THE UNIVERSITY OF CALGARY

A Prototype of Combined Induction
by

Sui-ky Ringo Ling

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

| ' DEGREE OF MASTER OF SCIENGE -

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
APRIL, 1987
(© Sui-ky Ringo Ling 1987

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée
a4 la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
£ilm.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;

ni la thése ni de longs
extraits de celle-ci ne
doivent &tre imprimés ou

autrement reproduits sans son
autorisation écrite.

ISBN 0-315-38024-1

The University Of Calgary

Faculty Of Graduate Studies

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies for acceptance, a thesis entitled, “ A Prototype of Combined
Induction " submitted by Sui-ky Ringo Ling in partial fulfillment of the

requirements for the degree of Master of Science.

o |
Y/, {0 7 /
L L['{,\ L ((((‘f (Z(f ¢

Supervisor,

Dr. John Kendall

Department of Computer Science

%DALQ\Q

Professor David R. Hill -
Department of Computer Science

)

4) (—- \/ E |
", (" / A /

—

7‘;‘,. A
Dr. J. G. Ells
Department of Psychology

April 20, 1987

=

Abstract

One of the major bottlenecks of building knowledge-basea systems is the
process of acquiring domain specific knowledge. Machine learning has been
suggested as one of the solutio_ns to *the problem. This thesis describes an
experimental prototype which uses a combination of analytical and empirical

machine learning techniques, to infer domain specific rules from solutions

generated by basic rules.

Tile prototype is targeted to the domains where there are basic rules, but the
basic rules are insufficient t:,o infer specific rules of any degree of generality.
Aﬁalytical induction is wused first to exploit any available background
knowledge to narrow down thq search space. before empirical induction.
" During empirical induction, the prototype minimizes -the user’s burden of
generating instances by exploiting pasﬁ rejected solutions as a source of
negative instances, and using the database of the current domain to generate

new instances.

Sample testing with the prototype indicated the advantage of using analytical
induction to narrow down the search space before empirical induction.
Further improvements are required for this prototype on its empirical
induction. . In addition, future research is needed in the organization of

specific rules, and in establishing criteria to select appropriate techniques.

- iif -

Acknowledgements

First of all, I would like t:,o thank my supervisor, Dr. John Kendall for his

support and patience. He gave me freedom to pursue my own interest, and

encouragement at time when I was in doubt.

Thanks to Dr. Ian Wltten and Dr. Bruce MacDonald for their crlthue whlch

made my work more concrete and precise.

Thanks to Allan Dewar for helping me with Prblog and to Brian Schack for i
ﬁéeful discussions on my work. Thanks also to Mike Bonham for sharing his

thesis typesetting environment and his ekperience.

Thanks to the graduate students and féculty in the. Department of Computer -
Science _atr the University of Calgary. - They have created: such a good
environment that I‘almosf, want to stay there forever.

" Finally, I would like to t'hank'my wife, Janice, for her lové and .support, énd

my daughter, Jessica, for pushing me to finish my thesis.

-V -

- Table of Contents

ADSETACH weerviviiiuriisrineitierineeieneenrreeeresssstisseeeesssesssnsessnssasssessssssssssnnneses iii
Acknowledgements ..oovceevvrereeenieeeeissseiiisrissessnseeeessnneesens eereennraneearnrnaaees iv
Table of Contents v
List of Figurés ... viii
Chapter 1 Introduction -1
1.1 EXPert SYSLEMS uvirerrrereersreeerssreeressseeressssneeessssneesens rerveeeennennes 1

1.2 Knowledge Acquisition Problemcovceeeeruveeerrvnneeisssreneeeesssnnens 3

1.3 The scope of the thesisccceerrrreeerennenne e 5
1.4 Summary of results ...cocevererreererereerenrernarenne eesreeeneneeresanens aene 7

1.5 Outline of the ThesIS vecceeereeesnerersreresreesessessessssssesseessssssessnens T
Chapter 2 Literature ReVIEWccevivireniicsenrerenenrinneenenienneeseesressesseenns 9
2.1 AN OVEIVIEW auuiieriiireesiiineirreressersvnnsessesseeseeseeesseesens e ronens 9

2.1.1 Induction: learning from Instancescceecvveerveerererenee 11

2.2 Empirical Learning .ccccvvccceeeerrrvireeersresrrnneeeessssneereseseecsessnnnsnane 15

2.2.1 The Arch PrOZIamceeceveresererersresenssesseerecseseseesesessenns 15

2.2.2 The Version Space ...eveeevevernnenn. eereereerereneseeresnesrereentes 17

2.3 Analytical learning .

2.3.1 LEAP

Chapter 3 Design of the prototype
3.1 Basic and specific rules
3.2 Prolog as the implementation language

3.3 User interaction

3.5 Empirical Induction

3.5.1 Extracting Instances

3.5.2 Generating instances from current database

3.6 SUMMALY ..cocereverrnnen

Chapter 4 Implementation of the prototype

4.1 Analytical Induction

oo

oo

ooo

$ 0000000000000 0000000rPrerttereesrccneteesssesssssssstotnosnesss

ooo

ooo

00000000000 ss0sessvessotrnsessse

oo

ooo

oo

oo

oo

ooo

ooooooooooooooooooo

oo

oo

ooo

- Vvi-

21

22
27

30

31

31

" 36

39

42
43

45

49
49

53

57

58

58

4.2 Extracting negative instances

4.3 Generating Instances

ooo

oo

4.4 Current status of the prototype rereesieetrrneestennanerenseesnnnnes

4.5 SUIMIMATY tieeieererersnreeecsesrsrneessssessarseessesssssnnsesessssssnes e

Chapter 5 Evaluation

oo

5.1 Implementation bottleneck ..uuiivveeeveiersreeeecreesesseeessreeessseesssanes

5.2 Evaluation of each COMPONENt ..cccvveereeiiverrreereereesssssnaneserseions -

5.3 Performance of the protdtype veerreeraeesteesressaeabeenrestseesteeeesnnanns

5.3.1 Where it can .be USefUl ..civeevrvureereerennnseeeresnsnnnneesssmennssses

5.3.2 Restrictions behind the Prototype ...cccceceereveerenrvervesennnen.

5.4 Issues for future researchccccervecreeervrneecrisnreeesseneens eeessesnnnns

5.4.1 Selection and organization of specific rulesccoeeuneenee

- 5.4.2 Determining which techniques t0 USE .eevevveecveesverseessvssns

5.5 SUMMATY .eeererrrererereneerennenenneeeassssesneees etsssenrnenensaneeans creereeneeees :

. Chapter 6 COnClUSION iiiivveerrerreersrrnneesrnreeessrereesssnessosersessesssnes ssesessasaranns

References

ooo

- vii -

65

68

70

71

73

73

75

77

78

79

83
83

85

86
87

90

1.1.

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7

3.1.

3.2.

4.1

4.2.

4.3.

4.4,

List of Figures

A rule-based expert systemocueeune....

The process of induction

ooo

9800000000000 0000000000000 0000000 00000000000

A sequence of instances for learning about archesoveevvveerenvernnnen.

Representing a Version Space
A Version Space example ..oeevvrenenne

A circuit and it’s generaiized design for LEAPcccceverversiveenennnenne. ‘

ooo

Verifying and Generalizing a circuit for LEAP .uuvveveeeeeeeeeeeneessinnnen,

A family tree and it’s Prolog clauses

. The constraint back-propagation methodcceeeeveevveveersoneeerreesnnnn.

ooo

The Version Space of a family tree examplecveerevueencenee reeneeene

« A solution tree and its generalized fOrm ...oeceveeeevvverersrneeesanns S

A portion of the meta-interpreter (Version I) ...cevvreereereereeenveeneneene.

The problem of different instantiations

The problem of different backtracking

- viii -

oo

ooo

14
16
18

19

.23

24

26

33

49

61

62

63

64

4.5, A portién of the meta-interpreter (Version II)

4.6. Specialization using negative instance
4.7. An examplé of a list of varigble/ constant pairs
4.8. Inducing‘a rﬁle for context free grammar

- 5.1. Parsing the sentence “the man eats the apple”

-ix -

ooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

64

67

69

71

81

CHAPTER 1

Introduction

There is a growing popularity of the expert system apﬁroach to solve
problems in many areas such as medical diagnosié, Well—lo{g analysis and
circuit design. One of the ‘major problems in building an expert system is to
acquire the many heuristics for the system: that is, the problem of knowledge
acquisition. Machine learning has been suggestedr as one of the possible
solutions to this problem. This thesis examines the idea of combining the
analyti;:al and empirical learning techniques fo;' inferring specific rules for a

particular type of knowledge domain.

1.1. Expert Systems

An expert system is charactgrizéd as a program developed to solve a
.problem for which :anAexpert is normz;lly mrequired. Tlrﬂle‘ problem domain
requires a certain amount of specialized knowledge. The expert system.is
usually applied to a domain where there is no well-defined algorithmic

solution. Sometimes, even if an algorithmic solution exists, the solution often

requires expensive computational power.

One of the most popular types of expert system is the rule-based system

which consists of three major componerilts,“ namely:

(1) A knowledge base which ‘contains the explicit domain knowledge,

“encoded in the form of “IF condition THEN action” rules,

(2) A working memory which contains the current descriptions of the

problem,

(3) An interpreter, which selects the appropriate rules from the knowledge ‘

base and modifies the descriptions in the worki‘“ng memory.

-~ A rule-based system works by first matching the currenp‘descriptions of a
problem in the working memory with the conditions of the rules in the
knowledge base. The interpreter then selects one or more rules whose
" conditions match the descriptions and executes the actions of the rules to
modifyr the descriptions. This cycle is repeated for the modified descriptions

until no more rules are applicable or until the modified descriptions represent

(interpreter)
\\\\\3:F

working
memory
(states)

select

(rules)

Figure 1.1: A rule-based expert system.

a solution.

One of the key characteristics of a rule-based expert system is the
separation of domain specific rules in the knowledge base from the application
of thesé rules by the interpreter. The rules represent all the domain
knowledge necessary for solving the problem. It is t’heée rules which give the
computational power to an expert system. Constructing a rule-based expel;t
system essentially means encoding these rules in the knowledge ba;se.
However, therprocess of encoding rules is time-consumiﬁg, tedious and

expensive.

1.2. Knowledge Acduisition Problem

To,ehco_dé expertise into a rule-based expert system, a knowledge
engineer must first familiarize himself with the application area and gain a
minimum amount of background knowledge. He then interviews an expert
and tries to capture his expertise for problem solving in his field. The
kriowigdge engineer then organizes the expertise into several blocks and -

represents them in the form of “if-then” rules in the knowledge base.

The.major difficulty in this process is that part of the expertise is not in
the form of textbook facts, but heuristics: the informal judgement rules that
the expert acquires through his experience. These heuristics are seldom

\

thought about concretely. As they are generally “rules of thumb”, they also

- seldom appear in textbooks or journal articles. Worst of all is that the expert

himself often has difficulties in verbalizing the heuristics. To capture. them,
an expert presents examples of how he uses his heuristics in solving specific
problems. Then a knowledge engineer observes these examples, and tries to

induce the heuristic rules from the examples. This thesis examines this part

of the knowledge acquisition process: inferring specific rules from examples.

The following is a case showing the importance of specific rules, and the
difficulties of acquiring them. The case does not involve an expert system,
but a proof assistance system. It shows that the knowledge acquisition,
problem does not arise only in the atrea of b:uilding_ expert systems, but also in

other areas such as Veriﬁcation and proof systems

One of the ‘major parts of VLSI design is to verlfy the design of a chip.
A HOL (ngher Order Logic) proof system has been developed for this purpose
[Gordon 1985] and been used in the verification of an example chip [Joyce
and Birtwistle 1985]. The HOL system is a manual-guide proof assistance
system. A verification englneer enters the specification of a Chlp and its
proposed implementation. He then tries to prove that the implementation of
the circuit is equivalent to 1ts intended specn’icatlon There are sufﬁc1ent
basic axioms in the HOL system to allow the construction of such proofs In
proving a circuit, the engineer has to select the right axioms at each ‘step of
his proof. The difficulty of proving a circuit correct is in the selection of the
right axioms in the right sequence and this requires the experience of the
engineer and his understanding of the circuit. In addition, the proof may be
repeated for aiﬁerent circuits even though these circuits may be quite similar.
For example, proving the design of a 2-bit adder By joining two 1-bit adders

together is similar to provinrr a 16-bit adder from joining sixteen 1-bit adders.

" The HOL system is capable of proving any circuit given sufficient basic
axioms. However, its performance will be greatly enhanced if there are some
derived axioms which handle some of the common proofs. For example, if the

sequence of proving a 2-bit adder circuit can be captured and-generalized,

then the derived axiom can be directly applied to prove another n-bit adder
without going through the s:ame proof. In other words, a derived axiom is a
~ compiled ﬁroof sequence for a particular type of circuit. Its usefulness is by
" its direct applicationvto those particular type of circuits, bypassing the basic
proof sequence. Right now, fer these derived axioms to be in the HOL
system, they have to be hand-coded. The verification engineer has to recall
its seguence, generalize the specification and its implementation, and put it in
the system. It is an added pfoblem” that these verification engineers are scarce

and they attain their expertise by proving a lot of circuits themselves.

In summary, the knowledge acquisition problem has been recognized as
one of the major problems in the application of 'expert systems [Feigenbaum
1982]. The problem becomes even more serious in some areas where

knowledge is scattered, hard to get and under- constant evolution, such as

VLSI cireuit design [Stefik et al. 1981]

1.3. The scope of the thesis

Many approaches 'have been used to ease the knowledge acquisition
problem. These include building explanation facilities, structuring the
- interviewing process of an expert, and so on. One solution is to bulld a
computer program which constructs rules from examples given by an expert
This type of program falls under the area of machine learning, currently an

active part of artificial intelligence research.

This thesis applies some machine learniﬁg techniques to one part of the
knowledge acquisition problem: inferring rules from examples. The thesis
examines the idea of comblmng analytical and empirical learning techniques

to 1nfer specific rules from examples or instances which are generated by the

basic rules of a domain.

 The analytical lez;rning techniques are knowledge-ir}tensive. They make
use of background knowledge to maximize generalization from a single
example. The empirical learning techniques are data-intensive. They make
use of syntactic comparison between examples to find the generalization.
While these techniques are useful for diffefent types of domains, there is 2

need to combine these techniquesr [Lebowitz 1986].

One possible combination is to a;;ply analytical techniques before any
empirical techniques. Although a domain may not have sufficient constraints
to allow analytical techniques to infer a rule from a single example, these
techniques can make use of the available background constraints and
knowledge to constrain the generalization space. By the time empirical
techniques are employed to complete f,he remaining generalization, the space
has wusually been narrowed down so that fewer examplés. and less

computational effort may be required to reach the target generalization or

rule.

‘There are many parts of the knowledge acquisition problém, and
inferriﬁg rules from examples is only one part. This thesis does not address
the other parts of the problem such as organization of Vrules and the selection
. of examples to be presented. This does not mean ‘that the:other. parts are
easy or insignificant; these parts are as important as that of inferring rules
from examples. In fact, _the reéults of this thesis indicate that‘ the
orgahization of rules may. affecf, how a future rule may be inferred. However,
the problem of inferring rules from examples is itself a difficult éubject already

and inclusion of other parts of the problem would make the study intractable.

1.4. Summary of results

Baéed on the ideas preéented in this thesis, a prototype has been built on
top of a C-Prolog interbreter. The prototype infers specific rules in the form "
of Prolog clauses. Tﬁe _domain has some basic rul'es: Some instances are
g‘.eneratea from these basic rules and they are captured by the prdtopype. The 7

prototype then infers specific rules from these instances.

In this thesis, the process of inferring a specific rule from an instance in

Prolog consists of two stages:

(1) Deciding upon the constants and possible shared variables in the specific

rule.
(2) Deciding upon the remaining constants and variables in the rule.

The prototype appiies analytical techniques in the first stage to decride on
possible constants and shared variables by tracing how an instance is derived
from the basic rules. In the second stage, the prototype uses the‘empirical
techniques to compare past and generated instances to determine the

remaining constants and variables.

Sample tests with the prototyi)e indicate the advantage of constraining
the generalization using the analyticalr techniques followed by the empirical
ones. However, further improvements are needed to make the prototype a

more practical tool for future use. .
1.5. Outline of the Thesis

Chapters 2 to 6 covers the remaining part of this thesis.

Chapter 2 introduces two types of learning techniques in the area of

induction: learning from examples or instances. The first type is empirical

learning which is illﬁstrated by the Arch program [Winston 1975] and the
Version Space [Mitchell 1982]. ‘The second type is analyticai learning
illustrated be LEAP [Mitchell, Mahadevan and Steinberg11985]. Finally, an
example is presentéd to show one possible, combination of these tWo

techniques [Lebowitz 1986 .

Chapter 3 introduces the main idea of the thesis and the design of the ‘
prototype. The prototype has two stages in generalizing a rule from an
instance. The_ﬁrst stage is to decide on any possible constants aﬁd shared
. variables in a rule by tracing how an instance is constructed from the basic
rules of a,_domain. The second stage has two parts. The first part exploits
'possible past instances to specialize the rule. The second part generates new

instances and uses user feedback on these instances to refine the rule.

Chapter 4 describes the implementation of the prototype and reports its

current status.

Chapter 5 discusses the evaluation of the prototype, both the design and
* implementation. It describes the limitations of the current irhplementation,‘
and two problems found in this thesis: the effect of the organization of speciﬁ(;
rules on the learrﬁﬁg of future rules, and deciding when to apply the empirical

learning techniques.

Chapter 6 is the conclusion which summarizes the work of this thesis and

suggests further research..

CHAPTER 2

Literature Review

This chapter gives the background to machine learning and discusses
some prev1ous systems of 1nduct10n in the context of knowledge acquisition.
The chapter begins with a general overview of machine learning, and then
looks at one area of machine learning: induction. Section 2.2 descrlbes one
type of induction, empirical learning, rbaSed on the influential wotk of
Winston [Winston 1975]. Section 2.3 explains another type, analytical
learning based on the work of Mitcnell_ [Mitchell, Mahadevan and Steinberg
1985]. Section 2.4 describes one possible combination of the two types of
learning based on the work of Lebowitz [Lebowitz 1986]. Finally, section 2.5

provides a summary.

2.1. An Overview

Machine learning has been an important part of Artificial Intelligence
research sincel its early days. The ability to'learn is recognized as one of the
essential characteristics of an intelligent system [Simon 1980] and
constructing a “learning” computer program is advocated as one of the mean_s
of understanding this ability [Simon 1983]. However, learning is found to be
very hard to capture in programs and hard to explain [Winston 1984]. Also
it involves many of the problems of art1ﬁc1al 1nte111gence, such as searchlng,
per’ception, ‘and knowledge representation, which are still under intense
investigation [Norman 1980]. Not surprisingly, the performance of present

learning systems is still primitive compared to the human being.

10

In spite of these diﬁ'lcﬁlties, machine learning has recently attracted a
considerable amount of attention due to the present success of expert systems
and their f)otential application. Machine learning offers a possible solution to
the problem of knowledge acquisition by eliminating the tedious manual

process of transferring knowledge from hufnan to program.

There are many ways of looking at machine learning. One. common
approach is to classify machine rlearningr‘ according to thé learning stsrategy
that a program uses [Carbonell, Michalski and Mitchell 1983, Michalski
1986, Dietterich 1982]. Accordingrto this approach, machine learning can be

classified as follows:

" Rote learning:

This area of learning is simplest in terms of the learning complexity. The
prograni just remembers all the positive input instances so that they can
be used later.. Thié type of program is not adaptable to. a complex
changing environment because a stored instance cam only be used later
under an identical situatiqn. Th*e processing requirement is simple
because there is no transformation on the inputﬁ instances other than
r_nemorizing them. ' The program may have to organize the memory of
these instances efficiently if t'he number of iﬁstances is large. Since the
program just remembers exactly the input instances, it relies on ifs
environment to prpvide correct, noise free instances. An example of such

program is Samuel’s checkers-playing program [Samuel 1959].
Induction (Learning from examples):

This is perhaps the most studied area of machine learning. The program

accepts a set of classified specific inétances,(positive or negative or both)

11

of some concept, proceduré or rules. Based on these input instances, the
program infers features which characterize the target concept, procedure
-or rule. The major i)art of the brogram is the iﬁduction process where
many heuristics and approaches are used: The program is more
‘adaptable than a rote-learning program because it caﬁ é_pply its
generalized concep‘t or rule again in a similar but not necessarily identiéaih
situation. The program usuglly assumes a teacher in the envifonment to
classify tHose input instances. Preferably, these instances are noise-free
although some programs can handle errors in training instances. Some

examples of this type of learning program are discussed later in this

chapter.

Learning from experimeni;ation and discovery:
This area of learning is the most complex of the three areas. Usually, the
task involves a large search space in the inference process. Besidés, the
program has to classify the input instances i’gself, or even construct some
| instances, in order to test hypothesis related to a concept. Lendt’s AM

and Eurisko programs are classical examples in this area.

While the boundaries between these areas of machine learning are not very
well-defined and precise, this classification provides one basis for examining
the machine learning research. This thesis concentrates on the second area:

induction.

2.1.1. Induction: learning from instances

The essential task of learning by induction is to construct the features of
a concept which exist in all positive instances but not in any of the negative

instances. In addition, this concept description must be broad.enough to -

12

cover not only all the positive instances‘ that have been presented, but aléo
some possible unobserved positive instances. This requirement is imp;ortant in
distinguishing learning by induction from rote learning. If the concept
description only covers all the positive instances that the program has seen,

then it is just another form of rote learning, memorizing all instances

presented.

This requirement leads to a serious problem in induction process. Given
a set of instances, positive, negative, and a combination of both, rthere is
potentially an infinite number of concept descriptions that are consistent with
the set of observed instances. Consider an example of finding 2 description to

cover the following two instances [Utgoff 1986].
(3,4) is a positive instance
" (8,5) is a negative instance

One of the possible concept descriptions is “an ordered pair of numbers
where the first is numerically less than the second.” However, there.are also
other alternative descriptions which are consistent with these two instances.

They are: o -
(1) An ordered pair of numbers in which the first is an odd integer
(2) An ordered pair of numbers in which the second is an even integer

(3) An ordered pair of numbers in which the first is an odd integer and the

second is an even integer

(4) An ordered pair of numbers in which the first is an odd integer or the

second is an even integer

13

(6) An ordered pair of numbers the binary sum of which has a 1 in the 4’s

place

(6) An ordered pair of numbers the decimal‘ sum of which has a 0 in the 10’s
place 4 -

(7) A pair of numbers the sum of which is 7

(8) An ordered pair of numbers in which the second is 1 more tlllan the first

(9) An ordered pair of numbers in which the first is not 1 more than the

second

‘This simple example can have many possible target descriptions. For a
more complex example, the space of all possible descriptions can be enormous;
In fact, for a domain of N instances, there are 2 to the power N possible

distinct target descriptions [Utgoff 1986].

The process of induction can be pictgred as finding the target concept’s
boundary as shown in figure 2.1. Mitqhell in his paper “generalizaﬁon as’
search” [Mitchell 1982] . put the ‘induction process in the perspec"oive.‘s of
searching through the space of possible targert concepts. A target concept is.
found if its boundary covers all observed positive ihétances and excludes any
negative instances. Hopefully, the boundary can also cover the unobserved
positive instances. However this in:duc"tion process can be underconstrained!
and .c'omplex [Andreae 1985]. The search for a target concept can be
combinatorially explosive if the space is large and the iﬁstances pres\ehted are
few in number. In theory, a target concept can be found lipder this situation
givén sufficient time and resources. In practice, thé search must be efficiently
focused by constraining the search space, by presenting sufficient instances, or

by a combination of both. The constraints and instances are the two major

14

boundéry of"

observed positive instances @
unobserved positive instances +
observed negative instances ©
 unobsérved negative instances -

Figure 2.1: The process of induction.

factors which characterize a spectrum of learmm7 techmques within the area
- of learmng by induction. At one end lies emplrlcal learmng which prlmarlly
relies on the presented instances to guide its search At the other end of the
spectrum lies analytlcal learning which primarily rehes on the constramtsr of
the background knowledge. The next two seétions discuss these two types of

learning and present examples of them.

15
2.2. Empirical Learning

In this section, the empirical learning is illustrated with two examples:

the Arch program and the Version Space program.

. 2.2.1. The Arch Program

‘The Arch program was Patrick Winston’s Ph.D work [Winstcn 1975].
The basic idea was to learn a simple concept description of an arch in a toy
world. It is one of the pioneer programs of how to learn symbolic description.
The program compares the’ positive. and negative instances as shown in figure

2.2 and infers the concept of an arch as a parallelepiped object sﬂpported be

two separate bricks.

| The program takes the:ﬁrst instance, which must be a positive instance,
to be the current target description. Then it compares the current target
description and each instance in the input sequence in successmn If the next
instance is positive, it generalizes the difference between the instance and the
current concept. If the instance is negative, it specializes the difference. The
concept of an instance is represented as a network of nodes. Generalization
and specialization essentially involve manipulation of links between the nodes

and climbing a generalization tree;

There are several noteworthy .‘features of iihis program. Its learning
ability relies primarily on the syntacticel comparison between the Structnres
of the instances and the current concept. Consequently, the program requires
at least two distinct. instances in order to learn anything. Otherwise; the

concept is just the same as the first (and the ,only)‘ instance.

16

a) Positive b)Negative

c) Negative d) Positive

Figure 2.2: A sequence of instances for learning about arches.

The program exhibits incremental learning behavior. It takes instances
one by one and modifies the concept one step at a time. Winston implied
that this mode of learning was the predominant learning mode of humans

[Winston 1984].

The program introduces a type of input instances called the near-miss
negative instances. A near-miss instance is a négative instance which only.
~differs from the current concept by one essential feature. This near-miss
instance is used to focus the essential discriminant during the spécializa’oion

process.

17

In case of negative instances with multiple differences, there are many
ways of specialization. To handle these type of negative instances, the
program adopts a depth-first search st.rategy and backtracks when a

- contradiction occurs. This requires the program to keep track of all past

negative instances.

Winston later modified his Arch program and i)resented it as the “W_
procedure” [Winston 1984], He eliminated the backtracking by arguing that
inconsistency was difficult to debug. The best way to avoid debugging
inconsistencsr and backtracking was to prevent mistakes in the frst place by
being cons.ervat.ivé. i-Ie argued the important role of a co-operative teacher in
presenting instances in good pedagégi‘cal order to a learner. He alsé suggested
that a leari;er should be conservative in accepting the instances. His ideas on
the impor.t’ance_ of a co-operative teacher and his orderly presentation of
instances leads to the study of another ‘é:lass of 'constraints, the felicity

conditions, by Kurt VanLehn [VanLehn 1983, VanLehn 1987].

2.2.2. The Version Space

Mitchell [Mitchéll 1982] provided a framework for léoking at different
data—driven learning strategies by casting them as searching through a space
of possible concept descriptions. In addition, by noticing that all concept
descriptions can be partially ordered -according to their degree of generality,
he proposed “the Version Space;’l as a compact representation of “all possible
conc'rept’ descriptions which are consistenrt: with the obseweci positi\;e ‘and

negative instances.

Essentially all possible target descriptions can be stored in a partially

ordered lattice. In this lattice, the most general description is at the top of

. B 18

the lattice while the most specific descriptions are at the bottom of the lattice.
" The search space of all possible descriptions is bounded by the most general
and the most specific descriptions. While the space may contain a large
number of descriptions, it is sufficient to define them by the space boundaries:
the most general and the most specific descriptions. An example of this
lattice is shown in figure 2.37 This simple example involves descriptions of a
group of people by their two features, colour of their hair and their height.
The most general description is a group of people with any hair célourr and

any height. The most specific descriptions are different groups of people with

different combinations of colour and height.

27)

(short ?) (tall ?)

(? grey) . (2 brown)

(? dark)

(short grey) (short brown) (short dark) (tall grey) (tall brown) (tall dar};)

Figure 2.3: Representing a Version Space.

19

Mitehell’s learning algofithm essentially makes use of this version space.
Finding a target description\‘in the space consists of moving the most general
and the most specific boundaries until they convefge to a particular
description in the space. Initially, the boundarieg ‘cover the whole search
space. When a positive instance is obéerved, the algorithm updates‘ the'
current boundaries bif eliminatiﬁg those descriptions which are too specific to
contain the instance. When a negatlve instance is presented, the algorlthm
updates the boundarles by ehmmatmg those too general descrlptlons which

contain the instance.

An example of finding a description of a group of people with any hair

colour and short is presented in figure 2.4.

G --the set of the most general descrlptlons

S --the set of the most specific descriptions
X?--any Capital letter followed by '?’ stands for varxable
type-- type of instances, positive or negative’

" instance " type S G

(short, grey) + (short,grey) (H?,C?)
(tall, brown) - (short,grey) H?,greifz
- (short,C?)
H?,dark)

(short, brown) + (short,C?) (short,C?) .

Figure 2.4: A Version Space example.

20

Unlike the Arch program, the version space' program uses a search similar
to the breadth-first search to update its boundaries. However, there are
similarities between the tw;) programs. They both use a number of positive
and negative instances to converge to a target description and prune away
those irrelevant ones. There is some domain knowledge ~built into the
generalization hierarchy in the Arch progré,m and in the version space. The
knowledge helps the programs to converge to a target concept quickly without
seeing all the possible instances. For example, in figure 2:.4, the two i)ositive
instances (short,r grey) and (short, brown) cause the concept to converge as
(short, any__colbur). In the generalization hierarchy of figure 2.3, any_colour
is defined as a generalization of both grey, brown and dark colour. Therefore
the concept of (short, any_colour) also covers the unobserved positive iﬁstance
(short, dark). If thé conceiot of any_colour is defined differently, then the
concept (short, dark) covers different unobserved positiv;a instances. It is the
implicit bias of .the built-in domain knowledge in the generalization hierarchy
which ‘induces a concept to cover both o'bserved and unobserved positive
instances. If the bias ;15 inappropriate, it can prevent the system from ever
inferring correct generalizations. If the bias is appropriate, it can provide the
basis for important inductive leaps beyond information directly available from
the training instances [Mitcl_lell 1982]. The study of “bias” is an active area
of machine learning research [Utgoff 1986]. While bias is useful in induction,
it is usually not sufficient for a program to reach a target concept. A program

still has to rely on some instances to prune away any irrelevant concept.

In summary, empirical learning depends on the relationship between

instances and the implicit bias in the generalization hierarchy to reach a

~

target concept. This type of learning technique usually requires a number of

21

instances. Besides the domain 'knowledge in the generalization hierarchy,
empirical learning is relatively independent of the ‘context of the domain. It
does not consider how an instance is generated, and why the instances
Zpresented are classified as positive or negative. It is characterized as being
empirical, data or instance-intensive. The next section presents another type
of learning technique which reliesrmoréron'the domain knowledée and less on

the instances.

2.3. Analytical learning

Anal&tica} learning requires more background knowledge from a c'!oma,in
to learn a concept. It has the advantage of using very few instances given
sufficient knoWledge. Lebowitz has given é scen‘ario example (not yet
. imfﬂemeﬁted) of how the concept of “arch” would be learned in the analytical
learning [Lebox;vitz 7 1986]. 1In his example, the program would require
understanding of some prior concepts such as the concept of 'gra,vity, supports
etc, and the description of structures. The program might use the conceptrof
gravity aLlnd supports to analyze the strucf,uraf description of a positive
instance. It figured out that two equal height; supports ‘were necessary to
support a lintel in the air but the other ‘fa‘,ctors such as the colour and shape
~of the lintel were not important. It did not need fﬁrther instances to show

‘that two .equal height supports were important.

The remaining part of this section presents several systems using this

type of analytical technique in the context of the acquisition of heuristics.

22

2.3.1. LEAP

LEAP is a learning apprentice system for VLSI design developed at;
Rutgers University [Mitchell, Mahadevan and Steinberg 1:985,7Mahadevan
1985]. Its purpose is to ag;quire'épeciﬁc h‘euristic rules for verifyingw logic.
circuit designs. Mitchell characterized a type of learning apprentice system
through the example: of LEAP. It is an interactive knowledge acquisition
system which accumulates heuristic rules by 'oBservihg and analyzing the
solutions\of an expert through his normal use of the system. There is no
explicit “training mode” for the system. The implication is that a co-
operative teacher is not required, and that thelsys‘tem is more suitable than
other programs such as the “Arch” as a knowledge acquisition tool for an

expert sysf;em.

LEAP works together with another expert system VEXED [Mitchell,
Steinberg.and Shulman 1985] which is a problem solving component fcsr the
VLSI désign. Given a design problem, VEXED tries to come up'with a
solution using its existing heuristic rules. If VEXED fails to come up w;1t,h
any rule or the implementation rule is not satisfactory to the user, an expert
can- override the decision of VEXED a:nd supply his! own solution. At this

~point, LEAP begins to capture the expert’s Iéolution and generalize the
solution into a new heuristic rule. The new rule will be used by VEXED

when a future similar problem arises.

For example, the system is given the problem of implementing a function
specified in figure 2.5. One of the possible implementations is to use three

NOR circuits joined togéther as shown in ﬁgufe 2.5. This involves verifying

! For simplicity of expressions, his, him and he are used to mean “his or her”, “him or
her” and “he or she”. - ‘

X1 e

2 ‘ NOR

I | not }
NOR ! out bootean-ict 1
x3 NOR . ; NGR
[p— —J_

not
bodlean-fct 2 H
: A not
AND) out beotean-fet 1 _l
x3 .
x4 OR l._
not

bootezn-ict 2

x1
OR

X2 ——

.

AND |~

[

A specific circuit A Generalized circuit

-

Figure 2.5: A circuit and it’s generalized design for LEAP.

that the beilavior of the implementation is equivalent to the required
specification. The verification of this design involves using the basic De-
Mbrgan’é Law ‘and Rémove-Doublé-Negatio'n' operators already defined in the
system; The verification sequence is shown in figure 2.6. LEAP captures this
sequence and uses a technique called constraint back—;;fopélgation [Mitchell

1983, Utgoff 1986 to generalize the steps in the sequence.

Constraint back-propagation is the main generalization technique used in
LEAP. It was develc;ped in the previous sy'stem LEX2 [Mitchell 1983] to

deduce the domain of an operator sequence or macro-operator that produces

24

Verificatiqn) Back-propagation
(not (or (not (or x1 x2) (not (or (not bool-fct1) ~
(not (or x3 x4))))) {not bgol-fth)))
De-Morgan
(and (not (not (or x1 x2) : (and (not (not booi-fct1))
(not (not (or x3 x4))))- (not (not bool-fct2)))
remove ‘
double-neg
(and (or xt x2) . (and (or x1 x2)
{not {not (or x3 x4)))) ’) {not (not bool-fct2)))
‘ ’ remove. ,
double-neg’
(and (or x1 x2) , ' (and (or x1 x2)
(or x3 x4)) ' . (or x3 x4))

.Figure 2.6: Verifying and Generalizing a circuit for LEAP.

some constrained range of states. Unlike the empirical generalization which
examines the relations between instances, the constraint back-propagation
examines how a positive instance is constructed from the basic operators

within a particular domain.

A solution sequence can be interpreted as a transformation from an
initial problem state to a final solution state through ‘a number of
intermediate states. Each basic operator is 2 mapping from ome state (the

domain) to another (the range) with constraints to restrict the operator’s

25

domain and range. Consider a sizhple case of applying a single operator to an
initial state to produce a final state. If a subset A of the range of the
operator x;epresents a class of solved states, then this subset can be
propagated backward through the opérator to find out the subset B of the‘
domain which produces the subset A. The subset B repi‘esents a coﬁstfained
domain of the operator such that application of the operator résults in a
group of solved state. If there is a sequence of operators, then the same
operation can be apphed recurswely starting from the final state and worklng
it backward until it reaches the 1n1t1al state. A simple example of this process

is shown in figure 2.7. The detail algorithm is shown in the work of Utgoff
[Utgoff 1986].

There are several features about the LEAP which also characterizes a
typical analytical learning system. One important feature about the system is
that it can make use of only one positive instance to deduce a heuristic rule.
- The heuristic rule is not restricted to solving one particular ex;mpll"e, but _is
generalized to solve a specific group of similar examples. In the example
shown in figure 2.6, the specific example involves 4 input signals, but the

generalized rule applies to any condition that matches a boolean function.

The ability to do such powerful generalization from a single instance
stems from examining how a positive instance is constructed. In the case of
the LEAP example, it means the verification process of showing how a '
particilar design of 3 NOR gates to meet the functional requirement of a
;:ircuit with two OR gates and a AND gate. This points to a second
requirement. Analytical learning .must have sufficient domain knowledge to

explain the construction of an instance. In LEAP, it means the existence of a

26

domain of op 1

domain of op 2

range of op 2

A sequence of api;lying operator 1, then operator 2

Figure 2.7: The constraint back-propagation method.

number of basic operators such as De-Morgan’s lgw and other information
required to narrow down a group of solved states. Because of the requirément
for background informatiqn, analytical learning cannot be applied to an
arbitrary problem domain. It usually requires a problem domain with a
strong enough theory to explain and validate the training instances, such as
digital circuit design and mathematical integration problems [Mitchell,
Mahadevan and Steinberg 1985, Mahadevan 1985]. In fact, even in the
.integration domain, Utgoff reported some difficulties in learning certain

concepts because the formalism could not express certain context-sensitive

27

relationships [Utgoff 1986].

Because analyticél learning usually requires veriﬁcatioﬁ or explanation of
" a positive instance before any generalization, it is moré robust than empirical
learning in handling possible errors in the input instancés. If an instance
contains an error, the explanation process will fail ‘and prevent the

generalization process from proceeding.

The constraint back-propagation technique is one of the techniques in
analytical learning. Other techniques are also being developed, such as a
schemata to understand a situation [Lebowitz 1986] and a proof tree to

generalize a circuit design structure [Ellman 1985],

In summary, analytical learning is able to generalize a heur:istic rule or a
concept frqm a single instance by wusing a great deal of background
knowledge. Instead of examining the differences between instances, the
generalfzation comes from examining how an instance is constructed. This
type of learning is characterized as analytical, knowledge-intensive. The next

section discusses one possible combination of the two types of learning.

2.4." Combining two types of learning

The previous two sections examined two types of learning. One of the
key conditions under which a type of learning can be applied is the existence
of sufficient domain knowledge. Analytical learning is suitable for a domain
where there is a substantial amount of baékground knowledge. On the other
hand, empirical learning is needed when the background knowledge is lacking.
Howevef, there are a number of domains which lie between these two extreme
conditions. Some domains have a certain amount of background knowledge

but the knowledge is not sufficient to allow the use of the analytical learning

- 28

only. On the other hand, using only empirical learning seems to neglect the
existence of background knowledge. This section describes an example of
combiﬁning_these types of learning through the UNIMEM program [Lebowitz

1986], which wused the empirical analysis to guide the analytical

generalization.

UNIMEM is a program that takes the description of a situation and tries
~ to build an explanation scheme to account for the situation. One domain for
this program is to explain the US congressional voting records. The input
information is the voting records of U.S. congressmen and the cha}‘acteristics
of the states and districts that they represent. The task of the program is to
build an explanation of how a congressman’s voting record relates to his other
votes (a congressman who opposes cutting the MX missile also opposes general
cuts in defense spending) or to the features of his district (a congressman from
a low-income district Supports the increase in social spending). There are a
number of simple rules in the doméin. Each simple rule relates a set of
conditions (causes) to an observe“d beh:;,vior (results). These simple rules are
rules of thumb and they are general approximations. They represent a°
tentative model of the dom.ain. The explanation sche£ne is built by relating
those relevant simple rules into a structure. to explain the voting behavior of a

congressman.

Building such a structure wusing only ‘analytical learning' is
computationally expensive as there are many basic rules, and also a number
of possible features (over 30) to consider for each explanation. Among those
features, some of them may be the causes while other may be results due to

other features. Identification of the causes among those features is not trivial.

29

For example, it might be that districts yvith high farm property values are
thought to have oil reserves and hence their congressmen would vote to limit
any profit tax on oil reserves found on property. Conversely, it might be that
voting to limit the profit tax on reserve actually causes the farm value to be
high, as potential investors would know oil profits would not be subject to

high taxes.

Lebowitz suggested using the idea of ‘predictability to identify those
features which are causes. Predictive features are those .which‘exist uniquely
in a given situation and they are most likely to be the causes. This argument
follows from the observation that non-predictive features occur in many
situations, and are associated With many different combinations of other
features. Hence, they do not predict a single outcome. For example, if a
situation is made up of tw.o features, A and B, and A only occurs in one
situation, and B in many, }?3) cannot cause A. If B did éause A, A would

appear in all the other situations that B was in.

After identifying those potential predictive features, the system starts to
match those features with the conditions of the basic rules and tries to build
up a structure to explain the remaining features. Lebowitz has reported the
use of this predictability to prevent using irrélevant features in building an
explanation. He also found that some of those features which were supposed
to be predictive in the simple rules could in fact be explained by other
predictive features. Hence the result could be used to debug the initial set of
simple rules. The essential result-from this work was that predictive ability
provided significant control over the process'of building up an explanation.

The program did not have to use brute force and try every 'possible

30

explanation rule sequence. Consequently, the.efficiency of analytical learning

~ was increased in an area where it could be combinatorially explosive.

2.5. Summary

This chapter has presented two types of machine learniﬁg. The emﬁirical
learning does nof, require teo much domain knowledge and relies on a number
of instapces, positive and negative, to reach a target concept. It is suitable
for the situation where domain knowledge is lacking. The analytical learning
requires sufficient domain knowledge to reach a target concepf and relies less
on any input instances. Thesg two types of learning characterize two ends of
. a spectrum in term of the requirement of domain knowledge. An exarﬁplé has
been presented where both techniques are combined“toh handle a Situation
between the two ends of the spectrlinvl.‘ The next chapter presents the
prototype in this thesis. The prototype ezﬁploys the idea of u.sing'.the‘

analytical learning before the empirical learning.

CHAPTER 3

Design of the prototype

This chapter discusses in detail the design of a prototype‘for another
approach to learning. The purpose of the prototype is to combine. both
analytical and empirical techniques in inducing a domain specific rule from an
‘instance'which is generated by some basic rules. Section 3.1 describes two
types of rules for certain domains: basic and specific. Section 3.2 discusses the |
Prolog programming language as the representation of both instances and
rules. Section 3.3 describes how an user interacts with the prototype, and
sections 3.4 and 3.5 describe the two stages of induction: analytical a.nd

empirical. The final section 3.6 summarizes this chapter.

3.1. Basic and specific rules

Two types of knowledge are currently recognised as providing a basis for
solving problems in a domain. [Chandrasekaran and Mittal 1983, Rosenbloom
et al. 1985]. Although the definition is not precise, they are generally
referred to as deep and surface knowledge. In building an expert system,
these types of knowledge are represented by two types of rules: basic and
specific, respectively. |

The basic rules of a domain represent the essential knowledée and they
have a wide scope of applicability within the dbmain. The specific rules
represent the knowledge derived from the basic rules. Each of these speciﬁc
rules is restricted to a particular situation. These specific rules are usually

more efficient than the basic rules since they relate the aspects of a task

31

32

directly to action consequences, bypassing the compuﬁational steps needed t§

apply the basic rules of the domain.

For example, -in solvmg the mathematical integration problems in LEX
. [Mitchell, Utgoff and Banerji 1983], there are basic operators with conditions
specifying where they can be legally applied; However, there are also
Heuristics, which specify the conditions where it is bgneﬁcial or useful to apply
those operators. Each heuristic specifies a restricted subset of the legally

applicable situations for an operator where application of it is most likely to

lead to a solution.

One characteristic of many present-day expert systems is that they have
a lot of domain specific rules which allow them to arrive at problem solutions
quickly [Rosenbloom et al. 1985] Therefore, there are a number of research
efforts arrlved at developing systems which acqulré these spemﬁc rules or
heuristics to enrich the computational power of an expert system, and to ease
the bottleneck in the knowledge acquisition process [Langley

1985, Rosenbloom et al. 1985, Mitchell, Utgoff and Banerji 1983].

In what follows, a family-tree domain is chosen to illustrate the two
types of rules and set the context for the purpose of the prototype which is: to
infer specific rules from the instances which are generated by the basic rules.
Although this thesis only uses a family-tree and a context-free grammaf
problem i;or demonstration, the approach embodied in the prototype is not
restricted to solving these two, problems, but is targeted at a broader class of
probleins. These problems are chosen because they are familiar examplesrin
most Prolog textbooks [Sterling and‘ Shapiro 1986, Clocksin and Mellish
1981, Bratko 1986].

33

(ringo &jénicc)

(jane & christopher) (christine) (jessica) (pat & george)

{mary & alec) (peter) {mathew & jon) (curtis)
* (adrian) . . (ringo & judy)
(john)

Note: two persons in a bracket are a married couple.

" parent(janice, christopher)
- parent(janice, christine)

-
-

parent(m"a{hew, riﬁgo) '
parent(ringo, john) '

Figure 3.1: A family tree and it’s Prolog clauses. .

Given a family-tree as shown in the figure 3.1, and a set of predicates

which define the relationship of the nodes in the family-tree, the two clauses

cl(3.1)

related(X,Y) :- (parent(X,Y);parent(Y,X)).

cl(3.2)

related(X,Y) :- (parent(X,Z);parent(Z,X)), related(Z,Y).

34

are able to find if any two pefsons in the family-tree are related. The two
clauses (3.1) and (3.2) are the basic rules for the family-tree problem. These
basic rules completely define any solution to the problem if that solution
exists. The basic rules are also flexible so that they can be applied to any
different occurrence of the problem. They can be used to examine two nodes
whether these two nodes are related through a single node or many
intermediate nodes. While these two~clauses are flexible, they may also be

very inefficient when compared to specific rules such as,
cl(3.3)

related(X,Y) :- parent(X,Z),parent(Z,Y). /* grandparent*/
cl(3.4)

related(X;Y) :- parent(Z,X),parent(Z,Y)./* sibling */

For example, in searching whether “christopher”! and “christine” are I;e‘lated
in figure 3.1, the rules (3.1) and (8.2) needs five instantiations to find a
solution, while the more specific rule (3.4) needs only two instantiations. If
these domain specific rules are applied to a right situétion, they can be very

efficient in the sense that they bypass a lot of unnecessary search.

Although. these domain specific rules are éfﬁcient, each of them is
restricted to a particular situation. Rule (3.4) is useful only to find out if
.“christopher” a.nd. “christine” are related through a sibling relationship. It
fails to find out that “ringo” and “mary” are related because “ringo” and
“mary” are related in a grandparent relationship. While the specific rules are

useful for computational efficiency, the basic rules are needed in cases where

! Names should start with ‘an upper-case letter but this is in conflict with the Prolog
definition of constants as lower-case letters. Therefore, names are quoted and in lower-case to
designate this as a’ constant in Prolog.

35

. all the specific rules fail.

The prototype in this thesis endeavors to induce those specific rules such
as (3.3) and (3.4) from basic rules such as (3.1) and (3.2). The prototype is
initially given oﬁly the basic rules to solve any proialem in a particular
domain. As a result, the problem solving efficiency is low. As more problems
~are solved, useful specific rules are ihduced by the’ prototype. The system

then relies more on the specific rules than the basic rules to handle future

problems. Consequently, the prototype’s problem solving efficiency increases.

One of the key characteristics used in the machine learning area is the
classiﬁcatiog of the target rules or concepts according to theirdegree of
generality. A rule “A” is more general than a rule “B” if B can be obtained
by éubstitution of certain variables in “A” with specific values. For example,

rule (3.4) is more general than rule (3.5)
cl(3.5)
related(X,Y) :- parent(ringo,X),parent(ringo,Y). /*children of ringo* /

because (35) is an instance of (3.4) by instantiating the variable “Z” with the

constant “ringo”.

In this thesis, the prototype is required to learn specific rules with any
degree of generality desired by a user. This requirement creates a probleﬁ.
Forl a given instance, there are many possible target rules with different
degrees of generality. The induction of target rules such as (3.3) and (3.4) can
be achieved by using the analytical technique only to the extent that they
have the same degree of ggnerality as the basic rules. However, the analytical
technique alone cannot infer a target rule such as (8.5) because that rule has a

" degree of generality more specific than that of the basic rules. Empirical

36

technique is required to complement the analytical ones.

3.2. Prolog as the implementation language

The Prolog programming language is used to implement the prototype
and also as a representation language for both instances and rules. A Prolog

program is a set of Horn clauses, which have the general form
A :- Bl, B2, B3...Bn

where A, and the B's are atomicr formulae [Shapiro 1982). Each rformulé is a
predicate consisting of a predicate symbol, called a functor; an:d‘ optionally
followed by a list of terms in parenﬁheses, separated by commas. Each term
can be a variable, denoted by a capital letter, or a éonétant, aenoted by a

lower-case letter, or a functor.

A Prolog clause can have both declarative and procedural interpretation
[Kowalski 1979]. Declaratively, the above clause can be read as “A is the
conjunction of the B’s”. Procedurally, it can also be interpreted as “to fulfill

the goal of A, satisfy the goals of B1,B2..Bn”.

Because of its dual interpretation, the Horn c’lause has been used as a
common basis for rei)resentation in both concept-learning and rule;learning
programs [Bundy, Silver and Plummer 1985]. F or example, the clause
cl(3.3) 4 o

related(X,Y) :- parent(X,Z),parent(Z,Y).

represents the concept of grandpayent. Procedurally,r it can also be
interpreted as a rule or a program to search whether the two nodes, X and Y,
- in the family-tree are related. To fulfill the declarative meaning of whether

two people are related in a grandparent relationship, the program searches for

37

a common node which relates to the two nodes X and Y in the tree.

Most of the Prolog systems, such as the C-Prolog system, are
implemented sequentially. A common strategy is to evaluate the goals from
left to right. As a result, there ris a difference in the declarative and the
procedural interpretation when deciding whether two logic clauses are the
same. Declaratively, the clausé
¢l(3.6) - .

related(X,Y) :- parent(Z,Y),parent(X,Z).
has the same meaning as the clause (3.3). Procedurally, these two clauses can
be different. The difference is due to the sequential evaluation of clauses in
the languagq. An example to illustrate thé difference are the clauses for doing
a.rithmetfc addition. .
cl(3.7)

.sum(X,Y,Z,S) - Tis X+Y, S is I+2Z.

l(3.8)

| sum(X,Y,Z,S) :- S is.I+Z, Iis X+Y.
Both élauses héve the same declarative meaning. That is, the result of adding
three numbers together can be obtained by adding two numbers to get an
intermediate value, and then by adding the intermediate value to the
‘remaining’ number. Given the query of sum(1,2,3,3), clause (3.7) succeeds
with the S value returned as 6. 01(3;8) failsrbecause the variable I is -

undefined when the first goal of “ S is I4+Z ” is evaluated.

In this thesis, unless it is explicitly stated, logic clauses are interpreted as
procedural rules. An extra criterion is imposéd if two rules are said to be the

same. Two rules are the same if tfhey have the same atomic formulae

38

arranged in the same order. According to this criterion, clauses (3.3) and (3.6)
are considered as different rules even though they "represent the same

declarative meaning.

This criterion also allows the prototype to narrow down its search for
target. rules considerably. Consider the following example involving two

separate instances:

(1) related(ringo,alec) :- parent(ringo,christopher), parent(christopher,alec).

(2) related(ringo,mathew) :- parent(ringo,pat), parent(pat,mathew).

To infer a rule which co;rers these two instances, the prototype <.)nly has- to
evaluate the same goals in the same sequence according to the above criterion.
Conéequently, the prototype only needs to consider the twd possible pairings:
“parent(ringo,christopher)” ~ with “parent(ringo,pat)”; and
“parent(christopher,alec)” with “parent(pat,mathew)”. However, without the
criterion, the prototype also has to consider two extra possible pairings of
“parent(ringo,christopher)” ‘with “parent(pat,mathew)” and
“parent(christopher,alec)” with “parent(ringo,pat)”. Given two instances with
each one having N goals, the number of possible combinations would be N! (N
factorial) without the constraint of the criterion. With this constraint, only}

one combination needs to be considered.

Finally, an instance® is defined as a single item of input to a learning
program. An instance of a rule is obtained by instantiation of all variables of
the rule with specific constants. For example, “related(christopher,christine) :-

parent(ringo,christopher), parent(ringo,christine)” is a positive instance of the

2 The word “instance” is to replace the commonly used word “example” in order to avoid
confusion over the various usages of the word “example”

39

rule “related(X,Y):- parent(ringo,X), parent(ringo,Y)”, but the

“related(christopher,christine):-parent(janice,christopher),

parent(janice,christine)” is a negative instance of the rule.

3.3. User interaction

Environment plays an important role in providing the input information
that a learning system needs, and the user is a ﬁlajof part of that
environment. This prototype is an “interactive rule acquisition system”. One '
of its requirements is to minimize the 'burden put on a user to generate

positive and negative instances for the system.

A major part of the input information 'comprises‘ the positive and
negetive instances. But there is extra information which can reduce the
complexity and difficulty of the learning tasks. One of the sources of extra
information is the way the instances are presented to a learning program.
There is a range of possibilities for how the extra information is encoded
through the presentation of instances. For example, the ARCH' program
[Winston 1975], assumes a co-operative teacher. The teacher p‘rovides
instances free of any noise, classifies the instances as positive or negative, and
presents them in good pedagogical order. Winston also suggested the use of
near-miss negative instances to help a learning program to identify those
essential features easily and narrow down to the target concept quickly.
SIERRA [VanLehn 1987] is another program which makes use of extra
~ information encoded in the sequence of instances to ease its induction of
disjunction and invisible objects. In SIERRA, the instances are partitioned
into lessons, and the lessons are sequenced. Esch lesson can only introduce

one disjunctive feature. Also, lessons are organized so that detailed work is

. ' | 40

shown first, followed by optimized work. VanLehn suggested these two major
restrictions of the sequence of 'instances, which then facilitates the induction
which other.wise would be extremely difficult. He argued the importance of
using the constraints from ﬁhe presenté,tion of instances and termed these as

felicity conditions.

Although the strategies adopted make the learning tasks much easier in
the above programs, the users are expected to do extra work in organiziljg
and providing instances to the programs. If too much effort is required by the
user in presenting instances to an induction program, there is concern that the
practical uses of the program to ease the knowledge acquisition problem may

be limited. The benefits of automatic induction of rules may be offset by the

requirement for too much effort by the user.

Mitchell has suggested the use of another type of learning apprentice
system such as LEAP [Mitchell, Mahadevan and Steinberg 1985]. In contrast’
to ARCH, LEAP does not require an explicit “teaching mode”, it acquires

specific rules through the normal use of the syste‘m by the user.

‘- The present prototype is closer to LEAP in its requirement for instances.
It requires a positive instance as the initial input. The positive instance is a
solution to a particular problem, and is derived using the basic rules dui'ing
the problem solving stage. The system induces a rule from the instance with
a degree of generality equivalent to that of the basic rule. If the user is not
satisfied with the degree of generality of tffe induced rule, he; can invoke the |
next step to refine the rule. The reﬁnement; relies on the empirical technique. '
Instead of askil'lgw the user to provide instances, the system extracts negative

instances from the past solution trace, if there are any. Then, it generates

41

instances from the existing database and requests the user to classify them.

Based on the classification by the user, the system returns a refined rule.
The details of the process are as follows:

Problem Solving Stage
The user first invokes the system to find a solution to a ;;roblem. The
system may produce séveral solutions. The user picks the first acceptable
solution and uses it as a positive instance. The system coilects any
solutions.preceding the acceptable one in a solution trace. The user then

invokes the next stage with the positive instance.

Analytical Induection
The system uses the analytical technique to generalize the positive
instance into a rule. The degree of generality of the induced rule is

equivalent to that of the basic rules in the system.

Empirical Induction
If the user wants the induced rule to be more specific, he then invokes
this stage. The system tries to find useful negative instance;s from the
solution trace. A wuseful negative instance is. one which has a similar
structure to the rule being processed, but with one discriminating
,.f_'eature. After that, the system generates instances based on the existing
database model and asks the user for a classification of each instance. g
The user answers “yés” to a positive instance, and “no” to a negative
one. After a sequence of instances, the system returns a more specialized

rule.

Two major problems were found in building this prototype. The first one

- was in choosing problems for which the induced rules were useful. There are

4
numerous problems and solutions for a given domain. Some of the problems
are interesting and typicai, while others rarely occur. We do not want the
system to infer rules for every problem. We want the system to induce only
those specific rules which solve the typical and commonly occurring problems.
The prototype does not know which problem is common or typical and has to
rely on the user to decide: A learning system, which learns by itself, such as
AM ‘[Davis and Lenat 1982] has to confront this proBlem. Another major

problem was to decide the degree of generality of the induced rules required

by the user. Again, the prototype has to rely on the user’s choice.

The prototype takes advantage of its interactive nature to determine the
user’s choice on the above problem. When the user invbkes the secor.1d stage
of analytical induction, the user communicates to the prototype that the
instance is a solution to a common problem. The prototype also assumes that
the user wants a more specialized rule when he invokes the stage of empirical
induction. In general, an interactive learning system can often provide more
chances fqr the system to infer extra information from a user than a system

~ which learns by itself.

3.4. Analytical Induction

Thg idea behind the prlototype developed for this thesis is to 'exploit any
available background knowledge as much as possible. When z; domain can
provide sufficient background knowledge, it ‘is possible for the analytical
generalization to induce a rule from a single instance [Mitchell 1983].
However, when there are insufficient constraints, this prototypé first uses the

available constraints to guide the analytical generalization, and then uses

empirical techniques to deal with the area where constraint is lacking.

43
Considen a positive instance such as
cl(3.8)
related(christopher,christine) - parent(ringo,christopher),
parent(ringo,christine).
Possible target rules for this instance are:
cl(3.9)
related(X,Y):- parent(Z1,X), parent(Z2,Y).
cl(3.4)
related(X,Y):- parent(Z,X), parent(Z,Y).
cl(3.5)
related(X,Y):- parent(ringo,X), parent(ringo,Y).

In this prototype, the process of induction from a positive instance consists of

two stages:

(a) Deciding the relationship between the variables and constants. Does
“ringo” in the instance (3.8) bind to two separate variables as in the

target rule (3.9), or bind to the same variable as in the rule (3.4)?

(b) Deciding whether the constants in the instance can be turned into
variables. Is “ringo” in the instance (3.8) a constant in the rule (3.5), or

Just an lnstantlatlon of the variable Z in the rule (3.4)?

The following two sub-sections consider the induction in two cases.

3.4.1. Casel

Consider an instance which relates the top node “ringo” to the bottom
node “john” in the right-hand side of the family-tree in the figure 3.1. There

are two separate nodes called “ringo” which exist in the path from the top

44

node “ringo” to the bottom node “john”. One is the top node “ringo”.
Another one is the one immediately above the bottom node” “john”. As a
result, the instance becomes
¢l(3.10)
’relatAed(ringo,john) R parent(rinéo,john), parent(mathew,ringo),
parent(george,mathew), parent(ringo,george).
The proper rule for this instance should be:
cl(3.11)
related(R,J) :- pérent(Rl,J),parent(M,Rl),parent(G,M),parer_lt(R,G).
If the prototype is given only the instance rclr(3.10) without any knowledge of

how the instance is derived, the prototype cannot directly induce the rule

(3.11) from the instance (3.10).

If the prototype assumes that each constant with the same value cofnes
frqm a unique variable in the target rule, then the rule
¢l(3.12)

related(R,J) :- parent(R,J),parent(M,R),parent(G,M),parent(R,G).
‘is induced which is not correct as it neglects the existence of a separate
variable R1. On the other hand, if every constant, regardless of whether it
shares the same value with any other, is assumed to come from a separate
.variabl'e, then a rule of the form
¢l(3.13)

related(R,J) :- parent(Rl,Jl),parent(M,R‘.Z),parent(G,M),parent(R3,G).
is induced which is too general. The rule (3.i3) ignores the shared variables

in the clause. It ignores that R1 and R2 are the same, and so are R and R3:

45

If the prototype does not have any background knowledge, it has to rely
on empirical techniques. It can use the cl(3.13) as the upper bound (the most
general forr11) and the instance cl(3.10) as the lower bound (the most specific
form). By having a lot of positive and negati-ve instances, the prototype
would eventually arrive at the proper rule cf(3.11). But this means that the

user has to produce a lot ‘of instances to guide the prototype

If the prototype has the history of how the instance cl(3 10) was derived
from the basic rules during the problem solving stage, then it is able to infer
the relationship between each constant in the instance with each variable in
the target rule without relying on the empirical technique. In addition, if
each basic rule _is applied properly during the problem solving stage, then it

can infer the proper rule ci(3.11) from just a single instance(3.10).

3.4.2. CaseIl

Analytical generalization can allow the induction of 2 rule from a s1ng1e
1nstance if the prototype not only knows how the instance is derived from the
basie rules but also knows that each basic rule is applied correctly durtng the
‘problem solving stage. The second assumption may not hold true all the
time. In this prototype, the system is given some basic rules in order to solve
a wide variety of problems in a given domain. The condition of each basic
" rule is quite open so that each basic rule can fit a wide variety of situations.
As a result, the basic rules are quite general. If the prototype relies on these
rules as the basis of generalization, and the application of these rules during |
- the problem solving stage is not constrained, then it is possible to induce a
rule which is over-general. Furthermore, there is a requirement that the user

may want to induce a rule of arbitrary generality.

46

For example, consider the instance
cl(3.14)

rela,ted(christbpher,christine) :- parent(ringo,christopher),

parent(ringo,christine)
The analytical generalization would induce this instance cl(3.14) into a rule
such as: | | |
cl(3.15)

related(X,Y) :- parent(Z,X),parent(Z,Y) /* sibling */
However, another possible generalization of cl(3.14) is the rule
cl(3.16) :

related(X,Y) :- parent(ringo,X),parent(ringo,Y) / * children of ringo */
The instance of ¢l(3.14) does not provide other information for the prototype
to decide which one, c1(3.15) or cl(3.16), is the target rule. The conditions of
the basic rules cl(3.1) and cl(3.é) are insufficient to allow the analytical
generalization to decide that “ringo” in the instance cl(3.14) should be a
constant ipstead of a variable. During the problenir solving stage, the
instantiation for the predicate parent(ringo,christopher) is “paréﬂt(X,Y)”
instead of “parent(ringo,Y)”, the generalization process just infers “rinéo” to

be a variable. Therefore rule cl(3.15) is induced instead of rule cl(3.16).

To enable analytical generalization to induce rule cI(3.16) instead of
cl(3.15), two extra conditions must be provided by the system. Instead of
only two general basic rules ¢l(3.5) and cl(3.6), the prototype needs an extra

set of rules such as parept(ringo,Y). During the problem.solving stage, the
| system must be able to use “parent(ringo,Y)” instead of the predicate

“parent(X,Y)” to generate the instance (3.14).7

47

Building an extra set of rules is a major problem. The difficulty lies in
deciding which set of rules should be included. By inciuding an extra set of
rules, the system would assume the types of specific rules that a user WOIﬂd
eventually like to induce in the future. This assumption is too mﬁch to make.
Also, the extra set of rules actually belong to specific type rules. Including
the extra set would contradict the original purpose of inducing the specific

rules from the bé.sic one.

Even if this extra set of rules exists in the system, there is no guafantee
that this set of rules should be used instead of the genéral basic one during :
the problem solving stage. The wuser just issues the question
“relate(christopher,christine)” to the system and there is no further
information provided with the question. If the database arranges the extra
set oi: rules in front of the basic ones, the system may pick “parent(ringo,Y)”
in this example. ‘While it may be suitable for this case, it may be undesirable
in another case where the rule (3.15) is indeed the target one. The strategy of
placing this set of rules in front of the basic oﬁe shifts the learning bias of the
, protofype. The bias would be to prefer rules like ¢l(3.16) over the other ones
like cl(3.15).

It appears that using only the analytical generalization for this case is
not enough. On the other hand, relying only on the empirical technique runs
into the problem of needing a lot of positive and negative instances as

discussed in the section 3.4.

Whlle the basic rules are not sufficiently constralned to enable analytlcal
generahzatlon from a single instance, they can bé used to infer any constants

and shared variables in the target rule. In this example, the basic rules

48

_cannot be used to decide whether “ringo” in the instance come«s from the
variable “Z” in the target rule, but it can decide that there is a common
- shared variable “Z” or a common shared constant “ringo” between the two
subgoals. Because of that, the analytical generalization eliminates one

possible target rule “parent(Z1,X), parent(Z2, Y)".

The target rule can be imagined as lying within the version space

bounded by a baii* of most specific and most general rules. In ﬁhis example,
without the stage of the analytical generalization, the prototype has to begin
its empirical generaliia‘tion with the most general boundary of “parent.(Zl,X),
parent(Z2,Y)”, and the most specific Boundary of “parent(ringo,christopher),
parent(ringo,christine)”. If the stage of analytical ge‘neralization exists, the
prototype can start its stage of empirical generalization with the mo‘st general
boundary “parent(Z,X), parent(Z,Y)” instead of “parenp(Zl,X); parent(Z2,X)".
The most general boundary has been lowered. By bringing down the most
general boundary to a iower level, the analytical generalization narrows down
the version spacé: for the next stage of ‘empirical generalization. The whole

scenario is shown in the ﬁgure 3.2

If the rule cl(3.16) is the target rule for this example, extra instances are
necessary in the empirical generalization. Of course, one useful source of
instances is t;he user. However, there are two other possible sources of
instances. The next section discusses rthe empirical induction and how those

instances can be extracted and generated.

® The following explanation is described using the Version Space approach for
convenience. However, the current implementation of this prototype has not yet incorporated
the Version space method for its empirical techniques.

49

parent(X1,X2),parent(X3,X
the most general boundary

(3.15) parent(X,X2),parent(X,X4)
the general boundary after analytikal induction

-

(8.18) parent(ringo,X2),parent(ringo,X4)
the target rule

(3.14) parent(ringo,‘christopher),parent(ringo,chr stine)

the most specific boundary, the posithve instance

Figure 3.2: The Version Space of a family tree example.

3.5. Empirical Induction

Empirical induction has two s:téps:.extracting negative instances and

generating instances. They are described in the following two sub-sections.

3.5.1. Extracting Instances

The general condition of the basic rules ¢l(3.1) and cl(3.2) not only create

problems during the analytical generalization, they also create problems

50

during the problem solving stage. Because their conditions are general, these
basic rules may need several trials before they can get to the right solution.
Given the database as defined in the figure (3.1), the first solution to the

question “:related(christopher,christine)” is the instance
cl(3.17)
related(christopher,christine) :- parent(janice,christopher),

parent(janice,christine).

If the user is only interested in finding whether they are related through
| “ringo” as op;;osed to anyone else, then he is going to reject this instance as
an incorrect solution. The system has to search for anoi;her solution until it
finds the one “related(christophei‘,christine) - parent(ringo,christoﬁher),
parént(rinéo,christine)”. If the instance ;31(3.17)-—re1ated through janice-- is
captured and stored, then it can become a useful negative instance for
empirical induction. The instance (3.17) Kgives the justification that the
variable X in the cl(3.15) should be specialized into the constant “ringo”.
Otherwise, if X was indeed the variable, then the instance cl(3.17) should also
be acceptable as a solution instead of beingr rejected. There are three:
problems related to using the solution trace as the source of negativet

instances for empirical induction.

An assumption is made that the user is only interested in finding the
correct solution, and no alternative solution. As soon as he has found the
‘co.rrect solution, he stops the system from generating further solui;ions. This
assumption is necessary for the system to decide that the last solution 1;1 the
solutfon trace 1s a positive instance and any solution prior to it is a negative

one. If alternative solutions are allowed in the solution trace, the system

51

cannot decide which one is the alternative correct solution, or which one is a
negative instance. Under these circumstances, further input from the user

would be required to distinguish negative solutions from alternative correct

solutions.

The second problem is that there is no guarantee that negative instances
will exist in a solution trace. In the data-base of the family-tree in the figure
3.1, the predicates “parent(janice,christopher)” and “parent(janice,christine)”
are put in front of th;a predicates “pareﬂt(ringo,christopher)” and
“parent(ringo,christine)”. As a 7 result, the mnegative instance of |
“parent(janice,christine), parent(janice,christopher)” is generated before the
correct solution of “parent(ringo,christopher), parent(ringo,christine)”.
However, if those predicates involving “ringo” are put at the beginning of the
data-base, then the first solution is the correct one. The system will not have

a chance of generate another instance involving “janice”.

The final problem with the solution trace is that it is an unstructured
source of negative instances. In the current implementation, only negative
near-miss instances which li“e within the versién space are useful. Consider
the same example involving “christopher” and “christine”. Beside the instance
cl(3.14) “related(chrisi;opher,christine):— parent(ringo,chfistopher),
parent(ringo,christine)” which is accepted as the positive one, two negative

inst@nces are generated before the instance (3.14). They 4re:
cl(3.18).

related(christopher,christine) - parent(janice,christopher),

parent(janice,christine).

52

cl(3.19)
related(christopher,christine) - parent(ringo,christine),

parent(janice,christine), parent(janice,christopher).

Of the two negative instances, only ¢l(3.18) lies in fhe current version space
bounded by the rule (3.15)“‘rela,ted(X,Y) i~ parent(Z,X), parent(Z,Y)”, and the
instance (3.14) “related(christopher,christine) :- parent(ringo,christopher),
parent(ringo,christine)”. Therefore, the negative instance (3.18) is the onlyr
.one useful in narrowing down the most general boﬁndary of (3.15) into the
one “relalted(X;Y) i- parent(ringo,X),parent(ringo,Y)”. (3.19) cannot be a
useful negative instance because its structure is different from the positive

instance (3.14). : ‘

CI(8.18) is a useful negative instance not only because it lies within the
version space, but also it is a near miss instance. It contains only one

discriminant, “janice”, from the positive instance.
Consider another case involving thé “great grandparent” relationship.
The most general boundary and most:speciﬁc boundary are defined By
cl(3.20)
related(X,Y) :-parent(X,X1),parent(X1 ,X2),parent(X2,X3),parent(X3,Y).
cl(3.21)
related(ringo,adrian) - .parent(ringo,jane), parent(jane,mary),
parent(méry,adrian). |

There are two possible negative instances within the version space defined by

these two boundaries. They are:

¢l(3.22)

related(ringo,adrian) - parent(ringo,jane), parent(jane,alec),

53
parent(alec,adrian).

cl(3.23)

related(ringo,adrian) :- parent(ringo,christopher), parent(christopher,alec),

parent(alec,adrian).

Only the instance (3.22) can be wused as it contains only one
discriminant,“alec”. The negative instance (3.23) cannot be used because
there are two discriminants, “alec” and “christopher” in (3.23). The prototype
cannot tell ’which discriminant causes the instance (3.23) to be a negative one.
It may be “alec”, or “christopher”, or both of them. If the instance (3.22) was
positive and (3.23) was negative, using both of them could point out that
“christopher” was the discriminant which caused (3.23) to be negative. But if
(3.22) and (3.23) are both negative instances, then the prototype cannot find
out all essential discriminanté. The prototype can only definitely identify
“alec” as the essential negative discriminant since the ¢l(8.22) is a near-miss
negative instance. However, the prototype cannot decide for sure that
“christopher” in ¢l(3.23) is also a negative discriminant. It may be “alec”
which also causes cl(3.23) to be a negative instance.” The current
implementation of the prototype only uses a single rule instead of a set of
rules to represent the most general boundary of the version space. It can only
handle near miss negative instances. The possible improvement to this

limitation will be discussed in the chapter (6).

3.5.2. Generating instances from current database

The solution trace cannot guarantee to have useful negative instances.
Even if it has, there may be insufficient negative instances to specialize the

upper boundary of the target rule. As a result, further instances are still

54

required. In the case of t'he,rsibling example, the upper boundary has been
narrowed down to “related(X,Y) - pa.rent(ringo,X),parent(ringo,Y).” as a
result of the negative instance (3.18). There is a possibility that the variables
X and Y are also constant. The system has to find and confirm this. The last
part of the prototype is to generate instances, asking the user to classify the
instances as being either positive or negative. Based on the user's
classification, the system tries to determine which variable in rthe upper
boundary can be turned into a constant. The following paragraphs describe _

why the generation of instances from the current database must be guided.

One of the simple Wa;ys of generating instances is to use the upper
boundary as the rule to generate an instance.\ By causing the rule to
backtrack continuously, the prototype can eventually generate all the possible
instances in the current domain. While this approach is simple to implement,
it generates a lot of redundant and useless instances. For example, if é rule
has been specialized to the .form “related(X,Y):- parent(ringo,X),
parent(ringo,Y)” from a previous instance of “related(jessica,christopher) :-
parent(ringo,jéssica), parent(ringo, christopher)”, another instance of
“related(jessica,christopher) - parent(janice,jessica), parent(janice,
christopher)” is redundant because it does not contribute to any further
generalization or specialization. An instance with one discriminant is uséful-
because its classification as positive or negative can uniquely identify whether
the discriminant can be turned into a variable. An instance of two
rdiscriminants may not be very useful unless one of them has been identified
previously. To avoid generating redundant and useless instances, the process

of generating instances must be guided.

55

The prototype uses twé criteria to geﬁerate instances. The criteria are
similar to the ones used in the previous step of extracting negative instances
. from the solution trace. Whether they are pésitive or negative, only instances
within thei current version space are useful. Therefore, the instance
- “related(jessica,pat):- parent(janice,jessica), parent(janice,pat)” is not useful as
it lies outside the current most general boundary of “related(X)Y) :-
parent(ringo,X),parent(ringo,Y)”. - In order to ensure that only instances |
within the current version space are generated, the most general bounda‘,ry
“related(X,Y) :- parent(ringo,X), parent(ringo,Y)” is used as the rule to
generate instances. | ‘

’As‘the user only gives a simple answer “yes” or “no” to thg instances, the “
system has to gener‘ate those instances with only one discriminant. Therefore,
.the instance of “related(jessica,chr‘istine) - parent(ringo,jessica),
parent(ringo,christine)” is a useful instance, whether it is a positive or
negative, as there is only ~one discriminant, “jessica”. The instance of .
“related(qusica,pat) :-pareﬁt(ringo,je‘ssica), parent(riﬁgo,pat)” is a | useful
positi;/;e instance, but not a useful a negative one. If the user answer “yes” to
this one, then the system can justify that both the constants “jessica” and
“pat” are va,riables‘“X” and “Y”. But if the answér is “no”, then the system
runs into'the same problem of déciding whether one or both of them are the
negative discriminants. Conseqﬁently, this current prototype is restricted to

generating instances with only one discriminant.

Whether the version space can be successfully narrowed down to the
target rule depends on the number of instances which can be generated from

the database. If there are five undecided variables before this step, then at

56

least five instances, each one with only one discriminant, have to be produced.
The database in the figure (3.1) can generate sufficient instances for the
prototype to learn the sibling and grandparent rules, but not the “great
grandparent” rule. For the “great grandparent” rule, only four different
instances can be generated in total from the database of figure (8.1). They

are:

cl(3.24)
related(ringo,adrian) i-parent(ringo,christopher),parent(christopher,mary),
parent(mary,adrian). | |
¢l(3.25) |
related(janice,adrian):-

parent(janice,christopher),parent(christopher,mary), parent(mary,adrian).

¢l(3.26)
relé,ted(ringo,ringo):L barent(ringo,george), parent(george,mathew),
parent(mathew,ringo). .

¢l(3.27)
related(janice,ringo):- parent(janice,george), parent(george,mathew),

parent(mathew,ringo).

In this example, the first instance (3.24) is taken to be the initial positive
instance. The rest of the instances are generated by this step. The second
instance (3.25) can be used to decide whether the constant “ringo” comes from
a variable in the target rule. The instance (8.26) has more than one
discriminant. If the user classifies (3.26) as being positive, then the system
can justify turning all the remaining c;onstants in the instance into variables.

The rule then becomes:

57

¢l(3.28)
 related(X,Y):-parent(X,L),parent(L,M),parent(M,Y).

But if the answer is “no”, then the prototype cannot infer any further
information from the instance (8.26). The last instance cl(3.27) is not useful

as it does not contain any extra information.

3.6. Summary

This chapter has described two types of rules for certain domains: basic
and specific rules. The solution for a problem is initially found using the
basic rules of a domain. Then the prototype infers a specific rule from the

solution to solve a similar class of problems.

In the first stage of analytical induction, the prototype infers any
common sh\ared variables or constants in the target- rule. In the second stage
of empirical induction, the prototype first extracts any useful negative near-
miss instances to specialize the upper bound of the target rule. Then it
further generates instances frpm the existing database of the domain and
requests the user’s classification on these instances. Based on the user’s
classification, the prototype reﬁnes both the upper and lo.wer bound of the

target rule. The next chapter describes the implementation of the prototype.

CHAPTER 4

Implementation of the prototype

This chapter discusses the current implementation of the prototype. The
target rule can be imagined as confiained in ‘aL hypothesis space of many
possible target rules which are bounded by its most generai rforr'n and the
" most specific form. A common terminology for this space is called the version
space. Section 4.1 describes the first stage, analytical induction which
generalizes a positive instance into the most general form of its version space.
The second stage, empirical induction, has two sub-stages. Section 4.2
describes the first substage of specializing the most general form of the version
space by using any near—miSs'negative instances extracted from the solution
trace. Section 4.3 describes the second sub-stage of generating instances from
the database, and using these instances to narrow dow'n~ the versionl space
. bounded by the most general and most specific forms. Section 4.4 describes

the current status of the prototype, and section 4.5 summarizes this chapter.

4.1. Analytical Induction

In order to carry out analytical induction, the prototype has to know the
form of the positive instance. The instance is actually the solution to a
particular problem generated by an inference engine. The prototype also has

to know how the solution is generated by the inference engine.

At present, the inference engine of the C-Prolog system just returns an
answer “yes” or “no” to the query such as “related(éhristopher,christine)”. In

the case when “christopher” and “christine” are related, the C-Prolog system

58

59

just indicates an answer “yes”, but gives no indication of how these two are
related. Also there is no information as to what basic rules have been used in

8

finding the solution.

Another requirement is that the prototype must be able to access any of
the solutions which are rejected by the uéer. The storage of these solutions
forms the source of negative instances for the next stagé of emp_iricé,l
induction. The existing C-Prolog system, however, does not store these

instances once a query is finished.

All the above requirements of the prototype seems‘ to indicate the need
for extracting extra information from the current C-Prolog interpreter. One
way to capture this extra information is to build some functions within thé
existing C-Prolog interpreter. However, these functions may interfelle with
the performance of the interpreter and affect other users of the system. To
prevenﬂ intérference with other users, the work for this thesis involved

building a separate interpreter to simulate the actions of the current C-Prolog

interpreter.

The current implementation involves a meta-interpreter runhing‘on top
of the existing C-Prolog interpreter. Besides simulating the action of the
exiéting interpreter, the meta-interpreter captures the form of the solution
such as ‘.‘palient(ringo,christopher),parent(ringo,chrisﬁine)” as well as any
solution rejected by the user. The rejected solutions are asserted into the
database with the special tag “frecord” so that they can be retrieved even

after an query is finished.

There are several analytical generalization techniques for different

applications such as story upderst'amding, heuristics and so on. In LEAP and

60

LEX where heuristics are learned from instances produced by the basic
‘operators, constraint back-propagation technique is used. This involves two
separate stages: capturing thé sequence of the basic operators during the
problem solving stage; and generalizing using the same sequence in the
induction stage. To use this technique, the prototype has to supply extra
information on how those basic operators can be back-propagated. This extra
information may not exist or be defined for all basic operators. Other
limitations have beenrcited' for this technique [Utgoff 1986]. The prototype
uses a different technique from the constraint back—propaéation teéhnique.
‘Instead of keeping a record of how the basic rules are used, the meta-

interpreter produces a generalized and/or tree to represent their sequence of

application.

_ In Prolog, the process of finding a solution can be captured in an and/or
tree; The top node of the tree represents ﬁhe query or the question, and the .
bottom nodes of the tree represent the solutién to the query. The internal
nodes of the tree represent the intermediate steps taken by the interpreter. In
esséqce, the and/or tree of the solution represents the Eésic rules and the
binding of the variables in the rules with constant values. To infer how the
- constants are shared in the tree, it is necessary to have a corresponding
generalized and/or tree which captures the basic rules but without any
binding of variables. A corresponding mapping between these two trees can
. reveal whether two constants in the solution tree are indeed shared together.

An example is shown in figure 4.1.

The meta-interpreter builds these two trees at the same time. When the

query “related(christopher,christine)” is fed into the meta-interpreter, ‘the

61

related(christopher,christine)

parent(ringo,christine) parent(ringo,christine)

solution and-or tree

related(X, Y)

parent (2, X) parent(Z,Y)

generalized and-or tree

--Figure 4.1: A solution tree and its generalized form.

generalized form of the query “‘related(X,Y)” is also fed to the same
interpr.eter. When the solution “parent(ringo,christine),
parent(ringo,christopher)” is found, the generalized rule “parent(Z.X),

parent(Z,Y)” is also generated from the generalized and/or tree.

It is essential that the two trees correspond to each other. Two major
problems can arise from trying to produce a corresponding generalized tree.
Part of the first version of the meta-interpreter is shown in figure 4.2. Two
simple examples are shown in figure 4.3 and 4.4 to illustrate the proble‘ms. A

modified version is shown in figure 4.5.

62

Call1(Goal, Result, Head, Rule) :-
clause(Goal, Body1l),

clause Head Bod, 2)

calll(Body1, Result, Body2 Rule).

where Goal--the query
Result--the bottom nodes of the solution tree
Bodyl--subgoals of the query
Head--generalized query
Rule--the bottom nodes of the generalized tree
Body2--subgoals of the generalized query

Figure 4.2: A portion of the meta-interpreter (Version I).

The first probleni is that the generalized query may instantiate with
sonie‘clauses which the solution query will avoid. For example, in figure 4.3,
the meta-interpreter has to instantiate both the actual query of “test(2,Y)”,
and the generalized query of “\test(L,M)”. The query “test(2,Y)” can only bind
with the (2) clause of “test”, but not (1). “test(L,M)” can bind with either (1) '
or (2). Because of the sequential evaluation, “test(L,M)” in this case will bind
with (1) first. Therefore a discrepancy occurs between these two trees. The
solution tree binds with the second clause (2) of test, while the generalized
tree binds with the first clause (1) of test. ;I‘o pr,event‘ this mismatch from
happening, ‘the instantiations in both trees must be tested for equality at each
step of instantiation. In this example, the generalized tree has to give up its
first instantiation and try the second one which matc_hes with the

instantiation of the solution tree.

63

subgoal(1).
subgoal(2

* subgoal(yes).
subgoal(no).

1) test(1,Y) :- subgoal(yes), subgoal(Y).
2) test(2,Y) :- subgoal(no), subgoal(Y). -

QUERY: calll(test(2,Y), R, test(L,M), Rule)

ANSWER:

Y=1

R = subgoal(no),subgoal(1)
L=1

M=_7

Rule = subgoal(yes),subgoal(_7)

Figure 4.3: The problem of different instantiations.

-

The second problem comes from different backtracking by the two
different trees. In figure 4.4, the interpreter has tried 1), 2) and 3) of the
clause “rel(X,Y)” in both trees and fails. The interpreter then first backtracks
the solution tree and tries the final clause 4) where it succeeds. However, the
generalized trée still remains at the previous clause 3). Consequentrly the
instantiations in both trees are different. To 'prevent this problem, the

interpreter must backtrack both trees to the same place at the same time.

The improved version (II) is shown in figure 4.5 which takes care of the
two problems. However the code of the improved version (II) is less easy to

understand than the first version.

64

parent(ringo,john).
parent(ringo,mary).

1) rel(X, Y) :- parent(X,Y).

2) rel(X, Y) :- parent(Y,X). : :
3) rel(X, Y) :- parent(X, Z), rel(Z, Y).
4) rel(X, Y) :- parent(Z, X), rel(Z, Y

" QUERY: calll(rel(john,mary), R, rel(X,Y), Rule).

ANSWER: “
R = parent(ringo,john),parent(ringo,mary)
Y="T6

Rule = parent(_5,_24),parent(_24,_6)

Figure 4.4: The problem of different backtracking.

Call1(Goal, Result, Head, Rule) :-
clause(Head, Body1), A :
copy((Head:-Body1),(Head2:-Body?2)),
Goal = Head?2,
call1(Body2, Result, Body1, Rule).

Figure 4.5: A portion of ‘the meta-interpreter (Version II).

The first stage can be summarized by the following procedure:

--input the query and its generalized form to the meta-interpreter
--While the acceptable solution is not found loop
--search for another solution and its corresponding generalized rule
simultaneously
--output the solution to the user for its feedback
--if the answer is “acceptable” then

65

--output the solution and its generalized rule
--stop the loop
--else

--assert the solution into a database Wlth a tag “frecord”
--continue the loop

4.2, Extracting negative instances

The first sub-stage of the second stage “empirical induction” is to
specialize the most general form qf the rule foulnd in the previous stage. The
specialization is done by using any near-miss negative instances extracted
from the solution trace. There are three steps in this stage. The first step is
to extract negative instances which are marked with the tag “frecord” from
the database.- The second step is to rearrange the negative instances and
makes use of those near-miss instances for specialization. The final step is to

specialize the general form of the rule so that the version space is smaller.

After the first stage of analytical induction, the version space which
contains the target rule can be deseribed and bounded by the most specfﬁc
and most general form of the rule. The most specific form is the positive
instance used in the analytical induction. The most general form is the rule
induced in the apalytiéal inductiop. If instances are rejected by the user while
the interpreter is finding the solution, and some of the instances are within
the version space, then these instances can be used further to narrow dawn
the boundary of the version space. In other words, the version space should
~be narrowed further to exélude those instances by specializing the most
. general form of the space. The instances marked with the tag “frecord” in
the database are negative instances. Some of them jare within the version
space, but some of therﬁ are not. The pratotype'has to extract those within

the version space in order to specialize the most general form. To do that,

66

the prototype extracts those instances which can match the most general
form, i.e. the rule induced during the analytical induction. Those negative
instances which do not even match the most general form are outside the

version space and they are not useful for any further induction.

The second step is to organize those neg,ativerinstances lying inside the
version space. The current prototype can only make use of t‘:he near-miss
negative instances. Therefore, it is necessary to select further the near-miss
instances from the ones found in the previous step. The negative instances
are.compared with the most specific form one by one to find out how different
they are from the most specific form. Then the instances are sorted in a list
according to the order of difference. Those near-miss instances with just one
discriminant are put at the front of the list, followed by those with two

discriminants, and so on.

The final step is to specialize the most general form. Both the most
general and most specific forms are compared with each negative instance,
starting with the first one in the list. Comparison of the most specific form
with a given negative instance indicates what is the essential discriminant.
The essential discriminant is used to locate the corresponding value in the
most general form. If the corresponding value in the most general forﬁ ié a
variable, then the variable is specialized to the corresi)onding constant in the
most speéiﬁc form. If the corresponding value “in the most general form is a
constant already, then the value is kept the same. The specialization stops
when all near-miss instances with one discriminant. in the list are exhausted.

The procedure is shown in the figure 4.4.

67

Most general form-----unique list [Z,X,Y]
related(X,, Y) :- parent(Z, X), parent(Z, Y).

Most specific form-----unique list [ringo,christopher,christine]
related(christopher,christine):-parent(ringo,christc_)pher),parent(ringo,christinq)

Negative instance-----unique list [janice,christopher,christine]
related(christopher,christine):—parent(janice,christopher),parent(janice,christine)

The new most general form-----unique list [ringo,X,Y]

related(X,Y) :- parent(ringo, X), parent(ringo, Y).

Most specific form-----unique list [ringo,christopher,christine] 7
related(christopher,christine):—parent(ringo,christopher),parenﬁ(ringo,chrisbine)

Figure 4.6: Specialization using negative instance.

Instead of storing and comparing each ‘instance as a whole entity, the
current prototype abstracts a unique list of variables and constants for each

instance. For example, for the instance of

related(christopher,christine):-

parent(ringo,christopher),parent(ringo,christine)
the unique list to represent that is

[ringo,christopher,christine]

68

This is due to the fact that the prototype just r\nanipulatles constants and
variables in the brackets. The functors of the predicates such as “parent” are
not manipulated. Therefore, in the third step of specialization, ;aach instance
or a rule can bé uniquely represented by a‘ ligt of :1ts constants and variables
without essential Ioss of information.‘ The corresponding unique list for each
instance is also shown in the figure 4.6. Consequently, only unique lists are
manipulated instead of the whole 1nstance or the whole rule. Mampulatlon of
the unique lists is both more time efficient and more space efficient than
manipulating the whole rule or instance. At the end of the third step, the

_ unique list is used to pfoduce the rule back in its original form.
The second step can be summarized'by the following procedure:

--extract negative instances usmg the most general form
—-sort the negative instances in a list according to the number
of discriminants ,
-~while near-misses still exist in the list do:
--compare each negative instance with the most specific form
to locate the discriminant
--find the value in the most general form corresponding to this
discriminant
--if the value is a variable, turn it into the correspondlng
constant value in the most spemﬁc form
----glse keep the value as it is.

4.3. Generating Instances

- The next sub-stage of the “empirical induction” is to generate insta_nces'
from the current database. ‘Base:d on the classification of the generated
instances frc'>m the user, the prototypﬂe generalizes the most specific form or
specializes the most general form. The generation of instances must be guided
- so that redundant instances are avoided. Therprototype first attempts to
generate instances with only one discriminant. After all these instances from

the database are exhausted, the prototype tries to generate instances with

69

- more than one discriminant.

The current prototype relies on a list of variable/constant pairs to guide
its generation of instances. This list is constructed by extracting unique
variables from the most general form and their corresponding constants in the

most specific form. An example is given in figure 4.7.

The prototype then uses the most‘; general form to try to produqe another
instance from the database such that X is instantiated to a value other than
“christopher”, while keeping the variable Y instantiated to the same value of
“christine”. If this instance can be generated, it is prompted for the user
classification. If that instance cannot be generated, the prototype attempts to
generate another instance with the variable Y binding to a different value
other thé,n “christine”. If this instance still cannot be generated, then the
database does not contain suﬁicieni; instances to allow the target rule to be
induced. In this case, the most general and most speciﬁc forrﬁ will be

returned instead of a single target rule.

the new most general form after the second stage is:
related(X,Y):- parent(ringo,X), parent(ringo,Y).

the most specific form remains as: , ~
related(christopher,christine):- parent(ringo,christopher), parent(ringo,christine).

the list of variable/constant pairs is:
[X,christopher], [Y,christine]|

Figure 4.7: An example of a list of variable/constant pairs.

70

The final stage can be summarized in the following procedure:

--create a list of variable/constant pairs from
the most general and most specific forms
--with each pair in the list, do:
--generates an instance such that the variable in this pair
has a different value from the constant in the pair.
--if an instance can be generated then :
--prompt the user for classification of the instance
--if “yes”, the variable is maintained.
] --if “no”, the constant is maintained.
—-else
--put this pair into another list of “undefined”
--repeat the loop with the next pair

4.4. Current status of the prototype

Each qomponent,r analytical induction, extracting negati\}e instances, and
generating instances, has been implemented and tested separaately as an
individual module. However, there are difference between the interfaces for
the different modules. For example, the analytical induction module outputs
the rule and instances as clauses, but the next two modules accept the rule
. and instances in the form of a list. The user has to modify the format of
output slightly from one module to another format for input to the next
module. The interface problem is presently being worked on and will be

resolved in the future.

To ensure that the prototype does not just solve the familir-tree problem,
it has been tested with other problems such as inducing 'speciﬁ;: rules for
parsing context free grammar. Given a set 6f basic grammar and its -database
- [Clocksin and Mellish 1981], as shown in figure 4.8, the prototype induces a
specific rule for parsing. a certain group of 'senteflces: For example, thei
pr_&otype induces a specific rule of [determiner,noun,verb,detefminer,noun])

from the sentence of [the,man,eats,the,apple].

71

sentence(S0, S) :-noun_phrase(S0, S1), verb_phrase(S1, S).
noun_phrase(S0, 8) :- determiner(SO, S1), noun(S1, S).

verb_phrase(SO0, S) :- verb(S0, S).
- verb_phrase(S0, S) :-verb(S0, S1), noun_phrase(S1, S).

determiner([the|S], S).
noun man]S&,S).
noun(|apple J,S).
verb([eats|S],S).

verb([sings|S],S).

query --sentence([the,man,eats,the,apple],[]).

the solution is :)
determiner([the,man,eats,the,apple],[man,eats,the,apple]),
" noun([man,eats,the,apple|,[eats,the,apple]),
verb([eats,the,apple],[the,apple]),
" determiner([the,apple],[apple]),noun([apple],|])

. the induced rule is:
determiner(S1,52),noun(S2,S3),
verb(83,54),determiner(S4,55),noun(S5,[])

Figure 4.8: Inducing a rule for context free grammar.

4.5. Summary

In the first stage of analytical induction, the prototype finds the most
general form of the version space from the generalized and/or tree. The most
specific form of the version space is the solution to a problem found by the
interpreter. The most general form is used in the next stage of empirical
induction as the basis for finding negative. instances and generating instances

from the database. The most specific and most general form are refined at

72.

the stage of empirical induction. The next chapter will discuss the limitations
of the prototype, both in terms of its design and its implementation, and -
suggests further improvements. In addition, it also discusses several problems

encountered in this project.

CHAPTER 5

Evaluation

This chapter evaluates the performance of the prototype, in both its design
" and implgmentation. Section 5.1 describes the limitations of its
implemeﬁtat‘;ion. Section 5.2 examines the performance of each part of the |
- prototype. ‘Section 5.3 looks at the prototype as a whole. It describes where it
is useful, and the assumptions that make it work. Section 5.4 suggests se;»feral

issues for further investigation.

5.1. Implementation bottleneck

The' prototype has been tested with a family-tree program, a_sentence-
parsing program, and several list-manipulation programs to gain some

estiméte of its generality.

The current prototype was slow in running the test programs. For
e‘x@mple, parsing a sentence of “[the,man,eats,the,apple]” required only 0.016
cpu second running directly on the C-Prolog interpreter, but required 1.68 cpu
second on the prototype running under similar loading conditions. The major
inefficiency is due to the meta-interpreter built in the prototype. The meta-

interpreter is required to extract extra information for induction.

There are reports on the inefficiency of using a meta-interpreter in the
Prolog system [Sterling and Lee 1986], . since a large fixed overhead exists.
The mefd—interpreter sets up the target program and then runs the program
on the actual C-Prolog interpreter. This large fixed overhead may account for

the inefficiency, esﬁecially when running small programs.

73

74

Another major inefficiency is in building a generalized and-or tree for the
analytical induction. In order to carry; out the analytical induction, it is
necessary to record‘those basic clauses which are used in deriving a solution.
However, getting those basic clauses in their original forms is not an easy task
since the prototype has no dire‘ct information on how the C-Prolog interpfeter
operatés. The C-Prolog built-in predicaté “clause(Head,Body)” doesf not
totally solve the problefn. For example, given the head of
"‘related(christopher,christine)”, the predicate “clause” return-s the body of
“;;arent(Z,christopher), parent(Z,christine)”. However it is the rule of

“related(X,Y) :- parent(Z,X), parent(Z,Y)” which the pro£§type requires for
| analytical induction. In order to record the body of the rule “related(X,Y) :-
parent(Z,X), parent(Z,Y)”, the prototype has to build a separate generalized

and-or tree. As discussed in section 4.1, the generalized and-or tree has to

correspond with the solution tree. To prevent mismatch, the instantiations in -

both trees must be tested for equalit';y at each step of instgntiat_ion. If there
are similar clauses, testing equality may be time-consuming. A majdf
improvement beyond the current prototype will be achieved by having some
means of getting the basic rules used in the problem solving étage directly
from the C-Prolog interpreter. In that case, programs can be run directly on

the C-Prolog interpreter without the extra overhead of the meta—interpretér.

The current prototype can handle Prolog clauses involving “and” goals,
“or” goals, and “not”. It cannot handle “cut”. Iﬁ also cannot handle goals
which require their variables to have specjﬁc constant values at the time of
their instantiation. Fér example, any goal involving the system predicate of
write(X) will fail because X must be instantiated to a constant value at the

time of its call. In the solution tree, X would have a specific value. However,

~

75

in the generalized and-or tree, X would remain a variable. This would cause

the system to fail.

5.2. Evaluation of each component

The first staget of analytical generalization is able to identify any
constants and shared variables of such coinplicated clauses as:
cl(5.1)

related(R,J) :- parent(R1,J),parent(M,R1),parent(G,M),parent(R,G).
from the instance
cl(5.2) _

related(ringo,john) - parent(ringo,john), parent(mathew,ringo),

~ parent(george,mathew), parent(ringo,george).

A user may have diﬁiculty in deciding that there is a shared variable “R1”,
and that “R1” is different from another sh_ared variable “R”. To do this, he
has to trace through the solution step by step.: In that respect, analytical

induction saves the user from the tedious effort of tracing through the

solution manually.

Although the first stage of the prototype can identify 'any shared
variables, some intefpretai;ion is still required by the user to determing the
types of the variables. In Prolog, there are no types for variables. A variable
can assume aﬁ integer value, a symbol constant or a list. For example, the

prototype returns a grammar rule of:

cl(5.3) .
sentence(X,[]) - determiner(Xl,Xﬁ), noun(X2,X3), verb(X3,X4),
determiner(X4,X5), noun(X5,])). -

76

from the instance of

cl(5.4)
sentence([the,man,eats,the,apple]) - . -
determiner([the,man,eats,the,apple],[maﬁ,éats,the,apple]),
noun([ma,n,eats,the,apple],[eaté,the,apple]l,
Verb([eats,i;he,apple],[the,apple]), : determiner([the,apple],[apple]),

noun([apple],[])

The induced rule can only work when all varliables in the rule have tl;e input
in the form of a list. .Ho;)vever, the induced rule does not indicate that extra
requifement. The user has to infer this himself by observing that all
constants in the corresponding positive instance cl(5.4) are in the form of a
list. The interpretation can be tedious if there is a mixbure of different types

in a rule,

In the first step of the second stage of the empirical induction, it is found
that the past rejected solutions do not always exist as a source of negative
instances. The family-tree program may generate some rejected solutions but
the parsing program seldom generates any. Even for the family-tree problem,
the rejected solutions are few and insufficient for the system to arrive at
target rule. The original design idea is that if any rejected solution is
gene.ra,ted during the search for right solution, then it is saved \as negative
instances.’ It does not have to be regenerated again for empirical induction.
However, the result does not indicate any signiﬁcant_advantagé to using this
idea. In addition, this stef; assumes that all solutio\ns in the solution trace are
rejected ones rather than alternative right solutions. This restricts the user in

interacting with the system.

7

The generation of instances in the second step deper;ds on the database.
A large database does not necessarily mean sufficient instances can be
provided for all the "different varieties of speciﬁé rules. The database may
contain mény similar instances which are useful for inferring some types of
specific rules, but not others. To induce a variety of rules, the database must
have a variety of instances. The database for the family-tree and parsing
problems are not very large. Consequently, the prototype coﬁld generate
sufficient instances for some simple specific rules but not for some of the more

complicated rules. o

In both the first and second step of the empirical induction, the
prototype is restricted to using negative “near miss” instances for its
specialization. That may restrict the protbtsrpe from inducing a targeﬁ rule.
A better strategy is to consider other negative instances besides those near
miss instances. The major problem is to identify the essential discriminants
which cause the instances to be negative. Some strategies such as the depth-
first search or the Version Space method can handle this problem. However,
the implementation is more complicated than the ‘current prototype. The,
computation is also likely to be more expensive than the current one because

it is necessary to process other negative instances.

5.3. Performance of the prototype

The following subsections describe where the prototype may be useful

and the essential features behind the working of this prototype.

78

5.3.1. Where it can be useful |

The purpose of the prototype is to induce specific rules to improve the
system’s problefn solving efficiency. The_ choice of a domain can affect the
usefulness of the prototype. One criterion for using the prototype is to choose
domaihs where useful specific rules can be found. It is a sﬁbjective criterion
because there is no precise definition for the term “usefulness”. Perhaps the
following examples may indicate some ideas of this criterion. - in the family-
tree problem, the “sibling”, “grandparent”- and “great grandparent”
relationship are useful specific rules for solving typical cases of family tree
relationship. Similarly, specific rules for cieﬁning certain sentence structure
are useful for the parsing problem. The prototype has been tested with some
list-manipulation programs such as append, and it does not infer any useful
specific rules. For example, tﬁe prototype can infer a specific rule on how to
append a single element to a list of three elements. However, that rule mayr

be too restrictive because it can only be used for cases with a list of three

elements.

The prototype uses a:nalytical induction to narrow down' the search
space. Analytical induction requires the existence of background knowledge -
for its induction. In this prototype, the background knowledge consists of the
basic rules and how these rules are to be used in dériving a positive instance.
Therefore, this prototype is targeted at domains where basic rules exist. Also,

the prototype must be able to record these rules when an instance is derived

from them.

79

5.3.2. Restrictions behind the Prototype

Compa,t_'ed to running programs directly on the C-Prolog interpreter, the
prototype is slow because it has to keep track 6f a lot of other information for
induction. However, the prototype is able to induce the rules in a reasonable
amount of time when tested with the sample programs. There are three
restrictions on the prototype that make it a.feasible system. These
restrictions constrain the search space; and prevent the prototype from facing

some computationally intensive search.

The first restrictio\n is that two logic clauses are considered equal only if
they have the same subgoals arranged in the same order. This restri‘ction
limits the space of possible pairings;. For example, consider two clauses A and
- B. With this restriction, the subgoals within the two élauses are compared
with respect to their position. In other words, the ﬁrgt subgoal of clause A is
Vcompared with the first subgoal of clause B, the second subgoal of clause A
Witi:l the secohd subgoal of clause B, and so on. Without this restriction, one
subgoal of clause A can be paired with any Wone subgoal in clause B. It can be
the first subgoal or the last one. To find that out, each subgoal of clause A
ha.s to be evaluated ;/vith every subgoal of clause B. That increases the

computation complexity from order N to order N factorial (N!) where N is the

number of subgoals in each clause.

The next restriction is that the protdtype only considers the
g.ene\ralization of constants and variables and not functors. Consequently, the
prototype ha§ the bias of inducing rules in maximally specific form. For
example, if there are two representations of the same rule such as the “great |

grandparent” relationship:

80

cl(5.5)
related(X,ZA) :- parent(X,Y), parent(Y,Z), parent(Z,ZA).
and . |
cl(5.6)
related(X,ZA) :- grandparent(X,Z), parent(Z,ZA).
where the goal of “grandparent(X,Z)” is represented by another rule
el(5.7) |
gréndparent(X,Z) - parent(X,Y), parent(Y,Z).
The two rules of (5.5) and (5.8) are interpreted to be the same since (5.6) can
" be converted to (5.5) by substituting its subgoal of grandparent. Under this

circumstarice, the prototype will induce the rule of (5.5) instead of (5.6) even

though the rule (5.6) is simpler in structure.

There is an advantage of inducing a rule in a simple form such as rule
(5.8). It is easier for a user to understand a rule conceptually in a simple form
than in a maximally specific form. This understanding may give the users
confidence in using the rules induced by the machine, especially for large and

complicated domains.

However, to seek a rule in a simple form requires more computation to
ensure that all the substitutions of subgoals do notrcreate side-effects. Side-
effects are due to the possibility that some subgoal may contain disjunctive
clauses. Substitution of these subgoals may result in the rule being over-
generalized. For example, consider a parse tree of the sentence,

[the,man,eats,the,apple] in.figure 5.1 [Clocksin and Mellish 1981].

81

sentence

/

_ noun_phrase Verb_phrase
determiner noun verb noun__phrase

determlner noun

1) sentence(S0, S) :-noun_phrase(S0, S1), verb _phrase(Si, S).
2) noun_phrase(S0, S) :- determiner(S0, S1), noun(S1, S).

3a) verb_phrase(S0, S -verb(SO S).

3b) verb_phrase SO S) =-verb(80, S1), noun_plrase(S1, S).

Figure 5.1: Parsing the sentence “the man eats the apple”.

,For the instance of [the,man,eats,the apple], the induced rule in max1mally

specific form is

[determiner(S 17,S2), nouh(S2,S3), verb(S3,34), determiner(S4,S5),
noun(S5,[])]-)

-

The rule will still be correct if it is converted to the form of »

3

82
[noun_phrase(S1,52), verb(S2,53), noun_phrase(S3,[])] '

by using the clause (2) to replace the subgoals of “determiner”, and “noun”.

However the rule is too general if it is further simplified into the form of
[noun_phrase(S1,52), verb_phrase(S2,S3)] |

by replacing the subgoals of “verb” and “noun_phrase” with the subgoal of
“verb_phrase”. It is because the “verb_phrase” clause’ (3) has another
disjunctive clause (8.a): “verb_phrase(S0,S) :- verb(S0,S)”. This disjunctive
clause can introduce cases which the rule may eﬂ“ecf:ively exclude.

To discover out these disjunctive ciauses may require more computation.
When the prototype generates the soluti(;n tree for the sentence
[the,man,eats,thg,apple], it only examines those paths leading to the solution.
Consequently, the prototype does not know whether some of the intermediate
clauses in the tree have disjunction. Since the prototype can only use those
intermediate clauses with no disjunction to simplify the rule, the prototype
has to go back and re-examine them. The re-examination of these clauses
may be expensive. The prototype not only has to explore the search space of

the solution, but also the search space of other alternatives.

Finally, there is an implicit restriction when generalizing constants into
variables. There are only two levels in the generalization hierarchykfor each
variable. Either a varia'ble is a constant value or it denotes a, range of values.
There is no intermediate concept between these two levels. Therefore, the
prototype only has to generate two instances for each variable to decide
whether it should lz;e a variable or constant. Without this implicit restriction,

- the prototype would have to generate many possible instances for each

variable, which would be combinatorially explosive. For éxample, consider an

83

integer variable “I” with a Ijange of 1 to 10. With the restriction, only two
values are needed to be picked from 1 to 10 to decide whether the variable “I”
in a rule can remain as a variabie. If an intermediate concept is allowed, the
prototype has to generate all ten values to be absolut’ely certain that “I” can
7rémain as a variable. It is quite possible that some intermediate concept such
as “odd number between 1 and 10", or “even number between 1 and 10” can
exist. The prototype would have to g;enerate many instances to be suré and

the computation would be increased.

5.4. Issues for future research

Several issues were identified during this project. They are described in

the following subsections.

5.4.1. Selection and organization of specific rules

This prototype only addresses one aspect of the knowledge acquisition
process: the process of inferring specific rules. Deciding which specific rules
should be induced and what should be their organization in the rule base are

also important parts of the knowledge acquisition process.

The prototype cannot induce a rule for every problem it encounterg. The
rule base would contain too many rules otherwise. Too many rules in the rule
base %/vould slow down the system performance because the system might
- spend too much time searching for appropriate rules to act upon. Therefore,
the system preferably should \indu‘ce those rules which solve typical cases.
Unfortunately, the prototype ‘does not know which cases are typical. It has to
rely on the user’s judgement in selecting those typical cases and their

solutions. This issue is important for the self-learning programs such as AM.

84

Once the specific rules are induced, they have to be oréanized in the rule
base. One common strategy is to arrange specific rules before basic rules.
‘When a sultable specific rule is found for a problem, it will be used first.
When all speciﬁc rules fail, then the system can use the computationally
expensive basic rules to solve the problem. While this is a reasonable
strategy, this arrangement ‘ma,y affect the induction of future rules. In
particular, it may prevent induction of rules which are more general than
those presently in the system. For example, if the “children of ringo” rule
(5.8) is induced first, and put in front of the bésic rules, then the prototype

may not be able to induce the rule of “sibling” (5.9).

(5.8) related(X,Y) :- parent(ringo,X), parent(ringo,Y).

(5.9) rela,ted'(X,Y) :- parent(Z,X), parent(Z,Y).

This is beéause the rule (5.9) is more general than (5.8). When the system
tﬁes to generate; a solution for the “sibling” problem, the system picks the
rule (5.8), as it is already in the rule base and in front of the basic rules.
During induction, the prototype remembers the rule (5.8) and uses it as the’

most geﬁeral boundary of the hypothesis space. However, this general

" boundary excludes the target rule of (5.9).

Putting the basic rules in front of all speciﬁc rules may prevent this
problem but will destroy the usefulness of the specific rules. If the basic rules
are put in front of all specific rules, the basic rules will be used on every

occasion. The specific rules will be idle in the rule base.

85

5.4.2. Determining which techniques to use

One essential aspect of machine learning is to detect when a target rule is
found. In the version space method, a target rule is found when'the most
specific and most general sets of the version spacé are equal and contain only
one candidate. For analytical induction in strong domains, the r.ule induced
from a positive instance can be confidently interprei;ed as the‘ target rule
because of strong backgrouﬁd knowledé;e. However, if aﬁalytical iﬁduction i;s
apialied before empirical induction and the domain itself does not coﬁtain
sufficient con:straints, then the rule induced by the analytical process may not
be the target rule. The system has to‘ rely on th_e user to make the
judgement. If the rule is not the target rule, then the user invokes the next

stage of empirical induction to refine the rule.

The problem of deciding which techniques to use reflects one of the
difficulties in machine learning. In somé problems, such as verifying circuit
design, and mathematical integration, there are well defined initial and final .
states. The problgsm is to find the solution path connecting the initial and
final state. The knowledge of the final state can be used to judge along which
solution path to proceed. However, the strategy of using the final state as th.e
guideline dbes not work in machiné learning; In rriosf cases of machine
learning, the final state, i.e. the target rule, is unknown. The version space
method is better in the sense that it indicatesr the final state when the‘ system
reaches it. But until the system reaches the final state, the system only has a
general bound of the final state. Consequently, it is difficult to use the ﬁﬁal
state to decide which technique is appropriate. Other criteria are required.

Similarly, it is often difficult to conduct a search in machine learning because

86

of lack of constraints and guidance. The idea of organizing the search space
and establishing criteria for conducting a search in NODDY [Andreae 1985]

- is the initial attempt to address the issue.

5.5. Summary

This chapter presents an evaluation of the current prototype. The
prototype is targeted at domains where basic rules exist aIEd useful specific
rules can be found. Limiting the possible pairings, énd allowing only
" conjunctive induction are used to prevent the prototype from facing
combinatorial search explosion. Sample testing with the prototype indicates
that it is an advantage to use a.nalyrtical induction to narrow down thfe search
space be'fére_ empirical induction. However, the prototype needs improvement
in future to allow other negative instances besides near miss instances in its
specialization. Also the organization of specific rules in the rl_lle ba:se, and
criteria for selecting appropriate techniques are two major issﬁes requiring

further investigation.

CHAPTER 6

Conclusion

"The knowledge acquisition problem has been recognized as.one of the
major bottlenecks in building knowledge-based systems. One of the possible
solutidhs to this knowledge acquisition problem is the use of machine learning
techniques. This thesis 'describes an ekperimental prototype, which uses a
combination of analytical and empirical machine learning techniques, to infer

specific rules from solutions generated by basic rules of a domain.

Analytical induction is a knowledge-intensive Vapproajch-. It makes uses of
the background knowledge and the constraints of a domain, to guide its
induction process. Given sufficiently strong background knowledge and
constraints, it is possible to infer a rule from a single instance. Empirical
induction is a data-intensive approach Which. relies on syntactic comparison of
a number of positive and negative instances to infer a rule. It does not
require any background knowledge other than the-generalization hierarchy."
These techniques are’ useful for two different types ;>f domains. There is a
need to address those domains Whe;'e there is some, but insufficient,
background knowledge. The use; of only analytical techniques cannot support
proper induction because of insufficient constraints. While empirical
techniques can be used for these dorﬁains, the process of induction may

involve a lot of instances, generated by the user.

This thesis explores the idea of using the analytical technique before the

empirical technique for such domains. The analytical technique makes use of

87

88

any available knowledge and constraints to guide the induction. The
empirical technique is then used.to resolve those areas where available
knowledge and constraints are lacking. The advantage of using the analytical
technique before the empirical one is that 'i;hé search space can be narrowed
down by the analytical one. Consequently, it suffices for the empirical one to

explore a much reduced search space.

The .idea is used to build a prototype for inferring domain specific rules
in a Prolog system. The domains are those which h)a,ve general basic rules,
bﬁt there is a requirement for inferring specific rules of arbitrary generality.
A solution for a pérticular problem is first generated by the system using the
basic rules. The prototype then iI;fers a §pecl’1ﬁc Prolog clause from the

solution. The induction is characterized by a two-step process.

(1) Deciding upon any shared constants and variables in the target rule using

analytical induction.

(2) Deciding upon the remaining constants and variables in the target rule

by empirical induction.

In the first step, the prototype induces the existence of any shared variables
or constants in a Prolog clause from both the generalized and solution and-or
tree. The prototype then decides whether a constant in the solution can be
turned into a variable in the target rule. The prototype stores the past
rejected solutions as a soinjce of negative instances, and generates new
instances from the database of the current domain for its empirical induction.
Constraints on possible pairings and a- restricfion to only coﬁjunctive
induction are used to prevent the prototype from facing a combinatorial

search explosion.

89

:Sa,mple tests with the prototype indicate that it is an advantage to use \
the énalytical techniques in the first ste-p‘of induction. In the s‘econdr step, the
current prot;type can make use of positive instances and near-miss negative
instances to refine a rule. Further improvement is required for the prototype
to ‘make use of other negative instances besides near miss instances. Some
problems are identified for furthér investigation. One problefn is that the
organization of specific rules in the rule base .may prevent the induction of

other rules. Another problem is to establish criteria to choose appropriate.

techniques.

Alt’;hough machine learning is offered as a potential solution to the
knowledge acquisition problem, much research is still needed in the ar{er‘a
before it can be used practically. The current prototype works in a small set
of domains ahd also imposes constraints to limit the search space. Violation

of the constraints can easily make the search unmanageable.

References

- Andreae, Peter Merrett (1985) “Justified Generalisation: Acquiring Procedures
From Examples” Ph.D Dissertation, Dept. of Computer Science,

. Massachusetts Institute of Technology, Cambridge, Massachusetts.

Bratko,I; (1986) Prolog Progmmmihg for Artificial Intelligence. Addison-
Wesley Publishing Co..

Bundy, A., Silver, B., and Plummér, D. (1985) “An Analytical comparison of

some rule-learning programs” Artificial Intelligence Journal, 27, 137-181.

Carbonell, Jaime G., Michalski, Ryszard S., and Mitchell, Tom M. (1983)
“Chapter 1: An Overview of Machine Léarning"’ in Machine Learning, An
Artificial Intelligence Approach, Vol 1, edited beritche;ll, Tom M., pp 3-24.
Tioga Publisbing Co, Palo Alto, California.”

Chandrasekaran, B. and Mittal, S. (1983) “Deep versus compiled knowledge

approaches to diagnostic problem-solving” International Journal Man-Machine

Studies, 19, 425-436.

Clocksin, W.F. and Mellish, C.S. (1981) Programming in Prolog. Springer-

Verlay, Berlin, Germany.

Davis, Randall. and Lenat, Douglas B. (1982) Knowledge-Based Systems in
Artificial Intellz':qence. McGraw Hill.

90

91

Dietterich, Thomas G. (1982) “Chapter XIV Learning and Inductive
Inference” in The Handbook of Artificial Intelligence, Vol 8, edited by
Feigenbaum, Edward A., pp 323-512. William Kaufmann, Ine., Los Altos,

California.

Ellman, Thomas (1985) “Generalizing Logi'c Circuit Designs by Analyzing
Proofs of Correstness” in Proceedings of the Nineth International Joint

Conference on Artificial Intelligence, pp 643-646. August.

Feigenbaum, E.A. (1982) “Knowledge Engineering: The Applied .Side” in
Intelligence Systems: the unprecedent and opportunity,' editedﬂ by Michie,
Donald. Ellis Horwood Ltd, West Sussex,England.,

Gordon, Mike (1985) “A Machine Oriented Formulation of Higher Order
Logic” Report, Computer Laboratory, University of Cambridge, May.

Joyce, J. and Birtwistle, G. (1985) “Proving A Computer Correct in Higher
Order Logic” Research Report No. 85/208/21, Dept. of Computer Science,
University of Calgary, Calgary, Alberta, Canada, August.

Kowalski, Robert (1979) Logic for Problem Solving. Elsevier Science
Publishing Co. Inc.. '

Langley, Pat (1985) “Learning to Search: From Weak Methods to Domain-
Specific Heuristics” Cognitive Science, No, 9, 217-260.

Lebowitz, Michael (1986) “Integrated Learning: Controlling Explanation”
Cognitive Science, Vol 10, 219-240. '

92

~ Mahadevan, Sridhar (1985) “Verification-Based Learning: A Genei‘alizatioil
Strategy for Inferring Problem-Reduction Methods” in Proceedings of the
Nineth International Joinvt Conference on Artificial Intelligence, pp 616- 623.
August. '

Michalski, Ryszard S. (1986) “Chapter 1: Understanding the Nature of
Learning: Issues and Research Directions” in Machine Learning, An Artificial
Intelligence Approach, Vol 2, edited by Mitchell, Tom M., pp 3-26. Morgan
Kaufman Publisbing Co, Los Altos, California.

Mitchell, Tom M. (1982) “Generalization as search” Artificial Intelligencve
Journal, 18, 203-226. ' '

Mitchell, Tom M. (1983) “Learning and Problem Solving” in. Procgedings of

the Eighth International Joint Conference on Artificial Intelligence, pp 1139-
1151. August.

Mitchell, Tom M., Utgoff, Paul E., and Banerji, Ranan B. (1983) “Learning
by Experizﬁentation: Acquiring and Refining Problem-Solving Heuristics” in.
Machine Learning, An Artificial Intelligence Approach, Vol 1, edited'by
Mitchell, Tom M..- Morgan Kaufman Publisbing Co, Los Altos, Califo!rnia.

Mitchell, Tom M., Steinberg, Louis I., and Shulman, Jeffrey S. (1985) “A
Knowledge-Based Approach to Design” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol PAMI—7, No.5, September.

Mitchell, Tom M., Mahadevan, Sridhar, and Steinberg, Louis (1985) “LEAP:
A Learning Apprentice for VLSI. Design” in Proceedings of the Nineth
International Joint Conference on Artificial Intelligence, pp 5'%3-580. August.

93

Norman, Donald A. (1980) “Twelve Issues for Cognitive Science” Cognitive

Science, No. 4, 1-32.

Rosenbloom, Paul 8., Laird, John E., McDermott, John, Newéll, John, and
Orciuch, Edmund (1985) “R1-Soar: An Experiment in Knowledge-Intensive
Programming in a Problem-Solving Architecture” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol PAMI-7, No.5, September. -

Samuel, A L. (1959) “Some studies in machine learning using the game of

checkers’f IBM J. Research and Devclopment, 3, 210-229.

Shapiro, Ehud Y. (1982) Algorithmic Program Debugging. MIT Press,

| Cambridge, Massachusetts.

Simon, Herbert A. (1980) “C'ognitive Science: The Newest Science of the
" Artificial” Cognitive Science, No. 4, 33-46.

Simon, Herbert A. (1983) “Why Should Machines Learn?” in Machine
Learning, An Artificial Intelligence Approach, Vol 1, edited by Mitchell, Tom
M., pp 25-38. Tioga Publisbing Co, Palo Alto, California. '

Stefik, M., Bobrow, D, Bell, A., Brown, H., Conway, L., and Tong, C. (1981)
“The Partitioning of Concerns in Digital System Design” (VLSI-81-3), Xeror .
Palo Alto Research Report, December. '

. Sterling, Leon and Shabiro, Ehud (1986) The Art of Prolog: Advanced .

‘ Proygramming Technique. MIT Press, Cambridge, Massachusetts.

)

] Stérli'ng, Leon and Lee, Marucha (August 1986) “An Explanation Shell for

Expert Systems” Computational Intelligence, Vol 2, No. 8, National Research

94

- Council of Canada, Otﬁawa, Canada.

Utgoﬁ, Paul E. (1986) “Shift of Bias for Inductive Concept Learning” in
- Machine Learning, An Artificial Intelligence Approach, Vol 2, edited by
ﬂ Mitchell, Tom M., pp 107-148. Morgan Kaufman Publisbing Co, Los Altos,

California.

VanLehn, Kurt (1983) “Felicity conditions for human skill acquisition:
validati'ngran Al-based 'theory” Research Report CIS-21, Xeror PARC,' Palo
Alto, California. | ’

VanLehn, Kurt (1987) “Learning One Subprocedure per Lesson” Artificial
Intelligence Journal, 31, 1-40.

Winston, Patrick H. (1975) “Learning Structural Descriptiorns from Examples”
in The Psychology of Computer Vision, edited by Winston, Patrick H., pp
157-209. McGraw-Hill, New Yoérk.

Wxnston, Patrlck H. (1984) Artzﬁczal Intellzgence Addlson~Wesley Publishing
Co., Reading, Massachusetts

