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ABSTRACT 

Quantifying suicide risk with risk scales is common in clinical practice, but the performance of 

risk scales has been shown to be limited. Prediction models have been developed to quantify 

suicide risk and have been shown to outperform risk scales, but these models have not been 

commonly adopted in clinical practice. The original research presented in this thesis as three 

manuscripts evaluates the performance of prediction models that quantify suicide risk 

developed with administrative health care system data. 

 

The first two manuscripts were designed to determine the most promising prediction model 

class and temporal data requirements. The modeling dataset contained 3548 persons that died 

by suicide and 35,480 persons that did not die by suicide between 2000 and 2016. 101 

predictors were selected, and these were assembled for each of the 40 quarters prior to the 

quarter of death, resulting in 4040 predictors for each person. Logistic regression, feedforward 

neural network, recurrent neural network, one-dimensional convolutional neural network, and 

gradient boosted trees model classes were compared. The gradient boosted trees model class 

achieved the best performance and 8 quarters of data at most were required for optimal 

performance. 

 

The third manuscript applied the findings from the first two manuscripts to evaluate the 

performance of prediction models in a clinical setting. The prediction models quantified the risk 

of death by suicide within 90 days following an Emergency Department visit for parasuicide. 

The modeling dataset contained 268 persons that died by suicide and 33,426 persons that did 
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not die by suicide between 2000 and 2017. The predictors were assembled for each of the 8 

quarters prior to the quarter of death, resulting in 808 predictors for each person. Logistic 

regression and gradient boosted trees model classes were compared. The optimal gradient 

boosted trees model achieved promising discrimination and calibration. 

 

Following the manuscripts, this thesis discusses further research. At present, there is no clinical 

consensus on the preferred performance characteristics for quantifying suicide risk. The critical 

next step for further research is to discover the preferred performance characteristics for 

quantifying suicide risk and to discover whether the preferred performance characteristics can 

be achieved.  
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PREFACE 

 

The following three manuscripts comprise the original research supporting this thesis. 

 

Sanderson M, Bulloch A, Wang J, Williamson T, Patten S. Predicting Death by Suicide Using 

Administrative Health Care System Data: Can Feedforward Neural Network Models Improve 

Upon Logistic Regression Models? Journal of Affective Disorders. 2019; 257:741-747. 

 

Sanderson M, Bulloch A, Wang J, Williamson T, Patten S. Predicting Death by Suicide Using 

Administrative Health Care System Data: Can Recurrent Neural Network, One-Dimensional 

Convolutional Neural Network, and Gradient Boosted Trees Models Improve Prediction 

Performance? Journal of Affective Disorders. 2020; 264:107-114. 

 

Sanderson M, Bulloch A, Wang J, Williams KG, Williamson T, Patten S. Predicting Death by 

Suicide Following an Emergency Department Visit for Parasuicide With Administrative Health 

Care System Data and Gradient Boosted Trees. EClinicalMedicine. 20 (2020) 100281. 

 

The first author curated the data, conducted the analyses, interpreted the results, and wrote 

the manuscripts. All authors critically revised and contributed intellectually to the manuscripts. 

The manuscripts are reproduced in their entirety as Chapters 2, 3, and 4 in this thesis. 

Reproduction of the manuscripts in this thesis complies with Elsevier policies. Permission to 

include the above manuscripts in this thesis was obtained from all co-authors. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Suicide is a leading cause of death in Canada 1 and internationally 2. Over half of all deaths by 

suicide in Alberta between 2000 and 2017 occurred in persons under 45, and 96 percent 

occurred in persons under 75, resulting in 290,490 years of life lost 3. 

 

The suicide rate in Alberta declined between 1983 and 2014, but increased sharply in 2015 

(see: Figure 1). The decrease in the overall suicide rate has largely been attributable to a 

decrease in the male suicide rate (see: Figure 2). The decrease coincides with the introduction 

of Fluoxetine (Prozac) in the late 1980s for the treatment of major depression and the decrease 

may also coincide with a decrease in mental health stigma and a corresponding increase in 

seeking treatment. The male suicide rate was 3.5 times higher than the female suicide rate 

between 1983 and 2017, although this difference has been decreasing over time (see: Figure 2). 

The difference between the male suicide rate and the female suicide rate was lowest in the 

teenage years and the mid-thirties to late-fifties, while the difference was highest in the 

twenties to mid-thirties and over 60 (see: Figure 3). The male suicide rate in persons over 90 

was especially high (42 per 100,000) and accounted for 0.6% of all male deaths by suicide. 

Mental health likely plays a larger role in younger persons and physical health likely plays a 

larger role in older persons. 
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The suicide rate between 2000 and 2017 in Alberta tended to be higher in rural communities 

than in urban communities (see: Figures 4 and 5). Communities with higher Low-Income 

Measure After Tax (LIM-AT, a measure of after-tax household income adjusted for household 

size) and higher unemployment rates tended to have higher suicide rates (see: Figures 6 and 7). 

Rurality itself may not be an independent risk factor for suicide and it may be that rural 

communities have higher suicide rates because they also tend to have lower access to mental 

health supports, higher LIM-AT, and unemployment rates. 

 

Of the persons that died by suicide in Alberta in 2017, 87 percent had visited a physician in the 

year prior to the date of suicide and 68 percent had received a mental health diagnosis 4. In the 

90 days prior to the date of suicide, 70 percent had visited a physician and 59 percent had 

received a mental health diagnosis 4. 

 

1.2 Objective 

Death by suicide is an event where health care service and health care policy interventions are 

focused entirely on prevention, since death by suicide cannot be treated. Health care service 

providers and health care policy providers must be able to quantify the risk of death by suicide 

in order to choose the optimal prevention intervention. This is because there are a number of 

clinical and population interventions that can be chosen to prevent death by suicide in a 

particular setting, and they may vary in intensity, invasiveness, effectiveness, expense, and 

suitability. In health care service settings, clinical judgment and risk scales are most commonly 



 12 

relied upon to quantify suicide risk but these have been shown to have low to moderate 

prediction performance (see: section 1.3. below).  

 

There is an opportunity to evaluate the performance of prediction models for quantifying 

suicide risk developed with administrative health care system data and machine learning model 

classes. Administrative health care system data may be valuable for developing prediction 

models because of the volume and breadth of data, and because its ongoing collection means 

that prediction models developed with this data can be used in the future. Machine learning 

model classes may be valuable for developing prediction models because of their ability to 

learn complex non-linear relationships, and because machine learning software and hardware 

has become available to non-specialists. 

 

The objective of this thesis is to evaluate the performance of prediction model classes that 

quantify suicide risk with predictors available in electronic administrative health care system 

data. In principle, the prediction model classes, administrative health care system data, and 

evaluation methods reported in this thesis could be used to inform both clinical and population 

interventions. However, the focus of this thesis will be on the development and evaluation of 

prediction models for clinical settings. For example, as described above, 70 percent of persons 

that died by suicide in 2017 had visited a physician in the 90 days prior to the date of suicide. 

For many of these persons, the physician may not have been aware of the high risk of suicide. 

Even if the physician was aware, the physician may not have known the precise risk, and 

knowing the precise risk may have led to a better choice of intervention. 
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This thesis contains three manuscripts. The first two manuscripts used a case-control study 

design in order to include all available instances of death by suicide in the modeling dataset, 

and were designed to discover the most promising prediction model class from among logistic 

regression, feedforward neural networks, one-dimensional convolutional neural networks, 

recurrent neural networks, and gradient boosted trees. These manuscripts focused on the 

ability of prediction models to discriminate between persons at lower and higher risk of death 

by suicide. The third manuscript used a retrospective open-cohort study design, and was 

designed to evaluate the performance of prediction models in a realistic health care setting 

(emergency department visits for parasuicide) with the most promising model class from the 

first two manuscripts. 

 

1.3 Literature Review 

A literature review was carried out for this thesis. The goals of the literature review were to 

identify predictors of suicidality risk, to identify and evaluate existing approaches that quantify 

suicidality risk, and to discover whether there is an opportunity for prediction models that 

quantify suicide risk developed with administrative health care system data and machine 

learning model classes to provide novel and needed contributions. Suicidality is comprised of 

suicide, parasuicide, and suicidal ideation. It is important to note that suicide, parasuicide, and 

suicidal ideation are related but distinct behaviors. Suicide is the intentional death of oneself. 

The term ‘parasuicide’ can have different meanings in the literature, but in this literature 

review, parasuicide is suicidal behaviour that did not result in death. The reason the term 

‘parasuicide’ is used in this literature review is that determining intent to die is difficult and 
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behaviour commonly labeled ‘attempted suicide’ is not necessarily an attempt at suicide. In this 

literature review, suicidal ideation is personal thoughts of suicide or suicidal behaviours.  

 

Any study title that was related to suicidality (suicide, parasuicide, suicidal ideation), and where 

the predictors were similar to those available for this thesis or where the focus was on 

prediction methods for suicidality, was selected. Studies with a military population or studies 

that were focused on genetic predictors were excluded because they were not relevant to this 

thesis. The abstracts of 53 studies were reviewed (by the author), and 23 studies that were 

directly related to the goals of the literature review were selected for full review. Those 23 

studies were categorized according to outcome (some studies examined more than one 

outcome): suicide (10), parasuicide (15), or suicidal ideation (3); at-risk population: general 

population (4) or sub-population (19); risk factor measurement: administrative/survey data (8) 

or clinical assessment tool (11) or a summary of other work (4). Appendix C contains an 

evidence table summarizing each study selected for full review. 

 

1.3.1 Literature Review: Risk Factors for Suicidality 

This section describes studies that included suicide, parasuicide, and suicidal ideation. The 

majority of risk factors for suicidality in the studies selected for full review were measured using 

clinical assessment tools (11), either developed for estimating the risk of suicidality in clinical 

practice or developed specifically for that study. Although the clinical assessment tools differed 

across the studies, the risk factors for predicting suicidality tended to be consistent. The most 

common and strongest risk factors for predicting suicidality using clinical assessment tools were 
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parasuicide, suicidal ideation, and the presence of a mental disorder. While a mental disorder 

can be classified in different ways in different studies, the Diagnostic and Statistical Manual of 

Mental Disorders (DSM–5) describes a mental disorder as “a syndrome characterized by 

clinically significant disturbance in an individual's cognition, emotion regulation, or behavior 

that reflects a dysfunction in the psychological, biological, or developmental processes 

underlying mental functioning.”. Other risk factors included poor social conditions and poor 

social interactions, age and sex, lethality of parasuicide, intensity of suicidal ideation, substance 

misuse, health care provider suicidality risk assessment, and physical illness. 

 

The remaining studies (8) collected risk factors for suicidality from administrative or survey data 

that were not specially designed to predict suicidality risk. The most common and strongest risk 

factors for predicting suicidality using administrative data were parasuicide and the presence of 

mental illness. Other risk factors described were generally similar to those measured by clinical 

assessment tools as above but also included different perspectives. For example, one study that 

used administrative data 5 described ecological risk factors for suicide and parasuicide in 

subway stations. The study largely examined the structural characteristics of the train stations 

themselves and the structural characteristics of the surrounding areas, and not population 

characteristics in detail. 

 

The summary studies (4) reiterated the risk factors for suicidality from the literature, and then 

discussed strategies for improving and applying the estimates of suicidality risk towards suicide 

prevention. For example, Pisani et al. 6, recommended that psychiatrists-in-training be taught 
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more prevention-oriented suicidality risk formulations that include: an individual’s stratified risk 

relative to others, an individual’s risk state relative to previous personal risk states, available 

crisis resources, and foreseeable changes that may exacerbate risk. The summary studies all 

noted that interventions require being able quantifying suicide risk, but that but that 

quantifying suicide risk is difficult in practice. 

 

1.3.2 Literature Review: Prediction Modeling 

The studies by Wang et al. 7, Tran et al. 8, and Yaseen et al. 9 described below reported the 

receiver operating characteristic curve (AUC) while most of the other studies selected for full 

review reported effect sizes and estimates of statistical significance from regression models. 

While effect sizes and estimates of statistical significance are important for estimation 

modeling, they do not evaluate prediction performance. This is an important distinction 

because the goal of estimation modeling is to understand how risk factors contribute to the risk 

of suicide, while the goal of prediction modeling is strictly prediction performance. Estimation 

modelers may prefer to exchange prediction performance for a better understanding of the 

relationship between risk factors and suicide. 

 

Wang et al. 7 used logistic regression to predict emergency department (ED) visits for 

parasuicide within 6 months in persons that had been referred for psychiatric services in the 

EDs of two large tertiary care hospitals in Manitoba (n = 2792). There were 2792 persons and 

136 (5 percent) visited an ED for parasuicide within 6 months. The authors found that senior 

psychiatric residents (AUC = 0.76) and staff psychiatrists (AUC = 0.78) were better able to 
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predict than non-psychiatric residents (AUC = 0.59), junior psychiatric residents (AUC = 0.68), 

and a clinical assessment tool (AUC = 0.62). This suggests that psychiatric residents and staff 

psychiatrists were better than non-psychiatric residents, junior psychiatric residents, and a 

clinical assessment tool at distinguishing between persons that visited an ED for parasuicide 

within 6 months and persons that did not. 

 

Tran et al. 8 used ordinal regression to predict parasuicide within 180 days in persons that had 

undergone a suicide risk assessment (n = 7399) at the only tertiary hospital or one of five 

community health centres in the Barwon Health regional health service in Australia. The 

authors compared clinician risk assessments using a risk assessment checklist with an ordinal 

regression model using administrative hospital data to predict parasuicide at 30, 60, 90, and 

180 days after the suicide risk assessment. Parasuicide was classified into three groups: low risk 

(no parasuicide, or an ED or inpatient admission with low-lethality parasuicide), moderate risk 

(an ED or inpatient admission with moderate-lethality parasuicide), and high risk (an ED or 

inpatient admission with high-lethality parasuicide). At 30, 60, 90, and 180 days after the 

suicide risk assessment, clinicians predicted parasuicide in high risk versus moderate and low 

risk combined with AUC between 0.55 and 0.59, while the prediction model predicted with AUC 

between 0.73 and 0.79. At 30, 60, 90, and 180 days after the suicide risk assessment, clinicians 

predicted parasuicide in high and moderate risk combined versus low risk with AUC between 

0.52 and 0.54, while the prediction model predicted with AUC between 0.71 and 0.79. 
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Yaseen et al. 9 used a clinical assessment tool to predict parasuicide in persons that were 

psychiatric inpatients in two tertiary care hospitals in New York City after being seen in the ED 

with parasuicide or suicidal ideation (n = 161). The authors used a clinical assessment tool 

called the ‘Suicide Trigger Scale v.3’ (STS-3) designed to measure a “suicide trigger state” 

thought to precede parasuicide. Although the authors recruited 161 participants, they were 

only able to contact 54 for follow-up. Of the 54 persons that were contacted, 13 (24 percent) 

reported parasuicide. The original STS-3 did not predict parasuicide, but a transformed STS-3 

score (AUC = 0.73) and a subset of the STS-3 scores (AUC = 0.81) that were created based on a 

post hoc analysis did. Although the discrimination performance of the post-hoc STS-3 scores 

could be considered promising, the performance was not validated and so is likely overly 

optimistic. 

 

Karmakar et al. 10 used risk stratification (not modeling) and electronic hospital records to 

predict the risk of parasuicide in mental health patients in the same health region as Tran et al. 

(2014) in order to create a risk score that could be used as a decision support tool by hospital 

clinicians. The risk score was a stratification of parasuicide risk based on physical health 

diagnoses codes, rather than mental health diagnosis codes. The risk score outperformed 

routine risk assessment (AUC = 0.56) but only demonstrated moderate performance (AUC = 

0.71). 

 

There were three studies that used machine learning model classes to quantify suicidality risk. 

None of the three studies used performance validation methods. Bae et al. 11 used decision tree 
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analysis with a national mental health survey of middle and high school students to predict 

parasuicide. Prediction performance was not reported but the authors used the proportion of 

parasuicide in each tree node to measure the relative importance of predictors (a high 

proportion of parasuicide in a tree node indicates high importance). The most important 

predictor was severity of depression. Other important predictors included delinquency, 

intimacy with family, and stress. Poulin et al. 12, used genetic programming to predict the risk of 

suicide using the text of clinical notes in U.S. Veterans Administration medical records. 

Keywords and multi-word phrases were used to distinguish between equal-sized groups of 

veterans that had and had not died by suicide, such as “agitation” (persons that died by 

suicide), “disheveled” (persons that did not die by suicide but received psychiatric treatment), 

and “plasma” (persons that did not die by suicide and did not receive psychiatric treatment). 

The authors evaluated the prediction accuracy of the presence of single words, word pairs, 

word triples, or phrases. The authors reported mean accuracies between 46-65 percent. The 

goal of the study was not to develop prediction models but to investigate whether single words 

and multi-word phrases could demonstrate prediction utility. Cook et al. 13, used Natural 

Language Processing (NLP) with respondents’ unstructured text responses to the question 

“How are you feeling today?” (in Spanish), to predict suicidal ideation in adults discharged from 

psychiatric treatment in a hospital. The authors compared the ability of a NLP model with the 

response to the question “How are you feeling today?” as the predictor, and logistic regression 

with tabular data from a survey as predictors, to predict reported suicidal ideation. The authors 

found that the NLP model achieved a sensitivity of 0.56, specificity of 0.57, and PPV of 0.61, 

while the logistic regression model achieved a sensitivity of 0.76, specificity of 0.62, and PPV of 
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0.73. Although the PPVs appear promising, the prevalence of suicidal ideation in the modeling 

dataset was 53 percent. 

 

1.3.3 Literature Review: Summary 

The studies above showed that there is generally consensus regarding the risk factors that are 

important for quantifying suicidality risk. However, most studies focused on estimation 

modeling rather than prediction modeling, and the studies that evaluated prediction 

performance reported low to moderate performance. The volume of data in the studies above 

tended to be small, and assembled from a single data source. The studies also showed that 

quantifying suicidality risk is difficult, and several noted that suicide was especially difficult due 

to its rarity.  

 

The studies that used large administrative datasets achieved the best prediction performance 

among the studies in the literature review, but they did not use machine learning model 

classes. The studies that used machine learning model classes did not use large administrative 

datasets. It seems from the literature review that there is an opportunity to evaluate the 

performance of prediction models that quantify suicide risk developed with administrative 

health care system data and machine learning model classes. The administrative health care 

system data available for this thesis was larger and more comprehensive than those reported in 

the literature review, and machine learning software, hardware, and model classes have 

advanced significantly compared to what was available when the studies in the literature 

review were completed. Thus, while the results of this thesis cannot be directly compared to 
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earlier prediction models for the reasons described above, this thesis can provide novel and 

needed contributions to discover whether prediction performance can be achieved that could 

lead to clinical applications. This thesis did not seek to develop a finalized prediction model for 

comparison with prior studies but instead sought to take the first steps towards developing 

prediction models for clinical practice and to describe best practices for developing prediction 

models for clinical practice.  
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CHAPTER 2: PREDICTING DEATH BY SUICIDE USING ADMINISTRATIVE HEALTH CARE SYSTEM 

DATA: CAN FEEDFORWARD NEURAL NETWORK MODELS IMPROVE UPON LOGISTIC REGRESSION 

MODELS? 

 

This manuscript was published in the Journal of Affective Disorders in October, 2019. This 

manuscript was designed to discover the prediction utility inherent in the administrative health 

care system data in Alberta compared with the studies in the literature review, and to evaluate 

the relative performance of logistic regression and a classic machine learning model class. 

 

2.1 Abstract 

Background 

Suicide is a leading cause of death worldwide. With the increasing volume of administrative 

health care data, there is an opportunity to evaluate whether machine learning models can 

improve upon statistical models for quantifying suicide risk. 

 

Objective 

To compare the relative performance of logistic regression and single hidden layer feedforward 

neural network models that quantify suicide risk with predictors available in administrative 

health care system data. 
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Methods 

The modeling dataset contained 3548 persons that died by suicide and 35,480 persons that did 

not die by suicide between 2000 and 2016. 101 predictors were selected, and these were 

assembled for each of the 40 quarters (10 years) prior to the quarter of death, resulting in 4040 

predictors in total for each person. Logistic regression and single hidden layer feedforward 

neural network model configurations were evaluated using 10-fold cross-validation. 

 

Results 

The optimal feedforward neural network model configuration (AUC: 0.8352) outperformed 

logistic regression (AUC: 0.8179). 

 

Limitations 

Many important predictors are not available in administrative data and this likely places a limit 

on how well prediction models developed with administrative data can perform. 

 

Conclusions 

Although the models developed in this study showed promise, further research is needed to 

determine the performance limits of statistical and machine learning models that quantify 

suicide risk, and to develop prediction models optimized for implementation in clinical settings. 
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2.2 Introduction 

Suicide is a leading cause of death worldwide 1. Between 2000 and 2017 in Alberta, Canada, 

suicide accounted for 23 percent of all deaths among persons 15 to 30 and 16 percent of all 

deaths among persons 30 to 45 2. Over the same time period, 96 percent of deaths by suicide in 

Alberta occurred in persons under 75 causing 289,078 years of life lost 2. Suicide also accounted 

for two percent of all deaths in persons over nine and ten percent of person years of life lost 2. 

 

For health care service providers and health care policy providers to take actions to reduce 

suicide risk, they must be able to quantify suicide risk. Unfortunately, quantifying suicide risk is 

difficult 3, 4 because suicide is rare and the risk factors for suicide are common. Further, many 

risk factors for suicide do not vary over time which makes acute quantification of suicide risk 

even more difficult. Attempts to quantify suicide risk with statistical models have predicted 

suicide better than chance, but have not achieved performance sufficient to be broadly useful 5, 

6, 7, 8. Machine learning models such as neural networks have achieved successes with many 

difficult prediction problems and this has led to discussion about whether similar success could 

be achieved with suicide prediction 9. 

 

Administrative health care data is potentially valuable for developing prediction models 

because of the volume and breadth of data, and because its ongoing collection means that 

prediction models developed with this data can be used in the future to inform health care 

services and policies. With the availability of machine learning hardware and software to non-

specialists, and with the increasing volume of administrative health care data, there is an 
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opportunity to evaluate whether feedforward neural network models can improve upon logistic 

regression models for quantifying suicide risk. 

 

2.3 Objective 

The objective of this study is to compare the relative performance of logistic regression and 

single hidden layer feedforward neural network (FNN) models that quantify suicide risk with 

predictors available in administrative health care system data as a first step towards evaluating 

whether machine learning is a promising avenue of research in this domain. The objective is not 

to develop optimized models for implementation in clinical settings or to identify important 

predictors but rather to investigate whether FNN models are capable of providing an 

improvement in prediction performance compared with logistic regression models using 

identical modeling datasets. 

 

If FNN models prove capable of outperforming logistic regression models, then FNN models 

would be promising for future research to develop optimized models for implementation in 

health care service and policy settings. For example, a computer system could be developed 

that would assemble all of the administrative records for a person that is about to be 

discharged from a psychiatric inpatient setting and then use an optimized FNN model to 

estimate of the risk of death by suicide in the near term. A clinician could use that risk estimate 

when developing a discharge care plan. 
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2.4 Neural Networks 

Neural networks are a flexible class of machine learning models that were inspired by 

neuroscience 2. Conceptually, a neural network model is made up of layers of neurons, with the 

neurons in one layer connected to the neurons the next. Each neuron is a computational unit 

that multiplies its input values by a corresponding set of learnable weight parameters, sums the 

multiplied values, transforms the summed value using a nonlinear activation function, and 

outputs the transformed value. 

 

The first layer in a neural network model is the input layer, and each unit in the input layer 

contains the value of one of the predictors for a particular observation. The input layer passes 

all predictor values for a particular observation to each neuron in the first hidden layer. Each 

neuron in the first hidden layer computes a different function with the predictor values. The 

first hidden layer then passes its output values to each neuron in the second hidden layer, 

where each neuron computes a different function with its input values, and so on to the final 

output layer which makes a prediction. 

 

Neural network models learn by iteratively comparing its predictions with the observed 

outcomes and then updating its weight parameters to improve its predictions. Neural network 

models have a number of hyperparameters that are set by the modeler, including the number 

of neurons in each hidden layer, the number of hidden layers, the learning rate, and the 

number of epochs. The learning rate is how much the weight parameters are adjusted at each 
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iteration, and the number of epochs is the number of times the entire training dataset is used 

to update the weight parameters. 

  

2.5 Methods 

2.5.1 Data Sources 

The population in this study was the province of Alberta in Canada. Alberta has a publicly-

funded single-payer health care system with administrative data systems that record the health 

care services of nearly its entire population of 4.07 million people 10. The outcome and 

predictors were selected from administrative health care data in Alberta. 

 

The outcome, death by suicide, was obtained from the Alberta Vital Statistics Cause of Death 

data system (ICD-10 cause of death codes X60 through X84). Predictors were assembled from 

the following data systems: the Alberta Health Care Insurance Plan (AHCIP) Registry, 

Supplemental Enhanced Service Event (SESE; physician claims), Morbidity and Ambulatory Care 

Abstract Reporting (MACAR; ambulatory care and inpatient hospitalizations), Pharmaceutical 

Information Network (PIN; community pharmacy dispenses), and the Alberta Disease Registry 

for Surveillance (a registry containing the date Albertans met disease case definitions). The 

AHCIP Registry records the residency status of Albertans each quarter, and so the other 

datasets were assembled by quarter to match the temporal granularity of the residency data. 

The datasets were linked for this study using the unique Personal Health Number assigned to all 

Albertans for the delivery of health care services. This study was approved by the University of 

Calgary Conjoint Health Research Ethics Review Board. 
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2.5.2 Hardware and Software 

The administrative data were extracted and assembled using SAS 9.4. The analysis was 

performed on a desktop computer with an Ubuntu 18.04.1 LTS operating system and a GeForce 

GTX 1080 Ti 12GB graphics processing unit (GPU) using the NVIDIA-SMI 390.87 driver. The 

analysis was written in the Python programming language in a Jupyter 5.6.0 notebook in 

Anaconda Navigator 1.8.7. The logistic regression models were developed using scikit-learn 

0.20.0. The FNN models were developed with Keras 2.2.2 using the TensorFlow backend with 

GPU support. 

 

2.5.3 Inclusion and Exclusion Criteria 

It was not computationally feasible to include all persons in the administrative health care data 

in the modeling dataset. For each person that died by suicide in Alberta between 2000 and 

2016 (3548), 10 persons that did not die by suicide and were residing in Alberta in the quarter 

of death were randomly selected (35,480) using the proc surveyselect function in SAS 9.4. This 

ratio was chosen to generate a modeling dataset large enough to produce robust models while 

also being computationally feasible on a desktop computer with a GPU. Residents of Alberta 10 

years and older were included, as 10 years is the age when suicide risk begins to manifest in the 

administrative data 2. No other inclusion, exclusion, or matching criteria were applied. 

 

2.5.5 Outcome Class Weights 

As described above, 10 persons that did not die by suicide were randomly selected for each 

person that died by suicide, and so the outcome class distribution was imbalanced. In order to 
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assign equal importance to both outcome classes, the models included class weights of 10 / 11 

for persons that died by suicide and 1 / 11 for persons that did not die by suicide. 

 

2.5.6 Predictors 

Predictors were selected from the administrative health care data based on those identified as 

having suicide or parasuicide prediction utility in a literature review carried out for this study. 

101 predictors were selected, and these were assembled for each of the 40 quarters (10 years) 

prior to the quarter of death, resulting in 4040 predictors in total (101 predictors x 40 quarters) 

for each person. Generally, the predictors selected were related to mental health, but 

predictors related to physical health were also selected because they have been shown to have 

utility for suicide prediction 11. Although some of the predictors related to physical health may 

not appear to be directly related to suicide, they were included in the modeling dataset to allow 

the models the opportunity to learn complex relationships. For example, gout is likely not 

directly related to suicide but combined with other predictors related to physical health, gout 

could contribute to the overall burden of physical illness. 

 

A full listing of the selected predictors is available in Appendix B. The modeling dataset 

contained 39,028 rows (3548 persons that died by suicide and 35,480 persons that did not die 

by suicide) and 4041 columns (4040 predictors and 1 outcome). 
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2.5.7 Missing Values 

Missing predictor values were only present due to a person not being resident in Alberta during 

a particular quarter, and these were assigned a value of zero. To distinguish missing predictor 

values from true zeroes, a residency flag was included as a predictor to indicate whether each 

person was resident in Alberta during a particular quarter. 

 

2.5.8 Model Configuration Evaluation 

A model is a single realization of a model configuration. For example, a model configuration 

might be written as Y = B0 + B1(X1) while a model developed with a particular modeling dataset 

might be written as Y = 15 + 0.01(X1). Machine learning model configurations do not lend 

themselves to hypothesis tests and confidence intervals, and are instead commonly evaluated 

empirically with a validation dataset 12. A modeling dataset is randomly divided into a training 

dataset and a validation dataset, and then a model is developed with the training dataset and 

evaluated with the validation dataset 12. The validation dataset is used to provide an estimate 

of the expected performance of the model configuration with data the model was not 

developed with (unseen data). 

 

A problem with using a single validation dataset to evaluate a model configuration is that there 

are many possible random divisions of the modeling dataset into training and validation 

datasets. Training and validation datasets will vary from one random division of the modeling 

dataset to the next, and so the resulting models and validation estimates will also vary. The 

same model configuration developed with one random division of the modeling dataset into 
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training and validation datasets will result in a different – but hopefully very similar –  model 

than another random division. 

 

K-fold cross-validation is an evaluation approach that uses k validation datasets to obtain a 

more robust estimate of expected performance with unseen data than with a single validation 

dataset 12. First, the modeling dataset is randomly divided into k approximately equally-sized 

parts (k = 5 or 10 is common). Then, a model is developed with k – 1 parts acting as a training 

dataset and evaluated with the remaining part acting as a validation dataset; this process is 

repeated until all k parts have acted as a validation dataset once 12. The mean of the k 

validation estimates is the k-fold cross-validation estimate of the expected performance of the 

model configuration with unseen data 12. 

 

The k-fold cross-validation receiver operating characteristic area under the curve (AUC) was 

chosen as the single metric to evaluate model configuration performance because it has the 

intuitive interpretation that the AUC is the probability that the predicted risk was higher for a 

person that died by suicide than a person that did not 13, and because it was closely associated 

with sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV). 

 

2.5.9 FNN Model Configurations 

FNN model configurations have hyperparameters to be tuned. The hyperparameters evaluated 

in this study were the number of neurons in the hidden layer (8, 16, 32, 64, 128), the learning 

rate (1e-4, 5e-5, 1e-5, 5e-6, 1e-6), and the number of epochs (50, 100, 150, 200, 250, 300, 350, 
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400, 450, 500). Each combination of the above hyperparameter settings were evaluated, 

resulting in 250 FNN model configurations. Batch size is a hyperparameter, but this study 

defaulted to a batch size of 512. The hidden layer activation function is also a hyperparameter, 

but this study defaulted to the Rectified Linear Unit (ReLU) activation function. 

 

Each of the 250 FNN model configurations and the single logistic regression model 

configuration were evaluated with 10-fold cross-validation. The evaluation took approximately 

3 days of compute time (251 models x 10 folds per model = 2510 models in total). 

 

2.6 Results 

2.6.1 Performance Metrics 

The 10-fold cross-validation AUC estimate for logistic regression was 0.8179. The 10-fold cross-

validation AUC estimate for the optimal FNN model configuration was 0.8352. The optimal FNN 

model configuration had 32 neurons, learning rate of 1e-5, and 300 epochs. Each FNN neuron 

configuration was capable of achieving essentially the same maximum 10-fold cross-validation 

AUC, although the learning rate and epoch combination required to achieve the maximum 10-

fold cross-validation AUC varied. The neuron configuration with 32 neurons had the highest 10-

fold cross-validation AUC but the other neuron configurations achieved a nearly identical 

optimal 10-fold cross-validation AUC (8: 0.8332, 16: 0.8336, 64: 0.8344, 128: 0.8338) and are all 

likely equally good estimates of the expected optimal AUC with unseen data. 
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In addition to the 10-fold cross-validation AUC, a number of other 10-fold cross-validation 

performance metrics were computed and are included in Table 1. The optimal FNN model had a 

greater sensitivity (0.6996) than the logistic regression model (0.6531), with similar specificity 

(0.8098, 0.8265), PPV (0.2961, 0.2734), and NPV (0.9642, 0.9597). 

 

2.6.2 FNN Performance Trajectories 

Each FNN neuron configuration (8, 16, 32, 64, 128) had the same performance trajectory across 

learning rates up to the maximum 10-fold cross-validation AUC of around 0.8350. Once the 

maximum AUC was reached, FNN configurations with more neurons overfit to the training data 

more severely. For example, in Figure 1, the maximum 10-fold cross-validation AUC was 

achieved for 8 neurons with a learning rate of 5E-5 and 150 epochs, although there were other 

configurations that achieved a nearly identical 10-fold cross-validation AUC. 

 

With a learning rate of 1E-6 or 5E-6 or 1E-5, the maximum number of epochs in the evaluation 

(500) was not sufficient to achieve the maximum 10-fold cross-validation AUC, although the 

trajectories suggest that these configurations would eventually achieve the maximum 10-fold 

cross-validation AUC with enough epochs. 

 

2.7 Discussion 

The objective of this study is to compare the relative performance of logistic regression and 

single hidden layer FNN models that quantify suicide risk with predictors available in 

administrative health care system data. We sought to evaluate relative performance in the 
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simplest case, without model tuning techniques such as variable reduction or regularization. 

The optimal FNN model configuration (AUC: 0.8352) outperformed logistic regression (AUC: 

0.8179), showing that FNN models can improve upon logistic regression models. FNNs appear 

to be promising for future research to develop optimized models for implementation in health 

care service and policy settings. 

 

The AUCs of the logistic regression and optimal FNN models in this study were higher than 

those in other studies that predicted suicidality, possibly because the controls were sampled 

from the general population. In a study of parasuicide in persons that had been referred for 

psychiatric services in the Emergency Departments of two large tertiary care hospitals in 

Manitoba, Canada 14, senior psychiatric residents (AUC: 0.76) and staff psychiatrists (AUC: 0.78) 

were better able to predict parasuicide than non-psychiatric residents (AUC: 0.59), junior 

psychiatric residents (AUC: 0.68), and a clinical assessment tool (AUC: 0.62). In a study of 

parasuicide in Melbourne, Australia 15, prediction models developed with administrative 

hospital data (AUC: 0.71 to 0.79) were better able to predict parasuicide than clinicians (AUC: 

0.52 to 0.54). In another study of parasuicide in Melbourne, Australia 16, a prediction model 

developed with administrative hospital data based on physical health diagnoses codes (AUC: 

0.71) was better able to predict parasuicide than routine risk assessment (AUC: 0.56).  

 

Further research is needed to determine the performance limits of statistical and machine 

learning models that quantify suicide risk. For example, predictor reduction techniques were 

not employed in this study because these approaches often require judgment, which would 
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preclude direct performance comparisons, but it is possible that fewer predictors or even 

composite predictors could result in improved prediction performance. It seems very possible 

that improved prediction performance could be achieved with more predictor engineering, 

more complex models, more data volume, and more suicide-specific predictors, but it is unclear 

how large the improvement in prediction performance might be. 

 

Further research is needed to develop prediction models optimized for implementation in 

particular settings, such as arrival at an emergency department, discharge from a psychiatric 

inpatient stay, or policy development. The development, evaluation, and implementation of 

suicide risk quantification models for health care service providers and health care policy 

providers will require a more in-depth consideration of the implications of the performance 

metrics, particularly the impact of different risk distributions in different settings. Further, 

considerations beyond the performance characteristics of the models must also be considered. 

For example, one would have to consider the possibility of unintended consequences of 

assigning risk, such as the possibility that assigning risk, even if accurate and reliable, may do 

more harm than good if the assigned risk lead to inappropriate care. 

 

Most importantly, further research is needed to determine whether prediction models can be 

developed that will be useful to health care service providers and health care policy providers. 

Prediction models outperform clinicians when predicting the risk of suicidality 11, 15, 16, but these 

models have not been widely implemented in clinical settings. Risk scales are commonly used in 

clinical settings, but they have limited utility for quantifying suicidality risk 5, 17, 18, 19, 20. If 
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prediction models developed with administrative data in Alberta can be used in clinical settings, 

then similar prediction models could be developed and implemented across Canada because 

most Canadian provinces collect administrative data similar to that used in this study. 

 

2.8 Limitations 

2.8.1 Case-Control Sampling Design 

Although the case-control sampling design used in this study is useful for evaluating model 

discrimination, it is not useful for evaluating model calibration because the risk distribution in 

the modeling dataset is not representative of any population or setting. That said, the objective 

of this study was not to develop a prediction model for implementation in a particular setting, 

but rather to explore the relative performance of logistic regression and FNN models that 

quantify suicide risk. 

 

2.8.2 Administrative Data 

Although being able to quantify suicide risk using data that will continue to be collected into the 

foreseeable future has benefits, the predictors available in the administrative data were not 

collected for the purposes of suicide risk quantification. Thus, many important predictors are 

not available in administrative data and this likely places a limit on how well prediction models 

developed with administrative data can perform. For example, while the administrative data 

used in this study contained proxies of severity of mental illness in terms of service utilization, 

severity itself was not directly measured. However, as electronic health data becomes richer 
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and the opportunity to link with non-health data grows, prediction models developed with 

linked electronic data may be even more promising. 

 

2.8.3 Big (Enough?) Data 

The modeling dataset in this study included all persons that died by suicide in Alberta between 

2000 and 2016 (3548), but only included 35,480 persons that did not die by suicide due to the 

computational limitations of a desktop computer with a GPU. In general, machine learning 

models outperform statistical models when developed with large volumes of data. While the 

modeling dataset in this study might be considered ‘big data’ by suicide literature standards, it 

may not be a large enough volume for FNN models to learn a substantially more complex 

function than the logistic regression function. For example, the Large Scale Visual Recognition 

Challenge 2017 21 used a training dataset with 1.2 million images. 

 

2.8.4 Neural Networks and Deep Learning 

FNN models were chosen for comparison with logistic regression models in this study because 

they are capable of learning very complex and non-linear relationships between predictors and 

outcomes, and because they scale well to large datasets. A drawback of FNN models is that 

they are essentially uninterpretable and so any improvement in prediction performance 

compared to logistic regression comes with the cost of opacity. 

 

Deep learning neural network models are capable of reducing the overall number of 

parameters required to represent a function by adding hidden layers 22. Although deep learning 
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models are often required to achieve optimal performance in many machine learning projects, 

only FNN models with a single hidden layer were explored in this study because the FNN 

models with higher capacity did not outperform the FNN models with lower capacity. As 

discussed above, each neuron configuration appeared to be able to achieve the maximum 10-

fold cross-validation AUC and models with higher capacity began to overfit once the maximum 

was achieved. 

 

2.8.5 Temporality 

The prevention framework suggested by Pisani et al. 23 considers suicide risk to have two 

components: risk status (risk relative to other persons) and risk state (risk relative to prior 

personal states). Temporal precision is particularly important with suicide because risk can 

escalate to crisis in a very short period of time, and being able to predict escalating risk is 

crucial for health care service providers. The models developed in this study attempted to 

include both components when quantifying suicide risk. Although time was not included as a 

tensor dimension, a FNN with sufficient capacity (neurons) is capable of representing the 

sequential importance (risk state) of predictors, and indeed, any function 22, 24. 
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2.10 Appendix A: Figures and Tables 

Figure 1: Scatter Plot of FNN Model Configuration Performance: 8 Neurons 

 

Table 1: Repeated Single Validation Set Performance Metrics, Mean and Standard Deviation 

Performance Metric Logistic Regression 
10-Fold Cross-Validation Mean 

Feedforward Neural Network 
10-Fold Cross-Validation Mean 

Area Under the Curve 0.8179 0.8352 

Accuracy 0.8107 0.7998 

Balanced Accuracy 0.7398 0.7547 

Sensitivity 0.6531 0.6996 

Specificity 0.8265 0.8098 

Positive Prediction Value 0.2734 0.2691 

Negative Prediction Value 0.9597 0.9642 
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CHAPTER 3: PREDICTING DEATH BY SUICIDE USING ADMINISTRATIVE HEALTH CARE SYSTEM 

DATA: CAN RECURRENT NEURAL NETWORK, ONE-DIMENSIONAL CONVOLUTIONAL NEURAL 

NETWORK, AND GRADIENT BOOSTED TREES MODELS IMPROVE PREDICTION PERFORMANCE?  

 

This manuscript was published in the Journal of Affective Disorders in March, 2020. Following 

from the promising findings reported in the first manuscript, this manuscript was designed to 

evaluate the performance of cutting-edge machine learning model classes with the same 

modeling dataset, and to discover the time period of data required for optimal performance. 

 

3.1 Abstract 

Background 

Suicide is a leading cause of death, particularly in younger persons, and this results in 

tremendous years of life lost. 

 

Objective 

To compare the performance of recurrent neural networks, one-dimensional convolutional 

neural networks, and gradient boosted trees with logistic regression and feedforward neural 

networks. 

 

Methods 

The modeling dataset contained 3548 persons that died by suicide and 35,480 persons that did 

not die by suicide between 2000 and 2016. 101 predictors were selected, and these were 



 44 

assembled for each of the 40 quarters (10 years) prior to the quarter of death, resulting in 4040 

predictors in total for each person. Model configurations were evaluated using 10-fold cross-

validation. 

 

Results 

The optimal recurrent neural network model configuration (AUC: 0.8407), one-dimensional 

convolutional neural network configuration (AUC: 0.8419), and XGB model configuration (AUC: 

0.8493) all outperformed logistic regression (AUC: 0.8179). In addition to superior 

discrimination, the optimal XGB model configuration also achieved superior calibration. 

 

Conclusions 

Although the models developed in this study showed promise, further research is needed to 

determine the performance limits of statistical and machine learning models that quantify 

suicide risk, and to develop prediction models optimized for implementation in clinical settings. 

It appears that the XGB model class is the most promising in terms of discrimination, 

calibration, and computational expense. 

 

Limitations 

Many important predictors are not available in administrative data and this likely places a limit 

on how well prediction models developed with administrative data can perform. 
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3.2 Introduction 

Suicide is a leading cause of death, particularly in younger persons, and this results in 

tremendous years of life lost. In Alberta, Canada, suicide accounted for ten percent of the 

person years of life lost in persons over the age of nine between 2000 and 2017, totaling 

289,078 person years of life lost 1. During this time, suicide accounted for 23 percent of all 

deaths among persons 15 to 30 and 16 percent of all deaths among persons 30 to 45 in Alberta 

1. Over the same time period, the highest numbers of death by suicide in Alberta occurred in 

younger persons but the highest rates of death by suicide occurred in older persons 1. Mental 

illness, substance misuse, parasuicide and lethality of parasuicide, suicidal ideation and 

intensity of suicidal ideation, social conditions and social interactions, and life events are widely 

recognized risk factors for suicide. 

 

Health care service providers and health care policy providers need to able to quantify suicide 

risk to reduce suicide risk. Quantifying suicide risk has proven arduous 2, 3 and although 

statistical models have been developed that predicted suicide better than chance and better 

than clinicians 4, 5, 6, 7, these models have not been widely implemented, partly because the 

improvement in prediction performance compared to clinicians has not been striking. With the 

optimism surrounding artificial intelligence and machine learning, there has been discussion 

about whether machine learning models could improve suicide prediction 8. 

 

In an earlier study 9 (the ‘Log-FNN study’), it was shown that the feedforward neural network 

(FNN) class of machine learning models can improve upon logistic regression for quantifying 
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suicide risk with administrative health care system data in Alberta. Using a modeling dataset 

with 101 predictors assembled for each of the 40 quarters prior to the quarter of death (4040 

predictors in total), the optimal FNN model configuration (AUC: 0.8352) outperformed logistic 

regression (AUC: 0.8179). The improvement in performance is promising to further explore 

machine learning models to quantify suicide risk. 

 

This study will examine the performance of three machine learning model classes: Recurrent 

Neural Networks (RNNs), One-Dimensional Convolutional Neural Networks (1D-CNNs), and 

Gradient Boosted Trees (XGB). RNN and 1D-CNN models are commonly used when the order 

within a sequence is important, such as in natural language processing. For example, the 

phrases ‘Scott supervises Michael’ and ‘Michael supervises Scott’ are comprised of an identical 

set of words but the different ordering of the words expresses different meanings. Similarly, the 

order of the occurrence of predictors is important for quantifying suicide risk 12, and more 

recent occurrences will generally have a greater bearing on current suicide risk than less recent 

occurrences. XGB models were not specifically designed to model sequences but generally 

perform well with tabular data like the dataset in this study 13. 

 

3.3 Neural Networks 

Neural networks are a flexible class of machine learning models that were inspired by 

neuroscience 10. Conceptually, a neural network model is made up of layers of neurons, with 

the neurons in one layer connected to the neurons in the next. Each neuron is a computational 

unit that multiplies its input values by a corresponding set of learnable weight parameters, 
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sums the multiplied values, transforms the summed value using a nonlinear activation function, 

and outputs the transformed value. 

 

The first layer in a neural network model is the input layer, and each unit in the input layer 

contains the value of one of the predictors for a particular observation. The input layer passes 

all predictor values for a particular observation to each neuron in the first hidden layer. Each 

neuron in the first hidden layer computes a different function with the predictor values. The 

first hidden layer then passes its output values to each neuron in the second hidden layer, 

where each neuron computes a different function with its input values, and so on to the final 

output layer which makes a prediction. 

 

A neural network model learns by iteratively comparing its predictions with the observed 

outcomes and then updating its weight parameters to improve its predictions. Neural network 

models have a number of hyperparameters that are set by the modeler, including the number 

of neurons in each hidden layer, the number of hidden layers, the learning rate, and the 

number of epochs. The learning rate is how much the weight parameters are adjusted at each 

iteration, and the number of epochs is the number of times the entire training dataset is used 

to update the weight parameters. 

 

Recurrent neural networks are a class of neural networks that were designed to process 

sequences, and can remember or forget information from earlier steps when processing later 

steps in a sequence. Although FNN models are capable of representing any function 10, 11, RNN 
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models can learn to represent a temporal function with less parameters and less data than FNN 

models. This study will examine two types of RNN models: gated recurrent unit (GRU) and long 

short-term memory (LSTM). While similar in architecture, GRU models were developed more 

recently and have less parameters than LSTM models. 1D-CNN models were developed to 

process sequences using the Convolutional Neural Network architecture which was originally 

designed to process images. 

 

3.4 Gradient Boosted Trees 

Gradient boosted trees are a class of machine learning where a series of classification tree 

models are developed to predict the residuals of the previous model 13. The first classification 

tree predicts the outcome, and then the second classification tree predicts the residuals of the 

predictions made by the first classification tree and so on. 

 

XGB models have a number of hyperparameters that are set by the modeler, including the 

number of classification trees and the maximum classification tree depth. The number of 

classification trees is the number classification trees that are developed and the maximum 

classification tree depth is the number of times a classification model segments predictors into 

prediction categories. 

 

3.5 Objective 

The objective of this study is to compare the performance of RNN, 1D-CNN, and XGB models 

with the performance of the logistic regression and FNN models from the Log-FNN study. The 
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objective is not to develop optimized models for implementation but strictly to evaluate 

whether RNN, 1D-CNN, and XGB models are capable of providing an improvement in prediction 

performance compared with logistic regression and FNN models using identical modeling 

datasets. 

 

It is important to explore candidate classes of models before seeking to develop models 

optimized for implementation because developing optimized models can be a very large 

undertaking. Developing optimized models using computationally expensive model classes 

(particularly RNNs) without reason to believe that they will outperform less computationally 

expensive model classes could lead to wasted time, resources, and opportunity. It is unlikely 

that a single prediction model could be developed and implemented everywhere, and so 

researchers will likely be required to develop prediction models based on the administrative 

health care system data available to them. This study seeks to provide direction for researchers 

developing prediction models by discovering the most promising prediction model class for 

quantifying suicide risk with administrative health care system data. 

 

3.6 Methods 

3.6.1 Data Sources 

Alberta, Canada, has a population of 4.07 million people and a publicly-funded single-payer 

health care system with a number of administrative data systems that record the health care 

services of nearly its entire population 14. A listing of the data sources and the selected 

predictors is available in Appendix B, but briefly, death by suicide was collected from Alberta’s 
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vital statistics cause of death database (ICD-10 cause of death codes X60 through X84), and the 

predictors were collected from physician service payment claims, ambulatory care and 

inpatient hospitalization records, community pharmacy dispense records, and a registry 

containing the date Albertans qualified for a number of disease case definitions. The datasets 

were linked for this study using the unique Personal Health Number assigned to Albertans for 

the delivery of health care services. Missing predictor values occurred if a person was not a 

resident of Alberta during a particular quarter, and these were assigned a value of zero. A flag 

was included as a predictor to indicate whether a person was resident in Alberta during a 

particular quarter in order to distinguish missing predictor values from true zeroes. 

 

A literature review was carried out for this study and predictors were selected from the 

administrative data systems if they had been shown to predict suicide or parasuicide in the 

literature. The predictors selected were typically related to mental health, but a number of 

predictors related to physical health were also selected because physical health has been 

shown to predict suicide 15. Some of the predictors related to physical health may not be 

directly related to suicide but they were included in the modeling dataset to allow the models 

to learn which to regard and which to disregard. 

 

In total, 101 predictors were selected, and these were prepared for each of the 40 quarters (10 

years) prior to the quarter of death. The total number of predictors for each person was 4040 

(101 predictors x 40 quarters). The modeling dataset in this study was identical to that in the 
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Log-FNN study but was structured with three tensor dimensions for use with RNN and 1D-CNN 

models (39,028 persons x 101 predictors x 40 quarters). 

 

3.6.2 Hardware and Software 

The administrative data were extracted and assembled using SAS 9.4. The analysis was 

performed on a desktop computer with an Ubuntu 18.04.1 LTS operating system and a GeForce 

GTX 1080 Ti 12GB graphics processing unit (GPU) using the NVIDIA-SMI 390.87 driver. The 

analysis was written in the Python programming language in a Jupyter 5.6.0 notebook in 

Anaconda Navigator 1.8.7. The GRU, LSTM, 1D-CNN, and FNN models were developed with 

Keras 2.2.2 using the TensorFlow backend with GPU support. The XGB models were developed 

with XGBoost 0.72 with GPU support. Keras and XGBoost are popular open-source libraries for 

machine learning. 

 

3.6.3 Inclusion and Exclusion Criteria 

For each person that died by suicide in Alberta between 2000 and 2016 (3548), 10 persons that 

did not die by suicide and were residing in Alberta in the quarter of death were randomly 

selected (35,480) using the proc surveyselect function in SAS 9.4. This ratio was chosen to 

generate a modeling dataset large enough to produce robust models while also being 

computationally feasible on a desktop computer with a GPU. Residents of Alberta 10 years and 

older were included, as 10 years is the age when suicide risk begins to manifest in the 

administrative data 1. No other inclusion, exclusion, or matching criteria were applied. 
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As described above, 10 persons that did not die by suicide were randomly selected for each 

person that died by suicide, and so the outcome class distribution was imbalanced. In order to 

assign equal importance to both outcome classes, the models included class weights of 10 / 11 

for persons that died by suicide and 1 / 11 for persons that did not die by suicide. 

 

3.6.4 Model Configuration Evaluation 

Machine learning model configurations are not evaluated with standard errors, hypothesis 

tests, and confidence intervals, and are instead commonly evaluated empirically with k-fold 

cross-validation 16. K-fold cross-validation is a model evaluation approach that uses k validation 

datasets to obtain a robust estimate of expected performance with unseen data 16. First, the 

modeling dataset is randomly divided into k approximately equally-sized parts (k = 5 or 10 is 

common). Then, a model is developed with k – 1 parts acting as a training dataset and 

evaluated with the remaining part acting as a validation dataset, and this process is repeated 

until all k parts have acted as a validation dataset once 16. The mean of the k validation 

estimates is the k-fold cross-validation estimate of the expected performance of the model 

configuration with data the model was not developed with (unseen data) 16. 

 

The 10-fold cross-validation receiver operating characteristic area under the curve (AUC) was 

chosen as the metric to evaluate model configuration performance because it has the intuitive 

interpretation that the AUC is the probability that the predicted risk was higher for a person 

that died by suicide than a person that did not 17, and because it was closely associated with 

sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV). 
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The compute time required for the Log-FNN study was approximately 3 days. RNN models are 

generally more computationally expensive than FNN models, and it was estimated that 

evaluating LSTM and GRU model configurations with the same range of neuron and learning 

rate settings as the FNN models in the Log-FNN study would require approximately 50 days of 

compute time. To reduce the compute time required to find the optimal GRU and LSTM model 

configurations, a single neuron configuration (8 neurons) was chosen for the RNN models. A 

single neuron configuration was considered sufficient for evaluation in this study rather than 

the five (8, 16, 32, 64, 128) in the Log-FNN study because all of the neuron configurations in the 

Log-FNN study achieved essentially identical optimal 10-fold cross-validation AUCs and it was 

expected that this would be the case in this study as well. 

 

To reduce the compute time further, the RNN model evaluation occurred in two stages. In the 

first stage, GRU and LSTM model configurations were evaluated with 8 neurons, learning rates 

of 1e-4, 5e-5, 1e-5, 5e-6, and 1e-6, and a sparse range of 275, 500, 750, and 1000 epochs. In the 

second stage, GRU and LSTM model configurations were evaluated with 8 neurons, the most 

promising learning rate from stage 1, and a more refined range of 50 to 1000 epochs in 

increments of 50 epochs. The most promising learning rate for the GRU model configurations 

was 1e-4 and the most promising learning rate for the LSTM model configurations was 5e-5. 

 

The 1D-CNN hyperparameters evaluated in this study were the one-dimensional convolutional 

kernel size (1, 2, 4, 6, 8), the learning rate (1e-4, 5e-5, 1e-5, 5e-6, 1e-6), and the number of 

epochs (50 to 1000 in increments of 50). The number of filters is also a hyperparameter but 
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after preliminary exploration with a range of filters, it was decided to default to 8 filters. The 

XGB hyperparameters evaluated in this study were the number of classification trees (50 to 

1000 in increments of 50) and the maximum classification tree depth (1, 2, 3, 4, 5). The learning 

rate is also a hyperparameter but after preliminary exploration with a range of learning rates, it 

was decided to use the default setting in the XGBoost software. 

 

The RNN model configuration evaluation described above took approximately 7 days of 

compute time, compared to the estimate of over 50 days for evaluation with the same range of 

neuron and learning rate settings from the Log-FNN study. The 1-D CNN model configuration 

evaluation took around 5 days of compute time and the XGB model configuration evaluation 

took around 7 hours of compute time. 

 

3.6.5 Smoothed Performance Trajectories 

The objective of evaluating model configurations is to discover the configuration with the best 

expected performance with unseen data. Although 10-fold cross-validation provides a robust 

estimate of the expected performance of a model configuration with unseen data, the estimate 

is unlikely to be exactly equal to the true expected performance of that model configuration 

with unseen data. Quadratic polynomial lines will be used in this study when evaluating neural 

network model configurations to smooth out the variability in the 10-fold cross-validation AUC 

estimates over the range of epochs. 
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Smoothed performance trajectories provide a better sense of the expected performance of a 

model configuration with unseen data and provide a cleaner visual depiction of the 

performance trajectories. As an illustration, Figure 1 shows the performance trajectories of the 

FNN model configurations with 8 neurons from the Log-FNN study as a scatter plot of the 10-

fold cross-validation training AUC versus the 10-fold cross-validation validation AUC over 

different epoch settings (50, 100, 150, 200, 250, 300, 350, 400, 450, 500). The 10-fold cross-

validation estimate for logistic regression is represented by a single point because there was 

only a single model configuration. 

 

3.7 Results 

3.7.1 Discrimination 

The 10-fold cross-validation AUC estimates were 0.8407 for the optimal GRU model 

configuration, 0.8356 for the optimal LSTM model configuration, 0.8419 for the optimal 1D-

CNN model configuration, and 0.8493 for the optimal XGB model configuration. In addition to 

the AUC, a number of other 10-fold cross-validation performance metrics were computed and 

are included in Table 1. The optimal GRU model configuration performed slightly better than 

the optimal LSTM model configuration on every performance metric. The optimal GRU model 

configuration also performed slightly better than the optimal FNN model configuration from 

the Log-FNN study on every performance metric. The optimal neural network models had 

higher sensitivity, while the optimal XGB model configuration had slightly lower sensitivity with 

higher specificity and PPV. 
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The optimal GRU model configuration had greater sensitivity (0.7130 vs 0.6531) than the 

logistic regression model from the Log-FNN study, with similar specificity (0.8097 vs 0.8265), 

PPV (0.2728 vs 0.2734), and NPV (0.9658 vs 0.9597). The optimal 1D-CNN model configuration 

had greater sensitivity (0.7207 vs 0.6531) than the logistic regression model from the Log-FNN 

study, with similar PPV (0.2721 vs 0.2734) and NPV (0.9666 vs 0.9597) and lower specificity 

(0.8066 vs 0.8265). The optimal XGB model configuration had greater sensitivity (0.6983 vs 

0.6531) and PPV (0.2901 vs 0.2734) than the logistic regression model from the Log-FNN study, 

with similar specificity (0.8290 vs 0.8265) and NPV (0.9648 vs 0.9597). 

 

3.7.2 Calibration 

The calibration of logistic regression and the optimal XGB model configuration was compared 

using calibration curves. Calibration curves compare the predicted probability of the outcome 

with the actual probability of the outcome in the modeling dataset. This study used a case-

control study design and so the probabilities of the outcome in the modeling dataset are not 

representative of a realistic setting; however, calibration curves were compared to determine 

which model class can generally be expected to achieve better calibration.  

 

The logistic regression and XGB models included class weights (10 / 11 for persons that died by 

suicide and 1 / 11 for persons that did not die by suicide) so that equal importance was 

assigned both outcome classes, and so the predicted probabilities were calibrated as though 

the modeling dataset contained balanced outcome classes. To evaluate the models calibrated 
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to the actual risk of death by suicide in the modeling dataset, Platt calibration was used 18. Platt 

calibration uses logistic regression to calibrate predicted probabilities into actual probabilities. 

 

The modeling dataset was randomly divided into training (80 percent) and validation (20 

percent) datasets. The logistic regression and XGB models were developed with the training 

dataset and validated with the validation dataset. The XGB model with Platt calibration 

achieved better calibration than the logistic regression model with Platt calibration for both the 

training and validation datasets (Figures 2 and 3), particularly for predicted probabilities higher 

than 0.2. Both models tended to produce higher predicted probabilities for higher actual 

probabilities but the calibration curves for the XGB model were far less variable. 

 

3.7.3 Most Recent Quarters 

To examine temporality from another perspective, the optimal 8-neuron FNN model 

configuration from the Log-FNN study (learning rate of 5e-5), the optimal 8-neuron GRU 

configuration (learning rate of 1e-4), the optimal 1D-CNN configuration (kernel size of 2, 

learning rate of 5e-5), and all XGB model configurations were compared using modeling 

datasets containing the most recent 2, 4, 8, 12, and 16 quarters rather than all 40 quarters. 

 

The FNN model configuration achieved optimal performance using the most recent 4 quarters 

(AUC: 0.8406) which was higher than the optimal FNN performance with all 40 quarters (AUC: 

0.8352). The GRU model configuration achieved optimal performance using the most recent 16 

quarters (AUC: 0.8415) which was similar to the optimal GRU performance with all 40 quarters 
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(AUC: 0.8407). The 1D-CNN model configuration achieved optimal performance using the most 

recent 12 quarters (AUC: 0.8415) which was similar to the optimal 1D-CNN performance with all 

40 quarters (AUC: 0.8419). The XGB model configuration achieved optimal performance using 

the most recent 4 quarters (AUC: 0.8500) which was similar to the optimal XGB performance 

with all 40 quarters (AUC: 0.8493). 

 

Examining the smoothed performance trajectories of the FNN and GRU models (see: Figures 4 

and 5), the FNN model configuration using the most recent 4 quarters, the GRU model 

configuration using the most recent 16 quarters had the highest smoothed AUCs. Performance 

increased with more quarters until a maximum was reached, after which additional quarters 

resulted in slowly decreasing performance. This was also the case with the 1D-CNN and XGB 

model configurations but these figures are not included for the sake of brevity. 

 

3.8 Discussion 

The objective of this study is to compare the performance of RNN, 1D-CNN, and XGB model 

configurations with the performance of the logistic regression and FNN model configurations 

from the Log-FNN study. Although the optimal GRU (AUC: 0.8407) and the optimal 1D-CNN 

(AUC: 0.8419) model configurations achieved better discrimination than the optimal FNN model 

configuration from the Log-FNN study (AUC: 0.8354) using the analytic dataset with all 40 

quarters, the improvement in performance was slight. The smoothed performance trajectories 

of the optimal model configurations using analytic datasets with 2, 4, 8, 12, and 16 quarters 

showed that the optimal GRU (16 quarters) and optimal 1D-CNN (12 quarters) model 
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configurations outperformed the optimal FNN model configuration (4 quarters) but again the 

improvement in performance was slight, while the optimal XGB model configuration (4 

quarters) outperformed all of the neural network models (see: Figure 6). In addition to superior 

discrimination, the optimal XGB model achieved superior calibration compared with logistic 

regression.  

 

The XGB model class was by far the least computationally expensive and predicted death by 

suicide better than the neural network model classes in terms of discrimination and calibration. 

It appears from this study and from the Log-FNN study that XGB models are promising for 

future research on quantifying suicide risk but that FNN, RNN, and 1D-CNN models do not 

justify their large computational expense and longer temporal data requirements.  

 

An interesting finding from this study is that using analytic datasets with increasing quarters 

eventually led to slowly decreasing performance. Performance increased with more quarters 

until a maximum was reached (see: Figures 4 and 5), after which additional quarters resulted in 

decreasing performance. It is possible that less recent data has no prediction utility and only 

increases noise, or it is possible that there were not enough persons in the analytic dataset to 

allow models to learn functions that made full use of less recent data. 

 

Also interesting is that the optimal FNN model configuration which used the most recent 4 

quarters achieved performance close to the optimal GRU and optimal 1D-CNN model 

configurations which used more quarters, and all were outperformed by the optimal XGB 
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model configuration which used the most recent 4 quarters (see: Figure 6). The prevention 

framework suggested by Pisani et al. 12 considers suicide risk to have two components: risk 

status (risk relative to other persons) and risk state (risk relative to prior personal states). 

Although not definitive, the results suggest that risk state over the past year is most important 

for quantifying suicide risk and that considering risk states over longer time periods will not 

result in improvements in quantifying suicide risk. 

 

Further research is needed to determine whether prediction models can be developed that will 

be attractive to health care service providers and health care policy providers. Statistical 

prediction models have been developed that outperform clinicians when predicting the risk of 

suicidality 19, 20, but these models have not been widely adopted in clinical settings. Instead, risk 

scales are commonly used in clinical settings but risk scales have limited utility for quantifying 

suicidality risk 21, 22, 23, 24, 25. Although this study did not seek to develop a prediction model for 

clinical practice, the ultimate goal of this research is to take the first steps toward the 

development of prediction models that have optimal prediction performance and optimal 

relevance for health care service providers and health care policy providers. 

 

In order to develop prediction models that will be attractive to health care service providers 

and health care policy providers, further research is needed. For example, it is unlikely that all 

101 predictors in the modeling dataset are required for optimal or near-optimal performance. 

Reducing the number of predictors would simplify the prediction models and also reduce the 

burden of data collection. A smaller number of predictors would also help to understand which 
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predictors are most important for quantifying suicide risk. In addition, this study quantified 

suicide risk within 90 days but it would also be valuable for further research to evaluate how far 

into the future suicide risk can be reliably quantified. Further research is also necessary to 

achieve consensus on the preferred performance characteristics (preferred values of sensitivity, 

specificity, PPV, NPV) for prediction models that quantify suicide risk. 

 

3.9 Limitations 

There were three primary limitations in this study: the case-control sampling design, the 

volume of data, and the inherent limitations of administrative data. The case-control sampling 

design and data volume limitations arose because of computational considerations and could 

be addressed by future research, but the inherent limitations of administrative data cannot be 

overcome as easily. 

 

First, a case-control sampling design was used to generate a modeling dataset that was 

computationally feasible on a desktop computer with a GPU. The case-control sampling design 

is useful for comparing relative model discrimination and calibration but the actual probabilities 

are not meaningful. Suicide is a rare event, and a modeling dataset that contained enough 

persons that died by suicide to develop robust prediction models and that also had a realistic 

risk of death by suicide might need to contain hundreds of thousands or even millions of 

persons depending on the setting. 
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Second, the modeling dataset in this study contained a large volume of data compared to many 

studies of suicide but it may not be a large enough volume for FNN, GRU, 1D-CNN, and XGB 

models to learn a more complex function than the logistic regression function, even with a 1:10 

case-control sampling design. This may explain why the FNN, GRU, 1D-CNN, and XGB model 

configurations outperformed the logistic regression model by a smaller margin than might have 

been hoped for considering the optimism surrounding machine learning and artificial 

intelligence. To develop prediction models with very large datasets, researchers may require 

virtual server services such as Amazon Web Services EC2 or Google Cloud AI Platform. This 

study was not able to use virtual server services due to legislative restrictions. 

 

Third, administrative data have inherent limitations. The predictors available in the 

administrative data were not collected for the purposes of quantifying suicide risk and many 

important predictors were not available. This is likely the most fundamental limitation of 

administrative data for quantifying suicide risk but this limitation could diminish if electronic 

health care system data becomes richer and the ability to link with non-health care system data 

improves. Another limitation of administrative data is that temporal precision is critical with 

suicide because risk can escalate to crisis in a very short period of time and administrative data 

may not be refined enough or timely enough to predict crisis states. That said, health care 

service providers and health care policy providers may prefer to manage suicide risk before it 

reaches a crisis, and administrative data might be the best source of data for quantifying non-

crisis suicide risk. 
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3.11 Appendix A: Figures and Tables 

Figure 1: Smoothed Performance Trajectories for the 8 Neuron FNN Model Configurations and 

Logistic Regression from the Log-FNN Study 
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Figure 2: Calibration Curves, Logistic Regression, Platt Calibration 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Calibration Curves, Gradient Boosted Trees, Platt Calibration 
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Figure 4: Smoothed Performance Trajectories for the FNN Model Configurations, Quarters 

 
 
Figure 5: Smoothed Performance Trajectories for the GRU Model Configurations, Quarters 

 



 69 

Figure 6: Performance Trajectories for the Optimal FNN, GRU, CNN, and XGB Model 

Configurations, Quarters 

 

Table 1: 10-Fold Cross-Validation Performance Metrics, Mean 

Performance Metric LSTM 
Mean 

GRU 
Mean 

1D-CNN 
Mean 

XGB 
Mean 

Area Under the Curve 0.8356 0.8407 0.8419 0.8493 

Accuracy 0.7947 0.8009 0.7988 0.8171 

Balanced Accuracy 0.7550 0.7614 0.7637 0.7637 

Sensitivity 0.7066 0.7130 0.7207 0.6983 

Specificity 0.8035 0.8097 0.8066 0.8290 

Positive Prediction Value 0.2647 0.2728 0.2721 0.2901 

Negative Prediction Value 0.9648 0.9658 0.9666 0.9648 
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CHAPTER 4: PREDICTING DEATH BY SUICIDE FOLLOWING AN EMERGENCY DEPARTMENT VISIT 

FOR PARASUICIDE WITH ADMINISTRATIVE HEALTH CARE SYSTEM DATA AND GRADIENT 

BOOSTED TREES 

 

This manuscript was published in EClinicalMedicine in April, 2020. This manuscript was 

designed to apply the findings from the first two manuscripts to a clinical setting as the next 

step towards evaluating whether prediction models developed with administrative health care 

system data can achieve promising performance in a clinical setting. 

 

The first two manuscripts found that the gradient boosted trees model class achieved the best 

performance and was also the least computationally expensive, and that 8 quarters of temporal 

data or less was required for optimal gradient boosted trees performance. These were the 

analytic foundations of this manuscript. 

 

4.1 Abstract 

Suicide is a leading cause of death worldwide and results in a large number of person years of 

life lost. There is an opportunity to evaluate whether administrative health care system data 

and machine learning can quantify suicide risk in a clinical setting. 

 

The objective was to compare the performance of prediction models that quantify the risk of 

death by suicide within 90 days of an ED visit for parasuicide with predictors available in 

administrative health care system data. 
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The modeling dataset was assembled from 5 administrative health care data systems. The data 

systems contained nearly all of the physician visits, ambulatory care visits, inpatient 

hospitalizations, and community pharmacy dispenses, of nearly the entire 4.07 million persons 

in Alberta, Canada. 101 predictors were selected, and these were assembled for each of the 8 

quarters (2 years) prior to the quarter of death, resulting in 808 predictors in total for each 

person. Prediction model performance was validated with 10-fold cross-validation. 

 

The optimal prediction model achieved promising discrimination (AUC: 0.88) and calibration 

that could lead to clinical applications. The 5 most important predictors in the optimal gradient 

boosted trees model each came from a different administrative health care data system. 

 

The combination of predictors from multiple administrative data systems and the combination 

of personal and ecologic predictors resulted in promising prediction performance. Further 

research is needed to develop prediction models optimized for implementation in clinical 

settings. 

 

4.2 Introduction 

Although death by suicide is a rare event, it is an important cause of death because most deaths 

by suicide are premature deaths and result in a large number of years of life lost. In the 

Canadian province of Alberta, between 2000 and 2018, the suicide rate was 14 per 100,000 

person-years, and 96 percent of deaths by suicide occurred in persons younger than 75 resulting 
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in 290,490 years of life lost 1. 84 percent of deaths by suicide occurred in persons younger than 

60 and 53 percent occurred in persons younger than 45 1. 

 

There are a number of risk factors that are widely recognized for death by suicide, including 

mental illness, substance misuse, parasuicide and lethality of parasuicide, suicidal ideation and 

intensity of suicidal ideation, social conditions and social interactions, and life events. Although 

many risk factors for suicide are known, quantifying suicide risk is difficult 2, 3, 4 and this makes 

suicide prevention a challenge for health care service providers and health care policy providers. 

Risk scales are often used in clinical settings but it has been shown that risk scales have limited 

utility for quantifying suicidality risk 5, 6, 7, 8, 9. Statistical models have been developed to quantify 

suicidality risk but these models have not been widely implemented, even though the models 

outperformed clinicians when compared 10, 11. In Canada, large amounts of data are collected 

during the administration of the health care system. This data provides an opportunity to 

explore whether quantifying suicide risk with machine learning models using administrative 

data can achieve performance that is potentially capable of guiding preventive actions. 

 

In earlier studies 12, 13, it was found that the feedforward neural network, recurrent neural 

network, one-dimensional convolutional neural network, and gradient boosted trees classes of 

machine learning models can improve upon logistic regression when quantifying suicide risk 

with administrative health care system data in Alberta. The optimal feedforward neural network 

(AUC: 0.8352), recurrent neural network (AUC: 0.8407), one-dimensional convolutional neural 

network (0.8419), and gradient boosted trees (AUC: 0.8493) model configurations 
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outperformed logistic regression (AUC: 0.8179). It was found that gradient boosted trees model 

configurations outperformed the neural network model configurations and required far less 

computational resources. 

 

Further, although 10 years (40 quarters) of temporal data was available in the modeling dataset, 

and recurrent neural networks and one-dimensional convolutional neural networks are 

designed to process sequences, the optimal recurrent neural network and one-dimensional 

convolutional neural network model configurations did not materially outperform the optimal 

feedforward neural network model configuration, required more data to achieve optimal 

performance, and were far more computationally expensive. The optimal gradient boosted 

trees and feedforward neural network model configurations required less than two years of 

temporal data for optimal performance. 

 

While the earlier studies were designed to identify the most promising model classes and the 

temporal period required to achieve optimal performance, they used a case-control study 

design in order to include as many instances of death by suicide as possible in the modeling 

dataset. The resulting modeling dataset was not representative of a health care setting where a 

predictive model may have clinical utility. This study seeks to extend the findings of the earlier 

studies to a realistic health care setting: emergency department (ED) visits for parasuicide (self-

harm that did not result in death, regardless of intent). ED visits for parasuicide present a 

unique opportunity for suicide prevention because these visits identify persons with a high risk 

of death by suicide (1 in 125 in this study compared with the overall Alberta 90-day risk of 1 in 
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29,000) and provide opportunities to reduce the imminent risk of suicide and to establish 

continuity of care to reduce suicide risk following discharge 14. If the risk of death by suicide 

following an ED visit for parasuicide could be quantified, then health care service providers and 

health care policy providers may be able to better target prevention efforts. For example, 

inpatient admission can be used as a preventive action, but a number of other treatment 

options are available (discharge with routine follow-up, discharge with urgent follow-up, 

assertive outreach, etc.), and being able to quantify suicide risk would help health care service 

providers decide on the best treatment option. 

 

The objective of this study is to compare the performance of logistic regression and gradient 

boosted trees (XGB) models for quantifying the risk of death by suicide within 90 days of an ED 

visit for parasuicide with predictors available in administrative health care system data. 

 

4.3 Objective 

The objective of this study is to compare the performance of logistic regression and gradient 

boosted trees (XGB) models for quantifying the risk of death by suicide within 90 days of an ED 

visit for parasuicide (self-harm that did not result in death, regardless of intent) with predictors 

available in administrative health care system data. 
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4.4 Methods 

4.4.1 Data Sources 

A literature review was carried out for this study. The goal of the literature review was to 

identify predictors that have been used to predict suicide or parasuicide. The majority of 

predictors were identified from clinical assessment tools and statistical prediction models. 

Predictors were selected from administrative data systems if they had been shown to predict 

suicide or parasuicide in the literature review. A complete listing of the administrative data 

sources and the selected predictors is available in Appendix B. The data sources contain nearly 

all of the physician visits, ambulatory care visits, inpatient hospitalizations, and community 

pharmacy dispenses, of nearly the entire 4.07 million persons in Alberta, Canada 15. Death by 

suicide was collected from the vital statistics cause of death database (ICD-10 cause of death 

codes X60 through X84), and the predictors were collected from physician service payment 

claims, ambulatory care and inpatient hospitalization records, community pharmacy dispense 

records, and a registry containing the date of qualification for a number of disease case 

definitions. The data were linked using the unique Personal Health Number assigned to 

Albertans for the delivery of health care services. 

 

Parasuicide was defined as an ED visit for self-harm that did not result in death, regardless of 

intent. The term ‘parasuicide’ is used rather than the term ‘attempted suicide’ because intent 

cannot be determined with the administrative data used in this study. ED visits coded with a 

disposition of “death on arrival (DOA): patient is dead on arrival to the ambulatory care service” 

and “death after arrival (DAA): patient expires after initiation of the ambulatory care visit” were 
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excluded because these were considered deaths by suicide. Persons with a date of death in the 

vital statistics data on the same day as the most recent ED visit for parasuicide – whatever the 

cause of death – were also excluded because there would be no opportunity for follow-up and 

would not be relevant to decisions made by clinicians in the ED. 

 

All persons with an ED visit for parasuicide between 2010 and 2017 were extracted from the 

ambulatory care data system. The most recent ED visit for parasuicide was selected, and the 

predictors were assembled for each of the most recent 8 quarters because our earlier work 12, 13 

showed that only the most recent 8 quarters were required for optimal prediction performance. 

In total, 101 predictors were selected, and these were prepared for each of the 8 quarters prior 

to the most recent ED visit for parasuicide. The modeling dataset did not include any 

information following the most recent ED visit for parasuicide. The predictors selected were 

primarily related to mental health, but predictors related to physical health were also selected 

because physical health has been shown to predict suicide 16. The predictors related to physical 

health may not be directly related to suicide but they were included in the modeling dataset to 

allow the models to learn which (if any) contribute to quantifying suicide risk. The total number 

of predictors for each person was 808 (101 predictors x 8 quarters). The outcome was death by 

suicide within 90 days of the most recent ED visit for parasuicide. 

 

There were 268 persons that died by suicide within 90 days and 33,426 persons that did not, 

and so the outcome class distribution was imbalanced. In order to assign equal importance to 
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both outcome classes, the models included class weights of 124 / 125 for persons that died by 

suicide and 1 / 125 for persons that did not die by suicide. 

 

4.4.2 Hardware and Software 

The administrative data were extracted and assembled using SAS 9.4. The analysis was 

performed on a desktop computer with an Ubuntu 18.04.1 LTS operating system and a GeForce 

GTX 1080 Ti 12GB graphics processing unit (GPU) using the NVIDIA-SMI 390.87 driver. The 

analysis was written in the Python programming language in a Jupyter 5.6.0 notebook in 

Anaconda Navigator 1.8.7. The logistic regression models and calibration curves were developed 

using scikit-learn 0.20.0 17. The XGB models were developed with XGBoost 0.72 18 with GPU 

support. 

 

4.4.3 Model Configuration Evaluation 

K-fold cross-validation is a model evaluation approach that uses k validation datasets to obtain a 

robust estimate of expected performance with unseen data 19. The 10-fold cross-validation area 

under the receiver operating characteristic curve (AUC) was chosen as the metric to evaluate 

model configuration performance because it has the intuitive interpretation that the AUC is the 

probability that the predicted risk was higher for a person that died by suicide than a person 

that did not 20, and because it was closely associated with sensitivity, specificity, positive 

prediction value (PPV), and negative prediction value (NPV). 
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The logistic regression and XGB model configurations were evaluated with the most recent 1, 2, 

4, 6, and 8, quarters of data. The scikit-learn library used to develop the logistic regression 

models applies a L2 regularization penalty (often called ‘ridge regression’) by default 21. The L2 

regularization penalty adds the sum of the squared beta parameters to the loss function that 

the logistic regression model seeks to minimize. This has the effect of penalizing large beta 

parameter values and can help prevent overfitting. To evaluate the logistic regression model 

configurations without a regularization penalty (the default in most statistical software), the C 

parameter in scikit-learn was assigned a value 1,000,000. The C parameter is the inverse of 

regularization strength, and so a regularization strength of 1 / 1,000,000 essentially disables 

regularization. The XGB hyperparameters evaluated in this study were the number of 

classification trees (10 to 200 in increments of 10) and the maximum classification tree depth 

(1, 2, 3, 4, 5). The learning rate and gamma are also XGB hyperparameters but after preliminary 

exploration with a range of settings, it was decided to use the default settings in the XGBoost 

library (gamma = 0, learning rate = 0.1) because adjusting the default settings did not result in 

performance improvements. 

 

4.4.4 Role of Funding 

There was no funding for this study. 
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4.5 Results 

4.5.1 Discrimination 

The 10-fold cross-validation AUC estimates for logistic regression with the L2 regularization 

penalty disabled (C parameter = 1 / 1,000,000) using the most recent 1, 2, 4, 6, and 8, quarters 

were 0.8113, 0.7760, 0.7361, 0.6988, 0.6758, respectively. Logistic regression with the L2 

regularization penalty disabled was overfit to the training data, and the overfitting was more 

severe with additional quarters of temporal data. Conversely, the 10-fold cross-validation AUC 

estimates for logistic regression with the L2 regularization penalty enabled (the default in the 

scikit-learn library) using 1, 2, 4, 6, and 8, quarters were 0.8590, 0.8632, 0.8572, 0.8454, 0.8392, 

respectively. 

 

The 10-fold cross-validation AUC estimate was 0.8786 for the optimal XGB model configuration 

(2 quarters of data, 70 classification trees, maximum tree depth of 2). The performance of the 

XGB model configurations with the most recent 2, 4, 6, and 8, quarters was essentially 

indistinguishable but the XGB model configurations using 2 and 4 quarters tended to have 

slightly higher optimal AUC estimates. 

 

In addition to the AUC, a number of other 10-fold cross-validation performance metrics were 

computed and are included in Table 1. The optimal XGB model configuration performed better 

than the optimal logistic regression model configuration with L2 regularization disabled on 

every performance metric. The optimal XGB model configuration had a higher sensitivity 
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(0.8912 vs 0.8420) than the optimal logistic regression model configuration with L2 

regularization enabled but a lower specificity (0.6876 vs 0.7429). 

 

4.5.2 Calibration 

The calibration of prediction models is often evaluated by comparing predicted probabilities 

with actual probabilities, commonly called a ‘calibration curve’. The calibration of the optimal 

logistic regression (2 quarters of data, L2 regularization) and XGB (2 quarters of data, 70 

classification trees, maximum tree depth of 2) model configurations from above were evaluated 

using calibration curves. To evaluate calibration with unseen data, the modeling dataset was 

divided into a training dataset (80 percent) and a validation dataset (20 percent). With modeling 

datasets that have a small number of instances of the outcome, random divisions of the 

modeling dataset into training and validation datasets can sometimes result in a validation 

dataset with a disproportionate number of instances of the outcome which can result in poor 

calibration. Stratified random sampling based on the outcome is commonly used to ensure that 

the validation dataset has a proportionate number of instances of the outcome. The division of 

the modeling dataset into training and validation datasets was stratified based on the outcome 

to ensure that both datasets had the same proportion of deaths by suicide as the modeling 

dataset. The models were developed with the training dataset and evaluated with the validation 

dataset. 

 

Figures 1 and 2 show the calibration curves for the logistic regression and XGB models, 

evaluated on both the training and validation datasets. The predicted probability generally 
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increased as the actual probability increased but the agreement between the predicted and 

actual probabilities was variable. The variability was mainly due to the small number of 

instances of death in the modeling dataset. For example, if the XGB model predicted a 

probability of 80 percent for 100 persons in the validation dataset, it would be expected that 

the actual number of deaths among those persons would be 80. However, there were only 54 

instances of death by suicide in the validation dataset, and as a result, the actual probability was 

zero for many predicted probabilities. With an increased number of deaths by suicide in the 

modeling dataset, it is anticipated that the calibration variability would decrease. Even so, the 

calibration curve for the XGB model was less variable than the calibration curve for the logistic 

regression model, particularly for predicted probabilities higher than 0.5. 

 

The models included class weights in order to assign equal importance to both outcome classes, 

and so the predicted probabilities were calibrated as though the modeling dataset contained 

balanced outcome classes. To evaluate the models calibrated to the risk of death by suicide in 

the modeling dataset, Platt calibration was used 22. Platt calibration uses logistic regression to 

transform predicted probabilities into calibrated probabilities. Isotonic calibration was also tried 

but it achieved perfect calibration with the training dataset and poor calibration with the 

validation dataset. Figures 3 and 4 show the calibration curves for the logistic regression and 

XGB models, evaluated on both the training and validation datasets, and calibrated using Platt 

calibration. As before, the calibration curves were variable, and the calibration curve for the XGB 

model was less variable than the calibration curve for the logistic regression model, particularly 

for high predicted probabilities. For the Platt calibrated logistic regression model, predicted 
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probabilities below 0.2 appeared to be well calibrated but predicted probabilities above 0.2 

appeared to be poorly calibrated. Similarly, the Platt calibrated XGB model appeared to be well 

calibrated except for predicted probabilities above 0.2, where the XGB model under-estimated 

the risk of death by suicide.  

 

Platt calibration is commonly used to calibrate machine learning models because machine 

learning models often produce logistic s-shaped calibration curves. The models with outcome 

class weights did not produce logistic s-shaped calibration curves, and unfortunately, Platt 

calibration resulted in predicted probabilities of between 0.25 and 0.30 for all actual 

probabilities over 0.25. As an alternative to Platt calibration, a second XGB prediction model 

was developed to predict the actual probability of the outcome using the predicted probability 

of the outcome. The resulting calibration curves for the training and validation datasets (Figure 

5) were better calibrated than the Platt calibration curves, although the validation dataset 

calibration curve was still variable. 

 

4.5.3 Net Reclassification Improvement 

The net reclassification improvement (NRI) for the optimal XGB model compared to the optimal 

logistic regression model using the models and the training and validation datasets from the 

calibration section above was 0.5183 (NRIevent = 0.6215, NRIno event = -0.1032) and 0.4644 

(NRIevent = 0.5741, NRIno event = -0.1096) respectively. 
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4.5.4 Predictor Importance 

The XGBoost library produces a measure of the importance of each predictor 23, and the 5 

predictors with the highest importance from the optimal XGB model configuration (2 quarters 

of data, 70 classification trees, maximum tree depth of 2) were: the total number of emergency 

department visits with a parasuicide diagnosis that were classified as triage category 1 (from the 

most recent quarter); age (from the first quarter); the total number of inpatient days that were 

classified as maternity (from the most recent quarter); the suicide rate in the Local Geographic 

Area (community) of residence (from the most recent quarter); and the total cost of physician 

services (from the most recent quarter). 

 

4.5.5 Tuning PPV using Class Weights 

Clinicians are often interested in PPV because of its useful interpretation in clinical practice: the 

probability that a person will die by suicide given that they are identified as being at risk by the 

prediction model. The PPV of the optimal logistic regression model configuration was 0.0359 

and the PPV of the optimal XGB model configuration was 0.0479. A higher PPV can be achieved 

by reducing the magnitude of the positive class weight configuration, with a decrease in 

sensitivity being the primary trade-off. The optimal XGB model configuration (2 quarters of data, 

70 classification trees, maximum tree depth of 2) was evaluated with the full range of positive 

class weights from 1 to 125, and achieved a maximum 10-fold cross-validation PPV of 0.2016 

using a class weight of 10, with sensitivity of 0.3686, specificity of 0.9884, and NPV of 0.9949. 

Higher 10-fold cross-validation PPV estimates were achieved with positive class weights below 

10 but the estimates were highly variable across cross-validation folds. 
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4.6 Discussion 

4.6.1 Implications for Model Development 

The objective of this study is to compare the performance of logistic regression and XGB models 

that quantify the risk of death by suicide within 90 days of an ED visit for parasuicide using 

predictors available in administrative health care system data. It is unlikely that a single 

prediction model could be developed and implemented everywhere, and so researchers will 

likely be required to develop prediction models based on the administrative health care system 

data available to them. 

 

The optimal XGB model configuration (AUC: 0.8786) displayed better discrimination than the 

optimal logistic regression model configurations with L2 regularization (AUC: 0.8632) and 

without L2 regularization (AUC: 0.8113). The optimal XGB model configuration also had better 

overall calibration (particularly following XGB calibration) than the optimal logistic regression 

model configuration with L2 regularization, particularly for persons at higher risk of death by 

suicide. The XGB calibration approach seems promising for calibrating machine learning models 

that do not produce logistic s-shaped calibration curves. 

 

Both the optimal XGB and logistic regression model configurations achieved high 10-fold cross-

validation AUC estimates which distinguishes these models from prior efforts to predict death 

by suicide. This could be because of the combination of predictors from a number of 

administrative data systems. For example, the 5 most important predictors in the optimal XGB 

model configuration each came from a different administrative data system: the total number of 
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emergency department visits with a parasuicide diagnosis that were classified as triage category 

1, age, the total number of inpatient days that were classified as maternity, the suicide rate in 

the community of residence, and the total cost of physician services. It seems reasonable that 

each administrative data system would contribute to a fuller representation of each person, and 

this would provide prediction models with more information to make better predictions. The 

combination of personal and ecologic predictors could also be important for the high prediction 

performance. For example, the fourth most important predictor in the optimal XGB model 

configuration was the suicide rate in the community of residence. 

 

An interesting finding from this study is that logistic regression without L2 regularization, which 

is the default in most statistical software, overfit to the training data and overfit more severely 

as the number of quarters increased. With the default scikit-learn L2 regularization enabled, the 

optimal logistic regression model configuration achieved a 10-fold cross-validation AUC estimate 

only slightly lower than the optimal XGB model configurations. This suggests that researchers 

that prefer logistic regression should consider regularization. Most statistical software includes 

procedures for regularization, although it might be referred to as ‘penalization’ or ‘shrinkage’. 

 

Another interesting finding from this study that echoes previous work is that only the most 

recent 2 to 4 quarters (each with all 101 predictors) were needed for optimal performance. 

Performance increased as temporal data increased until a maximum was reached, after which 

additional temporal data resulted in decreasing or stationary performance. This suggests that 
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the risk state over the past year is most important for quantifying suicide risk in the current 

context. 

 

Suicide risk and administrative data differs across jurisdictions, and researchers may need to 

develop their own prediction models rather than applying prediction models developed in other 

jurisdictions. Developing optimized models for implementation can be very costly and our 

studies were designed to provide readers with some direction by identifying the most promising 

classes of prediction models for quantifying suicide risk and determining the temporal period 

required for optimal performance. Future research should focus on obtaining as many instances 

of death by suicide as possible, and these instances may need to come from combining data 

across jurisdictions in order to obtain as many instances of death by suicide as possible. Future 

research should also focus on variable reduction to determine the minimal set required for 

optimal or near-optimal performance. For example, many predictors in the modeling dataset 

were never used for segmentation by the optimal XGB model configuration and would not be 

needed in an optimized production model. Predictor engineering is also likely to be important, 

particularly more refined diagnosis and intervention categories, and perhaps composite 

predictors. 

 

In this study, good discrimination and calibration were achieved, and the performance seemed 

to be due more to the data than to the model classes. Although the calibrated XGB model 

demonstrated better discrimination than the calibrated logistic regression model, it could be 

argued that the improvement was incremental. The calibrated XGB model demonstrated a 
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material improvement in calibration compared with the calibrated logistic regression model, but 

still suffered from poor calibration for persons at highest risk. While the calibrated logistic 

regression model demonstrated high variability in the predicted probabilities for higher risk 

persons, the calibrated XGB model assigned a very narrow range of predicted probabilities for 

higher risk persons. The poor calibration for higher risk persons would likely be resolved with 

larger modeling datasets, particularly with more instances of death by suicide. 

 

The goal of prediction modeling is to furnish health care service providers and health care policy 

providers with additional information to improve decisions. Prediction models that use 

administrative data would have access to information a clinician likely would not. For example, a 

clinician may not be able to access all health service records for a person presenting, and the 

person presenting may not be able to articulate the full details of their health services history. 

Further, one of the most important predictors in the optimal XGB model configuration was the 

suicide rate in the community of residence, and a clinician or person presenting may not be 

aware of the suicide rate in the community of residence. Also, even if a clinician had access to 

the same information as a prediction model, it would be unreasonable to expect the clinician to 

integrate the information into a superior risk estimate, and it has been shown that prediction 

models outperform clinicians. 

 

In a sense, the utility of predicted probabilities would be to contribute to an informal Bayesian 

reasoning by clinicians. For example, when a person presents at an emergency department with 

parasuicide, a clinician would immediately be aware that this is a high-risk situation even before 
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meeting the person, which represents a pretest or prior probability of suicide risk. Then, the 

prediction model would provide a risk estimate, which may indicate a higher or lower risk. The 

clinician would update their pretest probability estimate, and meet the person presenting with 

a more refined prior probability. In meeting with the person presenting, the clinician would 

again update their probability estimate based on their clinical assessment, and make a better 

informed clinical judgment. 

 

This study demonstrates that there is promise for realizing the above scenario to quantify the 

risk of death by suicide within 90 days of an ED visit for parasuicide, but to be clear, this study 

represents a step towards clinical innovation and not a recommendation for altered 

assessment. The calibrated XGB model configuration using a modeling dataset assembled from 

a number of administrative data systems demonstrated promising discrimination and calibration 

in a realistic health care setting. But whether furnishing clinicians with predicted probabilities 

actually leads to better clinical judgment requires further research. Poor predicted probabilities 

or good predicted probabilities that are integrated poorly have the potential to do harm. Once a 

prediction model is optimized for a particular clinical setting, clinical studies are necessary to 

determine how best to use the risk estimates in combination with clinical judgment. Then, once 

a model is implemented in clinical practice, clinical studies are necessary to determine if 

furnishing clinicians with predicted probabilities actually leads to better clinical judgment. 
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4.7 Limitations 

There were three primary limitations in this study: the small number of instances of death by 

suicide in the modeling dataset, calibration assessment, and the inherent limitations of 

administrative data. The first two limitations are in a sense related because the Platt and XGB 

calibration curves seemed to be well calibrated overall but were variable, mainly because there 

were only 268 instances of death by suicide in the modeling dataset. With a larger number of 

instances of death by suicide it is anticipated that prediction models would result in calibration 

curves that would be smoother and better calibrated, particularly for persons with high actual 

risks of suicide. 

 

The predictors available in the administrative data were not collected for the purposes of 

quantifying suicide risk and many important predictors were not available. Predictors that were 

not available in the administrative data but would be important would be direct measures of 

severity of mental illness, severity of substance misuse, suicidal ideation and intensity of suicidal 

ideation, social conditions and social interactions, and negative life events (death of a loved 

one, loss of employment, etc.). For example, while the number of health care services with a 

mental health diagnosis obtained from administrative health care system data can be a proxy 

for the severity of mental illness, a more direct measure of severity of mental illness would 

likely provide greater prediction utility. This is likely the most difficult limitation of 

administrative data to overcome, but this limitation could diminish if electronic health care 

system data becomes more complete and the ability to link with other data systems improves. 

Another limitation of developing prediction models with administrative data is that clinicians 
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would not be able to compute risk themselves and would have to rely on the development of an 

electronic application that would assemble predictors from multiple administrative data 

systems, quantify the risk of death by suicide using a prediction model, and provide a real-time, 

user-friendly interface to communicate the risk. Building such an electronic application and 

incorporating it into existing electronic medical record interfaces is not an impossible task, but 

the performance of the prediction model would have to warrant such an investment. This study 

is one of the first to show strong enough performance to warrant discussion about the 

feasibility of such an investment. We invite clinicians to consider and comment on the 

prediction performance required to justify such an investment, including preferred performance 

characteristics, such as the trade-off between PPV and sensitivity. 
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4.9 Appendix A: Table 1 

Table 1: 10-Fold Cross-Validation Performance Metrics, Mean 

Performance Metric Log. Regression 
Mean (1 Quarter) 

Log. Regression L2 
Mean (2 Quarters) 

XGB 
Mean (2 Quarters) 

Area Under the Curve 0.8113 0.8632 0.8786 

Accuracy 0.8531 0.8411 0.8895 

Balanced Accuracy 0.7628 0.7925 0.7894 

Sensitivity 0.6710 0.7429 0.6876 

Specificity 0.8547 0.8420 0.8912 

Positive Prediction Value 0.0354 0.0359 0.0479 

Negative Prediction Value 0.9969 0.9974 0.9971 
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Figure 1: Calibration Curve, Logistic Regression, Predicted. 

 

Figure 2: Calibration Curve, Gradient Boosted Trees, Predicted. 
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Figure 3: Calibration Curve, Logistic Regression, Platt Calibration. 

 

Figure 4: Calibration Curve, Gradient Boosted Trees, Platt Calibration. 
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Figure 5: Calibration Curve, Gradient Boosted Trees, XGB Calibration. 
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CHAPTER 5: CONCLUSIONS 

5.1 Contributions 

The modeling datasets prepared for this thesis contained a larger volume of administrative 

health care system data than previous studies identified in the literature review in terms of the 

number of predictors, the time period covered by the predictors, and the number of 

administrative data sources. This thesis also evaluated a number of advanced prediction model 

classes that were not applied in the studies identified in the literature review. This thesis also 

included a robust model performance validation method (10-fold cross-validation), while most 

previously published studies did not validate model performance. This thesis showed that 

suicide prediction models developed with administrative health care system data assembled 

from a number of different data systems can achieve performance that could lead to clinical 

applications. 

 

The first manuscript showed that administrative health care system data assembled from a 

number of data sources can achieve promising performance compared with the studies in the 

literature review, and that feedforward neural networks can outperform logistic regression. The 

second manuscript showed that cutting-edge machine learning model classes (recurrent neural 

networks, one-dimensional convolutional neural networks, and gradient boosted trees) can 

outperform the model classes in the first manuscript, and that 8 quarters of data or less is 

required for optimal performance. The third manuscript showed that prediction models 

developed with administrative health care system data can achieve promising performance in a 

clinical setting. 
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In the literature review, it had already been shown that suicidality prediction models developed 

with administrative health care system data generally outperformed risk scales and clinical 

judgment. However, these prediction models were developed with a smaller volume of 

administrative data and a smaller set of prediction model classes than those in this thesis. The 

studies in the literature review reported AUCs that were typically between 0.65 and 0.75, and 

always lower than 0.80. The AUC estimates in the first two manuscripts in this thesis, which 

used a case-control study design, were between 0.82 and 0.85. The AUC estimates of the two 

models in the third manuscript, which used a retrospective open-cohort study design, were 

0.86 and 0.88. Further, the estimates in this thesis were validated using 10-fold cross validation, 

while most estimates in the literature review were not validated and are likely overestimates of 

their performance with unseen data. 

 

In the second manuscript, Platt calibration resulted in essentially the same predicted risk for 

any actual risk over 0.70, while isotonic calibration severely overfit to the training data. In the 

third manuscript, Platt calibration resulted in essentially the same predicted risk for any actual 

risk over 0.20, while isotonic calibration again severely overfit to the training data. The third 

manuscript explored an alternative to Platt calibration and isotonic calibration to calibrate the 

predicted probabilities from the logistic regression and XGB models with class weights to the 

actual probabilities in the modeling dataset. While conceptually similar to Platt calibration, this 

approach used a XGB model to calibrate the predicted probabilities to actual probabilities. 

Although this approach achieved improvements in calibration in the third manuscript, the 

calibration curves were variable because of the small number of instances of the outcome. 
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However, this approach achieved clearly superior calibration with the modeling dataset from 

the second manuscript compared to Platt and isotonic calibration, and it is expected that with a 

larger number of instances of the outcome in the third manuscript, this approach would 

achieve similarly superior calibration. 

 

Analytic prediction models have been adopted in clinical practice, and the most common 

statistical risk prediction model is the Framingham Risk Score (FRS) 15, 16, 17, 18. The FRS has been 

widely adopted in clinical practice, and it estimates the 10-year risk of cardiovascular disease 

(CVD). A person’s age, high-density lipoprotein (HDL) cholesterol, total cholesterol, systolic 

blood pressure, smoking status, and diabetes status are used to assign CVD risk as ‘high’ (20 

percent or higher), ‘intermediate’ (10 to 19 percent), and ‘low’ (less than 10 percent). The FRS 

comes as a single sheet of paper, where a clinician can compute the FRS. The FRS also includes 

treatment targets based on risk categories. While it is unlikely that a prediction model that 

quantified the risk of death by suicide would be computable on a single sheet of paper like the 

FRS, the crucial next step for further research would be to determine what performance and 

usability characteristics are necessary for adoption in clinical practice.  

 

Two notable psychiatric risk prediction models are the READMIT clinical risk index and the 

PredictD algorithm. The READMIT clinical risk index 19 was developed in Ontario to predict 

readmission within 30 days after discharge from acute psychiatric units with administrative 

health care system data. Although the READMIT clinical risk index was not developed to predict 

suicide risk, it used administrative health care system data to predict a psychiatric outcome in 
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persons receiving treatment for a psychiatric event, similar to the third manuscript. The 

READMIT index achieved moderate discrimination in the training (AUC: 0.631) and validation 

(AUC: 0.630) datasets. The PredictD algorithm 20 was developed to predict the onset of major 

depression with predictors obtained from a risk scale. The algorithm achieved an AUC of 0.79 in 

the training datasets and an AUC of 0.71 in an external validation dataset. 

 

Although the manuscripts that comprise this thesis are not directly comparable to the studies in 

the literature review, the FRS, the READMIT clinical risk index, or the PredictD algorithm, the 

performance of the models in this thesis exceed existing suicide risk prediction models and the 

FRS, READMIT, and PredictD prediction models. Further, the manuscripts in this thesis were not 

designed to develop a finalized prediction model optimized for implementation in clinical 

practice, but rather to describe best practices for developing prediction models. 

 

5.2 Further Research 

This thesis took the early steps towards the ultimate goal of developing clinical applications that 

predict death by suicide using administrative health care system data, and showed that further 

research is warranted. The performance of the prediction models in the third manuscript 

demonstrated materially better performance than the studies in the literature review, and the 

performance was validated. While further research is needed, the importance of administrative 

health care system data and machine learning model classes to quantify suicide risk appears to 

be clear. The below sections describe next steps for further research. 
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5.2.1 Clinical Suitability 

There is no consensus on what performance characteristics (sensitivity, specificity, PPV, NPV, 

calibration, etc.) would make prediction models attractive to clinicians. As described above, 

statistical prediction models have already been developed that outperform clinicians, but these 

models have not been widely adopted in clinical practice. 

 

The prediction performance reported in this thesis exceeds the performance of those statistical 

models, but it is not known whether this performance is suitable for clinical practice. It may 

turn out that prediction models using administrative health care system data cannot achieve 

the necessary performance characteristics. For example, in the third manuscript, model 

configurations were adjusted to increase PPV at the expense of sensitivity, but it may be the 

case that a suitable trade-off between PPV and sensitivity cannot be achieved.  

 

Determining clinical suitability may require studies of how clinicians make treatment decisions 

when faced with parasuicide, such as how clinicians make decisions given the probability of 

making different types of errors. Clinicians are required to make treatment decisions knowing 

that inpatient hospitalization could be invasive and potentially harmful for persons with a low 

risk of suicide, while discharge with routine follow-up could lead to death for persons with a 

high risk of suicide. One approach to achieving consensus on preferred performance 

characteristics could be a qualitative evaluation of clinician discussion and debate. While this 

discussion and debate has taken place to some degree in the literature, it has been focused on 

whether preferred performance characteristics could be achieved in principle, with little 
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discussion of what the preferred performance characteristics are. Another approach could be 

to formally conduct a cost-benefit analysis to quantitatively weigh the estimated costs and 

benefits of candidate performance characteristics. Another, more ambitious approach could be 

to present clinicians with simulated or retrospective clinical scenarios to understand how 

clinicians integrate prediction model output, how that might change the course of treatment, 

and quantitatively evaluate how that might impact suicide risk. 

 

In addition, clinicians may be hesitant to adopt prediction models for reasons beyond 

performance considerations, including legal, ethical, and professional insurance considerations. 

For example, determining neglect or fault in a wrongful death claim could become much more 

complex. Currently, the standard against which clinical negligence is assessed is that of an 

acceptable standard of care, as judged by peers. If prediction models were used in clinical 

settings, it could be argued in a claim that a clinician gave too little or too much weight to the 

prediction model output when forming their clinical judgment. It could be discovered that a 

prediction model performs worse than expected in a particular group of persons, and argued 

that the model developers were negligent. For a prediction model that uses administrative 

data, it could be argued that a clinical coder negligently miscoded clinical information that 

would have otherwise allowed the prediction model and clinician to perform optimally. It could 

even be argued that the original clinical information coded by a clinical coder was negligent. 

 

Of course, it must be acknowledged that most medical tests are imperfect. Their value lies in 

supplementing clinical judgment, despite being imperfect. Prediction models that quantify the 
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risk of death by suicide have not widely been used to supplement clinical judgment, likely 

because they have not achieved sufficient prediction performance to warrant implementation. 

The results reported in this thesis suggest that there is promise for prediction models 

developed with administrative health care systems data to achieve performance sufficient to 

supplement clinical judgment. If so, the standard of care (as mentioned above), which currently 

prioritizes clinical judgement, may need to change as the ability to quantify the risk of death by 

suicide improves. 

 

Expending the large amount of resources required for the development of prediction models 

could be wasteful if clinicians are resistant (or even unable) to adopt prediction models in 

clinical practice. Determining whether prediction models that quantify the risk of death by 

suicide are likely to be suitable for clinical practice is the critical next step in determining 

whether further research could lead to clinical applications. 

 

5.2.2 Prediction Model Optimization 

Supposing that further research continues to confirm that prediction models are likely to be 

suitable for clinical practice, the next step for further research would be to optimize prediction 

model performance for a particular clinical setting. In addition to the methods described in this 

thesis for determining the optimal model configuration and temporal data requirements, a 

number of other methods bear consideration, such as additional methods to handle outcome 

class imbalance and methods to reduce the number of predictors in the modeling dataset. 
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When a modeling dataset contains an outcome class imbalance, models generally predict the 

majority class better than the minority class (although, this is dependent on a number of 

factors). This is a problem for modelers because the minority class is often the class of greatest 

interest. In this thesis, outcome class weights were used to handle the outcome class 

imbalance. In addition to outcome class weights, there are a number of other methods for 

imbalanced classification 14. Several methods were tentatively evaluated and are described 

below.  

 

One method is known as ‘majority class undersampling’. With this approach, observations from 

the majority class are decreased so that the number of observations in the modeling dataset 

that belong to the minority and majority classes are more similar. The majority class can be 

decreased randomly, or can be decreased by removing selected observations. For example, two 

undersampling methods were tested as preliminary prediction model optimization methods 

with the modeling dataset from the third manuscript: undersampling with edited nearest 

neighbors (ENN) and undersampling with Tomek links. ENN removes an observation from the 

majority class if its nearest neighbors tend to belong to the minority class. Tomek links identify 

pairs of observations that belong to different outcome classes and are each other’s nearest 

neighbors, and then removes the observation that belongs to the majority class. The concept 

behind these methods is that removing observations from the majority class will decrease the 

class imbalance and may improve prediction performance by removing majority class 

observations that are near decision boundaries. Both undersampling approaches resulted in 
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lower performance than using class weights with the modeling dataset from the third 

manuscript. 

 

Another method used to handle outcome class imbalance is known as ‘minority class 

oversampling’. With this approach, observations from the minority class are increased so that 

the number of observations in the modeling dataset that belong to the minority and majority 

classes are more similar. The minority class can be increased by duplicating observations, or can 

be increased by synthesizing observations. For example, two oversampling methods were 

tested as preliminary prediction model optimization methods with the modeling dataset from 

the third manuscript: borderline synthetic minority oversampling technique (borderline-

SMOTE) and adaptive synthetic sampling (ADASYN). Borderline-SMOTE generates synthetic 

observations in the minority class by interpolating between minority class observations that are 

near majority class observations. ADASYN generates synthetic observations by interpolating 

between minority class observations (similar to SMOTE) but the number of observations 

generated is based on the proportion of nearest neighbors that belong to the minority class. 

The concept behind these methods is that synthesizing observations in the minority class will 

decrease the class imbalance and may improve prediction performance by synthesizing 

minority class observations that are near decision boundaries. Both oversampling approaches 

resulted in lower performance than using class weights with the modeling dataset from the 

third manuscript. 
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Another method to handle outcome class imbalance is known as ‘one-class learning’. This 

approach has been adapted from the field of anomaly detection. With this approach, 

observations from the minority class are treated as outliers to be detected relative to the 

majority class. One method of one-class learning called ‘One-Class Support Vector Machine’ 

uses a support vector machine to learn regions of the predictor space where the majority class 

has density. Observations that are outside of the regions of the predictor space where the 

majority class has density are considered outliers and are predicted to belong to the minority 

class. Another method of one-class learning is called ‘Isolation Forest’, and this approach uses 

an ensemble of decision trees to isolate observations that tend to be in terminal nodes nearer 

the root of the decision trees, which are then predicted to belong to the minority class. Another 

method of one-class learning is called ‘Local Outlier Factor’, and this approach uses k nearest 

neighbours. Observations that are far (Manhattan distance, Euclidean distance, or Minkowski 

distance) from their k nearest neighbours are considered outliers, and are predicted to belong 

to the minority class. Another method of one-class learning is called ‘Elliptic Envelope’, and it 

assumes that the predictors are Gaussian distributed. The majority class is used to estimate a 

multi-dimensional Gaussian ellipsoid in the predictor space, and observations outside the 

ellipsoid are considered outliers and are predicted to belong to the minority class. While one-

class learning can be very effective when the minority class is distinct from the majority class, 

all of the above one-class learning approaches resulted in far lower performance than using 

class weights with the modeling dataset from the third manuscript. 
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Many of the above imbalanced learning methods rely on k nearest neighbours. When a 

modeling dataset contains a large number of predictors, methods based on k nearest 

neighbours often do not perform well because data points become sparse in high-dimensional 

space and a data point’s nearest neighbours may not be similar to the data point. If the number 

of predictors in the modeling datasets in this thesis could be reduced, then methods based on k 

nearest neighbours could become more promising. In general, it is common in prediction 

modeling to seek to reduce the number of predictors in a modeling dataset without reducing 

prediction performance. Predictor reduction often requires both modeler and subject matter 

expert input, but this can be difficult with a large number of predictors.  

 

Two automated predictor reduction methods were tested as preliminary prediction model 

optimization methods with the modeling dataset from the third manuscript: principal 

components analysis (PCA) and recursive predictor elimination (RPE). PCA reduces a larger set 

of predictors to a smaller set of predictors by combining correlated predictors into a single 

predictor. RPE reduces a larger set of predictors to a smaller set of predictors by recursively 

removing a selected number (often one at a time) of least important features until a desired 

number of predictors is achieved. PCA resulted in poorer performance than using all of the 

predictors in the modeling dataset from the third manuscript. RPE that removed 10 or less 

predictors at each recursive iteration was able to reduce the number of predictors without 

reducing prediction performance but at least 50 predictors were required in the reduced 

modeling dataset. 
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The performance of prediction models generally increases as the volume of data increases. 

Developing optimized prediction models will require a sufficient volume of data to produce 

optimal performance. With modeling datasets that contain an outcome class imbalance, the 

number of instances of the minority class is especially important. For example, in the calibration 

curves in the third manuscript, the predicted probability generally increased as the actual 

probability increased, but the agreement between the predicted and actual probabilities varied. 

It was anticipated that calibration variability would decrease with a larger number of deaths by 

suicide in the modeling dataset, and this was the case with the calibration curves in the second 

manuscript. The volume of data required to achieve optimal performance for a particular 

prediction model will differ depending on the clinical setting, and validation estimates will be 

important for determining the reliability of prediction model performance. 

 

The methods described in this section were included as a preliminary exploration of prediction 

model optimization methods, and were meant to be illustrative and not exhaustive. Prediction 

model optimization is a dynamic field that relies on both modeler and subject matter expert 

insights, and often requires a large investment of analytic resources. The preliminary results of 

the methods described in this section reinforce that quantifying suicide risk is a complex 

problem and that convenient simplifications should not be expected. Determining the minimum 

set of predictors required to achieve optimal or near-optimal performance should be the first 

priority for prediction model optimization because fewer predictors would reduce model 

overfitting, would lessen the volume of data required to develop and implement prediction 

models, and would reduce the time required for additional performance optimization steps. 
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Predictor reduction would likely be costly in terms of computational expense, as well as 

modeler and subject matter expert time, and the trade-off between automated predictor 

reduction techniques and modeler and subject matter expert insights will be an important 

consideration. For example, while physical health has been shown to predict suicide in the 

absence of predictors related to mental health, predictors related to physical health in the 

modeling dataset in the third manuscript were not used by the optimal XGB model. Thus, 

predictors related to physical health appear to be candidates for predictor reduction but 

identifying other candidates may not be as easy. 

 

It will also be important to investigate whether model performance varies across different 

groups of persons. If model performance does vary, it may be useful for this information to 

accompany the output so clinicians can temper their use of the prediction model output. 

 

5.2.3 Prediction Model Implementation 

Further research will be necessary to determine how best to use prediction model output in 

combination with clinical judgment. An important consideration would be whether training 

would be required to use the prediction model output in clinical practice. For example, in the 

third manuscript, it was suggested that the utility of prediction models would be to contribute 

to an informal Bayesian reasoning by clinicians, and so training might include heuristics 

describing how to apply prediction model output to Bayesian reasoning in circumstances likely 

to be encountered in clinical practice. Training could be optional, could be made a requirement 

of clinical licensure or specialty, or could be made a requirement of access to the prediction 
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model output. The appropriate training requirements could be determined based on further 

research. 

 

Another consideration for prediction model implementation would be the format of the 

prediction model output, such as whether clinicians would prefer categorical output (‘low risk’ 

vs ‘high risk’, etc.) or a predicted probability or both. If a categorical output is preferred, the 

output categories could categorize risk and could also make treatment protocol 

recommendations (‘standard evaluation’ vs ‘enhanced evaluation’ vs ‘hospitalize immediately’, 

etc.). The type of output could even vary depending on the type of clinician. For example, if the 

clinician was a psychologist, the output categories and category risk thresholds may be 

different than if the clinician was a family physician. 

 

Another consideration is the amount of control that a clinician would have over the 

performance characteristics of prediction models. For example, rather than being offered a 

single model, a clinician could be offered a set of models, each with different performance 

characteristics. Depending on the circumstances, a clinician may prefer the output of a 

particular prediction model that would better adjust their Bayesian prior risk estimate. A more 

ambitious concept would be a computer system that recomputes a prediction model based on 

the performance characteristics a clinician would like to maximize. It could even be possible 

that important predictors could be collected by clinicians and it would not be necessary to 

obtain them from administrative health care system data. 
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Another important consideration would be whether the prediction model outputs would 

strictly be used as supplementary information or whether certain outputs would require a 

mandatory treatment protocol. A similar consideration is whether prediction model outputs 

would routinely accompany an electronic medical record or would only be computed when 

requested by a clinician (similar in mechanism to a laboratory requisition). Providing model 

outputs in all clinical settings could lead to over-vigilance, while providing model outputs only 

when requisitioned could lead to under-vigilance. Future research would be needed to 

determine the optimal availability of prediction model outputs.  

 

It is expected that it is currently possible to develop a computer system to assemble the 

electronic administrative health care system records for a person, input the data into a 

prediction model, and deliver the output in real time. It is also expected that developing such a 

computer system would be challenging due to the fractured nature of clinical electronic 

information systems (legacy systems, differing electronic medical record platforms, etc.). The 

computer system interface would be vital to successful clinical implementation, and the focus 

should be on ensuring that the interface enhances clinical practice and does not interfere with 

clinical practice. Qualitative research, such as usability testing in simulated clinical settings, 

could be required discover how to best present risk estimates in a computer interface. 

 

Regardless of the prediction model output and computer interface chosen, a formal 

randomized controlled trial (RCT) would be necessary prior to widespread implementation. The 

RCT would be designed to evaluate whether the preferred performance characteristics were 
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achieved, as well as to provide insights into standard clinical considerations (such as safety) and 

to identify unanticipated difficulties. 

 

5.2.4 Prediction Model Implementation Evaluation 

If prediction models that quantify the risk of death by suicide using administrative health care 

system data become implemented in clinical practice, then research will be needed to evaluate 

whether the goals of implementing the prediction models were achieved. Research would be 

required to determine whether the expected performance of the prediction model as 

estimated by k-fold cross-validation during model development and as estimated in the RCT 

(described above) was actually achieved when implemented.  

 

Research would also be required to discover whether clinicians found the prediction model 

output useful in clinical practice. For example, qualitative research could evaluate whether 

clinicians found that the output was useful or found that the inability of the prediction model to 

directly describe what an elevated risk was attributable to was a hindrance. It would also be 

valuable to discover what refinements clinicians would recommend for the prediction model 

and the computer interface.  

 

Whether suicide prediction models developed with administrative health care system data will 

become part of routine clinical practice and will be emulated in other health care settings will 

be decided by research that will evaluate whether providing clinicians with prediction model 

output actually leads to better clinical judgment, and whether the improvement justifies the 
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cost and effort. If so, then a cycle of continuous improvement of the prediction models, 

computer interfaces, and possibly data sources, would begin. This cycle may eventually lead to 

the development of prediction models that include administrative health care system data, 

clinical assessment tool data, and clinical judgment as input. It may even lead to prediction 

models that also include physiological predictors (blood tests, galvanic skin response, genetic 

markers, etc.) as input. 

 

 5.2.5 Other Jurisdictions 

If providing clinicians with prediction model outputs leads to better clinical judgment, other 

jurisdictions may be interested in developing prediction models. It is unlikely that a prediction 

model developed with administrative health care system data in one jurisdiction could be 

directly applied in another jurisdiction. This is because the administrative health care system 

data in the jurisdictions would likely be different. Research could focus on using data from 

another jurisdiction as input to a prediction model but it is likely that focusing on applying 

research to develop prediction models from scratch (this thesis, for example) in other 

jurisdictions would be more fruitful. Research could also focus on whether it would be feasible 

for jurisdictions to develop a common prediction model based on a minimum set of predictors 

that all jurisdictions could assemble, even if the performance is less than optimal. 

 

The particular models developed for this thesis may not be directly applicable in another 

jurisdiction but the prediction modeling approach would be directly applicable. For example, 

the improvements in discrimination, calibration, and computational expense achieved by 
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gradient boosted trees models compared with logistic regression and neural networks is likely 

to be replicated in other jurisdictions, as well as the approaches to calibrate the predicted 

probabilities from prediction models. Similarly, the recency and breadth of administrative 

health care system data required for optimal performance is likely to be applicable in other 

jurisdictions. 

 

5.2.6 Summary 

Pessimism has long been expressed about the possibility of quantifying the risk of death by 

suicide for clinical applications, but this thesis suggests that the near future should be a time of 

optimism. This thesis combined administrative health care system data from five different 

administrative data systems with advances in prediction model classes and the increased 

availability of computer software and hardware to non-specialists, and achieved promising 

prediction performance. The key contribution of this thesis was to demonstrate that there is 

promise for quantifying the risk of death by suicide for use in clinical applications, and to 

provide foundations and directions for future research.  
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APPENDIX A: FIGURES 

 

Figure 1. Suicide Rate in Alberta, 1983 – 2017
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Figure 2. Suicide Rate in Alberta, Females and Males, 1983 – 2017 
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Figure 3. Suicide Rate in Alberta by Sex and Age, 2000 - 2017 
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Figure 4. Suicide Rate in Alberta by Community, 2000 - 2017 
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Figure 5. Suicide Rate in Alberta by Rurality, 2000 – 2017 
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Figure 6. Scatterplot of the suicide rate and after-tax household income adjusted for household 

size (LIM-AT) rate in Alberta, 2016 
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Figure 7. Scatterplot of the suicide rate and unemployment rate in Alberta, 2016 
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APPENDIX B: PREDICTORS 

 

Alberta Health Care Insurance Plan Registry 

Residency Flag (0/1) 

Sex (0/1) 

Age 

Social Proxy: Registered First Nations (0/1) 

Social Proxy: Income Support (0/1) 

Social Proxy: Child Intervention (0/1) 

Social Proxy: Other (0/1) 

Local Geographic Area: Metropolitan (0/1) 

Local Geographic Area: Metropolitan Influence (0/1) 

Local Geographic Area: Urban (0/1) 

Local Geographic Area: Urban Influence (0/1) 

Local Geographic Area: Rural Centre (0/1) 

Local Geographic Area: Rural (0/1) 

Local Geographic Area: Rural Remote (0/1) 

Latitude of Residential Postal Code 

Longitude of Residential Postal Code 

 

Physician Claims 

Total Cost 
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Total Physician Services: General Practitioner 

Total Physician Services: Psychiatrist 

Total Physician Services: Other 

Total Diagnoses, Category 1 (ICD9: 291* or 292* or 303* or 304* or (305* and not 305.1)) 

Total Diagnoses, Category 2 (ICD9: 295* or 301.2) 

Total Diagnoses, Category 3 (ICD9: 296* or 298.0 or 300.4 or 301.1 or 309* or 311*) 

Total Diagnoses, Category 4 (ICD9: 297* or (298* and not 298.0)) 

Total Diagnoses, Category 5 (ICD9: 308* or (300* and not 300.4)) 

Total Diagnoses, Category 6 (ICD9: 301* not 301.1 and not 301.2) 

Total Diagnoses, Category 7 (ICD9: 302*) 

Total Diagnoses, Category 8 (ICD9: 306* or 316*) 

Total Diagnoses, Category 9 (ICD9: 307*) 

Total Diagnoses, Category 10 (ICD9: 290* or 293* or 294* or 310*) 

Total Diagnoses, Category 11 (ICD9: 299* or 312* or 313* or 314* or 315*) 

Total Diagnoses, Category 12 (ICD9: 317* or 318* or 319*) 

Total Diagnoses, Category 13 (ICD9: Other) 

 

Ambulatory Care 

Total Emergency Department Visits, Parasuicide Diagnosis, Triage Category 1 

Total Emergency Department Visits, Parasuicide Diagnosis, Triage Category 2 

Total Emergency Department Visits, Parasuicide Diagnosis, Triage Category 3 

Total Emergency Department Visits, Parasuicide Diagnosis, Triage Category 4 
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Total Emergency Department Visits, Parasuicide Diagnosis, Triage Category 5 

Total Emergency Department Visits, Parasuicide Diagnosis, Triage Category 6 

Total Emergency Department Visits, Mental Health Diagnosis, Triage Category 1 

Total Emergency Department Visits, Mental Health Diagnosis, Triage Category 2 

Total Emergency Department Visits, Mental Health Diagnosis, Triage Category 3 

Total Emergency Department Visits, Mental Health Diagnosis, Triage Category 4 

Total Emergency Department Visits, Mental Health Diagnosis, Triage Category 5 

Total Emergency Department Visits, Mental Health Diagnosis, Triage Category 6 

Total Emergency Department Visits, Other Diagnosis, Triage Category 1 

Total Emergency Department Visits, Other Diagnosis, Triage Category 2 

Total Emergency Department Visits, Other, Diagnosis Triage Category 3 

Total Emergency Department Visits, Other Diagnosis, Triage Category 4 

Total Emergency Department Visits, Other Diagnosis, Triage Category 5 

Total Emergency Department Visits, Other Diagnosis, Triage Category 6 

Total Mental Health Department Ambulatory Care Visits, Parasuicide Diagnosis 

Total Mental Health Department Ambulatory Care Visits, Mental Health Diagnosis 

Total Mental Health Department Ambulatory Care Visits, Other Diagnosis 

Total Other Facility Department Care Visits, Parasuicide Diagnosis 

Total Other Facility Department Care Visits, Mental Health Diagnosis 

Total Other Facility Department Care Visits, Other Diagnosis 
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Inpatient 

Total Inpatient Days, Psychiatric 

Total Inpatient Days, Maternal 

Total Inpatient Days, Other 

 

Pharmaceutical Information Network 

Total Unique Drug Identification Numbers, Mental Health (ATC: N05* or N06*) 

Total Drug Days, Mental Health (ATC: N05* or N06*) 

Total Unique Drug Identification Numbers, Non-Mental Health 

Total Drug Days, Non-Mental Health 

 

Disease Registry (Quarter of Diagnosis Forward) 

Affective Disorder (0/1) 

Anorexia (0/1) 

Anxiety Disorder (0/1) 

Asthma (0/1) 

Atrial Fibrillation (0/1) 

Chronic Kidney Disease (0/1) 

Chronic Obstructive Pulmonary Disorder (0/1) 

Congestive Heart Failure (0/1) 

Dementia (0/1) 

Diabetes (0/1) 
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End-Stage Renal Disease (0/1) 

Epilepsy (0/1) 

Gout (0/1) 

Guillain-Barré Syndrome (0/1) 

Hypertension (0/1) 

Inflammatory Bowel Disease (0/1) 

Ischemic Heart Disease (0/1) 

Liver Cirrhosis (0/1) 

Lupus (0/1) 

Motor Neuron Disease (0/1) 

Multiple Sclerosis (0/1) 

Non-Organic Psychosis (0/1) 

Organic Psychosis (0/1) 

Osteoarthritis (0/1) 

Osteoporosis (0/1) 

Parkinson’s Disease (0/1) 

Rheumatoid Arthritis (0/1) 

Schizophrenia (0/1) 

Shingles (0/1) 

Sleep Apnea (0/1) 

Stroke (0/1) 

Substance Abuse (0/1) 
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Ecologic 

Local Geographic Area: Suicide Rate 

Local Geographic Area: Proportion Registered First Nations 

Local Geographic Area: Proportion Income Support 

Local Geographic Area: Proportion Child Intervention 

Local Geographic Area: Proportion Other 
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