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Abstract 

One of the major bottlenecks of building knowledge-based systems is the 

process of acquiring domain specific knowledge. Machine learning has been 

suggested as one of the solutions to the problem. This thesis describes an 

experimental prototype which uses a combination of analytical and empirical 

machine learning techniques, to infer domain specific rules from solutions 

generated by basic rules. 

The prototype is targeted to the domains where there are basic rules, but the 

basic rules are insufficient to infer specific rules of any degree of generality. 

Analytical induction is used first to exploit any available background 

knowledge to narrow down the search space. before empirical induction. 

During empirical induction, the prototype minimizes the user's burden of 

generating instances by exploiting past rejected solutions as a source of 

negative instances, and using the database of the current domain to generate 

new instances. 

Sample testing with the prototype indicated the advantage of using analytical 

induction to narrow down the search space before empirical induction. 

Further improvements are required for this prototype on its empirical 

induction. In addition, future research is needed in the organization of 

specific rules, and in establishing criteria to select appropriate techniques. 
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CHAPTER 1 

Introduction' 

There is a growing popularity of the expert system approach to solve 

problems in many areas such as medical diagnosis, well-log analysis and 

circuit design One of the major problems in building an expert system is to 

acquire the many heuristics for the system: that is, the problem of knowledge 

acquisition. Machine learning has been suggested as one of the, possible 

solutions to this problem. This thesis examines the idea of combining the 

analytical and empirical learning techniques for inferring specific rules for a 

particular type of knowledge domain. 

1.1. Expert Systems 

An expert system is characterized as a program developed to solve a 

problem for which an expert is normally required. The problem domain 

requires a certain amount of specialized knowledge. The expert system is 

usually applied to a domain where there is no, well-defined algorithmic 

solution. Sometimes, even if an algorithmic solution exists, the solution often 

requires expensive computational power. . 

One of the most popular types of expert system is the rule-based system 

which consists of three major components, namely: 

(1) A knowlede base which contains the explicit domain knowledge, 

encoded in the form of "IF condition THEN action" rules, 

1 
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(2) A working memory which contains the current descriptions of the 

problem, 

(3) An interpreter, which selects the appropriate rules from the knowledge 

base and modifies the descriptions in the working memory. 

A rule-based system works by first matching the current descriptions of a 

problem in the working memory with the conditions of the rules in the 

knowledge base. The interpreter then selects one 0r more rules whose 

conditions match the descriptions and executes the actions of the rules to 

modify the descriptions. This cycle is repeated for the modified descriptions 

until no more rules are applicable or until the modified descriptions represent 

interpreter 

se1ec>., 

knowledg 
ba se 
(rules) 

working 
memory 
(states) 

Figure 1.1: A rule-based expert system. 
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a solution. 

One of the key characteristics of a rule-based expert system is the 

separation of domain specific rules in the knowledge base from the application 

of these rules by the interpreter. The rules represent all the domain 

knowledge necessary for solving the problem.' It is these rules which give the 

computational power to an expert system. Constructing a rule-based expert 

system essentially means encodIng these rules in the knowledge base. 

However, the process of encoding rules is time-consuming, tedious and 

expensive. 

1.2. Knowledge Acquisition Problem 

To encode expertise into a ru1-based expert srstem, a knowledge 

engineer must first familiarize himself with the application area and gain a 

minimum amount of background knowledge. He then interviews an expert 

and tries to capture his expertise for problem solving in his field. The 

knowledge engineer then organizes the expertse into several blocks and 

represents them in the form of "if-then" rules in the knowledge base. 

The.major difficulty in this process is that part of the expertise is not in 

the form of textbook facts, but heuristics: the informal judgement rules that 

the expert acquires through his experience. These heuristics are seldom 

thought about concretely. As they are generally "rules of thumb", they also 

seldom appear in textbooks or journal' articles. Worst of all is that the expert 

himself often has difficulties in verbalizing the heuristics. To capture them, 

an expert presents examples of how he uses his heuristics in solving specific 

problems. Then a knowledge engineer observes these examples, and tries to 

induce the heuristic rules from the examples. This thesis examines this part 
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of the knowledge acquisition process: inferring spedific rules from examples. 

The following is a case showing the importance of specific rules, and the 

difficulties of acquiring them. The case does not involve an expert system, 

but a proof assistance system. It shows that the knowledge acquisition 

problem does not arise only in the area of building expert systems, but also in 

other areas such as verification and proof systems. 

One of the major parts of VLSI design is to verify the design of a chip. 

A HOL (Higher Order Logic) proof system has been developed for this purpose 

[Gordon 1985] and been used in the verification of an example chip [ Joyce 

and Birtwistle 1985]. The HOL system is a manual-guide proof assistance 

system. A verification engineer enters the specification of a chip and its 

proposed implementation. He then tries to prove that the implementation of 

the circuit is equivalent to its intended specification. There are sufficient 

basic axioms in the HOL system to allow the construction of such proofs. In 

proving a circuit, the engineer has to select the right axioms at each step of 

his proof. The difficulty of proving a circuit correct is in the selection of the 

right axioms in the right sequence and this requires the experience of the 

engineer and his understanding of the circuit. In addition, the proof may be 

repeated for different circuits even though these circuits may be quite similar. 

For example, proving the design of a 2-bit adder by joining two 1-bit adders 

together is similar to proving a 16-bit adder from joining sixteen 1-bit adders. 

The HOL system is capable of proving any circuit given sufficient basic 

axioms. However, its perforn-lance will be greatly enhanced if there are some 

derived axioms which handle some of the common proofs. For example, if the 

sequence of proving a 2-bit adder circuit can be captured and generalized, 
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then the derived axiom can be directly applied to prove another n-bit adder 

without going through the same proof. In other words, a derived axiom is a 

compiled proof sequence for a particular type of circuit. Its usefulness is by 

its direct application to those particular type of circuits, bypassing the basic 

proof sequence. Right now, for these derived axioms to be in the HOL 

system, they have to be hand-coded. The verification engineer has to recall 

its sequence, generalize the specification and its implementation, and put it in 

the system. It is an added problem' that these verification engineers are scarce 

and they attain their expertise by proving a lot of circuits themselves. 

In summary, the knowledge acquisition problem has been recognized as 

one of the major problems in the application of expert systems [Feigenbaum 

1982]. The problem becomes even more serious in some areas where 

knowledge is scattered, hard to get and under constant evolution, such as 

VLSI circuit design [ Stefik et al. 1981]. 

1.3. 1 The scope of the thesis 

Many approaches have been used to ease the knowledge acquisition 

problem. These include building explanation facilities, structuring the 

interviewing process of an expert, and so on. One solution is to build a 

computer program which constructs rules from examples given by an expert. 

This type of program falls under the area of machine learning, currently an 

active part of artificial intelligence research. 

• This thesis applies some' machine learning techniques to one part of the 

knowledge acquisition problem: inferring rules from examples. The thesis 

examines the idea of combining analytical and empirical learning techniques 

to infer specific rules from examples or instances which are generated by the 
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basic rules of a domain. 

The analytical learning techniques are knowledge-intensive. They make 

use of background knowledge to maximize generalization from a single 

example. The empirIcal learning techniques are data-intensive. They make 

use of syntactic comparison between examples to find the generalization. 

While these techniques are useful for different types of domains, there is a 

need to combine these techniques [Lebowitz 1986]. 

One possible combination is to apply analytical techniques before any 

empirical techniques. Although a domain may not have sufficient constraints 

to allow analytical techniques to infer a rule from a single example, these 

techniques can make use of the available background constraints and 

knowledge to constrain the generalization space. By the time empirical 

techniques are employed to complete the remaining generalization, the space 

has usually been narrowed down so that fewer examples. and less 

computational effort may be required to reach the target generalization or 

rule. 

There are many parts of the knowledge acquisition problem, and 

inferring rules from examples is only one part. This thesis does not address 

the other parts of the problem such as organization of rules and the selection 

of examples to be presented. This does not mean that the other parts are 

easy or insignificant; these parts are as important as that of inferring rules 

from examples. In fact, the results of this thesis indicate that the 

organization of rules may. affect how a future rule may be inferred. However, 

the problem of inferring rules from examples is itself a difficult subject already 

and inclusion of other parts of the problem would make the study intractable. 
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1.4. Summary of results 

Based on the ideas presented in this thesis, a prototype has been built on 

top of a C-Prolog interpreter. The prototype infers specific rules in the form 

of Prolog clauses. The domain has some basic rules. Some instances are 

generated from these basic rules and they are captured by the prototype. The 

prototype then infers specific rules from these instances. 

In this thesis, the process of inferring a specific rule from an instance in 

Prolog consists of two stages: 

(1) Deciding upon the constants and possible shared variables in the specific 

rule. 

(2) Deciding upon the remaining constants and variables in the rule. 

The prototype applies analytical techniques in the first stage to decide on 

possible constants and shared variables by tracing how an instance is derived 

from the basic rules. In the second stage, the prototype uses the empirical 

techniques to compare past and generated instances to determine the 

remaining constants and variables. 

Sample tests with the prototype indicate the advantage of constraining 

the generalization using the analytical techniques followed by the empirical 

ones. However, further improvements are needed to make the prototype a 

more practical tool for future use. 

1.5. Outline of the Thesis 

Chapters 2 to 6 covers the remaining part of this thesis. 

Chapter 2 introduces two types of learning techniques in the area of 

induction: learning from examples or instances. The first type is empirical 
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learning which is illustrated by the Arch program [Winston 1975] and the 

Version Space [Mitchell 1982]. The second type is analytical learning 

illustrated by LEAP [Mitchell, Mahadevän and Steinberg 1985]. Finally, an 

example is presented to show one possible, combination of these two 

techniques [Lebowitz 1986]. 

Chapter 3 introduces the main idea of the thesis and the design of the 

prototype. The prototype has two stages in generalizing a rule from an 

instance. The first stage is to decide on any possible constants and shared 

variables in a rule by tracing how an instance is constructed from the basic 

rules of a domain. The second stage has two parts. The first part exploits 

possible past instances to specialize the rule. The second part generates new 

instances and uses user feedback on these instances to refine the rule. 

Chapter 4 describes the implementation of the prototype and reports it 

current status. 

Chapter 5 discusses the evaluation of the prototype, both the design and 

implementation. It describes the limitations of the current implementation,. 

and two problems found in this thesis: the effect of the organization of specific 

rules on the learning of future rules, and deciding when to apply the empirical 

learning techniques. 

Chapter 6 is the conclusion which summarizes the work of this thesis and 

suggests further research. 



CHAPTER 2 

Literatñre Review 

This chapter gives the background to machine learning and discusses 

some previous systems of induction In the context of knowledge acquisition. 

The chapter begins with a general overview of machine learning, and then 

looks at one area of machine learning: induction. Section 2.2 describes one 

type of induction, empirical learning, based on the influential work of 

Winston [Winston 1975].. Section 2.3 explains another type, analytical 

learning based on the work of Mitchell [ Mitchell, Mahadevan and Steinberg 

1985]. Section 2.4 descrIbes one possible combination of the two types of 

learning based on the work of Lebowitz [Lebowitz 1986]. Finally, section 2.5 

provides a summary. 

2.1. An Overview 

Machine learning has been an importnt part of Artificial Intelligence 

research since its early days. The ability to learn is recognized as one of the 

essential characteristics of an . intelligent system [ Simon 1980] and 

constructing a "learning" computer program is advocated as one of the means 

of understanding this ability [ Simon 1983]. However, learning is found to be 

very hard to capture in programs and hard to explain [ Winston 1984]. Also 

it involves many of the problems of artificial intelligence, such as searching, 

perception, and knowledge representation, which are still under intense 

investigation [ Norman 1980]. Not surprisingly, the performance of present 

learning systems is still primitive compared to the human being. 

9 
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In spite of these difficulties, machine learning has receiitly attracted a 

considerable amount of attention due to the present success of expert systems 

and their potential application. Machine learning offers a possible solution to 

the problem of knowledge acquisition by eliminating the tedious manual 

process of transferring knowledge from human to program. 

There are many ways of looking at machine learning. One common 

approach is to classify machine learning according to the learning strategy 

that a program uses [ Carbonell, Michalski and Mitchell 1983, Michalski 

1986, Dietterich 1982]. According to this approach, machine learning can be 

classified as follows: 

Rote learning: 

This area of learning is simplest in terms of the learning complexity. The 

program just remembers all the positive input instances so that they can 

be used later.. This type of program is not adaptable to a complex 

changing environment because a stored instance can only be used later 

under an identical situation. The processing requirement is simple 

because there is no transformation on the input instances other than 

memorizing them. The program may have to organize the memory of 

these instances efficiently if the number of instances is large. Since the 

program just remembers exactly the input instances, it relies on its 

environment to provide correct, noise free instances. An example of such 

program is Samuel's checkers-playing program [ Samuel 1959]. 

Induction (Learning from examples): 

This is perhaps the most studied area of machine learning. The program 

accepts a set of classified specific instances (positive or negative or both) 
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of some concept, procedure or rules. Based on these input instances, the 

program infers features which characterize the target concept, procedure 

or rule. The major part of the program is the induction process where 

many heuristics and approaches •are used. The program is more 

adaptable than a rote-learning program because it can apply its 

generalized concept or rule again in a similar but not necessarily identical 

situation. The program usually assumes a teacher in the environment to 

classify those input instances. Preferably, these instances are noise-free 

although some programs can handle eirors in training instances. Some 

examples of this type of learning program are discussed later in this 

chapter. 

Learning from experimentation and discovery: 

This area of learning is the most complex of the three areas. Usually, the 

task involves a large search space in the inference process. Besides, the 

program has to classify the input instances itself, or even construct some 

instances, in order to test hypothesis related to a concept. Lenat's AM 

and Eurisko programs are classical examples in this area. 

While the boundaries between these areas of machine learning are not very 

well-defined and precise, this lassification provides one basis for examining 

the machine learning research. This thesis concentrates on the second area: 

induction. - 

2;1.1. Induction: learning from instances 

The essential task of learning by induction is to construct the features of 

a concept which exist in all positive instances but not in any of the negative 

instances. In addition, this concept description must be broad . enough' to - 
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cover not only all the positive instances that have been presented, but also 

some possible unobserved positive instances. This requirement is important in 

distinguishing learning by induction from rote learning. If the concept 

description only covers all the positive instances that the program has seen, 

then it is just another form of rote learning, memorizing all instances 

presented. 

This requirement leads to a serious problem in induction process. Given 

a set of instances, positive, negative, and a 'combination of both, there is 

potentially an infinite number of concept descriptions that are consistent with 

the set of observed instances. Consider an example of finding a description to 

cover the following two instances [ Utgoff 1986]. 

(3,4) is a positive instance 

(6,5) is a negative instance 

One of the possible concept descriptions is "an ordered pair of numbers 

where the first is numerically less than the second." However, there, are also 

other alternative descriptions which are consistent with these two instances. 

They are: 

(1) An ordered pair of numbers in which the first is an odd integer 

(2) An ordered pail' of numbers in which the second is an even integer 

(3) An ordered pair of numbers in which the first is an odd integer and the 

second is an even integer 

(4) An ordered pair of numbers in which the first is an odd integer or the 

second is an even integer 
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(5) An ordered pair of numbers the binary sum of which has a 1 in the 4's 

place 

(6) An ordered pair of numbers the decimal sum of which has a 0 in the 10's 

place 

(7) A pair of numbers the sum of which is 7 

(8) An ordered pair of numbers in which the second is 1 more than the first 

(9) An ordered pair of numbers in which the first is not 1 more than the 

second 

This simple example can have many possible target descriptions. For a 

more complex example, the space of all possible descriptions can be enormous. 

In fact, for a domain of N instances, there are 2 to the power N possible 

distinct target descriptions [ Utgoff 1986]. 

The process of induction can be pictured as finding the target concept's 

boundary as shown in figure 2.1. Mitchell in his paper "generalization as 

search" [ Mitchell 1982] put the ' induction process in the perspective of 

searching through the space of possible target concepts. A target concept i 

found if its boundary covers all observed positive instances and excludes any 

ñegatire instances. Hopefully, the boundary can also cover the unobserved 

positive instances. However this induétion process can be tinderconstrained 

and complex [Andreae 1985]. The search for a target concept can be 

combinatorially explosive if the space is large and the instances presented are 

few in number. In theory, a target concept can be found under this situation 

given sufficient time and resources. In practice, the search must be efficiently 

focused by constraining the search space, by presenting sufficient instances, or 

by a combination of both. The constraints and instances are the two major 
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boundary of 
targe 
rule 

aryof all 
stances 

observed positive instances 
unobserved positive instances + 
observed negative instances G 
unobserved negative instances - 

Figure 2.1: The process of induction. 

factors which characterize a spectrum of learning techniques within the area 

of learning by induction. At one end lies empirical learning which primarily 

relies on the presented instances to guide its search. At the other end of the 

spectrum lies analytical learning which primarily relies on the constraints of 

the background knowledge. The next two sections discuss these two types of 

learning and present examples of them. 
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2.2. Empirical Learning 

In this section, the empirical learning is illustrated with two examples: 

the Arch program and the Version Space program. 

2.2.1. The Arch Program 

The Arch program was Patrick Winston's Ph.D work [Winston 1975]. 

The basic idea was to learn a simple concept description of an arch in a toy 

world. It is one of the pioneer programs of how to learn symbolic description. 

The program compares the positive and negative instances as shown in figure 

2.2 and infers the concept of an arch as a parallelepiped object supported by 

two separate bricks. 

The program takes the- first instance, which must be a positive instance, 

to be the current target description. Then it compares the current target 

description and each instance in the input sequence in succession. If the next 

instance is positive, it generalizes the difference between the instance and the 

current concept. If the instance is negative, it specializes the difference. The 

concept of an instance is represented as a network of nodes. Generalization 

and specialization essentially involve manipulation of links between the nodes 

and climbing a generaliation tree. 

There are several noteworthy features of this program. Its learning 

ability relies primarily on the syntactical comparison between the structures 

of the instances and the current concept. Consequently, the program requires 

at least two distinct, instances in order to learn anything. Otherwise, the 

concept is just the same as the first (and the only) instance. 
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a) Positive 

c) Negative 

b) Negative 

d) Positive 

Figure 2.2: A sequence of instances for learning about arches. 

• The program exhibits incremental learning behavior. It takes instances 

one by one ' and modifies the concept one step at a time. Winston implied 

that this mode. of learning was the predominant learning mode of humans 

[Winston 1984]. 

The program introduces a type of input instances called the near-miss 

negative instances. A near-miss instance is a negative instance which only. 

differs from the current concept by one essential feature. This near-miss 

instance is used to focus the essential discriminant during the specialization 

process. 
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In case of negative instances with multiple differences, there are many , 

ways of specialization. To handle thes type of negative instances, the 

program adopts a depth-first search strategy and backtracks when a 

contradiction occurs. This requires the program to keep track of all past 

negative instances. - 

Winston later modified his Arch program and presented it as the "W 

procedure" [Winston 1984]. He eliminated the backtracking by arguing that 

inconsistency was difficult to debug. The best way to avoid debugging 

inconsistency and backtracking was to prevent mistakes in the first place by 

being conservative. He argued the important role of a co-operative teacher in 

presenting instances in good pedagogical order to a learner. He also suggested 

that a learner should be conservative in accepting the instances. His ideas on 

the impor't'ance of a co-operative teacher and his orderly presentation' 

instances leads to the study of another , àlass of constraints, the felicity 

conditions, by Kurt VanLehn [VanLehn 1983, VanLehn 1987]. 

2.2.2. The Version Space 

Mitchell [Mitchll 1982] provided a framework for looking at different 

data-driven learning strategies by casting them as searching through a space 

of possible concept descriptions. In addition, by noticing that all concept 

descriptions can be partially ordered according to their degree of generality, 

he proposed "the Version Space" as a compact representation o(all possible 

concept descriptions which are consistent with the observed positive and 

negative instances. 

Essentially all possible target descriptions can be stored in a partially 

ordered lattice. In this lattice, the most general description is at the top of 
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the lattice while the most specific descriptions are at the bottom of the lattice. 

The search space of all possible descriptions is bounded by the most general 

and the most specific descriptions. While the space may contain a large 

number of descriptions, it is sufficient to define them by the space boundaries: 

the most general and the, most specific descriptions. An example of this 

lattice is shown in figure 2.3. This simple example involves descriptions of a 

group of people by their two features, colour of their hair and their height. 

The most general description is a group of people with any hair colour and 

any height. The mostspecific descriptions are different groups of people with 

different combinations of colour and height. 

(short?) (tall ?) (? grey) , (? brown) (? dark) 

(short grey) (short brown), (short dark) (tall grey) (tall brown) (tall dark) 

Figure 2.3: Representing a Version Space. 
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Mitchell's learning algorithm essentially makes .use of this version space. 

Finding a target description in the space consists of moving the most general 

and the most specific boundaries until they converge to a particular 

description in the space. Initially, the boundaries cover the whole search 

space. When a positive instance is observed, the algorithm updates the 

current boundaries by eliminating those descriptions which are too specific to 

contain the instance. When a negative instance is presented, the' algorithm 

updates the boundaries by eliminating those too general descriptions which 

contain the instance. 

An example of finding a description of a group of people with any hair 

colour and short is presented in figure 2.4. 

G --the set of the most general descriptions 
S --the set of the most specific descriptions 
X?--any Capital letter followed by '?' stands for variable 
type-- type of instances, positive or negative' 

instance type S G 
(short, grey) + (short,grey) (H?,C?) 

(tall, brown) - (shoi't,grey) ' H? ,grey) 
short,C?) 
H? ,dark) 

'(short, brown) + (short,C?) (short,C?) 

Figure 2.4: A Version Space example. 
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Unlike the Arch program, the version space program uses a search similar 

to the breadth-first search to update its boundaries. However, there are 

similarities between the two programs. They both use a number- of positive 

and negative instances to converge to a target description and prune away 

those irrelevant ones. There is some domain knowledge •, built into the 

generalization hierarchy in the Arch program and in the version space. The 

knowledge helps the programs to converge to a target concept quickly without 

seeing all the possible instances. For example, in figure 2.4, the two positive 

instances (short, grey) and (short, brown) cause the concept to converge as 

(short, any_colour). In the generalization hierarchy of figure 2.3, any_colour 

is defined as 'a generalization of both grey, brown and dark colour. Therefore 

the concept of (short, any—colour) also covers the unobserved positive instance 

(short, dark). If the concept of any_colour is defined differently, then the 

concept (short, dark) covers different unobserved positive instances. It is the 

implicit bias of the built-in domain knowledge in the generalization hierarchy 

which induces a concept to cover both observed and unobserved positive 

instances. If the bias is inappropriate, it can prevent the system from ever 

inferring correct generalizations. If the bias is appropriate, it can provide the 

basis for important inductive leaps beyond information directly available from 

the training instances [ Mitchell 1982]. The study of "bias" is an active area 

of machine learning research [Utgoff 1986]. While bias is useful in induction, 

it is usually not sufficient for a program to reach a target concept. A program 

still has to rely on some instances to prune away any irrelevant concept. 

In summary, empirical learning depends on the relationship between 

instances and the implicit bias in the generalization hierarchy to reach a 

target concept.1 This type of learning technique usually requires a number of 
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instances. Besides the domain knowledge in the generalization hierarchy, 

empirical learning is relatively independent of the 'context of the domain. It 

does not consider how an instance is generated, and why the instances 

presented are classified as positive or negative. It is characterized as being 

empirical, data or instance-intensive. The next section presents another type 

of learning technique which relies more on the domain knowledge and less on 

the instances. 

2.3; Analytical learning 

Analytical learning requires more background knowledge from a domain 

to learn a concept. It has the advantage of using very few instances given 

sufficient knowledge. Lebowitz has given a scenario example (not yet 

implemented) of how the concept of "arch1' would be learned in the analytical 

learning [Lebowitz 1986]. In his example, the program would require 

understanding of some prior concepts such as the concept of gravity, supports 

etc, and the description of structures. The program might use the concept of 

gravity and supports to analyze the structural description of a positive 

instance. It figured out that two equal height supports were necessary to 

support a lintel in the air but the other factors such as the colour and shape 

of the lintel were not important. It' did not need further instances to show 

-that two equal height supports were important. 

The remaining part of this section presents several system's using this 

type of analytical technique in the context of the acquisition of heuristics. 
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2.3. 1. LEAP 

LEAP is a learning apprentice system for VLSI design developed at 

Rutgers University [ Mitchell, Mahadevan and Steinberg 1985, Mahadevan 

1985]. Its purpose is to acquire specific heuristic rules for verifying logic 

circuit designs. Mitchell characterized a type of learning apprentice system 

through the example of LEAP. It is an interactive knowledge acquisition 

system which accumulates heuristic rules by observing and analyzing the 

solutions of an expert through his normal use of the system. There is no 

explicit "training mode" for the system. . The implication is that a co-

operative teacher is not required, and that the system is more suitable than 

other programs such as the "Arch" as a knowledge acquisition tbol for an 

expert system. 

LEAP works together with another expert system VEXED [Mitchell, 

Steinberg and Shulman 1985] which is a problem solving component for the 

VLSI design. Given a design problem, VEXED tries to come up with a 

solution using its existing heuristic rules. If VEXED fails to come up with 

any rule or the implementation rule is not satisfactory to the user, an expert 

can override the decision of VEXED and supply his1 own solution. At this 

point, LEAP begins to capture the expert's solution and generalize the 

solution into a new heuristic rule. The new rule will be used by VEXED 

when a future similar problem arises. 

For example, the system is given the problem of implementing a function 

specified in figure 2.5. One of the possible implementations is to use three 

NOR circuits joined together as shown in figure 2.5. This involves verifying 

1 For simplicity of expressions, his, him and he are used to mean "his or her", "him or 
her" and "he or she". - 
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Figure 2.5: A circuit and it's generalized design for LEAF.' 

that the behavior of the implementation is equivalent to the required 

specification. The verification of this design involves using the basic De-

Morgan's Law and Remove-Double-Negation operators already defined in the 

system. The verification sequence is shown in figure 2.6. LEAP captures this 

sequence and uses a technique called constraint back-propagation [ Mitchell 

1983, Utgoff 1986] to generalize the steps in the sequence. 

Constraint back-propagation is the main generalization technique used in 

LEAP. It was developed in the previous system LEXZ [Mitchell 1983] to 

deduce the domain of an operator sequence or macro-operator that produces 
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Verification 

(not (or (not (or xl x2) 
(not (or x3 x4)))) 

De-Morgan 

(and (not (no (or xl x2) 
(not (not (or x3 x4)))) 

remove 
double-neg 

(and (or xi x2) 
(not (not (or x3 x4)))) 

remove. 
double-neg 

(and (or xl x2) 
(or x3 x4)) 

Back-propagation 

(not (or (not bool-fctl) 
(not bool-fct2))) 

(and (not (no bool-fctl)) 
(not (not bool-fct2))) 

(and (or xi x2) 
(not (not bool-fct2))) 

(and (orxl x2) 
(or x3 x4)) 

Figure 2.6: Verifying and Generalizing a circuit for LEAP. 

some constrained range of states. Unlike the empirical generalization which 

examines the relations between instances, the constraint back-propagation 

examines how a positive instance is 

within a particular domain. 

A solution sequence can be interpreted as a 

initial problem state to a final solution state 

constructed from the basic operators 

transformation from an 

through a number of 

intermediate states. Each basic operator is a mapping from one state (the 

domain) to another (the range) with constraints to restrict the operator's 
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domain and range. Consider a simple case of applying a single operator to an 

initial state to produce a final state. If a subset A of the range of the 

operator represents a class of solved states, then this subset can be 

propagated backward through the operator to find out the subset B of the 

domain which produces the subset A. The subset B represents a constrained 

domain of the operator such that application of the operator results in a 

group of solved state. If there is a sequence of operators, then the same 

operation can be applied recursively starting from the final state and working 

it backward until it reaches the initial state. A simple example of this process 

is shown in figure 2.7. The detail algorithm is shown in the work of Utgoff 

[Utgoff 1986]. 

There are several features about the LEAP which also characterizes a 

typical analytical learning system. One important feature about the system is 

that it can make use of only one positive instance to deduce a heuristic rule. 

The heuristic rule is not restricted to solving one particular example' , but is 

generalized to solve a specific group of similar examples. In the example 

shown in figure 2.6, the specific example involves 4 input signals, but the 

generalized rule applies to any condition that matches a boolean function. 

The ability to do such powerful generalization from a ' single instance 

stems from examining how a positive instance is constructed. In the case of 

the LEAP example, it means the verification process of showing how a 

particular design of 3 NOR gates to meet the functional requirement of a 

circuit with two OR gates and a AND gate. This points to a second 

requirement. Analytical learning must have sufficient domain knowledge to 

explain the construction of an instance. In LEAP; it means the existence of a 
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A sequence of applying operator 1, then operator 2 

Figure 2.7: The constraint back-propagation method. 

number of basic operators such as De-Morgan's law and other information 

required to narrow down a group of solved states. Because of the requirement 

for background information, analytical learning cannot be applied to an 

arbitrary problem domain. It usually requires a problem domain with a 

strong enough theory to explain and validate the training instances, such as 

digital circuit design and mathematical integration problems [ Mitchell, 

Mahadevan and Steinberg 19.85., Mahadevan 1985J. In fact, even in the 

integration domain, Utgoff reported some difficulties in learning certain 

concepts because the formalism could not express certain context-sensitive 
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relationships [ Utgoff 1986]. 

Because analytical learning usually requires verification or explanation of 

a positive instance before any generalization, it is more robust than empirical 

learning in handling possible errors in the input instances. If an instance 

contains an error, the explanation process will fail and prevent the 

generalization process from proceeding. 

The constraint back-propagation technique is one of the techniques in 

analytical learning. Other techniques are also being developed, such as a 

schemata to understand a situation [ Lebowitz 1986] and a proof tree to 

generalize a circuit design structure [Ellman 1985]. 

In summary, analytical learning is able to generalize a heuristic rule or a 

concept from a single instance by using a great deal of background 

knowledge. Instead of examining the differences between instances, the 

generalization comes from examining how an instance is constructed. This 

type of learning is characterized as analytical, knowledge-intensive. The next 

section discusses one possible combination of the two types of learning. 

2.4; Combining two types of learning 

The previous two sections examined two types of learning. One of the 

key conditions under which a type of learning can be applied is the existence 

of sufficient domain knowledge. Analytical learning is suitable for a domain 

where there is a substantial amount of background knowledge. On the other 

hand, empirical learning is needed when the background knowledge is lacking. 

However, there are a number of domains which lie between these two extreme 

conditions. Some domains have a certain amount of background knowledge 

but the knowledge is not sufficient to allow the use of the analytical learning 



28 

only. On the other hand, using only empirical learning seems to neglect the 

existence of background knowledge. This section describes an eample of 

combining ..these types of learning through the UNIMEM program [ Lebowitz 

1986], which used the empirical analysis to guide the analytical 

generalization. 

UNIv1EM is a program that takes the description of a situation and tries 

to build an explanation scheme to account for the situation. One domain for 

this program is to explain the US congressional voting records. The input 

information is the voting records of U.S. congressmen and the characteristics 

of the states and ditricts that they represent. The task of the program is to 

build an explanation of how a congressman's voting record relates to his other 

votes (a congressman who opposes cutting the MX missile also opposes general 

cuts in defense spending) or to the features of his district (a congressman from 

a low-income district supports the increase in social spending). There are a 

number of simple rules in the domain. Each simple rule relates a set of 

àonditions (causes) to an observed behavior (results). These simple rules are 

rules of thumb and they are general approximations. They represent a• 

tentative model of the domain. The explanation scheme is built by relating 

those relevant simple rules into a structure,to explain the voting behavior of a 

congressman. 

Building such a structure using only -analytical learning is 

computationally expensive as there are many basic rules, and also a number 

of possible features (over 30) to consider for each explanation. Among those 

features, some of them may be the causes while other may be results due to 

other features. Identification of the causes among those features is not trivial. 
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For example, it might be that districts with high farm property values are 

thought to have oil reserves and hence their congressmen would vote to limit 

any profit tax on oil reserves found on property. Conversely, it might be that 

voting to limit the profit tax on reserve actually causes the farm value to be 

high, as potential investors would know oil profits would not be subject to 

high taxes. 

Lebowitz suggested using the idea of predictability to identify those 

features which are causes. Predictive features are those which exist uniquely 

in a given situation and they are most likely to be the causes. This argument 

follows from the observation that non-predictive features occur in many 

situations, and are associated with many different combinations of other 

features. Hence, they do not predict a single outcome. For example, if a 

situation is made up of two features, A and B, and A only occurs in one 

situation, and B in many, B cannot cause A. If B did cause A, A would 

appear in all the other situations that B was in. 

After identifying those potential predictive features, the system starts to 

match those features with the conditions of the basic rules and tries to build 

up a structure to explain the remaining features. Lebowitz has reported the 

use of this predictability to prevent using irrelevant features in building an 

explanation. He also found that some of those features which were supposed 

to be predictive in the simple rules could in fact be explained by other 

predictive features. Hence the result could be used to debug the initial set of 

simple rules. The essential result- from this work was that predictive ability 

provided significant control over the process of building up an explanation. 

The program did not have to use brute force and try every possible 
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explanation rule sequence. Consequently, the. efficiency of analytical learning 

was increased in an area where it could be combinatorially explosive. 

2.5. Summary 

This chapter has presented two types of machine learning. The empirical 

learning does not require too much domain knowledge and relies on a number 

of instances, positive and negative, to reach a target concept. It is suitable' 

for the situation where domain knowledge is lacking. The analytical learning 

requires sufficient domain knowledge to reach a target concept and relies less 

on any input instances. These two types of learning characterize two ends of 

a spectrum in term of the requirement of domain knowledge. An example has 

been presented where both techniques are combined to handle a situation 

between the two ends of the spectrum. The next chapter, presents the 

prototype in this thesis. The prototype employs the idea of using . the 

analytical learning before the empirical learning. 



CHAPTER 3 

Design of the prototype 

This chapter discusses in detail the design of a prototype for another 

approach to learning. The purpose of the prototype is to combine both 

analytical and empirical techniques in inducing a domain specific rule from an 

instance which is generated by some basic rules. Section 3.1 describes two 

types of rules for certain domains: basic and specific. Section 3.2 discusses the 

Prolog programming language as the representation of both instances and 

rules. Section 3.3 describes how an user interacts with the prototype, and 

sections 3.4 and 3.5 describe the two stages of induction: analytical and 

empirical. The final section 3.6 summarizes this chapter. 

3.1. Basic and specific rules 

Two types of knowledge are currently recognised as providing a basis for 

solving problems in a domain, [ Chandrasekaran and Mittal 1983, Rosenbloom 

et al. 1985]. Although the definition is not precise, they are generally 

referred to as deep and surface knowledge. In building an expert system, 

these types of knowledge are represented by two types of rules: basic and 

specific, respectively. 

The basic rules of a domain represent the essential knowledge and they 

have a wide scope of applicability within the domain. The specific rules 

represent the knowledge derived from the basic rules. Each of these specific 

rules is restricted to a particular situation. These specific rules are usually 

more efficient than the basic rules since they relate the aspects of a task 

31 
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directly to action consequences, bypassing the computational steps needed to 

apply the basic rules of the domain. 

For example, in solving the mathematical integration problems in LEX 

[Mitchell, Utgoff and Banerji 1983], there are basic operators with conditions 

specifying where they can be legally applied. However, there are also 

heuristics, which specify the conditions where it is beneficial or useful to apply 

those operators. Each heuristic specifies a restricted subset of the legally 

applicable situations for an operator where application of it is most likely to 

lead to a solution. 

One characteristic of many present-day expert systems is that they have 

a lot of domain specific rules which allow them to arrive at problem solutions 

quickly [ Rosenbloom et at. 1985]. Therefore, there are a number of research 

efforts arrived at developing systems which acquir6 these specific rules or 

heuristics to enrich the computational power of an expert system, and to ease 

the bottleneck in the knowledge acquisition process [Langley 

1985, Rosenbloom et at. 1985, Mitchell, Utgoff and Banerji 1983]. 

In what follows, a family-tree domain is chosen to illustrate the two 

types of rules and set the context for the purpose of the prototype which is: to 

infer specific rules from the instances which are generated by the basic rules. 

Although this thesis only uses a family-tree and a context-free grammar 

problem for demonstration, the approach embodied in the prototype is not 

restricted to solving these two, problems, but is targeted at a broader class of 

problems. These problems are chosen becaue they are familiar examples in 

most Prolog textbooks [ Sterling and Shapiro 1986, Clocksin and Mellish 

1981, Bratko 1986]. ' 
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(ringo &janice) 

(Jane & christopher) (chris\ine) (Jessica) (pat & george) 

(mary & alec) 

/ 
(adrian) 

(peter) (mathew & jon) (curtis) 

/ 
(ringo & judy) 

/. 
(john) 

Note: two persons in a bracket are a married couple. 

parent(janicc, christopher) 
parent(Janice, christine) 

parent(mathew, ringo) 
pare,nt(ringo, john) 

Figure 3.1: A family tree and it's Prolog clauses. 

Given a family-tree as shown in the figure 3.1, and a set of predicates 

which define the relationship of the nodes in the family-tree, the two clauses 

cl(3.1) 

related(X,Y) :- (parent(X,Y);parent(Y,X)). 

cl(3.2) 

related(X,Y) :- (parent(X, Z);parent(Z ,X)), related(Z ,Y). 
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are able to find if any two persons in the family-tree are related. The two 

clauses (3.1) and (3.2) are the basic rules for the family-tree problem. These 

basic rules completely define any solution to the problem if that solution 

exists. The basic rules are also flexible so that they can be applied to any 

different occurrence of the problem. They can be used to examine two nodes 

whether these two nodes are related through a single node or many 

intermediate nodes. While these two clauses are flexible, they may also be 

very inefficient when compared to specific rules such as, 

cl(3.3) 

related(X,Y) :- parent(X,Z),parent(Z ,Y). 1* grandparent* / 

cl(3.4) 

related(X,Y) :- parent(Z,X),parent(Z,Y)./* sibling */ 

For example, in searching whether "christopher" and " christine" are related 

in figure 3.1, the rules (3.1) and (3.2) needs five instantiations to find a 

solution, while the more specific rule (3.4) needs only two instantiations. If 

these domain specific rules are applied to a right situation, they can be very 

efficient in the sense that they bypass a lot of unnecessary search. 

Although these domain specific rules are efficient, each of them is 

restricted to a particular situation. Rule (3.4) is useful only to find out if 

"christopher" and "christine" are related through a sibling relationship. It 

fails to find out that "ringo" and "mary" are related because "ringo" and 

"mary" are related in a grandparent relationship. While the specific rules are 

useful for computational efficiency, the basic rules are needed in cases where 

1 Names should start with an upper-case letter but this is in conflict with the Prolog 
definition' of constants as lower-case letters. Therefpre, names are quoted and in lower-case to 
designate this as a constant in Prolog. 
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all the specific rules fail. 

The prototype in this thesis endeavors to induce those specific rules such 

as (3.3) and (3.4) from basic rules such as (3.1) and (3.2). The prototype is 

initially given only the basic rules to solve any problem in a particular 

domain. As a result, the problem solving efficiency is low. As more problems 

are solved, useful specific rules are induced by the prototype. The system 

then relies more on the specific rules than the basic rules to handle future 

problems. Consequently, the prototype's problem solving efficiency increases. 

One of the key characteristics used in the machine learning area is the 

classification of the target rules or concepts according to their , degree of 

generality. A rule "A" is more general than a rule "B" if B can be obtained 

by substitution of certain variables in "A" with specific values. For example, 

rule (3.4) is more general than rule (3.5) 

cl(3.5) 

related(X,Y) :- p arent(ringo,X),parent(ringo,Y). / * children of ringo*/ 

because (3.5) is an instance of (3.4) by instantiating the variable " Z" with the 

constant "ringo". 

In this thesis, the prototype is required to learn specific rules with any 

degree of generality desired by a user. This requirement creates a problem. 

For a given instance, there are many possible target rules with different 

degrees of generality. The induction of target rules such as (3.3) and (3.4) can 

be achieved by using the analytical technique only to the extent that they 

have the same degree of generality as the basic rules. However, the analytical 

technique alone cannot infer a target rule such as (3.5) because that rule has a 

degree of generality more specific than that of the basic rules. Empirical 
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fechnique is required to complement the analytical ones. 

3.2. Prolog as the implementation language 

The Prolog programming language is used to implement the prototype 

and also as a representation language for both instances and rules. A Prolog 

program is a set of Horn clauses, which have the general form 

A:-B1,B2,B3 ... Bn 

where A, and the B's are atomic formulae [ Shapiro 1982]. Each formula is a 

p red! cate • consisting of .a predicate symbol, called a functor, and, optionally 

followed by a list of terms in parentheses, separated by commas. Each term 

can be a variable, denoted by a capital letter, or a constant, denoted by a 

lower-case letter, or a functor. 

A Prolog clause can have both declarative and procedural interpretation 

[Kowalski 1979]. Declaratively, the above clause can be read as "A is the 

conjunction of the B's". Procedurally, it can also be interpreted as "to fulfill 

the goal of A, satisfy the goals, of B1,B2..Bn". 

Because of its dual interpretation, the Horn clause has been used as a 

common basis for representation in both concept-learning and rule-learning 

programs [Bundy, Silver and Plummer 1985]. For example, the clause 

cl(3.3) 

related(X,Y) :- parent(X,Z),parent(Z,Y). 

represents the, concept of grandparent. Procedurally, it can also be 

interpreted as a rule or a program to search whether the two nodes, X and Y, 

in' the family-tree are related. To fulfill the declarative meaning of whether 

two people are related in a grandparent relationship, the program searches for 
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'a common node which relates to the two nodes X and Y in the tree. 

Most of the Prolog systems, such as the C-Prolog system, are 

implemented sequentially. A common strategy is to evaluate the goals from 

left to right. As a result, there is a difference in the declarative and the 

procedural interpretation when deciding whether two logic clauses are the 

same. Declaratively, the clause 

cl(3.6) 

related(X,Y) :- parent(Z,Y),parentX,Z). 

has.the same meaning as the clause (3.3). Procedurally, these two clauses can 

be different. The difference is due to the sequential evaluation of clauses in 

the language. An example to illustrate the difference are the clauses: for doing 

arithmetic addition., 

cl(3.7) 

sum(X,Y,Z,S) :- I is X+Y, S is I+Z. 

cl(3.8) ' 

sum(X,Y,Z,S) :- S is I+Z, I is X+Y. 

Both clauses have the same declarative meaning. That is, the result of adding 

three numbers together can be obtained by adding two numbers to get an 

intermediate value, and then by adding the intermediate value to the 

remaining' number. Given the query of sum(1,2,3,S), clause (3.7) succeeds 

with the S value' returned as 6. Cl(3.8) fails because the variable I is 

undefined when the first goal of" S is I+Z " is evaluated. 

In this thesis, unless it is explicitly stated, logic clauses are interpreted as 

procedural rules. An extra criterion is imposed if two rules are said to be the 

same. Two rules are the same if they have the same atomic formulae 
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arranged in the same order. According to this criterion, clauses (3.3) and (3.6) 

are considered as different rules even though they represent the same 

declarative meaning. 

This criterion also allows the prototype to narrow down its search for 

target. rules considerably. Consider the following example involving two 

separate instances: - 

(1) related(ringo,alec) :- parent(ringo,christopher), parent(christopher,alec). 

(2) related(ringo,mathew) :- parent(ringo,pat), parent(pat,mathew). 

To infer a rule which covers these two instances, the prototype only has to 

evaluate the same goals in the same sequence according to the above criterion. 

Consequently, the prototype only needs to consider the two possible pairings: 

"parent(ringo,christopher)" with "p arent(ringo,pat)"; and 

"parent(christopher,alec)" with "parent (p at,mathew)". However, without the 

criterion, the prototype also has to consider two extra possible pairings of 

"parent(ringo,christopher)" with "parent(pat,mathew)" and 

"parent(christopher,alec)" with," parent(ringo,pat)". Given two instances with 

each one having N goals, the number of possible combinations would be N! (N 

factorial) without the constraint of the criterion. With this constraint, only 

one combination needs to be considered. 

Finally, an instance  is defined as a single item of input to a learning 

program. An instance of a rule is obtained by instantiation of all variables of 

the rule with specific constants. For example, "relate d(christopher,christine) :-

parent(ringo, christopher), parent(ringo,christine)" is a positive instance of the 

2 The word "instance" is to replace the commonly used word "example" in order to avoid 
confusion over the various usages of the word "example" 
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rule "related(X,Y):- parent(ringo,X), parent(ringo,Y)", but the 

"relate d(christopher, christine) :-parent(j anice, christopher), 

parent(janice,christine)" is a negative instance of the rule. 

3.3. User interaction 

Environment plays an important role in providing the input information 

that a learning system needs, and the user is a major part of that 

environment. This prototype is an "interactive rule acquisition system". One 

of its requirements is to minimize the burden put on •a user to generate 

positive and negative instances foi' the system. 

A major part of the input information comprises the positive and 

negative instances. But there is extra information which can reduce the 

complexity and difficulty of the learning tasks. One of the sources of extra 

information is the way the instances are presented to a learning program. 

There is a range of possibilities for how the extra information is encoded 

through the presentation of instances. For example, the ARCH program 

[Winston 1975], assumes a co-operative teacher. The teacher provides 

instances free of any noise, classifies the instances as positive or negative, and 

presents them in good pedagogical order. Winston also suggested the use of 

near-miss negative instances to help a learning program to identify those 

essential features easily and narrow down to the target concept quickly. 

SIERRA [VanLehn 1987] is another program Which makes use of extra 

information encoded in the sequence of instances to ease its induction of 

disjunction and invisible objects. In SIERRA, the instances are partitioned 

into lessons, and the lessons are sequenced; Each lesson can only introduce 

one disjunctive feature. Also, lessons are organized so that detailed work is 
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shown first, followed by optimized work. VanLehn suggested these two major 

restrictions of thesequence of instances, which then facilitates the induction 

which otherwise would be extremely difficult. He argued the importance of 

using the constraints from the presentation of instances and termed these as 

felicity conditions. 

Although the strategies adopted make the learning tasks much easier in 

the 11 above programs, the users ar e expected to do extra work in organizing 

and providing instances to the programs. If too much effort is required by the 

user in presenting instances to an induction program, there is concern that the 

practical uses of the program to ease the knowledge acquisition problem may 

be limited. The benefits of automatic induction of rules may be offset by the 

requirement for too much effort by the user. 

Mitchell has suggested the use of another type of learning apprentice 

system such as LEAP [Mitchell, Mahadevan and Steinberg 1985]. In contrast 

to ARCH, LEAP does not require an explicit "teaching mode", it acquires 

specific rules through the normal use of the system by the user. 

The present prototype is closer to LEAP in its requirement for instances. 

It requires a positive instance as the initial input. The positive instance is a 

solution to a particular problem, and is derived using the basic rules during 

the problem solving stage. The system induces a rule from the instance with 

degree of generality equivalent to that of the basic rule. If the user is not 

satisfied with the degree of generality of the induced rule, he can invoke the 

next step to refine the rule. The refinement relies on the empirical .technique. 

Instead of asking the user to provide instances, the system extracts negative 

instances from the past solution trace, if there are any. Then, it generates 
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instances from the existing database and requests the user to classify them. 

Based on the classification by the user, the system returns a refined rule. 

The details of the process are as follows: 

Problem Solving Stage 

The user first invokes the system to find a solution to a problem. The 

system may produce several solutions. The user picks the first acceptable 

solution and uses it as a positive instance. The system collects any 

solutions preceding the acceptable one in a solution trace. The user then 

invokes the next stage with the positive instance. 

Analytical Induction 

The system uses the analytical technique to generalize the positive 

instance into a rule. The degree of generality of the induced rule is 

equivalent to that of the basic rules in the system. 

Empirical Induction 

If the user wants the induced rule to be more specific, he then invokes 

this stage. The system tries to find useful negative instances from the 

solution trace. A useful negative instance is. one which has a similar 

structure to the rule being processed, but with one discriminating 

..feature. After that, the system generates instances based on the existing 

database model and asks the user for a classification of each instance. 

The user answers "yes" to a positive instahce, and "no" to a negative 

one. After a sequence of instances, the system returns a more specialized 

rule. - 

Two major problems were found in building this prototype. The first one 

was in choosing problems for which the induced rules were useful. There are 
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numerous problems and solutions for a given domain. Some of the problems 

are interesting and typical, while others rarely occur. We do not want the 

system to infer rules for every problem. We want the system to induce only 

those specific rules which solve the typical and commonly occurring problems. 

The prototype does not know which problem is common or typical and has to 

rely on the user to decide. A learning system, which learns by itself, such as 

AM [Davis and Lenat 1982] has to confront this problem. Another major 

problem was to decide the degree of generality of the induced rules required 

by the user Again, the prototype has to rely on the user's choice. 

The prototype takes advantage of its interactive nature to determine the 

user's choice on the above problem. When the user invokes the second stage 

of analytical induction, the user communicates to the prototype that the 

instance is a solution to a common problem. The prototype also assumes that 

the user wants a more specialized rule when he invokes the stage of empirical 

induction. In general, an interactive learning system can often provide more 

chances for the system to infer extra information from a user than a system 

which learns by itself. 

3.4. Analytical Induction 

The idea behind the prototype developed for this thesis is to exploit any 

avai1abe background knowledge as much as possible. When a domain can 

provide sufficient background knowledge, it is possible for the analytical 

generalization to induce a rule from a single instance [ Mitchell 1983]. 

However, when there are insufficient constraints, this prototype first uses the 

available constraints to guide the analytical generalization, and then uses 

empirical techniques to deal with the area where constraint is lacking. 
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Consider a positive instance such as 

cl(3.8) 

related(christopher, christine) :- p arent(ringo,christopher), 

parent(ringo, christine). 

Possible target rules for this instance are: 

cl(3.9) 

related(X,Y):- parent(Z1,X), parent(Z2,Y). 

cl(3.4) 

related(X,Y):.- parent(Z,X), parent(Z,Y). 

cl(3.5) 

related(X,Y):- parent(ringo,X), parent(ringo,Y). 

In this prototype, the process of induction from a positive instance consists of 

two stages: 

(a) Deciding the relationship between the variables and constants. Does 

"ringo" in the instance (3.8) bind to two separat'e variables as in the 

target rule (3.9), or bind to the same variable as in the rule (3.4)? 

(b) Deciding whether the constants in the instance can be turned into 

variables. Is "ringo" in the instance (3.8) a constant in the rule (3.5), or 

just an instantiation of the variable Z in the rule (3.4)? 

The following two sub-sections consider the induction in two cases. 

3.4.1. Case I 

Consider an instance which relates the top node "ringo" to the bottom 

node "john" in the right-hand side of the family-tree in the figure 3.1. There 

are two separate nodes called "ringo" which exist in the path from the top 
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node "ringo" to the bottom node "john". One is the top node "ringo". 

Another one is the one immediately above the bottom node' "john". As a 

result, the instance becomes 

cl(3.10) 

'related(ringo,john) :- parent(ringo,john), parent(mathew,ringo), 

parent(george,mathew), parent(ringo,george). 

The proper rule for this instance should be: 

cl(3.11) 

related(R,J) :- p'arent(R1,J),parent(M,R1),parent(G,M),parent(R,G). 

If the prototype is given only the instance cl(3.10) without any knowledge of 

how the instance is derived, the prototype cannot directly induce the rule 

(3.11) from the instance (3.10). 

If the prototype assumes that each constant with the same value comes 

from a unique variable in the target rule, then the rule 

cl(3.12) 

related(R,J) :- parent(R,J),parent(M,R),parent'(G,M),parent(R,G). 

is induced which is not correct as it neglects the existence of a separate 

variable Ri. On the other hand, if every constant, regardless of whether it 

shares the same value with any other, is assumed to come from a separate 

variable, then a rule of the form 

cl(3.13) 

related(R,J) :- prent(R1,J1),parent(M,R2), parent (G,M), parent (R3,G). 

is induced which is too general. The rule (3.13) ignores the shared variables 

in the clause. It ignores that Ri and R2 are the same, and so are R and R3. 



45 

If the prototype does not have any background knowledge, it has to rely 

on empirical techniques. It can use the cl(3.13) as the upper bound (the most 

general form) and the instance cl(3.1O) as the lower bound (the most specific 

form). By having a lot of positive and negative instances, the prototype 

would eventually arrive at the proper rule cl(3.11). But this means that the 

user has to produce a lot of instances to guide the prototype. 

If the prototype has the history of how the instance cl(3.1O) was derived 

from the basic rules during the problem solving stage, then 11 is able to infer 

the relationship between each constant in the instance with each variable, in 

the target rule without relying on the empirical technique. In addition, if 

each basic rule is applied properly during the problem solving stage, then it 

can infer the proper rule cl(3.11) from just a single instance(3.1O). 

3.4.2. Case II 

Analytical generalization can allow the induction of a rule from a single 

instance if the prototype not only knows how the instance is derived from the 

basic rules but also knows that each basic rule is applied correctly during the 

problem solving stage. The second assumption may not hold true all the 

time. In this prototype, the system is given some basic rules in order to solve 

a wide variety of problems in a given domain. The condition of each basic 

- rule is quite open so that each basic rule can fit a wide variety of situations. 

As a result, the basic rules are quite general. If the prototype relies on these 

rules as the basis of generalization, and the application of these rules during 

the problem solving stage is not constrained, then it is possible to induce a 

rule which is over-general. Furthermore, there is a requirement that the user 

may want to induce a rule of arbitrary generality. 
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For example, consider the instance 

cl(3.14) 

related(christopher,christine) :- parent(ringo,christopher), 

parent(ringo, christine) 

The analytical generalization would induce this instance cl(3.14) into a rule 

such as: - 

cl(3.15) 

related(X,Y) :- parent(Z,X),parent(Z,Y) /* sibling */ 

However, another possible generalization of cl(3.14) is the rule 

cl(3.16) 

related(X,Y) :- parent(ringo,X),parent(ringo,y) /* children of ringo */ 

The instance of cl(3.14) does not provide other information for the prototype 

to decide which one, cl(3.15) or cl(3.16), is the target rule. The conditions of 

the basic rules cl(3.1) and cl(3.2) are insufficient to allow the analytical 

generalization to decide that "ringo" in the instance cl(3.14) should be a 

constant instead of a variable. During the problem solving stage, the 

instantiation for the predicate parent(ringo,christopher) is "parent(X,Y)" 

instead of "parent(ringo,Y)", the generalization process just infers "ringo" to 

be a variable. Therefore rule cl(3.15) is induced instead of rule cl(3.16). 

To enable analytical generalization to induce rule cl(3.16) instead of 

cl(3.15), two extra conditions must be provided by the system. Instead of 

only two general basic rules cl(3.5) and cl(3.6), the prototype needs an extra 

set of rules such as parent(ringo,Y). During the problem solving stage, the 

system must be able to use "parent(ringo,Y)" instead of the predicate 

"parent(X,Y)" to generate the instance (3.14). 
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Building an extra set of rules is a major problem. The difficulty lies in 

deciding which set of rules should be included. By including an extra set of 

rules, the system would assume the types of specific rules that a user would 

eventually like to induce in the future. This assumption is too much to make. 

Also, the extra set of rules actually belong to specific type rules. Inë1uding 

the extra set would contradict the original purpose of inducing the sjecific 

rules from the basic one. 

Even if this extra set of rules exists in the system, there is no guarantee 

that this set of rules should be used instead of the general basic one during 

the problem solving stage. The user just issues the question 

" relate (christopher,christine)" to the system and there is no further 

information provided with the question. If the database arranges the extra 

set of rules in front of the basic ones, the system may pick "parent(ringo,Y)" 

in this example. While it may be suitable for this case, it may be, undesirable 

in another case where the rule (3.15) is indeed the target one. The strategy of 

placing this set of rules in front of the basic one shifts the learning bias of the 

prototype. The bias would be to prefer rules like cl(3.16) over the other ones 

like cl(3.15). 

It appears that using only the analytical generalization for this case is 

not enough. On the other hand, relying only on the empirical technique runs 

into the problem of needing a lot of positive and negative instances as 

discussed in the section 3.4. 

While the basic rules are not sufficiently constrained to enable analytical 

generalization from a single instance, they can be used to infer any constants 

and shared variables in the target rule. In this example, the basic rules 
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cannot be used to decide whether "ringo" in the instance comes from the 

variable "Z" in the target rule, but it can decide that there is a common 

shared variable " Z" or a common shared constant "ringo" between the two 

subgoals. Because of that, the analytical generalization eliminates one 

possible target rule "parent(Z1,X), parent(Z2, Y)". 

The target rule can be imagined as lying within the version space 

bounded by a paii of most specific and most general rules.3 In this example, 

without the stage of the analytical generalization, the 'prototype has to begin 

its empirical generalization with the most general boundary of "parent(Z1,X), 

par ent(Z2,Y)", and the most specific boundary of "parent(ringo,christopher), 

parent(ringo,christine)". If the stage of analytical generalization exists, the 

prototype can start its stage of empirical generalization with the most general 

boundary "parent(Z ,X), parent(Z ,Y)" instead of "parent(Z 1,X), parent(Z2,X)". 

The most general boundary has been lowered. By bringing down the most 

general boundary to a lower level, the analytical generalization narrows down 

the version space for the next stage of empirical generalization. The whole 

scenario is shown in the figure 3.2 

If the rule cl(3.16) is the target rule for this example, extra instances are 

necessary in the empirical generalization. Of course, one useful source of 

instances is the user. However, there are two other possible sources of 

instances. The next section discusses the empirical induction and how those 

instances can be extracted and generated. 

The following explanation is described using the Version Space approach for 
convenience. However, the current implementation of this prototype has not yet incorporated 
the Version space method, for its empirical techniques. 
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Figure 3.2: The Version Space of a family tree example. 

3.5. Empirical Induction 

Empirical induction has two steps: extracting negative instances and 

generating instances. They are described in the following two sub-sections. 

3.5.1. Extracting Instances 

•The general condition of the basic rules cl(3.1) and cl(3.2) not only create 

problems during the analytical generalization, they also create probleths 
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during the problem solving stage. Because their conditions are general, these 

basic rules may need several trials before they can get to the right solution. 

Given the database as defined in the figure (3.1), the first solution to the 

question ":-related(christop her, christine)" is the instance 

cl(3.17) 

related(christop her, christine) :- parent(janice,christopher), 

parent(j anice,christine). 

If the user is only interested in finding whether they are related through 

"jingo" as opposed to anyone else, then he is going to reject this instance as 

an incorrect solution. The system has to search for another solution until it 

finds the one "related(christopher, christine) :- parent(ringo,christopher), 

parent(ringo,christine)". If the instance cl(3.17)--related through janice-- is 

captured and stored, then ' it 'can become a useful negative instance for 

empirical induction. The instance (3.17) gives the justification that the 

variable X in the cl(3.15) should be specialized into the constant "ringo". 

Otherwise, if X was indeed the variable, then the instance cl(3.17) should also 

be acceptable a& a solution instead of being rejected. There are three 

problems related to using the solution trace as the source of negative 

instances for empirical induction. 

An assumption is made that the user is only interested in finding the 

correct solution, and no alternative solution. As soon as he has found the 

correct solution, he stops the system from generating further solutions. This 

assumption is necessary for the system to decide that the last solution in the 

solution trace is a positive instance and any solution prior to it is a negative 

one. If alternative solutions are allowed in the solution trace, the system 
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cannot decide which one is the alternative correct solution, or which one is a 

negative instance. Under these circumstances, further input from the user 

would be required to distinguish negative solutions from alternative correct 

solutions. 

The second problem is that there is no guarantee that negative instances 

will exist in a solution trace. In the data-base of the family-tree in the figure 

3.1, the predicates "parent(j anice,christopher)" and "parent(j anice,christine)" 

are put in front of the predicates "parent(ringo,christopher)" and 

"parent(ringo,christine)". As a result, the negative instance of 

"p arent(j anice,christine), parent(j anice, christopher)" is generated before the 

correct solution of "p arent(ringo,christopher), parent(ringo,christine)". 

However, if those, predicates involving "ringo" are put at the beginning of the 

data-base, lIten the first solution is the correct one. The system will not have 

a chance of generate another instance involving "janIce". 

The final probiem with the solution trace is that it is an unstructured 

source of negative instances. In the current implementation, only negative 

near-miss instances which lie within the versioi space are useful. Consider 

the same example involving "christopher" and "christine". Beside the instance 

cl(3. 14) "related(christopher, christine):- parent(ringo,christopher), 

parent(ringo,christine)" which is accepted as the positive one, two negative 

instances are gnerated before the instance (3.14). They are: 

cl(3.18). 

relate d(christop her, christine) :- p arent(j anice ,christopher), 

parent(j anice,christine). 
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cl(3.19) 

related(christopher,christine) :- parent(ringo,christine 

parent(j anice ,christine), parent(j anice ,christopher). 

Of the two negative instances, only cl(3.18) lies in the current version space 

bounded by the rule (3.15) "related(X,Y) :- parent(Z,X), parent(Z,Y)", and the' 

instance (3.14) "relate d(christopher,christine) :- par&nt(ringo,christopher), 

parent(ringo,christlne)". Therefore, the negative instance (3.18) is the only 

one useful in narrowing down the most general boundary of (3.15) into the 

one "related(X,Y) :- parent(ringo,X),parent(ringo,Y)". (3.19) cannot be a 

useful negative instance because its structure is differenl from the positive 

instance (3.14). 

Cl(3.18) is a useful negative instance not only because it lies within the 

version space, but also it is a near miss instance. It contains only one 

discriminant, "janice", from the positive instance. 

Consider another case involving the "great grandparent" relationship. 

The most gneral boundary and most specific boundary are defined by 

cl(3.20) 

related(X,Y) :_parent(X,X1),parent(X1,X2),parent(X2,X3),parent(X3,Y). 

cl(3.21) 

related(ringo,adrian) :- .parent(ringo,j ane), parent(jane,mary), 

parent(mary,adrian). 

There are two possible negative instances within the version space defined by 

these two boundaries. They are: 

cl(3.22) 

related(ringo,adrian) :- parent(ringo,j ane), parent(j ane,alec), 
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parent(alec,adrian) 

cl(3.23) 

related(ringo,adrian) :- parent(ringo,christopher), parent(christopher,alec), 

parent (alec,adrian). 

Only the instance (3.22) can be used as it contains only one 

discriminant,"alec". The negative instance (3.23) cannot be used because 

there are two discriminants, " alec" and " christopher" in (3.23). The prototype 

cannot tell which discriminant causes the instance (3.23) to be a negative one. 

It may be " alec", or "christopher", or both of them. If the instance (3.22) was 

positive and (3.23) was negative, using both of them could point out that 

"christopher" was the discriminant which caused (3.23) to be negative. But if 

(3.22) and (3.23) are both negative instances, then the prototype cannot find 

out all essential discriminants. The pr9totype can only definitely identify 

"alec" as the essential negative discriminant since the cl(3.22) is a near-miss 

negative instance. However, the prototype cannot decide for sure that 

"christopher" in cl(3.23) is also a negative discriminant. It may be "alec" 

which also causes cl(3.23) to be a negative instance. The current 

implementation of the prototype only uses a single rule instead of a set of 

rules to represent the most general boundary of the version space. It can only 

handle near miss negative instances. The possible improvement to this 

limitation will be discussed in the chapter (6). 

3.5.2. Generating instances from current database 

The solution trace cannot guarantee to have useful negative instances. 

Even if it has, there may be insufficient negative instances to specialize the 

upper boundary of the target rule. As a result, further instances are still 
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required. In the case of the sibling example, the upper boundary has been 

narrowed down to "related(X,Y) :- parent(ringo,X),parent(ringo,Y)." as a 

result of the negative instance (3.18). There is a possibility that the variables 

X and Y are also constant. The system has to find and confirm this. The last 

part of the prototype is to generate instances, asking the user to classify the 

instances as being either positive or negative. Based on the user's 

classification, the system tries to determine which variable in the upper 

boundary can be turned into a constant. The following paragraphs describe 

why the generation of instances from the current database must be guided. 

One of the simple ways of generating instances is to use the upper 

boundary as the rule to generate an instance. By causing the rule to 

backtrack continuously, the prototype can eventually generate all the possible 

instances in the current domain. While this approach is simple to implement, 

it generates a lot of redundant and useless instances. For example, if a rule 

has been specialized to the form "related(X,Y):- parent(ringo,X), 

parent(ringo,Y)" from a previous instance of "relate d(j essica, c hristopher) :-

p arent(ringo,jessica), parent(ringo, chrIstopher)", another instance of 

" relate d(jessica,christopher) :- parent(j anice,j essica), parent(janice, 

christopher)" is redundant because it does not contribute to any further 

generalization or specialization. An instance with one discriminant is useful 

because its classification as positive or negative can uniquely identify whether 

the discriminant can be turned into a variable. An instance of two 

discriminants may not be very useful unless one of them has been identified 

previously. To avoid generating redundant and useless instances, the process 

of generating instances must be guided. 
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The prototype uses two criteria to generate instances. The criteria are 

similar to the ones used in the previous step of extracting negative instances 

from the solution trace. Whether they are positive or negative, only instances 

within the current version space are useful. Therefore, the instance 

"related(jessica,pat):- parent(j anice,jessica), parent(janice,pat)" is not useful as 

it lies outside the current most general boundary of "related(X,Y) :-

parent(ringo,X),parent(ringo,Y)". In order to ensure that only instances 

within the current version space are generated, the most general boundary 

"related(X,Y) :- parent(ringo,X), parent(ringo,Y)" is used as the rule to 

generate instances. 

As, the user only gives a simple answer "yes" or "no" to the instances, the 

system has to generate those instances with only one discriminant. Therefore, 

the instance of "related(jessica,christine) :- parent(ringo,jessica), 

parent(ringo,christine)" is a useful instance, whether it is a positive or 

negative, as there is only one discriminant, "jessica". The instance of 

"related(jessica,pat) :-parent(ringo,jessica), parent(ringo,pat)" is a useful 

positive instance, but not a useful a negative one. If the user answer "yes" to 

this one, then the system can justify that both the constants "jessica" and 

"pat" are variables "X" and "Y". But if the answer is "no", then the system 

runs intothe same problem of deciding whether one or both of them are the 

negative discriminants. Consequently, this current prototype is restricted to 

generating instances with only one discriminant. 

Whether the version space can be successfully narrowed down to the 

target rule depends on the number of instances which can be generated from 

the database. If there are five undecided variables before this step, then at 
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least five instances, each one with only one discriminant, have to be produced. 

The database in the figure (3.1) can generate sufficient instances for the 

prototype to learn the sibling and grandparent rules, but not the "great 

grandparent" rule. For the "great grandparent" ruTle, only four different 

instances can be generated in total from the database of figure (3.1). They 

are: 

cl(3.24) 

relate d(ringo,adrian) :-parent(ringo,christopher),parent(ehristop her, mary), 

parent(mary, adrian). 

cl(3.25) 

related(janice,adrian):-

parentj anice ,christopher),parent(christopher,mary), parent(mary,adrian). 

cl(3.26) 

relted(ringo,ringo): parent(ringo,george), parent(george,mathew), 

parent(mathew,ringo). 

cl(3.27) 

related(j anice,ringo):- parent(j anice,george), parent(george,mathew), 

parent(mathew ,ringo). 

In this example, the first instance (3.24) is taken to be the initial positive 

instance. The rest of the instances are generated by this step. The second 

instance (3.25) can be used to decide whether the constant "ringo" comes from 

a variable in the target rule. The instance (3.26) has more than one 

discriminant. If the user classifies (3.26) as being positive, then the system 

can justify turning all the remaining constants in the instance into variables. 

The rule then becomes: 
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cl(3.28) 

related(X,Y):-parent(X,L),parent(L,M),parent(M,y). 

But if the answer is "no", then the prototype cannot infer any further 

information from the instance (3.26). The last instance cl(3.27) is not useful 

as it does not contain any extra information. 

3.6. Summary 

This chapter has described two types of rules for certain domains: basic 

and specific rules. .The solution for a problem is initially found using the 

basic rules of a domain. Then the prototype infers a specific rule from the 

solution to solve a similar class of problems. 

In the first stage of analytical induction, the prototype infers any 

common shared variables or constants in the target rule. In the second stage 

of empirical induction, the prototype first extracts any useful negative near-

miss instances to specialize the upper bound of the target rule. Then it 

further generates instances from the existing database of the domain and 

requests the user's classification on these instances. Based on the user's , 

classification, the prototype refines both the upper and lower bound of the 

target rule. The next chapter describes the implementation of the prototype. 



CHAPTER 4 

Implementation of the prototype 

This chapter discusses the current implementation of the prototype. The 

target rule can be imagined as contained in a hypothesis space of many 

possible target rules which are bounded by its most general form and the 

most specific form. A common terminology for this space is called the version 

space. Section 4.1 describes the first stage, analytical induction which 

generalizes a positive instance into the most general form of its version space. 

The second stage, empirical induction, has two sub-stages. Section 4.2 

describes the first substage df specializing the most general form of the version 

space by using any near-miss negative instances extracted from the solution 

trace. Section 4.3 describes the second sub-stage of generating instances from 

the database, and using these instances to narrow down the version space 

bounded by the most general and most specific forms. Section 4.4 describes 

the current status of the prototype, and section 4.5 summarizes this chapter. 

4.1. Analytical Induction 

In order to carry out analytical induction, the prototype has to know the 

form of the positive instance. The instance is actually the solution to a 

particular problem generated by an inference engine. The prototype also has 

to know how the solution is generated by the inference engine. 

At present, the inference engine of the 0-Prolog system just returns an 

answer "yes" or "no" to the query such as "related(christop her, christine)". In 

the case when "christopher" and " christine" are related, the C-Prolog system 
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just indicates an answer "yes", but gives no indication of how these two are 

related. Also there is no information as to what basic rules have been used in 

finding the solution. 

Another requirement is that the prototype must be able to access any of 

the solutions which are rejected by the user. The storage of these solutions 

forms the source of negative instances for the next stage of empirical 

induction. The existing C-Prolog system, however, does not store these 

instances once a query is finished. 

All the above requirements of the prototype seems to indicate the need 

for extracting extra information from the current 0-Prolog interpreter. One 

way to capture this extra information is to build some functions within the 

existing C-Prolog interpreter., However, these functions may interfere with 

the performance of the interpreter and affect other users of the system. To 

prevent interference with other users, the work for this thesis involved 

building a separate interpreter to simulate the actions of the current .0-Prolog 

interpreter. 

The current implementation involves a meta-interpreter runiiing on top 

of the existing C-Prolog interpreter. Besides simulating the action of the 

existing interpreter, the meta-interpreter captures the form of the solution 

such as ' parent(ringo,christopher),parent(ringo,christine)" as well as any 

solution rejected by the user. The rejected solutions are asserted into the 

database with the special tag "frecord" so that they can be retrieved even 

after an query is finished. 

There are several analytical generalization techniques for different 

applications such as story understnding, heuristics and so on. In LEAP and 
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LEX where heuristics are learned from instances produced by the basic 

operators, constraint back-propagation technique is used. This involves two 

separate stages: capturing the sequence of the basic operators during the 

problem solving stage; and generalizing using the same sequence in the 

induction stage. To use this technique, the prototype has to supply extra 

information on how those basic operators can be back-propagated. This extra 

information may not exist or be defined for all basic operators. Other 

limitations have been cited for this technique [ Utgoff 1986]. The prototype 

uses a different technique from the constraint back-propagation technique. 

Instead of keeping a record of how the basic rules are used, the meta-

interpreter produces a generalized and/or tree to represent their sequence of 

application. 

In Prolog, the process of finding a solution can be. captured in an and/or 

tree. The top node of the tree represents the query or the question, and the 

bottom nodes of the tree represent the solution to the query. The internal 

nodes of the tree represent the intermediate steps taken by the interpreter. In 

essence, the and/or tree of the solution represents the basic rules and the 

binding of the variables in the rules with constant values. To infer how the 

constants are shared in the tree, it is necessary to have a corresponding 

generalized and/or tree which captures the basic rules but without any 

binding of variables. A corresponding mapping between these two trees can 

reveal whether two constants in the solution tree are indeed shared together. 

An example is shown in figure 4.1. 

The meta-interpreter builds these two trees at the same time. When the 

query "relate d(christop her, chi'istine)" is fed into the meta-interpreter, the 
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related(chrj stopher,chrjstjnc) 

parent(ringo,chrjstjfle) parcnt(ringo,cIrjStine) 

Solution and-or tree 

related(X, Y) 

parent(Z,Y) parent ( Z, Xi 

generalized and-or tree 

Figure 4.1: A solution tree and its generalized form. 

generalized form of the query "related(X,Y)" is also fed to the same 

interpreter. When the solution "parent(ringo,christine), 

parent(ringo,christopher)" is found, the generalized rule "parent(Z,X), 

parent(Z,Y)" ig also generated from the generalized and/sr tree. 

It is essential that the two trees correspond to each other. Two major 

problems can arise from trying to produce a corresponding generalized tree. 

Part of the first version of the meta-interpreter is shown in figure 4.2. Two 

simple examples are shown in figure 4.3 and 4.4 to illustrate the problems. A 

modified version is shown in figure 4.5. 
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Calll(Goal, Result, Head, Rule) :-

clause(Goal, Bodyl), 
clause(Head, Body2), 
calll(Bpdyl, Result, Body2, Rule). 

where Goal--the query 
Result--the bottom nodes of the solution tree 
Bodyl--subgoals of the query 
Head--generalized query 
Rule--the bottom nodes of the generalized tree 
Body2--subgoals of the generalized query 

Figure 4.2: A portion of the meta-interpreter (Version I). 

The first problem is that the generalized query may instantiate with 

some clauses which the solution query will avoid. For example, in figure 4.3, 

the meta-interpreter has to instantiate both the actual query of "test(2,Y)", 

and the generalized query of "test(L,M)". The query "tes(2,Y)" can only bind 

with the (2) clause of "test", but not (1). "test(L,M)" can bind with either (i) 

or (2). Because of the sequential evaluation, "test(L,M)" in this case will bind 

with (1) first. Therefore a discrepancy occurs between these two trees. The 

solution tree binds with the second clause (2) of test, while the generalized 

tree binds with the first clause (1) of test. To prevent this mismatch from 

happening, the instantiations in both trees must be tested for equality at each 

step of instantiation. In this example, the generalized tree has to give up its 

first instantiation and try the second one which matches with the 

instantiation of the solution tree. 



83 

subgoal 1 
subgoal 2. 
subgoal yes). 
subgoal no). 

1) test 1,Y) :- subgoal(yes), subgoal(Y). 
2) test(2,Y) :- subgoal(no), subgoal(Y). - 

QUERY: calll (test (2,Y), R, test(L,M), Rule) 
ANSWER: 
Y=-1 
R = subgoal (no),sub goal (1) 
L=1 
M=_7 
Rule = subgoal(yes),subgoal(_7) 

Figure 4.3: The problem of different instantiations. 

The second problem comes from different backtracking by the two 

different trees. In figure 4.4, the interpreter has tried 1), 2) and 3) of the 

clause "rel(X,Y)" in both trees and fails. The interpreter then first backtracks 

the solution tree and tries the final clause 4) where it succeeds. However, the 

generalized tree still remains at the previous clause 3). Consequently the 

instantiaions in both trees are different. To prevent this problem, the 

interpreter must backtrack both trees to the same place at the same time. 

The improved version (II) is shown in figure 4.5 which takes care of the 

two problems. However the code of the improved version (II) is less easy to 

understand than the first version. 
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parent(ringo,john). 
parent(ringo,mary). 

1 relX,Y 
2 relX,Y 
3 relX,Y 
4 relX,Y 

:- parent X,Y. 
:- parent Y,X. 
:- parent X, Z), rel(Z, Y 
:- parent Z, X), rel(Z, Y 

QUERY: call l(rel(john,mary), R, rel(X,Y), Rule). 
ANSWER: 
R = parent(ringo,john),parent(ringo,mary) 
X = _5 
Y= 6 
Rule = parent(_5,._.24),parent(_24,_6) 

Figure 4.4: The problem of different backtracking. 

Call1(Goal, Result, Head, Rule) :-

clause(Head, Bodyl), 
copy((Head:-Bodyl),(Head2:-Body2)), 
Goal = Head2, 
calll(Body2, Result, Bodyl, Rule). 

Figure 4.5: A portion of I the meta-interpreter (Version II). 

The first stage can be summarized by the following procedure:' 

--input the query and its generalized form to the meta-interpreter 
--While the acceptable solution is not found loop 

--search for another solution and its corresponding generalized rule 
simultaneously 
--output the solution to the user for its feedback 
--if the answer is " acceptable" then 
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--output the solution and its generalized rule 
--stop the loop 

--else 
--assert the solution into a database with a tag "frecord" 
--continue the loop 

4.2. Extracting negative instances 

The first sub-stage of the second stage "empirical induction" is to 

specialize the most general form of the rule found in the previous stage. The 

specialization is done by using any near-miss negative instances extracted 

from the solution trace. There are three steps in this stage. The first step is 

to extract negative instances which are marked with the tag "frecord" from 

the database. The second step is to rearrange the negative instances and 

makes use of those near-miss instances for specialization. The final step is to 

specialize the general form of the rule so that the version space is smaller. 

After the first stage of analytical induction, the version space which 

contains the target rule can be described and bounded by the most specific 

and most general form of the rule. The most specific form is the positive 

instance used in the analytical induction. The most general form is the rule 

induced in the analytical induction. If instances are rejected by the user while 

the interpreter is finding the solution, and some of the instances are within 

the version space, then these instances can be used further to narrow down 

the boundary of the version space. In other words, the version space should 

be narrowed further to exclude those instances by specializing the most 

general form of the space. The instances marked with the tag "frecord" in 

the database are negative instances. Some of them are within the version 

space, but some of them are not. The prototype' has to extract those within 

the version space in order to specialize the most general form. To do that, 



66 

the prototype extracts those instances which can match the most general 

form, i.e. the rule induced during the analytical induction. Those negative 

instances which do not even match the most general form are outside the 

version space and they are not useful for any further induction. 

The second step is to organize those negative instances lying inside the 

version space. The current prototype can only make use of the near-miss 

negative instances. Therefore, it is necessary to select further the near-miss 

instances from the ones found in the previous step. The negative instances 

are compared with the most specific form one by one to find out how different 

they are from the most specific form. Then the instances are sorted in a list 

according to the order of difference. Those near-miss instances with just one 

discriminan are put at the front of the list, followed by those with two 

discriminants, and so on. 

The final step is to specialize the most general form. Both the most 

general and most specific forms are compared with each negative instance, 

starting with the first one in the list. Comparison of the most specific form 

with a given negative instance indicates what is the essential discriminant. 

The essential discriminant is used to locate the corresponding value in the 

most general form. If the corresponding value in the most general form is a 

variable, then the variable is specialized to the corresponding constant in the 

most specific form. If the corresponding value in the most general form is a 

constant already, then the value is kept the same. The specialization stops 

when all near-miss instances with one discriminant, in the list are exhausted. 

The procedure is shown in the figure 4.4. 
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Most general form unique list [Z,X,Y] 
related(X, Y) :- parent(Z, X), parent(Z, Y). 

Most specific form unique list [ringo, christopher,christine] 
relate d(christopher,christine):_parent(ringo,christopher),p are nt(ringo,chrjstine) 

Negative instance unique list [j anice,christopher, christine] 
related( . christopher,christine):-parent(j anice,christopher) ,p arent(j anice,christine) 

'if 

The new most general form unique list [ringo,X,Y] 
related(X,Y) :- parent(ringo, X), parent(ringo, Y). 

Most specific form unique list [ringo, christopher,christine] 
relate d(christopher,christine):_parent(ringo,christopher), parent (ringo,chrjstjne) 

Figure 4.6: Specialization using negative instance. 

Instead of storing and comparing eaéh instance as a whole entity, the 

current prototype abstracts a unique list of variables and constants for each 

instanóe. For example, for the instance of 

related(christop her, christine):-

parent(ringo,christopher),parent(ringo, christine) 

the unique list to represent that is 

[ringo, christopher,christine] 
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This is due to the fact that the prototype just manipulates constants and 

variables in the brackets. The functors of the predicates such as "parent" are 

not manipulated. Therefore, in the third step of specialization, each instance 

or a rule can be uniquely represented by a list of its constants and variables 

without essential loss of information. The corresponding unique list for- each 

instance is also shown in the figure -4.6. Consequently, only unique lists are 

manipulated instead of the whole instance or the whole rule. Manipulation of 

the unique lists is both more time efficieht and more space efficient than 

manipulating the whole rule or instance. At the end of the third step, the 

unique list is used to produce- the rule back in its original form. 

The second step can be summarized by the following procedure: 

--extract negative instances using the most general form - 

--sort the negative instances in a list according to the number 
of discriminants 
--While near-misses still exist in the list do: 

--compare each negative instance with the most specific form 
to locate the discriminant 
--find the value in the most general form corresponding to this 
discriminant 
--if the value is a variable, turn it into the corresponding 

constant value in the most specific form 
----else keep the value as it is. 

4.3. Generating Instances - - 

- The next sub-stage of the "empirka1 induction" is to generate instances 

from the current database. Based on the classification of the generated 

instances from the user, the prototype generalizes the most specific form or 

specializes the most general form. The generation of instances must be guided 

so that redulidant instances are avoided. The prototype first attempts to 

generate instances with only one discriminant. Alter all these instances from 

the database are exhausted, the prototype tries to generate instances with 
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more than one discriminant. 

The current prototype relies on a list of variable/ constant pairs to guide 

its generation of instances. This list is constructed by extracting unique 

variables from the most general form and their corresponding constants in the 

most specific form. An example is given in figure 4.7. 

The prototype then uses the most general form to try to produce another 

instance from the database such that X is instantiated to a value other than 

"Christopher", while keeping the variable Y instantiated to the same value of 

"Christine". If this instance can be generated, it is prompted for the user 

classification. If that instance cannot be generated, the prototype attempts to 

generate another instance with the variable Y binding to a different value 

other than "Christine". If this instance still cannot be generated, then the 

database does not contain sufficient instances to allow the target rule to be 

induced. In this case, the most general and most specific form will be 

returned instead of a single target rule. 

the new most general form after, the second stage is: 
related(X,Y):_ p arent(ringo,X), parent(ringo,Y). 

the most specific form remains as: 
relate d(christopher,christine ):- parent(ringo,christopher), parent(ringo, christine 

the list of variable/ constant pairs is: 
[[X,christopher}, [Y,christine]] 

Figure 4.7: An example of a list of variable/ constant pairs. 
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The final'stage can be summarized in the following procedure: 

--create a list of variable/constant pairs from 
the most general and most specific forms 
--with each pair in the list, do: 

--generates an instance such that the variable in this pair 
has a different value from the constant in the pair.. 
--if an instance can be generated, then 

--prompt the user for classification of the instance 
--if "yes", the variable is maintained. 
--if " no", the constant is maintained. 

--put this pair into another list of "undefined" 
--repeat the loop with the, next pair 

-else 

4.4. Current status of the prototype 

Each component, analytical induction, extracting negative instances, and 

generating instances, has been implemented and tested separately as an 

individual module. However, there are difference between the interfaces for 

the different modules. For example, the analytical induction module outputs 

the rule and instances as clauses, but the next two modules accept the rule 

and instances in the form of a list. The user has to modify the format of 

output slightly from one module to another format for input to the next 

module. The interface problem •is presently being worked on and will be 

resolved in the future. 

To ensure 'that the prototype does not just solve the family-tree problem, 

it has been tested with other problems such as inducing specific rules for 

parsing context free grammar. Given a set of basic grammar and its 'database 

[Glocksin and Mellish 1981], as shown .in figure 4.8, the prototype induces a 

specific rule for parsing. a certain group of senteices. For example, the 

prototype induces a specific rule of [determiner, noun,verb, determiner, noun] 

from the sentence of [the ,man,eats,the,apple]. 
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sentence(SO, S) :-noun_phrase(SO, Si), verb_phrase(S1, S). 

noun_phrase(SO, S) :- determiner(SO, Si), noun(S1, 5). 

verbphrase(SO, S) :- verb(SO, S). 
verb_phrase(SO, 5) :-verb(SO, S1), noun_phrase(S1, S). 

determiner([thelS], S). 
noun lmanISI,S). 
noun apple ],S). 
verb( eatsiS ,S). 
verb( singsS],S). 

query :-sentence([the, man, eats,the,apple] , []). 
the solution is 

deter miner([the,man,eats,the,apple] , [man,eats,the,apple]), 
noun([man,eats,the,apple] , [eats,the,apple]), 
verb([eats,the,apple] ,[the,apple]), 
determiner([the,applel, [apple] ),noun( [apple], []) 

the induced rule is: 
determiner(S1,S2),noun(S2,S3), 

verb (S3,S4), determine r(S4,S5),noun(S5, []) 

Figure 4.8: Inducing a rule for context free grammar. 

4.5,. Summary 

In the first stage of analytical induction, the prototype finds the most 

general form of the version space from the generalized and/or tree. The most 

specific form of the version space is the solution to a problem found by the 

interpreter. The most general form is used in the next stage of empirical 

induction as the basis for finding negative. instances and generating instances 

from the database. The most specific and most general form are refined at 
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the stage of empirical induction. The next chapter will discuss the limitations 

of the prototype, both in terms of its design and its implementation, and 

suggests further improvements. In addition, it also discusses several problems 

encountered in this project. 



CHAPTER '5 

Evaluation 

This chapter evaluates the performance of the prototype, in bolh its design 

and implementation. Section 5.1 describes the limitations of its 

implementation. Section 5.2 examines the performance of each part of the 

prototype. Section 5.3 looks at the prototype as a whole. It describes where it 

is useful, and the assumptions that make it work. Section 5.4 suggests several 

issues for further investigation. 

5.1. Implementation bottleneck 

The prototype has been tested with a family-tree program, a, sentence-

parsing program, and several list-manipulation programs to gain some 

estimate of its generality. 

The current prototype was slow in running the test programs. For 

example, parsing a sentence of "[the,man,eats,the,apple]" required only 0.016 

cpu second running directly on the 0-Prolog interpreter, but required 1.68 cpu 

second on the prototype running under similar loading conditions. The major 

inefficiency is due to the meta-interpreter built in the prototype. The meta-

interpreter is required to extract extra information for induction. 

There are reports on the inefficiency of using a meta-interpreter in the 

Prolog system [ Sterling and Lee 1986], since a large fixed overhead exists. 

The meta-interpreter sets up the target program and then runs the program 

on the actual C-Prolog interpreter. This large fixed overhead may account for 

the inefficiency, especially when running small programs. 

73 
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Another major inefficiency is in building a generalized and-or tree for the 

analytical induction. In order to carry out the analytical induction, it is 

necessary to record those basic clauses which are used in deriving a solution. 

However, getting those basic clauses in their original forms is not an easy task 

since the prototype has no direct information on how the C-Prolog interpreter 

operates. The 0-Prolog built-in predicate "clause(Head,Body)" does not 

totally solve the problem. For example, given the head of 

" relate d(christopher,christine)", the predicate " clause" returns the body of 

"parent(Z,christopher), parent(Z,christine)". However it is the rule of 

"related(X,Y) :- parent(Z,X), parent(Z,Y)" which the prototype requires for 

analytical induction. In order to record the body of the rule "related(X,Y) :-

parent(Z,X), parent(Z,Y)", the prototype has to build a separate generalized 

and-or tree. As discussed in section 4.1, the generalized and-or . tree has to 

correspond with the solution tree. To prevent mismatch, the instantiations in 

both trees must be tested for equality at each step of instantiation. If there 

are similar clauses, testing equality may be time-consuming. A major 

improvement beyond the current prototype will be achieved by having some 

means of getting the basic rules used in the problem solving stage directly 

from the C-Prolog interpreter. In that case, programs can be run directly on 

the C-Prolog interpreter without the extra overhead of the meta-interpreter. 

The current prototype can handle Prolog clauses involving "and" goals, 

"or" goals, and "not". It cannot handle "cut". It also cannot handle goals 

which require their variables to have specific constant values at the time of 

their instantiation. For example, any goal involving the system predicate of 

write(X) will fail because X must be instantiated to a constant value at the 

time of its call. In the solution tree, X would have a specific value. However, 
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in the generalized and-or tree, X would remain a variable. This would cause 

the system to fail. 

5.2. Evaluation of each component 

The first stage of analytical generalization is able to identify any 

constants and shared variables of such complicated clauses as: 

cl(5.1) 

related(R,J) :- parent(R1,J),parent(M,R1), parent (G,M), pare nt(R,G). 

from the instance 

cl(5.2) 

related(ringo,john) :- p arent(ringo,john), p arent(naathew ,ringo), 

pareiit(george ,mathew), parent(ringo,george). 

A user may have difficulty in deciding that there is a shard variable "Ri", 

and that "RI" is different from another shared variable "R". To do this, he 

has to trace through the solution step by step. In that respect, analyica1 

induction saves the user from the tedious effort of tracing through the 

solution manually. 

Although the first stage of the prototype can identify any shared 

variables, some interpretation is still required by the user to determine the 

types of the variables. In Prolog, there are no types for variables. A variable 

can assume an integer value, a symbol constant or a list. For example, the 

prototype returns a grammar rule of: 

cl(5.3) 

sentence(X, []) :- determiner(Xi,X2), noun(X2,X3), verb(X3,X4), 

determiner(X4 ,X5), noun(X5, []). 
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from the instance of - 

cl(5.4) 

sentence( [the,man,eats,the,apple]) 

determiner( [the,man,eats,the,apple] , [man,eats,the,apple]), 

noun( [man,eats,the,apple] , [eats,the,apple]), 

verb( [eats,the,apple] , [the,apple]), determiner( [the,apple], [apple]), 

noun([apple],[]) 

The Induced rule can only work when all variables in the rule have the input 

in the form of a list. However, the induced rule does not indicate that extra 

requirement. The user has to infer this himself by observing that all 

constants in the corresponding positive instance cl(5.4) are in the form of a 

list. The interpretation can be tedious if there is a mixture of different types 

in a rule. 

In the first step of the second stage of the empirical induction, it is found 

that the past rejected solutions do not always exist as a source of negative 

instances. The family-tree program may generate some rejected solutions but 

the parsing program seldom generates any. Even for the family-tree problem, 

the rejected solutions are few and insufficient for the system to arrive at 

target rule. The original design idea is that if any rejected solution is 

generated during the search for right solution, then it is saved as negative 

instances. It does not have to be regenerated again for empirical induction. 

However, the result does not indicate any significant advantage to using this 

idea. In addition, this step asumes that all solutions in the solution trace are 

rejected ones rather than alternative right solutions. This restricts the user in 

interacting with the system. 
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The generation of instances in the second step depends on the database. 

A large database does not necessarily mean sufficient instances can be 

provided for all the different varieties of specific rules. The database may 

contain many similar instances which are useful for inferring some types of 

specific rules, but not others. To induce a variety of rules, the database must 

have a variety of instances. The database for the family-tree and parsing 

problems are not very large. Consequently, the prototype could generate 

sufficient instances for some simple specific rules but not for some of the more 

complicated rules. - 

In both the first and second step of the empirical induction, the 

prototype is restricted to using negative "near miss" instances for its 

specialization. That may restrict the prototype from inducing a target rule. 

A better strategy is to consider other negative instances besides those near 

miss instances. The major problem is to identify the essential discriminants 

which cause the instances to be negative. Some strategies such as the depth-

first search or the Version Space method can handle this problem. However, 

the implementation is more complicated than the current prototype. The 

computation is also likely to be more expensive than the current one because 

it is necessary to process other negative instances. 

5.3. Performance of the prototype 

The following subsections describe where the prototype may be useful 

and the essential features behind the working of this prototype. 
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5.3.1. Where it can be useful 

The purpose of the prototype is to induce specific rules to improve the 

system's problem solving efficiency. The choice of a domain can affect the 

usefulness of the prototype. One criterion for using the prototype is to choose 

domains where useful specific rules can be found. It is a subjective criterion 

because there is no precise definition for the term "usefulness". Perhaps the 

following examples may indicate some ideas of this criterion. • In the family-

tree problem, the "sibling", "grandparent"' and "great grandparent" 

relationship are useful specific rules for solving typical cases of family tree 

relationship. Similarly, specific rules for defining certain sentence structure 

are useful for the parsing problem. The prototype has been tested with some 

list-manipulation programs such as append, and it does not infer any useful 

specific rules. For example, the prototype can infer a specific rule on, how to 

append a single element to a list of three elements. However, that rule may 

be too restrictive because it can only be used for cases with a list of three 

elements. 

The prototype uses analytical induction to narrow down' the search 

space. Analytical induction requires the existence of background knowledge 

for its induction. In this prototype, the background knowledge consists of the 

basic rules and how these rules are to be used in deriving a positive instance. 

Therefore, this prototype is targeted at domains where basic rules exist. Also, 

the prototype must be able to record these rules when an instance is derived 

from them. 
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5.3.2. Restrictions behind the Prototype 

Compared to running programs directly on the C-Prolog interpreter, the 

prototype is slow because it has to keep track of a lot of other information for 

induction. However, the prototype is able to induce the rules in a reasonable 

amount of time when tested with the sample programs. There are three 

restrictions on the prototype that make it a feasible system. These 

restrictions constrain the search space and prevent the prototype from facing 

some computationally intensive search. 

The first restriction is that two logic clauses are considered equal only if 

they have the same subgoals arranged in the same order. This restriction 

limits the space of possible pairings. For example, consider two clauses A and 

B. With this restriction, the subgoals within the two clauses are compared 

with respect to their position. In other words, the first subgoal of clause A is 

compared with the first subgoal of clause B, the second subgoal of clause A 

with the second subgoal of clause B, and so on. Without this restriction, one 

subgoal of clause A can be paired with any one subgoal in clause B. It can be 

the first subgoal or the last one. To find that out, each subgoal of clause A 

has to be evaluated with every subgoal of clause B. That inéreases the 

computation complexity from order N to order N factorial (N!) where N is the 

number of subgoals in each clause. 

The next restriction is that the prototype only considers the 

generalization of constants and variables and not functors. Consequently, the 

protOtype has the bias of inducing rules in maximally specific form. For 

example, if there are two representations of the same rule such as the "great 

grandparent" relationship: 
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cl(5.5) 

related(X,ZA) :- parent(X,Y), parent(Y,Z), parent(Z,ZA). 

and 

cl(5.6) 

related(X,ZA) :- grandparent(X,Z), parent(Z,ZA). 

where the goal of "grandparent(X,Z)" is represented by another rule 

cl(5.7) 

grandparent(X,Z) :- parent(X,Y), parent(Y,Z). 

The two rules of (5.5) and (5.6) are interpreted to be the same since (5.6) can 

be converted to (5.5) by substituting its subgoal of grandparent. Under this 

circumstance, the prototype will induce the rule of (5.5) instead of (5.6) even 

though the rule (5.6) is simpler in structure. 

There is an advantage of inducing a rule in a simple form such as rule 

(5.6). It is easier for a user to understand a rule conceptually in a simple form 

than in a maximally specific form. This understanding may give the users 

confidence in using the rules induced by the machine, especially for large and 

complicated domains. 

However, to seek a rule in a simple form requires more computation to 

ensure that all the substitutions of subgoals do not create side-effects. Side-

effects are due to the possibility that some subgoal may contain disjunctive 

clauses. Substitution of these subgoals may result in the rule being over-

generalized. For example, consider a parse tree of the sentence, 

[the,man,eats,the,apple] in figure 5.1 [ Clocksin and Mellish 19811. 
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sentence 

/ 
noun—phrase verbphrase 

determiner 

the 

noun verb noun—phrase 

man eats 

determiner noun 

the apple 

1) sentence(SO, S) :-noun.phrase(SO, Si), verbphrase(Si, 5). 

2) nounphrase(SO, S) :- determiner(SO, Si), noun(Si, 5). 

3a) verbphrase(SO, S) :- verb(SO, S). 
3b) verbphrase(SO, S) :-verb(SO, Si), nounphrase(S1, S). 

Figure 5.1: Parsing the sentence "the man eats the apple". 

For the -instance of [the,man, eats, the, apple], the induced rule in maximally 

specific form is 

[determiner(S 1,S2), noun(S2,S3), verb(S3,S4), determiner(S4,SS), 

noun(S5, [])}. 

The rule will still be correct if it is converted to the form of 
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[noun_phrase(S1,S2), verb(S2,S3), noun_phrase(S3,[])} 

by using the clause (2) to replace the subgoals of "determiner", and "noun". 

However the rule is too general if it is further simplified into the form of 

[noun._phrase(S1,S2), verb_phrase(S2,S3)] 

by replacing the subgoals of "verb" and "noun—phrase" with the subgoal of 

"verb—phrase". It is because the "verb—phrase" clause' (3) has another 

disjunctive clause (3.a): "verb_phrase(SO,S) :- verb(SO,S)". This disjunctive 

clause can introduce cases which the rule may effectively exclude. 

To discover out these disjunctive clauses may require more computation. 

When the prototype genera:tes the solution tree for the sentence 

[the ,man,eats,the,apple], it only examines those paths leading to the solution. 

Consequently, the prototype does' not know whether some of the intermediate 

clauses in the tree have disjunction. Since'the prototype can only use those 

intermediate clauses with no disjunction to simplify the rule, the prototype 

has to go back and re-examine them. The re-examination of these clauses 

may be expensive. The prototype not only has to explore the search space of 

the solution, but also the search space of other alternatives. 

Finally, there is an implicit restriction when generalizing constants into 

variables. There are only two levels in the generalization hierarchy for each 

variable. Either a variable is a constant value or it denotes a range of values. 

There is no intermediate concept between these two levels. Therefore, the 

prototype only has to generate two instances for each' variable to decide 

whether it should be a variable or constant. Without this implicit restriction, 

• the prototype would have to generate many possible instances for each 

variable, which would be combinatorially explosive. For example, consider an 
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integer variable "I" with a range of 1 to 10. With the restriction, only two 

values are needed to be picked from 1 to 10 to decide whether the variable "I" 

in a rule can remain as a variable. If an intermediate concept is allowed, the 

prototype has to generate all ten values to be absolutely certain that "I" can 

remain as a variable. It is quite possible that some intermediate concept such 

as "odd number between 1 and 10", or "even number between 1 and 10" can 

exist. The prototype would have to generate many instances to be sure and 

the computation would be increased. 

5.4. Issues for future research 

Several issues were identified during this project. They are described in 

the following subsections. 

5.4.1. Selection and organization of specific rules 

This prototype only addresses one aspect of the knowledge acquisition 

process: the process of inferring specific rules. Deciding which specific rules 

should be induced and what should be their organiation in the rule base are 

also important parts of the knowledge acquisition process. 

The prototype cannot induce ii rule for every problem it encounters. The 

rule base would contain too many rules otherwise. Too many rules in the rule 

base would slow down the system performance because the system might 

spend too much time searching for appropriate rules to act upon. Therefore, 

the system preferably should induce those rules which solve typical cases. 

'Unfortunately, the prototype does not know which cases are typical. It has to 

rely on the user's judgement in selecting those typical cases and their 

solutions. This issue is important for the self-learning programs such as AM. 
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Once the specific rules are induced, they have to be organized in the rule 

base. One common strategy is to arrange specific rules before basic rules. 

When a suitable specific rule is found for a problem, it will be used first. 

When all specific rules fail, then the system can use the computationally 

expensive basic rules to solve the problem. While this is a reasonable 

strategy, this arrangement may affect the induction of future rules. In 

particular, it may prevent induction of rules which are more general than 

those presently in the system. For example, if the "children of rIngo" rule 

(5.8) is induced first, and put in front of the basic rules, then the prototype 

may not be able to induce the rule of "sibling" (5.9). 

(5.8) related(X,Y) :- parent(ringo,X), parent(ringo,Y). 

(5.9) related(X,Y) :- parent(Z,X), parent(Z,Y). 

This is because the rule (5.9) is more general than (5.8). When the system 

tries to generate a solution for the "sibling" problem, the system picks the 

rule (5.8), as it is already in the rule base and in front of the basic rules. 

During induction, the prototype remembers the rule (5.8) and uses it as the 

most general boundary of the hypothesis space. However, this general 

boundary excludes the target rule of (5.9). 

Putting the basic rules in front of all specific rules may prevent this 

problem but will destroy the usefulness of the specific rules. If the basic rules 

are put in front of all specific rules, the basic rules will be used on every 

occasion. The specific rules will be idle in the rule base. 
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5.4.2. Determining which techniques to use 

One essential aspect of machine learning is to detet when a target rule is, 

In the version space method, a target rule is found when the most 

specific and most general sets of the version space are equal and contain only 

one candidate. For analytical induction in strong domains, the rule induced 

from a positive instance can be confidently interpreted as the target rule 

because of strong background knowledge. However, if analytical induction is 

applied before empirical induction and the domain itself, does not contain 

sufficient constraints, then the rule induced by the analytical process may not 

be the taiget rule. The system has to rely on the user to make the 

judgement. If the rule is not the target rule, then the user invokes the next 

stage of empirical induction to refine the rule. 

The problem of deciding which techniques to use reflects one of the 

difficulties in machine learning. In some problems, such as verifying circuit 

design, and mathematical integration, there are well defined initial and final 

states. The prob1m is to find the solution path connecting the initial and 

final state. The knowledge of the final state can be used to judge along which 

solution path to proceed. However, the strategy of using the final state as the 

guideline does not work in machine learning. In most cases of machine 

learning, the final state, i.e. the target rule, is unknown. The version space 

method is better in the sense that it indicates the final state when the system 

reaches it. But until the system reaches the final state, the system only has a 

general bound of the final state. Consequently, it is difficult to use the final 

state to decide which technique is appropriate. Other criteria are required. 

Similarly, it is often difficult to conduct a search in machine learning because 
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of lack of constraints and guidance. The idea of organizing the search space 

and establishing criteria for conducting a search in NODDY {Andreae 1985] 

is the initial attempt to address the issue. 

5.5. Summary 

This chapter presents an evaluation of the current prototype. The 

prototype is targeted at domains where basic rules exist and useful specific 

rules can be found. Limiting the posib1e pairings, and allowing only 

conjunctive induction are used to prevent the prototype from facing 

combinatorial search explosion. Sample testing with the prototype indicates 

that it is an advantage to use analytical induction to narrow down the search 

space before empirical induction. However, the prototype needs improvement 

in future to .allow other negative instances besides near miss instances in its 

specialization. Also the organization of specific rules in the rule base, and 

criteria for selecting appropriate techniques are two major issues requiring 

further investigation. 



CHAPTER 6 

Conclusion 

The knowledge acquisition problem has been recognized as. one of the 

major bottlenecks in building knowledge-based sysems. One of the possible 

solutions to this knowledge acquisition problem is the use of machine learning 

techniques. This thesis describes an experimental prototype, which uses a 

combination of analytical and empirical machine learning techniques, to infer 

specific rules from solutions generated by basic rules of a domain. 

Analytical induction is a knowledge-intensive approach-. It makes uses of 

the background knowledge and the constraints of a domain, to guide its 

induction process. Given sufficiently strong background knowledge and 

constraints, it is possible to infer a rule from a single instance. Empirical 

induction is a data-intensive approach which relies on syntactic comparison of 

a number of positive and negative instances to infer a rule. It does not 

require any backgrouid knowledge other than the - generalization hierarchy. 

These techniques are useful for two different types of domains. There is a 

need to address those domains where there is some, but insufficient, 

background knowledge. The use of only analytical techniques cannot support 

proper induction because of insufficient constraints. While empirical 

techniques can be used for these domains, the process of induction may 

involve a lot of instances, generated by the user. 

This thesis explores the idea of using the analytical technique before the 

empirical technique for such domains. The analytical technique makes use of 
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any available knowledge and constraints to guide the induction. The 

empirical technique is then used to resolve those areas where available 

knowledge and constraints are lacking. The advantage of using the analytical 

technique before the empirical one is that the search space can be narrowed 

down by the analytical one. Consequently, it suffices for the empirical one to 

explore a much reduced search space. 

The idea is used to build a prototype for inferring domain specific rules 

in a Prolog system. The domains are those which have general basic rules, 

but there is a requirement for inferring specific rules of arbitrary generality. , 

A solution for a particular problem is first generated by the system using the 

basic rules. The prototype then infers a specific Prolog clause from the 

solution. The induction is characterized by a two-step process. 

(1) Deciding upon any shared coristants and variables in the target rule using 

analytical induction. 

(2) Deciding 'Upon the remaining constants and variables in the target rule 

by empirical induction. 

In the first step, the prototype induces the existence of any shared variables 

or constants in a Prolog clause from both the generalized and solution and-or 

tree. The prototype then decides whether a constant in the solution can be 

turned into a variable in , the target rule. The prototype stores the past 

rejected solutions as a source of negative instances, and generates new 

instances from the database of the current domain for its empirical induction. 

Constraints on possible pairings and a restriction to only conjunctive 

induction are used to prevent the prototype from facing a combinatorial 

search explosion. 



Sample tests with the prototype indicate that it is an advantage to use 

the analytical techniques in the first step of induction. In the second step, the 

current prototype can make use of positive instances and near-miss negative 

instances to refine a rule. Further improvement is required for the prototype 

to make use of other negative instances besides near miss instances. Some 

problems are identified for further investigation. One problem, is that the 

organization of specific rules in the rule base may prevent the induction of 

other rules. Another problem is to establish criteria to choose appropriate. 

techniques. 

Although machine learning is offered as a potential solution to the 

knowledge acquisition problem, muáh research is still needed in the area 

before it can be used practically. The current prototype work in a small set 

of domains and also imposes cbnstraints to limit the search space. Violation 

of the constraints can easily make the search unmanageable. 
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