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Abstract 

Two new techniques are proposed for the construction of digital filters using read 

only memory (ROM) based technology. Both implement all components (adders and 

.multipliers), with the exception of shift registers, in ROM. The principal difficulty in 

the construction of such devices is the large amounts of memory required, and each 

technique reduces the amount of memory required. 

The first technique reduces the memory required by eliminating unreachable 

states. Since unreachable states in a filter will never be encountered, their elimi-

nation will not change the transfer function of the filter. 

The second technique uses a difference modulator to reduce the dynamic range of 

the signal. The reduced dynamic range signal is processed using finite state machines 

which implement adder and multiplier operations. The processed signal is difference 

demodulated to construct the resulting waveform. 

When compared to standard implementation techniques these implementations 

have several major advantages: high speed, simple modular component blocks and 

inexpensive material. 

111 
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Chapter 1 

Introduction 

Signals can transmit an endless variety of information, including images, voltages, 

and sounds. Any signal is composed of a sequence of values, or amplitudes. This 

sequence can be of finite or infinite length, and the amplitudes may take any one value 

at any point in the sequence. For example, a voltage signal is composed of a sequence 

of voltage levels, and an image signal is composed of a sequence of images. In neither 

case does the signal possess two voltage levels or two images at any single point in 

the sequence. The consecutive amplitudes in a signal are separated in time thus 

signals can be considered as functions of time, but the time separating consecutive 

amplitudes of a signal need not be uniform. When the consecutive amplitudes are 

separated by zero time, the signal is a continuous function with the amplitude as the 

dependent variable, and time as the independent variable. 

Signals are considered to be functions of time in this thesis, and can classified into 

three categories: continuous, discrete and digital. Continuous signals are continuous 

functions in both time and amplitude. Such signals have a value at all times and can 

have any finite amplitude. Discrete signals are continuous in one variable, but are 

discontinuous or quantized in the other. In this thesis, discrete signals are considered 

to be discrete in time, and continuous in amplitude. Such a discrete signal has a 

known value only at specific moments in time, but the amplitude of such a signal 

may take on any specific value. Digital signals are quantized in both amplitude and 

time. Like discrete signals, digital signals have known amplitudes only at specific 

times, but, in addition, the amplitude of a digital signal must be one of a number 

of amplitudes. In practical applications, the number of amplitudes is restricted to a 

1 
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finite number. 

Signal processing is a method of enhancing or attenuating features of signals. 

Listening to a voice in a crowded room is an example of signal processing. Other 

voices in the room are attenuated, while the voice of interest is enhanced. 

Digital signal processing (DSP) is signal processing applied to signals composed 

of digital (quantized in both amplitude and time) data. In DSP two main implemen-

tation methods have been used: custom hardware, such as integrated circuits (ICs) 

and field programmable gate arrays (FPGAs), and digital signal processors, such as 

the Motorola DSP56000 [12]. 

Digital signal processors (DSP chips) are microprocessors whose instruction set is 

specially designed for DSP operations. A DSP chip's properties include the following: 

1. The algorithm is implemented in a software program (much like in a conven-

tional microprocessor) which can be easily changed during prototyping. 

2. Modest facilities are required for programming. 

3. Moderate operating speeds can be obtained depending on the algorithm. 

4. The cost on a per chip basis is moderately high, requiring large production 

runs to achieve low costs. 

Custom integrated circuits are integrated circuits specially designed for one ap-

plication. A custom integrated circuit constructed for DSP applications has the 

following properties: 

1. The algorithm is implemented in hardware. 

2. Complex (and costly) tools and facilities are required for construction. 

3. Very high operating speeds are obtainable depending on the algorithm. 
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4. The design is fixed at manufacture, so prototyping is expensive. 

5. The cost on a per chip basis is very high, requiring large productions to achieve 

low costs. 

Field programmable gate arrays are integrated circuits capable of being pro-

grammed on site. An FPGA circuit designed for DSP applications has the following 

properties: 

1. The algorithm is implemented in hardware. 

2. Modest facilities are required for construction compared to those required for 

custom IC construction. 

3. High operating speeds are obtainable depending on the algorithm. 

4. The reprogrammable structure allows inexpensive prototyping. 

5. The cost on a per chip basis is moderately high, requiring large productions to 

achieve low costs. 

All three approaches are unsuitable for low volume, fixed (or static) algorithm 

designs. Integrated circuits cannot be produced in low volumes. DSP chips and 

FPGAs are reprogrammable, which is a capability wasted on fixed algorithms. In 

low volume (several units), low cost production of fixed algorithm designs, a fourth 

technological alternative is full read only memory based implementation. In this 

approach all computational components, such as adders, multipliers or larger blocks, 

are constructed from read only memory (ROM) chips. 

ROM chips are commonly used in the computer industry and are inexpensive 

when purchased as single units and even less expensive per chip when purchased 

in large quantities. They are difficult (or impossible) to modify after production, 

so they are suited to static DSP algorithm implementations. ROMs can operate at 
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very high speeds. As a single state-machine, as shown in Figure 1.1, the maximum 

sample rate is the access time of the ROM, which can be extremely fast. For typical 

1992 technology 20 ns access time is available, allowing potential sample rates of, 

.50 MHz. 

The problems encountered in constructing ROMs are greatly simplified compared 

to those encountered in the design of a custom IC. IC design requires the production 

of a logic circuit based on a set of input-output relations. In a ROM such a relation-

ship is directly programmed, eliminating the need for logic minimization and timing 

analysis that is required in IC designs. In addition, electronically programmable 

read only memories (EPROMs) can be programmed using inexpensive EPROM pro-

grammers, while custom ICs require complex tools and facilities for production. For 

large production runs, ROMs can be fabricated much like ICs, with several ROMs 

on a common substrate, except that layout is greatly simplified because only ROM 

programming is required. If each IC is composed of several modular ROM blocks 

rather than one large ROM block, then only the interconnects between the modular 

components are required to implement the desired algorithm. Such an approach 

would be similar to FPGAs, but the ROM function blocks would be designed for 

DSP applications. 

The three technologies encounter different trade-offs as the order of the filter 

increases. In IC implementations, as the filter order increases the chip area in-

creases because there are more interconnects and components. IC implementations 

encounter a hardware complexity/order trade-off. In DSP chip implementations, the 

maximum sample rate decreases as the length of the program increases. Since the 

order of the filter is roughly proportional to the length of the program, DSP chips 

encounter a speed/order trade-off. In ROM implementations, the maximum sample 

rate can be maintained at the cost of an exponentially increasing memory size for 
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Figure 1.1: Block ROM implementation of a digital filter. 

any order. ROM implementations encounter a memory size/order trade-off. 

The trade-off between memory size and filter order is the major disadvantage of 

ROM based filters. ROM based filters, especially those built as block state-machines, 

require immense amounts of memory. Consider the 5° order digital filter based on 

the difference equations, 

5 

y(n) = bu(m) + E ajxj(n)  
A:=1 

x1(n + 1) = u(n) (1.2) 

x2(n+1)=xi (1.3) 

cc3(n + 1)= x2 (1.4) 

x4(n+l)=x3 (1.5) 

xs(n + 1) = X4 (1.6) 

where ak and b are fixed finite precision multiplier coefficients. A block ROM state-

machine digital filter is shown in Figure 1.1. If we consider the filter to have a 

uniform wordlength of 12 bits, the 5 order digital filter would require a ROM with 

six 12 bit inputs (five inputs for the states and one for the input) and six 12 bit 
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outputs (five for the next filter states and one for the output) which would require 

12(5+ 1)2 12(5+1) = 3.4001 x 1023 bits 

or 0.34 tera-terabits. In 1994, 1 megabit memories are commonly available, and 

computers often have 16 to 32 megabytes of memory, but 0.34 tera-terabits is an 

unreasonable large amount of memory for current technologies. 

Let us assume that a vast amount of memory is available at a reasonable cost. If 

the ROM could be programmed at 1 bit per picosecond it would still be unfeasible 

to build because of the time required: 

3.4001 x 1023 x 10..12 = 3.4 x 10' seconds 

= 10 781 years. (1.7) 

A block ROM implementation is an unsatisfactory approach because it consumes 

too much memory and requires too much time to program. To allow construction 

of ROM based digital filters some method of reducing the memory required to a 

reasonable amount is needed. A reduction in the ROM size will be accompanied by 

a reduction in the programming time. 

This thesis focuses on two new approaches to ROM implementations of digital 

filters: reduction of the block ROM implementation memory requirements and ROM 

implementations composed of many small state-machines. The thesis begins with a 

review of the use of ROM components in digital filters, followed by an examination 

of block ROM implementations with reduced memory requirements achieved by the 

elimination of unreachable states. This is followed by a review of delta modulation 

filtering systems which provides background for a difference signal processing method 

using small ROM state-machines. 



Chapter 2 

Digital Filters Using ROM Components 

Read only memories (ROMs) have been used in digital filtering to increase the speed 

of an algorithm by pre-computing the result of complex calculations and storing a 

table of the results in a ROM. This ROM, called a look-up table, can then be used 

during filter operation to quickly determine the result of the complex calculation 

rather than require the filter to compute the result each time. Such a scheme allows 

complex calculations to be conducted in the time required for accessing the ROM. In 

this chapter, two approaches to digital filtering using ROM components as look-up 

tables will be examined. 

Digital filter implementations are frequently composed of adder and multiplier 

components. Of these two components the multiplier is the most resource consuming 

component, because it requires more gates to construct than adder components to 

attain a similar operation speed. When similar hardware limits are imposed on both 

components (such as restricting the maximum number of gates), multipliers require 

more time to operate than adder components. The complex circuitry required for 

construction make multipliers suitable for ROM or RAM based look-up table im-

plementations because look-up table implementations simplify the circuitry required 

and allow faster operation. The high speed of the ROM ICs allows multiplexing of 

the ROM components which reduces the total memory required. 

In both distributed arithmetic systems [17] and residue arithmetic systems [7] 

ROM look-up tables are used to create faster multipliers. These two implementation 

methods will be outlined and examined for potential full ROM implementation in 

this chapter. 

7 
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2.1 Distributed Arithmetic 

A common form of computation in digital filters is the sum of products (or in vector 

terms, the inner product). It is this operation that can be effectively performed by 

distributed arithmetic (DA) [17]. In conventional implementations (direct imple-

mentation of the difference equations using multiplier and adder components) the 

sum of products operation is performed by isolated adder and multiplier components. 

Each multiplication is performed by a multiplier, while each addition is performed 

by an adder. The adder and multiplier components are entirely separate, while 

only the final result of the arithmetic add or multiply operation is passed to other 

components. 

By contrast, DA implementations are not based on isolated adders and multipli-

ers. The inner product is performed by a unified multiplier/adder look-up table (for 

calculating a partial product) and a parallel accumulator. The parallel accumulator 

is constructed using conventional logic gates, and the look-up table is implemented 

in ROM. This approach can reduce the number of gates required for implementation 

by 50% to 80% over conventional isolated component implementations [17]. 

In this section, the basics of a DA implementation of a sum of products oper-

ation is explained. Full ROM implementations of DA operations are shown to be 

impractical because of the total memory requirements for such a system. 

2.1.1 An Overview of DA 

In its simplest form, a distributed arithmetic implementation uses a bit-serial com-

putation that evaluates each bit of the inner product of a pair of vectors in a single, 

direct step [17]. The bit-serial nature of the operation reduces the speed of com-

putation compared to that in conventional implementations, but this restriction is 

lifted when a DA implementation is expanded into word-serial (serial transmission 
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of several bits rather than a single bit) at the cost of a larger look-up table. With 

word-serial DA, speeds comparable to those of conventional implementations are 

possible. 

2.1.2 The Basic Concept 

An N 1 order linear digital filter can be described by its state equations: 

s(n + 1) = As(n)+bu(n) 

y(m) = cTs(n)+du(n) 

where 

A = N x N state matrix 

b = N dimensional column vector 

C = N dimensional column vector 

d = scalar 

u(n) = scalar input at time n 

s(n) = N dimensional column state vector at time ri 

y(n) = scalar output at time n. 

The state equations (2.1 and 2.2) can be rearranged as: 

s(n + 1) A b s(n) 

y(n) ci d u(n) 

and from this equation it is clear that a direct implementation of a digital filter from 

its state equations requires N + 1 inner product calculations. 

In a DA implementation, each of the N + 1 inner product calculations is imple-

mented separately. Consider an arbitrary inner product calculation: 

(2.1) 

(2.2) 

(2.3) 

K 

1/ = E akxk (2.4) 
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where ak are arbitrary fixed coefficients and xk are variable data words. In a fil-

ter, ak represents the fixed multiplier coefficients, while Xk is the state and input 

information. 

If each xk is a two's complement binary number which is scaled such that xkI <1 

(for convenience), then each xk is expressed by b fractional bits, 

b—i 

Xk = —bko + E b2 
n=1 

(2.5) 

where bkn are the bits of xk, bko is the sign bit, b is the number of bits and bk(b_1) is 

the least significant bit (LSB). 

Using Equations 2.5 and 2.4, the sum of products can be written as 

= E aj [—bko + E bkfl2-2] (2.6) 
k=1  n=1 

This represents the conventional form of the inner product. When this equation is 

implemented directly it defines an isolated arithmetic computation. However, since 

n and k are independent, the order of the summations can be interchanged to form 

b—i K K 

= > aJbk,, 2 + E ak(—bko) 
n=1 k=1 k=i 

(2.7) 

which can be implemented in a distributed arithmetic form [17]. 

Since b1m may only take the values of 0 or 1, the bracketed term in Equation 2.7, 

K 

ajbj 
k=1 

(2.8) 

may take only 2k possible values. By precalculating and storing these values in a 

ROM look-up table the input data bk can be used to address the memory and the 

result of the computation can be read directly from the ROM data lines. Then the 

result can be added with a parallel accumulator. After b operations the final result 

of the inner product will be in the accumulator. 
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2.1.3 An Example 

To illustrate a DA implementation, let us examine an example [17] where 

K = 4, a1 = 0.72, a2 = —0.30, a3 = 0.95, a4 = 0.11 

The ROM look-up table must store all possible combinations of the coefficients and 

negative coefficients, so that 2 x 2 terms are required. The block diagram of a DA 

implementation for the four coefficients (Figure 2.1) clearly shows the ROM look-up 

table, whose contents are listed in Table 2.1. 

In the operation of the DA implementation, the data words are input into the 

ROM one bit at a time (1BAAT), from least significant bit (LSB) to most significant 

bit (MSB). On the MSB (the sign bit) the T8 signal is set high ( 1) to accommodate 

the sign bit. For all other bits the T3 signal is set low (0). 

Beginning with a cleared accumulator, the LSB (b_1) of each of the input states 

(x1 to x4) is addressed to the ROM. The parallel output of the ROM represents the 

sum of all coefficients which received an input bit equal to 1. The output of the 

ROM is added in parallel to half the value of the zeroed accumulator. The next 

bit (bb-2) of each of the inputs is then addressed to the ROM. The parallel output 

of the ROM is added to half the value of the accumulator. The process continues 

until b0 (the MSB or sign bit) is reached. When the MSB of the input states (b0 of 

x1) x2, x3, x4) is addressed to the look-up table, the 1' line is set high to allow the 

Serial A2 

Input 
(1BAAT) XA 

S 

ROM 
Look-up 
Table 

Parallel Output 

Figure 2.1: A basic distributed arithmetic implementation for four coefficients. 
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Input Code 

2' b1 b2 N. N. 
32-Word 

Memory Contents 

000 0 0 
000 0 1 
000 1 0 
00 0 1 1 

00 1 0 0 
00 1 0 1 

00 1 1 0 
00 1 1 1 
01 0 0 0 

01 00 1 

01 0 1 0 
01 0 1 1 

01 1 00 
01 1 0 1 

01 1 1 0 
01 1 1 1 

0 
a4 = 0.11 

as = 0.95 

a3+a4= 1.06 
a2 = -0.30 

a2+a4 = -0.19 

a2+a3 = 0.65 
a2 + as + a4 = 0.75 
a1 = 0.72 

ai+a4=0.83 

a1+a3= 1.67 
a1 + as + a4 = 1.78 

a1 + a2 = 0.42 
a1 + a2 + a4 = 0.53 

a1 + a2 + a4 = 1.37 
ai+a2+a3+a4= 1.48 

10000 
1000 1 
100 1 0 
100 1 1 

10 1 0 0 
10 1 0 1 
101 1 0 
10 1 1 1 

11 0 0 0 
11 0 0 1 

11 0 1 0 
11 0 1 1 
11 1 0 0 
1 1 1 0 1 
01 1 1 0 
01 1 1 1 

0 
-a4 = -0.11 
-a3 = -0.95 

-(as+a4) = -1.06 
-a2 = +0.30 

-(a2 + a4) := +0.19 
-(a2 + a3) = -0.65 

- (a2+a3 -- a4) =-0.75 
-a1 = -0.72 

-(ai + a4) = -0.83 

-(ai+a3)=-1.67 
- (ai+a3+a4)= - 1.78 
.-.(ai + a2) = -0.42 
-(ai + a2+ a4) = -0.53 

-(ai+a2+a4) = -1.37 
- (ai+a2+a3+a4)=-1.48 

Table 2.1: ROM look-up table contents for the example DA implementation. 
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negative sum of the coefficients to be computed. When the negative sum is added 

to half the accumulator, the accumulator will contain the two's complement binary 

number which represents the sum of products of the inputs and the fixed coefficients. 

The accumulator's contents can be passed on to other components of the design and, 

prior to the beginning of the next computation, the accumulator is zeroed. 

2.1.4 ROM Implementations 

Although much work has been done to reduce the ROM required for the look-up 

tables in DA implementations [17], it is the adder/accumulator that presents the 

major difficulty in a full ROM implementation of a DA system. An accumulator 

structure is difficult to realize in a full ROM implementation because the adder is 

a parallel b bit adder and a parallel adder in a full ROM implementation is very 

expensive: 

size = b22' bits = b2 2b bytes (2.9) 

For a wordlength of 8 bits, one adder requires 65536 bytes, but for larger word lengths 

the adder quickly becomes unmanageable (Table 2.2). If the DA implementation is 

such that each state and the output are computed in a DA scheme,, one adder will 

be required for each state the output. Only for filters with small wordlengths is such 

a scheme possible. Direct full ROM implementation of a DA scheme is not feasible 

due the the large memory requirements of the parallel adder. 

Wordlength ROM size 
10 bits 
12 bits 
16 bits 

1.31 Megabytes 
25.2 Megabytes 
8.59 Gigabytes 

Table 2.2: ROM adder space requirements for various wordlengths. 
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2.2 Residue Arithmetic Implementations 

Like distributed arithmetic implementations, residue arithmetic implementations of-

ten use ROM components as look-up tables. A principal advantage of residue arith-

metic implementations is the reduction of the carry path length in the ripple adder. 

Reducing the carry path length increases the maximum possible operation speed of 

the adder. 

In a ripple full adder the carry of the addition of the two LSBs is added to the 

addition of the second most LSBs. The carry from this operation is passed on to 

the addition of the third most LSBs. In this way, the carry propagates from LSB to 

MSB. 

In residue arithmetic the full data word is divided into several smaller words. The 

smaller words are coded such that an addition operation requires no carry between 

the coded words, although carry operations occur within the addition of words. In 

this manner the length of the carry path is reduced to allow higher computation 

speed at the cost of more complex hardware. 

2.2.1 The Basics of Residue Arithmetic 

The residue of an integer Ic modulo R1 is defined as the remainder when Ic is divided 

by R2. The residue is denoted as k1 = (k)R., [6]. For example, the residue of 15 

modulo 7 is 1 and the residue of 22 modulo 5 is 2. 

The following residue properties exist for integers n and k [6]: 

(nk)R. = (cnR, (k)R.)R 

= 

= ((m)Rk)R1 
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(n+k)R = 

= 

= + (2.10) 

Using these properties, it is possible to multiply and add integer values represented 

as residues and obtain a result in residue form. 

If R1, 112,. .. , RP are defined as relatively prime integers (integers that share no 

common factors except 1) then any integer k in the interval 0 to R - 1, where 

R = R1112 . . . RP, can be uniquely represented by the residues [6], 

((k) R1 ,(k)R2 , ... ,(k)R ) = (k1,k2,...,kp) (2.11) 

For example, consider the case for R1 = 3 and R2 = 5. In such a case, the 

integers from 0 to 

11-1=111112-1=3 x5-1=14 (2.12) 

are uniquely represented. In Table 2.3 the unique residue pair for the integers 

Ic E [0,14] are shown. 

The representation of the integer Ic in terms of its residues, 

(k1k2 ... kp) , (2.13) 

is closed under multiplication and addition operations, which means that all residue 

addition and multiplication operations on the ring [0,11 - 1] will result in values also 

found on the ring [0,11 - 1]. 

By using the unique coding of an integer in residues, addition and multiplication 

operations can be performed on the residue of the integer using the multiplication 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

012012012012012 
012340123401234 

Table 2.3: Unique residue pairs for k when R = 3 and 112 = 5. 
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and addition properties of residues. The result of such operations, or sequences of 

operations, is a residue which must be converted to a natural integer. This can be 

accomplished using the Chinese Remainder Theorem [6]: 

k k1 (M1') M1) , (2.14) 

where M2 = R/R1 and (Mr1)R is the multiplicative inverse of M: 

\ = fm: ((n)R m)R = 1,0 m < R} 
IR (. 

(2.15) 

For example, the multiplicative inverse of 3 modulo 5 is 2 because 

((3) 5 x 2)5 = (6)5 = 1 . (2.16) 

2.2.2 Filter Construction Using Residue Arithmetic 

The use of residue arithmetic provides a means to divide the computation within a 

digital filter into multiple parallel paths. By dividing the computation into indepen-

dent parallel paths, the maximum carry path length within the filter is reduced which 

allows computation at higher speeds. A similar increase in computation speed can 

be obtained using look ahead carry for adding operations, but residue arithmetic 

also allows increased speed in multiplication without great increases in hardware 

requirements. 

To illustrate the construction of a residue arithmetic system, consider an example 

using the difference equation, 

y = aou(n) + aiu(n - 1) , (2.17) 

where the ai are constant multiplier coefficients and u(n) is a variable integer input 

at discrete time n. If we choose the moduli set {R1, R2, R3} = {17, 19, 31} we can 

form a ring from 0 to R1R2R3 - 1 = 10013. This ring can represent slightly more 
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values than 13 bits of data. To allow the representation of negative values for u the 

residue operator, (•) R.' is redefined as [7], 

1 
(k)R. = { (k) i k e [o, R-1 -i i- 

R-1 
- (lC)R k€ 

(2.18) 

The new residue operator allows 12 bits of data plus one sign bit. The multiplication 

coefficients are chosen arbitrarily for the example as 

a0 = 127 (2.19) 

a1 = —201 (2.20) 

and are converted into the residue representation, 

= (( 127) 17 , ( 127) 9, ( 127)3 ) 

= (8,13,3) 

= ((-201)171 (-201)j9, (-201) 3k) 

= (3,8,16) 

(2.21) 

(2.22) 

Using a hardware encoder the input signal u is converted into the residue represen-

tation, 

(u(n)) = ((u(n)) 7 , (u(n))19 , (u(n))) (2.23) 

(u(n - 1)) = ((u(n - 1))17 , (u(n - 1)) , (u(n - 1)) 3) (2.24) 

Once the signals have been encoded into their respective residue representations 

(composed of three separate residues), each internal residue representation can be 

used in multiplication and addition operations without reference to any other residue 

representation. In general, Equation 2.17 becomes 

= (((ao)Rj (u (n ))R.)R + ((al)R. (u(n - 1))fl.)R) (2.25) 
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and for this example, 

= (((ao)17 (u(n))17) 17 + ((ai) 17 (u(n - 1))17)17) 
17 

= (((ao)19 (u(n))19) + ((ai) 19 (u(n - 1))19) 19)19 

= (((ao)31 (u(n))31)31 + ((a1)31 (u(n - 1))31)31) 31 

Since the residues of a0 and a1 have been precalculated, 

(2.26) 

(2.27) 

(2.28) 

(y(n)) 17 = ((8 (u(n))17)17 + (3 (u(n - 1))17)17) 17 (2.29) 

(y(n)) 19 = ((13 (u(n.))19)19 + (8 (u(n - ')) 19)19)19 (2.30) 

(y(n)) 31 = ((3 (u(n))31) 31 + (16 (u(n - ')) 31)31) • (2.31) 

The combination of the three equations operate on the unified ring from to 

.1, and each individual equation operates on an individual ring 

r R-1 R•-1 
L 2 ' 2 

For this example the rings are: 

(2.32) 

= [-8,8] (2.33) 

= [-9,9] (2.34) 

= [-15,15] (2.35) 

Using residue arithmetic the computation of the difference equation, Equation 2.17, 

is split into three independent parallel paths shown in Figure 2.2 where T's rep-

resent delay elements. None of the three rings requires information from either 

of the other rings to compute its residue representation of the final value. It is 

only the final value that needs to be converted from its residue representation, 

((y(n)) 17 , (y(n)) 19 , (y(n)) 31 ), to an integer, y(n), and this is accomplished using 

an implementation of the Chinese Remainder Theorem. 
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Figure 2.2: Block diagram of a residue arithmetic implementation. 

The Chinese Remainder Theorem can be implemented as a hardware look-up 

table, or as a combination logic decoding device. As an alternative to these two 

implementations, one can take advantage of the sum of products operation involved 

in the Chinese Remainder Theorem (Equation 2.14) and implement it in a distributed 

arithmetic approach [7]. 

2.2.3 ROM Implementation Using Residue Arithmetic 

In residue arithmetic implementations, the internal computations, such as addition 

and multiplication, are not costly in full ROM implementations. In this example, 
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when each multiplier is implemented as a ROM look-up table, a single ROM look-up 

table requires five input bits and five output bits for a total of 5 x 2 = 160 bits per 

multiplier. The adder look-up tables are more costly than multiplier look-up tables. 

In this example, each ROM implementation of an adder look-up table requires ten 

input bits and five output bits, so the entire table requires 5 x 210 = 5 120 bits. 

The implementation of the difference equation (Figure 2.2) requires six multipliers 

and three adders, so the internal calculations in the difference requires a total of 

6 x 106 bits + 3 x 5 120 bits = 16 320 bits. 

The memory required for internal computations is very small compared to the 

memory required for the conversion to and from the residue representation. The en-

coder of the system is a 13 bit input ROM with a 15 bit word (15 x 213 = 122880 bits). 

The decoder (a look-up table implementing the Chinese Remainder Theorem) is a 

15 bit input ROM with a 13 bit word (13 x 215 = 425 984 bits). The total ROM 

required for implementing the difference equation is 

122 880 + 425 984 + 16 320 = 565 184 bits. (2.36) 

This is the memory required for an implementation of a first order difference equation. 

If higher order equations are to be implemented many more internal computational 

components would be required which would increase the memory demands. 

2.3 Conclusions on Look-up Table Implementations 

It is the fundamental difference in the cost of components between ROM digital filter 

implementations and conventional digital filter implementations that necessitates a 

different approach to design for full ROM implementations. Conventional approaches 

concentrate on reducing hardware requirements or increasing the speed of multipliers. 

In ROM implementations, the hardware cost of implementing an adder is much 
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greater than the cost of a multiplier because adders require twice as many inputs as 

multipliers. 

The distributed arithmetic and residue arithmetic structures explained in this 

chapter present the current use of ROM components in digital filters. In both ap-

proaches, part of the digital filter is encoded as a look-up table in ROM. A logical 

extrapolation is to encode the entire digital filter in a ROM look-up table. This 

approach will be examined in the next chapter. 



Chapter 3 

ROM Reduction by Elimination of Unreachable 

States 

In chapter 1, the memory required to construct a digital filter in a block ROM state 

machine format was shown to be prohibitive. The construction of ROM based digital 

filters requires some method of reducing the required memory. One such method is 

to take advantage of the ROM look-up table's ability to rapidly compute complex 

calculations. All calculations are performed prior to the ROM implementation, so the 

look-up table can perform calculations as complex as desired with no speed penalty 

during operation. 

When a filter is constructed as a block ROM state machine (Figure 1.1) the inputs 

to the ROM are separated into the states of the filter (x1, x2, xs ... ) and the input 

(u), but this is not required. The states can be combined into a super-state which 

represents the total present state of the filter, while the input (u) and output (y) 

remain coded as independent integers to maintain compatibility with the analog-to-

digital and digital-to-analog converters. 

The super-state is constructed by concatenating all the states together to form 

a single input word. In this manner, the bit patterns for each state are grouped 

together and ordered for ease of understanding, but this need not be the case. If 

the bit orders of the states are scrambled the ROM could still be programmed to 

function as a filter and the scrambled ROM filter's behaviour would be identical to 

the unscrambled block ROM implementation. 

A ROM look-up table is programmed for input/output relationships. Very com-

plex, or very simple input/output relationships require the same amount of memory, 

22 



23 

so the ability to scramble the super-state allows the designer gieat freedom in the 

state space representation. The super-states could be placed unevenly throughout 

the state space of the filter to allow more accurate computation at desired points, 

.but more importantly super-states can be eliminated to reduce the memory required 

for implementation. 

A super-state representation records the present state of the filter. For any 

bounded input sequence some super-states will never be attainable and the union of 

these super-states is called the unreachable set [14]. The unreachable set is specific 

to the particular filter implementation and bound of the inputs. 

An unreachable set implies the existence of a reachable set which is the set sub-

traction of the unreachable set from the state space. The reachable set must be 

coded into the ROM look-up table representation of the state space to allow the 

filter to function correctly, but the unreachable set has no impact on the filter's 

behaviour, since, under normal operating conditions, none of these super-states are 

ever encountered. 

There is no necessity that the state variables in a block ROM implementation be 

isolated from each other. The states may be combined in a super-state which repre-

sents the current state of the filter. If the unreachable set is defined and eliminated 

from the state space, fewer super-states will be required to represent all the possible 

filter states. When the number of super-states is reduced, the size of the memory 

required to implement the filter's look-up table is reduced. 

This chapter examines the memory reductions for block ROM filter implemen-

tations by eliminating the unreachable set. The results of filter simulations are 

provided and the memory requirement for a filter as a function of the filter order is 

determined. 
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3.1 Determining the Reachable Set 

An Nth order digital filter constructed with separate adder and multiplier compo-

nents will have a state space which is an N-dimensional box, called a hyperbox. Each 

state variable (xi) in the super-state vector 

2;2 

x= S3 (3.1) 

XN 

defines an axis in state space from +Ai to —As, where 2Ai is the dynamic range 

of the state variable x. Each axis is at right angles to all others, so an Nth order 

filter (possessing N states) will define an N-dimensional hyperbox containing all 

possible super-state vectors, x. This N-dimensional hyperbox can be divided into 

two disjoint sets: the reachable set and the unreachable set. The reachable set is 

the union of all super-state vectors that can be arrived at from a restricted class of 

inputs, such as bounded energy or bounded amplitude inputs. The unreachable set 

is the set subtraction of the reachable set from the set of all possible vector states, 

and it is composed of the union of all super-state vectors that can not be arrived at 

using the restricted class of inputs. 

A linear digital filter has a set of reachable state vectors which depend on the 

structure of the filter, and this reachable set has been determined for both bounded 

energy inputs [14], 

IIu(k)II2 13>0 U 2 (k — j)] 

and for bounded amplitude inputs [14], 

I 
2 

(3.2) 

Iu(k)I ≤ 1 . (33) 
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To determine the reachable set, it is necessary to provide some basic equations 

for a state space description of a filter. The state space equations for a linear discrete 

time filter are defined as [6]: 

- XN(k) - 

x(k + 1) = Ax(k)+bu(lc) 

y(k) = cTx(k_1)+du(k) 

where 

(3.4) 

(3.5) 

(3.6) 

A = N x N state matrix 

b = N dimensional column vector 

c = N dimensional column vector 

d = scalar 

u(k) = scalar input at time interval k 

X(k) = N dimensional column super-state vector at time interval k 

y(n) = scalar output at time interval k 

The next super-state of the system x(k) can be found using knowledge of the 

previous inputs. Assuming the initial state is x(k - 1) and the previous input is 

u(k - 1) then the next super-state x(k) is 

x(k) = Ax(k - 1) + bu(k - 1) • (3.7) 

The super-state x(k + 1) can be computed with knowledge of the present input u(k) 

and the present super-state x(k), 

x(k +1)=Ax(k)--bu(k) 
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By substituting Equation 3.7 into Equation 3.5, the super-state x(k + 1) can be 

computed from the prior inputs (u(k - 1) and u(k)) and the initial super-state, 

(x(k-1)) 

x(k + 1) = A [Ax(k - 1) + bu(k - 1)] + bu(k) (3.8) 

If the system begins in an initial rest super-state (x = 0) an arbitrary super-state 

x(k) can be computed using the previous inputs to the system, 

x(k) = bu(k - 1) + Abu(k - 2) + A2bu(k - 3) + A3bu(k - 4)... (3.9) 

which can be written as 

x(k) = [b,Ab,A2b,A3b,. •.] 

u(k-1) 

u(k —2) 

u(k —3) 

u(k —4) 

= Fu (3.10) 

where F is the controllability matrix [13] and u is the input vector. 

The covariance matrix (K) of the state is an N x N matrix and can be written 

as 

K = [b,Ab,A2b,...} 

b  

(Ab)T 

(A2b)T 
(3.11) 

Although K can be computed iteratively using Equation 3.11, K may also be deter-

mined using the set of N linear equations [14], 

K = AKA  + b T b (3.12) 

where K is an N x N matrix. 
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3.1.1 Reachable Set for Inputs with Bounded Energy 

For bounded energy inputs the reachable set is easy to calculate [14]. A bounded 

energy input u will have an energy defined by the L2 norm, 

1 
2 

IIuII2= u2(k—j) 
j>o 

(3.13) 

Using Equation 3.10, the specific input vector u required to reach a super-state 

vector x is 

(3.14) 

For all input sequences that reach the super-state x, the input u will require 

the minimum amount of energy. The energy (IIxII) required for an arbitrary input 

sequence u is 

IxII = uTu 

xTK_hiFTK_lx 

xTK_1KK_lx 

= x TK_lx . (3.15) 

Vector u requires the minimum energy to reach super-state x because if another 

vector u could reach x (x = Fu) in the same amount of time as u then 

u = u, + (u u) (3.16) 

In energy terms 

IIuII = IIUr+U—UzII 
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IIuII = IfuI + tlu - uII + u(u - u) + (u - U. 

but since 

and, for similar reasons, 

Equation 3.17 becomes 

= xTK_l(u - u) 

= xTK_l(u - 

= xTK_l(x - x) 

=0 

(u - u)Tu = 0 

IIuIl = IIuzII + un - uII 

If this equation is rewritten as 

it is clear that 

since 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

This establishes that u requires the minimum amount of energy to reach x. All 

other inputs u that can reach x will require more energy, 

IIuII = IIU2II + Ilu - uxII ≥ IIuxII (3.24) 

The knowledge of the minimum energy required to reach any super-state x is used 

to determine which states can be reached by an energy bounded input, 

IIuII ≥ IIuII = XT (3.25) 
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or rearranged, 

xTK_lx ≤ IIuII (3.26) 

Only if the minimum energy required to reach a super-state x is less than, or equal 

to, the maximum energy of the input JJU112 2 will that state be reachable. 

3.1.2 Reachable Set for Bounded Amplitude Inputs 

The reachable set for a bounded amplitude input is more difficult to calculate [14]. 

Suppose IIu(k)tl ≤ 1 for all k (the condition for a bounded input). Using Equa-

tion 3.10, for any possible input Ci 

x=:Fü (3.27) 

By introducing an arbitrary row vector p (representing an arbitrary direction in 

N-dimensional space), 

00 px = P .iu IIpDi=IpAkB I 
kO 

The bound is obtained by setting 

u(k - j) = sign [pA 1B] 

The set of all vectors x satisfying the inequality 

(3.28) 

(3.29) 

px < JIpJifi (3.30) 

is a region of space bounded by the plane 

px=IIp.1IIi (3.31) 

There will be one such space for each vector p. The reachable set is the intersection 

of all these spaces and this calculation is very computationally intensive because the 

calculation requires the computation of an infinite number of infinite sums. 
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The reachable set for bounded amplitude inputs is difficult to calculate, while 

the reachable set for bounded energy inputs is much easier to calculate. Roberts and 

Mullis [14] demonstrate that the shape of the reachable sets are similar and that the 

bounded amplitude input reachable set can be approximated by scaling the bounded 

energy input reachable set. To illustrate the similarity of the two reachable sets a 

direct form filter is examined in the following section. 

3.1.3 A Direct Form Filter Example 

Reachable Set for Bounded Amplitude Inputs 

For bounded energy inputs, the reachable set is an N-dimensional ellipse, also called 

a hyperellipse. The hyperellipse must be contained by the hyperbox defined by the 

dynamic range of the inputs, which for N = 2 (a 2-dimensional case) is an ellipse in 

a box. 

Consider the Z-domain transfer function of the direct form filter 

H(z) = 
- 2r cos(çb)z + r2 

If the poles are located at r = 0.98, = 450 , 

H(z) = 
z2 

- 2r cos(q)z1 + r2 

z2 
Z2 + mlz + m2 (3.33) 

(3.32) 

where ml = —1.96 cos(45°) and m2 = 0.9604. 

For a direct form realization the state matrix description is 

A 

B = 

xn = 

—ml —m2 

1 0 

1 

0 

Ax.. 1+Bu 

(3.34) 

(3.35) 

(3.36) 
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For such a configuration the covariance matrix K can be found using Equation 3.12, 

K = AKA T+bbT 

_bbT = AKA  - K 

1 0 —m2 Ic11 k12 —ml —m2 k11 Ic12 
- [10j= - 

0 1 —ml k21 k22 1 0 - k21 Ic22 

(3.37) 

Since both ml and m2 are known values, four linear equations with four unknown 

variables are produced 

—1 

0 

0 

0 

—1 + (nil)2 ml . m2 nil . m2 (m2)2 k11 

—ml —1 —m2 0 Ic12 

—ml —rn2 —1 0 Ic21 

1 0 0 —1 Ic22 

which can be solved to determine the covariance matrix 

Ic12 1 1 25.7521 18.2058 1 
=1 

k22 I I 18.2058 25.7521 

Using Equation 3.26 the reachable set for bounded energy inputs is 

xTK_lx 

-1 

25.7521 18.2058 
[x1 x2] 

18.2058 25.7521 X2 I 

(3.38) 

(3.39) 

0.0776x - 0.1098x1x2 + 0.0776x (3.40) 

The boundary of the reachable set defined by Equation 3.40 is shown in Figure 3.1. 

The interior of the ellipse represents all reachable states for the direct form filter 

represented by Equation 3.33. When the reachable set is enclosed in the minimum 

size box containing all possible super-state vectors the reachable set accounts for 

approximately 32% of the possible super-states defined by the box. 
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Figure 3.1: The direct form digital filter reachable set for lIuII ≤ 1. 

Reachable Set for Bounded Amplitude Inputs 

An approximation to the bounded amplitude set can be determined using the state 

equation presented in Equation 3.36, 

x = Ax,,-1 + Bu 

The state equation is applied to the bounded amplitude reachable set bound defined 

by Equation 3.31, 

producing 

00 
Px= 

px=IIp.FIIi 
00 

px=>lpA'BI 
k=O 

k 

—ml —m2 1 
P 

1 0 0 

(3.41) 

(3.42) 

Equation 3.42 defines a set of lines which separate the state space into two disjoint 

sets. The boundary line belongs to the set containing the origin and this set is a 
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super set of the reachable set. The intersection of all the super sets produced by all 

possible vectors p is the reachable set. 

The direct computation of the exact reachable set is not possible. There are 

an infinite number of arbitrary row vectors p and each half-space bound defined 

by Equation 3.42 requires the computation of an infinite sum. The reachable set 

(shown in Figure 3.2) is approximated by using 784 row vectors equally distributed 

in direction and truncating the infinite sum to 301 terms. 

40.0 

20.0 

0.0 

"'-20.0 

-40.0 

-40.0 -20.0 0.0 20.0 
State Variable x  

40.0 

Figure 3.2: Bounded amplitude reachable set for the direct form filter. 

When Figure 3.1 and Figure 3.2 are compared, the similarity in shape of the 

two reachable sets allow the approximation of the bounded amplitude set (which is 

difficult to calculate) using the bounded energy set (which is easier to calculate). 

To perform the approximation the bounded energy ellipse is scaled so that it en-

closes the entire bounded amplitude set. In this approach only the general form of 

the bounded amplitude set need be calculated. Detailed calculations, which would 

involve thousands of steps, need not be performed. 
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The potential for reducing the state space via the elimination of unreachable 

states has been demonstrated. In the next section the savings as a function of the 

filter order will be examined. 

3.2 The Relationship Between the Fraction of Space Used 

and the Filter Order. 

To evaluate the advantage offered by the reduced state space representation the space 

savings must be calculated. The space saving is a function of the filter order and 

the filter implementation. In this section, the maximum space used by an N`-order 

filter is determined. 

It was shown in the previous section that the shape of the reachable set can be 

approximated by a hyperellipse. The best space filling hyperellipse for a hyperbox is 

one aligned with the axis [14]. Using this knowledge the maximum percent of used 

space in an N-dimensional filter can be easily calculated for any order, N. 

The generalized N-dimensional volume is called content, and the content of a 

hyperellipse is [5] 

Vhyperetlipse = 
N(N) 

2r1r2•• .rN 7r2N 
(3.43) 

where N is the dimension of the hyperellipse, ri is a semi-axis of the ellipse in 

direction i and r(.) is the Gamma function [1]: 

Z 

r(z) = lim  n!  
n-Iooz(z+1) ... (z+n) 

The content of an N-dimensional hyperbox is 

Vhyperbox = a1a2 

where ai is the length of one side of the hyperbox. 

(3.44) 

(3.45) 
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The fraction of space used by a hyperellipse in a hyperbox is equal to the fraction 

of super-states which will lie within the reachable set. The fraction of space used by 

the hyperellipse in a hyperbox decreases as the order of the space increases, 

Vjsed = 
Vhypereilipae  

Vhyperboc 

2r1r2 rN7r2"t/NF(N) 

a1a2 aN 
(3.46) 

When the hyperellipse enclosed within the hyperbox is a maximum area the diameter 

of the hyperellipse in direction i must be equal to the length of the side of the 

hyperbox in direction i. In other words ai = 2r, so 

Vused = 
2r1r2 rN 1r2N/Nr(N) 

2r12r2 2rp..r 

2N/Nr(N) 

- 2N 
IN 

72 

= Nr(N)2(N-1) 
(3.47) 

Figure 3.3 shows that as the order of the filter increases the faction of state space 

used decreases. By 5' order only 16.4% of the available super-states are reachable, 

and by 7th order only 3.70% of the defined super-states are reachable. 

This analysis is only valid for aligned hyperellipses in hyperboxes. An arbitrary 

filter structure will possess a reachable set that is a hyperellipse, but that hyperellipse 

may not be aligned with the axis of the hyperbox (as the example in Section 3.1.3 

demonstrated). The above analysis is the best case, and most filters will have larger 

unreachable super-state sets. Thus the exact fraction of possible super-state vectors 

that are reachable depends on the filter structure. 

3.3 Reducing the Unreachable Set 

The previous section demonstrated that large amounts of available state space is 

unused (the unreachable super-state set). If the reachable super-state set is small 
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Figure 3.3: Maximum fraction of space used as a function of order for elliptical 
reachable sets. 

then the number of input bits to the filter required to represent the states can be 

reduced. The number of bits that can be removed for a specific fraction of used state 

space is 

bremoved = 

where Lxi is the floor function of x: 

—1log(V,)  

[ log (2) (3.48) 

Lxi =max{iEI:i<x} (3.49) 

Removing these bits will remove a large section of the unused state space and still 

maintain the same accuracy internal to the filter. The number of bits removed 

(bremoved) is the total number of bits removed from the representation of the super-

state. For instance, if the filter is originally designed with b bit wordlengths for all 

states in an N° order filter the total number of bits required to represent the super-

state is Nb. When the unused portion of the state space is eliminated by bit removal, 

the new number of bits required to represent the super-state is Nb - bremoved, so the 



37 

bit reduction per state variable would be (Nb - bremoved)/N. The value of individual 

state variables is no longer directly accessible, but each reachable super-state of the 

filter is coded uniquely. 

The remaining unused state space can be taken advantage of by remapping the 

super-state transitions in the filter. By representing only the reachable set, a larger 

number of super-states within the reachable set are created, which increases the 

internal accuracy of the filter. An alternative approach is to use the excess super-

states to increase the bound of the input. 

In a second order system, an elliptical reachable set with axes which are aligned 

with the axes of the state space hyperbox has a reachable set composed of 78.5% 

of the total state space. The unused state space (21.5%) is insufficient to reduce 

the super-state representation by an integer number of bits. The super-states in the 

unreachable set will be wasted unless the state space is mapped such that the entire 

represented state space lies within the reachable set. If the wordlength of the two 

state variables in the second order system is b the total number of representable 

vectors in the state space is 22b• If all 22) vectors are used to describe super-states 

within the reachable set (leaving none to represent super-states outside the reachable 

set) the internal resolution of the filter will be improved because all the available 

vectors are used to represent a smaller state space: the reachable set. 

Alternatively, the unused super-states can be used to increase the amplitude 

bound of the input. Rather than mapping all super-states into the reachable set, the 

reachable set is expanded until the reachable set requires all available super-states. 

Both approaches require a remapping of the super-state variables, but the expansion 

of the reachable set leaves the distance between states equal to the distance prior to 

remapping. The new filter retains the accuracy of the original filter, but an input of 

larger amplitude may be accommodated since the reachable set has been expanded. 
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3.4 Simulation and Analysis 

To test the remapping concept, a second order direct form digital filter has been sim-

ulated. The filter in this example is the same filter used in Section 3.1.3. Assuming 

a constant wordlength b for the input, output and all state variables a total of 3b 

input lines and 3b output lines to the ROM are required. 

The filter's reachable set is not aligned with the axis of the hyperbox, so the 

reachable set will be less than the maximum reachable set of 78.5%. The unreachable 

set was determined to be 69% of the total state space. Since only 31% of the state 

space is used by the filter, 

I —llog(0.31) I 
bremoved = L log(2) (3.50) 

so one input bit can be removed from the representation of the state variables. This 

leaves b lines into the ROM representing the quantized input, and 2b - 1 lines into 

(and out of) the ROM to represent the filter state. The output requires b lines 

to maintain a standard binary coded decimal representation of the output to allow 

easy interfacing with a digital-to-analog converter. In total, the ROM look-up table 

requires 3b - 1 addressing lines (inputs) and 3b - 1 data lines (outputs). 

After bit reduction, 1 - 0.31/0.50 = 38% of the remaining state space is unused. 

The vectors representing the super-states in this unreachable space are remapped 

into the reachable set increasing the internal resolution of the filter. Each square 

quantization interval in the 2-dimensional state space is reduced by 38%. The higher 

internal resolution allows a closer approximation of the ideal output. Alternatively, 

the system can allow larger input/output signals by maintaining the same super-state 

density and increasing the area of the reachable set. 

In the conventional filter, a state variable has a dynamic range from —A to A. 

In this simulation A = 10 and the dynamic range of the filter variables is [- 10, 10]. 
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The quantization interval of the input, and output is 

2A 
(3.51) 

.(where b is the wordlength), while the quantization interval internal to the remapped 

filter is 

2Ai  
qinternai = VVused 

For the direct form example: 

2A 2x10 20 
q= Tb = 2b b 

qintcrnal = /Vused = 2 x2b .62 = 15.748 2b 

(3.52) 

(3.53) 

(3.54) 

The tested system, simulated in software, is shown as a block diagram in Fig-

ure 3.4. The input u is the quantized input sequence b bits wide. The output y is the 

quantized output sequence, also b bits wide. The super-state is coded into 2b - 1 bits 

and is fed back into the ROM through a parallel unit sample delay. The dashed box 

in the diagram represents the ROM block and inside the ROM block is an equivalent 

diagram of the ROM programming. 

The super-state is decoded into the state variables x1 and x2. In combination with 

the input, the state variables are fed into the digital filter's algorithm to update the 

r 

ROM 

State 
Decoder 

Digital Filter 
State update 

table 

X; 

State 
Encoder 

Figure 3.4: Block diagram of the reduced full ROM implementation. 
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state variables and output. The updated state variables x and a4 are then encoded 

into a 2b - 1 bit super-state. The input and output are not encoded to allow direct 

connection with standard analog-to-digital and digital-to-analog converters. 

- The error in the system's output as a fraction of the error in an unmodified digital 

filter with identical wordlength is shown as a function of wordlength in Figure 3.5. 

Both systems are stimulated with a Kronecker delta input and their responses are 

compared with an ideal response (calculated with double precision floating point 

accuracy). The maximum error encounter in each system for each wordlength is 

recorded as the ratio, 

maximum reduced filter error 

maximum direct form error 
(3.55) 

Fractions above 1.0 indicate a higher error in the reduced full ROM implementation 

than in the standard direct form implementation, while fractions lower than 1.0 

indicate a lower error. 

For small wordlengths (b ≤ 3) the two systems have identical maximum errors 

because the systems have too few states to take advantage of any mapping. For larger 

wordlengths (b ≥ 4), the full ROM implementation consistently displays a smaller 

error. It should be noted that, although, the reduced full ROM implementation seems 

to have a smaller error, the maximum possible error in the output for both systems is 

identical because both systems quantize the output in identical manners. The lower 

error rate of the reduced full ROM implementation reflects slower accumulation of 

errors from internal calculations. Internal calculations are more accurate because 

the quantization interval is 38% smaller. 

The same error comparison can be done for the fast Fourier transform (FFT) 

of the impulse response (Figure 3.6). The maximum error between the ROM im-

plementation FFT and the ideal FFT vs. the maximum error between the standard 

implementation FFT and the ideal FFT is graphed as a ratio. Again ratios above 
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Figure 3.5: The ratio of maximum error between the ROM filter and the direct form 
filter as a function of wordlength, b. 
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Figure 3.6: Maximum error in the FFT of the output as a function of wordlength, b. 
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1.0 indicate the maximum error is greater in the ROM based system, while ratios 

below 1.0 indicate the maximum error is lower in the ROM based system. The graph 

indicates that the FFT obtained from the ROM based filter has a lower error with 

respect to the ideal FFT than the standard implementation. The lower error in the 

ROM based filter are due to a. slower accumulation of errors during operation. 

3.5 Conclusions 

Reducing the number of input bits to the ROM reduces the memory requirements. 

Every bit removed from the super-state representation will reduce the ROM size by 

50%. Unfortunately, as the filter order increases, the amount of unused state space 

increases much more slowly than the memory requirements. The unreachable super-

state set increases with each additional state variable and each state variable will add 

b bits to the input of the ROM. The addition of several state variables may allow the 

decrease in the new ROM size by one bit. The technique slows the increase in ROM 

memory requirements as the filter order increases, but the memory requirements still 

grow exponentially. 

The restriction to representing only the reachable super-state set may be useful 

for implementations other than ROM, but the computations are difficult because the 

next state is no longer a linear function of the present state. The high computational 

power of the ROM enables such complex calculations to be done easily. 

This method is a trade-off between memory size and computational complexity. 

A full ROM implementation requires a great deal of memory, while allowing very 

complex computations. By taking advantage of this inherent feature, the memory 

required is reduced and/or the accuracy can be improved. 
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The restriction of states to only the reachable set reduces the memory required, 

but does not allow construction of filters because the memory requirements are still 

very large. 



Chapter 4 

Filtering of Delta Modulated Signals 

In the previous chapter, the memory requirement for ROM based digital filter im-

plementations was reduced by eliminating the unreachable super-states from the 

represented state space. An alternative approach is to reduce the dynamic range 

of the states to reduce the wordlength of the states. Reductions in wordlength will 

reduce the memory requirements of the block ROM implementation. 

The wordlength of the filter states can be reduced by using delta modulation and 

sigma-delta modulation. In this chapter, both methods will be explained in detail to 

provide appropriate background information for the next chapter in which a filtering 

system based on difference signals is introduced. 

Delta modulation and sigma-delta modulation can potentially reduce the system 

wordlength to one bit. If reduced word length signals can be filtered, substantial 

reductions in memory requirements for ROM based filters are possible since the 

wide parallel state inputs to the ROM components are avoided. 

Filtering delta modulated signals has been neglected as a method of signal pro-

cessing due to its late development compared to pulse code modulated systems [10]. 

In spite of its slow start, several methods of filtering delta modulated signals have 

been developed [8, 9, 11, 19, 20, 21] and these approaches will be examined in this 

chapter. In addition to the filtering of delta modulated signals, attempts have been 

made to digitally filter sigma-delta modulated signals [18], and this approach will 

also be examined. 
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4.1 Delta Modulation 

Delta modulation is an efficient means of encoding analog signals as narrow word-

length digital signals. In delta modulation, an analog signal is encoded as a binary 

pulse stream based on the change in the amplitude of the analog input signal, rather 

than the amplitude of the signal. The input signal is encoded by a modulator which 

quantizes the difference between the present input signal and the reconstructed input 

signal as a +6 or a —5, where 8 is the quantization step interval. Since only two 

values are required, both can be transmitted on a binary transmission line using is 

and Os, with is representing +8 and Os representing — 8. At the recovery end, the 

signal is reconstructed using a demodulator, which is an integrator. The combination 

of the delta modulator and the integrator provide an inexpensive method of analog 

to digital and digital to analog conversion. 

4.2 The Basics of Delta Modulation Systems 

A delta modulation system can be divided into two distinct components: a modulator 

and a demodulator. The modulator (Figure 4.1) compares the input signal to a 

reconstruction of the input signal and transmits the error, which is quantized to +6 

or —6. The value of S depends on the minimum step size allowable, which can be 

found for bandwidth limited input signals. 

The minimum step size allowable is the maximum possible change, max in am-

plitude of the input signal. The input signal that changes most rapidly is the highest 

frequency component of the input signal. Let the highest frequency be designated 

as fmax. The highest frequency signal can be represented as 

X - ASlfl(211fmart) , (4.1) 

where A is the amplitude of the input signal and t is time. 
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Figure 4.1: A basic delta modulation system. 

The change in the signal x as a function of time is 

dx 
= A2irfma cos(2irfma t) 

,Binary 
pulses 

(4.2) 

The maximum slope of the input signal is A2irfmax SjflCC cos(2irfmax) will only 

vary between —1 and + 1. The maximum change in the input signal during one 

sample period T3 is 

Amax = max [A2irfmax COS(27fmaxt)Ts] 

- max [A2irfmaxTs] max [cos(2irfmaxt)] 

A2irfma T8 

- A2irfma  

f3 
(4.3) 

where the sampling rate f = -. Equation 4.3 implies that for a bandwidth limited Ta 

signal there will be a maximum step size for a given sample rate. If the quantization 

step size 5 is larger than the maximum change, in the input signal then the 

input signal can be encoded using the delta modulator. 

Once the signal is encoded it can be transmitted as a binary signal. When the 

binary signal is received the analog signal must be reconstructed via a demodulator. 
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In delta modulation, the demodulator is an integrator. The integration of the error 

signal will reconstruct the input signal. Reconstruction depends on knowledge of the 

initial conditions. If the system begins in an unknown state, the output may contain 

a dc error. When both the encoder and decoder begin in a known identical state the 

dc error is avoided. Provided S ≥ / ma, the error in the quantized signal will always 

be less than or equal to S. 

To convert the digital signal to an analog signal a digital to analog (D/A) con-

verter is used. After the digital signal is converted to a quantized signal, via the 

D/A converter, a unity gain, low pass filter is used to smooth the quantized signal 

into an analog signal. 

In the following sections, filtering methods for delta modulation signals are ex-

plained. Early attempts with hybrid analog-digital techniques are presented because 

the inexpensive advantages of analog-to-digital and digital-to-analog conversion are 

demonstrated. Subsequent techniques use all digital filtering methods with both 

binary and ternary delta modulation encoding systems. 

4.3 Delta Modulation Filtering using Analog-digital Hy-

brid Techniques 

Lockhart used a hybrid of analog and digital techniques to process delta modulation 

signals [10] . Although this technique is not fully digital, it provides insight into the 

development of delta modulation signal processing, and emphasizes the economy of 

analog-to-digital and digital-to-analog conversion in delta modulation systems. 

The arithmetic operations on the signal are performed in the continuous domain, 

while the signal is coded at the input in the digital domain. 
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4.3.1 Non-Recursive Filtering 

By using the binary transversal filter [11], a non-recursive filter structure for delta 

modulation can be constructed (Figure 4.2). The binary transversal filter is a hybrid 

-of digital and analog technology. The time delays (T) in the filter are achieved using 

digital flip-flops, while the multiplication and summation operations are achieved in 

analog technology. The resistors determine the multiplication constants or weights 

hr. The weighted delays are summed, and integrated (using operational amplifier 

circuits) to produce the output signal. 

By using M resistors and neglecting overload and quantization noise effects, the 

integrated output is 
r=O 

y(nT) = E hrX[(fl - r)T] (4.4) 
M-1 

In the transfer function of z-domain Equation 4.4 is 

r=O 

H(z) = 
M-1 

(4.5) 

These are standard equations for finite impulse response (FIR) filters and the mul-

tiplication coefficients hr can be determined by standard methods for FIR filters 

[11]. 
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Figure 4.2: Non-recursive delta modulation filter [10] 
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4.3.2 Recursive Filtering 

Recursive filtering is accomplished by adding a feedback loop to the filter (Figure 4.3). 

The recursive delta modulation filter implements transfer function poles in addition 

to zeros in the transfer function. For the same selectivity as a non-recursive filter, a 

recursive filter requires a lower order. 

A difficulty with such a recursive structure is that feedback of the weighted signal 

tends to overload the delta modulator. When the change in the modulator input 

signal (produced by the subtraction of the feedback signal from the filter input 

signal) exceeds the maximum allowable change 5, the delta modulator will be unable 

to represent the signal. To avoid the overloading tendency, only small weighting 

coefficients can be used and this restricts the range of realizable filters. 

The W coefficients form low-pass filter structures, whose outputs are the inputs 

to the main recursive filter structure through b. The lowpass filter must be designed 

with a gain of less than one, to avoid affecting the overall transfer function of the 

recursive filter. If such filters are used, the coefficients (b1, b2,...) can be specified 

by conventional recursive design methods [6]. 

4.3.3 The Possibility for ROM Implementation 

In hybrid analog-digital circuits, the disadvantages of both the analog and the digital 

components must be examined. The resistors (used for weighting the digitally time 

delayed signals) will be affected by temperature and thermal noise. Over time, the 

resistance may change causing the filter response to change. An all digital imple-

mentation has an advantage over an all analog or an analog-digital technique since 

the components are very temperature insensitive, and aging has no effect. 

As the analog components change over time, the circuit may slowly alter until the 

specifications originally stated no longer apply. By contrast, the digital components 
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Figure 4.3: Recursive delta modulation filter [10]. 

fail in a catastrophic manner. If one of the flip-flops (used as time-delay elements for 

the delta modulated signal) fails the transfer function of the filter will be radically 

changed. In addition to these disadvantages of the hybrid filter, the structure imposes 

limitations on the coefficient weights. Only structures with small valued recursive 

coefficients can be constructed to avoid overloading the input delta modulator. The 

limits imposed on the coefficient values limits the possible filter transfer functions. 

This early attempt at delta modulation filtering has no possibility of integration 

into ROM since it relies on analog components. The resistors in the delta modulation 

filter dictate the values of the multipliers. The resistors determine the gain of each 

time delayed signal in a summing amplifier which converts the digital signal into a 

continuous signal. The continuous signal is integrated to produce the output analog 
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waveform. 

Since the output of the system is a. continuous time signal, a digital-analog con-

verter is not required if an analog signal is desired. This can be a great advantage 

in filter designs, but if the desired output is a delta modulated signal a second delta 

modulator would be required to convert the output of the filter to the digital form. 

The inherent conversion of the resultant signal to analog is useful in applications 

where digital-to-analog conversion is necessary, because delta modulation provides 

an inexpensive conversion to digital form. Then the digital operations and filtering 

required can occur before conversion to analog form is accomplished. The resulting 

signal is analog and requires no additional processing. 

4.4 Digital Filtering of Delta Modulated Signals 

A full digital implementation of a filter for delta modulated signals was achieved by 

Kouvaras [8]. Using simple digital logic components, he created a delta-adder as a 

basic building component. The delta adder enabled the creation of a multiplier and 

finally a limited range of digital filters for delta modulated signals. 

4.4.1 The Delta Adder 

Delta modulated signals are composed of — is and + is, representing - and +8 

respectively. When two such signals are summed the result is not representable as 

a delta modulated signal. Consider two delta modulated signals x1 and x2. Any 

addition of the two signals will always produce an unrepresentable number: 
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zr1 + x2 = 

-1+-1= -2 

-1+1=0 

1+4=0 

1+1=2 

The resulting signal x3 is composed of three states, none of which may be represented 

by the states used in x1 and x2. Kouvaras solved this problem by creating a delta 

adder whose output is the sum of the two inputs divided by two: 

X1 + x2 

2 

This allows the addition of two identical inputs to be expressed without error, 

—1+—i - 

2 

1+ 1 =1, 
2 

but an addition that sums to zero, 

—1+1 - 

2 
0, 

- 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

will introduce an error. Only —1 and 1 may be used to represent the result of the 

addition, so a sum of 0 must be approximated with either a 1 or a —1 which represents 

a significant error. If such an approximation occurred and the delta modulated signal 

was reconstructed the entire signal after the error point would have an offset error of 

5. If several errors occurred, the reconstructed signal could have large offsets errors. 

To avoid such errors a carry is introduced and the adder is implemented according 

to, 

S. = 

C. = xnYncni 

Cn_i = +1 or — 1 
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where n = .. . , —1,0,1,... ; S is an approximation to the half sum and C, is 

the carry. In such an adder, an error is compensated for at the following interval 

by storing the error in the carry and including the carry in the following addition 

operation. The entire input-output relationship is summarized in Table 4.1. 

By introducing the carry, the error at the output of the adder is greater than the 

error in the input delta modulated signal, but the possibility of an accumulation of 

long term errors is eliminated. Such a system allows the error in the output of the 

delta adder (6S) to be [8], 

€Y + €X  
ES 2 

E{-5,0,+ö} 

(4.13) 

(4.14) 

where 8 is the step quantization interval and ej is the error during the quantization 

of input signal i, and ço is an error introduced by the carry. By using rounding, the 

error will always be less than 28 [8]. 

4.4.2 Delta Multiplier 

Since the delta adder incorporates a multiplication by two components, the adder 

may be used as a building block to construct a multiplier, provided the multiplier 

coefficient is between 0 and 1. Any multiplier coefficient between 0 and 1 can be 

thought of as the summation of the signal multiplied by various 2_t terms. For 

Xn Y. Cn_i S. C. 

11 1 1 1 

Table 4.1: All possible inputs with outputs to the delta adder. 
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example, if the coefficient is m = °. lOiib (in binary) or 0.6875 (decimal), then 

the multiplication can be accomplished by successive add-divide-by-two operations. 

Consider X to be an arbitrary delta modulated signal. The multiplication of X by 

m is accomplished by 

X x m = Xx0.6875 

= X X O.iO'ib 

2 23 24 

(2 + 23 + T4-

2 (X  22 23 

2 ( 2 ( 2 22 

I (X + (0 + I (X + (X + 0)))) 

= 

= 

= 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

The zero signal is approximated using an alternating signal called an idling sequence, 

(4.22) 

Using the idling sequence, Equation 4.21 becomes 

g >< m = (x + (i + (x + (X + I)))) . (4.23) 

Equation 4.23 demonstrates how the multiplication of a delta modulated sequence 

X by the coefficient m can be implemented as a sequence of half additions. By using 

this scheme, a delta multiplier can be constructed from delta adders (Figure 4.4). 

The derived circuit can be used for multiplications by positive coefficients only, 

but a negative multiplication can be accomplished by first multiplying the signal 

by a positive coefficient then inverting the signal via a logical inverting gate. Delta 

modulated signals are composed of is and Os which represent is and — is. Since the 

two states of a delta modulated signal ( 1,0) are the logical inverses of each other 
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Figure 4.4: Multiplier for a O•1011b coefficient constructed from delta adders 

and the two represented states ( 1, — 1) are negatives of each other, logical inversion 

of the signal is equivalent to a negation. 

An interesting consequence of the construction of the multiplier using successive 

half additions is the construction of a multiplier tree (Figure 4.5). In this struc-

ture, all possible multiplications (of a specific multiplier coefficient word length) are 

represented. Various multiplication coefficients may be chosen (or changed) by mul-

tiplexing the output of the tree. The error at the output of any branch of the tree 

of multipliers is always less than three times the error of the input signal [8]. 
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4.4.3 Hardware implementation 

The delta multiplier is based on a system of multiple delta adder components, so only 

the delta adder needs to be constructed. By converting Table 4.1 to a binary logic 

representation, where a 0 represents a —1 and a 1 represents a 1, the logic circuit 

required to construct the system can be developed. The binary logic input/output 

relationship is shown in Table 4.2. If this input/output relationship is compared 

with the input/output relationship of a bit-serial full adder the similarity becomes 

apparent. The delta sum (Sn) is the carry of a bit-serial adder, while the delta carry 

(Cn) is the sum of a bit-serial adder. 

X Yn Cn_i Delta sum, 

S. 

Delta carry, 

an 
Bit serial 

sum 
Bit serial 

carry 
00 
10 
01 
11 
00 
10 
01 
1 1 

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
1 
0 
1 
1 
1 

0 
1 
1 
0 
1 
0 
0 
1 

0 
1 
1 
0 
1 
0 
0 
1 

0 
0 
0 
1 
0 
1 
1 
1 

Table 4.2: Delta adder input/output relations rewritten to show correspondence with 
a bit-serial adder 

4.4.4 Filtering Delta modulated Signals 

By using the delta adder as a basic component, Kouvaras constructed several digital 

filters for delta modulated signals [8]. This method has one major drawback: true 

addition is not possible. Only the add-divide-by-two function is possible, so only 

filters that allow a multiplier to be encapsulated into the adder can be constructed. 

For instance, the equation 

y = 0.25x1 + 0.5x2 (4.24) 
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could be implemented as 

= O.5(O.5x1 + x2) (4.25) 

because the divide-by-two nature of the delta adder allows construction of nested 

Additions. On the other hand, an equation such as 

y = O.5x1 + x2 (4.26) 

can not be implemented since the delta adder does not allow true additions. 

Finite impulse response (FIR) filters can be constructed easily from the delta 

adder and delta multiplier components. The divide-by-two property of the delta 

adder can be compensated for by modifying the multiplication coefficients in the 

filter. The maximum length of the cascade of two input adders needed to add all 

the outputs of an FIR filter is (N - 1)/2, where N is the order of the filter. Since 

each addition divides the input by two, the additions can be compensated for by 

multiplying the input to the adder sections by 2(1)/2 in odd order filters. In even 

order filters one tap must be multiplied by 2(1)2, while all others are multiplied by 

22 .  For some filters the additional multiplication can be assimilated by increasing 

the value of the multiplier coefficient. Unfortunately, the delta multiplier can be 

used only with coefficients less than unity, so the number of possible filter transfer 

functions is restricted. 

Recursive filters can also be built with delta adders and delta multipliers, but 

the filter coefficients are restricted due to the add-divide-by-two nature of the delta 

adder. Any addition operation within a filter must include a divide-by-two operation. 

Thus the maximum coefficient within any addition loop within a filter is 21, and 

the more addition operations that occur within a filter loop the lower the maximum 

coefficient. The inherent divide-by-two nature of the delta adder can be compensated 

for by increasing the multiplier coefficient within a filter loop, but since all coefficients 

must be less than unity the number of possible transfer functions is restricted. 
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4.4.5 Delta doubler 

To alleviate the difficulties incurred by the divide-by-two nature of the delta adder, 

Kouvaras presented the delta doubler [9]. Essentially, it is a circuit to multiply a 

-delta modulated signal by two. Using the doubler in series with an adder allows 

true addition at the cost of higher errors. The doubler increases the quantization 

noise to twice the input quantization noise at low frequencies, and three times the 

input quantization noise at high frequencies [9]. By using a more complex version 

of the delta doubler, the quantization noise can be reduced to a 50% increase over 

the input noise. By using the delta doubler, the class of realizable digital filters for 

delta modulated signals is extended to include recursive filters. 

4.4.6 Method Problems 

Kouvaras's approach to digital filtering of delta modulated signals has two draw-

backs. The first is the limited number range of filters that can be constructed using 

the delta adder and delta multiplier. This restriction is lifted by introducing the 

delta doubler, but the doubler increases the quantization error in the filter. A true 

delta adder constructed from a delta adder and a delta doubler will have errors in 

the range of four to six times the error in the input (or three times when using the 

more complex, modified delta doubler). 

Kouvaras suggests that by decreasing the quantization interval the error can 

be reduced to a reasonable level. To decrease the quantization interval in a delta 

modulated system the sample frequency must be increased. The increase in the 

sample frequency is limited by the components used, and any increase in the sample 

frequency will effect the required accuracy of the digital filter. 
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4.4.7 ROM Implementation 

The construction of delta modulation filters with delta adders and delta multipliers 

requires only one component: the delta adder. The delta multiplier is constructed 

from multiple delta adders. 

A hardware implementation of a delta adder is straightforward. The delta adder 

requires a small block of combinational logic or ROM for its computations. This 

block has three inputs and two outputs requiring 2 x 2 = 16 bits for a look-up table 

implementation. 

When constructing a delta modulated filter using delta adders, many small ROM 

components will be required rather than a few large ROM blocks. The delta adders, 

which compose all the arithmetic parts of the system, require many small ROM 

blocks which would be difficult to construct. Multipliers require many delta adder 

blocks so the entire system is constructed from many small ROM blocks. 

ROM components are not well organized as small memory blocks. Memories are 

available as large blocks and an implementation using ROM components should use 

large blocks of memory rather than small blocks. 

4.5 Filtering Ternary Delta Modulation 

In delta modulation, only two states are used to represent the change of the input. 

This is convenient for a minimal, binary representation, but there is no necessity to 

encode a signal as only two values. A second possible difference coding technique, 

based on ternary signals has been presented [19, 20, 21]. Instead of encoding the 

error signal as a sequence of +5 and —5 signals, the error signal is encoded as +5, 

0, or —5. Following a similar path to the development of the delta adder, a ternary 

adder has been constructed allowing implementations of a limited class of digital 

filters [19]. 
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4.5.1 Basic Ternary Delta Modulation 

The ternary delta modulation system is very similar to the previously presented 

delta modulation method. The major difference between these two techniques is the 

choice of quantization scheme. In ternary delta modulation the quantizer is a three 

state device as opposed to the two state device used in delta modulation. The overall 

ternary delta modulation scheme is shown in Figure 4.6. 

The quantization scheme quantizes the error signal to three states: +6, 0, or 

—6, which are represented by +1, 0, or — 1, respectively. The addition of a zero 

representation in the quantizer reduces the overall error in the represented signal by 

50% over binary delta modulation quantization. The higher signal to noise ratio is 

desirable, but the ternary signals can no longer be processed using the delta adder 

presented earlier. 

Arithmetic operations on ternary signals require the introduction of a new set of 

components. In an approach similar to the delta adder method, a ternary adder has 

been created [19]. Multiple ternary adders are combined to form ternary multipliers, 

which are used in combination with ternary adders to create a limited class of digital 

filters. The digital filters require ternary delta modulated inputs and produce ternary 
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Figure 4.6: The basic ternary delta modulation system 
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delta modulated outputs. 

4.5.2 Ternary adder 

Unlike in delta modulation, the sum of two ternary delta modulation signals (X 

and Y) will not always add to an unrepresentable number. Table 4.3 shows that the 

sum, 

Sn=xn+Yn (4.27) 

possesses only two unrepresentable values: —2 and 2. 

If an output carry term is added to allow accurate representations of the sum, 

a carry must be added as an input term of the system. Again this would leave. two 

unrepresentable states: —3 and 3. To eliminate the difficulty in these representations, 

Zrili[19] proposed an adding component called the ternary adder. 

The ternary adder is not a true addition operation, but an addition with a divide 

by 3 in series. The output of the adder (S and C) as a function of the input Z, is 

found in Table 4.4, where Z,- represents the true sum plus carry, 

ZnXn+Yn+Cni (4.28) 

The ternary adder allows all possible inputs to be represented, although some output 

states must be approximated over several iterations. 

X. Y. S 
-1 -1 -2 
-1 0 -1 
-1 +1 0 
0 -1 -1 
00 0 
0+1+1 

+1 -1 0 
+1 0 +1 
+1+1+2 

Table 4.3: Input/output relations for the addition of ternary signals 
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Z, 3 2 1 0 -1 -2 -3 
S, +1 +1 0 0 0 -1 -1 
C, 0 -1 +1 0 -1 +1 0 

Table 4.4: Zn as a function of sum, S,,., and carry, C. 

The values for the carry, C, and the one-third sum, S,, are calculated from the 

equations: 

C. (Z -  9Z)(3Z —8)  = 
40 

Zn — cn 
Sn = 

S. = [Xn+Yn(CnCn_i)] 

= +1, 0 o — 1 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

where n = .. ., —3, —2, — 1,0, 1,2,3,... Using this approach, the error in the ternary 

adder was shown to be less than 16 where 6 is the quantization interval of the 

ternary encoder [19]. 

4.5.3 Ternary Multiplier 

The ternary multiplier is constructed in much the same manner as the delta multi-

plier explained earlier. Since the ternary adder is an addition and divide-by-three 

operation, successive ternary additions of the signal with zero or itself will perform 

multiplications for coefficients between 0 and 1. For example, to multiply an arbi-

trary ternary signal X by a multiplication coefficient m = 0.12346, 

X x m = X x 0.12346 (4.33) 

/1 1\ 
= X 3 2 + (4.34) 

= 4+ 4 (4.35) 

= .(o+x+x) (4.36) 

= (o+ (x + x)) (4.37) 
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1/ 1 
= o+(x+(o+x))) 

1/ 1 

=  • ( _3( + X)))) 

(4.38) 

(4.39) 

.By using Equation 4.39, and the ternary adder previously explained, a ternary mul-

tiplier with a coefficient of m can be constructed (Figure 4.7). Negative coefficients 

are implemented by using positive multipliers followed by ternary inversion, where 

the —1 state becomes 1, the 1 state becomes —1 and the zero state is unchanged 

by inversion. The error in the ternary multiplier is less than 25, where S is the 

quantization interval [19]. 

4.5.4 Ternary Delta modulation Filters 

By using the ternary delta adder and the ternary multiplier (constructed from 

adders), a limited class of filters is realizable [19]. Realizable filter structures must 

allow all addition operations to incorporate a multiplication by 1 and the multiplica-

tion coefficients are restricted to values between —0.5 and 0.5. Since the multiplier 

coefficients in ternary filters are restricted to a narrower range of values, the num-

ber of possible realizable ternary delta modulation filter structures is less than the 

number of realizable delta modulation filter structures. This disadvantage is com-

pensated for by lower errors in the ternary system since ternary delta modulation, 

has a 50% lower quantization than standard delta modulation. 

+ 

3 
+ 

3 

-0-

3 3 

Figure 4.7: A ternary multiplier with a coefficient of 0.12346. 
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4.5.5 Ternary Delta Tripler 

The restrictions on the number of realizable filter structures is lifted by introduc-

ing a ternary delta tripler, which triples the input signal [20]. By using a ternary 

tripler in series with a ternary adder, true addition becomes possible, at the cost of 

increased errors. Multiplication by coefficients above 0.5 become possible as well by 

a combination of ternary multipliers, ternary adders, and ternary delta triplers. 

The tripler introduces a larger error in the addition operation when it is cascaded 

with a ternary adder [20]. The increased error can be reduced by increasing the 

sampling frequency and reducing the step quantization interval. 

4.5.6 Hardware 

The ternary delta adder is constructed using three-state logic on custom integrated 

circuit chips [19]. The approach allows maximum use of the available routing, since 

only one multilevel data line is required for data transmission. Such an approach is 

reasonable for large production runs, but for smaller production runs it is prohibitive. 

The use of multivalue logic (three states in this case) prevents the use of standard 

logic design tools. A new set of logic blocks, encompassing the three state nature of 

the system, must be designed from analog components, which increases the cost of 

a filter construction using ternary logic. 

4.5.7 Method Problems 

The greatest drawback of the ternary delta modulation system is the fabrication of 

custom IC chips for the ternary logic. An alternative implementation is to use a 

two bit parallel word in the designed system. This would allow the representation of 

three states, yet allow implementation using standard logic devices. In this scheme, 

one bit in four (25%) of the states in the system are unused, although this may be 

tolerated since a two bit wordlength is considerably easier to route on a chip than a 
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12 or 15 bit parallel word. 

In either method of fabrication, the range of filters that can be implemented 

is limited. The 0.5 maximum coefficient on a multiplier is a very harsh restriction, 

especially when the multiplier is expected to compensate for the divide by 3 operation 

of the adder. The ternary delta tripler alleviates the problem, but increases the error. 

Direct conversion to ROM based systems is awkward since the method is based on 

the assumption of many small units, rather than on large state-machine blocks more 

suited to the ROM available today. 

4.6 Filtering of Sigma-Delta Modulated Signals 

An alternative structure to delta modulation is sigma-delta modulation. Sigma-

delta modulation is a difference encoding method similar to delta modulation, but 

the integrator (decoder) is placed prior to the difference modulator. This allows 

sigma-delta modulation to be more robust against channel or coding errors than is 

delta modulation [18]. 

4.6.1 The Basics of Sigma-Delta Modulation 

The delta-sigma modulator (Figure 4.8) consists of a delta modulator preceded by an 

integrator. The delta modulator encodes the integrated input signal. The quantizer 

within the delta modulator differs from previous quantizers in that it quantizes to 

the full dynamic range instead of a small quantization step. 

Let A represent the maximum absolute dynamic range, so the full dynamic range 

is between —A and A. To avoid distortions in encoding the input signal, designated 

as x(t), the input must always lie within the dynamic range, 

- A ≥ x(t) ≥ A . (4.40) 
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Figure 4.8: Basic sigma-delta modulation system. 

In a sigma-delta system the quantizer will quantize the input to either A or —A 

which can be encoded using one bit. 

To convert the delta-sigma signal to a multilevel signal a decoder is required, 

which is a sharp cut-off lowpass filter. The lowpass filter averages the delta-sigma 

signal (made up of A and —A impulses) and produces a multilevel output signal. 

This multilevel signal can then be converted to analog if required. 

The overall transfer function of the system remains unity because only the order 

of the components has been changed from the delta modulation system. In a linear 

system, the transfer function is independent of the order of operations, assuming the 

final averaging filter has a passband gain of unity. 

4.6.2 Filtering Sigma-Delta Modulated Signals 

Filtering sigma-delta modulation encoded signals has been accomplished in a fully 

digital FIR implementation [18]. The FIR filter (Figure 4.9) is a direct implemen-

tation of the convolution of the desired impulse response of the filter and the input. 

The input signal x(t) is sampled at R times the Nyquist rate and the oversampled 

signal is encoded as a sigma-delta sequence v,. The impulse response of the Kt 
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Figure 4.9: A sigma-delta modulation FIR filter. 

order filter, 

an = a0, a1,.. . aK_a, aK..4 

is up-sampled by R and encoded in a sigma-delta sequence 

Vn = Vcj, V1,. . . VRK_1 

(4.41) 

(4.42) 

The sequence Vn is undefined before the filter begins operation, and this leads to 

unknown initial conditions within the filter. It is assumed that the filter begins in a 

zero state, but any initial state may be chosen. Non-zero initial conditions will lead 

to a transitory error during the first RK - 1 values, but the initial condition would 

not effect long term behaviour [18]. 

The convolution of the input signal u, and the impulse response of the filter v 

is 
RK-1 

wn = (4.43) 

and this multibit signal is the output of the filter. After low-pass filtering the result-

ing analog signal represents the filtered input signal. 

Since both ui and vi are binary signals (composed of is and Os) so that their 
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multiplication can be carried out by a simple logic circuit. This leads to considerable 

reduction in the complexity of the circuit design. Although the multipliers required 

are considerably simplified the adder has increased in complexity. The adder is 

implemented as a full parallel addition of KR - 1 one bit words. 

4.6.3 Problems in the Sigma-Delta Approach 

The filter requires very high order to function with reasonable accuracy. Since the 

implementation is restricted to FIR filters, the filter order is higher than would 

be required for an recursive implementation. This high order impulse response is 

upsampled by R times to produce KR - 1 coefficients which necessitate a KR - 1 

input adder to produce w. 

The adder can be implemented as a multiplexed adder, or a counter (since all 

inputs are binary), but for either case the adder must operate at higher speeds than 

the sigma-delta filter. Since the filter is already oversampled by R, the adder must 

operate at (KR - 1) R times the Nyquist rate to be implemented as a counter with 

one input bit. The high operating speed of the adder reduces the maximum sample 

rate of the sigma-delta filter to a value below the maximum sample rate of a similar 

delta modulation filter. 

4.6.4 ROM Implementation 

The main difficulty in ROM based implementation is the large parallel adder in the 

filter. All states must be added together at the output and this necessitates a very 

large parallel adder. Reducing the ROM to a reasonable size by multiplexing the 

adder will reduce the maximum Nyquist frequency of the input. 

The difficulty in implementation is the assumption of inexpensive large adders. 

In most technologies, the adder is an inexpensive (both in chip area and delay time) 

component while the multiplier is expensive. In a ROM based implementation, which 
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focuses on state machine implementations, the adder haà double the number of inputs 

required for a multiplier leading to a memory requirement which is the square of the 

memory required for a ROM multiplier. In the delta-sigma filter, the adder at the 

output of the filter has KR - 1 inputs and implementing this in ROM is difficult. 

Since R is typically in the range of 64 to 1024 [18] a full parallel implementation for 

64 input bits is impractical with present technology. A adder with 64 input lines 

leads to a ROM requiring 264 = 1.844 x iO' bits of storage. 

4.7 Conclusions 

In the previous sections, three approaches to filtering reduced wordlength signals 

have been examined. The examination demonstrates that both approaches are in-

appropriate for ROM based implementations. In the following chapter, the author 

presents a filtering technique for reduced wordlength signals called difference signals. 



Chapter 5 

Filtering Difference Signals 

In Chapter 1, the memory requirements for a block ROM implementation of a 5t1j or-

der, 12-bit wordlength filter structure was determined to be 0.34 tera-terabytes. 

Chapter 2 explains the previous use of ROM components in digital filters. In chap-

ter 3, the memory requirements for a block ROM filter was reduced by encoding 

only the reachable states of the filter. Although the state space of the filter can be 

reduced to a fraction of its previous size, the memory requirements of the approach 

are still too large to allow construction. In the previous chapter a second approach, 

where the input, output and states are reduced in wordlength using delta modu-

lation, ternary delta modulation, or sigma delta modulation, was examined. The 

chapter provides the background for the author's method which is explained in this 

chapter. 

5.1 Introduction 

Chapters 2 and 3 outline ROM filter implementations based on single ROM blocks, 

but when the implementation is partitioned into individual look-up tables for each 

adder and multiplier, a 5' order lossless discrete integrator (LDI) structure (chosen 

for its low sensitivity to coefficient wordlengths [3]) would require much less memory. 

If one look-up table is implemented for each multiplier and adder in the 51h order 

LDI structure with a 12-bit wordlength, the entire structure would require 2.77 x 108 

bytes or 277 megabytes (Table 5.1). Although the memory required for such an 

implementation is much smaller than a block ROM state machine implementation, 

it is still very large and can be further reduced by combining multiplication blocks 

70 
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Components Memory Required 
in bits in bytes 

ii adders 
11 multipliers (including x - is) 
total memory 

2.21 x 109 
5.41 x io 
2.22 x 109 

2.77 x 108 

6.76 x iO 
2.77 x 108 

Table 5.1: Memory requirements for a 5th order LDI using look-up tables. 

with the adder block. 

When an adder block is realized as a ROM look-up table, it is realized as an 

arbitrary dual input function: y = f(xi, x2). If all inputs and outputs have the 

same dynamic range (—A to A) then the function f(xj, x2) is accurate provided 

—A ≥ f(xi, x2) ≥ A. By using an arbitrary two input function, all the multipliers 

can be combined with the adder components with no loss in accuracy. The combined 

adder/multiplier function is a two input block representing 

Y = f(xi, x2) = m1a1 + rn2x2 (5.1) 

where mi are the arbitrary multiplier coefficients and rj are the input signals. By 

using such a set of programmed two input blocks, the entire filter can be constructed. 

The partitioning of the two input blocks for the 51h order LDI structure is shown in 

Figure 5.1 where dashed lines designate each two input block (labeled A to L) 

By Using 11 dual input blocks, the memory required for the 5' order LDI filter 

is reduced by the amount of ROM required for the multipliers (5.41 x 101 bits). 

x(nt) 

Figure 5.1: A 5' order LDI structure composed of two input blocks. 
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The reduction is small compared to the overall memory requirements because the 

multiplier components eliminated require very little space compared to the adder 

components, which comprise greater than 99% of the memory requirements. The 

small space requirements for multiplier components compared to adder components 

illustrates a fundamental difference between a conventional implementation and full 

RUM based implementations. 

In conventional designs, the majority of resources are consumed by multipliers. 

Multipliers require more chip area, more gates and are often the slowest components 

in a filter design. Most techniques that use ROM based look-up tables to increase the 

speed of the multiplier assume inexpensive adders (Chapter 2). When all components 

are implemented with ROM look-up tables the assumption of inexpensive adders is 

false. In full ROM look-up table implementations, the majority of the hardware is 

consumed by adder components rather than multiplier components because adder 

components require twice the number of inputs. The doubling of the number of 

inputs causes an adder to require the square of the memory required for a multiplier 

block of the same wordlength. This shifts the focus of design work from multiplier 

components to adder components. 

The shift in focus from multipliers to adders requires a novel design strategy. 

In Chapter 3, the number of possible super-states that the machine may lie in is 

reduced. This reduced the number of bits required to represent the super-state, and 

thus reduced the memory requirements of a ROM based implementation of the filter. 

An alternative approach is the reduction of the length of the word used to rep-

resent each of the individual states and input. This approach has the advantage 

of reducing the memory requirements faster than the super-state reduction method 

since more bits can be removed from the representation of the state. 

In this chapter, the basic premise for state wordlength reduction by oversampling 
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and encoding the change in the input signal rather than the amplitude of the signal is 

explained. Since arithmetic operations on the difference signal can not be performed 

by existing components, novel difference multiplier and difference adder components 

are defined. Finally a simulation of a 51h order LDI filter is presented. 

5.2 Difference Signals 

Highly oversampled, bandlimited signals have a high correlation between the present 

sample value and the previous sample value. The difference between these two 

samples decreases as the sample rate increases. The maximum change of an input 

(with a maximum amplitude of the full dynamic range A and a frequency f) between 

two samples (separated by 2's) was found in Equation 4.3 and is 

2irAfma  

fs 
If the frequency of the input is set to the highest unaliased input frequency which is 

half the Nyquist frequency, 

Amax = 2irA fT3 = 

f8 = 2Rfma3, , (5.2) 

where R is the oversampling rate, Equation 4.3 can be rewritten as 

A 2Airfma3j - Air 
'-max - - 

hJIJmac 

The maximum change A max of the input is inversely related to the ratio of oversam-

pling R. Every doubling of the oversampling ratio R will halve the maximum change 

in the signal tImax. By reducing the maximum change in the signal the required 

dynamic range of the filter is reduced which reduces the the total number of levels 

required to represent a quantized signal. When the number of levels is reduced to 

half the original number of levels one bit can be removed from the binary word used 

to represent the signal. In general the number of bits removed, /3, is 

/3 = [log2 (R)] (5.4) 
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For a ROM access speed of 25 MHz (40 ns), telephone data (frna = 3000 Hz) 

potentially can be reduced by 12 bits (Figure 5.2). Larger reductions are possible by 

using faster ROM components. 

A similar study of bit reduction for audio range data (fmax = 22 kHz) leads to 

a maximum potential reduction of 8 bits (Figure 5.3), but larger bit reductions are 

possible by using faster ROM components. 

Both Figure 5.2 and Figure 5.3 demonstrate that by oversampling a bandlimited 

input signal it is possible to significantly reduce the wordlength of the data. For 

sufficiently small initial wordlengths, or sufficiently large oversampling rates, the 

input can be reduced to two bits representing three states: +6, 0, .-6, where 6 is the 

step quantization interval. 

The similarity to delta modulation and especially to ternary delta modulation is 

clear, but unlike either approach the maximum number of levels to which the input 

will be quantized is not defined. The number of quantization levels depends on the 

step quantization interval 6, the oversampling ratio B and the maximum change of 

the input signal Lmax. 

5.3 Signal Coding, Reconstruction and Filtering 

In the previous section, the possibility of reducing the wordlength necessary to repre-

sent the input signal by encoding it as a difference signal was demonstrated. In this 

section, the methods by which the difference signal is created and the output signal 

is reconstructed are discussed. The error introduced by the encoding and decoding 

of the signals is determined and the potential for filtering difference signals before 

reconstruction is examined. 
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5.3.1 Encoding of Difference Signals 

The coding of the input signal into a difference signal is accomplished by a difference 

encoder (Dencoder) or difference modulator (Figure 5.4). There are many similarities 

-between this modulator and modulators used for delta modulation and ternary delta 

modulation. In all three cases, the overall structure is similar, but the number of 

quantization levels differs. In delta modulation, two quantization levels are required, 

while in ternary delta modulation three quantization levels are needed. The Dencoder 

has an arbitrary odd number of quantization levels L which depends on the maximum 

change in the input and the quantization step interval such that 

L=I2 1+1 
where the ceiling operator on x is defined as 

Fv1=min{iEI:i≥x} (5.6) 

(5.5) 

Since the maximum change in the input, Am, is dependent on the oversampling 
ratio, R and on the maximum amplitude (or dynamic range) of the input A (Equa-

tion 5.3), Equation 5.5 becomes 

L=121+1 . (5.7) 

The step quantization interval 5 reflects the accuracy of the quantization of the 

input signal. If the maximum dynamic range of the input signal A is assumed to be 

constant, then increasing 5 will decrease the number of quantization levels required, 

but the larger 5 becomes, the larger is the error in the quantization of the input. 

Since the error in the quantization of the input is related to 5, 5 is effectively fixed 

for any desired quantization error. Only the oversampling ratio R remains to adjust 

the number of levels in the quantizer. 

By increasing R the number of quantization levels L can be reduced without 

influencing the accuracy of the quantization of the input. Of course R can only 
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Figure 5.4: Difference encoder (Dencoder) block diagram. 

be increased to the limits of the implementing technology, so in the 25 MHz ROM 

example used earlier, 

Raudjo ≤ (25 MHz)/(2 x 22 kHz) = 568.2 

for audio bandwidth data, while for telephone bandwidth data 

Rtezephone ≤ (25 MHz)/(2 x 3 kHz) = 4 166.7 

(5.8) 

(5.9) 

Using the Dencoder, the oversampled input signal is encoded as an L level signal. 

These levels are encoded as binary words with a b bit word length, where 

b= [log,(L) . (5.10) 

It is this narrow binary word which is transmitted to the difference decoder (or 

demodulator) which reconstructs the output signal. 

5.3.2 Decoding of Difference Signals 

The difference signal decoder (Ddecoder) used to reconstruct the output signal from 

the difference signal created by the Dencoder is identical to the decoder used in both 

delta modulation and ternary delta modulation, that is, it is an integrator. The input 
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sample is summed with the previous output sample and the binary representation 

of the signal is then converted to an analog signal via a digital-to-analog (D/A) 

converter and a lowpass filter. The D/A converter is effectively a multiplication by & 

if the binary multilevel signal created by the Ddecoder is considered a signed integer. 

The lowpass filter smooths the quantized output to produce the final analog signal. 

In the discrete time domain, the integrator effectively places a pole at z = 1 

canceling the zero at z = 1 produced by the encoder. The cancellation of the zero 

by the pole implies a transfer function of unity for the overall system. 

In the discrete time domain, the operation of the tencoder can be modeled as 

i(n) = x(n) - x(n - 1) , (5.11) 

where represents the quantized discrete time difference signal of the quantized input 

x. The difference signal is quantized to L levels, but in this case L is assumed to 

be an infinite number of levels, so the non-linear effect of the quantizer is effectively 

ignored to allow a linear analysis. 

The Ddecoder can be modeled as 

y(n)=(n)+y(n-1) (5.12) 

where y(n) represent the quantized discrete time output signal at discrete time n. 

Using the Z-transform (Z[.]) of the discrete time domain equations, the corre-

sponding transfer functions are 

HDencoder 

HDdecoder 

Hoverall = HDencoderHDdecoder = (i - z1)  --

(5.13) 

(5.14) 

= 1 • (5.15) 

This analysis is valid for discrete time signals where L -+ co which implies 6 -* 0. If 

the quantization step & in not infinitely small the error at the output of the system 
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will not be infinitely small. The error is related to S and like the delta modulation 

system explained in the previous chapter, an arbitrarily small error is possible by a 

suitable choice of S. 

5.3.3 Error in the Encoding/Decoding System 

When the step quantization interval, 5, is greater than 0 the quantizer has an 

associated error. This error can be modeled as noise. If the quantizer in Figure 5.4 

is replaced by an adder with a noise input i, then using superposition and assuming 

zero initial conditions, the output of the overall system is 

Y = X+'I7 . (5.16) 

This implies that the noise at the output of the system is dependent on the noise 

introduced by the quantizer. 

The quantization scheme Q[.] is the method by which the input is quantized into 

the digital levels used internally by the system and it is this quantization scheme 

that determines the range of q. The difference between any two adjacent levels in 

the quantization scheme is the step quantization interval 5. The error quantization 

interval q is the maximum difference between a quantized signal and its continuous 

counterpart. The error interval q depends on S and the rounding scheme of Q[.]. 

If Q[.] uses truncation rounding, then q = 5. On the other hand, if Q[.] uses 

magnitude rounding, q = 5. The noise in the quantizerq is restricted by q such 

that JqJ ≤ q, so the output will be within one error quantization interval of the ideal 

continuous output. 

After the input signal is quantized it is converted to a difference signal (composed 

of L levels) by the Dencoder. The error in the signal at the output is twice the error 

of the input signal to the difference encoder. To demonstrate that this is so, assume 

that an analog input signal is sampled to create a discrete time signal x(n). The 
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discrete time signal is quantized and can be represented as the discrete time signal 

with discrete time noise, 

x(n)+'q(n) . (5.17) 

The signal is then converted to a difference signal using the Dencoder, giving 

= (x(n) + (n)) - (x(n - 1) + i(n - 1)) (5.18) 

= (x(n) - x(n - 1)) + ((n) - - 1)) (5.19) 

= z(n) + i(n) (5.20) 

The noisy difference signal is the sum of the difference signal of the input plus the 

difference signal of the noise. For magnitude rounding the noise i(n) is restricted to 

(5.21) 

so the difference signal of the noise is restricted to 

- 6 ≥ (n) ≤ 6 . (5.22) 

The above analysis assumes zero initial conditions within the Dencoder. If the 

Dencoder's previous input (the stored input) does not match the previous value of 

the input, the Dencoder's output will be erroneous. The error will be corrected on 

the next sample, but the error will cause a DC offset at the output of the Ddecoder. 

The signal at the output of the Dencoder is applied to the input of the Ddecoder, 

and the output of the Ddecoder is 

y(n) = 2_1 [ 1_1Z['(n)]] (5.23) 

= 2_i [ 1  2 [(n) + (n)]] (5.24) 

11 
= Z1 1 -  (z [x(n)] (1— z1) +2 [(n)] (1— z 1))] (5.25) 

= 2_i [2 [x(n)] +2 [ri(n)]] (5.26) 

= x(n)+'q(n) (5.27) 
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The output of the Ddecoder is the sum of the noise and the input signal. The noise 

here is restricted to 

(5.28) 

for magnitude rounding. 

The noise analysis for the Ddecoder assumes that the Ddecoder begins operation 

in a zero state. If the previous output (which is internally stored) is not correct a 

DC offset error occurs. The error persists because the Ddecoder is a discrete time 

integrator and has no method of correcting such an error. 

5.3.4 Filtering Difference Signals 

By using the Dencoder, a bandlimited input signal can be encoded as a difference 

signal, and this difference signal need not be converted to analog to be filtered. 

Consider an arbitrary bandlimited discrete time input x(n) and a filter transfer 

function H(z). 

Y(z) = H(z) X(z) , (5.29) 

where Y(z) = Z [y(n)] and X(z) = Z [x(n)]. If the input X(z) is encoded, and then 

decoded, it will still be equal to X(z), 

Thus, 

X(z) = HDdecoder(Z) HDencoder(Z) . X(z) 

(l— z1) (l—z').X(z) 

=X(z) 

Y(z) = H(z) . X(z) 

(5.30) 

(5.31) 

(5.32) 

= H(z) . HDdecoder(Z) . HDencoder(Z) X(z) . (5.33) 
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In the frequency domain, multiplication is commutative, so Equation 5.33 can be 

rearranged to 

Y(z) = HDdecoder(Z) H(z) HDencoder(Z) X(Z) (5.34) 

Equation 5.34 demonstrates that it is possible to encode the signal, filter the signal 

while it is encoded and finally construct the output signal using the decoder. The 

output signal will be the filtered input signal, except for quantization error. 

5.4 Components 

The construction of difference filters requires novel multiplier and adder components. 

Components developed for amplitude signals are inappropriate for difference signal 

operations because of the limited wordlength imposed by L levels. Both addition 

and multiplication components have been developed for processing difference signals 

and in this section the structure and error encountered in each of these components 

are examined. 

5.4.1 Adding Difference Signals 

The addition of two difference signals poses several problems. Earlier efforts solved 

the summing problem by avoiding true addition [8, 19, 21]. A multiplier from else-

where in the structure is assimilated into the adder to prevent additions summing 

to values beyond the representable values. This approach allows a limited class of 

digital filters to be constructed. 

The difference adder or Dadder (Figure 5.5) presented here allows true addition of 

difference signals. Two inputs and a carry produce an output sum and a carry. The 

output carry is cycled back (through a unit delay) into the Dadder. The wordlength 

of the inputs (b1 and b2) and the wordlength of the sum (bsum) tend to be identical 
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Input 1 

Input 2 Sum 

Figure 5.5: Block diagram of the difference adder (Dadder). 

while the wordlength of the carry (be) depends on the quantization scheme and the 

number of addition operations to be cascaded. 

The Dadder is composed of a delay element (labeled T) and a single ROM block 

(the dashed box in Figure 5.5) programmed to perform 

where 

O(ri + 1) = Q[C(m) + i(n) + X2(fl)} (5.35) 

C(n + 1) = Q[C(n) + 51(n) + 2(n) - (n + 1)] , (5.36) 

Q{•] is the quantization/saturation scheme of the inputs (and sum) 

Q[] is the quantization/saturation scheme of the carry 

i(n) is the input difference signal 1 

2(n) is the input difference signal 2 

C(n) is the carry 

11(n) is the output difference signal representing the sum. 

The quantization scheme of the output signal and the carry are represented separately 

to allow separate quantization schemes. 

The carry C is used to prevent the loss of the error in the computation of the 

sum. At any time, the output is a quantized approximation to the sum, while the 

carry is the error in the approximation. The carry is cycled back into the Dadder to 
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allow a second approximation on the next cycle. By constantly correcting for errors 

in the sum of the signals, close approximations to the sum are created. 

The carry is the error in the output when compared to the sum of the two input 

signals. If the carry should overflow, or be saturated, the error will be passed on to 

the output of the Dadder and will be unrecoverable. This error will appear at the 

output of a Ddecoder as a DC offset. To prevent carry overflow, or saturation, the 

maximum value of the carry must be calculated. 

The maximum amplitude change representable is the maximum change L.ma3J of 

the input signal x(t). Any two inputs xi(t) and x2(t) must, at most, have amplitude 

changes summing to  

i(t) + i2(t) (5.37) 

where nj and ' 2 represent the time varying amplitude changes of inputs xi(t) and 

x2(t), respectively. If the sum of the amplitude changes are greater than ' mac the 

Dencoder will be unable to represent the signal. 

The errors produced during the encoding of xi(t) and x2(t) into the difference 

signals (t) and 2(t) are equally distributed in time. This means that any positive 

amplitude change tc. is represented by a repeating pattern of two integers (k and 1) 

scaled by the quantization step interval 6 such that 

(5.38) 

(5.39) 

where ic represents the change in amplitude between samples. If the number of k 

samples in the sequence is represented by NA; and the number of 1 samples in the 

sequence is represented by N1 then for any positive amplitude change i, 

K - kNk+IN,  

Nk+Nj 
(5.40) 
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By separating Equation 5.40 into two equations, 

r. = kNk-I-1NI 

5 = N+N, 

the number of k and 1 integers in the sequence is found to be 

(5.41) 

(5.42) 

Si - K 

Nk = i — k (5.43) 

K -N1 = 5k  
i—k (5.44) 

The number of consecutive k integers per 1 in a difference signal with a constant 

amplitude change K is the ratio 

If (for convenience) we assume 

then 

Since 

Nk - Si - K 

- K - 5k 
(5.45) 

5=1 (5.46) 

Nk - i - K 

N1 - K -- k 

k= IK1 

1 LICJ 

the number of consecutive ks per i is 

NkLK] — K  
N1 K—fK] 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

If the maximum summing input to the Dadder is maintained over more than 

one sample the carry will accumulate. The maximum sum can only be maintained 
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when both signals are at the k level, so the number of samples that the carry will 

accumulate, called Na, is 

Na = minI  - K1 L' 2i - K2) 

Ini - licil K2 1tC21 
(5.51) 

because this is the maximum number of consecutive, simultaneous, maximum sum-

mations that may occur for any constant amplitude change input. 

The sum in the Dadder will be the maximum when the Dadder is stimulated with 

two constant inputs, such that 

Amax = n1(t) + n2(t) . (5.52) 

By combining Equation 5.51 and Equation 5.52 the maximum number of carry ac-

cumulation samples is 

Nh19h = mm 
L1i] - Ki L'max - 'iJ - ( maz - xi) I 
'i - [nil , ( max - ic1) - f mav - nil 

(5.53) 

The maximum number of carry accumulation samples is shown in Figure 5.6, which 

assumes Amax to be 10. The choice of is arbitrary, so the maximum number 

of carry accumulation samples Nh 9h will always be 1 for any set of input amplitude 

changes that obey Equation 5.52. 

The longest simultaneous consecutive carry accumulation sample points occur 

when 

I max maxAmax 
Kx11Cz2 2 2 2 

Under these conditions the two difference input signals are 

xi = {..., k,l,lc,l,k,l,k .... } 

= {..., k,l,k,l,k,l,k .... } 

The carry will increment by 1 on every k sample since 

(5.54) 

(5.55) 

(5.56) 

k+k = 2k (5.57) 
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Figure 5.6: Maximum number of consecutive carry accumulation samples. 

= 2 ki (5.58) 

(5.59) 

(5.60) 

Amax +1 , (5.61) 

and the carry will decrement by 1 on every 1 sample since 

(r%, 2+ 

= 2ic+1 

I 

1+1 = 21 (5.62) 

= 2 ki (5.63) 

= /  2 - 1\ (5.64) 

= 2,c - 1 (5.65) 

= Amax - 1 . (5.66) 

Therefore, the maximum carry required in the Dadder is 1 level representing an 

increment of S. 

The derivation presented is valid for positive amplitude changes, but maximum 
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carry for negative amplitude changes can be found by similar means to be a -1 level. In 

total, three states are required by the Dadder to store the carry: {- 1, 0, 1} which 

represent {-6, 0, 6}. 

Error in the Dadder 

The error in the Dadder can be found for inputs quantized to any number of levels, L. 

If the rounding scheme of the system is chosen such that the sum requires a maximum 

of 3 levels for representation, the noise is introduced only by the quantization of the 

inputs. The quantization noise is modeled as noise sources ql and 772. In such a case, 

assuming the difference sum 9(n) is always representable, the output of the Dadder 

is 

9(n) = i(fl) + X̂2(n) + C(n) 

where is the quantized difference signal x(n) and C is the carry which can take 

values of —6,0,8. The quantization noise is modeled as noise sources in the inputs, 

9(n) = xi(n) + 771(n) + x2(n) + 772(n) + C(n) - 

This equation is regrouped to clearly show the summation of the signal and the error. 

9(n) = Xi(fl) + X2(n)+771(n) + i12(n)+C(n) (5.67) 

y(n) (n) 

where C(n) can be 0, or ±6. The greatest possible error in such a configuration is the 

sum of the maximum input errors and a possible carry error if the initial conditions 

are in error, 

6total = 61 + 62 + C(0) , (5.68) 

where 6jotal is the error at the output of the Dadder, el is the error in the first input 

signal, 62 is the error in the second input signal, C(0) is the initial carry. The max-

imum values of the noise sources depend on the quantization scheme implemented. 
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For truncation rounding the maximum errors are 

1,f2=6 

while for magnitude rounding the maximum errors are 

(5.69) 

(5.70) 

An error in the initial carry will appear at the output as a DC offset. It will be a 

constant error of either .5 or —S. If the Dadder is initialized with zero carry (C(0) = 0) 

and the input signals have x(0) = 0 the absolute, total error will be 

6 t0ta1 < ki + E21 (5.71) 

It was mentioned earlier that the Dadder operates properly on input signals 

provided the error in the input signals is well distributed in time. Unfortunately, the 

output of the Dadder does not have this quality and this leads to larger errors in 

systems involving consecutive additions. If the addition of two inputs with amplitude 

changes of i = = is considered, the two input sequences generated for L = 3 

are 

= ... 1000100010001000... 

...1000100010001000... 

Using a Dadder these sequences will sum to 

= ... 1100110011001100... 

(5.72) 

(5.73) 

(5.74) 

The new sequence 9 represents a amplitude change of ic' = , but the error in 9 is 

twice that of either input or 2• If two such sequences are to be added together 

the carry cannot be represented by a three states—five states would be required. 

This error doubling (and carry increase) points to a serious limitation to the 

application of the Dadder. Only if two inputs are to be added with no subsequent 
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adding can the Dadder be used with a single three state carry. In FIR structures 

the error in the output increases for each Dadder in an addition sequence, but it is 

possible to build FIR structures by increasing the carry of the later Dadders in the 

.cascade. 

In IIR structures the limitation is much more serious. The cycling of the filter 

state signals means that at no time can the errors be assumed to be equally dis-

tributed in time and the Dadder could increase the error to an intolerable level. In 

such a situation the carry required cannot be easily estimated. 

Previous investigations avoid the escalating error by using add divide by in (where 

M < 1 ) [8, 19, 21]. The division reduces the input to a representable level, and bounds 

the maximum error. The maximum error in such systems is bounded because the 

error is an infinite geometric sum of a fraction less than . 

The same technique can be used in implementations with the Dadder. Assume 

that the cascade of Dadders has inputs such that all inputs have a maximum error of 

€input. If a multiplier with a coefficient m < 1 occurs immediately after every Dadder 

in the cascade the error will be bounded for any length of cascade to 

Dadder = + m + m + €jflput) m. . . + finput) m (5.75) 

input (m + m2 + m3 + m' 1 + 2m') 

where n is the length of the cascade. When m ≤ 0.5, 

6Dadder ≤ 6iuput 

and when m = 0.5, 

6Dadder = 6pt 

(5.76) 

(5.77) 

(5.78) 

Dadder Simulation 

The Dadder is simulated and tested with two random input waves. Two random 

waves are generated such that the maximum change in the sum of the inputs is 
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always representable, that is, the sum of the amplitude changes is less than the 

quantization step interval. Random wave inputs were chosen as test inputs because 

all possible input sequences can be encountered. The longer the simulation is run 

the more likely the greatest possible error will be encountered. For the simulations 

shown, only 10 000 samples were used, but this still encounters errors very close to 

the analytical maximum of twice the input error. 

The output of the Dadder and the ideal response are both shown in Figure 5.7. 

The Dadder system simulated uses three states (L = 3) with magnitude rounding 

in the quantizers. The step quantization interval S = 0.01. The maximum integer 

representable is 1 so all inputs and outputs are members of {-8, 0, +S}. The error 

(Figure 5.8) at the demodulated output of the Dadder is always less than twice the 

input error. Errors due to the carry are not encountered because both random input 

waves begin at 0 and the carry is initialized to 0. If the carry is initialized to S or 

—6 the error in the output is the random error encountered before plus the initial 

error in the carry. The carry produces a DC offset error in the output. 

5.4.2 Multiplying Difference Signals 

In earlier work, multipliers were created from the cascade of add divide by m func-

tions [8, 19, 21]. An alternative to this approach is to construct the multipliers 

directly from state-machines. The state-machine format leads to a simple ROM 

implementation and in this section such a multiplier is examined. 

Structure 

Using a simple look-up table to produce a multiplier for difference signals would re-

suit in very large errors in the output due to the few states available to represent the 

output at high oversampling rates. If the input and output are both represented by 

three states (+ 1,0,—.1), then multiplication using a look-up table (other than mul-
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T 

tiplication by m = +1, m = 0 or m = —1) is unsatisfactory, because all multiplier 

results must be rounded to one of the three available states. Rounding of the output 

effectively rounds the multiplier coefficient to m = +1, m = 0, or rn = —1. Using a 

carry to quantize the error to a smaller quantization interval than the signal quan-

tization interval reduces the error internal to the multiplier and a more accurate 

multiplication results. A difference multiplier (Dmult) is shown in block diagram 

form in Figure 5.9. The dashed box represents the programmed ROM block. 

The Dmult can be modeled as 

9(n) = Q[m(n) + C(n)} (5.79) 

C(n + 1) = Qc[m(n) + C(n) - 9(n)] , (5.80) 

where Q[•] is the quantization scheme of the carry, m is the multiplication constant, 

C is the carry of the multiplier, (n) is the input difference signal and 9(n) is the 

output difference signal. 

The quantization scheme of the carry Q[] is determined by Q[.] and the multi-

plier coefficient. The higher the accuracy (i.e., longer the wordlength) of the multi-

plication coefficient the larger the carry required. 

Dmult tn 

y 

Figure 5.9: Block diagram of the difference multiplier (Dmult). 
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The Dmult Coefficient and the Carry Quantization Scheme 

This discussion is restricted to Dmults with absolute coefficients less than 1. Ab-

solute coefficients greater than 1 are possible but require output wordlengths larger 

than the input wordlength and a non-constant wordlength creates difficulties when 

implementing hR structures. Coefficients greater than 1 can be constructed using 

combinations of Dmults and Dadders. 

The signal input to the Dmult is assumed to be quantized to the same scheme 

as the output. N designates the integer (or encoded) quantized value of the input. 

Just as the input signal x(n) has a dynamic range of —A to A the coded quantized 

value N will have a coded dynamic range between — Nmax to +Nmaz, Where Nmav is 

the maximum coded integer. The maximum coded integer is 

Nmax - L-1 (5.81) 

where L is the number of levels in the quantizer. The Dmult coefficient, rn, will reduce 

the coded output dynamic range to +mNmax to —mNma . The final output of the 

Dmult will be within this new quantized range Q[mNmaz] ≥ ≥ Q[—mN,,]. 

For a small Nmax the error, Q[mN] - inN, will accumulate in the decoder and 

cause large errors in the output. By storing the error in a carry and accumulating 

the error until it may be represented at the output, the error can be reduced. To 

avoid DC errors, the the carry must not overflow and the carry must have sufficient 

states to allow all possible errors to be represented. 

One method is to allow the carry to represent a decimal number system. The 

smallest increment in the carry is equal to the smallest representation in the Dmult 

coefficient. For instance, if the Dmult coefficient is accurate to 1 x 1O, then 1 x 1O 

is the smallest increment the carry need represent, called 

If rounding is used in the quantization scheme the carry need not represent a 

full quantization step (represented by an integer 1), it need only represent the steps 
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between - and . Representations between —1 and 1 are required for truncation 

rounding. In this analysis, only rounding quantization will be considered. 

All possible carries C exist in a finite set 

CE 

CE 

11 1 
{,+Csiep,+2Csicp ... 

- 0, Csjep. . . - C2 2 step, 

1 Catep  (- + flCatep U ) 
n=O 

(5.82) 

For any Dmult coefficient m defined in base 10 where I ml 1, Csgepcan be found 

from 

= (5.83) 

where D is the number of decimal places in the coefficient. This creates a truncated 

decimal system where the smallest required interval is represented. 

For some coefficients such system leads to wasted states. For example, a coeffi-

cient of 0.5 will require 

Cstep = 10_i = .1 

leading to the states 

(5.84) 

-0-5,-0.4,-0.3,...  - 0.1,0,0.1.. .. 0.3,0.4,0.5 (5.85) 

or eleven states in total. Since all additions and subtractions of integers multiplied 

by 0.5 will always lead to multiples of 0.5, the quantizer need only store 0.5, 0, —0.5. 

The accuracy of the output is unaffected since no other states are ever encountered 

by the carry. 

The wasted states created by setting C t,p using Equation 5.83 can be avoided 

by determining the largest quantization interval that will represent all additions and 

subtractions of multiples of m. This value will be the most efficient choice for Csjep, 
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because it will require the least number of states. Once Cstep is known the number, 

Lcarry, of states required is 

Lcarry = 1+ 1 
Cstep 

(5.86) 

Consider a Dmult coefficient m = 0.015. From Equation 5.83, Cstep = 0.001 and 

1001 states are required. If the interval is chosen to be 0.005 no reduction of accuracy 

occurs and only 201 states are required, which is a considerable savings. 

Using either approach the total number of states can be found for any Dmult 

coefficient, but for m = —1 the carry structure of the Dmult is eliminated. Since all 

multiplications by —1 are representable integers, no carry is required. The Dmult 

becomes a look-up table where the output is simply the input negated. 

Error in the Dmult 

Three quantizations influence the error at the output of the Dmult. First, the input 

quantization can be modeled by adding a noise source to the input of the Dmult. 

Next, the output of the multiplier is quantized to the same quantization scheme as 

for the input. Once again, a noise source can be added to model this influence. 

Finally, the carry is quantized producing an error, which can be modeled as a noise 

source. Since all possible errors are represented by the carry, so the noise due to the 

carry, 13 = 0. The quantization point in the carry path can be modeled by a direct 

feed through path. 

When the quantization errors are modeled as noise sources, Figure 5.10, the 

system becomes linear and superposition can be applied. If 772 = 0 the entire carry 

branch is always 0. The output is 

mx + m?71 (5.87) 

where 771 is the noise in the input quantization scheme, and x is the input. It is 

identical to the quantized difference signal of the input x. 
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Figure 5.10: The Dmult with quantizers modeled with noise. 

The input x and the input noise source 77, are then set to zero to allow the effect 

of 772 to be examined. The carry is the negative of 772, and will act to reduce the 

previous output error. This means that, at any point in time, all error before the 

present moment has been canceled. Since all other signal sources are zero, only 772(n) 

affects the output and the output of the system is 772. The total error in the Dmult 

is 

6Dmu1t = m 7jl+ 772 . (5.88) 

The quantization schemes generating 71, and 772 are identical, so the maximum quan-

tization error e is 

6 771,772 (5.89) 

The maximum error in the Dmult from analog input to analog output is 

6Dmu1t(1 +m) 6 , (5.90) 

where for magnitude rounding quantization, 

and for truncation quantization, 

1 
(5.91) 

65 (5.92) 
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The error analysis for the Dmult avoids errors caused by improper initialization 

of the carry. If the initial carry is a state other than zero, a DC error would occur 

in the output. The total possible error including the possibility of carry error is 

EDmult = (1 + m) € + C(0) . (5.93) 

Since 

- E ≤ C(0) ≤ € (5.94) 

the maximum possible error for any initial condition is 

Dmult = (1+m)€+ 

= (2+m)E (5.95) 

The maximum error encountered in a simulation of the Dmult for coefficients 

between 0 and 1 is shown in Figure 5.11. The simulation assumes a zero initial carry 

and the results of the simulation reinforce the analysis presented. 
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Figure 5.11: Dmult error as a function of dmult coefficient. 
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Dmult Simulation 

The Dmult is simulated with a random input signal. The random input wave allows 

any sequence of inputs, provided the sequence is representable in the system. Errors 

.very close to the maximum possible error are likely to be encountered for sufficiently 

long sequences. 

The simulation used magnitude rounding in both the input quantization scheme 

and the carry quantization scheme. The Dmult coefficient m = 0.95. The output 

and the ideal response are shown in Figure 5.12. The error in the signal (shown in 

Figure 5.13 normalized to delta) is always less than 

(1 + m) 6 = (1 + 0.95) = 0.9758 (5.96) 

The maximum encountered error (0.9732 8) is less than the calculated maximum 

(0.975 5) because of the nature of the random wave test inputs. If the test were 

allowed to continue, errors closer to the maximum would eventually be encountered. 

Memory Requirements of the Dmult 

The Dmult is constructed as a ROM state machine with bi bits for the input, b0 

bits for the output and b bits for the carry. For a Dmult built as a ROM block the 

memory required, in bits, is 

MDmult = (b + b) 2(b0+b) (5.97) 

The number of bits required by the carry is related to Cstep and, therefore, to the 

accuracy of the Dmult coefficient. If the Dmult carry is encoded using Equation 5.83 

(for simplicity), b can be defined (for rounding quantization) as 

bc = g2( C.t.p 
_1 + 1 

110 

= l092 (10D +01  (5.98) 
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where D is the number of decimal places in the Dmult coefficient, which is a measure 

of the accuracy of the coefficient. 

Assuming the system is sufficiently oversampled to reduce both b1 and b0 to 

the minimum three states, the memory requirements for a Dmult can be found 

as a function of Dmult coefficient accuracy D (Table 5.2). The table shows an 

exponential rise in memory requirements as the accuracy of the coefficient increases. 

For a Dmult coefficient accuracy of D = 4 (accurate to ±0.0001), the memory 

requirements already exceed a megabit for one multiplier. 

The memory requirements of a Dmult can be reduced by cascaded multiplications. 

If the overall multiplication coefficient is to be m, two consecutive multiplications by 

will perform the same operation. The choice of the two multiplication coefficients 

is not restricted to the square root of the overall coefficient M. The two coefficients 

ma and Mb must only obey the condition 

m=m6 xmb 

Coefficient 
Accuracy 
D 

Memory 
Required 
in bits 

1 3.8 x102 
2 4.6 x103 
3 4.9 x10 
4 1.0 x106 
5 1.0 x107 
6 9.2 x107 
7 1.7 x109 
8 1.6 x101° 
9 1.4 x1011 
10 2.5 x1012 
11 2.1 x1013 
12 1.8 x1014 

(5.99) 

Table 5.2: Memory requirements for a Dmult for various coefficient wordlengths. 
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By proper choice of m a and mb, multiplication by m becomes possible using less 

memory. Consider m = 0.0001 as an example. If a Dmult were to be constructed 

directly the carry would require 10 001 states (rounding quantization) because 

Lcarry = +1 
Cstep 
1  

+ 0.0001  1 

10001 (5.100) 

If two Dmults with coefficients m a = mb = 0.01 are cascaded, each would only 

require 101 states since 

carry = +1 
C,tep 

0.01 = 

= 101 . (5.101) 

The two Dmults constructed to implement m a and m, will require less total memory 

than a single Dmult implementing m. 

In choosing m a and mb, care must be exercised to closely approximate m without 

requiring more memory than a direct Dmult implementation would require. Filter 

structures which are relatively insensitive to changes in multiplier coefficients (such 

as LDI and wave structures) are well suited for this technique since it is simple to 

approximate m with m a and mb, but it is more difficult to choose m a and mb such 

that m a x mb = m. 

This technique is useful for filters that have very small multiplier coefficients, 

since the overall filter coefficient m must be less than either ma or mb. Fortunately 

filters for use with highly oversampled signals will have such coefficients. 

By cascading Dmults the memory requirement for the overall multiplication op-

eration is reduced; however the memory reduction is traded off against an increased 
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error at the output of the multiplying system. The error due to one Dmult (from 

Equation 5.90) is 

fDmult = (1 + 

where € is the quantization error of the input. For a cascade of two Dmults the error 

at the output is 

DmuIt2 = (m2(1 + mi) + 1) (5.102) 

where m1 is the first Dmult coefficient, and m2 is the second Dmult coefficient. 

For an arbitrary length of cascaded Dmults M multipliers long, 

f/MM 

Dmu1tM= (jEHmn) +1) 
i=1 n=i 

(5.103) 

Equation 5.103 shows that the order of multiplications has an impact on the overall 

error. The last Dmult coefficient multiplies the error of all others. By ensuring that 

the multiplication coefficients are arranged in order of descending magnitude 

MI ≥ m2 ≥ M3 ≥ . . . MM-1 ≥ mf.q (5.104) 

the overall error 6Dmu1tM is minimized. The smaller error coefficients later in the 

multiplier cascade reduce the errors due to large coefficients earlier in the multiplier 

cascade. 

5.5 Filter Construction 

Using Dadder and Dmult components, it is possible to construct digital filters for 

difference signals. To gain any advantage from such an implementation it is necessary 

to greatly oversample the input signal, that is 

13 >> f-ax (5.105) 

The oversampling ratio of the system, R, is defined as 

R=  
fmarc 

(5.106) 
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The greater the oversampling ratio, the smaller the wordlength of the difference signal 

and the smaller the amount of memory required for implementation. Unfortunately, 

as the oversampling ratio increases, the bandwidth of the filter is reduced relative to 

.the total bandwidth of the system and at very high oversampling rates the bandwidth 

of the filter reduces to a narrow band at the low end of the spectrum. The narrowing 

of the bandwidth of the filter increases the required accuracy of the internal states 

and multiplier coefficients. Longer wordlengths would be needed to represent the 

states and multiplier coefficients. 

In the z-plane, the effect of oversampling and the rise in required accuracy can 

be easily observed. As ft increases, the poles of the transfer function of the filter are 

crushed into a small wedge in the unit circle (Figure 5.14). The filter uses quantized 

coefficients and states, so all points in the z-plane are quantized to the nearest 

representable point. Only a finite number of points is available and the points are 

spread in an even grid on the plane. As the poles move closer together a finer mesh 

of points is required to distinguish each pole. The finer mesh of points requires more 

overall points which requires an increase in the number of super-states of the filter. 

Unit Circle I Unit Circle 

fS 
2 

Original Pole 
Distribution 

Mf 
2 

Oversampled Pole 
Distribution 

Figure 5.14: The crushing of poles and zeros into a small wedge by oversampling. 
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To increase the number of super-states, the wordlengths of the internal states and 

the multiplier coefficients are increased. When the wordlength required to represent 

the filter increases the memory requirements for a full ROM difference implemen-

tation increases. In fact, the increase in wordlength caused by the narrowing of 

the bandwidth will quickly remove any advantage that a difference filter once pos-

sessed. Fortunately, this problem can be avoided by proper filter construction. To 

avoid constructing narrow band filters the bandlimited nature of the input signal is 

exploited. 

The difference signal produced by the Dencoder (sampling at f3) has the same 

bandwidth as the input signal, because the Dencoder is a linear system and any 

linear system can modify input signals in amplitude and phase, but not frequency. 

Since the input signal x(n) is bandlimited to fma it is highly oversampled and can 

be decimated by M, where M ≤ R. After decimation the signal can be filtered at 

f, = .L (5.107) 
M 
2 frnaz R 

- (5.108) M  

provided that 

1, - ') i 
J - "Jmas (5.109) 

If M is chosen such that the internal sample rate of the filter f = 2frnaz the filter 

will have a maximum spread of poles on the unit disc because the internal sample 

rate of the filter will be at the minimum possible value. The maximum spread of 

poles on the unit disc will allow a. small wordlength for the filter states and multiplier 

coefficients. 

After filtering, the decimated signal must be upsampled to f for use by the 

Ddecoder to produce the final output waveform. The upsampling implies an insertion 

of M - 1 zeros and lowpass filtering. An alternative to the upsampling and lowpass 

filtering of the signal is to filter the difference signal (n) in an interleaved filter [2]. 
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In the interleaved filter the input signal is divided into M streams each of which 

is a decimated difference signal offset from the others by a unit delay. The signals 

are processed by M separate filters at 

f'=13/M (5.110) 

and output signal of each filter is interleaved with others to produce the output 

filtered difference signal. 

Consider the behaviour of the filter with an arbitrary sampled input signal, x(n). 

First the input is downsampled by splitting it into M signals each of which is sepa-

rated by one sample 

xo(n) = x(nM) 

xi(n) = x(nM —1) 

X2(n) = x(nM —2) 

XM_j(fl) = x(nM - (M - 1)) 

The signals are filtered at 

f'=f,/M 

by the filter transfer function H(.) producing a set of M output signals, 

yo (n) = 

= 

Y2 (n) = 

H(xo(n)) 

H(xi(n)) 

H(x2(n)) 

YM-1(n) = H(xMl(n)) . (5.112) 
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The signals are upsampled by inserting M - 1 zeros between each sample, 

yo' (n) = 

Y-1() = 

J Yo(') ifnE{±iM} 0 

0 otherwise 

{y (!') if in E {±iM - 1} 

0 otherwise 

I 

y1() if n E {±iM - ') lC0 ) i=O 

0 otherwise 

n+(M-1)  
Yi1 M if n E {±iM—(M— 1)} 

0 otherwise 

and the individual signals are summed together to create the final output 

M-1 

y(n)= E y(n) 

(5.113) 

(5.114) 
5=0 

Since only one signal will be non-zero at any given time n, the addition in Equa-

tion 5.114 can be simplified by interleaving or commutating the signals, 

M-1 

y(n) = E y(n) 

if n E {±iM} 0 

if in e {±iM - 

if in E {±iM - 2}900 

+ (M - 1)) if 72 E {±iM - (M - 1)} 

(5.115) 

Although the approach seems indirect, the interleaved signal i(n) is the filtered 

signal H (x(n)) since 

M-1 

y(n) = E y(n) 
j=0 
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I 

YM.-l(fl+(M — 

H(xo(n)) 

H(xi(n+ 1)) 

= < H(x2(n+2)) 

if n E { iM}20 

if n E {±iM— 1} 

if n E {±iM - 2} 

1)) if n E {±iM - (M - • 00 

if n E {±iM} 0....0  0 

ifnE {±iM-1} 0 

if n E {±iM - 2} 

H(XM_l(fl+M-1)) ifn€{±iM—(M-1)} 0 

%= H (x(ri)) (5.116) 

The interleaving filter allows the filtering of a bandlimited input signal using M filters 

operating at f = f3/M. The lower sample rate of the internal filters decreases the 

resolution required within the filter which is reflected in a decreased wordlength. 

Such a structure is suitable for filtering difference signals since difference signals are 

highly oversampled and can have reduced wordlengths. 

5.6 Difference Filter Simulation 

To demonstrate the difference operation of the filter a order, LDI structure is 

simulated. The LDI structure is chosen for low sensitivity to coefficient rounding. 

Exploiting the its low sensitivity, the multiplier carry wordlength is rounded to 2 

decimal places. Two decimal place accuracy (D = 2) for the multiplier coefficients 

requires a seven bit carry. From Equation 5.98, 

bc = 11 + 1092 (101_D + 1)1 = fi + - 1092 (lo_2)1 = 16.6581 = 7 (5.117) 

The lowpass LDI filter was designed and the parameters chosen for the design are 
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shown in Table 5.3 along with the necessary multiplier coefficients. 

The infinite precision magnitude response was calculated and is labeled 05 in 

Figure 5.15. The multiplier coefficients are rounded to the nearest two decimal places, 

and the resulting magnitude response of the modified filter is labeled as 1di5_trunc 

in Figure 5.15. The graph of the magnitude responses demonstrates that the overall 

transfer function has remained largely the same after the rounding of the multiplier 

coefficients. If such deviations are tolerable, which would depend on the applica-

tion of the filter, the filter can be implemented with reduced multiplier coefficient 

wordlengths. Rounding the coefficients to two decimal places allows, approximately, 

an eight bit coefficient wordlength. It should be noted that all further error compar-

isons will be between the difference filter and the rounded multiplier coefficient LDI 

structure. 

It is assumed that the input signal to the LDI filter is bandlimited to 

frna, = 500 Hz . (5.118) 

It is necessary to know the maximum frequency of the input to estimate the oversam-

pling required for an implementation with a specific number of levels. The input to 

the system has a dynamic range of —A to A, and in this simulation A is chosen to be 

1, for convenience. If the input signal is quantized to b0 = 12 bits, the quantization 

interval (the distance between quantization levels) is 

q = 2 x 1 = 0.000 488 28V (5.119) 
2bo 212 

Design Parameters 

f3 5000 Hz 

f 300 Hz 
Order 5 
A 0.5 dB 

Multiplier Coefficients 
ml 0.173 449 201 473 824 
m2 0.308 060 272 343 644 
m3 0.149 102 355 745 068 
m4 0.2989750898,37714 
m5 0.222 565 487 545 064 

Table 5.3: Design parameters and multiplier coefficients for the simulated 5th order 
LDI filter . 
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Figure 5.15: Magnitude responses of the ideal and coefficient truncated filters. 

It is this quantization interval that is chosen as the step interval 5 for the difference 

filter. Using the known dynamic range of the input, A, and the step interval, 5, the 

necessary oversampling ratio R is 

R Air 

1 Xir 

= 0.000488 28 

6434.0 (5.120) 

R is the minimum oversampling rate required to allow the input to be encoded as 

three states. The oversampling need not be this high if more quantization levels are 

used to represent the states and the input. In this simulation, the number of levels 

L is arbitrarily arbitrarily chosen to be 31 (5 bits). This reduces the oversampling 

rate to 

6434.0 6434.0  
R = = = 428.93 . (5.121) 

(L-1)/2 (31-1)/2 

The LDI filter is constructed with a sample rate f = 5 000, so the oversampling 
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ratio of the filter (with respect to the input data) is 

2frna  - 2 X 500 - 

f3 5000 

Thus the difference filter oversampling ratio (and decimation rate) M is 

M = = 428.93 = 85.783 

(5.122) 

(5.123) 

which is rounded up to M = 86. 

The required sample rate is F3 = 86 x 5 000 = 430 000 Hz. This is not an 

unreasonable sampling rate for ROM based technology. In 1992, ROMs typically 

have access times allowing operation above 25 MHz. If the sample rate of the system 

is scaled up to 25 MHz, the bandwidth of the input is increased to 30 000 Hz, which 

will allow filtering of audio range data. 

The interleaved filter as presented in Section 5.5 implies the construction of M 

filters. Such a construction would be very costly in terms of required hardware, 

but alternatively the interleaved structure can be constructed by changing the unit 

delays within the M = 1 filter to delays M bits long. This effectively produces M 

interleaved filters. 

In the example LDI filter, the 86 individual filters will operate at 5 000 Hz, but 

the entire structure and the ROM components will be operating at 430 000 Hz. The 

interleaved filter implementation using Dmults and Dadders is shown in Figure 5.16, 

where DA blocks represent the Dadder components, DM blocks represent the Dmult 

components, '- 1' blocks represent the multiply by —1 components and MT blocks 

represent the M delay blocks. In this example M = 86, so the MT blocks are shift 

registers 86 unit delays long and 5 bits wide. 

5.6.1 Test Inputs and Results 

The difference filter shown in Figure 5.16 was simulated in software. The output 

difference signal is represented by y(n), while x(n) represents the input difference 
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x(n) 

Figure 5.16: A 5' order LDI filter constructed from Dmult and Dadder blocks. 

signal. 

Two test inputs were examined: a random waveform and a Kronecker delta func-

tion. The random waveform allows an examination of a large number of irregular 

transitions on the input. For long input sequences, the errors encountered will ap-

proach the maximum possible error. The Kronecker delta input is used to test the 

linear behaviour of the filter. Using the Kronecker delta input, the magnitude re-

sponse of the system can be determined and compared against the expected ideal 

response. 

The first test considers the random input waveform 10 000 samples long. The 

waveform is similar to the random waveforms used to test the individual components. 

The input waveform x is allowed to make step transitions of a random size limited 

by the maximum integer encodable Lmax and the step quantization interval S such 

that at any sample n, 

5Lmaa1 < H<8 rna (5.124) 

In practice, the maximum transitions allowable on the input are limited by the 

nonlinear nature of the filter. In this simulation, the random input signal is limited 
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to maximum changes of half of the maximum possible change, 

15Lmax -  1 x(ri) < 16Lma  
2 2 2 2 

By limiting the maximum change in the input signal, the possibility of overflow of 

the internal states is reduced. 

The output of the random wave test is shown in Figure 5.17. The error between 

the output of the infinite precision LDI filter with truncated coefficients and the 

output of the difference filter is shown in Figure 5.18. The error is normalized to the 

step quantization interval. The error can be reduced to an arbitrarily small value 

by reducing the step quantization interval 6. This is not a linear relationship, but 

as 6 is decreased the error at the output of the filter will decrease. To decrease 6, 

the sampling rate may be increased, or the number of quantization levels may be 

increased. The increase in sample speed is limited by the implementation technology, 

while the increase in the number of quantization levels (L) is limited by the memory 
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Figure 5.17: Random waveform test output. 
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Figure 5.18: Random waveform test error. 

requirements for the ROM implementation. As the number of levels L increases the 

number of input lines to the ROM state machine increases. The size of the ROM 

will grow exponentially as the number of levels is increased. 

The second test input applied to the system is a Kronecker delta signal to deter-

mine the magnitude response of the filter. The Kronecker delta input signal presents 

problems for the difference filter. The difference modulator is unable to represent 

the input because the input has an infinite frequency bandwidth. When a Dencoder 

is presented with a Kronecker delta input, the Dencoder will saturate at its maxi-

mum representable value, since all further inputs are 0 the quantizer will properly 

represent them as 0. This difficulty is not unique to the difference filter. Neither 

delta modulators nor delta sigma modulators can represent Kronecker delta inputs. 

In order to allow the calculation of the magnitude response, the restriction on the 

maximum representable integer is lifted and all inputs are allowed. This way a Kro-

necker delta can be input into the system, and be large enough to provide a sufficient 
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number of samples for transformation into the frequency domain via the fast Fourier 

transform (FFT). The output of the truncated coefficient, infinite precision filter 

and the difference filter when stimulated with a unit Kronecker delta is shown is 

Figure 5.19. The difference filter output is a series of impulses separated by 85 zeros. 

The 85 zeros occur because the delta input occurs as an input to only one of the 86 

interleaved filters. The smooth curve of points (labeled ideal in the graph) is the im-

pulse response of the truncated coefficient, infinite precision filter at 5000 Hz sample 

rate. The peaks of the difference filter and the curve of the infinite precision filter 

coincide well which indicates that the two filters will have very similar magnitude 

responses. 
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Figure 5.19: Difference filter and ideal filter response when stimulated with a unit 
Kronecker delta 

The magnitude responses of the two filters are shown together in Figure 5.20. 

The frequency range is restricted to 0 to 2 500 Hz since this is the maximum input 

signal bandwidth to prevent aliasing. The difference filter will have a repeating 

magnitude response every 5 000 Hz from 0 to 430 000 Hz. From Figure 5.20, the 
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Figure 5.20: Difference filter and ideal filter magnitude response. 

similarities of the magnitude response in the passband can be seen; however in the 

stop band the infinite precision filter has greater attenuation. The difference is due 

to the quantization error of the filter. 

It should be noted that the magnitude response of both filters have a ripple effect 

in the stop band, which implies zeros. This is an effect of the FFT on the low number 

of sample points. The filter attenuates the delta input quickly and, thus, the analysis 

shows a rippling effect which is not present. 

5.6.2 Limitations 

The transfer functions that can be implemented with difference filtering are less 

restricted than the transfer functions in earlier work [8, 19, 21]. With adders and 

multipliers any filter structure can be constructed, but as discussed earlier the the 

high error in the output of the Dadder is a serious limitation. For the Dadder 

to prevent accumulation of high range errors, a multiplier should lie in any data 
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path loop between two adders, and a multiplier of less than 1 will bound the error. 

Many filters can be constructed such that loops involving adders do not have a gain 

higher than 0.5 between adders. In the LDI structure used as an example here, all 

multipliers have coefficients less than 0.5. 

A second limitation is due to the encoding of the input. Although a lowpass 

filter can be constructed, it will operate as a bandpass filter. Information on the 

low end of the spectrum is attenuated in the input coding. The Dencoder places 

a zero on z = 1, so it is effectively a highpass function. The zero is later canceled 

by the Ddecoder, but any information in the low end of the spectrum is removed 

before filtering. This effect implies that filters designed for implementation with this 

method should be bandpass rather than lowpass. 

A third disadvantage is introduced during construction of the filter from ROM 

components. The interleaved filter requires a large number of small ROM blocks 

with long parallel shift registers. This implementation has the advantage that the 

large parallel paths required by the multiplier carries are localized, but wide data 

paths are still difficult to construct. Finally, construction requires the use of many 

small ROM blocks so that large numbers of interconnects are required. In discrete 

component implementations, a large number of interconnects is a potential source of 

error, while in VLSI implementations the routing will be difficult. 

5.6.3 Memory Requirements 

The implementation shown in Figure 5.16 requires 11 adders, 5 multipliers and 6 mul-

tiplies by — 1. The implementation uses 12 bit words for the original wordlength, 

5 bit words for the internal word length and 7 bit words for the carry in the multi-

pliers. For an arbitrary oversampling ratio, the total amount of ROM required along 
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with the storage flip-flops (FFs) for the delay elements can be generalized as 

IVi total 

where 

- N(b+ b)2' + NMbCR+ NA(b + 1)22b+1 + 

NA2R + N_1b2' + bOR , (5.126) 

Miotat = the space required in bits 

NM = the number of multipliers 

NA = the number of adders 

= the number of multiplications by —1 

0 = the order of the filter 

R = the oversampling ratio of the input 

b = the wordlength of the signal 

bc = the multiplier carry wordlength 

The above assumes all multipliers have the same carry wordlength b. From Equa-

tion 5.126, the simulated filter requires 417 148 bits. 

The oversampling ratio R and the wordlength of the signal b are approximately 

related by 

b = max (b0 - I 1092(R)i i) , (5.127) 

where b0 is the original wordlength of the filter at R = 1. 

Let us assume a 12 bit wordlength for R = 1 for the 51h order LDI filter. Using 

both Equation 5.126 and Equation 5.127, the size of the filter can be found for various 

oversampling ratio (Figure 5.21). For the example filter implemented, 

R  86 x 5 000 430 5 128 
2frnax 2x500 

Using R = 430, the implementation requires 174 294 bits which contradicts the 

previously observed size of 417148 bits for the example filter. The discrepancy occurs 

because the internal word length found using Equation 5.127 ignores the nonlinear 

effects of the system. 
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The memory requirements shown in Figure 5.21 include the ROM look-up tables 

and the required FFs for storage. The minimum amount of memory required for 

implementation is 93 840 bits using an oversampling ratio R = 512. This minimum 

occurs because as the oversampling ratio R increases the amount of memory required 

to encode the multipliers and adders decreases, but the memory needed for the delay 

elements increases. 
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Figure 5.21: Size of ROM required as a function of the oversampling ratio 

5.6.4 Implementations other than ROM 

The focus of this research was to find a cost effective method for construction of 

filters using only ROM components. If the implementation technology is expanded 

beyond ROM, other interesting possibilities exist. 

The difference filter could be implemented on a single chip using localized ROM 

blocks, where each Dadder and Dmult is constructed as a ROM state machine. The 

individual state machines could be connected by narrow signal bus lines. Such an 
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implementation would localize the wide signal busses and require only narrow buses 

to be routed chip wide. The localization of the wide bus lines aids in chip design, 

since it is much easier to route designs with small bus lines than those with many 

large parallel bus lines. 

A second step away from ROM implementation is to avoid the use of ROM 

components in the construction of the state machines all together. The state machine 

can be constructed from combinational logic. This implementation has the advantage 

of more efficient construction on a chip level, while retaining the small bus widths 

for routing. Such a design could be implemented on a FPGA, since combinational 

logic is available, but routing is a difficult problem for such chips. 



Chapter 6 

Future Research Directions and Conclusions 

In this thesis two new approaches to the construction of ROM based digital filters 

were examined along with a survey of appropriate earlier techniques involving ROM 

components in DSP. In this chapter, a critique of the two techniques is presented 

along with the results of the research conducted and directions for future research. 

In addition, present and future applications of the techniques are examined in light 

of present trends in mass storage. 

6.1 Technique Critique 

6.1.1 Elimination of Unreachable States Approach 

The first new technique presented is the reduction of a block ROM state machine via 

the elimination of unreachable states. Unreachable states are not required in a filter 

realization, since the unreachable states are never encountered during operation. The 

removal of the unreachable states from the state space representation of the filter 

allows the block ROM to be reduced to 

NF(N)2(N-1) x 100% (6.1) 

of the original required state space volume. 

This approach allows the full utilization of the memory hardware. Unreachable 

states are eliminated by eliminating their existence, or by remapping the state space 

such that only reachable points exist within the filter's map of the state space. Such 

a complex, nonlinear remapping is possible in ROM based devices since the ROM 

operates as a lookup table. The complex computations required to produce the 
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lookup table are performed during construction allowing complex computations to 

be performed during operation of the filter in one access cycle of the ROM. 

The technique produces functioning digital filters which require a fraction of 

initial memory requirements. Unfortunately, the reduction is disappointingly small 

when the initial memory requirements of a filter are considered. The 5' order, 12 bit 

example filter is reduced from 3.4001 x 1023 bits for a block ROM implementation to 

5.5929 x 1022 bits. The memory requirements for high order filters can be reduced to 

fractions of 1% using this technique, but the resulting total memory requirements are 

still very large and do not allow fabrication with present ROM based technologies. 

Although the present sizes of ROM blocks do not allow fabrication of ROM based 

filters with this technique, mass storage devices, of which ROM is but a single ex-

ample, are becoming available in ever increasing sizes. When the available storage 

devices reach the size of the reduced memory requirements produced by this tech-

nique, state-machine based filters can be constructed. The technique allows the 

construction of state-machine filters in the near rather than the far future. 

One of the prime advantages of block ROM state-machine implementations is the 

high speed of operation. This technique allows the digital filter to operate at the 

access speed of the ROM. When other mass storage devices are used as the hardware 

for the block state-machine the filter can operate at the access speed of that storage 

device. 

In summary, the unreachable state removal technique reduces the memory re-

quirements while maintaining the highest possible speed of operation. Unfortunately, 

the reduced memory requirements remain far in excess of present technological ca-

pabilities. 
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6.1.2 Difference Signal Approach 

The second method proposed in this thesis for the construction of ROM based digi-

tal filters requires the creation of a new class of signals based on difference signals. 

Since existing arithmetic operators do not function correctly on difference signals, 

new arithmetic operators for sum and multiplication operations are defined. The 

new signal, called a difference encoded signal, has a narrower wordlength than con-

ventional amplitude encoded signals. It is the narrower word length which allows 

a reduction in the memory requirements of the state-machine arithmetic operators. 

The memory requirements are reduced because the numbers of input and output 

lines are reduced. 

By applying the difference signal method, for the example filter, the memory 

requirements can be reduced from 3.4001 x 1023 bits for a block ROM implementa-

tion to 417 148 bits. This significant reduction in memory requirements is obtained 

at the cost of the partitioning of the ROM state-machine. Unlike the block ROM 

implementation where one large ROM block is required, the difference signal method 

requires many small ROM blocks. 

Systems composed of numerous small blocks are more difficult to construct, since 

the individual blocks must be connected. Each connection line must be placed such 

that its path will not interfere with other lines. This process is called routing. 

Routing tends to be a difficult task during chip lay-out as well as for circuit board 

lay-out. The routing difficulties are reduced in a difference signal implementation 

because difference signals require narrower bus lines than a similar system imple-

mented using amplitude encoded signals. By contrast, a single block ROM state 

machine implementation does not encounter routing difficulties since only the input 

and output lines occur in such designs. The internal routing of the ROM is left as a 

design problem for the supplier of the ROM components. 
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In addition to routing difficulties of difference signal implementations, the maxi-

mum operating speed is reduced. As mentioned earlier, block ROM implementations 

may operate at speeds up to the access time of the ROM components. Difference 

signal implementations obtain the reduction in word length by highly oversampling 

the signal. The maximum rate at which the input signal can be sampled is the 

maximum access rate of the ROM components, but the maximum bandwidth of the 

input signal is significantly lower if any advantage is to be derived from difference 

signal implementations. 

For telephone and audio range signals, the difference signal technique can pro-

vide significant bit reductions (12 and 8 bit reductions, respectively, for 25 MHz 

sampling rates) over conventional parallel implementations. As the bandwidth of 

the signal increases the bit reduction on the wordlength of the encoded signal is 

reduced exponentially with no bit reductions occurring for oversampling rates less 

than 2. 

In summary, the difference signal technique reduces the memory requirements 

to present technological capabilities. To achieve this memory reduction, the speed 

of operation is also reduced to present technological capabilities. In addition, the 

technique may hold routing advantages over conventional implementations. 

6.2 Future Research Directions 

In this thesis, the primary direction of research was the reduction of memory re-

quirements for full ROM implementation of digital filters. Future research directions 

could investigate alternative technologies for implementation of the two techniques 

presented. 

Mass storage devices are not limited to ROM. Magnetic storage is often used and 

more esoteric forms such as holographic memories have been proposed. As research 
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continues on mass storage, devices three trends are likely to continue: mass storage 

devices will increase in size, mass storage devices will increase in speed, mass storage 

devices will decrease in cost. 

Mass storage devices are used to store large quantities of information. As the 

amount of storage space in a device increases, the speed of access must increase as 

well. It is required that a very large memory device not only store the information, 

but the information must be accessible in a reasonable length of time. The exact 

length of time which is reasonable is determined by the application. For example, in 

computer data and program storage large amounts of memory are required and all 

locations in the memory must be accessible. 

The unreachable state elimination method requires that the mass storage device 

have several qualities. First, the storage device must be very large. The technique 

reduces filter implementations to fractions of one percent of the original memory 

requirement, but the reduced memory requirement is still very large. Second, all 

memory locations in the mass storage device must be accessible at some minimum 

speed. Although access times may vary depending on which memory location is 

accessed, it is the slowest access time that will determine the maximum speed of the 

system. This speed will be the maximum filter sample rate. Finally, the memory 

must be programmable at very high speeds. When the memory requirements reach 

the tera-terabyte range, as for the 5' order example filter, the speed of program-

ming the memory is important. The length of time required to program the initial 

configuration must be sufficiently small to allow construction. 

The difference signal approach to digital filter implementation requires different 

characteristics of the storage media. The very large storage demands are replaced by 

routing demands. The difference signal technique requires many small computational 

blocks each of which are easily constructible under present technological constraints. 
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The computational blocks may be constructed from ROM, RAM, or other memory 

based media as look-up tables. Alternatively, combinational logic circuits can be 

used to implement the computational blocks. For any chosen computational engine, 

the difficulty in the construction of the system lies not in the memory demands of 

the computational block, but in the demands presented by the connections of the 

blocks. 

Parallel buses allow signals to be transmitted within the system. These buses 

must be routed either on a circuit board when the system is constructed from large 

scale integrated components, or routed on board the integrated circuit if a full in-

tegrated design is desired. In either case, the wide parallel buses required present 

considerable routing difficulties. 

Difference signal implementations reduce the width of the parallel bus. The 

routing difficulties are reduced when the width of the parallel bus is reduced. Future 

research could investigate the hypothesized routing advantage of difference signal 

systems. The length of time required to perform the routing could be compared 

between conventional implementations and difference signal implementations. A 

second evaluation of the routing advantage would compare the minimum chip area 

use between difference signal systems and conventional implementations. 

6.3 Conclusions 

This thesis has presented two approaches for the implementation of RUM based 

digital filters. Although both approaches are inappropriate for present RUM based 

implementation, each approach holds promise. The unreachable state elimination 

method holds promise for future digital filter implementations when present mass 

storage trends are extrapolated. The difference signal technique holds the promise 

of reduced routing demands for implementation technologies other than ROM. 
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