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ABSTRACT

In this study a Compact Airborne Spectrographic Imager (casi) multiresolution data set,
acquired over the Kananaskis Barrier Lake mix-wood forest in the Rocky Mountains of
Alberta, was analyzed for classification accuracies using forest cover types outlined by the
Alberta Vegetation Inventory (AVI), with special emphases on identifying multistory
canopies and species composition. Seven spectral channels, existing in the three resolutions
of the imagery (60 cm, Im, 2 m), and five textural channels derived from second-order
texture measures of the ‘brightness’ component of the imagery, were used in discriminant
analysis to determine the usefulness of the textural information and compare two sample
stratification schemes (six-class using only the first AVI canopy layer and thirteen-class
using all AVI canopy layers) based on the AVI label. Field data used to determine
classification accuracies included a plot level survey of species composition by basal area,
crown closures, stem count, height, dbh and additional site descriptors such as slope and
aspect. On average, the use of texture channels improved the per-plot classification
accuracies by 17% compared to using the spectral channels alone. The highest per pixel
resolution imagery of 60 cm outperformed the other image resolutions (1 m and 2 m) and the
thirteen-class sample stratification scheme improved the classification accuracies by 14%,
with results of 87% and a KHAT of 0.85, compared to the six-class sample stratification
scheme results of 72% and a KHAT of 0.73.
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Chapter 1 Introduction and Research Objectives

1.1 Introduction

Nature created forests as a complex system experiment, complete with interrelated processes
and flexibility. In the last few decades, humans have been able to apply new technologies,
such as remote sensing, global positioning systems (GPS), and geographical information
systems (GIS), in understanding these processes and the resulting forest dynamics. Since
1634 when the first (recorded) shipment of masts left for Britain, Canada’s forests have been
one of the world’s most valuable renewable (if properly managed) resources, comprising
close to a thousand million hectares of land (CCFM 1996). If properly managed the rewards
include economic benefits (e.g. exports) and, more importantly, environmental benefits (e.g.
reduction of greenhouse gases, protection from erosion, reduction of surface run-off). If
managed correctly, these environmental benefits can contribute to a sustainable economy and
environment, and therefore, society. Successful management of the forest involves
knowledge and understanding of forest ecology, which can be based on description of forest
composition and diversity. One basic source of information on Canada’s forest composition
is the modern forest inventory (Gills and Leckie 1993). With new technologies (refer to
Aplin 1997; Stoney and Hughes 1998) the tools to facilitate the development and application
of forest inventory databases are becoming more reliable, faster, and cost-effective. In the
process, forest ecology will be easier to understand and management decisions may be easier

to implement through improvements to the maintenance and use of digital forest inventories.

Most forest inventory data used for management decisions are extracted from the manual
interpretation of aerial photographs, which are often verified in the field, and entered into a
computer (Spies 1997). These techniques involve considerable labor and are potentially
costly, although new technologies, in particular, GIS and GPS, allow for relatively smooth
computer data integration. With respect to remote sensing, Franklin ez al. (1998) have noted
that it is generally acknowledged that digital remote sensing can provide information that is
not currently part of an existing forest inventory. According to Leckie er al. (1995: p. 337)
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the “use of digital high resolution (<! m) multispectral imagery as an alternative to aerial
photography for forest inventory mapping is a possible revolutionary innovation”, providing
data-rich digital layers to be integrated with the other digital databases. The recent
(September 1999) successful launch of the IKONOS satellite, which provides 4 m pixel
resolution multiband imagery, and hopeful launches of several proposed satellites that will
generate 1 m pixel data (Glackin 1998), will help make this alternative remote sensing
method — based on high spatial detail imagery — more achievable. With such large amounts
of spectral and spatial data available for analysis, a much greater amount of information can
be extracted from this imagery than from the previous generation of satellite data, which
typically had 10-100 m pixel resolution. The methodology of handling this type of data is
still relatively new; high spectral and spatial resolution aerial imagery has been suggested as
appropriate in developing analysis tools for dealing with future high resolution sensors
(Strome et al. 1991). For example, in the case of the forest inventory, the desired class
stratification should be more complex than provided by earlier generation low resolution

satellite imagery, such as Landsat TM.

The new high spatial detail imagery may be able to replace, or at the very least, complement
the use of aerial photography in forest inventory. However, numerous authors have noted
that additional research is required on how best to incorporate such high spatial resolution
imagery into operational forest inventory procedures.(Leckie et al. 1995; Ryher and
Woodcock 1996; St.-Onge and Cavayas 1995; St.-Onge and Cavayas 1997; Wulder 1996;
Lark 1996; Roach and Fung 1994). Most applications rely, to a certain extent, on advanced
digital image processing to extract forest information from the digital imagery rather than
analogue interpretation of photography. For example, one idea has been to use digital
imagery rather than large-area mapping in sampling forest stands (Fish et a/. 1995); a second
possibility lies in providing aerial photo-interpreters with access to the spectral information
that is not readily available from aerial photography (Leckie er al. 1995). A different
strategy has been to incorporate a digital elevation model (DEM) with the mean spectral
response measured by digital sensors in an automated classification of forest inventory
conditions (Franklin 1994). The approach is similar to the low resolution classification
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methods used in Landsat image analysis and relies on the existing software and methods

established over the past two decades of digital remote sensing. An improvement in this
classification approach is the idea that the spectral response can be augmented with texture

derivatives in an attempt to capture the information contained in the high spatial detail

imagery.

Image texture is the spatial variation in image tones (Haralick 1979), and has long been
recognized by both air photo-interpreters and digital image analysts as a powerful source of
information in forestry image analysis (Avery and Berlin 1992; Jensen 1996; Lillesand and
Kiefer 1994). Texture is generated by the interplay of shadows and objects in the image.
The use of image texture analysis has been recommended for classification of digital imagery
in cases where the objects in the image (e.g. trees) are larger than the pixel size (Hay et al.
1996; Wulder et al. 1996). However, an understanding of where and under what conditions
image texture can be most useful in forestry applications has not yet been established. [n one
study, using aerial multispectral imagery from a variety of sample forests in New Brunswick
and Alberta, Franklin et al. (1998) found that image texture analysis could improve forest
inventory classification results approximately 10% over results obtained using spectral
response patterns alone. They noted that texture improved accuracy the most in the
hardwood and mixedwood stands that appeared to contain complex structures or layers in the

canopy.

Mixed and structurally complex forest stands with multistory canopies comprise a significant
fraction of Canadian Boreal and Montane environments and may be of crucial importance in
ecosystem functioning at the landscape and stand level (e.g. wildlife habitat). To understand
fully the complex interactions in forest ecosystems, some knowledge of the structure of the
stand is necessary. This information should include not only the species composition of the
stand but other characteristics such as stand density and canopy complexity (layering).
Forest stand parameters such as density, species composition and class structure, which
comprise the forest inventory, allow us to begin to understand the complexity of interactions

in a forest ecosystem.



Image texture analysis of multi-layer canopy stands is the focus of the research described in
this thesis. A digital remote sensing application of image texture using the Alberta
Vegetation Inventory (Nesby 1997) standard was designed to provide insight whether texture
analysis can be used to improve the accuracy and usefulness of high spatial detail imagery in
forestry. The present study will focus on the detection of class structure, which is essential in
maintaining and using a digital forest inventory database. Specifically, this study will
address the detection and the percentage species composition of stand overstory and
middlestory, using high resolution aerial remote sensing imagery and texture derivatives.
[nventory measures such as these composition estimates have been declared to be possible
and destirable using aerial data (Wulder et al., 1996), in applications ranging from
classification (Franklin and McDermid 1993) to improved estimation of biophysical
variables, such as forest stand leaf area index (Wulder 1996; Wulder et al. 1996b).
Bruniquel-Pinel and Gastellu-Etchegorry (1998) have identified the significance of accurate
relationships between forest canopy structure and image texture in automated classification
processes. The focus in this study is first on classification, because an accurate stand
classification, based on a successful classification of stand structure, (in this case an AVI
label) is the foundation for the forest inventory. Subsequent digital remote sensing work
could be aimed at deriving mensurational variables, such as stems/ha, or biophysical

variables, such as leaf area, in the forest-mapping environment.

It is not the scope of this study to develop new algorithms for image texture and image
classification, or new programs to achieve optimal texture window size, but to focus on
optimizing a combination of existing methods to ensure that the highest image classification
accuracy possible is achieved. Although the understory has been shown to contribute,
sometimes significantly, to spectral signatures (Bruniquel-Pinel and Gastellu-Etchegorry
1998) the effects of understory on the classifications are considered beyond the scope of this
study; only the overstory and middlestory structures are analyzed.



1.2 Research Objectives

The main hypothesis of this research is that:

Image texture derived from high spatial resolution multispectral imagery will significantly
increase the classification accuracy of multistory forest stands identified according to the

AVI system as part of a forest inventory.

To test this hypothesis, the following tasks will be accomplished:

i) Establish a relationship between stand complexity and an image component;

it) Visually interpret image texture as an indicator of multistory stands;

i)  Conduct a classification on spectral and textural data based on field samples in a

wide range of AVI coded forest plots.

The digital images used in this study were obtained specifically for this analysis in the
Kananaskis study site by the casi (Compact Airborne Spectrographic Imager), a relatively
new instrument designed to provide high spatial detail imagery and hyperspectral imagery for
terrestrial and aquatic applications (Anger e al. 1994). This work is one part of a larger set
of projects (Maudie 1999; Franklin et al. 1998; Wulder er al. 1996b) with goals to determine
the extent to which digital remote sensing instruments (such as the casi) and methods (such
as image texture analysis and classification) can contribute to mapping and monitoring

Canadian forests, with the objective of sustainable forest management (CCFM 1997).



1.3 Thesis Organization

The thesis is organized into six chapters, commencing with the presentation of the research
hypothesis and goals in Chapter 1. Chapters 2, 3, 4 and 5 provide a review of remote sensing
in forest inventory methods, a description of the study area and data collected, the
methodology undertaken and the discussion of the results of the analysis, respectively. A

summary of the research and the conclusions is given in Chapter 6.

The research is placed into the context of remote sensing in forest inventory in Chapter 2. A
literature survey of pertinent background touches upon the casi instrumentation, the AVI, and

the use of digital mapping in forestry.

The study area and data collected are discussed in Chapter 3. The field and casi data
collected are explained; the relationship between the imagery and field measurements is also

established.

Chapter 4 discusses the methodology undertaken in this research. I[mage preparation is
explained along with Principal Component Analysis (PCA), the creation of texture channels
and the relationship of texture to forest structure is explained. The method of statistical
summaries for the field data and data extraction are discussed. The classification procedure
and the application of Discriminant Analysis (DA) to the Alberta Vegetation Inventory (AVI)
class structures are explained. Finally, the accuracy assessment methods including co-

occurrence matrices, errors of commission and omission and Kappa statistic are discussed.

In Chapter 5 the results of the visual homogeneity texture interpretation leading to the
discovery of inversion of the texture measure is discussed and supported with descriptive
statistical interpretations. An example of the relationship between texture and the field data
is established and supported by descriptive statistics. The DA based on both types of sample
stratifications (six-class and thirteen-class) is given. The accuracy assessment is also

reported.
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A summary of the significant results and conclusions based on this research along with the

contributions to present research and areas of further research are provided in Chapter 6.



Chapter 2 Remote Sensing of Forest Structure

2.1 Introduction

Forest structure includes the size, type, spatial arrangement and configuration of trees in a
forest (Spies 1997). Foresters typically designate structure as a component of a forest stand;
a stand, therefore, is a unit of trees that is homogeneous in age, structure, composition, and
physical environment (Oliver and Larson 1996). Stands are delineated using aerial
photographs and field data in a well-understood and accepted practice (Gills and Leckie
1993), however, some insights available through digital remote sensing have contributed to

suggestions to improve the methods used in the practice of forest inventory.

In this chapter the background to understand the possibilities for digital remote sensing in
forest inventory is presented; this includes a brief summary of the characteristics of the
compact airborne spectrographic imager (casi), a high spatial resolution multispectral sensor
developed by Itres Research Ltd., a Calgary-based remote sensing company. The casi was
selected for this research because of availability, but also because this sensor has recently
received a great deal of attention as a valuable tool in vegetation resource surveys in Alberta
(e.g. Fish et al. 1995) and elsewhere (Wulder 1996). The Alberta Vegetation [nventory
(AVI) is reviewed briefly in this chapter. The AVI is used by the Alberta Forest Service (and
all commercial forest companies) as the standard forest inventory tool in the province, and
will be applied in this study. This review is followed by a discussion of relevant remote
sensing applications, with a particular focus on the use of image texture analysis in forestry

remote sensing research.

2.2 Remote Sensing in Forest Inventory Methods

Forest inventory originates with a stand discrimination or classification strategy that is
necessarily regional and narrow in scope (Leckie and Gillis 1995). In Canada, this scope is

defined provincially, and then combined nationally to provide an annual prospective on the



9
status of forest resources in the entire country (CCFM 1997). Each province has established
an inventory system that results in mapped areas represented by polygons in a GIS database.
According to Franklin et al. (1998) it is this ‘inventory standard, or this definition of stand
strata, that digital remote sensing must attempt to emulate in a wide range of forest
conditions’. It can be hypothesized that only when a more successful emulation of the
existing inventory occurs will a more widespread adoption of the digital remote sensing

method in forest inventory take place.

The use of remote sensing in forest inventory has been limited to aerial photointerpretation
with occasional instances of airborne or satellite inventories at broader scales (J. Franklin ez
al. 1986; Bauer et al. 1994; Baulies and Pons 1995). Normally air photos are collected
every 10-20 years, interpreted by skilled photo-interpreters, and digitized onto a provincial
base-mapping template (Leckie and Gillis 1995). Much work has focused on the type of film
and filter combinations that might be useful in different forest conditions; less attention has
been paid to the actual reasoning process used by interpreters and the resulting error pattern
or uncertainty in the final classifications (Ryerson 1989; Pitt et al. 1997). For example,
Lowell and Edwards (1996) noted that up to 50% disagreement on the position of stand
boundaries existed between different forest stand air photo-interpreters; other studies have
noted that aerial photointerpretation is perhaps on the order of 75% correct in interpreting

species composition (Leckie and Gillis 1995).

A prominent research theme in remote sensing for applications of forest inventory has been
the use of satellite sensors such as Landsat and SPOT. Forest inventory can benefit from a
larger view, a broader classification approach, and then individual areas could be examined
in more detail by aerial photography, or a combination of aerial photography, digital remote
sensing from airborne platforms, and field data collection. For example, Bobbe et al. (1994)
found that digital multispectral video data could be acquired in an adaptable (multiresolution,
multitemporal, multispectral) way to accommodate mapping concerns in riparian zones. A
study by Atkinson and Curran (1997) has shown that higher spatial detail provided by high
spatial resolution imagery is appropriate for vegetation studies by providing spectral and
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spatial information for individual trees making up the forest. Pitt ez al. (1997) in their review
of remote sensing in even-aged vegetation management (clearcuts and regeneration surveys)
noted that wider application of digital frame cameras is imminent because of the speed and
flexibility in analysis that digital products provide compared to analogue aerial photography.
King (1995) reviewed the literature on systems and designs for digital frame cameras and

other digital sensors and suggested future increased applicability in forest management.

Two trends that may increase the likelihood of satellite and airborne remote sensing use in

developing forest inventories are the needs for:

a) Annual updates
b) Specific details of stand conditions

To monitor sustainable forest management, foresters require information on a timelier basis
than the current ten to twenty year cycles for the forest inventory based on aerial
photointerpretation. Five-year intervals might be possible; but the cost and logistics of
interpreting manually the entire provincial forestland areas suggest that such an approach is
not feasible. Digital methods do take time and effort, but increases in efficiency and
automation will likely match the increased information content of the new image sources
(Heygi et al. 1992). More specific information on forest conditions over large areas can be
extracted digitally than can be extracted manually (Eldridge and Edwards 1993; Baulies and
Pons 1995). For example, leaf area index (LAI) is a critical structural variable in
understanding forest dynamics such as photosynthesis, and forest conditions, such as forest
health (Running et a/. 1986; Wulder 1996). However, LAI, which is readily extracted from
digital multispectral imagery, is not available from the interpretation of aerial photographs,
and is not a part of most forest inventories. Yet, there are increasing demands for new,
timely and reliable estimates of LAI for input to ecosystern models of productivity (for
example Leckie et al. 1995; Wulder 1998).
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These two trends, and the increasing pressure to generate sustainable forest management
decisions based on the forest inventory, are likely to increase the need and development of

digital remote sensing methods to improve and enhance the forest inventory databases.

Furthermore, the above mentioned trends have concentrated on using high resolution imagery
to conduct forest inventory analysis. High resolution imagery allows the extraction of spatial
measures such as texture, which are an additional source of information that can be utilized
in classification procedures. Various studies have used high resolution imagery such as casi
and msv (multispectral video) to delineate forest stands and their structural characteristics
(refer to Fish et al., 1994; Wulder, 1996; Gerylo et al. 1998; Franklin et al. 1998). In all of
these studies, successful classification results were attributed to the higher spatial resolution
imagery (25 cm to 4 m), which provided the more detailed information of the areas of
interest. The msv study conducted by Gerylo et al. (1998) suggested that the three spectral
bands of the msv instrument (green, red and near infrared) were not the most suitable for
distinguishing between the conifer species pine and spruce. The authors encourage the
application of a sensor with higher spectral resolution capabilities such as the casi

instrument.

2.3 Characteristics of AVI

The Alberta Vegetation Inventory (AVI) is an operational, integrated field inventory system
using aerial photo-interpretation and field surveys based on six parameters: moisture regime,
crown closure, tree height, species composition, stand origin (age) and timber productivity
rating. The forest poiygon code also allows information on stand structure (e.g. single or
multistory), disturbance, treatments and understory (Alberta Forestry, Lands and Wildlife
1991).

The first part of the AVI forest polygon code is the moisture regime. Table 2.1 describes the
classification of moisture regime and it's associated AVI code. Moisture regime is assigned
based on plant indicators, soil properties, environmental factors, slope position, gradient, and

soil texture. Dry sites are typically well drained whereas mesic sites are moderately well
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drained. Wet sites are characterized by poor drainage, with possible shallow water where the
water table is near or at the surface. Aquatic sites (non-forested) have permanent deep-water

cover and hydrophilic vegetation (e.g. water lily).

Table 2.1 AVI classification: moisture regime

Class AVI code
Dry A
Mesic B
Wet C
Aquatic D

Crown closure or the percentage of ground area covered by a vertical projection of tree
crowns onto the ground can be determined using a spherical densiometer. The most common
approach is to take an average of a few readings from each stand to determine the crown
density, accounting for the variability within the stand. For AVI, crown closure is classified
into one of the four classes in Table 2.1. It should also be noted that stands with crown

closure of less than 6% are not considered forest stands.

Table 2.2 AVI classification: crown closure

Crown closure % AVI code
6-30 A
31-50 B
S1-70 o
71-100 D

Tree height is determined through field measurements, using such instruments as a
cyclometer, and recorded to the nearest meter. Although this instrument is mostly used for
measuring slopes, tree heights can also be obtained. The standard height of a plot is
composed of the average heights of the most dominant specie(s). For a clearly differentiated

multistory stand, the height of each story is recorded. In stands where multistory canopies are
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not clearly differentiated use either average tree height for only one main canopy, or two

average three heights to form two dominant canopies.

The species composition part of the code is designed to list a maximum of five species in
decreasing order, based on percent crown closure. The code indicates the percentage of each
species (in 10 % increments) with a subscript. Species which constitute less than 10 % of the
stand content, are not included in the AVI code. For example, a species composition label:
Aw; Sws Pl Pb; can be read as 30% trembling aspen, 30% white spruce, 20% lodgepole pine
and 20% balsam poplar. It should be noted that if a single species comprises 90% a stand,
such a stand can be considered pure and assigned a label of 10 (100%). In Table 2.3 other

species abbreviations for the AVI code are given.

Table 2.3 AVI species abbreviations

Species Abbreviation
Aspen, Populus tremuloides Michx. Aw
Fir Subalpine, Abies lasiocarpa (L.) Mill. Fa
Fir Douglas, Pseudotsuga menziesii (Mirb.) Franco Fd
Lodgepole Pine, Pinus contorta Loudon P!
Balsam Poplar, Populus balsamifera L. Pb
Spruce White, Picea glauca (Moench) Voss Sw
Spruce Engelmann, Picea engelmannii Parry ex Engelm. Se

The following part of the forest polygon code describes the stand origin by age. For
example, if a stand was planted in 1944, the stand origin code will be “94”, with the “9”
referring to the century (e.g. 1900s) and the “4” referring to the fourth decade (e.g., the 40s).
At this time there is no consistent way of dealing with the upcoming year 2000 origin
scenarios (the “Y2K” problem). The stand origin is determined from the average tree age;
the age can be extrapolated from the diameter at breast height (DBH). The age adjustment
factor (Table 2.4) to account for the growth of the tree to reach breast height must be added
to breast height age.
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Table 2.4 AVI classification: tree age adjustment factor

Species Adjustment
White Spruce 15 years
Pine 10 years
Deciduous 6 years

The last part of the forest polygon code is the timber productivity rating (TPR). The
classification scheme for TPR is shown in Table 2.5, and is used to describe the potential
productivity or potential growth rate of a stand. This rating is based on the height and age of
the dominant and co-dominant species occurring in the stand. The TPR is assumed to be the
same if the species in the overstory and the understory (second canopy layer) are the same.
However, if the species composition differs between canopies, TPR is assigned to each story
independently. TPR reflects factors affecting tree growth including soil, topography,

climate, elevation, moisture, etc.

Table 2.5 AVI Classification: timber productivity rating (TPR)

TPR class AVI code
Good G
Medium M
Fair F
Unproductive U

Single and multistory stand structure can be incorporated in an AVI code. Hence, a single
story stand originating in 1954, in a rapidly (well) drained substratum, with 80% crown
closure, pure aspen canopy of 21 m in average height, and good timber productivity would

result in the AVT code shown:

dD21 4w,

95-G i

When the aspens are not of the same height and the average height of the top layer differs
from the average height of the lower layer by more than 3 m the stand should be classified as
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a multistory stand. For example, if the two average heights were 21 m and 10 m and the

lower layer stand origin was determined to be 1970, the AVI code would read:

dC214w,,

95-G
dA10Aw,,

97-M 2]

The AVI is intended to be a continuous inventory requiring an average of 1/20 of the land to
be re-inventoried annuaily (Alberta Forestry Lands and Wildlife 1991). Figure 2.1 shows the
broad AVT polygons for the study area, produced from aerial photographs by the Canadian
Forest Service in 1986. This type of inventory does not capture the complexity of the stand
actually recorded on the ground.

2.4 Digital Methods Applied to Imagery in Forestry Applications

Remote sensing applications in forestry include defoliation assessment, disturbance regime
monitoring, modeling productivity, and developing inventory maps, and many other
applications (Avery and Berlin 1992). Many of these studies have required an automated or
semi-automated classification of remote sensing data, which is a detailed description of the
forest area based on the relatively coarse resolution satellite imagery (Running et al., 1986;
Hall and Crown 1987; Spanner et al., 1990), or on the highly detailed, high spatial resolution
aerial imagery (Franklin 1994). The range of possible (or available) image processing

techniques and methods is wide, and their potential applications are not yet fully understood.

In aerial remote sensing studies, a number of authors have attempted to achieve detailed
forest classifications from the spectral signatures inherent in the multispectral images
(Marceau e al., 1994a,b; Ghitter ef al., 1995; Gerylo ez al., 1997). However, spectral classes
and forest stands are not necessarily closely correlated to each other (Hall and Crown, 1987),

resulting in low classification accuracies based strictly on spectral reflectance. This may be a
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Figure 2.1 An example of an AVI coverage produced from air photographs and field
surveys
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result of the greater variability of spectral signatures in aerial applications (compared to
satellite applications). Therefore, other image characteristics such as texture have been
employed to improve aerial image classification accuracy. A recent example of this
increased accuracy was documented by Franklin er al, (1998). Their work showed that
accuracies of approximately 40% could be achieved using spectral signatures alone in a
classification, but that increases to approximately 60% were possible when spectral

signatures were augmented with texture derivatives in certain forest conditions.

The present thesis was an outgrowth of those results, which indicate that texture worked best
in areas of mixedwood stands and multistory conditions in the Kananaskis Study Area on
high resolution (25cm/pixel) multispectral video imagery. This thesis further tests the
increase in accuracy, using second-order texture derivatives, and specifically, shows the

application of image classification using texture in multistory stand detection and mapping.

Since 1991 a series of experiments has been conducted to provide AVI mapping and
classifications from aerial and satellite digital remote sensing in a variety of ecological
systems using a wide range of image sensors and classification procedures (Franklin er al.,
1994; Butler et al. 1995; Fish et al., 1995; Getty 1996). More recent work in the Kananaskis
Study Area has dealt with object specific detection of inventory parameters on high
resolution multispectral data (Gerylo er al., 1997). Much of this work has indicated (some)
promise for employing aerial remote sensing digital maps and methods in forest inventory

and ecological assessment, based on the AVI standard.

Although AVT allows for multistory stand structure annotation in the AVI code, this is only
done based on data collected in the field (Hall, 1998 personal communication). Aerial
photographs used for AVI mapping have not been studied for feasibility of detecting the
multistory stand structure. The problem of detecting multistory canopies through the
application of texture to digital imagery also remains unanswered, but is the focus of the

present thesis.



2.5 Characteristics of casi

The aerial sensor choice in this research is casi, designed in 1989 by Itres Research Ltd.,
Calgary, Alberta, to provide users with a high performance, low-cost and easy to install
visible-near infrared push-broom instrument. The actual ground cover of the casi is dictated
by the fore-optic field of view, aircraft altitude above ground level, aircraft speed, and
integration time. The instrument operates over a spectral range of 400 nm to 1000 nm, with a
sampling interval of 1.9 nm making it quite suitable for vegetation and forestry based
applications (Wulder et al., 1996). The wide array of options provided by the casi instrument

and the technical specifications required to operate the sensor have been summarized

(Wulder et al. 1996¢) and listed in Table 2.6.

Table 2.6 Technical specifications of casi

Parameters

Summary

Spatial Coverage

Spectral Coverage

Spatial Mode

Spectral Mode

Enhanced Spectral
Mode

512 pixels, 37.8° field of view across track (may be optimized
to 44.7° with motorized aperture lens). Ground resolution
governed by aircraft speed, altitude and sensor configuration
time. Typical 1-10 m.

545 nm spectral range with 400 nm to 1000 nm. Using 288
channels; 2.2 nm spectral resolution, with 1.9 nm sampling
interval.

Full spatial resolution (512 pixels) resolution across 37.8°
across track field of view for up to 19 user selected bands.

Full spectral (288 pixels) resolution for up to 39 look
directions accrues the 37.8° field of view. Includes a single
band, full spatial resolution scene recovery channel.

Full spectral (288 bands) resolution for up to 10! look
directions. Change summation increases spatial coverage if
spectral resolution is reduced (511 look directions, 48

contiguous bands at spectral resolution of 11.4 nm).
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2.6 Application of Texture in Image Classification

Texture can be defined as the variability of tone of neighboring pixels of a digital image. A
comparative study of texture measures for terrain classification by Weszka et al, (1976)
confirmed the general usefulness of texture features, even in the absence of multispectral
information. Texture tone analysis has been applied to automated land use mapping based on
digitized aerial photography (Hsu 1978), improving classification results significantly, with a
maximum classification accuracy of up to 85-90%. On low resolution imagery, (Landsat
TM) texture-enhancements reduced the misclassification of ‘forest’ as ‘orchard’ from 75%
of the ‘forest’ pixels to fewer that 7% (Gordon and Philipson 1986). Subsequent studies
using a variety of digital imagery acquired from videographic sensors, frame cameras,
spectrographic imagers and so on, have confirmed the critical role of texture in successful
classification studies (refer to He er al, 1988; Sali and Wolfson 1992; Wulder 1996).
Continuing work is aimed at generating a more complete understanding of image texture and
the conditions under which image texture can contribute to classification of forests (Franklin

et al., 1998).

Figure 2.2 shows how the texture of a stand can change during development. It is important
to note that although the average spectral reflectance of the stand can be quite similar during
the later stage of succession (Wulder 1996), the texture is always varied. Texture is possibly
the only discriminating factor between the stands. During applications of texture, concemn
must be given to the actual texture measure or derivative, the window size and orientation for
computation, the number of bands and the quantitative resolution (or quanta). In the initial
stages of texture research, the simplest measures, which are readily available to end-users,

should provide a reasonable starting point for tests.

First order texture measurements include: the mean-average reflectance of pixels within a
window; standard deviation-the standard deviation of reflectance within a window; minimum
and maximum-minimum reflectance value within a window and range-the range of minimum

and maximum values within a window. First order texture is derived



As a stand matures the horizontal and vertical complexity of the stand changes. The
second stage shows two distinct vegetation layers in the stand. The complexity
maximizes when the stand is mature with varied horizontal and vertical expression.

The birds eye view shows the spatial complexity increasing as the stand matures. The
crowns of shade intolerant trees compete for the available light, and a shade tolerant
lower layer develops. In the mature stand all gaps in the canopy are taken up by crowns.

These simulated high resolution images demonstrate the information captured by a sensor.
A source of illumination was added to produce the shadows. The spectral variability of the
tree crowns is captured by the sensor, so are other components of the stand such as the
understory, and shadows. As the stand grows a young second layer develops. The sensor
captures some of the non-shadow covered crowns of this layer. In a mature stand the

tree crowns are recorded, with little understory and shadow. The not yet established third
layer (less than 1 m in height) might not be detectable.

Figure 2.2 Vegetation succession with increasing horizontal and vertical vegetation
complexity. The high resolution imagery is simulated and simplified.
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from custom filters (refer to Irons and Petersen, 1981 and Wulder et al, 1997) and is
commonly available in commercial image processing systems such as PCI. Second order
texture using generalized co-occurrence matrices was shown to improve classification
accuracies from 50-57% to 80+%, from the gray-level co-occurrence matrix (Davis et al.,
1979); the data set used in this study consisted of five different texture classes (pebbles, tree,
bark, orchard, iron grating and scrap iron. The grey-level co-occurrence matrix can be
defined as a metric of relative frequencies in which two neighboring pixels, separated by a
distance and having an angular relationship, occur in the image, one with grey tone (i) and
the other with grey tone (j). The term ‘second-order’ refers to the fact that the image texture

is derived from this co-occurrence matrix, rather than from the original image data.

The example in Figure 2.3 shows how texture is derived from the grey-level co-occurrence
matrix. Textural values are determined by computing, for a particular distance and angle,
statistics in the matrix based upon spatial relationship of the pixel values in the imagery
(Wulder ez al,, 1997). Obviously, many possible texture derivatives can be derived and
considered in this research (e.g. semivariance texture, 1" order texture including the
minimum/maximum measures and so on), but the first-order and second-order measures are
the most readily available and easily understood texture variables. [n one study, Carr and
Pellon de Miranda (1998) found that second-order texture variables outperformed all other
texture measures tested, including the semivariance texture used by Wulder (1996) in his LAI
texture analysis. No simple measure of texture optimality has been devised. It is likely that
those interested in forest applications will continue to use the commercially available
software for image processing. Therefore, the simpler more available texture measures will

be more commonly used than others.

Texture has also been used in forestry related measurements applied to other (non-spectral)
wavelength regions in remote sensing. For example, Wilson (1995) examined the
relationship between the forest structure of two conifer species using various tone and texture

measures derived from SAR data. He found that the simple texture measures were the most
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Figure 2.3 Grey level co-occurence matrix and image texture.
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useful for that application, and that significant increases in accuracy could be achieved using
such first-order and second-order texture derivatives in image classifications. A comparison
assessment of performance of the first and second order of texture algorithms for the
estimation of forest leaf area was given by Wulder et al,, (1997). They showed that measures
other than first and second-order texture were best (specifically the semivariance measures),
but this was an estimation test, not an image classification procedure. In earlier work,
Bowers et al., (1994) showed that semivariance measures were most sensitive to canopy-
level changes associated with leaf area (defoliation by the balsam woolly aphid in pure

balsam fir stands was estimated).

Texture windows or the square/rectangular pixel array, for which dimensions are fixed by the
analyst, are applied to the larger image region during the texture analysis. Marceau et al.,
(1990) has showed that window size accounts for 90% of the classification variability in

a land cover mapping application. However, an adaptable window size might be required to
optimize image characteristics such as image texture on high resolution images (Franklin and
McDermit 1993). A strategy has been developed by Franklin e al. (1996) to automate the
derivation of texture window sizes through semivariance calculation. This work has shown
that an increase of 5%, shown to be statistically significant, in classification accuracies can
be achieved when the range of a semivariogram is used to predict geographic window size, as

compared to fixed window sizes.

2.7 Chapter Summary

Forest inventories are a critical source of information for sustainable forest management in
Canada. Forest managers require tools which are easily accessible, reliable, faster than
manual methods and cost effective. New technologies are promising to provide these tools
capable of facilitating timely updates to forest inventories, hence, allowing forest managers
to monitor ecological processes such us forest succession, forest biodiversity and forest
change in general. The produced results need to be easily interpretable and integratable with
other digital databases. High resolution digital imagery such as airborne and casi sensor

imagery have been shown to contain the above ground organization of the vegetative element
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(forest canopies), or the vertical and horizontal forest structure. Forest managers utilizing
high resolution digital imagery will most likely be working with commercially available
image analysis packages, classification algorithms and textural derivatives inherent to these
packages. Relatively simple techniques are required which can best extract this type of data

from the imagery.

The AVI is a standard accepted method of collecting and describing forest inventories in
Alberta. One of the major descriptive variables in AVI is the per species, canopy
composition expressed in percents of dominant and co-dominant species. Delineation of
canopy layers and the species composition of these layers can also be recorded. The focus of
this study is to test the increase in classification accuracy (compared to using spectral
information only) of multistory forest stands according to the AVI system by applying
textural and spectral signatures of the investigated classes. The main variables to be
implemented in the analysis will be the second-order texture derivatives of the high spatial
resolution casi imagery, which have been shown to contain information pertaining to forest

structure.

The relationship between the imagery and field data is extremely important and will be
established in this thesis. Developing on this relationship the textural imagery will be
visually interpreted and related to structural components of the stands.
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Chapter 3  Study Area and Data Collected

3.1 Location and Description of the Study Area

Located within the Kananaskis Valley on the eastern slopes of the Rocky Mountains of
Alberta, the study area is positioned within a transition zone extending from a mountainous
region to the foothills. Covering approximately seven by eleven kilometers (refer to Figure
3.1), the study area contains part of Barrier Lake, formed by Barrier Dam on the Kananaskis
River, and is adjacent to the University of Calgary Kananaskis Field Station. Within the
greater Montane Cordilleran ecozone, this area lies near the southern border of the Eastern
Continental Ranges ecoregion, as defined by Archibald (1996).

Although the subalpine summers are generally cool and damp while the winters are cold with
snow and Chinooks, there is considerable variation in temperature. Mean summer
temperature is 12°C and the mean winter temperature is -7.5°C. However, throughout the
year temperatures can range from 35°C to -45°C. Only 30% of the precipitation falls as
snow, the mean annual precipitation ranges from 600-800 mm, which increases with
elevation from east to west. The study area ranges in elevation from approximately 1400 m
at Barrier Lake to 2000 m at the top of Prairie View located on the west side of Barrier Lake.
Previous fieldwork conducted in this area during the summer of 1997 has shown that

multistory stands are common in this hardwood and mixedwood forest.

The lower subalpine forests of the study area are predominantly composed of Lodgepole Pine
(Pinus contorta), White Spruce (Picea glauca), Douglas Fir (Pseudotsuga menziesii), and
Aspen Poplar (Populus tremuloides). Although not a true tree, beaked willow (Salix
bebbiana), varying in height from ! m to 10 m, exists in mixed woods and moist depressions.
The beaked willow is a shrub which is not included in AVI. The understory is dominated by
bear berry (Arctostaphylos rubra), creeping juniper (Juniperus communis), hairy wild rye

grass
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Figure 3.1 Location of the study area in Kananaskis Country on a true colour
compeosite of 2 m casi imagery, sampling transects are shown in red.




Plate 3.1. Photo of the study area showing the aspen and conifer stands (notice the
defoliation of some of the aspen stands

Plate 3.2 Close up of the damaged leaves in the aspen canopy
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(Elymus innovatus) and litter. The slope in the area ranges from gentle to extreme (between
1300 m and 2350 m) exposing barren rock at the highest elevations. The heavily glaciated

terrain is covered with soils originating from limestone, the predominant parent material
(Kirby 1973).

During the summer of 1998, an outbreak of the Bruce spanworm (Opherophtera bruceata,
Hulst, Lepidoptera: Geometriadae) damaged some of the aspen stands (refer to Plate 3.1),
(Judy Buchanan-Mappin, 1998). The bright green, looping larva feeds on the developing
aspen buds in the spring. The damage is initially inconspicuous, but when the leaves expand,
the damage becomes visible as holes in the leaves (refer to Plate 3.1). The outbreaks of this
insect are typically short-lived, and severe infestation seldom lasts more than two or three

years (Peterson and Peterson 1992).

3.2 Data Acquisition

Two types of data were acquired during the summer of 1998, the field data including ground
spectral reflectance and forest measurements, and the casi imagery. Both will be discussed

in this section. Further chapters will establish empirical relationships between these two data

types.

3.2.1 Field Data

During the 1998 Kananaskis Field season, a cooperative effort for data collection was formed
between the Universities of Calgary, Lethbridge, and Regina, as well as the Canadian Forest
Service from the Northem Forestry Center in Edmonton. Each institution had different
research objectives; therefore, all decisions regarding which data were to be collected and the
best method to do so were evaluated by the research teams to provide the best products for
use by all members. All parties shared in the data collection responsibilities using agreed

upon methods.
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3.2.1.1 Spectroradiometer Data

Two spectroradiometers were used during the field season: a full range (FR) (350 - 2500nm)
and a personal spectrometer II (PS2) (350 - 1050nm). Optically thick stack of the most
dominant species in the study area were collected, the sample consisted of pure and mixed
stacks at regular percent composition intervals to simulate the natural combination of species
composition. Nadir looking measurements of each pure and mixed vegetation sample were
collected to simulate the orientation of the casi airborne sensors, as well as limited bi-
directional measurements. Each set of measurements began with the collection of white
reference spectra using a Spectralon panel with the FR spectroradiometer and Kodak Grey
Cards (KGC) with the PS2 spectroradiometer. The white reference spectra provided a means
of converting raw data to reflectance. The vegetation samples collected and placed in
optically thick stacks were located outside the forest canopy to reduce the amount of
scattered and diffuse light contacting the sample. Two sets of spectral measurements were
collected for each sample: first in raw digital number mode for conversion to absolute
reflectance, and second in relative reflectance mode (compared to either the spectralon or

KGC) to provide a field check of data quality.

3.2.1.2 Sampling Procedure

Accurate ground measurements are critical to performing this type of research. The fixed
plot method of ground sampling (similar to methodology utilized by Franklin and
McDermid, 1993 and Gerylo et al, 1997) gathered the amount of detailed information
necessary for comparison to imagery data. A regular placement sampling method was
chosen over fully random sampling methods. One reason for this decision was that historical
data had been collected in these plots. Second, not enough random samples could have been
collected in the time allocated. Ten transects (labeled from A to J) on the East side of Barrier
Lake were used (refer to Figure 3.1 of the study area). The transects were previously used by
Gerylo et al. (1997), as well as by a “Remote Sensing in Ecology” field methods course
taught at the Kananaskis Field station during the summer 1996 term. The sampling transects
run diagonally on a 200° declination and are spaced 50 m apart. Each transect had four plots
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sampled on it, spaced 50 m apart. Some additional transects (transects 1 and 2 in Figure 3.1),
running directly north were placed on the north-west side of the Barrier Lake by the parking
lot and on the north side of Barrier Lake dam; 4 plots were sampled along these additional
transects in a similar fashion. The additional sampling transects were necessary to introduce
more variability to the data set; they also fulfilled the research needs of the two other
research teams. Of the 60 plots collected, data from 51 were suitable for the analysis

addressed in this research.

Each 10 m by 10 m plot was aligned north-south trough the center transect of the plot. The
plot corners were labeled numerically clockwise so that corner one is always oriented
towards the north-west. The plot center was labeled as five. This consistent scheme
provided for easy comparison between plots. The orientation of the casi flight lines is north
south or east west, therefore, the plots and image pixel orientation are aligned. This

simplified the location of the plots on the imagery.

[t is not the objective of this thesis to study the effects of terrain, topography and illumination
on the classification of the high resolution imagery, as previously discussed by Pellikka
(1996). In order to avoid these effect, plots with slopes greater than 3% were not included in

the sample.

3.2.1.3 GPS Data Collection

All plots were located with a Trimble GPS field unit, using the four corners of the plot as
well as the center to collect 30 consecutive readings. The Kananaskis Field Station GPS base
station was used to differentially correct the plot field readings. The data were converted to
1983 North American Datum (NAD 83) in the Universal Transverse Mercator (UTM)

Projectionand exported as a GIS coverage using the Trimble software.
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3.2.1.4 Forest Measurements

To establish the AVT label for a sample plot a wide range of tree attributes was collected (an

example of field data collected is shown in Appendix A), including:

a) Tree species
b) Tree height and height to canopy
c) DBH (diameter at breast height)

d) Crown diameter (2 directions, wide and narrow)

Structural information for the plot was also necessary, especially the crown closure and

percentage species composition which could be calculated from the empirical measurements.

Once the plot was located and the dimensions of the plot were established, each tree was
marked with flagging tape and numbered. This procedure facilitated in making a plot map,
where each tree was marked on a 1 m by | m grid. These data were collected to ease the
location of the plots on the imagery and to provide a graphic representation used in
interpreting the results of the analysis. An older casi image of the study area was also used
to locate the plots on the imagery. All trees were identified to species. Because of the low
diversity of these stands, the species identification procedure was simple and did not require

field species identification guides.

Height and height to canopy (the live crown of the tree) were estimated using a Suunto
clinometer. A 20 m distance from the tree was measured in an equal slope direction. The
clinometer converts the angle recorded through a viewing slot into a height for this preset
distance; refer to Luckai (1997).

Diameter at breast height was collected for all trees using a fixed height of 1.3 m. A tape
converting the circumference to diameter in cm was used in this measurement. If split trees
were encountered, the height of the split was measured. Trees splitting above breast height

were counted as one stem and trees splitting below breast height were counted as two stems.
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Crown diameters of the trees were measured in the widest and narrowest directions; see Cole
(1995).

Other measurements taken were the slope and aspect of all plots. To eliminate topographic

effects, plots with extreme slopes (greater than 3%) were not used in the analysis.
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Plot AVI Code
Plot ID Layer 1 Layer 2 Layer 3
93 Se 10 AWssCS Aw 10

Plot AVI Code
Plot ID Layer 1 Layer 2 Layer3
3 AwgPb, Awg

Plot AVI Code

Plot ID Layer]  Layer2  Layer3
500gg Pl;Sw; SwgPLAwW,  Swy,

Plate 3.3 Photograph examples of plots measured in the field. The AVI information
gathered amnd the 60 cm casi imagery of the plots are also shown.
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Two methods and instruments (concave mirror densiometer and Geographic Resource
Solutions (GRS) brand densiometer) were employed to measure the canopy closure in the
plots sampled. The mirror densiometer was used at five locations in the plot; 2.5m towards
the plot center from each corner (equals four estimates) and one estimate at the plot center.
The mirror densiometer is divided into twenty-four squares, each square was subdivided into
four quadrants and an imaginary dot can represent the center of the quadrant. The dot
counting technique involves counting dots that are covered by vegetation and ignoring dots
that are not. All together 96 dots were estimated (24 squares, 4 dots each) and a converting
factor of 1.04 was used to convert the estimate to crown closure percentage for the location.
The five readings at the plot were averaged and the average reading reported for the plot
(Table 3.1). The GRS densiometer works like a periscope looking up at the canopy through
an inverted mirror. A dot in the viewing scope of the instrument is used as the sampling
point. A transect needs to be walked through the plot (a crisscross was used); at every
second step a reading is taken. Special care needs to be taken to make sure that the
instrument is leveled (determined by looking at the level bubble). Sixty readings were
recorded using this procedure. The benefit of using the GRS densiometer is that information
such as species type and the canopy layer of the tree being recorded can be seen and
therefore taken at the same time. This allows reports on crown closure per species and crown
closure per canopy layer (Table 3.1) for each plot. Plots with a crown closure of 30% or less

were not sampled.

A 8% difference in the crown closure readings was noted between the two instruments,
especially in the deciduous stands. This discrepancy was observed by all three research
teams. The differences in the crown closure readings can be attributed to the fact that the
GRS densiometer has a magnifying lens on it. The defoliation caused by the Bruce
spanworm larva did not destroy the whole leaf, but only perforated the leaf surface.
Therefore, the leaf might be difficult to detect in the mirror of the concave densiometer (only
the general ‘greenness’ of the canopy is used to record the crown closure), but the
magnification of the GRS densiometer allowed the condition of the leaf to be captured. Due
to the type of defoliation that occurred in the summer of 1997, the GRS densiometer was

more successful at capturing the actual crown closure of the plot. Furthermore, this type of
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Plat ID Crown Closure Difference Layer Contribution to Crown
Spherical GRS between Closure based on the GRS densiometer
Densiometer | Densiometer | Instruments Layerl 1 Other Layers
94 48% 45% 3% 100% -
500c 55% 50% 5% 100% -
2 46% 40% 6% 100% -
g3 51% 43% 8% 100% -
i2 50% 52% 2% 100% -
i3 40% 33% 7% 100% -
3004 53% 50% 3% 91% 9%
500e 50% 42% 8% 92% 8%
500hh 51% 46% 5% 88% 12%
g4 41% 30% 11% 86% 16%
h3 40% 3% 9% 93% 7%
98 54% 47% 7% 60% 40%
5006 55% 50% 5% 82% 18%
i4 56% 42% 14% 94% 6%
500i 38% 30% 8% 82% 18%
95 45% 30% 15% 97% 3%
d3 50% 35% 15% 100% -
J 54% 47% 7% 84% 16%
500n 39% 33% 6% 72% 28%
J&) 41% 37% 4% 91% 9%
97 40% 30% 10% 93% 7%
96 59% 45% 14% 81% 19%
500ii 52% 47% 5% 79% 2%
5001 63% 50% 13% 59% 4%
500gg 60% 51% 9% 81% 19%
500k 50% 42% 8% 92% 8%
gl 42% 40% 2% 1% 29%
5005 46% 39% 7% 62% 38%
99 35% 30% 5% 19% 21%
fl 54% 50% 4% 3% 27%
1000cc 45% 41% 4% 86% [4%
ni 59% 51% 8% 66% 34%
52 60% 50% 10% 69% 3%
el 39% 33% 6% 70% 30%
g2 39% 3% 8% 96% 4%
il 62% 33% 29% 65% 35%
h2 60% 57% 3% 49% 51%
1000bb 33% 51% 2% 44% 56%
9 59% 53% 6% T7% 23%
so0ff 65% 61% 4% 78% 22%
19 56% 58% 2% 79% 21%
§ 2 62% 52% 10% 85% 5%
500bbb 40% 50% 10% 87% 13%
18 60% 49% 11% 90% 10%
h4 42% 36% 6% 46% 54%

Average Difference between crown Closure redings
using the spherical and GRS densiometers

8%
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defoliation has significant implications in the high resolution imagery. The spectral signature
of the aspen stands is contaminated as the reflectance from the hard tissue of the tree, and

possibly the understory, penetrated the canopy and were recorded by the casi sensor.

[n Plate 3.1, the faded (grayer in tone) aspen stands are visible, the canopy photograph shows
the condition of the defoliated leaves. However, the close up in Plate 3.2 shows that the

leaves are partially damaged.

The second benefit of the GRS densiometer is that although both instruments capture the
canopy of the plot, which can be comprised of more than one layer, only the GRS allows for
the measurements of the contribution of each layer to the total crown closure. Hence, the
data illustrates that the second layer can contribute between 9% and 58% to the crown

closure of the stand.

3.2.2 casi Imagery

The Compact Airborne Spectrographic Imager was flown over the study area on July 18",
1998 between eleven AM and two PM. The month of the imagery was chosen to coincide
with the most “leaf on” in the forest; it is also the season least likely to experience rain or
drought conditions. This timing coincided with clear atmospheric conditions for the flight
and ensured that no stress was affecting the vegetation. The time of day was chosen close to
solar noon for this season, allowing for the maximum sun-lit canopies necessary for the
spectral information being collected. The contrast between sun-lit and shadowed canopies is
lowest during solar noon (Fournier et al., 1995); hence, the spectral information content of
the imagery can be maximized. Three spatial resolutions of imagery were collected: 60
cm/pixel resolution, 1 m/pixel resolution and 2 m/pixel resolution. At the 1 m pixel
resolution, five flight lines were flown to cover the full study area. Only two flight lines
were flown at the subsequent (1 m and 2 m) resolutions (refer to Figure 3.1 of the study

area).
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The casi instrument can collect a large amount of spectral information as already discussed in
Chapter 2, (refer to Table 2.1 Technical specifications of casi). When possible, mission
planners must carefully select central wavelengths and spectral bandwidths according to key
features in the canopy signature (Fournier er al. 1995). Therefore, spectroradiometric data
collected for the dominant and co-dominant species in the study area, was the primary
consideration for casi band selection . Central wavelengths and bandwidths most successful
at spectrally distinguishing between tree species, especially the two major conifer species in
the study area, were selected. Previous work in the area with multispectral video imagery
(Gerylo er al. 1997) showed that only three spectral bands (green, red and near-infrared) were
not successful at distinguishing between white spruce and lodgepole pine. The second
consideration was the ability to combine the bands to simulate bandwidths of satellite
imagery, specifically Landsat TM and SPOT. The most suitable bands, which were chosen,
are presented in Table 3.2. In total seven bands were collected at the 60 cm pixel resolution
and eighteen bands were collected at the lower 1 m and 2 m pixel resolutions. The 60 cm
pixel resolution band set was limited to only seven bands. Two major reasons contributed to
this, first the time that it takes the casi instrumentation to collect information of such high
spatial detail is lengthy, and second, the conflict between the slowest speed that an aircraft
can maintain and digital data recording in order to collect this information (this limitation is

discussed further by Mah et al. 1995, and Wulder et al. 1996¢).

The casi imagery was acquired on a non-cloudy day, July 18" 1998. The 2 m data were
collected first, than the aircraft lowered in altitude to collect the 1 m data, and subsequently
the 60 cm data. The mission was flown close to solar noon to reduce the shadows in the
imagery and allow for the best crown illumination conditions. The solar zenith angle at the
time of the flight was calculated at 59.78° (Peddle et al. 1995). Works by Guyot ef al. (1989)
and Bruniquel-Pinel and Gastellu-Etchegorry (1998) have shown that image acquisition
parameters play an important role in the type of texture that the imagery can provide. For
example, larger shadows can provide texturally coarser imagery, which can be suitable for
some studies. However, operationally the imagery had to suit at least three types of research

projects. In two of these projects, maximum spectral response from the canopy was crucial
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to the studies. In this thesis the shadows in the casi imagery played a major role in deriving
texture from the imagery, nevertheless, optimal spectral data were also required for
distinction between species.

Table 3.2 casi Bands for the three image resolutions

——

m set (60 cmj W
m pixel resolution) pixel resolution)
1 415 - 450
2 450 - 500
3 500 - 520
4 520 - 540
5 540 - 560 1 540 - 560
6 560 - 590
7 610 - 640 2 610 - 640
8 640 - 680 3 640 - 680
9 690 - 715 4 690 - 715
10 715 -730
11 730 - 755 5 730 - 755
12 755 -790
13 790 - 810 6 790 - 810
14 810 - 830
15 830 - 850
16 850 - 875 7 850 -875
17 875 - 890
18 900 - 960

Coincident with image acquisition, down welling irradiance was measured at the top of the
aircraft with an Incident Light Sensor (ILS).
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3.3 Chapter Summary
The field data and casi imagery collected for this research are described in this chapter. A
sampling procedure that captured the wide variety of attributes necessary for AVI, with plots
representing the variability of the stands encountered in the study area, was discussed.
Central wavelengths and bandwidths collected by casi enabled the isolation of spectral
information and the extraction of textural derivatives. The constraints of the high resolution
casi imagery are introduced and discussed. Other factors affecting the imagery, such as

defoliation of the aspen stands during the field season are also presented.
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Chapter 4 Methodology

4.1 Introduction

This chapter contains a description of the methods used to test the hypothesis that image
texture analysis can be used to improve the accuracy of an AVI-based forest classification in
the Kananaskis study area using high spatial resolution casi imagery. A standard supervised
classification approach commonly used to determine the accuracy of input classification
variables was used (Jensen 1996; Lillesand and Kiefer 1994). This approach requires that the
analyst identify the classes based on field data, the variables, based on image data, a
decision-rule based on a training sample, and an accuracy assessment procedure, based on a
testing sample. The power of this approach has been shown in numerous satellite and
airborne remote sensing studies (e.g. Skidmore 1989; Foody er al. 1992; Franklin and
McDermid 1993). Here, the focus is on testing the improvement in classification accuracy
that can be achieved with the texture variables compared to a classification accuracy that can

be achieved without the texture variables, relying only on the spectral information.

First, the method used to develop the AVI label for each ground plot is described. Sample
stratification based on different canopy layers was carried out to create different groups of
classes. Second, the image data set was prepared by applying a Principal Components
Analysis (PCA) to create a ‘brightness’ image from which texture derivatives could be
extracted. This step was necessary to reduce the sheer volume of data that could be analyzed
in the classification and texture extraction procedures. For example, presently a standard
commercial remote sensing package can include as many as 12 second-order texture
measures, and new measures are regularly being developed and added. The texture can be
produced on various window sizes, view directions, input bands and image resolutions,
leaving the user with an opportunity to potentially calculate a nearly infinite number of
textural images. A preliminary analysis of the relationships between the casi image, the
stand structure and the stand shadow components was conducted in support of the texture
extraction. Third, the plots were compiled into the classification structure with a training
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sample and a testing sample. Discriminant Analysis (DA) was applied to determine the level

of accuracy that could be achieved with and without the texture variables. The last step was
to determine the classification accuracy and compute statistical tests to support the accuracy

assessment.

4.2 Basal Area and AVI Plot Labels

The AVI labels for each plot were constructed using basal area (BA) measured in the field.
This is the standard technique of the Alberta Forest Service, has also been used by other
remote sensing scientists (Franklin and McDermid 1993; Gerylo ez al. 1998; Maudie 1999).
The basal area of a tree has been determined to be positively correlated with the crown
diameter of the tree (personal correspondence Hall 1998; also refer to Maudie 1999). It is
due to this relationship between crown diameter and basal area, that this method was chosen.
In forest applications of high resolution remotely sensed imagery, the most valuable image
component is the sun-lit crown of the tree that is detected by the sensor. Hence, if the plot
species composition is stratified according to a variable such as crown closure that can be
measured or estimated by the remote sensor, a stronger relationship can be developed
between the field data and the imagery. The basal area can be defined as the area in square
units of the cross section at breast height of a single tree or per species in a stand (as defined
by Avery 1967)

BA="" 3]

The basal area was calculated for each tree species in each plot. The different canopy layers
were identified by examining the tree heights for an average canopy height difference of 3 m
or greater (as discussed in Chapter 2). Species composition per canopy (Table 4.1) was
determined using the basal area per species percentage values. Hence, an AVI label of
AWGgPl; indicates that 80% of the plot basal area can be attributed to aspen and 20% of the
plot basal area can be attributed to lodgepole pine.
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A bivariate regression of per species crown closure using the 45 sample plots (determined
with the GRS densiometer method described in Chapter 3) and per species basal area was
performed for the first and other canopy layers. This resulted in an adjusted R? of 0.613, and
a standard error of the estimate of 0.1256, for the coniferous species and an adjusted R? of
0.804 and a standard error of the estimate of 0.1583 for the deciduous species. Both of these
results were calculated for the first canopy layer and were significant at the 95% confidence
interval. The other canopy layers produced results of an adjusted R? of 0.574 (standard error
of the estimate of 0.05494) for the deciduous species and an adjusted R? of 0.814 (standard
error of the estimate of 0.0.06262) for the coniferous species (refer to data and graphs in
Appendix B). Both were significant at the 95% confidence interval. The higher goodness of
fit for the aspen trees, at the first canopy layer, can be partially attributed to the same age of
the stand. Aspens have less age variability between individual trees within a stand compared
to conifer species, therefore, their crowns (crown closures) and basal areas are less likely to
vary. The results for the other canopy layers show that the basal areas of shade intolerant
species (deciduous) are less likely to correlate with crown closures, when these species are
competing with an above layer for sunlight. Also, the conifer species in the second layer
contribute to as much as 55% of the crown closure for the stand, compared to only 30% for
the share intolerant deciduous species. The shade tolerant conifers, such as white spruce, are
more successful at competing for the residual sunlight left after the first canopy intersection.
These symbiotic relationships (protection from insects and frost) are discussed in more detail
by Peterson and Peterson (1992). All these characteristics are consistent with observations
made in the field during data collection. These analyses confirm the relationship between tree
crown and basal area, which can be further interpreted as a relationship between dbh and
crown diameter discussed above is useful as the basis of the AVI species label (Table 4.1) in
this study.



Table 4.1 AVI Labels based on basal area for the 45 study plots

Plot AVI Code Basal Area(m’)
Plot ID Layer ] Layer 2 Layer3 Layer ] Layer 2 Layer 3
94 Awyg 59.6
500¢ Awyg 54.2
e2 Awyqg 315
g3 Awig 529
i2 Awyg 377
i3 Awpg 44.0
500d Awqg Awyg 65.3 1.8
500e Aw)y Awy, 427 43
500hh Awyg Aw 50.2 6.3
g4 Awyg Awy, 37.0 4.3
h3 Awyg Awy 40.7 2.0
98 Awyg AwgPl, 17.8 11.9
500b Awy Aw;Sw; 338 74
i4 Awyo Pbyo 474 32
500ii Awyg PlyPb, 36.8 7.9
95 Awy SwyAw; 59.1 2.1
d3 Aw,PlLSw, 36.8
J1 AwgPly Awy AwsPb.Sw, 41.5 6.6 1.3
500h Awyg Awg 18.2 7.0
3 AwyPb, Awg 36.5 38
97 Pbyg Pbyg 37.1 i.8
96 Pbyq Pb,Aw; 53.1 12.6
500i Plio Swio 50.5 9.6
5001 Pl SwiAw;  Pl,SwyPbAw, SwiPls 47.1 20.0 3.3
500gg PlsSws SwePL,Aw, Swyg 342 7.4 04
500k PlsSw; Swyg 61.0 0.9
gl Pl,Aw; Aw,Sw; StL.1 122
50055 PI;Pb; Swyg Awyg 11.8 1.5 59
99 PlzgAw, Awyg 185 49
f1 PliAw, Pl.Aw, 354 4.1
1000cc PlgSw, P1;Sw; Swyg 46.6 6.6 0.7
hi PlsAw, AwgSw, 320 16.7
j2 PlscAw, AwgPly 2i.0 9.3
el PLLAW, PbgPl, PAN! 8.9
g2 PlzSw, Pl;Sws 159.9 7.4
il Plo Plyg Pl ,;Aw; 43.2 20.8 31
h2 Plyo Pl;Swi;Aw, 312 32.1
1000bb Pl;o PlgSw, PlsSw, 230 283 31
9 Sw;Se;Fd,Pl, Swyo Swyg 353 8.2 22
5006f Sw,Aw;Pl; Pl Aw,Pb, Pb;Sw; 30.6 7.6 0.5
19 SwgPl, Seyo 35.1 10.0
2 SwgPl, Swy Awyg 30.7 5.0 02
500bbb Swyg SwPb, 274 3.7
18 Swig SegAw,Fa, 475 47
h4 Swig SwsPb;Sw, PbyAw, 18.0 19.8 09

43



4.2.1.1 Sample Stratification Based on AVI First Canopy Layer

Previous remote sensing classification research has typically ignored the existence of multi
canopy stands. Usually, samples were stratified using all plot information to produce a single
(one layer) AVI label (e.g. Franklin et al. 1998). In one study, a multilayer AVI label was
produced but the second layer was not considered in the analysis because of the complexity
of the resulting classifications (Gerylo et al. 1998). However, it is exactly this complexity,
which is the focus of the present study. Therefore, an AVI label was produced based on the

single layer interpretation and a multilayer interpretation as described below.

Stratifying the sample by the first canopy layer information produced six initial classes. Note
that all information about the second or third layers has been ignored in the initial grouping

of the sample. The stratification and classes, shown in Figure 4.1 included:

1. Aspen
Aspen mixed
Pine

Pine mixed

Spruce

I

Spruce mixed

4.2.1.2 Sample Stratification Based on All AVI Canopy Layers
The second level of stratifying the sample (also shown in Figure 4.1) applied all of the AVI

canopy layer information to produce thirteen-classes. These classes showed a dominant layer
and a second layer, which was sometimes comprised of the second and third layer in the AVI
label. The third layer sample stratification was not approached because attributes such as
small basal area (on average 2% of the plot area), would not be possible to detect with the

presented methods. The classes produced at this level were:
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1. Aspen

2. Aspen with a second pure aspen canopy

3. Aspen with a second aspen conifer mixed canopy
4. Aspen with a second conifer canopy

5.
6
7
8
9

Aspen mixed with a second aspen canopy

. Poplar with a second poplar canopy

. Pine and spruce mixed with a second conifer canopy

Pine and aspen mixed with a second aspen canopy

Pine and aspen mixed with a second pine canopy

10. Pine with a second pine canopy

11. Conifer mixed with a second conifer canopy

12. Spruce with a second spruce canopy

13. Spruce with a second conifer canopy

In three cases the same plots that were combined into a class in the six-class sample

stratification were also combined in the thirteen-class sample stratification. As shown in

Figure 4.1, Class 2 (six-class sample stratification) was composed of the same plots as Class

5 (thirteen-class sample stratification); Class 3 (six-class sample stratification) was composed

of the same plots as Class 7 (thirteen-class sample stratification); and Class 6 (six-class

sample stratification) was composed of the same plots as Class 13 (thirteen-class sample

stratification).
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Figure 4.1 Sample stratification showing the six and the thirteen classes. The six-class
stratification does not use the second and third canopy information, the
thirteen-class stratification uses the full AVI information of the second layer
in the class name (listed after the semicolon).
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4.3 [Image Preparation and Statistical Data Extraction

Subsets of the study area were extracted from the 12 km casi flight lines, this greatly reduced
the size of the image database. The GPS data, field maps and plot maps were used to locate
the plots on the imagery. This procedure was simplified by the constant geographical
alignment/orientation to North of all plots (described below). Graphic masks, representing
the exact location and area of each of the plots, were created. This procedure was repeated

for all three resolutions of the casi imagery.

Before any aerial digital image analysis can take place some additional image preparation
needs to be undertaken. The use of image corrections to improve radiometry and consequent

classification accuracies is well documented (e.g. Robinove 1981; Franklin and Giles 1995).

Once the radiance of the study area was collected by the casi instrument, the data were
corrected using a pre-flight sensor calibration in-house (Itres Research Ltd., also refer to
Grey et al. 1997 who describe this procedure extensively). These data are in a raw form
supplied to the user on digital tapes with a quantization of 16-bit. Two rectifications, also
done in-house by Itres Research Ltd. (Mah ez al. 1995) are:

a) The geocorrection for aircraft roll, pitch and yaw; and
b) Fitting the imagery to a geographical space, also known as

georectification.

A 10 m horizontal and 4m vertical resolution Digital Elevation Model (DEM), derived from
1:25000 National Topographic Series (NTS) map sheets, was used in the corrections of all
three resolutions of data; the DEM was resampled to each resolution (60 cm, 1 m and 2 m).
During the flight mission a GPS unit in the aircraft was used to collect the exact location of
the flight lines. These readings were differentially corrected using data from the Kananaskis
Research Field Station base station located less than a kilometer away from the actual study

area. The imagery was georectified (using the nearest neighbor resampling method) to



48
Universal Transverse Mercator (UTM) projection using the 1983 North American Datum
(NAD 83). A study by Dikshit and Roy (1996) has shown that effects of image resampling
(such as geocorrection or orthorectification) upon the spectral and textural supervised

classification of high spatial resolution multispectral imagery are minimal.

Atmospheric correction is known to improve analysis based on spectral response and is
recommended for studies where different imagery will be compared (e.g. different
resolutions, different sensors); (Jensen 1996). Although down welling irradiance was
measured at the top of the aircraft with an Incident Light Sensor (ILS) during the flight
mission, and spectral reflectance target readings were collected on the ground, an
atmospheric correction was not performed on the imagery. Atmospheric correction was not
considered crucial to performing the classification study in this thesis. There are four major

reasons for this decision:

a) The high resolution imagery requires the aircraft to fly at low altitudes
(between 1000 feet and 2000 feet); hence, the amount of atmosphere
between the casi sensor and the canopy targets was minimal.

b) There was no cloud coverage prior to and during the casi imagery
collection. Clouds did not appear until at least an hour after the
commencement of the flight mission. Therefore, the effects of the
atmosphere were judged minimal.

c) The radiance imagery was not available for analysis untii the Fall of 1999.

d) Furthermore, since texture analysis measures the spatial component of the
shadow/sun-lit crowns within the imagery, the absolute radiometric
differences would not be required in order to capture adequately the
differences in very bright and very dark objects. Although spectral bands
were used in the classification, the objective was not to determine how
well the classification would perform but how much information the

textural component adds to the classification.
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44 Principal Component Analysis

Multispectral digital imagery can produce large amounts of data, but because of the spectral
characteristics of the data, many bands are highly correlated (Table 4.1). Although ample
information for an observation is necessary for a successful classification, highly correlated
information and too much information can overwhelm the statistical classifier producing a
large null or unclassified class (Lillesand and Kiefer 1994). One approach is to simply select
a few bands based on visual analysis, or statistical tests such as the Bhattacharya-distance
separability measure on a band with high contrast — usually the near-infrared band (e.g.
Marceau et al. 1990). However, these methods are subjective and can be extremely sensitive
to statistical assumptions (such as the assumption of a normal distribution) or to the increased
number of bands in the sample, and may result in the loss of information and a non-optimal

data set for classification (or statistical) purposes.

Another approach is to apply a Principal Component Analysis (PCA) to reduce the
redundancy in the spectral data and create fewer dimensions in a predictable linear model.
Although this method can also be sensitive to statistical properties of the data set, this
approach was adopted in this study because of the large number of texture bands that can be
produced from a single image dataset. PCA was applied to the seven spectral bands to
produce seven Principal Components (PC). The results of the Principal Component Analysis

arc:

a) Reduction in the number of bands needed for effective classification, while
retaining the information content of all bands and discarding noise .
b) One band, now called ‘brightness’, on which texture analysis was

performed.

Even on the 60 cm imagery, where the resolution was the highest, the spectral bands show
correlation ranging from adjusted R? of 0.59 to adjusted R? of 0.99 (Table 4.1). This is
related to the information content of the imagery, in this case vegetation and shadows. For

example, the lowest correlation occurs between band three (the red band where chlorophyil
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absorption by vegetation can be measured) and band seven (the near infrared band where
high scattering caused by the vegetation cell structure is significant). The relationship
between the third band (red) and the subsequent bands all located at longer wavelengths, e.g.
band four (adjusted R? of 0.89), band five (adjusted R? of 0.64), band six (adjusted R? of
0.62) and band seven (adjusted R” of 0.59) documents the increase in the spectral reflectance
of the vegetation at longer wavelengths. The highest correlation occurs between bands
closely neighboring on the electromagnetic spectrum, where similar vegetation

characteristics are measured, at an adjusted R of 0.99 between bands five and six.

The data in the seven 60 cm casi imagery bands is significantly correlated (at 95%
confidence interval), therefore, the amount of information stored in these bands can be
modeled through a regression line (line of best fit) equation. The first principal component is
an axis along the regression line in the direction of most variance. The digital numbers in
this principal component image indicate how far out along the new line the values fall, or

how much spectral variability for a specific pixel is represented by that component.

Table 4.2 Correlation Matrix for the Seven Spectral Bands at 60 m
pixel resolution
Bandl Band2 Band3 Band4 Band5 Band6 Band7

Band! ~ i 093 0.85 0.97 0.89 0.88 0.86

Band 2 . 0.98 0.93 0.74 0.71 0.69
Band 3 n 0.86 0.64 0.62 0.59
Band 4 ‘ 0.92 0.89 0.85
Band 5 [ ] 0.99 0.95
Band 6 By 098
Band 7

When the data are this highly correlated, most variability occurs along this new component,
but if the data are less perfectly correlated, there is still some variability along another new
axis orthogonal to the first principal component. This is the second principal component,
which accounts for the maximum amount of the variance remaining after variance along the

first principal component has been accounted for. Because there were seven original spectral
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bands, seven principal components were calculated. The procedure was repeated for the
other resolution (1 m and 2 m) casi imagery, but only the seven spectral (as opposed to PC)

bands that overlap in all imagery were used in the analysis.

The percentage of variance accounted for by each component is expressed by that
component's eigenvalue. The variance expressed by the first principal component of the 60
cm imagery was high at 89.77% for the whole image, meaning that 89.77 % of the variability
contained in the seven spectral bands is mostly represented by the first principal component.
The second principal component contains a small amount of the remaining information of
only 8.96%. The results follow a similar pattern for the 1 m imagery, the first principal
component explains 83.62% of the variance and the second principal component 14.73% of
the variance. The 2 m PCA and resulting eigenvalues determined that the first principal
component explained 80.93% variability and the second contributed to 17.88% variability. A
trend was observed, as the resolution decreased and the number of objects contributing to a
spectral response of a pixel increased, the variability explained by the first principal
component (brightness) decreased and the second principal component became more

important.

When performing PCA on a multiresolution image data set, such as the one used in this
thesis, it is critical to the analysis to be working with the same elements in all imagery.
When various resolutions of imagery are collected, the area covered by these images is not
always identical on the ground or on the image. In this study, special care was taken to
assure that only areas of image overlap were used to calculate the principal component.
Given that the goal of this research is forestry-oriented, only the vegetated areas were
included in the PCA. To investigate the success of the procedure the first principal
component was tested for correlation between all resolutions resulting in relationships
between 82% and 87%.
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Table 4.3 Correlation between resolutions for the first principal component

60 cm pixel I cm pixel 2 cm pixel
resolution resolution resolution
60 cm pixel resolution [ ] 0.85 0.82
1 cm pixel resolution | 0.87
2 cm pixel resolution |

Figure 4.2 shows the first principal component imagery for all three resolutions, where the
lightest pixels represent pixels undergoing high tonal variability captured by the bandset of
casi imagery, their location on the axis of variability is far from the origin and therefore, the
values are high. The dark pixels represent the pixels of low change through the seven
spectral bands, their location on the variability axis is vary close to the origin and therefore,
the values are low. Spectral signatures, the way in which different ground components
reflect or absorb different wavelengths of light, are used in remote sensing to distinguish
between scene components or classes. They are the most important pieces of information

driving a supervised image classification (Price 1994).

Two signatures, composed of sun-lit crown pixels and shadowed pixels are graphed in the
Figure 4.2. The shadow pixels show exceptionally little variability in the different
bandwidths, as compared to the vegetated pixels, and are represented as dark tone pixels in
the first principal component imagery. Hence, the first principal component captures the one
most important element necessary to identify multistory stands, the shadow. It also captures
the different types of vegetation covers. The first principal component represents a
brightness variable because it captures the tonal variability in the imagery. It was this
variable which was used to perform texture analysis discussed later in this chapter. The
figure also documents the increase in spectral values as the resolution decreases for the
shadowed pixels, and the decrease in spectral values as the resolution decreases for the
vegetation pixels. This inverse relationship can be explained by the merging of pixel
components (vegetation and shadows) as the resolution decreases. It also explains the trend
(demonstrated above) of reduction in variability expressed by the first principal component
and increase of variability expressed by the second principal component as resolution

decreases. Hence, with the loss of spatial detail pixel components merge.
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1st Principal Component ‘brightness’ image based on the spectral bands of casi
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The thumbnail images above show the ‘brightness’ channel which was extracted from the
casi imagery by using principal component analysis. The shadowed area in all casi image
bands are represented by the dark areas in this imagery. The sun-lit crowns are the brighter
areas. As image resolution increases the number of pixels representing each feature
decreases. The edge (boundary) pixels of the features no longer represent the spectral
characteristics of that individual feature but are a combination of spectral signatures of
other components (adjacent features).

140 - ) 140
=60 cm Lit Crown ' o 60 cm Shadow
= 120 ~ © 100cm Lt Cown ————— . 120 | --100em S o
g =0 200 ecm Lit Crown - =&~ 200 cm Shadow
g'm - s W Im S
i [] e
3 '
. . 1. T
e w0 — 2. (- : '
E iw -
§ 0-2e’ o 3 \*\__(/&or =0 —
" om ———9 {,a-:-—":’__ |
0 s Seu Gew Sew Gov Seu Bow Suv Sow few Bew Sus Buw Swd Bent Suw Su Sew! m .
3 v . oW o

A 4
¢ ¢ ' o . * hd " 2 3 e o . Gye Guug Geut Gyus Seuh Geut Suyt SERS WS GewtS DeYt Bewtd Bewi) dmwcs Gemrd Gewtd Gowe’ e

casl Imagery sl imegery

The above graphs summarize the mean pixel values for the sun-lit crown pixels and the
shadowed pixels outlined in the st principal component imagery. All three resolutions
are represented, the information for all spectral bands is shown, although only the seven
overlapping spectral bands (see 60 cm) were used to calculate the 1st principal component.
As the imagery resolution increases the mixing of various components can be interpreted in
these graphs by the higher ‘brightness’ values of the targets. For example the shadowed
pixels become lighter as they begin to mix with adjacent sun-lit vegetation pixels, this is
well demonstrated in the second graph. Also, the spectral signature of the sun-lit crown
changes as the resolution of the imagery decreases and adjacent objects contribute to the
signal.
Figure 4.2 The first principal component for three casi imagery resolutions (60 cm,

1 m and 2 m) and graphs showing the spectral characteristics of a

shadowed pixel and a lit-canopy pixel.
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4.5 Structure and casi Imagery Shadow

To establish the relationship between the field data and the casi imagery a simple
unsupervised classification (density slicing) of the first principal component was performed
to isolate the shadow class captured by the low grey level values in this type of imagery. The
percentage of shadow per plot was calculated. A structural complexity index was developed
by averaging the standard deviation for physical characteristics of the plot (tree height, dbh
and crown diameter); note that species composition was not explored by this index. This
method is a simplified version of a Structural Complexity Index (SCI) used and described by
Cohen and Spies (1992) and Cohen et al. (1995). The SCI used by Cohen produced a
Principal Component based on the means and standard deviations of structural field data
(dbh, crown diameter, basal area, height and tree density). In this thesis only the standard
deviations were used because the variability within the plot was measured and not the
variability among the plots. Hence, plots that had a lot of variability in tree size suggesting
that more than one canopy is present had a higher average standard deviation than plots
where the tree size was uniform (such as the same age aspen plots). The plots were sorted
from highest to lowest, based on the structural complexity index, highest representing most
structurally complex plots and lowest representing the least structurally complex plots. The
per plot percentage of shadow pixels and stand complexity data are available in Appendix C.

This procedure was repeated for all resolutions of the imagery.

Linear regressions based on data in Appendix C (graphs), showed the relationship between
the structural complexity and the shadow percentage captured by the first principal
component of the casi imagery, for all three resolutions. The R’ of 0.60 at the highest
resolution (60 cm) imagery, R? of 0.56 at the 1 m resolution imagery and R? of 0.55 at the (2
m) lowest resolution were calculated. In general, the aspen stands had a lower stand
complexity index value than the coniferous stands, which can be related to the same age of
these trees and low variability in tree characteristics (dbh, height, crown diameter) within the
stand. The regressions confirmed that, as expected, a relationship exists between stand
structure and the casi imagery (Appendix C). This is interpreted to mean that the shadow
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component in the stand represents structural complexity of canopy elements, and is captured

by the image data. This relationship can be the basis upon which the texture analysis and

classification of multilayer stands can be conducted.

4.6 Creation of Texture Channels

The grey level co-occurrence matrix (GLCM) is constructed from the image by estimating
the pair wise statistics of pixel intensity. Each element (i, j) of the matrix represents an
estimate of the probability that two pixels with a specific spatial separation have grey levels i
and j. The textural derivatives used in this thesis were based on the GLCM and not directly
from the imagery, hence the name; second order texture measures. Second order texture has
been shown to be effective in classification methodology (as outlined in Chapter 2); in one
study, second-order texture outperformed newer texture measures based on semivariance for
optical imagery similar to those employed in this thesis (Carr and Miranda 1998). Many
second-order texture measures are readily available in commercial remote sensing packages,

and were therefore selected for use in this study.

To perform texture analysis of an image five control variables need to be identified by the

user. They include:

a) The image channel to measure the image texture;
b) The texture algorithm;

¢) Window size;

d) Quantization level (8-bit, 16-bit or 32-bit);

e) and the spatial component (relation between pixels)

The first principal component image was chosen to perform the texture analysis on the
rationale that the first component represented the brightness feature in the image data set; in
essence, one band represented the combined variability of all the image bands in a single

dimension that is more easily handled then the original multispectral imagery.
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The available commercial software program provides twelve texture measures; one of the
original texture developers (Haralick 1986) presented fourteen different measures based on
the co-occurrence matrix or second-order approach. Many of these measures are redundant
and capture similar concepts (Wilson 1995). Therefore, from these available measures, five

statistically different measures were chosen for this thesis research, including;

AngularSecondMoment = )Y P(i, j)* [4]

j=l i=l

Correlation = Z i P(i, j)R (i) — MeanR(i)(C(j) — MeanC()) 51
ot ot JVarianceR(i)(VarianceC(}))

N m

Dissimilarity = Y P(i, j)}R() - C(j)y [6]
Entropy = ii(—[’(z’, NIn(P,j), assuming that 0(In(0))=0 [7]
=l i=l
Ay PG, )

[-[omogeneffy = ;:-Zl (1 + [R([) - C(_[)]z)

(8]
where:

P(iy) = the spatial co-occurrence matrix element

R() = the grey level value for a row and

cop = the grey level value for a column (PCI, 1997).
Interpretation of these different measures can be considered conceptually. For example, the
angular second moment employs probability of a pixel occurring based on the surrounding
values. The higher the probability, the brighter the corresponding pixel value is in the texture
channel. Therefore, in imagery which is homogenous, the angular second moment texture

value will be high and in imagery which is heterogeneous the value will be low. The
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algorithms apply an exponential approach; hence, the growth in probability changes rapidly.
The correlation algorithm measures the linear dependency of the grey levels of neighborhood
pixels; the more often like value pixels occur in a give area, the more likely it is that a pixel

will be of the same value.

The dissimilarity texture algorithm is similar to the contrast texture algorithm. It measures
the variability of the grey level values in the image, but the relationship between grey level
values is linear. This measure is less sensitive to slight changes in image texture. Entropy
measures the probability of the rate of change of a pixel grey-level value. Because of this
logarithmic function, this measure is quite sensitive to slight changes in grey level value.
Entropy is almost the opposite of the angular second moment measure. = Homogeneity
measures the likelihood of a pixel being similar (this has previously been demonstrated in
Chapter 2, Figure 2.3) to the surrounding pixels, or the local similarity of the grey level
values in an image. The homogeneity measure functions in almost an opposite manner to the
dissimilarity measure. Low values relate that the image tone is variable and high values

suggest high similarity in image tone.

Using coarse satellite data in an urban area, Marceau et a/. (1990) concluded that on average
the selection of the second-order texture algorithms used accounted for only 7% of the
variability in classification results in their analysis. This was attributed to the fact that all of
these algorithms are using the same co-occurrence matrix to calculate the texture and
therefore, they are highly correlated. The same study concluded that choosing the window
size of the texture measure is most important and can account for as much as 90% of the
variation in classification accuracies (refer to also Hodgson 1998). In this thesis, six window
sizes (3x3, 5x5, 9x9, 11x11, 17x17, 21x21) were used in the texture analysis. The smaller
windows were chosen to capture textural characteristics of the individual objects in the
analysis (trees), and as the window size increases the textural characteristics of the forest
stands are measured. The methodology for choosing the window size is presented in the

section on discriminant analysis.
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Marceau er al. (1990) also showed that the quantization level of the data only accounted for
3% of the variability in classification results; therefore, it is the least important parameter. In
this thesis, all textural measures were produced at the 32-bit quantization level based on cas:

imagery of 16-bit quantization level.

The distance (separation) parameter used to construct a grey level co-occurrence matrix
specifies the scale at which the texture is analyzed; therefore, the optimal choice of this
distance as well as the direction (angle), is dependent on the inherent scale of the texture
being analyzed. In high resolution imagery, more than one pixel can represent an object on
the ground. Furthermore, the pixel values can change rapidly across a few pixels. To best
capture the characteristics of high resolution imagery the invariant spatial component (the
mean of all four main inter-pixel angles) with an inter-pixel value of one was used. This s in
agreement with the findings of Marceau et al. (1990) and agrees with the later studies by
Franklin and McDermid (1993) and Maudie (1999). Hence, on 60 cm imagery the scale of
the texture measure using a 3 x 3 window was 60 cm, on | m imagery the scale of the texture
measure using a 3x3 window was | m and on the 2 m imagery the scale of the texture

measure using a 3x3 window was 2 m.

4.7 Texture and casi Imagery Shadow

To illustrate the relationship between texture and image shadows (created by different forest
stand structures) a sample subset multispectral image was chosen, shown in Figure 4.4. The
subset was extracted from the imagery at all resolutions from a known location centered on
an edge between a pure aspen and pure conifer stand, so that half of the image subset is an
aspen stand and half is a mixed conifer spruce and pine stand. The size of the area is
approximately 40 m by 20 m. The subset extraction was performed to facilitate the visual
analysis of the relationships between image texture and shadow, and is interpreted in Chapter
5, section 5.2.
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ite showing the subset window

Figure 4.3 False colour compos



60

4.8 Statistical Data Extraction from casi Imagery

Per pixel data were extracted for all bands at all resolutions from underneath the graphic
mask of the plots. The data were imported to the SPSS (SPSS 1997) statistical package. In
classification analysis, statistical summaries of the data are used as the signatures, which
separate the classes. To reduce the amount of data, and decrease the processing time, the plot
spectral and textural information was summarized with the plot mean. This approach is
feasible in higher resolution imagery where the plot comprises many objects including tree
canopy, shadows and to some extent (depending on the crown closure) the understory. The
plot standard deviation was also extracted and tested, but it did not prove to contribute

significantly to the analysis.

4.9 Classification Procedure

The classification decision rule selected for this study was the discriminant analysis (DA)
function (Klecka 1982; Tabachnick and Fidell 1996). Discriminant analysis is useful for
situations where one needs to develop a predictive model of group membership based on
observed characteristics of each case. The procedure generates a discriminant function (or,
for more than two groups, a set of discriminant functions) based on linear combinations of
the predictor variables that provide the best discrimination between the groups. The functions
are generated from a sample of cases for which group membership is known; the functions
can then be applied to new cases with measurements for the predictor variables but with
unknown group membership (SPSS 1997). In this thesis, the group is the AVT class (based
on field data) and the set of predictors are the spectral bands and the textural bands derived

from the first principal component of the casi imagery.

A preliminary DA had to be performed to determine the best window size of the texture
measure (already identified in the previous section as the most important factor in texture
analysis). In this exploratory analysis, the six-class sample stratification based on the first
AVI canopy layer was used. The results are reported in Table 4.3. Since, this analysis was
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only part of the paramilitary data exploration, this DA was not assessed for accuracy.

Therefore, all cases were used to develop the DA function.

Table 4.4 Preliminary DA results in % to determine the best texture

window size
Data combinations 60cm 100cm 200cm
pixel  pixel  pixel

7 Spectral Bands 64.7 51 60.8
7 Spectral Bands, 5 Textures (3x3 window) 74.5 72.5 80.4
7 Spectral Band, 5 Textures (5x5window) 62.7 804 804
7 Spectral Bands, 5 Textures (9x9 window) 64.7 68.6 76.5
7 Spectral Bands, 5 Textures (11x11 window) 66.7 68.6 74.5
7 Spectral Bands, § Textures (17x17 window) 64.7 66.7 70.6
7 Spectral Bands, 5 Textures (21x21 window) 60.8 82.4 82.4
5 Textures* (3x3 window) 51 54.9 56.9
5 Textures (5x5 window) 43.1 58.8 54.9

5 Textures (9x9 window) 49 353 51
5 Textures (11x11 window) 49 39.2 47.1
§ Textures (17x17 window) 41 47.1 52.9
5 Textures (21x21 window) 45.1 529 529

*The five texture measures include: homogeneity, dissimilarity, correlation, entropy and
angular second moment

The best classification results of 82.4 % occurred on the largest window size 21x21
confirming results by Marceau et al. (1990); Hodgson, (1998) and Maudie (1999). Hence,
texture measure of the stand (large window size) was a better discriminating factor than
texture of individual tree crowns (smaller window size). It is important to notice that on the
high resolution imagery the best results 74.5% occurred at the smallest 3x3 window size.
The second best result (80.4 %) also occurred on the lower resolution imagery at a smaller

window size (3x3 and 5x5 window size on the 2 m and 5 window size on the 1 m).

The results of this initial test established that the classification should proceed based on the
seven spectral bands as predictors in conjunction with the five textural measurements at

21x21 window size. In the final analysis three different discriminant analyses were run:
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a) Seven spectral bands as the only set of predictors;
b) Five textural bands as the only set of predictors;
c) Seven spectral and five textural bands as the set of predictors.

The procedure was repeated for all three resolutions of imagery and two different levels of
classes. [tis important to note that this classification procedure is designed to test the study
hypothesis at the field plot locations, and is not the same approach that would produce a
classification map. In that type of analysis, much more attention would need to be focused
on developing training signatures and testing statistical assumptions of the resulting training
data. As Franklin (1994, p 1238) pointed out in an earlier forest inventory classification
study using 2.5 m casi data, ‘while the casi data Discriminant well the required inventory
stands, this does not necessarily mean that the stands can be mapped well’. Operational
problems in mapping based on the image data represent an entirely new set of problems and

issues that are beyond the scope of this thesis.

4.10 Accuracy Assessment

Accuracy assessment is an essential final step in any classification study to determine the
validity of the classification approach and the utility of the final products (Congalton and
Green 1998). The DA in SPSS allows for accuracy testing of the model by using some
observations to develop the DA function and using the rest of the observations to test the
function. Hence, a random 25 % of the class sample was used to test the DA accuracies,
except for classes where only two samples existed; here one randomly chosen observation
was used to develop the model and one to test it. Co-occurrence matrices were calculated for
the two DA scenarios, and for both of the model developing observations and the model
testing observations. The final, overall accuracies, for the developing and testing of the
model are not the average accuracies on the diagonal but are normalized taking into

consideration the size of the sample.
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Producer’s and user’s accuracies as suggested by Felix and Binney (1989) are also reported
for each co-occurrence matrix. The bottom row of each matrix shows the errors of omission
also known as the producer’s accuracy. The values summarize the percentage of plots
correctly classified. The extreme right column of the co-occurrence matrices shows the
errors of commission also known as the user's accuracy. Errors of commission indicate the

probability that a plot classified as a given class actually represents that class on the ground.

The Kappa coefficient of agreement represented by the KHAT statistic defined by Cohen
(1960) was used to score the actual agreement minus the chance agreement of a co-
occurrence matrix. This has been defined both in Lillesand and Kiefer (1994) and Jensen
(1996):

oa-ca

KHAT = [9]
l—-ca
where:
oa = observed accuracy
ca = chance agreement

The Kappa Statistic (KHAT) is an index value ranging between 0 and 1 which expresses the
proportionate reduction in error achieved by a classifier as compared with the error of a
completely random classifier. Thus, a value of 0.75 would indicate that the classifier was
avoiding 75 percent of the errors that a totally random process would have produced (PCI,
1997).

The KHAT statistics formula used in this analysis was taken from Jensen (1996):

r r
N Z Xy — thxﬂ'

KHAT = —=L__#2l [10]
Nz -th-xﬂ'

i=l

where:



r = number of rows in the error matrix

Xii = number of observations in row i and column i (on the major
diagonal)

Xio = marginal total of row i

Xqg = marginal total of column §

N = total number of observations included in matrix

4.11 Chapter Summary

In this chapter, the processing of the field data (basal area extraction) to produce AVI labels
and the two methods of sample stratification were discussed. The second layer in the canopy
needed to be well established, therefore, trees less than 2 m in height but more than 1 m in
height were combined in the second layer. It is part of the AVI field protocol to exclude any
trees less than 1m in height from the AVI label (Alberta Forestry, Lands and Wildlife 1991).
The casi image preparation including the geometrical correction to remove aircraft roll, pitch,
yaw and position have been presented. The methodology used to extract the ‘brightness’
variable carrying most information about stand shadow was discussed. The relationship
between the stand structure and casi image shadow for an all three resolutions (60 cm, 1 m,
and 2 m) was established. The chapter included a description of how the texture channels
were generated and what variables were used in their construction. The statistical data
extractions (signature creation) were summarized. The classification procedures using
Discriminant Analysis for three types of classifications (spectral alone, textural alone and
combination of the two) were discussed. Finally, the methods of accuracy assessment using

errors of omission and commission as well as the Kappa statistic were outlined.
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Chapter 5 Results and Analysis

5.1 Introduction

Spectral characteristics of a stand can be useful in studying forest structure. For example the
near-infrared reflectance increases with the number of layers of leaves in the canopy
(Lillesand and Kiefer 1994). Structural information derived from spectral data can be
complemented by textural derivatives from the imagery, which are also sensitive to structural
components of the canopy (Wulder 1996). The main hypothesis of this thesis is that image
texture derived from high spatial resolution multispectral (casi) imagery will increase the
classification accuracy of multistory forest stands identified according to the AVI system as
part of a forest inventory. A classification approach is suitable to investigate this idea. In this
study, three combinations of data were used as input to a classifier. These three
combinations included spectral data alone, textural data alone, and the combined spectral and
textural data classification (Table 5.1). The data were classified using the first layer class
stratification and subsequently the same procedure was performed on the full information
AVI label class stratification, as introduced and discussed in Chapter 4. Even this level of
detail is not the full AVI field-label but is a summary of the characteristics of each plot that
may be more suitable for a remote sensing classification. All classifications were repeated
for the three spatial resolutions (60 cm, 1 m and 2 m) of casi imagery data available for the

study area.

However, prior to testing this hypothesis, a greater understanding of the behavior of the
individual texture measures and their relationship to field data was sought. The first section
of this chapter will discuss the results of a visual and a descriptive interpretation of one
texture measure as an example of the relationship between image characteristics and field
characteristics. Although all of the texture measures used in the classification were visually
interpreted, it is only practical to present the interpretation of one measure. In addition,

because the textural measures are all based on the grey level co-occurrence matrix, they are
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all highly correlated. The texture measure homogeneity was selected because this measure
is the most readily understood of all the available measures. Descriptive statistics included
the means and standard deviations of the texture measure computed at different window sizes
on the different image resolutions. One final interpretation exercise was conducted on three
individual plots (Plate 3.3 in Chapter 3) selected to relate the texture measures to the physical

characteristics of the stands.

Table 5.1 Listing of information used in the classification of all three

resolutions of data

Data Combination Data Used

Spectral alone 7 bands, (540-560 nm, 610-640 nm,
640-680 nm, 690-715 nm, 730-755
nm, 790-810 nm and 850-875 nm

Textural alone 5 textures, (angular second moment,
correlation, dissimilarity, entropy and
homogeneity)

Combination of spectral and textural 7 bands and 5 textures

5.2 Visual Interpretation of Image Texture

A set of visual analyses was conducted to determine the complexity of the second order
texture measures in different types of forest stands; as mentioned, only the homogeneity
measure is interpreted in detail here. Note that homogeneity is conceptually simple — it refers
to the high probability of the similarity of adjacent pixel values. In the following figures of
texture, high homogeneity values are expressed by a lighter tone in the imagery and the low

homogeneity values are darker.

A subset area showing the intersection of aspen and conifer stands was used to produce the
textural graphics which are the focus of this discussion (as shown in the Methods Chapter 4,
Figure 4.3). This area shows that aspen appears as the *“smooth” bright red stand on the false

colour near-infrared imagery, and the conifer stand appears “coarse” and dark green.
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Appendix D shows all of the textural measures, which are enhanced using an equalization
stretch. The 3D graphic is used to show the same measure on a surface using the same
vertical scaling for all window sizes (3x3, 5x4, 9x9, 11x11, 17x17 and 21x21) of texture
imagery produced. All images were produced for the three resolutions of casi data (60 cm, 1
m and 2 m). The graphics in this section show abbreviated figures of the imagery for the

homogeneity measure in Appendix D.

Figures 5.1 a, b and c show the homogeneity texture image of the subset area of aspen and
conifer. A progression of change in the homogeneity texture measure is apparent in the
images at the three different resolutions and the different three window sizes (3x3, 9x9 and
21x21) shown.

The window size defines the area that is incorporated in the texture measure. Hence, there is
a relationship between the window extent and the objects being captured by the texture
measure. For example, a 3x3 window covers an area of 1.8 m” on the 60 cm imagery, which
is smaller than an average tree crown in the study area. This is interpreted to mean that the
window includes the texture of the individual tree crown architecture in a stand comprised of
the sun-lit and shadowed portion of the tree crowns separately. This is in agreement with
other works, which discuss texture as a scale-specific phenomenon (refer to Hay and
Niemann 1994). The larger 21x21 window covers an area of 12.6m” on the ground at the
same 60 cm pixel resolution. The individual tree crowns are no longer the main contributor to
texture in this size of window, which may now be dominated by the stand structure
comprised of clusters or groups of individual tree crowns and gaps (the shadows and the sun-

lit crowns).

In Figure 5.1a, which shows the 60 cm 3x3 homogeneity texture window, the homogeneity
appears high for the conifer stand. The standard deviation, best expressed by the surface
image, is also quite high except for the areas of similarity. These are the groups of light tone
pixels or groups of dark tone pixels on the imagery representing the sun-lit and shadowed

parts of the conifer canopy. The aspen stand is dark in tone in the homogeneity texture
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image, and there is less variability (expressed by the lower standard deviation). These
observations are the exact opposite of the visual analysis of the texture of conifer and aspen
stands in the original colour composite image (refer to Figure 4.4 in Chapter 4). This
difference may be related to the ability of the texture measure to capture the texture of the
tree crown itself and not the texture of the stand. The latter is what the human interpreter

would focus on in the colour composite.

In the 9x9 texture window, the homogeneity of the conifer sun-lit and shadowed portions of
the crowns is again expressed in the high homogeneity of the stand. The standard deviation
is again quite high. Likewise, the aspen stand shows the low homogeneity typical of the
aspen crown (no apex, variability in leaf position and direction). In the 21x21 texture
window, the characteristics of the tree crowns are summarized by the homogeneity texture
measure; here, the conifer stand appears light (high homogeneity) with low standard
deviation. The aspen crowns are also summarized by the homogeneity texture measure;

lower homogeneity and lower standard deviation than that of the conifer stand.

On the 1 m homogeneity imagery (Figure 5.1b) in the 3x3 texture window the two stands
appear texturally similar, except for the two large or exceptionally large conifer crowns,
which can be detected individually. A small difference is measured in the standard
deviations of the two stands. In the 9x9 window the texture of the two stands is even more
similar (an even smaller difference in tone and texture) and the two conifer crowns are still
visible. This is mostly due to the architecture of the conifer crown but it should be noted that
the conifer crown diameters in this location are larger than the aspen crown diameters). In
the 21x21 window, the two stands are difficult to distinguish texturally, and they have a

similar standard deviation.

Figure 5.1c shows the same location on the 2 m homogeneity texture measure. The 3x3
texture window now covering an area of about 6m? shows that the two stands are alike, but
the boundary between the stands is visible. Notice that both individual conifer and aspen
crowns are distinguishable in the imagery. In the 9x9 window, the aspen stand shows a much
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lighter tone than the conifer stand. This trend continues to intensify as the window size
increases, and is even more dominant in the 21x21 window where the aspen stand has a high
homogeneity (the aspen stands comprised of same age trees which are relatively similar in
size and shape). The conifer stand appears as a low homogeneity stand. The shadow and
sun-lit canopies of all trees as well as the more complex stand structure are captured by the

texture measure.

This same type of texture inversion with window size and pixel resolution was observed
when interpreting the entropy, dissimilarity and angular second moment textural images
(refer to figure in Appendix D). The entropy measure captures the inversion of the texture
measure but on average, the stands appear similar. The standard deviation also did not vary
as much between the stands. The dissimilarity measure also captured this type of inversion;
the stands did not appear visually different until the 9x9 window size on the 60 cm resolution
imagery. On all of the 1 m resolution imagery and up to the 11x11 window size on the 2 m
resolution imagery the most dominant feature on the imagery was the boundary of the two
stands, with the stands still appearing similar texturally. Only at the 17x17 window size on
the 2 m imagery did the two stands appear different. This suggests that dissimilarity texture
measure can be utilized to detect boundaries and edges between vegetation classes. The
correlation texture measure was least sensitive to the textural inversion between the two
stands; it also brought out the boundary between the stands and in general behaved similarly
to the dissimilarity measure. The angular second moment, the statistical opposite of the

entropy measure, and was not shown graphically in Appendix D.
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33000 3000 35000 38000 37000 38000 30000

3 x 3 window

The aspen stand, on the left, appears dark in tone and has very low homogeneity texture

values. The opposite is true for the conifer stand, on the right, which appears lighter in

tone and the homogeneity values are higher. There is a wider range in the standard deviation
of the conifer stand, but a few areas of concentrated, high homogeneity are visible. The
texture captures the variability of reflectance and shadows within the aspen and conifer crowns.

33000 34000 35000 36000 37000 380.00 390.00

9 x9 window

The aspen stand homogeneity texture using a 9 x9 window appears very low, the opposite is
true for the conifer stand, where the texture is higher and there are visible areas of
concentration (sun-lit crowns and shadows of the conifer trees). The standard deviation is
reduced at this window size, however, the conifer stand shill shows a greater difference.

> <

33000 000 35000 3000 ;000 36000 39000
21 x 21 window

The variability of the tree crowns is expressed as the texture measure for the whole stand.
The aspen stands show very low homogeneity for the whole stand (a function of the low
homogeneity of the aspen tree crowns), the conifer stand shows high homogeneity for the
whole stand (a function of the sun-lit and shadowed components of the conifer crowns).

Figure 5.1 a Homogeneity texture for the subset window using 60 cm casi imagery and
three window sizes.
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25.00 22000 23500 24000 24500 250.00 25500 28000 285.00

3 x 3 window

Using the 1 m casi imagery and a small window (3x3) it is difficult to distinguish between
the aspen (left) and conifer (right) stands. The textural characteristics of the two stands

are difficult to separate. However, the conifer stands still shows areas of localized high
homogeneity which are inherent to the conifer sun-lit crowns and shadows. Some variability
within these crown and shadows is still represented.

b 4

22800 23000 23600 24000 24500 250.00 25500 28000 28400

9 x9 window

As the window size increases to 9x9, the variability within the localized high homogeneity
areas diminishes. The conifer stand shows higher standard deviations (higher peaks, lower
lows) than the aspen stands, but on average these are virtually undetectable as seen in
Figure 5.2.

21 x 21 window

At the largest window size of 21x21 all within tree crown textural characteristics are
minimized. The textural characteristics of the stand are increased. The conifer stands
shows (on average) a slighter higher homogeneity texture compared to the aspen stand.

Figure 5.1 b Homogeneity texture for the subset window using 1m casi imagery and
three window sizes.
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144,00 146.00 148.00 150.00 152.00 154.00 155,00 158,00 160.00 162.00 164.00

3 x 3 window

Using the 2m casi imagery and a small (3x3) window size homogeneity texture the aspen
(left) and conifer (right) stands are not distinguishable. Within crown characteristics are not
captured by this texture measure combination, however, areas of high and low concentrations
of homogeneity are accentuated. The boundary between the two stands is also enhanced.

144.00 148,00 148.00 150.00 152.00 154,00 155.00 158.00 160.00 162.00 164.00

9 x9 window

As the window size increases the differences between the aspen and conifer stands become
visible. The aspen stands shows areas of high homogeneity, and has on average higher in
homogeneity values than the conifer stand. Small variabilities within the stand are represented.
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144.00 148.00 148.00 150.00 15200 154.00 155.00 158.00 160.00 16200 1564.00

21 x 21 window

Using the largest window size 21x21, the two stands are very different in homogeneity
measurements. The aspen is represented by high homogeneity, and the conifer stands is
homogeneously low in values(inverse of what the higher resolution imagery shows).
No within stand variabilities are captures by the texture.

Figure 5.1c Homogeneity texture for the subset window using 2m casi imagery and
three window sizes.
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[n summary, based on a visual analysis of the homogeneity texture measure in different
window sizes and different pixel resolutions, the texture of high resolution imagery (60 cm
pixel resolution) appears to contain a great deal of information on the crown architecture of
individual trees. The texture is comprised of differences within crown shadows or sun-lit and
shaded crowns. The texture also can be interpreted to contain information on stand structure
such as tree distribution, species and shadows. Texture of high resolution imagery (1 m and
2 m pixel resolution) reduces the ability to detect individual tree crown architecture and is

more related to stand structure characteristics.

5.3 Descriptive Statistical Interpretation of Texture

The means and standard deviations of homogeneity texture extracted from the imagery in the
subarea shown in Figure 4.3 (Chapter4) are summarized by graphs in Figure 5.2. These
graphs show the simple descriptive statistics that confirm the visual interpretation in the
preceding section. Essentially, there is an inversion of the homogeneity texture measure with
window size; this is repeated at each of the available pixel resolutions. The visual analysis
hinted at this trend but the statistics shown in these graphs provide a more definitive

interpretation.

In particular, notice the aspen stand shown in red. Homogeneity always increases with
decreasing pixel resolution, and this increase is more pronounced at the smaller window size.
The inverse of this effect can be noted in the conifer stand shown in green. Here, the
decrease of conifer stand homogeneity is related to the decrease in pixel resolution. In other
words, a low homogeneity aspen stand at high spatial resolution becomes a high
homogeneity aspen stand at low spatial resolution. A high homogeneity conifer stand at high

spatial resolution becomes a low homogeneity conifer stand at low spatial resolution.

As described in the visual analysis of texture measures, this inversion occurs because of the
change in the object that the texture is measuring from within tree crown architecture to the

structural component of the stand itself. The largest difference between the means and
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standard deviations of the two stands occurs at the 3x3 window of the 60 cm image, the most

spatially detailed imagery. This could have significant implication in a classification where
these types of statistical summary — e.g. the means and standard deviations - are used to
distinguish between many classes. The 1 m textural imagery demonstrates that the aspen and
conifer stands are texturally similar; this imagery has already lost the detail of the crown
architecture (capable of distinguishing stands) but has not yet captured the structural
complexity of the stand (also capable of distinguishing the stands). This is also captured by
the shift in the standard deviation of the two stands, from lowest at 2 m to highest at 60 cm

(as the window size increases).

All these trends suggest that a small window size (3x3) at a high resolution (60 cm) should

yield best class distinction results in a classification.

5.4 Example of Relationship between Texture and Field Data

The next step was to investigate visually the relationships between the interpretation of
texture (represented by the homogeneity measure and its statistical characteristics) and the
structural field information of the plots. Selected for this analysis were three plots (shown in
Plate 3.3 in Chapter 3); one aspen, and two conifer stands. The idea was to show the
relationships in these areas, which represent typical examples of the kinds of forest structures
that must be classified or interpreted as part of a forest inventory. The plot structural
information based on the collected field data is shown in Table 5.2. There are two conifer
species stands, which vary in species compaosition and tree sizes. The two conifer stands
have an established second canopy layer, the Douglas fir stand has an aspen second canopy
layer and the mixed conifer stand has a mixed conifer second canopy layer. The
aspen/poplar stand, with an aspen second canopy layer is pure and was not defoliated during

the summer of 1998.
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Figure 5.2 Statistical summary of change in the homogeneity texture measure for the
aspen and conifer imagery subset. Six window sizes (3x3, 5x5, 9x9, 11x11,
17x17 ans 21x21) and the three casi imagery resolutions are represented.
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Table 5.2 Structural information based on the collected field data for the 3 field

plots
Plot AVI Code Average Plot Structure
PlotID Layer | Layer2 Layer 3 GRS Crown Closure Height Crown Diameter dbh
500gg Pl:Sws SwePLAw, Swyq 60% 14.6m 2.8m 18cm
93 Sep Awyg 60% 18m 5.2m 20cm
3 AwqPb, Awyo 41% 10.9m 2.4m [3em

The statistical trends for the plots are summarized by a graph showing the homogeneity
texture in a 3x3 window and a second graph showing the texture based on a 21x21 window.
All three resolutions are demonstrated. Due to the similarity between the graphs only the

smallest and largest window sizes are needed to demonstrate the trends.

Figure 5.3 shows statistical trends, which appear to be exceptionally similar to the ones
recorded for the subset imagery in the earlier visual and descriptive statistical analysis.
There is a noticeable inversion of the texture measure as the spatial component being
measured becomes less detailed. The largest difference in statistical summaries for the aspen
and conifer stands occurs at the 2 m data. However, the two conifers are most statistically
distinct at the 60 cm data. In the 3x3 window the large crown diameters (5.2 m) of the
Douglas Fir stand contribute to the high homogeneity measure within the crown. The
smaller crown diameters (2.75 m) of the mixed conifer stand are expressed as lower
homogeneity. This is in agreement with Bruniquel-Pinel and Gastellu-Etchegorry (1998)
who established in their work that the tree crown diameter is the most influential biophysical

parameter on texture measures.

Based on this information it has been interpreted that crown sun-lit and crown shadowed
parts of the canopy in such large trees are large areas of similarity to which the smaller
window size texture homogeneity measure is sensitive. On the 21x21 window at the 60 cm

resolution, the same inversion was observed as in the subset where the large trees of the
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Douglas Fir stand contribute to the complexity of the structure of the stand resulting in lower
homogeneity. The smaller conifers in the mixed conifer stand are more homogeneous in the
21x21 60 cm imagery. The aspen trend also shows the lower homogeneity values at higher

resolution (60 cm) and high homogeneity values at the correct resolution (2 m).

Finally, texture is not as successful at showing differences between the aspen and conifer
stands at high resolution (60 cm). For example, at the 2 m resolution the means of the two
species are most different. The I m data also shows the least ability at distinguishing

between the different species, or within species difference.

These results are significant when thinking about the classification scheme. Although texture
is not as successful in distinguishing between the species, it can distinguish within species
differences better at higher resolutions and smaller window sizes. This is interpreted to mean
that because spectral bands are exceptionally adequate in species distinction, both the
spectral and textural information at the highest spatial component (60 cm and 3x3 window
size) should produce the best classification results where within species stratification is

desirable.
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Figure 5.3 Statistical summary of change in homogeneity for three field plots. Two

window sizes and the three casi imagery resolutions were used.
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5.5 Discriminant Analysis Resuits

The DA classification methodology discussed in Chapter 4 was applied to two classification
schemes based on the AVT labeling using the collected field data:

a) Six-class sample stratification

b) Thirteen-class sample stratification

The procedure was repeated for all three resolutions of the data (60 ecm, 1 m and 2 m). All
DA was performed on the spectral bands alone, textural bands alone and the combination of
the spectral and textural bands. Only the 21x21 window size results are reported here because
this window size, on average, provided the most separability among the classes at each
resolution. At the six-class sample stratification, the DA function was developed with thirty-
four plots and tested on eleven plots. At the thirteen-class sample stratification, the DA

function was built on thirty plots and tested on fifteen plots.

The section presents and discusses the results in the form of omission/commission errors and
statistical significance based on the KHAT statistic. Omission errors are computed by
considering the rows in the contingency or classification tables; e.g. if a plot is omitted from
the class in which it was originally placed based on the field data, then it would appear as a
member of another class along the row. Commission errors are computed by considering the
columns; e.g. that same plot then becomes a commission error of the class into which it has

been wrongly placed by the image data.

5.5.1 Results using the first AVI Layer

In this section, the discriminant classifier was run on the same field/image samples, but the
classification scheme is less detailed considering only the first layer or components of the
canopy in the labeling of the stand. This level of classification is comparable to those that
have been previously attempted (e.g. Franklin and McDermid 1993; Maudie 1999) and
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represents a possible application of image texture similar to that which can be accomplished
through traditional forest inventory procedures using aerial photointerpretation. Again, as
noted by Wilson (1995) it is important to remember that this AVI classification is not the full
AV as implemented in the field, but is a grouping of the plot data to represent homogenous

stands that are suitable for remote sensing classifications.

Table 5.3 Summarized classification results and accuracies for six-class sample

stratification
DA using six-classes
KHAT (confidence level KHAT (confidence level
Developing 95%) Testing 95%)

60 cm data 34 plots 11 plots

7 Spectral & 5 Textural  79.4 0.73 (+/- 0.0065) 63.6 0.57 (+/- 0.0103)
7 Spectral 61.8 0.51 (+/-0.0118) 54.5 0.43 (+/- 0.0137)
S Textural 50.0 0.37 (+/-0.0151) 45.5 0.39 (+/- 0.0146)
100 cm data

7 Spectral & 5 Textural  76.5 0.69 (+/- 0.0074) 63.6 0.57 (+/- 0.0103)
7 Spectral 55.9 0.47 (+/-0.0127) 54.5 0.43 (+/-0.0137)
5 Textural 44.1 0.33 (+/- 0.0161) 36.4 0.28 (+/-0.0173)
200 cm data

7 Spectral & 5 Textural  73.5 0.65 (+/-0.0084) 72.7 0.66 (+/- 0.0082)
7 Spectral 58.8 0.53 (+/-0.0113) 54.5 0.39 (+/-0.0146)
5 Textural 44.1 0.33 (+/- 0.0161) 36.4 0.28 (+/- 0.0173)

For the 60 cm data set, the spectral bands produced a classification accuracy of 61.8 % when
the model was developed, while testing of the model produced a 54.5% classification
accuracy (refer to Table 5.3). Based on the literature (e.g. Franklin and McDermid 1993;
refer to Chapter 3) this is a reasonable level of accuracy to expect at this spatial resolution

with this type of classifier and this level of class stratification.
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Most of the misclassification of plots occurred within similar classes. For example, Class 1
(aspen) was only 71 % accurate when developing the model and 50 % accurate when testing
the model (refer to Table 5.4a). An error of omission occurred for the aspen class; 50% of
the class was actually assigned to Class 2 (aspen mix). The conifer classes also displayed
some confusion among them, especially Class 4 (pine mix) to which Class 5 (spruce) and

Class 6 (spruce mix) were committed.

The DA using only textural derivatives showed an accuracy of 50% when developing the
model and 45.5% when testing the model (refer to Table 5.3). Unlike the spectral band
classification, the classes when separated using texture alone were misclassified not only into
other similar classes but also into different species categories. For example, some plots from
Class Four (pine mix) were committed to Class Two (mixed aspen class), and Class Six

(mixed spruce class) (refer to Table 5.4b).

The combination of the two data types (spectral and textural) in DA produced accuracies of
79.4 % to develop the model and 63.3% to test the model. The aspen class (1) was still
problematic, showing an accuracy of only 25% and committing some of the plots to the
aspen mix class (2) and the pine class (3) (refer to Table 5.4c). This compares favorably to
earlier reports of accuracies on the order of 75% using spectral and texture measures and
similar classes (e.g. Franklin and McDermid 1993; Franklin et al. 1988, Gerylo et al. 1997).

For the 1 m DA, the spectral bands did not perform as well as for the higher resolution data
(60 cm), yielding an accuracy of 55.9 % to develop the model and 54.5 % to test the model
(Table 5.3). However, the same or similar errors of omission and commission occurred here
as in the 60 cm data, with Class | (aspen) and Class 4 (pine mix) showing developing
accuracies as low as 25 % and 33.3 % (refer to Table 5.5a). The textual derivative DA
results were also lower for the 1 m data than for the 60 cm data results at 44.1% to develop
the model and 36.4 % to test the model. Classes Four (pine mix) and Five (spruce) appeared

to be the most problematic classes, both having plots being committed to Class Two (aspen
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mix). In addition the aspen class (1) was committed to Class Two (mixed aspen), producing
a DA model testing result of only 25% (refer to Table 5.5b).

The combination of the spectral and textural data produced a model developing result of 76.5
% and a model testing accuracy of 63.5 % (Table 5.3). Once more, the Fourth Class (pine
mix) was the weakest in the classification at only 33%, committing its members to the
Second Class (aspen mix) and Third Class (pine). The two aspen classes were also confused,
where the First Class (aspen) was committed to the Second Class (aspen mix), 25 % of the

First Class was also committed to the spruce mixed class (6). (refer to Table 5.5¢).

Finally, the 2 m data set results produced the lowest accuracies in the six-class sample
stratification scheme for the three spatial resolutions tested. For the DA using spectral bands
only, model developing accuracy was 58.8 % and model testing accuracy was reported as
54.5% (refer to Table 5.3). The confusion occurred mostly in the first (aspen) class to which
the second (aspen mix) and third (pine) classes were committed (refer to Table 5.6a). The
textural bands produced DA results of 44.1 % and 36.4 %, for developing and testing
accuracies respectively. Similar trends as observed in the 60 cm and | m data were observed,
where the classes not only were confused with adjacent but even with exceptionally different
classes. For example, Class 4 (pine mix) and Class 5 (spruce) plots were both committed to
Class 2 (aspen mix) (refer to Table 5.6b). The spectral and textural DA produced results of
73.5% and 72.7% for developing and testing of the classification respectively. Class |
(aspen) and Class 4 (pine mix) were once more the problematic classes producing results of
75% and 33.3 %, respectively (refer to Table 5.6c).
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Results from Building of the Discriminant Function Resuits frorn Testing of the Discriminant Funetion
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Results from Building of the Discriminant Function

Results from Tewting af the Discriminant Function.
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Field Survey Data Field Survey Data
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In summary, the six-class sample stratification was best classified using the combination of
the spectral and textural informnation. The spectral data alone produced results where similar
species where confused. For example aspen and mixed aspen were confused with each other
and spruce and mixed spruce also caused errors. The inclusion of textural data in the DA
confused classes with similar spatial component, or plots that appeared to be similar in tonal
change. For example, two aspen plots were confused as spruce and spruce mixed plots.
Figure 5.4 best explains the reasons for this misclassification, based on texture alone. The
figure shows aspen plots with a range of defoliation, the false colour composite 60 cm casi
imagery and textural representations of the plots are also shown. The heavily defoliated
aspen plot has similar homogeneity texture characteristics (high homogeneity) to the
coniferous plot. In some cases, an aspen plot was misclassified based on the spectral
characteristics, resulting in commission to a coniferous class. Appendix E shows a summary
of radiance characteristics (similar to reflectance curves) for aspen (ranging in defoliation)
and conifer plots. The non-defoliated aspen plots have a much higher radiance values, in the
near-infrared bands, than the heavily defoliated aspen plots. In fact, the heavily defoliated
aspen plot shows a pattern of radiance similar to the one of the conifer plot. This conifer
reflectance pattern is well known (Lillisand and Keifer 1994), where radiance is lower in the
conifer species in the near-infrared wavelengths, compared to deciduous species. This
explains why an aspen plot was confused with a conifer plot. Furthermore, the rates of
change (the average digital number change from spectral band to spectral band) in the
radiance curves for the non-defoliated aspen plots are higher (167, 158 respectively) than the
rates of change for the defoliated aspen and conifer plots (127, 130 respectively); (also in
Appendix E). This relates to the similarity of texture for the defoliated aspen and for the
conifer plots. Both have a slower rate of change, which was captured by the ‘brightness’
image from which the texture was derived, hence, the higher homogeneity texture values for

these plots.
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casi false colour homogeneity texture homogeneity texture
composite 3 x 3 window 21 x 21 window

Aspen moderately defoliated

casi false colour homogeneity texture homogeneity texture
composite 3 x 3 window 21 x 21 window

Aspen heavily defoliated

casi false colour homogeneity texture homogeneity texture
composite 3 x 3 window 21 x 21 window

The Bruce spanworm defoliation in the aspen stands has been captured by the casi imagery. The defoliation
resulted in reduction in the absorption in the red band and a reduction in the radiance being reflected by the

trees in the near infrared bands. Therefore, stands which were very similar structurally (because of their clonal
reproduction) appeared very differently to the casi sensor. The defaliation aiso reduced the structural complexity
of the tree crowns, which is represented by the higher homogeneity in both the 3x3 and 21x21 window sizes.

Conifer

casi false colour homogeneity texture homogeneity texture
composite 3 x 3 window 21 x 21 window

The conifer plot showed a large amount of shadow in the casi imagery. The texture captures the low change
in pixel values in the shadowed areas of the imagery, and produced an over all high homogeneity value using
21x21 window for the plot similar to that of the moderately and highly defoliated aspen stands.

Figure 5.4 Texture similarity between the heavily defoliated aspen and conifer plots
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In this first DA, the classification was acceptable, but similar classes tended to be
misclassified with each other. Grouping of plots with such a wide range of AVI species
components in the first and other layers caused the signatures for these classes to be

exceptionally broad and overlap each other, resulting in some misclassifications.

At all image resolutions, the plots that were near the edge of a class (their standard deviation
was largest and their means were the farthest from the average class mean) caused the most
errors of omission and commission. For example, some plots labeled as aspen plots in the
six-class sample stratification scheme would often be classified as aspen mixed plots and
were fully omitted from the aspen class. Examples are plots 98, 95 and 500ii. In all cases
the plots were misclassified as aspen mixed, and in all plots the second layer had some
conifer species contributing to the plot signature and causing this type of misclassification.
The contribution of the second layer to the plots’ signatures was significant For example, at
plot 98 as much as 11.9 m® in basal area belonged to the second layer. Also, the field data
showed that 32% of the crown closure of the plot was contributed by this layer. This same
error occurred with plots labeled pine and spruce; many of these plots would be misclassified
as mixed conifer plots. In further investigation, most of these plots had a second canopy
layer, which was not used in the six-class sample stratification scheme. Although the basal
area in this layer is much smaller then the basal are of the first layer (refer to Table 4.1 in
Chapter 4), the results show that this layer did contribute to the signature of the plots. This
stratification scheme operates ineffectively near class boundaries. The results suggest that a
better stratification scheme such as the thirteen-class sample stratification scheme, which

takes into consideration the existence of the other layer, could be more appropriate.

5.5.2 Resuits Using All AVI Layers

In this section, the discriminant classifier was run on the same field/image samples, but the
classification scheme was more detailed, considering all the components of the canopy (or

layers) in the labeling of the stand. This level of classification is much more detailed than
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has been previously attempted (e.g. Franklin et al. 1998), but was suggested by that earlier
study as a possible application of image texture beyond that which can be accomplished
through traditional forest inventory procedures. Only the 21x21 window size results are
reported here because this window size, on average, provided the most separability among

the classes at each resolution.

Again, as noted by Wilson (1995) it is important to remember that this AVI classification is
not the full AVI as implemented in the field but is a grouping of the plot data to represent

homogenous stands that are suitable for remote sensing classifications.

Table 5.7 Summarized Classification Results and Accuracies for Thirteen-class
sample stratification

DA using thirteen-classes

KHAT (confidence level KHAT (confidence level

Developing 95%) Testing 95%)
60 cm data 30 plots 14 plots
7 Spectral & 5 Textural 86.7 0.85 (+/- 0.0036) 86.7 0.86 (+/- 0.0034)
7 Spectral 66.7 0.63 (+/- 0.0089) 66.7 0.64 (+/- 0.0086)
5 Textural 53.3 0.49 (+/- 0.0122) 53.3 0.5 (+/-0.0120)
100 em data
7 Spectral & 5 Textural 83.3 0.82 (+/- 0.0043) 80.0 0.78 (+/- 0.0053)
7 Spectral 63.3 0.6 (+/-0.0096) 60.0 0.57 (+/- 0.0103)
5 Textural 533 0.4 (+/-0.0144)9 46.7 0.5 (+/- 0.0120)
200 cm data
7 Spectral & 5 Textural 70.0 0.67 (+/- 0.0079) 733 0.71 (+/- 0.0070)
7 Spectral 63.3 0.6 (+/- 0.0096) 60.0 0.57 (+/- 0.0103)
5 Textural 50.0 0.45 (+/-0.0132) 40.0 0.33 (+/- 0.0161)

The thirteen-class sample stratification scheme classification was applied first to the 60 cm
data. The classification accuracies for the spectral bands only DA were 66.7 % for both the
developing and the testing of the model (refer to Table 5.7). The confusion occurred among
the various aspen Classes 1 through 5, (refer to Table 5.8a). The texture data only DA
produced results of 53.3% for both the developing and testing of the function. It can be
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observed in Table 5.8b that the confusion between classes occurs throughout the matrix,
where deciduous type classes can be confused with conifer type classes. An explanation for
this was already discussed in the previous section, (also refer to Figure 5.4). The
combination of the spectral and textural data produced the highest results; 86.7% occurred
for both developing and testing of the model. The second class (aspen type class) was
committed to the wrong classes (refer to Table 5.8c). It is possible that the defoliation in the
aspen stands in the summer of 1998 is making these classes more problematic (refer to
Figure 5.4). Regardless, this final result is 7.3% higher than the six-class sample
stratification.

At the | m data, accuracies for the DA are less than the higher resolution (60 cm) data, but
are still higher then the six-class sample stratification results. The spectral DA showed a
result of 63 % for developing the model and 60 % for testing the model. On average, these
results are about 5% higher then the six-class sample stratification results (refer to Tables 5.3
and 5.7). In Table 5.9a it can be observed that, once again, it is more the aspen type stands
that are contributing to the errors in the classification. The textural data only DA shows that
many of the stands are textually similar (Table 5.9b), the developing accuracy of the model is
only 53.3 % and the testing is 46.7 % (refer to Table 5.7). The combined spectral and
textural DA performed much better than the six-class sample stratification method (refer to
Table 5.7) resulting in the accuracies of 83.3% for developing of the function and 80 % for
testing of the function (refer to table 5.7). The aspen stands show a misclassification and the
pure aspen stand with no second canopy layer (Class One) shows the lowest classification
accuracies of 50% (refer to Table 5.9¢). It should be mentioned that these were estimated to
be of the same age, resulting in one layer aspen stands. These types of stands are most
susceptible to and suffered from defoliation (Peterson and Peterson 1992). Hence, the
spectral signature of these stands differs from non-defoliated stands (Appendix E). This is
due to the contamination of the signature with other factors such as tree trunks and branches,
understory or standing litter, (refer to vanLeeuwen and Huete 1996; or Guyot et al. 1989).
Finally, KHAT results show higher accuracies than the six-class sample stratification results
(refer to Table 5.7).



91

The lowest results in the DA occurred using the 2 m data. These were exceptionally similar
to the results achieved in the six-class sample stratification (refer to Table 5.7). The DA
using spectral data alone produced classification accuracies of 63.3% when developing the
model and 60 % when testing the model (refer to Table 5.7). The textural data only DA also
had low results of 50% and 40%, for developing and testing respectively. The aspen classes
were once again the most problematic, not only in the spectral bands only DA, but also in the
textual bands only classification (refer to Tables 5.10 a and b). The combination of the
spectral and textural information produced results that were lower than the results using the
six-class sample stratification. These results were at 70 % for developing the model and
73.3% when testing the model, with some of the aspen classes not being classified at al (refer
to Table 5.10c). The KHAT statistic showed little difference between this classification

scheme and the six-class sample stratification scheme (refer to Tables 5.3 and 5.7).

[n summary for this section the classification accuracies:

¢} Are higher or equal to the six-class sample stratification results
d) The thirteen-class sample stratification produces smaller errors of omission
and commission

e) KHAT is higher for the thirteen-class sample stratification

However, as suggested in the visual analysis of the texture data, a quick DA of the 60 cm
data with a 3x3 window size provided 92% accuracies developing and 73% testing results,
which are quite comparable to those reported here with the larger window size. This suggests
that the internal tree crown patterns captured with the higher resolution imagery (60 cm) and
smallest window size (3x3) aid in the classifications of the multistory stands. Similar results,
where internal tree crown patterns captured by fine textural component improved image

classification, have been shown by Brandtberg (1997).
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Resulis from Building of the Discriminant Function

Results from Testing of the Discniminant Funcuon

Ploi Class Assignmen Plot Class Assignment
Field Suncy Data
Class 9 10 11 12 13 TJowl Class ] 2 3 4 s 6 7 [ 9 10112 13 Total
1 - - - 4 0% ! 1 1 - - . . . . . - . b] 0%
2 ] - - 3 oT% ] . . . 2 0%
3 - L 2 50% 3 ] 1%
4 . . | 100% 4 1 100%
g s . 3 am § 5 1 %
B o . oo 3 e %
‘g 7 . . i \ 3 % g 7 ) %
] - ! . 3 113 o L} 1 0%
k| 9 - . - . . . -_ ! - § BN g 9 1 %
10 . . . . . . - - . 2 100% 10 | %
" . . . . . . . -_ 1 100% n ! 100%
[} - . . . . . . . . - ) 100% [} ] 100%
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5.6 Chapter Summary

In this chapter visual interpretation and descriptive statistics of the texture measures establish
a relationship between the forest stand structural information and the casi imagery textural

information.

The change in of the texture window size and the change in image resolution have shown that
the texture derivatives image values invert from high to low or low to high based on the scale

of the object is captured (from tree crown architecture to plot structure)

As forests age from immature to old stands, the canopy openness increases in the stands
(Frazer et al. 1998). In this study area, in many cases, especially in the pioneering aspen
stands, these gaps are filled by a second story coniferous canopy. The texture measure on the
high resolution imagery is able to extract these structurally complex stands by detecting the
shadow in the stand. However, the shadow captured by these textural measures is not only
the gap shadow of the stand, but also shadows produced by large crowns of the older stands.
As shown by Brandberg 1997, such shadows aid in stand type classification. Frazer et al.
(1998) have shown that canopy openness increased more in the transition from mature to old
stands (most significant after 150 years of age) that form immature to mature stands.
Because the forest in the study area is still relatively young (on the succession scale) the
existence of a second succession canopy in the stands is quite likely, supporting applicability

of the methodology discussed in this thesis.

St.-Onge and Cavayas (1995) have shown that forest structure and texture relationships
become stronger as the pixel size approaches or drops below | m in resolution. The findings
in this thesis support the previous research, showing that the highest resolution imagery (60
cm) can produce the highest texture only classification results of plots stratified using canopy
structure information. A study by Jakubauskas (1997) using low resolution imagery has also
suggested that high resolution image texture would be more appropriate for forest structure

classification.
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The combination of the textural signatures and the spectral signatures outperforms any other

type of classification, regardless of the class scheme stratification.

As spectral and spatial signatures become more generalized in the lower resolution (1 m, 2 m

data) the classification accuracies are reduced.

The results show that a better stratification scheme, such as the thirteen-class sample
stratification scheme, which takes into consideration the existence of the other canopy layer,

is more appropriate and even increases the classification results by about 17%.
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Chapter 6 Summary and Conclusions

6.1 Summary

High spatial and spectral resolution imagery (1 m and less) such as the casi imagery used in
this thesis show potential for producing forest inventories (AVI) in shorter time intervals as
compared to the traditional methods using aerial photographs (Franklin 1994; Leckie 1995).
The availability of this type of resolution of imagery from satellites makes large area forest
inventories logistically feasible. The methods for analyzing such imagery are being
researched with the purpose of producing accurate results, which meet or exceed the
standards achieved by airphoto interpretation, while at the same time retaining the

classification scheme with similar or better level of detail.

To meet these goals new methods for high resolution image classification that deal with the
high spatial resolution problem of spectral variability (scene noise) are being developed. The
ways of dealing with this variability fall into two categories:

o Elimination of variability by individual tree crown delineation (King 1995), or

automated image segmentation (Ryherd and Woodcock 1996; Lobo 1997)

e Utilization of spectral variability as an information source to be included in the

classification procedure (such as texture).

Although these methods are proving to be quite successful, utilizing the high spatial
resolution imagery in forest inventory classification often requires extensive field data
collection, specialized software not always commercially available and an advanced
understanding of the data and software. A straightforward and cost effective technique is

more likely to be utilized by forest managers.
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This study explored such a technique. Second-order texture readily available in commercial
image analysis packages was used to represent the high spatial information content captured
by the high resolution imagery. The classification procedure implemented this textural
information, and forest classes outlined by the AVI standard in Alberta were digitally

classified. The labels were developed using the per species basal area for each sample site.

Three resolutions of casi imagery (60 cm, 1 m and 2 m) collected over the study area on July
18" 1998 were tested for best results. The sample stratification based on only the first
canopy layer of the AVI label resulted in a six-class sample stratification. The second layer
canopy inclusion in sample stratification provided a wide range of forest classes to be
classified and resulted in a thirteen-class stratification sample scheme. A’ brightness’ image
was produced through Principal Component Analysis of the seven spectral bands (540-560
nm, 610-640 nm, 640-680 nm, 690-715 nm, 730-755 nm, 790-810 nm and 850-875 nm).
The ‘brightness’ image captured the shadowed areas in the imagery which were used to
establish a relationship between image shadow and the structural compiexity index derived
from field measurements for all plots. The relationship between the shadow and the
structural complexity index was strongest at the 60 cm per pixel casi imagery resolution,
giving an R? of 0.6. Signatures consisting of the mean per-plot values were generated for the
seven spectral channels available at all three resolutions of the imagery and the five second-
order textural derivatives (angular second moment, correlation, dissimilarity, entropy and

homogeneity).

For each data set two-thirds of the sample plots were used to develop the discriminant
functions, the remaining one-third was used to test the discriminant function accuracy. Three
Discriminant Analyses using first only the spectral data, second only the textural data and
third the combination of the two data were performed for each resolution. The KHAT
statistic was used in conjunction with the co-occurrence matrices to evaluate the accuracies

of the classifications.
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Prior to interpretation of the results, a set of visual analyses was conducted to determine the

complexity of the second order texture measures in different types of forest stands. Based
on this visual analysis of the texture measure in different window sizes and different pixel
resolutions, the texture of high resolution imagery (60 cm pixel resolution) appeared to
contain a great deal of information on the crown architecture of individual trees. The texture
was comprised of differences within crown shadows or sun-lit and shaded crowns. The
texture was interpreted to contain information on stand structure such as tree distribution,
species and shadows. Texture of high resolution imagery (I m and 2 m pixel resolution)
reduced the ability to detect individual tree crown architecture and was determined to be

related to stand structure characteristics.

On average, the use of texture channels improved the per-plot classification accuracies by
17% compared to using the spectral channels alone. The highest per pixel resolution imagery
of 60 cm outperformed the other image resolutions (1 m and 2 m) and the thirteen-class
sample stratification scheme improved the classification accuracies by 14%, with results of
87% and a KHAT of 0.85, compared to the six-class sample stratification scheme results of
72% and a KHAT of 0.73.

[n summary the results showed:

¢ The combination of the textural signatures and the spectral signatures outperforms

any other type of classification, regardless of the class scheme stratification.

e As spectral and spatial signatures become more seneralized in the lower

resolution (1 m, 2 m) data the classification accuracies are reduced.

e The results show that a better stratification scheme, such as the thirteen-class
sample stratification scheme, which takes into consideration the existence of the
other canopy layer, is more appropriate and even increases the classification
results by about 17%.
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6.2 Conclusions and Contributions to Research
The work presented in this thesis contributes to areas of remote sensing research by
demonstrating that image texture derived from high spatial resolution multispectral imagery
increased the classification accuracy of multistory forest stands identified according to the

AVTI system as part of a forest inventory. The following conclusions can be made:

e Statistical and visual interpretation of the textural imagery was used to establish

that texture could be used to express the stand complexity.

¢ The best classification results of 86.7 % were achieved using the highest image
resolution of 60 cm, where textural and spectral signatures were combined to
classify the data based on the thirteen-class sample stratification. On average, the
inclusion of the textural information improved the classification by 20%; it also

allowed a detailed class information to be applied.

e Sample class stratification needs to be more complex on higher resolution

tmagery

e Hierarchical merging of classes should be done on all AVI layer information

Supporting these conclusions:

e A relationship between stand complexity and an image component (shadow) was

found;

e Visual interpretation confirmed the relationships between stand structure and

image texture.
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6.3 Recommendations for Further Research
There are many future research opportunities, which may be based upon the conclusions of

this research:

e A quick DA showed that incorporation of the highest spatial component
information (3x3 window texture) produces high accuracy; this finding should be
further investigated.

o The defoliation in the aspen stands was estimated in the field. However, the
effects of defoliation on the imagery have not been examined in detail. Could
defoliation be causing the higher texture readings at the high resolution data in the

deciduous stands? How much of an effect does it have?

¢ Information extracted from texture that related to forest succession has been an
important area of investigation. One study (Jakubauskas 1997) has shown that on
Landsat TM imagery textural data are valuable for distinguishing between quite
young and very old classes, but is not successful at distinguishing between canopy
classes. His work, as well as work by Woodcock and Strahler (1987), suggests
that high resolution imagery texture can successful accomplish such class
distinction. The techniques introduced in this thesis could possibly be applied to

the study of succession in a similar area.

o [Leaf Area Index (LAI) increases with the number of layers of leaves in a canopy.
The application of LAI in distinguishing of muitilayer canopies has not been

investigated.

e Although only second order texture measures were investigated, the comparison
of other measures such as: first order texture and semivariance texture could be

explored. The comparison between classifiers could also be implemented here.
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e The mapping implications of these findings have not been addressed and can

facilitate an area of future research.
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Appendix A: Examples of original plot data collected in the field
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Field Sheet - Kananaskis 1998 Plot ID: 500h
Crown Closure 1  Crown Closure 2 Date: july 8/98
comer1 39 43 Time: 11:00 a.m.
2 42 39 Slope/Aspect: 1%/200deg.
3 36 a3 Photo #s: yes
4 41 44
cantre 7 35
Trse DBH Species Height Height Crown Diameter Commants GRS Crown Closure
s (cm) (m) toCanopy(m) Wide(m}  at®d «?@; 1.8. % defoliation 0 M None O M None
1 7 Aw 15 6.75 22 1. 0 i x M 3
2 5 P 16 9.25 41 46 e 2 x R x
3 B2 P 16.75 925 37 21 na 3 x 3 aw
4 B85 Aw 775 65 12 078 o 4 x aw
5 171 Aw 1025 85 a 28 25 s x 35 x
§ 87 Aw 825 678 1.46 13 o s X 38 aw
7 135 Aw 1125 95 258 261 55 7 X 37 aw
8 51 Pl as 3 1.59 1.47 R 8 aw 38 aw
9 178 Aw 12 95 341 32 15 9 aw 39 x
10 128 Aw 1225 925 132 219 60 10 aw 40 x
1" 162 Aw 1325 925 239 2.16 40 t X 41 x
12 81 Aw 85 85 an 1.25 95 12 X 42 x
13 105 Aw 1025 85 1.9 22 80 13 x 43 x
“ 8 Aw [ 775 1.16 0.62 %5 14 X 44 x
15 a1 Aw 8 725 132 138 %5 15 aw 4 x
16 18 Aw 105 825 284 157 76 16 aw “ x
17105 Aw 85 8.75 15 1.68 80 17 aw 4 x
18 69 Aw [ 65 a.t 0.05 %0 18 x 48 aw
19 88 Aw 1025 8.25 0.84 2 95 19 x 49 aw
20 1.1 Aw 1125 85 258 1.5 15 20 X 50 X
21 104 Aw 1125 875 1.55 128 40 21 aw 51 x
2 96  Aw 10 775 198 1 o5 2 aw 52 x
23 97 Aw 12 10.5 1.87 128 80 2 x s3 x
4 138 Aw 1275 10.75 279 224 55 24 X 54 aw
s 7 Aw 8.25 75 143 0.96 o5 25 aw 55 aw
% 85 Aw 8 775 0.1 05 % 2 x 56 aw
27 162 Aw 10.25 8.25 208 1.81 1) 7 x 57 X
3 133 Aw 1125 825 25 24 50 28 x 8 x
® 88 Aw 10 8 1.61 1.16 95 29 aw 59 x
W 93 Aw 9.75 7.75 1.81 135 50 0 x 6 x
157 Aw 15 825 27 113 10
2 M4 Aw 1225 95 179 1.9 15 O= aversiory
1123 Aw 12 875 1.43 219 15 Memidstory
M 151 Aw 1ns 9 256 248 25
5 132 Aw 1225 9.25 246 1.62 2
3 113 Aw 1225 95 1.74 261 10
77 Aw 8 €25 1.48 064 %
3 161 Aw 1275 875 148 274 5
¥ 183 Aw 11 925 18 1.2 8
0 65 Aw 65 5 ot 0.05 %
4 8 Aw 8 75 04 o5 95
2 11 Aw 11 9.25 1.56 1.54 15
S 11 Aw 1t 925 1.36 14 70
“ 1“3 Aw  11TS 85 184 an 10
5 144 Aw 1175 9 195 129 80
4 123 Aw 1125 825 248 0.3 15
l ;2 4 ¢ N
12 0 - B
14
16 15 131 7 .
9 3 i wild rey, wild rose
19 »n n e
2t ; ot
17 2 % 24 | -
o B dead fail wild rey
I8 9 B -
I H - S——
33 351
10 :
3 2
“ 6
6 5 2a w0 2 8 ‘
35 37! I
tree map understory map
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Appendix B. Bivariate regressions for per species contributions to crown

closure and per species basal area (using the first and other layers).

Plot ID Per Species Contributions to GRS Crown Closure Per Species Basal Area (m2)
Layer One Other Layers Layer One Qther Layers
conifer I deciduous conifer I deciduous conifer ] deciduous conifer l deciduous
94 100% 59.6
300c 100% 54.2
2 100% 315
23 100% 529
i2 100% 37.7
i3 100% 44
5004 91% 9% 594 0.2
500e 92% 8% 393 0.3
500hh 88% 12% 44.1 0.8
g4 86% 16% 31.8 0.7
h3 93% 7% 37.8 0.1
98 60% 16% 24% 10.7 1.9 29
5006 82% 5% 13% 27.7 0.4 0.9
i4 94% 6% 44.4 0.2
500i 82% 16% 2% 303 1.3 0.1
95 97% 20% 1% 57.1
d3 30% 70% L 5.8
i 17% 67% 1% 15% 7 279 0.1 1.2
500hh 2% 28% 13.1 2
3 91% 9% 33.1 0.3
97 93% 7% 345 0.1
96 81% 19% 429 24
500i 79% 21% 399 0.2
joor 41% 12% 19.4 5.6
500gg 81% 17% 2% 27.7 1.3 0.1
500k 92% 8% 56.1 0.1
gl 30% 21% 9% 20% 254 10.9 1.1 25
5004 43% 19% 34% 4% 5.1 22 25 0.3
99 63% 16% 2% 11.7 29 1
S 58% 15% 16% 11% 20.7 5.2 0.7 0.4
1000cc 86% 14% 40.1 I
hi 59% 7% 14% 20% 19 2.1 23 34
J2 62% 7% 3% 28% 13.1 1.5 0.3 2.6
el 63% 7% 6% 24% 133 1.5 0.5 21
g2 96% 4% 0.3
i 65% 34% 1% 28.1 8.1 0.2
h2 49% 41% 10% 15.3 13.1 33
1000bb 44% 56% 10.1 17.6
9 1% 3% 272 2.4
jooff 55% 23% 13% 9% 16.7 72 1.1 0.7
19 19% 21% 27.7 21
y 24 85% 14% 1% 26.1 0.7 0.1
500bbb 87% 13% 239 0.5
18 90% % 1% 42.7 0.4
h4 46% 52% 2% 8.3 10.8 0.4
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Appendix B: Per Species Contributions to Crown Closure and Par Species Basal Area
Using the First and Other Layers (Data and Bivariate Linear Regressions).

Bivariate regressions between GRE crown closure and basal area
for species In the first canopy layer (all significant at the 95%
confidence interval}
Deciduous adjusted R? = 0.804, standard errar of estimate =0.1583

Coniferous adjusted R® = 0.613 standard error of estimate =0.1256
70.0

60.0 . ¢
50.0
40.0
30.0

20.0

layer basal area in m square

10.0

0.0

0% 20% 40% 60% 80% 100%
layer contribution to the GRE crown closure

Bivariate regressions between GRE crown closure and basal area
for species inthe second canopy layer (all significant at the 95%
confidence interval)
Deciduous adjusted R? = 0.574, standard error of estimate =0.05497
Coniferous adjusted R = 0814, standard error of estimate =0.06262
200
18.0 .
16.0
@ 14.0
£ 120
10.0
8.0
6.0 1
40
20
0.0 - ‘
0% 10% 20% 30% 40% 50% 60%

layer contribution to the GRE crown closure

quare

layer basal area




Appendix C: Per plot percent of shadow pixels and stand complexity index

% per Plot Shadow Count
[ PlottD | Stand Compiexity Index | 60cm Im 2m
94 3.39 13% 1% %
500¢ 3.92 5% 10% %
e2 3.02 1% 8% 8%
g3 7.2 17% 14% 1%
2 5.11 15% % %
i3 4.8 12% 15% 8%
500d 7.8 15% 8% 6%
500¢ 3.78 15% 17% 13%
500kh 3.13 16% 10% 8%
gé 4.51 9% 3% %
h3 8.91 % 2% 4%
98 4.89 17% 10% 1%
500b 8.89 51% 33% 45%
i 4.09 12% % %
500i 5.9 15% 15% 19%
95 9.55 3% 35% 40%
d3 3.75 % 10% 90%
it 5.76 60% 15% 17%
500hh 482 20% 2% 2%
B 4.01 14% 9% 6%
97 8.76 2% 17% 14%
96 4.25 12% 18% 0%
500ii 3.45 1% 90% 12%
500f 7.28 58% 50% 46%
500gg 8.34 32% 40% 41%
500k 8.28 45% 36% 37%
gl 9.21 55% 44% 42%
500jj 13.58 8% 63% 73%
99 7.66 37% 3% 27%
fl 6.12 49% 41% 40%
1000cc 5.48 23% 19% 19%
hl 7.84 33% 34% 30%
i2 7.43 2% 18% 18%
el 425 1% 80% 10%
g2 5.54 29% 20% 25%
il 12.58 24% 19% 13%
h2 8.05 20% 1% 18%
1000bb 10.52 48% 39% 37%
9 12.55 60% 55% 51%
500 9.01 50% 45% 40%
19 6.48 47% 39% 40%
2 14.52 90% 88% 69%
500bbb 6.7 45% 30% 27%
18 7.88 39% 33% 27%
14 11.23 63% 40% 41%




- Per plot % of shadowed pixels and the Stand Complexity Index for the 45
plots on 60 cm casi imagery (all significant at the 95% confidence interval.

100 %

3 gpys R =0.5989, standard error of estimate 0.2141 .
=]
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w

e 40%

[=]

2 20%

0% . e
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Per plot % of shadowed pixels and the Stand Complexity Index for the 45

plots on | m casi imagery (all significant at the 95% confidence interval.
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Per plot % of shadowed pixels and the Stand Complexity Index for the 45
plots on 2 m casi imagery (all significant at the 95% confidence interval.
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Appendix D: Subset window texture visual interpretation 124

Window size 5x 5

- A . -
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Window size 5 x5

Window size 9 x 9

Window size 11 x 11
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Window size 3 x 3
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Window size 3x 3
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Window size 3x 3
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Window size 3x 3
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Window size 3x 3
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Appendix E. Radiance for aspen (showing range of defoliation) and conifer stands using

60 cm casi data

radiance

1000

900

800

700
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Radiance for aspen (showing range of defoliation) and conifer stands
using 60 cm casi data

-—&— Aspen - no defoliation; average rate of change =167
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~—&--Conifer; average rate o f change = 130
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