
THE UNIVERSITY OF CALGARY

ROM Based Digital Filtering

by

Michael Sepa

A THESIS

SUBMITTED TO THE FACULTY OF, GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF

ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

April, 1994

© Michael Sepa 1994

1+1 National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1 0N4

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL

LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED

PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Your Me Vofre rélérence

Out file Notre référence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUTRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MAN1ERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLA1RES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERES SEES.

LAUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUB STANTIELS DE CELLE-
CI NE DOWENT ETRE IMPRIMES OU

AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-99483-5

Canadc!

C e
Name Fk -)

Dissertation Abstracts International is arranged by broa., general subject categories. Please selest the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the s. aces provided.

SUBJECT TERM

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS
Architecture 0729
Art History 0377
Cinema 0900
Dance 0378
Fine Arts 0357
Information Science 0723
Journalism 0391
Library Science 0399
Mass Communications 0708
Music 0413
Speech Communication 0459
Theater 0465

EDUCATION
General 0515
Administration 0514
Adult and Continuing 0516
Agricultural 0517
Art 0273
Bilingual and Multicultural 0282
Business 0688
Community College 0275
Curriculum and Instruction 0727
Early Childhood 0518
Elementary 0524
Finance 0277
Guidance and Counseling 0519
Health 0680
Higher 0745
History. of 0520
Home Economics 0278
Industrial 0521
Language and Literature 0279
Mathematics 0280
Music 0522
Philosophy of 0998
Physical 0523

THE SCIENCES AND
BIOLOGICAL SCIENCES
Agriculture

General 0473
Agronomy 0285
Animal Culture and

Nutrition 0475
Animal Pathology 0476
Food Science and
Technology 0359

Forestry and Wildlife 0478
Plant Culture 0479
Plant Pathology 0480
Plant Physiology 0817
Range Management 0777
Wood Technology 0746

Biology
General 0306
Anatomy 0287
Biostatistics 0308
Botany 0309
Cell 0379
Ecology 0329
Entomology 0353
Genetics 0369
Limnology 0793
Microbiology 0410
Molecular 0307
Neuroscience 0317
Oceanography 0416
Physiology 0433
Radiation 0821
Veterinary Science 0778
Zoology 0472

Biophysics
General 0786
Medical 0760

EARTH SCIENCES
Biogeochemistry 0425
Geochemistry 0996

Psychology 0525
Reading 0535,
Religious 0527
Sciences 0714
Secondauy 0533
Social Sciences 0534
Sociology of 0340
Special 0529
Teacher Training 0530
Technology 0710
Tests and Measurements 0288
Vocational 0747

LANGUAGE, LITERATURE AND
LINGUISTICS
Lan gyenoge

Geral 0679
Ancient 0289
Linguistics 0290
Modern 0291

Literature
General 0401
Classical 0294
Comparative 0295
Medieval 0297
Modern 0298
African 0316
American 0591
Asian 0305
Canadian English) 0352
Canadian French) 0355
English 0593
Germanic 0311
Latin American 0312
Middle Eastern 0315
Romance 0313
Slavic and East European 0314

ENGINEERING
Geodesy 0370
Geology 0372
Geophysics 0373
Hydrology 0388
Mineralogy 0411
Pal eobotany 0345
Paleoecology 0426
Paleontology 0418
Paleozoology 0985
Palynalogy 0427
Physical Geography 0368
Physical Oceanography 0415

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences

General 0566
Audiology 0300
Chemotherapy 0992
Dentistry 0567
Education 0350
Hospital Management 0769
Human Development 0758
Immunology 0982
Medicine and Surgery 0564
Mental Health 0347
Nursing 0569
Nutrition 0570
Obstetrics and Gynecology 0380
Occupational Health and
Therapy 0354

Ophthalmology 0381
Pathology 0571
Pharmacology 0419
Pharmacy 0572
Physical Therapy 0382
Public Health 0573
Radiology 0574
Recreation 0575

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy 0422
Religion

General 0318
Biblical Studies 0321
Clergy 0319
History of 0320
Philosophy of 0322

Theology 0469

SOCIAL SCIENCES
American Studies 0323
Anthropoaeloolgy

Archogy 0324
Cultural 0326
Physical 0327

Business Administration
General 0310
Accounting 0272
Banking 0770
Management 0454
Marketing 0338

Canadian Studies 0385
Economics

General 0501
Agricultural 0503
Commerce-Business 0505
Finance 0508
History 0509
Labor 0510
Theory 0511

Folklore 0358
Geography 0366
Gerontology 0351
History

General 0578

Speech Pathology
Toxicology

Home Economics

PHYSICAL SCIENCES
Pure Sciences
Chemistry

General 0485
Agricultural 0749
Analytical 0486
Biochemistry 0487
Inorganic 0488
Nuclear 0738
Organic 0490
Pharmaceutical 0491
Physical 0494
Polymer 0495
Radiation 0754

Mathematics 0405
Physics

General
Acoustics
Astronomy and
Astrophysics

Atmospheric Science
Atomic
Electronics and Electrici
Elementary Particles an
High Energy 0798

Fluid and Plasma 0759
Molecular 0609
Nuclear 0610
Optics 0752
Radiation 0756
Solid State 0611

Statistics 0463

Applied Sciences
Applied Mechanics 0346
Computer Science 0984

0
SUBJECT CODE

UMI

Ancient 0579
Medieval 0581
Modern 0582
Black 0328
African 0331
Asia; Australia and Oceania 0332
Canadian 0334
European 0335
Latin American 0336
Middle Eastern 0333
United States 0337

History of Science 0585
Law 0398
Political Science

General 0615
International Law and

Relations 0616
Public Administration 0617

Recreation 0814
Social Work 0452
Sociology

General 0626
Criminology and Penology 0627
Demography 0938
Ethnic and Racial Studies 0631
Individual and Family
Studies 0628

Industrial and Labor
Relations 0629

Public and Social Welfare 0630
Social Structure and
Development 0700

Theory and Methods 0344
Transportation 0709
Urban and Regional Planning 0999
Women's Studies 0453

0460 Engineering
0383 General 0537
0386 Aerospace 0538

Agricultural 0539
Automotive 0540
Biomedical 0541
Chemical 0542
Civil 0543
Electronics and Electrical 0544-
Heat and Thermodynamics 0348
Hydraulic 0545
lndutrial 0546
Marine 0547
Materials Science 0794
Mechanical 0548
Metallurgy 0743
Mining 0551
Nuclear 0552
Packaging 0549
Petroleum 0765
Sanitary and Municipal 0554

0605 System Science 0790
0986 Geatechnology 0428

Operations Research 0796
0606 Plastics Technology 0795
0608 Textile Technology 0994
0748
0607 PSYCHOLOGY

General 0621
Behavioral 0384
Clinical 0622
Developmental 0620
Experimental 0623
Industrial 0624
Personality 0625
Physiological 0989
Psychobiology 0349
Psychometrics 0632
Social 0451

Nom
Dissertation Abstracts International est organisé en categories de sujets. Veuil!ez s.v.p. choisir le sulet qui décrit le mieux votre
these et inscrivez le code numérique approprié dons I'espcsce réservé ci-dessous.

UMI
SUJET

Categories par sulets

HUMANITES ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS
Architecture 0729
Beaux-arts 0357
Bibliothéconomie 0399
Cinema 0900
Communication verbale 0459
Communications 0708
Danse 0378
Histoire de 'art 0377
Journalisme 0391
Musique 0413
Sciences de l'inlormation 0723
Théôtre 0465

EDUCATION
Généralités
Administration 014
Art 0273
Colleges communautaires 0275
Commerce 0688
Economie domestique 0278
Education permanente 0516
Education prescolaire . 0518
Education sanitaire 0680
Enseignement agricole 0517
Enseignement bilingue et

muiticulturel 0282
Enseignement industriel 0521
Enseignement primaire. 0524
Enseignement professionnel 0747
Enseignement religieux 0527
Enseignement secondoire 0533
Enseignement special 0529
Enseignement supérleur 0745
Evaluation 0288
Finances 0277
Formation des enseignants 0530
Histoire de l'éducation 0520
Langues et lillérature 0279

Lecture 0535
Mathématiques 0280
Musique 0522
Orientation et consultation 0519
Philosophie de l'éducation 0998
Physique 0523
Programmes d'études et
enseianement 0727 P.).,=

 0525
Sciences 0714
Sciences sociales 0534
Sociolociie de 'education 0340
Technorogie 0710

LANGJJE, LITTERATURE El
515 LINGUISTIQUE

Lan gues
Generalites 0679
Anciennes 0289
Linguistique 0290
Modernes 0291

Littérature
GénCralités 0401
Anciennes 0294
Comparée 0295
Mediévale 0297
Moderne 0298
Africaine 0316
Américaine 0591
Anglaise 0593
Asiatuque 0305
Canaduenne Angloise) 0352
Canadienne Francaise) 0355
Germanique 0311
Latino-américaine 0312
Moyen-orienlale 0315
Ramane 0313
Slave et esteuropéenne 0314

SCIENCES ET INGENIERIE

SCIENCES BIOLOGIQUES
Agriculture

Généralités 0473
Agronomie. 0285
Alimentation et technologie

olimentaire 0359
Culture 0479
Elevae et alimentation 0475
Exploitation des peturages 0777
Pathologie animale 0476
Pathologie véétale 0480
Physiologie vegetale 0817
Sylviculture et Faune 0478
Technologie du bois 0746

Biologie
Genéralités 0306
Anatomie 0287
Biologie (Statistiques) 0308
Bioloie moleculaire 0307
Botonique 0309
çellule 0379
Ecologie 0329
Entomologie 0353
Genetique 0369
Limnologie 0793
Microbiologie 0410
Neurologie 0317
Oceanographie 0416
Physiologie 0433
Radiation 0821
Science vétérinaire 0778
Zoologie 0472

Biophysique
Generalites 0786
Medicale 0760

SCIENCES DE LA TERRE
Biogeochimie 0425
Géochimie 0996
Géodésie 0370
Géographie physique 0368

Géologie 0372
Geophysique 0373
Hydrologie 0388
Mineralogie 0411
Océanographie physique 0415
Paleobotanique 0345
Paleoecologie 0426
Paleontologie 0418
Paleozoologie 0985
Palynologie 0427

SCIENCES DE LA SANTE El DE
L'ENVIRONNEMENT
Economie domestique 0386
Sciences de 'environnement 0768
Sciences de la sante

Généralités 0566
Administration des hIpitaux 0769
Alimentation et nutrition 0570
Audiologie 0300
Chimiothérapie 0992
Dentisterie 0567
Developpement humain 0758
Enseignement 0350
Immunologie 0982
Loisirs 0575
Medecine du travail et

therapie 0354
Médecine et chirur9ie 0564
Obstetrique et gynecologie 0380
Ophtalmologie 0381
Orthophonie 0460
Pathologie 0571
Pharmacie 0572
Phormacologie 0419
Physiotherapie 0382
Radiologie 0574
Sante mentale 0347
Sante publique 0573
Soins unfirmuers 0569
Toxicologie 0383

PHILOSOPHIE, RELIGION ET
THEOLOGIE
Philosophie
Religjon

Generalites
Clerge
Etudes bibliques
Histoire des religions
Philosophie de a religion

rheologie

SCIENCES SOCIALES
Anthropologie

Archeo!ogie
Culturelle
Physique

Proit
Economie

Generalites
Commerce-Affaires
Economie agricole
Economie du travail
Finances
Histoire
Théorie

Etudes américaines
Etudes canadiennes
Etudes feministes
Folklore
Geographic
Gerontologie
Gestion des affaires

Généralités
Administration
Banques
Comptabilité
Marketing

Histoire
Hstoire genorale

CODE DE SUJET

Ancienne 0579
Mediévale 0581

0422 Moderne 0582
Histoire des flairs 0328

0318 Africaine 0331
0319 Canadienne 0334
0321 Etats-Unis 0337
0320 Européenne 0335
0322 Moyen-orientale 0333
0469 Latino-américaine 0336

Asie, Australie et Océanie 0332
Histoire des sciences 0585
Loisirs 0814

0324 Planification urboine et
0326 regionale 0999
0327 Science politique
0398 Généralités 0615

Administration publique 0617
0501 Droit et relations
0505 internationales 0616
0503 Sociologie
0510 Généralités 0626
0508 Aide et bien-àtre social 0630
0509 Criminologie et
0511 etablissements
0323 pénitentiaires 0627
0385 P&mographie 0938
0453 Etudes del' individu et
0358 de ki famille 0628
0366 Etudes des relations
0351 interethniques et

des relations raciales 0631
0310 Structure et develappement
0454 social 0700
0770 Théorie et méthodes. 0344
0272 Travail et relations
0338 industrielles 0629

Transports 0709
0578 Travail social 0452

SCIENCES PHYSIQUES
Sciences Pures
Chimie

Genéralités 0485
Biochimie 487
Chimie agricole 0749
Chimie onolytique 0486
Chimie minerale 0488
Chimie nucléaire 0738
Chimie organique 0490
Chimie pharmaceutique 0491
Physique 0494
PotymCres 0495
Radiation 0754

Mothematiques 0405
Physique

Genéralités
Acoustique
Astronomie et
ostrophysique

Electronique et electricité
Fluides et plasma
Météorologie
Optique
Particules (Physique

nucléaire) 0798
Physique atomique 0748
Physique de l'état solide 0611
Physique moléculaire 0609
Physique nucléaire 0610
Radiation 0756

Statistiques 0463

Sciences Appliqués Et
Technologie
Informatique
Ingenierie

Généralités
Agricole
Automobile

Biomédicale 0541
Chaleur et ther
modynomique 0348

Conditionnement
(Emballage) 0549

Genie aérospatial 0538
Genie chimique 0542
Genie civil 0543
Genie electronique et

electrique 0544
Genie industriel 0546
Genie mécanique 0548
Genie nucleaire 0552
In?énierie des systämes 0790
Mecanique navale 0547
Metallurgie 0743
Science des matérioux 0794

0605 Technique du pétrole 0765
0986 Technique minière 0551
0606 Techniques sanitaires et

municipales 0554
0607 Technologie hydraulique 0545
0759 Mecanique appliquee 0346
0608 Géotechnologie 0428
0752 Matiéres plastiques

(Technologie) 0795
Recherche opérationnelle 0796
Textiles et tissus (Technologie) 0794

PSYCIIOLOGIE
Généralités 0621
Personnalité 0625
Psychobiologie 0349
Psychologie clinique 0622
Psych ologie du comportement 0384

0984 Psychologie du developpement 0620
Psychalogie experimentale 0623

0537 Psychologie industrielle 0624
0539 Psychologie physiologique 0989
0540 Psycholo9ie sociale 0451

Psychometrie 0632
410

The University of Calgary

Faculty of Graduate Studies

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "ROM Based Digital Filtering"

submitted by Michael Sepa in partial fulfillment of the requirements for the degree

of Master of Science.

a 1 2 19 9

Date

Supervisor, Dr. L. E. Turner
Electrical and Computer Engineering

Dr. M. Chapman
Geomatics Engineering

Dr. M. R. Smith
Electrical and Computer Engineering

Dr. R. A. Stein
Electrical and Computer Engineering

ii

Abstract

Two new techniques are proposed for the construction of digital filters using read

only memory (ROM) based technology. Both implement all components (adders and

.multipliers), with the exception of shift registers, in ROM. The principal difficulty in

the construction of such devices is the large amounts of memory required, and each

technique reduces the amount of memory required.

The first technique reduces the memory required by eliminating unreachable

states. Since unreachable states in a filter will never be encountered, their elimi-

nation will not change the transfer function of the filter.

The second technique uses a difference modulator to reduce the dynamic range of

the signal. The reduced dynamic range signal is processed using finite state machines

which implement adder and multiplier operations. The processed signal is difference

demodulated to construct the resulting waveform.

When compared to standard implementation techniques these implementations

have several major advantages: high speed, simple modular component blocks and

inexpensive material.

111

Contents

Approval Page

Abstract

1 Introduction 1

2 Digital Filters Using ROM Components 7

2.1 Distributed Arithmetic 8

2.1.1 An Overview of DA 8

2.1.2 The Basic Concept 9

2.1.3 An Example 11

2.1.4 ROM Implementations 13

2.2 Residue Arithmetic Implementations 14

2.2.1 The Basics of Residue Arithmetic 14

2.2.2 Filter Construction Using Residue Arithmetic 16

2.2.3 ROM Implementation Using Residue Arithmetic 19

2.3 Conclusions on Look-up Table Implementations 20

3 ROM Reduction by Elimination of Unreachable States 22

3.1 Determining the Reachable Set 24

3.1.1 Reachable Set for Inputs with Bounded Energy 27

3.1.2 Reachable Set for Bounded Amplitude Inputs 29

3.1.3 A Direct Form Filter Example 30

3.2 The Relationship Between the Fraction of Space Used and the Filter

Order. 34

3.3 Reducing the Unreachable Set 35

iv

3.4 Simulation and Analysis 38

3.5 Conclusions 42

4 Filtering of Delta Modulated Signals 44

4.1 Delta Modulation 45

4.2 The Basics of Delta Modulation Systems 45

4.3 Delta Modulation Filtering using Analog-digital Hybrid Techniques 47

4.3.1 Non-Recursive Filtering 48

4.3.2 Recursive Filtering 49

4.3.3 The Possibility for ROM Implementation 49

4.4 Digital Filtering of Delta Modulated Signals 51

4.4.1 The Delta Adder 51

4.4.2 Delta Multiplier 53

4.4.3 Hardware implementation 56

4.4.4 Filtering Delta modulated Signals 56

4.4.5 Delta doubler 58

4.4.6 Method Problems 58

4.4.7 ROM Implementation 59

4.5 Filtering Ternary Delta Modulation 59

4.5.1 Basic Ternary Delta Modulation 60

4.5.2 Ternary adder 61

4.5.3 Ternary Multiplier 62

4.5.4 Ternary Delta modulation Filters 63

4.5.5 Ternary Delta Tripler 64

4.5.6 Hardware 64

4.5.7 Method Problems 64

4.6 Filtering of Sigma-Delta Modulated Signals 65

4.6.1 The Basics of Sigma-Delta Modulation 65

4.6.2 Filtering Sigma-Delta Modulated Signals 66

4.6.3 Problems in the Sigma-Delta Approach 68

4.6.4 ROM Implementation 68

4.7 Conclusions 69

5 Filtering Difference Signals 70

5.1 Introduction 70

5.2 Difference Signals 73

5.3 Signal Coding, Reconstruction and Filtering 74

5.3.1 Encoding of Difference Signals 76

5.3.2 Decoding of Difference Signals 77

5.3.3 Error in the Encoding/Decoding System 79

5.3.4 Filtering Difference Signals 81

5.4 Components 82

5.4.1 Adding Difference Signals 82

5.4.2 Multiplying Difference Signals 91

5.5 Filter Construction 103

5.6 Difference Filter Simulation 108

5.6.1 Test Inputs and Results 111

5.6.2 Limitations 116

5.6.3 Memory Requirements 117

5.6.4 Implementations other than ROM 119

6 Future Research Directions and Conclusions 121

6.1 Technique Critique 121

6.1.1 Elimination of Unreachable States Approach 121

6.1.2 Difference Signal Approach 123

vi

6.2 Future Research Directions 124

6.3 Conclusions 126

Bibliography 127

vii

List of Tables

2.1 ROM look-up table contents for the example DA implementation. . 12

2.2 ROM adder space requirements for various wordlengths. 13

2.3 Unique residue pairs for k when R1 = 3 and R2 = 5 15

4.1 All possible inputs with outputs to the delta adder. 53

4.2 Delta adder input/output relations rewritten to show correspondence

with a bit-serial adder . 56

4.3 Input/output relations for the addition of ternary signals . 61

4.4 Z as a function of sum, S,, and carry, C 62

5.1 Memory requirements for a 5th order LDI using look-up tables 71

5.2 Memory requirements for a Dmult for various coefficient wordlengths 101

5.3 Design parameters and multiplier coefficients for the simulated 5

order LDI filter . 109

vi"

List of Figures

1.1 Block ROM implementation of a digital filter. 5

2.1 A basic distributed arithmetic implementation for four coefficients.. 11

2.2 Block diagram of a residue arithmetic implementation. 19

3.1 The direct form digital filter reachable set for IIuII 1. 32

3.2 Bounded amplitude reachable set for the direct form filter. 33

3.3 Maximum fraction of space used as a function of order for elliptical

reachable sets. 36

3.4 Block diagram of the reduced full ROM implementation. 39

3.5 The ratio of maximum error between the ROM filter and the direct

form filter as a function of wordlength, b 41

3.6 Maximum error in the FFT of the output as a function of wordlength, b. 41

4.1 A basic delta modulation system 46

4.2 Non-recursive delta modulation filter [10] . 48

4.3 Recursive delta modulation filter f 10] 50

4.4 Multiplier for a 0.1011b coefficient constructed from delta adders 55

4.5 Delta adders used to create a tree of multiplication constants 55

4.6 The basic ternary delta modulation system 60

4.7 A ternary multiplier with a coefficient of 0.12346. 63

4.8 Basic sigma-delta modulation system. 66

4.9 A sigma-delta modulation FIR filter 67

5.1 A 5th order LDI structure composed of two input blocks. . 71

5.2 Bit reduction by oversampling for telephone (3 kHz) bandwidth data 75

5.3 Bit reduction by oversampling for audio (22 kHz) bandwidth data. . 75

ix

5.4 Difference encoder (Dencoder) block diagram 77

5.5 Block diagram of the difference adder (Dadder) 83

5.6 Maximum number of consecutive carry accumulation samples. 87

5.7 Ideal sum and Dadder sum output waveforms for the random input

sequence 92

5.8 Error between the output and the ideal response in the Dadder for

random waveform inputs 92

5.9 Block diagram of the difference multiplier (Dmult) 93

5.10 The Dmult with quantizers modeled with noise. 97

5.11 Dmult error as a function of dmult coefficient. 98

5.12 Dmult output and ideal response for in = 0.95. 100

5.13 Error in the Dmult output for in = 0.95. 100

5.14 The crushing of poles and zeros into a small wedge by oversampling 104

5.15 Magnitude responses of the ideal and coefficient truncated filters. . 110

5.16 A 5th order LDI filter constructed from Dmult and Dadder blocks. 112

5.17 Random waveform test output. 113

5.18 Random waveform test error. 114

5.19 Difference filter and ideal filter response when stimulated with a unit

Kronecker delta 115

5.20 Difference filter and ideal filter magnitude response. 116

5.21 Size of ROM required as a function of the oversampling ratio. 119

x

Chapter 1

Introduction

Signals can transmit an endless variety of information, including images, voltages,

and sounds. Any signal is composed of a sequence of values, or amplitudes. This

sequence can be of finite or infinite length, and the amplitudes may take any one value

at any point in the sequence. For example, a voltage signal is composed of a sequence

of voltage levels, and an image signal is composed of a sequence of images. In neither

case does the signal possess two voltage levels or two images at any single point in

the sequence. The consecutive amplitudes in a signal are separated in time thus

signals can be considered as functions of time, but the time separating consecutive

amplitudes of a signal need not be uniform. When the consecutive amplitudes are

separated by zero time, the signal is a continuous function with the amplitude as the

dependent variable, and time as the independent variable.

Signals are considered to be functions of time in this thesis, and can classified into

three categories: continuous, discrete and digital. Continuous signals are continuous

functions in both time and amplitude. Such signals have a value at all times and can

have any finite amplitude. Discrete signals are continuous in one variable, but are

discontinuous or quantized in the other. In this thesis, discrete signals are considered

to be discrete in time, and continuous in amplitude. Such a discrete signal has a

known value only at specific moments in time, but the amplitude of such a signal

may take on any specific value. Digital signals are quantized in both amplitude and

time. Like discrete signals, digital signals have known amplitudes only at specific

times, but, in addition, the amplitude of a digital signal must be one of a number

of amplitudes. In practical applications, the number of amplitudes is restricted to a

1

2

finite number.

Signal processing is a method of enhancing or attenuating features of signals.

Listening to a voice in a crowded room is an example of signal processing. Other

voices in the room are attenuated, while the voice of interest is enhanced.

Digital signal processing (DSP) is signal processing applied to signals composed

of digital (quantized in both amplitude and time) data. In DSP two main implemen-

tation methods have been used: custom hardware, such as integrated circuits (ICs)

and field programmable gate arrays (FPGAs), and digital signal processors, such as

the Motorola DSP56000 [12].

Digital signal processors (DSP chips) are microprocessors whose instruction set is

specially designed for DSP operations. A DSP chip's properties include the following:

1. The algorithm is implemented in a software program (much like in a conven-

tional microprocessor) which can be easily changed during prototyping.

2. Modest facilities are required for programming.

3. Moderate operating speeds can be obtained depending on the algorithm.

4. The cost on a per chip basis is moderately high, requiring large production

runs to achieve low costs.

Custom integrated circuits are integrated circuits specially designed for one ap-

plication. A custom integrated circuit constructed for DSP applications has the

following properties:

1. The algorithm is implemented in hardware.

2. Complex (and costly) tools and facilities are required for construction.

3. Very high operating speeds are obtainable depending on the algorithm.

3

4. The design is fixed at manufacture, so prototyping is expensive.

5. The cost on a per chip basis is very high, requiring large productions to achieve

low costs.

Field programmable gate arrays are integrated circuits capable of being pro-

grammed on site. An FPGA circuit designed for DSP applications has the following

properties:

1. The algorithm is implemented in hardware.

2. Modest facilities are required for construction compared to those required for

custom IC construction.

3. High operating speeds are obtainable depending on the algorithm.

4. The reprogrammable structure allows inexpensive prototyping.

5. The cost on a per chip basis is moderately high, requiring large productions to

achieve low costs.

All three approaches are unsuitable for low volume, fixed (or static) algorithm

designs. Integrated circuits cannot be produced in low volumes. DSP chips and

FPGAs are reprogrammable, which is a capability wasted on fixed algorithms. In

low volume (several units), low cost production of fixed algorithm designs, a fourth

technological alternative is full read only memory based implementation. In this

approach all computational components, such as adders, multipliers or larger blocks,

are constructed from read only memory (ROM) chips.

ROM chips are commonly used in the computer industry and are inexpensive

when purchased as single units and even less expensive per chip when purchased

in large quantities. They are difficult (or impossible) to modify after production,

so they are suited to static DSP algorithm implementations. ROMs can operate at

4

very high speeds. As a single state-machine, as shown in Figure 1.1, the maximum

sample rate is the access time of the ROM, which can be extremely fast. For typical

1992 technology 20 ns access time is available, allowing potential sample rates of,

.50 MHz.

The problems encountered in constructing ROMs are greatly simplified compared

to those encountered in the design of a custom IC. IC design requires the production

of a logic circuit based on a set of input-output relations. In a ROM such a relation-

ship is directly programmed, eliminating the need for logic minimization and timing

analysis that is required in IC designs. In addition, electronically programmable

read only memories (EPROMs) can be programmed using inexpensive EPROM pro-

grammers, while custom ICs require complex tools and facilities for production. For

large production runs, ROMs can be fabricated much like ICs, with several ROMs

on a common substrate, except that layout is greatly simplified because only ROM

programming is required. If each IC is composed of several modular ROM blocks

rather than one large ROM block, then only the interconnects between the modular

components are required to implement the desired algorithm. Such an approach

would be similar to FPGAs, but the ROM function blocks would be designed for

DSP applications.

The three technologies encounter different trade-offs as the order of the filter

increases. In IC implementations, as the filter order increases the chip area in-

creases because there are more interconnects and components. IC implementations

encounter a hardware complexity/order trade-off. In DSP chip implementations, the

maximum sample rate decreases as the length of the program increases. Since the

order of the filter is roughly proportional to the length of the program, DSP chips

encounter a speed/order trade-off. In ROM implementations, the maximum sample

rate can be maintained at the cost of an exponentially increasing memory size for

5

x2

X3

T

T

T

Figure 1.1: Block ROM implementation of a digital filter.

any order. ROM implementations encounter a memory size/order trade-off.

The trade-off between memory size and filter order is the major disadvantage of

ROM based filters. ROM based filters, especially those built as block state-machines,

require immense amounts of memory. Consider the 5° order digital filter based on

the difference equations,

5

y(n) = bu(m) + E ajxj(n)
A:=1

x1(n + 1) = u(n) (1.2)

x2(n+1)=xi (1.3)

cc3(n + 1)= x2 (1.4)

x4(n+l)=x3 (1.5)

xs(n + 1) = X4 (1.6)

where ak and b are fixed finite precision multiplier coefficients. A block ROM state-

machine digital filter is shown in Figure 1.1. If we consider the filter to have a

uniform wordlength of 12 bits, the 5 order digital filter would require a ROM with

six 12 bit inputs (five inputs for the states and one for the input) and six 12 bit

6

outputs (five for the next filter states and one for the output) which would require

12(5+ 1)2 12(5+1) = 3.4001 x 1023 bits

or 0.34 tera-terabits. In 1994, 1 megabit memories are commonly available, and

computers often have 16 to 32 megabytes of memory, but 0.34 tera-terabits is an

unreasonable large amount of memory for current technologies.

Let us assume that a vast amount of memory is available at a reasonable cost. If

the ROM could be programmed at 1 bit per picosecond it would still be unfeasible

to build because of the time required:

3.4001 x 1023 x 10..12 = 3.4 x 10' seconds

= 10 781 years. (1.7)

A block ROM implementation is an unsatisfactory approach because it consumes

too much memory and requires too much time to program. To allow construction

of ROM based digital filters some method of reducing the memory required to a

reasonable amount is needed. A reduction in the ROM size will be accompanied by

a reduction in the programming time.

This thesis focuses on two new approaches to ROM implementations of digital

filters: reduction of the block ROM implementation memory requirements and ROM

implementations composed of many small state-machines. The thesis begins with a

review of the use of ROM components in digital filters, followed by an examination

of block ROM implementations with reduced memory requirements achieved by the

elimination of unreachable states. This is followed by a review of delta modulation

filtering systems which provides background for a difference signal processing method

using small ROM state-machines.

Chapter 2

Digital Filters Using ROM Components

Read only memories (ROMs) have been used in digital filtering to increase the speed

of an algorithm by pre-computing the result of complex calculations and storing a

table of the results in a ROM. This ROM, called a look-up table, can then be used

during filter operation to quickly determine the result of the complex calculation

rather than require the filter to compute the result each time. Such a scheme allows

complex calculations to be conducted in the time required for accessing the ROM. In

this chapter, two approaches to digital filtering using ROM components as look-up

tables will be examined.

Digital filter implementations are frequently composed of adder and multiplier

components. Of these two components the multiplier is the most resource consuming

component, because it requires more gates to construct than adder components to

attain a similar operation speed. When similar hardware limits are imposed on both

components (such as restricting the maximum number of gates), multipliers require

more time to operate than adder components. The complex circuitry required for

construction make multipliers suitable for ROM or RAM based look-up table im-

plementations because look-up table implementations simplify the circuitry required

and allow faster operation. The high speed of the ROM ICs allows multiplexing of

the ROM components which reduces the total memory required.

In both distributed arithmetic systems [17] and residue arithmetic systems [7]

ROM look-up tables are used to create faster multipliers. These two implementation

methods will be outlined and examined for potential full ROM implementation in

this chapter.

7

8

2.1 Distributed Arithmetic

A common form of computation in digital filters is the sum of products (or in vector

terms, the inner product). It is this operation that can be effectively performed by

distributed arithmetic (DA) [17]. In conventional implementations (direct imple-

mentation of the difference equations using multiplier and adder components) the

sum of products operation is performed by isolated adder and multiplier components.

Each multiplication is performed by a multiplier, while each addition is performed

by an adder. The adder and multiplier components are entirely separate, while

only the final result of the arithmetic add or multiply operation is passed to other

components.

By contrast, DA implementations are not based on isolated adders and multipli-

ers. The inner product is performed by a unified multiplier/adder look-up table (for

calculating a partial product) and a parallel accumulator. The parallel accumulator

is constructed using conventional logic gates, and the look-up table is implemented

in ROM. This approach can reduce the number of gates required for implementation

by 50% to 80% over conventional isolated component implementations [17].

In this section, the basics of a DA implementation of a sum of products oper-

ation is explained. Full ROM implementations of DA operations are shown to be

impractical because of the total memory requirements for such a system.

2.1.1 An Overview of DA

In its simplest form, a distributed arithmetic implementation uses a bit-serial com-

putation that evaluates each bit of the inner product of a pair of vectors in a single,

direct step [17]. The bit-serial nature of the operation reduces the speed of com-

putation compared to that in conventional implementations, but this restriction is

lifted when a DA implementation is expanded into word-serial (serial transmission

9

of several bits rather than a single bit) at the cost of a larger look-up table. With

word-serial DA, speeds comparable to those of conventional implementations are

possible.

2.1.2 The Basic Concept

An N 1 order linear digital filter can be described by its state equations:

s(n + 1) = As(n)+bu(n)

y(m) = cTs(n)+du(n)

where

A = N x N state matrix

b = N dimensional column vector

C = N dimensional column vector

d = scalar

u(n) = scalar input at time n

s(n) = N dimensional column state vector at time ri

y(n) = scalar output at time n.

The state equations (2.1 and 2.2) can be rearranged as:

s(n + 1) A b s(n)

y(n) ci d u(n)

and from this equation it is clear that a direct implementation of a digital filter from

its state equations requires N + 1 inner product calculations.

In a DA implementation, each of the N + 1 inner product calculations is imple-

mented separately. Consider an arbitrary inner product calculation:

(2.1)

(2.2)

(2.3)

K

1/ = E akxk (2.4)

10

where ak are arbitrary fixed coefficients and xk are variable data words. In a fil-

ter, ak represents the fixed multiplier coefficients, while Xk is the state and input

information.

If each xk is a two's complement binary number which is scaled such that xkI <1

(for convenience), then each xk is expressed by b fractional bits,

b—i

Xk = —bko + E b2
n=1

(2.5)

where bkn are the bits of xk, bko is the sign bit, b is the number of bits and bk(b_1) is

the least significant bit (LSB).

Using Equations 2.5 and 2.4, the sum of products can be written as

= E aj [—bko + E bkfl2-2] (2.6)
k=1 n=1

This represents the conventional form of the inner product. When this equation is

implemented directly it defines an isolated arithmetic computation. However, since

n and k are independent, the order of the summations can be interchanged to form

b—i K K

= > aJbk,, 2 + E ak(—bko)
n=1 k=1 k=i

(2.7)

which can be implemented in a distributed arithmetic form [17].

Since b1m may only take the values of 0 or 1, the bracketed term in Equation 2.7,

K

ajbj
k=1

(2.8)

may take only 2k possible values. By precalculating and storing these values in a

ROM look-up table the input data bk can be used to address the memory and the

result of the computation can be read directly from the ROM data lines. Then the

result can be added with a parallel accumulator. After b operations the final result

of the inner product will be in the accumulator.

11

2.1.3 An Example

To illustrate a DA implementation, let us examine an example [17] where

K = 4, a1 = 0.72, a2 = —0.30, a3 = 0.95, a4 = 0.11

The ROM look-up table must store all possible combinations of the coefficients and

negative coefficients, so that 2 x 2 terms are required. The block diagram of a DA

implementation for the four coefficients (Figure 2.1) clearly shows the ROM look-up

table, whose contents are listed in Table 2.1.

In the operation of the DA implementation, the data words are input into the

ROM one bit at a time (1BAAT), from least significant bit (LSB) to most significant

bit (MSB). On the MSB (the sign bit) the T8 signal is set high (1) to accommodate

the sign bit. For all other bits the T3 signal is set low (0).

Beginning with a cleared accumulator, the LSB (b_1) of each of the input states

(x1 to x4) is addressed to the ROM. The parallel output of the ROM represents the

sum of all coefficients which received an input bit equal to 1. The output of the

ROM is added in parallel to half the value of the zeroed accumulator. The next

bit (bb-2) of each of the inputs is then addressed to the ROM. The parallel output

of the ROM is added to half the value of the accumulator. The process continues

until b0 (the MSB or sign bit) is reached. When the MSB of the input states (b0 of

x1) x2, x3, x4) is addressed to the look-up table, the 1' line is set high to allow the

Serial A2

Input
(1BAAT) XA

S

ROM
Look-up
Table

Parallel Output

Figure 2.1: A basic distributed arithmetic implementation for four coefficients.

12

Input Code

2' b1 b2 N. N.
32-Word

Memory Contents

000 0 0
000 0 1
000 1 0
00 0 1 1

00 1 0 0
00 1 0 1

00 1 1 0
00 1 1 1
01 0 0 0

01 00 1

01 0 1 0
01 0 1 1

01 1 00
01 1 0 1

01 1 1 0
01 1 1 1

0
a4 = 0.11

as = 0.95

a3+a4= 1.06
a2 = -0.30

a2+a4 = -0.19

a2+a3 = 0.65
a2 + as + a4 = 0.75
a1 = 0.72

ai+a4=0.83

a1+a3= 1.67
a1 + as + a4 = 1.78

a1 + a2 = 0.42
a1 + a2 + a4 = 0.53

a1 + a2 + a4 = 1.37
ai+a2+a3+a4= 1.48

10000
1000 1
100 1 0
100 1 1

10 1 0 0
10 1 0 1
101 1 0
10 1 1 1

11 0 0 0
11 0 0 1

11 0 1 0
11 0 1 1
11 1 0 0
1 1 1 0 1
01 1 1 0
01 1 1 1

0
-a4 = -0.11
-a3 = -0.95

-(as+a4) = -1.06
-a2 = +0.30

-(a2 + a4) := +0.19
-(a2 + a3) = -0.65

- (a2+a3 -- a4) =-0.75
-a1 = -0.72

-(ai + a4) = -0.83

-(ai+a3)=-1.67
- (ai+a3+a4)= - 1.78
.-.(ai + a2) = -0.42
-(ai + a2+ a4) = -0.53

-(ai+a2+a4) = -1.37
- (ai+a2+a3+a4)=-1.48

Table 2.1: ROM look-up table contents for the example DA implementation.

13

negative sum of the coefficients to be computed. When the negative sum is added

to half the accumulator, the accumulator will contain the two's complement binary

number which represents the sum of products of the inputs and the fixed coefficients.

The accumulator's contents can be passed on to other components of the design and,

prior to the beginning of the next computation, the accumulator is zeroed.

2.1.4 ROM Implementations

Although much work has been done to reduce the ROM required for the look-up

tables in DA implementations [17], it is the adder/accumulator that presents the

major difficulty in a full ROM implementation of a DA system. An accumulator

structure is difficult to realize in a full ROM implementation because the adder is

a parallel b bit adder and a parallel adder in a full ROM implementation is very

expensive:

size = b22' bits = b2 2b bytes (2.9)

For a wordlength of 8 bits, one adder requires 65536 bytes, but for larger word lengths

the adder quickly becomes unmanageable (Table 2.2). If the DA implementation is

such that each state and the output are computed in a DA scheme,, one adder will

be required for each state the output. Only for filters with small wordlengths is such

a scheme possible. Direct full ROM implementation of a DA scheme is not feasible

due the the large memory requirements of the parallel adder.

Wordlength ROM size
10 bits
12 bits
16 bits

1.31 Megabytes
25.2 Megabytes
8.59 Gigabytes

Table 2.2: ROM adder space requirements for various wordlengths.

14

2.2 Residue Arithmetic Implementations

Like distributed arithmetic implementations, residue arithmetic implementations of-

ten use ROM components as look-up tables. A principal advantage of residue arith-

metic implementations is the reduction of the carry path length in the ripple adder.

Reducing the carry path length increases the maximum possible operation speed of

the adder.

In a ripple full adder the carry of the addition of the two LSBs is added to the

addition of the second most LSBs. The carry from this operation is passed on to

the addition of the third most LSBs. In this way, the carry propagates from LSB to

MSB.

In residue arithmetic the full data word is divided into several smaller words. The

smaller words are coded such that an addition operation requires no carry between

the coded words, although carry operations occur within the addition of words. In

this manner the length of the carry path is reduced to allow higher computation

speed at the cost of more complex hardware.

2.2.1 The Basics of Residue Arithmetic

The residue of an integer Ic modulo R1 is defined as the remainder when Ic is divided

by R2. The residue is denoted as k1 = (k)R., [6]. For example, the residue of 15

modulo 7 is 1 and the residue of 22 modulo 5 is 2.

The following residue properties exist for integers n and k [6]:

(nk)R. = (cnR, (k)R.)R

=

= ((m)Rk)R1

15

(n+k)R =

=

= + (2.10)

Using these properties, it is possible to multiply and add integer values represented

as residues and obtain a result in residue form.

If R1, 112,. .. , RP are defined as relatively prime integers (integers that share no

common factors except 1) then any integer k in the interval 0 to R - 1, where

R = R1112 . . . RP, can be uniquely represented by the residues [6],

((k) R1 ,(k)R2 , ... ,(k)R) = (k1,k2,...,kp) (2.11)

For example, consider the case for R1 = 3 and R2 = 5. In such a case, the

integers from 0 to

11-1=111112-1=3 x5-1=14 (2.12)

are uniquely represented. In Table 2.3 the unique residue pair for the integers

Ic E [0,14] are shown.

The representation of the integer Ic in terms of its residues,

(k1k2 ... kp) , (2.13)

is closed under multiplication and addition operations, which means that all residue

addition and multiplication operations on the ring [0,11 - 1] will result in values also

found on the ring [0,11 - 1].

By using the unique coding of an integer in residues, addition and multiplication

operations can be performed on the residue of the integer using the multiplication

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

012012012012012
012340123401234

Table 2.3: Unique residue pairs for k when R = 3 and 112 = 5.

16

and addition properties of residues. The result of such operations, or sequences of

operations, is a residue which must be converted to a natural integer. This can be

accomplished using the Chinese Remainder Theorem [6]:

k k1 (M1') M1) , (2.14)

where M2 = R/R1 and (Mr1)R is the multiplicative inverse of M:

\ = fm: ((n)R m)R = 1,0 m < R}
IR (.

(2.15)

For example, the multiplicative inverse of 3 modulo 5 is 2 because

((3) 5 x 2)5 = (6)5 = 1 . (2.16)

2.2.2 Filter Construction Using Residue Arithmetic

The use of residue arithmetic provides a means to divide the computation within a

digital filter into multiple parallel paths. By dividing the computation into indepen-

dent parallel paths, the maximum carry path length within the filter is reduced which

allows computation at higher speeds. A similar increase in computation speed can

be obtained using look ahead carry for adding operations, but residue arithmetic

also allows increased speed in multiplication without great increases in hardware

requirements.

To illustrate the construction of a residue arithmetic system, consider an example

using the difference equation,

y = aou(n) + aiu(n - 1) , (2.17)

where the ai are constant multiplier coefficients and u(n) is a variable integer input

at discrete time n. If we choose the moduli set {R1, R2, R3} = {17, 19, 31} we can

form a ring from 0 to R1R2R3 - 1 = 10013. This ring can represent slightly more

17

values than 13 bits of data. To allow the representation of negative values for u the

residue operator, (•) R.' is redefined as [7],

1
(k)R. = { (k) i k e [o, R-1 -i i-

R-1
- (lC)R k€

(2.18)

The new residue operator allows 12 bits of data plus one sign bit. The multiplication

coefficients are chosen arbitrarily for the example as

a0 = 127 (2.19)

a1 = —201 (2.20)

and are converted into the residue representation,

= ((127) 17 , (127) 9, (127)3)

= (8,13,3)

= ((-201)171 (-201)j9, (-201) 3k)

= (3,8,16)

(2.21)

(2.22)

Using a hardware encoder the input signal u is converted into the residue represen-

tation,

(u(n)) = ((u(n)) 7 , (u(n))19 , (u(n))) (2.23)

(u(n - 1)) = ((u(n - 1))17 , (u(n - 1)) , (u(n - 1)) 3) (2.24)

Once the signals have been encoded into their respective residue representations

(composed of three separate residues), each internal residue representation can be

used in multiplication and addition operations without reference to any other residue

representation. In general, Equation 2.17 becomes

= (((ao)Rj (u (n))R.)R + ((al)R. (u(n - 1))fl.)R) (2.25)

18

and for this example,

= (((ao)17 (u(n))17) 17 + ((ai) 17 (u(n - 1))17)17)
17

= (((ao)19 (u(n))19) + ((ai) 19 (u(n - 1))19) 19)19

= (((ao)31 (u(n))31)31 + ((a1)31 (u(n - 1))31)31) 31

Since the residues of a0 and a1 have been precalculated,

(2.26)

(2.27)

(2.28)

(y(n)) 17 = ((8 (u(n))17)17 + (3 (u(n - 1))17)17) 17 (2.29)

(y(n)) 19 = ((13 (u(n.))19)19 + (8 (u(n - ')) 19)19)19 (2.30)

(y(n)) 31 = ((3 (u(n))31) 31 + (16 (u(n - ')) 31)31) • (2.31)

The combination of the three equations operate on the unified ring from to

.1, and each individual equation operates on an individual ring

r R-1 R•-1
L 2 ' 2

For this example the rings are:

(2.32)

= [-8,8] (2.33)

= [-9,9] (2.34)

= [-15,15] (2.35)

Using residue arithmetic the computation of the difference equation, Equation 2.17,

is split into three independent parallel paths shown in Figure 2.2 where T's rep-

resent delay elements. None of the three rings requires information from either

of the other rings to compute its residue representation of the final value. It is

only the final value that needs to be converted from its residue representation,

((y(n)) 17 , (y(n)) 19 , (y(n)) 31), to an integer, y(n), and this is accomplished using

an implementation of the Chinese Remainder Theorem.

19

u (n)

Encoder

al

T

a(

z
5

a' a

 —'-5

a

CRT

t 12

y(n)

5

Figure 2.2: Block diagram of a residue arithmetic implementation.

The Chinese Remainder Theorem can be implemented as a hardware look-up

table, or as a combination logic decoding device. As an alternative to these two

implementations, one can take advantage of the sum of products operation involved

in the Chinese Remainder Theorem (Equation 2.14) and implement it in a distributed

arithmetic approach [7].

2.2.3 ROM Implementation Using Residue Arithmetic

In residue arithmetic implementations, the internal computations, such as addition

and multiplication, are not costly in full ROM implementations. In this example,

20

when each multiplier is implemented as a ROM look-up table, a single ROM look-up

table requires five input bits and five output bits for a total of 5 x 2 = 160 bits per

multiplier. The adder look-up tables are more costly than multiplier look-up tables.

In this example, each ROM implementation of an adder look-up table requires ten

input bits and five output bits, so the entire table requires 5 x 210 = 5 120 bits.

The implementation of the difference equation (Figure 2.2) requires six multipliers

and three adders, so the internal calculations in the difference requires a total of

6 x 106 bits + 3 x 5 120 bits = 16 320 bits.

The memory required for internal computations is very small compared to the

memory required for the conversion to and from the residue representation. The en-

coder of the system is a 13 bit input ROM with a 15 bit word (15 x 213 = 122880 bits).

The decoder (a look-up table implementing the Chinese Remainder Theorem) is a

15 bit input ROM with a 13 bit word (13 x 215 = 425 984 bits). The total ROM

required for implementing the difference equation is

122 880 + 425 984 + 16 320 = 565 184 bits. (2.36)

This is the memory required for an implementation of a first order difference equation.

If higher order equations are to be implemented many more internal computational

components would be required which would increase the memory demands.

2.3 Conclusions on Look-up Table Implementations

It is the fundamental difference in the cost of components between ROM digital filter

implementations and conventional digital filter implementations that necessitates a

different approach to design for full ROM implementations. Conventional approaches

concentrate on reducing hardware requirements or increasing the speed of multipliers.

In ROM implementations, the hardware cost of implementing an adder is much

21

greater than the cost of a multiplier because adders require twice as many inputs as

multipliers.

The distributed arithmetic and residue arithmetic structures explained in this

chapter present the current use of ROM components in digital filters. In both ap-

proaches, part of the digital filter is encoded as a look-up table in ROM. A logical

extrapolation is to encode the entire digital filter in a ROM look-up table. This

approach will be examined in the next chapter.

Chapter 3

ROM Reduction by Elimination of Unreachable

States

In chapter 1, the memory required to construct a digital filter in a block ROM state

machine format was shown to be prohibitive. The construction of ROM based digital

filters requires some method of reducing the required memory. One such method is

to take advantage of the ROM look-up table's ability to rapidly compute complex

calculations. All calculations are performed prior to the ROM implementation, so the

look-up table can perform calculations as complex as desired with no speed penalty

during operation.

When a filter is constructed as a block ROM state machine (Figure 1.1) the inputs

to the ROM are separated into the states of the filter (x1, x2, xs ...) and the input

(u), but this is not required. The states can be combined into a super-state which

represents the total present state of the filter, while the input (u) and output (y)

remain coded as independent integers to maintain compatibility with the analog-to-

digital and digital-to-analog converters.

The super-state is constructed by concatenating all the states together to form

a single input word. In this manner, the bit patterns for each state are grouped

together and ordered for ease of understanding, but this need not be the case. If

the bit orders of the states are scrambled the ROM could still be programmed to

function as a filter and the scrambled ROM filter's behaviour would be identical to

the unscrambled block ROM implementation.

A ROM look-up table is programmed for input/output relationships. Very com-

plex, or very simple input/output relationships require the same amount of memory,

22

23

so the ability to scramble the super-state allows the designer gieat freedom in the

state space representation. The super-states could be placed unevenly throughout

the state space of the filter to allow more accurate computation at desired points,

.but more importantly super-states can be eliminated to reduce the memory required

for implementation.

A super-state representation records the present state of the filter. For any

bounded input sequence some super-states will never be attainable and the union of

these super-states is called the unreachable set [14]. The unreachable set is specific

to the particular filter implementation and bound of the inputs.

An unreachable set implies the existence of a reachable set which is the set sub-

traction of the unreachable set from the state space. The reachable set must be

coded into the ROM look-up table representation of the state space to allow the

filter to function correctly, but the unreachable set has no impact on the filter's

behaviour, since, under normal operating conditions, none of these super-states are

ever encountered.

There is no necessity that the state variables in a block ROM implementation be

isolated from each other. The states may be combined in a super-state which repre-

sents the current state of the filter. If the unreachable set is defined and eliminated

from the state space, fewer super-states will be required to represent all the possible

filter states. When the number of super-states is reduced, the size of the memory

required to implement the filter's look-up table is reduced.

This chapter examines the memory reductions for block ROM filter implemen-

tations by eliminating the unreachable set. The results of filter simulations are

provided and the memory requirement for a filter as a function of the filter order is

determined.

24

3.1 Determining the Reachable Set

An Nth order digital filter constructed with separate adder and multiplier compo-

nents will have a state space which is an N-dimensional box, called a hyperbox. Each

state variable (xi) in the super-state vector

2;2

x= S3 (3.1)

XN

defines an axis in state space from +Ai to —As, where 2Ai is the dynamic range

of the state variable x. Each axis is at right angles to all others, so an Nth order

filter (possessing N states) will define an N-dimensional hyperbox containing all

possible super-state vectors, x. This N-dimensional hyperbox can be divided into

two disjoint sets: the reachable set and the unreachable set. The reachable set is

the union of all super-state vectors that can be arrived at from a restricted class of

inputs, such as bounded energy or bounded amplitude inputs. The unreachable set

is the set subtraction of the reachable set from the set of all possible vector states,

and it is composed of the union of all super-state vectors that can not be arrived at

using the restricted class of inputs.

A linear digital filter has a set of reachable state vectors which depend on the

structure of the filter, and this reachable set has been determined for both bounded

energy inputs [14],

IIu(k)II2 13>0 U 2 (k — j)]

and for bounded amplitude inputs [14],

I
2

(3.2)

Iu(k)I ≤ 1 . (33)

25

To determine the reachable set, it is necessary to provide some basic equations

for a state space description of a filter. The state space equations for a linear discrete

time filter are defined as [6]:

- XN(k) -

x(k + 1) = Ax(k)+bu(lc)

y(k) = cTx(k_1)+du(k)

where

(3.4)

(3.5)

(3.6)

A = N x N state matrix

b = N dimensional column vector

c = N dimensional column vector

d = scalar

u(k) = scalar input at time interval k

X(k) = N dimensional column super-state vector at time interval k

y(n) = scalar output at time interval k

The next super-state of the system x(k) can be found using knowledge of the

previous inputs. Assuming the initial state is x(k - 1) and the previous input is

u(k - 1) then the next super-state x(k) is

x(k) = Ax(k - 1) + bu(k - 1) • (3.7)

The super-state x(k + 1) can be computed with knowledge of the present input u(k)

and the present super-state x(k),

x(k +1)=Ax(k)--bu(k)

26

By substituting Equation 3.7 into Equation 3.5, the super-state x(k + 1) can be

computed from the prior inputs (u(k - 1) and u(k)) and the initial super-state,

(x(k-1))

x(k + 1) = A [Ax(k - 1) + bu(k - 1)] + bu(k) (3.8)

If the system begins in an initial rest super-state (x = 0) an arbitrary super-state

x(k) can be computed using the previous inputs to the system,

x(k) = bu(k - 1) + Abu(k - 2) + A2bu(k - 3) + A3bu(k - 4)... (3.9)

which can be written as

x(k) = [b,Ab,A2b,A3b,. •.]

u(k-1)

u(k —2)

u(k —3)

u(k —4)

= Fu (3.10)

where F is the controllability matrix [13] and u is the input vector.

The covariance matrix (K) of the state is an N x N matrix and can be written

as

K = [b,Ab,A2b,...}

b

(Ab)T

(A2b)T
(3.11)

Although K can be computed iteratively using Equation 3.11, K may also be deter-

mined using the set of N linear equations [14],

K = AKA + b T b (3.12)

where K is an N x N matrix.

27

3.1.1 Reachable Set for Inputs with Bounded Energy

For bounded energy inputs the reachable set is easy to calculate [14]. A bounded

energy input u will have an energy defined by the L2 norm,

1
2

IIuII2= u2(k—j)
j>o

(3.13)

Using Equation 3.10, the specific input vector u required to reach a super-state

vector x is

(3.14)

For all input sequences that reach the super-state x, the input u will require

the minimum amount of energy. The energy (IIxII) required for an arbitrary input

sequence u is

IxII = uTu

xTK_hiFTK_lx

xTK_1KK_lx

= x TK_lx . (3.15)

Vector u requires the minimum energy to reach super-state x because if another

vector u could reach x (x = Fu) in the same amount of time as u then

u = u, + (u u) (3.16)

In energy terms

IIuII = IIUr+U—UzII

28

IIuII = IfuI + tlu - uII + u(u - u) + (u - U.

but since

and, for similar reasons,

Equation 3.17 becomes

= xTK_l(u - u)

= xTK_l(u -

= xTK_l(x - x)

=0

(u - u)Tu = 0

IIuIl = IIuzII + un - uII

If this equation is rewritten as

it is clear that

since

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

This establishes that u requires the minimum amount of energy to reach x. All

other inputs u that can reach x will require more energy,

IIuII = IIU2II + Ilu - uxII ≥ IIuxII (3.24)

The knowledge of the minimum energy required to reach any super-state x is used

to determine which states can be reached by an energy bounded input,

IIuII ≥ IIuII = XT (3.25)

29

or rearranged,

xTK_lx ≤ IIuII (3.26)

Only if the minimum energy required to reach a super-state x is less than, or equal

to, the maximum energy of the input JJU112 2 will that state be reachable.

3.1.2 Reachable Set for Bounded Amplitude Inputs

The reachable set for a bounded amplitude input is more difficult to calculate [14].

Suppose IIu(k)tl ≤ 1 for all k (the condition for a bounded input). Using Equa-

tion 3.10, for any possible input Ci

x=:Fü (3.27)

By introducing an arbitrary row vector p (representing an arbitrary direction in

N-dimensional space),

00 px = P .iu IIpDi=IpAkB I
kO

The bound is obtained by setting

u(k - j) = sign [pA 1B]

The set of all vectors x satisfying the inequality

(3.28)

(3.29)

px < JIpJifi (3.30)

is a region of space bounded by the plane

px=IIp.1IIi (3.31)

There will be one such space for each vector p. The reachable set is the intersection

of all these spaces and this calculation is very computationally intensive because the

calculation requires the computation of an infinite number of infinite sums.

30

The reachable set for bounded amplitude inputs is difficult to calculate, while

the reachable set for bounded energy inputs is much easier to calculate. Roberts and

Mullis [14] demonstrate that the shape of the reachable sets are similar and that the

bounded amplitude input reachable set can be approximated by scaling the bounded

energy input reachable set. To illustrate the similarity of the two reachable sets a

direct form filter is examined in the following section.

3.1.3 A Direct Form Filter Example

Reachable Set for Bounded Amplitude Inputs

For bounded energy inputs, the reachable set is an N-dimensional ellipse, also called

a hyperellipse. The hyperellipse must be contained by the hyperbox defined by the

dynamic range of the inputs, which for N = 2 (a 2-dimensional case) is an ellipse in

a box.

Consider the Z-domain transfer function of the direct form filter

H(z) =
- 2r cos(çb)z + r2

If the poles are located at r = 0.98, = 450 ,

H(z) =
z2

- 2r cos(q)z1 + r2

z2
Z2 + mlz + m2 (3.33)

(3.32)

where ml = —1.96 cos(45°) and m2 = 0.9604.

For a direct form realization the state matrix description is

A

B =

xn =

—ml —m2

1 0

1

0

Ax.. 1+Bu

(3.34)

(3.35)

(3.36)

31

For such a configuration the covariance matrix K can be found using Equation 3.12,

K = AKA T+bbT

_bbT = AKA - K

1 0 —m2 Ic11 k12 —ml —m2 k11 Ic12
- [10j= -

0 1 —ml k21 k22 1 0 - k21 Ic22

(3.37)

Since both ml and m2 are known values, four linear equations with four unknown

variables are produced

—1

0

0

0

—1 + (nil)2 ml . m2 nil . m2 (m2)2 k11

—ml —1 —m2 0 Ic12

—ml —rn2 —1 0 Ic21

1 0 0 —1 Ic22

which can be solved to determine the covariance matrix

Ic12 1 1 25.7521 18.2058 1
=1

k22 I I 18.2058 25.7521

Using Equation 3.26 the reachable set for bounded energy inputs is

xTK_lx

-1

25.7521 18.2058
[x1 x2]

18.2058 25.7521 X2 I

(3.38)

(3.39)

0.0776x - 0.1098x1x2 + 0.0776x (3.40)

The boundary of the reachable set defined by Equation 3.40 is shown in Figure 3.1.

The interior of the ellipse represents all reachable states for the direct form filter

represented by Equation 3.33. When the reachable set is enclosed in the minimum

size box containing all possible super-state vectors the reachable set accounts for

approximately 32% of the possible super-states defined by the box.

32

6.00

4.00

p2.00

• 0.00

-2.00

-4.00

-6.00
-6.00 -4.00 -2.00 0.00 2.00

State Variable Xl
4.00 6.00

Figure 3.1: The direct form digital filter reachable set for lIuII ≤ 1.

Reachable Set for Bounded Amplitude Inputs

An approximation to the bounded amplitude set can be determined using the state

equation presented in Equation 3.36,

x = Ax,,-1 + Bu

The state equation is applied to the bounded amplitude reachable set bound defined

by Equation 3.31,

producing

00
Px=

px=IIp.FIIi
00

px=>lpA'BI
k=O

k

—ml —m2 1
P

1 0 0

(3.41)

(3.42)

Equation 3.42 defines a set of lines which separate the state space into two disjoint

sets. The boundary line belongs to the set containing the origin and this set is a

33

super set of the reachable set. The intersection of all the super sets produced by all

possible vectors p is the reachable set.

The direct computation of the exact reachable set is not possible. There are

an infinite number of arbitrary row vectors p and each half-space bound defined

by Equation 3.42 requires the computation of an infinite sum. The reachable set

(shown in Figure 3.2) is approximated by using 784 row vectors equally distributed

in direction and truncating the infinite sum to 301 terms.

40.0

20.0

0.0

"'-20.0

-40.0

-40.0 -20.0 0.0 20.0
State Variable x

40.0

Figure 3.2: Bounded amplitude reachable set for the direct form filter.

When Figure 3.1 and Figure 3.2 are compared, the similarity in shape of the

two reachable sets allow the approximation of the bounded amplitude set (which is

difficult to calculate) using the bounded energy set (which is easier to calculate).

To perform the approximation the bounded energy ellipse is scaled so that it en-

closes the entire bounded amplitude set. In this approach only the general form of

the bounded amplitude set need be calculated. Detailed calculations, which would

involve thousands of steps, need not be performed.

34

The potential for reducing the state space via the elimination of unreachable

states has been demonstrated. In the next section the savings as a function of the

filter order will be examined.

3.2 The Relationship Between the Fraction of Space Used

and the Filter Order.

To evaluate the advantage offered by the reduced state space representation the space

savings must be calculated. The space saving is a function of the filter order and

the filter implementation. In this section, the maximum space used by an N`-order

filter is determined.

It was shown in the previous section that the shape of the reachable set can be

approximated by a hyperellipse. The best space filling hyperellipse for a hyperbox is

one aligned with the axis [14]. Using this knowledge the maximum percent of used

space in an N-dimensional filter can be easily calculated for any order, N.

The generalized N-dimensional volume is called content, and the content of a

hyperellipse is [5]

Vhyperetlipse =
N(N)

2r1r2•• .rN 7r2N
(3.43)

where N is the dimension of the hyperellipse, ri is a semi-axis of the ellipse in

direction i and r(.) is the Gamma function [1]:

Z

r(z) = lim n!
n-Iooz(z+1) ... (z+n)

The content of an N-dimensional hyperbox is

Vhyperbox = a1a2

where ai is the length of one side of the hyperbox.

(3.44)

(3.45)

35

The fraction of space used by a hyperellipse in a hyperbox is equal to the fraction

of super-states which will lie within the reachable set. The fraction of space used by

the hyperellipse in a hyperbox decreases as the order of the space increases,

Vjsed =
Vhypereilipae

Vhyperboc

2r1r2 rN7r2"t/NF(N)

a1a2 aN
(3.46)

When the hyperellipse enclosed within the hyperbox is a maximum area the diameter

of the hyperellipse in direction i must be equal to the length of the side of the

hyperbox in direction i. In other words ai = 2r, so

Vused =
2r1r2 rN 1r2N/Nr(N)

2r12r2 2rp..r

2N/Nr(N)

- 2N
IN

72

= Nr(N)2(N-1)
(3.47)

Figure 3.3 shows that as the order of the filter increases the faction of state space

used decreases. By 5' order only 16.4% of the available super-states are reachable,

and by 7th order only 3.70% of the defined super-states are reachable.

This analysis is only valid for aligned hyperellipses in hyperboxes. An arbitrary

filter structure will possess a reachable set that is a hyperellipse, but that hyperellipse

may not be aligned with the axis of the hyperbox (as the example in Section 3.1.3

demonstrated). The above analysis is the best case, and most filters will have larger

unreachable super-state sets. Thus the exact fraction of possible super-state vectors

that are reachable depends on the filter structure.

3.3 Reducing the Unreachable Set

The previous section demonstrated that large amounts of available state space is

unused (the unreachable super-state set). If the reachable super-state set is small

36

1.00

0.90

0.80 -

10
0.70 -

0.60 -

00 0.40

0.30 -

0.20 -

0.10 -

0.00
0 2 4 6 8 10

Filter Order

Figure 3.3: Maximum fraction of space used as a function of order for elliptical
reachable sets.

then the number of input bits to the filter required to represent the states can be

reduced. The number of bits that can be removed for a specific fraction of used state

space is

bremoved =

where Lxi is the floor function of x:

—1log(V,)

[log (2) (3.48)

Lxi =max{iEI:i<x} (3.49)

Removing these bits will remove a large section of the unused state space and still

maintain the same accuracy internal to the filter. The number of bits removed

(bremoved) is the total number of bits removed from the representation of the super-

state. For instance, if the filter is originally designed with b bit wordlengths for all

states in an N° order filter the total number of bits required to represent the super-

state is Nb. When the unused portion of the state space is eliminated by bit removal,

the new number of bits required to represent the super-state is Nb - bremoved, so the

37

bit reduction per state variable would be (Nb - bremoved)/N. The value of individual

state variables is no longer directly accessible, but each reachable super-state of the

filter is coded uniquely.

The remaining unused state space can be taken advantage of by remapping the

super-state transitions in the filter. By representing only the reachable set, a larger

number of super-states within the reachable set are created, which increases the

internal accuracy of the filter. An alternative approach is to use the excess super-

states to increase the bound of the input.

In a second order system, an elliptical reachable set with axes which are aligned

with the axes of the state space hyperbox has a reachable set composed of 78.5%

of the total state space. The unused state space (21.5%) is insufficient to reduce

the super-state representation by an integer number of bits. The super-states in the

unreachable set will be wasted unless the state space is mapped such that the entire

represented state space lies within the reachable set. If the wordlength of the two

state variables in the second order system is b the total number of representable

vectors in the state space is 22b• If all 22) vectors are used to describe super-states

within the reachable set (leaving none to represent super-states outside the reachable

set) the internal resolution of the filter will be improved because all the available

vectors are used to represent a smaller state space: the reachable set.

Alternatively, the unused super-states can be used to increase the amplitude

bound of the input. Rather than mapping all super-states into the reachable set, the

reachable set is expanded until the reachable set requires all available super-states.

Both approaches require a remapping of the super-state variables, but the expansion

of the reachable set leaves the distance between states equal to the distance prior to

remapping. The new filter retains the accuracy of the original filter, but an input of

larger amplitude may be accommodated since the reachable set has been expanded.

38

3.4 Simulation and Analysis

To test the remapping concept, a second order direct form digital filter has been sim-

ulated. The filter in this example is the same filter used in Section 3.1.3. Assuming

a constant wordlength b for the input, output and all state variables a total of 3b

input lines and 3b output lines to the ROM are required.

The filter's reachable set is not aligned with the axis of the hyperbox, so the

reachable set will be less than the maximum reachable set of 78.5%. The unreachable

set was determined to be 69% of the total state space. Since only 31% of the state

space is used by the filter,

I —llog(0.31) I
bremoved = L log(2) (3.50)

so one input bit can be removed from the representation of the state variables. This

leaves b lines into the ROM representing the quantized input, and 2b - 1 lines into

(and out of) the ROM to represent the filter state. The output requires b lines

to maintain a standard binary coded decimal representation of the output to allow

easy interfacing with a digital-to-analog converter. In total, the ROM look-up table

requires 3b - 1 addressing lines (inputs) and 3b - 1 data lines (outputs).

After bit reduction, 1 - 0.31/0.50 = 38% of the remaining state space is unused.

The vectors representing the super-states in this unreachable space are remapped

into the reachable set increasing the internal resolution of the filter. Each square

quantization interval in the 2-dimensional state space is reduced by 38%. The higher

internal resolution allows a closer approximation of the ideal output. Alternatively,

the system can allow larger input/output signals by maintaining the same super-state

density and increasing the area of the reachable set.

In the conventional filter, a state variable has a dynamic range from —A to A.

In this simulation A = 10 and the dynamic range of the filter variables is [- 10, 10].

39

The quantization interval of the input, and output is

2A
(3.51)

.(where b is the wordlength), while the quantization interval internal to the remapped

filter is

2Ai
qinternai = VVused

For the direct form example:

2A 2x10 20
q= Tb = 2b b

qintcrnal = /Vused = 2 x2b .62 = 15.748 2b

(3.52)

(3.53)

(3.54)

The tested system, simulated in software, is shown as a block diagram in Fig-

ure 3.4. The input u is the quantized input sequence b bits wide. The output y is the

quantized output sequence, also b bits wide. The super-state is coded into 2b - 1 bits

and is fed back into the ROM through a parallel unit sample delay. The dashed box

in the diagram represents the ROM block and inside the ROM block is an equivalent

diagram of the ROM programming.

The super-state is decoded into the state variables x1 and x2. In combination with

the input, the state variables are fed into the digital filter's algorithm to update the

r

ROM

State
Decoder

Digital Filter
State update

table

X;

State
Encoder

Figure 3.4: Block diagram of the reduced full ROM implementation.

40

state variables and output. The updated state variables x and a4 are then encoded

into a 2b - 1 bit super-state. The input and output are not encoded to allow direct

connection with standard analog-to-digital and digital-to-analog converters.

- The error in the system's output as a fraction of the error in an unmodified digital

filter with identical wordlength is shown as a function of wordlength in Figure 3.5.

Both systems are stimulated with a Kronecker delta input and their responses are

compared with an ideal response (calculated with double precision floating point

accuracy). The maximum error encounter in each system for each wordlength is

recorded as the ratio,

maximum reduced filter error

maximum direct form error
(3.55)

Fractions above 1.0 indicate a higher error in the reduced full ROM implementation

than in the standard direct form implementation, while fractions lower than 1.0

indicate a lower error.

For small wordlengths (b ≤ 3) the two systems have identical maximum errors

because the systems have too few states to take advantage of any mapping. For larger

wordlengths (b ≥ 4), the full ROM implementation consistently displays a smaller

error. It should be noted that, although, the reduced full ROM implementation seems

to have a smaller error, the maximum possible error in the output for both systems is

identical because both systems quantize the output in identical manners. The lower

error rate of the reduced full ROM implementation reflects slower accumulation of

errors from internal calculations. Internal calculations are more accurate because

the quantization interval is 38% smaller.

The same error comparison can be done for the fast Fourier transform (FFT)

of the impulse response (Figure 3.6). The maximum error between the ROM im-

plementation FFT and the ideal FFT vs. the maximum error between the standard

implementation FFT and the ideal FFT is graphed as a ratio. Again ratios above

41

1.00

0.80

0

• 0.60
I-.

1 0.40

0.20

0.00
0 5 10 15 20 25 30 35 40 45 50

Wordlength

Figure 3.5: The ratio of maximum error between the ROM filter and the direct form
filter as a function of wordlength, b.

1.00

0.80

0

0.60
94

0.40

0.20

0.00
0 5 10 15 20 25 30 35 40 45 50

Wordlength

Figure 3.6: Maximum error in the FFT of the output as a function of wordlength, b.

42

1.0 indicate the maximum error is greater in the ROM based system, while ratios

below 1.0 indicate the maximum error is lower in the ROM based system. The graph

indicates that the FFT obtained from the ROM based filter has a lower error with

respect to the ideal FFT than the standard implementation. The lower error in the

ROM based filter are due to a. slower accumulation of errors during operation.

3.5 Conclusions

Reducing the number of input bits to the ROM reduces the memory requirements.

Every bit removed from the super-state representation will reduce the ROM size by

50%. Unfortunately, as the filter order increases, the amount of unused state space

increases much more slowly than the memory requirements. The unreachable super-

state set increases with each additional state variable and each state variable will add

b bits to the input of the ROM. The addition of several state variables may allow the

decrease in the new ROM size by one bit. The technique slows the increase in ROM

memory requirements as the filter order increases, but the memory requirements still

grow exponentially.

The restriction to representing only the reachable super-state set may be useful

for implementations other than ROM, but the computations are difficult because the

next state is no longer a linear function of the present state. The high computational

power of the ROM enables such complex calculations to be done easily.

This method is a trade-off between memory size and computational complexity.

A full ROM implementation requires a great deal of memory, while allowing very

complex computations. By taking advantage of this inherent feature, the memory

required is reduced and/or the accuracy can be improved.

43

The restriction of states to only the reachable set reduces the memory required,

but does not allow construction of filters because the memory requirements are still

very large.

Chapter 4

Filtering of Delta Modulated Signals

In the previous chapter, the memory requirement for ROM based digital filter im-

plementations was reduced by eliminating the unreachable super-states from the

represented state space. An alternative approach is to reduce the dynamic range

of the states to reduce the wordlength of the states. Reductions in wordlength will

reduce the memory requirements of the block ROM implementation.

The wordlength of the filter states can be reduced by using delta modulation and

sigma-delta modulation. In this chapter, both methods will be explained in detail to

provide appropriate background information for the next chapter in which a filtering

system based on difference signals is introduced.

Delta modulation and sigma-delta modulation can potentially reduce the system

wordlength to one bit. If reduced word length signals can be filtered, substantial

reductions in memory requirements for ROM based filters are possible since the

wide parallel state inputs to the ROM components are avoided.

Filtering delta modulated signals has been neglected as a method of signal pro-

cessing due to its late development compared to pulse code modulated systems [10].

In spite of its slow start, several methods of filtering delta modulated signals have

been developed [8, 9, 11, 19, 20, 21] and these approaches will be examined in this

chapter. In addition to the filtering of delta modulated signals, attempts have been

made to digitally filter sigma-delta modulated signals [18], and this approach will

also be examined.

44

45

4.1 Delta Modulation

Delta modulation is an efficient means of encoding analog signals as narrow word-

length digital signals. In delta modulation, an analog signal is encoded as a binary

pulse stream based on the change in the amplitude of the analog input signal, rather

than the amplitude of the signal. The input signal is encoded by a modulator which

quantizes the difference between the present input signal and the reconstructed input

signal as a +6 or a —5, where 8 is the quantization step interval. Since only two

values are required, both can be transmitted on a binary transmission line using is

and Os, with is representing +8 and Os representing — 8. At the recovery end, the

signal is reconstructed using a demodulator, which is an integrator. The combination

of the delta modulator and the integrator provide an inexpensive method of analog

to digital and digital to analog conversion.

4.2 The Basics of Delta Modulation Systems

A delta modulation system can be divided into two distinct components: a modulator

and a demodulator. The modulator (Figure 4.1) compares the input signal to a

reconstruction of the input signal and transmits the error, which is quantized to +6

or —6. The value of S depends on the minimum step size allowable, which can be

found for bandwidth limited input signals.

The minimum step size allowable is the maximum possible change, max in am-

plitude of the input signal. The input signal that changes most rapidly is the highest

frequency component of the input signal. Let the highest frequency be designated

as fmax. The highest frequency signal can be represented as

X - ASlfl(211fmart) , (4.1)

where A is the amplitude of the input signal and t is time.

46

Analog
Input

Lowpass
filter

0

-v

Analog
output

Quantizer

INTd

Lowpass
filter

Sampler

Integrator

 TNT

Integrator

Binary
pulses

Figure 4.1: A basic delta modulation system.

The change in the signal x as a function of time is

dx
= A2irfma cos(2irfma t)

,Binary
pulses

(4.2)

The maximum slope of the input signal is A2irfmax SjflCC cos(2irfmax) will only

vary between —1 and + 1. The maximum change in the input signal during one

sample period T3 is

Amax = max [A2irfmax COS(27fmaxt)Ts]

- max [A2irfmaxTs] max [cos(2irfmaxt)]

A2irfma T8

- A2irfma

f3
(4.3)

where the sampling rate f = -. Equation 4.3 implies that for a bandwidth limited Ta

signal there will be a maximum step size for a given sample rate. If the quantization

step size 5 is larger than the maximum change, in the input signal then the

input signal can be encoded using the delta modulator.

Once the signal is encoded it can be transmitted as a binary signal. When the

binary signal is received the analog signal must be reconstructed via a demodulator.

47

In delta modulation, the demodulator is an integrator. The integration of the error

signal will reconstruct the input signal. Reconstruction depends on knowledge of the

initial conditions. If the system begins in an unknown state, the output may contain

a dc error. When both the encoder and decoder begin in a known identical state the

dc error is avoided. Provided S ≥ / ma, the error in the quantized signal will always

be less than or equal to S.

To convert the digital signal to an analog signal a digital to analog (D/A) con-

verter is used. After the digital signal is converted to a quantized signal, via the

D/A converter, a unity gain, low pass filter is used to smooth the quantized signal

into an analog signal.

In the following sections, filtering methods for delta modulation signals are ex-

plained. Early attempts with hybrid analog-digital techniques are presented because

the inexpensive advantages of analog-to-digital and digital-to-analog conversion are

demonstrated. Subsequent techniques use all digital filtering methods with both

binary and ternary delta modulation encoding systems.

4.3 Delta Modulation Filtering using Analog-digital Hy-

brid Techniques

Lockhart used a hybrid of analog and digital techniques to process delta modulation

signals [10] . Although this technique is not fully digital, it provides insight into the

development of delta modulation signal processing, and emphasizes the economy of

analog-to-digital and digital-to-analog conversion in delta modulation systems.

The arithmetic operations on the signal are performed in the continuous domain,

while the signal is coded at the input in the digital domain.

48

4.3.1 Non-Recursive Filtering

By using the binary transversal filter [11], a non-recursive filter structure for delta

modulation can be constructed (Figure 4.2). The binary transversal filter is a hybrid

-of digital and analog technology. The time delays (T) in the filter are achieved using

digital flip-flops, while the multiplication and summation operations are achieved in

analog technology. The resistors determine the multiplication constants or weights

hr. The weighted delays are summed, and integrated (using operational amplifier

circuits) to produce the output signal.

By using M resistors and neglecting overload and quantization noise effects, the

integrated output is
r=O

y(nT) = E hrX[(fl - r)T] (4.4)
M-1

In the transfer function of z-domain Equation 4.4 is

r=O

H(z) =
M-1

(4.5)

These are standard equations for finite impulse response (FIR) filters and the mul-

tiplication coefficients hr can be determined by standard methods for FIR filters

[11].

Analog

Input Dlvi
x(nT)

Delta-
modulator

T seconds Delay

* 12

Shift register

INT

Analog
output

Integrator

Figure 4.2: Non-recursive delta modulation filter [10]

y(nT)

49

4.3.2 Recursive Filtering

Recursive filtering is accomplished by adding a feedback loop to the filter (Figure 4.3).

The recursive delta modulation filter implements transfer function poles in addition

to zeros in the transfer function. For the same selectivity as a non-recursive filter, a

recursive filter requires a lower order.

A difficulty with such a recursive structure is that feedback of the weighted signal

tends to overload the delta modulator. When the change in the modulator input

signal (produced by the subtraction of the feedback signal from the filter input

signal) exceeds the maximum allowable change 5, the delta modulator will be unable

to represent the signal. To avoid the overloading tendency, only small weighting

coefficients can be used and this restricts the range of realizable filters.

The W coefficients form low-pass filter structures, whose outputs are the inputs

to the main recursive filter structure through b. The lowpass filter must be designed

with a gain of less than one, to avoid affecting the overall transfer function of the

recursive filter. If such filters are used, the coefficients (b1, b2,...) can be specified

by conventional recursive design methods [6].

4.3.3 The Possibility for ROM Implementation

In hybrid analog-digital circuits, the disadvantages of both the analog and the digital

components must be examined. The resistors (used for weighting the digitally time

delayed signals) will be affected by temperature and thermal noise. Over time, the

resistance may change causing the filter response to change. An all digital imple-

mentation has an advantage over an all analog or an analog-digital technique since

the components are very temperature insensitive, and aging has no effect.

As the analog components change over time, the circuit may slowly alter until the

specifications originally stated no longer apply. By contrast, the digital components

50

Analog Digital
output output

Integrator

Figure 4.3: Recursive delta modulation filter [10].

fail in a catastrophic manner. If one of the flip-flops (used as time-delay elements for

the delta modulated signal) fails the transfer function of the filter will be radically

changed. In addition to these disadvantages of the hybrid filter, the structure imposes

limitations on the coefficient weights. Only structures with small valued recursive

coefficients can be constructed to avoid overloading the input delta modulator. The

limits imposed on the coefficient values limits the possible filter transfer functions.

This early attempt at delta modulation filtering has no possibility of integration

into ROM since it relies on analog components. The resistors in the delta modulation

filter dictate the values of the multipliers. The resistors determine the gain of each

time delayed signal in a summing amplifier which converts the digital signal into a

continuous signal. The continuous signal is integrated to produce the output analog

51

waveform.

Since the output of the system is a. continuous time signal, a digital-analog con-

verter is not required if an analog signal is desired. This can be a great advantage

in filter designs, but if the desired output is a delta modulated signal a second delta

modulator would be required to convert the output of the filter to the digital form.

The inherent conversion of the resultant signal to analog is useful in applications

where digital-to-analog conversion is necessary, because delta modulation provides

an inexpensive conversion to digital form. Then the digital operations and filtering

required can occur before conversion to analog form is accomplished. The resulting

signal is analog and requires no additional processing.

4.4 Digital Filtering of Delta Modulated Signals

A full digital implementation of a filter for delta modulated signals was achieved by

Kouvaras [8]. Using simple digital logic components, he created a delta-adder as a

basic building component. The delta adder enabled the creation of a multiplier and

finally a limited range of digital filters for delta modulated signals.

4.4.1 The Delta Adder

Delta modulated signals are composed of — is and + is, representing - and +8

respectively. When two such signals are summed the result is not representable as

a delta modulated signal. Consider two delta modulated signals x1 and x2. Any

addition of the two signals will always produce an unrepresentable number:

52

zr1 + x2 =

-1+-1= -2

-1+1=0

1+4=0

1+1=2

The resulting signal x3 is composed of three states, none of which may be represented

by the states used in x1 and x2. Kouvaras solved this problem by creating a delta

adder whose output is the sum of the two inputs divided by two:

X1 + x2

2

This allows the addition of two identical inputs to be expressed without error,

—1+—i -

2

1+ 1 =1,
2

but an addition that sums to zero,

—1+1 -

2
0,

-

(4.6)

(4.7)

(4.8)

(4.9)

will introduce an error. Only —1 and 1 may be used to represent the result of the

addition, so a sum of 0 must be approximated with either a 1 or a —1 which represents

a significant error. If such an approximation occurred and the delta modulated signal

was reconstructed the entire signal after the error point would have an offset error of

5. If several errors occurred, the reconstructed signal could have large offsets errors.

To avoid such errors a carry is introduced and the adder is implemented according

to,

S. =

C. = xnYncni

Cn_i = +1 or — 1

53

where n = .. . , —1,0,1,... ; S is an approximation to the half sum and C, is

the carry. In such an adder, an error is compensated for at the following interval

by storing the error in the carry and including the carry in the following addition

operation. The entire input-output relationship is summarized in Table 4.1.

By introducing the carry, the error at the output of the adder is greater than the

error in the input delta modulated signal, but the possibility of an accumulation of

long term errors is eliminated. Such a system allows the error in the output of the

delta adder (6S) to be [8],

€Y + €X
ES 2

E{-5,0,+ö}

(4.13)

(4.14)

where 8 is the step quantization interval and ej is the error during the quantization

of input signal i, and ço is an error introduced by the carry. By using rounding, the

error will always be less than 28 [8].

4.4.2 Delta Multiplier

Since the delta adder incorporates a multiplication by two components, the adder

may be used as a building block to construct a multiplier, provided the multiplier

coefficient is between 0 and 1. Any multiplier coefficient between 0 and 1 can be

thought of as the summation of the signal multiplied by various 2_t terms. For

Xn Y. Cn_i S. C.

11 1 1 1

Table 4.1: All possible inputs with outputs to the delta adder.

54

example, if the coefficient is m = °. lOiib (in binary) or 0.6875 (decimal), then

the multiplication can be accomplished by successive add-divide-by-two operations.

Consider X to be an arbitrary delta modulated signal. The multiplication of X by

m is accomplished by

X x m = Xx0.6875

= X X O.iO'ib

2 23 24

(2 + 23 + T4-

2 (X 22 23

2 (2 (2 22

I (X + (0 + I (X + (X + 0))))

=

=

=

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

The zero signal is approximated using an alternating signal called an idling sequence,

(4.22)

Using the idling sequence, Equation 4.21 becomes

g >< m = (x + (i + (x + (X + I)))) . (4.23)

Equation 4.23 demonstrates how the multiplication of a delta modulated sequence

X by the coefficient m can be implemented as a sequence of half additions. By using

this scheme, a delta multiplier can be constructed from delta adders (Figure 4.4).

The derived circuit can be used for multiplications by positive coefficients only,

but a negative multiplication can be accomplished by first multiplying the signal

by a positive coefficient then inverting the signal via a logical inverting gate. Delta

modulated signals are composed of is and Os which represent is and — is. Since the

two states of a delta modulated signal (1,0) are the logical inverses of each other

55

0 1 1

xn

Figure 4.4: Multiplier for a O•1011b coefficient constructed from delta adders

and the two represented states (1, — 1) are negatives of each other, logical inversion

of the signal is equivalent to a negation.

An interesting consequence of the construction of the multiplier using successive

half additions is the construction of a multiplier tree (Figure 4.5). In this struc-

ture, all possible multiplications (of a specific multiplier coefficient word length) are

represented. Various multiplication coefficients may be chosen (or changed) by mul-

tiplexing the output of the tree. The error at the output of any branch of the tree

of multipliers is always less than three times the error of the input signal [8].

-Io-i.

- .100

D—.-.100

n

+

• x I - +

.110

-.110

p

— .111

D— -.111

n IN

 I-

.010

In— p.

0—'- .011

.101

0—'- .101

.001

D—'--.00l

Figure 4.5: Delta adders used to create a tree of multiplication constants

56

4.4.3 Hardware implementation

The delta multiplier is based on a system of multiple delta adder components, so only

the delta adder needs to be constructed. By converting Table 4.1 to a binary logic

representation, where a 0 represents a —1 and a 1 represents a 1, the logic circuit

required to construct the system can be developed. The binary logic input/output

relationship is shown in Table 4.2. If this input/output relationship is compared

with the input/output relationship of a bit-serial full adder the similarity becomes

apparent. The delta sum (Sn) is the carry of a bit-serial adder, while the delta carry

(Cn) is the sum of a bit-serial adder.

X Yn Cn_i Delta sum,

S.

Delta carry,

an
Bit serial

sum
Bit serial

carry
00
10
01
11
00
10
01
1 1

0
0
0
0
1
1
1
1

0
0
0
1
0
1
1
1

0
1
1
0
1
0
0
1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Table 4.2: Delta adder input/output relations rewritten to show correspondence with
a bit-serial adder

4.4.4 Filtering Delta modulated Signals

By using the delta adder as a basic component, Kouvaras constructed several digital

filters for delta modulated signals [8]. This method has one major drawback: true

addition is not possible. Only the add-divide-by-two function is possible, so only

filters that allow a multiplier to be encapsulated into the adder can be constructed.

For instance, the equation

y = 0.25x1 + 0.5x2 (4.24)

57

could be implemented as

= O.5(O.5x1 + x2) (4.25)

because the divide-by-two nature of the delta adder allows construction of nested

Additions. On the other hand, an equation such as

y = O.5x1 + x2 (4.26)

can not be implemented since the delta adder does not allow true additions.

Finite impulse response (FIR) filters can be constructed easily from the delta

adder and delta multiplier components. The divide-by-two property of the delta

adder can be compensated for by modifying the multiplication coefficients in the

filter. The maximum length of the cascade of two input adders needed to add all

the outputs of an FIR filter is (N - 1)/2, where N is the order of the filter. Since

each addition divides the input by two, the additions can be compensated for by

multiplying the input to the adder sections by 2(1)/2 in odd order filters. In even

order filters one tap must be multiplied by 2(1)2, while all others are multiplied by

22 . For some filters the additional multiplication can be assimilated by increasing

the value of the multiplier coefficient. Unfortunately, the delta multiplier can be

used only with coefficients less than unity, so the number of possible filter transfer

functions is restricted.

Recursive filters can also be built with delta adders and delta multipliers, but

the filter coefficients are restricted due to the add-divide-by-two nature of the delta

adder. Any addition operation within a filter must include a divide-by-two operation.

Thus the maximum coefficient within any addition loop within a filter is 21, and

the more addition operations that occur within a filter loop the lower the maximum

coefficient. The inherent divide-by-two nature of the delta adder can be compensated

for by increasing the multiplier coefficient within a filter loop, but since all coefficients

must be less than unity the number of possible transfer functions is restricted.

58

4.4.5 Delta doubler

To alleviate the difficulties incurred by the divide-by-two nature of the delta adder,

Kouvaras presented the delta doubler [9]. Essentially, it is a circuit to multiply a

-delta modulated signal by two. Using the doubler in series with an adder allows

true addition at the cost of higher errors. The doubler increases the quantization

noise to twice the input quantization noise at low frequencies, and three times the

input quantization noise at high frequencies [9]. By using a more complex version

of the delta doubler, the quantization noise can be reduced to a 50% increase over

the input noise. By using the delta doubler, the class of realizable digital filters for

delta modulated signals is extended to include recursive filters.

4.4.6 Method Problems

Kouvaras's approach to digital filtering of delta modulated signals has two draw-

backs. The first is the limited number range of filters that can be constructed using

the delta adder and delta multiplier. This restriction is lifted by introducing the

delta doubler, but the doubler increases the quantization error in the filter. A true

delta adder constructed from a delta adder and a delta doubler will have errors in

the range of four to six times the error in the input (or three times when using the

more complex, modified delta doubler).

Kouvaras suggests that by decreasing the quantization interval the error can

be reduced to a reasonable level. To decrease the quantization interval in a delta

modulated system the sample frequency must be increased. The increase in the

sample frequency is limited by the components used, and any increase in the sample

frequency will effect the required accuracy of the digital filter.

59

4.4.7 ROM Implementation

The construction of delta modulation filters with delta adders and delta multipliers

requires only one component: the delta adder. The delta multiplier is constructed

from multiple delta adders.

A hardware implementation of a delta adder is straightforward. The delta adder

requires a small block of combinational logic or ROM for its computations. This

block has three inputs and two outputs requiring 2 x 2 = 16 bits for a look-up table

implementation.

When constructing a delta modulated filter using delta adders, many small ROM

components will be required rather than a few large ROM blocks. The delta adders,

which compose all the arithmetic parts of the system, require many small ROM

blocks which would be difficult to construct. Multipliers require many delta adder

blocks so the entire system is constructed from many small ROM blocks.

ROM components are not well organized as small memory blocks. Memories are

available as large blocks and an implementation using ROM components should use

large blocks of memory rather than small blocks.

4.5 Filtering Ternary Delta Modulation

In delta modulation, only two states are used to represent the change of the input.

This is convenient for a minimal, binary representation, but there is no necessity to

encode a signal as only two values. A second possible difference coding technique,

based on ternary signals has been presented [19, 20, 21]. Instead of encoding the

error signal as a sequence of +5 and —5 signals, the error signal is encoded as +5,

0, or —5. Following a similar path to the development of the delta adder, a ternary

adder has been constructed allowing implementations of a limited class of digital

filters [19].

60

4.5.1 Basic Ternary Delta Modulation

The ternary delta modulation system is very similar to the previously presented

delta modulation method. The major difference between these two techniques is the

choice of quantization scheme. In ternary delta modulation the quantizer is a three

state device as opposed to the two state device used in delta modulation. The overall

ternary delta modulation scheme is shown in Figure 4.6.

The quantization scheme quantizes the error signal to three states: +6, 0, or

—6, which are represented by +1, 0, or — 1, respectively. The addition of a zero

representation in the quantizer reduces the overall error in the represented signal by

50% over binary delta modulation quantization. The higher signal to noise ratio is

desirable, but the ternary signals can no longer be processed using the delta adder

presented earlier.

Arithmetic operations on ternary signals require the introduction of a new set of

components. In an approach similar to the delta adder method, a ternary adder has

been created [19]. Multiple ternary adders are combined to form ternary multipliers,

which are used in combination with ternary adders to create a limited class of digital

filters. The digital filters require ternary delta modulated inputs and produce ternary

Analog
input

Integrator

Analog
output

Lowpass
filter

TNT
Integrator

Binary
pulses

Figure 4.6: The basic ternary delta modulation system

Binary
pulses

61

delta modulated outputs.

4.5.2 Ternary adder

Unlike in delta modulation, the sum of two ternary delta modulation signals (X

and Y) will not always add to an unrepresentable number. Table 4.3 shows that the

sum,

Sn=xn+Yn (4.27)

possesses only two unrepresentable values: —2 and 2.

If an output carry term is added to allow accurate representations of the sum,

a carry must be added as an input term of the system. Again this would leave. two

unrepresentable states: —3 and 3. To eliminate the difficulty in these representations,

Zrili[19] proposed an adding component called the ternary adder.

The ternary adder is not a true addition operation, but an addition with a divide

by 3 in series. The output of the adder (S and C) as a function of the input Z, is

found in Table 4.4, where Z,- represents the true sum plus carry,

ZnXn+Yn+Cni (4.28)

The ternary adder allows all possible inputs to be represented, although some output

states must be approximated over several iterations.

X. Y. S
-1 -1 -2
-1 0 -1
-1 +1 0
0 -1 -1
00 0
0+1+1

+1 -1 0
+1 0 +1
+1+1+2

Table 4.3: Input/output relations for the addition of ternary signals

62

Z, 3 2 1 0 -1 -2 -3
S, +1 +1 0 0 0 -1 -1
C, 0 -1 +1 0 -1 +1 0

Table 4.4: Zn as a function of sum, S,,., and carry, C.

The values for the carry, C, and the one-third sum, S,, are calculated from the

equations:

C. (Z - 9Z)(3Z —8) =
40

Zn — cn
Sn =

S. = [Xn+Yn(CnCn_i)]

= +1, 0 o — 1

(4.29)

(4.30)

(4.31)

(4.32)

where n = .. ., —3, —2, — 1,0, 1,2,3,... Using this approach, the error in the ternary

adder was shown to be less than 16 where 6 is the quantization interval of the

ternary encoder [19].

4.5.3 Ternary Multiplier

The ternary multiplier is constructed in much the same manner as the delta multi-

plier explained earlier. Since the ternary adder is an addition and divide-by-three

operation, successive ternary additions of the signal with zero or itself will perform

multiplications for coefficients between 0 and 1. For example, to multiply an arbi-

trary ternary signal X by a multiplication coefficient m = 0.12346,

X x m = X x 0.12346 (4.33)

/1 1\
= X 3 2 + (4.34)

= 4+ 4 (4.35)

= .(o+x+x) (4.36)

= (o+ (x + x)) (4.37)

63

1/ 1
= o+(x+(o+x)))

1/ 1

= • (_3(+ X))))

(4.38)

(4.39)

.By using Equation 4.39, and the ternary adder previously explained, a ternary mul-

tiplier with a coefficient of m can be constructed (Figure 4.7). Negative coefficients

are implemented by using positive multipliers followed by ternary inversion, where

the —1 state becomes 1, the 1 state becomes —1 and the zero state is unchanged

by inversion. The error in the ternary multiplier is less than 25, where S is the

quantization interval [19].

4.5.4 Ternary Delta modulation Filters

By using the ternary delta adder and the ternary multiplier (constructed from

adders), a limited class of filters is realizable [19]. Realizable filter structures must

allow all addition operations to incorporate a multiplication by 1 and the multiplica-

tion coefficients are restricted to values between —0.5 and 0.5. Since the multiplier

coefficients in ternary filters are restricted to a narrower range of values, the num-

ber of possible realizable ternary delta modulation filter structures is less than the

number of realizable delta modulation filter structures. This disadvantage is com-

pensated for by lower errors in the ternary system since ternary delta modulation,

has a 50% lower quantization than standard delta modulation.

+

3
+

3

-0-

3 3

Figure 4.7: A ternary multiplier with a coefficient of 0.12346.

64

4.5.5 Ternary Delta Tripler

The restrictions on the number of realizable filter structures is lifted by introduc-

ing a ternary delta tripler, which triples the input signal [20]. By using a ternary

tripler in series with a ternary adder, true addition becomes possible, at the cost of

increased errors. Multiplication by coefficients above 0.5 become possible as well by

a combination of ternary multipliers, ternary adders, and ternary delta triplers.

The tripler introduces a larger error in the addition operation when it is cascaded

with a ternary adder [20]. The increased error can be reduced by increasing the

sampling frequency and reducing the step quantization interval.

4.5.6 Hardware

The ternary delta adder is constructed using three-state logic on custom integrated

circuit chips [19]. The approach allows maximum use of the available routing, since

only one multilevel data line is required for data transmission. Such an approach is

reasonable for large production runs, but for smaller production runs it is prohibitive.

The use of multivalue logic (three states in this case) prevents the use of standard

logic design tools. A new set of logic blocks, encompassing the three state nature of

the system, must be designed from analog components, which increases the cost of

a filter construction using ternary logic.

4.5.7 Method Problems

The greatest drawback of the ternary delta modulation system is the fabrication of

custom IC chips for the ternary logic. An alternative implementation is to use a

two bit parallel word in the designed system. This would allow the representation of

three states, yet allow implementation using standard logic devices. In this scheme,

one bit in four (25%) of the states in the system are unused, although this may be

tolerated since a two bit wordlength is considerably easier to route on a chip than a

65

12 or 15 bit parallel word.

In either method of fabrication, the range of filters that can be implemented

is limited. The 0.5 maximum coefficient on a multiplier is a very harsh restriction,

especially when the multiplier is expected to compensate for the divide by 3 operation

of the adder. The ternary delta tripler alleviates the problem, but increases the error.

Direct conversion to ROM based systems is awkward since the method is based on

the assumption of many small units, rather than on large state-machine blocks more

suited to the ROM available today.

4.6 Filtering of Sigma-Delta Modulated Signals

An alternative structure to delta modulation is sigma-delta modulation. Sigma-

delta modulation is a difference encoding method similar to delta modulation, but

the integrator (decoder) is placed prior to the difference modulator. This allows

sigma-delta modulation to be more robust against channel or coding errors than is

delta modulation [18].

4.6.1 The Basics of Sigma-Delta Modulation

The delta-sigma modulator (Figure 4.8) consists of a delta modulator preceded by an

integrator. The delta modulator encodes the integrated input signal. The quantizer

within the delta modulator differs from previous quantizers in that it quantizes to

the full dynamic range instead of a small quantization step.

Let A represent the maximum absolute dynamic range, so the full dynamic range

is between —A and A. To avoid distortions in encoding the input signal, designated

as x(t), the input must always lie within the dynamic range,

- A ≥ x(t) ≥ A . (4.40)

66

Malog__.
Input h.

Lowpass
filter

INT

Integrator

Analog 4
output

0

-A

Quantizer

IIT

,\ T
 Binary

pulses

Sampler

Integrator

Lowpass
filter

Binary
pulses

Figure 4.8: Basic sigma-delta modulation system.

In a sigma-delta system the quantizer will quantize the input to either A or —A

which can be encoded using one bit.

To convert the delta-sigma signal to a multilevel signal a decoder is required,

which is a sharp cut-off lowpass filter. The lowpass filter averages the delta-sigma

signal (made up of A and —A impulses) and produces a multilevel output signal.

This multilevel signal can then be converted to analog if required.

The overall transfer function of the system remains unity because only the order

of the components has been changed from the delta modulation system. In a linear

system, the transfer function is independent of the order of operations, assuming the

final averaging filter has a passband gain of unity.

4.6.2 Filtering Sigma-Delta Modulated Signals

Filtering sigma-delta modulation encoded signals has been accomplished in a fully

digital FIR implementation [18]. The FIR filter (Figure 4.9) is a direct implemen-

tation of the convolution of the desired impulse response of the filter and the input.

The input signal x(t) is sampled at R times the Nyquist rate and the oversampled

signal is encoded as a sigma-delta sequence v,. The impulse response of the Kt

67

Figure 4.9: A sigma-delta modulation FIR filter.

order filter,

an = a0, a1,.. . aK_a, aK..4

is up-sampled by R and encoded in a sigma-delta sequence

Vn = Vcj, V1,. . . VRK_1

(4.41)

(4.42)

The sequence Vn is undefined before the filter begins operation, and this leads to

unknown initial conditions within the filter. It is assumed that the filter begins in a

zero state, but any initial state may be chosen. Non-zero initial conditions will lead

to a transitory error during the first RK - 1 values, but the initial condition would

not effect long term behaviour [18].

The convolution of the input signal u, and the impulse response of the filter v

is
RK-1

wn = (4.43)

and this multibit signal is the output of the filter. After low-pass filtering the result-

ing analog signal represents the filtered input signal.

Since both ui and vi are binary signals (composed of is and Os) so that their

68

multiplication can be carried out by a simple logic circuit. This leads to considerable

reduction in the complexity of the circuit design. Although the multipliers required

are considerably simplified the adder has increased in complexity. The adder is

implemented as a full parallel addition of KR - 1 one bit words.

4.6.3 Problems in the Sigma-Delta Approach

The filter requires very high order to function with reasonable accuracy. Since the

implementation is restricted to FIR filters, the filter order is higher than would

be required for an recursive implementation. This high order impulse response is

upsampled by R times to produce KR - 1 coefficients which necessitate a KR - 1

input adder to produce w.

The adder can be implemented as a multiplexed adder, or a counter (since all

inputs are binary), but for either case the adder must operate at higher speeds than

the sigma-delta filter. Since the filter is already oversampled by R, the adder must

operate at (KR - 1) R times the Nyquist rate to be implemented as a counter with

one input bit. The high operating speed of the adder reduces the maximum sample

rate of the sigma-delta filter to a value below the maximum sample rate of a similar

delta modulation filter.

4.6.4 ROM Implementation

The main difficulty in ROM based implementation is the large parallel adder in the

filter. All states must be added together at the output and this necessitates a very

large parallel adder. Reducing the ROM to a reasonable size by multiplexing the

adder will reduce the maximum Nyquist frequency of the input.

The difficulty in implementation is the assumption of inexpensive large adders.

In most technologies, the adder is an inexpensive (both in chip area and delay time)

component while the multiplier is expensive. In a ROM based implementation, which

69

focuses on state machine implementations, the adder haà double the number of inputs

required for a multiplier leading to a memory requirement which is the square of the

memory required for a ROM multiplier. In the delta-sigma filter, the adder at the

output of the filter has KR - 1 inputs and implementing this in ROM is difficult.

Since R is typically in the range of 64 to 1024 [18] a full parallel implementation for

64 input bits is impractical with present technology. A adder with 64 input lines

leads to a ROM requiring 264 = 1.844 x iO' bits of storage.

4.7 Conclusions

In the previous sections, three approaches to filtering reduced wordlength signals

have been examined. The examination demonstrates that both approaches are in-

appropriate for ROM based implementations. In the following chapter, the author

presents a filtering technique for reduced wordlength signals called difference signals.

Chapter 5

Filtering Difference Signals

In Chapter 1, the memory requirements for a block ROM implementation of a 5t1j or-

der, 12-bit wordlength filter structure was determined to be 0.34 tera-terabytes.

Chapter 2 explains the previous use of ROM components in digital filters. In chap-

ter 3, the memory requirements for a block ROM filter was reduced by encoding

only the reachable states of the filter. Although the state space of the filter can be

reduced to a fraction of its previous size, the memory requirements of the approach

are still too large to allow construction. In the previous chapter a second approach,

where the input, output and states are reduced in wordlength using delta modu-

lation, ternary delta modulation, or sigma delta modulation, was examined. The

chapter provides the background for the author's method which is explained in this

chapter.

5.1 Introduction

Chapters 2 and 3 outline ROM filter implementations based on single ROM blocks,

but when the implementation is partitioned into individual look-up tables for each

adder and multiplier, a 5' order lossless discrete integrator (LDI) structure (chosen

for its low sensitivity to coefficient wordlengths [3]) would require much less memory.

If one look-up table is implemented for each multiplier and adder in the 51h order

LDI structure with a 12-bit wordlength, the entire structure would require 2.77 x 108

bytes or 277 megabytes (Table 5.1). Although the memory required for such an

implementation is much smaller than a block ROM state machine implementation,

it is still very large and can be further reduced by combining multiplication blocks

70

71

Components Memory Required
in bits in bytes

ii adders
11 multipliers (including x - is)
total memory

2.21 x 109
5.41 x io
2.22 x 109

2.77 x 108

6.76 x iO
2.77 x 108

Table 5.1: Memory requirements for a 5th order LDI using look-up tables.

with the adder block.

When an adder block is realized as a ROM look-up table, it is realized as an

arbitrary dual input function: y = f(xi, x2). If all inputs and outputs have the

same dynamic range (—A to A) then the function f(xj, x2) is accurate provided

—A ≥ f(xi, x2) ≥ A. By using an arbitrary two input function, all the multipliers

can be combined with the adder components with no loss in accuracy. The combined

adder/multiplier function is a two input block representing

Y = f(xi, x2) = m1a1 + rn2x2 (5.1)

where mi are the arbitrary multiplier coefficients and rj are the input signals. By

using such a set of programmed two input blocks, the entire filter can be constructed.

The partitioning of the two input blocks for the 51h order LDI structure is shown in

Figure 5.1 where dashed lines designate each two input block (labeled A to L)

By Using 11 dual input blocks, the memory required for the 5' order LDI filter

is reduced by the amount of ROM required for the multipliers (5.41 x 101 bits).

x(nt)

Figure 5.1: A 5' order LDI structure composed of two input blocks.

72

The reduction is small compared to the overall memory requirements because the

multiplier components eliminated require very little space compared to the adder

components, which comprise greater than 99% of the memory requirements. The

small space requirements for multiplier components compared to adder components

illustrates a fundamental difference between a conventional implementation and full

RUM based implementations.

In conventional designs, the majority of resources are consumed by multipliers.

Multipliers require more chip area, more gates and are often the slowest components

in a filter design. Most techniques that use ROM based look-up tables to increase the

speed of the multiplier assume inexpensive adders (Chapter 2). When all components

are implemented with ROM look-up tables the assumption of inexpensive adders is

false. In full ROM look-up table implementations, the majority of the hardware is

consumed by adder components rather than multiplier components because adder

components require twice the number of inputs. The doubling of the number of

inputs causes an adder to require the square of the memory required for a multiplier

block of the same wordlength. This shifts the focus of design work from multiplier

components to adder components.

The shift in focus from multipliers to adders requires a novel design strategy.

In Chapter 3, the number of possible super-states that the machine may lie in is

reduced. This reduced the number of bits required to represent the super-state, and

thus reduced the memory requirements of a ROM based implementation of the filter.

An alternative approach is the reduction of the length of the word used to rep-

resent each of the individual states and input. This approach has the advantage

of reducing the memory requirements faster than the super-state reduction method

since more bits can be removed from the representation of the state.

In this chapter, the basic premise for state wordlength reduction by oversampling

73

and encoding the change in the input signal rather than the amplitude of the signal is

explained. Since arithmetic operations on the difference signal can not be performed

by existing components, novel difference multiplier and difference adder components

are defined. Finally a simulation of a 51h order LDI filter is presented.

5.2 Difference Signals

Highly oversampled, bandlimited signals have a high correlation between the present

sample value and the previous sample value. The difference between these two

samples decreases as the sample rate increases. The maximum change of an input

(with a maximum amplitude of the full dynamic range A and a frequency f) between

two samples (separated by 2's) was found in Equation 4.3 and is

2irAfma

fs
If the frequency of the input is set to the highest unaliased input frequency which is

half the Nyquist frequency,

Amax = 2irA fT3 =

f8 = 2Rfma3, , (5.2)

where R is the oversampling rate, Equation 4.3 can be rewritten as

A 2Airfma3j - Air
'-max - -

hJIJmac

The maximum change A max of the input is inversely related to the ratio of oversam-

pling R. Every doubling of the oversampling ratio R will halve the maximum change

in the signal tImax. By reducing the maximum change in the signal the required

dynamic range of the filter is reduced which reduces the the total number of levels

required to represent a quantized signal. When the number of levels is reduced to

half the original number of levels one bit can be removed from the binary word used

to represent the signal. In general the number of bits removed, /3, is

/3 = [log2 (R)] (5.4)

74

For a ROM access speed of 25 MHz (40 ns), telephone data (frna = 3000 Hz)

potentially can be reduced by 12 bits (Figure 5.2). Larger reductions are possible by

using faster ROM components.

A similar study of bit reduction for audio range data (fmax = 22 kHz) leads to

a maximum potential reduction of 8 bits (Figure 5.3), but larger bit reductions are

possible by using faster ROM components.

Both Figure 5.2 and Figure 5.3 demonstrate that by oversampling a bandlimited

input signal it is possible to significantly reduce the wordlength of the data. For

sufficiently small initial wordlengths, or sufficiently large oversampling rates, the

input can be reduced to two bits representing three states: +6, 0, .-6, where 6 is the

step quantization interval.

The similarity to delta modulation and especially to ternary delta modulation is

clear, but unlike either approach the maximum number of levels to which the input

will be quantized is not defined. The number of quantization levels depends on the

step quantization interval 6, the oversampling ratio B and the maximum change of

the input signal Lmax.

5.3 Signal Coding, Reconstruction and Filtering

In the previous section, the possibility of reducing the wordlength necessary to repre-

sent the input signal by encoding it as a difference signal was demonstrated. In this

section, the methods by which the difference signal is created and the output signal

is reconstructed are discussed. The error introduced by the encoding and decoding

of the signals is determined and the potential for filtering difference signals before

reconstruction is examined.

75

12.0

10.0

0

8.0

2.0

0.0
0

 40

5 10 15 20
Sampling Frequency (MHz)

25

Figure 5.2: Bit reduction by oversampling for telephone (3 kHz) bandwidth data.

Po
ss
ib
le
 B
it
 R
ed

uc
ti

on

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0
0

--

5 10 15 20
Sampling Frequency (MHz)

25

Figure 5.3: Bit reduction by oversampling for audio (22 kHz) bandwidth data.

76

5.3.1 Encoding of Difference Signals

The coding of the input signal into a difference signal is accomplished by a difference

encoder (Dencoder) or difference modulator (Figure 5.4). There are many similarities

-between this modulator and modulators used for delta modulation and ternary delta

modulation. In all three cases, the overall structure is similar, but the number of

quantization levels differs. In delta modulation, two quantization levels are required,

while in ternary delta modulation three quantization levels are needed. The Dencoder

has an arbitrary odd number of quantization levels L which depends on the maximum

change in the input and the quantization step interval such that

L=I2 1+1
where the ceiling operator on x is defined as

Fv1=min{iEI:i≥x} (5.6)

(5.5)

Since the maximum change in the input, Am, is dependent on the oversampling
ratio, R and on the maximum amplitude (or dynamic range) of the input A (Equa-

tion 5.3), Equation 5.5 becomes

L=121+1 . (5.7)

The step quantization interval 5 reflects the accuracy of the quantization of the

input signal. If the maximum dynamic range of the input signal A is assumed to be

constant, then increasing 5 will decrease the number of quantization levels required,

but the larger 5 becomes, the larger is the error in the quantization of the input.

Since the error in the quantization of the input is related to 5, 5 is effectively fixed

for any desired quantization error. Only the oversampling ratio R remains to adjust

the number of levels in the quantizer.

By increasing R the number of quantization levels L can be reduced without

influencing the accuracy of the quantization of the input. Of course R can only

77

Analog
input

Lowpass
filter

Binary
pulses

H T k

4

Sampler

A

- i .
S

+1

q
-q 0

e(t

Quantizer

Figure 5.4: Difference encoder (Dencoder) block diagram.

be increased to the limits of the implementing technology, so in the 25 MHz ROM

example used earlier,

Raudjo ≤ (25 MHz)/(2 x 22 kHz) = 568.2

for audio bandwidth data, while for telephone bandwidth data

Rtezephone ≤ (25 MHz)/(2 x 3 kHz) = 4 166.7

(5.8)

(5.9)

Using the Dencoder, the oversampled input signal is encoded as an L level signal.

These levels are encoded as binary words with a b bit word length, where

b= [log,(L) . (5.10)

It is this narrow binary word which is transmitted to the difference decoder (or

demodulator) which reconstructs the output signal.

5.3.2 Decoding of Difference Signals

The difference signal decoder (Ddecoder) used to reconstruct the output signal from

the difference signal created by the Dencoder is identical to the decoder used in both

delta modulation and ternary delta modulation, that is, it is an integrator. The input

78

sample is summed with the previous output sample and the binary representation

of the signal is then converted to an analog signal via a digital-to-analog (D/A)

converter and a lowpass filter. The D/A converter is effectively a multiplication by &

if the binary multilevel signal created by the Ddecoder is considered a signed integer.

The lowpass filter smooths the quantized output to produce the final analog signal.

In the discrete time domain, the integrator effectively places a pole at z = 1

canceling the zero at z = 1 produced by the encoder. The cancellation of the zero

by the pole implies a transfer function of unity for the overall system.

In the discrete time domain, the operation of the tencoder can be modeled as

i(n) = x(n) - x(n - 1) , (5.11)

where represents the quantized discrete time difference signal of the quantized input

x. The difference signal is quantized to L levels, but in this case L is assumed to

be an infinite number of levels, so the non-linear effect of the quantizer is effectively

ignored to allow a linear analysis.

The Ddecoder can be modeled as

y(n)=(n)+y(n-1) (5.12)

where y(n) represent the quantized discrete time output signal at discrete time n.

Using the Z-transform (Z[.]) of the discrete time domain equations, the corre-

sponding transfer functions are

HDencoder

HDdecoder

Hoverall = HDencoderHDdecoder = (i - z1) --

(5.13)

(5.14)

= 1 • (5.15)

This analysis is valid for discrete time signals where L -+ co which implies 6 -* 0. If

the quantization step & in not infinitely small the error at the output of the system

79

will not be infinitely small. The error is related to S and like the delta modulation

system explained in the previous chapter, an arbitrarily small error is possible by a

suitable choice of S.

5.3.3 Error in the Encoding/Decoding System

When the step quantization interval, 5, is greater than 0 the quantizer has an

associated error. This error can be modeled as noise. If the quantizer in Figure 5.4

is replaced by an adder with a noise input i, then using superposition and assuming

zero initial conditions, the output of the overall system is

Y = X+'I7 . (5.16)

This implies that the noise at the output of the system is dependent on the noise

introduced by the quantizer.

The quantization scheme Q[.] is the method by which the input is quantized into

the digital levels used internally by the system and it is this quantization scheme

that determines the range of q. The difference between any two adjacent levels in

the quantization scheme is the step quantization interval 5. The error quantization

interval q is the maximum difference between a quantized signal and its continuous

counterpart. The error interval q depends on S and the rounding scheme of Q[.].

If Q[.] uses truncation rounding, then q = 5. On the other hand, if Q[.] uses

magnitude rounding, q = 5. The noise in the quantizerq is restricted by q such

that JqJ ≤ q, so the output will be within one error quantization interval of the ideal

continuous output.

After the input signal is quantized it is converted to a difference signal (composed

of L levels) by the Dencoder. The error in the signal at the output is twice the error

of the input signal to the difference encoder. To demonstrate that this is so, assume

that an analog input signal is sampled to create a discrete time signal x(n). The

80

discrete time signal is quantized and can be represented as the discrete time signal

with discrete time noise,

x(n)+'q(n) . (5.17)

The signal is then converted to a difference signal using the Dencoder, giving

= (x(n) + (n)) - (x(n - 1) + i(n - 1)) (5.18)

= (x(n) - x(n - 1)) + ((n) - - 1)) (5.19)

= z(n) + i(n) (5.20)

The noisy difference signal is the sum of the difference signal of the input plus the

difference signal of the noise. For magnitude rounding the noise i(n) is restricted to

(5.21)

so the difference signal of the noise is restricted to

- 6 ≥ (n) ≤ 6 . (5.22)

The above analysis assumes zero initial conditions within the Dencoder. If the

Dencoder's previous input (the stored input) does not match the previous value of

the input, the Dencoder's output will be erroneous. The error will be corrected on

the next sample, but the error will cause a DC offset at the output of the Ddecoder.

The signal at the output of the Dencoder is applied to the input of the Ddecoder,

and the output of the Ddecoder is

y(n) = 2_1 [1_1Z['(n)]] (5.23)

= 2_i [1 2 [(n) + (n)]] (5.24)

11
= Z1 1 - (z [x(n)] (1— z1) +2 [(n)] (1— z 1))] (5.25)

= 2_i [2 [x(n)] +2 [ri(n)]] (5.26)

= x(n)+'q(n) (5.27)

81

The output of the Ddecoder is the sum of the noise and the input signal. The noise

here is restricted to

(5.28)

for magnitude rounding.

The noise analysis for the Ddecoder assumes that the Ddecoder begins operation

in a zero state. If the previous output (which is internally stored) is not correct a

DC offset error occurs. The error persists because the Ddecoder is a discrete time

integrator and has no method of correcting such an error.

5.3.4 Filtering Difference Signals

By using the Dencoder, a bandlimited input signal can be encoded as a difference

signal, and this difference signal need not be converted to analog to be filtered.

Consider an arbitrary bandlimited discrete time input x(n) and a filter transfer

function H(z).

Y(z) = H(z) X(z) , (5.29)

where Y(z) = Z [y(n)] and X(z) = Z [x(n)]. If the input X(z) is encoded, and then

decoded, it will still be equal to X(z),

Thus,

X(z) = HDdecoder(Z) HDencoder(Z) . X(z)

(l— z1) (l—z').X(z)

=X(z)

Y(z) = H(z) . X(z)

(5.30)

(5.31)

(5.32)

= H(z) . HDdecoder(Z) . HDencoder(Z) X(z) . (5.33)

82

In the frequency domain, multiplication is commutative, so Equation 5.33 can be

rearranged to

Y(z) = HDdecoder(Z) H(z) HDencoder(Z) X(Z) (5.34)

Equation 5.34 demonstrates that it is possible to encode the signal, filter the signal

while it is encoded and finally construct the output signal using the decoder. The

output signal will be the filtered input signal, except for quantization error.

5.4 Components

The construction of difference filters requires novel multiplier and adder components.

Components developed for amplitude signals are inappropriate for difference signal

operations because of the limited wordlength imposed by L levels. Both addition

and multiplication components have been developed for processing difference signals

and in this section the structure and error encountered in each of these components

are examined.

5.4.1 Adding Difference Signals

The addition of two difference signals poses several problems. Earlier efforts solved

the summing problem by avoiding true addition [8, 19, 21]. A multiplier from else-

where in the structure is assimilated into the adder to prevent additions summing

to values beyond the representable values. This approach allows a limited class of

digital filters to be constructed.

The difference adder or Dadder (Figure 5.5) presented here allows true addition of

difference signals. Two inputs and a carry produce an output sum and a carry. The

output carry is cycled back (through a unit delay) into the Dadder. The wordlength

of the inputs (b1 and b2) and the wordlength of the sum (bsum) tend to be identical

83

Input 1

Input 2 Sum

Figure 5.5: Block diagram of the difference adder (Dadder).

while the wordlength of the carry (be) depends on the quantization scheme and the

number of addition operations to be cascaded.

The Dadder is composed of a delay element (labeled T) and a single ROM block

(the dashed box in Figure 5.5) programmed to perform

where

O(ri + 1) = Q[C(m) + i(n) + X2(fl)} (5.35)

C(n + 1) = Q[C(n) + 51(n) + 2(n) - (n + 1)] , (5.36)

Q{•] is the quantization/saturation scheme of the inputs (and sum)

Q[] is the quantization/saturation scheme of the carry

i(n) is the input difference signal 1

2(n) is the input difference signal 2

C(n) is the carry

11(n) is the output difference signal representing the sum.

The quantization scheme of the output signal and the carry are represented separately

to allow separate quantization schemes.

The carry C is used to prevent the loss of the error in the computation of the

sum. At any time, the output is a quantized approximation to the sum, while the

carry is the error in the approximation. The carry is cycled back into the Dadder to

84

allow a second approximation on the next cycle. By constantly correcting for errors

in the sum of the signals, close approximations to the sum are created.

The carry is the error in the output when compared to the sum of the two input

signals. If the carry should overflow, or be saturated, the error will be passed on to

the output of the Dadder and will be unrecoverable. This error will appear at the

output of a Ddecoder as a DC offset. To prevent carry overflow, or saturation, the

maximum value of the carry must be calculated.

The maximum amplitude change representable is the maximum change L.ma3J of

the input signal x(t). Any two inputs xi(t) and x2(t) must, at most, have amplitude

changes summing to

i(t) + i2(t) (5.37)

where nj and ' 2 represent the time varying amplitude changes of inputs xi(t) and

x2(t), respectively. If the sum of the amplitude changes are greater than ' mac the

Dencoder will be unable to represent the signal.

The errors produced during the encoding of xi(t) and x2(t) into the difference

signals (t) and 2(t) are equally distributed in time. This means that any positive

amplitude change tc. is represented by a repeating pattern of two integers (k and 1)

scaled by the quantization step interval 6 such that

(5.38)

(5.39)

where ic represents the change in amplitude between samples. If the number of k

samples in the sequence is represented by NA; and the number of 1 samples in the

sequence is represented by N1 then for any positive amplitude change i,

K - kNk+IN,

Nk+Nj
(5.40)

85

By separating Equation 5.40 into two equations,

r. = kNk-I-1NI

5 = N+N,

the number of k and 1 integers in the sequence is found to be

(5.41)

(5.42)

Si - K

Nk = i — k (5.43)

K -N1 = 5k
i—k (5.44)

The number of consecutive k integers per 1 in a difference signal with a constant

amplitude change K is the ratio

If (for convenience) we assume

then

Since

Nk - Si - K

- K - 5k
(5.45)

5=1 (5.46)

Nk - i - K

N1 - K -- k

k= IK1

1 LICJ

the number of consecutive ks per i is

NkLK] — K
N1 K—fK]

(5.47)

(5.48)

(5.49)

(5.50)

If the maximum summing input to the Dadder is maintained over more than

one sample the carry will accumulate. The maximum sum can only be maintained

86

when both signals are at the k level, so the number of samples that the carry will

accumulate, called Na, is

Na = minI - K1 L' 2i - K2)

Ini - licil K2 1tC21
(5.51)

because this is the maximum number of consecutive, simultaneous, maximum sum-

mations that may occur for any constant amplitude change input.

The sum in the Dadder will be the maximum when the Dadder is stimulated with

two constant inputs, such that

Amax = n1(t) + n2(t) . (5.52)

By combining Equation 5.51 and Equation 5.52 the maximum number of carry ac-

cumulation samples is

Nh19h = mm
L1i] - Ki L'max - 'iJ - (maz - xi) I
'i - [nil , (max - ic1) - f mav - nil

(5.53)

The maximum number of carry accumulation samples is shown in Figure 5.6, which

assumes Amax to be 10. The choice of is arbitrary, so the maximum number

of carry accumulation samples Nh 9h will always be 1 for any set of input amplitude

changes that obey Equation 5.52.

The longest simultaneous consecutive carry accumulation sample points occur

when

I max maxAmax
Kx11Cz2 2 2 2

Under these conditions the two difference input signals are

xi = {..., k,l,lc,l,k,l,k }

= {..., k,l,k,l,k,l,k }

The carry will increment by 1 on every k sample since

(5.54)

(5.55)

(5.56)

k+k = 2k (5.57)

87

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 1

/ I
2 3 4 5 6 7 8

Slope of Input signal

/
9 10

Figure 5.6: Maximum number of consecutive carry accumulation samples.

= 2 ki (5.58)

(5.59)

(5.60)

Amax +1 , (5.61)

and the carry will decrement by 1 on every 1 sample since

(r%, 2+

= 2ic+1

I

1+1 = 21 (5.62)

= 2 ki (5.63)

= / 2 - 1\ (5.64)

= 2,c - 1 (5.65)

= Amax - 1 . (5.66)

Therefore, the maximum carry required in the Dadder is 1 level representing an

increment of S.

The derivation presented is valid for positive amplitude changes, but maximum

88

carry for negative amplitude changes can be found by similar means to be a -1 level. In

total, three states are required by the Dadder to store the carry: {- 1, 0, 1} which

represent {-6, 0, 6}.

Error in the Dadder

The error in the Dadder can be found for inputs quantized to any number of levels, L.

If the rounding scheme of the system is chosen such that the sum requires a maximum

of 3 levels for representation, the noise is introduced only by the quantization of the

inputs. The quantization noise is modeled as noise sources ql and 772. In such a case,

assuming the difference sum 9(n) is always representable, the output of the Dadder

is

9(n) = i(fl) + X̂2(n) + C(n)

where is the quantized difference signal x(n) and C is the carry which can take

values of —6,0,8. The quantization noise is modeled as noise sources in the inputs,

9(n) = xi(n) + 771(n) + x2(n) + 772(n) + C(n) -

This equation is regrouped to clearly show the summation of the signal and the error.

9(n) = Xi(fl) + X2(n)+771(n) + i12(n)+C(n) (5.67)

y(n) (n)

where C(n) can be 0, or ±6. The greatest possible error in such a configuration is the

sum of the maximum input errors and a possible carry error if the initial conditions

are in error,

6total = 61 + 62 + C(0) , (5.68)

where 6jotal is the error at the output of the Dadder, el is the error in the first input

signal, 62 is the error in the second input signal, C(0) is the initial carry. The max-

imum values of the noise sources depend on the quantization scheme implemented.

89

For truncation rounding the maximum errors are

1,f2=6

while for magnitude rounding the maximum errors are

(5.69)

(5.70)

An error in the initial carry will appear at the output as a DC offset. It will be a

constant error of either .5 or —S. If the Dadder is initialized with zero carry (C(0) = 0)

and the input signals have x(0) = 0 the absolute, total error will be

6 t0ta1 < ki + E21 (5.71)

It was mentioned earlier that the Dadder operates properly on input signals

provided the error in the input signals is well distributed in time. Unfortunately, the

output of the Dadder does not have this quality and this leads to larger errors in

systems involving consecutive additions. If the addition of two inputs with amplitude

changes of i = = is considered, the two input sequences generated for L = 3

are

= ... 1000100010001000...

...1000100010001000...

Using a Dadder these sequences will sum to

= ... 1100110011001100...

(5.72)

(5.73)

(5.74)

The new sequence 9 represents a amplitude change of ic' = , but the error in 9 is

twice that of either input or 2• If two such sequences are to be added together

the carry cannot be represented by a three states—five states would be required.

This error doubling (and carry increase) points to a serious limitation to the

application of the Dadder. Only if two inputs are to be added with no subsequent

90

adding can the Dadder be used with a single three state carry. In FIR structures

the error in the output increases for each Dadder in an addition sequence, but it is

possible to build FIR structures by increasing the carry of the later Dadders in the

.cascade.

In IIR structures the limitation is much more serious. The cycling of the filter

state signals means that at no time can the errors be assumed to be equally dis-

tributed in time and the Dadder could increase the error to an intolerable level. In

such a situation the carry required cannot be easily estimated.

Previous investigations avoid the escalating error by using add divide by in (where

M < 1) [8, 19, 21]. The division reduces the input to a representable level, and bounds

the maximum error. The maximum error in such systems is bounded because the

error is an infinite geometric sum of a fraction less than .

The same technique can be used in implementations with the Dadder. Assume

that the cascade of Dadders has inputs such that all inputs have a maximum error of

€input. If a multiplier with a coefficient m < 1 occurs immediately after every Dadder

in the cascade the error will be bounded for any length of cascade to

Dadder = + m + m + €jflput) m. . . + finput) m (5.75)

input (m + m2 + m3 + m' 1 + 2m')

where n is the length of the cascade. When m ≤ 0.5,

6Dadder ≤ 6iuput

and when m = 0.5,

6Dadder = 6pt

(5.76)

(5.77)

(5.78)

Dadder Simulation

The Dadder is simulated and tested with two random input waves. Two random

waves are generated such that the maximum change in the sum of the inputs is

91

always representable, that is, the sum of the amplitude changes is less than the

quantization step interval. Random wave inputs were chosen as test inputs because

all possible input sequences can be encountered. The longer the simulation is run

the more likely the greatest possible error will be encountered. For the simulations

shown, only 10 000 samples were used, but this still encounters errors very close to

the analytical maximum of twice the input error.

The output of the Dadder and the ideal response are both shown in Figure 5.7.

The Dadder system simulated uses three states (L = 3) with magnitude rounding

in the quantizers. The step quantization interval S = 0.01. The maximum integer

representable is 1 so all inputs and outputs are members of {-8, 0, +S}. The error

(Figure 5.8) at the demodulated output of the Dadder is always less than twice the

input error. Errors due to the carry are not encountered because both random input

waves begin at 0 and the carry is initialized to 0. If the carry is initialized to S or

—6 the error in the output is the random error encountered before plus the initial

error in the carry. The carry produces a DC offset error in the output.

5.4.2 Multiplying Difference Signals

In earlier work, multipliers were created from the cascade of add divide by m func-

tions [8, 19, 21]. An alternative to this approach is to construct the multipliers

directly from state-machines. The state-machine format leads to a simple ROM

implementation and in this section such a multiplier is examined.

Structure

Using a simple look-up table to produce a multiplier for difference signals would re-

suit in very large errors in the output due to the few states available to represent the

output at high oversampling rates. If the input and output are both represented by

three states (+ 1,0,—.1), then multiplication using a look-up table (other than mul-

92

0.12

0.10

0.08

0.06

.0.04 -,

;4 0.02

hoo
-0.02

-0.04

-0.06

-0.08

11

'Ideal'
'Dadder'

0 50 100 150 200 250 300 350 400 450 500
Sample

Figure 5.7: Ideal sum and Dadder sum output waveforms for the random input
sequence.

1.00

0.90

0.80 .70 0.60
80.40

0.30

0.20

' 0.10

0.00
0

p

50 100 150 200 250 300 350 400 450 500
Sample

Figure 5.8: Error between the output and the ideal response in the Dadder for

random waveform inputs.

93

T

tiplication by m = +1, m = 0 or m = —1) is unsatisfactory, because all multiplier

results must be rounded to one of the three available states. Rounding of the output

effectively rounds the multiplier coefficient to m = +1, m = 0, or rn = —1. Using a

carry to quantize the error to a smaller quantization interval than the signal quan-

tization interval reduces the error internal to the multiplier and a more accurate

multiplication results. A difference multiplier (Dmult) is shown in block diagram

form in Figure 5.9. The dashed box represents the programmed ROM block.

The Dmult can be modeled as

9(n) = Q[m(n) + C(n)} (5.79)

C(n + 1) = Qc[m(n) + C(n) - 9(n)] , (5.80)

where Q[•] is the quantization scheme of the carry, m is the multiplication constant,

C is the carry of the multiplier, (n) is the input difference signal and 9(n) is the

output difference signal.

The quantization scheme of the carry Q[] is determined by Q[.] and the multi-

plier coefficient. The higher the accuracy (i.e., longer the wordlength) of the multi-

plication coefficient the larger the carry required.

Dmult tn

y

Figure 5.9: Block diagram of the difference multiplier (Dmult).

94

The Dmult Coefficient and the Carry Quantization Scheme

This discussion is restricted to Dmults with absolute coefficients less than 1. Ab-

solute coefficients greater than 1 are possible but require output wordlengths larger

than the input wordlength and a non-constant wordlength creates difficulties when

implementing hR structures. Coefficients greater than 1 can be constructed using

combinations of Dmults and Dadders.

The signal input to the Dmult is assumed to be quantized to the same scheme

as the output. N designates the integer (or encoded) quantized value of the input.

Just as the input signal x(n) has a dynamic range of —A to A the coded quantized

value N will have a coded dynamic range between — Nmax to +Nmaz, Where Nmav is

the maximum coded integer. The maximum coded integer is

Nmax - L-1 (5.81)

where L is the number of levels in the quantizer. The Dmult coefficient, rn, will reduce

the coded output dynamic range to +mNmax to —mNma . The final output of the

Dmult will be within this new quantized range Q[mNmaz] ≥ ≥ Q[—mN,,].

For a small Nmax the error, Q[mN] - inN, will accumulate in the decoder and

cause large errors in the output. By storing the error in a carry and accumulating

the error until it may be represented at the output, the error can be reduced. To

avoid DC errors, the the carry must not overflow and the carry must have sufficient

states to allow all possible errors to be represented.

One method is to allow the carry to represent a decimal number system. The

smallest increment in the carry is equal to the smallest representation in the Dmult

coefficient. For instance, if the Dmult coefficient is accurate to 1 x 1O, then 1 x 1O

is the smallest increment the carry need represent, called

If rounding is used in the quantization scheme the carry need not represent a

full quantization step (represented by an integer 1), it need only represent the steps

95

between - and . Representations between —1 and 1 are required for truncation

rounding. In this analysis, only rounding quantization will be considered.

All possible carries C exist in a finite set

CE

CE

11 1
{,+Csiep,+2Csicp ...

- 0, Csjep. . . - C2 2 step,

1 Catep (- + flCatep U)
n=O

(5.82)

For any Dmult coefficient m defined in base 10 where I ml 1, Csgepcan be found

from

= (5.83)

where D is the number of decimal places in the coefficient. This creates a truncated

decimal system where the smallest required interval is represented.

For some coefficients such system leads to wasted states. For example, a coeffi-

cient of 0.5 will require

Cstep = 10_i = .1

leading to the states

(5.84)

-0-5,-0.4,-0.3,... - 0.1,0,0.1.. .. 0.3,0.4,0.5 (5.85)

or eleven states in total. Since all additions and subtractions of integers multiplied

by 0.5 will always lead to multiples of 0.5, the quantizer need only store 0.5, 0, —0.5.

The accuracy of the output is unaffected since no other states are ever encountered

by the carry.

The wasted states created by setting C t,p using Equation 5.83 can be avoided

by determining the largest quantization interval that will represent all additions and

subtractions of multiples of m. This value will be the most efficient choice for Csjep,

96

because it will require the least number of states. Once Cstep is known the number,

Lcarry, of states required is

Lcarry = 1+ 1
Cstep

(5.86)

Consider a Dmult coefficient m = 0.015. From Equation 5.83, Cstep = 0.001 and

1001 states are required. If the interval is chosen to be 0.005 no reduction of accuracy

occurs and only 201 states are required, which is a considerable savings.

Using either approach the total number of states can be found for any Dmult

coefficient, but for m = —1 the carry structure of the Dmult is eliminated. Since all

multiplications by —1 are representable integers, no carry is required. The Dmult

becomes a look-up table where the output is simply the input negated.

Error in the Dmult

Three quantizations influence the error at the output of the Dmult. First, the input

quantization can be modeled by adding a noise source to the input of the Dmult.

Next, the output of the multiplier is quantized to the same quantization scheme as

for the input. Once again, a noise source can be added to model this influence.

Finally, the carry is quantized producing an error, which can be modeled as a noise

source. Since all possible errors are represented by the carry, so the noise due to the

carry, 13 = 0. The quantization point in the carry path can be modeled by a direct

feed through path.

When the quantization errors are modeled as noise sources, Figure 5.10, the

system becomes linear and superposition can be applied. If 772 = 0 the entire carry

branch is always 0. The output is

mx + m?71 (5.87)

where 771 is the noise in the input quantization scheme, and x is the input. It is

identical to the quantized difference signal of the input x.

97

Figure 5.10: The Dmult with quantizers modeled with noise.

The input x and the input noise source 77, are then set to zero to allow the effect

of 772 to be examined. The carry is the negative of 772, and will act to reduce the

previous output error. This means that, at any point in time, all error before the

present moment has been canceled. Since all other signal sources are zero, only 772(n)

affects the output and the output of the system is 772. The total error in the Dmult

is

6Dmu1t = m 7jl+ 772 . (5.88)

The quantization schemes generating 71, and 772 are identical, so the maximum quan-

tization error e is

6 771,772 (5.89)

The maximum error in the Dmult from analog input to analog output is

6Dmu1t(1 +m) 6 , (5.90)

where for magnitude rounding quantization,

and for truncation quantization,

1
(5.91)

65 (5.92)

98

The error analysis for the Dmult avoids errors caused by improper initialization

of the carry. If the initial carry is a state other than zero, a DC error would occur

in the output. The total possible error including the possibility of carry error is

EDmult = (1 + m) € + C(0) . (5.93)

Since

- E ≤ C(0) ≤ € (5.94)

the maximum possible error for any initial condition is

Dmult = (1+m)€+

= (2+m)E (5.95)

The maximum error encountered in a simulation of the Dmult for coefficients

between 0 and 1 is shown in Figure 5.11. The simulation assumes a zero initial carry

and the results of the simulation reinforce the analysis presented.

2.00

1.90

1.80 -

1.70 -

1.60

1.50 -

1.40

1.30 -

1.20 -

,1.10 -

1.00 -

0.90
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Multiplier Coefficient

Figure 5.11: Dmult error as a function of dmult coefficient.

99

Dmult Simulation

The Dmult is simulated with a random input signal. The random input wave allows

any sequence of inputs, provided the sequence is representable in the system. Errors

.very close to the maximum possible error are likely to be encountered for sufficiently

long sequences.

The simulation used magnitude rounding in both the input quantization scheme

and the carry quantization scheme. The Dmult coefficient m = 0.95. The output

and the ideal response are shown in Figure 5.12. The error in the signal (shown in

Figure 5.13 normalized to delta) is always less than

(1 + m) 6 = (1 + 0.95) = 0.9758 (5.96)

The maximum encountered error (0.9732 8) is less than the calculated maximum

(0.975 5) because of the nature of the random wave test inputs. If the test were

allowed to continue, errors closer to the maximum would eventually be encountered.

Memory Requirements of the Dmult

The Dmult is constructed as a ROM state machine with bi bits for the input, b0

bits for the output and b bits for the carry. For a Dmult built as a ROM block the

memory required, in bits, is

MDmult = (b + b) 2(b0+b) (5.97)

The number of bits required by the carry is related to Cstep and, therefore, to the

accuracy of the Dmult coefficient. If the Dmult carry is encoded using Equation 5.83

(for simplicity), b can be defined (for rounding quantization) as

bc = g2(C.t.p
_1 + 1

110

= l092 (10D +01 (5.98)

100

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

-0.10

-0.20

-0.30

-0.40
0

'ideal'
'Dadder' -

2000 4000 6000
Sample

8000 10000

Figure 5.12: Dmult output and ideal response for m = 0.95.

1.00

0.90

0.80

0.70

0.60

" Ø•5o
0.40

70 0.30

0.20

,0.10

2000 4000 6000
Sample

8000 10000

Figure 5.13: Error in the Dmult output for m = 0.95.

101

where D is the number of decimal places in the Dmult coefficient, which is a measure

of the accuracy of the coefficient.

Assuming the system is sufficiently oversampled to reduce both b1 and b0 to

the minimum three states, the memory requirements for a Dmult can be found

as a function of Dmult coefficient accuracy D (Table 5.2). The table shows an

exponential rise in memory requirements as the accuracy of the coefficient increases.

For a Dmult coefficient accuracy of D = 4 (accurate to ±0.0001), the memory

requirements already exceed a megabit for one multiplier.

The memory requirements of a Dmult can be reduced by cascaded multiplications.

If the overall multiplication coefficient is to be m, two consecutive multiplications by

will perform the same operation. The choice of the two multiplication coefficients

is not restricted to the square root of the overall coefficient M. The two coefficients

ma and Mb must only obey the condition

m=m6 xmb

Coefficient
Accuracy
D

Memory
Required
in bits

1 3.8 x102
2 4.6 x103
3 4.9 x10
4 1.0 x106
5 1.0 x107
6 9.2 x107
7 1.7 x109
8 1.6 x101°
9 1.4 x1011
10 2.5 x1012
11 2.1 x1013
12 1.8 x1014

(5.99)

Table 5.2: Memory requirements for a Dmult for various coefficient wordlengths.

102

By proper choice of m a and mb, multiplication by m becomes possible using less

memory. Consider m = 0.0001 as an example. If a Dmult were to be constructed

directly the carry would require 10 001 states (rounding quantization) because

Lcarry = +1
Cstep
1

+ 0.0001 1

10001 (5.100)

If two Dmults with coefficients m a = mb = 0.01 are cascaded, each would only

require 101 states since

carry = +1
C,tep

0.01 =

= 101 . (5.101)

The two Dmults constructed to implement m a and m, will require less total memory

than a single Dmult implementing m.

In choosing m a and mb, care must be exercised to closely approximate m without

requiring more memory than a direct Dmult implementation would require. Filter

structures which are relatively insensitive to changes in multiplier coefficients (such

as LDI and wave structures) are well suited for this technique since it is simple to

approximate m with m a and mb, but it is more difficult to choose m a and mb such

that m a x mb = m.

This technique is useful for filters that have very small multiplier coefficients,

since the overall filter coefficient m must be less than either ma or mb. Fortunately

filters for use with highly oversampled signals will have such coefficients.

By cascading Dmults the memory requirement for the overall multiplication op-

eration is reduced; however the memory reduction is traded off against an increased

103

error at the output of the multiplying system. The error due to one Dmult (from

Equation 5.90) is

fDmult = (1 +

where € is the quantization error of the input. For a cascade of two Dmults the error

at the output is

DmuIt2 = (m2(1 + mi) + 1) (5.102)

where m1 is the first Dmult coefficient, and m2 is the second Dmult coefficient.

For an arbitrary length of cascaded Dmults M multipliers long,

f/MM

Dmu1tM= (jEHmn) +1)
i=1 n=i

(5.103)

Equation 5.103 shows that the order of multiplications has an impact on the overall

error. The last Dmult coefficient multiplies the error of all others. By ensuring that

the multiplication coefficients are arranged in order of descending magnitude

MI ≥ m2 ≥ M3 ≥ . . . MM-1 ≥ mf.q (5.104)

the overall error 6Dmu1tM is minimized. The smaller error coefficients later in the

multiplier cascade reduce the errors due to large coefficients earlier in the multiplier

cascade.

5.5 Filter Construction

Using Dadder and Dmult components, it is possible to construct digital filters for

difference signals. To gain any advantage from such an implementation it is necessary

to greatly oversample the input signal, that is

13 >> f-ax (5.105)

The oversampling ratio of the system, R, is defined as

R=
fmarc

(5.106)

104

The greater the oversampling ratio, the smaller the wordlength of the difference signal

and the smaller the amount of memory required for implementation. Unfortunately,

as the oversampling ratio increases, the bandwidth of the filter is reduced relative to

.the total bandwidth of the system and at very high oversampling rates the bandwidth

of the filter reduces to a narrow band at the low end of the spectrum. The narrowing

of the bandwidth of the filter increases the required accuracy of the internal states

and multiplier coefficients. Longer wordlengths would be needed to represent the

states and multiplier coefficients.

In the z-plane, the effect of oversampling and the rise in required accuracy can

be easily observed. As ft increases, the poles of the transfer function of the filter are

crushed into a small wedge in the unit circle (Figure 5.14). The filter uses quantized

coefficients and states, so all points in the z-plane are quantized to the nearest

representable point. Only a finite number of points is available and the points are

spread in an even grid on the plane. As the poles move closer together a finer mesh

of points is required to distinguish each pole. The finer mesh of points requires more

overall points which requires an increase in the number of super-states of the filter.

Unit Circle I Unit Circle

fS
2

Original Pole
Distribution

Mf
2

Oversampled Pole
Distribution

Figure 5.14: The crushing of poles and zeros into a small wedge by oversampling.

105

To increase the number of super-states, the wordlengths of the internal states and

the multiplier coefficients are increased. When the wordlength required to represent

the filter increases the memory requirements for a full ROM difference implemen-

tation increases. In fact, the increase in wordlength caused by the narrowing of

the bandwidth will quickly remove any advantage that a difference filter once pos-

sessed. Fortunately, this problem can be avoided by proper filter construction. To

avoid constructing narrow band filters the bandlimited nature of the input signal is

exploited.

The difference signal produced by the Dencoder (sampling at f3) has the same

bandwidth as the input signal, because the Dencoder is a linear system and any

linear system can modify input signals in amplitude and phase, but not frequency.

Since the input signal x(n) is bandlimited to fma it is highly oversampled and can

be decimated by M, where M ≤ R. After decimation the signal can be filtered at

f, = .L (5.107)
M
2 frnaz R

- (5.108) M

provided that

1, - ') i
J - "Jmas (5.109)

If M is chosen such that the internal sample rate of the filter f = 2frnaz the filter

will have a maximum spread of poles on the unit disc because the internal sample

rate of the filter will be at the minimum possible value. The maximum spread of

poles on the unit disc will allow a. small wordlength for the filter states and multiplier

coefficients.

After filtering, the decimated signal must be upsampled to f for use by the

Ddecoder to produce the final output waveform. The upsampling implies an insertion

of M - 1 zeros and lowpass filtering. An alternative to the upsampling and lowpass

filtering of the signal is to filter the difference signal (n) in an interleaved filter [2].

106

In the interleaved filter the input signal is divided into M streams each of which

is a decimated difference signal offset from the others by a unit delay. The signals

are processed by M separate filters at

f'=13/M (5.110)

and output signal of each filter is interleaved with others to produce the output

filtered difference signal.

Consider the behaviour of the filter with an arbitrary sampled input signal, x(n).

First the input is downsampled by splitting it into M signals each of which is sepa-

rated by one sample

xo(n) = x(nM)

xi(n) = x(nM —1)

X2(n) = x(nM —2)

XM_j(fl) = x(nM - (M - 1))

The signals are filtered at

f'=f,/M

by the filter transfer function H(.) producing a set of M output signals,

yo (n) =

=

Y2 (n) =

H(xo(n))

H(xi(n))

H(x2(n))

YM-1(n) = H(xMl(n)) . (5.112)

107

The signals are upsampled by inserting M - 1 zeros between each sample,

yo' (n) =

Y-1() =

J Yo(') ifnE{±iM} 0

0 otherwise

{y (!') if in E {±iM - 1}

0 otherwise

I

y1() if n E {±iM - ') lC0) i=O

0 otherwise

n+(M-1)
Yi1 M if n E {±iM—(M— 1)}

0 otherwise

and the individual signals are summed together to create the final output

M-1

y(n)= E y(n)

(5.113)

(5.114)
5=0

Since only one signal will be non-zero at any given time n, the addition in Equa-

tion 5.114 can be simplified by interleaving or commutating the signals,

M-1

y(n) = E y(n)

if n E {±iM} 0

if in e {±iM -

if in E {±iM - 2}900

+ (M - 1)) if 72 E {±iM - (M - 1)}

(5.115)

Although the approach seems indirect, the interleaved signal i(n) is the filtered

signal H (x(n)) since

M-1

y(n) = E y(n)
j=0

108

I

YM.-l(fl+(M —

H(xo(n))

H(xi(n+ 1))

= < H(x2(n+2))

if n E { iM}20

if n E {±iM— 1}

if n E {±iM - 2}

1)) if n E {±iM - (M - • 00

if n E {±iM} 0....0 0

ifnE {±iM-1} 0

if n E {±iM - 2}

H(XM_l(fl+M-1)) ifn€{±iM—(M-1)} 0

%= H (x(ri)) (5.116)

The interleaving filter allows the filtering of a bandlimited input signal using M filters

operating at f = f3/M. The lower sample rate of the internal filters decreases the

resolution required within the filter which is reflected in a decreased wordlength.

Such a structure is suitable for filtering difference signals since difference signals are

highly oversampled and can have reduced wordlengths.

5.6 Difference Filter Simulation

To demonstrate the difference operation of the filter a order, LDI structure is

simulated. The LDI structure is chosen for low sensitivity to coefficient rounding.

Exploiting the its low sensitivity, the multiplier carry wordlength is rounded to 2

decimal places. Two decimal place accuracy (D = 2) for the multiplier coefficients

requires a seven bit carry. From Equation 5.98,

bc = 11 + 1092 (101_D + 1)1 = fi + - 1092 (lo_2)1 = 16.6581 = 7 (5.117)

The lowpass LDI filter was designed and the parameters chosen for the design are

109

shown in Table 5.3 along with the necessary multiplier coefficients.

The infinite precision magnitude response was calculated and is labeled 05 in

Figure 5.15. The multiplier coefficients are rounded to the nearest two decimal places,

and the resulting magnitude response of the modified filter is labeled as 1di5_trunc

in Figure 5.15. The graph of the magnitude responses demonstrates that the overall

transfer function has remained largely the same after the rounding of the multiplier

coefficients. If such deviations are tolerable, which would depend on the applica-

tion of the filter, the filter can be implemented with reduced multiplier coefficient

wordlengths. Rounding the coefficients to two decimal places allows, approximately,

an eight bit coefficient wordlength. It should be noted that all further error compar-

isons will be between the difference filter and the rounded multiplier coefficient LDI

structure.

It is assumed that the input signal to the LDI filter is bandlimited to

frna, = 500 Hz . (5.118)

It is necessary to know the maximum frequency of the input to estimate the oversam-

pling required for an implementation with a specific number of levels. The input to

the system has a dynamic range of —A to A, and in this simulation A is chosen to be

1, for convenience. If the input signal is quantized to b0 = 12 bits, the quantization

interval (the distance between quantization levels) is

q = 2 x 1 = 0.000 488 28V (5.119)
2bo 212

Design Parameters

f3 5000 Hz

f 300 Hz
Order 5
A 0.5 dB

Multiplier Coefficients
ml 0.173 449 201 473 824
m2 0.308 060 272 343 644
m3 0.149 102 355 745 068
m4 0.2989750898,37714
m5 0.222 565 487 545 064

Table 5.3: Design parameters and multiplier coefficients for the simulated 5th order
LDI filter .

110

0.55

0.50

0.45

0.40

40.35

0.30

0.25

0.20

0.15

0.10

0.05 -

0.00
0

'ldi5' - -
'1d15.jrunc'

200 400 600 800 1000
Frequency, Hz

Figure 5.15: Magnitude responses of the ideal and coefficient truncated filters.

It is this quantization interval that is chosen as the step interval 5 for the difference

filter. Using the known dynamic range of the input, A, and the step interval, 5, the

necessary oversampling ratio R is

R Air

1 Xir

= 0.000488 28

6434.0 (5.120)

R is the minimum oversampling rate required to allow the input to be encoded as

three states. The oversampling need not be this high if more quantization levels are

used to represent the states and the input. In this simulation, the number of levels

L is arbitrarily arbitrarily chosen to be 31 (5 bits). This reduces the oversampling

rate to

6434.0 6434.0
R = = = 428.93 . (5.121)

(L-1)/2 (31-1)/2

The LDI filter is constructed with a sample rate f = 5 000, so the oversampling

111

ratio of the filter (with respect to the input data) is

2frna - 2 X 500 -

f3 5000

Thus the difference filter oversampling ratio (and decimation rate) M is

M = = 428.93 = 85.783

(5.122)

(5.123)

which is rounded up to M = 86.

The required sample rate is F3 = 86 x 5 000 = 430 000 Hz. This is not an

unreasonable sampling rate for ROM based technology. In 1992, ROMs typically

have access times allowing operation above 25 MHz. If the sample rate of the system

is scaled up to 25 MHz, the bandwidth of the input is increased to 30 000 Hz, which

will allow filtering of audio range data.

The interleaved filter as presented in Section 5.5 implies the construction of M

filters. Such a construction would be very costly in terms of required hardware,

but alternatively the interleaved structure can be constructed by changing the unit

delays within the M = 1 filter to delays M bits long. This effectively produces M

interleaved filters.

In the example LDI filter, the 86 individual filters will operate at 5 000 Hz, but

the entire structure and the ROM components will be operating at 430 000 Hz. The

interleaved filter implementation using Dmults and Dadders is shown in Figure 5.16,

where DA blocks represent the Dadder components, DM blocks represent the Dmult

components, '- 1' blocks represent the multiply by —1 components and MT blocks

represent the M delay blocks. In this example M = 86, so the MT blocks are shift

registers 86 unit delays long and 5 bits wide.

5.6.1 Test Inputs and Results

The difference filter shown in Figure 5.16 was simulated in software. The output

difference signal is represented by y(n), while x(n) represents the input difference

112

x(n)

Figure 5.16: A 5' order LDI filter constructed from Dmult and Dadder blocks.

signal.

Two test inputs were examined: a random waveform and a Kronecker delta func-

tion. The random waveform allows an examination of a large number of irregular

transitions on the input. For long input sequences, the errors encountered will ap-

proach the maximum possible error. The Kronecker delta input is used to test the

linear behaviour of the filter. Using the Kronecker delta input, the magnitude re-

sponse of the system can be determined and compared against the expected ideal

response.

The first test considers the random input waveform 10 000 samples long. The

waveform is similar to the random waveforms used to test the individual components.

The input waveform x is allowed to make step transitions of a random size limited

by the maximum integer encodable Lmax and the step quantization interval S such

that at any sample n,

5Lmaa1 < H<8 rna (5.124)

In practice, the maximum transitions allowable on the input are limited by the

nonlinear nature of the filter. In this simulation, the random input signal is limited

113

to maximum changes of half of the maximum possible change,

15Lmax - 1 x(ri) < 16Lma
2 2 2 2

By limiting the maximum change in the input signal, the possibility of overflow of

the internal states is reduced.

The output of the random wave test is shown in Figure 5.17. The error between

the output of the infinite precision LDI filter with truncated coefficients and the

output of the difference filter is shown in Figure 5.18. The error is normalized to the

step quantization interval. The error can be reduced to an arbitrarily small value

by reducing the step quantization interval 6. This is not a linear relationship, but

as 6 is decreased the error at the output of the filter will decrease. To decrease 6,

the sampling rate may be increased, or the number of quantization levels may be

increased. The increase in sample speed is limited by the implementation technology,

while the increase in the number of quantization levels (L) is limited by the memory

0.10

0.05

0.00

-0.05

0.005 0.010 0.015
Time

0.020 0.000

Figure 5.17: Random waveform test output.

0.025

114

30.0

25.0

20.0

1 15.0

10.0

5.0

0.0 .111 Ill 11

'error' -

0.000 0.005 0.010 0.015 0.020 0.025
Time

Figure 5.18: Random waveform test error.

requirements for the ROM implementation. As the number of levels L increases the

number of input lines to the ROM state machine increases. The size of the ROM

will grow exponentially as the number of levels is increased.

The second test input applied to the system is a Kronecker delta signal to deter-

mine the magnitude response of the filter. The Kronecker delta input signal presents

problems for the difference filter. The difference modulator is unable to represent

the input because the input has an infinite frequency bandwidth. When a Dencoder

is presented with a Kronecker delta input, the Dencoder will saturate at its maxi-

mum representable value, since all further inputs are 0 the quantizer will properly

represent them as 0. This difficulty is not unique to the difference filter. Neither

delta modulators nor delta sigma modulators can represent Kronecker delta inputs.

In order to allow the calculation of the magnitude response, the restriction on the

maximum representable integer is lifted and all inputs are allowed. This way a Kro-

necker delta can be input into the system, and be large enough to provide a sufficient

115

number of samples for transformation into the frequency domain via the fast Fourier

transform (FFT). The output of the truncated coefficient, infinite precision filter

and the difference filter when stimulated with a unit Kronecker delta is shown is

Figure 5.19. The difference filter output is a series of impulses separated by 85 zeros.

The 85 zeros occur because the delta input occurs as an input to only one of the 86

interleaved filters. The smooth curve of points (labeled ideal in the graph) is the im-

pulse response of the truncated coefficient, infinite precision filter at 5000 Hz sample

rate. The peaks of the difference filter and the curve of the infinite precision filter

coincide well which indicates that the two filters will have very similar magnitude

responses.

0.07

0.06 -

0.05 -

0.040.03
-

t)

0.02 -

0.01-

0.00 A.
-0.01 -

-0.02
-0.03

0.000 0.005 0.010 0.015 0.020 0.025
Time

'ideal'
'difference'

Figure 5.19: Difference filter and ideal filter response when stimulated with a unit
Kronecker delta

The magnitude responses of the two filters are shown together in Figure 5.20.

The frequency range is restricted to 0 to 2 500 Hz since this is the maximum input

signal bandwidth to prevent aliasing. The difference filter will have a repeating

magnitude response every 5 000 Hz from 0 to 430 000 Hz. From Figure 5.20, the

116

0

-10

-20

-30

-60

-70 -

-80 -

-90
0

A
A 1w'

nj\ lllf (V\
'S

III

'i f 1'
'd f 1'

A r f\ ii,A At -

I A tf /
t4iJL1 ir \: /.

i

500 1000 1000 1500 2000 2500
Frequency, Hz

Figure 5.20: Difference filter and ideal filter magnitude response.

similarities of the magnitude response in the passband can be seen; however in the

stop band the infinite precision filter has greater attenuation. The difference is due

to the quantization error of the filter.

It should be noted that the magnitude response of both filters have a ripple effect

in the stop band, which implies zeros. This is an effect of the FFT on the low number

of sample points. The filter attenuates the delta input quickly and, thus, the analysis

shows a rippling effect which is not present.

5.6.2 Limitations

The transfer functions that can be implemented with difference filtering are less

restricted than the transfer functions in earlier work [8, 19, 21]. With adders and

multipliers any filter structure can be constructed, but as discussed earlier the the

high error in the output of the Dadder is a serious limitation. For the Dadder

to prevent accumulation of high range errors, a multiplier should lie in any data

117

path loop between two adders, and a multiplier of less than 1 will bound the error.

Many filters can be constructed such that loops involving adders do not have a gain

higher than 0.5 between adders. In the LDI structure used as an example here, all

multipliers have coefficients less than 0.5.

A second limitation is due to the encoding of the input. Although a lowpass

filter can be constructed, it will operate as a bandpass filter. Information on the

low end of the spectrum is attenuated in the input coding. The Dencoder places

a zero on z = 1, so it is effectively a highpass function. The zero is later canceled

by the Ddecoder, but any information in the low end of the spectrum is removed

before filtering. This effect implies that filters designed for implementation with this

method should be bandpass rather than lowpass.

A third disadvantage is introduced during construction of the filter from ROM

components. The interleaved filter requires a large number of small ROM blocks

with long parallel shift registers. This implementation has the advantage that the

large parallel paths required by the multiplier carries are localized, but wide data

paths are still difficult to construct. Finally, construction requires the use of many

small ROM blocks so that large numbers of interconnects are required. In discrete

component implementations, a large number of interconnects is a potential source of

error, while in VLSI implementations the routing will be difficult.

5.6.3 Memory Requirements

The implementation shown in Figure 5.16 requires 11 adders, 5 multipliers and 6 mul-

tiplies by — 1. The implementation uses 12 bit words for the original wordlength,

5 bit words for the internal word length and 7 bit words for the carry in the multi-

pliers. For an arbitrary oversampling ratio, the total amount of ROM required along

118

with the storage flip-flops (FFs) for the delay elements can be generalized as

IVi total

where

- N(b+ b)2' + NMbCR+ NA(b + 1)22b+1 +

NA2R + N_1b2' + bOR , (5.126)

Miotat = the space required in bits

NM = the number of multipliers

NA = the number of adders

= the number of multiplications by —1

0 = the order of the filter

R = the oversampling ratio of the input

b = the wordlength of the signal

bc = the multiplier carry wordlength

The above assumes all multipliers have the same carry wordlength b. From Equa-

tion 5.126, the simulated filter requires 417 148 bits.

The oversampling ratio R and the wordlength of the signal b are approximately

related by

b = max (b0 - I 1092(R)i i) , (5.127)

where b0 is the original wordlength of the filter at R = 1.

Let us assume a 12 bit wordlength for R = 1 for the 51h order LDI filter. Using

both Equation 5.126 and Equation 5.127, the size of the filter can be found for various

oversampling ratio (Figure 5.21). For the example filter implemented,

R 86 x 5 000 430 5 128
2frnax 2x500

Using R = 430, the implementation requires 174 294 bits which contradicts the

previously observed size of 417148 bits for the example filter. The discrepancy occurs

because the internal word length found using Equation 5.127 ignores the nonlinear

effects of the system.

119

The memory requirements shown in Figure 5.21 include the ROM look-up tables

and the required FFs for storage. The minimum amount of memory required for

implementation is 93 840 bits using an oversampling ratio R = 512. This minimum

occurs because as the oversampling ratio R increases the amount of memory required

to encode the multipliers and adders decreases, but the memory needed for the delay

elements increases.

1.2

0.8

0.6

0.4

0.2

40

- 40

0
0

000

0 000000,

I I I

500 1000 1500 2000 2500 3000 3500
Ovcampling Rate, R

'fileM2' •

4000 4500 5000

Figure 5.21: Size of ROM required as a function of the oversampling ratio

5.6.4 Implementations other than ROM

The focus of this research was to find a cost effective method for construction of

filters using only ROM components. If the implementation technology is expanded

beyond ROM, other interesting possibilities exist.

The difference filter could be implemented on a single chip using localized ROM

blocks, where each Dadder and Dmult is constructed as a ROM state machine. The

individual state machines could be connected by narrow signal bus lines. Such an

120

implementation would localize the wide signal busses and require only narrow buses

to be routed chip wide. The localization of the wide bus lines aids in chip design,

since it is much easier to route designs with small bus lines than those with many

large parallel bus lines.

A second step away from ROM implementation is to avoid the use of ROM

components in the construction of the state machines all together. The state machine

can be constructed from combinational logic. This implementation has the advantage

of more efficient construction on a chip level, while retaining the small bus widths

for routing. Such a design could be implemented on a FPGA, since combinational

logic is available, but routing is a difficult problem for such chips.

Chapter 6

Future Research Directions and Conclusions

In this thesis two new approaches to the construction of ROM based digital filters

were examined along with a survey of appropriate earlier techniques involving ROM

components in DSP. In this chapter, a critique of the two techniques is presented

along with the results of the research conducted and directions for future research.

In addition, present and future applications of the techniques are examined in light

of present trends in mass storage.

6.1 Technique Critique

6.1.1 Elimination of Unreachable States Approach

The first new technique presented is the reduction of a block ROM state machine via

the elimination of unreachable states. Unreachable states are not required in a filter

realization, since the unreachable states are never encountered during operation. The

removal of the unreachable states from the state space representation of the filter

allows the block ROM to be reduced to

NF(N)2(N-1) x 100% (6.1)

of the original required state space volume.

This approach allows the full utilization of the memory hardware. Unreachable

states are eliminated by eliminating their existence, or by remapping the state space

such that only reachable points exist within the filter's map of the state space. Such

a complex, nonlinear remapping is possible in ROM based devices since the ROM

operates as a lookup table. The complex computations required to produce the

121

122

lookup table are performed during construction allowing complex computations to

be performed during operation of the filter in one access cycle of the ROM.

The technique produces functioning digital filters which require a fraction of

initial memory requirements. Unfortunately, the reduction is disappointingly small

when the initial memory requirements of a filter are considered. The 5' order, 12 bit

example filter is reduced from 3.4001 x 1023 bits for a block ROM implementation to

5.5929 x 1022 bits. The memory requirements for high order filters can be reduced to

fractions of 1% using this technique, but the resulting total memory requirements are

still very large and do not allow fabrication with present ROM based technologies.

Although the present sizes of ROM blocks do not allow fabrication of ROM based

filters with this technique, mass storage devices, of which ROM is but a single ex-

ample, are becoming available in ever increasing sizes. When the available storage

devices reach the size of the reduced memory requirements produced by this tech-

nique, state-machine based filters can be constructed. The technique allows the

construction of state-machine filters in the near rather than the far future.

One of the prime advantages of block ROM state-machine implementations is the

high speed of operation. This technique allows the digital filter to operate at the

access speed of the ROM. When other mass storage devices are used as the hardware

for the block state-machine the filter can operate at the access speed of that storage

device.

In summary, the unreachable state removal technique reduces the memory re-

quirements while maintaining the highest possible speed of operation. Unfortunately,

the reduced memory requirements remain far in excess of present technological ca-

pabilities.

123

6.1.2 Difference Signal Approach

The second method proposed in this thesis for the construction of ROM based digi-

tal filters requires the creation of a new class of signals based on difference signals.

Since existing arithmetic operators do not function correctly on difference signals,

new arithmetic operators for sum and multiplication operations are defined. The

new signal, called a difference encoded signal, has a narrower wordlength than con-

ventional amplitude encoded signals. It is the narrower word length which allows

a reduction in the memory requirements of the state-machine arithmetic operators.

The memory requirements are reduced because the numbers of input and output

lines are reduced.

By applying the difference signal method, for the example filter, the memory

requirements can be reduced from 3.4001 x 1023 bits for a block ROM implementa-

tion to 417 148 bits. This significant reduction in memory requirements is obtained

at the cost of the partitioning of the ROM state-machine. Unlike the block ROM

implementation where one large ROM block is required, the difference signal method

requires many small ROM blocks.

Systems composed of numerous small blocks are more difficult to construct, since

the individual blocks must be connected. Each connection line must be placed such

that its path will not interfere with other lines. This process is called routing.

Routing tends to be a difficult task during chip lay-out as well as for circuit board

lay-out. The routing difficulties are reduced in a difference signal implementation

because difference signals require narrower bus lines than a similar system imple-

mented using amplitude encoded signals. By contrast, a single block ROM state

machine implementation does not encounter routing difficulties since only the input

and output lines occur in such designs. The internal routing of the ROM is left as a

design problem for the supplier of the ROM components.

124

In addition to routing difficulties of difference signal implementations, the maxi-

mum operating speed is reduced. As mentioned earlier, block ROM implementations

may operate at speeds up to the access time of the ROM components. Difference

signal implementations obtain the reduction in word length by highly oversampling

the signal. The maximum rate at which the input signal can be sampled is the

maximum access rate of the ROM components, but the maximum bandwidth of the

input signal is significantly lower if any advantage is to be derived from difference

signal implementations.

For telephone and audio range signals, the difference signal technique can pro-

vide significant bit reductions (12 and 8 bit reductions, respectively, for 25 MHz

sampling rates) over conventional parallel implementations. As the bandwidth of

the signal increases the bit reduction on the wordlength of the encoded signal is

reduced exponentially with no bit reductions occurring for oversampling rates less

than 2.

In summary, the difference signal technique reduces the memory requirements

to present technological capabilities. To achieve this memory reduction, the speed

of operation is also reduced to present technological capabilities. In addition, the

technique may hold routing advantages over conventional implementations.

6.2 Future Research Directions

In this thesis, the primary direction of research was the reduction of memory re-

quirements for full ROM implementation of digital filters. Future research directions

could investigate alternative technologies for implementation of the two techniques

presented.

Mass storage devices are not limited to ROM. Magnetic storage is often used and

more esoteric forms such as holographic memories have been proposed. As research

125

continues on mass storage, devices three trends are likely to continue: mass storage

devices will increase in size, mass storage devices will increase in speed, mass storage

devices will decrease in cost.

Mass storage devices are used to store large quantities of information. As the

amount of storage space in a device increases, the speed of access must increase as

well. It is required that a very large memory device not only store the information,

but the information must be accessible in a reasonable length of time. The exact

length of time which is reasonable is determined by the application. For example, in

computer data and program storage large amounts of memory are required and all

locations in the memory must be accessible.

The unreachable state elimination method requires that the mass storage device

have several qualities. First, the storage device must be very large. The technique

reduces filter implementations to fractions of one percent of the original memory

requirement, but the reduced memory requirement is still very large. Second, all

memory locations in the mass storage device must be accessible at some minimum

speed. Although access times may vary depending on which memory location is

accessed, it is the slowest access time that will determine the maximum speed of the

system. This speed will be the maximum filter sample rate. Finally, the memory

must be programmable at very high speeds. When the memory requirements reach

the tera-terabyte range, as for the 5' order example filter, the speed of program-

ming the memory is important. The length of time required to program the initial

configuration must be sufficiently small to allow construction.

The difference signal approach to digital filter implementation requires different

characteristics of the storage media. The very large storage demands are replaced by

routing demands. The difference signal technique requires many small computational

blocks each of which are easily constructible under present technological constraints.

126

The computational blocks may be constructed from ROM, RAM, or other memory

based media as look-up tables. Alternatively, combinational logic circuits can be

used to implement the computational blocks. For any chosen computational engine,

the difficulty in the construction of the system lies not in the memory demands of

the computational block, but in the demands presented by the connections of the

blocks.

Parallel buses allow signals to be transmitted within the system. These buses

must be routed either on a circuit board when the system is constructed from large

scale integrated components, or routed on board the integrated circuit if a full in-

tegrated design is desired. In either case, the wide parallel buses required present

considerable routing difficulties.

Difference signal implementations reduce the width of the parallel bus. The

routing difficulties are reduced when the width of the parallel bus is reduced. Future

research could investigate the hypothesized routing advantage of difference signal

systems. The length of time required to perform the routing could be compared

between conventional implementations and difference signal implementations. A

second evaluation of the routing advantage would compare the minimum chip area

use between difference signal systems and conventional implementations.

6.3 Conclusions

This thesis has presented two approaches for the implementation of RUM based

digital filters. Although both approaches are inappropriate for present RUM based

implementation, each approach holds promise. The unreachable state elimination

method holds promise for future digital filter implementations when present mass

storage trends are extrapolated. The difference signal technique holds the promise

of reduced routing demands for implementation technologies other than ROM.

Bibliography

[1] M. Abramowitz and I. Stegun, 'Handbook of Mathematical Functions', 9th

- Printing, Dover Publications Inc., New York, 1970.

[2] M. Bellanger, 'Digital Processing of Signals', 2nd Edition, John Wiley & Sons,

Toronto, 1989.

[3] L. T. Bruton, 'Low-Sensitivity Digital Ladder Filters', IEEE Transaction on

Circuits and Systems, Vol. CAS-22, No. 3, pp. 168-176, March 1975.

[4] M. Freedman and D. Zrilié, 'Nonlinear Arithmetic Operations on the Delta

Sigma Pulse Stream', Signal Processing, Vol. 21, No. 1, pp. 25-35, September

1990.

[5] M. Kendall, 'A Course in The Geometry of n Dimensions', 1st Edition, Charles

Griffin & Company, London, 1961.

[6] L. Jackson, 'Digital Filters and Signal Processing', 2nd Edition, Kluwer Aca-

demic Publishers, Boston, 1989.

[7] W Jenkins and B. Leon, 'The use of residue number systems in the design

of finite impluse response digital filters', IEEE Transaction on Circuits and

Systems, Vol. CAS-24, No. 4, pp. 191-201, April 1977.

[8] N. Kouvaras, 'Operations on deltamodulated signals and their application in

the realization of digital filters', The Radio and Electronic Engineer, Vol. 48,

No. 9, pp. 431-438, September 1978.

[9] N. Kouvaras, 'A special-purpose delta multiplier', The Radio and Electronic

Engineer, Vol. 50, No. 4, pp. 156-157, April 1980.

127

129

[21] D. Zrili6, K. Zangi, A. Mavretic and M. Freedman, 'Realization of digital filters

for delta-modulated signals', Proc. of 30th Midwest Symposium on Circuits and

Systems, pp. 1343-1346, 1988.

