OPTIMISING TIME WARP USING THE SEMANTICS OF ABSTRACT DATA TYPES

Darrin West, Greg Lomow, and Brian Unger
Department of Computer Science
The University of Calgary
2500 University Drive, N\V
CALGARY, AB
T2N 1N4

ABSTRACT

The Time Warp mechanism for synchronis-
ing the execution of simulation components
offers significant potential for achieving con-
currency within distributed simulations. This
mechanism takes advantage of the independence
of most events in a simulation, enforcing only a
partial ordering of events which allows many
events to occur in an arbitrary order. There are
many situations, however, where the partial
order imposed by Time Warp is too restrictive,
i.e., events are unnecessarily forced to occur in a
specific order. This paper presents several exam-
ple situations where Time Warp semantics can
be relaxed, describes an approach based on
abstract data types that can substantially
improve performance, and outlines an implemen-
tation of this approach.

1. INTRODUCTION

The study of distributed simulation tech-
niques is currently of great interest because of
the recent availability of highly parallel com-
puter architectures. These parallel machines
consist of a large number of asynchronously
operating processors that communicate in a
variety of ways. The major problem associated
with utilising these parallel machines, or multi-
computers, is the lack of programming methods
for dealing with parallelism or concurrency.
Time Warp [1] implements Virtual Time using
an optimistic mechanism which relies on general-
ised process lookahead and rollback. Time Warp
offers a new approach to the synchronisation of
distributed simulations.

The definition of Virtual Time ensures that
messages are received by a process in timestamp
order. For some processes in some applications
this condition is overly strict and other equally
valid orderings of messages are possible. For
example, in many distributed systems a process
encapsulates a data structure or data type (e.g. a
queue or a resource) and these processes can be
thought of as implementing abstract data types.
For most abstract data types, non-conflicting
operations do not have to be applied in times-
tamp order to maintain consistency|[2]. The
cause of the problem is clear: the only informa-
tion that Virtual Time makes use of when

specifying the order in which messages are to be
received is the timestamps associated with the
messages. If Virtual Time “knew’ more about
the processes it was synchronising, it could vali-
date more orderings of messages because some
operations do not conflict.

One consequence of using Virtual Time’s
definition of valid ordering is that it requires
additional synchronisation overhead in some
cases where it is not necessary. With a Time
Warp implementation, this means that processes
will be rolled back needlessly in some situations.
If state restoration (undoing the effects of a
process’s erroneous computation) is expensive,
then eliminating unnecessary rollbacks is
worthwhile.

The goal of this research is to reduce the
number of rollbacks that are necessary for syn-
chronising processes in a Time Warp system.
This will be accomplished by augmenting the
implementation of Time Warp with process
specific information that can be used to recog-
nise situations where rollback is not necessary.
By reducing the number of rollbacks, it is hoped,
that the execution time of a Time Warp system
will be reduced.

This paper begins by describing both Vir-
tual Time and Time Warp. An example is then
presented which illustrates how a Time Warp
rollback is triggered. Next a scheme for control-
ling rollback, and avoiding unnecessary overhead
is presented After illustrating the application of
this scheme with two examples, an implementa-
tion is outlined.

2. CONSISTENT SHARING OF DATA

The concept of Virtual Time resolves the
difliculties associated with sharing the variable
“simulation time”, or just “time”, consistently.
Virtual Time involves concurrent processes exe-
cuting forward through time, as time stamped
messages are sent, received, and processed. It
requires that incoming messages be processed in
timestamp order,

2.1. Time Warp

Jefferson proposed the Time Warp mechan-
ism to implement Virtual Time. In Time Warp

each process has a local clock which is synchron-
ised with messages received from other processes.
It is possible for a process to receive a message
whose time stamp is less than the receiving
process’s clock. Such a message is called a
“straggler”. For this to happen, the receiving
process must have chosen to optimistically exe-
cute forward by processing messages it already
had, in hopes that a straggler message would not
arrive. In this situation, the process must be
“rolled back”. The effects of any erroneously
sent messages must be undone, and the new mes-
sage received in the correct sequence. Rollback
is accomplished by overwriting the current state
with a checkpointed state, saved at a time which
precedes the straggler’s time stamp. Rollback is
invisible to the process, which sees Virtual Time
monotonically increasing.

Other less optimistic types of synchronisa-
tion need to wait whenever a message “might
be” received from another process. Time Warp
involves gambling that all messages stamped
with times earlier than its clock value, have
already been received, or are waiting in its input
queue (the list of messages that have arrived) to
be processed. This gamble is often successful. If
a straggler s received, the resulting rollback
incurs significant overhead.

One difficulty with rollback is that the pro-
cess may have sent messages to other processes
while erroneously executing forward. As the pro-
cess rolls back it must undo the effects of these
sends. This is accomplished in Time Warp by
sending anti-messages, to remove the erroneously
sent messages from the other process’s input
queue. If the destination process has already
processed the erroneous message, receipt of an
anti-message will cause it to rollback also.

Time Warp provides a method by which
two processes can communicate and be assured
that they are at the same point in time. This
gives the illusion that all processes are in one
context, with only one copy of the Time vari-
able, just like in a sequential simulation.

2.2, A Resource

Consider a server process in a Time Warp
system which is maintaining control of a
resource. Clients request mutually exclusive
access to one unit of this resource by sending a
message to the server. The same client sends a
different type of message to the server when the
resource is no longer required. Resource units
are anonymous.

Let a message be a tuple, consisting of a
time and a message type. In reality, it may also
include a sender, a receiver, and more compli-
cated contents. We have two types of requests
coming to this server:

1) (Time,ACQ) - acquire a unit of the
resource.

release a unit of the

2) (TimeREL) -

resource.

The state of the server process at a particular
Virtual Time is simply the number of units
available. When an Acquire message arrives, the
server receives the message, decrements the state
variable, and responds to the client. If the state
is 0, the server will block the client and queue it
until a unit of the resource becomes available.
When a release message arrives the server
receives the message, increments the state vari-
able, and responds to the client. We have now
defined a complete abstract data type, encapsu-
lated in this server process. There is no problem
understanding the logical flow of events at this
server, since it is in a Virtual Time system where
messages are defined to arrive only in timestamp
order. However, during execution of a Time
Warp simulation, other orders may occur. This
will not affect the server level logic, since Time
Warp will eventually straighten out the order.
The final outcome, after discarding any tem-
porary effects of erroneous forward computation,
will be the same as if we were running a sequen-
tial simulation.

An example sequence of events for this
resource is shown in Figure 1. If we have 5
items at time 10, and an Acquire message is
received at time 15, the state variable is decre-
mented to 4 and the local clock becomes 15. As
long as requests continue to arrive in the correct
sequence everything is fine. However if another
request arrives at time 12, Time Warp will roll
the state back to time 10 (with 5 items), then
redo the initial receive. Since the message at
time 12 has now arrived, it will be the one
received by the server. If the message was an
Acquire, the state variable goes to 4 and time
goes to 12. When the next message is received
the variable becomes 3 and time goes to 15.

3. CONTROLLING ROLLBACK

The Time Warp mechanism is often overly
cautious, and will rollback in situations that do
not call for it. The previous example points out
this problem. It caused the server to roll back

State Virtual Input Queue
(Units) Time ("i denotes a read message)
5 10
5 10 15,ACQ
4 15 15, ACO
4 15 12,ACQ), (15,ACQ)* }
rollback!
5 10 12,ACQ), (15,ACQ) }
4 12 12.ACQ)¥, }IS,AC ;}
3 15 12, ACQ)*, (15,ACQ)* }

Figure 1. Resource Server Execution Trace.

and deal with the straggler message, and eventu-
ally arrived at state 3. Clearly, the rollback
from time 15 to 10 was not necessary.

If the server had been allowed to process
the straggler without rolling back, the state
would still have been 3. We realise that noticing
small inefficiencies such as this is difficult or
impossible in general. However, if we have an
adequate description of the abstract data type
being modelled by the process, it may be possi-
ble to notice many such optimisations, and avoid
needless rollback.

3.1. A Rollback Function

A Rollback Function can be designed
which incorporates properties of the abstract
data type, and tests its state to determine
whether a rollback is required. The rollback deci-
sion can often depend upon the history of the
process, so our Rollback Function may need to
examine the list of checkpointed states of the
abstract data type. It may be necessary to
examine the lists of pending, sent, or already
processed messages. In general, access to the
entire state of the abstract date type (including
the state that only the Time Warp kernel knows
about) 1s required to best determine a course of
action. This suggests that the Rollback Function
must be installed into the Time Warp kernel. A
different function will be required for each
abstract data type. Therefore the Time Warp
kernel can be implemented with a hook in place,
where the abstract data type designer can leave
this description of the actions needed to more
precisely determine when rollback is necessary.

The Rollback Function, when passed a
straggler message must determine how far the
process must be rolled back in time. It “knows”
what effects the message will have, since it has
access to the properties of the abstract data
type. No rollback is required if those effects do
not change any part of the state which is subse-
quentially changed through the actions of a
second message. The state resulting from the
effects of the new message will be the same as if
all messages were processed in order. However,
the process must roll back if it is determined
that the straggler message will cause changes
which affect a part of the state already modified
by a second message received at a later Virtual
Time. The effects of the later message must be
undone, this message must be processed, then
the later changes may be made.

Certain operations triggered by a message
may be transitive. This means two such opera-
tion may be performed in either order (eg. incre-
ment and decrement). This is why the resource
example above is able to interchange messages
and have the state variable remain correct.

3.2. Pseudo-Rollback

We are left with another difficulty. If the
Rollback Function determines that rollback is

not required, then at what time is the straggler

processed? The message cannot be processed at
the current Virtual Time, as that would imply
receiving the message at the wrong time. We
must set the Virtual Time of the process to the
time stamp of the straggler message, even
though we need not roll back the rest of the
state. After we have finished the operations
associated with the straggler message, the clock
may be returned to the correct value. This
ensures that any resulting output messages are
generated at the correct time.

We have defined a Time Warp system
which allows us to study alternatives in a range
less restrictive than formal Time Warp. By
varying the Rollback Function we can be more
or less rigorous with the message orderings, and
observe the eflects on performance. It is easy to
implement the Rollback Function in a way
which specifies formal Time Warp semantics, or
with no restrictions, and have messages pro-
cessed in the order they arrive. The latter
approach may enable the re-use of the simula-
tion software in the target environment [3].

We are confident that in many situations
over half the rollbacks required by Time Warp
can be avoided, e.g. if adjacent pairs of messages
are interchangeable without effect on the state of
the abstract data type. In the worst case it will
act exactly like Time Warp, and in the best case
with a contrived abstract data type, there may
not be any rollbacks.

4. EXAMPLE ABSTRACT TYPES

Let us further illustrate the reasoning
behind the proposed optimisation, and the asso-
ciated Rollback Function, with an abstract data
type common in all discrete event simulations -
the FIFO queue. After that we will discuss a
simple readers/writers problem.

4.1. Abstract Data Type for a Queue

First, the data structure and the operations
which can be performed on that structure are
defined. A server process will manage the state
of the queue and its contents, it will receive
requests, and depending on these requests, it will
change the state of the data structure. The legal
messages will be:

1) (Time,PUT,Object) - enter an object onto
the queue, after which the server replies
“(Time)” (i.e. the null message).

2) (Time,GET) - wait until the queue is non-
empty, then retrieve the first object, after
which the server replies “(Time,Object)”.

It is obvious that a PUT and a GET will
never conilict, regardless of their relative time

order, as long as there is something in the queue.
If a GET was performed at time 10, and was
successful (ie. it waited until the queue was non-
empty, then retrieved the first object), then a
PUT at an earlier time (say time 5) should not
cause the abstract data type to rollback. We
can foresee that no conflict would arise if we did
not rollback, but simply put the earlier object
into the queue.

However, two GETs must be properly
ordered, to ensure fair access to the queue. If
they occur at the same Virtual Time either order
is reasonable. Two PUTs must be properly
ordered as well, to ensure correct output order
later, since objects are not anonymous.

Another concern arises when the queue
becomes empty. If we have an empty queue at
time 5, then have a PUT at time 10, then a
GET at time 6 at a later real time, we must not
simply reply at time 6 with the object, as it is
not really there at that Virtual Time. We must
increase Virtual Time to 10, and then reply (ie.
wait until the object is there).

The function in Figure 2 provides the logic
which decides if rollback is needed and how far
to roll back when it is necessary. It is called as
each new message arrives. The Data Type is
rolled back to the correct state, so that when it
receives this new message, it 1s in the correct
state to deal with the operation.

4.2. Readers/Writers

The Readers/Writers problem provides a
second common example that can benefit from

Rollback_Func (new_mess)

{ if (Clock <= new_mess.time) {
/* Advance Time */
Clock = new_mess.time;
return(Clock);

f9M, Me Input_Queue,

M.type == new_mess.type,
M.time > new_mess.time,
M.time <= Clock {

/* Do we have a conflicting message

of the same type, at a later time? */
Clock = (earliest M).time;
rollback(Clock);

/* Rollback to before conflicting message */

Clock = new_mess.time;
return (Clock);

} else {
/* Only Pseudo-rollback is necessary */
Clock = new_mess.time;
return(Clock);

Figure 2. Queue Rollback Function.

our modified Time Warp system. The data
structure in this case will be a file, which is
modified completely when written to, and read
completely when read from. There is no priority
between read and write operations on the file.
The file is managed by a server process, to which
all requests come in the form of messages. Thus
we have the two operations:

1) (Time,READ) - which is responded to with
“(Time,File)”, and

2) (Time,WRITEFile) - which is responded to
with “(Time)” (i.e. the null message).

The optimisation which we would like our sys-
tem to allow us, is that when a READ comes out
of order, it will not cause rollback unless the file
has been modified by a WRITE between the Vir-
tual Time when the READ should have arrived
and the current Virtual Time of the file server.
WRITEs on the other hand, must be exactly
ordered. Therefore we have the Rollback Func-
tion shown in Figure 3.

This allows a reader to READ if no
WRITE occurred since the time the READ
should have arrived, and now, no matter how
many READs have occurred since then, nor at
what time they occurred.

Rollback_Func(new_mess)
if (new_mess.type == WRITE){
if (Clock > new_mess.time) {
' /* Rollback required */
Clock = new_mess.time;
rollback(Clock);
return (Clock);
} else {/* Advance Time */
Clock = new_mess.time;
return(Clock);

else
if EI M, M € Input_Queue,

M.type == WRITE,
M.time > new_mess.time,
M.time <= Clock{

/* roll back to just before

first offending write */

Clock = (earliest M).time;

rollback(Clock);

Clock = new_mess.time;

return (Clock);

else {
/* Only Pseudo-rollback required */
Clock = new_mess.time;
return (Clock);

Figure 3. File Server Rollback Function.

5. IMPLEMENTATION

During the past two years we have been
involved in developing a Time Warp System [4]
built on Jade {5] and have acquired some experi-
ence in applying Virtual Time concepts to distri-
buted simulation. Experience obtained while
implementing this version of Time Warp is being
applied to the implementation described below.

We are developing our system in C** as it
provides on object oriented language, easily
expandable to a wusable coroutining system,
which in turn is necessary for most discrete
event simulation systems. This approach allows
the kernel to easily access the required state
information for each process, and gives the user
reasonable liberty of local and global variable
declaration. We are also attempting a memory
management scheme which will associate
dynamic memory allocations with the correct
originating coroutine, in order to be able to
access the coroutine’s full state information.

A checkpoint of a process’s state is saved
just before a time transition between two Virtual
Times. In this way, a process can be rolled back
to deal with another message at the same Time
as the message before the transition, or it can be
rolled back to deal with a message between the
two times of the transition. This obviates some
state saves which would occur between messages
at the same time (no time transition).

C** also gives us quick and reliable inter-
faces to known and tested interprocess communi-
cation mechanisms available from the C
language, namely JIPC [5] and TCP/IP, as well
as any of numerous others, available to the
intended user.

5.1. Structure

The system has a user and an operating
system level. The user level consists of a collec-
tion of user defined processes which are able to
make Time Warp system calls. Also running at
the user level are predefined server processes (for
such things as name searching). The operating
system level is subdivided into the Time Warp
kernel and the Inter-Process Communication
level. The Time Warp kernel consists of a set of
user accessible routines for message passing and
process creation, as well as a process scheduler.
The IPC level gives the kernel the ability to
communicate with other Time Warp kernels, so
that we can have a distributed collection of ker-
nels.

As an implementation detail let us state
that the operating system and user processes will
initially be contained in a single Unix process.
Interprocess communication will be with other
such processes on the same or another Unix host.
Eventually, they will be running alone on
separate nodes of a parallel architecture. Having

a layered approach gives us the ability to imple-
ment the kernel using various IPC’s on diflferent
machines.

5.2. Features

We desire process creation and destruction
in the tradition of many sequential simulation
languages, although it raises many otherwise
avoldable problems, such as name servers and
exit servers which help avoid rolling back these
difficult actions.

Eventually we will be running our
processes on small microprocessors, (nodes in a
multiprocessor), so a bounded process or kernel
size is required. This raises issues, such as what
happens when there is no room to send a mes-
sage to another kernel. We will garbage collect
unneeded states and input/output queue mes-
sages that are no longer needed for rollback.

We will implement anti-messages such that
they are not sent until it is determined that the
replacement messages are different than the old
messages. If the re-calculated messages are the
same, why send a negative, then the same posi-
tive message? This is known as lazy cancella-
tion, and relies on the fact that occasionally the
target process is sent the correct message even
before the corrective rollback and re-execution.

6. SUMMARY AND FURTHER WORK

We have discussed three separate examples
where ‘strict Time Warp order causes unneces-
sary rollback. We have proposed a mechanism
which reduces those rollbacks. This mechanism
uses certain properties of the abstract data type
being modelled by the process.

We would like to investigate methods of
automatically determining these properties and
providing the necessary descriptions of the
offending cases. This would free the abstract
data type designers from having to consider
Time Warp.

We would like to apply this technique to a
larger scale application and empirically compare
its performance to an execution where the roll-
back semantics parallel those of Time Warp.
Evaluation experiments with a highly parallel
architecture are also needed to demonstrate the
system’s efliciency.

We wish to further refine methods of calcu-
lating the correct time for pseudo-rollback situa-
tions. A possible alternative to calculating this
Time, and temporarily setting the Clock to that
value, is to have a simplistic rollback scheme,
and a method to jump forward in Virtual Time,
back to the point of at which pseudo-rollback
became necessary.

REFERENCES

[1] Jeflerson, D.R. (1985) ‘“Virtual Time”, ACM
Transactions on Programming Languages
and Systems, 7(3), pp.404-425, July.

[2] Herlihy, M. (1986) “Optimistic Concurrency
Control for Abstract Data Types”, Fifth
Annual ACM Symposium on Principles of
Distributed Computing, pp.206-217, Cal-
gary, Alberta, August.

[3] Lomow, G.A. and Unger, B.W. (1985) “Dis-
tributed Software Prototyping and Simu-
lation in Jade”, Canadian Journal of
Operational Research and Information
Processing, 23(1), pp.69-89, February.

[4] Xiao, Z., et.al. (1986) “A Virtual Time Sys-
tem Built on Jade”, Research Report
86/242/17, Department of Computer Sci-
ence, University of Calgary, September.

[5] Software Research and Development Group
(1985) “Jade User’s Manual”, Research
Report, Department of Computer Science,
University of Calgary, October.

