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ABSTRACT 

The objectives of this research are to analyze the LiDAR data errors and to develop 

alternative methodologies for estimating the biases in the LiDAR system parameters. The 

impact of the random/systematic errors on the derived point cloud is investigated in terms 

of LiDAR strip configuration such as flight altitude, direction, and scan angle. Two 

alternative methods have been developed to be used in cases where the point cloud 

coordinates of overlapping strips are available, but where raw measurements are not 

utilized. The simplified method consists of two steps: first, the 3D transformation 

parameters are estimated using the discrepancies between parallel overlapping LiDAR 

strips; second, the biases in the system parameters are derived from the estimated 

transformation parameters. The quasi rigorous method can deal with non-straight, non-

parallel overlapping strips over rugged terrain with the help of time-tagged LiDAR point 

cloud and trajectory position data. In this method, laser firing points are estimated using 

the trajectory position data; then, the flight direction, beam direction, and encoder angle 

are calculated without system raw measurements. The proposed methods utilize a surface 

matching procedure, denoted as “ICPatch”, which is beneficial in the absence of man-

made objects in rural areas. The ICPatch procedure finds the closest point-patch pairs 

from overlapping strips, where one strip is represented by original points, and the other 

strip is represented by triangular patches. This research introduces two approaches for the 

similarity measure between the matched point-patch pairs. In the volume constraint, the 

volume of the tetrahedron which consists of the matched point and triangular patch are 

utilized as a constraint. For a point-based similarity measure, pseudo-conjugate points are 

derived from the matched point-patch pair, and the weight matrices for the pseudo-
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conjugate points are modified to handle the non-conjugate problem. The feasibility of the 

proposed methods is verified using simulated and real datasets. Using the simulated data, 

the proposed methods were investigated whether they are sensitive to the assumptions 

used in the derivation of them. The improvement of relative and absolute accuracy of 

point cloud after the calibration was evaluated using real LiDAR data.  
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       CHAPTER 1  

INTRODUCTION 

1.1 Problem Definition 

The availability of 3D surface data is very important for various industrial, public, and 

military applications. Light Detection And Ranging (LiDAR) is an active sensor system 

used to collect 3D information from an object surface by using laser pulses. Recently, 

LiDAR systems have been proven as a cost-effective tool for the generation of surface 

models with dense/accurate irregular points. The products of LiDAR system surpasses 

thereby the quality of those derived from other techniques such as manual 

photogrammetric DSM generation, radar interferometry, and contour interpolation. A 

typical LiDAR system consists of a laser ranging and scanning unit, together with a 

Position and Orientation System (POS) which encompasses an integrated Differential 

Global Positioning System (DGPS) and an Inertial Navigation System (INS). The laser 

ranging unit estimates the distances from the sensor to the mapped surface by measuring 

the time delay between a laser pulse transmission and its detection, while the onboard 

GPS/INS component provides the position and orientation of the platform. The vertical 

accuracy of LiDAR data is relatively high (5-30 cm) compared to other methodologies. 

The quality of the LiDAR data is affected by many factors: the overall accuracy of the 

integrated GPS/INS position and orientation, the correctness of the system calibration, 

the average point density, flight altitude & speed, and the physical nature of the objects 

scanned (McGlone et al., 2004).  
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LiDAR data contaminated by systematic errors cannot guarantee the expected accuracy 

and exhibit discrepancies in overlapping areas. In order to improve the quality of LiDAR 

data, strip adjustment and LiDAR system calibration have been carried out. The 

differences between these two approaches conventionally lie in the type of available data 

and applications. The strip adjustment is performed to improve the compatibility between 

overlapping strips, while the calibration of a LiDAR system is carried out to make sure 

that the LiDAR final products meet the required accuracies. The strip adjustment reduces 

or eliminates the discrepancies between overlapping strips using 3D point cloud 

coordinates. On the other hand, the calibration procedure recovers the system parameters 

using the LiDAR geo-referencing equation and system raw measurements: GPS/INS 

navigation information, scanner encoder angles, and laser ranges (Habib et al., 2009a). 

The advantage of the strip adjustment is that end-users can reduce the discrepancies 

between overlapping strips which are caused by systematic errors without the need for 

the system raw measurements; however, the strip adjustment is limited to estimating the 

discrepancies between overlapping strips using an empirical transformation function. In 

other words, the strip adjustment is an empirical approach for increasing the 

compatibility among multiple strips rather than improving the accuracy of LiDAR points. 

Many methodologies for LiDAR system calibration have been investigated over the past 

decade. Nevertheless, there is still no standard work flow commonly accepted for LiDAR 

system calibration; the lack of a standard error model and calibration method remains an 

important issue. The LiDAR system consists of several components, and thus, numerous 

error sources can take place (e.g., GPS time error, time synchronization between GPS, 

INS, and a laser scanner, interpolation of GPS/INS measurements, system components 



3 

 

mounting error, laser range and encoder angle error) (Baltsavias, 1999a; Schenk, 2001; 

Katzenbeisser, 2003). It is almost impossible and unnecessary to consider every 

conceivable error that may arise during the LiDAR system calibration because it is hard 

to define the error models for all the individual sensors. In addition, some errors are 

relatively insignificant, and others are tightly coupled (Schenk 2001; Habib et al., 2007). 

For these reasons, one should consider the adequate error model for the LiDAR system 

calibration, and decide on which systematic parameters should be calibrated or ignored. 

A typical LiDAR system calibration method requires system raw measurements because 

there is no redundancy in 3D point cloud coordinates to solve the system parameters. 

However, it is not expected that LiDAR data users are commonly allowed to access the 

system raw measurement. Due to this restriction, the improvement of LiDAR data 

accuracy by removing the impact of the system biases on the derived point clouds cannot 

be achieved by data users. In addition, there is no standard for LiDAR system 

configuration; for example, the definitions of boresight angles, lever-arm parameters, and 

encoder angles depend on a system manufacturer. The lack of the standard of the system 

configuration leads to the problem that pre-developed calibration method cannot be 

directly used for any other LiDAR systems without modification even though there is no 

change in the calibration methodology. 

LiDAR calibration requires the identification of common elements or primitives in 

overlapping LiDAR strips as well as control data. Hence, one should consider the 

appropriate primitives for such a task. Distinct points have been traditionally used as a 

primitive in photogrammetric data for a long time. However, it is well known that distinct 
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points and lines cannot be directly captured by a LiDAR system as the system produces 

irregular point data unlike photogrammetric systems (Ackermann, 1999). Planar patches 

and/or linear features indirectly measured have been alternatively used as conjugate 

surface elements in overlapping strips (Skaloud and Lichti, 2006; Habib et al., 2007; Lee 

et al., 2007; Skaloud and Schaer, 2007; Habib et al., 2009b). Planar patches can be 

extracted by plane segmentation; linear features are derived through the intersection of 

adjacent planar patches such as gable roofs. However, planar and linear features can be 

reliably extracted only in urban areas. Therefore, a surface matching procedure should be 

used for the establishment of correspondences between point clouds with non-identifiable 

landmarks (Zhang, 1994). 

1.2 Research Objectives and Scope 

The objectives of this research are to analyze the LiDAR systematic errors and to develop 

methods for estimating biases in the LiDAR system parameters. Possible approaches for 

LiDAR system calibration depend on which data is available; that is, the availability of 

system raw measurements, control data from GPS surveying and/or reference surface 

data, and the availability of additional images that overlap with the considered LiDAR 

data. This research proposes alternative calibration methods to be used in cases where the 

point cloud coordinates of overlapping strips are available, but where raw measurements 

are not utilized. In addition, the alternative calibration methods utilize a surface matching 

procedure, which is called Iterative Closest Patch (ICPatch). It can provide a benefit in 

the absence of man-made objects in rural areas. There is no need to extract identifiable 

linear and/or areal features (landmarks). Sections 1.2.1 and 1.2.2 will go into detail about 
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the research objectives: LiDAR system calibration and correspondences between point 

cloud datasets.  

1.2.1 LiDAR System Calibration 

A LiDAR system provides 3D coordinates of point cloud through the LiDAR geo-

referencing equation which is a function of boresight angles, lever-arm offset, and system 

measurements. If there are biases in the system parameters, the point cloud coordinates 

will be distorted. The LiDAR system calibration is carried out as a quality assurance 

(QA) procedure to determine the system parameters, which fulfill the required quality of 

point cloud coordinates. The conventional LiDAR system calibration procedures have 

required full access to the raw measurements from the system components such as 

GPS/INS and laser scanner as well as the use of control data.  This research focuses on 

developing alternative methods which can overcome the limited access to the system raw 

measurements and control data, and studying the optimal flight configuration for the 

LiDAR system calibration. In this regard, two approaches are considered. The first 

approach which is called the ‘simplified method’ estimates biases in the system 

parameters using only point cloud coordinates from parallel overlapping strips. In this 

method, the LiDAR geo-referencing equation is simplified with assumptions such as 

relatively flat terrain and parallel trajectory lines. The discrepancies between overlapping 

strips are represented by a 3D transformation function based on the simplified LiDAR 

geo-referencing equation. The second approach is the ‘quasi-rigorous method’. It utilizes 

the platform position data with time-tagged point cloud. The use of the platform position 

data makes it possible to handle non-parallel and non-straight overlapping strips and 
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height variation of object surfaces. In the quasi-rigorous method, lateral and vertical 

distances between the laser firing point and object surface can be approximately 

estimated using trajectory position data and time-tagged point cloud coordinates; then, 

encoder angles (which indicate laser beam directions) are derived using these estimates.  

1.2.2 Establishment of Correspondence between Point Cloud Datasets  

Corresponding features between overlapping strips (as well as LiDAR strips and control 

data) are required to estimate the system parameters using the discrepancies between the 

conjugate surface elements caused by bias-contaminated point cloud coordinates. It is 

commonly known that it is almost impossible to identify distinct points in a LiDAR point 

cloud. In that sense, linear and areal features can be utilized as alternative primitives for 

the point cloud. The disadvantages of these alternative primitives are that they are mainly 

available in areas with man-made objects and pre-processing is required in order to 

extract them (e.g., plane segmentation and neighboring plane intersection). Instead of 

distinct features, surface matching procedures can be considered to establish 

correspondences between various point clouds. The surface matching techniques for 3D 

data have been addressed by many authors (Besl and McKay, 1992; Zhang, 1994; 

Bergevin et al., 1996; Park and Subbarao, 2003; Gruen and Akca, 2005). The most 

commonly implemented method is the ‘Iterative Closest Point (ICP)’; it has been widely 

used as a method for 3D point cloud registration without identifiable landmarks. In this 

research, a modified approach named the ‘Iterative Closest Patch’ is used, where the 

corresponding features are defined by the closest point and patch, while the conventional 

ICP procedure assumes point-point correspondences. For the ICPatch procedure, the 
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normal distance between the matched point and planar patch is minimized, while the 

Euclidean distance between conjugate points is minimized in the ICP procedure. This 

research introduces two approaches for the similar measure between the matched point-

patch pairs. In the volume constraint, the volume of the tetrahedron consisting of the 

matched point and triangular patch are utilized as a constraint. Another approach, a point-

based similarity measure, derives pseudo-conjugate points from matched point-patch 

pairs. In this approach, the weight matrix for the pseudo-conjugate points should be 

modified to minimize the normal distances between matched point-patch pairs by 

assigning zero-weight along the corresponding patch. The advantage of this approach is 

that one can handle point-patch pairs without an additional function representing the 

similarity measure such as normal distance between corresponding point and patch. 

1.3 Dissertation Outline 

The proposed methods for LiDAR system calibration and establishing correspondences 

between point cloud dataset are introduced in this dissertation. The structure of this 

document and brief explanations of the chapters can be summarized as follows: 

 Chapter 2 presents an overview of the LiDAR system and error sources. In addition, a 

literature review of existing LiDAR system calibration methods and point cloud 

registration techniques is also conducted. 

 Chapter 3 introduces the proposed LiDAR system calibration methods. Two 

alternative calibration methods are discussed; the first one is the simplified method 

using only point cloud coordinates from parallel strips to estimate biases in system 
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parameters; the second one is the quasi-rigorous method which can deal with non-

parallel strips using time-tagged laser footprints and trajectory data. In addition to the 

calibration procedures, point cloud adjustment procedures using the estimated biases 

are introduced for both methods. 

 Chapter 4 details the co-registration methodology of point cloud datasets. The 

alternative primitives are introduced with the strategy of the similarity measure. 

Similarity measures between matched point-patch pairs are conducted using the 

volume constraints and modified weight matrices for both calibration procedures. 

 Chapter 5 describes the experiments carried out using simulated and real datasets to 

demonstrate the feasibility and robustness of the proposed methodologies. The point 

clouds are reconstructed after estimating the biases in the system parameters. The 

adjusted point clouds are compared with the original datasets (before the calibration) 

in order to evaluate the impact of the system calibration. 

 Chapter 6 summarizes the conclusions from the study of the proposed calibration 

methods and experimental results. Recommendations for future work follow the 

research conclusions. 
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       CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

Digital Surface Model (DSM) generation from LiDAR data has advantages in-terms of 

point density, positional accuracy, and production cost when compared to conventional 

photogrammetric procedures (Ackermann, 1999; El-Sheimy et al., 2005). In comparison 

to a radar system, a laser scanning system has favourable range measurements due to the 

use of higher energy pulses in shorter intervals and collimated light with shorter 

wavelength from a small aperture (Wehr and Lohr, 1999). A typical LiDAR system 

consists of a laser scanner and GPS/INS navigation components. The laser scanner 

mounted on the platform scans the object surfaces and produces a wide swath over which 

the distances to the mapped surface are measured. The distances from the sensor to the 

mapped surface are calculated by the time delay between the laser pulse transmission and 

detection while the onboard GPS/INS component provides the position and orientation of 

the platform. The laser beam direction (encoder angle) at which the laser is scanned is 

then measured. To account for the platform’s movement, the motion of the platform is 

recorded by the GPS/INS navigation system and then the information is used in post-

processing to calculate the coordinates of the point cloud.  

The vertical accuracy of LiDAR data is relatively high (5-30 cm) compared to other 

methodologies, while the horizontal accuracy is about 30-50cm (McGlone et al., 2004; 

Alharthy, 2004). The quality of the LiDAR data is affected by many factors: accuracy of 
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the integrated GPS/INS position and orientation, validity of the system parameters, point 

density, flight altitude & speed, and amount and density of buildings & vegetation. The 

fundamentals and detailed principles of the laser ranging theorem was well documented 

by Baltsavias (1999a); Wehr and Lohr (1999), and the common method to determine the 

coordinates of LiDAR footprints was throughly explained by Vaughn et al. (1996); Shan 

and Toth (2009). 

2.2 LiDAR Overview 

The word laser means ‘light amplification by stimulated emission of radiation’. Electrons 

in atoms can occupy many different energy levels. If energy is absorbed by an electron, it 

jumps to a higher energy level (orbit); it is called ‘excited’; then, when the electron 

comes back to lower energy lever (where it was to get back to stable status), light is 

emitted. The light emission occurs at random, and thus has a low level of coherence. 

Stimulated Emission is what makes a laser different from the typical light created by a 

normal light source such as a bulb. In stimulated emission, an electron in a higher orbit is 

brought to a lower orbit by the presence of a photon of exactly the same energy as the 

energy difference between the two levels. When this happens, another photon is emitted 

which is identical to the first photon. Since two photons are identical, they add together to 

make the most intense wave possible. Amplifying the radiation in this way creates what 

is called coherent radiation, which is the most intense radiation possible (Bossler, 2010). 

Extensive literature has been published since the laser technology was invented by 

Charles Townes and Arthur Schawlow in Bell Labs in 1958. For further information 
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about laser, one can refer to various text books such as Hitz and et al. (1998); Weber 

(1999); Silfvast (2004). 

The laser device, through the process described above, emits a coherent beam, which is 

monochromatic (typically with wavelength in the range from visible blue-green to near-

infrared) and directional with less divergence compare to white light which travels in 

many directions and is very weak. A laser beam, however, is not perfectly cylindrical, 

refer to Figure 2.1. The waist is the narrowest part of the beam. From the waist, the beam 

diverges by an angle γ, which is known as the beam divergence angle and typically 

ranges from 0.2 to 1.0 mrad (Habib, 2006). For example, at a flight altitude of 1,000m, 

the diameter of the laser footprint is about 30 and 50cm for a beam divergence of 0.3 and 

0.5 mrad, respectively (Shan and Toth, 2009). Therefore, the laser footprint should be 

thought of as a disc/ellipse rather than a distinct point. The size and the shape of the 

footprint depends on several factors such as the beam divergence angle, the distance 

between the laser beam firing point and the object, the look angle of the laser beam, and 

the orientation of the surface of the mapped object. 

 

Figure 2.1. The divergence angle of a laser beam (Habib, 2006). 

The ranging technologies using a laser can be classified into two groups: phase 

comparison method and time pulse method (Shan and Toth, 2009). In the phase 

comparison method, the ranging system transmits a continuous wave (CW) of laser 
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radiation. The ranges between the device and objects are determined by comparing the 

transmitted and received wave patterns. The laser ranging system using a CW is usually 

used in terrestrial LiDAR systems aiming to measure relatively short distances (typically 

less than 100m). The drawback of the CW system is that the phase difference between 

reflected and emitted signals is measured by comparing them, but the integer number of 

wavelengths cannot be determined by the signal difference. It is known as the ambiguity 

resolution problem, which is similar to the GPS carrier-phase ambiguity problem. In 

modern systems, the problem is solved by making many changes to the wavelength (Shan 

and Toth, 2009). Second, ‘time pulse method’ transmits discrete pulses instead of the CW 

and records time difference between transmitted and reflected pulses to determine the 

distance for the round trip (Baltsavias, 1999a; Wehr and Lohr, 1999). Usually, when the 

pulse is reflected from the specific targets such as grounds, buildings, and trees, the 

received pulses whose energy is higher than a predetermined threshold value can be 

detected. The detected pulse is recorded against the time between the signal emission and 

its reception in a graph, which is known as the waveform. Since the speed of light is 

accurately known, the accuracy of the laser range is dominantly affected by the quality of 

the time measurement. The ranging technology using the pulsed laser is common in 

airborne LiDAR systems commercially operated.  

Some of recent LiDAR systems (e.g., Optech ALTM 3100, TopoSys Harrier 56/G4, 

RIEGL LMS-Q560, and LEICA ALS 50 II) are equipped with a full waveform digitiser. 

The full waveform digitising LiDAR systems have been developed, first as preparation 

for satellite systems to survey earth topography and vegetation cover, and later for 

airborne LiDAR systems (Hyyppä, 2004). An advantage of the full waveform system is 
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that the detection of the objects of interest can be processed after capturing LiDAR data 

to characterise the different targets along the path of the laser beam (Mücke, 2008). 

Depending on the nature of the mapped object, a portion of the laser light might penetrate 

that object (e.g., tree canopy). Penetrated energy might interact with other objects leading 

to several peaks in the waveform. Figure 2.2a illustrates a sample of full waveform where 

received signals are continuously recorded, and each peak indicates objects existing along 

the pulse path. Another advantage is that full waveform data is more useful than classical 

multi-echo LiDAR data since it can provide more than basic geometric information like 

3D point clouds (Hug et al., 2004; Chauve et al., 2007). Figure 2.2b shows a profile 

captured by the LMS-Q5600. On the left side of this figure, the amplitudes of reflected 

signals are represented in the gray, while two waveform plots are shown on the right side. 

As one can see in this figure, the amplitude profile display and waveform plot “B” show 

two peaks indicating both roof and ground. Depending on the reflectances from the roof 

and ground, waveform data can be used to precisely determine the lateral position of the 

edge of the roof with sub-beam-diameter accuracy (Hug et al., 2004). 
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Figure 2.2. (a) Laser pulse interaction with objects and range derivation from the 

digitized waveform (Shan and Toth, 2009; Mallet, 2009; Bossler, 2010) and (b) a profile 

of full waveform data captured by the LMS-Q5600 (adapted from Hug et al., 2004). 

LiDAR data is delivered in the form of X, Y, and Z ground coordinates of the captured 

surfaces, along with expected accuracies in the horizontal and vertical directions. The 
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system consists of three components: laser scanner, GPS, and INS, as illustrated in Figure 

2.3. The laser scanner, GPS, and INS are mounted on a moving platform, and a GPS base 

station is additionally operated for DGPS surveying. The laser scanner measures the 

distances between the laser firing point and object points as well as laser beam directions 

(represented by encoder angles). The coordinates of the object points are calculated using 

the measurements after determining the laser scanner position and orientation. Since the 

laser scanner is mounted on a moving platform such as fixed wing airplane, helicopter, or 

van, the laser scanner position is directly geo-referenced by the GPS/INS navigation 

system with respect to the ground coordinate system. Figure 2.4 shows some of the 

LiDAR systems that are commonly used by the mapping industry. 

 

Figure 2.3. Basic components of a general LiDAR system. 
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http://www.leica-geosystems.com/en/Leica-ALS60-
Airborne-Laser-Scanner_57629.htm 

 

http://www.optech.ca/gemini.htm 

(a) (b) 

http://www.rieglusa.com/products/airborne/lms-
q680/index.shtml 

 

http://www.toposys.com/pdf-ext/Engl/FalconIII-
Handout-EN.pdf 

(c) (d) 
Figure 2.4. Examples of LiDAR system equipment: (a) Leica ALS60, (b) OPTECH 

ALTM Gemini, and (c) RIEGL LMS-Q680i, and (d) TopoSys Falcon III. 

In addition to the point positions, most modern LiDAR systems can provide intensity 

information which is the ratio between the strength of detected light (laser beam) and that 

of emitted light, and is influenced mainly by the reflectance properties of the object. The 

intensity data can be utilized for object extraction and land-cover classification (Song et 

al., 2002; Clode et al., 2004; Wang and Tseng, 2004). The intensity data has however 

serious noise, so that a filtering procedure is required before its use (Xudong et al., 2005). 

Figure 2.5 shows a range image (in the form of shaded relief) and an intensity image 

taken over the same area, illustrating the complementary information obtained from the 

http://www.leica-geosystems.com/en/Leica-ALS60-Airborne-Laser-Scanner_57629.htm
http://www.leica-geosystems.com/en/Leica-ALS60-Airborne-Laser-Scanner_57629.htm
http://www.rieglusa.com/products/airborne/lms-q680/index.shtml
http://www.rieglusa.com/products/airborne/lms-q680/index.shtml
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two types of data; those are interpolated to regular grid data derived from the original 

irregular point cloud. 

  

(a) (b) 

  

(c) (d) 
Figure 2.5. Sample LiDAR data: left two figures are interpolated range images (shaded 

relief) and right two figures are interpolated intensity images, over the same areas. 

Table 2.1 presents the specifications of typical LiDAR systems. The typical wavelength 

of a LiDAR system is about 1,064 nm which falls in the infrared portion of the 

electromagnetic spectrum. Most objects on the ground have a reasonable reflectance at 

infrared wavelengths, so they produce a return signal with sufficient intensity to be 

detected. It is however known that water body, damp soil, and dark surfaces have very 

low reflectance; it is difficult to detect a signal reflected from these types of targets 

(Harding, 2004).  
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Table 2.1. Specifications of typical LiDAR systems (Habib, 2006; Bossler, 2010). 

Specification Typical values 

Laser wavelength 1064 nm, near-infrared 

Pulse rate 50-167 kHz 

Pulse energy 100s μJ 

Pulse width 10 ns 

Beam divergence 0.25-2.0 mrad 

Scan angle (or Field Of View) 40 °-75 ° 

Scan rate 25-90 Hz 

GPS frequency 1-10 Hz  

INS frequency 200-300 Hz 

Operating altitude 80-3,500 m (6,000 m max) 

Footprint size 0.25-2.0 m (at 1,000 m altitude AGL) 

Number of returns 1-4 or full waveform 

Ground spacing 0.5-2.0 m 

Vertical accuracy 5-30 cm (at 1,000-3,000 m altitude AGL) 

Horizontal accuracy 1/5,500-1/2,000 of flight attitude (m/AGL) 

The pulse repetition rate indicates the number of emitted laser pulses per second. The 

scan rate, on the other hand, refers to the number of completed full scans per second. The 

density of a point cloud depends on the system and on the balance between flying speed, 

pulse rate, scan angle, and flight altitude (Ackermann, 1999). Higher pulse and scan rates 

require a lower flight altitude because there is a limitation in the capacity of a laser 

scanner power (Fugro EarthData, Inc., 2009). The swath width of a LiDAR strip is a 

function of the scan angle and flight altitude; for instance, 40° scan angle and 1,000m 

flight altitude lead to about 700m swath on the ground. The accuracy of GPS/INS 

http://habib/
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navigation is very important for deriving LiDAR points. The GPS error varies during the 

data capturing time; through integration of GPS with INS, the temporal variability can be 

smoothed. Typically, with DGPS and post-processing, accuracies of 5-15 cm can be 

achieved (Baltsavias, 1999a). The attitude accuracy of a platform is more important than 

the position accuracy, especially for a higher flight altitude, since the impact of the INS 

measurement quality on point cloud coordinates is a function of the flight altitude. The 

error budget of a LiDAR system will be further discussed in the next section.  

The LiDAR scanning pattern on the ground is affected by the scanning device types as 

well as flight path and speed and the terrain topography. Figure 2.6 shows the scanning 

device types used in the commercial LiDAR systems: oscillating mirror, rotating polygon, 

nutating mirror (palmer scanner), and fiber scanner (Wehr and Lohr, 1999; Brenner, 

2006; Shan and Toth, 2009). The oscillating mirror and rotating polygon produce linear 

scanning pattern; the oscillating mirror yields “zigzag” patterns (Figure 2.6a), while the 

rotating polygon has parallel lines on the ground (Figure 2.6b). Non-linear scanning 

pattern is available using the nutating mirror, which moves the laser beam along an 

elliptical path below the aircraft (Figure 2.6c). The advantage of the nutating mirror is 

that the ground is scanned twice from different directions (forward and backward); 

therefore, occluded areas in the forward scanning can be captured in the backward 

scanning (Mücke, 2008).  
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(c) (d) 
Figure 2.6. Scanning devices: (a) oscillating mirror, (b) rotating polygon, (c) nutating 

The fiber scanner consists of two arrays of glass fibers (transmitting and receiving arrays) 

which are arranged at one end in a circle and at the other end in a line. A laser is sent by a 

mirror, and (d) fiber based laser scanner (Brenner, 2006). 
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motor-driven mirror into the circular glass fiber array, and linearly transmitted to the 

ground. The reflected laser from the ground is received by the receiving glass fiber; then, 

the laser is guided by another mirror into to a laser detector. The number of glass fibers 

determines the number of laser footprints across the flying direction (Figure 2.6d). The 

fiber scanner has an important advantage with respect to maintaining the stability of 

measuring laser beam directions because each glass fiber has a fixed beam direction 

(Schnadt and Katzenbeisser, 2004). 

According to the reviews of the commercial LiDAR systems (Baltsavias, 1999b; 

Lemmens, 2009), the oscillating mirror and rotating polygon are the most popular. In 

other words, the linear scanning system is a majority from the point of view of the 

scanning pattern on the ground. For the oscillating mirror and rotating polygon, the 

required size of the mirrors is determined by the size of the transmitting and receiving 

aperture. The detection of the transmitted laser beam can be improved for a given laser 

power by enlarging the receiving aperture. A larger aperture means a larger mirror which 

needs more powerful devices to keep the speed of the mirror rotation fast, which is an 

engineering problem for designing the system (Shan and Toth, 2009).  

The coordinates of the LiDAR footprints are the result of combining the derived 

measurements from each of its system components, as well as the boresight and lever-

arm parameters relating to such components. The relationship between the system 

measurements and the parameters is embodied in the LiDAR geo-referencing equation 

represented in Equation 2.1 (Vaughn et al., 1996; Schenk, 2001; El-Sheimy et al., 2005; 

Shan and Toth, 2009). Four coordinate systems are used in the LiDAR geo-referencing 
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equation: mapping frame (ground coordinate system), Inertial Measurement Unit (IMU) 

body frame, laser unit frame, and laser beam frame (Figure 2.7). The position of the 

LiDAR footprint GX


 can be determined in the mapping frame through the summation of 

three vectors ( 0X


, GP


 and 


) after applying the appropriate rotations coming from the 

platform attitude, laser beam directions, and boresight angles.  
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In Equation 2.1,  is the vector between the origins of the mapping frame and the IMU 

body frame;  indicates the lever-arm which is defined by the spatial offset between the 

laser unit frame and the IMU body frame; and 

0X


GP





 is the laser range vector whose 

magnitude is equivalent to the distance from the laser firing point to its footprint. The 

term  stands for the rotation matrix relating the mapping and IMU body 

frames;  represents the rotation matrix defined by the boresight angles which 

are rotational offsets between the IMU and laser unit frames; and  refers to the 

rotation matrix relating the laser unit frame and laser beam frame, which is determined by 

the laser beam direction through the encoder angles, α and β. In 
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Figure 2.8, the Ylu axis of 

the laser unit frame is parallel to the flying direction; α and β denote encoder angles 

around Xlu and Ylu axes, respectively. For a linear scanner, which is the focus of this 

research, the laser beam direction can be represented by the encoder angle β (Figure 2.8a), 
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while the elliptical pattern requires both angles, α and β, to define the laser beam 

direction (Figure 2.8b). The involved quantities in the LiDAR geo-referencing equation 

are all measured during the acquisition process, except for the boresight and lever-arm 

parameters, which are usually determined through a calibration procedure.  

0X
 



GP


 

Figure 2.7. Observations included in a LiDAR system and the geometric relationship 

between them. 

(a)

LUZ
LUY

LUX

 (b)

LUZ
LUY

LUX

 

Figure 2.8. Linear and elliptical scanning devices: (a) the linear scanning device defines 

the laser beam direction using one rotation angle (typically across flight direction), while 

two rotation angles shown in (b) are used for the elliptical scanning device. 
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2.3 LiDAR Error Sources 

There are two kinds of errors: random and systematic errors. The random errors are 

caused by the fact that repeated observations usually display a normal frequency 

distribution, while the systematic errors follow some physical law and thus can be 

predicted (Mikhail and Ackerman, 1976; Wolf and Ghilani, 1997). In the past, previous 

research has been done concerning the analysis of the accuracy and error sources in 

LiDAR systems: Huising and Gomes Pereira (1998), Baltsavias (1999a), Schenk (2001), 

and Glennie (2007); May and Toth (2007). The magnitude of the random errors depends 

on the precision of the system’s measurements, which include the position and 

orientation measurements from the integrated GPS/INS, encoder angles, and laser ranges. 

The systematic errors, on the other hand, are mainly caused by biases in the boresight 

angles and lever-arm offsets relating the system components as well as biases in the 

system measurements such as encoder angles and laser ranges. In the following 

paragraphs, the random and systematic errors will be further discussed for a linear 

scanning device. 

2.3.1 Random Errors 

The purpose of studying the impact of random errors is to provide sufficient 

understanding of the nature of the noise in the derived point cloud as well as the 

achievable precision from a given flight and system configuration. The impact of random 

errors in the system measurements on the derived point cloud can be investigated by two 

approaches: the first approach based on a simulation procedure and the other approach 

using the law of error propagation. The simulation procedure starts from a given surface 
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and trajectory, which are then used to derive the system measurements (laser ranges, 

encoder angles, position and orientation information for each pulse). Then, noise is added 

to the system measurements, which are later used to reconstruct the surface through the 

LiDAR geo-referencing equation. The differences between the noise-contaminated and 

true coordinates of footprints are used to represent the impact of a given noise in the 

system measurements. The following list summarizes the effect of noise in the system 

measurements. 

 Position noise will lead to similar noise in the derived point cloud. Moreover, the 

effect is independent of the system flight altitude and scan angle (Figure 2.9a). 

 Orientation noise (platform attitude or encoder angles) will affect the horizontal 

coordinates more than the vertical coordinates within nominal scan angle ranges (e.g., 

±25°). In addition, the effect is dependent on the system flight altitude and scan angle 

(Figure 2.9b). 

 Noise in laser range mainly affects the vertical component of the derived coordinates 

(especially in the nadir region). The effect is independent of the system flight altitude. 

The impact, however, is dependent on the system’s scan angle. 

Through the proposed simulation, one can also notice that noise in some of the system 

measurements affects the relative accuracy of the derived point cloud. As an illustration, 

Figure 2.9 reveals that a given attitude noise in the GPS/INS derived orientation affects 

the nadir region of the flight trajectory less significantly than off nadir regions. Such a 

phenomenon is contrary to derived surfaces from photogrammetric mapping where the 

measurements noise does not affect the relative accuracy of the final product. 
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(a) (b) 
Figure 2.9. Effect of adding noise to the GPS/INS-derived position and orientation on the 

point cloud coordinates; (a) relative accuracy is not affected by the position noise, while 

(b) the attitude noise introduces relatively less errors along the LiDAR strip centre. The 

red lines show the noise-contaminated point positions compared to the true points in blue. 

The second approach to studying the effect of random errors can be based on the law of 

error propagation applied to the LiDAR geo-referencing equation. Error propagation 

involves finding the stochastic characteristics of dependent variables given the 

characteristics of the independent variables and the functional relationships relating the 

two sets of variables (Mikhail and Ackerman, 1976). The fundamental and other 

applications of the law of error propagation (or propagation of variances and covariances) 

can be found in a few textbooks: Mikhail and Ackerman (1976); Wolf and Ghilani 

(1997); Koch (1999). For each of the LiDAR footprints, the law of error propagation can 

be used to estimate the precision of the derived coordinates, given the precision of the 

system measurements. The advantage of such a methodology is that it can estimate the 

“best achievable precision” from a given system and flight configuration. One should 

note that the use of the “best achievable precision” expression is based on the fact that the 

law of error propagation assumes a relatively flat and horizontal solid surface. In other 
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words, the precision of the derived point cloud covering steep and/or forested areas is not 

taken into consideration. To illustrate such a procedure for an operational system, Table 

2.2 shows the expected precision of the measurements from two Optech LiDAR systems 

(ALTM 2050 and ALTM 3100). The manufacturer precision specifications for both 

systems are as follows: the horizontal precision is less than 1/2000 of the flight altitude in 

meters, while the vertical precision is roughly 15cm at a flight altitude of 1,200m, and 

roughly 25cm at a flight altitude of 2000 m (Optech, 2007).  

Table 2.2. Precision specifications for the Optech system components (Applanix, 2007; 

Optech, 2007). 

IMU (°) Post-processed System 
model 

GPS (m) 
Post-processed Roll Pitch Yaw 

Encoder  
angle (°) 

Laser range 
(cm) 

ALTM 
2050 

0.05 – 0.3 0.008 0.008 0.015 0.009 ~ 2 

ALTM 
3100 

0.05 – 0.3 0.005 0.005 0.008 0.009 ~ 2 

Using the law of error propagation and the specifications in Table 2.2, the expected 

precision of the derived LiDAR footprints is reported in Figure 2.10. It should be noted 

that the reported precisions in Figure 2.10 corresponds to LiDAR footprints at the swath 

edges and the centre of a scan-line (i.e., footprints with the maximum and minimum 

encoder angles). When comparing the manufacturer precision specifications with the 

numbers (horizontal and vertical accuracies) in Figure 2.10, one can see that the 

manufacturer precision specifications are more conservative than the calculated precision 

using error propagation which assumes relatively flat and solid surfaces without the 

consideration of vegetation and atmospheric effects. It is commonly known that the 

horizontal accuracy of data derived from photogrammetric systems is better than its 

vertical accuracy, while the vertical accuracy of LiDAR data surpasses the horizontal 
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accuracy. One can confirm this fact in this error propagation test; in Figure 2.10, the 

worst value of the vertical accuracy is 16 cm and the worst horizontal one is more than 50 

cm. 

 

Figure 2.10. Expected precision of laser footprints is calculated by the law of error 

propagation at the centre and edge of a LiDAR swath using the system specifications in 

Table 2.2. 

2.3.2 Systematic Errors 

Systematic biases in the system measurements (e.g., encoder angles and laser ranges) and 

system parameters (e.g., boresight angles and lever-arm offset relating the system 
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components) will lead to systematic errors in the derived point cloud. The impact of these 

biases can be either derived through mathematical analysis of the LiDAR geo-referencing 

equation or by using a simulation process. The simulation process starts with a given 

surface and trajectory, which are then used to derive the system measurements (ranges, 

encoder angles, position and orientation information for each pulse). Biases are then 

added to the system parameters and measurements in order to generate a bias-

contaminated point cloud which is compared with the true surface introduced in the 

simulation procedure for the analysis of the impact of the systematic errors. In order to 

evaluate the compatibility of overlapping strips and study the impact of the flight 

directions, two strips (forward and backward directions) are simulated. In this simulation 

test, a flat terrain is assumed; biases in boresight, lever-arm, range measurement, and 

encoder angle scale factor are introduced. For more detail about the flight specifications 

and systematic errors introduced in the simulation procedure, refer to Table 2.3.  

Figure 2.11 shows the result of the simulation data test. In this figure, the graphs in the 

left column represent the coordinate errors (ΔX, ΔY, and ΔZ) along the scan-line caused 

by the biases in the system parameters for both forward and backward strips, where the 

flight directions are parallel to the Y axis and scanning directions are across the flight 

direction (X axis). On the other hand, the right column graphically illustrates the impact 

of the systematic biases on the ground, where δΔX, δΔY, and δΔZ are the biases in lever-

arm offset; δΔω, δΔφ, and δΔκ are the biases in boresight angles; δS, and δΔρ denote the 

biases of the encoder angle scale factor and range measurement, respectively. 
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Table 2.3. Description of the simulation data used for evaluating the impact of biases in 

the system parameters. 

Parameters Values 

Flight direction (heading) Along the ground Y axis 

Platform attitude (roll and pitch) roll = pitch = zero (level scanning) 

Flight altitude 550m 

Scan angle 20˚ 

Bias along X axis 0.1m 

Bias along Y axis 0.2m Lever-arm 

Bias along Z axis 0.3m 

Bias in pitch angle 50" 

Bias in roll angle 50" Boresight 

Bias in yaw angle 50" 

Bias in encoder angle scale factor 0.001 

Bias in laser range measurements 0.5m 

 

 

 

(a) Impact of biases in lever-arm components 
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(b) Impact of bias in boresight pitch angle 

(c) Impact of bias in boresight roll angle 

(d) Impact of bias in boresight yaw angle 
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(e) Impact of bias in range measurement 

 

(f) Impact of bias in encoder angle scale factor 

Figure 2.11. Differences between the bias-contaminated and true coordinates of the 

footprint for two overlapping strips flown in opposite directions: (a) impact of biases in 

lever-arm components, (b) impact of bias in boresight pitch angle, (c) impact of bias in 

boresight roll angle, (d) impact of bias in boresight yaw angle, (e) impact of range bias, 

and (f) impact of encoder angle scale bias. 

The impacts of the biases in the lever-arm parameters are represented in Figure 2.11a; it 

can be seen that the errors caused by the biases (δΔX, δΔY, and δΔZ) in the lever-arm 

parameters are constant along the scan-lines, and there is no difference between forward 

and backward strips in Z coordinates. In a similar way, the impacts of biases in the 

boresight pitch, roll, and yaw angles are shown in Figures 2.11b, 2.11c, and 2.11d, 
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respectively. The impact of the bias (δΔω) in the boresight pitch angle causes constant 

discrepancies between forward and backward strips in the flight direction (Figure 2.11b). 

On the other hand, Figure 2.11c shows the impact of the bias (δΔφ) in boresight roll angle 

which causes errors across the flight direction (ΔX) as well as the vertical direction (ΔZ). 

However, there is no error along the flight direction (ΔY). In Figure 2.11c, even though 

the errors (ΔX) across the flight direction slightly changes along the scan-lines, it looks 

constant because the variation of the errors is small enough to be ignored. The bias (δΔκ) 

in the boresight yaw angle causes errors along the flight direction (ΔY) whose magnitudes 

are dependent on encoder angles, while the errors across the flight direction (ΔX) are 

close to zero and no error takes place in vertical direction (ΔZ) (Figure 2.11d). Figures 

2.11e and 2.11f show the impact of the biases (δΔρ and δS) in the range measurement and 

scale of encoder angle, respectively. The Z coordinate errors caused by both biases have 

curved shapes along the scan-lines. The errors in the vertical coordinates (ΔZ) caused by 

the bias in the scale are zero in the centres of the scan-lines, while the errors caused by 

the bias in the range measurements are maximized there. The errors in the across flight 

direction (ΔX) caused by both the biases change along the scan-line, while there is no 

error caused by the biases along the flight direction (ΔY). The impact of the various 

systematic biases of a LiDAR system on the ground may depend on the flight direction 

(forward and backward), flight altitude, and encoder angle. Table 2.4 summarizes the 

impact of the biases with respect to those factors, and it will be discussed in more details 

in section 3.2 in terms of mathematical analysis. 
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Table 2.4. Summary of the impact of biases in the parameters and measurements of a 

LiDAR system with a linear scanner on the derived point cloud. 

 
Flight altitude 

Flight direction 
(forward/backward) 

Encoder angle 
(across flight 

direction) 

Biases in  
lever-arm 

components 

● Effect is 
independent of the 
flight altitude. 

● Planimetric effect is 
dependent on the flight 
direction. 
● Vertical effect is 
independent of the flight 
direction. 

● Effect is 
independent of the 
encoder angle. 

Bias in 
boresight pitch 

angle 

● Effect is 
dependent on the 
flight altitude. 

● Planimetric effect 
along the flight direction 
is dependent on the flight 
direction. 

● Effect is 
independent of the 
encoder angle. 

Bias in 
boresight roll 

angle 

● Planimetric effect 
across the flight 
direction is 
dependent on the 
flight altitude. 
● Vertical effect is 
independent of the 
flight altitude. 

● Planimetric effect 
across the flight direction 
and vertical effect are 
dependent on the flight 
direction. 

● Planimetric 
effect across the 
flight direction is 
independent of the 
encoder angle. 
● Vertical effect is 
dependent on the 
encoder angle. 

Bias in 
boresight yaw 

angle 

● Effect is 
independent of the 
flight altitude. 

● Planimetric effect 
along the flight direction 
is independent of the 
flight direction. 

● Planimetric 
effect along the 
flight direction is 
dependent on the 
encoder angle. 

Bias in laser 
range 

measurements 

● Effect is 
independent of the 
flight altitude. 

● Planimetric effect 
across the flight direction 
and vertical effect are 
independent of the flight 
direction. 

● Planimetric 
effect (DX) across 
the flight direction 
and vertical effect 
(DZ) are dependent 
on the encoder 
angle (DX more 
than DZ). 

Bias in 
encoder angle 

scale factor 

● Effect is 
dependent on the 
flight altitude. 

● Planimetric effect 
across the flight direction 
and vertical effect are 
independent of the flight 
direction. 

● Planimetric 
effect across the 
flight direction and 
vertical effect are 
dependent on the 
encoder angle. 
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2.4 LiDAR System Calibration 

The systematic errors contained in laser footprints come from biases in system 

parameters; those are biases in individual sensor measurements and mis-alignment of the 

sensors when mounted on a platform. The research in recent years has identified 

systematic biases and improved the quality of the LiDAR data, which can be classified 

into strip adjustment and LiDAR system calibration. The strip adjustment improves the 

quality of acquired overlapping strips by detecting and reducing discrepancies in the 

considered strips, while the LiDAR system calibration determines systematic errors to 

ensure the positional accuracy of laser footprints. 

In the past few years, the strip adjustment has been developed for evaluating and/or 

improving the positional accuracy of LiDAR by checking the compatibility of laser 

footprints in overlapping strips (Kilian et al., 1996; Crombaghs et al., 2000; Maas, 2000; 

Bretar et al., 2004; Vosselman, 2002; Pfeifer et al., 2005). In Crombaghs et al. (2000), a 

method for reducing vertical discrepancies between overlapping strips is proposed. Since 

the horizontal quality of the derived point cloud is considerably lower than the vertical 

one, this approach is not sufficient to evaluate the overall quality of the LiDAR data. In 

Kilian et al. (1996), an adjustment procedure similar to the photogrammetric block 

adjustment was introduced for detecting discrepancies and improving the compatibility 

between overlapping strips. In that research, twelve parameters were considered: six 

constant offsets and six time-dependent drifts for positions and orientations, which are 

estimated using tie and control points for each strip. However, the independent parameter 

set for each strip does not meet the ultimate goal of the LiDAR system calibration 
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because the estimated parameters cannot be assumed to be valid for other strips which are 

not involved in the adjustment procedure. Another drawback of this approach is that it 

relies on distinct points such as building corners to relate overlapping LiDAR strips and 

control surfaces. Due to the irregular nature of the LiDAR footprints (which is caused by 

the scanning pattern, terrain relief, flying speed), the identification of landmarks (e.g., 

building corners) is quite difficult and not reliable. 

More appropriate primitives have been suggested by Maas (2000), where the 

correspondence is established between discrete points in one LiDAR strip and Triangular 

Irregular Network (TIN) patches in a second strip. The correspondences are derived 

through a least-squares matching procedure where normal distances between conjugate 

point-patch pairs are minimized. The drawback of this work is that simple shifts were 

used as the transformation function relating conjugate point-patch pairs, and the validity 

of such a model was not completely justified. Moreover, the estimated shifts were not 

used to derive an indication of the point cloud quality. Vosselman (2002) estimated the 

offset between overlapping strips using linear features extracted from interpolated surface 

data, where the linear features were gathered from gable roofs and ditches. Pfeifer et al. 

(2005) developed a method using plane segmentation instead of using points, linear 

features, or TIN patches. In this research, planar patches were extracted using normal 

vector computation and region growing in overlapping strips. Bretar et al. (2004) 

proposed an alternative methodology for improving the quality of LiDAR data using 

derived surfaces from photogrammetric procedures. The main disadvantage, which limits 

the practicality of this methodology, is relying on the availability of aerial imagery over 

the same area. In addition, the proposed approach uses an affine transformation to relate 
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LiDAR and photogrammetric surfaces; however, there was not sufficient justification of 

the use of the affine transformation. The abovementioned approaches focused on the 

detection and elimination of the discrepancies between overlapping strips. Even though 

the discrepancies are caused by systematic errors in a LiDAR system, the strip adjustment 

procedures cannot be used for estimating biases in the system parameters.  

On the other hand, LiDAR system calibration determines the system parameters based 

the models defined by the biases in the individual sensor measurements and mounting 

parameters to ensure the positional accuracy of the final product of a LiDAR system. 

Schenk (2001) introduced the sources of systematic errors that can occur in a LiDAR 

system. A calibration procedure was then proposed using such an analysis. This work 

comprehensively explained possible errors in LiDAR systems; however, it is not 

recommended to include all possible systematic errors as unknown parameters in an 

adjustment procedure due to the high correlation between some parameters (Vosselman, 

2002). For example, if the biases in scanner encoder angles and boresight parameters are 

considered simultaneously in a calibration procedure, it will cause a nearly singular 

normal matrix. Burman (2000) estimated boresight and lever-arm parameters using 

elevation and intensity discrepancies between overlapping strips. This approach needs 

encoder angles and distance measurements as well as point cloud coordinates, and an 

interpolation procedure is required for the generation of regular grid data which is used to 

calculate topographic slope and intensity gradient of a point in question. This approach 

was implemented in “TerraMatch” which is one of the commercial LiDAR software 

packages (Burman, 2002). The discrepancies between overlapping strips were also used 

in Toth (2002); where boresight parameters were automatically determined using the 
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discrepancies between corresponding points, which were derived by the least square 

matching, without control data and system raw measurements. In this approach, the 

navigation data for the strips are required to estimate laser firing points. However, it is 

possible to estimate more than the firing points using trajectory information as it will be 

discussed in the section introducing the proposed methods. The method introduced by 

Morin (2002) used the discrepancies between overlapping strips to solve the boresight 

angles and the scanner torsion. These parameters are either estimated using ground 

control points or by manually observing discrepancies between tie points in overlapping 

strips. This approach is faced with an important issue; the identification of distinct points 

in LiDAR is difficult due to the irregular nature of point cloud data. In addition, this 

approach is not free from the need of the laser scanner and GPS/INS measurements. 

Instead of points and linear features, surface patches have been used as alternative 

primitives. Filin (2003) recovered systematic errors such as boresight and range bias 

using natural surfaces represented by a set of planar patches. This approach estimates 

systematic errors by minimizing the normal distances between laser points and control 

surfaces. The limitation of the approach is that system raw measurements are required as 

well as a control surface. Skaloud and Lichti (2006) presented a calibration technique 

using tie planar patches. The underlying assumption of this approach is that systematic 

errors in the LiDAR system will lead to non-coplanarity of conjugate planar patches as 

well as bending effects in these patches. This calibration method can simultaneously 

solve for the plane parameters and boresight angles which are considered as unknowns in 

the integration of LiDAR geo-referencing and plane equations. In addition, the range bias 

can be estimated using vertical control surface. However, this approach requires 
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relatively large planar patches, which might not always be available when the LiDAR 

data is captured in rural areas. According to Burman (2000); Skaloud and Lichti (2006); 

and Habib et al. (2007), if the boresight and lever-arm parameters are considered at the 

same time, one of the difficulties is the correlations between those parameters. Therefore, 

the use of planar patches should be carefully handled through the use of an optimal flight 

plan, as well as optimal planar patch distribution due to the correlations between these 

system parameters (Habib et al., 2007). 

Since Ackermann (1999) introduced the potential integration of imaging and laser 

sensors, research has been performed to investigate the potential and limitations of the 

integration of LiDAR and photogrammetric data and their complementary nature. For 

example, Postolov et al. (1999) and Ghanma (2006) introduced the co-registration 

between LiDAR and photogrammetric data, and Bretar (2004) generated a DSM from 

photogrammetric data which was then compared LiDAR data for the strip adjustment. 

Habib et al. (2007) used planar patches derived from photogrammetric data for the 

LiDAR system calibration, where the photogrammetric bundle adjustment was 

augmented by adding the LiDAR geo-referencing equation to the collinearity equations 

using the LiDAR system raw measurements. In that approach, the LiDAR boresight 

angles are determined by minimizing the normal distances between the derived LiDAR 

footprints and the photogrammetric areal patches. In addition to the estimation of the 

boresight angles, that methodology also ensures the co-registration between the 

photogrammetric and LiDAR data to a common reference frame, which has a positive 

impact on later products such as ortho-photos and photo-realistic 3D models. The 
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drawback of this approach is the need for laser scanner and GPS/INS measurements and 

photogrammetric data captured over the same area as the LiDAR data. 

The calibration approaches taken by LiDAR surveying companies are empirical. For 

example, the method proposed by Jung and Lee (2006) requires a calibration site where 

well-known features such as building edges and flat surfaces in run-ways are available. 

Discrepancies between a point cloud and control features are manually observed and used 

to determine the system parameters such as the boresight roll angle, pitch angle, height 

offset, and laser range measurement scale. This approach is a sequential approach rather 

than a procedure based on least square adjustment. The limitations of the method are the 

need for well defined calibration sites and manual procedures. In addition, the heading 

angle, one of the important system parameters, is not considered in this calibration 

procedure. 

Even though various approaches for LiDAR system calibration have been introduced to 

date, there is still no standard calibration method. For example, the systematic error 

factors under consideration are not consistent, and Table 2.5 shows which error factors 

have been considered by each author in the previous research. The lever-arm offsets are 

sometimes ignored, while the boresight angles are considered by most authors. In 

addition, the offset and scale of laser range measurements and encoder angles are rarely 

considered. The considered systematic errors in the LiDAR system are presented in Table 

2.5; however, one should notice that it does not mean that all considered factors are 

accounted for in the LiDAR calibration procedure at the same time. Even though some 

systematic errors are discussed as error sources, the analytical procedure of the LiDAR 
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system calibration is complex and difficult because of the correlation between the 

considered parameters. The last row of Table 2.5 shows the systematic errors considered 

in this research: boresight angles, lever-arm offsets, laser range offset, and encoder angle 

scale factor. Chapter 3 will introduce the proposed methods which can estimate the biases 

in the considered system parameters at the same time. 

Table 2.5. LiDAR systematic errors considered in the previous research. 

Considered systematic errors 
Proposed by 

Δω Δφ Δκ ΔX ΔY ΔZ Δρ Sρ Δβ Sβ 

Baltsavias (1999a) ● ● ● ● ● ● ●  ●  

Morin (2000) ● ● ●       ● 

Burman (2000) ● ● ● ● ● ●     

Schenk (2001) ● ● ● ● ● ● ● ● ● ● 

Toth (2002) ● ● ●        

Filin (2003) ● ● ●    ●    

Skaloud and Lichti (2006) ● ● ●    ●    

Jung/Lee (2006) ● ●    ●  ●   

Habib et al. (2007) ● ● ● ● ● ●     

This research ● ● ● ● ● ● ●   ● 

where, 

Δω, Δφ, and Δκ are boresight angles, 

ΔX, ΔY, and ΔZ are lever-arm offset components, 

Δρ and Sρ are bias and scale of laser range measurements, and 

Δβ and Sβ are range bias and scale factor of encoder angles of a laser scanner, 

respectively. 
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       CHAPTER 3  

ALTERNATIVE LIDAR CALIBRATION METHODOLOGIES 

3.1 Introduction 

The 3D coordinates of point cloud generated by a LiDAR system are directly geo-

referenced due to the use of a navigation system consisting of GPS and INS, and a laser 

scanner onboard a platform. The accuracy of the point cloud coordinates is affected by 

inherent systematic and random errors in a LiDAR system. The achievement of the full 

potential accuracy requires the elimination of all systematic errors. In this research, 

system parameters, which include mounting parameters (lever-arm and boresight) and 

systematic errors in a laser scanner (encoder angle scale factor and laser range bias), are 

estimated using point cloud coordinates of overlapping strips. Two alternative calibration 

methods are introduced for the determination of biases in the system parameters. Those 

methods can overcome the limitations of existing calibration procedures in terms of 

requirements of raw LiDAR data. The first presented method, denoted as the “simplified 

method”, makes use of the LiDAR point cloud from parallel overlapping strips captured 

over an area with moderately varying elevation. The systematic biases are estimated 

using the identified discrepancies between conjugate primitives in overlapping LiDAR 

strips. The second method denoted as “quasi-rigorous method” can deal with non-parallel 

strips over rugged terrain, but requires time-tagged LiDAR point cloud and navigation 

data (trajectory position). 
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3.2 Simplified Method 

The simplified method is designed to work with parallel LiDAR strips captured over an 

area with moderately varying elevation. It requires only the LiDAR point cloud and the 

system biases are estimated using the detected discrepancies between overlapping LiDAR 

strips. More specifically, this calibration method consists of a two-step procedure. First, 

the discrepancies between parallel overlapping strips are determined. Second, the system 

biases are estimated using the detected discrepancies between the strips.  

In the simplified method, the following assumptions are considered in the mathematical 

derivation: (i) linear scanning systems are considered, (ii) variations in the object space 

elevations are much smaller than the flight altitude, (iii) the flight lines are parallel, (iv) 

the platform trajectory is straight, (v) we are dealing with an almost levelled scanner (i.e., 

the roll and pitch angles are small enough to be ignored), and (vi) the boresight angles are 

assumed to be very small. In addition, an additional coordinate system defined in the 

centre of the overlapping area is introduced. Figure 3.1 shows the user defined coordinate 

system; its Y axis is defined half-way between the overlapping strips at the ground level, 

and X axis is along the scan-line (across the flight direction). In the figure, xA and xB 

denote lateral coordinates of a ground object point P relative to the laser unit frame, and 

the lateral distance between two flight lines is represented by D. 
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Figure 3.1. Flight lines and definitions of used coordinate systems in overlapping strips. 

In the local coordinate system, the LiDAR geo-referencing equation as introduced in 

section 2.2 can be simplified using the aforementioned assumptions. Thus, the rotation 

matrix  relating the ground and IMU body frame leads to an identity matrix 

for the forward strip; however, the 1

),,( rollpitchyawR

st and 2nd diagonal elements relating x and y 

coordinates are negative values for the backward strips (Equation 3.1). In addition, the 
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rotation matrix  relating the boresight can be represented by Equation 3.2 for 

small boresight angles. Therefore, the LiDAR geo-referencing equation leads to the form 

in Equation 3.3. In this equation, the multiple signs (

),,(  R

 & ) pertain to the forward and 

backward strips with the upper sign referring to the forward strip and the lower sign 

referring to the backward strip. 
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where, 

UX


 denotes the point coordinates in question with respect to the local coordinate system, 

ZYX  ,, are the components of the lever-arm offset vector GP


, 

S  is a scale for the encoder angle   (this scale should be unity for a bias-free system), 

H is the flight altitude above ground, and 

x is the lateral coordinate of the LiDAR point in question with respect to the laser unit 

frame. 
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The LiDAR point coordinates ( UX


), as presented in Equation 3.3, are functions of the 

system parameters ( ) and measurements ( lx
 

); it can be represented as the true point 

coordinates ( ) without systematic errors (Equation 3.4). In the presence of biases in 

the system parameters, the LiDAR point coordinates will become biased ( ) and 

will be functions of the system parameters and measurements as well as the biases in the 

system parameters (

TrueX



BiasedX

x
 ), as expressed by Equation 3.5. As shown in Equation 3.5, this 

research will investigate the impact of biases in the lever-arm offset components ( X , 

Y , Z ), biases in the boresight angles (  ,  ,  ), constant bias in the 

measured ranges (  ), and constant scale bias in the encoder angle ( S ). Equation 3.5 

can be linearized with respect to the system parameters using Taylor series expansion, 

yielding the form in Equation 3.6, after ignoring second and higher order terms. In 

Equation 3.6, the term xf

/

f

  represents the partial derivatives with respect to the system 

parameters, while the term xx
 )/(   represents the impact of the system biases on the 

derived point cloud coordinates. 

),( lxfXX Trueu


  (3.4)

where, 

),,,,,,,( SZYXx  


, and  

  ,,oXl


  

),( lxxfX Biased


  (3.5)

where, 
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The impact of the biases in lever-arm parameters and boresight angles are represented by 

the forms of Equations 3.7a and 3.7b; the impact of the biases in the range measurements 

and the encoder angle scale factor are given by Equations 3.7c and 3.7d. As previously 

discussed in section 2.3, the errors caused by the biases in the lever-arm parameters on 

the ground are constant along the scan-lines. Equation 3.7a, which is compatible with 

Figure 2.11a, shows the mathematical expression of the impact of the biases in the lever-

arm offset. As one can see in the equation, the biases in the lever-arm offset produce 

constant errors on the ground, whose magnitudes are equivalent to the size of the biases. 

In addition, the errors are dependent on the flight direction except the error in the Z 

coordinate; the multiple signs in the equation pertain to the forward (upper sign) and 

backward (lower sign) strips. 
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The impacts of the biases in boresight angles are represented in Equation 3.7b which is 

compatible with Figures 2.11b, 2.11c, and 2.11d. As shown in the equation, the X 

coordinates (across the flight direction) are distorted by the bias in the boresight roll 

(  ) and the difference between true and biased X coordinates depend on the flight 

altitude (H). The coordinate difference is constant because the flight altitude does not 

change during the data capturing time and the object surface is flat according to the 

previous assumptions. Therefore, the bias   leads to constant X coordinate differences 

along the scan-lines. The bias in the boresight pitch angle (  ) causes constant errors 

along the flight direction, whose magnitudes depend on the flight altitude. The bias in the 

boresight yaw (  ) causes errors along the flight direction (Y); however, the differences 

between true and biased coordinates change with the encoder angle (along the scan-line). 

The differences of Z coordinates are caused by the bias   and change along the scan-

lines.  

Equation 3.7c and 3.7d represent the impacts of the biases in the range measurements and 

the encoder angle scale factor, respectively. The differences caused by both biases (   

and S ) between true and biased coordinates along the flight direction (Y) are small 

enough to be ignored (see Figures 2.11e and 2.11f). As shown in Equation 3.7c and 3.7d, 

the differences of Y coordinates are represented by the multiplication of small boresight 

angles and bias terms and those values are close to zero. For example, the differences of 
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Y coordinates caused by the biases in the range measurements (0.5m) and encoder angle 

scale factor (0.001) are much less than 1mm under the conditions of the simulation test in 

section 2.3 (see Table 2.3). On the other hand, the biases (   and S ) produce 

differences that are changing along the scan-lines to X (across the flight direction) and Z 

coordinates. Equation 3.8 represents the differences between true and biased coordinates 

caused by all the considered biases for the forward and backward strips. One should note 

that Equation 3.8 can be derived after ignoring the multiplication of small boresight 

angles and bias terms in Equation 3.7c and 3.7d; in addition, the multiple signs in those 

equations indicate the impact for the forward and backward strips (with the upper sign 

referring to the forward strip). 
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 (3.8)

So far, we derived the impact of various biases in the LiDAR system parameters on the 

LiDAR point cloud in Equation 3.8. Using the derived expression, we would like to 

derive the mathematical relationship between conjugate points in overlapping strips, 

which are flown in the same or opposite directions. The mathematical relationship 

between these points can be derived by rewriting Equation 3.8 for the two overlapping 

strips and subtracting the resulting equations from each other. An example of such a 

relationship for two strips, which are flown in opposite directions, is shown in Equation 

3.9. In this equation, A  and B  denote encoder angles of the forward strip A and 
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backward strip B, respectively. The coordinates  and  denote the laser unit 

coordinates of both forward and backward strips along the scan-lines. 
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Equation 3.9 can be simplified by assuming that the differences between sine and tangent 

functions within the scan angle range of ±25° are small enough to be ignored, which is 

the typical value for operational LiDAR systems. Therefore, the term 

  ))sin()(sin( BA SS

)( BA xx 

 in Equation 3.9 can be represented by Equation 3.10. One 

should note that two cases are possible: the backward strip B can be on the left or right 

sides of the forward strip A (Figure 3.2); in Equations 3.10 and 3.11, the upper/lower 

signs pertain to the strips BL and BR, respectively (Figure 3.2). For the strip BL, 

 is equivalent to D (the lateral distance between two flight lines), and, in the 

other case (the strip BR), the term is equivalent to -D. Also, one assume that the value, 

“  )cos(S ”, does not significantly change within the nominal scan angle range (e.g., 

±25°); therefore, the term   ))cos()(cos( BA SS  can be reduced to zero. Assuming 

Hx AA /  and HB /xB  , the term xBx A SB( A )   can be rewritten as 

Sxx BABA  ))((  , where )( BA    approximate to T  which is the total scan angle 

between the two flight lines (i.e., the angle from one flight line to an object point, which 

is vertically below the second flight line – refer to Figure 3.2). Therefore, such 

simplification leads to Equation 3.11. In this equation, the multiple signs pertain to the 

strips BL and BR in Figure 3.2, respectively.  
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Figure 3.2.  Observed object point in overlapping strips flown in opposite directions. 

The third row “ Sxxxx TBABA  )()(   ” of Equation 3.11 denotes the impact 

of the biases (  S and  ) on the vertical discrepancy between conjugate points. The 

following derivation will show that this impact can be analyzed using a rotation defined 

by the biases. In Figure 3.2, XB denotes the object point coordinate across the flight 

direction with respect to the local coordinate system. The lateral coordinates xA and xB of 

LiDAR points of the overlapping strips can be represented by  and BXD 2/
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BXD 2/ , respectively, where the multiple sings pertain to the strips BL and BR; hence, 

the difference between the lateral coordinates )( BA xx   can yield 2XB. The values of the 

sine function for 2  and ST2  approximate to 2  and ST2 ; the values for 

cosine function are close to 1.0 because both the angular values are considered small 

angles. In addition, one should notice that ZB can be ignored because of the assumption 

of relatively flat terrain and the use of a user defined coordinate system. Consequently, 

the impact of the biases (   and S ) can lead to  which is a rotation 

around Y axis (along the flight direction) as shown in Equation 3.12. 

)0,S2 T 2,0 (R

Figure 3.3 

graphically illustrates Equation 3.12. As it can be seen in this figure, the height 

discrepancy between conjugate points in overlapping strips (last row in Equations 3.11 or 

3.12) is the result of a rotation around the flight direction (i.e., roll angle equivalent to 
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Figure 3.3. The introduced tilt across the flight direction by the biases in the boresight 

13, the relationship between the 

conjugate points in the forward and backward strips can be represented by a function of 

shifts and a rotation around the flight direction (Y axis).  

reduce to the form in Equation 3.14 since the lateral distance (D) between the two flight 

lines is zero. As shown in Figure 3.4, the lateral laser unit coordinates (  and ) and 

roll angle and encoder angle scale factor. 

Equation 3.13 can be derived from Equation 3.11 after applying the mathematical 

manipulation in Equation 3.12. As shown in Equation 3.
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encoder angles ( A  and B ) of the forward and backward strips have opposite signs and 

their ma t for an object point in the overlapping area. 

(3.14)
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In a similar way u

same directions with a lateral distance 

Figure 3.4. Observed object point in overlapping strips flown in opposite directions with 

100% overlap.  

ation 3.8 leads to Equation 3.15 for two overlapping strips flown in 

D (

, Eq

BS

Figure 3.5). In Equation 3.15, 

(sin( ))sin()AS    approx hatimates to D/H based on the assumption t  )sin( AS  and 

)sin( BS  are close to ta )n( AS  and )BStan(   within the comm e range on encoder angl
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and H(tan( SS BA ))tan()   is the lateral distance D. Assuming Hx AA /  and 

HxBB / , the term )( BBAA xx    ritten by )( BABA xx can be rew )(  , where 

( A )B   to T approximate   (the total scan angle between the two flight lines). In the 

similar way of Equation 3.12, )( BA xx   approximate to 2XB and the 

term xx BA ST)  

trix ( )0,2,0( ST
R  ) along the flight direc

Equation 3.16. 

(  in the last row of Equation 3.15 can be represented by the rotation 

3.15 can be rewritten by ma tion; therefore, Equation 

 

e directions. Figure 3.5. Observed object point in overlapping strips flown in sam
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Equations 3.13, 3.14, and 3.16 reveal the possibility of identifying the presence of 

systematic errors in the system parameters by evaluating the discrepancies between 

conjugate points in overlapping strips, which are flown in the same or opposite directions. 

Moreover, using these equations, it is possible to determine the flight configuration that 

maximizes the impact of systematic errors. For example, as it can be seen in Equation 

3.16, large lateral distance (D) between the overlapping strips is useful for magnifying 

the boresight yaw and roll biases as well as biases in the range and encoder angle scale 

factor. In addition, higher flight altitudes are optimal for magnifying the boresight pitch 

and roll biases (refer to Equations 3.13 and 3.14). Also, closer inspection of these 

equations would allow for the determination of an optimal flight configuration design, 

which decouples various systematic errors. For example, working with four strips which 

are captured from two flight altitudes in opposite directions with 100% overlap are 

optimal for the recovery of the planimetric lever-arm offsets as well as the boresight pitch 

and roll biases (Equation 3.14). In addition, two flight lines flown in the same direction 

with the large lateral distance D are optimal for the recovery of the boresight yaw and roll 
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biases, range bias, and encoder angle scale factor bias (Equation 3.16). One should 

however know that the lack of overlap ratio can decrease the reliability of determining 

the transformation parameters between overlapping strips. Therefore, 30-50% overlap 

ratios can be recommended. 

Figure 3.6 illustrates the optimal configuration of overlapping strips required for using 

the proposed simplified calibration method. As previously discussed, there are three 

possible configurations for parallel overlapping strips. Among them, two overlapping 

cases are essentially required to estimate the considered systematic biases: first, two 

strips flown in opposite flight directions with 100% overlap ratio (case 1.a and 1.b in 

Figure 3.6) and second, two strips flown in same flight directions with large lateral 

distance between two flight lines (case 2 in Figure 3.6). Two overlapping strip pairs of 

the first case from two different flight altitudes are required to decouple δΔY and δΔω. 

The impact of δΔY is independent of the flight altitude while δΔω produces different 

errors as the flight altitude changes (refer to Equation 3.14). A closer investigation of 

Equations 3.13, 3.14, and 3.16 reveals that δΔZ, the bias in the lever-arm offset along the 

Z direction cannot be determined by observing discrepancies between conjugate surface 

elements in overlapping strips. Such inability is caused by the fact that a vertical bias in 

the lever-arm parameters produces the same effect regardless of the flight direction, flight 

altitude, or encoder angle (see section 2.3). In the experimental results chapter, 

calibration results using simulated and real datasets with the optimum flight configuration 

will be demonstrated. 
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Figure 3.6. Two types of optimal overlapping cases:  case 1 consists of two stips flown 

opposite directions with 100% overlap, and two strips have less than 100% overlap ratio 

and same flight direction in case 2.  

In summary, the discrepancies between parallel strips in the presence of the studied 

biases can be modeled by 3 shifts and a rotation angle around the flight line (Equation 

3.17). Once the transformation parameters relating parallel overlapping strips are 

determined, the biases in the system parameters can be estimated using Equations 3.18, 

3.19, and 3.20.  The relationship between the system biases and the discrepancies ( , 

, , and 

TX

TY TZ  ) between conjugate bias-contaminated points in two flight lines, which 

are flown in opposite directions is given by Equation 3.18. This equation would reduce to 

the form in Equation 3.19 for flight lines with 100% overlap. For two flight lines flown in 

the same direction, the relationship between the system biases and the discrepancies 

between the strips is expressed by Equation 3.20. The multiple signs ( & ) in Equation 

3.18 pertain to two possible cases of the opposite/non-100% overlapping strips; the upper 

sign refers to the case where strip B (backward) is on the left side of strip A (forward), 


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while the lower sign refers to the case where strip B is on the right side of strip A (refer to 

Figures 3.2 and 3.3). 
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Once the procedure for the estimation of the four parameters ( , , , and TX TY TZ  ) of 

Equation 3.17 is carried out for all considered overlapping strip pairs, the biases (δΔX, 

δΔY, δΔω, δΔφ, δΔκ, δS, and δρ) in the system parameters are determined by Equations 

3.18, 3.19, and 3.20. After estimating the biases, the biased point cloud coordinates can 

be adjusted by Equation 3.21 to remove the impact of incorrect system parameters. 

Equation 3.21 can be derived from Equation 3.8 which represents the mathematical 

relationship between true and biased coordinates with systematic biases terms. In 

Equation 3.21, “yaw” denotes the flight direction. One should note that the correction 

terms calculated using the estimated biases ( , , , , ,X̂ Y̂ ̂ φ̂ ̂  ˆ  and ) Ŝ
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should be rotated using the rotation matrix , because the correction terms are 

calculated based on the assumption that the flight direction is parallel to the Y axis of the 

ground coordinate system. In this equation, H is the nominal flight altitude; β and x are 

encoder angle and lateral laser unit coordinate of a LiDAR point in question, respectively. 

Since the system raw measurements are not available, β and x should be approximately 

determined as shown in 

yawR







^
0

cos

)

sin

Δφ

Z

Figure 3.7. The lateral coordinate x is determined based on an 

approximate centre of a scan-line, and the encoder angle β is estimated using the flight 

altitude H0, point elevation Z, and estimated lateral coordinate x (i.e., β  = -tan-1[x / (H0-

Z)]).  
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Figure 3.7. Estimation of  lateral coordinates and encoder angles for a LiDAR point. 
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3.3 Quasi-Rigorous Method 

The second proposed method, denoted as the quasi-rigorous method, can deal with non-

parallel strips, heading variations, and varying terrain elevations in contrast to the 

simplified method. It can be achieved by the use of time-tagged point cloud and 

trajectory position data. The quasi-rigorous method is developed with following 

assumptions: a) we are dealing with a linear scanner, b) LiDAR strips are captured by a 

levelled laser scanner (i.e., pitch and roll angles are very small and can be assumed to be 

zero), and c) boresight angles are small. Such assumptions simplify the LiDAR geo-

referencing equation as represented by Equation 2.1 to the form in Equation 3.22. 
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where, 

z is the vertical coordinate of the laser point with respect to the laser unit coordinate 

system, and 

x is the lateral coordinate of the laser point with respect to the laser unit coordinate 

system, which is the lateral distance (with the appropriate sign) between the LiDAR point 

in question and the projection of the flight trajectory onto the ground. 

Unlike the simplified method, the quasi-rigorous method does not require straight flight 

lines, because the firing point position and heading are estimated by trajectory position 

data and time-tagged points. It should be mentioned that the point cloud coordinates ( UX


 

shown in Equation 3.3) are handled in the user defined coordinate system in the 
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simplified method, where all flight directions are assumed either as forward or backward, 

while the quasi-rigorous method handles the LiDAR points ( GX


 in Equation 3.22) in the 

ground coordinate system with the flight direction. In Equation 3.22, z is the vertical 

coordinate of the laser point with respect to the laser unit frame, and it is determined by 

subtracting the elevation of laser firing point from the LiDAR point elevation. The x-laser 

unit coordinate is determined by the lateral distance between the LiDAR point in question 

and the projection of the flight line onto the ground. As shown in Figure 3.8, the local 

flight line for the LiDAR point is determined by fitting a straight line using neighbouring 

trajectory points. For a LiDAR point mapped at time t, neighbouring trajectory points are 

identified within a certain time interval (t - Δt, t + Δt). Then, a straight line is fitted 

through the selected trajectory positions to come up with a local estimate of the trajectory. 

The selected time interval should ensure having enough samples to reliably represent the 

local trajectory. Besides the duration of the time interval, the number of samples depends 

on the density of the trajectory data.  

As previously discussed in the simplified method, the distorted LiDAR point coordinates 

due to biases in the system parameters can be represented by a function of the system 

parameters x


, measurements l


, and the biases in the system parameters x
  (refer to 

Equation 3.5), which can be expanded using Taylor series expansion after ignoring 

second and higher order terms. Similar to the simplified method, we are considering 

biases in the lever-arm offset components, boresight angles, mirror angle scale, and laser 

range (δΔX, δΔY, δΔZ, δΔω, δΔφ, δΔκ, δS, and δΔρ). Equations 3.23, 3.24, 3.25, and 3.26 

show the impacts of the biases in lever-arm, boresight angles, range measurements, and 
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encoder angle scale factor on the derived point cloud, respectively. One should note that, 

in these equations, “yaw” denotes the flight direction; therefore, the quasi-rigorous 

method is not restricted to straight and parallel overlapping strips unlike the simplified 

method. 

 

Figure 3.8. Lateral and vertical distance between the LiDAR point in question and the 

estimated firing point position using trajectory line fitting. 
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The mathematical relationship between conjugate points in overlapping strips can be 

given by Equation 3.27 after merging Equations 3.23 to 3.26 for the overlapping strips (A 

and B) and subtracting the resulting equations from each other. Using Equation 3.27, one 

can recover the biases in the system parameters (δΔX, δΔY, δΔω, δΔφ, δΔκ, δS, and δΔρ) 

if trajectory position data and time-tagged point cloud coordinates are available. As long 

as we are dealing with overlapping strips, the vertical bias (δΔZ) in the lever-arm offsets 

cannot be recovered since the overlapping strips do not include discrepancies caused by 

this bias, which is previously discussed in section 3.2. 

With the availability of control data, the mathematical relationship between control points 

and the LiDAR points can be derived by rewriting Equation 3.27 for the control surface 

(A) and LiDAR strip (B) and subtracting the resulting equations from each other. Since 

the bias effect terms do not exist for the control surface, the discrepancy between the 

control surface and LiDAR surface will be reduced to the form in Equation 3.28. 

Equations 3.27 and 3.28 are the final linearized equations for the quasi-rigorous 

calibration method, when dealing with overlapping strips and control surfaces, 

respectively. One should note that when control data over flat horizontal surfaces is 

employed (i.e., only vertical control is available), one cannot recover δΔZ and δΔρ 

simultaneously due to the high correlation between these parameters since the value, 
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“     cos S ”, is almost constant within nominal scan angle ranges. Control data over 

flat horizontal surfaces will only contribute towards the estimation of the boresight roll 

bias (δΔφ) and the encoder angle scale factor bias (δS) as can be seen in the 3rd row of 

Equation 3.28. The use of control data over sloped surfaces will contribute towards the 

estimation of all parameters and might help in decoupling δΔZ and δΔρ. Once the biases 

are recovered, we can reconstruct the corrected point cloud using Equation 3.29. In this 

equation, the terms , , , , , , X̂ Y̂ Z̂ ̂ φ̂ ̂  ˆ  and  denote the 

estimated biases in the system parameters. 
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The procedure for estimating the necessary observations (x, z, yaw, and β) in Equations 

3.27, 3.28, and 3.29 using the available data (time-tagged point cloud coordinates and 

trajectory position data) can be summarized as follows: 

i) For a LiDAR point mapped at time t, we search in the trajectory file for positions 

within a certain time interval (t - Δt, t + Δt); 

ii) A straight line is fitted through the selected trajectory positions to come up with a 

local estimate of the trajectory, as shown in Figure 3.8. After defining the flight path, 

the necessary observations can be estimated as follows: 

-. The x-laser unit coordinate of the LiDAR point with respect to the laser unit frame, 

which is the lateral distance with the appropriate sign between the LiDAR point in 

question and the projection of the flight trajectory onto the ground, can be 

determined by computing the normal distance between the LiDAR point and the 

interpolated trajectory data. The intersection of the normal from the LiDAR point to 

the interpolated trajectory will define the position of the trajectory at time t; 
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-. The z-laser unit coordinate of the LiDAR point with respect to the laser unit frame 

can be determine by subtracting the elevation of the laser firing point (Z0t) at time t, 

given by the interpolated flight trajectory, from the LiDAR point elevation (Z t), i.e.,  

z = Z t - Z0t (Figure 3.8); 

-. The yaw angle, which is the trajectory heading, can be computed once we have the 

local estimate of the trajectory and its direction (using the time tag of neighbouring 

trajectory positions); and 

-. The β angle, which is the encoder angle indicating the laser beam direction with 

respect to the laser unit coordinate system, can be computed by a trigonometric 

operation using the estimated lateral distance (x) and the trajectory height (z) above 

the laser point in question. 

One should note that, in this chapter, the proposed methods were derived based on point 

primitives. In other words, there was an implicit assumption that conjugate points are 

available between overlapping strips. However, it is not believed that distinct points are 

suitable for point cloud data. For this reason, the use of linear features and planar patches 

has been introduced as alternative primitives for point cloud data. The linear features 

defined by intersection of adjacent two planar patches have been used by Vosselman, 

2002; Lee, 2007; Habib et al., 2008 because it is not easy to directly measure linear 

feature in point cloud data. Also, planar patches segmented from LiDAR data have been 

used by Pfeifer et al. 2005, Skaloud and Lichti, 2006; Habib and et al., 2007. The 

disadvantage of planar and linear features is that the alternative primitives can be reliably 



68 

 

extracted only in urban areas. In addition, the quality of plane segmentation affects the 

result of planar and linear feature extraction. 

Instead of using well defined features for the co-alignment of point clouds, non-

identifiable landmarks can be considered. In this work, the Iterative Closest Patch 

(ICPatch) is applied to establish point-patch correspondence between two overlapping 

strips. In this procedure, the original points represent the first strip while triangular 

patches, which can be derived from a TIN generation procedure, represent the second 

strip. Then, the ICPatch procedure establishes the correspondence between a LiDAR 

point in the first strip and a triangular patch in the second strip. To measure the similarity 

between corresponding point-patch pairs, the tetrahedron volume can be utilized. In 

addition, another approach using a modified weight matrix will be introduced as an point 

based similarity measure. This approach can handle point primitives after modifying a 

weight matrix even though true conjugate points are not available from the ICPatch 

procedure. The details of the surface matching procedure and modified weight matrix 

will be discussed in Chapter 4. 
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       CHAPTER 4  

PRIMITIVE AND SURFACE MATCHING  

4.1 Introduction 

In order to come up with a methodology for the determination of discrepancies between 

overlapping strips, one must address the following questions: 

 What are the appropriate primitives, which can be used to identify conjugate 

surface elements in overlapping strips? 

 What is the strategy for the derivation of these primitives? 

 What is the appropriate similarity measure, which utilizes the involved primitives 

and the defined discrepancy functions to describe the correspondence of conjugate 

primitives in overlapping strips? 

In Chapter 3, the proposed methods are based on utilizing discrepancies between 

conjugate points in overlapping strips for estimating biases in the system parameters. 

Point primitives have been commonly used in photogrammetric data registration; 

however, distinct points (e.g., building corner points) are not easily/reliably identifiable 

in irregularly distributed point data. Figures 4.1a and 4.1b show sample photogrammetric 

and LiDAR data captured over the same area, respectively. As shown in these figures, 

point features on man-made objects are easily identified in the stereo images (Figure 

4.1a), while those features are not clearly observed in point cloud data (Figure 4.1b). 

Linear and areal features can be considered as alternative primitives. In photogrammetric 

data processing, linear features have been utilized in manual and automatic procedures 
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such as single photo resection, bundle adjustment, and camera calibration (Mulawa, 

1989; Kubik, 1991; Habib et al., 2002; Habib and Morgan, 2003; Lee and Bethel, 2004). 

On the other hand, linear features can be extracted by the intersection of adjacent planes 

segmented from LiDAR data because linear features such as building boundaries and 

road lines cannot be directly captured by a LiDAR system as well as distinct points 

(Kraus and Pfeifer, 2001; Habib et al., 2005; Lee et al., 2007; Habib et al., 2008). Figure 

4.1c shows linear features extracted from photogrammetric data, while the same linear 

features extracted by the intersection of planes segmented from LiDAR data are 

illustrated in Figure 4.1d. Planar patches have been also used as an alternative primitive, 

especially for the integration of photogrammetric and LiDAR data (Ghanma, 2006; Habib 

et al., 2007) and the co-alignment of point cloud data (Kager, 2004; Skaloud and Lichti, 

2006; Bang, 2008). 3D planes can be defined by measuring vertices of a plane (such as a 

building roof) captured in multiple images (Figure 4.1e), while a plane segmentation 

procedure defines 3D planar patches in point cloud data (Figure 4.1d).  

(a) (b) 

  

(c) (d) 
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(e) 

Figure 4.1. Points, linear features, and planar patches shown in photogrammetric and 

LiDAR data: (a) distinct points observed in stereo images, (b) point primitives shown in 

LiDAR overlapping strips, (c) linear features observed in photogrammetric data, (d) 

linear features extracted by intersection of adjacent planes segmented from LiDAR data, 

and (e) planar patch extracted from stereo images. 

The drawback of the use of linear and areal features is that those primitives are usually 

available only in urban areas with man-made objects. Therefore, there is a lack of such 

objects in LiDAR data captured in rural areas. In addition, the accuracy of the linear 

features extracted by the plane intersection is affected by the quality of the plane 

segmentation procedure. Instead of extracting well defined features, a surface matching 

procedure can be considered as an alternative way to establishing correspondences 

between overlapping strips. The surface matching procedure has been used for point 

cloud co-alignment with the lack of identifiable landmarks (Zhang, 1994), and it is 

possible to establish the correspondences of point-point and point-patch in the 

overlapping area without the need to identify distinct features. The point-point 

correspondence can be established by ICP (Iterative Closest Point) procedure (Besl and 

McKay 1992; Zhang, 1994) which is an iterative procedure for finding correspondence 

between irregular point clouds. Similarly, another iterative approach, ICPatch (Iterative 
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Closest Patch) procedure, establishes point-patch correspondence between point cloud 

and TIN surfaces (Chen and Medioni, 1992; Li and Griffiths, 2000; Habib et al., 2006). 

This research aims to select primitives that can be derived with minimal pre-processing 

of the original LiDAR points. Moreover, the selected primitives should be reliably 

derived regardless of object surface types such as urban and rural areas. To satisfy these 

objectives, the surface matching is used in this research. In the next section, the ICPatch 

procedure will be discussed while outlining how to evaluate the similarity (normal 

distance) between matched points and triangular patches as well as the involved 

mathematical models that encompass the simplified and quasi-rigorous calibration 

methods. 

4.2 ICPatch Procedures with Volume Constraint 

The ICPatch procedure finds the closest point-patch pairs from overlapping strips: one 

strip is represented by original points, and the other strip is represented by triangular 

patches which can be derived from a TIN generation procedure. In this research, the 

volume constraint is introduced as a similarity measure between matched point-patch 

pairs derived from the ICPatch procedure. Figure 4.2 illustrates the case where the strip 

denoted by “A” is represented by a set of triangular patches while the other strip denoted 

by “B” is represented by a set of irregular points. The surface matching procedure 

establishes the correspondence between a LiDAR point ( q


) in strip B and a triangular 

patch (defined by the vertices paS


, pbS


, and pcS


) in strip A. 
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q
 pcS



paS


pbS


 

Figure 4.2. Conceptual basis of the proposed point-patch correspondence procedure. 

TIN patches are acceptable to describe the physical surface due to the high density of the 

LiDAR data as well as the relatively smooth characteristics of terrain and man-made 

structures. Therefore, point-patch correspondences would be valid in overlapping strips 

represented by point cloud and TIN. However, there are some exceptions where the TIN 

patches would not represent the physical surface. In Figure 4.3a, the image shows that the 

object surface consists of buildings, trees, and ground, while Figure 4.3b shows 

overlapping strips captured in the same area, where strips A and B are represented by 

TIN and point cloud, respectively. As one can see in Figure 4.3b, TIN patches can 

successfully represent the physical surface along the ground and building roofs; however, 

this is not the case over the vegetation and around the building roof boundaries. TIN 

patches within the trees and along the transition from building roof boundaries to the 

ground do not represent physical surfaces. Figure 4.3c illustrates the result of the surface 

matching procedure, where blue points denote matched points, while red points indicate 

un-matched points. As it can be seen in this figure, most un-matched points are located at 

building boundaries/walls and trees. In summary, although one cannot assume that there 

is point-point correspondence between overlapping LiDAR strips, one can argue that 
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point-patch correspondence is available as long as the patch represents the physical 

surface. 

  

(a) (b) 

 

(c) 
Figure 4.3. (a) An image captured over the object surface, (b) overlapping strips 

represented by TIN (strip A) and point cloud (strip B), and (c) matched (blue) and un-

matched (red) points. 

In Figure 4.2, if the point q


 in strip B (point cloud) belongs to the triangular patch 

represented by the vertices paS


, pbS


, and pcS


 in strip A (TIN), then this point should 

coincide with that patch. As known in the previous research (Habib et al., 2001; Habib et 

al., 2006; Ghanma, 2006), the similarity can be measured by the volume of the 

tetrahedron whose vertices are q


, paS


, pbS


, and pcS


 (Figure 4.4). The volume 

constraints can be mathematically described by Equation 4.1a which is the determinant 

formed by the coordinates of the tetrahedron vertices. It can be rewritten by Equation 

4.1b after expanding Equation 4.1a. To estimate systematic biases using matched point-
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patch pairs in overlapping strips and volume constraint, Equation 4.1b should be 

integrated with the transformation function and LiDAR geo-referencing equation for the 

simplified and quasi-rigorous methods. In the following sub-sections, the manipulation of 

the volume constraint will be discussed with respect to the proposed methods. 

q


paS


pbS


pcS


 

Figure 4.4. Corresponding triangular patch and point constitute a tetrahedron. 
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where, 

( , , ) denote the coordinates of qqX qY qZ


; 

( , , ),( , , ), and ( , , ) denote the coordinates of the 

vertices, , , and , respectively. 
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4.2.1 Volume Constraint for the Simplified Method 

For the simplified method, the discrepancies between overlapping strips can be 

represented by a 4-parameter 3D transformation function. As shown in Equation 4.2, the 

matched point q


 in strip B can be represented by a function of the bias-contaminated 

coordinates ( ) and four transformation parameters. The best estimation of the 

transformation parameters (three shifts and one rotation angle) between two datasets can 

be determined when the estimated transformation parameters in Equation 4.2 minimize 

the determinant (Equation 4.1b) for all the matched point-patch pairs. Equation 4.3 

represents the combination of the transformation function and volume constraint.  
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For a least square adjustment procedure, Gauss-Helmert model is used because the bias-

contaminated vertex coordinates (observed values) and unknown parameters 

(transformation parameters) are not separable (Mikhail and Ackerman, 1976; Wolf and 

Ghilani, 1997; Koch, 1999; McGlone et al., 2004). Equation 4.4 represents the Gauss-

Helmert adjustment model for the simplified method. In this equation, A is the design 

matrix of partial derivatives of Equation 4.3 taken with respect to the four transformation 

parameters;   denotes the corrections to the approximate transformation parameters; B is 

the design matrix of partial derivatives of Equation 4.3 taken with respect to the vertex 

coordinates; v and w are the observation error vectors of the vertex coordinates and 

misclosure vector, respectively. The solution of the Gauss-Helmert adjustment model is 

derived by Equation 4.5, where 
pcpbpa SSSq

   is the a-priori variance-covariance matrix of the 

vertex coordinates. 

wvBA   (4.4)

wBBAABBA T
SSSq

TT
SSSq

T

pcpbpapcpbpa

111 )(])([ˆ     (4.5)

After estimating the transformation parameters, the biases in the system parameters can 

be derived by Equations 4.6a, 4.6b, and 4.6c using the estimated transformation 

parameters. Equations 4.6a, 4.6b, and 4.6c pertain to the three parallel overlapping cases: 

opposite flight directions, opposite flight directions with 100% overlap ratio, and same 

flight directions, respectively. In these equations, , , , and TX̂ ˆ ˆ
TY TZ ̂  denote estimated 

transformation parameters from Equation 4.5; X , Y ,  ,  ,  ,   , and 

S  denote biases in the system parameters.  
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4.2.2 Volume Constraint for the Quasi-rigorous Method 

The quasi-rigorous method represents the four vertices ( q


, paS


, , and ) of the 

tetrahedron using a function of the bias-contaminated coordinates, systematic biases, and 

calculated values such as yaw, x, z, and β. In Equation 4.7, 

pbS


pcS


0P


 denotes bias-contaminated 

coordinates of a vertex constituting a tetrahedron, while P


 represents adjusted 

coordinates after removing the impact of the systematic biases. In this equation, yaw, x, z, 

and β which can be calculated values through the trajectory line fitting procedure 

represent the flight direction, lateral and vertical coordinates of a LiDAR point, and laser 

beam direction with respective to the laser unit coordinate system (refer to section 3.3 for 

more information). For the quasi-rigorous method, the volume constraints are realized by 

Equation 4.8 which is the combination of Equations 4.7 and 4.1b. In this equation, x


 

denotes the biases in the system parameters; the calculated values (yaw, x, z, and β) are 

represented by l  for each vertex point. One should note that d


1, d2, d3, and d4 in 
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Equation 4.8 are functions of yaw, x, z, β, bias-contaminated coordinates, and systematic 

biases in contrast to the volume constraint used in the simplified method. Using Equation 

4.8, the biases in the system parameters are determined as unknowns when the volume of 

the tetrahedron is minimized for all the matched point-patch.  
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where, 

),,,,,,,,,( 0000001 pcpbpapcpbpapcpbpa lllxZZZYYYfd


 , 

),,,,,,,,,( 0000002 pcpbpapcpbpapcpbpa lllxZZZXXXfd


 , 

),,,,,,,,,( 0000003 pcpbpapcpbpapcpbpa lllxYYYXXXfd


 , and 

),,,,,,,,,,,,( 0000000004 pcpbpapcpbpapcpbpapcpbpa lllxZZZYYYXXXfd


 . 

The solution of the Gauss-Helmert adjustment model for the quasi-rigorous method is 

represented by Equation 4.9, where A is the design matrix of partial derivatives of 

Equation 4.8 taken with respect to the systematic biases introduced in Equation 4.7;   

denotes the corrections to the approximate systematic biases; B is the design matrix of the 

vertex coordinates ( q


 and ) and calculated values (yaw, x, z, and β) denoted by (paS


l


); 

w is the misclosure vector of the volume constraints; 
pcSpbSpaSqpa llllSq 

  denotes the a-priori 
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variance-covariance matrix derived by the accuracies of the LiDAR points and calculated 

yaw, x, z, and β.  

wBBAABBA T

llllSq

TT

llllSq

T

pcSpbSpaSqpapcSpbSpaSqpa

111 )(])([ˆ  

  (4.9)

4.3 Modified Weight Matrix 

In the previous section, the similarity was measured by the volume of the tetrahedron 

consisting of the matched point-patch pair. In addition to the volume constraint, this 

section introduces a point-based similarity measure. In this approach, one can establish 

correspondences between overlapping strips using pseudo-conjugate points and their 

modified weight matrices which can be derived from matched point-patch pairs. 

Figure 4.5 illustrates a point-patch pair, where the point q


 and triangular patch defined 

by , , and  denote the matched point-patch pair. In this figure, paS
  

pbS pcS paS


 is an 

arbitrarily selected vertex from the triangular patch as a corresponding point to the point 

q


 in the other strip. One should note that the corresponding two points ( q


 and paS


) are 

pseudo-conjugate points. To compensate this non-corresponding problem, weight 

matrices for the pseudo-conjugate points are modified using surface normal vectors of the 

matched triangular patches. Specifically, for the vertex point paS


, a certain weight value 

determined by the precision of LiDAR data will be assigned along the surface normal, 

while zero weights will be assigned along the patch plane. By doing this, the non-

corresponding problem of the point paS


 can be compensated. The following sections will 

show the manipulation of the modified weight matrix for the transformation function of 

the simplified method and LiDAR geo-referencing equation of the quasi-rigorous method. 
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Figure 4.5. The matched point-patch pair and corresponding points; the vertex paS


 which 

is arbitrarily selected from the triangular patch (strip A) corresponds to the point q


 (strip 

B). 

4.3.1 Modified Weight Matrix for the Simplified Method 

Equation 4.10 represents the discrepancies between corresponding points after applying 

the transformation function. In this equation, q


 denotes a matched point of a strip 

represented by a point cloud and paS


 is an arbitrarily selected vertex point of a matched 

triangular patch in another strip represented by TIN. To solve Equation 4.10, the weight 

matrix for the pseudo-conjugate points ( q


 and paS


) will be modified to compensate for 

the fact that they are not true conjugate points.  
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The modified weight matrix utilizes a local coordinate system (UVW) with the following 

axes-definition: W axis parallel to the patch normal and U and V axes aligned along the 

triangular plane. In this research, U axis is aligned along the triangle side pbpaSS

R

, while 

the V axis is parallel to the U-W plane normal (Figure 4.6). It should be mentioned that 

the U and V axes can be arbitrarily chosen as long as the UV plane is parallel to the 

triangular patch. The relationship between the strip coordinate system (XYZ) and the local 

coordinate system (UVW) can be represented by Equation 4.11. In this equation,  is 

the rotation matrix defining the orientation of the triangular patch. Equation 4.12 shows 

the derivation of the rotation matrix  as follows: the three vectors (

XYZ

XYZ

UVW

UVWR UV


, VV


, and WV


) 

parallel to UVW axes are determined by the three vertices; then, the determined UV


, VV


, 

and WV


 define the direction cosines which constitute the rotation matrix.  

paS

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
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
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Y

X
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Figure 4.6. The Definition of the local coordinate system (UVW). 
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where, 

papbU SSV


 , 

)( papcUW SSVV


 , and 

UWV VVV


 . 

In Equation 4.13, the original weight matrix  is defined as the inverse of  

where B is the design matrix of partial derivatives of Equation 4.10 taken with respect to 

the pseudo-conjugate point coordinates; the a-priori variance-covariance matrix 

XYZP )( T
Sq

BB
pa



paSq
  

derived by the accuracy specification of the data acquisition system. Using the law of 

error propagation, the weight of that vertex point in the local coordinate system  can 

be derived by Equation 4.14. As it has been noted earlier, the weight along the triangle 

plane normal is the only useful information when working with pseudo-conjugate points 

along matched point-patch pairs. Therefore, the weight matrix can be modified as in 

Equation 4.15. Finally, the modified weight matrix 

UVWP

XYZP  in the strip coordinate system 

can be derived by Equation 4.16. After modifying the weight matrix, the corrections to 

the approximate transformation are determined by Equation 4.17 and the biases in the 

system parameters are determined by Equations 4.6a, 4.6b, and 4.6c. In Equation 4.17, A 

is the design matrix of partial derivatives of Equation 4.10 taken with respect to the 

transformation parameters; w is the misclosure vector represented the differences (dX, dY, 

and dZ) between the pseudo-conjugate points ( q


 and paS


) after applying the 
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transformation function to the point 0q


. The best estimation of the transformation 

parameters is determined when the weighted squared-sum of the misclosure vector (w) in 

Equation 4.18 is minimized. In this equation, one can confirm that the modified weight 

matrix minimizes the normal distance which is represented by dW in the UVW 

coordinates system. 
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where, 

paSq
  is the a-priori variance-covariance matrix of LiDAR points. 
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The evaluation of the redundancy in the calibration procedure will be based on the rank 

of the weight matrix for the individual points. For a corresponding point belonging to a 
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matched triangular patch, whose weight matrix is manipulated according to Equation 

4.15, a contribution of one will be considered towards the redundancy computation (i.e., 

one effective equation constraint). 

4.3.2 Modified Weight Matrix for the Quasi-rigorous Method 

Equation 4.19 represents the discrepancies between bias-contaminated coordinates of 

corresponding LiDAR points ( q0


 and 0paS


) after removing the impact of the biases in the 

system parameters. In this equation, f denotes Equation 4.7 which is the function to 

define adjusted LiDAR coordinates using the bias-contaminated coordinates, systematic 

biases ( ), and calculated values ( lx
 

) such as yaw, x, z, and β. Equation 4.20 represents 

the weight matrix  defined in the XYZ coordinate system, where   denotes the 

a-priori variance-covariance matrix derived by the pre-determined accuracies of the 

LiDAR points and calculated yaw, x, z, and β; B is the design matrix of partial derivatives 

of Equation 4.19 taken with respect to the pseudo-conjugate point coordinates and their 

calculated values (yaw, x, z, and β). After calculating the modified weight matrix (

XYZP

P

paSqpa llSq 


XYZ ) 

in a similar way in the previous section, the biases in the system parameters are 

determined by Equation 4.21. In this equation, A is the design matrix of partial 

derivatives of Equation 4.19 taken with respect to the systematic biases and w is the 

misclosure vector represented by the discrepancies (dX, dY, and dZ) between the pseudo-

conjugate points after removing the impact of the biases in the system parameters. One 

should note that the best estimation of the biases in the system parameters is determined 

when the weighted squared-sum of the misclosure vector (w) in Equation 4.22 is 
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minimized. As shown in Equation 4.22, the modified weight matrix contributes to 

minimizing the normal distance (dW) between the matched point-patch pair. 

wqSlxqflxSf paqpapa 


),,(),,( 00  (4.19) 

where, 

x


 is biases in the system parameters, and  

pal


 and are the calculated values (yaw, x, z, and β) for the corresponding points ql


paS


 and 

q


, respectively. 
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The advantage of the modified weight matrix is that there is no change in the 

mathematical model of the adjustment procedure except manipulating the weight matrix 

regardless the type of utilized primitives such as points, linear features, and/or planar 

patches (if those are available). In addition, the mathematical model is relatively simple 

and easy to be implemented since there is no requirement to combine an additional 

equation representing alternative similarity measures such as normal distance or volume 

constraints. The next section will introduce the matching strategy and iterative procedure 

of updating matched point-patch pairs.  
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4.4 Surface Matching Strategy 

After introducing the necessary similarity measure and the solution of the least square 

adjustment, one needs to propose a surface matching strategy for establishing the 

correspondences between points in strip A and patches in strip B. The approach proposed 

by Habib and Cheng (2006) deals with the point-patch matching problem in the presence 

of significant rotations and shifts between two overlapping surfaces. For such a case, the 

Modified Iterated Hough Transform (MIHT) is used to sequentially estimate the 

transformation parameters through a voting scheme in an accumulator array. For the 

current research, the correspondence is performed in an iterated manner, using the 

ICPatch procedure, which corresponds to the ICP approach (Besl and McKay, 1992; 

Zhang, 1994; Bergevin et al., 1996) after some modification. The initial correspondence 

between points and triangular patches can be established by determining the patch with 

the shortest normal distance to the point. Since the involved surfaces are co-aligned to a 

high degree of accuracy, it is reasonable to assume that the initial parameters 

(transformation parameters for the simplified method and systematic biases for the quasi-

rigorous method) are zero. To be considered a correct match, the shortest normal distance 

should be less than a given threshold to avoid situations where the triangular patch does 

not represent the physical surface (e.g., in vegetation and building boundaries as shown in 

Figure 4.3). Moreover, the projection of the corresponding point onto the corresponding 

triangular patch should be located inside the corresponding triangular patch. 

The ICPatch procedure is an iterative procedure for updating the matched point-patch 

pairs after estimating the transformation parameters/systematic biases. For the iterative 
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surface matching procedure, the simplified method transforms the bias-contaminated 

coordinates of the point cloud after estimating unknown transformation parameters based 

on the matched point-patch pairs. In the next iteration, matched point-patch pairs are 

updated using the transformed coordinates of the point cloud; then the transformation 

parameters can be re-estimated based on the new matched point-patch pairs. One should 

note that even though the procedure find the closest point-patch pairs is conducted by the 

transformed coordinates, the unknown transformation parameters should be estimated 

based on the original bias-contaminated coordinates. This iterative procedure will stop 

when the differences between the last and previous estimated transformation parameters 

are less than a threshold pre-defined by users. After estimating the best transformation 

parameters of all overlapping strip pairs, the biases of the system parameters can be 

calculated. In contrast to the simplified method, the quasi-rigorous method adjusts all the 

points of point cloud and TIN data using the estimated biases in the system parameters. 

After adjusting the point and vertex coordinates, the matching procedure updates the 

closest point-patch pairs based on the adjusted point coordinates. New systematic biases 

are estimated based on the updated point-patch pairs and original bias-contaminated 

coordinates. This procedure is repeated until convergence, where there is no significant 

change in the estimated biases larger than a given threshold. After finishing the ICPatch 

procedure of the simplified or quasi-rigorous methods, LiDAR strips can be adjusted 

using the estimated biases. Figure 4.7 illustrates the flowchart of the proposed calibration 

methods. In this flow chart, the white boxes denote common procedures shared with both 

the simplified and quasi-rigorous methods; the yellow boxes belong to the simplified 

method, while the green boxes belong to the quasi-rigorous method.  
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Figure 4.7. The workflow of the proposed calibration methods (the simplified and quasi-

rigorous) using the ICPatch procedure. 
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       CHAPTER 5  

EXPERIMENTAL RESULTS 

5.1 Introduction 

This chapter aims at testing the validity of the proposed simplified and quasi-rigorous 

calibration methods using simulated and real datasets. The main purpose of utilizing 

simulated data is to verify the performance of the proposed models, including the point 

cloud adjustment formulas, in a controlled environment as well as studying the impact of 

deviations from the listed assumptions in the previous section on the estimated 

parameters. In addition to the simulated data test, the validity of the proposed methods is 

tested using real datasets which were captured by Optech ALTM 2050 and Leica ALS50. 

The performance of the proposed methods is evaluated with respect to relative and 

absolute accuracy. The relative accuracy is evaluated by two approaches: qualitative test 

is carried out using the strip profile and intensity image comparison before/after the 

calibration, while the quantitative test evaluates how the discrepancies between 

overlapping strips are improved after adjusting the biased coordinates. The absolute 

accuracy is evaluated using photogrammetric data. The results of the photogrammetric 

bundle adjustment using the LiDAR strips as control data will be evaluated using check 

points before/after the calibration. The evaluation of the check point errors presents the 

absolute accuracy of LiDAR data before/after the calibration. 



91 

 

5.2 Simulation Data Experiment 

In this section, feasibility tests for the simplified and quasi-rigorous calibration methods 

will be presented using simulated datasets. The main purpose of utilizing simulated 

datasets for the experiments is to verify the performance of the proposed methods in a 

controlled environment as well as studying the impact of deviations from the listed 

assumptions for deriving the proposed methods. The following is the summary of the 

assumptions used in Chapter 3. 

For the simplified method: 

(i) linear scanning systems are considered, (ii) variations in the object space 

elevations are much smaller than the flight altitude, (iii) the flight lines are parallel, 

(iv) the platform trajectory is straight, (v) we are dealing with an almost levelled 

scanner, and (vi) the boresight angles are assumed to be very small. 

For the quasi-rigorous method: 

i) we are dealing with a linear scanner, ii) we are dealing with an almost levelled 

scanner, and iii) boresight angles are small. 

The simulated data consists of 6 strips. Strips 1, 2, 3 and 4 were simulated with 70 kHz 

Pulse Repetition Frequency (PRF), 50 Hz scan rate, and 1,000m flight altitude. Strips 5 

and 6, on the other hand, were simulated with 50 kHz PRF, 40 Hz scan rate, and 2,000m 

flight altitude. Strips 1 and 2 as well as strips 5 and 6 were flown in opposite directions 

with 100% overlap ratio while strips 3 and 4 were flown in the same direction with 50% 

overlap ratio. The encoder angles ranged between -25° and 25° for all the simulated strips. 

The simulated surface had terrain as well as some buildings with an elevation range 
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between 20.0 and 132.5 m. The range of the terrain slope was between 0° and 6.5° while 

the building rooftops had slopes up to 45°.  

To test the impact of deviations from parallelism and vertical scanning, four cases were 

considered. In cases 1, 2 and 3, the strips were captured with a levelled laser unit (i.e., 

zero pitch and roll angles). The overlapping strips in case 1 were parallel to each other, 

while the overlapping strips in cases 2 and 3 were flown in non-parallel directions with 

10° and 30° deviation from parallelism. In case 4, the strips were flown in non-parallel 

directions with 10° deviation from parallelism and un-levelled laser scanning with roll 

angles between -5° and 5° for all the strips, 5° pitch angle for strips 1, 3, 4, and 5, and -5° 

pitch angle for strips 2 and 6. The simulated surface and flight lines are shown in Figure 

5.1. The above mentioned characteristics of the simulated strips are summarized in Table 

5.1. Using the simulated surface, flight trajectories, and system parameters, the LiDAR 

measurements were derived. Then, biases were introduced to the system parameters as 

well as noise to the system measurements. The biased system parameters and noisy 

measurements were used to derive the distorted LiDAR point cloud coordinates. The 

characteristics of the introduced noise and biases in the system measurements and 

parameters are summarized in Table 5.2. 
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(a) 

Profile of the simulated terrain 

Top view of the simulated terrain 
(b) 

Figure 5.1. (a) simulated terrain and 6 flight lines which consist of 3 overlapping pairs 

(1&2, 3&4, and 5&6); (b) profile (across the flight line) and top view of the simulated 

terrain. 
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Table 5.1. Flight configuration and characteristics of the simulated LiDAR data. 

Flying direction (heading) 

[°] 

Roll  

[°] 

Pitch  

[°] 

Case # Case # Case # Strip # 

1 2 3 4 
1, 2,  

& 3 
4 

1, 2, 

& 3 
4 

Flight  

Altitude

[m] 

1 0 5 15 5 0 -5 to 5 0 5 1000 

2 180 175 165 175 0 -5 to 5 0 -5 1000 

3 0 5 15 5 0 -5 to 5 0 5 1000 

4 0 -5 -15 -5 0 -5 to 5 0 5 1000 

5 0 5 15 5 0 -5 to 5 0 5 2000 

6 180 175 165 175 0 -5 to 5 0 -5 2000 

Table 5.2. Random and systematic errors introduced in the simulated LiDAR data. 

Items Values 

Random errors in position data (X/Y/Z) ±0.1m/±0.1m/±0.15m 

Random errors in attitude data (roll/pitch/yaw) ±0.01°/±0.01°/±0.016° 

Random errors in encoder angles ±0.009° 

Random errors in laser ranges ±2cm 

Biases in lever-arm offset (δΔX, δΔY , δΔZ) 5cm/5cm/5cm 

Biases in boresight angles (δΔω, δΔφ, δΔκ) 0.01°/0.01°/0.01° 

Bias in encoder angle scale factor (δS) 0.001 

Bias in laser ranges (δΔρ) 50cm 

5.2.1 Comparison of the Modified Weight Matrix and Volume Constraint 

As previously discussed in Chapter 4, there are two approaches available in the proposed 

methods with respect to the similarity measure: volume (determinant) constraint and 

modified weight matrix. In this section, the two approaches will be compared using the 
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simulated dataset cases 1 and 4. The comparison will be conducted by checking the 

difference between the estimated parameters through the volume constraint and modified 

weight matrix. One should note that this section mainly focuses on the comparison of the 

experimental results of cases 1 and 4 with respect to the different approaches of the 

similarity measure. Further analysis about the experimental results including all 

simulated dataset will be discussed after this section with respect to the quality of the 

estimated systematic biases.  

Tables 5.3 and 5.4 show the estimated transformation parameters (for the simplified 

method) and systematic biases (for the quasi-rigorous method), respectively. The results 

are estimated using both approaches (the modified weight matrix and volume constraint) 

for the three overlapping pairs in cases 1 and 4. As we can see, there is no significant 

difference between the estimated transformation parameters and systematic biases for 

both approaches. From these results, one can conclude that, as long as the same matching 

strategy (closest point and triangular patch) is utilized, there is no significant change in 

the results of the simplified and quasi-rigorous methods regardless of which similarity 

measure is used. In this study, the modified weight matrix approach is preferred because 

there is no significant difference between the results derived by both approaches and the 

volume (determinant) constraint is difficult to be implemented compared to the use of the 

modified weight matrix. The combination of transformation and determinant functions 

increases the complexity of the mathematical model and leads to nonlinear problem. On 

the other hand, the modified weight matrix approach can be practically implemented 

without the need for an additional mathematical model and the performance is relatively 

rapid compared to the volume constraints because of the less computational loads. One 
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can further argue that the modified weight matrix can be used not only for point-path 

correspondences but also point-line correspondences after modifying the weight matrix 

based on the line orientation.  

Table 5.3. Comparison of the estimated transformation parameters using the modified 

weight matrix and volume (determinant) constraint using cases 1 and 4. 

Overlapping pair XT (m) YT (m) ZT (m) φ (°) 

Modified weight matrix (Case 1) 

Strips (1 & 2) -0.248 0.419 -0.001 0.0198 

Strips (4 & 3) -0.761 -0.109 0.080 0.0642 

Strips (5 & 6) -0.599 0.777 0.001 0.0199 

Volume (determinant) constraint (Case 1) 

Strips (1 & 2) -0.247 0.419 -0.001 0.0198 

Strips (4 & 3) -0.763 -0.098 0.080 0.0643 

Strips (5 & 6) -0.599 0.775 0.001 0.0199 

Modified weight matrix (Case 4) 

Strips (1 & 2) -0.248 0.484 -0.002 0.0181 

Strips (4 & 3) -0.805 -0.095 0.079 0.0611 

Strips (5 & 6) -0.625 0.806 0.009 0.0170 

Volume (determinant) constraint  (Case 4)  

Strips (1 & 2) -0.248 0.484 -0.002 0.0181 

Strips (4 & 3) -0.806 -0.096 0.079 0.0613 

Strips (5 & 6) -0.626 0.805 0.009 0.0170 
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Table 5.4. Comparison of the quasi-rigorous method results through the modified weight 

matrix and volume (determinant) constraint for cases 1 and 4. 

δΔX(m) δΔY(m) δΔω(°) δΔφ(°) δΔκ(°) δΔρ (m) δS 

Modified weight matrix (Case 1) 

0.048 0.046 0.0102 0.0099 0.0101 0.471 0.0010 

Volume constraint (Case 1) 

0.049 0.047 0.0102 0.0099 0.0100 0.470 0.0010 

Modified weight matrix (Case 4) 

0.032 0.093 0.0093 0.0097 0.0102 0.524 0.0010 

Volume constraint (Case 4) 

0.027 0.088 0.0095 0.0096 0.0103 0.466 0.0011 

In summary, the ultimate target function of the modified weight matrix is to minimize the 

normal distance between corresponding point and planar patch; therefore, the strength of 

the modified weight matrix is that the normal distance constraint can be manipulated 

without the use of an explicit function of the co-planarity constraint such as the volume 

constraint. Due to the compatible estimation results from both approaches (the volume 

constraint and modified weight matrix) and the strength of the modified weight matrix, 

after this section, the experimental results using simulated and real datasets will present 

the transformation parameters and systematic biases estimated by the use of the modified 

weight matrix.   

5.2.2 The Simplified Method Results  

As discussed in section 3.2, the Simplified method consists of a two-step procedure. First, 

the discrepancies between overlapping strips are determined; then, the system biases are 

estimated based on the determined discrepancies between the strips. Using the ICPatch 
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procedure, the biased and noise-contaminated footprints have been used to check for 

systematic biases between the overlapping strips. The overlapping strip configuration 

previously mentioned was chosen since it allows for the maximization of the impact of 

systematic biases as well as the ability to decouple the different biases from each other. 

Table 5.5 shows the estimated transformation parameters and a-posteriori variance 

factors of the adjustment procedures for the three overlapping strip pairs in case 1. 

Table 5.5. Estimated transformation parameters for the simplified method in case 1 

(parallel overlapping strip pairs). 

Case 1 Strips (1 & 2) Strips (4 & 3) Strips (5 & 6) 

XT (m) -0.248 -0.761 -0.599 

YT (m) 0.419 -0.109 0.777 

ZT (m) -0.001 0.080 0.001 

φ (°) 0.0198 0.0642 0.0199 

2̂  0.135 0.122 0.164 

The first conclusion that can be drawn from the reported values is that there are biases in 

the system parameters and measurements. In the absence of biases, the estimated 

parameters should be almost zeros regardless of the random noise level in the input point 

cloud. The estimated transformation parameters are then expressed as a linear 

combination of the biases in the LiDAR system using Equation 3.19 (for the strips flown 

in opposite directions with 100% overlap ratio) and Equation 3.20 (for the strips flown in 

same directions). Finally, a least-squares adjustment derives an estimate of the biases in 

the LiDAR system parameters as shown in Table 5.6. In this table, the standard 

deviations show that the estimated biases are reliable. One should note that the bias in the 

lever-arm offset along the Z axis is not determined in the procedure since it does not 
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cause any discrepancy between overlapping strips regardless of the flight direction (refer 

to section 3.2). 

Table 5.6. Estimated biases from the transformation parameters in Table 5.5. 

Case # 
δΔX    

(m) 
δΔY    

(m) 
δΔω    

(°) 
δΔφ    

(°) 
δΔκ    

(°) 
δΔρ    

(m) 
δS    

Case 1 
0.039 

 0.0012 

0.041 

 0.0032

0.0102 

 0.0001

0.0099 

 0.0000

0.0133 

 0.0004

0.467 

 0.0062 

0.0012 

 0.0000

The involved strips in the above experiments are based on optimal datasets, which 

comply with the listed assumptions (refer to section 3.2) except for having a flat object 

space. To investigate the impact of having non-parallel overlapping strip pairs, this 

research conducted the other three experiments where there are 10° (cases 2 and 4) or 30° 

(case 3) deviation from parallelism between overlapping strips. In addition, the condition 

of an un-levelled scanner is applied to case 4 where the simulated strips are captured with 

±5° roll and pitch angles. The flight parameters for the non-parallel/un-levelled cases are 

previously shown in Table 5.1. Tables 5.7, 5.8, and 5.9 show the estimated 

transformation parameters for the strips in case 2, 3 and 4, respectively.  

Table 5.7. Estimated transformation parameters for the simplified method in case 2 (10° 

deviation from parallelism). 

Case 2 Strips (1 & 2) Strips (4 & 3) Strips (5 & 6) 

XT (m) -0.250 -0.789 -0.606 

YT (m) 0.415 -0.103 0.756 

ZT (m) -0.000 0.080 0.000 

φ (°) 0.0199 0.0629 0.0200 

2̂  0.136 0.147 0.167 



100 

 

Table 5.8. Estimated transformation parameters for the simplified method in case 3 (30° 

deviation from parallelism). 

Case 3 Strips (1 & 2) Strips (4 & 3) Strips (5 & 6) 

XT (m) -0.240 -0.827 -0.582 

YT (m) 0.403 -0.145 0.734 

ZT (m) -0.001 0.078 0.002 

φ (°) 0.0193 0.0596 0.0193 

2̂  0.144 0.140 0.172 

Table 5.9. Estimated transformation parameters for the simplified method in case 4 (10° 

deviation from parallelism and 5° deviation from level). 

Case 4 Strips (1 & 2) Strips (4 & 3) Strips (5 & 6) 

XT (m) -0.248 -0.805 -0.625 

YT (m) 0.484 -0.095 0.806 

ZT (m) -0.002 0.079 0.009 

φ (°) 0.0181 0.0611 0.0170 

2̂  0.159 0.147 0.217 

The estimated biases in the system parameters, which correspond to these transformation 

parameters, are reported in Table 5.10. As it can be seen in Tables 5.7, 5.8, and 5.9, the a-

posteriori variance factors of the estimation results (derived from the ICPatch procedure) 

are slightly worse as the parallelism deviation is increased. In Table 5.10, one can see that 

the bias in the boresight heading angle is mainly affected by the non-parallelism of the 

involved strips. In addition, the result of case 4 (un-levelled laser scanner) shows that the 

estimated biases in the lever-arm offsets and boresight pitch(Δω)/roll(Δφ) angles are 

worse than the estimated values in case 2 and 3, where the reliability of the estimated 

biases can be confirmed by their standard deviations reported in Table 5.10. From the 
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results in Table 5.10, one can conclude that 10° deviation from parallelism of overlapping 

strips can be handled by the simplified method; 30° deviation from parallelism mainly 

affect to the estimation of the range bias. In addition, 5° deviation from level of platform 

attitudes (roll and pitch) makes worse the estimation of the biases in the lever-arm offsets 

(δΔX and δΔY ) and boresight angles (δΔω and δΔφ) as well as the range bias. 

Table 5.10. Estimated biases from the transformation parameters in Tables 5.7 – 5.9 

Case # 
δΔX    

(m) 
δΔY    

(m) 
δΔω    

(°) 
δΔφ    

(°) 
δΔκ    

(°) 
δΔρ    

(m) 
δS    

Case 2 
0.039 

 0.0011 
0.040 

 0.0032
0.0102 
 0.0001

0.0099 
 0.0000

0.0134 
 0.0004

0.466 
 0.0061 

0.0012 
 0.0000

Case 3 
0.039 

 0.0008 
0.045 

 0.0024
0.0095 
 0.0001

0.0097 
 0.0000

0.0178 
 0.0003

0.678 
 0.0045 

0.0011 
 0.0000

Case 4 
0.005 

 0.0151 
0.090 

 0.0428
0.0091 
 0.0016

0.0088 
 0.0002

0.0117 
 0.0049

0.607 
 0.0117 

0.0012 
 0.0000

5.2.3 The Quasi-rigorous Method Results  

The second calibration method is the quasi-rigorous method which utilizes trajectory 

position data and time tagged point clouds. The feasibility of the quasi-rigorous 

calibration method will be investigated using the same data introduced in the previous 

section. The required trajectory position data and time tags for each laser point were 

produced during the LiDAR strip simulation procedure. In this research, trajectory points 

within 2 seconds are chosen to estimate the flight direction because, at 180km/hr speed, 2 

second would define a 100m local trajectory which is sufficient for reliable estimation of 

the heading angle. However, it should be mentioned that one can reasonably choose the 

time search range based on the condition of flight mission and available trajectory data.  

Table 5.11 shows the estimated biases in the system parameters using the quasi-rigorous 

method. All the estimated biases are very close to the introduced biases, and the standard 
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deviations of the estimated values are compatible in all cases. Especially, the results of 

non-parallel strips in cases 2 and 3 and non-parallel/un-levelled strips in case 4 are 

significantly improved compared to Tables 5.10. For example, the estimation of the 

boresight heading angle is mainly affected by the non-parallelism in the simplified 

method; however, one can confirm that the improvement of the estimation of the bias in 

the quasi-rigorous results. The range bias estimated by the quasi-rigorous method is 

relatively close to the true value compared to the values estimated by the simplified 

method. From these results, one can conclude that the quasi-rigorous method provides 

reasonable estimates regardless the magnitudes of the deviations of terrain elevation and 

parallelism of overlapping strips. It shows that the use of trajectory position data and 

time-tagged point cloud effectively handle the non-parallel overlapping strip pairs to 

estimate the biases, which is the strength of the quasi-rigorous method compared to the 

simplified method. The result of case 4 is compatible with the result of case 2, and one 

can conclude that strips captured with 5° deviation from level can be handled by the 

quasi-rigorous method. The next section will show the validity of the proposed methods 

by evaluating the compatibility of the adjusted coordinates using the estimated biases. 

Table 5.11. Estimated biases using the quasi-rigorous method for the simulated datasets. 

Case # 
δΔX    

(m) 
δΔY    

(m) 
δΔω    

(°) 
δΔφ    

(°) 
δΔκ    

(°) 
δΔρ    

(m) 
δS    

Case 1 
0.048 

 0.0007 
0.046 

 0.0012
0.0102 
 0.0000

0.0099 
 0.0000

0.0101 
 0.0002

0.471 
 0.0074 

0.0010 
 0.0000

Case 2 
0.048 

 0.0007 
0.055 

 0.0013
0.0097 
 0.0000

0.0100 
 0.0000

0.0100 
 0.0002

0.497 
 0.0073 

0.0010 
 0.0000

Case 3 
0.093 

 0.0009 
0.092 

 0.0016
0.0088 
 0.0000

0.0102 
 0.0000

0.0141 
 0.0002

0.453 
 0.0079 

0.0008 
 0.0000

Case 4 
0.032 

 0.0007 
0.093 

 0.0010
0.0093 
 0.0000 

0.0097 
 0.0000

0.0102 
 0.0002

0.524 
 0.0059 

0.0010 
 0.0000
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5.2.4 Quality of Adjusted Point Cloud Coordinates 

In this section, the proposed point cloud adjustment procedures will be verified based on 

the mean/RMSE (Root Mean Squared Error) analysis before/after the calibration. First, 

the impact of the random and systematic errors introduced to the simulated strips will be 

discussed using mean/RMSE analysis between true and distorted coordinates. Then, the 

proposed point cloud adjustment procedures will be verified by the comparison between 

the true and adjusted point clouds using the true biases in Tables 5.6, 5.10 and 5.11. After 

discussing the efficiency of the point cloud adjustment formula, another mean/RMSE 

analysis will be conducted for the true and adjusted point clouds using the biases 

estimated by the simplified and quasi-rigorous methods to evaluate the performance of 

the point cloud adjustment procedures. The mean/RMSE analysis is conducted for strips 

3 and 6 in all four cases. These two strips are good enough to see the validity of the 

proposed point correction procedure because the two strips have different flying heights 

(1,000 and 2,000m) and directions (north to south and south to north).  

Table 5.12 shows the mean/RMSE analysis between the true and noise-contaminated 

point clouds. In this table, all mean values are close to zero because there is no systematic 

error. The RMSE values for strips 6 are larger than the values for strip 3 for all the cases, 

which means that the impact of the random errors in the platform attitudes and encoder 

angles depends on the flight altitude. In addition, the RMSE values along the XY plane 

are more significant than the RMSE values along the vertical direction, which shows that 

the impact of the noise mainly affect to the planimetric accuracy rather than the vertical 

accuracy.  
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Table 5.12. Mean/RMSE analysis between true and noise-contaminated coordinates. 

Mean RMSE 
 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

 Case 1 

Strip3 (1,000m) 0.001 0.000 -0.000 0.246 0.206 0.163 

Strip6 (2,000m) -0.000 0.002 0.000 0.468 0.383 0.194 

 Case 2 

Strip3 (1,000m) 0.000 -0.000 -0.000 0.246 0.205 0.163 

Strip6 (2,000m) 0.000 -0.000 0.000 0.468 0.403 0.215 

 Case 3 

Strip3 (1,000m) -0.000 0.004 0.001 0.245 0.222 0.174 

Strip6 (2,000m) 0.000 0.008 -0.001 0.471 0.424 0.242 

 Case 4 

Strip3 (1,000m) 0.001 0.001 -0.000 0.245 0.206 0.161 

Strip6 (2,000m) -0.002 0.001 -0.000 0.471 0.379 0.192 

Table 5.13 shows the mean/RMSE analysis between true and noise/bias-contaminated 

point cloud. In this table, the mean values are non-zero values, which mean that the point 

cloud coordinates are systematically biased. In addition, the RMSE values in this table 

worse than the values reported in Table 5.12 due to the impact of the biases in the system 

parameters. In the comparison between strips 3 and 6, the RMSE values along the vertical 

direction are compatible, while there are significant differences between the RMSE 

values of strips 3 and 6 along the XY plane. It can be explained by the fact that the impact 

of the biases in the system parameters on the height errors is not affected by the flight 

altitude, while the impact on the planimetric errors is significantly affected by the flight 

altitude. 
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Table 5.13. Mean/RMSE analysis between true and noise/bias-contaminated coordinates. 

Mean RMSE 
 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

 Case 1 

Strip3 (1,000m) -0.065 0.216 -0.370 0.456 0.301 0.413 

Strip6 (2,000m) -0.289 0.391 -0.303 0.828 0.555 0.393 

 Case 2 

Strip3 (1,000m) -0.065 0.220 -0.378 0.436 0.310 0.418 

Strip6 (2,000m) 0.224 -0.414 -0.303 0.820 0.566 0.394 

 Case 3 

Strip3 (1,000m) -0.071 0.217 -0.389 0.403 0.326 0.426 

Strip6 (2,000m) 0.275 -0.438 -0.305 0.833 0.587 0.407 

 Case 4 

Strip3 (1,000m) -0.129 0.238 -0.359 0.447 0.323 0.401 

Strip6 (2,000m) 0.287 -0.419 -0.281 0.812 0.574 0.371 

Another mean/RMSE analysis is conducted to justify the proposed point cloud 

adjustment procedures. Table 5.14 shows the mean/RMSE analysis between true and 

adjusted point clouds by the simplified method (Equation 3.21) and true biases, while 

Table 5.15 shows the comparison between the true and adjusted point clouds by the 

quasi-rigorous method (Equation 3.29) and true biases. These tables show that the mean 

values along the XY plane are close to zero. On the other hand, the mean values along the 

vertical direction are close to 5cm, which can be explained by the impact of the bias 

(δΔZ) in the lever-arm offset along the vertical direction. The RMSE values in this table 

are significantly improved compared to the RMSE values reported in Table 5.13, and 

quite compatible with the RMSE values in Table 5.12, which means that the impact of 

the systematic biases is successfully eliminated. From these results, the point cloud 

adjustment procedures for both the simplified and quasi-rigorous methods are justified. In 

addition, one can find that the mean/RMSE values are quite compatible between the 
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simplified and quasi-rigorous methods regardless the deviation from the parallelism, 

which means that if the estimated biases from both methods are compatible, the quality of 

the point cloud adjustment is not affected by the deviation for the parallelism of 

overlapping strips. In Equation 3.21, the vertical distance between firing point and a point 

in question is estimated by nominal flying attitude and point elevation, and the flight 

direction is determined by a normal direction to a scan-line which is estimated by a line 

fitting procedure using segmented scan-line points. On the other hand, in Equation 3.29, 

the vertical distance and flight direction are estimated by the trajectory position data. 

Therefore, if the estimated flight directions in the simplified method are quite reliable, 

and there is no significant variation in the flight altitudes, during the data capturing time, 

the point cloud adjustment results from both the simplified and quasi-rigorous methods 

can be quite compatible. 

Table 5.14. Mean/RMSE analysis between true and adjusted coordinates by the 

simplified method formula (Equation 3.21) and true biases in Table 5.2. 

Mean RMSE 
 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

 Case 1 

Strip3 (1,000m) 0.003 0.003 0.050 0.244 0.206 0.170 

Strip6 (2,000m) 0.002 0.001 0.050 0.468 0.383 0.200 

 Case 2 

Strip3 (1,000m) 0.000 0.001 0.050 0.244 0.206 0.170 

Strip6 (2,000m) 0.001 0.000 0.050 0.466 0.384 0.200 

 Case 3 

Strip3 (1,000m) 0.000 -0.000 0.050 0.241 0.209 0.169 

Strip6 (2,000m) -0.001 0.002 0.050 0.463 0.385 0.196 

 Case 4 

Strip3 (1,000m) -0.012 0.029 0.068 0.253 0.209 0.177 

Strip6 (2,000m) 0.017 -0.026 0.083 0.485 0.382 0.213 
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Table 5.15. Mean/RMSE analysis between the true and adjusted coordinates by the quasi-

rigorous method formula (Equation 3.29) and true biases in Table 5.2. 

Mean RMSE 
 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

 Case 1 

Strip3 (1,000m) 0.000 -0.000 0.050 0.244 0.206 0.170 

Strip6 (2,000m) 0.002 0.001 0.050 0.468 0.383 0.193 

 Case 2 

Strip3 (1,000m) 0.001 0.000 0.051 0.244 0.206 0.170 

Strip6 (2,000m) 0.008 0.004 0.050 0.466 0.384 0.200 

 Case 3 

Strip3 (1,000m) 0.000 -0.000 0.050 0.241 0.208 0.169 

Strip6 (2,000m) -0.001 0.002 0.050 0.463 0.385 0.196 

 Case 4 

Strip3 (1,000m) -0.012 0.029 0.068 0.253 0.209 0.177 

Strip6 (2,000m) 0.013 -0.006 -0.078 0.487 0.385 0.212 

After justifying the point cloud adjustment procedures, this research evaluates the 

performance of the proposed calibration methods in terms of the quality of the adjusted 

point cloud coordinates. Tables 5.16 and 5.17 present the mean/RMSE analysis between 

the true and adjusted point clouds by the estimated biases in the system parameters. Table 

5.16 shows the mean/RMSE analysis for the simplified method, while Table 5.17 shows 

the mean/RMSE analysis for the quasi-rigorous method. Comparing Tables 5.13, 5.16 

and 5.17, one can see the improvement in the point cloud coordinates, which is 

manifested in smaller mean and RMSE values. In Table 5.16, the mean values along the 

XY plane are less than 2cm and the RMSE values along the XY plane are about 15 and 

30cm for strips 3 and 6, respectively. It shows that the systematic errors along the XY 

plane are significantly reduced after the calibration regardless the flight altitude. The 

RMSE values along the XY plane shows the impact of the noise in system measurements, 
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which is affected by the flight altitude. The mean values along the vertical direction in 

cases 3 and 4 are worse than the values reported in cases 1 and 2, which is caused by the 

inferior estimation of the biases from the non-parallel (30° deviation from parallelism; 

case 3) and un-levelled (5° deviation from level; case 4) overlapping strip. Especially, the 

estimated range bias in cases 3 and 4 is worse than the other estimated biases, and the 

range bias mainly affects the vertical accuracy regardless the flight altitude. In Table 5.16, 

one can see the relatively worse mean values along the vertical direction in cases 3 and 4.  

Table 5.16. Mean/RMSE analysis between true and adjusted coordinates by the 

simplified method formula (Equation 3.21) and estimated biases in Tables 5.6 and 5.10. 

Mean RMSE 
 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

 Case 1 

Strip3 (1,000m) 0.011 0.006 0.005 0.247 0.207 0.163 

Strip6 (2,000m) -0.011 -0.003 -0.009 0.477 0.384 0.195 

 Case 2 

Strip3 (1,000m) 0.006 0.003 0.006 0.247 0.207 0.163 

Strip6 (2,000m) -0.006 -0.001 -0.008 0.475 0.384 0.195 

 Case 3 

Strip3 (1,000m) -0.013 -0.000 0.217 0.247 0.213 0.270 

Strip6 (2,000m) 0.010 -0.012 -0.211 0.474 0.387 0.284 

 Case 4 

Strip3 (1,000m) 0.011 0.006 0.160 0.264 0.207 0.229 

Strip6 (2,000m) 0.017 -0.016 0.162 0.504 0.382 0.257 

On the other hand, Table 5.17 shows the mean/RMSE analysis between the true and 

adjusted point cloud by the quasi-rigorous method. The overall quality of the adjusted 

coordinates is better than the quality of the point cloud adjusted by the simplified method 

in Table 5.16. As one can see in Table 5.17, the improvement of the vertical accuracy is 

quite obvious compared to the results from the simplified method, especially in cases 3 
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and 4. From the reported mean and RMSE values, one can find the improvement of the 

adjusted point cloud coordinates; especially, the mean values show that the systematic 

errors are successfully eliminated after the calibration. The mean values along the vertical 

direction in cases 3 and 4 are significantly reduced compared to the values reported in 

Table 5.16. One can find the similar improvement in the RMSE values along the vertical 

direction in cases 3 and 4, which can be explained by the fact that the range bias 

estimated by the quasi-rigorous method is closer to the true value than the range bias 

estimated by the simplified method.  

Table 5.17. Mean/RMSE analysis between error-free and adjusted coordinates by the 

quasi-rigorous method formula (Equation 3.29) and estimated biases in Table 5.11. 

Mean RMSE 
 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

 Case 1 

Strip3 (1,000m) 0.000 0.001 0.022 0.244 0.206 0.164 

Strip6 (2,000m) -0.001 0.002 0.022 0.468 0.383 0.195 

 Case 2 

Strip3 (1,000m) 0.003 0.001 0.022 0.244 0.206 0.164 

Strip6 (2,000m) 0.009 0.007 0.022 0.466 0.384 0.195 

 Case 3 

Strip3 (1,000m) -0.015 -0.032 0.017 0.248 0.211 0.163 

Strip6 (2,000m) -0.000 0.005 0.022 0.463 0.385 0.191 

 Case 4 

Strip3 (1,000m) 0.003 -0.001 0.092 0.253 0.207 0.187 

Strip6 (2,000m) 0.007 0.013 0.101 0.487 0.385 0.221 

This mean/RMSE analysis can verify the success of Equations 3.21 and 3.29 in removing 

the systematic distortions from the point cloud coordinates. Thus, one can conclude that 

the proposed calibration methods can show the performance from systematic biases 

estimation to point cloud adjustment for non-parallel/non-vertical flight configuration as 
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well as the terrain elevation deviation in the simulation datasets. In the next section, the 

feasibility of the proposed methods will be verified using real LiDAR dataset. 

5.3 Real Data Experiment I 

To evaluate the performance of the proposed calibration methods, we acquired a LiDAR 

dataset captured by an Optech ALTM 2050 using the optimum flight configuration. The 

real dataset was captured from a platform moving with 200 km/hr speed, 20° scan angle, 

50 kHz PRF, and 20-29 Hz scan frequency. The density of the point cloud is about 1 

point/m2 for strips captured from 1,000m flight altitude, and about 0.5 point/ m2 for strips 

captured from 2,000m flight altitude. Figure 5.2 and Table 5.18 illustrate the 

characteristics of this real dataset. Table 5.19 lists the five overlapping strip pairs that 

could be utilized. The strip pairs 1&2, 3&4, 3&5, and 2&6 are utilized in the calibration 

procedure. Strips 7&8, on the other hand, are used to check the performance of the 

proposed calibration procedures by evaluating the compatibility between conjugate 

surface elements in this pair using the original and adjusted point cloud coordinates.  

Flightline 8

Flightline 7

Flightline 5

Flightline 6

Flight lines 1,2,3 and 4

Flightline 8

Flightline 7

Flightline 5

Flightline 6

Flight lines 1,2,3 and 4

 
Figure 5.2. Strip configuration of the real dataset captured by Optech ALTM 2050. 
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Table 5.18. Characteristic of the involved overlapping strip pairs in the proposed 

calibration procedures. 

Strip Number Flight altitude Direction 

1 2,000 m SW-NE 

2 2,000 m NE-SW 

3 1,000 m SW-NE 

4 1,000 m NE-SW 

5 1,000 m SW-NE 

6 2,000 m NE-SW 

7 1,000 m NE-SW 

8 1,000 m SW-NE 

Table 5.19. Overlapping strip pairs utilized for the calibration procedure and its 

evaluation.  

Overlapping pairs Overlap ratio Direction 

(i) Strips 1&2 100% Opposite directions 

(ii) Strips 3&4 100% Opposite directions 

(iii) Strips 3&5 50% Same direction 

(iv) Strips 2&6 70% Same direction 

(v) Strips 7&8* 40% Opposite directions 

* Strips 7&8 are used to evaluate the quality of the proposed calibration procedures 

It is important to mention that for reliable estimation of the system parameters, the 

calibration site should have topography with varying slope and aspect and/or an area with 

plenty of gable roof buildings with varying slope and aspect. Figure 5.3 illustrates strip 3 
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as an example, where we can observe the presence of gable roof buildings in Figure 5.3c. 

The procedure of finding the closest point-patch pairs can be carried out using the entire 

overlap area between neighbouring strips or it can be conducted using an aggregated set 

of preselected local areas to speed up the process. Regardless of utilizing the whole 

overlap region or the aggregated set of local areas, the correspondence between conjugate 

point-patch pairs should be established. Figure 5.4 shows the selected areas in the 

overlapping region utilized for the estimation of the system biases in the two calibration 

methods. To test the impact of incorporating control data in the quasi-rigorous method, 

900 control points are utilized. The control points are collected over an airport runway 

(i.e., they are used as vertical control points) using real-time kinematic GPS surveying 

with a short baseline and a favourable GPS satellite constellation.  

 
(a) 

 
(b) (c) 

 
Figure 5.3. Sample data (strip 3): (a) intensity image of the sample strip, (b) 3D view of 

selected sub-area (yellow box in (a)), and (c) 2D view (X-Z plane) of the sub-area. 
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Figure 5.4. Selected areas from the overlapping pairs for the calibration procedure: (a) 

strips 1&2, (b) strip 3&4, (c) strip 3&5, and d) strip 6&2. 

5.3.1 Calibration Results from the Proposed Methods 

The derived formulas for the simplified method assume that the flight lines are parallel to 

the Y-axis of the mapping frame. However, the utilized strips are captured from flight 

lines in the SW-NE and NE-SW directions as can be seen in Table 5.18 and Figure 5.2. 

Therefore, the estimated transformation parameters have been recalculated to correspond 

to a local coordinate system where the flight directions are parallel to the Y-axis and its 

origin is located in the centre of the overlap area. The origin of the local coordinate 

system can be determined by the centroid of overlapping area. If trajectory data is 

available, Y-axis can be determined by the average heading angle. Without the trajectory 

data, the flight direction can be determined by estimating scan directions. A scan-line 
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segmentation procedure selects points which are assumed to belong to a scan-line to 

estimate the scan-line directions. One can assume that the average of the estimated scan 

directions denotes across the flight direction. The simplified method assumes that the 

flight directions are parallel to the Y axis of the ground coordinate system. Therefore, the 

estimated transformation parameters with respect to the ground coordinate system are 

rotated using the flight direction with respect to the user defined coordinate system. 

Equations 5.1a, 5.1b, 5.1c, and 5.1d show the procedure to recalculate the transformation 

parameters using the flight direction. In Equation 5.1a, mX


 and uX


 denote LiDAR points 

defined in the mapping frame and user defined coordinate system, respectively;  is a 

rotation matrix defined by the flight direction relating the mapping frame and user 

defined coordinate system. Equation 5.1b shows a transformation function between strips 

A and B, where  and  are shifts and rotation matrix with respect to the mapping 

frame. The transformation function can be represented by Equation 5.1c using the flight 

direction with respect to the user defined coordinate system. One can then recalculate  

and  which are the shifts and rotation matrix with respect to the user defined 

coordinate system (Equation 5.1d).  
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Table 5.20 presents the four transformation parameters (XT, YT, ZT, and φ) among the 

overlapping strip pairs with respect to the user defined local coordinate system. In this 

table, one can observe that the estimated YT in strips 1&2 and strips 3&4 are significantly 

larger than the values in strips 3&5 and strips 2&6. Based on their flight directions and 

altitudes, one can conclude that this is an evidence of a bias in the boresight pitch angle. 

It can be confirmed by the systematic biases estimated by the simplified method, which 

are reported in the second row of Table 5.21, where the bias in the boresight pitch angle 

is much larger than the other angular biases. For the quasi-rigorous method, two 

experiments are performed. The first experiment utilized only overlapping strips to 

estimate the biases in system parameters, while the second experiment estimated system 

biases using overlapping strips and vertical control points. The estimated biases in the 

system parameters from the simplified method, the quasi-rigorous method without and 

with control data are summarized in Table 5.21. There is no significant difference 

between the estimated biases using the quasi-rigorous method with/without the vertical 

control points except the bias in the range measurement. It shows that the quasi-rigorous 

method can successfully estimate the biases without the help of control data; however, 

the difference observed in the estimated range bias can be explained by the correlation 

between the biases in the range measurement and encoder angle scale factor. Table 5.22 

shows the correlation matrices for both results, with/without the control data. As one can 

see in this table, the use of the vertical control data reduced the correlation between the 

biases from -0.87 to -0.52. The next section will show the qualitative and quantitative 

evaluation of the discrepancies between overlapping strips before/after the calibration to 

confirm the impact of the proposed calibration procedures. 
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Table 5.20. Estimated transformation parameters derived by the discrepancy detection 

procedure with respect to the user defined local coordinate system. 

 XT (m) YT (m) ZT (m) φ (°) 

Strips 1&2 -0.25 1.27 -0.01 0.00037 

Strips 3&4 -0.01 0.52 0.02 -0.00270 

Strips 3&5 -0.32 -0.19 -0.06 0.02680 

Strips 2&6 -0.42 0.15 0.01 0.02073 

Table 5.21. Estimated systematic biases for the simplified method, quasi-rigorous method 

(without control data), and quasi-rigorous method (with control data). 

Methods δΔX(m) δΔY(m) δΔω(") δΔφ(") δΔκ(") δΔρ(m) δS 

Simplified -0.08 -0.11 74.88 -1.08 -39.60 0.22 0.0006

Quasi-rigorous  
(without control data) 

-0.08 -0.12 80.64 -4.68 17.28 0.00 0.0010

Quasi-rigorous  
(with vertical control data) 

-0.08 -0.12 80.64 -5.04 18.72 -0.06 0.0010

Table 5.22. The contribution of the control data to decoupling the correlated parameters. 

Quasi-rigorous with no control point 

δΔX(m) δΔY(m) δΔω(") δΔφ(") δΔκ(") δΔρ(m) δS 

1.00 -0.01 0.01 0.81 0.00 0.09 -0.10 
-0.01 1.00 -0.94 -0.01 -0.01 0.00 0.00 
0.01 -0.94 1.00 0.01 0.03 0.00 0.00 
0.81 -0.01 0.01 1.00 0.00 0.11 -0.13 
0.00 -0.01 0.03 0.00 1.00 0.02 -0.01 
0.09 0.00 0.00 0.11 0.02 1.00 -0.87 
-0.10 0.00 0.00 -0.13 -0.01 -0.87 1.00 

Quasi-rigorous with vertical control points 

δΔX(m) δΔY(m) δΔω(") δΔφ(") δΔκ(") δΔρ(m) δS 

1.00 -0.01 0.01 0.78 0.000 0.03 -0.05 
-0.01 1.00 -0.94 -0.01 -0.006 0.00 0.00 
0.01 -0.94 1.00 0.01 0.026 0.00 0.00 
0.78 -0.01 0.01 1.00 -0.004 0.03 -0.09 
0.00 -0.01 0.03 0.00 1.000 0.01 0.01 
0.03 0.00 0.00 0.03 0.011 1.00 -0.52 
-0.05 0.00 0.00 -0.09 0.009 -0.52 1.00 
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5.3.2 Qualitative Evaluation of the Calibration Results 

In this section, the improvement of the quality of the data after the calibration is 

qualitatively evaluated. Visual comparison of the generated intensity images from the 

original and adjusted point clouds is performed to check any improvements in the clarity 

and definition of various objects. Besides checking intensity images, profiles are also 

generated using the original and adjusted point cloud coordinates to check any 

improvements in the quality of fit between overlapping strips. The improvement in the 

quality of the generated intensity images is illustrated in Figure 5.5. The intensity images 

are generated using strips 7 and 8; Figure 5.5a shows the intensity image generated 

before the calibration procedure, while the other figures in Figure 5.5 show the improved 

intensity images after the calibration procedure. As it can be seen in this figure (refer to 

the circled areas), enhancement in the feature definition, such as airplanes and surface 

markings, is noticeable in the generated intensity images after the calibration procedure. 

At least in this visual comparison, the quality of the adjusted point clouds is mostly 

equivalent regardless the used calibration method. 

  
(a) (b) 
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(c) (d) 

Figure 5.5. Intensity images generated before and after the calibration procedure: (a) 

original intensity image before the calibration, (b) intensity image after the simplified 

method, (c) intensity image after the quasi-rigorous method (without control data), and 

(d) intensity image after the quasi-rigorous method (with control data). 

In addition, the profile comparison can show the reduction of the discrepancies between 

overlapping strips. The selected profile locations are shown in Figure 5.6. The selected 

four profiles are shown in Figure 5.7. One can observe better compatibility after the 

calibration procedures, especially the profiles aligned along the flight direction – Y axis, 

refer to Figure 5.6 for the profiles location. Profile 4 in Figure 5.7 does not present 

improvements since it is parallel to the scanning direction, where no significant 

discrepancies were detected (refer to Table 5.20). On the other hand, profiles 2 and 3 are 

significantly improved because the profiles are along the flight direction and the bias in 

the boresight pitch angle (see Table 5.21) causes large discrepancies along the flight 

direction in opposite overlapping strips such as strips 1 and 2. 
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Figure 5.6. Profiles location selected in the overlapping strips 1&2. 

 

Profile # #1 #2 

Before calibration 

After calibration     
(simplified method) 

 

After calibration     
(quasi-rigorous 

method) 

 

After calibration 

(quasi-rigorous 
method with control) 
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#3 #4 Profile # 

B  efore calibration

Aft on     
(simplified method) 

er calibrati

 

After calibration     
(quasi-rigorous 

method) 

 

After calibration 

(quasi-rigorous 
method with control) 

• strip 1                • strip 2 

Figure 5.7. Profiles in the overlapping strip pair 1&2 (refer to Figure 5.6 for the location 

ing the degree of compatibility between the point cloud before and 

after the calibration procedur

valuation, a quantitative evaluation is performed in this 

7&8, which were not 

involved in the calibration procedures, are utilized. The compatibility of these 

overlapping strips is evaluated before the calibration; then, the compatibility analysis is 

performed again after adjusting the point cloud using the estimated biases. With the help 

of the ICPatch procedure, which has been utilized to estimate the transformation 

parameters between overlapping strips, the discrepancies between strips 7&8 using the 

original and adjusted point cloud according to the estimated biases from the different 

of these profiles) show

e. 

5.3.3 Quantitative Evaluation of the Calibration Results 

In addition to the qualitative e

section. For the quantitative evaluation, the overlapping strips 
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Table 5.23. Discrepancy evaluation between the bias-contaminated (before) and adjusted 

cedures with 

respect to the ground coordinate system. 

calibration methods are reported in Table 5.23. As shown in the table, one can see that 

the compatibility between the overlapping strips is improved after removing the impact of 

the estimated biases especially using the quasi-rigorous method. One should note that this 

work has focused on the implementation of system calibration procedures. More 

specifically, we are interested in detecting biases in the system parameters and reducing 

their impact on the derived point cloud. This does not mean that the adjusted point cloud 

will be error-free. Other errors, such as navigation errors, will still impact the quality of 

the derived point cloud as well as the estimated transformation parameters between 

adjusted overlapping strips. These errors cannot be included in a system calibration 

procedure since they are mission-dependent. Table 5.23 also shows that utilizing control 

data does not seem to have a significant effect on improving the quality of the 

compatibility among the strips – compare the last two rows in Table 5.23. 

(after) point cloud coordinates of strips 7&8 for the different calibration pro

 XT (m) YT (m) ZT (m)  ω (") φ (") κ (") 

Before 0.48 0.82 0.06 1.80 -166.32 -2.88 

After (simplified) 

After (quasi-rigorous with 
0.23 0.28 0.05 3.24 8.28 -10.08 

ve ) 

0.54 0.44 0.05 2.88 -46.8 -9.00 

no control data) 

After (quasi-rigorous with 

rtical control data
0.25 0.28 0.05 3.24 7.92 -10.08 



122 

 

e relative performance of the simplified method and the quasi-

rig d without control data, one can compare the adjusted point cloud 

coordinates for a given strip using the respective estimates of the biases in the system 

parameters. The estimated biases from two calibration experiments will be deemed 

compatible if the mean/RMSE values resulting from the comparison of the adjusted point 

cloud coordinates in each method are within the range of the noise level in point cloud. 

The compatibility analysis (mean/RMSE results) among the adjusted point cloud using 

estimated biases in Table 5.21 is summarized in Table 5.24. For such an analysis, we 

corrected the point cloud coordinates for two strips captured from two flight altitudes 

(2,000m and 1,000m for strips 1 and 7, respectively). In Table 5.24, one can see the high 

compatibility between two point clouds adjusted by the quasi-rigorous method 

with/without control data. It shows that the quasi-rigorous method is not much dependent 

on the use of control data, except the case of large bias (δΔZ ) in lever-arm offset. On the 

other hand, the estimated biases in the simplified method produce an adjusted point cloud 

that slightly vary from the adjusted point cloud using the quasi-rigorous method, 

especially in the vertical directions. The observed incompatibility between the simplified 

and quasi-rigorous methods is attributed to the quality of the estimated range bias in the 

simplified method. As shown in Figure 2.11e, the range bias causes almost constant 

discrepancies across the flight direction between overlapping strips within small encoder 

angles, regardless flight altitude and overlapping ratio. In addition, the biases of range 

measurement and encoder angle scale factor cannot be easily coupled. To verify such a 

hypothesis, the compatibility analysis among the three bias estimates from the simplified 

For further evaluation of th

orous method with an
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le 5.21. 

Simplified vs. quasi-rigorous (without vertical control data) 

and quasi-rigorous methods while ignoring the estimated range bias (i.e., assuming a zero 

range bias) is conducted. 

Table 5.24. Compatibility (mean/RMSE) analysis between the adjusted point clouds by 

the estimated biases in Tab

Mean RMSE 
Strips 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

strip 1 0.254 

0.100 -0.259 0.104 0.261 

fied v i-rigo ith ve ontrol

0.114 -0.128 0.251 0.154 0.181 

strip 7 -0.172 0.174 

Simpli s. quas rous (w rtical c  data) 

Mean RMSE 
Strips 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

strip 1 -0.114 0.130 -0.312 0.154 0.314 

0.099 -0.319 0.103 0.320 

Quasi-rigorous (without vertical control) vs. quasi-rigorous (with vertical control) 

0.181 

strip 7 -0.167 0.168 

Mean RMSE 
Strips 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

s

0.001 0.060 0.002 0.060 

trip 1 0.000 -0.002 0.061 0.001 0.004 0.061 

Strip 7 -0.005 0.006 

Th RMS es for this compati est are .25, where we 

ca h co ility a e dif alibra thods  this result, one 

e mean/ E valu bility t  reported in Table 5

n see hig mpatib mong th ferent c tion me . From

can conclude that the estimated range bias might not be quite reliable for a system with a 

small scan angle in the absence of control data due to the weak variation of the impact of 

the range bias across the flight direction (i.e., the range bias would almost lead to 

constant elevation change across the flight direction for relatively small scan angle (20o), 

which is the case for the utilized real dataset) (refer to Equations 3.7d). 
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rigorous methods 

the estimated biases in Table 5.21 after ignoring the laser range bias. 

In this section, the experimental results using real dataset have confirmed the findings of 

the simulated dataset. Namely, the validity of the simplified and quasi-

in the estimation of biases in the system parameters and removing the impact of such 

biases from the point cloud coordinates. Moreover, the real dataset has shown that the 

estimation of range biases might not be reliable when using overlapping strips with small 

scan angles in the absence of control data. In the next section, photogrammetric data is 

available as well as LiDAR strips captured over the same area. Using these datasets, the 

absolute and relative accuracy will be evaluated before/after the calibration. 

Table 5.25. Compatibility (mean/RMSE) analysis between the adjusted point clouds by 

Simplified vs. quasi-rigorous (without vertical control data) 

Mean RMSE 
Strips 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

strip 1 0.049 

-0.101 0.040 0.107 0.050 

fied v i-rigo ith ve ontrol

0.115 -0.129 0.033 0.159 0.188 

strip 7 0.172 0.174 

Simpli s. quas rous (w rtical c  data) 

Mean RMSE 
Strips 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

strip 1 0 0.051 

-0.103 0.041 0.110 0.051 

Quasi-rigorous (without vertical control) vs. quasi-rigorous (wi cal co

.116 -0.136 0.034 0.162 0.195 

strip 7 0.177 0.180 

th verti ntrol) 

Mean RMSE 
Strips 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

s

-0.002 0.001 0.003 0.001  

trip 1 0.002 -0.007 0.001 0.004 0.008 0.002 

Strip 7 0.005 0.005 
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5.4 Data iment

This section will present the validity of the proposed methods using another real dataset 

consisting of LiDAR and photogrammetric data. The performance of the proposed 

As shown in Figure 5.8, the LiDAR data captured by Leica ALS50 consist of six strips 

which have two different flight altitudes (1,150m and 540m) and four flight directions: 

 Real  Exper  II 

calibration methods will be discussed with respect to the relative and absolute accuracy 

improvement after adjusting point cloud coordinates using estimated systematic biases. 

The impact on the relative accuracy will be assessed by quantifying the degree of 

compatibility between conjugate surface elements in overlapping strips before and after 

reconstructing the point cloud using the estimated system biases from both calibration 

methods. In a similar way of the previous test, the compatibility will be evaluated by 

computing the 3D transformation parameters between the overlapping strips before and 

after the calibration procedure. To evaluate the impact on the absolute accuracy of the 

point cloud, LiDAR linear and planar features will be used for the geo-referencing of an 

image block captured over the same area. The methodology used for photogrammetric 

geo-referencing utilizing control linear and planar features is detailed in Ghanma (2006); 

Shin et al. (2007). The absolute accuracy of the derived ground coordinates from the geo-

referenced image block is evaluated using a check point analysis. 

south to north (strip 2), north to south (strip 1), east to west (strips 3, 5, and 6), and west 

to east (strip 4). The point density, PRF, and scan angle of the strips are about 1.5 - 4.0 

points/m2, 85 – 135 kHz, and ±20°, respectively. The photogrammetric data consist of 32 

images captured by Rollei P-65 which has an array dimension of 8984×6732 pixels and a 
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focal length of about 60mm. The image block consists of 6 strips. Table 5.26 shows the 

flight configuration of the photogrammetric data. As shown in this table, 4 strips are 

flown in flight altitude 540m from east to west; the other two strips are flown in opposite 

directions (north to south and south to north) with flight attitude 1,150m. The ground 

resolutions are 5cm and 10cm for 1,150 and 540m flight attitudes, respectively. Field 

surveying data of 37 ground reference points is available. The points were captured by 

DGPS surveying over the photogrammetric data area. These points will be used as check 

points to evaluate photogrammetric bundle adjustment results. Figure 5.9 shows the 

distribution of the 37 check points over the area of photogrammetric data. 

 

Strip 

Number 

Flight 

altitudes 

Flight 

directions

1 1,150 m N-S 

2 1,150 m S-N 

E-3 540 m W 

4 540 

5 540 

m 

m 

W-E 

E-W 

6 540 m E-W 
 

Figure 5.8. Strip configuration of the real dataset captured by Leica ALS50. 
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Table 5.26. Flight configuration for the photogrammetric data. 

Strip # Flight altitude [m] Flight direction Number of images 

1 540 E-W 6 

2 540 E-W 6 

3 540 E-W 6 

4 1,150 N-S 4 

5 1,150 S-N 4 

6 540 E-W 6 

 

 

Figure 5.9. Distribution of 37 check points and photogrammetric data coverage. 

In order to estimate the biases in the system parameters, four overlapping strip pairs are 

utilized from these LiDAR strips. Table 5.27 and Figure 5.10 show the characteristics of 
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the overlapping strip pairs which consist of three overlapping strip pairs flown in 

opposite flight directions and one overlapping strip pair flown in same flight direction. 

Table 5.27. Overlapping strip pairs and their overlap ratio and flight directions. 

Overlapping strip 

pairs 

Overlap ratio 

(%) 

Lateral distances (m)
Flight directions 

Strips 1&2 80% 56 Opposite directions 

Strips 3&4 25% 261 Opposite directions 

Strips 4&5 75% 146 Opposite directions 

Strips 5&6 50% 227 Same direction 

 

 

 

Strips 1 (N-S) and 2 (S-N) 

H: 1,150m; D: 56m 

Strips 3 (E-W) and 4 (W-E) 

H: 540m; D: 261m 
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Strips 4 (W-E) and 5 (E-W) 

H: 540m; D: 146m 

Strips 5 (E-W) and 6 (E-W) 

H: 540m; D: 227m 

Figure 5.10. Illustration of the overlapping strip pairs involved in the experimental results 

from the second real dataset.  

5.4.1 Calibration Results 

In a similar way of the previous real data test, the biases in the system parameters are 

estimated by the simplified and quasi-rigorous methods. Table 5.28 reports the 

transformation parameters for four overlapping strip pairs (refer to Table 5.27 and Figure 

5.10) with respect to the user defined local coordinate system. The simplified method 

estimated the biases in the system parameters using the transformation parameters 

reported in Table 5.28 through Equations 3.18 and 3.20. On the other hand, the quasi-

rigorous method estimates the biases using Equation 3.27.  

Table 5.29 reports the biases in the system parameters estimated by the simplified and 

quasi-rigorous methods. In  

Table 5.29, one can see that the estimated bias in the boresight roll angle is significantly 

large compared to other biases. The impact of this bias can be confirmed by the estimated 
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transformation parameters in Table 5.28. In this table, one can see that the most 

significant discrepancies occurred across the flight directions for the overlapping strips 

flown in opposite directions. The estimated X  (shift across the flight direction) from 

overlapping strip pairs 1&2, 3&4, and 4&5 are significantly larger than the other 

transformation parameters. On the other hand, the estimated X  from strips 5&6 are 

relatively small because the bias δΔφ which is the most significant bias in  

T

T

Table 5.29 does not affect the discrepancies across the flight direction between the 

overlapping strips flown in same direction. In addition, one can see the estimated XT from 

overlapping strips 1&2 is larger than the estimated XT from overlapping strip pairs 3&4 

and 4&5, because the impact of the bias δΔφ depends on the flight altitude, and the flight 

altitude of overlapping strips 1 and 2 is much higher (1,150m) than the flight altitude 

(540m) of strips 3, 4, and 5. The analysis of discrepancy evaluation for overlapping strips 

will be further discussed in the next section.  

Table 5.28. Estimated transformation parameters with respect to the user defined local 

coordinate system using the discrepancy detection procedure. 

 XT (m) YT (m) ZT (m) φ (°) 

strips 1&2 1.10 -0.33 -0.01 0.0520 

strips 3&4 0.40 -0.19 0.00 -0.0475 

strips 4&5 0.57 -0.13 0.12 -0.0506 

strips 5&6 -0.08 0.06 -0.08 0.0059 
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Table 5.29. Estimated biases in the system parameters using the simplified (based on the 

values in Table 5.28) and quasi-rigorous methods. 

Methods δΔX(m) δΔY(m) δΔω(") δΔφ(") δΔκ(") δΔρ(m) δS 

Simplified 0.03 -0.01 -25.92 -91.08 -19.08 0.18 0.00005

Quasi-

rigorous 
-0.01 0.02 -39.60 -92.16 -6.12 0.21 -0.00003

5.4.2 Relative Accuracy Evaluation 

The impact of the proposed calibration procedures on the relative accuracy of the point 

cloud is qualitatively evaluated by the comparison of selected profiles. Figure 5.11 

illustrates the five profile locations and the overview of the area where the profiles are 

selected. The profile evaluation is conducted for strips 1, 2, 3, and 4. Figure 5.12 shows 

the compatibility of the profiles before/after the calibration for both the simplified and 

quasi-rigorous method. One can see that the profile compatibility is improved after the 

calibration. However, there is no noticeable difference between the simplified and quasi-

rigorous methods.  

The calibration results are quantitatively evaluated by computing the discrepancies 

between overlapping strips before and after the calibration procedure. The computed 

discrepancies are reported in Table 5.30. One should note that, in this table, XT , YT , and 

ZT  denote translation parameters along the ground east, north, and up, respectively; ω , 

φ , and κ denote rotation angles around ground east, north, and up, respectively. As 

observed in this table, the two methods provided compatible results. Also, a significant 
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improvement can be observed, especially in the across flight direction between strips 

flown in opposite directions (XT direction for strips 1&2, and YT direction for strips 3&4 

and strips 4&5 – refer to highlighted cells in Table 5.30). This is expected since a larger 

bias was estimated in the boresight roll angle as previously discussed, which mainly 

affects the across flight direction (i.e., constant shift across the flight direction and a 

rotation around the flight direction). Insignificant improvement can be observed for strips 

5&6 in Table 5.30. This is due to the fact that for strips flown in the same direction. The 

roll bias only causes near constant vertical shift between conjugate surfaces elements 

with a relatively small magnitude. In the next section, the improvement of the absolute 

accuracy will be analyzed using the integration of photogrammetric and LiDAR data. 

 
Figure 5.11. Location of the selected profiles for the qualitative compatibility check. 



133 

 

 

Figure 5.12. Profile comparison before and after the calibration procedure (the quasi-

rigorous method). 
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Table 5.30. Compatibility analysis with respect to the ground coordinate system using the 

evaluation of discrepancies between overlapping strips before and after the calibration 

(the simplified and quasi-rigorous methods). 

After Calibration 
Before Calibration 

Simplified Method Quasi-rigorous Method 

Strips 1&2 (opposite directions) 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 

1.10 -0.32 0.11 -0.01 -0.08 -0.05 0.11 0.07 -0.05 

ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) 

0.0001 -0.052 0.0012 0.0006 -0.0027 -0.0045 0.0012 -0.0016 -0.0051

Strips 3&4 (opposite directions) 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 

0.18 0.41 -0.01 0.03 -0.26 0.00 -0.01 -0.01 0.01 

ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) 

0.0484 -0.0005 0.0052 0.0053 0.0009 -0.0046 0.0052 0.0008 -0.0045

Strips 4&5 (opposite directions) 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 

-0.13 -0.58 0.07 0.04 -0.04 0.03 0.07 -0.04 0.03 

ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) 

-0.0506 -0.0004 0.0039 -0.0019 0.0000 -0.0031 0.0039 -0.0001 -0.0054

Strips 5&6 (same direction) 

XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) XT (m) YT (m) ZT(m) 

-0.06 -0.09 -0.05 -0.01 -0.19 0.02 -0.05 -0.03 0.03 

ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) ω (°) φ (°) κ (°) 

-0.0049 0.0014 0.0005 -0.0041 0.0003 0.0077 0.0005 0.0018 0.0076
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5.4.3 Absolute Accuracy Evaluation 

To check the impact of the calibration procedures on the absolute accuracy, LiDAR linear 

and planar features have been extracted and used for the geo-referencing of an image 

block. The quality of the derived ground coordinates from the geo-referenced image 

block was evaluated using a check point analysis. Figure 5.13a shows the distribution of 

triangular patches corresponding to the planar patched extracted from the LiDAR data; 

Figure 5.13b shows the distribution of the linear features which are derived by the 

intersection of adjacent planar patches extracted in LiDAR data. The photogrammetric 

data is geo-referenced by the linear and areal features which are extracted from LiDAR 

data to be used as control data before/after the calibration. The RMSE analysis for the 37 

check points after the photogrammetric data geo-referencing is listed in Table 5.31. One 

can see that the results using planar features before the calibration are much worse than 

the results using linear features. This might be due to the extraction process of the linear 

features, which are derived from the intersection of two planar patches such as gable 

roofs. This extraction process might cancel the effect of some of the biases. The relatively 

better performance of the linear features after the calibration procedure might be due to 

the fact that the utilized patches had a relatively mild slope, which might reduce the 

reliability of the geo-referencing results. Regardless of using linear or planar features 

significant improvement in the horizontal accuracy can be observed after the calibration 

for both methods. For example, when linear features are utilized as control data, 

RMSETOTAL, which is computed by total errors in X, Y, and Z coordinates, was improved 

from 0.34m to 0.22m in the simplified method, while the improved absolute accuracy in 

the quasi-rigorous method was 0.23m. As expected, less improvement is observed in the 
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vertical accuracy since detected biases in the system mounting parameters mainly affect 

the horizontal accuracy. From the check point RMSE analysis results, one can see the 

performance of the proposed methods (the simplified and quasi-rigorous methods) is 

verified with respect to the absolute accuracy. 

Table 5.31. RMSE analysis of the 37 check points for the photogrammetric data geo-

referenced by the control linear features and planar patches extracted from the LiDAR 

data as control data before/after the calibration. 

After the calibration 
Before the calibration

Simplified Quasi-rigorous 

 
Linear/Planar features

Linear/Planar 

features 

Linear/Planar 

features 

Mean ΔX (m) -0.03/-0.36 -0.01/-0.10 -0.01/-0.09 

Mean ΔY (m) -0.18/0.67 0.06/0.24 -0.05/0.17 

Mean ΔZ (m) 0.15/-0.05 -0.07/-0.15 0.11/-0.21 

σX (m) 0.11/0.40 0.06/0.11 0.05/0.10 

σY (m) 0.15/0.29 0.08/0.06 0.06/0.07 

σZ (m) 0.17/0.24 0.17/0.13 0.18/0.13 

RMSEX (m) 0.11/0.53 0.06/0.14 0.05/0.13 

RMSEY (m) 0.23/0.72 0.10/0.24 0.07/0.18 

RMSEZ (m) 0.23/0.25 0.18/0.20 0.21/0.25 

RMSETOTAL 

(m) 0.34/0.93 

0.22/0.35 0.23/0.33 
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(a) (b) 

Figure 5.13. Distribution of  (a) triangular patches and (b) linear features corresponding 

to features extracted from the LiDAR data used as control for photogrammetric geo-

referencing. 
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       CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 Conclusions 

The availability of 3D surface data is very important for various applications such as 

ortho-photo generation, forest mapping, and urban modeling. A LiDAR system has been 

proven as a cost-effective tool for the generation of 3D data over extended areas since it 

can quickly provide accurate surface models with a dense set of irregularly spaced points. 

A typical LiDAR system is an active sensor system consisting of GPS/INS and a laser 

scanner. Point cloud derived by a LiDAR system can be distorted by random and 

systematic errors in the system measurements and mis-alignment between the individual 

components. This research aimed at analyzing the random and systematic errors of a 

linear scanning system in terms of their impact on the derived point cloud. In addition, 

alternative calibration methods integrated with a surface matching procedure were 

proposed. The proposed methods can be used in the case where the point cloud 

coordinates of overlapping strips are available, but where raw measurements are not 

utilized. The following will review research findings for the LiDAR error analysis, 

alternative calibration methods, and experimental results from the simulated and real 

datasets. 

6.1.1 Random errors 

This research started with confirming the impact of random and systematic errors 

introduced in the previous research. The impact of the random errors on the point cloud 
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coordinates can be evaluated by two ways: LiDAR data simulation and the law of error 

propagation. The noise in the platform positions causes similar errors in the derived point 

cloud, and the magnitude of the impact dose not change regardless the variation of flight 

altitudes and encoder angles. On the other hand, the impact of the noise in the platform 

orientation and laser scanner encoder angles is more negative on the planimetric accuracy 

rather than the height accuracy. The angular noise causes minimum height errors in the 

nadir region, while maximum height errors are found at the swath edges. In addition, the 

impact of the angular noise increases when LiDAR strips are captured at a higher flight 

altitude. The noise in laser range measurement mainly affects the vertical accuracy of the 

derived coordinates within nominal scan angle ranges (e.g., ±25°). The impact of the 

range noise is independent of flight altitude change. 

6.1.2 Systematic errors 

The biases in the lever-arm offsets cause almost constant errors in both planimetric and 

vertical coordinates. The errors caused by a bias in the lever-arm offset along the vertical 

direction do not change regardless of the flight direction. The bias in the boresight pitch 

causes near constant errors along the flight direction, which is similar to the effect of a 

bias in the lever-arm offset along the flight direction. The higher flight altitude however 

increases the impact of this bias. The bias in boresight roll causes errors across the flight 

direction as well as the vertical direction, while there is no error along the flight direction. 

The errors across the flight direction are almost constant. On the other hand, the errors 

along the vertical direction are minimized around the nadir areas, and maximized at the 

swath edges. The bias in the boresight yaw mainly causes errors along the flight direction 



140 

 

whose magnitudes increase with the increase in the off-nadir encoder angle. The height 

errors caused by biases in the range measurement and scale factor of encoder angles have 

curved shapes along the scan-lines. The errors caused by the bias in the encoder angle 

scale factor are close to zero around the nadir area, while the errors caused by the bias in 

the range measurements are maximized in that area. 

6.1.3 Alternative calibration methods 

The achievement of the full potential accuracy of a LiDAR system requires the 

elimination of all systematic errors. In this research, two alternative methods were 

proposed to estimate the systematic biases and eliminate their impacts for a linear 

scanning system. These methods can overcome the limitations of existing calibration 

procedures in terms of requirements of system raw measurements. The first proposed 

method, denoted as the simplified method, was developed with a few assumptions such 

as relatively flat terrain, levelled scanning, parallel flight lines, and small boresight angles. 

Based on the assumptions, this research simplified the LiDAR geo-referencing equation 

and derived the 4-parameter (three shifts and rotation around the flight direction) 3D 

transformation function to represent the discrepancies between overlapping strips. The 

simplified method consists of two steps. First, the transformation parameters are 

estimated using the point cloud coordinates of overlapping strips. Second, the biases in 

the system parameters are calculated by the estimated transformation parameters. If 

overlapping strips are non-straight and captured with varying flight altitudes, one can 

split the strips into several sub-strips, which are suitable for the simplified method.  
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The second proposed method, denoted as the quasi-rigorous method, can deal with non-

parallel strips, heading variations, and varying terrain elevations using time-tagged point 

cloud and trajectory position data. The quasi-rigorous method was developed with the 

following assumptions: levelled scanning and small boresight angles. This method can 

utilize not only overlapping strips, but also control data if available. The use of control 

data contributes to decoupling the biases in the range measurements and encoder angle 

scale factor.  

The point cloud adjustment procedures for both the simplified and quasi-rigorous 

methods were introduced. The simplified method can adjust the bias-contaminated point 

coordinates using approximate estimates of the lateral coordinate x, encoder angle β, 

flight altitude, and estimated systematic biases. In this procedure, the lateral coordinates 

and encoder angles can be calculated by estimated scan-line centers and average flight 

altitude. One should note that the calculated coordinate corrections should be rotated 

using the flight direction before applying them to the biased coordinates since the 

coordinate corrections are calculated with the assumption that the flight direction is along 

the ground Y axis. In the quasi-rigorous method, the bias-contaminated point coordinates 

are adjusted by a function of the estimated biases, and calculated parameters from the 

trajectory fitting procedure such as the flight direction, lateral coordinate x, encoder angle 

β, and vertical distance between firing point and LiDAR point. 

6.1.4 Surface matching 

In this research, identifiable features, such as points, lines, and planar patches, were not 

used since it is not expected that those features are always available in point cloud data. 
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Instead of the use of distinct features, a surface matching procedure was utilized to 

establish correspondences between the overlapping strips. For the utilized surface 

matching procedure (ICPatch), two overlapping strips were represented by original point 

cloud and TIN format, respectively. In these overlapping strips, the ICPatch procedure 

finds the closest point-patch pairs for corresponding features. The volume constraint was 

introduced as a similarity measure for matched point-patch pairs. In this constraint, the 

similarity is measured by the volume of the tetrahedron which consists of the matched 

point and triangular patch. In the simplified method, the four transformation parameters 

are determined when the transformed corresponding point coordinates minimize the 

tetrahedron volume, while the quasi-rigorous method determines the biases in the system 

parameters when the corrected four vertices of the tetrahedron minimize the volume. In 

addition to the volume constraint, a point-based similarity measure was introduced. In 

this approach, pseudo-conjugate points are derived from the matched point-patch pair. 

The pseudo-conjugate points consist of the matched point and an arbitrarily chosen vertex 

from the matched triangular patch. Since the pseudo-conjugate points are not true 

corresponding points, the weight matrix for the chosen vertex point is modified to assign 

zero-weight along the patch. Using the modified weight matrix, the simplified method 

minimize the normal distance between the matched point and patch after transforming the 

matched point, while the quasi-rigorous method minimize the normal distance after 

correcting the pseudo-conjugate points using the estimated biases. The advantage of the 

modified weight matrix is that the mathematical model is relatively simple and easy to 

implement since there is no requirement to combine an additional equation representing 

alternative similarity measure such as a volume constraint.  
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6.1.5 Experimental results 

The performances of the simplified and quasi-rigorous calibration methods were verified 

using simulated and real datasets. The main purpose of utilizing simulated data was to 

investigate the performance of the bias estimation and point cloud adjustment procedures, 

in a controlled environment. In addition, parallel/non-parallel and levelled/un-levelled 

overlapping strips were generated over the rugged object surface to study the impact of 

deviations from the assumptions which were used in the derivation of the proposed 

methods. The experimental results of the simulation datasets proved that the derived 

mathematical models were not sensitive to the assumptions with reasonable ranges of 

non-parallelism, terrain height variation, and platform attitude. The mean/RMSE analysis 

between the true and adjusted strips using the true biases was conducted to evaluate the 

performance of the point cloud adjustment procedures. In this analysis, one could confirm 

that all mean values were close to zero, and RMSE values were significantly decreased 

after adjusting the point clouds. After justifying the point cloud adjustment procedures, 

the performance of the proposed methods was verified by another mean/RMSE analysis 

which was conducted between true and adjusted point clouds using the estimated biases. 

After the calibration, one could confirm that the systematic errors in both the planimetric 

and vertical coordinates were notably improved. The overall quality of the results from 

the quasi-rigorous method was relatively better the quality of the results from the 

simplified method (especially in the non-parallel strip cases), which shows the 

contribution of handling the deviation of flight altitudes and terrain elevations of the 

quasi-rigorous method.  
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The biases in the system parameters were estimated using the simplified and quasi-

rigorous methods for real LiDAR datasets captured by commercial/operational LiDAR 

systems. For the quasi-rigorous method, two cases were conducted. In the first case, the 

biases were estimated using only overlapping strips, while vertical control data were 

additionally utilized in the second case. The estimated biases by the quasi-rigorous 

method with/without the vertical control data were quite compatible, which was proven 

by the compatibility analysis between two point clouds adjusted by the quasi-rigorous 

method with/without control data. On the other hand, the bias in the range measurement 

estimated by the simplified method was relatively incompatible with the bias estimated 

by the quasi-rigorous method. It is attributed to the fact that the biases of range 

measurement and encoder angle scale factor cannot be easily decoupled. According to the 

systematic error analysis using the simulated data over the flat terrain, the bias in the 

range measurements causes almost constant discrepancies across the flight direction 

between overlapping strips within small encoder angles, regardless flight altitude and 

overlapping ratio. This fact can affect the quality of the range bias estimation. However, 

the variation of the terrain elevation and flight altitudes contributed to decoupling the 

biases in the range measurements and encoder angles for the quasi-rigorous method. In 

addition, the use of the control data can contribute to decoupling the biases in the case of 

a relatively flat object surface. 

The performance of the proposed methods was analyzed with respect to the improvement 

in the relative and absolute accuracy for real datasets. The relative accuracy was 

qualitatively and quantitatively evaluated. One could confirm the improvement of the 

relative accuracy by the visual comparison of the profiles and intensity images 
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before/after the calibration. The quantitative evaluation of the relative accuracy was 

conducted by the ICPatch procedure. The discrepancies between overlapping strips were 

decreased after eliminating the impact of the biases in the system parameters. The 

improvement of the absolute accuracy was evaluated by the photogrammetric block 

adjustment. In this procedure, the LiDAR strips were used as control data for the image 

geo-referencing before/after the calibration. After the geo-referencing, the mean and 

RMSE values of ground check points were evaluated for verifying the impact of the 

calibration. The improvement of the absolute accuracy was confirmed by the reduced 

mean and RMSE values after the calibration for both the simplified and quasi-rigorous 

methods. Especially, the planimetric accuracy was significantly improved, which can be 

explained by the fact that the biases in the system parameters mainly affect the 

planimetric accuracy. 

In summary, the contributions of this research can be summarized as follows: a) the 

random and systematic errors were analyzed in terms of their impact on the derived point 

cloud and discrepancies between overlapping strips, b) the discrepancies caused by the 

systematic biases between overlapping strips can be represented by a 4-parameter 

transformation function for parallel strips captured over relatively flat terrain, c) the 

simplified method can estimate the systematic biases using only point cloud coordinates 

of parallel overlapping strips, d) the quasi-rigorous method can handle non-parallel 

overlapping strips and variation in terrain elevations using trajectory position data, d) 

ICPatch procedure makes the calibration procedures possible without identifiable features, 

e) the modified weight matrix makes it possible to utilize point based similarity measure 

between matched point-patch pairs instead of the use of a coplanarity constraint such as a 
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volume constraint, f) the proposed methods can be used regardless the system 

configuration such as the definition of the coordinate systems related to IMU and laser 

scanner, g) the proposed method can efficiently adjust point cloud coordinates without 

the help of the system parameters and raw measurements, h) the simulation data tests 

verified that the proposed method were not sensitive to the assumptions used for 

simplifying the LiDAR geo-referencing equation, i) the experimental results from the real 

LiDAR datasets verified that the relative and absolute accuracy of LiDAR data could be 

improved by the proposed calibration methods using only overlapping strips, and j) the 

proposed calibration procedures can be used not only for estimating the systematic biases 

and adjusting point cloud data, but also LiDAR data quality control (QC). 

6.2 Recommendations for Future Work 

Future research will focus on modifying the proposed methods for a one-step procedure 

of the simplified method, and the use of additional data such as platform attitude data and 

system raw measurements for the quasi-rigorous method. The ICPatch procedure will be 

modified for improving its performance by automatically filtering patches that do not 

represent the physical surface and selecting suitable surface elements from TIN data. 

Further study on the optimal configuration of overlapping strips will be addressed to 

alleviate the correlation between the biases in range measurements and encoder angle 

scale factor. The remaining discrepancies between overlapping strips will be studied in 

terms of un-modelled systematic biases, and a standard for acceptable errors will be 

developed. The following discussions illustrate the recommendations for future work. 
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1. The simplified method is a two-step procedure. The transformation parameters 

estimated in the first step are valuable information because they can be used not only for 

estimating the systematic biases, but also for evaluating the compatibility of overlapping 

strip before adjusting point cloud. However, it should be mentioned that one can modify 

the simplified method for a one-step procedure. In order to implement the one-step 

procedure, the 4-parameter transformation used in the first step can be replaced with a 

function of systematic biases, flight altitude, and lateral distance between overlapping 

strips (refer to Equations 3.13, 3.14, and 3.16).  

2. The quasi-rigorous method can be modified to accept platform attitude data in 

order to handle LiDAR strips captured with significant roll and pitch angles. Even though, 

the result of the simulation data (case 3) proved that ±5° deviation of roll and pitch angles 

can be handled by the proposed method, one might need to calibrate a LiDAR system 

using overlapping strips flown with significant tilt. Without the platform attitude data, the 

roll and pitch angles can be approximately estimated after determining platform position 

and scan-line center. As a future work, it will be useful to compare the estimated 

orientation and platform orientation data. In addition, future work will consider another 

approach for integrating the rigorous LiDAR geo-referencing equation including the 

system raw measurements and the ICPatch procedure in order to estimate the systematic 

biases using overlapping strips without control data and distinct features. 

3. The surface matching procedure (ICPatch) used in the proposed method showed 

reliable performance for establishing correspondences between point cloud and TIN data. 

Future research will focus on improving the performance of the ICPatch procedure. For 



148 

 

example, TIN patches not describing the physical surface can be eliminated before the 

surface matching procedure, and appropriate surface areas can be automatically selected 

by analyzing eigenvalues of surface elements. It can alleviate the computational load of 

the ICPatch procedure and increase the reliability of the matched point-patch pairs. 

4.  Further study for the optimal strip configuration to decouple the biases in range 

measurement and encoder angle scale factor is recommended. As previously discussed, 

both biases are correlated, especially in the case of a relatively small scan angle. In the 

quasi-rigorous, the use of control data is recommended to decouple these biases. Without 

control data, optimal overlapping strip configuration can be considered to decouple the 

biases. For example, Figure 6.1 shows overlapping strips A and B which are flown in 

same directions and captured at different flight altitudes. The scan angles of the strips are 

the same, and the lateral distance between the strips is D. As shown in the figure, the left 

edges of the strips meet together. In other words, it can be considered that the encoder 

angles of the overlapping strips are similar around the left side of the strips. In this case, 

the discrepancies caused by the bias in the range measurement between the overlapping 

strips are close to zero around the highlighted area in Figure 6.1, while the impact of the 

bias in the encoder angle scale factor is maximized in that area because the impact of the 

angular bias depends on a flight altitude. This can be mathematically illustrated using 

Equation 6.1. In this equation, HA and HB denote two different flight altitudes; βA  and βB  

denote encoder angles of the strips A and B, and xA and xB are lateral coordinates of a 

ground object point relative to the laser unit frame. In Equation 6.1, the difference 

between βA  and βB is considered small enough to be ignored in the highlighted area 

shown in Figure 6.1, and the difference of the lateral coordinates (-xA+xB) depends on the 
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lateral distance between the overlapping strip. Therefore, the coordinate difference 

between corresponding points in the highlight area can be represented by a function of 

the biases in boresight angles, encoder angle scale factor, flight attitudes, and lateral 

distance between the strips (Equation 6.2). 

Impact of δΔρ                                                      Impact of δS 

Figure 6.1. Special overlapping case to reduce the impact of the bias in the range 

measurement.  
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(6.2) 

5. A standard for acceptable discrepancies between overlapping strips will be developed 

in future research. Especially after the calibration, the remaining discrepancies between 

overlapping strips can be classified into two parts: random and systematic errors. The 

remaining random errors can be analyzed based on a system specification, while the 



150 

 

remaining system errors can tell us an evidence of un-modelled systematic biases such as 

biases in position and orientation data. 
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