

paper [LMZ2], one of the author's main contributions is using Newton's diagram to 

give the proof of this theorem. For completeness, Section 4.6 is quoted from [LMZ2]. 

4.2 An equivalent definition for partial multiplicities 

In Section 3.3, the partial multiplicities of an eigenvalue AO of an analytic matrix 

function A(A) are defined using the local Smith normal form. Now we define them 

63 
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using "null chains", and prove that the two definitions are equivalent. 

Definition 4.1 Let the matrix function A(A) be analytic in a neighborhood U of A0, 

and have Taylor expansion in U: 

00 

A(A) = ( - A0)iA, 

where Aj E  C'Th, A0 0. A vector-valued function (A), such that q(A) is analytic 

at A0, (A0) 0 0 and A(A)(A)I. 0 = 0, is called a null function of A(A). The 

order of A0 as a zero of A(A)q(A) is called the order of the null function O(A). 

Suppose the order of a null function (A) is k. Develop the null function in powers 

of(A—Ao): 
00 

j=0 

where Oj E C. It follows from the definition of null functions that qo =O(AO) 0 0. 

The vector 00 is called an eigenvector and qo, 01.. .. , is called a null chain of 

A(A) Of length Ic corresponding to A0. (See Section 3.1 and 3.2 of [BGRJ. The same 

definitions are given in [CS], where a null function is called a root function and a null 

chain is called a chain of eigenvector and associated vectors. In [HL], a null function 

is called a generating function and a null chain is called a Jordan chain.) 

It will be convenient to introduce the block Toeplitz matrices, 

A(c) = 

A0 0 0 0 

A1 A0 0 0 

- Ak Ak_i Ak_i ... A0 

(4.1) 
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a square matrix of size n(k + 1), and also the n(k + 1) column vector 

qo 

(k) = 01 

cl)k 

If 00, q'i,. . . , Ok is a null chain of length k + 1 of A(A) at A1, then 

Aoçbo = 0 

Aiq5o+Aoq 1=0 

AçbO+...+AOçb=O 

or, A(k)çl(k) = 0 with Oo h 0. 

To see this, write 

A(A)O(A) = ( 
00 00 

2=0 

( - )0)iA.)((A - 
j=0 

(4.2) 

and equate to zero the coefficients of (A - Ao)j for j = 0,. . . , k. Observe that A0 is 

necessarily singular. 

Conversely, if 00, q1,. .. , Ok is a solution of the system (4.2) with 0, then it 

is a null chain of A(A) of length k + 1 corresponding to A0, since using null function 

ON = (A - Ao)i. + (A - 

j=0 

for some '/'(A) which is analytic in a neighborhood of A0, it is easy to see that the 

order of (A), or the order of A0 as a zero of A(A)O(A), is Ic + 1. 

Now we say that a null chain starting with qo has maximal length k, when 

A(k_l)(l_l) = 0 
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has solution 00 , 0 1, . . . , c-1, but the system 

A'çb' = 0 

has no solution cbk. 

A canonical system of null chains corresponding to A0, 

ON, /k1, , 

obeys the following rules: 

1. the vectors . . , q590 form a basis of kerA(Ao). 

2. each chain ON, OU,• , cbk,mk_1 for k = 1,.. . , g has the maximal length mk. 

A canonical system is not defined uniquely, however; it can be shown that the 

numbers m1,.. . , m, do not depend on the choice of null chains. So sometimes the 

partial multiplicities are defined as: 

Definition 4.2 In a canonical system of null chains of an eigenvalue A0, the lengths 

of the null chains m1,... , m are called partial multiplicities of eigenvalue A0. 

For D(A) = diag((A (A - A0)m, 1,— , . , 1). Let uj be the jth unit 

coordinate vector, it is easy to check that the sequence of vectors u, 0,... , 0 with 

the length mj form a null chain of D(A) and it can not be extended to leiigth m + 1. 

So 

U,0,...,0 

vii —1 

is  canonical system of D(A). 
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Suppose F(A)A(A)E(A) = D), where E(A) and F) are analytic and nonsin-

gular at A. By Definition 4.1, it is easy to see that if q5(A) is a null function for 

D(A) of order k at A0 then E(A)O(A) is a null function for A(A) of order k at A0, 

while if O(A) is a null function for A(A) of order k at A0 then E(A)'q5(A) is a null 

function for D(A) of order k at Aç. As shown above, a null function of a matrix 

function corresponds to a null chain in a canonical system of the matrix function. 

We actually proved that the partial multiplicities defined in Definition 4.2 are the 

partial multiplicities in the local Smith normal form. 

Using the new definition for partial multiplicities, an eigenvalue A0 is semisimple 

if and only if, for every eigenvector x associated to A0, the singular equation 

Aoy = —A1x, 

where ho = A(A0), A1 = A'(A0), has no solution y. 

4.3 Generating eigenvectors 

Now we take an eigenvector x(a) associated with eigënvalue A(a) such that L(A(a), a)x(a) = 

o into consideration. Assume that the Puiseux series in a deleted cut neighborhood 

N of a = 0 for A(a) and x(a) are respectively: 

CO 

A(a) = A0 + )' 

00 

x(a) = 

=1 

j=0 

where q and 1 are integers but do not necessarily coincide. 

(4.3) 

(4.4) 
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Let the Taylor expansion of L(\(a), a) at Ao be: 

= 

j=o 

(A(a) - .\o)3A(a) (4.5) 

Substitute (4.3) into (4.5), where the procedure of double summation means that 

m n 

L(.\(a), a) = ç0( ji!)iAj()) 

(the absolute convergences of (4.3) and (4.5) at a point a can guarantee that the 

double limit exists at the point a, see [C]) and denote it as: 

00 

L((a),a) = A au/ (4.6) 

j=o 

Now substitute (4.6) and (4.4) in a)x(a) = 0, set the, coefficients of all 

the terms of different powers of a to zero. 

We have a linear system: 

(4.7) 

So x(a) of (4.4) is an eigenvector associated with eigenvalue (4.3) if and only if j 

satisfy (4.7). The second and the following equations in (4.7) depend on whether 

q and 1 have common divisors. For example, if q = 2, 1 = 3 in (4.6) and (4.4) 

respectively, then the first few equations in (4.7) are: 

= 0 

Aoe1 = 0 

A1e0 = 0 

A02 = 0 

A03 + A20 = 0 
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But if q = 2, 1 = 4 in (4.6) and (4.4) respectively, then the first few equations in 

(4.7) are: 

Ago = o 

A01 = 0 

A02 + A10 = 0 

Obviously if x(a) in (4.4) is an eigenvector associated with eigenvalue (4.3) then 

(ah/)x(a) and (a'I1)x(a) , where k is an integer, are also eigenvectors associated 

with A(a). 

The following Lemma shows that for an analytic eigenialue function there exists 

a corresponding analytic eigenvector function. This and more general results are 

knon (see Thebrem 18.2.1: of [GLR3], for example), buta new proof is provided 

here. 

Lemma 4.1 If a) is an analytic matrix function in a neighborhood of (A0, 0) 

and has an eigenvalue function A(a) which is analytic at a = 0, then there is an 

eigenvector function x(a) which is analytic at a = 0. 

Proof: SuppOsethat L(A, a) has an eigenvalue A(a) = ca in a neighborhood 

of a = 0, and that L(A(a), a) has rank r in a deleted neighborhood .N of a = 0. 

Without loss of generality, assume that the minor 

L 
12...r 

12...r I 
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where 

1i1k1 1i1k2 1iik 

l '12 ZP L :=det( 

Ic1 k2 ... kp 

for any 1 ≤ p ≤ n (see 

Consider the minor of order r + 1: 

L 
1 2... r+1 

1 2 ... r+1 

where xi(a),. . . , x.1 (a) are cofactors of the r + 1 row in the determinant on the 

left. 

Observe also that 

42k1 1i2k2 1i2k 

- 1ik1 1ik2 • 1ipk3 

) 

= L 

r+1 

12...r 

lr+i,j(a)xj(a) = 0, 

I 
and complete the construction of a nonzero vector x(a) = 

x(a) 

by setting 

Xr+2...XnO. 

Then, for r = 1, 21. .. , n, consider the j-th entry of the column vector L, a)x(a). 

It has the form 

n r+1 

l3J(a)Xk(a) = 

k=1 k=1 

=L 

1jk (a)xk (a), 

12...r j 

1 2 ... r r+1 
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However, the last expression is zero because, for j ≤ r two rows of the minor agree 

and, for j ≥ r +1, we have a minor of order r +1 > r. Thus there is a nonzero vector 

x(a), analytic in JV, such that L(A(a), a)x(a) = 0 in 1V. If this vector has a zero of 

order k at a = 0, then the vector function x(a)a has all the required properties. 

The following lemma concerning Puiseux series for eigenvectors will also be useful. 

Lemma 4.2 For every eigenvalue 

00 
A(a) = + (4.3) 

of L(A, a) defined on a cut neighborhood of a = 0 there exists an associated eigen-

vector on this same neighborhood of the form 

00 

60 010. (4.8) 

In these two expansions, a 11q denotes the same branch of the corresponding q-valued 

function and ce klq = (ah1)k . 

Proof: This follows immediately from Proof of Lemma 4.1 on replacing a by at". 

With the preparation of Lemma 4.2, we have the definition: 

Definition 4.3 Let .N(a), x(a) be an eigenvalue-eigenvector pair of the form (4.3), 

(4.8), respectively. Then x(0) = 0 is called a generating eigenvector of 

L(A, a) (at the point (A0, 0) and associated with A(a)). 

The next lemma is quoted from [HL] (Lemma 3.2). It throws some light on the 

concept of generating eigenvector. 
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Lemma 4.3 Let A]. (a),. . . , A(a) be eigenval'ues of L(A, a) which tend to A0 asia ---

0 and which constitute all the different branches of the same Puiseux series. Then 

there are corresponding eigenvectors of the form (4.8), say xi(a),. . . , Xq(a) for which 

XI(0) = ... = Xq(0) 

Recall that in Section 3.5, for an eigenvalue AO of L(A, 0) with algebraic multi-

plicity m, there exist m eigenvalue functions in a neighborhood of a which can be 

represented by branches of several Puiseux series 

A, (a) = A0 + (3.12) 
k=1 

ii = 1, 2,.. . , r. Let us call the positive integers q1,.. . , q splitting multiplicities. We 

know that 

According to Lemma 4.2, there exist eigenvectors which have Puiseux series with 

the corresponding splitting multiplicities q,. It follows from Lemma 4.3 that each 

group of branches A(a) has at least one generating eigenvector. 

The next example shows that not all eigenvectors In JC can be extended as a gen-

erating eigenvector. It is pointed out in [HL] (Proposition 3.5) that, for a semisimple 

eigenvalue, if the kernel /C can be spanned by generating eigenvectors then all the 

eigenvalue functions are analytic. 

Example 4.1 

L(A,a) = 
A —a 

—a2 A 
(4.9) 
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When a = 0, Ao = 0 is the only eigenvalue. As a - 0, there are two eigenvalue 

functions which are two branches of the same group: 

A(a) = ±a312 (4.10) 

The only splitting multiplicity is 2. All nonzero vectors in C2 are eigenvectors at A0. 

However substituting (4.10) into (4.9) shows that 

L(A,a)= 

And only 

—a 

—a2 ±a312 00 

1 C 
x(a)=C = + 

0 

10 

01 

0 

a312 + 
—1 0 

00 
a2 

where C is a nonzero constant, can be the eigenvector associated with A(ce). So oriiy 

the vector 

1 

0 

and its nonzero scalar multiples are generating igenvectors. 

4.4 a-semisimple 

Although, as mentioned in Chapter 1, physically the parameter A can be regarded as 

spectral parameter while a is regarded as the perturbation-parameter, m'athemati-

cally there is no difference between the positions of the two parameters. The Taylor 

expansion of L(A, a) in (3.6) shows strongly the symmetry of the two parameters. 

Therefore some results in regard to A parameter can be applied to a parameter 

(Theorem 4.8 of [HL] is an example). 
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Here we symmetrically define the semisimple property with respect to the a 

parameter. Thus, the eigenvalue A0 at a = 0 is said to be a-semisimple if for all 

nonzero x E AC, the singular equation Loy = —L01x has no solution y. 

Our analysis uses the following useful notation. 

As in Chapter 3, we denote AC = kerL0 and AC' = ker(L). Choose a basis {f} 

for AC', define a linear transformation R from Cn to AC' by 

R= ( 
3=1 

Note that if {fjjl is an orthonormal basis, then R is the orthogonal projector onto 

AC'. With respect to the unit coordinate basis {u} of C' and the basis {f,J of 

AC', the linear transformation R has the matrix representation of the g x n matrix 

r.f fl 
V 1,  * 

Recall the notation of (3.8) for an n >n matrix M: 

[M]yc' [ei,.. . ,eg]*M[fi,... ,f] (3.8) 

where fejJ9 and ffjjg are chosen bas-is for AC and, AC' respectively. We denote the 

g >< g matrix [M] by .A2f as well.: 

The following two lemmas are Lemma 3 and Lemma 4 in [LMZ2]. 

Lemma 4.4 (a) An eigenvalue A0 at a = 0 is semisimple if and only if [Lio]xc' is 

nonsingular. 

(b) An eigenvalue A0 at a = 0 is a-semisimple if and only if [L01],,1 is nonsingular. 

Proof (a) Let x E AC, x 0, and consider the equation 

Loy = —L10x (4.12) 
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for y. There exists a solution for (4.12) if and only if L10x is in ImL0, but IC' : 

ker(L) = (ImLo)-'-, so there exists a solution if and only if L10x is orthogonal to IC'. 

This is equivalent to 

RL10x = 0 (4.13) 

Since x E /C, for the basis f ej 11 of IC, there exists a vector q E Cs', 0 such that 

So (4.13) is equivalent to 

Lloo = 0 (4.14) 

There exists a solution for (4.12) if and oily if the equation (4.14) has a nonzero 

solution q, hence if and only if [L1o] L10 is singular. 

The proof for (b) is similar. 

As we are particularly interested in the case in which AO is a semisimple eigenvalue, 

note that from (3.14) regular splitting corresponds to the existence of asymptotic 

relations 

A1i(a) = A0 + Aia + o(IaI). (4.15) 

as a - 0 for j = 1, 2,. . . , g and complete regular splitting means that AIj 0 for 

each j. 

We now extend Lemma 3.10 of [HL] as follows: 

Lemma 4.5 A semisimple eigenvalue has the regular splitting property and, if the 

eigenvalue is also a-semisimple, then it has the CRS property. 

Proof Let A0 be semisimple with multiplicity g. Consider an eigenvalue function 

of the form (4.3) where 1 ≤ q ≤ g. By Lemma 4.2 there is an associated eigen-
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vector function of the form (4.8). Denote the first nonzero coefficient in (4.3) by 

Ck' and assume that k' < q. Now compare coefficients of a k/q for k = O, 1,... in 

L(A(c),a)x(a) 0, i.e. in 

. .)Lio+aLoi+. • • }{0+1ahI+. +qa+.. .} = 0. 

It is found that L0 = 0 for j = 0, 1,.. . , - 1 and 

ck'L1OO + Lok' = 0. 

It follows that 6o, W/Ck' form a null chain for AO and the assumption that AO is 

semisimple is contradicted. Consequently, k' ≥ q and there must be a regular split-

ting. 

Suppose now that the splitting is not complete. Then there is an integer r> 0 

and an eigenvalue 

A(a) - A0 = 

with Cq+r h 0, and 

jLo + (cq/ + •)L1 + aL01 +.. . }{ +  0. 

The coefficients of c° and a1 yield 

= 0 and Loq + Loio = 0. 

This contradicts the definition of an a-semisimple eigenvalue and concludes the proof. 

Thus, for any eigenvalue function A(a) (emanating from a semisimple A0), 

A(a) = A0 + Ala + o(IaI), as a - 0, 
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where Ai = Cq of equation (4.3), and A(a) is said to be real differentiable at a = 0. 

Then the equation L(A(a), a)x(a) = 0 implies 

{Lo+a(A1L10+L01) +...}{0+1aht+...} = 0, (1 ≤ q ≤ g), 

whence 

Lo q + (A1L10 + L01)e0 = 0. 

Using a basis {e1, e2,... , e9} for K, write E = [e1 • e9] and 60 = E, 0 0 0 E C. 

Now introduce a basis {f,.. . , f} for k' so that L*fj = 0 and 

((A1L1o+Lo1)E,f) =0, j = 

i.e. 

Pi[Lio]jc,ic' + [Loi]ic,jc')c5 = 0, 0 0, 

and A1 is an eigenvalue of the pencil 

2(u) := u[Lo],c,' + [Lo1]1,jc'. (4.16) 

Lemma 4.5 is the same as corollary 3.6. But the new proof is from the view 

point of eigenvectors and it is informative. Comparing with Section 3.6, notice that 

with the basis constructed by E(A) and F(A) in the local Smith normal form (3.5), 

= I and [Lo] = H, so (3.19) is equivalent to detP(1u) = 0. Not only 

Aij for each j in (4.15) is an eigenvalue of P(ji), by Newton's diagram, theorem 3.7 

proved that each eigenvalue of P() is one of the coefficients AIj of (4.15). 

The argument above shows: 

Theorem 4.6 Let L(A, a) be an analytic matrix function of A and a with a semisim-

pie eigenvalue A0 at a = 0 of multiplicity g. Then there are exactly g eigenvaiues 
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ALu](a ), j = 1,2, . . . , g of L(A, a) for which Ali] (a) --> as a - 0. These eigen-

values have Puiseux expansions for which (4.15) holds and there is a one-to-one 

correspondence between the coefficients Ali and the eigenvalues of the pencil P(p). 

For every eigenvalue )sJ1](a) of L(A, a) there is a corresponding eigenvector x(a) 

which also has a Puiseux expansion about a = 0 and, if x(0) = [e1,. . . , e]çb, then 

the vector 4j. E (C9 is an eigenvector of the pencil P(u) corresponding to Ali  

4.5 Analytic eigenvalues 

The main interest of this section is the formulation of conditions guaranteeing the 

existence of analytic eigenvalue functions and corresponding eigenvector functions. 

LerTlma 4.1 shows that the second property follows from the first. The main result of 

this section depends on techniques and results developed in [HL]. Some preparation 

is needed and are contained in the following definition and lemmas. 

Consider'the adjoint matrix function L defined by 

L7,a) = (L(,\,a))*. 

Using L (A, a) instead of L(A, a)* requires reformulation of some results from [HL]. 

Thus, the next lemma is equivalent to Lemmas 3.1 of [HL] and the proof is the same. 

Note, in particular, that A(a) is an eigenvalue of L(A, a) if and only if A() is an 

eigenvalue of L(A, a). 

Lemma 4.7 Let A, (a) and A2 (a) be different eigenvalue functions of the form (4.3) 

on the same cut neighborhood of a = 0. Let xi(a) be an eigenvector of the form (4.8) 

associated with the eigenvalue A, (a) of L(A, a), and let Y2 (a) be an eigenvector of the 
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form (4.8) associated with the eigenvalue ).2(a) of L(), a). Then (L1ox1(0), y2 (0)) = 

0. 

Theorem 3.6 of [HL] can be refined in the following way. (The proof is practically 

unaltered.) 

Theorem 4.8 Let A, (a) be an eigenvalue function of L(A, a) of the form (4.3). 

Assume that, for every generating eigenvector x corresponding to A, (a), there exists 

a generating eigenvector y of L(A, a) associated with A, (a) such that 

(Liox, y) 0. 

Then A,(a) depends on a analytically, and there is a corresponding eigenvector x(a) 

which is analytic in a for a sufficiently' close to zero. 

Proof Assume that A (a) is non-analytic. Then by assumption of the form (4.3) 

\1(a) is a branch of a Puiseux series at A0. Let A2 (a) be a different branch of the same 

algebraic function. By Lemma 4.3, there are corresponding continuous eigenvectors 

xi(a) and x2(a) of the form (4.8) such that x1(0) = x2(0) := x0. 

Now let A(a) and y(a) be any eigenvalue-eigenvector pair of L(A, a). Then )s.() 

is an eigenvalue of L(A, a) and, since A() cannot coincide identically with both A,(a) 

and A2(a), it follows from Lemma 4.7 that (Lioxo, y(0)) = 0, and this contradicts 

our hypothesis. Hence A, (a) depends on a-analytically. Also, it follows from Lemma 

4.1 that, in some neighborhood of a = 0, there is an associated analytic eigenvector 

function x(a). 

In the following statement a simple eigenvalue of P() is just a simple zero of 

det?(p,). 
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Lemma 4.9 If AO is a semisimple eigenvalue of L(A, a) and ) is a simple eigenvalue 

of P(i) then, for each generating eigenvector x0 of L(A, a) corresponding to the 

eigenvalue A(a) = A0 + Ala + o(IaD, there exists a generating eigenvector yo of 

LA, a) at (o, 0) such that 

(Lioxo, yo) 0. 

Proof By the definition of generating eigenvector, there is an eigenvector x(a) of 

the form (4.8) corresponding to A(a) for which x(0) = x0. Consider the eigenvalue 

A() of LA, a), and let y(a) be a corresponding eigenvector of the form (4.8). Set 

Yo = y(0) 0. 

Now it follows from Theorem 4.6 that A(a) = AO + Ala + o(IaI) as a - 0, and 

(4.17) 

where vector u = [u] 1 (E C9) is defined via the decomposition of x0 with respect 

to the basis {e} for IC, i.e. xo = 

Now consider L. (A, a), A(t), and Yo• Decompose Yo with respect to the basis 

{fk}1;Yo = EY-lvkfk, and v = [Vk} E C. Clearly A() = )o+ Ala +o(laI) as 

a - 0. 

Applying the arguments above to the matrix function L. (A, a) leads to the defi-

nition of the pencil 

= i[Lo]x',x + {L iJic',,c, (4.18) 

and, as in the proof of Lemma 4.5 

= 0 (4.19) 
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However, it follows from definition (3.8) that [M*] ic,,ic = ([M],,c,)*, and hence 

PCn) = ((j))* (4.20) 

Since ) is a simple eigenvalue of P(t), there are no Jordan chains at ). Hence, 

with u from (4.17) the equation 

7(A1)w = —[Lio] jjyU (4.21) 

has no solution w. By (4.19), dim(Ker?(Xi)) = dim(Ker7'(A1)) = 1. Therefore, 

Ker?(A) = span{v} and (using the well-known criterion for the solvability of in-

homogeneous equations) the fact that (4,21) has no solution implies 

Finally, using (3.8) 

([L1o],,1c'u, v) 0 0. 

([Lio],c,jc'u, v) = 7  (L1Oek, f)uk1Jj 

j=1 k=1 

9 

= (L10 Ukek 

k=1 

= (Lioxo,yo). 

Thus, the lemma follows from (4.22). 

:1=1 

(4:22) 

Lemma 4.9 now admits a direct application of Theorem 4.8 to obtain the main 

result: 

Theorem 4.10 Let Ao be a semisimple eigenvalue of L(A, 0). Suppose also thatA, is 

a simple eigenvalue of P(i) with corresponding eigenvector u. Then for some E > 0 

there exists a simple eigenvalue function A(a) of L(A, a) which is analytic in jal < 

and satisfies )(0) = A0, A"(0) = A. A corresponding eigenvector x(a) can be chosen 

analytic in jal < E and such that x(0) = , where = E91 ujej and [u] =  u. 
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Proof By Theorem 4.6 there exists an eigenvalue A(a) with the representation 

)(a)=Ao+ Ala +o(IaI) as a --•O. 

It follows from Lemma 4.9 that, for every generating eigenvector x0 of L(A, a) at 

o, 0) corresponding to A(a) there is a generating eigenvector Yo of L(A, a) at 

(), 0) such that (Lioxo, yo) 0. By Theorem 4.8, this implies that the eigenvalue 

).(a) is analytic in a neighborhood of a = 0, and the corresponding eigenvector 

x(a) can be chosen analytic there. The statement connecting the vectors x(0) and 

u follows from Theorem 4.6. 

It remains to prove that, for a 0, A(a) is a simple eigenvalue of L(A, a). 

Suppose that 5(a) is another eigenvalue of L(), a) defined on a neighborhood of 

a = 0 with an asymptotic repi'esentation 

(a) = o + +o(Ial). 

It follows from Theorem 4.6 that 5 = A. Since 

A(a)—A(a)= (Al — i)a+o(k) 

it follows that A(a) = .S(a) when 0 < jal <. 

Note that the conclusions of this theorem (with, additionally, ) 0) were de-

duced in [LN1] under the additional assumption that AO is also a-semisimple. For 

the classical eigenvalue problem L, a) = Al - A(a), the theorem is well -known 

(see, for example, p. 269 of [B]). 

The next example shows that the assumption that Al is a simple eigenvalue for 

2(i) cannot be relaxed to admit a multiple semisimple eigenvalue. 
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Example 4.2 Consider the classical eigenvalue problem: 

Aa a2 
L(A,a)= 

a3 A — a 

with a double semisimple eigenvalue A0 = 0 at a = 0. 

It is easily seen that P (,u) = I2 —12 so that P (jt) has a semisimple eigenvalue p = 1. 

However, the eigenvalue functions are A1 (a) = a + a512, A2 (a) = a - a'2, and are 

not analytic at a = 0.,, 

However, if A1 is only a semisimple eigenvalue of P(j), we still have the following 

result: 

Theorem 4.11 Let L(A, a) be an analytic matrix function of A and a with a semisim-

ple eigenvalue AO at a = 0. Let Al be a semisimple eigenvalue of the pencil P(p) of 

multiplicity S. Then there exist s eigenvalues ALII(a) which can be represented as: 

A[1 (a) = A0 + Ala + )2a2 +0 (ja12), 

asa-0 for j=1,...,s. 

(4.23) 

Proof: Since Ao is a semisimple eigenvalue of L(A, a) at a = 0, and Al is a semisimple 

eigenvalue of the pencil P(.t) of multiplicity s, by Theorem 4.6, we know that there 

are s eigenvalue functions A(a) with Puiseux expansions of the form 

A(a) = A0 + Ala +Callq +..., (4.24) 

where c is the first nonzero coefficient after the term Ala, so k > q. Suppose 

[L(A(a), a)]jc,jc' has an associated eigenvector function of the form: 

X(a) = co +Olallq+ 0 2a2/ +... 
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with Oo 0. 

Assume k < 2q, then in 

[L(A(a), a)Jc'x(a) 

= (AL10 + Loj)a +CL,Oaklq+ .. .)(00 + 1h/ + 22/ +...) = 

the coefficients of a and yield 

(A1L10 +Loj)Oo = 0 and cL1oq0 + (A1L10 + Lo1 )q k_q = 0. 

It follows that q, k_q/c form a null chain for A, so the hypothesis that A is 

semisimple is contradicted. Consequently Ic ≥ 2q, so the form (4.23) is permitted 

with the possibility that )'2j = 0. 

Theorem 4.10 immediately implies: 

Corollary 4.12 Let AO be a semisimple eigenvalue of L(A, 0). Suppose also that the 

eigenvalues {} of the pencil P() are distinct and let {u} be a corresponding 

set of eigenvectors. Then there are numbers > 0 and 5 .> 0 such that, for all a 

satisfying 0 < I al < e the spectrum of a) in IA - Aol < 5 consists of g distinct 

eigenvalues )1(a),. . . , A9 (a) which are analytic in I a I <c and, for j = 1, 2,.. . , 

A1(0) = A0, A(0) 

Corresponding eigenvectors x(a) of L(A, a) can be chosen analytic in jai < € and 

such that, for.j-1,2,...,g, 

x(0) = 

where j = UjjCj and [u] 1 = u. 
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A convenient way to determine those eigenvectors in JC which are generating is 

not immediately obvious and would be useful in applications. Note, in particular, 

that linear combinations of generating eigenvectors are not necessarily generating. 

The last theorem provides a way to find the generating eigenvectors associated with 

a semisimple eigenvalue. 

Corollary 4.13 Let AO be a semisimple eigenvalue of L(A, 0). Suppose also that all 

eigenvalues of P(1i) are distinct. Then o = ujej is a generating eigenvector at 

)'o if and only if u = [u] is an eigenvector-of ?(). 

Proof Corollary 4.12 shows that each eigenvector of P() can be extended analyti-

cally into a neighborhood of a = 0 as an eigenvector of L(A, a) and, therefore, each 

of these g linearly independent eigenvectors is generating. 

Conversely, given a generating eigenvector eo of L(A, a) at Ao, there is an eigen-

vector function x(a) with a Puiseux expansion (4.8) and, as in Theorem 4.6, it follows 

that the representation of 60 with respect to basis feill is an eigenvector of P(i). 

Example 4.3 The following simple example is instructive. Consider the self-adjoint 

function 

L(A,a)= 
Ac 

a—A 

There is a semisimple eigenvalue A0 = 0 at a = 0. Eigenvalue functions emanating 

from A0 have the form ±ia and are analytic but not real. 

10 

0 —1 

with eigenvalues ±i. 
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All nonzero vectors in C2 are eigenvectors at A0, but (by Corollary 4.13) generating 

eigenvectors are confined to the nonzero scalar multiples of 

1 

2 

4.6 Taylor coefficients 

Consider the Taylor decomposition of L(A, a), valid in some neighborhood of (Ao, 0) 

where A0 is a semisimple eigenvalue of L(A, 0): 

00 L(A, a) = - Ao)1aL 5, (3.7) 

and L00 --'LO.  Inthe sequel, we will ignore the difference between the n x 1 eigen-

vector in IC and its g x 1 represeiitation with respect to the basis {e} of IC. It is 

clear from the context that a vector is in C or C. 

Let the pencil 2(j) have a simple eigenvalue b1 with associated eigenvector eo. 

By Theorem4.10 there is an analytic eigenvalue function of L(A, ); 

00 

A(a) = A0 + ' bka', (4.25) 
k=1 

and a corresponding analytic eigenvector function 

00 

(4.26) 
k=0 

both valid in a neighborhood of a = 0, and b1, 6o are the eigenvalue and eigenvector 

of 7'() introduced above. The series of (4.25) and (4.26) can be substituted in the 

identity 

L(A(a), a) x(a) = 0 
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to obtain 

00 CO (k=lE bka1) cLij 

i,j=O  

( co 
ernam ) 0 

m=O 

(4.27) 

The constant term on the left is Lo0 = 0. Equating coefficients of a to zero for 

j = 1, 2,..., an infinite system of equations is obtained for the numbers b2, b3,... 

and vectors 1, 2..... Thus, 

L01 + (b1L10 + L01)e0 = 0 (4.28) 

L062 + (b1L10 + L01)61 + (b2L10 + bL20 + b1L11 + L02)0 = 0 (4.29) 

0e3 + (b1L10 + L01)e2 + (b2L1o+ bL20 +b1L11 + L02)e1 + 

(b3L10 + 2b1b2L20 + b2L11 + bL30 + bL21 + b1L12 + L03"5 0 = 0 (4.30) 

L0 + (b1L10 + L01)6_1 + . . . + 

(b_1L10 + ... + L0,1)61 + (bL10 + ... + L)60 = 0, (4.31) 

and so on.  00 Theorem 4.14 Let ) be a semisimple eigenvalue of L(A, 0), and let b1 be a simple 

eigenvalue of P(p) with associated eigenvector . Then the infinite system (4.28), 

(4.29),... has a solution {b}°, {j} ° such that the series (4.25) and (4.26) converge 

in a neighborhood of c = 0 and represent there an eigenvalue-eigenvector pair of 

The numbers bjJ10 are uniquely determined by this system. The solution {b}°, 

which gives an analytic eigenvalue-eigenvector pair A(a), x(a) can be found by suc-

cessive computation of the unknowns , b2, 2, b3..... 
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For the proof, the readers are referred to [LMZ2]. One remark on this theorem is 

that although essentially the proof of Theorem 6.4 depends on Newton's diagram, it 

provides an independent algorithm for the eigenvalue series (4.25), and even for the 

eigenvector series (4.26). 



Chapter 5 

Applications to classical eigenvalue problems 

5.1 Introduction 

We consider an analytic matrix function 

A(a) = A0 + aAj + a2A2 +... (5.1) 

with Al. E C"><', k = 0, 1,... and a is contained in a small enough neighborhood of 

the origin. As we call A0 the unperturbed matrix, A(a) are viewed as the perturbed 

matrices or the perturbation of matrix A0. By letting 

L(A, a) = A(a) - Al, (5.2) 

the classical eigenvalue problems for the perturbation of a matrix become a special 

case of our two-parameter perturbation problems. 

In [AH], several algorithms are given to compute the eigenvectors for matrix 

function A(a). Here a criterion fcir th6 index of annihilation' (as defined in [KPK]) 

which is useful in one algorithm in [AH] will be given. It extends the applicability 

of the author's work in [Z]. 

5.2 Some concepts 

An analytic matrix function is called regular if detA(a) 0 0; otherwise if detA(a) 0 

then A(a) is called singular. All the scalar-valued meromorphic functions form a 

89 
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field and meromorphic vector functions form a linear space over the field. We would 

expect a singular matrix function to have dependent rows and columns. 

Example 5.1 

Since 

sin  [ 

A(a) = 

sin  

1— cosa 

sin  1+ Cos a 

1—Cosa sin  

detA(a) 0 

—(1— Cos a) 

we see the columns of A(a) are linear dependent. 

1 - Cosa 

sin  
=0, 

As usual, the rank of a matrix function is defined by the size of its largest minor 

that is not identically zero. An n x n matrix function is regular if and only if it is 

full rank, i.e., its rank is n. For an A(a) in (5.1) we assume a = 0 is an eigenvalue of 

so we assume detA(0) = detA0 = 0. Denote r = rankA0 <n. Then using the 

local Smith normal form at a = 0 defined in Section 3.3, we have matrix functions 

E(a), F(a) which are analytic and non-singular in a neighborhood of a = 0, and 



91 

such that 

am1 

am 

a m r+1 

F(a)A(a)E(a) = 

am 

0 

0 

where 0 = m1 = ... = Mr <mr+1 < ... < mr-. This f coincides with the rank of 

A(a). 

Also = max rank A(a), where 11 is a neighborhood of a = 0 and rank A(a) is 
cE 

the rank of a matrix A(a) for a E Q. Actually, there exists a deleted neighborhood 

of a = 0, in which the ranks of all the matrices A(a), a E 0 are the same, and equal 

to f. The set of all eigenvalues of A(a), that is a(A(a)) = {a e C: detA(a) = 0}, 

is a set of the zeros of a scalar analytic functions. By Liouville's theorem or the 

maximum principle in complex analysis, it is a discrete set of points in C. Except 

for these points, the ranks of matrices A(a) are all f. Now we have two kinds of 

rank. One is the rank of a matrix, the other is the rank of a matrix function over the 

field of meromorphic scalar-valued functions. In the following, rankA(a) is referred 

to the rank of matrix function A. 

Define m = dim(kerAo) = n - r and in- = n -?. Hence m is also the geometric 

multiplicity of eigenvalue zero of matrix A0. By our assumption that detA0 = 0, we 
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have m > 0. We denote by v, i = 1,. . . , m, m linear independent elgenvectors of 

A0 corresponding to the eigenvalue zero and form the matrix V := [v1,.. . , Vm ]. This 

n x m matrix V satisfies 

A0V=0. 

Theorem 18.2.1 of [GLR3] guarantees that there exist Th analytic vector functions 

(a), i = i,. . . , ITt which constitute a basis for the null space of A(a) for a in a 

neighborhood of a = 0. Similarly, construct the n x ITt matrix function V(a) := 

Therefore, 7(a) satisfies 

A(a)(a) = 0 (5.3) 

and can be expressed as a power series in some neighborhood of zero 

(a) = V0 + aV1 + a2V2 +... . (5.4) 

Define the block Toeplitz niatrix A(k) by the coefficient matrices A0,... , A, as in 

(4.1): 

A0 0 0 0 

A1 A0 0 0 

- Ak Ak_i Ak_2 A0 - 

For the eigenvalue functions 

k=0,1,2 (5.5) 

= vo + av 1 + a2 v2 + ..., (5.6) 
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define the n(k + 1) column vectors 

vio 

Then the equation 

is equivalent to the systems 

for k=O,1,2..... 

vi' 

Vik 

A(a)J(c) = 0 

Av = 0 

(5.7) 

(5.8) 

Using the concept of null chains defined in Section 4.2, the coefficients v0, vil,... 

of an eigenvector function Vj(a) in (5.6) with vj0 0 0 form a null chain of A(a). Note 

that for these chains, even though they have only finitely many nonzero members, 

as null chains we can add infinitely-many zero vectors at their tails. So we have in- -

infinite null chains of A(A). 

Using the concept of generating eigenvectors defined in Section 4.3 (Definition 

4.2), the in- linearly independent vectors v10,. .. , v 0 are generating eigenvectors. 

Generally, we have m ≥ i i.e., r ≤ f. It is very possible that m> , because 

under the perturbation of a, some zero eigenvalues of A0 may vary as functions of a. 

So there may be a jump of the dimension of the null space of A(a) or a reduction in 

the rank of A(a) from a = 0 to its neighborhood. The following examples illustrate 

the concepts introduced above. 



94 

Example 5.2 

= rankA(a) = 1, ñ = 1. 

r = rankA0 = 0, m= 2. 

kerA0 = span{ 

Let 

Only V20 

a 
A(a) = 

a2 

a2 
A0 = 0, 

a3 

1 ot [a 
}, kerA(a) = span{ 

0 

V10 = [ 1 
V20 = 

0 

0 

1 

I. 

—1 

0 

is a generating eigenvector. The following two 
1• 
null dhains constitute a 

canonical system of null chains (as defined in Section 4.2) corresponding to a = 0: 

V10; 

V2o V21, 0,0..... 

The first chain has length 1 while the second one is infinitely long. 

Example 5.3 

la 1 0 

00 00 

0 

00 

= rankA(a) = 1, 7-n- = 1. 

r = rankA0 = 1, m = 1. 

01 
+a2 

00 

1 Ii 
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kerA0 = span{ 
0 

1 
}, kerA(a) = span{ 

V10 = 

—a 
}. Let 

1 

0 —1 
,v11 = 

1 0 

v10 is a generating eigenvector. 

A canonical system of null chains of A(a) corresponding to a = 0 is: 

v10, v11, 0,0..... 

It is an infinitely long chain. 

Example 5.4 

10 

0 a2 

A0= 
00 

= rankA(a) =2, Yi = 0. 

r = rankAo = 1, m= 1. 

0 
kerA0 = .span{ }, kerA(a) = 0. Let 

1 

v10 is a generating eigenvector. 

I 

V10 = 

00 

0 

1 

+a 
01 

A canonical system of null chains of A(a) corresponding to a = 0 is: 

yb, 0. 
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It is a null chain of length 2. 

Example 5.5 

A(a) = 

al0 

0la 

000 

= rankA(cx) =2, i7 = 1. 

r=rankA0=1,m=2 

kerA0 = span{ 

1 

0 

0 

V1 = 

1 

0 

0 

0 

0 

1 

010 

010 

000 

010 

010 

0 0 0 

}, kerA(c) = span{ 

V2 = 

0 

0 

1 

,v10 = 

1 

0 

1 

100 

+a 001 

000 
L 

v10 belongs to kerA0 and is a generating eigenvector. 

The null chains 

1 

.}: Let 

1 

,v11 = 

0 

—1 

0 

yb, Vu, 0, 0..... 

constitute a canonical system of A(c) corresponding to a = 0, while the null chains 

v2; 

vio, Vii, 0,0..... 
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are a canonical system too. 

Now we give some other definitions. Let Mt be subspaces of kerA0, t ≥ 0 are 

integers: 

Mt = {vv E kerA0 such that v can be extended to 

a null chain of i1(a) with length t + 1}. 

So M0 = kerAo and the dimensions of the subspaces are non-increasing with t. 

Define 

r := the smallest t such that the minimum of dimMt is attained. 

Hence we have 

MO2M1M2...MT=MT+1=... 

For example, suppose we have a canonical system of five chains: 

V10 V11 

• V20 V21 V22 

V30 V31 V32 

V40 V41 V42 V43 

V50 V51 V52 V53 V54 V55 . 
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In this case 

M0 = span {v,o, v20, v30, v40, v50 }; 

Mj = span {vio ,v20,v30 ,v40,v50 }; 

= span {v20,v30 ,v40,v50 }; 

It/I3 = span {v40, v50 }; 

M4 = span {v50 }; 

M5 = span {v50 }; 

and r = 4. 

As pointed out before, a null chain with length t + 1 is a solution of (5.8), and 

a solution of (5.8) is an eigenvector function in the form (5.6) for A(a) associated 

to eigenvalue zero. With this viewpoint, we can see that dimM.,. = Fn and r is the 

longest length of the finitely long null chains. If A(a) has no finitely long null chain, 

as in Example 5.3, then r = 0. In Examples 5.2 and 5.5, r = 1. In Example 5.4, 

T = 2. Connected to the Jordan canonical form for a matrix polynomials, in [KPK], 

r is called the index of annihilation. Here we continue to use this name for i- by 

calling it the index of annihilation of A(a) at 'a = 0. 

For an n >< n analytic matrix function A(a), if A(a) is regular, then it is in-

vertible in the sense that there exists an n x n matrix function A' (a) such that 

A(a)A'(a) = AI(a)A(a) = I. Normally A'(a) is a meromorphic matrix func-

tion, and it has a Laurent expansion in a neighborhood of a = 0: 

A'(a) = a 8B_8 + a 3+1B_s+i + . .. 

with B 8 0 0. Hence a = 0 is a pole of A' (a) of order s. By the result of Theorem 

7.1 of [GS], we know s is equal to r, the index of annihilation of A(a) at a = 0. 
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In [AH], assuming fn> 0, the authors provide some recursive algorithms for the 

coefficients in the Laurent expansion of f/(a) in (5.4). In one of these algorithms 

(Theorem 4 of [AH]), the index of annihilation 'r needs to be pre-determined. In [Z], 

for regular matrix functions, i.e., in the case of ih = 0, the author provides a rank 

criterion for r. Now in the next section, we are going to extend the criterion to the 

case of fn > 0. As in [Z], the criterion simply involves the calculation of the ranks 

of a sequence of matrices. And it can be done in a computationally efficient and 

reliable way, for example by using singular value decompositions (see [GV]). 

The results in [AH] with the assumption 77n = 0 can easily be applied to the 

general perturbed elgenvalue problem 

A(o)x(a) = )(cE)x(a). (5.9) 

First we use the method of Newton's diagram to determine the coefficients and the 

index p in the Puiseux series of an igenvalue function: 

= .Xo + -1- A2 o2"' + 

Next, introduce a new variable 77 := al/P and a matrix function in : 

B() = A(rf) - 

Note that B(cj) is analytic in varidbleq now and detB('q) 0. Consequently, system 

(5.9) is transformed to 

= 0, 

which can be effectively solved by the algorithms in [AH]. 
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5.3 Computing the index of annihilation 

Theorem 5.]. Let an  x n analytic matrix function A have Taylor expansion about 

a = 0: 

A(a) = A0 + aA1 + a2A2 + 

where Ak € C><, k = 0, 1..... If rankA0 = rankA, where rankA is the rank 

of matrix function A, then the index 'i- of annihilation of A(a) at a = 0 is zero. If 

rankAo <rankA, then the index r of annihilation of A(a) at a = 0 is the first k 

such that rankA'' = rankA(--') + rankA, where A(e_l), are defined in (5.5). 

Proof: By the definition of the index r of annihilation of A(a) at a = 0, it is the 

longest length of the finitely long null chains. If rankAo = rankA, then there is no 

finitely long null chain for A(a) at a = 0, each eigenvector in kerA0 is a generating 

eigenvector, so T = 0. If rartkAo < rankA, define fa = n - rankA, then there 

are ii linear independent eigenvectors in kerA0 which can be extended to infinitely 

long null chains, i.e., iYi eigenvectors are generating eigenvectors. Consider the block 

structure of. A') as 

A0 0 

* AO 1) 

it is clear that dim(kerA(')) <dim (kerA(k)). 

Suppose dim(kerA(''_')) < dim(kerA(k)). Then there must be some n(k + 1) 

column vector v in form (5.7) such that vo 0 satisfies 

A(k) (k) M  

This means that a chain of length k can be extended to length k + 1. But we know 

that chains which can be extended from length k to length k + 1. Hence we can 
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conclude that r is the first k such that 

dim(kerA(k)) = dim(kerA')) + . 

However 

dim(kerA(lc)) = rt(k + 1) - rank(A(')), 

and 

dim(kerA('')) = nk - rank(A(' 1) ). 

So that Equation (5.10) is equivalent to: 

rankA = rankA(k-1) + rankA. 

To check the criterion, we can examine Example 5.5. There 

A0= 

010 

010 

000 

,A1= 

100 

001 

000 

rankA = 2. 

(5.10) 

rankA(') = 1, rankA(1) = 3, 50 1 is the number that first makes the equation rank 

AM = rankA'' + 2. So T = 1. 



Chapter 6 

Applications in gyroscopic systems 

6.1 Introduction 

The so-called "gyroscopic systems" model an important class of problems in the 

linear theory of vibrations and are characterized by transfer functions of the form 

L(A) = A21 + AB + C, 

where B and C are n x n hermitian matrices with 

(a) C> 0, i.e. C is positive definite, and 

(b) B invertible and indefinite. 

(6.1) 

More specifically, the case in which B = iG and, G is real and skew-symmetric is 

important and was the main topic of the papers [BL] and [HKLP]. The more general 

form of the coefficient B was examined in [BLM]. For the purpose here, we merely 

consider system (6.1) as a finite matrix function, but there are generalizations to 

operator functions of the form (6.1) acting on an infinite-dimensional Hilbert space 

H (as in [BLM]). 

Section 6.2 gives a wider class of stable gyroscopic systems (quoted from [LMZ 1]). 

Section 6.3 introduces another parameter h to the gyroscopic system (6. 1), and shows 

a connection to Chapter 3 and Chapter 4, as h is regarded as the "perturbation 

parameter". 

102 
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6.2 More general stable gyroscopic systems 

We say a gyroscopic system (6.1) is strongly stable if and only if all eigenvalues of 

the quadratic matrix polynomial (6.1) are real and of definite type (this idea is in 

[GLR2], but see also [LMM2] and [L2], for example). Since (6.1) is transformed from 

the original transfer function of gyroscopic differential equaiton by the substitution 

A = ip, where p is the eigenvalue of the original system, so when A is real, p stays on 

the imaginary axis and the solutions of the original gyroscopic differential equation 

are bounded. This is the normal meaning of "stable". The "strongly" means that 

under small hermitian perturbations (in norm) of the coefficients B and C, the system 

remains stable. The term "strongly table" is the same as "stably bounded", "stably 

r-diagonable" in [GLR2] (see p.234 and p.25.7). An. eigenvalue A0 is of definite type 

means that the kernel (or nullspace) of L(A0) is a definite subspace with respect to 

L'(/\o), i.e.. we have 

(L'(Ao)x,x) > 0, or (L'(Ao)x,x) <0 

for every nonzero x E Ker L(Ao). Obviously, whn (a) holds and B 0 the system 

is unstable, and our concern is with what conditions on the "size" of B (relative to 

C and I) ensure strong stability. 

A sufficient condition for strong stability is established and developed in [BLM], 

[L2], and elsewhere. It takes the form: 

(c) IBI > kl+k'C for some k >0, 

where I B I is the positive definite square root of B2. When conditions (a), (b) and (c) 

hold the system (6.1) is said to be gyroscopically stabilized and is therefore known as 
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a GS system. (Note that such systems are also quasihyperbolic in the sense of [Li] 

and [LMM1].) It is our purpose here to formulate a more general class of gyroscopic 

systems by relaxing condition (c). 

An intermediate class of problems will be examined before making our final gen-

eralization. Let a(M) denote the spectrum of a square matrix M and let r(M) := 

max)€0.(M) JAI be the spectral radius of M. 

Lemma 6.1 Condition (c) is equivalent to 

r(IBI'(kl + k'C)) < 1 for some k> 0. (6.2) 

Proof: (c) is equivalent to 

((kf-i- k'C)f, f) < (IBI"2f, IBj"2f), (f ,z 0), 

or, 

IB'2(kI+k'C)IBI"2 <I. 

But then the last inequality is equivalent to 

r(IBI"2(kl + k'C)1B1'I2) <1, 

which, in turn, is equivalent to (6.2). 

Since the spectral radius of matrix I B1'(wl + w'C) is a continuous function of 

w, condition (6.2) can also be written in the form 

(c') min r(IBj'(wl+w'C)) <1. 
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The idea of using this condition in place of condition (c) arises on consideration of 

the methods used in [HKLP]. This leads one to investigate the condition 

(d) min r(B'(wl+w'C)) <1, 
w>O 

which will be seen to be weaker than (c) (or (c')). Then (d) will itself be replaced 

by a weaker condition (e) and, finally, it will be established that systems satisfying 

conditions (a), (b) and (e) (or, of course, (a), (b) and (d)) are stable in the above 

strong sense. 

Lemma 6.2 

r(B'(wl + w'C)) r(IBl'(wl + w'C)) (6.3) 

Proof: Since for w > 0, wl + w'C > 0, we can define H = (wl + w'C)'/2 > 0. 

Also let A = B'. For these hermitian matrices A, H, it is well--known (P.363 of 

[LT], the following norm is the spectral matrix norm) that 

r(AH2) = r(HAH) = IIHAHII = sup I(HAHf,f)I 
If 11=1 

Let 4, A... be the positive and negative parts of A, respectively, defined by 

A+=(IAl+A), A=(IAI — A). 

Then we have A+≥0,A_≥0, and A=4—A_, IAI=A+-i-A_. Thus 

sup I (HAHf, f) I 
If 11=' 

sup I (HA+Hf, f) - (HA_Hf, f)l 
If 11=' 

≤ sup ((HAHf, f) + (HA_Hf, f)) 
llf 11=' 

= sup (H Al Hf, f)I = H JAI HIl = r(H JAI H) 
hf 11=' 

= r(lAI H2) = r(lBI'(wl + w'C)). 
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By Lemma 6.2, condition (c') always implies (d). The next example shows that 

the reverse implication does not hold and, moreover, the left-hand-side of (6.3) can 

be arbitrarily small when the right-hand-side is arbitrarily large. Furthermore, this 

is the case even when B = iG and C is real, skew-symmetric. 

Example 6.1 Let 

B = 

0 0 OM 

0 0 1 0 

—1 0 0 

—M 0 0 0 - 

M 2 0 0 0 

0 100 

0 010 

0 0 0 1 

where M> 1 is a real number. Some computations show that 

minr(B'(wl+w'C)) = 2M"4. 
w>O 

Furthermore, 

r(I'(wI+w'C)) = 
M(w + w 1) for w M"2., 

whence' 

Finally, we see that 

w +w:'M2 for 0 <w 

min r(1B1'(wl + cr'C)) = M 314 (1 + M). 
w>O 

min r(IBI"'(wl+w'C)) --+ 00, nr(B'(wI+w'C)) - 0. 

as M - f oo. 
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Now define functions r+ and r_ by 

r+(B'(wl+w'C)) = max(A >0: A € 

r_(B'(wI+cr'C)) = max(A >0:—A E a(B'(wl+w'C))) 

and then, since the spectrum of B-' (wl + w'C) is real, 

r(B'(wl + w'C)) = max (r+ (B-1 (wl + w'C)), r_(B'(wl + w'C))). 

Writing 

p(B, C) := max (mm r+(B'(wl + w'C)), mm r(B'(wl +w'.C))) (6.4) 

we now have 

p(B, (j) ≤ min r(B 1 (wl + cr'C)). (6.5) 
w>O 

The next example shows that the left-hand-side of (6.5) can be arbitrarily small 

when the right-hand-side is arbitrarily large. However, there is equality here if B 

has the special form B = iG where C is real and skew-symmetric (cf. [HKLP]). 

Example 6.2 Let 

B = diag[M"4, —M5/4], C = diag 

where M> 1. Then some calculation shows that 

On the other hand, 

1, M 2] 

min r(B'(wl + w'C)) = M"4 + M 314. 
w>O 

minr(B'(wI + w'C)) = minr(B' (wl + w'C)) = 2M"4, 
w>O w>O 

and it follows that p(B, C) = 2M"4. 
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Thus, the more general case is that the condition (d) is replaced by 

(e) p(B,C) <1, 

where p(B, C) is defined in (6.4), i.e. if conditions (a), (b), and (e) are satisfied 

then, for brevity, the system is said to be extended gyroscopically stabilized (EGS). 

It is proved in [LMZ1] that an EGS system is strongly stable and this result will be 

proved in Theorem 6.7. 

6.3 Gyroscopic systems with two-parameters 

Another perspective on the problem of strong stability of a gyroscopic system is 

developed in [HKLPJ and we now investigate system (6.1) from this point of view. 

A complex parameter h is introduced as follows: 

h) = .A21± MB + C, (6.6) 

and, instead of studying L(A, h) directly, consider the two parameter matrix function: 

4(w,h):_—wl+w'C+hB (6.7) 

Note that if C > 0, A = 0 can never be an eigenvalue of L(A, h) for any h, so the 

eigenvalue problems for L(A, h) and A(w, h) are equivalent. We say that A(w, h) is 

strongly stable at a fixed h when all w-eigenvalues of A(w, h) are real and of definite 

type. 

Now the question can be asked this way: since for h = 0, A(w, 0) is unstable and 

when h is very big, the "size" of hE can ensure the strong stability of A(w, h) (see 
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[BLM] or [LMZ1]), what is the critical value of hat which A(w, h) turns from an 

unstable system to a stable system? We can define this value of h as 

ho = inf{h> 0 : A(w, h) is strongly stable.} (6.8) 

When h = 1, the system A(w, 1) isequivalent to the system (6.1), so the question 

examined by [LMZ1] can be translated as: what kind of condition on B and C for 

system A(w, h) in (6.7) can ensure that A(w, 1) is strongly stable? The sharpest 

condition of this kind obtained in [LMZ1] is condition (e). 

The objectives of the following two sections are to confirm this result from the 

"two-parameter" viewpoint, and to generalize the theory of [I-IKLP] (in that work 

B has the form B = iG, where G is real and skew-symmetric) to the case of general 

indefinite B. 

Now let .us examine p(B, C) in our "two-parameter" language.. 

It will be useful to introduce the inertia of an hermitian matrix M, defined as 

In(M) = (ir, ii, 5), where 7r(M), v(M), 5(M) are, respectively, the numbers of 

positive, negative and zero eigenvalues of M (counted with multiplicities). 

Suppose the inertia of B is (p, n—p, 0). For the pencil E+)B with E> 0, notice 

that all eigenvalues are nonzero and that for an eigenvector x 0, 

(E + AB)x = 0 (A—'I - E"2(—B)E")E"2x = 0, 

so the pencil has n - p positive eigenvalues. Similarly, if E < 0, the pencil has p 

positive eigenvalues. 

Consider a fixed w E R, wl + w'C> 0, by the argument above, A(w, h) has 

n—p positive h-eigenvalues h(w) ≥ h(w) ≥ . . . h(w) > 0. At a fixed negative w, 
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wl + w'C < 0, A(w, h) has p positive eigenvalues hi (w) ≥ h2 (w) ≥ . . . h; (w) > 0. 

These functions h (w) and h (w) are continuous functions of nonzero real variable 

w and describe continuous curves in the w, h coordinate plane. Let us examine these 

curves more carefully. 

Let c, be the minimal eigenvalue of C and b1 be the maximal eigenvalue of —B. 

Let xj be an associated normalized eigenvector of A(w, h) for ht (w) at a fixed w > 0. 

Then 

x(wI + w'C)x w  w 
>—>0. h(w)  x(—B)x x(—B)x - b1 

Also 

(6.9) 

ht(w) W X3CX3 > 0. (6.10) 
x(—B)x wb1 

Hence, we can see that ht (w) - oo as w - oo and also as w - p 0 from the right-hand 

Ide for each j = 1,. .. , n - p. Similarly, we have lç(w) - oo as w - f —oo and also 

as w - 0 from the left-hand side for j = 1,. .. , p. Because h and h are continuous 

and bounded below, we can define 

= minht(w), I?T = minhj(w), Ii = max(I, IT). 
w>O w<O 

The situation is sketched in Figure 6.1. 

Using the symmetry of the eigenvalue h(w) ófA(w, h) with respect to the origin 

we have 

So actually 

h(w)=r+(B'(wI+w'C)), for w>0 (6.11) 

for w> 0 (6.12) 

p(B,C) = ii. (6.13) 
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h 

h, (w) 

ht(w) 
h(w) 

L(w) 

Figure 6.1: Eigenvalue curves h,+ (w), h(w) 

w 

We have another important function 

r(B'(wl + w'C)) = max (r+(B 1 (wl + w'C)), r_(B'(wl + w'C))). (6.14) 

If we define h = minr(B'(wl + w'C)), since 
w>O 

so 

Thus 

r(B'(wI + w'C)) <r(B'(wl + w'C)) 

+ w'C)) ≤ r(B'(wl ± 

k'≤h, and 1≤h. 

h<h. 

This is illustrated in Figure 6.2. 

The following lemma is useful for counting eigenvalue multiplicities. 
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h 

h 

h 

h 

w 

Figure 6.2: The case: h ≤ h 

(w) 

Lemma 6.3 For a matrix function A(w, h) depending analytically on two complex 

parameters w and h, the multiplicity of w0 as an eigenvalue of A(w, ho) is equal to 

the total number of w-eigenvalues (counting multiplicities) in a neighborhood of w0 

for any fixed h in a neighborhood of h0. 

Proof: Let f(w) = detA(w, h0). The multiplicity of w0 as an eigenvalue of A(w, ho) 

is the multiplicity of w0 as zero of f (w). Since w0 is an isolated zero of f (w), there 

exists a deleted neighborhood U of w0 such that for w E U, f(w) 0, and there 

exists a circle r in U around w0 such that min If (w) I = > 0. Now the continuity of 
wEr 

function detA(w, h) in h implies that for e, there exists a neighborhood V of h0 such 

that if h E V, then If(w) - detA(w,h)I < E. Thus, by Rouché's Theorem (see [D]), 

we can conclude that the multiplicity of w0, which is the only zero of f(w) inside r, 

is equal to the total number of w-zeros of detA(w, h) inside r for h E V. . 

This lemma shows that in the to situations illustrated in Figures 6.3 and 6.4, 
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h 

w 

wo w 

h(w) 

hi (w) 

wo W 

Figure 6.3: Multiple eigenvalue w0, Figure 6.4: Multiple eigenvalue wo, 
case 1 case 2 

w0 has multiplicity at least 2. 

6.4 The main results 

Theorem 6.4 If h> ii, then all w-eigenvalues of ..4(w, h) are real and semisimple. 

Proof: By definition of  and the properties of h(w),j = 1,... ,n - p, h(w),j = 

1,... ,p, any horizontal line above, or coincident with i intersects each curve 

h,-.(w) at least twice'(see Figure 6.1). Using Lemma 6.3 to count multiplicities, it 

follows that when h ≥ &, A(w, h) has at least 2n real w-eigenvalues. However, A(w, h) 

can have at most 2n complex w-eigenvalues. Hence, when h ≥ h, A(w, h) has exactly 

2n real w-eigenvalues. 

A(w, h) is a Hermitian matrix function and = B. For any eigenvector x of 
Oh  

A(w, h), x*(wl+ w_1C+hB)x = 0, so if w > O,h>0, then x*Bx <0, and if w <0, 

h> 0, then x*Bx > 0. It follows from Corollary 4.3 of [HL] that if the eigenvalue w is 

not semisimple then, after small perturbation in h there are non-real w-eigenvalues. 

But this is not possible for h> h, so all w-eigenvalues must be semisimple. 
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Theorem 6.5 If h = h (respectively lb = lIT), then there is a unique Wt for which 

lb = ht (w ,) (respectively lb = hj(w0t)). 

Proof: The proof uses the same idea as the proof of Theorem 6.4. By definition of 

h = max(lb+, ij, so h = lb or h = /. Here the proof is only for the case of ĥ = 

and the proof for the case of It = Ir (then lb = hj(w t)) is similar. Suppose there 

are two different values w1 w2 such that lb = ht(wi) = ht(w2). By the definition 

of h, h+ (I  + w2)) ≥ It. If h((w1 + w2)) = It, then the horizontal line h = t has 

at least three intersections with the graph of ht. If h((WI + w2)) > h, -then some 

horizontal line above h = It has'a&least four intersections with the graph of ht, and 

it also intersects the other curves h, j = 2,. .. ,,n - p, .and h, k = 1,. . . , p at least 

twice. However, A(w, h) can have at most 2n w-eigenvalues. This is a contradiction. 

Hence the w at which it is attained is unique. 

The proof of Theorem 6.5 corrects and simplifies an argument of [HKLP]. 

The following Theorem 6.7 is parallel to the main theorem in [LMZ1]. Before 

that, we need a useful lemma. It can be obtained from more general results of Section 

12.4 of [GLR1}: 

Lemma 6.6 Let M(w) be a matrix polynomial, a and b be real numbers with a < b. 

If M(a) and M(b) are invertible and 

v(M(b)) - zi(M(a)) = s> 0, 
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then M(w) has at least s eigenvalues on (a, b) (counting multiplicities) and, if there 

are exactly s eigenvalues on this interval, then they all have negative type. 

Theorem 6.7 Let w > 0 and w_ < 0 be two w-values such that h,+ and h- are 

achieved, i.e. = h+ (w+) and 1i = iiw_). Let mB = (p, n - p, 0). Then for 

h> &, all w-eigenvalues of A(w, h) are real with definite type and there are: 

p eigenvalues of negative type in (—oo, w_), 

p eigenvalues of positive type in (w_, 0), 

n - p eigenvalues of negative type in (0, w+), 

n - p eigenvalues of positive type in (w, +oo) 

Proof: First consider a fixed h> It 

By considering large positive w, we may write A(+oo, h) > 0. On the other hand, 

since C> 0 there is small positive w, say w = e > 0, such that A(, h) > 0. 

Now let us check the inertia of matrix A(w+, h). First of all, since h> ii, matrix 

A(w, h) is invertible. 

If we can find a subspace S such that dim S = n - p and (A (w+, h)f, f) <0 for 

all nonzero f E 5, then zi(A(w, h)) ≥ n - p, and it follows from Lemma 6.3 that 

there must be at least n - p w-eigenvalues of A(w, h) (seen as a polynomial of w) 

in (0, w+), and also in (w+, oo). Furthermore, if there are exactly n - p eigenvalues 

in each interval, then they must all have definite type; negative type in (D, w) and 

positive type in (w, oo). 

To find such a subspace 8, we first define a new definite inner product 

V, g] = ((wI+w'C)f,g), 
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and it is easily verified that B'(wI + w'C) is self-adjoint with respect to [• .1. 

So there exist orthogonal eigenvectors x1,.. . , x_ corresponding to eigenvalues 

hi(w+),. . . , hm_p(w+ ): 

((WI + w'C)x, x) = 0 i j (6.15) 

and 

(w+I+wT'C+hB)x1= 0 i=l,...,n-p (6.16) 

Furthermore 

(6.17) 

It follows from (6.15) and (6.17) and the positivity of wI + w'C that 

(Bx1,x) <0 

fl-p 
If we define S = span{xj}' and take f = > aixi E 8, then using (6.15): 

1=1 

((w+I + w;'C)f, f) = ( a(w+I + w;'C)x, ax) 

= Y a 2((w4 + w'C)x, x) 

IajI2hj(Bx, xi). 

Since (Bx, x) <0 and h> & ≥ h, 

((w+I + w'C)f, f) < -h IaiI2(Bxj, x) 

= -(hB(ajxj),> 

= -(h.Bf,f). 

(6.18) 

In other words, (A (w+, h)f, f) = ((w+I + w'C + hB)f, f) <0. So the subspace S 

has all the required properties. 
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Similarly, for a fixed h> h-, if we check the changes in the inertias for A(—oo, h), 

A(w_, h) and A(—e, h), it can be proved that A(w, h) has at least p eigenvalues in both 

(—oo, w_) and (w_, 0) and if exactly p, then all of them are of negative (respectively, 

positive) type. When h> h, by the definition of h, h> & and h> h-. As the total 

number of w-eigenvalues of A(w, h) is 2n, it follows that there must be exactly p or 

n - p eigenvalues in each interval, as appropriate. In particular, all eigenvalues are 

real and of definite type. 

Corollary 6.8 h0 ≤ h. 

Proof: This follows from the definition of h0 (as defied in Equation 6.8) and 

Theorem 6.7. 

Example 6.3 Let A(w, h) wi -'f-w'C +'hE where B = diag[—1, —2,4] and C = 

diag[1, 4, 16]. 

The positive eigenvalue functions of A(w, h) are sketched in Figure 6.5. Some 

calculation shows that h0,= 2 and It = 3/\/ 2.12. 

Theorem 6.9 If eigenvalue function h(w) > 0 is differentiable at w0 > 0, and 

dh > 0 (<0, respectively), then w0 is an eigenvalue of positive (negative, respec-

tively) type. 
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h 

ho 

h,= w 

Figure 6.5: The positive eigenvalue functions of Example 6.3 

W 

Proof: Suppose h0 = h(wo) > 0. For any X E ker A(wo, ho), h(w) is the function 

determined implicitly by the equation in two variables 

F(w, h) = (A(w, h)x, x) = 0. 

By the implicit function theorem, 

Since 

so 

cth 
W=WO dw 

t9A 
OLO  (wo, ho); x) 
'0A (w0, ho)x, x)' ah 

((I - w5 2C)x, x)  

(Bx,x) 

A(wo, ho)x = (wo + w'C + hoB)x = 0, 

1  (Bx,x) = --((wo+w 1 C)x,x) <0. 
ho 

dh I Hence the sigh of ((w0, ho); x) coincides with the sign of 
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Finally, some comparisons with the results of other papers are made. Notice that 

when h = 1, the eigenvalue problem of A(w, 1) is exactly the same as that of L(A) 

in Equation (6.1). By. our Theorem 6.7, the condition (e), p(B, C) < 1 implies -that 

A(w, 1) is strongly stable, so this result is equivalent to a main result of [LMZ1]. 

Namely, the condition (e) implies that L(A) is strongly stable. In other words, the 

result of [LMZ1] shows that p(hB, C) < 1 can guarantee that A(w, h) is strongly 

stable. Actually condition p(hB, C) < 1 is equivalent to ii = p(B, C) < h, as our 

condition in Theorem 6.7. 

In the paper [BLM], it is shown that if IhBI > k14-k'C for some k, then A(w, h) 

is strongly stable. Our condition it < h is better than that condition in the sense 

that It < h implies IhBI > kl+k'C for some k, but the converse implication is not 

true. 



Chapter 7 

Conclusion 

In this thesis we have studied the analytic perturbation theory for matrix functions 

by two methods. One is the Newton diagram method, and the other is the gener-

ating eigenvector method. Since the eigenvalue function )(a) of a matrix function 

a) is a solution function determined by the equation detL(A, a) = 0, and New-

tpn's diagram is the main tool used to investigate these solution functions, using the 

Newton's diagram method to study the eigenvalue function A(a) is natural and basic. 

The generating eigenvector method adds information on corresponding eigenvectors 

x(a) associated to )(a). The "spirit" of this method is to collect the terms with 

the same power in a in L(A(a), a)x(a) and choose x to make the coefficient vanish. 

With the "help" of the eigenvector x(a), Theorem 4.14 establishes a successive com-

putation procedure for the coefficients { b, }° for the eigenvalue. series (4.25). This 

algorithm is better than the algorithm of Newton's diagram, since, in general we can 

not give the explicit determining equation even for b2. The algorithm is also more 

productive, since a by-product is the solution {j }?° for the eigenvector series (4.26). 

However the algorithm is limited to the case that A0 is a semisimple eigenvalue of 

L(A, 0) and b1 is a simple root of the determining equation detP(u) = 0. Also in the 

theoretical part of Theorem 4.14, the proof of the existence and uniqueness of {b}° 

is given by Newton's diagram. 

Interesting open questions are how to generalize the results in Theorem 4.14 to 

the cases of when b1 is a multiple semisimple root of detP(,u) = 0, or further when 

120 
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Ao is a general multiple eigenvalue. A deeper question underneath or connected to 

these open questions is: parallel to the result that detP() = 0 is the determining 

equation for b1, what is the determining equation for b2? Comparing equations (4.28) 

and (4.29), the intuition suggests that if ICI = kerP(bi) and = ker(P(bi)*), then 

the determining equation for b2 could be 

det([[Lio],ic'] j1,jc + b + b1 [[L11],']x1, + = 0 

where the notation [Ji is defined in (3.8), and can be defined similarly. To 

prove this guess, we need the knowledge of the D.E. for the second coefficients in the 

Puiseux series expansions in the scalar valued function case. In Section 2.8, there is 

an attemp in this direction, but the question is not totally solved. 

I look forward to further investigation of some of these problems. 
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