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can pass pointers to the structures throughout the application. The garbage collector
guarantees that no matter how complex the manipulations of these data structures,
the storage they occupy will be reclaimed only when it is safe to do so.

Garbage collection is useful in applications which are under development by multiple
development teams and in applications which make heavy use of reuseable libraries.
When dynamically allocated memory is exchanged between subsystems in these situa-
tions, it may not be clear whose responsibility it is to eventually reclaim this memory.
Even when the responsibility is clear, the information may be available only in offline
subsystem documentation. Programmers do not always refer to this documentation,
especially when copying fragments of code from one module to another. In these situa-
tions, memory may not be freed at all or may be freed prematurely, leading to software
defects which are difficult to diagnose. The use of a garbage collected heap climinates
this problem.



Chapter 2

Requirements Analysis

This chapter discusses requirements for the implementation of a garbage collected heap in
a C compiler. The requirements fall into two broad categories: requirements intrinsic to
various garbage collection algorithms and compatibility requirements arising {rom common
C programming techniques. The intrinsic requirements are discussed first, in the context of
a description of garbage collection algorithms.

In general, there are two kinds of garbage collection algorithms: reference counting and
tracing algorithms [7]. The tracing algorithms can be further divided into compacting and
non-compacting algorithms. Each of these kinds of algorithms is discussed in turn.

2.1 Reference Counting

Reference counting algorithms reserve a field in every allocated block of memory to count
the number of pointers referring to the block. Every time a reference to a block is created
or destroyed, the reference count for the block must be updated. If the count ever reaches
zero, the block is no longer in use and can be immediately reclaimed. Refercnce counting
algorithms are relatively easy to implement, but suffer from the performance penalty associ-
ated with constantly updating reference count fields. Another drawback of these algorithms
is that they are unable to reclaim circular data structures because the reference counts in
such structures never reach zero, even when the entire structure is no longer referenced by
pointers outside of the structure.

Reference counting algorithms are used when the inability to reclaim circular structures
is acceptable, or in conjunction with a tracing algorithm. The tracing algorithm is used
as a backup for the reference counting algorithm. The backup algorithm is invoked as
a last resort when a storage allocation request cannot be fulfilled, in the hope that the
tracing algorithm will reclaim storage which the reference counting algorithm was unable to.
Reference counting algorithms have also been proposed as optimizations to tracing algorithms
to reduce the frequency with which tracing collectors are invoked [18].

In spite of their potential utility, schedule constraints prohibit the evaluation of reference
counting algorithms as an implementation alternative in this report. The remainder of this



report deals only with the implications of tracing garbage collection algorithms.

2.2 Tracing Algorithms

Tracing algorithms for garbage collection identify memory locations which are still in use by
walking all active trees of pointers to data structures or nodes. As each node is encountered
during the trace, it is identified as being in use, usually by turning on a mark bit in the
node. Any node which is not encountered and marked during the tracing phase is not in
use and can be reclaimed. The nature of tracing algorithms introduces constraints on any
language using them. These constraints are introduced in the context of both compacting
and non-compacting algorithms. Compacting algorithms move in use nodes in the garbage
collected heap to a single contiguous region in the heap. Non-compacting algorithms do
not do this and therefore suffer from memory fragmentation. Compacting collectors avoid
fragmentation and simplify storage allocation as well, since unused storage is also available
as a contiguous region after a collection.

2.2.1 Non-Compacting Algorithms

While memory [ragmentation is undesirable, it is a characteristic of all existing memory
management schemes for the C language. This being the case, it seems reasonable to assume
that in terms of memory fragmentation, non-compacting garbage collectors work as well as
existing memory management algorithms for C. This is not the case in general. Dynamic
memory management algorithms for C make unused memory available for reuse as soon
as it is identified by a free statement. In contrast, storage in a garbage collected heap is
not available for reuse until the completion of the next garbage collection cycle. This may
result in a garbage collected system unnecessarily fragmenting a large region of free memory
when a manually managed heap would have reused smaller regions recently identified by
free statements. Similar examples can be constructed where garbage collected heaps result
in less fragmentation than do manually managed heaps. No conclusive statement, can be
made therefore, about the memory fragmentation performance of non-compacting garbage
collection algorithms vs existing C algorithms.

If a non-compacting algorithm were used to manage a garbage collected licap for C, it
would require a degree of compile time and run time support.

* Non-compacting tracing algorithms require that every node in the garbage collected
heap which is still in use be visited during the tracing phase of the collector. 'To ensure
this, the tracing phase does not need to chase every pointer to every node in the heap,
but it must chase at least one pointer to every in use node in the heap.

o To chase pointers at all, these algorithms require that pointers to the garbage collected
heap, or garbage collected pointers be identifiable, no matter where these pointers are
stored. This is usually accomplished by either explicitly or implicitly associating data
type tags with every block of memory in the system.



e Most non-compacting algorithins also require that each garbage collected pointer they
chase point to the beginning of a garbage collected node. This is because control
information such as the mark bit generally resides at the beginning of the node. While
this requirement is not absolute, algorithms which allow pointers into the middle of
nodes are relatively expensive [7]. ’

2.2.2 Compacting Collectors

To ensure that an application continues to execute correctly after a compacting collection,
the collector must carry out pointer adjustment on all pointers to nodes in the garbage
collected heap. Pointer adjustment modifies all these pointers so that they refer to the
new locations of the moved nodes. Compacting collectors require all of the language support
which non-compacting collectors do, and strengthen one of the non-compacting requirements.
To carry out pointer adjustment, compacting collectors must be able to identify and chase
every pointer to every in use node in the heap.

2.3 Additional Requirements

Additional requirements for the implementation of a garbage collected heap for C stem from
pragmatic considerations rather than from intrinsic qualities of garbage collection algorithms.
The addition of a garbage collected heap is intended to enhance the C language by reducing
the complexity of some programming tasks. While the addition may significantly modify
the implementation of a C compiler, it is not intended to change significantly the syntax,
semantics or performance of the language. All C applications which work correctly with
a non-garbage collecting C implementation should compile and run correctly with the new
implementation. Furthermore, only those parts of an application which use pointers referring
to the garbage collected heap may incur a performance penalty as a result of adding a garbage
collected heap to the language. This performance penalty is the expected cost of identifying
garbage collected pointers to the garbage collector.

Finally, to retain the “flavour” of C as a “low level” language, a garbage collected C
should provide for bypassing pointer identification mechanisms between garbage collections.
A knowledgeable programmer should be allowed to bypass these mechanisms for performance
or other purposes, provided that at the time of the next garbage collection, all pointers to
the garbage collected heap are correctly identified.

2.4 Summary of Requirements
The requirements discussed in this chapter are summarized in this section.

Essential Requirements:



e Pointers to the garbage collected heap must be identified to the garbage collector.
Non-compacting collectors require that at least one pointer to every garbage collected
node be identified to the collector. Compacting collectors require that every relerence
to every node in the heap be identified to the collector.

e All pointers identified to the garbage collector must refer to the beginnings of nodes
in the garbage collected heap.

Other Requirements:

o All applications which run correctly using a non-garbage collected compiler should run
correctly when compiled with the enhanced compiler.

¢ Only those portions of an application which use the garbage collected heap may incur
a performance penalty as a result of adding the garbage collected heap to the language.

¢ References to the garbage collected heap may be cast as other data types between
garbage collections, provided that all such references are identified to the collector
during garbage collections.



Chapter 3
Related Research

Garbage collection is usually associated with dynamically typed languages such as Scheme
and Smalltalk, and is not usually associated with statically typed languages such as C and
Pascal. Dynamically typed languages associate data types with values such as blocks of
memory, while statically typed languages associate data types with identifiers such as vari-
ables and procedures [2]. Statically typed languages can be further classified as languages
which cooperate with a garbage collector by identifying references to the garbage collected
heap, and languages which are uncooperative and provide no such identification.

This chapter discusses existing implementation techniques for garbage collection in dy-
namically typed languages and in both classes of statically typed languages. Each technique
is briefly evaluated as to whether it might be useful in a cooperative, garbage collected C.
Techniques identified as useful in creating a garbage collected C are examined in more detail
in the next chapter. Techniques which useful only as optimizations to garbage collected
languages are not considered in the remainder of this report. The thrust of this report is
the establishment of basic functionality rather than peformance optimization. The consid-
eration of optimizations is deferred to future research which will compare the performance
of the proposal in this report to the performance of Boechm’s technique for uncooperative
environments [1].

3.1 Dynamically Typed Languages

Dynamically typed languages can associate data types with values either ezplicitly, by pre-
fixing every value with a small data type tag, or implicitly by using some other mechanism
to identify values. Garbage collectors in these languages use this data type information
to locate garbage collected pointers within values. This section discusses mechanisms for
explicit and implicit data typing and discusses storage management mechanisms used by
dynamically typed languages.



3.1.1 Explicit Data Typing

On many machines a small, explicit tag causes the components of many data structures to
become non-word aligned, increasing the cost of accessing these components. T'wo optimiza-
tions have been developed to address this problem.

e The obvious optimization is to make the data type tag occupy an entire machine word.
This solves the alignment problem, but increases the memory cost of the tag, especially
for small data structures. In many applications this cost is unacceptable. Empirical
results for applications written in Scheme for instance, show that as many as one half
of all of memory consists of one and two word data structures [6] [5]. The addition of
one word tags to these data structures increases the memory cost of these applications

by 25 - 50%.

e The second optimization uses processor and memory hardware support to associate a
small data type tag with every word in memory [12]. This tag is used to identify small,
common data types such as garbage collected pointers and conventional data type
tags are used for larger or less common data structures. This mechanism significantly
reduces the memory cost of tags as well as the cost of type checking. The disadvantage
of this optimization is that it is usually possible only in computer architectures designed
for dynamically typed languages.

The C language is a statically typed language and at first glance, does not appear to
require the use of data type tags. Adding a garbage collector to C however, requires that
pointers to garbage collected nodes be identified to the garbage collector at run time. This
identification mechanism is a kind of dynamic typing, since it distinguishes values which
are pointers to the garbage collected heap from other kinds of values. Implementing this
identification mechanism using hardware supported tags is possible only when designing
compilers for architectures which provide this support. A more generally applicable data
typing mechanism is to prefix values with type information sufficient to identify pointers to
the garbage collected heap.

3.1.2 Implicit Data Typing

There are alternatives to explicit data type tags, namely implicit typing through either
typed pointers [12] or through storing all data of a given type in a particular region of
memory [17]. These alternatives are useful when optimizing an implementation, since their
cost is sometimes less than that of explicit tags. These alternatives are equivalent to explicit
tags though, in the sense that they also associate data type information with values. Since
explicit tags are simpler than these alternatives, explicit tags are the only typing mechanism
considered in this report.
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Figure 3.1: Nested Data Structures

3.1.3 Nested Data Structures

The construction of nested data structures in some dynamically typed languages and in all
garbage collected languages is complicated by the fact that pointers must refer to the begin-
nings values. When using nested structures, programmers frequently need to make pointers
refer to the nested components of a structure. This is accomplished in most dynamically
typed languages by representing nested structures as multiple, linked nodes (see Figure 3.1).
An exception to this rule is the Symbolics 3600 architecture, which supports both typed
pointers and tagged memory [13]. This architecture allows pointers into garbage collected
nodes by tagging such pointers as locative pointers. When the garbage collector encounters
such a pointer, it chases it and then searches backwards in memory for a word tagged as the
beginning of the node.

The representation for nested data structures in Figure 3.1 is very different from the
representation used by C compilers. It will become clear in the next chapter that the use of
this representation would make a garbage collected C incompatible with existing implemen-
tations to a large degree. The Symbolics alternative to this representation is available only
on architectures which provide tagged memory. Other alternatives to this representation are
proposed in the next chapter.

3.1.4 Other Storage Optimizations

Chase [3] evaluates a number of storage optimizations which have been proposed for dynam-
ically typed languages. These optimizations eliminate the overhead of garbage collection for
values which at compile time, can be proven to become garbage at a predictable point in the
application. These values are on the stack or in a manually managed heap instead of in the
garbage collected heap. These optimizations are not a primary means of storage manage-
ment. Instead, they are optimizations which assume the existence of a variety of memory
management mechanisms and identify to the compiler the least expensive mechanism which
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can be used in a given circumstance. These optimizations may be applicable to a garbage
collected C, but are not considered further in this report.

3.2 Cooperative, Statically Typed Languages

Cooperative, statically typed languages cooperate with a garbage collector to the extent
that they provide run time typing information sufficient to identify references to the garbage
collected heap. The only examples of these languages are the Fortran and Pascal compilers
on the Symbolics 3600 machines [14]. While these languages are nominally statically typed,
they associate exactly the same kind of data type information with runtime values as do
dynamically typed languages, because the Symbolics hardware does this automatically. The
existence of these languages demonstrates that a cooperative garbage collected C is possible.
Since the implementations use dynamic typing all of the time though, they offer little insight
into how to avoid the cost of dynamic typing in portions of an application which do not use
garbage collected values.

3.3 Uncooperative, Statically Typed Languages

Uncooperative, statically typed languages do not associate type information with values
at all. Garbage collection in such languages is particularly difficult, since one of the key
requirements of all collection algorithms is not satisfied ~ the requirement that garbage
collected pointers be identified to the collector.

A recent approach addresses uncooperative languages in a novel way [1] (see Figure 3.2).
In this technique, memory in the garbage collected heap is allocated in chunks, each of
which holds nodes of a fixed size. Chunks are always aligned on fixed power-of-two memory
boundaries and contain header information indicating the size of the chunk, the size of nodes
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in the chunk, a mark bit for each node in the chunk and a pointer to the heap control block
entry for the chunk. The heap control block contains a pointer to the beginning of every
chunk in the garbage collected heap.

During a garbage collection, the collector scans memory and interprets every word as
a pointer to the heap. The collector masks the low order bits in the pointer to make it
refer to the beginning of the chunk for the node and chases the pointer to the heap control
block. If this pointer actually points into the control block and if its target points back to
the chunk in question, then the original word in memory actually refers to the contents of a
chunk of storage in the garbage collected heap. The collector then checks the chunk control
information to ensure that the pointer actually points to the beginning of a node in the
chunk and if this is the case, turns on the mark bit for the node. This technique guarantees
that the mark bit is turned on only in legitimate control fields at the beginning of nodes in
the garbage collected heap. The technique does not protect against incorrectly interpreting
random data as a reference to a node and turning on the mark bit for nodes which would
otherwise have been reclaimed.

Boehm’s technique is expensive, both because every word in memory must be scanned
for potential pointers, and because random data which happens to have the same bit pattern
as a pointer to a garbage collected node can keep otherwise unreferenced nodes {rom being
reclaimed. Furthermore, the technique is incapable of employing a compacting collector
because it would be unacceptable to carry out pointer adjustment on all words in memory
which happen to have the same bit pattern as a pointer to a garbage collected node. In spite
of these drawbacks, Boehm reports that the cost of garbage collection in an uncooperative
environment is acceptable.
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Chapter 4

Implementation Alternatives

This chapter discusses implementation alternatives for a cooperative, garbage collected C
language. The two requirements for this effort which are most difficult to address are the
requirement to identify garbage collected pointers and the requirement to support all of the
operations and coding styles which the C language now supports. This chapter proposes a
mechanism to address the former requirement and evaluates this mechanism using the other
requirements for the garbage collected language. This chapter examines only alternatives
which do not require special hardware. The C language is expected to run on all stock
architectures and few such architectures support tagged memory. Assuming such support in
a garbage collected C would restrict the utility of the language by restricting the kinds of
machines which could run programs in the garbage collected language.

4.1 Garbage Collected Pointers

In general, the problem of predicting the path of values through variables in a program
1s undecidable. Compilers therefore, cannot be expected to distinguish pointer variables
containing garbage collected pointers from pointer variables containing normal pointers at
compile time. To make this distinction, some additional mechanism is required. There would
appear to be two alternatives for identifying pointers which refer to the garbage collected
heap.

e A new class of data types could be created, namely the class of garbage collected
pointers. These pointers would be typed pointers which always refer to the garbage
collected heap. The compiler could then have to somehow identify these pointers to
the collector.

o All pointers in the application could be explicitly or implicitly tagged to indicate
whether or not they referred to the garbage collected heap. The compiler would then
identify all pointers to the garbage collector and the collector would decide which ones
actually referred to the heap.
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The advantage of the latter approach is that programmers need not be aware of which
pointers do or do not refer to the garbage collected heap. The disadvantage of this approach
is that the compiler must identify all pointers to the garbage collector. As will become
apparent later in this chapter, this would result in a performance penalty being associated
with any section of code which makes use of any pointer, not just those sections making use
of garbage collected pointers. This penalty makes this alternative unacceptable.

The former approach requires somewhat more effort of programmers, but guarantees that
existing code and applications suffer no performance penalty as a result of extending the lan-
guage. For this reason, it is the garbage collected pointer approach which has been adopted
in this report. Once identified to the compiler, the compiler must be able to identify garbage
collected pointers in all of C’s storage classes to the garbage collector. The remainder of
this section examines mechanisms for managing scalar variables containing these pointers in
existing storage classes and in the garbage collected heap. Section 4.2 deals with identifying
these pointers in aggregate variables.

4.1.1 Processor Registers

Explicitly associating type information with processor registers is very expensive. Implicit
typing can be associated with registers, either by dedicating some registers to contain only
garbage collected pointers, or by restricting the kinds of garbage collected pointers which
can reside in processor registers when the garbage collector is invoked. Compilers for non-
compacting collectors need only guarantee that every garbage collected pointer in a processor
register have a copy in memory which is identified to the garbage collector. This way, a non-
compacting collector can ignore the processor registers.

Compilers using compacting collectors are more complex. Such compilers must be able to
identify all garbage collected pointers, including those in processor registers. Compilers for
machines with very few processor registers may find it too expensive to dedicate one or more
registers to hold garbage collected pointers exclusively. These compilers can use knowledge of
when a collector can be invoked to guarantee that no garbage collected pointers will reside in
processor registers at the time of a collection. Serial garbage collectors! can be invoked only
when the application allocates memory in the garbage collected heap. If exception handlers
are prohibited from such allocations, the compiler is guaranteed that no garbage collection
will take place in the time between calls to memory allocation primitives or other subroutines.
Compilers for compacting collectors on serial machines can therefore store garbage collected
pointers in registers as long as the contents of these registers are flushed to memory before
calls to any subroutines.

! Applications using serial garbage collectors allocate memory in the garbage collected heap until the heap
is full. The garbage collector is then invoked, and runs until all of the unreachable nodes in the heap have
been reclaimed. The application is then resumed to continue processing. This report deals exclusively with
serial garbage collectors.
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4.1.2 Static Data

Garbage collected pointers in static storage are easily dealt with by allocating all such point-
ers in a separate memory segment. When the C application is linked, the linker can accu-
mulate all such segments into a single segment for the garbage collector to search.

4.1.3 Stack Based Data

Stack based scalar variables can be dealt with either by maintaining a separate stack for
garbage collected pointers or by associating sufficient type information with stack frames to
identify garbage collected pointers. A separate stack for garbage collected pointers is attrac-
tive because it simplifies code emission for expressions involving these pointers. Temporary
pointers can be pushed on to and popped off of the garbage collected stack as easily as other
data is manipulated on existing C stacks.

A single mized stack has advantages and disadvantages when compared to separate stacks.
The use of mized stacks is complicated by the need to store temporary pointers in specific
locations within the stack to ensurce that the garbage collector can find them. An additional
difficulty in using a mixed stack with a compacting collector is that arguments to functions
are usually passed on the stack. In a mixed stack, arguments which are garbage collected
pointers must either be identified as such by control information in the called function’s stack
frame, or these arguments must be copied into secure locations within the called function’s
stack frame. On the other hand, the use of a mixed stack may be justified on machines
with so few processor registers that dedicating a register to hold the garbage collected stack
pointer is out of the question.

Mechanisms for identifying garbage collected pointers in a mixed stack frame are exactly
the mechanisms used to identify these pointers in data structures, since any stack frame can
be viewed as a data structure. These mechanisms are discussed in Section 4.2.

4.1.4 Dynamically Managed Heap

Most dynamic memory management systems embed control information between dynami-
cally allocated blocks [11]. This information usually describes the size of the current block,
the size of the previous block and the allocation status (busy or free) of the current block.
Both sizes are needed to find the beginnings of adjacent blocks when the application frees
a block. A side effect of this control information is that it can be used to traverse all dy-
~namically allocated blocks. If control information is associated with each block indicating
the locations of garbage collected pointers within the block, the garbage collector can find
all garbage collected pointers in a dynamic heap by traversing the heap.
The kind of control information necessary to identify garbage collected pointers in a block
is discussed in the Section 4.2.
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4.1.5 The Garbage Collected Heap

All garbage collection algorithms require that nodes in the garbage collected heap be asso-
ciated with control information indicating each node’s size. This information can be used
to scan garbage collected heaps as well. Not all garbage collection algorithms need to scan
the heap, but all need to chase garbage collected pointers contained by in use nodes in the
heap. This chasing is carricd out in the marking phase of tracing collectors, by chasing all
such pointers when a node is marked. The locations of garbage collected pointers in nodes
in the garbage collected heap is encoded using the techniques of the next section.

4.2 Data Structures and Nested Data Structures

This section of the report reviews the mechanisms for identifying garbage collected pointers in
dynamically typed languages. This mechanism is found to be unfit for the garbage collected
C compiler and an alternative mechanism is proposed.

4.2.1 Dynamically Typed Languages

The structure for control information identifying garbage collected pointers which was used
by Cohen and Nicolau [8] is suflicient for almost all garbage collection algorithms for dynam-
ically typed languages (see Figure 4.1). This structure requires that all garbage collected
pointers be moved into a contiguous region at the beginning of each node and offers only lim-
ited support for nested data structures. In the sections which follow, this format for control
information is referred to as the standard node format. The mark bit in the standard format
is the sign of the size field. A positive size is unmarked and a ncgative size indicates a
marked node.

Moving garbage collected pointers into a contiguous region can easily be accomplished
in a compiler in a manner which is largely transparent to programmers. Such movement
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Figure 4.2: Two Implementations for Nested Data Structures

however, disregards the convention that C compilers preserve the order of components of
a data structure. Preserving this ordering is important if programmers using the garbage
collected compiler are to be able to link their programs with subroutine libraries designed
for “normal” C compilers. Preserving the order of components is also important when the
application in question is a memory-mapped device driver and the C programmer hopes to
overlay a data structure on device registers through judicious pointer-wizardry.

It is not clear that these objections to pointer movement are sufficient to condemn the
technique. It could be argued that it is extremely unlikely that data structures containing
garbage collected pointers would be overlaid on device registers or passed to foreign language
libraries. It could also be argued that on those occasions, the most that pointer movement
would cost the programmer is the cost of copying the data structure to an equivalent one
which contains no garbage collected pointers.

The standard node format supports nested data structures in the sense of Figure 4.2(a),
but pointer movement makes obtaining any pointer to a nested structure impossible with
this format, even between garbage collections. When there is only a single region for garbage
collected pointers in a node, pointers from the main structure are intermixed with pointers
from nested structures. This means that nested structures which contain both garbage
collected pointers and other data types no longer reside in a contiguous region of storage
and treatment of the nested structures as nodes themselves is impossible. This report refers
to the representation for data structures in Figure 4.2a as an embedded representation.

The representation for nested structures in Figure 4.2b is referred to as a linked repre-
sentation. Obtaining a pointer to a nested structure using a linked representation is possible
using the standard node format. While well suited to garbage collection the linked repre-
sentation is an even sharper deviation from C implementation practice than is the pointer
movement technique. Nested structures using a linked representation are more costly to
construct than normal C structures and do not support to the use of binary copying and ini-
tialization procedures. An attempt to copy all components of a linked structure to another

16



.a

........ -b

a b.a b.c.a

Q= b b.b b.c.b
c b.c

memncpy (Q, P, sizeof (P))

Figure 4.3: memncpy Applied to a Nested, Linked Structure

structure with memncpy or any other binary copying procedure would succeed in copying
the upper-most level of information and would succeed in linking the upper-most structure
to the original structure’s nested components (see Figure 4.3). This modification of nested
structure after the application of a binary operation is a substantial deviation [rom accepted
C programming practice.

In summary, the pointer movement required by the standard node format may be ac-
ceptable in a garbage collected C compiler. The treatment of nested structures using this
node format is not acceptable. )

4.2.2 Alternate Node Formats

Figure 4.4 illustrates an alternate format for control information in data structures which
avoids the problems of the standard format?. This format assumes an embedded representa-
tion for nested structures and associates a relatively verbose description of a data structure
with each instance of the structure. Since applications tend to contain fewer data types than
instances, the description of each data structure is stored in static storage and is associated
with instances of the type as a pointer which preceeds the first word in the instance. The
control information is just a tag for each word in the structure indicating whether or not the
word is a garbage collected pointer. This representation is simple, but can become costly
when applied to large arrays of data structures or to variable length arrays.

The information in the tags in this format could be compressed by counting consecutive

*The @ characters in the figure indicate garbage collected pointers in the same way that * characters do
in normal C. A new character is required for garbage collected pointers to distinguish these pointers from
pointers to other kinds of data.
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Figure 4.4: An Alternative Node Format

garbage collected pointers and counting the distance between blocks of garbage collected
pointers® Arrays of data structures may be better addressed by adding the concept of a
multiplier block which indicates that a subset of the control information applies repeatedly.
For example, a compressed format with multiplier blocks could be organized like this:

<control info> = <dsize> <cisize> <sblock> ... <sblock>

<sblock> = <multiplier> <msize> <sblock> ... <sblock>
= <sbsize> <gcblock> ... <gcblock>
<gcblock> = <num_gc_ptrs> <num_words_between_gc_ptrs>
<dsize> = size of data portion of data structure
<cisize> = size of control information block
<multiplier> = number of times to repeat a sequence of sub-blocks

<msize> = size of control info region affected by multiplier

<sbsize> = size of the sub-block

In this representation, the control information block consists of the size of the data structure,
the size of the control information block and a number of sub-blocks. Each sub-block is
either a size field and a number of pairs indicating blocks of garbage collected pointers, or a
multiplier field affecting a number of nested sub-blocks.

Variable sized arrays, while not explicitly allowed in C, are frequently used by C pro-
grammers. When they are used, they may appear by themselves, or they may be the last
element of a data structure. This is accomplished by allocating an array of unary length
and dynamically allocating enough memory to hold the array of desired length. References
beyond the unary-length array are detected by almost no compilers and the net effect is
that of a variable length array. These arrays can be accommodated in either the compressed
or uncompressed format by recognizing data structures which have the potential to become
variable length arrays and flagging the control information for these structures as being
variable length arrays. Upon encountering such nodes, the garbage collector would simply
continue repeating the multiplier for the variable length element in the structure until all
memory in the structure had been examined.

3This is similar to the standard node format for dynamically typed languages.
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This format for control information deals with the problems identified with the standard |
node format.

e Pointer movement in the alternate format takes place only within each nested data
structure. In fact if no pointer movement is desired, the uncompressed control infor-
mation format is not affected but the compressed format may grow slightly longer.

e Pointers to nested structures are possible because nested structures arc located in
contiguous blocks of memory.

e If garbage collected pointers to nested structures are desired, the top level structure
and each nested structure can be prefixed with an offset indicating the location of
the beginning of the node. This representation withstands the application of binary
manipulations like memncpy, since offsets can safely be copied between structures. The
representation fails though, when memset is used to initialize a structure, since the
binary initialization destroys the offsets within the structure.

The one drawback of the new format is that it does not deal very well with very small
data structures, because the pointer preceeding the data structure causes a relatively large
increase in the size of the structure. To an extent, this is a problem with all formats for
control information on stock architectures. The problem can be addressed by using small
data type tags and incurring the associated memory alignment performance penalty.

4.2.3 Unions

The proposed compiler needs to treat unions specially only when the unions contain garbage
collected pointers. When this is the case, the alternate format must be modificd as in
Figure 4.5. Each union containing a garbage collected pointer must be prefixed with a
pointer to the current data type of the union. The data type information for the entire node
specifies only the locations of these pointers within the node. The compiler must emit code
to set the data type pointer for unions containing garbage collected pointers every time an
assignment is made to a member of the union. This may result in a significant performance
penalty being associated with the use of unions containing garbage collected pointers.

The C language does not definc the result of a reference to a member of a union when
the union was written to last through a different member. It scems fair therefore, to instruct
the garbage collector to interpret the union as an instance of the last member which was
written to. C programmers are already aware of the potential for abuse of unions and this
potential is unfortunately increased by the addition of garbage collection to C. Perhaps the
performance penalty associated with the use of unions containing garbage collected pointers
will make programmers less willing to use this error prone construct.
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Figure 4.5: An Uncompressed Node Format for Unions

4.3 Allocation and Deallocation

Implicit in this discussion of associating type information with values is the assumption
that the association takes place when memory is allocated. This prohibits the use of user-
replaceable procedures to manage memory because the user procedures would have no access
to the type information required by the garbage collector. Allocation and deallocation of
memory in any garbage collected language must be the responsibility of the language so
that the compiler can emit code to guarantee the initialization of data type information in
allocated nodes. This is a significant deviation from existing C compilers.

On the other hand, data type information is required only for data structures which
contain garbage collected pointers. This means that the garbage collected C compiler will still
correctly compile all existing C programs. In addition, C programmers are already becoming
somewhat accustomed to the demise of malloc by C’s association with C++ [16]. The object-
oriented C++ contains no malloc either, forcing users to use the language operators new
and delete in place of C’s malloc and free functions. C+4 also contains restrictions on
the unrestricted use of overlays, since it is impossible to overlay classes.

This report proposes that two new operators be added to the C language: the new
and gcnew operators. These operators are equivalent to the new operator in C++ and
would allocate memory in dynamically allocated and garbage collected heaps respectively.
In contrast to C++, this report proposes that malloc be retained for compatibility with
older applications. These applications will work correctly using malloc, provided that they
do not use the procedure to allocate data structures containing garbage collected pointers.

If it is deemed essential to support user replaceable memory managers and allow them to
overlay data structures containing garbage collected pointers, the language could be modified

20



to support this. Such overlays could be supported by registering values with the garbage
collector garbage collector through a number of language-defined garbage collection support
procedures. The desirability of these mechanisms is questionable though, since they require
that programmers be unduly familiar with the details of garbage collection mechanisms in
the language.

There is an additional cost associated with memory allocation for data structures contain-
ing garbage collected pointers. All of the garbage collected pointers in each newly allocated
structure must be initialized to be NULL. This is necessary to prevent the garbage collector
from interpreting the uninitialized fields as pointers to the garbage collected heap. This
performance penalty is incurred by all dynamic and garbage collected heap allocations for
values containing garbage collected pointers and for the creation of stack frames containing
such pointers. The creation of a stack frame is a kind of memory allocation and is subject
to all of the limitations of other kinds of allocation.

4.4 Bypassing Identification Mechanisms

The C language has always allowed programmers to bypass data typing mechanisms through
the use of data type casting and through relaxed data type checking on some assignments
and procedure calls. These mechanisms may still be used in the proposed language, but
relaxations which affect pointers to the garbage collected heap are required to print warnings
for the programmer. Programmers must be aware that relaxing data type identification
mechanisms for garbage collected pointers is safe only between garbage collections. At the
time of a garbage collection, all garbage collected pointers must be identified as such to the
garbage collector.
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Chapter 5

Evaluation of the Language Proposal

This chapter evaluates the proposal for a garbage collected C language against the require-
ments set out in Chapter 2. This report does not define all aspects of a cooperative, garbage
collected language. Instead, it is a first attempt to identify and address significant design
issues in such a language. The proposal and therefore this evaluation is qualitative and
undoubtedly incomplete.

The proposed implementation of a garbage collected C compiler addresses the require-
ments outlined in Chapter 2 as follows:

Garbage collected pointers are identified to the compiler by programmer declarations.
The compiler identifies these pointers to the garbage collector by associating data type
information with each instance of each data type containing a garbage collected pointer.

Garbage collected pointers to components of a garbage collected node can be supported
by the alternate node formats, but at the cost of some compatibility with C.

All applications which ran correctly in a non-garbage collected language implementa-
tion should run correctly in the proposed implementation.

The proposed implementation would correctly compile all existing applications and
these applications would suffer no performance penalty as a result of the addition
of garbage collection to the language. Furthermore, only portions of code which use
garbage collected data types will incur a performance penalty as a result of the addition
of garbage collection to the language.

In the proposed implementation, garbage collected pointers can be cast as other data
types betwecen garbage collections, provided that all garbage collected pointers are
identified to the collector during garbage collections.

Unions containing garbage collected pointers can be accommodated by the proposed
implementation, but they are more expensive and more error prone than are unions
which contain no garbage collected pointers.
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In summary, the proposal enhances the C language with garbage collection with few per-
formance penalties but at some cost of compatibility with accepted C programining practice.
The most costly performance penalties are associated with the use of unions the creation
of data structures, including stack frames, which contain garbage collected pointers. The
~most glaring language incompatibilities arise when programmers use overlays which contain
‘garbage collected pointers. The frequency with which such overlays are required may be
reduced somewhat by the addition to the language of the new and gcnew operators.
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Chapter 6

The INF Virtual Machine Interpreter

This chapter and Chapter 7 discuss a partial implementation of the language proposal.
Schedule constraints prohibited the implementation of a true C compiler for a real machine.
Instead, the author implemented a compiler for a C-like language called X which is targeted
for a stack-based virtual machine. An interpreter called INF' was implemented for the
virtual machine and the implementation closely resembles a FORTH [9] interpreter. This
chapter describes the INF virtual machine and its implementation.

6.1 The Virtual Machine

The INF virtual machine consists of several stacks managed by a number of machine registers.

o A garbage collected stack holds garbage collected pointers exclusively and is managed
by a stack pointer and a frame pointer.

¢ A main stack holds all other data types and holds most operands for stack-based
instructions. This stack is also managed by a stack pointer and a frame pointer.

e A control stack contains return addresses for procedure calls and is managed by only
a stack pointer.

e A program counter register is accessible to the programmer through control transler
instructions.

The instruction architecture is relatively simple and supports four addressing modes:
e a register offset mode specifies a constant offset from a register,

o a stack indirect offset specifies a constant offset from a pointer in the top word of the
main stack,

'INF is Not FORTH.
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e an absolute addressing mode supports static variables and
e an immediate addressing mode provides for in-line constants for some instructions.

The immediate addressing mode is useable only in a few special instructions, but any in-
struction which requires an operand may use the other addressing modes. The offsets in the
addressing modes are usually interpreted as word offsets and words are four bytes long. Two
byte manipulation instructions, loadb and storeb are exceptions to this rule and interpret
oflsets as byte offsets. When instructions usc operands on a stack, the instructions pop these
operands off of the stack before pushing the instruction result (if any) back on to the stack.

This instruction set does not correspond to any real processor, but was chosen, so that
it could correspond to a simple, real processor. The instruction set was chosen with two
purposes in mind:

e The set is intended to convince the reader that writing a garbage collected C compiler
for a real machine can be accomplished and

e it was chosen to make writing the X compiler as simple as possible.

Were the instruction set to be used for an actual processor, it would have to be significantly
extended. For instance, the current instruction set does not support floating point operations
and provides limited support for common logical operations and array indexing.

Instructions are preceeded by their operands in INF source code. This syntax is the
reverse of what most assemblers use and the reason for this will be made clear in the next
section. The instructions supported by INF are listed in the table below. In this table, any
indicates that any addressing mode can be used with the instruction and immed indicates
that only an immediate addressing mode can be used.
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Stack Instruction
Operands Operands Instruction Comment
any load push operand on to main stack
geload push operand on to garbage collected stack
Load value any store store value into operand
and gcvalue any gestore store gcvalue on gc stack into operand
Store tmmed ldconst push operand on to main stack
any ldaddr push address of operand on main stack
any loadb push byte operand on to main stack
value any storeb store value into operand
immed pop pop words off the main stack
immed gcpop pop words off the gc stack
immed link create a stack frame on main stack
unlink discard a stack frame from main stack
Stack mmmed  gelink create a stack frame on ge stack
geunlink discard a stack frame fromn ge stack
value unlink/propagate unlink main stack and propagate return value
value gcunlink/propagate | unlink gec stack and propagate return value
value immed propagate move a value immed words down main stack
value immed gepropagate move a value immed words down gc stack
label call call a procedure
return return from a procedure
Flow label  goto unconditional transfer of control
of value label beq branch to label if value = zero
Control value label bne branch to label if value != zcro
value label ble branch to label if value <= zero
value label  bge branch to label if value >= zero
value label blt branch to label if value < zero
value label  bgt branch to label if value > zero
2 values + push sum of values on stack
2 values - push difference of values on stack
Arith. value negate push inverse of value on stack
2 values * push product of values on stack
2 values / push quotient of values on stack

BREAK

signal a breakpoint to the debugger

In addition to these instructions, the interpreter understands six meta-instructions:
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proc( name instl ... instN ) defines a procedure

label name defines a label within a procedure

variable name defines a static variable one word long

gevariable name defines a static variable containing a collected pointer
constant name value defines a named constant

include filename loads an INF source file into the interpreter

One advantage of writing a compiler for a virtual rather than a real machine is that the
compiler author can choose the target machine’s instruction set. Another advantage is that
debugging facilities can be implemented very easily in the virtual machine. When the INF
interpreter is run interactively, the following debugging commands are available in addition
to instructions and meta-instructions:

S display the main stack

.gs display the garbage collected stack

.cs display the control stack

regs display the processor registers
from  count dump display from from for count words

statistics display memory usage statistics

name disassemble_word | disassemble procedure name

addr  disassemble disassemble procedure at addr

addr  set_breakpoint set breakpoint at addr

addr  clear_breakpoint | clear breakpoint at addr
list_breakpoints list the active breakpoint

step single step into a procedures
STEP single step through procedures
continue continue execution after a breakpoint

Finally, the interpreter implements a number of runtime support procedures for the INF
machine. Were INF a real microprocessor, these procedures would be written in X or in some
other high level language. The support procedures include support for memory management
(including the garbage collector) and some simple 1/0 procedures.

6.2 The Implementation

The INF interpreter is written in C and was inspired by the TILE FORTH (15] interpreter.
The two data structures central to INF are the dictionary and the threaded space (see
Figure 6.1).
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Figure 6.1: The INF Dictionary and Threaded Space

6.2.1 The Dictionary

The dictionary is an array of three word entries. The name field of each entry is a pointer
to the character string name of the entry. The action field is a pointer to the C procedure
which implements the entry and the value field is the value associated with the entry. Each
named entity in INF (each instruction, procedure, label, variable and constant) has an entry
in the dictionary. An INF entity is ezecuted by the interpreter by calling the procedure in
the action field of the entry.

e In entries for instructions, meta-instructions and debugging facilities, the action field
points to a procedure which carries out the named operation,

e in variables and garbage collected variables, this field points to a procedure which
places the address of the value field on the stack,

e in constants and labels the action field points to a procedure which places the contents
of the value field on the stack, and

e in INF procedures, the action field points to a procedure which pushes the current
program counter register on the control stack and replaces the program counter with
the contents of the entry’s value field.

6.2.2 Threaded Space

Threaded space is a large array of pointers to entries in the dictionary. INF procedures
are implemented as subsets of threaded space. The value field of every procedure entry in
the dictionary points to a location in threaded space. When the procedure is invoked, this
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pointer is loaded into the program counter register, and the INF interpreter proceeds to
execute the subset of threaded space which is the INF procedure.

6.2.3 Virtual Machine Emulation

The description of the INF interpreter thus far has not mentioned any emulation of machine
registers or addressing modes. These elements of INF are supported only indirectly by the
interpreter. For instance, when INI® executes an instruction like:

fpl-1 load

it sees the instruction as three separate pointers in threaded space. The first pointer points
to the dictionary entry for the £p constant. When this entry is executed, the value field
of the constant is pushed on the stack. This value is the address of the static C variable
which is the stack frame register for the main stack. When INT executes the second entry,
it pushes a zero word on the main stack and when INF executes the last entry, it calls the
procedure for the load instruction. This procedure adds the top two words on the stack
together and uses the result as a pointer to fetch a 4 byte word from memory. The top two
words on the stack are discarded and the 4 byte result is pushed on to the stack. The reason
for the “reversed” operand /instruction syntax is now clear. INF is a reverse polish notation
calculator and needs to see the operands first in order to push them on to the stack for the
instruction.

Other instructions and addressing modes are implemented using similar techniques. The
ldconst instruction for example, is a no-op. In an instruction such as:

23 ldconst

INF loads the constant 23 on to the stack when the constant is executed. The call instruc-
tion is a nop as well. By the time INF encounters the call instruction in a sequence like

printf call

the printf procedure has already been executed.

6.3 Garbage Collection

The INF garbage collector is a two-space copying, compacting collector [4]. A compacting
collector was chosen for the project because these collectors required the identification of all
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garbage collected pointers. This is a more difficult task than identifying at least one pointer
to every in use node as a non-compacting collector requires. The more difficult collector
was implemented to increase confidence in the ability of the C language to cooperate with a
garbage collector.

The collector is part of the runtime support implemented as part of the INI® interpreter,
but could have been implemented in INF or in X as well. The collector is invoked auto-
matically every time a memory allocation request in the garbage collected heap cannot be
serviced. The collector can be invoked manually by calling the gc procedure.

30



Chapter 7
The X Compiler

The objective of this report was to extend the C language to cooperate with a garbage
collector. Writing a full fledged lexical scanner, parser and code emitter for C however, was
felt to be too time consuming an effort for a small term project. Instead, the new language
X was invented with the semantics of C, but a simpler syntax.

The syntax of X is a parenthesized polish notation based on lexical structures recognized
by the Scheme read primitive. The X compiler was written in Scheme, using read to
eliminate the need for a lexical scanner. The polish notation was intended to eliminate the
need for a parser, but only partially succeeded in dong so. The syntax checking component
of a parser was still required by X to verify the syntax of some complex statements such as
declarations.

7.1 Syntax

Figure 7.1 is an example of a recursive fibonacci function written in X. The diagram illustrates
how X declarations are modelled after the public domain CDECL tool which maps cryptic C
declarations into structured english. Garbage collected pointers (which are not used in the
example in Figure 7.1) are declared by prefixing any ptr declaration with gc. I'or example,
a pointer to a function returning a garbage collected pointer would be declared:

(dcl fibonacci as function ((int)) returning int)
(function fibonacci (n)
(if (< 1 n)
(return (+ (fibonacci (- n 1))
(fibonacci (- n 2))))
(return n)))

Figure 7.1: The Fibonacci Function in X
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(dcl boo as ptr to function of () returning gc ptr to int)

Garbage collected pointers are used in X just as any pointer would be used in C. Some other
elements of syntax may not be obvious:

® Procedures must be declared before they are defined.

o Assignment uses the set! operator instead of the = operator.

o If/then/else clauses must always contain an else clause.

e All variables and data structures must be declared before they are used.

The syntax of language features like arrays, unions and indirection is not defined for X
because there was no time to implement these features.

7.2 The Implementation

A compiler implementation supporting garbage collection, local variables, procedures, recur-
sion, if/then/else, assignment, integers, pointers, character strings, casting and data struc-
tures was constructed comparatively easily. The entire compiler consists of 900 lines of
Scheme, excluding comments and empty lines. Symbol table support for data types was
particularly straightforward. The type of a variable is simply the cdddr of its declaration
and two variables are of the same type if their types are equal?.

Data structures were implemented as the uncompressed type tags discussed in Sec-
tion 4.2.2. Space for these tags was allocated in all nodes in the dynamically managed
and garbage collected heaps. The memory allocation primitives initialized this space with a
NULL pointer, and code emitted for new and gcnew operations made these tag fields refer to
compiler constants indicating the locations of garbage collected pointers. The current imple-
mentation of the X compiler always emits a type tag, even for data structures which contain
no garbage collected pointers. This overhead affects slightly the performance of applications
which make no use of the garbage collected heap. This performance penalty can be avoided
by a slightly more intelligent implementation, since the INF garbage collector ignores nodes
whose tag field is NULL. An even more intelligent implementation would define two entry
points to the dynamic memory manager software, one to allocate nodes with the tag field
and one without the field.

Stack frames in the implementation could have been cleared by code emitted by the X
compiler, but were not. Instead, the INF interpreter’s link and gclink instructions were
modified to clear the stack frame they created. While this affected slightly the performance
of all procedures, a real compiler would not always have the alternative of modifying the
target machine’s instruction set. A real compiler would emit code to clear only those stack
frames which contained garbage collected pointers.
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Chapter 8

Conclusions

The objective of this report was to address design issues associated with the creation of a
cooperative, garbage collected C language. This objective has largely been accomplished by
examining requirements for such a language, proposing implementation techniques suitable
for implementing the language and implementing a portion of the proposed language. The
main conclusion of this report is that a garbage collected C is possible and from a pro-
grammer’s viewpoint, differs very little from existing implementations of the language. At
the implementation level, significant differences do exist, especially in the treatment of data
structures and unions containing garbage collected pointers. It appears that even in stati-
cally typed languages, a degree of dynamic typing is required for the language to cooperate
with a garbage collector.

8.1 Future Research

Whether or not implementations using this proposal perform better than those using Boehm'’s
technique is an open question. Boechm’s technique appears to be faster than this proposal
between collections, since between collections C applications incur only the performance
penalty of maintaining the garbage collected heap’s control segment. During garbage collec-
tion, Boehm’s technique appears to perform substantially worse than would the proposal in
this report, since it must examine more potential pointers and since the cost of examining
each pointer appears much higher than the cost in a cooperative implementation.
Future research in this area could address two areas of concern:

o Known storage and data type tagging optimizations could be applied to this proposal
and to Boehm’s technique. The optimized approaches could then be compared to
determine which performs better.

o Additional thought could be given to improving the compatibility of a cooperative,
garbage collected C with existing implementations of the language. It may be that
the creation of a new class of data types and the creation of new storage allocation
operators could be avoided.
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In addition, some experimentation with the existing X implementation is in order to deter-
mine the impact of the garbage collected pointer data type on the complexity of programming
tasks. It could be that identifying these pointers with a separate data type is in fact a boon
to programmers, since programming styles for garbage collected values may differ from those
for non-collected values.

8.2 Lessons Learned

A number of additional lessons were learned throughout the design and implementation of
INF and X, only some of which were directly related to the addition of garbage collection to

C.

e The use of a separate stack for garbage collected pointers was not worth while. The
two stacks complicated the compiler and did not eliminate the need for a mixed stack,
since data structures containing garbage collected pointers were allocated on the main
stack.

o The use of the INF interpreter to emulate separate compilation was clumsy because
the names of character string constants were global and sometimes conflicted.

¢ The use of the INF virtual machine may have been a poor choice entirely. It may have
been faster to have the compiler emit assembler source code for a real architecture and
to use the development tools for that architecture than to reinvent these tools for the
INF environment.

e The choice of the Scheme language and syntax for the compiler and the X language
was well made, since the resultant compiler was simple and small.

o An attempt was made to implement tail recursion in X, but the attempt was not
successful. Tail recursion in a language which passes parameters on the stack is unsafe
because there is no assurance that any given procedure is invoked with the correct
number of arguments. An attempt to remove non-existent arguments from the stack
during tail recursion results in spectacular failures.
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