
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-07-30

Distributed Denial of Service Attack

Detection Using a Machine Learning Approach

Gupta, Animesh

Gupta, A. (2018). Distributed Denial of Service Attack Detection Using a Machine Learning

Approach (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/32797

http://hdl.handle.net/1880/107615

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Distributed Denial of Service Attack Detection Using a Machine Learning Approach

by

Animesh Gupta

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 2018

© Animesh Gupta 2018

 ii

Abstract

A distributed denial of service (DDoS) attack is a type of cyber-attack in which the perpetrator

aims to deny the services on a network/server by inundating the traffic on the network/server

by superfluous requests which renders it incapable to serve requests from legitimate users.

According to Corero Network Security (A DDoS protection and mitigation provider), in Q3 2017,

organizations around the world experienced an average of 237 DDoS attack attempts per

month, which averages to 8 DDoS attacks every day. This was a 35% increase over Q2 that year

and a staggering 91% increase over Q1. According to another research by Incapsula, a DDoS

attack costs an average of $40,000 per hour to businesses. There are commercially available

software which detect and mitigate a DDoS attack, but the high cost of these software makes

them hard to afford for small and mid-scale businesses. The proposed work aims to fill this gap

by providing real time open-source robust web application for DDoS attack prediction which

can be used by small to mid-scale industries to keep their networks and servers secure from

malicious DDoS attacks.

A Machine Learning approach is used to employ a window-based technique to predict a DDoS

attack in a network with a maximum accuracy of 99.83%, if the recommended combination of

feature selection and classification algorithm is chosen. The choice of both feature selection

and classification algorithm is left to the user. One of the feature selection algorithms is the

novel Weighted Ranked Feature Selection(WRFS) algorithm which performs better than other

baseline approaches in terms of accuracy of detection and the overhead to build the model.

Once the selection is made, the web application connects to the socket and starts capturing

and classifying real-time network traffic. After the capture is stopped, information about attack

instances (if any), number of attack packets, confusion matrix is rendered to the client using

dynamic charts. The trained model used for classifying real-time packets is optimized and uses

only enough attributes from the incoming packet which are necessary to successfully predict

the class of that packet with high accuracy.

 iii

Acknowledgement

I would like to express my gratitude to Dr. Reda Alhajj and Dr. Jon Rokne for their valuable

feedback and unending inspiration over the past two years. I am grateful for all the

constructive criticism I received from them during my briefings and seminars. Their

professional guidance has been extremely helpful towards my research and life in general. I

am indebted to Dr. Reda for showing confidence in me by accepting me to his research group

and encouraging me to pursue a research topic of my liking. I am also very thankful to Dr. Rokne

for never saying no to any of my request, however frequent they were!

I am grateful to all my lab mates who started as colleagues but soon became very good friends.

I feel thankful to Manmeet for always listening patiently to my research ideas and plans

without ever losing patience or interest and for the numerous trips we had together. I am also

obliged to Coskun and Alper for their words of wisdom and always being there to debug my

dirty code. Coskun has also been a dear friend and a constant pillar of support during my lows.

I am also thankful to the other members of the lab for maintaining a healthy atmosphere

conducive to both research and fun.

None of this would have been possible without my family. I would like to thank my parents for

their guidance and the confidence they have instilled in me. My brother has always been an

inspiration for me with his sense of discipline and maturity.

 iv

Table of Contents

Abstract .. ii

List of Tables .. vi

List of Figures .. vii

List of Symbols ... viii
1.1 Background and Problem Definition .. 10
1.2 Motivation ... 11
1.3 Overview of the proposed system .. 11
1.4 Contributions ... 12
1.5 Organization of the thesis ... 13

Section 2: Related Work ... 14
2.1 Clustering based techniques ... 14
2.2 Statistics based techniques ... 17
2.3 Hybrid Techniques ... 22
2.4 Classification based techniques .. 23

Section 3: Network Security ... 29
3.1 What is Network Security? .. 29
3.2 Network Security Terminology .. 30
3.3 Implementing Network Security .. 31
3.4 Summary ... 33

Section 4: Distributed Denial of Service Attacks ... 34
4.1 What is a DDoS attack? .. 34
4.2 Types of DDoS attack ... 35
4.3 Architecture of a DDoS attack.. 36
4.4 Summary ... 37

Section 5: Methodology ... 38
5.1 Dataset .. 38
5.2 Data Pre-Processing ... 41
5.3 Feature Selection .. 42

5.3.1 Information Gain ... 42
5.3.2 Chi-Squared ... 45
5.3.3 Recursive Feature Elimination (RFE) .. 47
5.3.4 Weighted Ranked Feature Selection (WRFS) ... 49

5.4 Classification ... 51
5.4.1 Naïve Bayes ... 52
5.4.2 SVM for Binary Classification ... 54
5.4.3 Decision Tree ... 55
5.4.4 Random Forest .. 56

Section 6: Results and Simulations ... 57
6.1 Accuracy Results ... 57
6.2 Simulations ... 68
6.3 Comparison with baseline approaches ... 72

 v

Section 7: Conclusion and Future Work ... 76

Bibliography ... 78

 vi

List of Tables

Table 2. 1 Detection Accuracy with different classifiers... 26
Table 2. 2 Time to build models .. 26
Table 2. 3 Joint detection results of three virtual machines .. 28

Table 4. 1 Biggest DDoS attacks in terms of peak traffic rate .. 35

Table 5. 1 Features of KDD Dataset .. 40
Table 5. 2 Conversion table for categorical variables to numerical values 41
Table 5. 3 Information Gain Values .. 44
Table 5. 4 Ranked feature list according to the Information Gain values 45
Table 5. 5 Chi-Squared values ... 47
Table 5. 6 Ranked feature list according to the Chi-Squared values .. 47
Table 5. 7 Ranked feature list based on Recursive Feature Elimination 49
Table 5. 8 Ranked feature list based on Weighted Ranked Feature Selection 51

Table 6. 1 Accuracy (%) results for different classifiers based on the list returned by Information

Gain feature selection technique ... 59
Table 6. 2 Accuracy (%) results for different classifiers based on the list returned by Chi-Squared

feature selection technique .. 60
Table 6. 3 Accuracy (%) results for different classifiers based on the list returned by Recursive

Feature Elimination feature selection technique ... 62
Table 6. 4 Accuracy (%) results for different classifiers based on the list returned by Weighted

Ranked Feature Selection technique .. 64
Table 6. 5 Precision and Recall values for models created using the optimized number of

features ... 66
Table 6. 6 Confusion Matrix .. 66
Table 6. 7 Internal IP addresses assigned by the router to the machines used in the simulation69
Table 6. 8 Number of features in Datasets widely used for DDoS detection 73
Table 6. 9 Performance comparison on Accuracy and Number of Features for different

approaches which use the KDD’99 dataset .. 74

 vii

List of Figures

Figure 1. 1 Overview of the proposed DDoS detection tool ... 12

Figure 2. 1 A proactive DDoS Detection System ... 15
Figure 2. 2 Accuracy comparison .. 16
Figure 2. 3 Comparison of proposed approach with baseline approach 17
Figure 2. 4 Detection efficiency of CUSUM - entropy approach and detection approach using

entropy of source IP address with 95% confidence. Solid line: detection approach using
entropy of source IP address. Dashed line: CUSUM - entropy approach 21

Figure 2. 5 DDoS detection performance in terms of accuracy using the compiled ruled of TRA
for the C4.5, Bayes and CN2 classifiers ... 23

Figure 2. 6 Architecture of the proposed system ... 27

Figure 3. 1 The OSI model ... 32

Figure 4. 1 Architecture of a DDoS Attack .. 37

Figure 5. 1 Distribution of packets in 10% KDD Dataset ... 40
Figure 5. 2 Support Vectors .. 54
Figure 5. 3 Decision Tree with two trees .. 56

Figure 6. 1 Accuracy variation for different classifiers with the number of features used from the

sorted Information Gain list .. 59
Figure 6. 2 Accuracy variation for different classifiers with the number of features used from the

sorted Chi-Squared list .. 61
Figure 6. 3 Accuracy variation for different classifiers with the number of features used from the

sorted Recursive Feature Elimination list ... 63
Figure 6. 4 Accuracy variation for different classifiers with the number of features used from the

sorted WRFS list .. 64
Figure 6. 5 Simulation test-bed setup ... 68
Figure 6. 6 Low Orbit Ion Cannon (LOIC) application ... 69
Figure 6. 7 Homepage of the web-application ... 70
Figure 6. 8 Attack instances in the 24-hour simulation period .. 71
Figure 6. 9 Number of attack packets vs normal packets during the simulation time-frame 72

 viii

List of Symbols

ACK Acknowledgment-packet of the TCP handshake

ACM DL The Association for Computing Machinery Digital Library

ARPANET The ARPA (Advanced Research Projects Agency) Network

AVG Short for average

CPU Central processing unit

CUSUM Cumulative sum

DARPA The Defense Advanced Research Projects Agency

DBSCAN Density-based spatial clustering of applications with noise

DDoS A distributed denial-of-service

DHCP Dynamic host configuration protocol

DMZ Demilitarized zone, a network segment

DNS The domain name system

DoD The Department of Defense

DoS A denial-of-service or a denial of service

FN False negative

FP False positive

FPR False positive rate

GET An HTTP GET-request

HIDS A host-based intrusion detection system

HTML Hypertext mark-up language

HTTP(S) Hypertext transfer protocol, HTTPS over

 ix

ICMP The internet control message protocol

IDS An intrusion detection system

IEEE The Institute of Electrical and Electronics Engineers

IP Internet protocol, IPv4 and IPv6

IPS Intrusion prevention system

IRC Internet relay chat, an instant messaging service

ISBN International standard book number

KDD Knowledge discovery from data

LOIC Low Orbit Ion Cannon

ML Machine Learning

M.Sc. Master of Science

NAT Network address translation

NIDS Network intrusion detection system

NN Neural network

OSI Open Standards Interconnection

PCA Principal component analysis

PCAP Packet capture –file

POST An HTTP POST-request

Ph.D. A Doctor of Philosophy

SDN Software-defined network

SNA/IP Systems network architecture over internet protocol

SSH Secure shell

 x

SSL Secure sockets layer

SVM Support vector machines

SYN Synchronize-packet of the TCP handshake

SYN-ACK Synchronize-acknowledgment-packet of the TCP handshake

TCP Transmission control protocol

TCP/IP Transmission control protocol over internet protocol

TFN2K The Tribe Flood Network

TN True negative

TP True positive

TPR True positive rate

TTL Time to live

UDP The user datagram protocol

VPN Virtual private network

WRFS Weighted Ranked Feature Selection

 10

Section 1: Introduction

1.1 Background and Problem Definition

The first known Denial of Service (DoS) attack goes back to the year 1974 courtesy of a 13-year

old high school student who had recently learnt about a command which could be run on

CERL’S PLATO terminal. PLATO was first of its kind computerized shared learning system. The

command ‘ext’ short for external was used to communicate with external devices but if a

system was not connected to an external device, then the command ‘ext’ would force the

system to shut down. David learnt of this flaw and sent the ‘ext’ command to systems at CERL

causing 31 users to log off simultaneously. Eventually, the acceptance of the ‘ext’ command

from a remote system was disabled, fixing the problem.

Since then, DoS elevated to become distributed DoS or DDoS and has become infamous for the

most destructive kind of cyber-attack. Because of the nature of a DDoS attack, it is very hard

to mitigate as it penetrates right through the open ports on the firewall and leads to both

financial loss and the loss of reputation for a company. Almost all the major technology

companies have been a target of a DDoS attack at some point in their history. Due to the high

impact of such attacks, it is a constant cause of concern for people responsible for cyber-

security.

This research was done with the desire to create a highly efficient comprehensive DDoS

detection application for small to mid-scale companies using which they can detect a DDoS

attack on a network with a high accuracy.

In the past, various approaches have been used to detect a DDoS attack. Two of the most

common categories of defence mechanisms were Signature based and Anomaly based

approach. A Signature based DDoS detection tries to detect a DDoS attack by maintaining a

database of signatures of past attacks and comparing the signature of an incoming attack with

the signatures already present in the database and finally employing the defense for that attack

 11

signature. Clearly, detecting a new kind of attack was impossible using the Signature based

approach. On the other hand, Anomaly based DDoS detection techniques tried to detect a

DDoS attack by setting a pre-defined threshold and comparing the attack pattern with that

threshold. False Positives were just too high for an Anomaly based DDoS detection approach.

The latest trend in detecting a DDoS attack is using ML techniques which are both fast and

accurate in detecting a DDoS attack.

1.2 Motivation

The motivation for this work was to employ a Machine Learning technique to detect a DDoS

attack in a computer network using a small subset of attributes. Since it is important to detect

a DDoS attack as soon as possible, fewer number of attributes allows fast processing of network

packets to classify them as either an attack or a normal packet. This proposed approach can

detect a DDoS attack with 99.83% accuracy using only 5 attributes.

1.3 Overview of the proposed system

A network packet carries a lot of information such as source IP, destination IP, source bytes,

payload, duration, flag, etc. The Knowledge Discover Dataset (KDD) Cup from 1999 extract 41

different categories of data for a network packet; but not all attributes are equally important

to detect a DDoS attack. In this research, we use some widely-used filter-based feature

selection algorithms to sort the real-time network packet features from most important to

least important. A novel Weighted Ranked Feature Selection (WRFS) is then employed to

create a final sorted list of features based on the weighted ranks of features given by other

feature selection algorithms. The ranked features from all the subset selection algorithms

including WRFS is fed incrementally to different classification algorithms most commonly

employed for DDoS detection. The accuracy, precision and recall is calculated for each run. It

was observed after experimentation that when the top 5 features are selected using WRFS and

classified using Random Forest, the accuracy of prediction is 99.83 % with more than 99%

precision and recall.

 12

The test bed setup is done in a Virtual Private Network (VPN) environment which was setup

within the University of Calgary network to withhold the attack packets from spreading into

the network. Real-time network traffic containing attack and normal packet instances was

captured through the socket. After that, 28 features relevant for this problem were then

extracted, normalized and stored. This real-time dataset is then used to create windows of 100

packets each in real time. A sliding window mechanism is then used to classify every window

as either an attack window or a normal window based on a pre-defined threshold value.

Figure 1. 1 Overview of the proposed DDoS detection tool

1.4 Contributions

The main contributions of this work are summarized below:

1. Explored the correlation between four different feature selection algorithms and four

classification algorithms by using the sorted list of features by each feature selection

method and measuring the accuracy using each classification algorithm by

incrementally adding a feature to the list of features used for classification.

2. A novel feature selection method called ‘Weighted Ranked Feature Selection’ (WRFS)

is proposed in Chapter 5. Using this feature selection method, the number of attributes

required to detect a DDoS attack with high accuracy reduces by an average of 4, for

different classification algorithms.

3. A sliding window-based approach is used to classify windows as attack or normal

windows after real-time capture of network packets.

 13

4. A web application is designed which allows the Start and Stop Capture functionality to

the user and shows a classification summary of the captured packets using dynamic

visualizations.

1.5 Organization of the thesis

This thesis is divided into seven chapters to transition the reader from understanding about

DDoS attacks and introducing the proposed methodology and the results obtained. Chapter 2

on related work is divided into three topics based on the different categories of DDoS detection

algorithms. Chapter 3 talks about Network Security and its importance. Chapter 4 discusses

Distributed Denial of Service (DDoS) attacks and their architecture. Chapter 5 begins with the

discussion of the Dataset used, followed by the environment setup and the proposed

methodology. Chapter 6 summarizes the experiments, results and simulations of DDoS

detection using the proposed approach. Chapter 7 outlines the conclusions and the future

work.

 14

Section 2: Related Work

Since the introduction of Machine Learning for DDoS detection, majority of the proposed

algorithms can be categorized into four broad techniques – Clustering, Classification, Statistics,

and Hybrid. There are several approaches which use algorithms from either one of these four

classes for DDoS detection.

2.1 Clustering based techniques

In the 2014 paper ‘A proactive DDoS Attack Detection Approach Using Data Mining Cluster

Analysis’ by Wesam Bhaya and Mehdi Manaa, a hybrid approach called centroid-based rules is

proposed to detect and prevent a real-world DDoS attack using unsupervised k-means data

mining clustering techniques with proactive rules method. The ‘CAIDA DDoS Attack 2007

Dataset’ and ‘The CAIDA Anonymized Internet Traces 2008 Dataset’ are used in this research.

The first dataset contains normal packets with no attack instances whereas the second dataset

contains packets with attack instances only. To create a more real-life scenario, one million

packets are then chosen from each dataset randomly to create the final dataset which is then

normalized before being used for experimentation and testing. The proposed ‘Proactive DDoS

Attack Detection System’ is shown in Figure (2.1) below.

 15

Figure 2. 1 A proactive DDoS Detection System (Adopted from [1])

For the first step which is feature selection, six features are chosen from experience. These are

Time, Source IP, Destination IP, Source Port, Destination Port, and Protocol. The data is then

transformed and standardized using the Shannon’s entropy method [2], [3] . Next, the data is

divided into training and testing data using the 70-30 split. In the training phase, k-means

clustering algorithm is used to form centroids. Max-Min rules are then created after extracting

the max-min data points for each cluster based on the number of centroids. The noise and

outlier points are handled using the shrink factor(s=0.85) which shrinks any points lying outside

the range of max-min points and brings it within the range. Figure (2.2) below shows the

 16

accuracy measures of the proposed approach compared to the baseline Centroid-based

method.

Figure 2. 2 Accuracy comparison

In another clustering based approach, Xi Qin et al. in their work ’DDoS Attack Detection Using

Flow Entropy and Clustering Technique’ propose a novel entropy based DDoS attack detection

approach by constructing entropy vectors of different features from traffic flows, modelling

normal packets using clustering analysis algorithms, and then detecting deviations from the

created models. The proposed approach differs from other comparable approaches by

dynamically setting the threshold value based on the traffic models. The dataset used is

created using a traffic collection procedure. Entropy is used to construct the required features

from the collected packets. The selected features are destination address, destination port,

source address, packet size, and flow duration. Next, in the training phase, clustering is used

for modelling normal patterns of behavior and for determining the detection threshold. K-

means is chosen as the clustering algorithm. The following steps are then followed to detect a

DDoS attack:

• For on-line traffic flows to be detected in a unit time, calculate the value of entropy and

get entropy vector X in pre-process module.

 17

• Calculate the distances between X and all cluster centres Ci and record the results as di.

Select the smallest distance dt = min{di}, and then assign the sample X to this

corresponding cluster.

• Compare dt to the radius rt. If dt ≤ rt, the sample X is judged as normal data, then we save

X and update the normal model when the new normal data reaches a certain amount.

Otherwise, DDoS attacks would be considered occurred.

DF-Rate which is defined as the ratio of the detection rate and the false positive rate is used as

a metric to compare the results. Figure (2.3) shows the results of their approach compared

with a baseline entropy-based clustering approach.

Figure 2. 3 Comparison of proposed approach with baseline approach

2.2 Statistics based techniques

It is possible to detect a DDoS attack by measuring the statistical fields of incoming network

packets. Attributes such as source IP address, destination IP address and packet rate are

generally very good measures of detecting a DDoS attack. There are a few other derived fields,

the most common of them being entropy, which are also used in conjunction with independent

attributes to successfully detect a DDoS attack. Ease of implementation and fast computation

 18

of these techniques are the reasons why statistical approaches have been widely used in this

field.

In the 2016 paper ‘A Novel Measure for Low-rate and High-rate DDoS Attack Detection using

Multivariate Data Analysis’, Nazrul Hoque et al. propose a statistical approach to DDoS

detection. A statistical measure called Feature Feature Score(FFSc) is introduced for

multivariate data analysis to distinguish the attack traffic from legitimate traffic. If an attack is

generated from a botnet, then the attack traffic has strong correlation among its samples

because the bot-master uses the same attack statistics during attack generation [4]. Therefore,

a correlation measure is proposed to distinguish attack packets from regular packets. On the

other hand, if the attacker generates attack traffic very similar to normal network traffic, a

correlation measure may not distinguish the difference between normal and attack traffic. So,

multiple network traffic features are analyzed in such a way that change in an individual feature

value may reflect the overall change in the network traffic sample.

CAIDA and DARPA datasets, two common datasets for DDoS research, are used for

experimentation. The feature selection step extracts and calculates the entropy of source IPs,

variation of source IPs and packet rate. The entropy of Source IPs is calculated using Equation

(1).

(1)

Here X is the random variable for Source IPs and n is the count of distinct Source IPs. The

variation of source IPs is then defined as the rate of change of IP address w.r.t time in a traffic

sample. Finally, packet rate is calculated as the total number of packets transmitted in 1

second. Windows are then created of packets captured in 1 second and then the

extracted/calculated features are used to compute the FFSc score using equations (2-5).

(2)

 19

(3)

 (4)

(5)

Here, equation (2) calculates the Feature Feature ordered Relation(FFoR) for a feature fi with

all other features of an object Oi. Equation (3) then calculates the average FFoR value(AFFoR)

of an object Oi for all the features. The Devian vector(Dev) of an object Oi is defined in Equation

(4) as the absolute difference between the FFoR values of an object and its corresponding

AFFoR value. Finally, the FFSc score of an object Oi is calculated using Equation (5). Using the

FFSc for all the objects, a normal profile is created which stores the average FFSc score (MFFSc)

and the range of FFSc scores (Nrange). Upon capturing of real-time traffic, the same features

used before are extracted and the FFSc score is calculated for the captured packet instances

(CFFSc). A dissimilarity value is then calculated using equation (6) below.

(6)

If the Dis HBK value is greater than a user defined threshold an alarm is generated. Using the

CAIDA dataset, the method gives 100% detection accuracy for the threshold value between 1

and 1.3. However, detection accuracy degrades gradually when the threshold is less than 0.5

and greater than 1.3. Similarly, in DARPA dataset, the method gives 100% detection accuracy

and high detection accuracy for threshold value of between 0.1 to 2 whereas the accuracy

gradually decreases as the threshold value increases. It was concluded that the ideal threshold

range is between 0.05 to 0.8 to achieve high detection accuracy for both DARPA and CAIDA

datasets.

Another Statistics based novel DDoS detection approach was proposed by İlker Özçelik et al. in

their work ‘CUSUM-Entropy: An Efficient Method for DDoS Attack Detection’. The novelty here

 20

was to perform additional signal processing on the entropy of the packet header field to

improve detection efficiency. For a dataset X, with a finite number of independent symbols

from 1 to n, the entropy is calculated and normalized using Equations (7-8).

(7)

(8)

In this work, the entropy of the source IP address is used as a measure to detect a DDoS attack.

Initially, wavelet transform is used to filter out the long-term variations of the observed

entropy values to reduce the number of false alarms. A ten-step wavelet decomposition was

performed to filter out the tenth level low-pass components.

The cumulative sum approach(CUSUM) used in this work was first proposed by Blazek et al.

[5]. The idea behind the approach was to compare the current entropy average of observations

with the long-term average. If the current average increases faster than the long-term average,

then the CUSUM coefficient also increases and if it increases beyond a pre-defined threshold,

then a DDoS attack is said to have occurred. Equation (9) describes the basic CUSUM process.

 (9)

S[t-1] – Old CUSUM value

H[t] – Entropy value at time t

m[t] – Long term average of CUSUM input

The long-term average m[t] is calculated using Equation (10)

 (10)

(ε) – Long term averaging memory; 0 < ε < 1

Now, to reduce the high frequency noise, the entropy value (H[t]) is low-pass filtered using

local averaging memory (α) in Equation (11).

 21

(11)

Finally, equation (11) is substituted in Equation (9) and an algorithm correction variable C is

added to form Equation (12).

(12)

In Equation (12), C is multiplication of m[t] and correction parameter (ce) which forces the

CUSUM coefficient values to 0 by adding more weight to long term average, (m[t]).

Figure (2.4) below shows the detection efficiency of the proposed CUSUM algorithm compared

to the baseline Source IP based entropy approach.

Figure 2. 4 Detection efficiency of CUSUM - entropy approach and detection approach using
entropy of source IP address with 95% confidence. Solid line: detection approach using

entropy of source IP address. Dashed line: CUSUM - entropy approach (Adopted from [6])

The proposed modification of the CUSUM algorithm is shown to improve the detection

efficiency of a DDoS attack with low false positive rates.

 22

2.3 Hybrid Techniques

A Hybrid approach to detect a DDoS is one which uses a Statistical concept for attribute

selection and then uses a Machine Learning algorithm for predicting a DDoS attack. One such

hybrid approach is discussed in the paper ‘Detecting Distributed Denial of Service Attacks

through Inductive Learning’. The authors Sanguk Noh et al. propose a network traffic analysis

mechanism by computing the ratio of number of TCP flags to the total number of TCP packets.

Based on the calculation of the TCP flag rates, state action rules are compiled (using ML) by

linking the TCP flag rates with the presence or absence of a DDoS attack.

The basis of the proposed approach is the differences between the rates of TCP flags to detect

a DDoS attack. The proposed method is called the Traffic Rate Analysis (TRA) and calculates the

TCP flag rate and protocol rate. Only TCP packets are retained from the captured TCP, UDP and

ICMP packets. Next, amongst the selected TCP packets, the payload is filtered out and the TCP

header is retained. The six possible flags in a TCP header are SYN, FIN, RST, ACK, PSH, and URG

flags. If any of these flags are set, the agent counts and sums it up. The first metrics TCP flag

rates are then calculated using Equation (13).

(13)

𝑡𝑑 – Sampling period

F – One of the six TCP flags; SIN, FIN, RST, ACK, PSH, URG

A protocol rate is defined as the ratio of total number of TCP, UDP or ICMP packets to the total

number of IP packets.

The second and final stage of this work is to employ a packet collecting agent and an adaptive

reasoning agent that analyses network traffic, detects a DDoS attack using a Machine Learning

algorithm and finally issues an alarm in case of a DDoS attack. The complete set of complied

rules for the alarming agents is constructed using three ML algorithms – C4.5 [7], CN2 [8] and

 23

Bayesian classifier [9]. Figure (2.5) below summarises the performance of the proposed

algorithm (TRM) for the three different classifiers used.

Figure 2. 5 DDoS detection performance in terms of accuracy using the compiled ruled of TRA

for the C4.5, Bayes and CN2 classifiers

2.4 Classification based techniques

Machine Learning techniques including both classification and clustering have recently gained

popularity as defence used against DDoS attacks. Apart from being faster, these methods are

significantly more accurate than traditional methods used in detecting a DDoS attack. In the

2016 paper, ‘Analysing Feature Selection and Classification Techniques for DDoS Detection in

Cloud’ by Opeyemi Osanaiye et al., the authors have analysed different feature selection

methods and ML classification algorithms to establish a correlation between them. The

objective of this work is to identify a feature selection method which when coupled with a ML

algorithm can achieve a higher DDoS detection rate. The KDD Cup 1999 Dataset [10] containing

41 feature sets is used for experimentation and testing.

 24

In the data-processing phase, filter based Feature Selection methods are used to extract the

most important features from the set of all features. The four Feature Selection methods used

are Information Gain, Gain Ratio, Chi-Squared and ReliefF.

IG is measured by a reduction in the uncertainty of identifying the class attribute when the

value of the feature is unknown [11]. The uncertainty is measured using Entropy. For a

variable X, Entropy can be calculated using Equation (14).

(14)

Here, P(𝑥𝑖) is the prior probabilities of X. After another attribute Y is observed, the Entropy

changes and is now given using Equation (15) below.

(15)

where P(𝑥𝑖|𝑦𝑖) is the posterior probability of X given the values of Y. Information Gain can now

be defined as the amount by which the Entropy of X decreases with the addition of Y and is

calculated using Equation (16).

(16)

The Information Gain (IG) value is now calculated for every feature using Equation (16) and the

values are then sorted to select the most important features.

The next Feature Selection method implemented was Gain Ratio, which is a slight modification

of the Information Gain method. Gain Ratio was introduced as a remedy to improve IG

technique that tends to exhibit a bias towards features with a large diversity value [12] and can

be calculated using Equation (17).

(17)

 25

Here, the Intrinsic Value (x) is -∑
|𝑆𝑖|

|𝑆|
∗ log2

|𝑆𝑗|

|𝑆|
 where |S| is the number of possible values

feature x can take and |𝑆𝑖| is the actual values taken by feature x.

The third Feature Selection method used is Chi-Squared which is used to test the independence

of two variables. A high score indicates a strong dependent relationship. Equation (18) shows

the calculation of Chi-square for a variable.

(18)

N: The whole dataset

r: Presence of the feature

𝑟̃: Absence of the feature

𝑐𝑖: class

P(r,𝑐𝑖): Probability that feature r occurs in class 𝑐𝑖

P(𝑟̃,𝑐𝑖): Probability that feature r does not occur in class 𝑐𝑖

P(r, 𝑐𝑖̃): Probability that feature r occurs in a class not labelled 𝑐𝑖

P(𝑟̃, 𝑐𝑖̃): Probability that feature r does not occur in a class not labelled 𝑐𝑖

P(r): Probability that feature r appears in the dataset

P(𝑟̃): Probability that feature r does not appear in the dataset

P(𝑐𝑖): Probability that a dataset is labelled to class 𝑐𝑖

P(𝑐𝑖̃): Probability that a dataset is not labelled to class 𝑐𝑖

ReliefF feature selection method evaluates a feature’s worth by continuously sampling

instances to distinguish between the nearest hit and nearest miss (nearest neighbour from

same class and from different class) [13]. The attribute evaluator appends a weight to each

feature according to its ability to distinguish among the different classes. Weights of features

that exceed the user-defined threshold are selected as key features [14]. The top 14 features

returned by each of these algorithms are selected for the next classification stage, although it

is not clear how they came up with the number 14.

 26

Finally, different classification algorithms are applied on the sorted list of features and the

accuracy results are shown in Table (2.1).

Table 2. 1 Detection Accuracy with different classifiers

The time taken to build the different models is shown in Table (2.2).

Table 2. 2 Time to build models

It was therefore concluded that the chi-squared feature selection method and J48 classification

algorithm shows a high correlation and forms the most efficient pair to detect a DDoS attack.

Another unique ML based approach to detect DDoS attacks was proposed by Zecheng He et al.

in their work ‘Machine Learning Based DDoS Attack Detection from Source Side in Cloud’. The

idea behind this approach is to use the statistical information from the cloud server’s

hypervisor and the information from virtual machines to detect a DDoS attack. This was done

to prevent the network packets from being sent out to the outside world. Statistical features

 27

of various kinds of attacks in the proposed framework, including DDoS attacks-flooding,

spoofing and brute force attacks are also analysed.

The architecture of the proposed system is shown in Figure (2.6) below where an attacker rents

multiple virtual machines (VM) and turns them into botnets. To monitor the activity on the

virtual machines, a Virtual Machine Manager (VMM) stands between the VMs and the routers.

The information gathered by the VMM from the VMs is fed to a ML engine which is responsible

for detecting malicious activity. If suspicious behaviour is detected across multiple VMs, it is

concluded that there might be an ongoing DDoS attack and the network connection of all those

VMs is cut off.

Figure 2. 6 Architecture of the proposed system (Adopted from [15])

The VMs are programmed to simulate normal and attack traffic pattern and the data used for

training the model is collected from the network packages coming in and going out of the

attacker virtual machine(s) for 9 hours. Four different kinds of attacks are programmed to

randomly start and end. The performance is measured using Accuracy, confusion matrix

metrics and the F1-score for 9 classifiers. The results are shown in Table (2.3) below.

 28

Table 2. 3 Joint detection results of three virtual machines

In the multiple hosts monitoring experiment, it was shown that all machine learning algorithms

got better results than in the single host monitoring experiment. The highest 0.9975 F1-Score

and 99.73% accuracy using SVM was achieved with a linear kernel. Also, four algorithms (SVM

with Linear and Poly kernels, Decision Tree and Random Forest) achieve accuracy greater than

99%.

 29

Section 3: Network Security

3.1 What is Network Security?

Security is “the quality or state of being secure—to be free from danger.” [16] In other words,

security is the absence of threat. Network security also falls under this definition and can

specifically be defined as the absence of threat in a computer network. It is achieved by

designing and following a set of policies and rules to protect the integrity of a computer

network and the data stored or transmitted within that network. An effective network security

measure should be robust and thwart any threat aimed towards the network. A strong network

security in place ensures the peace of mind of people within that network and in turn leads to

a safe work environment.

Enforcers of a secure network aim towards achieving Confidentiality, Integrity and Availability

(CIA) of a network and systems within that network. The three components of a CIA triad are:

1. Confidentiality – Protecting information and assets from unauthorised users

2. Integrity – Ensuring that information and assets is modified by authorised users only

3. Availability – Ensuring that information and assets is available to authorised users when

needed

The CIA triad is discussed in the IT Security Policy document which is the principle document

for network security and outlines the rules to ensure the security of the assets including

information of an organisation. Ensuring that the CIA triad is met is often an important step

towards designing a secure network.

In the next sub-sections, I will discuss about the network security terminology, followed by

implementing network security in the different layers of an OSI model and finally a summary

of this chapter.

 30

3.2 Network Security Terminology

Within the security community, some words have specific meanings, whereas other words

commonly associated with computer security have virtually no meaning [Krawetz 2007, 31].

Common security vocabulary [Schneider1999] includes the following:

Vulnerability: A defect or weakness in the feasibility, design, implementation,

operation, or maintenance of a system [Krawetz 2007, 31]. No system is immune to

vulnerabilities but a counter measure must be in place for every threat associated with

the vulnerabilities.

Threat: An adversary who is capable and motivated to exploit a vulnerability [Krawetz

2007, 31]. A threat should always be taken seriously because if a threat translates into

an attack, it often costs the company in both reputation and finances.

Attack: The use or exploitation of a vulnerability. This term is neither malicious nor

benevolent. A bad guy may attack a system, and a good guy may attack a problem.

[Krawetz 2007, 31].

Attacker: The person or process that initiates an attack. This can be synonymous with

threat [Krawetz 2007, 31]. An attacker exploits the vulnerability of a system and tries

to target that using the appropriate attack tools and techniques.

Exploit: The instantiation of a vulnerability; something that can be used for an attack.

A single vulnerability may lead to multiple exploits, but not every vulnerability may

have an exploit (e.g., theoretical vulnerabilities) [Krawetz 2007, 31].

Target: The person, company, or system that is directly vulnerable and impacted by the

exploit. Some exploits have multiple impacts, with both primary (main) targets and

secondary (incidental) targets [Krawetz 2007, 31].

Attack vector: The path from an attacker to a target. This includes tools and techniques

[Krawetz 2007, 31]. Many companies require a high level of security with passwords

(i.e. requiring people to use lower case, upper case, numeric and special characters),

making them difficult to remember. Therefore, many people write their passwords on

a piece of paper, exposing an alternative attack vector to acquire a password to the

system (Krawetz 2007, 74).

 31

Defender: The person or process that mitigates or prevents an attack [Krawetz 2007,

31]. Nowadays, many companies have an automated system in place between the

inside company network and the world-wide web. This system needs to be robust and

efficient in detecting and thwarting any kind of cyber-attack.

Compromise: The successful exploitation of a target by an attacker [Krawetz 2007, 31].

A compromised system or a network is one which is either taken down by the attacker

or rendered useless definitely or indefinitely for legitimate users of that network or

service.

Risk: A qualitative assessment describing the likelihood of an attacker/threat using an

exploit to successfully bypass a defender, attack a vulnerability, and compromise a

system [Krawetz 2007, 31]. Risk analysis should be done at every layer of the network

architecture and appropriate measures should be in place to avoid any possible attack.

3.3 Implementing Network Security

 The starting point of network security should be understanding the OSI or “Open System

Interconnection” model. It is a standard for worldwide communication that defines a

networking framework for implementing protocols in seven layers [17]. An OSI model breaks

down the network into easily understood components that can be secured individually [17].

Figure (3.1) below shows the seven layers of an OSI model. The information flows from one

layer to another and each layer implements its own set of protocols to make that transfer

possible. The information flow starts from the Application layer and flows from layer to layer

until it reaches the final Physical layer from where it reaches the destination. Upon reaching

the destination, information flows from the Physical layer to the Application layer to deliver

the information to the user at the destination.

 32

Figure 3. 1 The OSI model

Each layer in the OSI model is independent of the other layers and can only communicate with

the layer above or below that layer. Although security vulnerabilities can creep in any of these

layers, but here we will only discuss about the vulnerabilities in the Network Layer and the

security measures that need to be taken.

In the book, “Top-Down Network Design” by Priscilla Oppenheimer, she discusses about the

following steps towards achieving a secure network:

1. Identify network assets. Network assets can include hosts’ operating systems,

applications, routers, switches and network data that traverses the network. It is

important to identify all such assets in the network under consideration and identifying

the risks in the case of these assets being sabotaged or inappropriately accessed [18].

2. Analyze security risks. Risks can range from hostile intruders to untrained users who

download Internet applications that have viruses. Hostile intruders can steal data,

change data, and cause service to be denied to legitimate users [18].

 33

3. Analyze security requirements and trade-offs. The security requirements, in general,

involve the implementation of the CIA triad discussed in section 3.1. The

Confidentiality, Integrity and Availability of assets should be the baseline security

requirement for an organisation. Achieving security often involves trade-offs in terms

of CPU power, network performance, network redundancy, etc.

4. Develop a security plan. A security plan is a high-level document that proposes what

an organization is going to do to meet security requirements [18]. The plan is often

based on the goals of an organisation after analysing the network assets and risks. A

security plan should reference the network topology and include a list of network

services that will be provided (for example, FTP, web, email, and so on). This list should

specify who provides the services, who has access to the services, how access is

provided, and who administers the services [18].

5. Develop a security policy. A security policy is a formal statement of the rules by which

people who are given access to an organization's technology and information assets

must abide [18]. A security policy can differ from one organisation to another but often

has the basic items in addition to the organisation specific items.

6. Develop security procedures. Security procedures implement security policies.

Procedures define configuration, login, audit, and maintenance processes. Security

procedures should be written for end users, network administrators, and security

administrators. Security procedures should specify how to handle incidents (that is,

what to do and who to contact if an intrusion is detected) [18].

7. Maintain security. Finally, it is important to make sure that all the above steps are

enforced by scheduling audits reading audit logs, responding to incidents, reading

current literature and agency alerts, performing security testing, training security

administrators, and updating the security plan and policy [18].

3.4 Summary

This chapter summarized the concepts of Network Security including the terms and

terminologies which will be used in the subsequent chapters. The next chapter discusses about

the Distributed Denial of Service attacks from the network security point of view.

 34

Section 4: Distributed Denial of Service Attacks

4.1 What is a DDoS attack?

 A Distributed Denial of Service attack is a co-ordinated attack by a malicious user(s) on a

resource by inundating it with continuous high-rate legitimate request packets in a very short

duration of time which ultimately takes down the resource and renders it useless for legitimate

users. It is an attack by multiple sources on a single target system. This makes a DDoS attack

deadly and difficult to mitigate. To use a popular metaphor, DDoS is considered a weapon of

mass destruction on the Internet [16]. The simplest type of distributed denial of service (DDoS)

is a Smurf attack. In this attack, one host generates many echo requests to many hosts across

the network. Each echo request specifies a forged sender—the target of the DDoS. The result

is a bombardment of echo replies sent to the target node. A large enough attack can cripple

large networks due to the high volume of echo replies [19].

DDoS attacks are the most difficult to defend and unfortunately there are no standard defence

mechanisms that organisations can deploy to defend against a DDoS attack. This is largely due

to the fact that DDoS attacks try to mimic regular traffic but increased exponentially. Some of

the world’s largest DDoS attacks of the past decade are shown in Table (4.1) along with their

rate of attack.

Organisation Description When? Peak Traffic

GitHub Web-based hosting service
for version control

February 28, 2018 1.35 Tbps

GitHub Web-based hosting service
for version control

March 25, 2015 Unreported

BBC British public service
broadcaster

December 31, 2015 602 Gbps

CloudFlare A US based company
providing network security

February 11, 2014 ~400 Gbps

 35

services including DDoS
mitigation

Spamhaus A non-profit organisation to
track email spammers and
spam related activity

March 19, 2013 ~300 Gbps

Table 4. 1 Biggest DDoS attacks in terms of peak traffic rate

4.2 Types of DDoS attacks

The flooding of a target system in a DDoS attack can be done by one of the following ways:

HTTP Flood. In this type of attack, the attacker exploits the HTTP GET or POST request

to attack the server or application. An HTTP Flood uses less bandwidth and is most

effective when the request packet can force the target to send back maximum

resources possible.

UDP Flood. The attacker floods the target with User Datagram Protocol (UDP) packets

at random ports of a random host. This forces the victim to constantly check for

applications listening on those ports but since no applications are found, it responds

with ‘Destination Unreachable’ packet causing the exhaustion of resources.

ICMP Flood (Ping). An ICMP flood aims to overwhelm the target with ICMP request

(ping) packets without waiting for a reply.

SYN Flood. A SYN Flood attack exploits the three-way handshake protocol of a TCP

connection. In a three-way handshake, a SYN request is answered by a SYN-ACK from

the host and finally an ACK from the requester. Attackers continuously send SYN

requests without responding to the victim’s SYN-ACK or by using spoofed IP addresses

to send a SYN request. Either way, the handshake remains incomplete and eventually

exhausts more and more resources at the victim’s.

Ping of Death. In a ping of death attack, IP protocols are manipulated to send malicious

packets to the target. Ping of death was popular two decades ago but is not as effective

as other attacks right now.

Slowloris. A Slowloris attack is aimed at a web server in which an attacker uses minimal

resources to attack a system by requesting a connection with the target and as soon as

 36

the connection is established, the attacker tries to keep the connection open for as long

as possible and sends bogus HTTP packets to exhaust the web server.

NTP Amplification. In a NTP Amplification attack, the perpetrator uses UDP packets to

target the publicly available Network Time Protocol server, a protocol used to

synchronise computer clocks. It is an amplification attack because the query-to-

response ratio is such attacks can be anywhere between 1:20 – 1:200 or even more.

Zero-day DDoS attacks. “Zero-day” is a term used for all unknown or new attacks.

These attacks exploit vulnerabilities for which no defence mechanism exists yet.

4.3 Architecture of a DDoS attack

There are four broad components in a DDoS architecture – Attacker, Controller, Bots or

zombies and a target. This is shown in Figure (4.1) below. The two components in the middle,

Controllers and Botnets makes it a distributed attack. The perpetrator of a DDoS attack

(Attacker) aims to disrupt the services at the Target machine. For this the attacker uses

controllers (Handlers) to infect many computers (Botnets) to aid the attacker to carry out a

DDoS attack. Handlers are computers which issue instructions to the zombies about how or

when to attack the victim’s servers to cripple it. Botnets can be voluntary but, in most cases,

botnets have no idea that they are being used to accelerate a DDoS attack. For this reason,

botnets are also commonly referred as zombies. Upon being infected, the botnets start sending

bogus requests to the target machine. In some cases, the attacker programs the virus in a way

that upon reaching the botnets, apart from sending high-rate traffic to the target, botnets also

infect other systems to make more zombies for the attack. This exponentially increases the

power of a DDoS attack and has the capability to bring down the victim server in less than a

few minutes.

It is almost impossible to track the original source of a DDoS attack because of the presence of

unsuspecting botnets between the attacker and the target. Also, the botnets use spoofed IP

addresses to send traffic to the target which makes it difficult to track the botnets in the first

place.

 37

Figure 4. 1 Architecture of a DDoS Attack

4.4 Summary

This chapter gave an introduction of DDoS attacks with some of the biggest DDoS attacks seen,

the several types of DDoS attacks and the architecture of a DDoS attack. The next chapter

discusses the methodology of the proposed DDoS detection tool.

 38

Section 5: Methodology

5.1 Dataset

The KDD Cup 1999 dataset contains a standard set of data to be audited, including a wide

variety of intrusions simulated in a military network environment. Since 1999, KDD Cup 99

dataset has been the most wildly used data set for the evaluation of anomaly detection

methods [20]. There are two versions of this dataset. The full dataset contains around 500

million packets with 41 features for each packet and categorized into normal or the kind of

attack present in that packet. The second version, which is 10% of the original dataset, contains

approximately half a million rows with the same structure as the full dataset.

Out of the 41 feature sets, 9 features are Basic features of individual TCP connections, 13 are

Content features within a connection which are suggested by domain knowledge and the

remaining attributes are Traffic features computed using a two-second time window. The

description and category of each of these features is shown in Table (5.1) below. Basic features

encapsulates all attributes that can be extracted from a TCP/IP connection [20]. Traffic

Features include those that are computed with respect to a window interval and is divided into

two groups [20]:

1. “same host” features: Examine only the connections in the past 2 seconds that have

the same destination host as the current connection, and calculate statistics related to

protocol behavior, service, etc [20].

2. “same service” features: Examine only the connections in the past 2 seconds that have

the same service as the current connection [20].

Feature Name Description Category

duration length (number of seconds) of the connection Basic

protocol_type type of the protocol, e.g. tcp, udp, etc. Basic

service network service on the destination, e.g., http, telnet,
etc.

Basic

src_bytes number of data bytes from source to destination Basic

 39

dst_bytes number of data bytes from destination to source Basic

flag normal or error status of the connection Basic

land 1 if connection is from/to the same host/port; 0
otherwise

Basic

wrong_fragment number of ``wrong'' fragments Basic

urgent number of urgent packets Basic

hot number of ``hot'' indicators Content

num_failed_logins number of failed login attempts Content

logged_in 1 if successfully logged in; 0 otherwise Content

num_compromised number of ``compromised'' conditions Content

root_shell 1 if root shell is obtained; 0 otherwise Content

su_attempted 1 if ``su root'' command attempted; 0 otherwise Content

num_root number of ``root'' accesses Content

num_file_creations number of file creation operations Content

num_shells number of shell prompts Content

num_access_files number of operations on access control files Content

num_outbound_cmds number of outbound commands in an ftp session Content

is_hot_login 1 if the login belongs to the ``hot'' list; 0 otherwise Content

is_guest_login 1 if the login is a ``guest'' login; 0 otherwise Content

count number of connections to the same host as the
current connection in the past two seconds

Traffic

serror_rate % of connections that have ``SYN'' errors Traffic

rerror_rate % of connections that have ``REJ'' errors Traffic

 40

same_srv_rate % of connections to the same service Traffic

diff_srv_rate % of connections to different services Traffic

srv_count number of connections to the same service as the
current connection in the past two seconds

Traffic

srv_serror_rate % of connections that have ``SYN'' errors Traffic

srv_rerror_rate % of connections that have ``REJ'' errors Traffic

srv_diff_host_rate % of connections to different hosts Traffic

Table 5. 1 Features of KDD Dataset

Unlike most of the DoS and Probing attacks, the R2L and U2R attacks don’t have any intrusion

frequent sequential patterns. This is because the DoS and Probing attacks involve many

connections to some host(s) in a very short period of time; however, the R2L and U2R attacks

are embedded in the data portions of the packets, and normally involves only a single

connection [20]. Content features are used to detect such attacks by looking for suspicious

behaviour in the data portion. Since we are concerned with detecting only DDoS attacks, we

do not use the Content features and only use the Basic and Traffic features to base our models.

Figure 5. 1 Distribution of packets in 10% KDD Dataset

 41

5.2 Data Pre-Processing

Out of the 28 remaining features, protocol type, service and flag had categorical values

whereas all the other features have numeric values. To be able to apply feature selection in

the next step to select the most important features, the features with categorical values are

converted to numeric values. For each such feature, the distinct values are identified for the

all the entries in that column and replaced with numeric values using simple integer

assignment from 1 onwards. The reference table for this conversion is shown in Table (5.2)

below.

protocol type tcp:1, udp: 2, icmp: 3

service

http: 1, smtp: 2, finger: 3, domain_u: 4, auth: 5, telnet: 6,

ftp: 7, eco_i: 8, ntp_u: 9, ecr_i: 10, other: 11, private: 12,

pop_3: 13, ftp_data: 14, rje: 15, time: 16, mtp: 17, link: 18,

remote_job: 19, gopher: 20, ssh: 21, name: 22, whois: 23,

domain: 24, login: 25, imap4: 26, daytime: 27, ctf: 28, nntp:

29, shell: 30, IRC: 31, nnsp: 32, http_443: 33, exec: 34,

printer: 35, efs: 36, courier: 37, uucp: 38, klogin: 39, kshell:

40, echo: 41, discard: 42, systat: 43, supdup: 44, iso_tsap:

45, hostnames: 46, csnet_ns: 47, pop_2: 48, sunrpc: 49,

uucp_path: 50, netbios_ns: 51, netbios_ssn: 52,

netbios_dgm: 53, sql_net: 55, vmnet: 56, bgp: 57, Z39_50:

58, ldap: 59, netstat: 60, urh_i: 61, X11: 62, urp_i: 63,

pm_dump: 64, tftp_u: 65, tim_i: 66, red_i: 67

flag
SF: 1, S1: 2, REJ: 3, S2: 4, S0: 5, S3: 6, RSTO: 7, RSTR: 8,

RSTOS0: 9, OTH: 10, SH: 11

Table 5. 2 Conversion table for categorical variables to numerical values

As discussed in Section 4.2, there could be different types of DDoS attacks and the class

variable in the KDD Cup 1999 dataset stores information about the type of attack for each

 42

packet. This is irrelevant for this research and therefore the class variable for each packet is

modified as either “Attack” or “Normal” packet. Figure (5.1) the number of attack and normal

packets in the 10% KDD Dataset.

To avoid the influence of features with high values over features with low values, the dataset

is normalised using min-max normalisation to fall in 0-1 range.

𝑛𝑖 =
𝑜𝑖 – min(o)

max(𝑜)−min(𝑜)
 (19)

Here 𝑜𝑖 is the old value for a feature of a packet, min(o) is the minimum value across all the

packets for that feature, max(o) is the maximum value across all the packets for that feature

and 𝑛𝑖 is the new normalised value. After normalization, the dataset falls within a 0-1 range

and is ready to apply statistical operations which are the basis of any feature selection method.

In the next sub-section, four different feature selection algorithms are discussed which are

used to generate a sorted list of features from most important to least important.

5.3 Feature Selection

5.3.1 Information Gain

Information Gain (IG) is a common filter-based feature selection technique used in Machine

Learning for subset selection. Information gain (IG) measures the amount of information in bits

about the class prediction, if the only information available is the presence of a feature and

the corresponding class distribution [21]. The main idea behind Information Gain is to measure

the reduction in uncertainty while detecting a class variable if other feature(s) is known. With

Information Gain, it is easy to differentiate between important features from non-important

ones. This simplifies subset selection which in turn speeds up the classification process. The

uncertainty is measured in entropy for distributions, sample entropy or estimated model

entropy for datasets [22] where the entropy of a variable X [23] is defined as:

H(𝑋) = -∑ 𝑃(𝑥𝑖)𝑖 log2(𝑃(𝑥𝑖)) (20)

 43

Here, 𝑃(𝑥𝑖) is the values of prior probabilities of variable X when considered independently.

Now, the entropy of X changes when the value of another variable (let’s say Y) is known

beforehand and this can be defined as:

H(𝑋|𝑌) = -∑ 𝑃(𝑦𝑖)𝑗 ∑ 𝑃(𝑥𝑖|𝑦𝑖)𝑖 log2(𝑃(𝑥𝑖|𝑦𝑖)) (21)

Here, 𝑃(𝑥𝑖|𝑦𝑖) is the posterior probabilities of X given the values of Y. Information Gain is the

gain in information after the entropy of X decreases upon knowing Y. It is defined as:

IG(X|Y) = H(X) – H(X|Y) (22)

The information gain value returned for each feature is shown in Table (5.3) below.

Feature Name Information Gain value Feature Name
Information Gain

value

src_bytes 0.6441664342020751 dst_host_srv_count 0.169537742755309
2

srv_count 0.3474585661130222 srv_rerror_rate 0.002554314720007
9996

rerror_rate 0.00131866250338696
92

dst_host_srv_diff_h
ost_rate

0.266998162008909
4

urgent 4.787317054821827e-
05

dst_host_same_src_
port_rate

0.383105603321018
95

dst_host_same_s
rv_rate

0.15567769993712754 flag 0.062228675998683
87

duration 0.05289744658954354 dst_host_count 0.291941486157091
03

srv_serror_rate 0.06612773328520494 protocol_type 0.304065556381793
83

wrong_fragment 0.00083512423347353
87

count 0.002790598106334
5298

 44

service 0.5709958288855335 land 4.75207351996465e
-05

serror_rate 0.06231071022063339 same_srv_rate 0.083164732547029
94

dst_host_rerror_r
ate

0.00966562350959698
8

dst_host_diff_srv_ra
te

0.161989612989255
85

dst_host_srv_serr
or_rate

0.07999604826493611 dst_host_srv_rerror
_rate

0.024392683845502
75

diff_srv_rate 0.08259260969651527 srv_diff_host_rate 0.157438383015132
58

dst_bytes 0.5343595652422289 dst_host_serror_rat
e

0.074295058237947
69

Table 5. 3 Information Gain Values

Upon sorting the features from highest to lowest value where high IG value means more

important feature and a low value means less importance of a feature towards predicting the

class variable.

The feature ranking shown in Table (5.4) below is based on Equations (20-22) and ranks the

feature based on their IG values.

Rank Feature Name Rank Feature Name

1 land 15 diff_srv_rate

2 urgent 16 same_srv_rate

3 wrong_fragment 17 dst_host_same_srv_rate

4 rerror_rate 18 srv_diff_host_rate

5 srv_rerror_rate 19 dst_host_diff_srv_rate

6 count 20 dst_host_srv_count

7 dst_host_rerror_rate 21 dst_host_srv_diff_host_rate

8 dst_host_srv_rerror_rate 22 dst_host_count

9 duration 23 protocol_type

 45

10 flag 24 srv_count

11 serror_rate 25 dst_host_same_src_port_rate

12 srv_serror_rate 26 dst_bytes

13 dst_host_serror_rate 27 service

14 dst_host_srv_serror_rate 28 src_bytes

Table 5. 4 Ranked feature list according to the Information Gain values

5.3.2 Chi-Squared

The chi-squared (𝜒2) statistic is used to test the independence of two variables by computing

a score to measure the extent of independence of these two variables [22]. With respect to

feature selection, (𝜒2) measures the independence of features with respect to the class [22].

(𝜒2) begins with an initial assumption of independence between the features and the class. A

high (𝜒2) value for a feature is indicative of a strong correlation between the feature and the

class. Chi-squared [22] is defined as:

𝜒2(𝑟, 𝑐𝑖) =
𝑁[𝑃(𝑟,𝑐𝑖)P(𝑟̃,𝑐𝑖̃)−P(r,𝑐𝑖̃)P(𝑟̃,𝑐𝑖)]2

𝑃(𝑟)P(r)P(𝑐𝑖)P(𝑐𝑖̃)
 [23]

N: The whole dataset

r: Presence of the feature

𝑟̃: Absence of the feature

𝑐𝑖: class

P(r,𝑐𝑖): Probability that feature r occurs in class 𝑐𝑖

P(𝑟̃,𝑐𝑖):
Probability that feature r does not occur in
class 𝑐𝑖

P(r, 𝑐𝑖̃):
Probability that feature r occurs in a class not
labelled 𝑐𝑖

P(𝑟̃, 𝑐𝑖̃):
Probability that feature r does not occur in a
class not labelled 𝑐𝑖

P(r):
Probability that feature r appears in the
dataset

P(𝑟̃):
Probability that feature r does not appear in
the dataset

P(𝑐𝑖): Probability that a dataset is labelled to class 𝑐𝑖

 46

P(𝑐𝑖̃):
Probability that a dataset is not labelled to
class 𝑐𝑖

Like Information Gain, the Chi-Squared statistic is implemented and Table (5.5) shows the chi-

squared values for every feature in our dataset. Again, a higher value means more dependence

with the class variable and hence more importance. Table (5.6) sorts the features in descending

order from most important to least important.

Feature Name Chi-Squared value Feature Name Chi-Squared value

src_bytes 139785916.64967358 srv_rerror_rate 3370.779298718246

srv_count 32880138.155221865 dst_host_srv_diff_
host_rate

84030.81966669411

rerror_rate 2919.9551572747096 dst_host_same_src
_port_rate

44829.28024073678

urgent 2107816.575280261 flag 33838.866274725486

dst_host_same_srv
_rate

1828.2455777968153 dst_host_count 3673139.9442167776

duration 71831510.27078745 protocol_type 51599.73007758231

srv_serror_rate 21748.8025789898 land 635162.936035931

wrong_fragment 8363.867767256423 same_srv_rate 6011.5147828457

service 413748.4809911481 dst_host_diff_srv_
rate

16767.43578945106

serror_rate 21679.78240237042 dst_host_srv_rerro
r_rate

12637.074832932985

dst_host_rerror_ra
te

11569.502023477318 count 2677.5778616786006

dst_host_srv_serro
r_rate

24599.847492818524 srv_diff_host_rate 55811.621720508316

 47

diff_srv_rate 12193.341832957834 dst_bytes 882933994.7439191

dst_host_srv_coun
t

115409.27095554316 dst_host_serror_ra
te

24103.666110168026

Table 5. 5 Chi-Squared values

Rank Feature Name Rank Feature Name

1 dst_host_same_srv_rate 15 flag

2 count 16 dst_host_same_src_port_rate

3 rerror_rate 17 protocol_type

4 srv_rerror_rate 18 srv_diff_host_rate

5 same_srv_rate 19 dst_host_srv_diff_host_rate

6 wrong_fragment 20 dst_host_srv_count

7 dst_host_rerror_rate 21 service

8 diff_srv_rate 22 land

9 dst_host_srv_rerror_rate 23 urgent

10 dst_host_diff_srv_rate 24 dst_host_count

11 serror_rate 25 srv_count

12 srv_serror_rate 26 duration

13 dst_host_serror_rate 27 src_bytes

14 dst_host_srv_serror_rate 28 dst_bytes

Table 5. 6 Ranked feature list according to the Chi-Squared values

5.3.3 Recursive Feature Elimination (RFE)

The next feature selection technique chosen was the Recursive Feature Elimination (RFE)

technique. RFE starts with a full set of features and recursively considers smaller and smaller

features by pruning the least important feature in every step until the required number of

features is reached.

 48

In step 1 of the algorithm, it fits the model to all the features, 28 in our case. The model then

ranks the importance of each feature in terms of predicting the value of the class variable.

Every feature is given a score from 1 till the number of features (S1>S2>….>Sn). Now, for each

subset size 𝑆𝑖 where i varies from 1 till n, the algorithm retains the i most important features

and re-trains the model using those features. The model performance is re-evaluated and the

features are ranked again based on this new model. This is done till a stopping condition is

reached or when i reaches n. The final ranking returned by the algorithm lists the features from

most important to least important and is afterwards used as an input to the classifiers. The

pseudo code of the algorithm shown below clearly outlines every step of the RFE algorithm.

1.1 Use the training set to train the model with all features

1.2 Calculate the model performance

1.3 Note the feature ranking or importance

1.4 for each subset size 𝑆𝑖 where i = 1…S do

1.5 Keep the 𝑆𝑖 most importance features

1.6 Train the model using 𝑆𝑖 features

1.7 Calculate the model performance

1.8 Calculate the feature ranking again

1.9 end

1.10 Calculate the performance profile over 𝑆𝑖

1.11 Determine the appropriate number of features to use

1.12 Use the RFE model returned by the optimal number of features 𝑆𝑖

Recursive Feature Elimination Pseudo-code

Recursive Feature Elimination does not consider all the possible subsets of the features but in

most real-world problems searching over all possible subsets of features is not feasible and in

those case RFE acts as a good alternative. The RFE algorithm is implemented using the scikit-

learn RFE library and the sorted list of features from most important to least important

features is shown in Table (5.7) below.

 49

Rank Feature Name Rank Feature Name

1 diff_srv_rate 15 flag

2 same_srv_rate 16 dst_host_diff_srv_rate

3 dst_host_srv_serror_rate 17 count

4 srv_serror_rate 18 service

5 rerror_rate 19 dst_host_srv_count

6 srv_rerror_rate 20 srv_count

7 protocol_type 21 dst_host_rerror_rate

8 dst_host_serror_rate 22 dst_host_count

9 wrong_fragment 23 src_bytes

10 dst_host_same_src_port_rate 24 srv_diff_host_rate

11 dst_host_srv_diff_host_rate 25 urgent

12 dst_host_same_srv_rate 26 dst_bytes

13 dst_host_srv_rerror_rate 27 land

14 serror_rate 28 duration

Table 5. 7 Ranked feature list based on Recursive Feature Elimination

5.3.4 Weighted Ranked Feature Selection (WRFS)

Weighted Ranked Feature Selection (WRFS) is a novel feature selection technique

implemented for this project and aimed at improving the ranked list returned by a feature

selection technique. If the important features needed for classification are ranked high in the

list, the classifier can predict the value of the class variable using relatively less number of

features and this can help to improve the detection time for a classifier. This is significant in

any classification problem especially the DDoS detection problem in which the time of

detection is of utmost importance. In WRFS, for each feature selection technique, a weight is

assigned to the features based on the rank of that feature in the sorted list returned by that

algorithm. Then, for every distinct feature, the weights assigned to that feature by all the

previous three feature selection algorithms are summed to produce the final weight for that

feature. These weights are used to produce a final ranked list of features.

 50

The input of the WRFS algorithm is the sorted list of features from IG, Chi-squared and RFE

feature selection techniques. In Step 1.3 of the pseudo code below, three empty dictionaries

are initialised to store the weights of the features. In steps 1.4-1.6, we iterate through each

distinct feature starting from the first feature till the 28th feature and for each feature, its

weight is determined based on the rank of that feature in the sorted IG, Chi2 and RFE list. These

lists are sorted in a way that the most important feature appears first and the least important

feature appears last. Since we have three weight values corresponding to the three lists, we

store the weights as the value in the dictionary corresponding to that feature name (key). Now,

for every feature, we have one additional entry in all the three dictionaries. After we have 28

values corresponding to every feature in all the three dictionaries, in step 1.7-1.9, we iterate

through the list of features again and this time, the weights of that feature from all the three

dictionaries is aggregated to get the final weight value for that feature. This is stored in the

WRFS_dict dictionary. Finally, in steps 1.10-1.11, the WRFS_dict is sorted based on the values

and only the keys are then returned as the final list of sorted features using WRFS from most

important to least important.

1.1 Input: sorted_IG_list, sorted_chi2_list, sorted_RFE_list

1.2 Output: sorted_WRFS_list

1.3 Initialise 3 empty dictionaries, IG_dict, Chi2_dict, RFE_dict to store the weights of

features

1.4 for each distinct feature

1.5 Get the rank of that feature from the sorted list and assign it as the weight of

 that feature in the dictionary, e.g sorted_gain_dict[sorted_gain_list[i]] = i

1.6 end

1.7 for each distinct feature

1.8 Get the weight of that feature from all three dictionaries-IG_dict, Chi2_dict,

 RFE_dict and sum it up to get the final weight of that feature in WRFS_dict

1.9 end

 51

1.10 Sort the WRFS_dict from highest weight value to lowest weight value

1.11 Get the keys of the sorted WRFS_dict and return it as sorted_WRFS_list

Based on the algorithm above, the results are shown in Table (5.8) as the sorted list of features

returned by WRFS. It was later observed from the classification accuracy results that the

features returned by WRFS led to high accuracy of DDoS detection using considerably less

number of features than IG, Chi-squared and RFE.

Rank Feature Name Rank Feature Name

1 dst_bytes 15 flag

2 src_bytes 16 serror_rate

3 srv_count 17 dst_host_rerror_rate

4 dst_host_count 18 dst_host_serror_rate

5 service 19 dst_host_srv_serror_rate

6 duration 20 dst_host_same_srv_rate

7 srv_diff_host_rate 21 dst_host_srv_rerror_rate

8 dst_host_srv_count 22 srv_serror_rate

9 dst_host_srv_diff_host_rate 23 count

10 dst_host_same_src_port_rate 24 diff_srv_rate

11 urgent 25 same_srv_rate

12 land 26 wrong_fragment

13 protocol_type 27 srv_rerror_rate

14 dst_host_diff_srv_rate 28 rerror_rate

Table 5. 8 Ranked feature list based on Weighted Ranked Feature Selection

5.4 Classification

Naïve Bayes, SVM, Decision Trees and Random Forest are used as the classification algorithms

to create models used for predicting a DDoS attack in the network. 20-fold cross validation is

used for all the algorithms except SVM where a 10-fold cross validation is used because of

reasons discussed in section 6.1. For every classifier, four models are created corresponding to

 52

the four different feature selection algorithms discussed in section 5.3. The number of features

used is different for every model and is optimized based on the accuracy results. The optimized

models are then stored in pickles which are later used to predict a DDoS attack in a real-time

network traffic.

5.4.1 Naïve Bayes

Naïve Bayes is a common classifier used in many Machine Learning problems. It is based on

Bayes theorem, which helps us to define the probability of an event based on some prior

knowledge of certain conditions associated with that event. Naïve Bayes classifiers work based

on the assumption that the features are independent of each other and this is the reason why

they are called “Naïve” classifiers.

Bayes' theorem is stated mathematically as the following equation [24]:

P(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 [24]

A and B are some events and P(B) is not 0. P(A|B) is a conditional probability of A given that

the event B is true. Similarly, P(B|A) is a conditional probability of B given A is true. P(A) and

P(B) are the independent probabilities of A and B without observing each other.

From a machine learning perspective, given a problem instance to be classified, represented

by a vector X = {𝓧𝟏, … , 𝓧𝒏} representing n independent features, Naïve Bayes assigns to this

instance probabilities

P ((𝐶𝑘 | 𝒳1, … , 𝒳𝑛)) [25]

for each of K possible outcomes or classes Ck [25]. Based on Equation (24), we can now write

equation (25) as:

P (𝐶𝑘 | 𝑿) =
P (𝐗 | 𝐶𝑘) P(𝐶𝑘)

𝑃(𝑿)
 [26]

After transforming Equation (26) based on the assumption that each feature 𝒳i is conditionally

independent of every other feature 𝒳j, we get Equation (27).

 53

[27]

where ∝ defines proportionality.

Some of the attributes in the KDD Dataset have continuous values. We use the Gaussian Naïve

Bayes classifier to account for continuous values. Gaussian Naïve Bayes assumes that the

values are distributed according to a Gaussian distribution and uses the mean and variance of

each attribute in each class and is shown in Equation (28).

[28]

Scikit-learn’s GaussianNB library is used to implement Gaussian Naïve Bayes. The sorted list of

features (from most important to least important) returned by the feature selection

techniques is used as input for the Naïve Bayes classifier. Since our aim is to find the minimum

number of features which can detect a DDoS attack with high accuracy, we run the classifier

28 times, incrementally adding a feature from the sorted list in every iteration. So, iteration 1

runs with just 1 feature (the most important feature) and trains the model using 20-fold cross

validation and returns the accuracy of detection. The second iteration runs with 2 most

important features and returns the accuracy. The last iteration runs with all the 28 features.

The accuracy results are shown in section 6. Here is the pseudo code of the classifier:

1.1 for each feature selection technique

1.2 for num_features in range(1,28)

1.3 Import the pre-processed dataset file in a Pandas dataframe

1.4 Prune the dataframe according to the num_features

1.5 Train the model using 20-fold cross validation

1.6 Use the trained model to predict the class variable values for the testing data

1.7 Return Accuracy

1.8 end

 54

1.9 end

5.4.2 SVM for Binary Classification

Another commonly used Machine Learning classifier to detect a DDoS attack is SVM or Support

Vector Machines. The aim of SVM is to orientate a hyperplane in such a way as to be as far as

possible from the closest members of both classes [26].

Figure 5. 2 Support Vectors (Adopted from [26])

Referring to Figure (5.2) above, implementing SVM boils down to selecting the variables w

and b so that our training data can be described by [39]:

𝑥𝑖 . 𝑤 + 𝑏 ≥ +1 𝑓𝑜𝑟 𝑦𝑖 = +1 [29]

𝑥𝑖 . 𝑤 + 𝑏 + 1 ≤ −1 𝑓𝑜𝑟 𝑦𝑖 = −1 [30]

𝑑1 is defined as the distance from 𝐻1 to the hyperplane and 𝑑2 from 𝐻2 to it. The hyperplane’s

equidistance from 𝐻1 and 𝐻2 means that 𝑑1 = 𝑑2 − 𝑎 which is also known as the SVM’s

margin. To orient the hyperplane to be as far from the Support vectors as possible, this margin

is maximized using some vector geometry and Quadratic Programming optimization. The final

equation translates to:

 55

and running a QP solver returns 𝛼 whereas Equations 31 and 32 can be used to find W and b.

31

32

Variables w and b define the separating hyperplane’s optimal orientation and hence the

Support Vector Machine.

5.4.3 Decision Tree

To add a diversity of models to test our sorted lists returned by the feature selection methods

in the previous step, we decided to add a Decision Tree classifier which is one of the widely-

used algorithms in classification and regression problems. A decision tree creates a tree like

structure where each node of the tree represents a feature, each link represents a decision

(rule) and each leaf represents a possible outcome. Compared to other classifiers, Decision

Tree is the easiest to understand and interpret. The basic steps while implementing a Decision

Tree are:

1. Identify the best attribute and position it at the root of the tree.

2. Split the training dataset into subsets in a way that each subset only contains data with

the same value from an attribute.

3. Repeat step 1 and 2 until we find the leaf node for each branch of the tree.

Now, to predict the value of a class variable using a Decision Tree, we start from the root of

the tree and compare the values stored in the root attribute with the values of the instance’s

attribute. Based on the results of this comparison, we choose a branch to follow and move on

to the next node in the tree. This process is repeated until the leaf node is reached with the

predicted value of the class variable.

 56

5.4.4 Random Forest

The last classifier used to create the models was Radom Forest. A Radom Forest is basically an

ensemble of many decision trees working together and trained using the bagging method. The

bagging method is based on an underlying theory that the combination of multiple models

increases the effectiveness of the resulting model. Radom Forest can be used for both

classification and regression problems but in our study, we have used it for classification since

we are dealing with a binary class variable. Figure (5.3) [27] shows a decision tree with two

trees. The results from the two trees are combined by the ensemble approach employed by

the Random Forest to produce the result.

Figure 5. 3 Decision Tree with two trees (Adopted from [27])

A Random Forest has almost the same hyper parameters as a Decision Tree in addition to the

hyper parameters of a bagging classifier which controls the ensemble of trees. Instead of

searching for the best feature while splitting a node, it searches for the best feature among a

random subset of features. This process creates a wide diversity, which generally results in a

better model [27].

 57

Section 6: Results and Simulations

6.1 Accuracy Results

The sorted lists returned by the four classifiers are used to incrementally feed the attributes to

Naïve Bayes, SVM, Decision Trees and Random Forest classifiers. Through Table (6.1) till Table

(6.4), we show the accuracy results obtained for every feature selection algorithm. The first

column, ‘# features’ is the number of features taken from the most important to the least

important feature for accuracy calculations. The bold value in every column is the one where

the accuracy reaches the maximum and does not fall after that. The number of features

corresponding to the bold value is then used to create the model for that classifier using those

many number of features. For e.g. in Table (6.1) below, if we look at the Naïve Bayes column,

we find that the bold value is 98.36099847 and the number of features corresponding to that

value is 24. Using this, we then create a Naïve Bayes model using the top 24 features returned

by the Information Gain list and use that model to do predictions on real-time network traffic

with an accuracy of 98.36099847%.

First, the features selected using Information Gain feature selection technique are used as

input to four classification models – Naïve Bayes, SVM, Decision Tree and Random Forest. The

accuracy results with Naïve Bayes show an erratic accuracy pattern. The accuracy of detection

starts with ~76% using only one feature but this is most likely due to underfitting. This is soon

proved when the input number of features increase and the accuracy starts dropping and drops

to a low of ~19% before reaching a superficial constant value of ~37% for majority of the input

sets of features. The highest accuracy achieved using Naïve Bayes is ~98% using 24 most

important features. With these results, Naïve Bayes when working with the sorted list returned

by Information Gain cannot be classified as a good classifier as the number of features needed

to achieve good accuracy is far too many. SVM is known to be an exhaustive classifier and for

this project, SVM would not converge with the regular 10% KDD dataset, therefore the size of

the dataset was reduced for SVM to 10,000 packets. SVM performs significantly better than

Naïve Bayes with a constant accuracy of ~77% before reaching ~99% with the top 23 features.

 58

Although SVM performs better than Naïve Bayes but it still uses 23 features which is not a

significant reduction in the number of features and defeats the purpose of feature selection.

Decision Tree and Random Forest were implemented next and accuracy results were seen to

be very close to each other. Both these algorithms out-perform Naïve Bayes and SVM in terms

of reaching and maintaining a relatively high accuracy percentage with the incremental

increase of features. The maximum accuracy reached is ~99% with the top 23 features. Table

(6.1) and Figure (6.1) summarize these results in a table and a line chart which shows the

accuracy change for all the four algorithms with the increase in number of features used for

classification.

Features Naïve Bayes SVM(10k), k=5 Decision Trees Random Forest (10)

1 76.68390804 77.86001 80.30906492 80.30906492

2 78.52776052 77.86001 80.30906492 80.30906492

3 19.94537724 77.86001 80.30906492 80.30906492

4 19.94537724 77.86001 80.24995799 80.22951348

5 19.94537724 77.86001 80.34044018 80.33234334

6 19.94537724 77.86001 80.49104086 80.44225741

7 19.94537724 77.86001 81.15457654 81.18615398

8 19.87776864 77.86001 81.87296813 81.86628859

9 77.03146462 77.86001 84.04898924 84.03380761

10 33.04903431 77.86001 84.08522207 84.07874457

11 37.07950146 77.86001 84.19331395 84.16133129

12 37.10217256 77.86001 84.27994981 84.26051726

13 37.3215969 77.86001 84.84328413 84.88720933

14 37.30803459 77.86001 85.24974384 85.24427839

15 37.09569504 77.86001 86.18492756 86.19079765

16 41.2115202 77.86001 86.20597924 86.18452259

17 41.30665804 77.86001 89.88962569 89.89023294

18 41.32001777 77.86001 93.64083814 93.64306435

19 41.27811668 77.86001 93.65379313 93.70945842

20 41.27811666 77.86001 93.92240189 93.99061709

21 41.42041862 77.86001 97.38981358 97.42280801

22 41.76696346 56.94247376 97.41511606 97.43090484

23 45.03464493 99.43001 99.64697869 99.68786778

24 98.36099847 99.28001 99.6919159 99.72207633

25 98.40755524 99.28001 99.70689472 99.7710621

26 96.50886191 99.28001 99.69191579 99.77288412

 59

27 95.84632453 99.28001 99.72855358 99.78685105

28 76.60600997 99.28001 99.78583869 99.81640469
Table 6. 1 Accuracy (%) results for different classifiers based on the list returned by

Information Gain feature selection technique

Figure 6. 1 Accuracy variation for different classifiers with the number of features used from
the sorted Information Gain list

When features were selected using Chi-Squared feature selection technique, we observed that

the number of features needed to reach a good detection accuracy drops to 18 features

compared to an average of 23 features required to achieve the same accuracy when the

features were selected using Information Gain. Naïve Bayes performs poorly again and as can

be seen in Figure (6.2) shows an erratic behaviour with the incremental increase in the number

of features. Eventually, it reaches a high of ~98% with 25 features but a drop is also observed

when the input features increase further. SVM shows a steady pattern with the accuracy

remaining at ~77% until 16 features after which it increases to ~99% for 17 features and stays

at that point till the end. Decision Tree and Random Forest show a similar pattern again with

 60

the accuracy values following a very similar pattern with the incremental increase in the

number of features. To conclude, top 25, 17, 16 and 16 features are respectively selected for

Naïve Bayes, SVM, Decision Trees and Random Forest to create the models and are stored in

pickles to be used in the testing stage. With these results, we observed a significant

improvement in terms of number of features selected using Chi-Squared Table (6.2) compared

to Information Gain Table (6.1).

Features Naïve Bayes SVM(10k), k=5 Decision Trees
Random Forest

(10)

1 80.30906492 77.86001 85.18435927 85.18435927

2 80.28639318 77.86001 85.15844946 85.16472445

3 76.27481497 77.86001 85.81591235 85.80599372

4 76.27785129 77.86001 85.87947254 85.88028221

5 34.92709601 77.86001 87.9391047 87.91623117

6 41.51535503 77.86001 88.12634309 88.11419785

7 41.56960384 77.86001 88.54879566 88.54636659

8 41.45361564 77.86001 88.4915105 88.54231815

9 41.29208372 77.86001 88.71680499 88.80506053

10 41.18824177 77.86001 88.92873983 88.9078904

11 41.58822591 77.86001 89.17670473 89.21759332

12 41.59369138 77.86001 89.24957596 89.2805461

13 41.56899602 77.86001 89.62243224 89.64753238

14 41.51677137 77.86001 89.93011067 89.93942206

15 41.71089269 77.86001 89.94853077 89.91654856

16 41.65522692 77.76036482 99.39598048 99.36379584

17 41.69206751 99.67007996 99.49091559 99.4688516

18 41.70137882 99.68007996 99.47897136 99.48868748

19 41.72465723 99.68007996 99.57653683 99.64029897

20 42.72259257 99.69001 99.69495207 99.71053856

21 42.71287633 99.69001 99.72956585 99.77774225

22 42.72279496 99.69001 99.71984961 99.7431282

23 42.70579161 99.69001 99.71843309 99.77753982

24 46.43256401 99.69001 99.68685522 99.78644647

25 98.3769896 99.28001 99.75952506 99.7807786

26 98.38387195 99.28001 99.77632598 99.78604124

27 77.46225052 99.28001 99.78664889 99.80466432

28 76.60600997 99.28001 99.7771346 99.8202505
Table 6. 2 Accuracy (%) results for different classifiers based on the list returned by Chi-

Squared feature selection technique

 61

Figure 6. 2 Accuracy variation for different classifiers with the number of features used from
the sorted Chi-Squared list

Features selected using Recursive Feature Elimination (RFE), used an average of 12 features to

detect an attack with a high accuracy. Naïve Bayes performed poorly as expected and showed

erratic results before reaching a high accuracy of ~98% using top 20 features but this does not

last long as the accuracy drops again to ~76% as the number of features are increased further.

SVM performs better using RFE as it reaches a high accuracy of ~99% using only 7 features and

the accuracy does not drop further with the increase in the number of features until all the

features are fed to the model. Decision Tree and Random Forest also perform better using

features from RFE as they reach a high accuracy of ~99% using the top 11 features without any

drop in accuracy as more features are seen. The top 20, 7, 11 and 11 features are respectively

selected for Naïve Bayes, SVM, Decision Trees and Random Forest to create the models and

stored in pickles. This is a further improvement in terms of average number of features used

to achieve high accuracy when compared to the results from Chi-Squared feature selection

(Table 6.2).

 62

Features Naïve Bayes SVM(10k), k=5 Decision Trees
Random Forest

(10)

1 80.32525768 77.86001 80.53962227 80.54124163

2 80.91632672 77.86001 80.67908934 80.68374503

3 41.27265198 77.86001 81.73835546 81.74260631

4 41.21718919 77.86001 81.92255727 81.92660569

5 41.21496263 77.86001 82.84073859 82.83810711

6 41.21273605 77.86001 82.86280247 82.86179037

7 98.16950959 99.68007996 98.75673245 98.75288645

8 42.26572981 99.68007996 98.74438488 98.74519455

9 41.53883513 99.68007996 98.92555082 98.93283792

10 41.53397702 99.68007996 98.85612337 98.86644684

11 41.53438186 99.68007996 99.15226234 99.1609666

12 41.49652914 99.67007996 99.16663489 99.17837527

13 41.48883715 99.67007996 99.38889269 99.41500492

14 41.50341156 99.67007996 99.39557257 99.40650321

15 41.71838224 99.67007996 99.40427662 99.43909302

16 41.7266815 99.67007996 99.39172656 99.43281797

17 41.7238476 99.67007996 99.57856078 99.62795136

18 41.69409171 99.65009495 99.7307809 99.7751107

19 41.67810048 99.69001 99.76276277 99.77207439

20 98.38872976 99.28001 99.71236036 99.76600165

21 98.37010703 99.28001 99.71397949 99.76660904

22 98.38447917 99.28001 99.76863374 99.78705363

23 76.3037953 99.28001 99.78118382 99.80425936

24 76.30318804 99.28001 99.77956447 99.80000859

25 76.30318804 99.28001 99.7809814 99.82227492

26 76.39771863 99.28001 99.78624359 99.82106031

27 76.39771863 99.28001 99.78280241 99.80021098

28 76.60600997 99.28001 99.78280241 99.82207204
Table 6. 3 Accuracy (%) results for different classifiers based on the list returned by Recursive

Feature Elimination feature selection technique

 63

Figure 6. 3 Accuracy variation for different classifiers with the number of features used from
the sorted Recursive Feature Elimination list

Finally, Table (6.4) and Figure (6.4) show the results obtained when the order of features is

selected using the novel Weighted Ranked Feature Selection (WRFS) algorithm.

Features Naïve Bayes SVM(10k), k=5 Decision Trees
Random Forest

(10)

1 80.79143385 99.01021489 96.9942554 96.99992314

2 16.67607741 99.94001 98.75146827 98.75713602

3 76.27444422 99.52001 98.80855098 98.75956503

4 76.2040018 99.42001 99.7983896 99.71134855

5 76.20056065 99.42001 99.76903835 99.83077662

6 75.32913865 99.42001 99.76843108 99.81255877

7 75.32873381 99.42001 99.77086017 99.79515059

8 76.57686135 99.28001 99.72835175 99.77632542

9 76.57686135 99.28001 99.73381762 99.78199321

10 76.57908798 99.28001 99.74940364 99.79697236

11 76.57908798 99.28001 99.74677218 99.76377536

12 76.57908798 99.28001 99.75142782 99.80081836

13 76.5879945 99.28001 99.7404971 99.78138592

14 76.5879945 99.28001 99.74920115 99.82612093

 64

15 76.60277123 99.28001 99.76539468 99.79434087

16 76.60317607 99.28001 99.75345203 99.78644646

17 76.60317607 99.28001 99.73806801 99.82106047

18 76.60479544 99.28001 99.75952541 99.80425952

19 76.60479544 99.28001 99.75810839 99.80851053

20 76.60459302 99.28001 99.75102368 99.81377329

21 76.60459302 99.28001 99.75972777 99.80810542

22 76.60520028 99.28001 99.74980905 99.81761934

23 76.60499786 99.28001 99.74373604 99.80405708

24 76.60499786 99.28001 99.7532498 99.81984593

25 76.60600997 99.28001 99.73280528 99.84879166

26 76.60600997 99.28001 99.77895682 99.82591815

27 76.60600997 99.28001 99.78098059 99.81620224

28 76.60600997 99.28001 99.75871471 99.81903612
Table 6. 4 Accuracy (%) results for different classifiers based on the list returned by Weighted

Ranked Feature Selection technique

Figure 6. 4 Accuracy variation for different classifiers with the number of features used from
the sorted WRFS list

 65

The results show that when features are sorted using the WRFS algorithm, we only need the

top 8 features to detect a DDoS attack using Naïve Bayes with ~76.58% accuracy. This is a

significant improvement compared to the previous three approaches where the number of

features required were 24, 25 and 20 to detect an attack using the Naïve Bayes classifier. The

top 4 features are required to detect an attack with high accuracy using SVM. In the previous

three approaches, the number of features chosen for classification were 23, 17 and 7 for list of

features returned by Information Gain, Chi-Squared and RFE respectively. Using the WRFS list,

only top 4 features again are required to detect an attack using the Decision Tree classifier. 23,

16, 11 are the number of features chosen for the Decision Tree classifier when the feature

selection is done using Information Gain, Chi-Squared and RFE respectively. Finally, WRFS also

performs better when the classification is done using Radom Forest. The accuracy results show

that we only need the top 5 features from the list returned by WRFS to achieve an accuracy of

~99.83%, an improvement from 23, 16 and 11 features needed to achieve the same accuracy

percentage when the feature selection is done using Information Gain, Chi-Squared and RFE

respectively.

Table (6.5) and Table (6.6) show the precision and recall values and the confusion matrix values

for all the 16 models created using the optimized number of features from the sorted lists

returned by each feature selection technique. The optimized number of features is shown

alongside each classification algorithm based on the accuracy results from before.

Feature Selection Classification Precision Recall

Information Gain

Naïve Bayes (24) 98.186 98.441

SVM (23) - -

Decision Tree (23) 99.779 99.733

Random Forest (23) 99.919 99.906

Chi-Squared

Naïve Bayes (25) 97.288 97.944

SVM (17) - -

Decision Tree (16) 99.510 99.332

Random Forest (16) 99.373 99.311

 66

RFE

Naïve Bayes (20) 97.391 97.975

SVM (7) - -

Decision Tree (11) 99.169 99.357

Random Forest (11) 99.243 99.429

WRFS

Naïve Bayes (8) 70.984 61.528

SVM (4) - -

Decision Tree (4) 99.775 99.807

Random Forest (5) 99.927 99.428

Table 6. 5 Precision and Recall values for models created using the optimized number of
features

Feature Selection Classification TN FP FN TP

Information Gain

Naïve Bayes (24) 8945 136 253 15367

SVM (23) - - - -

Decision Tree (23) 9039 42 18 15602

Random Forest (23) 9057 24 17 15603

Chi-Squared

Naïve Bayes (25) 8961 120 436 15184

SVM (17) - - - -

Decision Tree (16) 8978 103 27 15593

Random Forest (16) 8991 90 30 15590

RFE

Naïve Bayes (20) 15211 409 130 8951

SVM (7) - - - -

Decision Tree (11) 15493 127 44 9037

Random Forest (11) 15500 120 35 9046

WRFS

Naïve Bayes (8) 3672 11948 41 9040

SVM (4) 1965 35 0 0

Decision Tree (4) 15588 32 18 9063

Random Forest (5) 15607 13 4 9077

Table 6. 6 Confusion Matrix

 67

For features sorted using information gain, the confusion matrix values reflect a high

percentage of True Positive and True Negative values and a very small fraction of False

Positives and False Negatives. This is true for Naïve Bayes, Decision Trees and Random Forest.

The confusion matrix values for Decision Tree and Random Forest are observed to be very

close. This is consistent with the accuracy results of these classifiers as shown in Table (6.3)

where the variation of accuracy follows closely with the change in the number of features and

can leads to a conclusion that Decision Tree and Random Forest perform very closely for our

problem statement and are a good choice of classifier for early detection of a DDoS attack. The

confusion matrix values corresponding to SVM is left blank because the Scikit-learn’s confusion

matrix function needs more than one value to unpack and calling that function with SVM

throws that error. This is because SVM is run only on 10,000 network packets compared to half

a million packets for Naïve Bayes, Decision Trees and Random Forest and this is not diverse

enough data for the confusion matrix function and therefore it fails to unpack.

Similarly, when features are sorted using Chi-Squared, the results are quite like the results

obtained from Information Gain. SVM fails to unpack again and Decision Tree and Random

Forest show a comparable measure of the confusion matrix values with low FP, FN and high TP

and TN. When the features sorted using RFE are used for classification by the four classifiers,

Naïve Bayes shows high TN and relatively less TP compared to the previous two feature

selection techniques. The values for FP and FN remain low. The metrics for Decision Tree and

Random Forest again show a similar trend but in the reverse order. This time, the TN are high

compared to the TP. Finally, features sorted using WRFS perform poorly for Naïve Bayes

classifier with very high FP and 3672 and 9040 TN and TP respectively. This time SVM unpacks

but the results returned cannot be used to make any conclusion because the FN and TP are 0.

This is most likely because of the pruned dataset used for training the SVM model. Decision

Tree and Random Forest show comparable performance again but with a significant

improvement in terms of low FP and FN.

 68

Based on the confusion matrix, we can say that Random Forest or Decision Tree should be used

as the classifier if the features are sorted using the WRFS technique.

6.2 Simulations

To test the proposed model on real-time network traffic, a simulation environment was set-up

within the University of Calgary network. The proposed application captures real-time network

traffic and predicts the presence or absence of an attack based on the user-selected model

through a web application interface.

The set-up consists of a 64-bit, 12GB RAM, Ubuntu machine, a TP-Link AC3150 Gigabit Router,

MacBook Air Laptop and another 64-bit, 8GB Windows machine to send attack traffic. The

Router is connected to the University network using a LAN cable and the Ubuntu Machine,

MacBook Air and Windows Machine is connected to the subnetwork created by the router

through Ethernet or wirelessly. The set-up is shown in Figure (6.5). This was done to create a

Virtual Private Network (VPN) to contain the attack simulations within the sub-network. Now,

each of the three machines are assigned an internal IP address by the router. This is shown in

Table (6.7).

Figure 6. 5 Simulation test-bed setup

 69

Host and Bots Assigned IP

Ubuntu Machine (Host) 192.168.30.100

MacBook Air (Bot 1) 192.168.30.101

Windows Machine (Bot 2) 192.168.30.102

Table 6. 7 Internal IP addresses assigned by the router to the machines used in the simulation

The Ubuntu Machine is the host running the DDoS detection tool whereas the other two

machines (bots) run a software called Low Orbit Ion Cannon (LOIC) to send UDP/TCP/HTTP

attack traffic to the Ubuntu Machine. Low Orbit Ion Cannon (LOIC) is an open-

source network stress testing and denial-of-service attack application, written in C#. LOIC was

initially developed by Praetox Technologies, but was later released into the public domain,

[28] and now is now hosted on several open source platforms. [29] [30]. LOIC can be used to

perform both DoS and DDoS attack (depending on the number of people using the software to

target the same server) on a target by flooding it with TCP, UDP or HTTP packets with the aim

of disrupting the services. The LOIC application is shown in Figure (6.6).

Figure 6. 6 Low Orbit Ion Cannon (LOIC) application

The DDoS detection application running on the host captures the incoming traffic at

192.168.30.100 from the socket and processes the packets to extract the 28 features which

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Stress_testing
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Public_domain

 70

are consistent with the dataset used to train the models. The incoming packets and packet rate

is also tracked using Wireshark. The incoming packets after processing are also stored in a

continuously updating csv file. The proposed application reads from the csv file and uses a

sliding window technique to make windows of 100 packets each in real-time. Each window is

pre-processed to convert categorical variables to numeric values and then the window is

normalized based on the same max-min rule used during training. The next step depends on

the user-selection from the web-application.

The home page of the web-application is shown in Figure (6.7). The user can select the feature

selection technique and classification algorithm to use and the application picks the pickle of

the trained model for this combination. All the models are optimized based on the number of

features which gives the maximum accuracy results for the selected feature selection

technique. After the selection is made, the user can click on the ‘Start Capture’ button which

starts capturing packets in real-time. As discussed above, the sliding windows of 100 packets

each are formed and normalized. Based on the user selection, the corresponding pickle is

chosen which starts predicting every packet, for every window.

Figure 6. 7 Homepage of the web-application

Each window is categorized as either an attack window or a normal window based on a pre-

defined threshold of 50 packets. This was done to prevent false positives which can be

 71

unusually high in case of a DDoS attack because of the nature of these attacks. If more than 50

packets in a window are categorised as attack packets, then the entire window is declared as

an attack window. But having an attack window or two is not a string indication of an attack

because this could be due to surge traffic as well. Therefore, another threshold is defined which

is based on the number of windows which needs to be categorized as attack windows for the

system to declare an attack. This threshold value is based on common trends in DDoS attacks

over the past 10 years. A typical DDoS attack lasts between 10-20 minutes with an average

traffic of 200-300 Gbps during that time. Based on this information, the second threshold was

chosen to be a time-based threshold in which if the windows are categorised as attack windows

for more than 10 minutes, then the application concludes an attack. The attack statistics in the

form of a line chart showing attack instances, bar chart showing the number of attack packets

and normal packets and a pie chart showing the confusion matrix values are shown to the user

through the web application.

As part of the simulations, attack traffic mixed with normal traffic was sent to the Ubuntu

machine at 192.168.30.100 running the DDoS detection tool. 12 hours of regular traffic

followed by 9 hours of attack traffic and again followed by 12 hours of normal traffic was

simulated. The As part of the attack traffic, the LOIC tool was set to send HTTP packets with 10

threads at the maximum rate possible. The result of this simulation instance is shown in Figure

(6.8-6.9).

Figure 6. 8 Attack instances in the 24-hour simulation period

 72

Figure 6. 9 Number of attack packets vs normal packets during the simulation time-frame

The x-axis of the line chart shows the incoming window with increasing time and the y-axis

takes the value 0 in case the window does not have an attack and 1 in case of an attack. We

can see that during normal activity, the proposed and suggested model predicts normal traffic

with only a few misclassifications and predictions show a sudden surge in traffic starting from

packet 150,239 onwards till packet 1,156,982. This was only categorized as attack after

observing consistent high traffic for 10 consecutive minutes. The line chart drops again from

packet 1,156,982 onwards. This is consistent with the traffic sent. We can also see through the

bar chart that there were 5,132,451 incoming attack packets and 2,043,010 normal packets.

This proves the efficiency and robustness of detecting a DDoS attack using as few attributes as

possible without compromising in the efficiency of detection.

6.3 Comparison with baseline approaches

In this section, a comparison study is done by comparing the proposed approach with other

classification-based DDoS detection techniques. Some of these baseline approaches are also

discussed in the related work section of this thesis. The comparison is done based on the

 73

number of features used by a model to detect a DDoS attack while maintaining a high accuracy

of detection. The three commonly used datasets used by researchers working on DDoS

detection are KDD Cup Dataset, CAIDA dataset and DARPA dataset. Each of these datasets have

different number of attributes based on the level at which information is extracted form a

network packet. The number of attributes in each of the datasets is shown in Table (6.8).

Dataset Number of features

KDD Cup 1999 Dataset [20] 41

CAIDA DDoS Attack 2007 Dataset [31] 6

DARPA Intrusion Detection Dataset [32] 6

Table 6. 8 Number of features in Datasets widely used for DDoS detection

Majority of the researchers chose one of these three datasets to tackle the highly pervasive

problem of DDoS attacks. The choice of dataset usually depends on the research question and

the level of information needed because CAIDA provides a very broad overview of a network

packet such as source IP, destination IP, protocol, etc. whereas KDD Cup dataset provides a

drill-down view of a packet such as source bytes, urgent packets, duration, etc.

Classification accuracy is defined as a percentage and is the number of correctly classified

packets from the total number of packets. It is represented in terms of TP and TN as shown in

Equation (29).

Classification Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 % [29]

Table (6.9) shows comparison of classification accuracy and the number of features used across

different models using a filter-based feature selection technique and a classifier. Our best

model which uses the novel WRFS feature selection technique with the Random Forest

classifier is used for comparison with the baseline approaches. To keep the comparison ground

fair, we have only used the approaches which use the KDD’99 dataset to build their models.

 74

Approach Classifier
Number of

features
Classification
Accuracy (%)

1 Information Gain Random Forest 23 99.68

2 Chi-Squared Decision Tree 16 99.39

3 CFS [33] GA 8 76.2

4 CSE [33] GA 15 75.6

5
CFS, CONS and INTERACT
[34]

HNB_PKI_INT 7 93.72

6
New Medoid Clustering
Algorithm [35]

k-Medoid 41 96.38

7
Gradual feature removal
[36]

Cluster based, Ant
Colony, SVM

19 98.62

8
Linear correlation based
FS [37]

C4.5 17 99.1

9 EMFFS [38] J48 13 99.67

10
Proposed approach using
WRFS

Random Forest 5 99.83

Table 6. 9 Performance comparison on Accuracy and Number of Features for different
approaches which use the KDD’99 dataset

Upon comparison with similar research on DDoS detection using the KDD’99 dataset, it was

observed that the proposed approach which uses only 5 features from the sorted list of

features returned by WRFS is able to detect a DDoS attack with an accuracy of 99.83% which

is highest amongst all the other approaches. It is also important to note that the accuracy of

the proposed model does not fall below 99.83% even when the number of features are

 75

incrementally increased, unlike some of the models implemented in this research where the

classification accuracy shows an erratic pattern before reaching a steady value (Figure (6.1-

6.3)).

The three categories of classifiers used for the comparison study are Genetic Algorithms (GA),

Classification and Clustering-based techniques and we observed that the Genetic Algorithm

based classifiers implemented in [33] perform poorly and achieve an accuracy of only ~76%,

which is the lowest amongst all. Clustering based approaches achieve a high accuracy of ~98%

but this comes at an expense of using more number of features. Finally, classification based

approaches are seen to perform the best with an average accuracy of ~99% and also using

relatively less number of features from the dataset.

 76

Section 7: Conclusion and Future Work

In this thesis, we proposed an approach to detect a DDoS attack using a Machine Learning

approach. The proposed approach was also tested on real-time network traffic to corroborate

the performance of the models to detect a DDoS attack using few number of attributes from

the network packet. Four different feature selection algorithms were implemented including

the novel Weighted Ranked Feature Selection (WRFS). The sorted list of features returned by

each of these algorithms were cross coupled with four classification algorithms. Each classifier

was trained and tested on every list. Features were incrementally increased starting from 1 till

28 and accuracy was noted. This allowed us to find out the perfect balance between the

number of features used and the accuracy of detection of a DDoS attack. The proposed models

were stored in pickles and tested on real-time network traffic through a simulation

environment which was set-up within the University of Calgary network. The proposed model

performed as expected and used only a fraction of the attributes from a network packet to

detect the simulated DDoS attack with a ~99.8% accuracy of detection.

A comprehensive tool should have a two-fold objective – detection and mitigation of a DDoS

attack. In the past decade, the power of a DDoS attack has increased exponentially and has

forced organisations to use third party DDoS detection and mitigation services. Handling a

DDoS in house is not feasible for an organisation just because of the amount of resources

required to set-up such a system. Therefore, upon detection of a DDoS attack, the organisation

re-routes the entire traffic to an external server with a different organisation which is equipped

with DDoS mitigation capabilities. The job of the mitigation service is to mitigate any attack by

either distributing the incoming traffic or by dropping malicious packets and allowing the

regular traffic to flow through.

As part of the future work of this thesis, a mitigation engine is planned which would complete

our system and can provide a holistic approach towards detecting and mitigating a DDoS

attack. The existing system would work as-is and detect a DDoS attack but upon detection of

 77

an attack, the entire traffic would be re-routed to another application on an external server.

This application would receive all the packets and try to mitigate the attack by keeping the

target server up at all times without the disruption of service for legitimate users. This can be

done by dropping all the packets which have been categorised as attack packets and

forwarding only the normal packets to the target server. This may cause some delays on the

server side to serve the request but can defeat the attacker by keeping the server up and

running.

A feedback loop which would re-train the model as regular intervals is also planned. The new

incoming traffic will be used to re-train the model on existing and new data and the old pickles

will be updated by new pickles especially after an attack instance is observed. This will ensure

that the proposed application can update itself with the change in trends of DDoS attacks.

 78

Bibliography

[1] M. E. M. Wesam Bhaya, “A Proactive DDoS Attack Detection Approach,” Journal of Next
Generation Information Technology, pp. 36-47, 2014.

[2] A. K. P. Devi, “A Security framework for DDoS Detection in MANETs,” Telecomminication
and Computing, pp. 325-333, 2013.

[3] M. James, “Data Clustering Using Entropy Minimization”.

[4] D. K. B. J. K. K. N. Hoque, “Botnet in DDoS Attacks: Trends and Challenges,” IEEE
Communications Surveys and Tutorials, 2015.

[5] H. K. B. R. a. A. T. R. B. Blazek, “A novel approach to detection of denial-of-service attacks
via adaptive sequential and batch-sequential change-point detection methods,” IEEE
Systems, MAN, and Cybernetics Information Assurance and Security Workshop, pp. 220-
226, June 2001.

[6] R. R. B. İlker Özçelik, “Cusum - entropy: an efficient method for DDoS attack detection,”
4th International Istanbul Smart Grid Congress and Fair (ICSG), 2016.

[7] J. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann Publishers, 1993.

[8] P. a. N. T. Clark, “The CN2 Induction Algorithm,” Machine Learning Journal 3(4), pp. 261-
283, 1989.

[9] R. S. J. a. C. P. Hanson, Bayesian Classification Theory. Technical Report, 1991.

[10] “kddcup99.html,” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed 15 September
2017].

[11] N. M. B. Agarwal, “Optimal feature selection for sentiment analysis,” 14th International
Conference on Computational Linguistics and Intelligent Text Processing, Samos, Greece,
pp. 13-24, 2013.

[12] S. S. A. S. Z. Baig, “GMDH-based networks for intelligent intrusion detection,” Engineering
Applications of Artificial Intelligence, 26(7), pp. 1731-1740, 2013.

[13] A. A. M. J. H. S. M. Moradkhani, “A hybrid algorithm for feature subset selection in high-
dimensional datasets using FICA and IWSSr algorithm,” Applied Soft Computing, pp. 119-
135, 2015.

[14] R. P. M. Y. a. N. J. R. Miao, “The dark menace: Characterizing network based attacks in the
cloud,” ACM Conference on Internet Measurement Conference, pp. 169-182, 2015.

[15] T. Z. R. B. L. Zecheng He, “Machine Learning Based DDoS Attack Detection From Source
Side in Cloud,” 2017 IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud), 2017.

[16] H. M. Michael Whitman, Principles of Information Security, Course Technology; 4 edition,
2011.

 79

[17] “understanding-security-osi-model-377,” 21 March 2018. [Online]. Available:
https://www.sans.org/reading-room/whitepapers/protocols/understanding-security-osi-
model-377.

[18] P. Oppenheimer, Top-Down Network Design, 3rd Edition, Cisco Press, 2010.

[19] N. Krawetz, Introduction to Network Security, Charles River Media, 2007, p. 31.

[20] E. B. W. L. a. A. A. G. Mahbod Tavallaee, “A Detailed Analysis of the KDD CUP 99 Data Set,”
IEEE Symposium on Computational Intelligence in Security and Defense Applications, 2009.

[21] G. K. N. V. C. Danny Roobaert, “Information Gain, Correlation and Support Vector
Machines,” Springer, Studies in Fuzziness and Soft Computing, pp. 463-470, 2006.

[22] K.-K. R. C. M. D. Opeyemi Osanaiye, “Analysing Feature Selection and Classification
Techniques,” Southern Africa Telecommunication Networks and Applications Conference
(SATNAC), September 2016.

[23] H. L. L. Yu, “Feature selection for high-dimensional data: A fast correlation-based filter
solution,” Twentieth International Conference on Machine Learning (ICML-2003), pp. 856-
863, 2003.

[24] A. Stuart and K. Ord, Kendall's Advanced Theory of Statistics, Distribution Theory, Wiley; 6
edition , 2010.

[25] M. N. D. V. S. Murty, Pattern Recognition, An Algorithmic Approach, Springer-Verlag
London, 2011.

[26] T. Fletcher, “Support Vector Machines Explained,” 2008. [Online]. Available:
https://cling.csd.uwo.ca/cs860/papers/SVM_Explained.pdf.

[27] N. Donges, 20 March 2018. [Online]. Available: https://towardsdatascience.com/the-
random-forest-algorithm-d457d499ffcd.

[28] Praetox, “Low Orbit Ion Cannon,” 2010.

[29] “LOIC | Free Security & Utilities software,” 17 11 2014. [Online].

[30] “NewEraCracker/LOIC · GitHub,” 22 11 2013. [Online].

[31] “The CAIDA UCSD "DDoS Attack 2007" Dataset,” 15 9 2017. [Online]. Available:
http://www.caida.org/data/passive/ddos-20070804_dataset.xml.

[32] 15 9 2017. [Online]. Available: https://www.ll.mit.edu/ideval/data/.

[33] P. H. C. L. S Rastegari, “Evolving statistical rulesets for network,” Applied Soft Computing
33, pp. 348-359, 2015.

[34] T. M. S. S. L Koc, “A network intrusion detection system based,” Expert Syst Appl 39(18), p.
13492–13500, 2012.

[35] R. R. a. G. Sahoo, “A new clustering approach for anomaly intrusion detection,”
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4,
No.2, March 2014.

[36] K.-K. R. C. H. A. J Peng, “Bit-level n-gram based forensic authorship analysis on social
media: Identifying individuals from linguistic profiles,” Netw Comput Appl. (Elsevier, 2016
in press), 2016.

 80

[37] A. H. T. K. S. B. H Eid, “Linear correlation-based feature selection for network intrusion
detection model,” Proceedings of the 1st International Conference on Advances in Security
of Information and Communication Networks (SecNet), pp. 240-248, 2013.

[38] H. C. K.-K. R. C. A. D. X. a. M. D. Opeyemi Osanaiye, “Ensemble-based multi-filter feature,”
EURASIP Journal on Wireless Communications and Networking, 2016.

[39] M. James, “Data Clustering Using Entropy Minimization”.

