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ABSTRACT 

In this study a Compact Airborne Spectrographic Imager (casi) mdtiresolution data set, 

acquired over the Kananaskis Barrier Lake mix-wood forest in the Rocky Mountains of 

Alberta, was analyzed for classification accuracies using forest cover types outlined by the 

Alberta Vegetation Inventory (AVI), with special emphases on identifying multistory 

canopies and species composition. Seven spectral channels, existing in the three resolutions 

of the imagery (60 cm, irn, 2 m), and five textural channels derived from second-order 

texture measures of the 'brightness' component of the imagery, were used in discriminant 

analysis to determine the usefilness of the textural information and compare two sample 

stratification schemes (six-class using only the first AVI canopy layer and thirteen-class 

using d l  AVI canopy layers) based on the AVI label. Field data used to determine 

classification accuracies included a plot level survey of species composition by basal area, 

crown closures, stem count, height, dbh and additional site descriptors such as slope and 

aspect. On average, the use of texture channels improved the per-plot classification 

accuracies by 17% compared to using the spectral channels alone. The highest per pixel 

resolution imagery of 60 cm outperformed the other image resolutions (1 m and 2 m) and the 

thirteen-class sample stratification scheme improved the classification accuracies by 14%, 

with results of 87% and a KHAT of 0.85, compared to the six-class sample stratification 

scheme results of 72% and a KHAT of 0.73. 
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Chapter 1 Introduction and Research Objectives 

1.1 Introduction 

Nature created forests as a complex system experiment, complete with interrelated processes 

and flexibility. In the last few decades, humans have been able to apply new technologies, 

such as  remote sensing, global positioning systems (GPS), and geographical information 

systems (GIs), in understanding these processes and the resulting forest dynamics. Since 

1634 when the first (recorded) shipment of masts left for Britain, Canada's forests have been 

one of the world's most valuable renewable (if properly managed) resources, comprising 

close to a thousand million hectares of land (CCFM 1996). If properly managed the rewards 

include economic benefits (e.g. exports) and, more importantly, environmental benefits (e.g. 

reduction of greenhouse gases, protection tiom erosion, reduction of surface run-o ff). If 

managed correctly, these environmental benefits can contribute to a sustainable economy and 

environment, and therefore, society. Successful management of the forest involves 

knowledge and understanding of forest ecology, which can be based on description of forest 

composition and diversity. One basic source of information on Canada's forest composition 

is the modem forest inventory (Gills and Leckie 1993). With new technologies (refer to 

Aplin 1997; Stoney and Hughes 1998) the tools to facilitate the development and application 

of forest inventory databases are becoming more reliable, faster, and cost-effective. In the 

process, forest ecology will be easier to understand and management decisions may be easier 

to implement through improvements to the maintenance and use of digital forest inventories. 

Most forest inventory data used for management decisions are extracted fkom the manual 

interpretation of aerial photographs, which are often verified in the field, and entered into a 

computer (Spies 1997). These techniques involve considerable labor and are potentially 

costly, although new technologies, in particular, GIs and GPS, allow for relatively smooth 

computer data integration. With respect to remote sensing, Franklin et al. (1998) have noted 

that it is generally acknowIedged that digital remote sensing can provide information that is 

not currently part of an existing forest inventory. According to Leckie et af. (1995: p. 337) 
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the "use of digital high resolution (<I m) muftispectral imagery as an alternative to aerial 

photography for forest invent0 y mapping is a possible revolutionary innovation': providing 

data-rich digital layers to be integrated with the other digital databases. The recent 

(September 1999) successfUl launch of the IKONOS satellite, which provides 4 m pixel 

resolution multiband imagery, and hopeful launches of several proposed satellites that will 

generate 1 m pixel data (Glackin 1998), will help make this alternative remote sensing 

method - based on high spatial detail imagery - more achievable. With such large amounts 

of spectral and spatial data available for analysis, a much greater amount of information can 

be extracted from this imagery than from the previous generation of satellite data, which 

typically had 10-100 m pixel resolution. The methodology of handling this type of data is 

still relatively new; high spectral and spatial resolution aerial imagery has been suggested as 

appropriate in developing analysis tools for dealing with future high resolution sensors 

(Strome et al. 1991). For example, in the case of the forest inventory, the desired class 

stratification should be more complex than provided by earlier generation low resolution 

satellite imagery, such as Landsat TM. 

The new high spatial detail imagery may be able to replace, or at the very least, complement 

the use of aerial photography in forest inventory. However, numerous authors have noted 

that additional research is required on how best to incorporate such high spatial resolution 

imagery into operational forest inventory procedures.(Leckie et ai. 1995; Ryher and 

Woodcock 1996; St.-Onge and Cavayas 1995; St.-Onge and Cavayas 1997; Wulder 1996; 

Lark 1996; Roach and Fung 1994). Most applications rely, to a certain extent, on advanced 

digital image processing to extract forest information fkom the digital imagery rather than 

analogue interpretation of photography. For example, one idea has been to use digital 

imagery rather than large-area mapping in sampling forest stands (Fish et al. 1995); a second 

possibility lies in providing aerial photo-interpreters with access to the spectral information 

that is not readily available fkom aerial photography (Leckie et al. 1995). A different 

strategy has been to incorporate a digital elevation model @EM) with the mean spectral 

response measured by digital sensors in an automated classification of forest inventory 

conditions (Franklin 1994). The approach is similar to the low resolution classification 
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methods used in Landsat image analysis and relies on the existing software and methods 

established over the past two decades of digital remote sensing. An improvement in this 

classification approach is the idea that the spectral response can be augmented with texture 

derivatives in an attempt to capture the information contained in the high spatial detail 

imagery. 

Image texture is the spatial variation in image tones (Haralick 1979), and has long been 

recognized by both air photo-interpreters and digital image analysts as a powefil source of 

information in forestry image analysis (Avery and Berlin 1992; Jensen 1996; Lillesand and 

Kiefer 1994). Texture is generated by the interplay of shadows and objects in the image. 

The use of image texture analysis has been recommended for classification of digital imagery 

in cases where the objects in the image (e.g. trees) are larger than the pixel size (Hay et al. 

1996; Wulder et al. 1996). However, an understanding of where and under what conditions 

image texture can be most useful in forestry applications has not yet been established. In one 

study, using aerial multispectral imagery fiom a variety of sample forests in New Brunswick 

and Alberta, Franklin et al. (1998) found that image texture analysis could improve forest 

inventory classification results approximately 10% over results obtained using spectral 

response patterns done. They noted that texture improved accuracy the most in the 

hardwood and mixedwood stands that appeared to contain complex structures or layers in the 

canopy* 

Mixed and structurally complex forest stands with multistory canopies comprise a significant 

fraction of Canadian Boreal and Montane environments and may be of crucial importance in 

ecosystem functioning at the landscape and stand level (e.g. wildlife habitat). To understand 

hIly the complex interactions in forest ecosystems, some knowledge of the structure of the 

stand is necessary. This information should include not only the species composition of the 

stand but other characteristics such as stand density and canopy complexity (layering). 

Forest stand parameters such as density, species composition and class structure, which 

comprise the forest inventory, allow us to begin to understand the complexity of interactions 

in a forest ecosystem. 



Image texture analysis of multi-layer canopy stands is the focus of the research described in 

this thesis. A digital remote sensing application of image texture using the Alberta 

Vegetation Inventory (Nesby 1997) standard was designed to provide insight whether texture 

analysis can be used to improve the accuracy and usefilness of high spatial detail imagery in 

forestry. The present study will focus on the detection of class structure, which is essential in 

maintaining and using a digital forest inventory database. Specifically, this study will 

address the detection and the percentage species composition of stand overstory and 

middlestory, using high resolution aerial remote sensing imagery and texture derivatives. 

Inventory measures such as these composition estimates have been declared to be possible 

and desirable using aerial data (Wulder et al.. 1996), in applications ranging from 

classification (Franklin and McDermid 1993) to improved estimation of biophysical 

variables, such as forest stand leaf area index (Wulder 1996; Wulder a al. 1996b). 

Bdquel-Pinel and Gastellu-Etchegorry (1998) have identified the significance of accurate 

relationships between forest canopy structure and image texture in automated classification 

processes. The focus in this study is first on classification, because an accurate stand 

classification, based on a successful classification of stand structure, (in this case an AVI 

label) is the foundation for the forest inventory. Subsequent digital remote sensing work 

could be aimed at deriving mensurational variables, such as stemslha, or biophysical 

variables, such as leaf area, in the forest-mapping environment. 

It is not the scope of this study to develop new algorithms for image texture and image 

classification, or new programs to achieve optimal texture window size, but to focus on 

optimizing a combination of existing methods to ensure that the highest image classification 

accuracy possible is achieved. Although the understory has been shown to contribute, 

sometimes significantly, to spectraI signatures (Bruniquel-Pine1 and Gastellu-Etchegorry 

1998) the effects of understory on the classifications are considered beyond the scope of this 

study; only the overstory and middlestory structures are analyzed. 



1.2 Research Objectives 

The main hypothesis of this research is that: 

Image texture derived from high spatial resolution rnultispectraI imagery will significantly 

increase the classification accuracy of multistory forest stands identified according to the 

AVI system as part of a forest inventory. 

To test this hypothesis, the following tasks will be accomplished: 

i) Establish a relationship between stand complexity and an image component; 

ii) Visually interpret image texture as an indicator of multistory stands; 

iii) Conduct a classification on spectral and textural data based on field samples in a 

wide range of AVI coded forest plots. 

The digital images used in this study were obtained specifically for this analysis in the 

Kananaskis study site by the casi (Compact Airborne Spectrographic Imager), a relatively 

new instrument designed to provide high spatial detail imagery and hyperspecad imagery for 

terrestrial and aquatic applications (Anger et ul. 1994). This work is one part of a larger set 

of projects (Maudie 1999; Franklin et al. 1998; Wulder et al. 1996b) with goals to determine 

the extent to which digital remote sensing instruments (such as the casi) and methods (such 

as image texture analysis and classification) can contribute to mapping and monitoring 

Canadian forests, with the objective of sustainable forest management (CCFM 1997). 



1.3 Thesis Organization 

The thesis is organized into six chapters, commencing with the presentation of the research 

hypothesis and goals in Chapter 1. Chapters 2,3,4 and 5 provide a review of remote sensing 

in forest inventory methods, a description of the study area and data collected, the 

methodology undertaken and the discussion of the results of the analysis, respectiveiy. A 

summary of the research and the conclusions is given in Chapter 6. 

The research is placed into the context of remote sensing in forest inventory in Chapter 2. A 

literature survey of pertinent background touches upon the casi instrumentation, the AVI, and 

the use of digital mapping in forestry. 

The study area and data collected are discussed in Chapter 3. The field and casi data 

collected are explained; the relationship between the imagery and field measurements is also 

estabiished. 

Chapter 4 discusses the methodology undertaken in this research. Image preparation is 

explained along with Principal Component Analysis (PCA), the creation of texture channels 

and the relationship of texture to forest structure is expIained. The method of statistical 

summaries for the field data and data extraction are discussed. The classification procedure 

and the application of Discriminant Analysis @A) to the Alberta Vegetation Inventory (AVI) 

class structures are explained. Finally, the accuracy assessment methods including co- 

occurrence matrices, errors of commission and omission and Kappa statistic are discussed. 

In Chapter 5 the results of the visual homogeneity texture interpretation leading to the 

discovery of inversion of the texture measure is discussed and supported with descriptive 

statistical interpretations. An example of the relationship between texture and the field data 

is established and supported by descriptive statistics. The DA based on both types of sample 

stratifications (sixclass and thirteen-class) is given. The accuracy assessment is also 

reported. 
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A summary of the significant results and conclusions based on this research along with the 

contributions to present research and areas of further research are provided in Chapter 6.  



Chapter 2 Remote Sensing of Forest Structure 

2.1 Introduction 

Forest structure includes the size, type, spatial arrangement and configuration of trees in a 

forest (Spies 1997). Foresters typically designate structure as a component of a forest stand; 

a stand, therefore, is a unit of trees that is homogeneous in age, structure, composition, and 

physical environment (Oliver and Larson 1996). Stands are delineated using aerial 

photographs and field data in a well-understood and accepted practice (Gills and Leckie 

1993), however, some insights available through digital remote sensing have contributed to 

suggestions to improve the methods used in the practice of forest inventory. 

In this chapter the background to understand the possibilities for digital remote sensing in 

forest inventory is presented; this includes a brief summary of the characteristics of the 

compact airborne spectrographic imager (casi), a high spatial resolution multispectral sensor 

developed by Itres Research Ltd., a Calgary-based remote sensing company. The casi was 

selected for this research because of availability, but also because this sensor has recently 

received a great deal of attention as a valuable tool in vegetation resource surveys in Alberta 

(e.g. Fish et al. 1995) and elsewhere (Wulder 1996). The Alberta Vegetation Inventory 

(AM) is reviewed briefly in this chapter. The AVI is used by the Alberta Forest Service (and 

all commercial forest companies) as the standard forest inventory tool in the province, and 

will be applied in this study. This review is followed by a discussion of relevant remote 

sensing applications, with a particular focus on the use of image texture analysis in forestry 

remote sensing research. 

2.2 Remote Sensing in Forest Inventory Methods 

Forest inventory originates with a stand discrimination or classification strategy that is 

necessarily regional and narrow in scope (Leckie and Gillis 1995). h Canada, this scope is 

defined provincially, and then combined nationally to provide an annual prospective on the 
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status of forest resources in the entire country (CCFM 1997). Each province has established 

an inventory system that results in mapped areas represented by polygons in a GIs database. 

According to Franklin et a[. (1998) it is this 'inventory standard. or this deJnition of stand 

strata, that digital remote sensing must attempt to emulate in a wide range of forest 

conditions'. It can be hypothesized that only when a more successfil emulation of the 

existing inventory occurs will a more widespread adoption of the digital remote sensing 

method in forest inventory take place. 

The use of remote sensing in forest inventory has been limited to aerial photointerpretation 

with occasional instances of airborne or satellite inventories at broader scales (J. Franklin et 

a!. 1986; Bauer et al. 1994; Baulies and Pons 1995). Normally air photos are collected 

every 10-20 years, interpreted by skilled photo-interpreters, and digitized onto a provincial 

base-mapping template (Leckie and Gillis 1995). Much work has focused on the type of film 

and filter combinations that might be useful in different forest conditions; less attention has 

been paid to the actual reasoning process used by interpreters and the resulting error pattern 

or uncertainty in the final classifications (Ryerson 1989; Pitt et a!. 1997). For example, 

Lowell and Edwards (1996) noted that up to 50% disagreement on the position of stand 

boundaries existed between different forest stand air photo-interpreters; other studies have 

noted that aerial photointerpretation is perhaps on the order of 75% correct in interpreting 

species composition (Leckie and Gillis L 99 5). 

A prominent research theme in remote sensing for applications of forest inventory has been 

the use of satellite sensors such as Landsat and SPOT. Forest inventory can benefit from a 

larger view, a broader classification approach, and then individual areas could be examined 

in more detail by aerial photography, or a combination of aerial photography, digital remote 

sensing fiom airborne platforms, and field data collection. For example, Bobbe et al. (1994) 

found that digital multispectrd video data could be acquired in an adaptable (muItiresolution, 

muItitemporaI, multispectral) way to accommodate mapping concerns in riparian zones. A 

study by Atkinson and Curran (1997) has shown that higher spatid detail provided by high 

spatial resolution imagery is appropriate for vegetation studies by providing spectral and 
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spatial information for individual trees making up the forest. Pitt et al. (1997) in their review 

of remote sensing in even-aged vegetation management (clearcuts and regeneration surveys) 

noted that wider application of digital fiame cameras is imminent because of the speed and 

flexibility in analysis that digital products provide compared to analogue aerial photography . 
King (1995) reviewed the literature on systems aod designs for digital frame cameras and 

other digital sensors and suggested future increased applicability in forest management. 

Two trends that may increase the Likelihood of satellite and airborne remote sensing use in 

developing forest inventories are the needs for: 

a) kmual updates 

b) Specific details of stand conditions 

To monitor sustainable forest management, foresters require information on a timelier basis 

than the current ten to twenty year cycles for the forest inventory based on aerial 

photointerpretation. Five-year intervals might be possible; but the cost and logistics of 

interpreting manually the entire provincial forestland areas suggest that such an approach is 

not feasible. Digital methods do take time and effort, but increases in efficiency and 

automation will likely match the increased information content of the new image sources 

(Heygi et al. 1992). More specific information on forest conditions over large areas can be 

extracted digitally than can be extracted manually (Eldridge and Edwards 1993; Baulies and 

Pons 1995). For example, leaf area index (LAI) is a critical structural variable in 

understanding forest dynamics such as photosynthesis, and forest conditions, such as forest 

health (Running et a[. 1986; Wulder 1996). However, LAI, which is readily extracted from 

digital multispectral imagery, is not available Eom the interpretation of aerial photographs, 

and is not a part of most forest inventories. Yet, there are increasing demands for new, 

timely and reliable estimates of LA1 for input to ecosystem models of productivity (for 

example Leckie et al. 1995; Wulder 1998). 
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These two trends, and the increasing pressure to generate sustainable forest management 

decisions based on the forest inventory, are likely to increase the need and development of 

digital remote sensing methods to improve and enhance the forest inventory databases. 

Furthermore, the above mentioned trends have concentrated on using high resolution imagery 

to conduct forest inventory analysis. High resolution imagery allows the extraction of spatial 

measures such as texture, which are an additional source of information that can be utilized 

in classification procedures. Various studies have used high resolution imagery such as casi 

and rnsv (multispectral video) to delineate forest stands and their structural characteristics 

(refer to Fish et aL. 1994; Wulder, 1996; Gerylo et a/. 1998; Franklin et al. 1998). In d l  of 

these studies, successful classification results were attributed to the higher spatial resolution 

imagery (25 cm to 4 m), which provided the more detailed information of the areas of 

interest. The msv study conducted by Gerylo et 01. (1998) suggested that the three spectral 

bands of the msv instrument (green, red and near i h e d )  were not the most suitable for 

distinguishing between the conifer species pine and spruce. The authors encourage the 

application of a sensor with higher spectral resolution capabilities such as the casi 

instrument. 

2.3 Characteristics of AVI 

The Alberta Vegetation Inventory (AVI) is an operational, integrated field inventory system 

using aerial photo-interpretation and field surveys based on six parameters: moisture regime, 

crown closure, tree height, species composition, stand origin (age) and timber productivity 

rating. The forest polygon code also allows Somation on stand structure (e.g. single or 

multistory), disturbance, treatments and understory (Alberta Forestry, Lands and Wi IdIi fe 

I99 1). 

The first part of the AVI forest polygon code is the moisture regime. Table 2.1 describes the 

classification of moisture regime and it's associated AVI code. Moisture regime is assigned 

based on plant indicators, soil properties, environmental factors, slope position, gradient, and 

soil texture. Dry sites are typically wen drained whereas mesic sites are moderately we11 
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drained. Wet sites are characterized by poor drainage, with possible shallow water where the 

water table is near or at the surface. Aquatic sites (non-forested) have permanent deep-water 

cover and hydrophilic vegetation (e.g. water lily). 

Table 2.1 AVI classification: moisture regime 
Chs A VI code 

Mesic 

Wet 

Aquatic 

Crown closure or the percentage of ground area covered by a vertical projection of tree 

crowns onto the ground can be determined using a spherical densiometer. The most common 

approach is to take an average of a few readings Eom each stand to determine the crown 

density, accounting for the variability within the stand. For AVI, crown closure is classified 

into one of the four classes in Table 2.1. It shouId also be noted that stands with crown 

closure of less than 6% are not considered forest stands. 

Table 2.2 A W  classificsrtion: crown closure 
Crown closure % A V/ code 

Tree height is determined through field measurements, using such instruments as a 

cyclometer, and recorded to the nearest meter. Although this instrument is mostly used for 

measuring slopes, tree heights can also be obtained. The standard height of a plot is 

composed of the average heights of the most dominant specie(s). For a clearly differentiated 

multistory stand, the height of each story is recorded. In stands where multistory canopies are 
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not clearly differentiated use either average tree height for only one main canopy, or two 

average three heights to form two dominant canopies. 

The species composition part of the code is designed to list a maximum of five species in 

decreasing order, based on percent crown closure. The code indicates the percentage of each 

species (in 10 % increments) with a subscript. Species which constitute less than 10 % of the 

stand content, are not included in the AVI code. For example, a species composition label: 

Aw3 Sw3 PI2 Pb2 can be read as 30% trembling aspen, 30% white spruce, 20% lodgepole pine 

and 20% balsam poplar. It should be noted that if a single species comprises 90% a stand, 

such a stand can be considered pure and assigned a label of 10 (100%). In Table 2.3 other 

species abbreviations for the AVI code are given. 

Table 2.3 AVI species abbreviations 
Species A b breviatian 

Aspen, Populus memu Ioides Michx. Aw 

Fir Subalpine, clbies lmiocarpa (L.) Mill. Fa 

Fir Douglas, Pseudatxuga menziesii (Mirb.) Franco Fd 

Lodgepole Pine, Pinus conform Loudon PI 

Balsam Poplar, Populw balsamifea L. Pb 

Spruce White, Picea glauca (Moench) Voss Sw 

Spruce Engelmann, Picea engelmannii Parry ex Engclm. Se 

The following part of the forest polygon code describes the stand origin by age. For 

example, if a stand was planted in 1944, the stand origin code will be '94", with the "9" 

refemng to the century (e-g. 1900s) and the "4" referring to the fourth decade (e.g., the 40s). 

At this time there is no consistent way of dealing with the upcoming year 2000 origin 

scenarios (the "Y2K" problem). The stand origin is determined fiom the average tree age; 

the age can be extrapolated fiom the diameter at breast height (DBH). The age adjustment 

factor (Table 2.4) to account for the growth of the tree to reach breast height must be added 

to breast height age. 
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Table 2.4 AVI classification: tree age adjustment factor 
Species Adjustment 

White Spruce I5 years 

Pine I0 years 

Deciduous 6 years 

The last part of the forest polygon code is the timber productivity rating (TPR). The 

classification scheme for TPR is shown in Table 2.5, and is used to describe the potential 

productivity or potential growth rate of a stand. This rating is based on the height and age of 

the dominant and co-dominant species occurring in the stand. The TPR is assumed to be the 

same if the species in the oventory and the understory (second canopy layer) are the same. 

However, if the species composition diKers between canopies, TPR is assigned to each story 

independently. TPR reflects factors affecting tree growth including soil, topography, 

climate, elevation, moisture, etc. 

Table 2.5 AVI Classification: timber productivity rating (TPR) 
TPR class A VI code 

Good G 

Mediurn M 

Fair F 

Unproductive U 

Single and multistory stand structure can be incorporated in an AVI code. Hence, a single 

story stand originating in 1954, in a rapidly (well) drained substratum, with 80% crown 

closure, pure aspen canopy of 21 m in average height, and good timber productivity would 

result in the AW code shown: 

dD2 1 Aw,, 

When the aspens are not of the same height and the average height of the top layer differs 

from the average height of the lower layer by more than 3 m the stand should be classified as 
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a multistory stand. For example, if the two average heights were 21 m and 10 m and the 

lower layer stand origin was determined to be 1970, the AVI code would read: 

The AVI is intended to be a continuous inventory requiring an average of 1/20 of the land to 

be re-inventoried annually (Alberta Forestry Lands and Wildlife 199 1). Figure 2.1 shows the 

broad AVI polygons for the study area, produced from aerial photographs by the Canadian 

Forest Service in 1986. This type of inventory does not capture the complexity of the stand 

actually recorded on the ground. 

2.4 Digital Methods Applied to Imagery in Forestry Applications 

Remote sensing applications in forestry include defoliation assessment, disturbance regime 

monitoring, modeling productivity, and developing inventory maps, and many other 

applications (Avery and Berlin 1992). Many of these studies have required an automated or 

semi-automated classification of remote sensing data, which is a detailed description of the 

forest area based on the relatively coarse resolution satellite imagery (Running er aL. 1986; 

Hall and Crown 1987; Spanner et aL, 1990), or on the highly detailed, high spatial resolution 

aerial imagery (Franklin 1994). The range of possible (or available) image processing 

techniques and methods is wide, and their potential applications are not yet Fully understood. 

In aerial remote sensing studies, a number of authors have attempted to achieve detailed 

forest classifications fiom the spectral signatures inherent in the multispectral images 

(Marceau et al., 1994qb; Ghitter et al., 1995; Gerylo et aL, 1997). However, spectral classes 

and forest stands are not necessarily closely correlated to each other (Hall and Crown, 1987), 

resulting in low classification accuracies based strictly on spectral reflectance. This may be a 
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result of the greater variability of spectral signatures in aerial applications (compared to 

satellite applications). Therefore, other image characteristics such as texture have been 

employed to improve aerial image classification accuracy. A recent example of this 

increased accuracy was documented by Franklin et aL, (1998). Their work showed that 

accuracies of approximately 40% could be achieved using spectral signatures alone in a 

classification, but that increases to approximately 60% were possible when spectral 

signatures were augmented with texture derivatives in certain forest conditions. 

The present thesis was an outgrowth of those results, which indicate that texture worked best 

in areas of mixedwood stands and multistory conditions in the Kaaanaskis Study Area on 

high resolution (25cm/pixel) multispectral video imagery. This thesis Curther tests the 

increase in accuracy, using second-order texture derivatives, and specifically, shows the 

application of image classification using texture in multistory stand detection and mapping. 

Since 1991 a series of' experiments has been conducted to provide AVI mapping and 

classifications from aerial and satellite digital remote sensing in a variety of ecological 

systems using a wide range of image sensors and classification procedures (Franklin et al.. 

1994; Butler et a[. 1995; Fish et al.. 1995; Getty 1996). More recent work in the Kananaskis 

Study Area has dealt with object specific detection of inventory parameten on high 

resolution multispectral data (Gerylo et aL. 1997). Much of this work has indicated (some) 

promise for employing aerial remote sensing digital maps and methods in forest inventory 

and ecological assessment, based on the AVI standard. 

Although AVI allows for multistory stand structure annotation in the AVI code, this is onIy 

done based on data collected in the field (Hall, 1998 personal communication). Aerial 

photographs used for AVI mapping have not been studied for feasibility of detecting the 

multistory stand structure. The problem of detecting muItistory canopies through the 

application of texture to digital imagery also remains unanswered, but is the focus of the 

present thesis. 
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2.5 Characteristics of casi 

The aerial sensor choice in this research is casi, designed in 1989 by Itres Research Ltd., 

Calgary, Alberta, to provide users with a high performance, low-cost and easy to install 

visible-near infrared push-broom instrument. The actual ground cover of the casi is dictated 

by the fore-optic field of view, aircraft altitude above ground level, aircraft speed, and 

integration time. The instrument operates over a spectral range of 400 nm to 1000 nm, with a 

sampling interval of 1.9 urn making it quite suitable for vegetation and forestry based 

applications (Wulder et aL. 1996). The wide anay of options provided by the casi instrument 

and the technical specifications required to operate the sensor have been summarized 

(Wulder et al. 1996c) and listed in Table 2.6. 

Table 2.6 Technical specifications of casi 

Parameters Summary 

Spatial Coverage 5 12 pixels, 37.8" field of view across track (may be optimized 

to 44.7" with motorized aperture lens). Ground resolution 

governed by aircraft speed, altitude and sensor configuration 

time. Typical 1- 10 rn. 

Spectra1 Coverage 545 qm spectral range with 400 qm to 1000 qm. Using 288 

channels; 2.2 qrn spectral resolution, with 1.9 qrn sampling 

interval. 

Spatial Mode Full spatial reso~ution (512 pixels) resolution across 37.8" 

across track field of view for up to 19 user setected bands. 

Spectral Mode Full spectral (288 pixels) resolution for up to 39 look 

directions accrues the 37.8" field of view. Includes a singIe 

band, full spatial resolution scene recovery channel. 

Enhanced Spectral Full. spectral (288 bands) resolution for up to I01 look 

Mode directions, Change summation increases spatid coverage if 

spectra1 resolution is reduced (511 look directions, 48 

contiguous bands at spectral resoIution of 1 1.4 qm). 
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2.6 Application of Texture in Image Classilication 

Texture can be defined as the variability of tone of neighboring pixels of a digital image. A 

comparative study of texture measures for terrain classification by Weszka et ai., (1 976) 

confirmed the general u s e ~ e s s  of texture features, even in the absence of multispectral 

information. Texture tone analysis has been applied to automated land use mapping based on 

digitized aerial photography (Hsu 1978), improving classification results significantly, with a 

maximum classification accuracy of up to 85-90%. On low resolution imagery, (Landsat 

TM) texture-enhancements reduced the misclassification of 'forest' as 'orchard' Eom 75% 

of the 'forest' pixels to fewer that 7% (Gordon and Philipson 1986). Subsequent studies 

using a variety of digital imagery acquired fiom videographic senson, frame cameras, 

spectrographic imagers and so on, have confirmed the critical role of texture in successful 

classification studies (refer to He et al., 1988; Sali and Wolfson 1992; Wulder 1996). 

Continuing work is aimed at generating a more complete understanding of image texture and 

the conditions under which image texture can contribute to classification of forests (Franklin 

et al.. 1 998). 

Figure 2.2 shows how the texture of a stand can change during development. It is important 

to note that although the average spectral reflectance of the stand can be quite similar during 

the later stage of succession (Wulder 1996), the texture is always varied. Texture is possibly 

the only discriminating factor between the stands. During applications of texture, concern 

must be given to the actual texture measure or derivative, the window size and orientation for 

computation, the number of bands and the quantitative resolution (or quanta). In the initial 

stages of texture research, the simplest measures, which are readily available to end-users, 

should provide a reasonable starting point for tests. 

First order texture measurements include: the mean-average reflectance of pixels within a 

window; standard deviation-the standard deviation of reflectance within a window; minimum 

and m a x i m u m - m u m  reflectance value within a window and range-the range of minimum 

and maximum vdues within a window. First order texture is derived 



As a stand matures the horizontal and vertical complexity of the stand changes. The 
second stage shows two distinct vegetation layers in the stand. The complexity 
maximizes when the stand is mature with varied horizontal and vertical expression. 

The birds eye view shows the spatial complexity increasing as the stand matures. The 
crowns of shade intolerant trees compete for tht available light, and a shade tolerant 
lower layer develops. In the mature stand all gaps in the canopy are taken up by crowns. 

These simulated high resolution images demonstrate the information captured by a sensor. 
A source of illumination was added to produce the shadows. The spectral variability of the 
tree crowns is captured by the sensor, so are other components of the stand such as the 
understory, and shadows. As the stand grows a young second layer develops. The sensor 
captures some of the non-shadow covered crowns of this layer. In a mature stand the 
tree crowns are recorded, with little understory and shadow. The not yet established third 
layer (less than 1 m in height) might not be detectable. 
Figure 2.2 Vegetation succession with increasing horizontal and vertical vegetation 

complexity. The high resolution imagery is simulated and simplined. 
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from custom filters (refer to Irons and Petersen, 1981 and Wulder et aL, 1997) and is 

commonly available in commercial image processing systems such as PCI. Second order 

texture using generalized co-occurrence matrices was shown to improve classification 

accuracies fiom 50-57% to 80+%, fiom the gray-level co-occurrence matrix (Davis et al.. 

1979); the data set used in this study consisted of five different texture classes (pebbles, tree, 

bark, orchard, uon grating and scrap iron. The grey-level co-occurrence matrix can be 

defined as a metric of relative tiequencies in which two neighboring pixels, separated by a 

distance and having an angular relationship, occur in the image, one with grey tone (i) and 

the other with grey tone (j). The term 'second-order' refers to the fact that the image texture 

is derived fkom this co-occurrence matrix, rather than fiom the original image data. 

The example in Figure 2.3 shows how texture is derived fkom the grey-level co-occurrence 

matrix. Textural values are determined by computing, for a particular distance and angle, 

statistics in the matrix based upon spatial relationship of the pixel values in the imagery 

(Wulder et ab. 1997). Obviously, many possible texture derivatives can be derived and 

considered in this research (e.g. semivariance texture, 1" order texture including the 

minimum/rnaximum measures and so on), but the hrst-order and second-order measures are 

the most readily available and easily understood texture variables. [n one study, Carr and 

Pellon de Miranda (1998) found that second-order texture variables outperformed all other 

texture measures tested, including the semivariance texture used by Wulder (1996) in his LAI 

texture analysis. No simple measure of texture optimality has been devised. It is likely that 

those interested in forest applications will continue to use the commercially available 

software for image processing. Therefore, the simpler more available texture measures will 

be more commonly used than others. 

Texture has also been used in forestry related measurements applied to other (non-spectral) 

wavelength regions in remote sensing. For example, Wilson (1995) examined the 

relationship between the forest structure of two conifer species using various tone and texture 

measures derived f?om SAR data. He found that the simple texture meamres were the most 



Wndow qf imagery 
Low texture 
- low variability in image tone 

High texture 
- high variability in image tone 

Resulting co-occurence matrix 

neighboring pixel value 

Figure 2.3 Grey Level cooccureme matrix and image texture. 
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useful for that application, and that significant increases in accuracy could be achieved using 

such first-order and second-order texture derivatives in image classifications. A comparison 

assessment of performance of the first and second order of texture algorithms for the 

estimation of forest leaf area was given by Wulder et ai., (1997). They showed that measures 

other than first and second-order texture were best (specifically the semivariance measures), 

but this was an estimation test, not an image classification procedure. In earlier work, 

Bowers et al.. (1994) showed that semivariance measures were most sensitive to canopy- 

level changes associated with leaf area (defoliation by the balsam woolly aphid in pure 

balsam fir stands was estimated). 

Texture windows or the square/rectangular pixel array, for which dimensions are fixed by the 

analyst, are applied to the larger image region during the texture analysis. Marceau a a&.. 

(1990) has showed that window size accounts for 90% of the classification variability in 

a land cover mapping application. However, an adaptable window size might be required to 

optimize image characteristics such as image texture on high resolution images (Franklin and 

McDermit 1993). A strategy has been developed by Franklin et ai. (1996) to automate the 

derivation of texture window sizes through semivariance calculation. This work has shown 

that an increase of 5%, shown to be statistically significant, in classifxcation accuracies can 

be achieved when the range of a sernivariogram is used to predict geographic window size, as 

compared to fixed window sizes. 

2.7 Chaptersummary 

Forest inventories are a critical source of information for sustainable forest management in 

Canada. Forest managers requite tools which are easily accessible, reliable, faster than 

manual methods and cost effective. New technoiogies are promising to provide these tools 

capable of facilitating timely updates to forest inventories, hence, allowing forest managers 

to monitor ecologicaI processes such us forest succession, forest biodiversity and forest 

change in general. The produced results need to be easily interpretable and integratable with 

other digital databases. High resolution digital imagery such as airborne and casi sensor 

imagery have been shown to contain the above ground organization of the vegetative element 
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(forest canopies), or the vertical and horizontal forest structure. Forest managers utilizing 

high resolution digital imagery will most likely be working with commercially available 

image analysis packages, classification algorithms and textural derivatives inherent to these 

packages. Relatively simple techniques are required which can best extract this type of data 

Erom the imagery. 

The AVI is a standard accepted method of collecting and describing forest inventories in 

Alberta. One of the major descriptive variables in AVI is the per species, canopy 

composition expressed in percents of dominant and co-dominant species. Delineation of 

canopy layers and the species composition of these layers can also be recorded. The focus of 

this study is to test the increase in classification accuracy (compared to using spectral 

information only) of multistory forest stands according to the AVI system by applying 

textural and spectral signatures of the investigated classes. The main variables to be 

implemented in the analysis will be the second-order texture derivatives or the high spatial 

resolution casz imagery, which have been shown to contain information pertaining to forest 

structure. 

The relationship between the imagery and field data is extremely important and will be 

established in this thesis. Developing on this relationship the textural imagery will be 

visually interpreted and related to structural components of the stands. 



Chapter 3 Study Area and Data Collected 

3.1 Location and Description of the Study Area 

Located within the Kananaskis Valley on the eastern slopes of the Rocky Mountains of 

Alberta the study area is positioned within a transition zone extending fiom a mountainous 

region to the foothills. Covering approximately seven by eleven kilometers (refer to Figure 

3.1), the study area contains part of Barrier Lake, formed by Barrier Dam on the Kananaskis 

River, and is adjacent to the University of Calgary Kananaskis Field Station. Within the 

greater Montane Cordilleran ecozone, this area lies near the southern border of the Eastern 

Continental Ranges ecoregion, as defmed by Archibald (1996). 

Although the subalpine summers are generally cool and damp while the winters are cold with 

snow and Chinooks, there is considerable variation in temperature. Mean summer 

temperature is 12°C and the mean winter temperature is -7.S°C. However, throughout the 

year temperatures can range &om 3S°C to -4S°C. Only 30% of the precipitation falls as 

snow, the mean annual precipitation ranges fkom 600-800 mm, which increases with 

elevation from east to west. The study area ranges in elevation tiom approximately 1400 m 

at Barrier Lake to 2000 rn at the top of Prairie View located on the west side of Barrier Lake. 

Previous fieldwork conducted in this area during the summer of 1997 has shown that 

multistory stands are common in this hardwood and mixedwood forest. 

The lower subalpine forests of the study area are predominantly composed of Lodgepole Pine 

(Pinus contonu), White Spruce (Picea giauca), Douglas Fir (Pseudotmga menziesii), and 

Aspen Poplar (Populus ~ernuloides). Although not a true tree, beaked willow (Salk 

bebbiana), varying in height fiom 1 m to 10 m, exists in mixed woods and moist depressions. 

The beaked willow is a shrub which is not included in AVI. The understory is dominated by 

bear berry (Arctostaphylos rubra), creeping juniper (Juniperus communis), hairy wild rye 

grass 



Figure 3.1 Location of the study area in Kananaskis Country on a true colour 
composite of 2 m capi imagery, sampling tramects are shown in red. 



Plate 3.1. Photo of the study area showing the aspen and conifer stands (notice the 
defoliation of some of the amen stands1 

Plate 3.2 Close up of the damaged leaves in the aspen canopy 
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( E l p u s  innovatus) and litter. The slope in the area ranges fiom gentle to extreme (between 

1300 m and 2350 rn) exposing barren rock at the highest elevations. The heavily glaciated 

terrain is covered with soils originating fiom limestone, the predominant parent material 

(Kirby 1973). 

During the summer of 1998, an outbreak of the Bruce spanworm (Opherophtera bruceata, 

Hufst, Lepidoptera: Geomerriadae) damaged some of the aspen stands (refer to Plate 3.1 ), 

(Judy Buchanan-Mappin, 1998). The bright green, looping larva feeds on the developing 

aspen buds in the spring. The damage is initially inconspicuous, but when the leaves expand, 

the damage becomes visible as holes in the leaves (refer to Plate 3.1). The outbreaks of this 

insect are typically short-lived, and severe infestation seldom lasts more than two or three 

years (Peterson and Peterson 1992). 

3.2 Data Acquisition 

Two types of data were acquired during the summer of 1998, the field data including ground 

spectral reflectance and forest measurements, and the casi imagery. Both wiIl be discussed 

in this section. Further chapten will establish empirical relationships between these two data 

types. 

3.2,1 Field Data 

During the 1998 Kananaskis Field season, a cooperative effort for data collection was formed 

between the Universities of Calgary, Lethbridge, and Regina, as well as the Canadian Forest 

Service from the Northern Forestry Center in Edmonton. Each institution had different 

research objectives; therefore, all decisions regarding which data were to be collected and the 

best method to do so were evaluated by the research teams to provide the best products for 

use by aII members. All parties shared in the data collection responsibilities using agreed 

upon methods. 



29 

3.2.1.1 Spectroradiometer Data 

Two spectroradiometers were used during the deId season: a 111 range (FR) (350 - 2500nrn) 

and a personal spectrometer 11 (PS2) (350 - 1OSOnm). Optically thick stack of the most 

dominant species in the study area were collected, the sample consisted of pure and mixed 

stacks at regular percent composition intervals to simulate the natural combination of species 

composition. Nadir looking measurements of each pure and mixed vegetation sample were 

collected to simulate the orientation of the casi airborne sensors, as well as limited bi- 

directional measurements. Each set of measurements began with the collection of white 

reference spectra using a Spectralon panel with the FR spectroradiometer and Kodak Grey 

Cards (KGC) with the PS2 spectroradiometer. The white reference spectra provided a means 

of converting raw data to reflectance. The vegetation samples collected and placed in 

optically thick stacks were located outside the forest canopy to reduce the amount of 

scattered and diffuse light contacting the sample. Two sets of spectral measurements were 

collected for each sample: first in raw digital number mode for conversion to absolute 

reflectance, and second in relative reflectance mode (compared to either the spectralon or 

KGC) to provide a field check of data quality. 

3.2.1.2 Sampling Procedure 

Accurate ground measurements are critical to performing this type of research. The fixed 

plot method of ground sampling (similar to methodology utilized by Franklin and 

McDermid, 1993 and Gerylo et a[.. 1997) gathered the amount of detailed information 

necessary for comparison to imagery data. A regular placement sampling method was 

chosen over fully random sampling methods. One reason for this decision was that historical 

data had been collected in these plots. Second, not enough random samples could have been 

collected in the time allocated Ten transects (labeled from A to 5) on the East side of Banier 

Lake were used (refer to Figure 3 -1 of the study area). The tmnsects were previously used by 

Gerylo et al. (1997), as wen as by a "Remote Sensing in Ecology" field methods course 

taught at the Kananaskis Field station during the summer 1996 term. The sampling transects 

run diagonally on a 200' declination and are spaced 50 m apart. Each transect had four plots 
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sampled on it, spaced 50 m apart. Some additional transects (transects 1 and 2 in Figure 3. I), 

running directly north were placed on the north-west side of the Bamer Lake by the parking 

lot and on the north side of Barrier Lake dam; 4 plots were sampled along these additional 

transects in a similar fashion. The additional sampling transects were necessary to introduce 

more variability to the data set; they also hlfilled the research needs of the two other 

research teams. Of the 60 plots collected, data from 51 were suitable for the analysis 

addressed in this research. 

Each 10 m by 10 m plot was aligned north-south trough the center transect ofthe plot. The 

plot corners were labeled numerically clockwise so that comer one is always oriented 

towards the north-west. The plot center was labeled as five. This consistent scheme 

provided for easy comparison between plots. The orientation of the casi flight lines is north 

south or east west, therefore, the plots and image pixel orientation are aligned. This 

simplified the location of the plots on the imagery. 

It is not the objective of this thesis to study the effects of terrain, topography and illumination 

on the classification of the high resolution imagery, as previously discussed by Pellikka 

(1 996). In order to avoid these effect, plots with slopes greater than 3% were not included in 

the sample. 

3.2.1.3 GPS Data Collection 

All plots were located with a Trirnble GPS field unit, using the four comers of the plot as 

well as the center to collect 30 consecutive readings. The Kananaskis Field Station GPS base 

station was used to differentially correct the plot field readings. The data were converted to 

1983 North American Datum (NAD 83) in the Universal Transverse Mercator (UTM) 

Projectionand exported as a GIs coverage using the Trimble software. 
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3.2.1.4 Forest Measurements 

To establish the AVI label for a sample plot a wide range of tree attributes was collected (an 

example of field data collected is shown in Appendix A), including: 

a) Tree species 

b) Tree height and height to canopy 

c) DBH (diameter at breast height) 

d) Crown diameter (2 directions, wide and narrow) 

Structural information for the plot was also necessary, especially the crown closure and 

percentage species composition which could be calculated from the empirical measurements. 

Once the plot was located and the dimensions of the plot were established, each tree was 

marked with flagging tape and numbered. This procedure facilitated in making a plot map, 

where each tree was marked on a 1 m by 1 m grid. These data were collected to ease the 

location of the plots on the imagery and to provide a graphic representation used in 

interpreting the results of the analysis. An older casi image of the study area was also used 

to locate the plots on the imagery. All trees were identified to species. Because of the low 

diversity of these stands, the species identification procedure was simple and did not require 

field species identification guides. 

Height and height to canopy (the live crown of the tree) were estimated using a Suunto 

clinometer. A 20 m distance from the tree was measured in an equal slope direction. The 

clinometer converts the angle recorded through a viewing slot into a height for this preset 

distance; refer to Luckai (1997). 

Diameter at breast height was collected for all trees using a fixed height of 1.3 rn. A tape 

converting the circumference to diameter in cm was wed in this measurement. If split trees 

were encountered, the height of the split was measured. Trees splitting above breast height 

were counted as one stem and trees splitting below breast height were counted as two stems. 
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Crown diameters of the trees were measured in the widest and narrowest directions; see Cole 

(1 995). 

Other measurements taken were the slope and aspect of all plots. To eliminate topographic 

effects, plots with extreme slopes (greater than 3%) were not used in the analysis. 
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Plate 3.3 Photograph examples of plots measured in the field. The AVI information 
gathered and the 60 em cud imagery of the plots are also shown. 
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Two methods and instruments (concave mirror densiometer and Geographic Resource 

Solutions (GRS) brand densiometer) were employed to measure the canopy closure in the 

plots sampled. The minor densiometer was used at five Locations in the plot; 2.5m towards 

the plot center from each comer (equals four estimates) and one estimate at the plot center. 

The mirror densiometer is divided into twenty-four squares, each square was subdivided into 

four quadrants and an imaginary dot can represent the center of the quadrant. The dot 

counting technique involves counting dots that are covered by vegetation and ignoring dots 

that are not. All together 96 dots were estimated (24 squares, 4 dots each) and a converting 

factor of 1.04 was used to convert the estimate to crown closure percentage for the location. 

The five readings at the plot were averaged and the average reading reported for the plot 

(Table 3.1). The GRS densiometer works like a periscope looking up at the canopy through 

an inverted mirror. A dot in the viewing scope of the instrument is used as the sampling 

point. A transect needs to be walked through the plot (a crisscross was used); at every 

second step a reading is taken. Special care needs to be taken to make sure that the 

instrument is leveled (determined by looking at the level bubble). Sixty readings were 

recorded using this procedure. The benefit of using the GRS densiometer is that information 

such as species type and the canopy layer of the tree being recorded can be seen and 

therefore taken at the same time. This allows reports on crown closure per species and crown 

closure per canopy layer (Table 3.1) for each plot. Plots with a crown closure of 30% or less 

were not sampled. 

A 8% difference in the crown closure readings was noted between the two instruments, 

especially in the deciduous stands. This discrepancy was observed by d l  three research 

teams. The differences in the crown closure readings can be attributed to the fact that the 

GIG densiometer has a magnifying lens on it. The defoliation caused by the Bruce 

spanworm larva did not destroy the whole leaf, but only perforated the leaf d a c e .  

Therefore, the leaf might be difficult to detect in the mirror of the concave densiometer (only 

the general 'greenness' of the canopy is used to record the crown closure), but the 

magnification of the GRS densiometer allowed the condition of the leaf to be captured. Due 

to the type of defoliation that occurred in the summer of 1997, the GRS densiometer was 

more successll at capturing the actual crown closure of the plot. Furthermore, this type of 
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55% 50% 
46% 40% 
5 1 % 43% 
50% 52% 
40% 33% 
53% 50% 
50% 42% 
51% 46% 
41% 30% 
40% 31% 
54% 47% 
55% 50% 
56% 42% 
38% 30% 
45% 30% 
50% 3 5% 
54% 47% 
39vo 33% 
41% 37% 
40% 30% 
59% 45% 
52% 47% 
63% 50% 
60% 51% 
50% 42% 
42% 40% 
46% 39% 
35% 30% 
54% 50% 
45% 41% 
59% 51% 
60% 50% 
39% 33% 
39% 31% 
62% 33% 
60% 57% 
53% 5 1 % 
59% 53% 
65% 61% 
56% 58% 
62% 52% 
40% 50% 
60% 49% 
42% 36% 

between cmwn Closure redings 
and GRS dcnsiomctcrs 
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defoliation has significant implications in the high resolution imagery. The spectral signature 

of the aspen stands is contaminated as the reflectance from the hard tissue of the tree, and 

possibly the understory, penetrated the canopy and were recorded by the casi sensor. 

In Plate 3.1, the faded (grayer in tone) aspen stands are visible, the canopy photograph shows 

the condition of the defoliated leaves. However, the close up in Plate 3.2 shows that the 

leaves are partially damaged. 

The second benefit of the GRS densiometer is that although both instruments capture the 

canopy of the plot, which can be comprised of more than one layer, only the GRS allows for 

the measurements of the contribution of each layer to the total crown closure. Hence, the 

data illustrates that the second layer can contribute between 9% and 58% to the crown 

closure of the stand- 

The Compact Airborne Spectrographic Imager was flown over the study area on July 1 8 ' ~ ,  

1998 between eleven AM and two PM. The month of the imagery was chosen to coincide 

with the most "leaf on" in the forest; it is also the season least likely to experience rain or 

drought conditions. This timing coincided with clear atmospheric conditions for the flight 

and ensured that no stress was affecting the vegetation. The time of day was chosen close to 

solar noon for this season, allowing for the maximum sun-lit canopies necessary for the 

spectral information being collected. The contrast between sun-lit and shadowed canopies is 

lowest during solar noon (Foumier et al.. 1995); hence, the spectral information content of 

the imagery can be maximized. Three spatial resolutions of imagery were couected: 60 

cmlpixel resolution, 1 m/pixel resolution and 2 &pixel resolution. At the 1 m pixel 

resolution, five flight lines were flown to cover the I 1 1  study area Only two flight lines 

were flown at the subsequent (1 m and 2 m) resolutions (refer to Figure 3.1 of the study 

area). 
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The cnsi instrument can collect a large amount of spectral information as already discussed in 

Chapter 2, (refer to Table 2.1 Technical specifications of cclszJ. When possible, mission 

planners must carellly select central wavelengths and spectral bandwidths according to key 

features in the canopy signature (Foumier et al. 1 995). Therefore, spectroradiornetric data 

collected for the dominant and co-dominant species in the study area, was the primary 

consideration for casi band selection . Central wavelengths and bandwidths most successful 

at spectrally distinguishing between tree species, especially the two major conifer species in 

the study area, were selected. Previous work in the area with multispectral video imagery 

(Gerylo et a/. 1997) showed that only three spectral bands (green, red and near-inhed) were 

not successful at distinguishing between white spruce and lodgepole pine. The second 

consideration was the ability to combine the bands to simulate bandwidths of satellite 

imagery, specifically Landsat TM and SPOT. The most suitable bands, which were chosen, 

are presented in Table 3.2. In total seven bands were collected at the 60 cm pixel resolution 

and eighteen bands were collected at the lower 1 m and 2 m pixel resolutions. The 60 cm 

pixel resolution band set was limited to only seven bands. Two major reasons contributed to 

this, first the time that it takes the casi instrumentation to collect information of such high 

spatial detail is lengthy, and second, the conflict between the slowest speed that an aircraft 

can maintain and digital data recording in order to collect this information (this limitation is 

discussed W e r  by Mah et al. 1995, and Wulder et al. 1996~). 

The cusi imagery was acquired on a non-cloudy day, July 18" 1998. The 2 m data were 

collected first, than the aircraft lowered in altitude to collect the 1 m data, and subsequently 

the 60 cm data. The mission was flown close to solar noon to reduce the shadows in the 

imagery and allow for the best crown illumination conditions. The solar zenith angle at the 

time of the fight was calculated at 59.78" (Peddle et al. 1995). Works by Guyot et al. (1 989) 

and Bruniquel-Pine1 and Gastellu-Etchegorry (1998) have shown that image acquisition 

parameters play an important role in the type of texture that the imagery can provide. For 

example, larger shadows can provide textlwlly coarser imagery, which can be suitable for 

some studies. However, operationally the imagery had to suit at leas three types of research 

projects. In two of these projects, maximum spectral response fkom the canopy was crucial 



38 

to the studies. In this thesis the shadows in the casi imagery played a major role in deriving 

texture from the imagery, nevertheless, optimal spectral data were also required for 

distinction between species. 

Table 3.2 casi Bands for the three image resolutions 
18 Bu~d set (I m & 2 Wavelength (nm) 7 Band set (60 cm Wavelength (nm) 

m pirvl resolution) pixel resolution) 

I 415 -450 

2 450 - 500 
3 500 - 520 
4 520 - 540 

5 540 - 560 

6 560 - 590 

7 610 - 640 
8 640 - 680 

9 690 - 715 

I0 715 - 730 
I I 730 - 755 

I2 755 - 790 

13 790 - 8 I0 

14 810 - 830 
15 830 - 850 
16 850 - 875 

17 875 - 890 
18 900 - 960 

Coincident with image acquisition, down welling irradiance was measured at the top of the 

aircraft with an Incident Light Sensor (ILS). 
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3.3 Chapter Summary 

The field data and casi imagery collected for this research are descnied in this chapter. A 

sampling procedure that captured the wide variety of attrriutes necessary for AVI, with plots 

representing the variability of the stands encountered in the study area, was discussed. 

Central wavelengths and bandwidths collected by cari enabled the isolation of spectral 

idormation and the extraction of textural derivatives. The constraints of the high resolution 

casi imagery are introduced and discussed. Other factors affecting the imagery, such as 

defoliation of the aspen stands during the field season are also presented. 



Chapter 4 Methodology 

4.1 Introduction 

This chapter contains a description of the methods used to test the hypothesis that image 

texture analysis can be used to improve the accuracy of an AVI-based forest ~Iassification in 

the Kananaskis study area using high spatial resolution casi imagery. A standard supervised 

classification approach commonly used to determine the accuracy of input classification 

variables was used (Jensen 1996; Lillesand and Kiefer 1994). This approach requires that the 

analyst identify the classes based on field data, the variables, based on image data, a 

decision-rule based on a training sample, and an accuracy assessment procedure, based on a 

testing sample. The power of this approach has been shown in numerous satellite and 

airborne remote sensing studies (e.g. Skidmore 1989; Foody et af. 1992; Franklin and 

McDermid 1993). Here, the focus is on testing the improvement in classification accuracy 

that can be achieved with the texture variables compared to a classification accuracy that can 

be achieved without the texture variables, relying only on the spectral information. 

First, the method used to develop the AVI label for each ground plot is described. Sample 

stratification based on different canopy layers was carried out to create different groups of 

classes. Second, the image data set was prepared by applying a Principal Components 

Analysis (PCA) to create a 'brightness' image fkom which texture derivatives could be 

extracted. This step was necessary to reduce the sheer volume of data that could be analyzed 

in the classification and texture extraction procedures. For example, presently a standard 

commercial remote sensing package can include as many as 12 second-order texture 

measures, and new measures are regularly being developed and added. The texture can be 

produced on various window sizes, view directions, input bands and image resolutions, 

leaving the user with an opportunity to potentially calculate a nearly infinite number of 

textural images. A preliminary analysis of the relationships between the casi image, the 

stand structure and the stand shadow components was conducted in support of the texture 

extraction. Third, the plots were compiled into the classification structure with a training 
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sample and a testing sample. Discriminant Analysis @A) was applied to determine the level 

of accuracy that could be achieved with and without the texture variables. The last step was 

to determine the classification accuracy and compute statistical tests to support the accuracy 

assessment. 

4.2 Basal Area and AVI Plot Labels 

The AVI labels for each plot were constructed using basal area (BA) measured in the field. 

This is the standard technique of the Alberta Forest Service, has also been used by other 

remote sensing scientists (Franklin and McDermid 1993; Gerylo et al. 1 998; Maudie 1999). 

The basal area of a tree has been determined to be positively correlated with the crown 

diameter of the tree (personal correspondence Hall 1998; also refer to Maudie 1999). It is 

due to this relationship between crown diameter and basal area, that this method was chosen. 

In forest applications of high resolution remotely sensed imagery, the most valuable image 

component is the sun-lit crown of the tree that is detected by the sensor. Hence, if the plot 

species composition is stratified according to a variable such a s  crown closure that can be 

measured or estimated by the remote sensor, a stronger relationship can be developed 

between the field data and the imagery. The basal area can be defined as the area in square 

units of the cross section at breast height of a single tree or per species in a stand (as defined 

by Avery 1967) 

The basal area was caIcuIated for each tree species in each plot. The different canopy layen 

were identified by examining the tree heights for an average canopy height difference of 3 m 

or greater (as discussed in Chapter 2). Species composition per canopy (Table 4.1) was 

determined using the basal area per species percentage values. Hence, an AVI label of 

AW8Ph indicates that 80% of the plot basal area can be attributed to aspen and 20% of the 

plot basal area can be attributed to lodgepole pine. 



A bivariate regression of per species crown closure using the 45 sample plots (determined 

with the GRS densiometer method described in Chapter 3) and per species basal area was 

performed for the First and other canopy layers. This resulted in an adjusted R~ of 0.6 13, and 

a standard error of the estimate of 0.1256, for the coniferous species and an adjusted R~ of 

0.804 and a standard error of the estimate of 0.1583 for the deciduous species. Both of these 

results were calculated for the first canopy layer and were significant at the 95% confidence 

interval. The other canopy layers produced results of an adjusted R~ of 0.574 (standard error 

of the estimate of 0.05494) for the deciduous species and an adjusted R~ of 0.814 (standard 

error of the estimate of 0.0.06262) for the coniferous species (refer to data and graphs in 

Appendix B). Both were significant at the 95% confidence interval. The higher goodness of 

fit for the aspen trees, at the £kt canopy layer, can be partially attributed to the same age of 

the stand. Aspens have less age variability between individual trees within a stand compared 

to conifer species, therefore, their crowns (crown closures) and basal areas are less likely to 

vary. The results for the other canopy layers show that the basal areas of shade intolerant 

species (deciduous) are less likely to correlate with crown closures, when these species are 

competing with an above layer for sunlight. Also, the conifer species in the second layer 

contribute to as much as 55% of the crown closure for the stand, compared to only 30% for 

the share intolerant deciduous species. The shade tolerant conifers, such as white spruce, are 

more successfL1 at competing for the residual sunlight left after the first canopy intersection. 

These symbiotic relationships (protection from insects and fiost) are discussed in more detail 

by Peterson and Peterson (1992). All these characteristics are consistent with observations 

made in the field during data collection. These analyses co& the relationship between tree 

crown and basal area, which can be further interpreted as a relationship between dbh and 

crown diameter discussed above is usefid as the basis of the AVI species label (Table 4.1) in 

this study. 



Table 4.1 A M  Labels based on basal area for the 45 study plots 43 
I I 

Plot AP7 Code 
Layer I Layer 2 

Bad Area In, ') 
Layer Z Layer2 Layer3 

59.6 



4.2.1.1 Sample Stratification Based on AVI Fint Canopy Layer 

Previous remote sensing classification research has typically ignored the existence of multi 

canopy stands. Usually, samples were stratified using all plot information to produce a single 

(one layer) AVI label (e-g. Franklin et al. 1998). In one study, a rnultilayer AVI label was 

produced but the second layer was not considered in the analysis because of the complexity 

of the resulting classifications (Gerylo et al. 1998). However, it is exactly this complexity, 

which is the focus of the present study. Therefore, an AVI label was produced based on the 

single layer interpretation and a multilayer interpretation as described below. 

Stratifjmg the sample by the first canopy layer information produced six initial classes. Note 

that all information about the second or third layers has been ignored in the initial grouping 

of the sample. The stratification and classes, shown in Figure 4.1 included: 

I .  Aspen 

2. Aspen mixed 

3. Pine 

4, Pine mixed 

5. Spruce 

6. Spruce mixed 

4.2.1.2 Sample Stratification Based on All A M  Canopy Layers 

The second level of stratifying the sample (also shown in Figure 4.1) applied d l  of the AW 

canopy layer information to produce thirteen-classes. These classes showed a dominant layer 

and a second layer, which was sometimes comprised of the second and third layer in the AVI 

label. The third layer sample stratification was not approached because attributes such as 

small basal area (on average 2% of the plot area), would not be possible to detect with the 

presented methods. The classes produced at this level were: 



1. Aspen 

2. Aspen with a second pure aspen canopy 

3. Aspen with a second aspen conifer mixed canopy 

4. Aspen with a second conifer canopy 

5. Aspen mixed with a second aspen canopy 

6. Poplar with a second poplar canopy 

7. Pine and spruce mixed with a second conifer canopy 

8. Pine and aspen mixed with a second aspen canopy 

9. Pine and aspen mixed with a second pine canopy 

10. Pine with a second pine canopy 

11. Conifer mixed with a second conifer canopy 

12. Spruce with a second spruce canopy 

13. Spruce with a second conifer canopy 

In three cases the same plots that were combined into a class in the six-class sample 

stratification were also combined in the thirteen-class sample stratification. As shown in 

Figure 4.1, Class 2 (six-class sample stratification) was composed of the same plots as Class 

5 (thirteen-class sample stratification); Class 3 (six-class sample stratification) was composed 

of the same plots as Class 7 (thirteen-class sample stratification); and Class 6 (six-class 

sample stratification) was composed of the same plots as Class 13 (thirteen-class sample 

stratification). 
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4.3 Image Preparation and Statistical Data Extraction 

Subsets of the study area were extracted Earn the I2 km casi flight lines, this greatly reduced 

the size of the image database. The GPS data, field maps and plot maps were used to locate 

the plots on the imagery. This procedure was simplified by the constant geographical 

alignment/orientation to North of all plots (described below). Graphic masks, representing 

the exact location and area of each of the plots, were created. This procedure was repeated 

for dl three resolutions of the casi imagery. 

Before any aerial digital image analysis can take place some additional image preparation 

needs to be undertaken. The use of image corrections to improve radiometry and consequent 

classification accuracies is well documented (e.g. Robinove 198 1; Franklin and Giles 1995). 

Once the radiance of the study area was collected by the casi instrument, the data were 

corrected using a pre-flight sensor calibration in-house (Itres Research Ltd., also refer to 

Grey et al. 1997 who describe this procedure extensively). These data are in a raw form 

supplied to the user on digital tapes with a quantization of 16-bit. Two rectifications, also 

done in-house by itres Research Ltd. (Mah et al. 1995) are: 

a) The geocorrection for aircraft roll, pitch and yaw; and 

b) Fitting the imagery to a geographical space, also known as 

georectification. 

A 10 m horizontal and 4m vertical resolution Digital Elevation Model @EM), derived fkom 

1:25000 National Topographic Series (NTS) map sheets, was used in the corrections of all 

three resolutions of data; the DEM was resampled to each resolution (60 cm, 1 m and 2 m). 

During the flight mission a GPS unit in the aircraft was used to collect the exact location of 

the fight lines. These readings were differentially corrected using data fkom the Kananaskis 

Research Field Station base station located less than a kilometer away fkom the actual study 

area. The imagery was georectified (using the nearest neighbor resampling method) to 
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Universal Transverse Mercator (UTM) projection using the 1 983 North American Datum 

(NAD 83). A study by Dikshit and Roy (1996) has shown that effects of image resampling 

(such as geocorrection or orthorectification) upon the spectra1 and textural supervised 

classification of high spatial resolution rnultispectral imagery are minimal. 

Atmospheric correction is known to improve analysis based on spectral response and is 

recommended for studies where different imagery will be compared (e.g. different 

resolutions, different sensors); (Jensen 1 996). Although down welling irradiance was 

measured at the top of the aircraft with an Incident Light Sensor (US) during the flight 

mission, and spectral reflectance target readings were collected on the ground, an 

atmospheric correction was not performed on the imagery. Atmospheric correction was not 

considered crucial to performing the classification study in this thesis. There are four major 

reasons for this decision: 

a) The high resolution imagery requires the aircraft to fly at low altitudes 

(between 1000 feet and 2000 feet); hence, the amount of atmosphere 

between the casi sensor and the canopy targets was minimal. 

b) There was no cloud coverage prior to and during the cmi imagery 

collection. Clouds did not appear until at least an hour after the 

commencement of the flight mission. Therefore, the effects of the 

atmosphere were judged minimal. 

c) The radiance imagery was not available for analysis until the Fall of 1999. 

d) Furthermore, since texture analysis measures the spatial component of the 

shadow/sun-lit crowns within the imagery, the absolute radiometric 

differences would not be required in order to capture adequately the 

differences in very bright and very dark objects. Although spectral bands 

were used in the classification, the objective was not to determine how 

well the classification would perform but how much information the 

texhual component adds to the classification. 
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4.4 Principal Component Analysis 

Multispectral digital imagery can produce large amounts of data, but because of the spectral 

characteristics of the data, many bands are highly correlated (Table 4. I). Although ample 

information for an observation is necessary for a successll classification, highly correlated 

information and too much information can ovewheh the statistical classifier producing a 

large null or unclassified class (Lillesand and Kiefer 1994). One approach is to simply select 

a few bands based on visual analysis, or statistical tests such as the Bhattacharya-distance 

separability measure on a band with high contrast - usually the near-infrared band (e.g. 

Marceau et al. 1990). However, these methods are subjective and can be extremely sensitive 

to statistical assumptions (such as the assumption of a normal distribution) or to the increased 

number of bands in the sample, and may result in the loss of information and a non-optimal 

data set for classification (or statistical) purposes. 

Another approach is to apply a Principal Component Analysis (PCA) to reduce the 

redundancy in the spectral data and create fewer dimensions in a predictable linear model. 

Although this method can also be sensitive to statistical properties of the data set, this 

approach was adopted in this study because of the large number of texture bands that can be 

produced fiom a single image dataset. PCA was applied to the seven spectral bands to 

produce seven Principal Components (PC). The results of the Principal Component Analysis 

are: 

a) Reduction in the number of bands needed for effective classification, while 

retaining the information content of all bands and discarding noise . 
b) One band, now called 'brightness', on which texture analysis was 

performed. 

Even on the 60 cm imagery, where the resolution was the highest, the spectral bands show 

correlation ranging fkom adjusted It2 of 0.59 to adjusted R~ of 0.99 (Table 4.1). This is 

related to the information content of the imagery, in this case vegetation and shadows. For 

example, the lowest correlation occurs between band three (the red band where chlorophyll 
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absorption by vegetation can be measured) and band seven (the near hfiared band where 

high scattering caused by the vegetation cell structure is significant). The relationship 

between the third band (red) and the subsequent bands ail located at longer wavelengths, e.g. 

band four (adjusted R~ of 0.89), band five (adjusted R' of 0.64), band six (adjusted R~ of 

0.62) and band seven (adjusted R' of 0.59) documents the increase in the spectral reflectance 

of the vegetation at longer wavelengths. The highest correlation occurs between bands 

closely neighboring on the electromagnetic spectrum, where similar vegetation 

characteristics are measured, at an adjusted R~ of 0.99 between bands five and six. 

The data in the seven 60 cm casi imagery bands is significantly correlated (at 95% 

confidence interval), therefore, the amount of information stored in these bands can be 

modeled through a regression line (line of best fit) equation. The first principal component is 

an axis along the regression line in the direction of most variance. The digital numbers in 

this principal component image indicate how far out dong the new line the values fall, or 

how much spectral variability for a specific pixel is represented by that component. 

Table 4.2 Correlation Matrix for the Seven Spectral Bands at 60 m 
pixel resolution 

Band I Band2 Band3 Band4 Band 5 Band 6 Band 7 

Band I 0.93 0.85 0.97 0.89 0.88 0.86 

Band 2 0.98 0.93 0.74 0.7 1 0.69 

Band 3 1 0.86 0.64 0.62 0.59 

Band 4 

Band 5 

Band 6 

Band 7 

When the data are this highly correlated, most variability occurs along this new component, 

but if the data are less perfectly correlated, there is still some variability dong another new 

axis orthogonaI to the first principal component. This is the second principaI component, 

which accounts for the maximum amount of the variance remaining after variance along the 

first principal component has been accounted for. Because there were seven original spectral 
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bands, seven principal components were calculated. The procedure was repeated for the 

other resolution (1 m and 2 m) casi imagery, but only the seven spectral (as opposed to PC) 

bands that overlap in all imagery were used in the analysis. 

The percentage of variance accounted for by each component is expressed by that 

component's eigenvalue. The variance expressed by the first principal component of the 60 

crn imagery was high at 89.77% for the whole image, meaning that 89.77 % of the variability 

contained in the seven spectral bands is mostly represented by the first principal component. 

The second principal component contains a small amount of the remaining information of 

only 8.96%. The results follow a similar pattern for the 1 m imagery, the first principal 

component explains 83.62% of the variance and the second principal component 14.73% of 

the variance. The 2 m PCA and resulting eigenvalues determined that the first principal 

component explained 80.93% variability and the second contributed to 17.88% variability. A 

trend was observed, as the resolution decreased and the number of objects contributing to a 

spectral response of a pixel increased, the variability explained by the first principal 

component (brightness) decreased and the second principal component became more 

important. 

When performing PCA on a multiresolution image data set, such as the one used in this 

thesis, it is critical to the analysis to be working with the same elements in all imagery. 

When various resolutions of imagery are collected, the area covered by these images is not 

always identical on the ground or on the image. In this study, special care was taken to 

assure that only areas of image overlap were used to calculate the principal component. 

Given that the goal of this research is forestry-oriented, only the vegetated areas were 

included in the PCA. To investigate the success of the procedure the fht principal 

component was tested for correlation between all resolutions resulting in relationships 

between 82% and 87%. 



Table 4.3 Correlation between resolutions for the first principal component 
60 cm pixel I cm pikel 2 crn pixel 

resolution resolution resolution 

60 cm pixel resolution I 0.85 0.82 
1 cm pixel resolution 1 0.87 
2 cm pixel resoIution 1 

Figure 4.2 shows the first principal component imagery for all three resolutions, where the 

lightest pixels represent pixels undergoing high tonal variability captured by the bandset of 

casi imagery, their location on the axis of variability is far from the origin and therefore, the 

values are high. The dark pixels represent the pixels of low change through the seven 

spectral bands, their location on the variability axis is vary close to the origin and therefore, 

the values are low. Spectral signatures, the way in which different ground components 

reflect or absorb different wavelengths of light, are used in remote sensing to distinguish 

between scene components or classes. They are the most important pieces of information 

driving a supervised image classification (Price 1994). 

Two signatures, composed of sun-lit crown pixels and shadowed pixels are graphed in the 

Figure 4.2. The shadow pixels show exceptionally little variability in the different 

bandwidths, as compared to the vegetated pixels, and are represented as dark tone pixels in 

the first principal component imagery. Hence, the first principal component captures the one 

most important element necessary to identify multistory stands, the shadow. It also captures 

the different types of vegetation covers. The fust principal component represents a 

brightness variable because it captures the tonal variability in the imagery. It was this 

variable which was used to perform texture analysis discussed later in this chapter. The 

figure also documents the increase in spectral values as the resolution decreases for the 

shadowed pixels, and the decrease in spectd values as the resolution decreases for the 

vegetation pixels. This inverse relationship can be explained by the merging of pixel 

components (vegetation and shadows) as the resolution decreases. It also explains the trend 

(demonstrated above) of reduction in variability expressed by the h t  principal component 

and increase of variability expressed by the second principal component as resolution 

decreases. Hence, with the loss of spatial detaii pixel components merge. 
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1st Principal Component 'brightness' image based on the spectral bands of casi 
n 

A s m - ~ a o m  u shadow 
The thumbnail images above show the 'brightness' channel which was extracted &om the 
casi imagery by using principal component analysis. The shadowed area in all casi image 
bands are represented by the dark areas in this imagery. The sun-lit crowns are the brighter 
areas. As image resolution increases the number of pixels representing each feature 
decreases. The edge (boundary) pixels of the features no longer represent the spectral 
characteristics of that individual feature but are a combination of spectral signatures of 
other components (adjacent features). 
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The above graphs summarize the mean pixel values for the sun-lit crown pixels and the 
shadowed pixels outlined in the 1st principal component imagery. All three resoIutions 
are represented, the information for aIl spectral bands is shown, although only the seven 
overlapping spectral bands (see 60 cm) were used to calculate the 1st principal component. 
As the imagery resolution increases the mixing of various components can be interpreted in 
these graphs by the higher 'brightness' values of the targets. For example the shadowed 
pixels become lighter as they begin to mix with adjacent sun-lit vegetation pkeIs, this is 
well demonstrated in the second graph. Also, the spectral signature of the sun-lit crown 
changes as the resolution of the imagery decreases and adjacent objects contniute to the 
signal. 

Figure 4.2 The &st principal component for three cmi imagery resolutions (60 em, 
1 m and 2 m) and graphs showing the spectral characteristics of a 
shadowed pixeI and a lit-canopy pixel. 



4.5 Structure and casi Imagery Shadow 

To establish the relationship between the field data and the casi imagery a simple 

unsupervised classification (density slicing) of the fist principal component was performed 

to isolate the shadow class captured by the low grey level values in this type of imagery. The 

percentage of shadow per plot was calculated. A structural complexity index was developed 

by averaging the standard deviation for physical characteristics of the plot (tree height, dbh 

and crown diameter); note that species composition was not explored by this index. This 

method is a simplified version of a Structural Complexity Index (SCI) used and described by 

Cohen and Spies (1992) and Cohen et a/. (1995). The SCI used by Cohen produced a 

Principal Component based on the means and standard deviations of structural field data 

(dbh, crown diameter, basal area, height and tree density). In this thesis only the standard 

deviations were used because the variability within the plot was measured and not the 

variability among the plots. Hence, plots that had a lot of variability in tree size suggesting 

that more than one canopy is present had a higher average standard deviation than plots 

where the tree size was uniform (such as the same age aspen plots). The plots were sorted 

from highest to iowest, based on the structural complexity index, highest representing most 

structurally complex plots and lowest representing the least structurally complex plots. The 

per plot percentage of shadow pixels and stand complexity data are available in Appendix C. 

This procedure was repeated for d l  resolutions of the imagery. 

Linear regressions based on data in Appendix C (graphs), showed the relationship between 

the structural complexity and the shadow percentage captured by the first principal 

component of the casi imagery, for all three resolutions. The R' of 0.60 at the highest 

resolution (60 crn) imagery, R~ of 0.56 at the 1 m resolution imagery and R~ of 0.55 at the (2 

m) lowest resolution were calculated. In general, the aspen stands had a lower stand 

complexity index value than the coniferous stands, which can be related to the same age of 

these trees and low variability in tree characteristics (dbh, height, crown diameter) within the 

stand. The regressions confirmed that, as expected, a relationship exists between stand 

structure and the casi imagery (Appendix C). This is interpreted to mean that the shadow 
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component in the stand represents structural complexity of canopy elements, and is captured 

by the image data This relationship can be the basis upon which the texture analysis and 

~Iassification of multilayer stands can be conducted. 

4.6 Creation of Texture ChanneIs 

The grey level co-occurrence matrix (GLCM) is constructed &om the image by estimating 

the pair wise statistics of pixel intensity. Each element (i, j) of the matrix represents an 

estimate of the probability that two pixels with a specific spatial separation have grey levels i 

and j. The textural derivatives used in this thesis were based on the GLCM and not directly 

fiom the imagery, hence the name; second order texture measures. Second order texture has 

been shown to be effective in classification methodology (as outlined in Chapter 2); in one 

study, second-order texture outperformed newer texture measures based on semivariance for 

optical imagery similar to those employed in this thesis (Carr and Miranda 1998). Many 

second-order texture measures are readily available in commercial remote sensing packages, 

and were therefore selected for use in this study. 

To perform texture analysis of an image five control variables need to be identified by the 

user. They include: 

a) The image channel to measure the image texture; 

b) The texture algorithm; 

c) Window size; 

d) Quantization level (8-bit, 16-bit or32-bit); 

e) and the spatial component (relation between pixels) 

The first principal component image was chosen to perform the texture analysis on the 

rationale that the first component represented the brightness feature in the image data set; in 

essence, one band represented the combined variability of al l  the image bands in a single 

dimension that is more easily handed then the original multispectrd imagery. 
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The available commercial software program provides twelve texture measures; one of the 

original texture developers (Haralick 1 9 8 6) presented fourteen different measures based on 

the co-occurrence matrix or second-order approach. Many of these measures are redundant 

and capture similar concepts (Wilson 1995). Therefore, from these available measures, five 

statistically different measures were chosen for this thesis research, including: 

AngulurSecondMornent = ~ ( i ,  j)' 
j = I  i=i  

Correlation = 2 2 P(i ,  j )  R(i)  - MeanR(i)(C( j )  - MeanC( j ) )  

j =1  i=l J(~afiunce~(i)(~ariance~( j)) 

n m 

Dissimilarity = P(i, j)(R ( i )  - C( j ) )  ' 

n m 

Ennopy = yx ( - ~ ( i ,  j )  ln(P(i, j) ,  assuming that O(h(0))=0 
j = I  is1 

n m 

Homogeneity = P(i7 i) 
,=I i=I (1 + [R( i )  - c(j)12 1 

where: 

P(ij) = the spatial co-occurrence matrix element 

R(i) = the grey level value for a row and 

C(j) = the grey Level value for a column (PCI, 1997). 

Interpretation of these different measures can be considered conceptually. For example, the 

angular second moment employs probability of a pixel occurring based on the surrounding 

values. The higher the probability, the brighter the corresponding pixel value is in the texture 

channel. Therefore, in imagery which is homogenous, the angular second moment texture 

vaIue will be high and in imagery which is heterogeneous the value will be low. The 



57 

algorithms apply an exponential approach; hence, the growth in probability changes rapidly. 

The correlation algorithm measures the h e a r  dependency of the grey levels of neighborhood 

pixels; the more often like value pixels occur in a give area, the more likely it is that a pixel 

will be of the same value. 

The dissimilarity texture algorithm is similar to the contrast texture algorithm. It measures 

the variability of the grey level values in the image, but the relationship between grey level 

values is linear. This measure is less sensitive to slight changes in image texture. Entropy 

measures the probability of the rate of change of a pixel grey-level value. Because of this 

logarithmic function, this measure is quite sensitive to slight changes in grey level value. 

Entropy is almost the opposite of the angular second moment measure. Homogeneity 

measures the likelihood of a pixel being similar (this has previously been demonstrated in 

Chapter 2, Figure 2.3) to the surrounding pixels, or the local similarity of the grey level 

values in an image. The homogeneity measure functions in almost an opposite manner to the 

dissimilarity measure. Low values relate that the image tone is variable and high values 

suggest high similarity in image tone. 

Using coarse satellite data in an urban area, Marceau et al. (1990) concluded that on average 

the selection of the second-order texture algorithms used accounted for only 7% of the 

variability in classification results in their analysis. This was attributed to the fact that all of 

these algorithms are using the same co-occurrence matrix to calculate the texture and 

therefore, they are highly correlated. The same study concluded that choosing the window 

size of the texture measure is most important and can account for as much as 90% of the 

variation in classification accuracies (refer to also Hodgson 1998). In this thesis, six window 

sizes (3x3, 5x5, 9x9, 11x1 I, 17x17, 21x21) were used in the texture analysis. The smaller 

windows were chosen to capture textural characteristics of the individual objects in the 

andysis (trees), and as the window size increases the textural characteristics of the forest 

stands are measured. The methodology for choosing the window size is presented in the 

section on discriminant analysis. 
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Marceau et al. (1990) also showed that the quantization level of the data only accounted for 

3% of the variability in classification results; therefore, it is the least important parameter. In 

this thesis, all textual measures were produced at the 32-bit quantization level based on casi 

imagery of 16-bit quantization level. 

The distance (separation) parameter used to construct a grey level co-occurrence matrix 

specifies the scale at which the texture is analyzed; therefore, the optimal choice of this 

distance as well as the direction (angle), is dependent on the inherent scale of the texture 

being analyzed. In high resolution imagery, more than one pixel can represent an object on 

the ground. Furthermore, the pixel values can change rapidly across a few pixels. To best 

capture the characteristics of high resolution imagery the invariant spatial component (the 

mean of all four main inter-pixel angles) with an inter-pixel value of one was used. This is in 

agreement with the findings of Marceau et nl. (1990) and agrees with the later studies by 

Franklin and McDermid (1993) and Maudie (1999). Hence, on 60 crn imagery the scale of 

the texture measure using a 3 x 3 window was 60 cm, on 1 m imagery the scale of the texture 

measure using a 3x3 window was 1 m and on the 2 m imagery the scale of the texture 

measure using a 3x3 window was 2 m. 

4.7 Texture and casi Imagery Shadow 

To illustrate the relationship between texture and image shadows (created by different forest 

stand structures) a sample subset multispectral image was chosen, shown in Figure 4.4. The 

subset was extracted  om the imagery at all resolutions fiom a known location centered on 

an edge between a pure aspen and pure conifer stand, so that half of the image subset is an 

aspen stand and half is a mixed conifer spruce and pine stand. The size of the area is 

approximately 40 m by 20 m. The subset extraction was performed to facilitate the visual 

analysis of the relationships between image texture and shadow, and is interpreted in Chapter 

5, section 5.2. 



Figure 4 3  Fahe colour composite showing the subset window 



4.8 Statistical Data Extraction from casi Imagery 

Per pixel data were extracted for dl bands at all resolutions &om underneath the graphic 

mask of the plots. The data were imported to the SPSS (SPSS 1997) statistical package. In 

classification analysis, statistical summaries of the data are used as the signatures, which 

separate the classes. T o  reduce the amount of data, and decrease the processing time, the piot 

spectral and textural information was summarized with the plot mean. This approach is 

feasible in higher resolution imagery where the plot comprises many objects including tree 

canopy, shadows and to some extent (depending on the crown closure) the understory. The 

plot standard deviation was also extracted and tested, but it did not prove to contribute 

significantly to the analysis. 

4.9 Classification Procedure 

The classification decision rule selected for this study was the discriminant analysis (DA) 

hc t ion  (Klecka 1982; Tabachnick and Fidell 1996). Discriminant analysis is useful for 

situations where one needs to develop a predictive model of group membership based on 

observed characteristics of each case. The procedure generates a discriminant function (or, 

for more than two groups, a set of discriminant functions) based on linear combinations of 

the predictor variables that provide the best discrimination between the groups. The hctions 

are generated &om a sample of cases for which group membership is known; the functions 

can then be applied to new cases with measurements for the predictor variables but with 

unknown group membership (SPSS 1997). In this thesis, the group is the AVI class (based 

on field data) and the set of predictors are the spectral bands and the texhlral bands derived 

fiom the first principal component of the casi imagery. 

A preliminary DA had to be performed to determine the best window size of the texture 

measure (already identified in the previous section as the most important factor in texture 

analysis). In this exploratory analysis, the six-class sample stratification based on the first 

AVI canopy layer was used. The results are reported in Table 4.3. Since, this analysis was 
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only part of the paramilitary data exploration, this DA was not assessed for accuracy. 

Therefore, all cases were used to develop the DA function. 

Table 4.4 Preliminary DA results in % to determine the best texture 
window size 

Data combinatiorrs 60cm lOOcrn 2OOcm 

p M  pixel pirel 

7 Spectral Bands 64.7 5 1 60.8 
-- 

7 Spectral Bands, 5 Tmures (3x3 window) 74.5 72.5 80.4 

7 Spectral Band, 5 Texrures (5~5window) 62.7 80.4 80.4 

7 Spectral Bands, 5 Textures (9x9 window) 64-7 68.6 76.5 

7 Spectral Bands, 5 Textures (I 1x11 window) 66.7 68.6 74.5 

7 Spectral Bands, 5 Tmures (I 7x1 7 window) 64.7 66.7 70.6 

7Spectrai Bands, 5 Textures (21x21 window) 60.8 82.4 82.4 

5 Textures* (3x3 window) 51 54.9 56.9 

5 Textures (5x5 window) 43.1 58 -8 54.9 

5 Textures (9x9 window) 49 35.3 5 1 

5 Textures (1 I x U  window) 49 39.2 47. I 

5 Textures (I 7x1 7 window) 41 47. I 52.9 

5 Textures (21x21 window) 45.1 52.9 52.9 

 h he fiw texture measures include: hornogeneiry, dissimifarity, correlation, entropy and 
angular second moment 

The best classification results of 82.4 % occurred on the largest window size 21x21 

confirming results by Marceau et al. (1990); Hodgson, (1998) and Maudie (1 999). Hence, 

texture measure of the stand (large window size) was a better discriminating factor than 

texture of individual tree crowns (smaller window size). It is important to notice that on the 

high resolution imagery the best results 74.5% occurred at the smallest 3x3 window size. 

The second best result (80.4 %) also occurred on the lower resolution imagery at a smaller 

window size (3x3 and 5x5 window size on the 2 m and 5 window size on the 1 m). 

The results of this initial test established that the classification should proceed based on the 

seven spectral bands as predictors in conjunction with the five textural measurements at 

21x2 1 window size. In the final analysis three different discriminant analyses were run: 



a) Seven spectral bands as the only set of predictors; 

b) Five textural bands as the only set of predictors; 

c) Seven spectral and five textural bands as the set of predictors. 

The procedure was repeated for all three resolutions of imagery and two different levels of 

classes. It is important to note that this classification procedure is designed to test the study 

hypothesis at the field plot locations, and is not the same approach that would produce a 

classification map. In that type of analysis, much more attention would need to be focused 

on developing training signatures and testing statistical assumptions of the resulting training 

data. As Franklin (1994, p 1238) pointed out in an earlier forest inventory classification 

study using 2.5 m cusi data, 'while the cusi dam Discriminant well the required inventory 

stands, this does not necessarily mean that the stands can be mapped wefl'. Operational 

problems in mapping based on the image data represent an entirely new set of problems and 

issues that are beyond the scope of this thesis. 

4.10 Accuracy Assessment 

Accuracy assessment is an essential find step in any classification study to determine the 

validity of the classification approach and the utility of the final products (Congalton and 

Green 1998). The DA in SPSS allows for accuracy testing of the model by using some 

observations to develop the DA function and using the rest of the observations to test the 

function. Hence, a random 25 % of the class sample was used to test the DA accuracies, 

except for classes where only two samples existed; here one randomly chosen observation 

was used to develop the model and one to test it. Co-occurrence matrices were calculated for 

the two DA scenarios, and for both of the model developing observations and the model 

testing observations. The final, overall accuracies, for the developing and testing of the 

model are not the average accuracies on the diagonal but are normalized taking into 

consideration the size of the sample. 
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Producer's and user's accuracies as suggested by Felix and Binney (1989) are also reported 

for each co-occurrence matrix. The bottom row of each matrix shows the errors of omission 

also known as the producer's accuracy. The values summarize the percentage of plots 

correctly classified. The extreme right column of the co-occurrence matrices shows the 

errors of commission also hown as the user's accuracy. Errors of commission indicate the 

probability that a plot classified as a given class actually represents that class on the ground. 

The Kappa coefficient of agreement represented by the KHAT statistic defined by Cohen 

(1960) was used to score the actual agreement minus the chance agreement of a co- 

occurrence matrix. This has been defined both in Lillesand and Kiefer (1994) and Jensen 

(1996): 

where: 

oa = observed accuracy 

ca = chance agreement 

The Kappa Statistic (KHAT) is an index value ranging between 0 and 1 which expresses the 

proportionate reduction in error achieved by a classifier as compared with the error of a 

completely random classifier. Thus, a value of 0.75 would indicate that the classifier was 

avoiding 75 percent of the errors that a totally random process would have produced (PCI, 

1997). 

The KHAT statistics formula used in this audysis was taken fiom Jensen (1996): 

where: 
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r - - number of rows in the error matrix 

Xii = number of observations in row i and column i (on the major 

diagonal) 
- Xi+ - marginal total of row i 

&I = marginal total of column i 

N - - total number of observations included in matrix 

4.1 1 Chapter Summary 

In this chapter, the processing of the field data (basal area extraction) to produce AVI labels 

and the two methods of sample stratification were discussed. The second layer in the canopy 

needed to be well established, therefore, trees less than 2 m in height but more than 1 m in 

height were combined in the second layer. It is part of the AVI field protocol to exclude any 

trees less than lm in height from the AVI label (Alberta Forestry, Lands and Wildlife 1991). 

The casi image preparation including the geometrical correction to remove aircraft roll, pitch, 

yaw and position have been presented. The methodology used to extract the 'brightness' 

variable carrying most information about stand shadow was discussed. The relationship 

between the stand structure and casi image shadow for an all three resolutions (60 an, 1 m, 

and 2 m) was established. The chapter included a description of how the texture channels 

were generated and what variables were used in their construction. The statistical data 

extractions (signature creation) were summarized. The classification procedures using 

Discriminant Analysis for three types of classifications (spectral alone, textural alone and 

combination of the two) were discussed. Finally, the methods of accuracy assessment using 

errors of omission and commission as well as the Kappa statistic were outlined. 



Chapter 5 Results and Analysis 

5.1 Introduction 

Spectral characteristics of a stand can be use l l  in studying forest structure. For example the 

near-infked reflectance increases with the number of layers of leaves in the canopy 

(Lillesand and Kiefer 1994). Structural information derived fiom spectral data can be 

complemented by textural derivatives from the imagery, which are also sensitive to structural 

components of the canopy (Wulder 1996). The main hypothesis of this thesis is that image 

texture derived from high spatial resolution multispectral (cnsi) imagery will increase the 

classification accuracy of multistory forest stands identified according to the AVI  system as 

part of a forest inventory. A classification approach is suitable to investigate this idea. In this 

study, three combinations of data were used as input to a classifier. These three 

combinations included spectral data alone, textural data alone, and the combined spectral and 

textural data classification (Table 5.1). The data were classified using the first layer class 

stratification and subsequently the same procedure was performed on the full information 

AVI label class stratification, as introduced and discussed in Chapter 4. Even this level of 

detail is not the full AVI field-label but is a summary of the characteristics of each plot that 

may be more suitable for a remote sensing classification. All classifications were repeated 

for the three spatial resolutions (60 cm, 1 m and 2 rn) of casi imagery data available for the 

study area. 

However, prior to testing this hypothesis, a greater understanding of the behavior of' the 

individual texture measures and their relationship to field data was sought. The first section 

of this chapter will discuss the results of a visual and a descriptive interpretation of one 

texture measure as an example of the relationship between image characteristics and field 

characteristics. Although alI of the texture measures used in the classification were visually 

interpreted, it is only practical to present the interpretation of one measure. In addition, 

because the textural measures are all based on the grey level co-occurrence matrix, they are 
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all highly correlated. The texture measure homogeneity was selected because this measure 

is the most readily understood of all the available measures. Descriptive statistics included 

the means and standard deviations of the texture measure computed at different window sizes 

on the different image resolutions. One final interpretation exercise was conducted on three 

individual plots (Plate 3.3 in Chapter 3) selected to relate the texture measures to the physical 

characteristics of the stands. 

Table 5.1 Listing of information used in the classification of all three 

resolutions of data 

Data Corn bination Data Used 

Spectra1 alone 7 bands, (540-560 nm, 610-640 nm, 

646680 nm, 690-715 nm, 73&755 

nm, 790-810 nm and 85&875 nm 

Textural done 5 textures, (angular second moment, 

correlation, dissimiIarity, entropy and 

homogeneity) 

Combination of spectral and textural 7 bands and 5 texms 

5.2 Visual Interpretation of Image Texture 

A set of visual analyses was conducted to determine the complexity of the second order 

texture measures in different types of forest stands; as mentioned, only the homogeneity 

measure is interpreted in detail here. Note that homogeneity is conceptually simple - it refers 

to the high probability of the similarity of adjacent pixel values. In the following figures of 

texture, high homogeneity values are expressed by a lighter tone in the imagery and the low 

homogeneity values are darker. 

A subset area showing the intersection of aspen and conifer stands was used to produce the 

textural graphics which are the focus of this discussion (as shown in the Methods Chapter 4, 

Figure 4.3). This area shows that aspen appears as the "smooth" bright red stand on the false 

colour near-infixed imagery, and the conifer stand appears "come" and dark green. 
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Appendix D shows all of the textural measures, which are enhanced using an equalization 

stretch. The 3D graphic is used to show the same measure on a surface using the same 

vertical scaling for all window sizes (3x3, 5x4, 9x9, 1 l xl 1 , 17x 17 and 2 1 x2 1) of texture 

imagery produced. All images were produced for the three resolutions of casi data (60 cm, 1 

m and 2 m). The graphics in this section show abbreviated figures of the imagery for the 

homogeneity measure in Appendix D. 

Figures 5.1 a, b and c show the homogeneity texture image of the subset area of aspen and 

conifer. A progression of change in the homogeneity texture measure is apparent in the 

images at the three different resolutions and the different three window sizes (3x3, 9x9 and 

21x21) shown. 

The window size defmes the area that is incorporated in the texture measure. Hence, there is 

a relationship between the window extent and the objects being captured by the texture 

measure. For example, a 3x3 window covers an area of 1.8 m2 on the 60 cm imagery, which 

is smaller than an average tree crown in the study area. This is interpreted to mean that the 

window includes the texture of the individual tree crown architecture in a stand comprised o l 

the sun-Lit and shadowed portion of the tree crowns separately. This is in agreement with 

other works, which discuss texture as a scale-specific phenomenon (refer to Hay and 

Niemann 1994). The larger 21x21 window coven an area of 12.6m2 on the ground at the 

same 60 cm pixel resolution. The individual tree crowns are no longer the main contributor to 

texture in this size of window, which may now be dominated by the stand structure 

comprised of clusters or groups of individual tree crowns and gaps (the shadows and the sun- 

lit crowns). 

In Figure 5.1% which shows the 60 cm 3x3 homogeneity texture window, the homogeneity 

appears high for the conifer stand. The standard deviation, best expressed by the surface 

image, is also quite high except for the areas of similarity. These are the groups of light tone 

pixels or groups of dark tone pixeIs on the imagery representing the sun-lit and shadowed 

parts of the conifer canopy. The aspen stand is dark in tone in the homogeneity texture 
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image, and there is less variability (expressed by the lower standard deviation). These 

observations are the exact opposite of the visual analysis of the texture of conifer and aspen 

stands in the original colour composite image (refer to Figure 4.4 in Chapter 4). This 

difference may be related to the ability of the texture measure to capture the texture of the 

tree crown itself and not the texture of the stand. The latter is what the human interpreter 

would focus on in the colour composite. 

Ln the 9x9 texture window, the homogeneity of the conifer sun-lit and shadowed portions of' 

the crowns is again expressed in the high homogeneity of the stand. The standard deviation 

is again quite high. Likewise, the aspen stand shows the low homogeneity typical of the 

aspen crown (no apex, variability in leaf position and direction). In the 21x21 texture 

window, the characteristics of the tree crowns are summarized by the homogeneity texture 

measure; here, the conifer stand appears light (high homogeneity) with low standard 

deviation. The aspen crowns are also summarized by the homogeneity texture measure; 

lower homogeneity and lower standard deviation than that of the conifer stand. 

On the 1 m homogeneity imagery (Figure 5.1b) in the 3x3 texture window the two stands 

appear texturally similar, except for the two large or exceptionally large conifer crowns, 

which can be detected individualiy. A small difference is measured in the standard 

deviations of the two stands. In the 9x9 window the texture of the two stands is even more 

similar (an even smaller difference in tone and texture) and the two conifer erowns are still 

visible. This is mostly due to the architecture of the conifer crown but it should be noted that 

the conifer crown diameters in this location are larger than the aspen crown diameters). In 

the 21x21 window, the two stands are difficult to distinguish texturally, and they have a 

similar standard deviation. 

Figure 5. LC shows the same location on the 2 m homogeneity texture measure. The 3x3 

texture window now covering an area of about 6m2 shows that the two stands are alike, but 

the boundary between the stands is visible. Notice that both individuaI conifer and aspen 

crowns are distinguishable in the imagery. In the 9x9 window, the aspen stand shows a much 
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lighter tone than the conifer stand. This trend continues to intensify as the window size 

increases, and is even more dominant in the 21x21 window where the aspen stand has a high 

homogeneity (the aspen stands comprised of same age trees which are relatively similar in 

size and shape). The conifer stand appears as a low homogeneity stand. The shadow and 

sun-lit canopies of all trees as well as the more complex stand structure are captured by the 

texture measure. 

This same type of texture inversion with window size and pixel resolution was observed 

when interpreting the entropy, dissimilarity and angular second moment textural images 

(refer to figure in Appendix D). The entropy measure captures the inversion of the texture 

measure but on average, the stands appear similar. The standard deviation also did not vary 

as much between the stands. The dissimilarity measure also captured this type of inversion; 

the stands did not appear visually different until the 9x9 window size on the 60 cm resolution 

imagery. On all of the 1 rn resolution imagery and up to the 1 lx l 1 window size on the 2 m 

resolution imagery the most dominant feature on the imagery was the boundary of the two 

stands, with the stands still appearing similar texturally. Only at the 17x1 7 window size on 

the 2 m imagery did the two stands appear different. This suggests that dissimilarity texture 

measure can be utilized to detect boundaries and edges between vegetation classes. The 

correlation texture measure was least sensitive to the textural inversion between the two 

stands; it also brought out the boundary between the stands and in general behaved similarly 

to the dissimilarity measure. The angular second moment, the statistical opposite of the 

entropy measure, and was not shown graphically in Appendix D. 



High Low 
Homogeneity Homogeneity 70 

3 x 3 window 
The aspen stand, on the left, appears dark in tone and has very low homogeneity texture 
values. The opposite is true for the conifer stand, on the right, which appears lighter in 
tone and the homogeneity values are higher. There is a wider range in the standard deviation 
of the conifer stand, but a few areas of concentrated, high homogeneity are visible. The 
texture captures the variability of reflectance and shadows within the aspen and conifer crowns. 

9x9 window 
The aspen stand homogeneity texture using a 9 x9 window appears very low, the opposite is 
true for the conifer stand, where the texture is higher and there are visible areas of 
concentration (sun-lit crowns and shadows of the conifer trees). The standard deviation is 
reduced at this window size, however, the conifer stand shill shows a greater difference. 

21 x 21 window 
The variability of the tree crowns is expressed as the texture measure for the whole stand. 
The aspen stands show very low homogeneity for the whole stand (a function of the low 
homogeneity of the aspen tree crowns), the conifer stand shows high homogeneity for the 
whoie stand (a fimction of the sun-lit and shadowed components of the conifer crowns). 

Figure 5.1 a Homogeneity texture for the subset window asing 60 cm casi imagery and 
three window sizes, 



High Low 
Homogcncity Homogeneity 71 

3 x 3 window 
Using the 1 m casi imagery and a small window (3x3) it is difficult to distinguish between 
the aspen (left) and conifer (right) stands. The textural characteristics of the two stands 
are difficult to separate. However, the conifer stands still shows areas of locaiized high 
homogeneity which ate inherent to the conifer sun-lit crowns and shadows. Some variabi Iity 
within these crown and shadows is still represented. 

9x9  window 
As the window size increases to 9x9, the variability within the localized high homogeneity 
areas diminishes. The conifer stand shows higher standard deviations (higher peaks. lower 
lows) than the aspen stands, but on average these are virtually undetectable as seen in 
Figure 5.2. 

21 x21 window 
At the largest window size of 21x21 all within tree crown textural characteristics are 
minimized. The textural characteristics of the stand are increased. The conifer stands 
shows (on average) a slighter higher homogeneity texture compared to the aspen stand. 

Figure 5.1 b Homogeneity texture for the subset window using lm casi imagery and 
three window sizes. 



High Low 
Homogeneity Homogeneity 72 

3 x 3 window 
Using the 2m casi imagery and a small (3x3) window size homogeneity texture the aspen 
(left) and conifer (right) stands are not distinguishable. Within crown characteristics are not 
caphued by this texture measure combination, however, areas of high and low concentrations 
of homogeneity are accentuated. The boundary between the two stands is also enhanced. 

9 x9 window 
As the window size increases the differences between the aspen and conifer stands become 
visible. The aspen stands shows areas of high homogeneity, and has on average higher in 
homogeneity values than the conifer stand. Small variabilities within the stand are represented. 

21 x 21 window 
Using the largest window size 21x21, the two stands are very different in homogeneity 
measurements. The aspen is represented by high homogeneity, and the cooifer stands is 
homogeneousIy low in values(inverse of what the higher resolution imagery shows). 
No within stand variabilities are captures by the texture. 
Figure S.lc Homogeneity texture for the subset window using 2m casi imagery and 

three window sizes. 



In summary, based on a visual analysis of the homogeneity texture measure in different 

window sizes and different pixel resolutions, the texture of high resolution imagery (60 cm 

pixel resolution) appears to contain a great deal of information on the crown architecture of 

individual trees. The texture is comprised of differences within crown shadows or sun-lit and 

shaded crowns. The texture also can be interpreted to contain information on stand structure 

such as tree distribution, species and shadows. Texture of high resolution imagery (1 m and 

2 m pixel resolution) reduces the ability to detect individual tree crown architecture and is 

more related to stand structure characteristics. 

5.3 Descriptive Statistical Interpretation of Texture 

The means and standard deviations of homogeneity texture extracted lrom the imagery in the 

subarea shown in Figure 4.3 (Chapter4) are summarized by graphs in Figure 5.2. These 

graphs show the simple descriptive statistics that contirm the visual interpretation in the 

preceding section. Essentially, there is an inversion of the homogeneity texture measure with 

window size; this is repeated at each of the available pixel resolutions. The visual analysis 

hinted at this trend but the statistics shown in these graphs provide a more definitive 

interpretation. 

h particular, notice the aspen stand shown in red. Homogeneity always increases with 

decreasing pixel resolution, and this increase is more pronounced at the smaller window size. 

The inverse of this effect can be noted in the conifer stand shown in green. Here, the 

decrease of conifer stand homogeneity is related to the decrease in pixel resolution. In other 

words, a low homogeneity aspen stand at high spatial resolution becomes a high 

homogeneity aspen stand at low spatial resolution. A high homogeneity conifer stand at high 

spatial resolution becomes a low homogeneity conifer stand at low spatial resolution. 

As described in the v i d  analysis of texture measures, this inversion occurs because of the 

change in the object that the texture is measuring fkom within tree crown architecture to the 

structural component of the stand itself. The largest difference between the means and 
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standard deviations of the two stands occurs at the 3x3 window of the 60 cm image, the most 

spatially detailed imagery. This could have significant implication in a classification where 

these types of statistical summary - e.g. the means and standard deviations - are used to 

distinguish between many classes. The 1 m textural imagery demonstrates that the aspen and 

conifer stands are texturally similar; this imagery has already lost the detail of the crown 

architecture (capable of distinguishing stands) but has not yet captured the structural 

complexity of the stand (also capable of distinguishing the stands). This is also captured by 

the shift in the standard deviation of the two stands, f?om lowest at 2 m to highest at 60 cm 

(as the window size increases). 

- Ail these trends suggest that a small window size (3x3) at a high resolution (60 cm) should 

yield best class distinction resuIts in a classification. 

5.4 Example of Relationship between Texture and Field Data 

The next step was to investigate visually the relationships between the interpretation of 

texture (represented by the homogeneity measure and its statistical characteristics) and the 

structural field information of the plots. Selected lor this analysis were three plots (shown in 

Plate 3.3 in Chapter 3); one aspen, and two conifer stands. The idea was to show the 

relationships in these areas, which represent typical examples of the kinds of forest structures 

that must be classified or interpreted as part of a forest inventory. The plot structural 

information based on the collected field data is shown in Table 5.2. There are two conifer 

species stands, which vary in species composition and tree sizes. The two conifer stands 

have an established second canopy layer, the Douglas fir stand has an aspen second canopy 

layer and the mixed conifer stand has a mixed conifer second canopy layer. The 

aspedpoplar stand, with an aspen second canopy layer is pure and was not defoliated during 

the summer of 1998. 
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Figure 5.2 Statistical summary of change in the homogeneity texture measure for the 
aspen md conifer imagery subset. Sir window sizes (3r3,5xS, 9r9,1lxll, 
17x17 ans 21x21) and the three casi imagery resolutions are represented. 



Table 5.2 Structural information based on the collected field data for the 3 field 
plots 

Plot A VI Code Average Plot Structure 

Plot LD Layer l Layer 2 Layer 3 GRT Crown CIosure Height Crown Diameter dbh 

The statistical trends for the plots are summarized by a graph showing the homogeneity 

texture in a 3x3 window and a second graph showing the texture based on a 21x21 window. 

All three resolutions are demonstrated. Due to the similarity between the graphs only the 

smallest and largest window sizes are needed to demonstrate the trends. 

Figure 5.3 shows statistical trends, which appear to be exceptionally similar to the ones 

recorded for the subset imagery in the earlier visual and descriptive statistical analysis. 

There is a noticeable inversion of the texture measure as the spatial component being 

measured becomes less detailed. The largest difference in statistical summaries for the aspen 

and conifer stands occurs at the 2 rn data. However, the two conifers are most statistically 

distinct at the 60 m data In the 3x3 window the large crown diameters (5.2 rn) of the 

Douglas Fir stand contribute to the high homogeneity measure within the crown. The 

smaller crown diameters (2.75 m) of the mixed conifer stand are expressed as lower 

homogeneity. This is in agreement with Bruniquel-Pine1 and Gastellu-Etchegocry (1998) 

who established in their work that the tree crown diameter is the most influential biophysical 

parameter on texture measures. 

Based on this information it has been interpreted that crown sun-lit and crown shadowed 

parts of the canopy in such large trees are large areas of similarity to which the smaller 

window size texture homogeneity measure is sensitive. On the 21x21 window at the 60 cm 

resoIution, the same inversion was observed as in the subset where the large trees of the 
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Douglas Fir stand contribute to the complexity of the structure of the stand resulting in lower 

homogeneity. The smaller conifers in the mixed conifer stand are more homogeneous in the 

2 1x21 60 cm imagery. The aspen trend also shows the lower homogeneity values at higher 

resolution (60 cm) and high homogeneity values at the correct resolution (2 m). 

Finally, texture is not as successful at showing differences between the aspen and conifer 

stands at high resolution (60 cm). For example, at the 2 m resolution the means of the two 

species are most different. The 1 m data also shows the least ability at distinguishing 

between the different species, or within species difference. 

These results are significant when thinking about the ~Iassification scheme. Although texture 

is not as successful in distinguishing between the species, it can distinguish within species 

differences better at higher resolutions and smaller window sizes. This is interpreted to mean 

that because spectral bands are exceptionally adequate in species distinction, both the 

spectral and textural information at the highest spatial component (60 cm and 3x3 window 

size) should produce the best classification results where within species stratification is 

desirable. 
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Fipre 5.3 Statisticd summary of change in homogeneity for three field plots. Two 
window sizes and the three casi imagery resolutions were used. 



5.5 Discriminant Analysis Results 

The DA classification methodology discussed in Chapter 4 was applied to two classification 

schemes based on the AVI labeling using the collected field data: 

a) Six-class sample stratification 

b) Thirteen-class sample stratification 

The procedure was repeated for all three resolutions of the data (60 crn, I m and 2 m). All 

DA was performed on the spectral bands alone, textural bands alone and the combination of 

the spectral and textural bands. Only the 2 1 x2 1 window size results are reported here because 

this window size, on average, provided the most separability among the classes at each 

resolution. At the six-class sample stratification, the DA kc t ion  was developed with thiny- 

four plots and tested on eleven plots. At the thirteen-class sample stratification, the DA 

function was built on thirty plots and tested on fifteen plots. 

The section presents and discusses the results in the form of omission/commission erron and 

statistical significance based on the KHAT statistic. Omission errors are computed by 

considering the rows in the contingency or classification tables; e.g. if a plot is omitted Eom 

the class in which it was originally placed based on the field data, then it would appear as a 

member of another class dong the row. Commission errors are computed by considering the 

columns; e.g. that same plot then becomes a commission error of the class into which it has 

been wrongly placed by the image data. 

5.5.1 Results using the first AVI Layer 

In this section, the discriminant classifier was run on the same field/image samples, but the 

classification scheme is less detailed considering only the first layer or components of the 

canopy in the labeling of the stand. This level of classification is comparable to those that 

have been previously attempted (e.g. Franklin and McDermid 1993; Maudie 1999) and 
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represents a possiiIe application of image texture similar to that which can be accomplished 

through traditional forest inventory procedures using aerial photointerpretation Again, as 

noted by Wilson (1995) it is important to remember that this AVI classification is not the full 

AVI as implemented in the field, but is a grouping of the plot data to represent homogenous 

stands that are suitable for remote sensing classifications. 

Table 5.3 Summarized classification results and accuracies for shclass sample 
stratification 

DA using six-classes 

KHA T (confidence level M A T  (confidence level 

Developing 95%) Testing 95%) 

60 cm data 34 plu& I I  plots 

7 Spectral & 5 Textural 79.4 0.73 (+/- 0.0065) 63.6 0.57 (+/- 0.0 103) 

7 Spectral 6 1.8 0.51 (+I- 0.0 I 18) 54.5 0.43 (+/- 0.0 137) 

5 T ~ ~ h l r a l  50.0 0.37 (+I- 0.0 15 1) 45.5 0.39 (+I- 0.0 146) 

I00 cm data 

7 Spectral & 5 Textural 76.5 0.69 (+I- 0.0074) 63.6 0.57 ( + I -  0.0 103) 

7 Spectral 55.9 0.47 (+I- 0.0 127) 54.5 0.43 ( + I -  0.0 137) 

5 T~~tural  44.1 0.33 (+I- 0.0161) 36.4 0.28 (+/- 0.0 173) 

200 cm data 

7 Spectral & 5 Textual 73.5 0.65 (+I- 0.0084) 72.7 0.66 (+I- 0.0082) 

7 Spectral 58.8 0.53 (+I- 0.0 1 13) 54.5 0.39 (+I- 0.0 146) 

5 Textural 44. I 0.33 (+/- 0.0 161) 36.4 0.28 (+I- 0.0 173) 

For the 60 cm data set, the spectral bands produced a classification accuracy of 61.8 % when 

the model was developed, whiIe testing of the model produced a 54.5% classification 

accuracy (refer to Table 5.3). Based on the Literature (e.g. Franklin and McDermid 1993; 

refer to Chapter 3) this is a reasonable level of accuracy to expect at this spatial resolution 

with this type of classifier and this Ievel of class stratification. 
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Most of the misclassification of plots occurred within similar classes. For example, Class 1 

(aspen) was only 71 % accurate when developing the model and 50 % accurate when testing 

the model (refer to Table 5.4a). An error of omission occurred for the aspen class; 50% of 

the class was actually assigned to Class 2 (aspen mix). The conifer classes also displayed 

some confusion among them, especially Class 4 (pine mix) to which Class 5 (spruce) and 

Class 6 (spruce mix) were committed. 

The DA using only textural derivatives showed an accuracy of 50% when developing the 

model and 45.5% when testing the model (refer to Table 5.3). Unlike the spectral band 

classification, the classes when separated using texture alone were misclassi£ied not only into 

other similar classes but also into different species categories. For example, some plots fiom 

Class Four (pine mix) were committed to Class Two (mixed aspen class), and Class Six 

(mixed spruce class) (refer to Table 5.4b). 

The combination of the two data types (spectral and textural) in DA produced accuracies of 

79.4 % to develop the model and 63.3% to test the model. The aspen class (1) was still 

problematic, showing an accuracy of only 25% and committing some of the plots to the 

aspen mix class (2) and the pine class (3) (refer to Table 5.4~). This compares Favorably to 

earlier reports of accuracies on the order of 75% using spectral and texture measures and 

similar classes (e.g. Franklin and McDermid l 993; Franklin et al. L 988, Gerylo et al. 1997). 

For the 1 rn DA, the spectral bands did not perform as well as for the higher resolution data 

(60 cm), yielding an accuracy of 55.9 % to develop the model and 54.5 % to test the model 

(Table 5.3). However, the same or similar errors of omission and commission occurred here 

as in the 60 cm data, with Class 1 (aspen) and Class 4 (pine mix) showing developing 

accuracies as low as 25 % and 33.3 % (refer to Table 5.5a). The textual derivative DA 

results were also lower for the 1 rn data than for the 60 cm data results at 44.1% to develop 

the model and 36.4 % to test the model. Classes Four (pine mix) and Five (spruce) appeared 

to be the most problematic classes, both having plots being committed to Class Two (aspen 
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mix). In addition the aspen class (1) was committed to Class Two (mixed aspen), producing 

a DA model testing result of only 25% (refer to Table 5.5b). 

The combination of the spectral aad textural data produced a model developing result of 76.5 

% and a model testing accuracy of 63.5 % (Table 5.3). Once more, the Fourth Class (pine 

mix) was the weakest in the classification at only 33%, committing its members to the 

Second Class (aspen mix) and Third Class (pine). The two aspen classes were also confused, 

where the Fint Class (aspen) was committed to the Second Class (aspen mix), 25 % of the 

First Class was also committed to the spruce mixed class (6). (refer to Table 5 . 5 ~ ) .  

Finally, the 2 rn data set results produced the lowest accuracies in the six-class sample 

stratification scheme for the three spatial resolutions tested. For the DA using spectral bands 

only, model developing accuracy was 58.8 % and model testing accuracy was reported as 

54.5% (refer to Table 5.3). The confusion occurred mostly in the first (aspen) class to which 

the second (aspen mix) and third (pine) classes were committed (refer to Table 5.6a). The 

textural bands produced DA results of 44.1 % and 36.4 %, for developing and testing 

accuracies respectively. Similar trends as observed in the 60 crn and 1 m data were observed, 

where the classes not only were confused with adjacent but even with exceptionally different 

classes. For example, Class 4 (pine mix) and Class 5 (spruce) plots were both committed to 

Class 2 (aspen mix) (refer to Table 5.6b). The spectral and textural DA produced results of 

73.5% and 72.7% for developing and testing of the classification respectively. Class I 

(aspen) and Class 4 (pine mix) were once more the probIematic classes producing results of 

75% and 33.3 %, respectively (refer to Table 5.6~). 



Field Suncy DID 

I 1  - 

- - 

Ckorllaam A d a  in ?L 

Jam afscfaudrngiul ImupalcuaamabctmfiJ r 5 . m  or unulcctrd m~lul  ymupod cua cwnrrb clur r f id  

T&kL& ~ t u i 1 ~ ~ ~ m m ~ ~ o r 1 b r b t h a ~ k r m d l k r a m w r p o p m b ~ o ~ ~ & ~ 6 0 c m d u r  

Raultr ban BwWlll;ollk D k m i c m t  Punraoa -8 Ran Tadna of lbr Dhrmninrat P& 
PIatkrrkrigmau Ptot Ch Auigmmt 



F i i  S~~ 

m -  I - .  

J' 6 -- - - -. . ? - P P I B 1  

k t d  Suncy Dla  

IC 

= 4 * 9 
t 3 

9 6 * - .  

~0td 6 I I b ~ ~ ~  

Fidd S u n n  D m  
1 2 3 4 1 6  

50% 
tom 
100?C 
S 3% 

100% 
L ar. 



TAk5.a ~lruiAcraclarmJIII#tbc6clruruapksmalkro4aw1~mbthr~~ M i a  

Raulo 6rm Bwldins of the Ducnnnrrurt Fwra\m Rcrulo fiom Tatmg ofthe Ducnmiunr Punraa, 

Pbt  Clur Awypmcnt Pfoc C b S  Anl(lruncat 

f i i  S~irrcr Dam F i  Swcy Chta 

_ - - -  - . - -  



In summary, the six-class sample stratification was best classified using the combination of 

the spectral and textural iaformation. The spectral data alone produced results where similar 

species where confused. For example aspen and mixed aspen were confused with each other 

and spruce and mixed spruce also caused errors. The inclusion of texhual data in the DA 

confused classes with similar spatial component, or plots that appeared to be similar in tonal 

change. For example, two aspen plots were conhsed as spruce and spruce mixed plots. 

Figure 5.4 best explains the reasons for this misclassification, based on texture alone. The 

figure shows aspen plots with a range of defoliation, the false colour composite 60 cm casi 

imagery and textural representations of the plots are also shown. The heavily defoliated 

aspen plot has similar homogeneity texture characteristics (high homogeneity) to the 

coniferous plot. In some cases, an aspen plot was rnisclassified based on the spectral 

characteristics, resulting in commission to a coniferous class. Appendix E shows a summary 

of radiance characteristics (similar to reflectance c w e s )  for aspen (ranging in defoliation) 

and conifer plots. The non-defoliated aspen plots have a much higher radiance values, in the 

near-infkared bands, than the heavily defoliated aspen plots. In fact, the heavily defoliated 

aspen plot shows a pattern of radiance similar to the one of the conifer plot. This conifer 

reflectance pattern is well known (Lillisand and Keifer 1994), where radiance is lower in the 

conifer species in the near-infrared wavelengths, compared to deciduous species. This 

explains why an aspen plot was confused with a conifer plot. Furthermore, the rates of 

change (the average digital number change from spectral band to spectral band) in the 

radiance curves for the non-defoliated aspen plots are higher (167, 158 respectively) than the 

rates of change for the defoliated aspen and conifer plots (127, 130 respectively); (also in 

Appendix E). This relates to the similarity of texture for the defoliated aspen and for the 

conifer plots. Both have a slower rate of change, which was captured by the 'brightness' 

image fiom which the texture was derived, hence, the higher homogeneity texture values for 

these plots. 



Aspen non defbliated 

casi false colour homogeneity texture homogeneity texture 
composite 3 x 3 window 21 x21 window 

Asnen  moderate!^ defoliated 

casi false colour homogeneity texture homogeneity texture 
composite 3 x 3 window 21 x21 window 

Aspen heaviZv defoliated 

casi fafse colour homogeneity texture homogeneity texture 
composite 3 x 3 window 21 x21 window 

The Bruce spanwonn defoliation in the aspen stands has been captured by the casi imagery. The defoliation 
resulted in reduction in the absorption in the red band and a reduction in the radiance being reflected by the 
trees in the near idhued bands. Therefore, stands which were very similar stmcturally (because of their clonal 
reproduction) appeared very differently to the casi sensor. The defoliation also reduced the structunl complexity 
of the tree crowns, which is represented by the higher homogeneity in both the 3x3 and 21x21 window sizes. 

Conifer 

casi false coIour homogeneity texture homogeneity texture 
composite 3 x 3 window 21 x 21 window 

The conifer pIot showed a large amount of shadow in the casi imagery. The texture caphtres the low change 
in pixel vaIues in the shadowed areas of the imagery, and produced an over all high homogeneity value using 
21x21 window for the plot similal. to that of the moderately and highly defoliated aspen stands. 

Figure 5.4 Texture simi lar i ty  between the heavily defoliated aspen and coaxer plots 



In this first DA, the classification was acceptable, but similar classes tended to be 

misclassified with each other. Grouping of plots with such a wide range of AVI species 

components in the first and other layers caused the signatures for these classes to be 

exceptionally broad and overlap each other, resulting in some misciassifications. 

At all image resolutions, the plots that were near the edge of a class (their standard deviation 

was largest and their means were the farthest from the average class mean) caused the most 

erron of omission and commission. For example, some plots labeled as aspen plots in the 

six-class sample stratification scheme would often be classified as aspen mixed plots and 

were hlly omitted from the aspen class. Examples are plots 98, 95 and 500ii. In all cases 

the plots were misclassified as aspen mixed, and in all plots the second layer had some 

conifer species contributing to the plot signature and causing this type of misclassification. 

The contribution of the second layer to the plots' signatures was significant For example, at 

plot 98 as much as 11.9 m' in basal area belonged to the second layer. Also, the field data 

showed that 32% of the crown closure of the plot was contributed by this layer. This same 

error occurred with plots labeled pine and spruce; many of these plots would be misclassified 

as mixed conifer plots. In further investigation, most of these plots had a second canopy 

layer, which was not used in the six-class sample stratification scheme. Although the basal 

area in this layer is much smaller then the basal are of the first layer (refer to Table 4.1 in 

Chapter 4), the results show that this layer did contribute to the signature of the plots. This 

stratification scheme operates ineffectively near class boundaries. The results suggest that a 

better stratification scheme such as the thirteen-class sample stratification scheme, which 

takes into consideration the existence of the other layer, could be more appropriate. 

5.5.2 Results Using MI AVI Layers 

In this section, the discriminant classifier was run on the same fieldiimage samples, but the 

classification scheme was more detailed, considering all the components of the canopy (or 

layers) in the labeling of the stand. This level of classification is much more detailed than 
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has been previously attempted (e-g. Franklin et al. 1998), but was suggested by that earlier 

study as a possible application of image texture beyond that which can be accomplished 

through traditional forest inventory procedures. Only the 21x21 window size results are 

reported here because this window size, on average, provided the most separability among 

the classes at each resolution. 

Again, as noted by Wilson (1995) it is important to remember that this AVI classification is 

not the full AVI as implemented in the field but is a grouping of the plot data to represent 

homogenous stands that are suitable for remote sensing classifications. 

Table 5.7 Summarized Classification Results and Accuracies for Thirteen-class 
sample stratification 

DA using thirteen-classes 

M A T  (confidence level M A T  (confldcnce Ievef 

Developing 95%) Testing 95%) 

60 cm data 30 plots 14 plots 

7 Spectral & 5 Textural 86.7 0.85 (+/- 0.0036) 86.7 0.86 (+I- 0.0034) 

7 Spectral 66.7 0.63 (+/- 0.0089) 66.7 0.64 (+/- 0.0086) 

5 Textural 53.3 0.49 (+/- 0.0 122) 53.3 0.5 ( +/- 0.0 1 20) 

100 cm data 

7 Spectral & 5 Textural 83.3 0.82 (+I- 0.0043) 80.0 0.78 ( + I -  0.0053) 

7 Specal 63.3 0.6 (+/- 0.0096) 60.0 0.57 (+/- 0.0103) 

5 Textuai 53.3 0.4 (+I- 0.0 144)9 46.7 0.5 (+/- 0.0 120) 

200 cm data 

7 Spectral & 5 Textural 70.0 0.67 (+I- 0.0079) 73.3 0.7 t (+I- 0.0070) 

7 SpectraI 63 -3 0.6 (+/- 0.0096) 60.0 0.57 (+/- 0.0 103) 

5 Textural 50.0 0.45 (+I- 0.0132) 40.0 0.33 (+I -  0.0 161) 

The thirteen-class sample stratification scheme classification was applied first to the 60 an 

data. The classification accuracies for the spectral bands only DA were 66.7 % for both the 

developing and the testing of the model (refer to Table 5.7). The confUsion occurred among 

the various aspen Classes 1 through 5, (refer to Table 5.8a). The texture data only DA 

produced results of 53.3% for both the developing and testing of the fimction. It can be 
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observed in Table 5.8b that the confusion between classes occurs throughout the matrix, 

where deciduous type classes can be confbsed with conifer type classes. An explanation for 

this was already discussed in the previous section, (also refer to Figure 5.4). The 

combination of the spectral and textural data produced the highest results; 86.7% occurred 

for both developing and testing of the model. The second class (aspen type class) was 

committed to the wrong classes (refer to Table 5.8~). It is possible that the defoliation in the 

aspen stands in the summer of 1998 is making these classes more problematic (refer to 

Figure 5.4). Regardless, this final result is 7.3% higher than the six-class sample 

stratification. 

At the 1 m data, accuracies for the DA are less than the higher resolution (60 cm) data, but 

are still higher then the six-class sample stratification results. The spectral DA showed a 

result of 63 % for developing the model and 60 % for testing the model. On average, these 

results are about 5% higher then the six-class sample stratification results (refer to Tables 5.3 

and 5.7). In Table 5.9a it can be observed that, once again, it is more the aspen type stands 

that are contributing to the errors in the classification. The textunl data only DA shows that 

many of the stands are textually similar (Table 5.9b), the developing accuracy of the model is 

only 53.3 % and the testing is 46.7 % (refer to Table 5.7). The combined spectral and 

textural DA performed much better than the six-class sample stratification method (refer to 

Table 5.7) resulting in the accuracies of 83.3% for developing of the function and 80 % for 

testing of the function (refer to table 5.7). The aspen stands show a misclassification and the 

pure aspen stand with no second canopy layer (Class One) shows the lowest classification 

accuracies of 50% (refer to Table 5.9~). It should be mentioned that these were estimated to 

be of the same age, resulting in one layer aspen stands. These types of stands are most 

susceptible to and suffered fiom defoliation (Peterson and Peterson 1992). Hence, the 

spectral signature of these stands differs £kom non-defoliated stands (Appendix E). This is 

due to the contamination of the signature with other factors such as tree tnmks and branches, 

understory or standing litter, (refer to vdeeuwen  and Huete 1996; or Guyot et al. 1989). 

Finally, KHAT results show higher accuracies than the six-class sample stratification results 

(refer to Table 5.7). 



The lowest results in the DA occurred using the 2 m data. These were exceptionally similar 

to the results achieved in the six-class sample stratification (refer to Table 5.7). The DA 

using spectral data alone produced classification accuracies of 63.3% when developing the 

model and 60 % when testing the model (refer to Table 5.7). The textural data only DA also 

had low results of 50% and 40%, for developing and testing respectively. The aspen classes 

were once again the most problematic, not only in the spectral bands only DA, but also in the 

textual bands only classification (refer to Tables 5.10 a and b). The combination of the 

spectral and textural information produced results that were lower than the results using the 

six-class sample stratification. These results were at 70 % for developing the model and 

73.3% when testing the model, with some of the aspen classes not being classified at a1 (refer 

to Table 5.1 Oc). The KHAT statistic showed little difference between this classification 

scheme and the six-class sample stratification scheme (refer to Tables 5.3 and 5.7). 

In summary for this section the classification accuracies: 

c) Are higher or equal to the six-class sample stratification results 

d) The thirteen-class sample stratification produces smaller errors of omission 

and commission 

e) KHAT is higher for the thirteen-class sample stratification 

However, as suggested in the visual analysis of the texture data, a quick DA of the 60 cm 

data with a 3x3 window size provided 92% accuracies developing and 73% testing results, 

which are quite comparable to those reported here with the larger window size. This suggests 

that the internal tree crown patterns captured with the higher resolution imagery (60 cm) and 

smallest window size (3x3) aid in the classifications of the multistory stands. Similar results, 

where internal tree crown pattern captured by fine textural component improved image 

classification, have been shown by Brandtberg (1997). 
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5.6 Chapter Summary 

In this chapter visual interpretation and descriptive statistics of the texture measures establish 

a relationship between the forest stand structural information and the casi imagery textural 

information, 

The change in of the texture window size and the change in image resolution have shown that 

the texture derivatives image values invert from high to low or low to high based on the scale 

of the object is captured (from tree crown architecture to plot structure) 

As forests age &om immature to old stands, the canopy openness increases in the stands 

(Frazer el al. 1998). In this study area, in many cases, especially in the pioneering aspen 

stands, these gaps are filled by a second story coniferous canopy. The texture measure on the 

high resolution imagery is able to extract these structurally complex stands by detecting the 

shadow in the stand. However, the shadow captured by these textural measures is not only 

the gap shadow of the stand, but also shadows produced by large crowns of the older stands. 

As shown by Brandberg 1997, such shadows aid in stand type classification. Frazer et al. 

(1998) have shown that canopy openness increased more in the transition from mature to old 

stands (most significant after 150 years of age) that form immature to mature stands. 

Because the forest in the study area is still relatively young (on the succession scale) the 

existence of a second succession canopy in the stands is quite likely, supporting applicability 

of the methodology discussed in this thesis. 

S t.-Onge and Cavayas (1 995) have shown that forest structure and texture relationships 

become stronger as the pixel size approaches or drops below 1 m in resolution. The findings 

in this thesis support the previous research, showing that the highest resolution imagery (60 

cm) can produce the highest texture only classification results of plots stratified using canopy 

structure information. A study by Jakubauskas (1997) using low resolution imagery has also 

suggested that high resoIution image texture would be more appropriate for forest structure 

~Iassification, 
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The combination of the textural signatures and the spectral signatures outperforms any other 

type of classification, regardless of the class scheme stratification. 

As spectral and spatial signatures become more generalized in the lower resolution (1 m, 2 m 

data) the classification accuracies are reduced. 

The results show that a better stratification scheme, such as the thirteen-class sample 

stratification scheme, which takes into consideration the existence of the other canopy layer, 

is more appropriate and even increases the classification results by about 17%. 



Chapter 6 Summary and Conclusions 

6.1 Summary 

High spatial and spectral resolution imagery (1 m and less) such as the casi imagery used in 

this thesis show potential for producing forest inventories (AVI) in shorter time intervals as 

compared to the traditional methods using aerial photographs (Franklin 1994; Leckie 1995). 

The availability of this type of resolution of imagery &om satellites makes large area forest 

inventories logistically feasible. The methods for analyzing such imagery are being 

researched with the purpose of producing accurate results, which meet or exceed the 

standards achieved by airphoto interpretation, while at the same time retaining the 

classification scheme with similar or better level of detail. 

To meet these goals new methods for high resolution image classification that deal with the 

high spatial resolution problem of spectral variability (scene noise) are being developed. The 

ways of dealing with this variability fall into two categories: 

Elimination of variability by individual tree crown delineation (King 1995), or 

automated image segmentation (Ryhwd and Woodcock 1996; Lobo 1997) 

Utilization of spectral variability as an in6ormation source to be included in the 

classification procedure (such as texture). 

Although these methods are proving to be quite successful, utilizing the high spatial 

resolution imagery in forest inventory classification often requires extensive field data 

collection, specialized software not always commercially available and an advanced 

understanding of the data and software. A straighdorward and cost effective technique is 

more likely to be utilized by forest managers. 
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This study explored such a technique. Second-order texture readily available in commercial 

image analysis packages was used to represent the high spatial information content captured 

by the high resolution imagery. The classification procedure implemented this textural 

information, and forest classes outlined by the AVI standard in Alberta were digitally 

classified. The labels were developed using the per species basal area for each sample site. 

Three resolutions of cusi imagery (60 cm, 1 m and 2 m) collected over the study area on July 

18', 1998 were tested for best results. The sample stratification based on only the first 

canopy layer of the AVI label resulted in a sixslass sample stratification. The second layer 

canopy inclusion in sample stratification provided a wide range of forest classes to be 

cIassified and resulted in a thirteen-class stratification sample scheme. A' brightness' image 

was produced through Principal Component Analysis of the seven spectral bands (54&560 

nm, 610440 nrn,640-680 m,69&715 MI, 730-755 nm,79&810 nm and 850-875nm). 

The 'brightness' image captured the shadowed areas in the imagery which were used to 

establish a relationship between image shadow and the structural complexity index derived 

Erom field measurements for all plots. The relationship between the shadow and the 

structural complexity index was strongest at the 60 cm per pixel cmi imagery resolution, 

giving an R~ of 0.6. Signatures consisting of the mean per-plot values were generated for the 

seven spectral channels available at all three resolutions of the imagery and the five second- 

order textural derivatives (angular second moment, correlation, dissimilarity, entropy and 

homogeneity). 

For each data set two-thirds of the sample plots were used to develop the discriminant 

functions, the remaining one-third was used to test the discriminant function accuracy. Three 

Discriminant Analyses using first only the spectd data, second only the textural data and 

third the combination of the two data were performed for each resolution. The KHAT 

statistic was used in conjunction with the co-occurrence matrices to evaluate the accuracies 

of the ~Iassifications. 
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Prior to interpretation of the results, a set of visual analyses was conducted to determine the 

complexity of the second order texture measures in different types of forest stands. Based 

on this visual analysis of the texture measure in different window sizes and different pixel 

resolutions, the texture of high resolution imagery (60 cm pixel resolution) appeared to 

contain a great deal of information on the crown architecture of individual trees. The texture 

was comprised of differences within crown shadows or sun-lit and shaded crowns. The 

texture was interpreted to contain information on stand structure such as tree distribution, 

species and shadows. Texture of high resolution imagery (1 m and 2 m pixel resolution) 

reduced the ability to detect individual tree crown architecture and was determined to be 

related to stand structure characteristics. 

On average, the use of texture channels improved the per-plot classification accuracies by 

17% compared to using the spectral channels alone. The highest per pixel resolution imagery 

of 60 cm outperformed the other image resolutions (1 m and 2 m) and the thirteen-class 

sample stratification scheme improved the classification accuracies by 14%, with results of 

87% and a KHAT of 0.85, compared to the six-class sample stratification scheme results of 

72% and a KHAT of 0.73. 

In summary the results showed: 

The combination of the textural signatures and the spectral signatures outperforms 

any other type of classification, regardless of the class scheme stratification. 

As spectral and spatial signatures become more zeneralized in the lower 

resoIution (1 m, 2 m) data the classification accuracies are reduced. 

The r e d t s  show that a better stratification scheme, such as the thirteen-class 

sample stratification scheme, which takes into consideration the existence of the 

other canopy layer, is more appropriate and even increases the classification 

results by about 17%. 
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6.2 Conclusions and Contributions to Research 

The work presented in this thesis contributes to areas of remote sensing research by 

demonstrating that image texture derived from high spatial resolution muk.ispectra.1 imagery 

increased the classification accuracy of multistory forest stands identified according to the 

AVI system as part of a forest inventory. The following conclusions can be made: 

Statistical and visual interpretation of the textural imagery was used to establish 

that texture could be used to express the stand complexity. 

The best classification results of 86.7 % were achieved using the highest image 

resolution of 60 an, where textural and spectral signatures were combined to 

classify the data based on the thirteen-class sample stratification. On average, the 

inclusion of the textural information improved the classification by 20%; it also 

allowed a detailed class information to be applied. 

Sample class stratification needs to be more complex on higher resolution 

imagery 

Hierarchical merging of classes should be done on all AVI layer information 

Supporting these conclusions: 

A relationship between stand complexity and an image component (shadow) was 

found; 

Visual interpretation confirmed the relationships between stand structure and 

image texture. 
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6.3 Recommendations for Further Research 

There are many future research opportunities, which may be based upon the conclusions of 

this research: 

A quick DA showed that incorporation of the highest spatial component 

information (3x3 window texture) produces high accuracy; this finding should be 

M e r  investigated. 

The defoliation in the aspen stands was estimated in the field. However, the 

effects of defoliation on the imagery have not been examined in detail. Could 

defoliation be causing the higher texture readings at the high resolution data in the 

deciduous stands? How much of an effect does it have? 

Information extracted &om texture that reIated to forest succession has been an 

important area of investigation. One study (Jakubauskas 1997) has shown that on 

Landsat TM imagery textural data are valuable for distinguishing between quite 

young and very old classes, but is not successfL1 at distinguishing between canopy 

classes. His work, as well as work by Woodcock and Strahler (1987), suggests 

that high resolution imagery texture can successfbl accomplish such class 

distinction. The techniques introduced in this thesis could possibly be applied to 

the study of succession in a similar area. 

Leaf Area Index (LAI) increases with the number of layers of leaves in a canopy. 

The application of LAI in distinguishing of muitilayer canopies has not been 

investigated. 

Although only second order texture measures were investigated, the comparison 

of other measures such as: first order texture and semivariaace texture could be 

explored. The comparison between classifiers could also be imp hented  here. 
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The mapping implications of these findings have not been addressed and can 

facilitate an area of future research. 
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Ae~endix A: E x m l e s  of ori-@a1 plot data collected in the field 
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Appendix B. Bivariate regressions for per species contributions to crown 

closure and per species basal area (using the first and other layers). 
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A ~ o ~ C I o s u r e  and Par Species Basal Area 
Using the Fint and Other Lavers (Data and Bivariate Linear Repressions). 

Bivariate regressions betiwen GRE crow closure and basal area 
for species in the first canopy layer (all significant at the 95% 

confidence interval) 
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Aowndix C: Per  lot percent of shadow ~ixels and stand com~lexity index 
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Per plot % of shadowed pixels and the Stand Complexity Index for the 45 
plots on 60 cm casi imagev (ail signijkunt at the 95% confidence interval. 
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A~aendix D: Subset window texture visual internretation 
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Appendix E. Radiance for aspen (showing range of defoliation) and conifer stands using 
60 cm cast data 
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