
THE UNIVERSITY OF CALGARY

A Prototype of Combined Induction

by

Sui-ky Ringo Ling

A THESIS

SUBMITTED TO TUE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF TUE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE '

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

APRIL, 1987

© Sul-ky Ringo Ling 1987

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a accorde
a la Bibliothèque nationale
du Canada de microfilmer
cette thse et de prêter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se rserve les
autres droits de publication;
ni la thse ni de longs
extraits de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation crite.

ISBN 0-315-38024-1

The University Of Calgary

Faculty Of Graduate Studies

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, " A Prototype of Combined

Induction " submitted by Sui-ky Ringo Ling in partial fulfillment of the

requirements for the degree of Master of Science.

Supervisor,
Dr. John Kendall
Department of Computer Science

April20, 1987

Professor David R. Hill
Department of Computer Science

Dr. J. (. Ells
Depa6Inent of Psychology

Abstract

One of the major bottlenecks of building knowledge-based systems is the

process of acquiring domain specific knowledge. Machine learning has been

suggested as one of the solutions to the problem. This thesis describes an

experimental prototype which uses a combination of analytical and empirical

machine learning techniques, to infer domain specific rules from solutions

generated by basic rules.

The prototype is targeted to the domains where there are basic rules, but the

basic rules are insufficient to infer specific rules of any degree of generality.

Analytical induction is used first to exploit any available background

knowledge to narrow down the search space. before empirical induction.

During empirical induction, the prototype minimizes the user's burden of

generating instances by exploiting past rejected solutions as a source of

negative instances, and using the database of the current domain to generate

new instances.

Sample testing with the prototype indicated the advantage of using analytical

induction to narrow down the search space before empirical induction.

Further improvements are required for this prototype on its empirical

induction. In addition, future research is needed in the organization of

specific rules, and in establishing criteria to select appropriate techniques.

Acknowledgements

First of all, I would like to thank my supervisor, Dr. John Kendall for his

support and patience. He gave me freedom to pursue my own interest, and

encouragement at time when I was in doubt.

Thanks to Dr. Ian Witten and Dr. Bruce MacDonald for their critique which

made my work more concrete and precise.

Thanks to Allan Dewar for helping me with Prolog and to Brian Schack for

useful discussions on my work. Thanks, also to Mike Bonham for sharing his

thesis typesetting environment and his experience.

Thanks to the graduate students and faculty in the Department of Computer

Science at the University of Calgary. They have created such a good

environment that I almost want to stay there forever.

Finally, I would like to thank my wife, Janice, for' her love and support, and

my daughter, Jessica, for pushing me to finish my thesis.

- iv -

Table of Contents

Abstract

Acknowledgements iv

Table of Contents v

List of Figures viii

Chapter 1 Introduction 1

1.1 Expert Systems i

1.2 Knowledge Acquisition Problem 3

1.3 The scope of the thesis 5

1.4 Summary of results 7

1.5 Outline of the Thesis 7

Chapter 2 Literature Review 9

2.1 An Overview 9

2.1.1 Induction: learning from instances 11

2.2 Empirical Learning 15

2.2.1 The Arch Program 15

2.2.2 The Version Space 17

- V

2.3 Analytical learning 21

2.3.1 LEAP 22

2.4 Combining two types of learning 27

2.5 Summary 30

Chapter 3 Design of the prototype 31

3.1 Basic and specific rules 31

3.2 Prolog as thefl implementation language 36

3.3 User interaction 39

3.4 Analytical Induction 42

3.4.1 Case I 43

3.4.2 Case II 45

3.5 Empirical Induction 49

3.5.1 Extracting Instances 49

3.5.2 Generating instances from current* database 53

3.6 Summary 57

Chapter 4 Implementation of the prototype 58

4.1 Analytical Induction 58

- vi -

4.2 Extracting negative instances 65

4.3 Generating Instances 68

4.4 Current status of the prototype 70

4.5 Summary 71

Chapter 5 Evaluation 73

5.1 Implementation bottleneck .73

5.2 Evaluation of each component 75

5.3 Performance of the prototype 77

5.3.1 Where it can be useful. 78

5.3.2 Restrictions behind the Prototype 79

5.4 Issues for future research 83

5.4.1 Selection and organization of specific rules 83

5.4.2 Determining which techniques to use 85

5.5 Summary 86

Chapter 6 Conclusion 87

References oo

- vii -

List of Figures

1.1. A rule-based expert system 2

2.1. The process of induction 14

2.2. A sequence of instances for learning about arches 16

2.3. Rejresenting a Version Spate 18

2.4. A Version Space example 19

2.5. A circuit and it' generalized design for LEAP 23

2.6. Verifying and Generalizing a circuit for LEAP 24

2.7. The constraint back-propagation method 26

3.1. A family tree and it's Proloj clauses 33

3.2. The Version Space of a family tree example 49

4.1. A solution tree and its generalized form 61

4.2. A' portion of the meta-interpreter (Version I) 62

4.3. The problem of different instantiations 63

4.4. The problem of different backtracking 64

4.5. A portion of the meta-interpreter (Version II) 64

4.6. Specialization using negative instance 67

4.7. An example of a list of variable/constant pairs 69

4.8. Inducing a rule for context free grammar 71

5.1. Parsing the sentence "the man eats the apple" 81

CHAPTER 1

Introduction'

There is a growing popularity of the expert system approach to solve

problems in many areas such as medical diagnosis, well-log analysis and

circuit design One of the major problems in building an expert system is to

acquire the many heuristics for the system: that is, the problem of knowledge

acquisition. Machine learning has been suggested as one of the, possible

solutions to this problem. This thesis examines the idea of combining the

analytical and empirical learning techniques for inferring specific rules for a

particular type of knowledge domain.

1.1. Expert Systems

An expert system is characterized as a program developed to solve a

problem for which an expert is normally required. The problem domain

requires a certain amount of specialized knowledge. The expert system is

usually applied to a domain where there is no, well-defined algorithmic

solution. Sometimes, even if an algorithmic solution exists, the solution often

requires expensive computational power. .

One of the most popular types of expert system is the rule-based system

which consists of three major components, namely:

(1) A knowlede base which contains the explicit domain knowledge,

encoded in the form of "IF condition THEN action" rules,

1

2

(2) A working memory which contains the current descriptions of the

problem,

(3) An interpreter, which selects the appropriate rules from the knowledge

base and modifies the descriptions in the working memory.

A rule-based system works by first matching the current descriptions of a

problem in the working memory with the conditions of the rules in the

knowledge base. The interpreter then selects one 0r more rules whose

conditions match the descriptions and executes the actions of the rules to

modify the descriptions. This cycle is repeated for the modified descriptions

until no more rules are applicable or until the modified descriptions represent

interpreter

se1ec>.,

knowledg
ba se
(rules)

working
memory
(states)

Figure 1.1: A rule-based expert system.

3

a solution.

One of the key characteristics of a rule-based expert system is the

separation of domain specific rules in the knowledge base from the application

of these rules by the interpreter. The rules represent all the domain

knowledge necessary for solving the problem.' It is these rules which give the

computational power to an expert system. Constructing a rule-based expert

system essentially means encodIng these rules in the knowledge base.

However, the process of encoding rules is time-consuming, tedious and

expensive.

1.2. Knowledge Acquisition Problem

To encode expertise into a ru1-based expert srstem, a knowledge

engineer must first familiarize himself with the application area and gain a

minimum amount of background knowledge. He then interviews an expert

and tries to capture his expertise for problem solving in his field. The

knowledge engineer then organizes the expertse into several blocks and

represents them in the form of "if-then" rules in the knowledge base.

The.major difficulty in this process is that part of the expertise is not in

the form of textbook facts, but heuristics: the informal judgement rules that

the expert acquires through his experience. These heuristics are seldom

thought about concretely. As they are generally "rules of thumb", they also

seldom appear in textbooks or journal' articles. Worst of all is that the expert

himself often has difficulties in verbalizing the heuristics. To capture them,

an expert presents examples of how he uses his heuristics in solving specific

problems. Then a knowledge engineer observes these examples, and tries to

induce the heuristic rules from the examples. This thesis examines this part

4

of the knowledge acquisition process: inferring spedific rules from examples.

The following is a case showing the importance of specific rules, and the

difficulties of acquiring them. The case does not involve an expert system,

but a proof assistance system. It shows that the knowledge acquisition

problem does not arise only in the area of building expert systems, but also in

other areas such as verification and proof systems.

One of the major parts of VLSI design is to verify the design of a chip.

A HOL (Higher Order Logic) proof system has been developed for this purpose

[Gordon 1985] and been used in the verification of an example chip [Joyce

and Birtwistle 1985]. The HOL system is a manual-guide proof assistance

system. A verification engineer enters the specification of a chip and its

proposed implementation. He then tries to prove that the implementation of

the circuit is equivalent to its intended specification. There are sufficient

basic axioms in the HOL system to allow the construction of such proofs. In

proving a circuit, the engineer has to select the right axioms at each step of

his proof. The difficulty of proving a circuit correct is in the selection of the

right axioms in the right sequence and this requires the experience of the

engineer and his understanding of the circuit. In addition, the proof may be

repeated for different circuits even though these circuits may be quite similar.

For example, proving the design of a 2-bit adder by joining two 1-bit adders

together is similar to proving a 16-bit adder from joining sixteen 1-bit adders.

The HOL system is capable of proving any circuit given sufficient basic

axioms. However, its perforn-lance will be greatly enhanced if there are some

derived axioms which handle some of the common proofs. For example, if the

sequence of proving a 2-bit adder circuit can be captured and generalized,

5

then the derived axiom can be directly applied to prove another n-bit adder

without going through the same proof. In other words, a derived axiom is a

compiled proof sequence for a particular type of circuit. Its usefulness is by

its direct application to those particular type of circuits, bypassing the basic

proof sequence. Right now, for these derived axioms to be in the HOL

system, they have to be hand-coded. The verification engineer has to recall

its sequence, generalize the specification and its implementation, and put it in

the system. It is an added problem' that these verification engineers are scarce

and they attain their expertise by proving a lot of circuits themselves.

In summary, the knowledge acquisition problem has been recognized as

one of the major problems in the application of expert systems [Feigenbaum

1982]. The problem becomes even more serious in some areas where

knowledge is scattered, hard to get and under constant evolution, such as

VLSI circuit design [Stefik et al. 1981].

1.3. 1 The scope of the thesis

Many approaches have been used to ease the knowledge acquisition

problem. These include building explanation facilities, structuring the

interviewing process of an expert, and so on. One solution is to build a

computer program which constructs rules from examples given by an expert.

This type of program falls under the area of machine learning, currently an

active part of artificial intelligence research.

• This thesis applies some' machine learning techniques to one part of the

knowledge acquisition problem: inferring rules from examples. The thesis

examines the idea of combining analytical and empirical learning techniques

to infer specific rules from examples or instances which are generated by the

6

basic rules of a domain.

The analytical learning techniques are knowledge-intensive. They make

use of background knowledge to maximize generalization from a single

example. The empirIcal learning techniques are data-intensive. They make

use of syntactic comparison between examples to find the generalization.

While these techniques are useful for different types of domains, there is a

need to combine these techniques [Lebowitz 1986].

One possible combination is to apply analytical techniques before any

empirical techniques. Although a domain may not have sufficient constraints

to allow analytical techniques to infer a rule from a single example, these

techniques can make use of the available background constraints and

knowledge to constrain the generalization space. By the time empirical

techniques are employed to complete the remaining generalization, the space

has usually been narrowed down so that fewer examples. and less

computational effort may be required to reach the target generalization or

rule.

There are many parts of the knowledge acquisition problem, and

inferring rules from examples is only one part. This thesis does not address

the other parts of the problem such as organization of rules and the selection

of examples to be presented. This does not mean that the other parts are

easy or insignificant; these parts are as important as that of inferring rules

from examples. In fact, the results of this thesis indicate that the

organization of rules may. affect how a future rule may be inferred. However,

the problem of inferring rules from examples is itself a difficult subject already

and inclusion of other parts of the problem would make the study intractable.

7

1.4. Summary of results

Based on the ideas presented in this thesis, a prototype has been built on

top of a C-Prolog interpreter. The prototype infers specific rules in the form

of Prolog clauses. The domain has some basic rules. Some instances are

generated from these basic rules and they are captured by the prototype. The

prototype then infers specific rules from these instances.

In this thesis, the process of inferring a specific rule from an instance in

Prolog consists of two stages:

(1) Deciding upon the constants and possible shared variables in the specific

rule.

(2) Deciding upon the remaining constants and variables in the rule.

The prototype applies analytical techniques in the first stage to decide on

possible constants and shared variables by tracing how an instance is derived

from the basic rules. In the second stage, the prototype uses the empirical

techniques to compare past and generated instances to determine the

remaining constants and variables.

Sample tests with the prototype indicate the advantage of constraining

the generalization using the analytical techniques followed by the empirical

ones. However, further improvements are needed to make the prototype a

more practical tool for future use.

1.5. Outline of the Thesis

Chapters 2 to 6 covers the remaining part of this thesis.

Chapter 2 introduces two types of learning techniques in the area of

induction: learning from examples or instances. The first type is empirical

8

learning which is illustrated by the Arch program [Winston 1975] and the

Version Space [Mitchell 1982]. The second type is analytical learning

illustrated by LEAP [Mitchell, Mahadevän and Steinberg 1985]. Finally, an

example is presented to show one possible, combination of these two

techniques [Lebowitz 1986].

Chapter 3 introduces the main idea of the thesis and the design of the

prototype. The prototype has two stages in generalizing a rule from an

instance. The first stage is to decide on any possible constants and shared

variables in a rule by tracing how an instance is constructed from the basic

rules of a domain. The second stage has two parts. The first part exploits

possible past instances to specialize the rule. The second part generates new

instances and uses user feedback on these instances to refine the rule.

Chapter 4 describes the implementation of the prototype and reports it

current status.

Chapter 5 discusses the evaluation of the prototype, both the design and

implementation. It describes the limitations of the current implementation,.

and two problems found in this thesis: the effect of the organization of specific

rules on the learning of future rules, and deciding when to apply the empirical

learning techniques.

Chapter 6 is the conclusion which summarizes the work of this thesis and

suggests further research.

CHAPTER 2

Literatñre Review

This chapter gives the background to machine learning and discusses

some previous systems of induction In the context of knowledge acquisition.

The chapter begins with a general overview of machine learning, and then

looks at one area of machine learning: induction. Section 2.2 describes one

type of induction, empirical learning, based on the influential work of

Winston [Winston 1975].. Section 2.3 explains another type, analytical

learning based on the work of Mitchell [Mitchell, Mahadevan and Steinberg

1985]. Section 2.4 descrIbes one possible combination of the two types of

learning based on the work of Lebowitz [Lebowitz 1986]. Finally, section 2.5

provides a summary.

2.1. An Overview

Machine learning has been an importnt part of Artificial Intelligence

research since its early days. The ability to learn is recognized as one of the

essential characteristics of an . intelligent system [Simon 1980] and

constructing a "learning" computer program is advocated as one of the means

of understanding this ability [Simon 1983]. However, learning is found to be

very hard to capture in programs and hard to explain [Winston 1984]. Also

it involves many of the problems of artificial intelligence, such as searching,

perception, and knowledge representation, which are still under intense

investigation [Norman 1980]. Not surprisingly, the performance of present

learning systems is still primitive compared to the human being.

9

10

In spite of these difficulties, machine learning has receiitly attracted a

considerable amount of attention due to the present success of expert systems

and their potential application. Machine learning offers a possible solution to

the problem of knowledge acquisition by eliminating the tedious manual

process of transferring knowledge from human to program.

There are many ways of looking at machine learning. One common

approach is to classify machine learning according to the learning strategy

that a program uses [Carbonell, Michalski and Mitchell 1983, Michalski

1986, Dietterich 1982]. According to this approach, machine learning can be

classified as follows:

Rote learning:

This area of learning is simplest in terms of the learning complexity. The

program just remembers all the positive input instances so that they can

be used later.. This type of program is not adaptable to a complex

changing environment because a stored instance can only be used later

under an identical situation. The processing requirement is simple

because there is no transformation on the input instances other than

memorizing them. The program may have to organize the memory of

these instances efficiently if the number of instances is large. Since the

program just remembers exactly the input instances, it relies on its

environment to provide correct, noise free instances. An example of such

program is Samuel's checkers-playing program [Samuel 1959].

Induction (Learning from examples):

This is perhaps the most studied area of machine learning. The program

accepts a set of classified specific instances (positive or negative or both)

11

of some concept, procedure or rules. Based on these input instances, the

program infers features which characterize the target concept, procedure

or rule. The major part of the program is the induction process where

many heuristics and approaches •are used. The program is more

adaptable than a rote-learning program because it can apply its

generalized concept or rule again in a similar but not necessarily identical

situation. The program usually assumes a teacher in the environment to

classify those input instances. Preferably, these instances are noise-free

although some programs can handle eirors in training instances. Some

examples of this type of learning program are discussed later in this

chapter.

Learning from experimentation and discovery:

This area of learning is the most complex of the three areas. Usually, the

task involves a large search space in the inference process. Besides, the

program has to classify the input instances itself, or even construct some

instances, in order to test hypothesis related to a concept. Lenat's AM

and Eurisko programs are classical examples in this area.

While the boundaries between these areas of machine learning are not very

well-defined and precise, this lassification provides one basis for examining

the machine learning research. This thesis concentrates on the second area:

induction. -

2;1.1. Induction: learning from instances

The essential task of learning by induction is to construct the features of

a concept which exist in all positive instances but not in any of the negative

instances. In addition, this concept description must be broad . enough' to -

12

cover not only all the positive instances that have been presented, but also

some possible unobserved positive instances. This requirement is important in

distinguishing learning by induction from rote learning. If the concept

description only covers all the positive instances that the program has seen,

then it is just another form of rote learning, memorizing all instances

presented.

This requirement leads to a serious problem in induction process. Given

a set of instances, positive, negative, and a 'combination of both, there is

potentially an infinite number of concept descriptions that are consistent with

the set of observed instances. Consider an example of finding a description to

cover the following two instances [Utgoff 1986].

(3,4) is a positive instance

(6,5) is a negative instance

One of the possible concept descriptions is "an ordered pair of numbers

where the first is numerically less than the second." However, there, are also

other alternative descriptions which are consistent with these two instances.

They are:

(1) An ordered pair of numbers in which the first is an odd integer

(2) An ordered pail' of numbers in which the second is an even integer

(3) An ordered pair of numbers in which the first is an odd integer and the

second is an even integer

(4) An ordered pair of numbers in which the first is an odd integer or the

second is an even integer

13

(5) An ordered pair of numbers the binary sum of which has a 1 in the 4's

place

(6) An ordered pair of numbers the decimal sum of which has a 0 in the 10's

place

(7) A pair of numbers the sum of which is 7

(8) An ordered pair of numbers in which the second is 1 more than the first

(9) An ordered pair of numbers in which the first is not 1 more than the

second

This simple example can have many possible target descriptions. For a

more complex example, the space of all possible descriptions can be enormous.

In fact, for a domain of N instances, there are 2 to the power N possible

distinct target descriptions [Utgoff 1986].

The process of induction can be pictured as finding the target concept's

boundary as shown in figure 2.1. Mitchell in his paper "generalization as

search" [Mitchell 1982] put the ' induction process in the perspective of

searching through the space of possible target concepts. A target concept i

found if its boundary covers all observed positive instances and excludes any

ñegatire instances. Hopefully, the boundary can also cover the unobserved

positive instances. However this induétion process can be tinderconstrained

and complex [Andreae 1985]. The search for a target concept can be

combinatorially explosive if the space is large and the instances presented are

few in number. In theory, a target concept can be found under this situation

given sufficient time and resources. In practice, the search must be efficiently

focused by constraining the search space, by presenting sufficient instances, or

by a combination of both. The constraints and instances are the two major

14

boundary of
targe
rule

aryof all
stances

observed positive instances
unobserved positive instances +
observed negative instances G
unobserved negative instances -

Figure 2.1: The process of induction.

factors which characterize a spectrum of learning techniques within the area

of learning by induction. At one end lies empirical learning which primarily

relies on the presented instances to guide its search. At the other end of the

spectrum lies analytical learning which primarily relies on the constraints of

the background knowledge. The next two sections discuss these two types of

learning and present examples of them.

15

2.2. Empirical Learning

In this section, the empirical learning is illustrated with two examples:

the Arch program and the Version Space program.

2.2.1. The Arch Program

The Arch program was Patrick Winston's Ph.D work [Winston 1975].

The basic idea was to learn a simple concept description of an arch in a toy

world. It is one of the pioneer programs of how to learn symbolic description.

The program compares the positive and negative instances as shown in figure

2.2 and infers the concept of an arch as a parallelepiped object supported by

two separate bricks.

The program takes the- first instance, which must be a positive instance,

to be the current target description. Then it compares the current target

description and each instance in the input sequence in succession. If the next

instance is positive, it generalizes the difference between the instance and the

current concept. If the instance is negative, it specializes the difference. The

concept of an instance is represented as a network of nodes. Generalization

and specialization essentially involve manipulation of links between the nodes

and climbing a generaliation tree.

There are several noteworthy features of this program. Its learning

ability relies primarily on the syntactical comparison between the structures

of the instances and the current concept. Consequently, the program requires

at least two distinct, instances in order to learn anything. Otherwise, the

concept is just the same as the first (and the only) instance.

16

a) Positive

c) Negative

b) Negative

d) Positive

Figure 2.2: A sequence of instances for learning about arches.

• The program exhibits incremental learning behavior. It takes instances

one by one ' and modifies the concept one step at a time. Winston implied

that this mode. of learning was the predominant learning mode of humans

[Winston 1984].

The program introduces a type of input instances called the near-miss

negative instances. A near-miss instance is a negative instance which only.

differs from the current concept by one essential feature. This near-miss

instance is used to focus the essential discriminant during the specialization

process.

17

In case of negative instances with multiple differences, there are many ,

ways of specialization. To handle thes type of negative instances, the

program adopts a depth-first search strategy and backtracks when a

contradiction occurs. This requires the program to keep track of all past

negative instances. -

Winston later modified his Arch program and presented it as the "W

procedure" [Winston 1984]. He eliminated the backtracking by arguing that

inconsistency was difficult to debug. The best way to avoid debugging

inconsistency and backtracking was to prevent mistakes in the first place by

being conservative. He argued the important role of a co-operative teacher in

presenting instances in good pedagogical order to a learner. He also suggested

that a learner should be conservative in accepting the instances. His ideas on

the impor't'ance of a co-operative teacher and his orderly presentation'

instances leads to the study of another , àlass of constraints, the felicity

conditions, by Kurt VanLehn [VanLehn 1983, VanLehn 1987].

2.2.2. The Version Space

Mitchell [Mitchll 1982] provided a framework for looking at different

data-driven learning strategies by casting them as searching through a space

of possible concept descriptions. In addition, by noticing that all concept

descriptions can be partially ordered according to their degree of generality,

he proposed "the Version Space" as a compact representation o(all possible

concept descriptions which are consistent with the observed positive and

negative instances.

Essentially all possible target descriptions can be stored in a partially

ordered lattice. In this lattice, the most general description is at the top of

18

the lattice while the most specific descriptions are at the bottom of the lattice.

The search space of all possible descriptions is bounded by the most general

and the most specific descriptions. While the space may contain a large

number of descriptions, it is sufficient to define them by the space boundaries:

the most general and the, most specific descriptions. An example of this

lattice is shown in figure 2.3. This simple example involves descriptions of a

group of people by their two features, colour of their hair and their height.

The most general description is a group of people with any hair colour and

any height. The mostspecific descriptions are different groups of people with

different combinations of colour and height.

(short?) (tall ?) (? grey) , (? brown) (? dark)

(short grey) (short brown), (short dark) (tall grey) (tall brown) (tall dark)

Figure 2.3: Representing a Version Space.

19

Mitchell's learning algorithm essentially makes .use of this version space.

Finding a target description in the space consists of moving the most general

and the most specific boundaries until they converge to a particular

description in the space. Initially, the boundaries cover the whole search

space. When a positive instance is observed, the algorithm updates the

current boundaries by eliminating those descriptions which are too specific to

contain the instance. When a negative instance is presented, the' algorithm

updates the boundaries by eliminating those too general descriptions which

contain the instance.

An example of finding a description of a group of people with any hair

colour and short is presented in figure 2.4.

G --the set of the most general descriptions
S --the set of the most specific descriptions
X?--any Capital letter followed by '?' stands for variable
type-- type of instances, positive or negative'

instance type S G
(short, grey) + (short,grey) (H?,C?)

(tall, brown) - (shoi't,grey) ' H? ,grey)
short,C?)
H? ,dark)

'(short, brown) + (short,C?) (short,C?)

Figure 2.4: A Version Space example.

20

Unlike the Arch program, the version space program uses a search similar

to the breadth-first search to update its boundaries. However, there are

similarities between the two programs. They both use a number- of positive

and negative instances to converge to a target description and prune away

those irrelevant ones. There is some domain knowledge •, built into the

generalization hierarchy in the Arch program and in the version space. The

knowledge helps the programs to converge to a target concept quickly without

seeing all the possible instances. For example, in figure 2.4, the two positive

instances (short, grey) and (short, brown) cause the concept to converge as

(short, any_colour). In the generalization hierarchy of figure 2.3, any_colour

is defined as 'a generalization of both grey, brown and dark colour. Therefore

the concept of (short, any—colour) also covers the unobserved positive instance

(short, dark). If the concept of any_colour is defined differently, then the

concept (short, dark) covers different unobserved positive instances. It is the

implicit bias of the built-in domain knowledge in the generalization hierarchy

which induces a concept to cover both observed and unobserved positive

instances. If the bias is inappropriate, it can prevent the system from ever

inferring correct generalizations. If the bias is appropriate, it can provide the

basis for important inductive leaps beyond information directly available from

the training instances [Mitchell 1982]. The study of "bias" is an active area

of machine learning research [Utgoff 1986]. While bias is useful in induction,

it is usually not sufficient for a program to reach a target concept. A program

still has to rely on some instances to prune away any irrelevant concept.

In summary, empirical learning depends on the relationship between

instances and the implicit bias in the generalization hierarchy to reach a

target concept.1 This type of learning technique usually requires a number of

21

instances. Besides the domain knowledge in the generalization hierarchy,

empirical learning is relatively independent of the 'context of the domain. It

does not consider how an instance is generated, and why the instances

presented are classified as positive or negative. It is characterized as being

empirical, data or instance-intensive. The next section presents another type

of learning technique which relies more on the domain knowledge and less on

the instances.

2.3; Analytical learning

Analytical learning requires more background knowledge from a domain

to learn a concept. It has the advantage of using very few instances given

sufficient knowledge. Lebowitz has given a scenario example (not yet

implemented) of how the concept of "arch1' would be learned in the analytical

learning [Lebowitz 1986]. In his example, the program would require

understanding of some prior concepts such as the concept of gravity, supports

etc, and the description of structures. The program might use the concept of

gravity and supports to analyze the structural description of a positive

instance. It figured out that two equal height supports were necessary to

support a lintel in the air but the other factors such as the colour and shape

of the lintel were not important. It' did not need further instances to show

-that two equal height supports were important.

The remaining part of this section presents several system's using this

type of analytical technique in the context of the acquisition of heuristics.

22

2.3. 1. LEAP

LEAP is a learning apprentice system for VLSI design developed at

Rutgers University [Mitchell, Mahadevan and Steinberg 1985, Mahadevan

1985]. Its purpose is to acquire specific heuristic rules for verifying logic

circuit designs. Mitchell characterized a type of learning apprentice system

through the example of LEAP. It is an interactive knowledge acquisition

system which accumulates heuristic rules by observing and analyzing the

solutions of an expert through his normal use of the system. There is no

explicit "training mode" for the system. . The implication is that a co-

operative teacher is not required, and that the system is more suitable than

other programs such as the "Arch" as a knowledge acquisition tbol for an

expert system.

LEAP works together with another expert system VEXED [Mitchell,

Steinberg and Shulman 1985] which is a problem solving component for the

VLSI design. Given a design problem, VEXED tries to come up with a

solution using its existing heuristic rules. If VEXED fails to come up with

any rule or the implementation rule is not satisfactory to the user, an expert

can override the decision of VEXED and supply his1 own solution. At this

point, LEAP begins to capture the expert's solution and generalize the

solution into a new heuristic rule. The new rule will be used by VEXED

when a future similar problem arises.

For example, the system is given the problem of implementing a function

specified in figure 2.5. One of the possible implementations is to use three

NOR circuits joined together as shown in figure 2.5. This involves verifying

1 For simplicity of expressions, his, him and he are used to mean "his or her", "him or
her" and "he or she". -

23

xl

x2

x3

04

x3

x4

NOR

Nor'

OR

OR

NOR

AND

A specific circuit

out

out

not
bootean.lct I

not
boblean-Ict 2

not
bcoean-fct 1

not,
b001éan4ct 2

NOR

AND

A Generalized circuit

Figure 2.5: A circuit and it's generalized design for LEAF.'

that the behavior of the implementation is equivalent to the required

specification. The verification of this design involves using the basic De-

Morgan's Law and Remove-Double-Negation operators already defined in the

system. The verification sequence is shown in figure 2.6. LEAP captures this

sequence and uses a technique called constraint back-propagation [Mitchell

1983, Utgoff 1986] to generalize the steps in the sequence.

Constraint back-propagation is the main generalization technique used in

LEAP. It was developed in the previous system LEXZ [Mitchell 1983] to

deduce the domain of an operator sequence or macro-operator that produces

24

Verification

(not (or (not (or xl x2)
(not (or x3 x4))))

De-Morgan

(and (not (no (or xl x2)
(not (not (or x3 x4))))

remove
double-neg

(and (or xi x2)
(not (not (or x3 x4))))

remove.
double-neg

(and (or xl x2)
(or x3 x4))

Back-propagation

(not (or (not bool-fctl)
(not bool-fct2)))

(and (not (no bool-fctl))
(not (not bool-fct2)))

(and (or xi x2)
(not (not bool-fct2)))

(and (orxl x2)
(or x3 x4))

Figure 2.6: Verifying and Generalizing a circuit for LEAP.

some constrained range of states. Unlike the empirical generalization which

examines the relations between instances, the constraint back-propagation

examines how a positive instance is

within a particular domain.

A solution sequence can be interpreted as a

initial problem state to a final solution state

constructed from the basic operators

transformation from an

through a number of

intermediate states. Each basic operator is a mapping from one state (the

domain) to another (the range) with constraints to restrict the operator's

25

domain and range. Consider a simple case of applying a single operator to an

initial state to produce a final state. If a subset A of the range of the

operator represents a class of solved states, then this subset can be

propagated backward through the operator to find out the subset B of the

domain which produces the subset A. The subset B represents a constrained

domain of the operator such that application of the operator results in a

group of solved state. If there is a sequence of operators, then the same

operation can be applied recursively starting from the final state and working

it backward until it reaches the initial state. A simple example of this process

is shown in figure 2.7. The detail algorithm is shown in the work of Utgoff

[Utgoff 1986].

There are several features about the LEAP which also characterizes a

typical analytical learning system. One important feature about the system is

that it can make use of only one positive instance to deduce a heuristic rule.

The heuristic rule is not restricted to solving one particular example' , but is

generalized to solve a specific group of similar examples. In the example

shown in figure 2.6, the specific example involves 4 input signals, but the

generalized rule applies to any condition that matches a boolean function.

The ability to do such powerful generalization from a ' single instance

stems from examining how a positive instance is constructed. In the case of

the LEAP example, it means the verification process of showing how a

particular design of 3 NOR gates to meet the functional requirement of a

circuit with two OR gates and a AND gate. This points to a second

requirement. Analytical learning must have sufficient domain knowledge to

explain the construction of an instance. In LEAP; it means the existence of a

26

domain of op 1

subset A

op 2

sub. et B

range of op 1

domain of op 2

range of op 2

A sequence of applying operator 1, then operator 2

Figure 2.7: The constraint back-propagation method.

number of basic operators such as De-Morgan's law and other information

required to narrow down a group of solved states. Because of the requirement

for background information, analytical learning cannot be applied to an

arbitrary problem domain. It usually requires a problem domain with a

strong enough theory to explain and validate the training instances, such as

digital circuit design and mathematical integration problems [Mitchell,

Mahadevan and Steinberg 19.85., Mahadevan 1985J. In fact, even in the

integration domain, Utgoff reported some difficulties in learning certain

concepts because the formalism could not express certain context-sensitive

27

relationships [Utgoff 1986].

Because analytical learning usually requires verification or explanation of

a positive instance before any generalization, it is more robust than empirical

learning in handling possible errors in the input instances. If an instance

contains an error, the explanation process will fail and prevent the

generalization process from proceeding.

The constraint back-propagation technique is one of the techniques in

analytical learning. Other techniques are also being developed, such as a

schemata to understand a situation [Lebowitz 1986] and a proof tree to

generalize a circuit design structure [Ellman 1985].

In summary, analytical learning is able to generalize a heuristic rule or a

concept from a single instance by using a great deal of background

knowledge. Instead of examining the differences between instances, the

generalization comes from examining how an instance is constructed. This

type of learning is characterized as analytical, knowledge-intensive. The next

section discusses one possible combination of the two types of learning.

2.4; Combining two types of learning

The previous two sections examined two types of learning. One of the

key conditions under which a type of learning can be applied is the existence

of sufficient domain knowledge. Analytical learning is suitable for a domain

where there is a substantial amount of background knowledge. On the other

hand, empirical learning is needed when the background knowledge is lacking.

However, there are a number of domains which lie between these two extreme

conditions. Some domains have a certain amount of background knowledge

but the knowledge is not sufficient to allow the use of the analytical learning

28

only. On the other hand, using only empirical learning seems to neglect the

existence of background knowledge. This section describes an eample of

combining ..these types of learning through the UNIMEM program [Lebowitz

1986], which used the empirical analysis to guide the analytical

generalization.

UNIv1EM is a program that takes the description of a situation and tries

to build an explanation scheme to account for the situation. One domain for

this program is to explain the US congressional voting records. The input

information is the voting records of U.S. congressmen and the characteristics

of the states and ditricts that they represent. The task of the program is to

build an explanation of how a congressman's voting record relates to his other

votes (a congressman who opposes cutting the MX missile also opposes general

cuts in defense spending) or to the features of his district (a congressman from

a low-income district supports the increase in social spending). There are a

number of simple rules in the domain. Each simple rule relates a set of

àonditions (causes) to an observed behavior (results). These simple rules are

rules of thumb and they are general approximations. They represent a•

tentative model of the domain. The explanation scheme is built by relating

those relevant simple rules into a structure,to explain the voting behavior of a

congressman.

Building such a structure using only -analytical learning is

computationally expensive as there are many basic rules, and also a number

of possible features (over 30) to consider for each explanation. Among those

features, some of them may be the causes while other may be results due to

other features. Identification of the causes among those features is not trivial.

29

For example, it might be that districts with high farm property values are

thought to have oil reserves and hence their congressmen would vote to limit

any profit tax on oil reserves found on property. Conversely, it might be that

voting to limit the profit tax on reserve actually causes the farm value to be

high, as potential investors would know oil profits would not be subject to

high taxes.

Lebowitz suggested using the idea of predictability to identify those

features which are causes. Predictive features are those which exist uniquely

in a given situation and they are most likely to be the causes. This argument

follows from the observation that non-predictive features occur in many

situations, and are associated with many different combinations of other

features. Hence, they do not predict a single outcome. For example, if a

situation is made up of two features, A and B, and A only occurs in one

situation, and B in many, B cannot cause A. If B did cause A, A would

appear in all the other situations that B was in.

After identifying those potential predictive features, the system starts to

match those features with the conditions of the basic rules and tries to build

up a structure to explain the remaining features. Lebowitz has reported the

use of this predictability to prevent using irrelevant features in building an

explanation. He also found that some of those features which were supposed

to be predictive in the simple rules could in fact be explained by other

predictive features. Hence the result could be used to debug the initial set of

simple rules. The essential result- from this work was that predictive ability

provided significant control over the process of building up an explanation.

The program did not have to use brute force and try every possible

30

explanation rule sequence. Consequently, the. efficiency of analytical learning

was increased in an area where it could be combinatorially explosive.

2.5. Summary

This chapter has presented two types of machine learning. The empirical

learning does not require too much domain knowledge and relies on a number

of instances, positive and negative, to reach a target concept. It is suitable'

for the situation where domain knowledge is lacking. The analytical learning

requires sufficient domain knowledge to reach a target concept and relies less

on any input instances. These two types of learning characterize two ends of

a spectrum in term of the requirement of domain knowledge. An example has

been presented where both techniques are combined to handle a situation

between the two ends of the spectrum. The next chapter, presents the

prototype in this thesis. The prototype employs the idea of using . the

analytical learning before the empirical learning.

CHAPTER 3

Design of the prototype

This chapter discusses in detail the design of a prototype for another

approach to learning. The purpose of the prototype is to combine both

analytical and empirical techniques in inducing a domain specific rule from an

instance which is generated by some basic rules. Section 3.1 describes two

types of rules for certain domains: basic and specific. Section 3.2 discusses the

Prolog programming language as the representation of both instances and

rules. Section 3.3 describes how an user interacts with the prototype, and

sections 3.4 and 3.5 describe the two stages of induction: analytical and

empirical. The final section 3.6 summarizes this chapter.

3.1. Basic and specific rules

Two types of knowledge are currently recognised as providing a basis for

solving problems in a domain, [Chandrasekaran and Mittal 1983, Rosenbloom

et al. 1985]. Although the definition is not precise, they are generally

referred to as deep and surface knowledge. In building an expert system,

these types of knowledge are represented by two types of rules: basic and

specific, respectively.

The basic rules of a domain represent the essential knowledge and they

have a wide scope of applicability within the domain. The specific rules

represent the knowledge derived from the basic rules. Each of these specific

rules is restricted to a particular situation. These specific rules are usually

more efficient than the basic rules since they relate the aspects of a task

31

32

directly to action consequences, bypassing the computational steps needed to

apply the basic rules of the domain.

For example, in solving the mathematical integration problems in LEX

[Mitchell, Utgoff and Banerji 1983], there are basic operators with conditions

specifying where they can be legally applied. However, there are also

heuristics, which specify the conditions where it is beneficial or useful to apply

those operators. Each heuristic specifies a restricted subset of the legally

applicable situations for an operator where application of it is most likely to

lead to a solution.

One characteristic of many present-day expert systems is that they have

a lot of domain specific rules which allow them to arrive at problem solutions

quickly [Rosenbloom et at. 1985]. Therefore, there are a number of research

efforts arrived at developing systems which acquir6 these specific rules or

heuristics to enrich the computational power of an expert system, and to ease

the bottleneck in the knowledge acquisition process [Langley

1985, Rosenbloom et at. 1985, Mitchell, Utgoff and Banerji 1983].

In what follows, a family-tree domain is chosen to illustrate the two

types of rules and set the context for the purpose of the prototype which is: to

infer specific rules from the instances which are generated by the basic rules.

Although this thesis only uses a family-tree and a context-free grammar

problem for demonstration, the approach embodied in the prototype is not

restricted to solving these two, problems, but is targeted at a broader class of

problems. These problems are chosen becaue they are familiar examples in

most Prolog textbooks [Sterling and Shapiro 1986, Clocksin and Mellish

1981, Bratko 1986]. '

33

(ringo &janice)

(Jane & christopher) (chris\ine) (Jessica) (pat & george)

(mary & alec)

/
(adrian)

(peter) (mathew & jon) (curtis)

/
(ringo & judy)

/.
(john)

Note: two persons in a bracket are a married couple.

parent(janicc, christopher)
parent(Janice, christine)

parent(mathew, ringo)
pare,nt(ringo, john)

Figure 3.1: A family tree and it's Prolog clauses.

Given a family-tree as shown in the figure 3.1, and a set of predicates

which define the relationship of the nodes in the family-tree, the two clauses

cl(3.1)

related(X,Y) :- (parent(X,Y);parent(Y,X)).

cl(3.2)

related(X,Y) :- (parent(X, Z);parent(Z ,X)), related(Z ,Y).

34

are able to find if any two persons in the family-tree are related. The two

clauses (3.1) and (3.2) are the basic rules for the family-tree problem. These

basic rules completely define any solution to the problem if that solution

exists. The basic rules are also flexible so that they can be applied to any

different occurrence of the problem. They can be used to examine two nodes

whether these two nodes are related through a single node or many

intermediate nodes. While these two clauses are flexible, they may also be

very inefficient when compared to specific rules such as,

cl(3.3)

related(X,Y) :- parent(X,Z),parent(Z ,Y). 1* grandparent* /

cl(3.4)

related(X,Y) :- parent(Z,X),parent(Z,Y)./* sibling */

For example, in searching whether "christopher" and " christine" are related

in figure 3.1, the rules (3.1) and (3.2) needs five instantiations to find a

solution, while the more specific rule (3.4) needs only two instantiations. If

these domain specific rules are applied to a right situation, they can be very

efficient in the sense that they bypass a lot of unnecessary search.

Although these domain specific rules are efficient, each of them is

restricted to a particular situation. Rule (3.4) is useful only to find out if

"christopher" and "christine" are related through a sibling relationship. It

fails to find out that "ringo" and "mary" are related because "ringo" and

"mary" are related in a grandparent relationship. While the specific rules are

useful for computational efficiency, the basic rules are needed in cases where

1 Names should start with an upper-case letter but this is in conflict with the Prolog
definition' of constants as lower-case letters. Therefpre, names are quoted and in lower-case to
designate this as a constant in Prolog.

35

all the specific rules fail.

The prototype in this thesis endeavors to induce those specific rules such

as (3.3) and (3.4) from basic rules such as (3.1) and (3.2). The prototype is

initially given only the basic rules to solve any problem in a particular

domain. As a result, the problem solving efficiency is low. As more problems

are solved, useful specific rules are induced by the prototype. The system

then relies more on the specific rules than the basic rules to handle future

problems. Consequently, the prototype's problem solving efficiency increases.

One of the key characteristics used in the machine learning area is the

classification of the target rules or concepts according to their , degree of

generality. A rule "A" is more general than a rule "B" if B can be obtained

by substitution of certain variables in "A" with specific values. For example,

rule (3.4) is more general than rule (3.5)

cl(3.5)

related(X,Y) :- p arent(ringo,X),parent(ringo,Y). / * children of ringo*/

because (3.5) is an instance of (3.4) by instantiating the variable " Z" with the

constant "ringo".

In this thesis, the prototype is required to learn specific rules with any

degree of generality desired by a user. This requirement creates a problem.

For a given instance, there are many possible target rules with different

degrees of generality. The induction of target rules such as (3.3) and (3.4) can

be achieved by using the analytical technique only to the extent that they

have the same degree of generality as the basic rules. However, the analytical

technique alone cannot infer a target rule such as (3.5) because that rule has a

degree of generality more specific than that of the basic rules. Empirical

36

fechnique is required to complement the analytical ones.

3.2. Prolog as the implementation language

The Prolog programming language is used to implement the prototype

and also as a representation language for both instances and rules. A Prolog

program is a set of Horn clauses, which have the general form

A:-B1,B2,B3 ... Bn

where A, and the B's are atomic formulae [Shapiro 1982]. Each formula is a

p red! cate • consisting of .a predicate symbol, called a functor, and, optionally

followed by a list of terms in parentheses, separated by commas. Each term

can be a variable, denoted by a capital letter, or a constant, denoted by a

lower-case letter, or a functor.

A Prolog clause can have both declarative and procedural interpretation

[Kowalski 1979]. Declaratively, the above clause can be read as "A is the

conjunction of the B's". Procedurally, it can also be interpreted as "to fulfill

the goal of A, satisfy the goals, of B1,B2..Bn".

Because of its dual interpretation, the Horn clause has been used as a

common basis for representation in both concept-learning and rule-learning

programs [Bundy, Silver and Plummer 1985]. For example, the clause

cl(3.3)

related(X,Y) :- parent(X,Z),parent(Z,Y).

represents the, concept of grandparent. Procedurally, it can also be

interpreted as a rule or a program to search whether the two nodes, X and Y,

in' the family-tree are related. To fulfill the declarative meaning of whether

two people are related in a grandparent relationship, the program searches for

37

'a common node which relates to the two nodes X and Y in the tree.

Most of the Prolog systems, such as the C-Prolog system, are

implemented sequentially. A common strategy is to evaluate the goals from

left to right. As a result, there is a difference in the declarative and the

procedural interpretation when deciding whether two logic clauses are the

same. Declaratively, the clause

cl(3.6)

related(X,Y) :- parent(Z,Y),parentX,Z).

has.the same meaning as the clause (3.3). Procedurally, these two clauses can

be different. The difference is due to the sequential evaluation of clauses in

the language. An example to illustrate the difference are the clauses: for doing

arithmetic addition.,

cl(3.7)

sum(X,Y,Z,S) :- I is X+Y, S is I+Z.

cl(3.8) '

sum(X,Y,Z,S) :- S is I+Z, I is X+Y.

Both clauses have the same declarative meaning. That is, the result of adding

three numbers together can be obtained by adding two numbers to get an

intermediate value, and then by adding the intermediate value to the

remaining' number. Given the query of sum(1,2,3,S), clause (3.7) succeeds

with the S value' returned as 6. Cl(3.8) fails because the variable I is

undefined when the first goal of" S is I+Z " is evaluated.

In this thesis, unless it is explicitly stated, logic clauses are interpreted as

procedural rules. An extra criterion is imposed if two rules are said to be the

same. Two rules are the same if they have the same atomic formulae

38

arranged in the same order. According to this criterion, clauses (3.3) and (3.6)

are considered as different rules even though they represent the same

declarative meaning.

This criterion also allows the prototype to narrow down its search for

target. rules considerably. Consider the following example involving two

separate instances: -

(1) related(ringo,alec) :- parent(ringo,christopher), parent(christopher,alec).

(2) related(ringo,mathew) :- parent(ringo,pat), parent(pat,mathew).

To infer a rule which covers these two instances, the prototype only has to

evaluate the same goals in the same sequence according to the above criterion.

Consequently, the prototype only needs to consider the two possible pairings:

"parent(ringo,christopher)" with "p arent(ringo,pat)"; and

"parent(christopher,alec)" with "parent (p at,mathew)". However, without the

criterion, the prototype also has to consider two extra possible pairings of

"parent(ringo,christopher)" with "parent(pat,mathew)" and

"parent(christopher,alec)" with," parent(ringo,pat)". Given two instances with

each one having N goals, the number of possible combinations would be N! (N

factorial) without the constraint of the criterion. With this constraint, only

one combination needs to be considered.

Finally, an instance is defined as a single item of input to a learning

program. An instance of a rule is obtained by instantiation of all variables of

the rule with specific constants. For example, "relate d(christopher,christine) :-

parent(ringo, christopher), parent(ringo,christine)" is a positive instance of the

2 The word "instance" is to replace the commonly used word "example" in order to avoid
confusion over the various usages of the word "example"

39

rule "related(X,Y):- parent(ringo,X), parent(ringo,Y)", but the

"relate d(christopher, christine) :-parent(j anice, christopher),

parent(janice,christine)" is a negative instance of the rule.

3.3. User interaction

Environment plays an important role in providing the input information

that a learning system needs, and the user is a major part of that

environment. This prototype is an "interactive rule acquisition system". One

of its requirements is to minimize the burden put on •a user to generate

positive and negative instances foi' the system.

A major part of the input information comprises the positive and

negative instances. But there is extra information which can reduce the

complexity and difficulty of the learning tasks. One of the sources of extra

information is the way the instances are presented to a learning program.

There is a range of possibilities for how the extra information is encoded

through the presentation of instances. For example, the ARCH program

[Winston 1975], assumes a co-operative teacher. The teacher provides

instances free of any noise, classifies the instances as positive or negative, and

presents them in good pedagogical order. Winston also suggested the use of

near-miss negative instances to help a learning program to identify those

essential features easily and narrow down to the target concept quickly.

SIERRA [VanLehn 1987] is another program Which makes use of extra

information encoded in the sequence of instances to ease its induction of

disjunction and invisible objects. In SIERRA, the instances are partitioned

into lessons, and the lessons are sequenced; Each lesson can only introduce

one disjunctive feature. Also, lessons are organized so that detailed work is

40

shown first, followed by optimized work. VanLehn suggested these two major

restrictions of thesequence of instances, which then facilitates the induction

which otherwise would be extremely difficult. He argued the importance of

using the constraints from the presentation of instances and termed these as

felicity conditions.

Although the strategies adopted make the learning tasks much easier in

the 11 above programs, the users ar e expected to do extra work in organizing

and providing instances to the programs. If too much effort is required by the

user in presenting instances to an induction program, there is concern that the

practical uses of the program to ease the knowledge acquisition problem may

be limited. The benefits of automatic induction of rules may be offset by the

requirement for too much effort by the user.

Mitchell has suggested the use of another type of learning apprentice

system such as LEAP [Mitchell, Mahadevan and Steinberg 1985]. In contrast

to ARCH, LEAP does not require an explicit "teaching mode", it acquires

specific rules through the normal use of the system by the user.

The present prototype is closer to LEAP in its requirement for instances.

It requires a positive instance as the initial input. The positive instance is a

solution to a particular problem, and is derived using the basic rules during

the problem solving stage. The system induces a rule from the instance with

degree of generality equivalent to that of the basic rule. If the user is not

satisfied with the degree of generality of the induced rule, he can invoke the

next step to refine the rule. The refinement relies on the empirical .technique.

Instead of asking the user to provide instances, the system extracts negative

instances from the past solution trace, if there are any. Then, it generates

41

instances from the existing database and requests the user to classify them.

Based on the classification by the user, the system returns a refined rule.

The details of the process are as follows:

Problem Solving Stage

The user first invokes the system to find a solution to a problem. The

system may produce several solutions. The user picks the first acceptable

solution and uses it as a positive instance. The system collects any

solutions preceding the acceptable one in a solution trace. The user then

invokes the next stage with the positive instance.

Analytical Induction

The system uses the analytical technique to generalize the positive

instance into a rule. The degree of generality of the induced rule is

equivalent to that of the basic rules in the system.

Empirical Induction

If the user wants the induced rule to be more specific, he then invokes

this stage. The system tries to find useful negative instances from the

solution trace. A useful negative instance is. one which has a similar

structure to the rule being processed, but with one discriminating

..feature. After that, the system generates instances based on the existing

database model and asks the user for a classification of each instance.

The user answers "yes" to a positive instahce, and "no" to a negative

one. After a sequence of instances, the system returns a more specialized

rule. -

Two major problems were found in building this prototype. The first one

was in choosing problems for which the induced rules were useful. There are

42

numerous problems and solutions for a given domain. Some of the problems

are interesting and typical, while others rarely occur. We do not want the

system to infer rules for every problem. We want the system to induce only

those specific rules which solve the typical and commonly occurring problems.

The prototype does not know which problem is common or typical and has to

rely on the user to decide. A learning system, which learns by itself, such as

AM [Davis and Lenat 1982] has to confront this problem. Another major

problem was to decide the degree of generality of the induced rules required

by the user Again, the prototype has to rely on the user's choice.

The prototype takes advantage of its interactive nature to determine the

user's choice on the above problem. When the user invokes the second stage

of analytical induction, the user communicates to the prototype that the

instance is a solution to a common problem. The prototype also assumes that

the user wants a more specialized rule when he invokes the stage of empirical

induction. In general, an interactive learning system can often provide more

chances for the system to infer extra information from a user than a system

which learns by itself.

3.4. Analytical Induction

The idea behind the prototype developed for this thesis is to exploit any

avai1abe background knowledge as much as possible. When a domain can

provide sufficient background knowledge, it is possible for the analytical

generalization to induce a rule from a single instance [Mitchell 1983].

However, when there are insufficient constraints, this prototype first uses the

available constraints to guide the analytical generalization, and then uses

empirical techniques to deal with the area where constraint is lacking.

43

Consider a positive instance such as

cl(3.8)

related(christopher, christine) :- p arent(ringo,christopher),

parent(ringo, christine).

Possible target rules for this instance are:

cl(3.9)

related(X,Y):- parent(Z1,X), parent(Z2,Y).

cl(3.4)

related(X,Y):.- parent(Z,X), parent(Z,Y).

cl(3.5)

related(X,Y):- parent(ringo,X), parent(ringo,Y).

In this prototype, the process of induction from a positive instance consists of

two stages:

(a) Deciding the relationship between the variables and constants. Does

"ringo" in the instance (3.8) bind to two separat'e variables as in the

target rule (3.9), or bind to the same variable as in the rule (3.4)?

(b) Deciding whether the constants in the instance can be turned into

variables. Is "ringo" in the instance (3.8) a constant in the rule (3.5), or

just an instantiation of the variable Z in the rule (3.4)?

The following two sub-sections consider the induction in two cases.

3.4.1. Case I

Consider an instance which relates the top node "ringo" to the bottom

node "john" in the right-hand side of the family-tree in the figure 3.1. There

are two separate nodes called "ringo" which exist in the path from the top

44

node "ringo" to the bottom node "john". One is the top node "ringo".

Another one is the one immediately above the bottom node' "john". As a

result, the instance becomes

cl(3.10)

'related(ringo,john) :- parent(ringo,john), parent(mathew,ringo),

parent(george,mathew), parent(ringo,george).

The proper rule for this instance should be:

cl(3.11)

related(R,J) :- p'arent(R1,J),parent(M,R1),parent(G,M),parent(R,G).

If the prototype is given only the instance cl(3.10) without any knowledge of

how the instance is derived, the prototype cannot directly induce the rule

(3.11) from the instance (3.10).

If the prototype assumes that each constant with the same value comes

from a unique variable in the target rule, then the rule

cl(3.12)

related(R,J) :- parent(R,J),parent(M,R),parent'(G,M),parent(R,G).

is induced which is not correct as it neglects the existence of a separate

variable Ri. On the other hand, if every constant, regardless of whether it

shares the same value with any other, is assumed to come from a separate

variable, then a rule of the form

cl(3.13)

related(R,J) :- prent(R1,J1),parent(M,R2), parent (G,M), parent (R3,G).

is induced which is too general. The rule (3.13) ignores the shared variables

in the clause. It ignores that Ri and R2 are the same, and so are R and R3.

45

If the prototype does not have any background knowledge, it has to rely

on empirical techniques. It can use the cl(3.13) as the upper bound (the most

general form) and the instance cl(3.1O) as the lower bound (the most specific

form). By having a lot of positive and negative instances, the prototype

would eventually arrive at the proper rule cl(3.11). But this means that the

user has to produce a lot of instances to guide the prototype.

If the prototype has the history of how the instance cl(3.1O) was derived

from the basic rules during the problem solving stage, then 11 is able to infer

the relationship between each constant in the instance with each variable, in

the target rule without relying on the empirical technique. In addition, if

each basic rule is applied properly during the problem solving stage, then it

can infer the proper rule cl(3.11) from just a single instance(3.1O).

3.4.2. Case II

Analytical generalization can allow the induction of a rule from a single

instance if the prototype not only knows how the instance is derived from the

basic rules but also knows that each basic rule is applied correctly during the

problem solving stage. The second assumption may not hold true all the

time. In this prototype, the system is given some basic rules in order to solve

a wide variety of problems in a given domain. The condition of each basic

- rule is quite open so that each basic rule can fit a wide variety of situations.

As a result, the basic rules are quite general. If the prototype relies on these

rules as the basis of generalization, and the application of these rules during

the problem solving stage is not constrained, then it is possible to induce a

rule which is over-general. Furthermore, there is a requirement that the user

may want to induce a rule of arbitrary generality.

46

For example, consider the instance

cl(3.14)

related(christopher,christine) :- parent(ringo,christopher),

parent(ringo, christine)

The analytical generalization would induce this instance cl(3.14) into a rule

such as: -

cl(3.15)

related(X,Y) :- parent(Z,X),parent(Z,Y) /* sibling */

However, another possible generalization of cl(3.14) is the rule

cl(3.16)

related(X,Y) :- parent(ringo,X),parent(ringo,y) /* children of ringo */

The instance of cl(3.14) does not provide other information for the prototype

to decide which one, cl(3.15) or cl(3.16), is the target rule. The conditions of

the basic rules cl(3.1) and cl(3.2) are insufficient to allow the analytical

generalization to decide that "ringo" in the instance cl(3.14) should be a

constant instead of a variable. During the problem solving stage, the

instantiation for the predicate parent(ringo,christopher) is "parent(X,Y)"

instead of "parent(ringo,Y)", the generalization process just infers "ringo" to

be a variable. Therefore rule cl(3.15) is induced instead of rule cl(3.16).

To enable analytical generalization to induce rule cl(3.16) instead of

cl(3.15), two extra conditions must be provided by the system. Instead of

only two general basic rules cl(3.5) and cl(3.6), the prototype needs an extra

set of rules such as parent(ringo,Y). During the problem solving stage, the

system must be able to use "parent(ringo,Y)" instead of the predicate

"parent(X,Y)" to generate the instance (3.14).

47

Building an extra set of rules is a major problem. The difficulty lies in

deciding which set of rules should be included. By including an extra set of

rules, the system would assume the types of specific rules that a user would

eventually like to induce in the future. This assumption is too much to make.

Also, the extra set of rules actually belong to specific type rules. Inë1uding

the extra set would contradict the original purpose of inducing the sjecific

rules from the basic one.

Even if this extra set of rules exists in the system, there is no guarantee

that this set of rules should be used instead of the general basic one during

the problem solving stage. The user just issues the question

" relate (christopher,christine)" to the system and there is no further

information provided with the question. If the database arranges the extra

set of rules in front of the basic ones, the system may pick "parent(ringo,Y)"

in this example. While it may be suitable for this case, it may be, undesirable

in another case where the rule (3.15) is indeed the target one. The strategy of

placing this set of rules in front of the basic one shifts the learning bias of the

prototype. The bias would be to prefer rules like cl(3.16) over the other ones

like cl(3.15).

It appears that using only the analytical generalization for this case is

not enough. On the other hand, relying only on the empirical technique runs

into the problem of needing a lot of positive and negative instances as

discussed in the section 3.4.

While the basic rules are not sufficiently constrained to enable analytical

generalization from a single instance, they can be used to infer any constants

and shared variables in the target rule. In this example, the basic rules

48

cannot be used to decide whether "ringo" in the instance comes from the

variable "Z" in the target rule, but it can decide that there is a common

shared variable " Z" or a common shared constant "ringo" between the two

subgoals. Because of that, the analytical generalization eliminates one

possible target rule "parent(Z1,X), parent(Z2, Y)".

The target rule can be imagined as lying within the version space

bounded by a paii of most specific and most general rules.3 In this example,

without the stage of the analytical generalization, the 'prototype has to begin

its empirical generalization with the most general boundary of "parent(Z1,X),

par ent(Z2,Y)", and the most specific boundary of "parent(ringo,christopher),

parent(ringo,christine)". If the stage of analytical generalization exists, the

prototype can start its stage of empirical generalization with the most general

boundary "parent(Z ,X), parent(Z ,Y)" instead of "parent(Z 1,X), parent(Z2,X)".

The most general boundary has been lowered. By bringing down the most

general boundary to a lower level, the analytical generalization narrows down

the version space for the next stage of empirical generalization. The whole

scenario is shown in the figure 3.2

If the rule cl(3.16) is the target rule for this example, extra instances are

necessary in the empirical generalization. Of course, one useful source of

instances is the user. However, there are two other possible sources of

instances. The next section discusses the empirical induction and how those

instances can be extracted and generated.

The following explanation is described using the Version Space approach for
convenience. However, the current implementation of this prototype has not yet incorporated
the Version space method, for its empirical techniques.

49

3 parent(X 1,X2),parent(X3,X•

the most general boundary

(3.15) pare rit(X,X2),parent(X,X4)

the general boundary after analyti

(3.16) parent(ringo.X2),parerit(ringo,X4)

the target rule

al induction

(3.14) parent(ringo,christopher),parent(ririgo,cl-ir

the most specific boundary, the posit

stifle)

ye instance

Figure 3.2: The Version Space of a family tree example.

3.5. Empirical Induction

Empirical induction has two steps: extracting negative instances and

generating instances. They are described in the following two sub-sections.

3.5.1. Extracting Instances

•The general condition of the basic rules cl(3.1) and cl(3.2) not only create

problems during the analytical generalization, they also create probleths

50

during the problem solving stage. Because their conditions are general, these

basic rules may need several trials before they can get to the right solution.

Given the database as defined in the figure (3.1), the first solution to the

question ":-related(christop her, christine)" is the instance

cl(3.17)

related(christop her, christine) :- parent(janice,christopher),

parent(j anice,christine).

If the user is only interested in finding whether they are related through

"jingo" as opposed to anyone else, then he is going to reject this instance as

an incorrect solution. The system has to search for another solution until it

finds the one "related(christopher, christine) :- parent(ringo,christopher),

parent(ringo,christine)". If the instance cl(3.17)--related through janice-- is

captured and stored, then ' it 'can become a useful negative instance for

empirical induction. The instance (3.17) gives the justification that the

variable X in the cl(3.15) should be specialized into the constant "ringo".

Otherwise, if X was indeed the variable, then the instance cl(3.17) should also

be acceptable a& a solution instead of being rejected. There are three

problems related to using the solution trace as the source of negative

instances for empirical induction.

An assumption is made that the user is only interested in finding the

correct solution, and no alternative solution. As soon as he has found the

correct solution, he stops the system from generating further solutions. This

assumption is necessary for the system to decide that the last solution in the

solution trace is a positive instance and any solution prior to it is a negative

one. If alternative solutions are allowed in the solution trace, the system

51

cannot decide which one is the alternative correct solution, or which one is a

negative instance. Under these circumstances, further input from the user

would be required to distinguish negative solutions from alternative correct

solutions.

The second problem is that there is no guarantee that negative instances

will exist in a solution trace. In the data-base of the family-tree in the figure

3.1, the predicates "parent(j anice,christopher)" and "parent(j anice,christine)"

are put in front of the predicates "parent(ringo,christopher)" and

"parent(ringo,christine)". As a result, the negative instance of

"p arent(j anice,christine), parent(j anice, christopher)" is generated before the

correct solution of "p arent(ringo,christopher), parent(ringo,christine)".

However, if those, predicates involving "ringo" are put at the beginning of the

data-base, lIten the first solution is the correct one. The system will not have

a chance of generate another instance involving "janIce".

The final probiem with the solution trace is that it is an unstructured

source of negative instances. In the current implementation, only negative

near-miss instances which lie within the versioi space are useful. Consider

the same example involving "christopher" and "christine". Beside the instance

cl(3. 14) "related(christopher, christine):- parent(ringo,christopher),

parent(ringo,christine)" which is accepted as the positive one, two negative

instances are gnerated before the instance (3.14). They are:

cl(3.18).

relate d(christop her, christine) :- p arent(j anice ,christopher),

parent(j anice,christine).

52

cl(3.19)

related(christopher,christine) :- parent(ringo,christine

parent(j anice ,christine), parent(j anice ,christopher).

Of the two negative instances, only cl(3.18) lies in the current version space

bounded by the rule (3.15) "related(X,Y) :- parent(Z,X), parent(Z,Y)", and the'

instance (3.14) "relate d(christopher,christine) :- par&nt(ringo,christopher),

parent(ringo,christlne)". Therefore, the negative instance (3.18) is the only

one useful in narrowing down the most general boundary of (3.15) into the

one "related(X,Y) :- parent(ringo,X),parent(ringo,Y)". (3.19) cannot be a

useful negative instance because its structure is differenl from the positive

instance (3.14).

Cl(3.18) is a useful negative instance not only because it lies within the

version space, but also it is a near miss instance. It contains only one

discriminant, "janice", from the positive instance.

Consider another case involving the "great grandparent" relationship.

The most gneral boundary and most specific boundary are defined by

cl(3.20)

related(X,Y) :_parent(X,X1),parent(X1,X2),parent(X2,X3),parent(X3,Y).

cl(3.21)

related(ringo,adrian) :- .parent(ringo,j ane), parent(jane,mary),

parent(mary,adrian).

There are two possible negative instances within the version space defined by

these two boundaries. They are:

cl(3.22)

related(ringo,adrian) :- parent(ringo,j ane), parent(j ane,alec),

53

parent(alec,adrian)

cl(3.23)

related(ringo,adrian) :- parent(ringo,christopher), parent(christopher,alec),

parent (alec,adrian).

Only the instance (3.22) can be used as it contains only one

discriminant,"alec". The negative instance (3.23) cannot be used because

there are two discriminants, " alec" and " christopher" in (3.23). The prototype

cannot tell which discriminant causes the instance (3.23) to be a negative one.

It may be " alec", or "christopher", or both of them. If the instance (3.22) was

positive and (3.23) was negative, using both of them could point out that

"christopher" was the discriminant which caused (3.23) to be negative. But if

(3.22) and (3.23) are both negative instances, then the prototype cannot find

out all essential discriminants. The pr9totype can only definitely identify

"alec" as the essential negative discriminant since the cl(3.22) is a near-miss

negative instance. However, the prototype cannot decide for sure that

"christopher" in cl(3.23) is also a negative discriminant. It may be "alec"

which also causes cl(3.23) to be a negative instance. The current

implementation of the prototype only uses a single rule instead of a set of

rules to represent the most general boundary of the version space. It can only

handle near miss negative instances. The possible improvement to this

limitation will be discussed in the chapter (6).

3.5.2. Generating instances from current database

The solution trace cannot guarantee to have useful negative instances.

Even if it has, there may be insufficient negative instances to specialize the

upper boundary of the target rule. As a result, further instances are still

54

required. In the case of the sibling example, the upper boundary has been

narrowed down to "related(X,Y) :- parent(ringo,X),parent(ringo,Y)." as a

result of the negative instance (3.18). There is a possibility that the variables

X and Y are also constant. The system has to find and confirm this. The last

part of the prototype is to generate instances, asking the user to classify the

instances as being either positive or negative. Based on the user's

classification, the system tries to determine which variable in the upper

boundary can be turned into a constant. The following paragraphs describe

why the generation of instances from the current database must be guided.

One of the simple ways of generating instances is to use the upper

boundary as the rule to generate an instance. By causing the rule to

backtrack continuously, the prototype can eventually generate all the possible

instances in the current domain. While this approach is simple to implement,

it generates a lot of redundant and useless instances. For example, if a rule

has been specialized to the form "related(X,Y):- parent(ringo,X),

parent(ringo,Y)" from a previous instance of "relate d(j essica, c hristopher) :-

p arent(ringo,jessica), parent(ringo, chrIstopher)", another instance of

" relate d(jessica,christopher) :- parent(j anice,j essica), parent(janice,

christopher)" is redundant because it does not contribute to any further

generalization or specialization. An instance with one discriminant is useful

because its classification as positive or negative can uniquely identify whether

the discriminant can be turned into a variable. An instance of two

discriminants may not be very useful unless one of them has been identified

previously. To avoid generating redundant and useless instances, the process

of generating instances must be guided.

55

The prototype uses two criteria to generate instances. The criteria are

similar to the ones used in the previous step of extracting negative instances

from the solution trace. Whether they are positive or negative, only instances

within the current version space are useful. Therefore, the instance

"related(jessica,pat):- parent(j anice,jessica), parent(janice,pat)" is not useful as

it lies outside the current most general boundary of "related(X,Y) :-

parent(ringo,X),parent(ringo,Y)". In order to ensure that only instances

within the current version space are generated, the most general boundary

"related(X,Y) :- parent(ringo,X), parent(ringo,Y)" is used as the rule to

generate instances.

As, the user only gives a simple answer "yes" or "no" to the instances, the

system has to generate those instances with only one discriminant. Therefore,

the instance of "related(jessica,christine) :- parent(ringo,jessica),

parent(ringo,christine)" is a useful instance, whether it is a positive or

negative, as there is only one discriminant, "jessica". The instance of

"related(jessica,pat) :-parent(ringo,jessica), parent(ringo,pat)" is a useful

positive instance, but not a useful a negative one. If the user answer "yes" to

this one, then the system can justify that both the constants "jessica" and

"pat" are variables "X" and "Y". But if the answer is "no", then the system

runs intothe same problem of deciding whether one or both of them are the

negative discriminants. Consequently, this current prototype is restricted to

generating instances with only one discriminant.

Whether the version space can be successfully narrowed down to the

target rule depends on the number of instances which can be generated from

the database. If there are five undecided variables before this step, then at

56

least five instances, each one with only one discriminant, have to be produced.

The database in the figure (3.1) can generate sufficient instances for the

prototype to learn the sibling and grandparent rules, but not the "great

grandparent" rule. For the "great grandparent" ruTle, only four different

instances can be generated in total from the database of figure (3.1). They

are:

cl(3.24)

relate d(ringo,adrian) :-parent(ringo,christopher),parent(ehristop her, mary),

parent(mary, adrian).

cl(3.25)

related(janice,adrian):-

parentj anice ,christopher),parent(christopher,mary), parent(mary,adrian).

cl(3.26)

relted(ringo,ringo): parent(ringo,george), parent(george,mathew),

parent(mathew,ringo).

cl(3.27)

related(j anice,ringo):- parent(j anice,george), parent(george,mathew),

parent(mathew ,ringo).

In this example, the first instance (3.24) is taken to be the initial positive

instance. The rest of the instances are generated by this step. The second

instance (3.25) can be used to decide whether the constant "ringo" comes from

a variable in the target rule. The instance (3.26) has more than one

discriminant. If the user classifies (3.26) as being positive, then the system

can justify turning all the remaining constants in the instance into variables.

The rule then becomes:

57

cl(3.28)

related(X,Y):-parent(X,L),parent(L,M),parent(M,y).

But if the answer is "no", then the prototype cannot infer any further

information from the instance (3.26). The last instance cl(3.27) is not useful

as it does not contain any extra information.

3.6. Summary

This chapter has described two types of rules for certain domains: basic

and specific rules. .The solution for a problem is initially found using the

basic rules of a domain. Then the prototype infers a specific rule from the

solution to solve a similar class of problems.

In the first stage of analytical induction, the prototype infers any

common shared variables or constants in the target rule. In the second stage

of empirical induction, the prototype first extracts any useful negative near-

miss instances to specialize the upper bound of the target rule. Then it

further generates instances from the existing database of the domain and

requests the user's classification on these instances. Based on the user's ,

classification, the prototype refines both the upper and lower bound of the

target rule. The next chapter describes the implementation of the prototype.

CHAPTER 4

Implementation of the prototype

This chapter discusses the current implementation of the prototype. The

target rule can be imagined as contained in a hypothesis space of many

possible target rules which are bounded by its most general form and the

most specific form. A common terminology for this space is called the version

space. Section 4.1 describes the first stage, analytical induction which

generalizes a positive instance into the most general form of its version space.

The second stage, empirical induction, has two sub-stages. Section 4.2

describes the first substage df specializing the most general form of the version

space by using any near-miss negative instances extracted from the solution

trace. Section 4.3 describes the second sub-stage of generating instances from

the database, and using these instances to narrow down the version space

bounded by the most general and most specific forms. Section 4.4 describes

the current status of the prototype, and section 4.5 summarizes this chapter.

4.1. Analytical Induction

In order to carry out analytical induction, the prototype has to know the

form of the positive instance. The instance is actually the solution to a

particular problem generated by an inference engine. The prototype also has

to know how the solution is generated by the inference engine.

At present, the inference engine of the 0-Prolog system just returns an

answer "yes" or "no" to the query such as "related(christop her, christine)". In

the case when "christopher" and " christine" are related, the C-Prolog system

58

59

just indicates an answer "yes", but gives no indication of how these two are

related. Also there is no information as to what basic rules have been used in

finding the solution.

Another requirement is that the prototype must be able to access any of

the solutions which are rejected by the user. The storage of these solutions

forms the source of negative instances for the next stage of empirical

induction. The existing C-Prolog system, however, does not store these

instances once a query is finished.

All the above requirements of the prototype seems to indicate the need

for extracting extra information from the current 0-Prolog interpreter. One

way to capture this extra information is to build some functions within the

existing C-Prolog interpreter., However, these functions may interfere with

the performance of the interpreter and affect other users of the system. To

prevent interference with other users, the work for this thesis involved

building a separate interpreter to simulate the actions of the current .0-Prolog

interpreter.

The current implementation involves a meta-interpreter runiiing on top

of the existing C-Prolog interpreter. Besides simulating the action of the

existing interpreter, the meta-interpreter captures the form of the solution

such as ' parent(ringo,christopher),parent(ringo,christine)" as well as any

solution rejected by the user. The rejected solutions are asserted into the

database with the special tag "frecord" so that they can be retrieved even

after an query is finished.

There are several analytical generalization techniques for different

applications such as story understnding, heuristics and so on. In LEAP and

60

LEX where heuristics are learned from instances produced by the basic

operators, constraint back-propagation technique is used. This involves two

separate stages: capturing the sequence of the basic operators during the

problem solving stage; and generalizing using the same sequence in the

induction stage. To use this technique, the prototype has to supply extra

information on how those basic operators can be back-propagated. This extra

information may not exist or be defined for all basic operators. Other

limitations have been cited for this technique [Utgoff 1986]. The prototype

uses a different technique from the constraint back-propagation technique.

Instead of keeping a record of how the basic rules are used, the meta-

interpreter produces a generalized and/or tree to represent their sequence of

application.

In Prolog, the process of finding a solution can be. captured in an and/or

tree. The top node of the tree represents the query or the question, and the

bottom nodes of the tree represent the solution to the query. The internal

nodes of the tree represent the intermediate steps taken by the interpreter. In

essence, the and/or tree of the solution represents the basic rules and the

binding of the variables in the rules with constant values. To infer how the

constants are shared in the tree, it is necessary to have a corresponding

generalized and/or tree which captures the basic rules but without any

binding of variables. A corresponding mapping between these two trees can

reveal whether two constants in the solution tree are indeed shared together.

An example is shown in figure 4.1.

The meta-interpreter builds these two trees at the same time. When the

query "relate d(christop her, chi'istine)" is fed into the meta-interpreter, the

61

related(chrj stopher,chrjstjnc)

parent(ringo,chrjstjfle) parcnt(ringo,cIrjStine)

Solution and-or tree

related(X, Y)

parent(Z,Y) parent (Z, Xi

generalized and-or tree

Figure 4.1: A solution tree and its generalized form.

generalized form of the query "related(X,Y)" is also fed to the same

interpreter. When the solution "parent(ringo,christine),

parent(ringo,christopher)" is found, the generalized rule "parent(Z,X),

parent(Z,Y)" ig also generated from the generalized and/sr tree.

It is essential that the two trees correspond to each other. Two major

problems can arise from trying to produce a corresponding generalized tree.

Part of the first version of the meta-interpreter is shown in figure 4.2. Two

simple examples are shown in figure 4.3 and 4.4 to illustrate the problems. A

modified version is shown in figure 4.5.

62

Calll(Goal, Result, Head, Rule) :-

clause(Goal, Bodyl),
clause(Head, Body2),
calll(Bpdyl, Result, Body2, Rule).

where Goal--the query
Result--the bottom nodes of the solution tree
Bodyl--subgoals of the query
Head--generalized query
Rule--the bottom nodes of the generalized tree
Body2--subgoals of the generalized query

Figure 4.2: A portion of the meta-interpreter (Version I).

The first problem is that the generalized query may instantiate with

some clauses which the solution query will avoid. For example, in figure 4.3,

the meta-interpreter has to instantiate both the actual query of "test(2,Y)",

and the generalized query of "test(L,M)". The query "tes(2,Y)" can only bind

with the (2) clause of "test", but not (1). "test(L,M)" can bind with either (i)

or (2). Because of the sequential evaluation, "test(L,M)" in this case will bind

with (1) first. Therefore a discrepancy occurs between these two trees. The

solution tree binds with the second clause (2) of test, while the generalized

tree binds with the first clause (1) of test. To prevent this mismatch from

happening, the instantiations in both trees must be tested for equality at each

step of instantiation. In this example, the generalized tree has to give up its

first instantiation and try the second one which matches with the

instantiation of the solution tree.

83

subgoal 1
subgoal 2.
subgoal yes).
subgoal no).

1) test 1,Y) :- subgoal(yes), subgoal(Y).
2) test(2,Y) :- subgoal(no), subgoal(Y). -

QUERY: calll (test (2,Y), R, test(L,M), Rule)
ANSWER:
Y=-1
R = subgoal (no),sub goal (1)
L=1
M=_7
Rule = subgoal(yes),subgoal(_7)

Figure 4.3: The problem of different instantiations.

The second problem comes from different backtracking by the two

different trees. In figure 4.4, the interpreter has tried 1), 2) and 3) of the

clause "rel(X,Y)" in both trees and fails. The interpreter then first backtracks

the solution tree and tries the final clause 4) where it succeeds. However, the

generalized tree still remains at the previous clause 3). Consequently the

instantiaions in both trees are different. To prevent this problem, the

interpreter must backtrack both trees to the same place at the same time.

The improved version (II) is shown in figure 4.5 which takes care of the

two problems. However the code of the improved version (II) is less easy to

understand than the first version.

64

parent(ringo,john).
parent(ringo,mary).

1 relX,Y
2 relX,Y
3 relX,Y
4 relX,Y

:- parent X,Y.
:- parent Y,X.
:- parent X, Z), rel(Z, Y
:- parent Z, X), rel(Z, Y

QUERY: call l(rel(john,mary), R, rel(X,Y), Rule).
ANSWER:
R = parent(ringo,john),parent(ringo,mary)
X = _5
Y= 6
Rule = parent(_5,._.24),parent(_24,_6)

Figure 4.4: The problem of different backtracking.

Call1(Goal, Result, Head, Rule) :-

clause(Head, Bodyl),
copy((Head:-Bodyl),(Head2:-Body2)),
Goal = Head2,
calll(Body2, Result, Bodyl, Rule).

Figure 4.5: A portion of I the meta-interpreter (Version II).

The first stage can be summarized by the following procedure:'

--input the query and its generalized form to the meta-interpreter
--While the acceptable solution is not found loop

--search for another solution and its corresponding generalized rule
simultaneously
--output the solution to the user for its feedback
--if the answer is " acceptable" then

65

--output the solution and its generalized rule
--stop the loop

--else
--assert the solution into a database with a tag "frecord"
--continue the loop

4.2. Extracting negative instances

The first sub-stage of the second stage "empirical induction" is to

specialize the most general form of the rule found in the previous stage. The

specialization is done by using any near-miss negative instances extracted

from the solution trace. There are three steps in this stage. The first step is

to extract negative instances which are marked with the tag "frecord" from

the database. The second step is to rearrange the negative instances and

makes use of those near-miss instances for specialization. The final step is to

specialize the general form of the rule so that the version space is smaller.

After the first stage of analytical induction, the version space which

contains the target rule can be described and bounded by the most specific

and most general form of the rule. The most specific form is the positive

instance used in the analytical induction. The most general form is the rule

induced in the analytical induction. If instances are rejected by the user while

the interpreter is finding the solution, and some of the instances are within

the version space, then these instances can be used further to narrow down

the boundary of the version space. In other words, the version space should

be narrowed further to exclude those instances by specializing the most

general form of the space. The instances marked with the tag "frecord" in

the database are negative instances. Some of them are within the version

space, but some of them are not. The prototype' has to extract those within

the version space in order to specialize the most general form. To do that,

66

the prototype extracts those instances which can match the most general

form, i.e. the rule induced during the analytical induction. Those negative

instances which do not even match the most general form are outside the

version space and they are not useful for any further induction.

The second step is to organize those negative instances lying inside the

version space. The current prototype can only make use of the near-miss

negative instances. Therefore, it is necessary to select further the near-miss

instances from the ones found in the previous step. The negative instances

are compared with the most specific form one by one to find out how different

they are from the most specific form. Then the instances are sorted in a list

according to the order of difference. Those near-miss instances with just one

discriminan are put at the front of the list, followed by those with two

discriminants, and so on.

The final step is to specialize the most general form. Both the most

general and most specific forms are compared with each negative instance,

starting with the first one in the list. Comparison of the most specific form

with a given negative instance indicates what is the essential discriminant.

The essential discriminant is used to locate the corresponding value in the

most general form. If the corresponding value in the most general form is a

variable, then the variable is specialized to the corresponding constant in the

most specific form. If the corresponding value in the most general form is a

constant already, then the value is kept the same. The specialization stops

when all near-miss instances with one discriminant, in the list are exhausted.

The procedure is shown in the figure 4.4.

67

Most general form unique list [Z,X,Y]
related(X, Y) :- parent(Z, X), parent(Z, Y).

Most specific form unique list [ringo, christopher,christine]
relate d(christopher,christine):_parent(ringo,christopher),p are nt(ringo,chrjstine)

Negative instance unique list [j anice,christopher, christine]
related(. christopher,christine):-parent(j anice,christopher) ,p arent(j anice,christine)

'if

The new most general form unique list [ringo,X,Y]
related(X,Y) :- parent(ringo, X), parent(ringo, Y).

Most specific form unique list [ringo, christopher,christine]
relate d(christopher,christine):_parent(ringo,christopher), parent (ringo,chrjstjne)

Figure 4.6: Specialization using negative instance.

Instead of storing and comparing eaéh instance as a whole entity, the

current prototype abstracts a unique list of variables and constants for each

instanóe. For example, for the instance of

related(christop her, christine):-

parent(ringo,christopher),parent(ringo, christine)

the unique list to represent that is

[ringo, christopher,christine]

68

This is due to the fact that the prototype just manipulates constants and

variables in the brackets. The functors of the predicates such as "parent" are

not manipulated. Therefore, in the third step of specialization, each instance

or a rule can be uniquely represented by a list of its constants and variables

without essential loss of information. The corresponding unique list for- each

instance is also shown in the figure -4.6. Consequently, only unique lists are

manipulated instead of the whole instance or the whole rule. Manipulation of

the unique lists is both more time efficieht and more space efficient than

manipulating the whole rule or instance. At the end of the third step, the

unique list is used to produce- the rule back in its original form.

The second step can be summarized by the following procedure:

--extract negative instances using the most general form -

--sort the negative instances in a list according to the number
of discriminants
--While near-misses still exist in the list do:

--compare each negative instance with the most specific form
to locate the discriminant
--find the value in the most general form corresponding to this
discriminant
--if the value is a variable, turn it into the corresponding

constant value in the most specific form
----else keep the value as it is.

4.3. Generating Instances - -

- The next sub-stage of the "empirka1 induction" is to generate instances

from the current database. Based on the classification of the generated

instances from the user, the prototype generalizes the most specific form or

specializes the most general form. The generation of instances must be guided

so that redulidant instances are avoided. The prototype first attempts to

generate instances with only one discriminant. Alter all these instances from

the database are exhausted, the prototype tries to generate instances with

60

more than one discriminant.

The current prototype relies on a list of variable/ constant pairs to guide

its generation of instances. This list is constructed by extracting unique

variables from the most general form and their corresponding constants in the

most specific form. An example is given in figure 4.7.

The prototype then uses the most general form to try to produce another

instance from the database such that X is instantiated to a value other than

"Christopher", while keeping the variable Y instantiated to the same value of

"Christine". If this instance can be generated, it is prompted for the user

classification. If that instance cannot be generated, the prototype attempts to

generate another instance with the variable Y binding to a different value

other than "Christine". If this instance still cannot be generated, then the

database does not contain sufficient instances to allow the target rule to be

induced. In this case, the most general and most specific form will be

returned instead of a single target rule.

the new most general form after, the second stage is:
related(X,Y):_ p arent(ringo,X), parent(ringo,Y).

the most specific form remains as:
relate d(christopher,christine):- parent(ringo,christopher), parent(ringo, christine

the list of variable/ constant pairs is:
[[X,christopher}, [Y,christine]]

Figure 4.7: An example of a list of variable/ constant pairs.

70

The final'stage can be summarized in the following procedure:

--create a list of variable/constant pairs from
the most general and most specific forms
--with each pair in the list, do:

--generates an instance such that the variable in this pair
has a different value from the constant in the pair..
--if an instance can be generated, then

--prompt the user for classification of the instance
--if "yes", the variable is maintained.
--if " no", the constant is maintained.

--put this pair into another list of "undefined"
--repeat the loop with the, next pair

-else

4.4. Current status of the prototype

Each component, analytical induction, extracting negative instances, and

generating instances, has been implemented and tested separately as an

individual module. However, there are difference between the interfaces for

the different modules. For example, the analytical induction module outputs

the rule and instances as clauses, but the next two modules accept the rule

and instances in the form of a list. The user has to modify the format of

output slightly from one module to another format for input to the next

module. The interface problem •is presently being worked on and will be

resolved in the future.

To ensure 'that the prototype does not just solve the family-tree problem,

it has been tested with other problems such as inducing specific rules for

parsing context free grammar. Given a set of basic grammar and its 'database

[Glocksin and Mellish 1981], as shown .in figure 4.8, the prototype induces a

specific rule for parsing. a certain group of senteices. For example, the

prototype induces a specific rule of [determiner, noun,verb, determiner, noun]

from the sentence of [the ,man,eats,the,apple].

71

sentence(SO, S) :-noun_phrase(SO, Si), verb_phrase(S1, S).

noun_phrase(SO, S) :- determiner(SO, Si), noun(S1, 5).

verbphrase(SO, S) :- verb(SO, S).
verb_phrase(SO, 5) :-verb(SO, S1), noun_phrase(S1, S).

determiner([thelS], S).
noun lmanISI,S).
noun apple],S).
verb(eatsiS ,S).
verb(singsS],S).

query :-sentence([the, man, eats,the,apple] , []).
the solution is

deter miner([the,man,eats,the,apple] , [man,eats,the,apple]),
noun([man,eats,the,apple] , [eats,the,apple]),
verb([eats,the,apple] ,[the,apple]),
determiner([the,applel, [apple]),noun([apple], [])

the induced rule is:
determiner(S1,S2),noun(S2,S3),

verb (S3,S4), determine r(S4,S5),noun(S5, [])

Figure 4.8: Inducing a rule for context free grammar.

4.5,. Summary

In the first stage of analytical induction, the prototype finds the most

general form of the version space from the generalized and/or tree. The most

specific form of the version space is the solution to a problem found by the

interpreter. The most general form is used in the next stage of empirical

induction as the basis for finding negative. instances and generating instances

from the database. The most specific and most general form are refined at

72.

the stage of empirical induction. The next chapter will discuss the limitations

of the prototype, both in terms of its design and its implementation, and

suggests further improvements. In addition, it also discusses several problems

encountered in this project.

CHAPTER '5

Evaluation

This chapter evaluates the performance of the prototype, in bolh its design

and implementation. Section 5.1 describes the limitations of its

implementation. Section 5.2 examines the performance of each part of the

prototype. Section 5.3 looks at the prototype as a whole. It describes where it

is useful, and the assumptions that make it work. Section 5.4 suggests several

issues for further investigation.

5.1. Implementation bottleneck

The prototype has been tested with a family-tree program, a, sentence-

parsing program, and several list-manipulation programs to gain some

estimate of its generality.

The current prototype was slow in running the test programs. For

example, parsing a sentence of "[the,man,eats,the,apple]" required only 0.016

cpu second running directly on the 0-Prolog interpreter, but required 1.68 cpu

second on the prototype running under similar loading conditions. The major

inefficiency is due to the meta-interpreter built in the prototype. The meta-

interpreter is required to extract extra information for induction.

There are reports on the inefficiency of using a meta-interpreter in the

Prolog system [Sterling and Lee 1986], since a large fixed overhead exists.

The meta-interpreter sets up the target program and then runs the program

on the actual C-Prolog interpreter. This large fixed overhead may account for

the inefficiency, especially when running small programs.

73

74

Another major inefficiency is in building a generalized and-or tree for the

analytical induction. In order to carry out the analytical induction, it is

necessary to record those basic clauses which are used in deriving a solution.

However, getting those basic clauses in their original forms is not an easy task

since the prototype has no direct information on how the C-Prolog interpreter

operates. The 0-Prolog built-in predicate "clause(Head,Body)" does not

totally solve the problem. For example, given the head of

" relate d(christopher,christine)", the predicate " clause" returns the body of

"parent(Z,christopher), parent(Z,christine)". However it is the rule of

"related(X,Y) :- parent(Z,X), parent(Z,Y)" which the prototype requires for

analytical induction. In order to record the body of the rule "related(X,Y) :-

parent(Z,X), parent(Z,Y)", the prototype has to build a separate generalized

and-or tree. As discussed in section 4.1, the generalized and-or . tree has to

correspond with the solution tree. To prevent mismatch, the instantiations in

both trees must be tested for equality at each step of instantiation. If there

are similar clauses, testing equality may be time-consuming. A major

improvement beyond the current prototype will be achieved by having some

means of getting the basic rules used in the problem solving stage directly

from the C-Prolog interpreter. In that case, programs can be run directly on

the C-Prolog interpreter without the extra overhead of the meta-interpreter.

The current prototype can handle Prolog clauses involving "and" goals,

"or" goals, and "not". It cannot handle "cut". It also cannot handle goals

which require their variables to have specific constant values at the time of

their instantiation. For example, any goal involving the system predicate of

write(X) will fail because X must be instantiated to a constant value at the

time of its call. In the solution tree, X would have a specific value. However,

75

in the generalized and-or tree, X would remain a variable. This would cause

the system to fail.

5.2. Evaluation of each component

The first stage of analytical generalization is able to identify any

constants and shared variables of such complicated clauses as:

cl(5.1)

related(R,J) :- parent(R1,J),parent(M,R1), parent (G,M), pare nt(R,G).

from the instance

cl(5.2)

related(ringo,john) :- p arent(ringo,john), p arent(naathew ,ringo),

pareiit(george ,mathew), parent(ringo,george).

A user may have difficulty in deciding that there is a shard variable "Ri",

and that "RI" is different from another shared variable "R". To do this, he

has to trace through the solution step by step. In that respect, analyica1

induction saves the user from the tedious effort of tracing through the

solution manually.

Although the first stage of the prototype can identify any shared

variables, some interpretation is still required by the user to determine the

types of the variables. In Prolog, there are no types for variables. A variable

can assume an integer value, a symbol constant or a list. For example, the

prototype returns a grammar rule of:

cl(5.3)

sentence(X, []) :- determiner(Xi,X2), noun(X2,X3), verb(X3,X4),

determiner(X4 ,X5), noun(X5, []).

76

from the instance of -

cl(5.4)

sentence([the,man,eats,the,apple])

determiner([the,man,eats,the,apple] , [man,eats,the,apple]),

noun([man,eats,the,apple] , [eats,the,apple]),

verb([eats,the,apple] , [the,apple]), determiner([the,apple], [apple]),

noun([apple],[])

The Induced rule can only work when all variables in the rule have the input

in the form of a list. However, the induced rule does not indicate that extra

requirement. The user has to infer this himself by observing that all

constants in the corresponding positive instance cl(5.4) are in the form of a

list. The interpretation can be tedious if there is a mixture of different types

in a rule.

In the first step of the second stage of the empirical induction, it is found

that the past rejected solutions do not always exist as a source of negative

instances. The family-tree program may generate some rejected solutions but

the parsing program seldom generates any. Even for the family-tree problem,

the rejected solutions are few and insufficient for the system to arrive at

target rule. The original design idea is that if any rejected solution is

generated during the search for right solution, then it is saved as negative

instances. It does not have to be regenerated again for empirical induction.

However, the result does not indicate any significant advantage to using this

idea. In addition, this step asumes that all solutions in the solution trace are

rejected ones rather than alternative right solutions. This restricts the user in

interacting with the system.

77

The generation of instances in the second step depends on the database.

A large database does not necessarily mean sufficient instances can be

provided for all the different varieties of specific rules. The database may

contain many similar instances which are useful for inferring some types of

specific rules, but not others. To induce a variety of rules, the database must

have a variety of instances. The database for the family-tree and parsing

problems are not very large. Consequently, the prototype could generate

sufficient instances for some simple specific rules but not for some of the more

complicated rules. -

In both the first and second step of the empirical induction, the

prototype is restricted to using negative "near miss" instances for its

specialization. That may restrict the prototype from inducing a target rule.

A better strategy is to consider other negative instances besides those near

miss instances. The major problem is to identify the essential discriminants

which cause the instances to be negative. Some strategies such as the depth-

first search or the Version Space method can handle this problem. However,

the implementation is more complicated than the current prototype. The

computation is also likely to be more expensive than the current one because

it is necessary to process other negative instances.

5.3. Performance of the prototype

The following subsections describe where the prototype may be useful

and the essential features behind the working of this prototype.

78

5.3.1. Where it can be useful

The purpose of the prototype is to induce specific rules to improve the

system's problem solving efficiency. The choice of a domain can affect the

usefulness of the prototype. One criterion for using the prototype is to choose

domains where useful specific rules can be found. It is a subjective criterion

because there is no precise definition for the term "usefulness". Perhaps the

following examples may indicate some ideas of this criterion. • In the family-

tree problem, the "sibling", "grandparent"' and "great grandparent"

relationship are useful specific rules for solving typical cases of family tree

relationship. Similarly, specific rules for defining certain sentence structure

are useful for the parsing problem. The prototype has been tested with some

list-manipulation programs such as append, and it does not infer any useful

specific rules. For example, the prototype can infer a specific rule on, how to

append a single element to a list of three elements. However, that rule may

be too restrictive because it can only be used for cases with a list of three

elements.

The prototype uses analytical induction to narrow down' the search

space. Analytical induction requires the existence of background knowledge

for its induction. In this prototype, the background knowledge consists of the

basic rules and how these rules are to be used in deriving a positive instance.

Therefore, this prototype is targeted at domains where basic rules exist. Also,

the prototype must be able to record these rules when an instance is derived

from them.

79

5.3.2. Restrictions behind the Prototype

Compared to running programs directly on the C-Prolog interpreter, the

prototype is slow because it has to keep track of a lot of other information for

induction. However, the prototype is able to induce the rules in a reasonable

amount of time when tested with the sample programs. There are three

restrictions on the prototype that make it a feasible system. These

restrictions constrain the search space and prevent the prototype from facing

some computationally intensive search.

The first restriction is that two logic clauses are considered equal only if

they have the same subgoals arranged in the same order. This restriction

limits the space of possible pairings. For example, consider two clauses A and

B. With this restriction, the subgoals within the two clauses are compared

with respect to their position. In other words, the first subgoal of clause A is

compared with the first subgoal of clause B, the second subgoal of clause A

with the second subgoal of clause B, and so on. Without this restriction, one

subgoal of clause A can be paired with any one subgoal in clause B. It can be

the first subgoal or the last one. To find that out, each subgoal of clause A

has to be evaluated with every subgoal of clause B. That inéreases the

computation complexity from order N to order N factorial (N!) where N is the

number of subgoals in each clause.

The next restriction is that the prototype only considers the

generalization of constants and variables and not functors. Consequently, the

protOtype has the bias of inducing rules in maximally specific form. For

example, if there are two representations of the same rule such as the "great

grandparent" relationship:

80

cl(5.5)

related(X,ZA) :- parent(X,Y), parent(Y,Z), parent(Z,ZA).

and

cl(5.6)

related(X,ZA) :- grandparent(X,Z), parent(Z,ZA).

where the goal of "grandparent(X,Z)" is represented by another rule

cl(5.7)

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

The two rules of (5.5) and (5.6) are interpreted to be the same since (5.6) can

be converted to (5.5) by substituting its subgoal of grandparent. Under this

circumstance, the prototype will induce the rule of (5.5) instead of (5.6) even

though the rule (5.6) is simpler in structure.

There is an advantage of inducing a rule in a simple form such as rule

(5.6). It is easier for a user to understand a rule conceptually in a simple form

than in a maximally specific form. This understanding may give the users

confidence in using the rules induced by the machine, especially for large and

complicated domains.

However, to seek a rule in a simple form requires more computation to

ensure that all the substitutions of subgoals do not create side-effects. Side-

effects are due to the possibility that some subgoal may contain disjunctive

clauses. Substitution of these subgoals may result in the rule being over-

generalized. For example, consider a parse tree of the sentence,

[the,man,eats,the,apple] in figure 5.1 [Clocksin and Mellish 19811.

81

sentence

/
noun—phrase verbphrase

determiner

the

noun verb noun—phrase

man eats

determiner noun

the apple

1) sentence(SO, S) :-noun.phrase(SO, Si), verbphrase(Si, 5).

2) nounphrase(SO, S) :- determiner(SO, Si), noun(Si, 5).

3a) verbphrase(SO, S) :- verb(SO, S).
3b) verbphrase(SO, S) :-verb(SO, Si), nounphrase(S1, S).

Figure 5.1: Parsing the sentence "the man eats the apple".

For the -instance of [the,man, eats, the, apple], the induced rule in maximally

specific form is

[determiner(S 1,S2), noun(S2,S3), verb(S3,S4), determiner(S4,SS),

noun(S5, [])}.

The rule will still be correct if it is converted to the form of

J
82

[noun_phrase(S1,S2), verb(S2,S3), noun_phrase(S3,[])}

by using the clause (2) to replace the subgoals of "determiner", and "noun".

However the rule is too general if it is further simplified into the form of

[noun._phrase(S1,S2), verb_phrase(S2,S3)]

by replacing the subgoals of "verb" and "noun—phrase" with the subgoal of

"verb—phrase". It is because the "verb—phrase" clause' (3) has another

disjunctive clause (3.a): "verb_phrase(SO,S) :- verb(SO,S)". This disjunctive

clause can introduce cases which the rule may effectively exclude.

To discover out these disjunctive clauses may require more computation.

When the prototype genera:tes the solution tree for the sentence

[the ,man,eats,the,apple], it only examines those paths leading to the solution.

Consequently, the prototype does' not know whether some of the intermediate

clauses in the tree have disjunction. Since'the prototype can only use those

intermediate clauses with no disjunction to simplify the rule, the prototype

has to go back and re-examine them. The re-examination of these clauses

may be expensive. The prototype not only has to explore the search space of

the solution, but also the search space of other alternatives.

Finally, there is an implicit restriction when generalizing constants into

variables. There are only two levels in the generalization hierarchy for each

variable. Either a variable is a constant value or it denotes a range of values.

There is no intermediate concept between these two levels. Therefore, the

prototype only has to generate two instances for each' variable to decide

whether it should be a variable or constant. Without this implicit restriction,

• the prototype would have to generate many possible instances for each

variable, which would be combinatorially explosive. For example, consider an

83

integer variable "I" with a range of 1 to 10. With the restriction, only two

values are needed to be picked from 1 to 10 to decide whether the variable "I"

in a rule can remain as a variable. If an intermediate concept is allowed, the

prototype has to generate all ten values to be absolutely certain that "I" can

remain as a variable. It is quite possible that some intermediate concept such

as "odd number between 1 and 10", or "even number between 1 and 10" can

exist. The prototype would have to generate many instances to be sure and

the computation would be increased.

5.4. Issues for future research

Several issues were identified during this project. They are described in

the following subsections.

5.4.1. Selection and organization of specific rules

This prototype only addresses one aspect of the knowledge acquisition

process: the process of inferring specific rules. Deciding which specific rules

should be induced and what should be their organiation in the rule base are

also important parts of the knowledge acquisition process.

The prototype cannot induce ii rule for every problem it encounters. The

rule base would contain too many rules otherwise. Too many rules in the rule

base would slow down the system performance because the system might

spend too much time searching for appropriate rules to act upon. Therefore,

the system preferably should induce those rules which solve typical cases.

'Unfortunately, the prototype does not know which cases are typical. It has to

rely on the user's judgement in selecting those typical cases and their

solutions. This issue is important for the self-learning programs such as AM.

84

Once the specific rules are induced, they have to be organized in the rule

base. One common strategy is to arrange specific rules before basic rules.

When a suitable specific rule is found for a problem, it will be used first.

When all specific rules fail, then the system can use the computationally

expensive basic rules to solve the problem. While this is a reasonable

strategy, this arrangement may affect the induction of future rules. In

particular, it may prevent induction of rules which are more general than

those presently in the system. For example, if the "children of rIngo" rule

(5.8) is induced first, and put in front of the basic rules, then the prototype

may not be able to induce the rule of "sibling" (5.9).

(5.8) related(X,Y) :- parent(ringo,X), parent(ringo,Y).

(5.9) related(X,Y) :- parent(Z,X), parent(Z,Y).

This is because the rule (5.9) is more general than (5.8). When the system

tries to generate a solution for the "sibling" problem, the system picks the

rule (5.8), as it is already in the rule base and in front of the basic rules.

During induction, the prototype remembers the rule (5.8) and uses it as the

most general boundary of the hypothesis space. However, this general

boundary excludes the target rule of (5.9).

Putting the basic rules in front of all specific rules may prevent this

problem but will destroy the usefulness of the specific rules. If the basic rules

are put in front of all specific rules, the basic rules will be used on every

occasion. The specific rules will be idle in the rule base.

85

5.4.2. Determining which techniques to use

One essential aspect of machine learning is to detet when a target rule is,

In the version space method, a target rule is found when the most

specific and most general sets of the version space are equal and contain only

one candidate. For analytical induction in strong domains, the rule induced

from a positive instance can be confidently interpreted as the target rule

because of strong background knowledge. However, if analytical induction is

applied before empirical induction and the domain itself, does not contain

sufficient constraints, then the rule induced by the analytical process may not

be the taiget rule. The system has to rely on the user to make the

judgement. If the rule is not the target rule, then the user invokes the next

stage of empirical induction to refine the rule.

The problem of deciding which techniques to use reflects one of the

difficulties in machine learning. In some problems, such as verifying circuit

design, and mathematical integration, there are well defined initial and final

states. The prob1m is to find the solution path connecting the initial and

final state. The knowledge of the final state can be used to judge along which

solution path to proceed. However, the strategy of using the final state as the

guideline does not work in machine learning. In most cases of machine

learning, the final state, i.e. the target rule, is unknown. The version space

method is better in the sense that it indicates the final state when the system

reaches it. But until the system reaches the final state, the system only has a

general bound of the final state. Consequently, it is difficult to use the final

state to decide which technique is appropriate. Other criteria are required.

Similarly, it is often difficult to conduct a search in machine learning because

86

of lack of constraints and guidance. The idea of organizing the search space

and establishing criteria for conducting a search in NODDY {Andreae 1985]

is the initial attempt to address the issue.

5.5. Summary

This chapter presents an evaluation of the current prototype. The

prototype is targeted at domains where basic rules exist and useful specific

rules can be found. Limiting the posib1e pairings, and allowing only

conjunctive induction are used to prevent the prototype from facing

combinatorial search explosion. Sample testing with the prototype indicates

that it is an advantage to use analytical induction to narrow down the search

space before empirical induction. However, the prototype needs improvement

in future to .allow other negative instances besides near miss instances in its

specialization. Also the organization of specific rules in the rule base, and

criteria for selecting appropriate techniques are two major issues requiring

further investigation.

CHAPTER 6

Conclusion

The knowledge acquisition problem has been recognized as. one of the

major bottlenecks in building knowledge-based sysems. One of the possible

solutions to this knowledge acquisition problem is the use of machine learning

techniques. This thesis describes an experimental prototype, which uses a

combination of analytical and empirical machine learning techniques, to infer

specific rules from solutions generated by basic rules of a domain.

Analytical induction is a knowledge-intensive approach-. It makes uses of

the background knowledge and the constraints of a domain, to guide its

induction process. Given sufficiently strong background knowledge and

constraints, it is possible to infer a rule from a single instance. Empirical

induction is a data-intensive approach which relies on syntactic comparison of

a number of positive and negative instances to infer a rule. It does not

require any backgrouid knowledge other than the - generalization hierarchy.

These techniques are useful for two different types of domains. There is a

need to address those domains where there is some, but insufficient,

background knowledge. The use of only analytical techniques cannot support

proper induction because of insufficient constraints. While empirical

techniques can be used for these domains, the process of induction may

involve a lot of instances, generated by the user.

This thesis explores the idea of using the analytical technique before the

empirical technique for such domains. The analytical technique makes use of

87

88

any available knowledge and constraints to guide the induction. The

empirical technique is then used to resolve those areas where available

knowledge and constraints are lacking. The advantage of using the analytical

technique before the empirical one is that the search space can be narrowed

down by the analytical one. Consequently, it suffices for the empirical one to

explore a much reduced search space.

The idea is used to build a prototype for inferring domain specific rules

in a Prolog system. The domains are those which have general basic rules,

but there is a requirement for inferring specific rules of arbitrary generality. ,

A solution for a particular problem is first generated by the system using the

basic rules. The prototype then infers a specific Prolog clause from the

solution. The induction is characterized by a two-step process.

(1) Deciding upon any shared coristants and variables in the target rule using

analytical induction.

(2) Deciding 'Upon the remaining constants and variables in the target rule

by empirical induction.

In the first step, the prototype induces the existence of any shared variables

or constants in a Prolog clause from both the generalized and solution and-or

tree. The prototype then decides whether a constant in the solution can be

turned into a variable in , the target rule. The prototype stores the past

rejected solutions as a source of negative instances, and generates new

instances from the database of the current domain for its empirical induction.

Constraints on possible pairings and a restriction to only conjunctive

induction are used to prevent the prototype from facing a combinatorial

search explosion.

Sample tests with the prototype indicate that it is an advantage to use

the analytical techniques in the first step of induction. In the second step, the

current prototype can make use of positive instances and near-miss negative

instances to refine a rule. Further improvement is required for the prototype

to make use of other negative instances besides near miss instances. Some

problems are identified for further investigation. One problem, is that the

organization of specific rules in the rule base may prevent the induction of

other rules. Another problem is to establish criteria to choose appropriate.

techniques.

Although machine learning is offered as a potential solution to the

knowledge acquisition problem, muáh research is still needed in the area

before it can be used practically. The current prototype work in a small set

of domains and also imposes cbnstraints to limit the search space. Violation

of the constraints can easily make the search unmanageable.

References

• Andreae, Peter Merrett (1085) "Justified Generalisation: Acquiring Procedures

From Examples" Ph.D Dissertation, Dept. of Computer Science,

Massachusetts Institute of Technology, Cambridge, Massachusetts.

Bratko,I. (1086) Prolog Programming for Artificial Intelligence. Addison-

Wesley Publishing Co..

Bundy, A., Silver, B., and Plummer, D. (1985) "An Analytical comparison of

some rule-learning programs" Artificial Intelligence Journal, 27, 137-181.

Carbonell, Jaime G., Michalski, Ryszard S., and Mitchell, Tom M. (1983)

"Chapter 1: An Overview of Machine Learning" in Machine Learning, An

Artificial Intelligence Approach, Vol 1, edited by Mitchell, Tom M., pp 3-24.

Tioga Publisbing Co, Palo Alto, California.

Chandrasekaran, B. and Mittal, S. (1983) "Deep versus compiled knowledge

approaches to diagnostic problem-solving" Interhational Journal Man-Machine

Studies, 19, 425-436.

Clocksin, W.F. and Mellish, C.S. (1981) Programming in Prolog. Springer-

Verlay, Berlin, Germany.

Davis, Randall. and Lenat, Douglas B. (1082) Knowledge-Based Systems in

Artificial Intelligence. McGraw Hill.

90

91

Dietterich, Thomas G. (1982) "Chapter X[\T Learning and Inductive

Inference" in The Handbook of Artificial Intelligence, Vol 8, edited by

Feigenbaum, Edward A., pp 323-512. William Kaufmann, Inc., Los Altos,

California.

Eliman, Thomas (1985) " Generalizing Logic Circuit Designs by Analyzing

Proofs of Correstness" in Proceedings of the Nineth International Joint

Conference on Artificial Intelligence, pp 643-646. August.

Feigenbaum, E.A. (1982) "Knowledge Engineering: The Applied Side" in

Intelligence Systems: the unprecedent and opportunity, edited , by Michie,

Donald. Ellis Horwood Ltd, West Sussex, England. ,

Gordon, Mike (1985) "A Machine Oriented Formulation of Higher Order

Logic" Report, Computer Laboratory, University of Cambridge, May.

Joyce, J. and Birtwistle, G. (1985) "Proving A Computer Correct in Higher

Order Logic" Research Report No. 85/208/21, Dept. of Computer Science,

University of Calgary, Calgary, Alberta, Canada, August.

Kowalski, Robert (1979) Logic for Problem Solving. Elsevier Science

Publishing Co. Inc..

Langley, Pat (1985) "Learning to Search: From Weak Methods to Domain-

Specific Heuristics" Cognitive Science, No, 9, 217-260.

Lebowitz, Michael (1986) "Integrated Learning:. Controlling Explanation"

Cognitive Science, Vol 10, 219-240.

92

Mahadevan, Sridhar (1985) "Verification-Based Learning: A Generalization

Strategy for Inferring Problem-Reduction Methods" in Proceedings of the

Nineth International Joint Conference on Artificial Intelligence, pp 616- 623.

August.

Michalski, .Ryszard S. (1986) "Chapter 1: Understanding the Nature of

Learning: Issues and Research Directions" in Machine Learning, An Artificial

Intelligence Approach, Vol 2, edited by Mitchell, Tom M., pp 3-26. Morgan

Kaufman PublIsbing Co, Los Altos, California.

Mitchell, Tom M. (1982) "Generalization as search" Artificial Intelligence

Journal, 18, 203-226.

Mitchell, Tom M. (1983) "Learning and Problem Solving" in. Proceedings of

the Eighth International Joint Conference on Artificial Intelligence, pp 1139-

1151. August.

Mitchell, Tom M., Utgoff, Paul E., and Banerji, Ranan B. (1983) "Learning

by Experimentation: Acquiring and Refining Problem-Solving Heuristics" in.

Machine Learning, An Artificial Intelligence Approach, Vol 1, edited by

Mitchell, Tom M... Morgan Kaufman Publisbing Co, Los Altos, California.

Mitchell, Tom M., Steinberg, Louis I., and Shulman, Jeffrey S. (1985) "A

Knowledge-Based Approach to Design" IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol PAMI-7, No.5, September.

Mitchell, Tom M., Mahadevan, Sridhar, and Steinberg, Louis (1985) "LEAP:

A Learning Apprentice for VLSI Design" in Proceedings of the Nineth

International Joint Conference on Artificial Intelligence, pp 573-580. August.

93

Norman, Donald A. (1980) "Twelve Issues for Cognitive Science" Cognitive

Science, No. 4, 1-32.

Rosenbloom, Paul S., Laird, John E., McDermott, John, Newell, John, and

OrcIuch, Edmund (1985) "RI-Soar: An Experiment in Knowledge-Intensive

Programming in a Problem-Solving Architecture" IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol PAMI-7, No. 5, September.

Samuel, A L. (1959) "Some studies in machine learning using the game of

checkers" IBM J. Research and Development, S, 210-229.

Shapiro, Ehud Y. (1982) Algorithmic Program Debugging. MIT Press,

Cambridge, Massachusetts.

Simon, Herbert A. (1980) "Cognitive Science: The Newest Science of the

Artificial" Cognitive Science, No. 4, 33-46.

Simon, Herbert A. (1983) "Why Should Machines Learn?" in Machine

Learning, An Artificial Intelligence Approach, Vol .1, edited by Mitchell, Tom

M., pp 25-38. Tioga Publis1ing Co, Palo Alto, California.

Stefik, M., Bobrow, D., Bell, A., Brown, H., Conway, L., and Tong, C. (1981)

"The Partitioning of Concerns in Digital System Design" (VLSI-81-3), Xeror ,

Palo Alto Research Report, December.

Sterling, Leon and Shapiro, Ehud (1986) The Art of Prolog: Advanced

Programming Technique. MIT Press, Cambridge, Massachusetts.

Sterling, Leon and Lee, Marucha (August 1986) "An Explanation Shell for

Expert Systems" Computational Intelligence, Vol 2, No. 3, National Research

94

Council of Canada, Ottawa, Canada.

Utgoff, Paul E. (1986) "Shift of Bias for Inductive Concept Learning" in

Machine Learning, An Artificial Intelligence Approach, Vol 2, edited by

Mitchell, Tom M., pp 107-148. Morgan Kaufman Publisbing Co, Los Altos,

California.

VanLehn, Kurt (1983) "Felicity conditions for human skill acquisition:

validating an Al-based theory" Research Report CIS-21, Xeror PARC, Palo

Alto, California.

VanLehn, Kurt (1987) "Learning One Subprocedure per Lesson" Artificial

Intelligence Journal, 31, 1-40.

Winston, Patrick H. (1975) "Learning Structural Descriptions from Examples"

in The Psychology of Computer Vision, edited by Winston, Patrick H., pp

157-209. McGraw-Hill, New Yórk.

Winston, Patrick H. (1984) Artificial Intelligence. Addison-Wesley Publishing

Co., Reading, Massachusetts. -

