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rather than on the mechanisms that drive value addition. We argue that value from IT arises not only

directly through changes in the factor input mix but also indirectly through IT-enabled augmentation of non-IT
inputs and changes in the underlying production technology. We develop an augmented form of the Cobb-
Douglas production function to separate and measure different productivity-enhancing effects of IT. Using
industry-level data from the manufacturing sector, we find evidence that both direct and indirect effects of IT
are significant. Partitioning industries into IT-intensive and non-IT-intensive, we find that the indirect effects of
IT predominate in the IT-intensive sector. In contrast, the direct effects of IT predominate in the non-IT intensive
sector. These results indicate structural differences in the role of IT in production between industries that are
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gains from IT come primarily through indirect effects such as the augmentation of non-IT capital and labor.
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1. Introduction
The last few decades have seen a phenomenal rise
in information technology (IT) investment, especially
during the 1990s. According to Digital Economy,
a report of the U.S. Department of Commerce (2002),
the level of U.S. real investment in IT grew at 20%
per annum from 1995 to 2000. Early studies indicate a
complex relationship between IT investment and firm
performance (Cron and Sobol 1983, Strassman 1985),
pointing to other features within and outside the firm
that interact with IT investment.
Since the mid-1990s research using production and

process approaches has found positive contributions
from IT. The former uses production function specifi-
cations to measure IT contributions. Using data from

Computerworld and InformationWeek, Lichtenberg
(1995) found a positive net marginal product of IT
capital. Using firm-level data, Brynjolfsson and Hitt
(1996) found positive marginal products of IT capital
and IT labor. Using data on manufacturing units,
Lee and Barua (1999) concluded that IT capital con-
tribution is positive and that firms underinvested
in IT. Using country-level data, Dewan and Kraemer
(2000) found positive output elasticities of IT capital
for developed countries. These studies complement
growth accounting research measuring the contribu-
tion of IT in the growth rates of average labor pro-
ductivity (ALP). Using sector-level data from the U.S.,
Oliner and Sichel (2000) found high growth rates in
ALP and output stemming from growth in IT capital,
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especially for 1996–1999. Baily and Lawrence (2001)
contended that the 1995–2000 growth in ALP from IT
was structural as opposed to cyclical.
Crowston and Treacy (1986), Kauffman and Kriebel

(1988) and Mukhopadhyay and Cooper (1992) advo-
cated a process approach, proposing that firm-level
impacts of IT could be measured through interme-
diate level contributions. Barua et al. (1995) found
that IT explained improvements in capacity utiliza-
tion and inventory turnover, but not in firm-level per-
formance measures. Nault and Dexter (1995) found
that IT-supported fueling commanded higher prices.
Mukhopadhyay et al. (1997) found that IT increased
output and quality of mail sorting processes. These
studies show that firms may see the internal process
gains from IT, but that the same gains may not appear
in firm-level measures. This can happen, for example,
when competition causes firms to pass benefits from
IT either upstream or downstream (Cheng and Nault
2007). Indeed, in research using market valuations to
estimate the change in firm value from IT investments
the results have been equivocal (e.g., Dos Santos et al.
1993, Bharadwaj et al. 1999, Im et al. 2001, Subramani
and Walden 2001). Disaggregating IT budgets into
elements of IT infrastructure, Rai et al. (1997) found
that IT labor, telecommunications, and hardware were
positively correlated to firm output and labor produc-
tivity, while software was not.
IT also affects the efficiency of other factor inputs.

Krueger (1993) suggests that workers using comput-
ers earn 10%–15% higher wages. Bresnahan et al.
(2002) conclude that higher levels of IT are associ-
ated with increased delegation of powers to teams
and individuals, and greater levels of skills and edu-
cation. Autor et al. (2003) found that computerization
reduced labor input in routine manual and cognitive
tasks, and increased labor input in nonroutine cogni-
tive tasks.
The resource-based view of the firm argues that

value of IT may depend on how IT is managed in con-
junction with other factors. Clemons and Row (1991)
suggest that IT creates competitive advantage by
leveraging preexisting complementary human and
business resources, and valuable scarce resources.
This advantage may survive if the value of a resource
is linked to the presence of complementary or cospe-
cialized resources (Rumelt 1984). Brynjolfsson and

Hitt (2003) argue that excess contributions of IT are
attributable to investments in complementary inputs
such as organizational capital. Tippins and Sohi
(2003) found that organizational learning mediates
the relationship between IT competency and firm
performance.
The role of IT has also been found to differ based

on the IT intensity of different sectors. Dewan and
Min (1997) found IT-intensive firms had a higher
output elasticity of IT capital, although non-IT-
intensive firms had higher marginal returns to IT.
Powell and Dent-Micallef (1997) found that human
and business resources yielded highest returns in
IT-intensive firms. Dumagan and Gill (2002) found
that IT-intensive industries experienced higher output
growth than non-IT-intensive industries, and that pro-
ductivity growth was dispersed across sectors. Oliner
and Sichel (2000) report particularly strong growth in
total factor productivity (TFP) in the semiconductor
and computer producing industries.1 Gordon (2000)
argued that the productivity growth in the 1990s
occurred primarily in the sectors producing IT and
telecom equipment. Stiroh (2002) concludes that after
1995 growth in Solow residual was concentrated in
the high-tech sectors. These results point to potential
structural differences in the use of IT and its effects
on different sectors.
In this context we argue that IT capital is both dif-

ferent from, and similar to, other factor inputs because
of the way IT enables production and interacts with
other factor inputs. For example, IT enables infor-
mation collection, processing and dissemination for
decision making, and can transform production and
business processes. IT capital is also similar to other
factor inputs in that they can be used interchange-
ably. For example, IT can be used in place of labor
in labor-intensive tasks such as payroll or check pro-
cessing. We classify these effects of IT on output as
direct and indirect. In the direct effect IT alters the fac-
tor input mix without changing the efficiency of other
factor inputs or the underlying production technol-
ogy. In the indirect effect IT augments the efficiency of

1 TFP is defined as the output contribution not explained by the
factor inputs and often interpreted as technological progress. TFP
is also known as the Solow residual and as multifactor productivity
(MFP).
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other factor inputs and modifies the underlying pro-
duction technology.
Our first research question is whether the direct and

indirect effects of IT can be separated and measured,
and whether the indirect effect is significant. Our sec-
ond research question is whether the effects of IT dif-
fer between industries that are IT-intensive compared
to those that are not. We answer these questions using
a production function formulation that explicitly sep-
arates a direct effect and an indirect effect of IT capital
through augmentation of non-IT capital and labor.
We begin by describing and classifying the differ-

ent ways IT produces value, and conceptually sepa-
rating the direct effects of IT from its indirect effects,
recognizing that any IT deployment produces both
effects. Subsequently, we develop an augmented form
of the simple Cobb-Douglas production function that
separates the direct effects of IT from its indirect
effects, capturing part of the indirect effects through
augmentation of non-IT capital and labor by IT. We
analytically compare the way IT affects production
in this augmented form versus the simple Cobb-
Douglas, and discuss how our form compares to the
Translog.
Next, we derive an estimation equation and esti-

mate our augmented Cobb-Douglas using a cross-
sectional time series on U.S. manufacturing industries,
and compare our estimates to those from the simple
Cobb-Douglas and Translog forms. We find that both
direct and indirect effects of IT are significant and pos-
itive, demonstrating the advantage of the augmented
Cobb-Douglas. We also find that indirect effects have
become increasingly significant over time. This an-
swers our first question: The direct and indirect effects
of IT can be separated and measured, and the indirect
effect through augmentation is significant.
We then partition our data on the U.S. manufactur-

ing industries into IT intensive and non-IT-intensive
sectors and find that in the IT-intensive sector the
indirect effects of IT are significant and predominate.
In contrast, we find that in the non-IT-intensive sector
the direct effects of IT are significant and predomi-
nate. This answers our second question, pointing to
structural differences in the source of IT contribution
based on IT intensity.
The remainder of the paper proceeds as follows.

In §2 we describe the direct and indirect effects of IT.

In §3 we derive our augmented Cobb-Douglas and
explore its properties. Section 4 describes the data and
presents estimates of our augmented Cobb-Douglas,
comparing them with the results from other forms.
We also describe our partition of industries into IT-
intensive and non-IT intensive sectors, and estimate
our augmented and simple Cobb-Douglas forms for
these two sectors. Section 5 concludes with comments,
and a discussion of limitations and directions for
future research.

2. The Different Effects of IT
IT invariably and inseparably works with business
strategies, processes, and incentive systems. As such,
IT is widespread and embedded in many parts of
the firm, making it difficult to pinpoint and measure
its contribution. For example, IT enabled coordina-
tion and uncertainty reduction mitigates the bullwhip
effect in a supply chain, but it is difficult to identify
the contribution of IT accruing to a particular firm.
The problem is partly because of the difficulty in rec-
ognizing, quantifying, and accurately measuring the
benefits of IT, and partly because of the interactions
of IT with other components of a firm.
This suggests that IT is a multifaceted factor input

enabling the capture, processing, dissemination, and
use of information within and outside the firm, as
well as fundamental transformations of business pro-
cesses. Farrell (2003) indicates that increases in output
because of IT originate from increases in labor effi-
ciency and asset utilization, and from adding value
to existing goods and creating new goods. Dehning
et al. (2003) examine returns to IT in industries classi-
fied by the roles IT assumes: automate, informate, and
transform. The automate role stems from IT being a
more efficient factor input. For example, IT automates
data storage, retrieval, and routine transactions, elim-
inating the need for staff. The informate role is
where IT empowers management/employees, or cus-
tomers. For example, supply chain management soft-
ware improves coordination by sharing information.
The transform role alters ways of doing business
and/or business processes and relationships, chang-
ing the way a market operates, providing new ser-
vices or entering into strategic alliances. They find
abnormal returns to firms investing in IT with a trans-
form role. Brynjolfsson and Hitt (2000) suggest that
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the transform role of IT impacts internal and external
business processes.
Conceptually, IT has two effects on production. The

first is similar to the impact of other factor inputs
where IT alters the factor input mix without changing
the efficiency of other factor inputs or the underlying
production technology. We define this impact as the
direct effect of IT. The second is where the use of IT
alters the efficiency of other factor inputs—effectively
augmenting them—and modifies the underlying pro-
duction technology. We define this second impact as
the indirect effect and depict these effects in Figure 1.
Unless explicitly accounted for, the indirect effect
remains embedded in TFP.
There are many examples of how IT augments non-

IT capital and labor. Plant and machinery utilization
improves through the use of Material Requirement
Planning and Enterprise Resource Planning sys-
tems as IT seamlessly integrates business processes.
Computer-Aided Design/Manufacturing together
with computer numerically controlled machines
revolutionizes the production process, increasing the
utilization of non-IT capital. IT-driven scheduling

Figure 1 Direct and Indirect Effects of IT

Non-IT capital (K)Labor (L)

Output (Y)

Effective labor (Lz) Effective non-IT
capital (Kz)

Direct effect

Indirect - labor
augmentation

Indirect - non-IT
capital

augmentation

IT-enabled production
technology change

IT (Z )

reduces the time aircrafts spend on the ground and
maximizes gate utilization at airports, increasing the
availability of both aircraft and gates. The same holds
for IT-driven scheduling of vehicle fleets.
One way in which IT augments labor input is

through decision support systems (DSS), which
enable individuals and groups to organize, collate,
share, analyze, recall and communicate data, lowering
the cognitive cost (Beach and Mitchell 1978), and
broadening what is cognitively feasible (Simon 1955).
For example, DSS has been shown to improve perfor-
mance (Benbasat et al. 1991). Computerized airlines
reservation systems enable individuals to efficiently
search for routes and connections across various
airlines. Patient history tracking systems in hospitals
improve the recall and diagnostic ability of doctors,
increasing throughput. IT enables changes in job
design, providing accurate and timely information to
employees, and an auditable trail of employee actions.
This allows firms to shift decision rights down-
ward, reducing response time. For example, Black and
Lynch (2001) found productivity gains associated with
employee voice in decision making, and Brynjolfsson
and Hitt (2000) describe IT-enabled flexible jobs as an
omitted factor input.

3. Modeling the Indirect Effects of IT
A production function is a mathematical relationship
between quantities of inputs and outputs. Tradition-
ally, studies using the production function approach
have fit data to the simple Cobb-Douglas to estimate
the output elasticity of IT capital. A three-factor input
simple Cobb-Douglas is specified as

Y =AK�L�Z�	 (1)

where Y is the quantity of physical output, K is the
quantity of non-IT capital, L is the quantity of labor,
Z is the quantity of IT capital, and A is factor neutral
technological change capturing TFP. Here the indirect
effects of IT are unaccounted for and embedded in A.
In (1) �, �, and � are the output elasticities of non-IT
capital, labor and IT capital, respectively. Studies such
as Brynjolfsson and Hitt (1996) use the simple Cobb-
Douglas to estimate the output elasticity of IT capital.
Estimates of substitution elasticities close to unity by
Dewan and Min (1997) helps validate the use of the
simple Cobb-Douglas.
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To separate the indirect effects we use a multiplica-
tively separable but otherwise general form in which
we define augmented quantities of non-IT capital and
labor—that is, non-IT capital and labor augmented by
IT capital, KZ and LZ, as

KZ =K
�Z� and LZ = L�Z��

The functions 
�Z� and �Z� represent the augmenta-
tion of non-IT factor inputs from IT. Each augmenta-
tion is increasing in IT capital, 
 ′�Z� > 0 and  ′�Z� > 0,
and there is no augmentation with no IT capital,

�0�= �0�= 1. At this point there is no loss of gen-
erality in treating the augmentation as multiplicative
because the augmentation functions can always be
scaled appropriately. Heathfield and Wibe (1987) used
an exponential form of augmentation in a production
function to incorporate the effect of technological
progress over time. Mefford (1986) found signifi-
cant augmentation effects of technology on capital,
but Loveman (1994) did not find any augmentation
from IT.
Using our general multiplicative form we modify

the simple Cobb-Douglas to specify the augmented
Cobb-Douglas as

Ya = SK ��
ZL

�̄
ZZ

��� (2)

In (2) we use the subscript a on output to denote
the augmented Cobb-Douglas, and the parameters of
this form are denoted with a bar to distinguish them
from the parameters of the simple Cobb-Douglas.
In capturing TFP, S more accurately reflects factor
neutral technological progress in our augmented form
as compared to A in (1), that is, S reflects the factor-
neutral technological progress devoid of the augmen-
tation effects of IT. Thus, parameters ��, �̄, and �� are
the output elasticity of non-IT capital, labor, and the
direct output elasticity of IT, respectively, in the aug-
mented form corresponding to �, �, and � of the
simple Cobb-Douglas.
To estimate indirect effects we further specify the

form for the augmentation of non-IT capital and labor
by IT as

KZ =K
�Z�=Ke�Z and LZ = L�Z�= Le�Z	 (3)

where K and L are the quantities of non-IT capi-
tal and labor as defined before. Using these specific

functional forms for KZ and LZ we can then write the
augmented Cobb-Douglas as

Ya = S�Ke�Z�
��
�Le�Z�

�̄
Z �� = SK ��L�̄Z ��e�Z	 (4)

where the augmentation comes through a weighted
average of the direct output elasticities of non-IT cap-
ital and labor, �= ���+ �̄�. As firms invest in IT cap-
ital, Z increases, leading to increases in the effective
non-IT capital, KZ, and labor, LZ, through the multi-
plicative exponential term.
Although there are a variety of forms to model

augmentation, we chose the exponential form for
four reasons. First, this form allows us to estimate
the direct and indirect effects thorough separate
parameters, namely �� and �. It also lends a natural
interpretation to e�Z as indirect effects that are par-
titioned from the TFP of the simple Cobb-Douglas
form. If the output elasticities are equal in both forms
(i.e., �= ��	�= �̄	� = ��), then A= Se�Z, leaving TFP
(S) in our augmented form distinct from the augmen-
tation effects. Second, the simple Cobb-Douglas in (1)
is nested in our augmented Cobb-Douglas in (4) so
that if �= 0, then the two are equivalent. This allows
us to empirically test whether augmentation is signif-
icant, i.e., whether �= 0.
The third reason is related to aggregation. A pro-

duction function is a firm-level concept wherein
inputs are combined to produce outputs at the firm
level. However, under certain conditions, the form
of an aggregated industry level production func-
tion can be the same form as the production func-
tion of the underlying firms. Thus, aggregation is a
significant requirement that constrains the form of
an industry-level production function. Nataf (1950)
proved that such an aggregation of individual firm-
level to industry-level production functions can be
valid if the individual firm production functions are
additively separable. Both the simple Cobb-Douglas
in (1) and the augmented Cobb-Douglas in (4) are
additively separable in their log forms (derived below
in (7) and (8)), and therefore aggregation from firms to
industry is feasible using these forms. Walters (1963)
states that “We cannot approximate the basic require-
ments of sensible aggregation except, perhaps, over
firms in the same industry or for narrow sections of
the economy” (p. 11). Our data aggregate over firms
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in the same industry, consistent with his require-
ments for sensible aggregation. Van Garderen et al.
(2000) are a little more pessimistic about aggregation
with log-linear forms (such as the Cobb-Douglas).
However, their estimates of UK industrial produc-
tion using more coarsely defined industries than ours
showed that “� � � the simple Cobb-Douglas specifica-
tion, expressed in differences, provides a very rea-
sonable representation of output movements in the
industries of the UK over the sample period” (p. 313).
In the IT literature the simple Cobb-Douglas has been
used with country-level data (Dewan and Kraemer
2000) and with industry-level data (Cheng and Nault
2007).
The last reason is our chosen form’s prior use to

measure technological progress. Heathfield and Wibe
(1987) used the exponential form to capture techno-
logical progress over time—using a convex function
of time to model technological progress is common
because technological progress accumulates and com-
pounds. We use the exponential form with IT capi-
tal for similar reasons: Our augmented Cobb-Douglas
is designed to explain part of TFP, and augmenta-
tion accumulates and compounds with the amount
of IT capital. When our estimation yields significant
positive augmentation effects, then these effects have
increasing returns to scale. Our augmented Cobb-
Douglas can display increasing marginal returns in IT
capital. The direct effect represented by Z �� in our aug-
mented Cobb-Douglas is concave as we expect �� < 1.
However, the augmentation term representing part of
TFP, e�Z, is convex in Z. A negative � leads to decreas-
ing marginal returns to IT capital. When we have
a small augmentation effect the augmented Cobb-
Douglas also leads to decreasing marginal returns to
IT capital i.e., when �Z <

√���1−√ ���. For our pooled
sample the estimate of �� is 0.08, which implies we
require �Z < 0�20 for decreasing marginal returns, and
we find that �Z at the mean IT capital is approximately
0.03. Note that Romer (1986) allows for increasing
marginal returns of inputs such as knowledge, which
is akin to our labor augmenting role of IT. Even with
increasing marginal returns to IT, if the cost function is
sufficiently convex, an interior solution to profit max-
imization is achievable.2

2 Many functional forms have been used in the information sys-
tems literature such as CES-Translog (Dewan and Min 1997) and

To show the impacts of our choice of the expo-
nential form for augmentation, we examine the com-
plementarities between factor inputs implicit in the
simple and augmented Cobb-Douglas. Taking the
cross partial derivative of non-IT capital and IT
capital, and of labor and IT capital for the simple
Cobb-Douglas in (1) we have

�2Y

�K�Z
=A�K1−�L��Z1−� and

�2Y

�L�Z
=AK��L1−��Z1−��

(5)

Taking the same cross partial derivatives of (4) and
rearranging gives

�2Ya
�K�Z

= S ��K1−��L�̄� �� Z1− �� +�Z ���e�Z and

�2Ya
�L�Z

= SK ���̄L1−�̄� �� Z1− �� +�Z ���e�Z�

(6)

Comparing (5) with (6) augmentation works through
the second term in square brackets and through e�Z.
Thus, the complementarities in the augmented Cobb-
Douglas explicitly include the augmentation effects of
IT on other factor inputs. If there is no augmentation,
then �=�= �= 0, and (5) and (6) are identical.
The simple and augmented Cobb-Douglas also

imply different levels of optimal IT investment.
If firms are price takers in input and output markets,
and production exhibits decreasing marginal returns
in each factor input, then the optimal levels for non-
IT capital and labor are when the price of these factor
inputs equals their respective marginal returns. The
first-order conditions for non-IT capital and labor
are the same for the simple and augmented Cobb-
Douglas. But in the augmented Cobb-Douglas the
marginal returns to IT capital includes the rate of
change in augmentation of non-IT capital and labor
with respect to IT capital. As we expect the augmen-
tation of non-IT capital and labor to increase as IT

Translog (Hitt and Snir 1999). Depending on parameter values and
factor input levels these functional forms may not satisfy produc-
tion function regularity conditions. For example, the Translog form
did not satisfy regularity conditions for 89% of observations in
Dewan and Min (1997) and for 75% of observations in Hitt and
Snir (1999). We thank the review team for suggesting we investi-
gate this.
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capital accumulates, we take these rates of change
as positive. This implies that the optimal level of IT
capital is higher when indirect effects are accounted
for than when they are not, and if a firm chooses
IT investment levels using the simple Cobb-Douglas
when its production function is actually the aug-
mented Cobb-Douglas, then it will underinvest in IT.

Estimation Forms. We denote the natural log of the
variable by lower case letters. We can then write (1)
in log form as

y = a+�k+�l+�z+ �1	 (7)

where �1 is an independent, identically and normally
distributed (i.i.d) error term with mean zero and stan-
dard deviation ��1

. With n observations on the log
of output, y, the log of non-IT capital, k, the log of
labor, l, and the log of IT capital, z, generalized least
squares (GLS) estimates of �, �, �, and a can be
obtained. In this specification, �, �, and � are the out-
put elasticities of non-IT capital, labor and IT capital,
respectively. The factor-neutral technological change
in the simple Cobb-Douglas is captured by a.
To get the augmented Cobb-Douglas estimation

form we substitute for LZ and KZ from (3), take the
natural logs of (2), and write the resulting equation
with an error term as

y = s+ ��k+ �̄l+ ��z+�Z+ �2	 (8)

where �2 is an i.i.d error term with mean zero and
standard deviation ��2

. We expect that � > 0, and
the �Z term in (8) represents the augmentation of IT
capital on non-IT capital and labor. This augmenta-
tion is now separate from factor-neutral technological
change s, which is different from a in (7). Substituting
�= ���+ �̄� and rearranging we get

y = s+ ���k+�Z�+ �̄�l+�Z�+ ��z+ �2�

Thus, in the augmented Cobb-Douglas, IT capital has
a direct effect on y through ��z, and additional aug-
mentation effects ���Z through non-IT capital and
�̄�Z through labor.
We compare our augmented Cobb-Douglas to the

Translog,

y = c+�kk+�ll+�zz+�kkk
2+�lll

2+�zzz
2

+�klkl+�kzkz+�lzlz+ �3	 (9)

where c is a constant, and the estimates (�s) are sub-
scripted according to the variables. This form, derived
from a Taylor series expansion, is sufficiently flexi-
ble to fit most data sets. Comparing our augmented
Cobb-Douglas in (8) to the Translog above, the lat-
ter only measures generic quadratic and interaction
terms, and the resulting parameters are not directly
interpretable as economic measures. In addition, the
Translog cannot be aggregated unless the interaction
terms are zero.3

4. Estimation of the Indirect
Effects of IT

4.1. Data and Methods

Data Sources. We use the MFP data set of two-digit
Standard Industry Classification (SIC) industries for
the manufacturing sector dated 12 March 2002 (cap-
ital and hours worked) and 29 August 2002 (output
tables) obtained from the Bureau of Labor Statistics
(BLS), U.S. department of Labor, Office of Productiv-
ity and Technology. We chose the manufacturing sec-
tor because the output measures are better defined
(physical units) and more accurately measured as
compared to other sectors. The data set is available
for the period 1948–2000 for all twenty two-digit SIC
industries in the manufacturing sector. The list of SIC
codes available in the data set for the manufacturing
sector is given in Table 1.
This data set provides annual industry output

(excluding intraindustry transactions), and the cost
of energy, materials, and services purchased, all in
current dollars. In addition, it provides the price
deflators indexes (1996 = 100.00) for each of these
series (output, energy, materials, and services). This
enables calculation of the output and inputs in con-
stant 1996 dollars. Subtracting the real cost of energy,
materials, and services from the real output provides
the real value added (in constant 1996 dollars). We
use this as our measure of output Y . In addition, it
provides aggregate productive capital stock in five
categories, namely, equipment, structures, rental resi-
dential capital, inventories and land (in constant 1996

3 A further extension of the Translog is the CES-Translog. But as
Dewan and Min (1997) found, this extension often causes the inter-
action terms to be individually insignificant.
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Table 1 Description of SIC codes

SIC code Description of the industry IT intensive

20 Food and kindred products No
21 Tobacco manufacturing (excluded from study) No
22 Textile manufacturing No
23 Apparel and related products No
24 Lumber and woods No
25 Furniture and fixtures No
26 Paper and allied products No
27 Printing and publishing No
28 Chemicals and allied Yes
29 Petroleum and related Yes
30 Rubber and miscellaneous No
31 Leather and its products No
32 Stone, clay, glass, and concrete No
33 Primary metal Yes
34 Fabricated metal No
35 Industrial/commercial machinery and Yes

computer equipment
36 Electrical and electronic equipment Yes
37 Transportation No
38 Measuring, analyzing, and controlling equipment Yes
39 Miscellaneous manufacturing No

dollars). It also provides the series for the IT capital
stock (in constant 1996 dollars), which we use for Z.
Included in this series of IT capital are computers
(including computer peripheral equipment), software,
communications, and others (office and accounting
machinery, instruments: scientific and engineering,
photocopy, and related equipment). To calculate the
non-IT capital stock we total the equipment and struc-
tures components of the aggregate productive capi-
tal stock and subtract the IT capital stock to give the
series for non-IT capital, K. For the labor series, L, we
use labor hours available in this data set.
From the annual time series of Y , K, L, and Z we

calculate the annual log time series y, k, l, and z.
We exclude SIC 21 (Tobacco) from our data set as
its deflator for output is abnormally high for 1999
and 2000, leading to negative real value added.4 The
price deflator series does not provide data for 1948,
1950, 1951, and 1952; hence, we use the data only for
1953–2000. As a result our data is a cross-sectional
time series with 19 SIC codes and 48 years yield-
ing 912 observations. Our data set does not incor-
porate changes in labor quality and in the quality

4 Our conclusions do not change by excluding this SIC code from
our data set. Details are available on the Information Systems Research
website (http://isr.pubs.informs.org/ecompanion.html).

of most of the capital categories, although there is
some quality adjustment for IT capital embedded in
the price deflator. At this time the BLS does not have
quality adjusted series or indices available for our
variables. Therefore, to the degree that it affects our
measurement of output and input variables, the qual-
ity changes are omitted variables.

Methodology. To enable comparison with prior
studies we estimate the log form of the simple Cobb-
Douglas in (7), our augmented Cobb-Douglas using
the log form in (8), and the Translog form given in (9),
all using the pooled data. Subsequently, we estimate
our augmented Cobb-Douglas for two 30-year and
one 31-year rolling time windows for the pooled data.
Finally, we use a partitioned data set for IT-intensive
and non-IT intensive sectors and estimate the simple
and augmented Cobb-Douglas in log forms as above.

Econometric Adjustments. Being a cross-sectional
time series data set, there is both autocorrelation and
heteroskedasticity between industries when data is
pooled. Autocorrelation arises from smoothing proce-
dures used in the derivation of economy level time
series data, and from a response to economy level
shocks. If the smoothing procedures or responses are
not uniform across industries, which we expect, each
industry would differ in its magnitude of autocor-
relation. Heteroskedasticity arises because industries
differ in size, production technology, and in their
response to macroeconomic shocks. In the latter case
the heteroskedastic errors may also be correlated
across industries.
The Wooldridge test for autocorrelation shows that

first-order autocorrelation (AR1) cannot be ruled out
for each of our data sets (overall, IT-intensive, and
non-IT-intensive) using both the simple and aug-
mented Cobb-Douglas specifications. The presence
of AR1 invalidates use of iterated GLS to get the
maximum likelihood estimates and therefore prevents
the use of the standard tests of heteroskedasticity
such as the likelihood ratio test (Greene 2000). As
we a priori expect heteroskedasticity, we correct for
both correlated heteroskedasticity and industry spe-
cific autocorrelation. To estimate the parameters of
our regressions we use the GLS procedures imple-
mented as XTGLS in STATA with adjustments to
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Table 2 Elasticity Estimates from Past Studies

Production
Description Data granularity function form Labor elasticity Capital elasticity IT labor elasticity IT elasticity

Lichtenberg (1995) Computerworld data set Firm level Cobb-Douglas 0.507 0�333 0�10
Lichtenberg (1995) Info-week data set Firm level Cobb-Douglas 0.489 0�390 0�122
Brynjolfsson and Hitt (1995) Firm level Cobb-Douglas 0.472 0�242 0�0522
Brynjolfsson and Hitt (1996a) Firm level Cobb-Douglas 0.883 0�0608 0.0178 0�0169
Dewan and Min (1997) Firm level CES-Translog 0.601 0�281 0�104
Dewan and Kraemer (2000) overall sample Country level Cobb-Douglas 0.723 0�492 −0�013
Dewan and Kraemer (2000) developed countries Country level Cobb-Douglas 0.955 0�176 0�051

account for industry specific AR1 and correlated het-
eroskedasticity. Compared to fixed effects, the indus-
try differences are controlled for in a general manner
by our two econometric adjustments: Industry spe-
cific AR1 allows for a separate autocorrelation func-
tion for each industry; heteroskedasticity adjustments
allow for heteroskedastic errors correlated between
industries.

Robustness. We recognize that firms can adjust
their levels of factor inputs and therefore labor, non-IT
capital, and IT capital could be endogenous variables.
Moreover, our data set does not include adjustments
for labor quality over time. Although our rolling time
window regressions and our adjustments for panel-
specific autocorrelation and heteroskedasticity may
indirectly adjust for quality, in general the quality
of non-IT capital and labor quality are omitted vari-
ables. Finally, as our factor inputs are measured at
the industry level, there is the potential for measure-
ment errors in these variables. If there is endogeneity,
omitted variables or measurement errors in our input
variables, then there is the possibility of correlations
between these variables and the error term, or serial
correlation in the errors, both of which would result in
biased estimates. To deal with these issues we could
test for endogeneity and serial correlation, or instru-
ment the variables in question. As we do not have
suitable alternative industry level variables for instru-
ments, we use endogeneity tests instead with lagged
variables.
There are no endogeneity tests available in XTGLS

with our econometric adjustments. However, follow-
ing Baum et al. (2003), we tested for endogeneity
in our augmented Cobb-Douglas using generalized
methods of moments (GMM) with specifications for
autocorrelation and heteroskedasticity. Using lagged

versions of our right-hand side variables, both the
Hansen J Statistic (a Lagrange multiplier test for ex-
cluded instruments) and the C statistic (testing for the
exogeneity/orthogonality of excluded instruments)
show that labor, IT capital, and non-IT capital vari-
ables are exogenous both individually and jointly for
our pooled data set. In addition, industry specific AR1
estimation accounts for serial correlation in the resid-
uals, recognizing that cyclical movements in omitted
variables could be manifested in serially correlated
residuals. This provides confidence that our results
are not driven by endogeneity, omitted variables, or
measurement errors.5

4.2. Results from the Pooled Manufacturing Sector

Estimates from Prior Studies. To compare our
results, in Table 2 we report the estmates of prior
studies using the simple Cobb-Douglas. In two stud-
ies using firm-level data, Brynjolfsson and Hitt (1995,
1996) estimated the output elasticity of IT capital
at 0.052 and 0.0169. Using some of the same data,
Dewan and Min (1997) estimated the output elastic-
ity of IT capital at 0.104. Lichtenberg (1995) used two
different data sources and calculated output elastici-
ties of IT capital of 0.10 and 0.12. Using country-level
data, Dewan and Kraemer (2000) estimate the output
elasticity of IT at −0.013 for the overall sample and
0.051 for developed countries.

5 We also ran our augmented Cobb-Douglas using different sets
of econometric adjustments: fixed effects for year and industry to
control for autocorrelation and industry heterogeneity; first differ-
ences to control for autocorrelation; time to capture non-IT tech-
nological progress; and fixed effects and adjustments for AR1 to
control for industry heterogeneity and autocorrelation. In each case
there were problems with insignificant, incorrectly signed, or unre-
alistic magnitudes in the output elasticity estimates, suggesting
incomplete econometric adjustments.
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Table 3(a) Cross-Sectional Regression for Pooled Data

Non-IT capital Direct IT output Indirect IT output Total IT output Number of
No. Specification Labor elasticity elasticity elasticity elasticity ��� elasticity (at Zmean) parameters

1. Simple Cobb-Douglas 0.70∗ 0.25∗ 0.12∗ 213
2. Augmented Cobb-Douglas 0.69∗ 0.27∗ 0.08∗ 7.36e-12∗ 0.11∗ 214

Notes. Zmean = $4�11 billion, Sample size= 912. For the Augmented Cobb-Douglas form, the total output elasticity is equal to direct IT output elasticity plus
(�∗Zmean), as � is significant.

∗Significant at p value= 1%.

Table 3(b) Cross-Sectional Regression for Pooled Data

No. Specification �k �i �z �kk �ll �zz �kl �kz �lz Number of parameters

1. Translog −1.28 −5.12∗ −0.31 0.06∗ 0.18∗ 0.009 −0.07 −0.0004 0.004 219

Note. Sample size= 912.
∗Significant at p value= 1%.

Estimates from the Simple Cobb-Douglas. We
estimate the simple Cobb-Douglas using our data set,
and the results are presented in row 1 of Table 3(a).
The estimate of the output elasticity of IT capital
is 0.12.6 What is striking is that our results are similar
to the earlier studies in Table 2 even though the earlier
studies differ in the data sources, the forms specified
for estimation, and the econometric adjustments.

Estimates from the Augmented Cobb-Douglas.
Our estimates from the augmented Cobb-Douglas are
presented in row 2 of Table 3(a). The output elastic-
ities of non-IT capital and labor are similar to those
from the simple Cobb-Douglas. The direct output
elasticity of IT capital is positive and roughly two-
thirds of the magnitude of the output elasticities of IT
capital obtained from the simple Cobb-Douglas. The
indirect output elasticity of IT capital is positive and
significant. This confirms the presence of direct effects
of IT, and indirect effects of IT through augmentation
of non-IT capital and labor—effects that are indistin-
guishable in the simple Cobb-Douglas.
The indirect component of the output elasticity of

IT capital is � in (8). This coefficient is 7.36e−12 and
is significant. It means that for an additional one bil-
lion dollars of IT capital, the indirect output elasticity
of IT increases by 0.0074. To estimate the total out-
put elasticity of IT capital we add the estimated direct

6 All the coefficients reported as significant are significant at p= 0�01
unless noted otherwise.

output elasticity of IT capital to the product of the
indirect output elasticity of IT capital and the mean
level of IT capital (i.e., �� + �Z in (8)). For our sam-
ple the overall mean level of IT capital is $4.11e+9.
The indirect component of the output elasticity of IT
capital and the estimates of the total output elastic-
ity of IT capital are 0.03 and 0.11, respectively. This
answers our first question: Indirect effects through
IT augmentation can be separated from direct effects;
they are positive, can be measured, and are signifi-
cant. That the augmented Cobb-Douglas explains the
effects of IT in greater detail than the simple Cobb-
Douglas is clear from the fact that, although simple
Cobb-Douglas in (7) is nested in the augmented Cobb-
Douglas in (8), � is significant.

Estimates from the Translog. Our estimates from
the Translog specification in (9) are presented
in Table 3(b). Both the linear and quadratic coeffi-
cients for labor, and the quadratic term for non-IT
capital are significant. None of the IT capital coeffi-
cients nor the non-IT capital coefficients except for
the quadratic term are significant. This is in stark
contrast to the indirect effects in Table 3(a), which
are significant using the identical data set. Thus, it is
clear that the direct and indirect effects that can be
separated in our augmented Cobb-Douglas are differ-
ent from generic interactions between factor inputs as
estimated in the Translog, demonstrating the advan-
tage of our augmented Cobb-Douglas in interpretabil-
ity, parsimony, and the ability to capture the indirect
effects.
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Table 4 Rolling Window Cross-Sectional Regression for Pooled Data

Period/ Non-IT capital Direct IT output Indirect IT output Total IT output Number of
No. specification Labor elasticity elasticity elasticity elasticity ��� elasticity (at Zmean) Sample size parameters

Simple Cobb-Douglas specification
1. 1953–1982 0.68∗ 0.36∗ 0.02∗ 570 213
2. 1963–1992 0.57∗ 0.30∗ 0.10∗ 570 213
3. 1973–2000 0.59∗ 0.33∗ 0.12∗ 589 213

Augmented Cobb-Douglas specification
4. 1953–1982 0.70∗ 0.35∗ 0.03∗ −1.67e-12 0.03∗ 570 214
5. 1963–1992 0.59∗ 0.28∗ 0.09∗ 3.43e-12 0.09∗ 570 214
6. 1973–2000 0.61∗ 0.32∗ 0.08∗ 8.92e-12∗ 0.14∗ 589 214

Notes. Zmean for 1973–2000= $6�59 billion. For the Augmented Cobb-Douglas form, the total output elasticity equals direct IT output elasticity if � is insignificant
and equals the direct IT output elasticity plus (�∗Zmean) if � is significant.

∗Significant at p value= 1%.

Estimates for Rolling Time Windows. Our data
set provides the series over 48 years—from 1953
to 2000—for 19 different industry sectors. IT has
changed over this period from a regime of main-
frame/legacy to relational to client-server to Internet,
etc. These regimes are overlapping as IT has diffused
over time. To account for differences in these regimes,
we consider how the output elasticities change by
partitioning our data set into three overlapping time
windows of around 30 years each: 1953 1982, 1963
1992, and 1970 to 2000. We chose the 30-year time
window to provide sufficient degrees of freedom for
estimation of the large number of parameters under
a panel specific autocorrelation and correlated het-
eroskedastic error structure.
The results for both the simple Cobb-Douglas and

augmented Cobb-Douglas are presented in Table 4.
In each time window all the output elasticity esti-
mates from the simple Cobb-Douglas are significant.
The results for the augmented Cobb-Douglas show a
progression in the significance of augmentation over
time. For the earlier period only direct effects of IT are
significant. During the second time window the direct
effects are significant and the augmentation effects
become significant at p = 0�07. During the last time
window both the direct and augmentation effects are
significant. These results suggest that indirect effects
through augmentation from IT become more impor-
tant in more recent time periods, which in turn causes
the total output elasticity of IT to increase in more
recent time periods. Given the overlap in our rolling
time windows (about 20 of 30 years), that our results
for IT capital from each window are considerably

different indicates the windows are capturing funda-
mental changes in IT and in TFP.7

4.3. IT-Intensive vs. Non-IT-Intensive
Our data set covers the manufacturing sector of the
U.S. economy comprising 19 industries. The estimates
obtained by pooling data across industries implicitly
assumes that the parameters do not vary over differ-
ent SIC codes. The parameters may not be the same
across sectors as we expect differences in the way IT
has been used in different parts of the manufacturing
sector. These differences could arise from differences
in the age of IT investments, the way IT deployment
affects production, different levels of IT investments,
or rates of return on the factor inputs—all reflecting
structural differences.
To gain insight into the impact of IT in different

parts of the economy, we run regressions separately
for different sectoral groupings based on IT intensity:
an IT-intensive sector and a non-IT-intensive sector.
We look for differences in the way IT has affected
production. Structural differences would be reflected
in the varying significance of the direct and indirect
effects of IT between the two sectors.

IT Intensity. Dewan and Min (1997) divided firms
in their sample into two groups of roughly equal size
based on the factor share of IT capital among the pro-
duction inputs. Dumagan and Gill (2002) classified
industries as IT intensive by ranking them on the ratio
of IT capital to number of full time hours of employ-
ment relative to the ratio for pooled industries. Rank

7 We thank the AE and a reviewer for suggesting this analysis.
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Figure 2 IT Intensity by SIC Code
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ordering the industries by this ratio, an industry was
considered IT intensive if it contributed to the top
half of the cumulative sum of average shares of nom-
inal GDP. Effectively, Dewan and Min (1997) used the
median factor share of IT capital and Dumagan and
Gill (2002) used the median of the cumulative sum
of average shares of nominal GDP, to separate the IT-
intensive from the non-IT-intensive industries.
We use an alternative approach based on levels of

IT that might underlie structural differences in IT use.
Using the ratio of IT capital stock to value added as a
measure of IT intensity for each industry, we rank the
industries, and plot this ratio in Figure 2, looking for a
natural break in the IT intensity ratio. Our plot shows
that the industries represented by SIC codes 28 (Chem-
ical and allied), 29 (Petroleum and related), 33 (Pri-
mary metal), 35 (Industrial/commercial machinery
and computer equipment), 36 (Electrical and electronic
equipment), and 38 (Measuring, analyzing, and con-
trolling equipment) are more IT intensive. The overall
mean of IT capital divides the IT-intensive industries
from the non-IT-intensive industries at the same point.

Table 5 Cross-Sectional Regression Results for IT-Intensive Sector

Non-IT capital Direct IT output Indirect IT output Total IT output Number of parameters
No. Specification Labor elasticity elasticity elasticity elasticity ��� elasticity at Zmean estimated

1. Simple Cobb-Douglas 0.61∗ 0.48∗ 0�004 31
2. Augmented Cobb-Douglas 0.47∗ 0.73∗ −0�08 1.53e-11∗ 0.13∗ 32

Notes. Zmean IT intensive = $8�66 billion, Sample size for IT intensive = 288. For the Augmented Cobb-Douglas form, the total output elasticity reported is
equal to ��∗Zmean� as the direct IT output elasticity is insignificant.

∗Significant at p= 1%.

These six IT-intensive sectors contribute 37% of the
value added of the manufacturing sector in the overall
sample mean. We create two mutually exclusive data
sets—one for the IT-intensive sector and one for the
non-IT-intensive sector based on this partition. Table 1
shows industries that are IT-intensive versus those
that are not.

Simple Cobb-Douglas and IT Intensity. To com-
pare the IT-intensive and non-IT-intensive sectors we
estimate the simple Cobb-Douglas in (7). The results
for the IT-intensive sector are in row 1 of Table 5
and those for non-IT-intensive sector are in row 1
of Table 6. The direct output elasticity of IT capital
for the IT-intensive sector is 0.004 but insignificant
(p= 0�89). However, the direct output elasticity of IT
capital for the non-IT-intensive sector is 0.15 and sig-
nificant. This is surprising as we would have expected
IT-intensive industries to have greater output elas-
ticities of IT capital than non-IT-intensive industries.
This indicates structural differences between the two
sectors—differences that are embedded in TFP.

Augmented Cobb-Douglas and IT Intensity. We
ran separate regressions for IT-intensive and non-IT-
intensive sectors to see the significance of direct and
indirect effects using our augmented Cobb-Douglas
in (8). The results for the IT-intensive sector are
reported in row 2 of Table 5 and those for non-IT-
intensive sector are reported in row 2 of Table 6.
The two sectors differ substantially in both the

sign and statistical significance of the direct and indi-
rect effects. The IT-intensive sector has a positive
and statistically significant indirect output elasticity
of IT capital (augmentation), but an insignificant (p=
0�023) and negative direct output elasticity of IT cap-
ital. Compared to the simple Cobb-Douglas where
the output elasticity of IT capital is positive but
insignificant, the augmented Cobb-Douglas separates
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Table 6 Cross-Sectional Regression Results for Non-IT-Intensive Sector

Conditions of Non-IT Capital Direct IT output Indirect IT output Total IT output Number of parameters
No. regression Labor elasticity elasticity elasticity elasticity ��� elasticity at Zmean estimated

1. Simple Cobb-Douglas 0.74∗ 0.19∗ 0.15∗ 108
2. Augmented Cobb-Douglas 0.74∗ 0.18∗ 0.15∗ 2.72e-12 0.15∗ 109

Notes. Zmean non-IT intensive= $2�02 billion, Sample size for non IT intensive= 624. For the Augmented Cobb-Douglas form, the total output elasticity reported
is equal to the direct IT output elasticity since � is insignificant.

∗Significant at p= 1%.

the direct and indirect effects in the IT-intensive sector.
Here the impact of IT capital is through augmentation,
which is positive and significant. In contrast, the non-
IT-intensive sector has an insignificant (p= 0�25) indi-
rect output elasticity of IT capital, and a positive and
statistically significant direct output elasticity. This
suggests that the two sectors are structurally different
in terms of the role of IT capital. In the IT-intensive
sector the role of IT is to augment non-IT capital and
labor. In the non-IT-intensive sector IT impacts pro-
duction by simply changing the mix of factor inputs.
We also calculate the total output elasticity of IT

capital using mean values of IT capital, but use sep-
arate means for the IT-intensive and non-IT-intensive
sectors. The mean IT capital for the IT-intensive sec-
tor is more than four times larger than that of the
non-IT-intensive sector: $8.66 B for IT-intensive versus
$2.02 B for non-IT-intensive. The estimates of the total
output elasticity of IT capital using the augmented
Cobb-Douglas are close to those obtained using the
simple Cobb-Douglas for non-IT-intensive industries,
and for IT-intensive industries are consistent with our
pooled estimates. This adds confidence in the reliabil-
ity and accuracy of our model and results.8

5. Conclusion
Our research focused on two specific questions. The
first is whether the augmentation portion of the indi-
rect effect of IT through non-IT capital and labor can
be separated and measured, and whether this effect
is significant. This is important because strategic deci-
sions about investments in IT depend on how orga-
nizations make the case for these investments. The
presence of indirect as well as direct effects of IT

8 We found similar patterns of significant indirect effects and
insignificant direct effects for IT-intensive sectors in later time sub-
sets of the data. Details are available from the authors.

means that organizations should consider IT capital
not only as a usual factor input, but also as an input
that can yield improvements with non-IT capital and
labor. An answer to this question is also important for
research as it separates the different paths of IT value
addition.
Our augmented Cobb-Douglas shows that both

direct and indirect effects of IT are important: Esti-
mates of both the direct and indirect output elasticities
of IT capital were statistically significant and positive.
This provides empirical evidence that IT not only adds
value directly through changes in the mix of factor
inputs, but also adds value through IT-driven aug-
mentation of non-IT capital and labor. In addition, the
increasing significance of the indirect effects over time
in our rolling time window estimates suggests that IT
is increasingly augmenting non-IT capital and labor.
The second question is whether the types of con-

tributions from IT capital, direct versus indirect, dif-
fer between IT-intensive and non-IT-intensive sectors.
An answer to this question is important for strate-
gic decision making about investments in IT because
the type of value addition from IT could depend on
whether an organization is in an IT-intensive indus-
try. An answer to this question is of deeper inter-
est to researchers because differences in the type of
value addition from IT based on IT intensity point
to structural differences in the relationship between
factor inputs. We found that estimates from our aug-
mented Cobb-Douglas on the two sectors were strik-
ingly different: In the IT-intensive sector the indirect
effects predominate with positive and statistically sig-
nificant indirect output elasticities of IT capital, and
negative and mostly insignificant direct output elas-
ticities of IT capital, whereas in the non-IT-intensive
sector the direct output elasticities of IT capital are
positive and statistically significant, and the indirect
output elasticities of IT are insignificant. These results
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indicate structural differences in the role of IT in pro-
duction: In the IT-intensive sector the role of IT is to
augment other factor inputs; in the non-IT-intensive
sector the role of IT is similar to the effect of any other
factor input.
Thus, there are two critical managerial implications

from our research. The first is that IT impacts pro-
duction both directly and indirectly, and in making
IT capital investments managers should account for
the indirect effects. As the indirect effects work in
part through non-IT capital and labor, investments
in these other factor inputs should be considered
simultaneously with investments in IT capital. The
second is that the value of IT capital arises differ-
ently in IT-intensive versus non-IT-intensive indus-
tries. Surprisingly, the indirect effects are relatively
more important in IT-intensive industries, suggest-
ing that in these industries competitive forces require
that IT investments deliver value through augmenta-
tion and technological change, and that as the relative
stock of IT capital grows in a firm, the contribution of
IT shifts from direct effects to indirect effects.
Like all research in IT and productivity, there are

limitations because of the available data. Although
our study used two-digit SIC industry data, we rec-
ognize that technology and factor input choices are
made at the firm-level. Thus, firm-level data would
considerably enhance our ability to investigate the
key distinction between direct and indirect effects.
In addition, our data set only covers the manu-
facturing sector, and the service sector is thought
to be a sector where IT has had considerable impact.
We speculate that an analysis of the service sector
would yield even stronger indirect effects. Further-
more, there are data limitations relating to the limited
granularity of our factor input measures. For example,
we conjecture that labor quality has increased over
time, and that there may be a selection bias in the
industries that employ more highly educated labor.
A finer breakdown of capital and labor would allow
for richer estimation methods that can incorporate
quality changes. Finally, our analysis does not explic-
itly account for learning whereby the effectiveness of
IT investments often increase over time. Examining
our indirect effects using a distributed lag structure
to incorporate learning may be a fruitful avenue for
future research.
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