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Abstract 

 

A distributed denial of service (DDoS) attack is a type of cyber-attack in which the perpetrator 

aims to deny the services on a network/server by inundating the traffic on the network/server 

by superfluous requests which renders it incapable to serve requests from legitimate users. 

According to Corero Network Security (A DDoS protection and mitigation provider), in Q3 2017, 

organizations around the world experienced an average of 237 DDoS attack attempts per 

month, which averages to 8 DDoS attacks every day. This was a 35% increase over Q2 that year 

and a staggering 91% increase over Q1. According to another research by Incapsula, a DDoS 

attack costs an average of $40,000 per hour to businesses. There are commercially available 

software which detect and mitigate a DDoS attack, but the high cost of these software makes 

them hard to afford for small and mid-scale businesses. The proposed work aims to fill this gap 

by providing real time open-source robust web application for DDoS attack prediction which 

can be used by small to mid-scale industries to keep their networks and servers secure from 

malicious DDoS attacks.  

 

A Machine Learning approach is used to employ a window-based technique to predict a DDoS 

attack in a network with a maximum accuracy of 99.83%, if the recommended combination of 

feature selection and classification algorithm is chosen. The choice of both feature selection 

and classification algorithm is left to the user. One of the feature selection algorithms is the 

novel Weighted Ranked Feature Selection(WRFS) algorithm which performs better than other 

baseline approaches in terms of accuracy of detection and the overhead to build the model. 

Once the selection is made, the web application connects to the socket and starts capturing 

and classifying real-time network traffic. After the capture is stopped, information about attack 

instances (if any), number of attack packets, confusion matrix is rendered to the client using 

dynamic charts. The trained model used for classifying real-time packets is optimized and uses 

only enough attributes from the incoming packet which are necessary to successfully predict 

the class of that packet with high accuracy. 
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Section 1: Introduction 

 

1.1 Background and Problem Definition 

The first known Denial of Service (DoS) attack goes back to the year 1974 courtesy of a 13-year 

old high school student who had recently learnt about a command which could be run on 

CERL’S PLATO terminal. PLATO was first of its kind computerized shared learning system. The 

command ‘ext’ short for external was used to communicate with external devices but if a 

system was not connected to an external device, then the command ‘ext’ would force the 

system to shut down. David learnt of this flaw and sent the ‘ext’ command to systems at CERL 

causing 31 users to log off simultaneously. Eventually, the acceptance of the ‘ext’ command 

from a remote system was disabled, fixing the problem. 

 

Since then, DoS elevated to become distributed DoS or DDoS and has become infamous for the 

most destructive kind of cyber-attack. Because of the nature of a DDoS attack, it is very hard 

to mitigate as it penetrates right through the open ports on the firewall and leads to both 

financial loss and the loss of reputation for a company. Almost all the major technology 

companies have been a target of a DDoS attack at some point in their history. Due to the high 

impact of such attacks, it is a constant cause of concern for people responsible for cyber-

security. 

 

This research was done with the desire to create a highly efficient comprehensive DDoS 

detection application for small to mid-scale companies using which they can detect a DDoS 

attack on a network with a high accuracy.  

 

In the past, various approaches have been used to detect a DDoS attack. Two of the most 

common categories of defence mechanisms were Signature based and Anomaly based 

approach. A Signature based DDoS detection tries to detect a DDoS attack by maintaining a 

database of signatures of past attacks and comparing the signature of an incoming attack with 

the signatures already present in the database and finally employing the defense for that attack 
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signature. Clearly, detecting a new kind of attack was impossible using the Signature based 

approach. On the other hand, Anomaly based DDoS detection techniques tried to detect a 

DDoS attack by setting a pre-defined threshold and comparing the attack pattern with that 

threshold. False Positives were just too high for an Anomaly based DDoS detection approach. 

The latest trend in detecting a DDoS attack is using ML techniques which are both fast and 

accurate in detecting a DDoS attack. 

 

1.2  Motivation 

The motivation for this work was to employ a Machine Learning technique to detect a DDoS 

attack in a computer network using a small subset of attributes. Since it is important to detect 

a DDoS attack as soon as possible, fewer number of attributes allows fast processing of network 

packets to classify them as either an attack or a normal packet. This proposed approach can 

detect a DDoS attack with 99.83% accuracy using only 5 attributes. 

 

1.3  Overview of the proposed system  

A network packet carries a lot of information such as source IP, destination IP, source bytes, 

payload, duration, flag, etc. The Knowledge Discover Dataset (KDD) Cup from 1999 extract 41 

different categories of data for a network packet; but not all attributes are equally important 

to detect a DDoS attack. In this research, we use some widely-used filter-based feature 

selection algorithms to sort the real-time network packet features from most important to 

least important. A novel Weighted Ranked Feature Selection (WRFS) is then employed to 

create a final sorted list of features based on the weighted ranks of features given by other 

feature selection algorithms. The ranked features from all the subset selection algorithms 

including WRFS is fed incrementally to different classification algorithms most commonly 

employed for DDoS detection. The accuracy, precision and recall is calculated for each run. It 

was observed after experimentation that when the top 5 features are selected using WRFS and 

classified using Random Forest, the accuracy of prediction is 99.83 % with more than 99% 

precision and recall.  
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The test bed setup is done in a Virtual Private Network (VPN) environment which was setup 

within the University of Calgary network to withhold the attack packets from spreading into 

the network. Real-time network traffic containing attack and normal packet instances was 

captured through the socket. After that, 28 features relevant for this problem were then 

extracted, normalized and stored. This real-time dataset is then used to create windows of 100 

packets each in real time. A sliding window mechanism is then used to classify every window 

as either an attack window or a normal window based on a pre-defined threshold value. 

 

 

Figure 1. 1 Overview of the proposed DDoS detection tool 

 

1.4  Contributions 

The main contributions of this work are summarized below: 

1. Explored the correlation between four different feature selection algorithms and four 

classification algorithms by using the sorted list of features by each feature selection 

method and measuring the accuracy using each classification algorithm by 

incrementally adding a feature to the list of features used for classification. 

2. A novel feature selection method called ‘Weighted Ranked Feature Selection’ (WRFS) 

is proposed in Chapter 5. Using this feature selection method, the number of attributes 

required to detect a DDoS attack with high accuracy reduces by an average of 4, for 

different classification algorithms. 

3. A sliding window-based approach is used to classify windows as attack or normal 

windows after real-time capture of network packets. 
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4. A web application is designed which allows the Start and Stop Capture functionality to 

the user and shows a classification summary of the captured packets using dynamic 

visualizations. 

1.5  Organization of the thesis 

This thesis is divided into seven chapters to transition the reader from understanding about 

DDoS attacks and introducing the proposed methodology and the results obtained. Chapter 2 

on related work is divided into three topics based on the different categories of DDoS detection 

algorithms. Chapter 3 talks about Network Security and its importance. Chapter 4 discusses 

Distributed Denial of Service (DDoS) attacks and their architecture. Chapter 5 begins with the 

discussion of the Dataset used, followed by the environment setup and the proposed 

methodology. Chapter 6 summarizes the experiments, results and simulations of DDoS 

detection using the proposed approach. Chapter 7 outlines the conclusions and the future 

work. 
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Section 2: Related Work 
 

Since the introduction of Machine Learning for DDoS detection, majority of the proposed 

algorithms can be categorized into four broad techniques – Clustering, Classification, Statistics, 

and Hybrid. There are several approaches which use algorithms from either one of these four 

classes for DDoS detection. 

 

2.1  Clustering based techniques 

In the 2014 paper ‘A proactive DDoS Attack Detection Approach Using Data Mining Cluster 

Analysis’ by Wesam Bhaya and Mehdi Manaa, a hybrid approach called centroid-based rules is 

proposed to detect and prevent a real-world DDoS attack using unsupervised k-means data 

mining clustering techniques with proactive rules method. The ‘CAIDA DDoS Attack 2007 

Dataset’ and ‘The CAIDA Anonymized Internet Traces 2008 Dataset’ are used in this research. 

The first dataset contains normal packets with no attack instances whereas the second dataset 

contains packets with attack instances only. To create a more real-life scenario, one million 

packets are then chosen from each dataset randomly to create the final dataset which is then 

normalized before being used for experimentation and testing. The proposed ‘Proactive DDoS 

Attack Detection System’ is shown in Figure (2.1) below. 
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Figure 2. 1 A proactive DDoS Detection System (Adopted from [1]) 

 

For the first step which is feature selection, six features are chosen from experience. These are 

Time, Source IP, Destination IP, Source Port, Destination Port, and Protocol. The data is then 

transformed and standardized using the Shannon’s entropy method [2], [3] . Next, the data is 

divided into training and testing data using the 70-30 split. In the training phase, k-means 

clustering algorithm is used to form centroids. Max-Min rules are then created after extracting 

the max-min data points for each cluster based on the number of centroids. The noise and 

outlier points are handled using the shrink factor(s=0.85) which shrinks any points lying outside 

the range of max-min points and brings it within the range. Figure (2.2) below shows the 
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accuracy measures of the proposed approach compared to the baseline Centroid-based 

method. 

 

Figure 2. 2 Accuracy comparison 

 
In another clustering based approach, Xi Qin et al. in their work ’DDoS Attack Detection Using 

Flow Entropy and Clustering Technique’ propose a novel entropy based DDoS attack detection 

approach by constructing entropy vectors of different features from traffic flows, modelling 

normal packets using clustering analysis algorithms, and then detecting deviations from the 

created models. The proposed approach differs from other comparable approaches by 

dynamically setting the threshold value based on the traffic models. The dataset used is 

created using a traffic collection procedure. Entropy is used to construct the required features 

from the collected packets. The selected features are destination address, destination port, 

source address, packet size, and flow duration. Next, in the training phase, clustering is used 

for modelling normal patterns of behavior and for determining the detection threshold. K-

means is chosen as the clustering algorithm. The following steps are then followed to detect a 

DDoS attack: 

• For on-line traffic flows to be detected in a unit time, calculate the value of entropy and 

get entropy vector X in pre-process module. 
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• Calculate the distances between X and all cluster centres Ci and record the results as di. 

Select the smallest distance dt = min{di}, and then assign the sample X to this 

corresponding cluster. 

• Compare dt to the radius rt. If dt ≤ rt, the sample X is judged as normal data, then we save 

X and update the normal model when the new normal data reaches a certain amount. 

Otherwise, DDoS attacks would be considered occurred. 

DF-Rate which is defined as the ratio of the detection rate and the false positive rate is used as 

a metric to compare the results. Figure (2.3) shows the results of their approach compared 

with a baseline entropy-based clustering approach. 

 

Figure 2. 3 Comparison of proposed approach with baseline approach 

 

2.2  Statistics based techniques 

It is possible to detect a DDoS attack by measuring the statistical fields of incoming network 

packets. Attributes such as source IP address, destination IP address and packet rate are 

generally very good measures of detecting a DDoS attack. There are a few other derived fields, 

the most common of them being entropy, which are also used in conjunction with independent 

attributes to successfully detect a DDoS attack. Ease of implementation and fast computation 
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of these techniques are the reasons why statistical approaches have been widely used in this 

field. 

 

In the 2016 paper ‘A Novel Measure for Low-rate and High-rate DDoS Attack Detection using 

Multivariate Data Analysis’, Nazrul Hoque et al. propose a statistical approach to DDoS 

detection. A statistical measure called Feature Feature Score(FFSc) is introduced for 

multivariate data analysis to distinguish the attack traffic from legitimate traffic. If an attack is 

generated from a botnet, then the attack traffic has strong correlation among its samples 

because the bot-master uses the same attack statistics during attack generation [4]. Therefore, 

a correlation measure is proposed to distinguish attack packets from regular packets. On the 

other hand, if the attacker generates attack traffic very similar to normal network traffic, a 

correlation measure may not distinguish the difference between normal and attack traffic. So, 

multiple network traffic features are analyzed in such a way that change in an individual feature 

value may reflect the overall change in the network traffic sample. 

 

CAIDA and DARPA datasets, two common datasets for DDoS research, are used for 

experimentation. The feature selection step extracts and calculates the entropy of source IPs, 

variation of source IPs and packet rate. The entropy of Source IPs is calculated using Equation 

(1). 

 
(1) 

Here X is the random variable for Source IPs and n is the count of distinct Source IPs. The 

variation of source IPs is then defined as the rate of change of IP address w.r.t time in a traffic 

sample. Finally, packet rate is calculated as the total number of packets transmitted in 1 

second. Windows are then created of packets captured in 1 second and then the 

extracted/calculated features are used to compute the FFSc score using equations (2-5). 

 
(2) 
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(3) 

 (4) 

 
(5) 

Here, equation (2) calculates the Feature Feature ordered Relation(FFoR) for a feature fi with 

all other features of an object Oi. Equation (3) then calculates the average FFoR value(AFFoR) 

of an object Oi for all the features. The Devian vector(Dev) of an object Oi is defined in Equation 

(4) as the absolute difference between the FFoR values of an object and its corresponding 

AFFoR value. Finally, the FFSc score of an object Oi is calculated using Equation (5). Using the 

FFSc for all the objects, a normal profile is created which stores the average FFSc score (MFFSc) 

and the range of FFSc scores (Nrange). Upon capturing of real-time traffic, the same features 

used before are extracted and the FFSc score is calculated for the captured packet instances 

(CFFSc). A dissimilarity value is then calculated using equation (6) below. 

 
(6) 

If the Dis HBK value is greater than a user defined threshold an alarm is generated.  Using the 

CAIDA dataset, the method gives 100% detection accuracy for the threshold value between 1 

and 1.3. However, detection accuracy degrades gradually when the threshold is less than 0.5 

and greater than 1.3. Similarly, in DARPA dataset, the method gives 100% detection accuracy 

and high detection accuracy for threshold value of between 0.1 to 2 whereas the accuracy 

gradually decreases as the threshold value increases. It was concluded that the ideal threshold 

range is between 0.05 to 0.8 to achieve high detection accuracy for both DARPA and CAIDA 

datasets. 

 

Another Statistics based novel DDoS detection approach was proposed by İlker Özçelik et al. in 

their work ‘CUSUM-Entropy: An Efficient Method for DDoS Attack Detection’. The novelty here 
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was to perform additional signal processing on the entropy of the packet header field to 

improve detection efficiency. For a dataset X, with a finite number of independent symbols 

from 1 to n, the entropy is calculated and normalized using Equations (7-8). 

 

(7) 

 
(8) 

 

In this work, the entropy of the source IP address is used as a measure to detect a DDoS attack. 

Initially, wavelet transform is used to filter out the long-term variations of the observed 

entropy values to reduce the number of false alarms. A ten-step wavelet decomposition was 

performed to filter out the tenth level low-pass components. 

The cumulative sum approach(CUSUM) used in this work was first proposed by Blazek et al. 

[5]. The idea behind the approach was to compare the current entropy average of observations 

with the long-term average. If the current average increases faster than the long-term average, 

then the CUSUM coefficient also increases and if it increases beyond a pre-defined threshold, 

then a DDoS attack is said to have occurred. Equation (9) describes the basic CUSUM process. 

 (9) 

S[t-1] – Old CUSUM value 

H[t] – Entropy value at time t 

m[t] – Long term average of CUSUM input 

The long-term average m[t] is calculated using Equation (10) 

 (10) 

(ε) – Long term averaging memory; 0 < ε < 1 

Now, to reduce the high frequency noise, the entropy value (H[t]) is low-pass filtered using 

local averaging memory (α) in Equation (11). 
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(11) 

 

Finally, equation (11) is substituted in Equation (9) and an algorithm correction variable C is 

added to form Equation (12). 

 
(12) 

In Equation (12), C is multiplication of m[t] and correction parameter (ce) which forces the 

CUSUM coefficient values to 0 by adding more weight to long term average, (m[t]). 

 

Figure (2.4) below shows the detection efficiency of the proposed CUSUM algorithm compared 

to the baseline Source IP based entropy approach. 

 

Figure 2. 4 Detection efficiency of CUSUM - entropy approach and detection approach using 
entropy of source IP address with 95% confidence. Solid line: detection approach using 

entropy of source IP address. Dashed line: CUSUM - entropy approach (Adopted from [6]) 

 
The proposed modification of the CUSUM algorithm is shown to improve the detection 

efficiency of a DDoS attack with low false positive rates. 
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2.3  Hybrid Techniques 

A Hybrid approach to detect a DDoS is one which uses a Statistical concept for attribute 

selection and then uses a Machine Learning algorithm for predicting a DDoS attack. One such 

hybrid approach is discussed in the paper ‘Detecting Distributed Denial of Service Attacks 

through Inductive Learning’. The authors Sanguk Noh et al. propose a network traffic analysis 

mechanism by computing the ratio of number of TCP flags to the total number of TCP packets. 

Based on the calculation of the TCP flag rates, state action rules are compiled (using ML) by 

linking the TCP flag rates with the presence or absence of a DDoS attack. 

 

The basis of the proposed approach is the differences between the rates of TCP flags to detect 

a DDoS attack. The proposed method is called the Traffic Rate Analysis (TRA) and calculates the 

TCP flag rate and protocol rate. Only TCP packets are retained from the captured TCP, UDP and 

ICMP packets. Next, amongst the selected TCP packets, the payload is filtered out and the TCP 

header is retained. The six possible flags in a TCP header are SYN, FIN, RST, ACK, PSH, and URG 

flags. If any of these flags are set, the agent counts and sums it up. The first metrics TCP flag 

rates are then calculated using Equation (13). 

 

(13) 

𝑡𝑑 – Sampling period 

F – One of the six TCP flags; SIN, FIN, RST, ACK, PSH, URG 

A protocol rate is defined as the ratio of total number of TCP, UDP or ICMP packets to the total 

number of IP packets. 

 

The second and final stage of this work is to employ a packet collecting agent and an adaptive 

reasoning agent that analyses network traffic, detects a DDoS attack using a Machine Learning 

algorithm and finally issues an alarm in case of a DDoS attack. The complete set of complied 

rules for the alarming agents is constructed using three ML algorithms – C4.5 [7], CN2 [8] and 



 23 

Bayesian classifier [9]. Figure (2.5) below summarises the performance of the proposed 

algorithm (TRM) for the three different classifiers used. 

 

 
Figure 2. 5 DDoS detection performance in terms of accuracy using the compiled ruled of TRA 

for the C4.5, Bayes and CN2 classifiers 

 

2.4  Classification based techniques 

Machine Learning techniques including both classification and clustering have recently gained 

popularity as defence used against DDoS attacks. Apart from being faster, these methods are 

significantly more accurate than traditional methods used in detecting a DDoS attack. In the 

2016 paper, ‘Analysing Feature Selection and Classification Techniques for DDoS Detection in 

Cloud’ by Opeyemi Osanaiye et al., the authors have analysed different feature selection 

methods and ML classification algorithms to establish a correlation between them. The 

objective of this work is to identify a feature selection method which when coupled with a ML 

algorithm can achieve a higher DDoS detection rate. The KDD Cup 1999 Dataset [10] containing 

41 feature sets is used for experimentation and testing. 
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In the data-processing phase, filter based Feature Selection methods are used to extract the 

most important features from the set of all features. The four Feature Selection methods used 

are Information Gain, Gain Ratio, Chi-Squared and ReliefF. 

IG is measured by a reduction in the uncertainty of identifying the class attribute when the 

value of the feature is unknown [11]. The uncertainty is measured using Entropy. For a 

variable X, Entropy can be calculated using Equation (14). 

 
(14) 

 

Here, P(𝑥𝑖) is the prior probabilities of X. After another attribute Y is observed, the Entropy 

changes and is now given using Equation (15) below. 

 
(15) 

where P(𝑥𝑖|𝑦𝑖) is the posterior probability of X given the values of Y. Information Gain can now 

be defined as the amount by which the Entropy of X decreases with the addition of Y and is 

calculated using Equation (16). 

 
(16) 

The Information Gain (IG) value is now calculated for every feature using Equation (16) and the 

values are then sorted to select the most important features. 

 

The next Feature Selection method implemented was Gain Ratio, which is a slight modification 

of the Information Gain method. Gain Ratio was introduced as a remedy to improve IG 

technique that tends to exhibit a bias towards features with a large diversity value [12] and can 

be calculated using Equation (17). 

 
(17) 
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Here, the Intrinsic Value (x) is -∑
|𝑆𝑖|

|𝑆|
∗  log2

|𝑆𝑗|

|𝑆|
  where |S| is the number of possible values 

feature x can take and |𝑆𝑖| is the actual values taken by feature x. 

 

The third Feature Selection method used is Chi-Squared which is used to test the independence 

of two variables. A high score indicates a strong dependent relationship. Equation (18) shows 

the calculation of Chi-square for a variable. 

 

(18) 

N: The whole dataset 

r: Presence of the feature 

𝑟̃: Absence of the feature 

𝑐𝑖: class 

P(r,𝑐𝑖): Probability that feature r occurs in class 𝑐𝑖 

P(𝑟̃,𝑐𝑖): Probability that feature r does not occur in class 𝑐𝑖 

P(r, 𝑐𝑖̃): Probability that feature r occurs in a class not labelled 𝑐𝑖 

P(𝑟̃, 𝑐𝑖̃): Probability that feature r does not occur in a class not labelled 𝑐𝑖 

P(r): Probability that feature r appears in the dataset 

P(𝑟̃): Probability that feature r does not appear in the dataset 

P(𝑐𝑖): Probability that a dataset is labelled to class 𝑐𝑖 

P(𝑐𝑖̃): Probability that a dataset is not labelled to class 𝑐𝑖 

ReliefF feature selection method evaluates a feature’s worth by continuously sampling 

instances to distinguish between the nearest hit and nearest miss (nearest neighbour from 

same class and from different class) [13]. The attribute evaluator appends a weight to each 

feature according to its ability to distinguish among the different classes. Weights of features 

that exceed the user-defined threshold are selected as key features [14]. The top 14 features 

returned by each of these algorithms are selected for the next classification stage, although it 

is not clear how they came up with the number 14.  
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Finally, different classification algorithms are applied on the sorted list of features and the 

accuracy results are shown in Table (2.1). 

 
Table 2. 1 Detection Accuracy with different classifiers 

 

The time taken to build the different models is shown in Table (2.2). 

 
Table 2. 2 Time to build models 

 
It was therefore concluded that the chi-squared feature selection method and J48 classification 

algorithm shows a high correlation and forms the most efficient pair to detect a DDoS attack. 

 

Another unique ML based approach to detect DDoS attacks was proposed by Zecheng He et al. 

in their work ‘Machine Learning Based DDoS Attack Detection from Source Side in Cloud’. The 

idea behind this approach is to use the statistical information from the cloud server’s 

hypervisor and the information from virtual machines to detect a DDoS attack. This was done 

to prevent the network packets from being sent out to the outside world. Statistical features 
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of various kinds of attacks in the proposed framework, including DDoS attacks-flooding, 

spoofing and brute force attacks are also analysed. 

 

The architecture of the proposed system is shown in Figure (2.6) below where an attacker rents 

multiple virtual machines (VM) and turns them into botnets. To monitor the activity on the 

virtual machines, a Virtual Machine Manager (VMM) stands between the VMs and the routers. 

The information gathered by the VMM from the VMs is fed to a ML engine which is responsible 

for detecting malicious activity. If suspicious behaviour is detected across multiple VMs, it is 

concluded that there might be an ongoing DDoS attack and the network connection of all those 

VMs is cut off. 

 

Figure 2. 6 Architecture of the proposed system (Adopted from [15]) 

 

The VMs are programmed to simulate normal and attack traffic pattern and the data used for 

training the model is collected from the network packages coming in and going out of the 

attacker virtual machine(s) for 9 hours. Four different kinds of attacks are programmed to 

randomly start and end. The performance is measured using Accuracy, confusion matrix 

metrics and the F1-score for 9 classifiers. The results are shown in Table (2.3) below. 
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Table 2. 3 Joint detection results of three virtual machines 

 
In the multiple hosts monitoring experiment, it was shown that all machine learning algorithms 

got better results than in the single host monitoring experiment. The highest 0.9975 F1-Score 

and 99.73% accuracy using SVM was achieved with a linear kernel. Also, four algorithms (SVM 

with Linear and Poly kernels, Decision Tree and Random Forest) achieve accuracy greater than 

99%. 
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Section 3: Network Security 
 

3.1 What is Network Security? 

Security is “the quality or state of being secure—to be free from danger.” [16] In other words, 

security is the absence of threat. Network security also falls under this definition and can 

specifically be defined as the absence of threat in a computer network. It is achieved by 

designing and following a set of policies and rules to protect the integrity of a computer 

network and the data stored or transmitted within that network. An effective network security 

measure should be robust and thwart any threat aimed towards the network. A strong network 

security in place ensures the peace of mind of people within that network and in turn leads to 

a safe work environment. 

 

Enforcers of a secure network aim towards achieving Confidentiality, Integrity and Availability 

(CIA) of a network and systems within that network. The three components of a CIA triad are: 

1. Confidentiality – Protecting information and assets from unauthorised users 

2. Integrity – Ensuring that information and assets is modified by authorised users only 

3. Availability – Ensuring that information and assets is available to authorised users when 

needed 

The CIA triad is discussed in the IT Security Policy document which is the principle document 

for network security and outlines the rules to ensure the security of the assets including 

information of an organisation. Ensuring that the CIA triad is met is often an important step 

towards designing a secure network. 

 

In the next sub-sections, I will discuss about the network security terminology, followed by 

implementing network security in the different layers of an OSI model and finally a summary 

of this chapter.  
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3.2 Network Security Terminology 

Within the security community, some words have specific meanings, whereas other words 

commonly associated with computer security have virtually no meaning [Krawetz 2007, 31]. 

Common security vocabulary [Schneider1999] includes the following: 

Vulnerability: A defect or weakness in the feasibility, design, implementation, 

operation, or maintenance of a system [Krawetz 2007, 31]. No system is immune to 

vulnerabilities but a counter measure must be in place for every threat associated with 

the vulnerabilities. 

Threat: An adversary who is capable and motivated to exploit a vulnerability [Krawetz 

2007, 31]. A threat should always be taken seriously because if a threat translates into 

an attack, it often costs the company in both reputation and finances. 

Attack: The use or exploitation of a vulnerability. This term is neither malicious nor 

benevolent. A bad guy may attack a system, and a good guy may attack a problem. 

[Krawetz 2007, 31]. 

Attacker: The person or process that initiates an attack. This can be synonymous with 

threat [Krawetz 2007, 31]. An attacker exploits the vulnerability of a system and tries 

to target that using the appropriate attack tools and techniques. 

Exploit: The instantiation of a vulnerability; something that can be used for an attack. 

A single vulnerability may lead to multiple exploits, but not every vulnerability may 

have an exploit (e.g., theoretical vulnerabilities) [Krawetz 2007, 31]. 

Target: The person, company, or system that is directly vulnerable and impacted by the 

exploit. Some exploits have multiple impacts, with both primary (main) targets and 

secondary (incidental) targets [Krawetz 2007, 31]. 

Attack vector: The path from an attacker to a target. This includes tools and techniques 

[Krawetz 2007, 31]. Many companies require a high level of security with passwords 

(i.e. requiring people to use lower case, upper case, numeric and special characters), 

making them difficult to remember.  Therefore, many people write their passwords on 

a piece of paper, exposing an alternative attack vector to acquire a password to the 

system (Krawetz 2007, 74). 
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Defender: The person or process that mitigates or prevents an attack [Krawetz 2007, 

31]. Nowadays, many companies have an automated system in place between the 

inside company network and the world-wide web. This system needs to be robust and 

efficient in detecting and thwarting any kind of cyber-attack. 

Compromise: The successful exploitation of a target by an attacker [Krawetz 2007, 31]. 

A compromised system or a network is one which is either taken down by the attacker 

or rendered useless definitely or indefinitely for legitimate users of that network or 

service. 

Risk: A qualitative assessment describing the likelihood of an attacker/threat using an 

exploit to successfully bypass a defender, attack a vulnerability, and compromise a 

system [Krawetz 2007, 31]. Risk analysis should be done at every layer of the network 

architecture and appropriate measures should be in place to avoid any possible attack. 

 

3.3 Implementing Network Security 

 The starting point of network security should be understanding the OSI or “Open System 

Interconnection” model. It is a standard for worldwide communication that defines a 

networking framework for implementing protocols in seven layers [17]. An OSI model breaks 

down the network into easily understood components that can be secured individually [17]. 

Figure (3.1) below shows the seven layers of an OSI model. The information flows from one 

layer to another and each layer implements its own set of protocols to make that transfer 

possible. The information flow starts from the Application layer and flows from layer to layer 

until it reaches the final Physical layer from where it reaches the destination. Upon reaching 

the destination, information flows from the Physical layer to the Application layer to deliver 

the information to the user at the destination. 
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Figure 3. 1 The OSI model 

 
Each layer in the OSI model is independent of the other layers and can only communicate with 

the layer above or below that layer. Although security vulnerabilities can creep in any of these 

layers, but here we will only discuss about the vulnerabilities in the Network Layer and the 

security measures that need to be taken. 

In the book, “Top-Down Network Design” by Priscilla Oppenheimer, she discusses about the 

following steps towards achieving a secure network: 

1. Identify network assets. Network assets can include hosts’ operating systems, 

applications, routers, switches and network data that traverses the network. It is 

important to identify all such assets in the network under consideration and identifying 

the risks in the case of these assets being sabotaged or inappropriately accessed [18]. 

2. Analyze security risks. Risks can range from hostile intruders to untrained users who 

download Internet applications that have viruses. Hostile intruders can steal data, 

change data, and cause service to be denied to legitimate users [18]. 
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3. Analyze security requirements and trade-offs. The security requirements, in general, 

involve the implementation of the CIA triad discussed in section 3.1. The 

Confidentiality, Integrity and Availability of assets should be the baseline security 

requirement for an organisation. Achieving security often involves trade-offs in terms 

of CPU power, network performance, network redundancy, etc. 

4. Develop a security plan. A security plan is a high-level document that proposes what 

an organization is going to do to meet security requirements [18]. The plan is often 

based on the goals of an organisation after analysing the network assets and risks. A 

security plan should reference the network topology and include a list of network 

services that will be provided (for example, FTP, web, email, and so on). This list should 

specify who provides the services, who has access to the services, how access is 

provided, and who administers the services [18]. 

5. Develop a security policy. A security policy is a formal statement of the rules by which 

people who are given access to an organization's technology and information assets 

must abide [18]. A security policy can differ from one organisation to another but often 

has the basic items in addition to the organisation specific items. 

6. Develop security procedures. Security procedures implement security policies. 

Procedures define configuration, login, audit, and maintenance processes. Security 

procedures should be written for end users, network administrators, and security 

administrators. Security procedures should specify how to handle incidents (that is, 

what to do and who to contact if an intrusion is detected) [18]. 

7. Maintain security.  Finally, it is important to make sure that all the above steps are 

enforced by scheduling audits reading audit logs, responding to incidents, reading 

current literature and agency alerts, performing security testing, training security 

administrators, and updating the security plan and policy [18]. 

3.4 Summary 

This chapter summarized the concepts of Network Security including the terms and 

terminologies which will be used in the subsequent chapters. The next chapter discusses about 

the Distributed Denial of Service attacks from the network security point of view. 
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Section 4: Distributed Denial of Service Attacks 
 

4.1 What is a DDoS attack? 

 A Distributed Denial of Service attack is a co-ordinated attack by a malicious user(s) on a 

resource by inundating it with continuous high-rate legitimate request packets in a very short 

duration of time which ultimately takes down the resource and renders it useless for legitimate 

users. It is an attack by multiple sources on a single target system. This makes a DDoS attack 

deadly and difficult to mitigate. To use a popular metaphor, DDoS is considered a weapon of 

mass destruction on the Internet [16]. The simplest type of distributed denial of service (DDoS) 

is a Smurf attack. In this attack, one host generates many echo requests to many hosts across 

the network. Each echo request specifies a forged sender—the target of the DDoS. The result 

is a bombardment of echo replies sent to the target node. A large enough attack can cripple 

large networks due to the high volume of echo replies [19]. 

 

DDoS attacks are the most difficult to defend and unfortunately there are no standard defence 

mechanisms that organisations can deploy to defend against a DDoS attack. This is largely due 

to the fact that DDoS attacks try to mimic regular traffic but increased exponentially. Some of 

the world’s largest DDoS attacks of the past decade are shown in Table (4.1) along with their 

rate of attack. 

Organisation Description When? Peak Traffic 

GitHub Web-based hosting service 
for version control 

February 28, 2018 1.35 Tbps 

GitHub Web-based hosting service 
for version control 

March 25, 2015 Unreported 

BBC British public service 
broadcaster 

December 31, 2015 602 Gbps 

CloudFlare A US based company 
providing network security 

February 11, 2014 ~400 Gbps 
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services including DDoS 
mitigation 

Spamhaus A non-profit organisation to 
track email spammers and 
spam related activity 

March 19, 2013 ~300 Gbps 

Table 4. 1 Biggest DDoS attacks in terms of peak traffic rate 

4.2 Types of DDoS attacks 

The flooding of a target system in a DDoS attack can be done by one of the following ways: 

HTTP Flood.  In this type of attack, the attacker exploits the HTTP GET or POST request 

to attack the server or application. An HTTP Flood uses less bandwidth and is most 

effective when the request packet can force the target to send back maximum 

resources possible. 

UDP Flood.  The attacker floods the target with User Datagram Protocol (UDP) packets 

at random ports of a random host. This forces the victim to constantly check for 

applications listening on those ports but since no applications are found, it responds 

with ‘Destination Unreachable’ packet causing the exhaustion of resources. 

ICMP Flood (Ping). An ICMP flood aims to overwhelm the target with ICMP request 

(ping) packets without waiting for a reply. 

SYN Flood. A SYN Flood attack exploits the three-way handshake protocol of a TCP 

connection. In a three-way handshake, a SYN request is answered by a SYN-ACK from 

the host and finally an ACK from the requester. Attackers continuously send SYN 

requests without responding to the victim’s SYN-ACK or by using spoofed IP addresses 

to send a SYN request. Either way, the handshake remains incomplete and eventually 

exhausts more and more resources at the victim’s. 

Ping of Death. In a ping of death attack, IP protocols are manipulated to send malicious 

packets to the target. Ping of death was popular two decades ago but is not as effective 

as other attacks right now. 

Slowloris. A Slowloris attack is aimed at a web server in which an attacker uses minimal 

resources to attack a system by requesting a connection with the target and as soon as 



 36 

the connection is established, the attacker tries to keep the connection open for as long 

as possible and sends bogus HTTP packets to exhaust the web server. 

NTP Amplification.  In a NTP Amplification attack, the perpetrator uses UDP packets to 

target the publicly available Network Time Protocol server, a protocol used to 

synchronise computer clocks. It is an amplification attack because the query-to-

response ratio is such attacks can be anywhere between 1:20 – 1:200 or even more.  

Zero-day DDoS attacks. “Zero-day” is a term used for all unknown or new attacks. 

These attacks exploit vulnerabilities for which no defence mechanism exists yet. 

 

4.3 Architecture of a DDoS attack 

There are four broad components in a DDoS architecture – Attacker, Controller, Bots or 

zombies and a target. This is shown in Figure (4.1) below. The two components in the middle, 

Controllers and Botnets makes it a distributed attack. The perpetrator of a DDoS attack 

(Attacker) aims to disrupt the services at the Target machine. For this the attacker uses 

controllers (Handlers) to infect many computers (Botnets) to aid the attacker to carry out a 

DDoS attack.  Handlers are computers which issue instructions to the zombies about how or 

when to attack the victim’s servers to cripple it. Botnets can be voluntary but, in most cases, 

botnets have no idea that they are being used to accelerate a DDoS attack. For this reason, 

botnets are also commonly referred as zombies. Upon being infected, the botnets start sending 

bogus requests to the target machine. In some cases, the attacker programs the virus in a way 

that upon reaching the botnets, apart from sending high-rate traffic to the target, botnets also 

infect other systems to make more zombies for the attack. This exponentially increases the 

power of a DDoS attack and has the capability to bring down the victim server in less than a 

few minutes. 

It is almost impossible to track the original source of a DDoS attack because of the presence of 

unsuspecting botnets between the attacker and the target. Also, the botnets use spoofed IP 

addresses to send traffic to the target which makes it difficult to track the botnets in the first 

place. 
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Figure 4. 1 Architecture of a DDoS Attack 

 

4.4 Summary 

This chapter gave an introduction of DDoS attacks with some of the biggest DDoS attacks seen, 

the several types of DDoS attacks and the architecture of a DDoS attack. The next chapter 

discusses the methodology of the proposed DDoS detection tool. 
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Section 5: Methodology 
 

5.1 Dataset 

The KDD Cup 1999 dataset contains a standard set of data to be audited, including a wide 

variety of intrusions simulated in a military network environment. Since 1999, KDD Cup 99 

dataset has been the most wildly used data set for the evaluation of anomaly detection 

methods [20]. There are two versions of this dataset. The full dataset contains around 500 

million packets with 41 features for each packet and categorized into normal or the kind of 

attack present in that packet. The second version, which is 10% of the original dataset, contains 

approximately half a million rows with the same structure as the full dataset. 

Out of the 41 feature sets, 9 features are Basic features of individual TCP connections, 13 are 

Content features within a connection which are suggested by domain knowledge and the 

remaining attributes are Traffic features computed using a two-second time window. The 

description and category of each of these features is shown in Table (5.1) below. Basic features 

encapsulates all attributes that can be extracted from a TCP/IP connection [20]. Traffic 

Features include those that are computed with respect to a window interval and is divided into 

two groups [20]: 

1. “same host” features: Examine only the connections in the past 2 seconds that have 

the same destination host as the current connection, and calculate statistics related to 

protocol behavior, service, etc [20]. 

2. “same service” features: Examine only the connections in the past 2 seconds that have 

the same service as the current connection [20]. 

Feature Name Description Category 

duration length (number of seconds) of the connection  Basic 

protocol_type type of the protocol, e.g. tcp, udp, etc.  Basic 

service network service on the destination, e.g., http, telnet, 
etc.  

Basic 

src_bytes number of data bytes from source to destination  Basic 
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dst_bytes number of data bytes from destination to source  Basic 

flag normal or error status of the connection  Basic 

land 1 if connection is from/to the same host/port; 0 
otherwise  

Basic 

wrong_fragment number of ``wrong'' fragments  Basic 

urgent number of urgent packets  Basic 

hot  number of ``hot'' indicators Content 

num_failed_logins  number of failed login attempts  Content 

logged_in  1 if successfully logged in; 0 otherwise  Content 

num_compromised  number of ``compromised'' conditions  Content 

root_shell  1 if root shell is obtained; 0 otherwise  Content 

su_attempted  1 if ``su root'' command attempted; 0 otherwise  Content 

num_root  number of ``root'' accesses  Content 

num_file_creations number of file creation operations  Content 

num_shells  number of shell prompts  Content 

num_access_files  number of operations on access control files  Content 

num_outbound_cmds number of outbound commands in an ftp session  Content 

is_hot_login  1 if the login belongs to the ``hot'' list; 0 otherwise  Content 

is_guest_login  1 if the login is a ``guest'' login; 0 otherwise  Content 

count  number of connections to the same host as the 
current connection in the past two seconds  

Traffic 

serror_rate  % of connections that have ``SYN'' errors  Traffic 

rerror_rate  % of connections that have ``REJ'' errors  Traffic 
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same_srv_rate  % of connections to the same service  Traffic 

diff_srv_rate  % of connections to different services  Traffic 

srv_count  number of connections to the same service as the 
current connection in the past two seconds  

Traffic 

srv_serror_rate  % of connections that have ``SYN'' errors  Traffic 

srv_rerror_rate  % of connections that have ``REJ'' errors  Traffic 

srv_diff_host_rate  % of connections to different hosts  Traffic 

Table 5. 1 Features of KDD Dataset 

 
Unlike most of the DoS and Probing attacks, the R2L and U2R attacks don’t have any intrusion 

frequent sequential patterns. This is because the DoS and Probing attacks involve many 

connections to some host(s) in a very short period of time; however, the R2L and U2R attacks 

are embedded in the data portions of the packets, and normally involves only a single 

connection [20]. Content features are used to detect such attacks by looking for suspicious 

behaviour in the data portion. Since we are concerned with detecting only DDoS attacks, we 

do not use the Content features and only use the Basic and Traffic features to base our models. 

  

 

Figure 5. 1 Distribution of packets in 10% KDD Dataset 
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5.2 Data Pre-Processing 

Out of the 28 remaining features, protocol type, service and flag had categorical values 

whereas all the other features have numeric values. To be able to apply feature selection in 

the next step to select the most important features, the features with categorical values are 

converted to numeric values. For each such feature, the distinct values are identified for the 

all the entries in that column and replaced with numeric values using simple integer 

assignment from 1 onwards. The reference table for this conversion is shown in Table (5.2) 

below.  

protocol type tcp:1, udp: 2, icmp: 3 

service 

http: 1, smtp: 2, finger: 3, domain_u: 4, auth: 5, telnet: 6, 

ftp: 7, eco_i: 8, ntp_u: 9, ecr_i: 10, other: 11, private: 12, 

pop_3: 13, ftp_data: 14, rje: 15, time: 16, mtp: 17, link: 18, 

remote_job: 19, gopher: 20, ssh: 21, name: 22, whois: 23, 

domain: 24, login: 25, imap4: 26, daytime: 27, ctf: 28, nntp: 

29, shell: 30, IRC: 31, nnsp: 32, http_443: 33, exec: 34, 

printer: 35, efs: 36, courier: 37, uucp: 38, klogin: 39, kshell: 

40, echo: 41, discard: 42, systat: 43, supdup: 44, iso_tsap: 

45, hostnames: 46, csnet_ns: 47, pop_2: 48, sunrpc: 49, 

uucp_path: 50, netbios_ns: 51, netbios_ssn: 52, 

netbios_dgm: 53, sql_net: 55, vmnet: 56, bgp: 57, Z39_50: 

58, ldap: 59, netstat: 60, urh_i: 61, X11: 62, urp_i: 63, 

pm_dump: 64, tftp_u: 65, tim_i: 66, red_i: 67 

flag 
SF: 1, S1: 2, REJ: 3, S2: 4, S0: 5, S3: 6, RSTO: 7, RSTR: 8, 

RSTOS0: 9, OTH: 10, SH: 11 

Table 5. 2 Conversion table for categorical variables to numerical values 

 
As discussed in Section 4.2, there could be different types of DDoS attacks and the class 

variable in the KDD Cup 1999 dataset stores information about the type of attack for each 
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packet. This is irrelevant for this research and therefore the class variable for each packet is 

modified as either “Attack” or “Normal” packet.  Figure (5.1) the number of attack and normal 

packets in the 10% KDD Dataset. 

 

To avoid the influence of features with high values over features with low values, the dataset 

is normalised using min-max normalisation to fall in 0-1 range. 

𝑛𝑖  = 
𝑜𝑖 – min(o)

max(𝑜)−min(𝑜)
  (19) 

Here 𝑜𝑖  is the old value for a feature of a packet, min(o) is the minimum value across all the 

packets for that feature, max(o) is the maximum value across all the packets for that feature 

and 𝑛𝑖  is the new normalised value. After normalization, the dataset falls within a 0-1 range 

and is ready to apply statistical operations which are the basis of any feature selection method.  

In the next sub-section, four different feature selection algorithms are discussed which are 

used to generate a sorted list of features from most important to least important. 

 

5.3 Feature Selection 

5.3.1 Information Gain 

Information Gain (IG) is a common filter-based feature selection technique used in Machine 

Learning for subset selection. Information gain (IG) measures the amount of information in bits 

about the class prediction, if the only information available is the presence of a feature and 

the corresponding class distribution [21]. The main idea behind Information Gain is to measure 

the reduction in uncertainty while detecting a class variable if other feature(s) is known. With 

Information Gain, it is easy to differentiate between important features from non-important 

ones. This simplifies subset selection which in turn speeds up the classification process. The 

uncertainty is measured in entropy for distributions, sample entropy or estimated model 

entropy for datasets [22] where the entropy of a variable X [23] is defined as: 

H(𝑋) = -∑ 𝑃(𝑥𝑖)𝑖 log2(𝑃(𝑥𝑖)) (20) 
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Here, 𝑃(𝑥𝑖) is the values of prior probabilities of variable X when considered independently. 

Now, the entropy of X changes when the value of another variable (let’s say Y) is known 

beforehand and this can be defined as: 

H(𝑋|𝑌) = -∑ 𝑃(𝑦𝑖)𝑗 ∑ 𝑃(𝑥𝑖|𝑦𝑖)𝑖 log2(𝑃(𝑥𝑖|𝑦𝑖)) (21) 

Here, 𝑃(𝑥𝑖|𝑦𝑖) is the posterior probabilities of X given the values of Y. Information Gain is the 

gain in information after the entropy of X decreases upon knowing Y. It is defined as: 

IG(X|Y) = H(X) – H(X|Y) (22) 

The information gain value returned for each feature is shown in Table (5.3) below. 

 

Feature Name Information Gain value Feature Name 
Information Gain 

value 

src_bytes 0.6441664342020751 dst_host_srv_count 0.169537742755309
2 

srv_count  0.3474585661130222 srv_rerror_rate 0.002554314720007
9996 

rerror_rate  0.00131866250338696
92 

dst_host_srv_diff_h
ost_rate 

0.266998162008909
4 

urgent 4.787317054821827e-
05 

dst_host_same_src_
port_rate 

0.383105603321018
95 

dst_host_same_s
rv_rate  

0.15567769993712754 flag 0.062228675998683
87 

duration  0.05289744658954354 dst_host_count 0.291941486157091
03 

srv_serror_rate 0.06612773328520494 protocol_type 0.304065556381793
83 

wrong_fragment  0.00083512423347353
87 

count 0.002790598106334
5298 
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service 0.5709958288855335 land 4.75207351996465e
-05 

serror_rate  0.06231071022063339 same_srv_rate 0.083164732547029
94 

dst_host_rerror_r
ate  

0.00966562350959698
8 

dst_host_diff_srv_ra
te 

0.161989612989255
85 

dst_host_srv_serr
or_rate 

0.07999604826493611 dst_host_srv_rerror
_rate 

0.024392683845502
75 

diff_srv_rate 0.08259260969651527 srv_diff_host_rate 0.157438383015132
58 

dst_bytes 0.5343595652422289 dst_host_serror_rat
e  
 

0.074295058237947
69 

Table 5. 3 Information Gain Values 

 
Upon sorting the features from highest to lowest value where high IG value means more 

important feature and a low value means less importance of a feature towards predicting the 

class variable. 

The feature ranking shown in Table (5.4) below is based on Equations (20-22) and ranks the 

feature based on their IG values. 

Rank Feature Name Rank Feature Name 

1 land 15 diff_srv_rate 

2 urgent 16 same_srv_rate 

3 wrong_fragment 17 dst_host_same_srv_rate 

4 rerror_rate 18 srv_diff_host_rate 

5 srv_rerror_rate 19 dst_host_diff_srv_rate 

6 count 20 dst_host_srv_count 

7 dst_host_rerror_rate 21 dst_host_srv_diff_host_rate 

8 dst_host_srv_rerror_rate 22 dst_host_count 

9 duration 23 protocol_type 
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10 flag 24 srv_count 

11 serror_rate 25 dst_host_same_src_port_rate 

12 srv_serror_rate 26 dst_bytes 

13 dst_host_serror_rate 27 service 

14 dst_host_srv_serror_rate 28 src_bytes 

Table 5. 4 Ranked feature list according to the Information Gain values 

5.3.2 Chi-Squared 

The chi-squared (𝜒2) statistic is used to test the independence of two variables by computing 

a score to measure the extent of independence of these two variables [22]. With respect to 

feature selection, (𝜒2) measures the independence of features with respect to the class [22]. 

(𝜒2) begins with an initial assumption of independence between the features and the class. A 

high (𝜒2) value for a feature is indicative of a strong correlation between the feature and the 

class. Chi-squared [22] is defined as: 

𝜒2(𝑟, 𝑐𝑖) = 
𝑁[𝑃(𝑟,𝑐𝑖)P(𝑟̃,𝑐𝑖̃)−P(r,𝑐𝑖̃)P(𝑟̃,𝑐𝑖)]2

𝑃(𝑟)P(r)P(𝑐𝑖)P(𝑐𝑖̃)
 [23] 

N: The whole dataset 

r: Presence of the feature 

𝑟̃: Absence of the feature 

𝑐𝑖: class 

P(r,𝑐𝑖): Probability that feature r occurs in class 𝑐𝑖 

P(𝑟̃,𝑐𝑖): 
Probability that feature r does not occur in 
class 𝑐𝑖 

P(r, 𝑐𝑖̃): 
Probability that feature r occurs in a class not 
labelled 𝑐𝑖 

P(𝑟̃, 𝑐𝑖̃): 
Probability that feature r does not occur in a 
class not labelled 𝑐𝑖 

P(r): 
Probability that feature r appears in the 
dataset 

P(𝑟̃): 
Probability that feature r does not appear in 
the dataset 

P(𝑐𝑖): Probability that a dataset is labelled to class 𝑐𝑖 
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P(𝑐𝑖̃): 
Probability that a dataset is not labelled to 
class 𝑐𝑖 

 

Like Information Gain, the Chi-Squared statistic is implemented and Table (5.5) shows the chi-

squared values for every feature in our dataset. Again, a higher value means more dependence 

with the class variable and hence more importance. Table (5.6) sorts the features in descending 

order from most important to least important. 

Feature Name Chi-Squared value Feature Name Chi-Squared value 

src_bytes 139785916.64967358 srv_rerror_rate 3370.779298718246 

srv_count 32880138.155221865 dst_host_srv_diff_
host_rate 

84030.81966669411 

rerror_rate 2919.9551572747096 dst_host_same_src
_port_rate 

44829.28024073678 

urgent 2107816.575280261 flag 33838.866274725486 

dst_host_same_srv
_rate 

1828.2455777968153 dst_host_count 3673139.9442167776 

duration 71831510.27078745 protocol_type  51599.73007758231 

srv_serror_rate 21748.8025789898 land 635162.936035931 

wrong_fragment  8363.867767256423 same_srv_rate 6011.5147828457 

service 413748.4809911481 dst_host_diff_srv_
rate 

16767.43578945106 

serror_rate 21679.78240237042 dst_host_srv_rerro
r_rate 

12637.074832932985 

dst_host_rerror_ra
te 

11569.502023477318 count  2677.5778616786006 

dst_host_srv_serro
r_rate 

24599.847492818524 srv_diff_host_rate 55811.621720508316 
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diff_srv_rate 12193.341832957834 dst_bytes 882933994.7439191 

dst_host_srv_coun
t 

115409.27095554316 dst_host_serror_ra
te 

24103.666110168026 
 

Table 5. 5 Chi-Squared values 

 

Rank Feature Name Rank Feature Name 

1 dst_host_same_srv_rate 15 flag 

2 count 16 dst_host_same_src_port_rate 

3 rerror_rate 17 protocol_type 

4 srv_rerror_rate 18 srv_diff_host_rate 

5 same_srv_rate 19 dst_host_srv_diff_host_rate 

6 wrong_fragment 20 dst_host_srv_count 

7 dst_host_rerror_rate 21 service 

8 diff_srv_rate 22 land 

9 dst_host_srv_rerror_rate 23 urgent 

10 dst_host_diff_srv_rate 24 dst_host_count 

11 serror_rate 25 srv_count 

12 srv_serror_rate 26 duration 

13 dst_host_serror_rate 27 src_bytes 

14 dst_host_srv_serror_rate 28 dst_bytes 

Table 5. 6 Ranked feature list according to the Chi-Squared values 

 

5.3.3 Recursive Feature Elimination (RFE) 

The next feature selection technique chosen was the Recursive Feature Elimination (RFE) 

technique. RFE starts with a full set of features and recursively considers smaller and smaller 

features by pruning the least important feature in every step until the required number of 

features is reached. 
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In step 1 of the algorithm, it fits the model to all the features, 28 in our case. The model then 

ranks the importance of each feature in terms of predicting the value of the class variable. 

Every feature is given a score from 1 till the number of features (S1>S2>….>Sn). Now, for each 

subset size 𝑆𝑖 where i varies from 1 till n, the algorithm retains the i most important features 

and re-trains the model using those features. The model performance is re-evaluated and the 

features are ranked again based on this new model. This is done till a stopping condition is 

reached or when i reaches n. The final ranking returned by the algorithm lists the features from 

most important to least important and is afterwards used as an input to the classifiers. The 

pseudo code of the algorithm shown below clearly outlines every step of the RFE algorithm. 

 

1.1 Use the training set to train the model with all features 

1.2 Calculate the model performance 

1.3 Note the feature ranking or importance 

1.4 for each subset size 𝑆𝑖 where i = 1…S do 

1.5       Keep the 𝑆𝑖 most importance features 

1.6       Train the model using 𝑆𝑖 features 

1.7       Calculate the model performance 

1.8       Calculate the feature ranking again 

1.9 end 

1.10 Calculate the performance profile over 𝑆𝑖 

1.11 Determine the appropriate number of features to use 

1.12 Use the RFE model returned by the optimal number of features 𝑆𝑖 

Recursive Feature Elimination Pseudo-code 

 

Recursive Feature Elimination does not consider all the possible subsets of the features but in 

most real-world problems searching over all possible subsets of features is not feasible and in 

those case RFE acts as a good alternative. The RFE algorithm is implemented using the scikit-

learn RFE library and the sorted list of features from most important to least important 

features is shown in Table (5.7) below. 
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Rank Feature Name Rank Feature Name 

1 diff_srv_rate 15 flag 

2 same_srv_rate 16 dst_host_diff_srv_rate 

3 dst_host_srv_serror_rate 17 count 

4 srv_serror_rate 18 service 

5 rerror_rate 19 dst_host_srv_count 

6 srv_rerror_rate 20 srv_count 

7 protocol_type 21 dst_host_rerror_rate 

8 dst_host_serror_rate 22 dst_host_count 

9 wrong_fragment 23 src_bytes 

10 dst_host_same_src_port_rate 24 srv_diff_host_rate 

11 dst_host_srv_diff_host_rate 25 urgent 

12 dst_host_same_srv_rate 26 dst_bytes 

13 dst_host_srv_rerror_rate 27 land 

14 serror_rate 28 duration 

Table 5. 7 Ranked feature list based on Recursive Feature Elimination 

 

5.3.4 Weighted Ranked Feature Selection (WRFS) 

Weighted Ranked Feature Selection (WRFS) is a novel feature selection technique 

implemented for this project and aimed at improving the ranked list returned by a feature 

selection technique. If the important features needed for classification are ranked high in the 

list, the classifier can predict the value of the class variable using relatively less number of 

features and this can help to improve the detection time for a classifier. This is significant in 

any classification problem especially the DDoS detection problem in which the time of 

detection is of utmost importance. In WRFS, for each feature selection technique, a weight is 

assigned to the features based on the rank of that feature in the sorted list returned by that 

algorithm. Then, for every distinct feature, the weights assigned to that feature by all the 

previous three feature selection algorithms are summed to produce the final weight for that 

feature. These weights are used to produce a final ranked list of features.  
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The input of the WRFS algorithm is the sorted list of features from IG, Chi-squared and RFE 

feature selection techniques. In Step 1.3 of the pseudo code below, three empty dictionaries 

are initialised to store the weights of the features. In steps 1.4-1.6, we iterate through each 

distinct feature starting from the first feature till the 28th feature and for each feature, its 

weight is determined based on the rank of that feature in the sorted IG, Chi2 and RFE list. These 

lists are sorted in a way that the most important feature appears first and the least important 

feature appears last. Since we have three weight values corresponding to the three lists, we 

store the weights as the value in the dictionary corresponding to that feature name (key). Now, 

for every feature, we have one additional entry in all the three dictionaries. After we have 28 

values corresponding to every feature in all the three dictionaries, in step 1.7-1.9, we iterate 

through the list of features again and this time, the weights of that feature from all the three 

dictionaries is aggregated to get the final weight value for that feature. This is stored in the 

WRFS_dict dictionary. Finally, in steps 1.10-1.11, the WRFS_dict is sorted based on the values 

and only the keys are then returned as the final list of sorted features using WRFS from most 

important to least important. 

 

1.1 Input: sorted_IG_list, sorted_chi2_list, sorted_RFE_list 

1.2 Output: sorted_WRFS_list 

1.3 Initialise 3 empty dictionaries, IG_dict, Chi2_dict, RFE_dict to store the weights of 

features 

1.4 for each distinct feature 

1.5      Get the rank of that feature from the sorted list and assign it as the weight of  

      that feature in the dictionary, e.g sorted_gain_dict[sorted_gain_list[i]] = i 

1.6 end 

1.7 for each distinct feature 

1.8      Get the weight of that feature from all three dictionaries-IG_dict, Chi2_dict, 

      RFE_dict and sum it up to get the final weight of that feature in WRFS_dict 

1.9 end 
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1.10 Sort the WRFS_dict from highest weight value to lowest weight value 

1.11 Get the keys of the sorted WRFS_dict and return it as sorted_WRFS_list 

Based on the algorithm above, the results are shown in Table (5.8) as the sorted list of features 

returned by WRFS. It was later observed from the classification accuracy results that the 

features returned by WRFS led to high accuracy of DDoS detection using considerably less 

number of features than IG, Chi-squared and RFE. 

 

Rank Feature Name Rank Feature Name 

1 dst_bytes 15 flag 

2 src_bytes 16 serror_rate 

3 srv_count 17 dst_host_rerror_rate 

4 dst_host_count 18 dst_host_serror_rate 

5 service 19 dst_host_srv_serror_rate 

6 duration 20 dst_host_same_srv_rate 

7 srv_diff_host_rate 21 dst_host_srv_rerror_rate 

8 dst_host_srv_count 22 srv_serror_rate 

9 dst_host_srv_diff_host_rate 23 count 

10 dst_host_same_src_port_rate 24 diff_srv_rate 

11 urgent 25 same_srv_rate 

12 land 26 wrong_fragment 

13 protocol_type 27 srv_rerror_rate 

14 dst_host_diff_srv_rate 28 rerror_rate 

Table 5. 8 Ranked feature list based on Weighted Ranked Feature Selection 

 

5.4 Classification 

Naïve Bayes, SVM, Decision Trees and Random Forest are used as the classification algorithms 

to create models used for predicting a DDoS attack in the network. 20-fold cross validation is 

used for all the algorithms except SVM where a 10-fold cross validation is used because of 

reasons discussed in section 6.1. For every classifier, four models are created corresponding to 
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the four different feature selection algorithms discussed in section 5.3. The number of features 

used is different for every model and is optimized based on the accuracy results. The optimized 

models are then stored in pickles which are later used to predict a DDoS attack in a real-time 

network traffic. 

 

5.4.1 Naïve Bayes 

Naïve Bayes is a common classifier used in many Machine Learning problems. It is based on 

Bayes theorem, which helps us to define the probability of an event based on some prior 

knowledge of certain conditions associated with that event. Naïve Bayes classifiers work based 

on the assumption that the features are independent of each other and this is the reason why 

they are called “Naïve” classifiers. 

Bayes' theorem is stated mathematically as the following equation [24]:  

P(𝐴|𝐵) = 
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 [24] 

A and B are some events and P(B) is not 0. P(A|B) is a conditional probability of A given that 

the event B is true. Similarly, P(B|A) is a conditional probability of B given A is true. P(A) and 

P(B) are the independent probabilities of A and B without observing each other. 

From a machine learning perspective, given a problem instance to be classified, represented 

by a vector X = {𝓧𝟏, … , 𝓧𝒏} representing n independent features, Naïve Bayes assigns to this 

instance probabilities 

P ((𝐶𝑘 | 𝒳1, … , 𝒳𝑛)) [25] 

for each of K possible outcomes or classes Ck [25]. Based on Equation (24), we can now write 

equation (25) as: 

P (𝐶𝑘 | 𝑿) = 
P (𝐗 | 𝐶𝑘) P(𝐶𝑘)

𝑃(𝑿)
 [26] 

After transforming Equation (26) based on the assumption that each feature  𝒳i is conditionally 

independent of every other feature  𝒳j, we get Equation (27). 
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[27] 

where ∝ defines proportionality. 

Some of the attributes in the KDD Dataset have continuous values. We use the Gaussian Naïve 

Bayes classifier to account for continuous values. Gaussian Naïve Bayes assumes that the 

values are distributed according to a Gaussian distribution and uses the mean and variance of 

each attribute in each class and is shown in Equation (28). 

 

[28] 

Scikit-learn’s GaussianNB library is used to implement Gaussian Naïve Bayes. The sorted list of 

features (from most important to least important) returned by the feature selection 

techniques is used as input for the Naïve Bayes classifier. Since our aim is to find the minimum 

number of features which can detect a DDoS attack with high accuracy, we run the classifier 

28 times, incrementally adding a feature from the sorted list in every iteration. So, iteration 1 

runs with just 1 feature (the most important feature) and trains the model using 20-fold cross 

validation and returns the accuracy of detection. The second iteration runs with 2 most 

important features and returns the accuracy. The last iteration runs with all the 28 features. 

The accuracy results are shown in section 6. Here is the pseudo code of the classifier: 

1.1 for each feature selection technique 

1.2       for num_features in range(1,28) 

1.3             Import the pre-processed dataset file in a Pandas dataframe 

1.4             Prune the dataframe according to the num_features 

1.5             Train the model using 20-fold cross validation 

1.6             Use the trained model to predict the class variable values for the testing data 

1.7             Return Accuracy 

1.8       end 
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1.9 end 

 

 

5.4.2 SVM for Binary Classification 

Another commonly used Machine Learning classifier to detect a DDoS attack is SVM or Support 

Vector Machines. The aim of SVM is to orientate a hyperplane in such a way as to be as far as 

possible from the closest members of both classes [26]. 

 

Figure 5. 2 Support Vectors (Adopted from [26]) 

 

Referring to Figure (5.2) above, implementing SVM boils down to selecting the variables w 

and b so that our training data can be described by [39]: 

𝑥𝑖 . 𝑤 + 𝑏 ≥  +1   𝑓𝑜𝑟  𝑦𝑖 =  +1 [29] 

𝑥𝑖 . 𝑤 + 𝑏  + 1 ≤  −1  𝑓𝑜𝑟  𝑦𝑖 =  −1 [30] 

𝑑1 is defined as the distance from 𝐻1 to the hyperplane and 𝑑2 from 𝐻2 to it. The hyperplane’s 

equidistance from 𝐻1 and 𝐻2 means that 𝑑1 =  𝑑2 − 𝑎 which is also known as the SVM’s 

margin. To orient the hyperplane to be as far from the Support vectors as possible, this margin 

is maximized using some vector geometry and Quadratic Programming optimization. The final 

equation translates to: 
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and running a QP solver returns 𝛼 whereas Equations 31 and 32 can be used to find W and b. 

 

31 

 

32 

Variables w and b define the separating hyperplane’s optimal orientation and hence the 

Support Vector Machine. 

 

5.4.3 Decision Tree 

To add a diversity of models to test our sorted lists returned by the feature selection methods 

in the previous step, we decided to add a Decision Tree classifier which is one of the widely-

used algorithms in classification and regression problems. A decision tree creates a tree like 

structure where each node of the tree represents a feature, each link represents a decision 

(rule) and each leaf represents a possible outcome. Compared to other classifiers, Decision 

Tree is the easiest to understand and interpret. The basic steps while implementing a Decision 

Tree are: 

1. Identify the best attribute and position it at the root of the tree. 

2. Split the training dataset into subsets in a way that each subset only contains data with 

the same value from an attribute. 

3. Repeat step 1 and 2 until we find the leaf node for each branch of the tree. 

Now, to predict the value of a class variable using a Decision Tree, we start from the root of 

the tree and compare the values stored in the root attribute with the values of the instance’s 

attribute. Based on the results of this comparison, we choose a branch to follow and move on 

to the next node in the tree. This process is repeated until the leaf node is reached with the 

predicted value of the class variable. 
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5.4.4 Random Forest 

The last classifier used to create the models was Radom Forest. A Radom Forest is basically an 

ensemble of many decision trees working together and trained using the bagging method. The 

bagging method is based on an underlying theory that the combination of multiple models 

increases the effectiveness of the resulting model. Radom Forest can be used for both 

classification and regression problems but in our study, we have used it for classification since 

we are dealing with a binary class variable. Figure (5.3) [27] shows a decision tree with two 

trees. The results from the two trees are combined by the ensemble approach employed by 

the Random Forest to produce the result. 

 

Figure 5. 3 Decision Tree with two trees (Adopted from [27]) 

A Random Forest has almost the same hyper parameters as a Decision Tree in addition to the 

hyper parameters of a bagging classifier which controls the ensemble of trees. Instead of 

searching for the best feature while splitting a node, it searches for the best feature among a 

random subset of features. This process creates a wide diversity, which generally results in a 

better model [27]. 
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Section 6: Results and Simulations 
 

6.1 Accuracy Results 

The sorted lists returned by the four classifiers are used to incrementally feed the attributes to 

Naïve Bayes, SVM, Decision Trees and Random Forest classifiers. Through Table (6.1) till Table 

(6.4), we show the accuracy results obtained for every feature selection algorithm. The first 

column, ‘# features’ is the number of features taken from the most important to the least 

important feature for accuracy calculations. The bold value in every column is the one where 

the accuracy reaches the maximum and does not fall after that. The number of features 

corresponding to the bold value is then used to create the model for that classifier using those 

many number of features. For e.g. in Table (6.1) below, if we look at the Naïve Bayes column, 

we find that the bold value is 98.36099847 and the number of features corresponding to that 

value is 24. Using this, we then create a Naïve Bayes model using the top 24 features returned 

by the Information Gain list and use that model to do predictions on real-time network traffic 

with an accuracy of 98.36099847%. 

 

First, the features selected using Information Gain feature selection technique are used as 

input to four classification models – Naïve Bayes, SVM, Decision Tree and Random Forest. The 

accuracy results with Naïve Bayes show an erratic accuracy pattern. The accuracy of detection 

starts with ~76% using only one feature but this is most likely due to underfitting. This is soon 

proved when the input number of features increase and the accuracy starts dropping and drops 

to a low of ~19% before reaching a superficial constant value of ~37% for majority of the input 

sets of features. The highest accuracy achieved using Naïve Bayes is ~98% using 24 most 

important features. With these results, Naïve Bayes when working with the sorted list returned 

by Information Gain cannot be classified as a good classifier as the number of features needed 

to achieve good accuracy is far too many. SVM is known to be an exhaustive classifier and for 

this project, SVM would not converge with the regular 10% KDD dataset, therefore the size of 

the dataset was reduced for SVM to 10,000 packets. SVM performs significantly better than 

Naïve Bayes with a constant accuracy of ~77% before reaching ~99% with the top 23 features. 
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Although SVM performs better than Naïve Bayes but it still uses 23 features which is not a 

significant reduction in the number of features and defeats the purpose of feature selection. 

Decision Tree and Random Forest were implemented next and accuracy results were seen to 

be very close to each other. Both these algorithms out-perform Naïve Bayes and SVM in terms 

of reaching and maintaining a relatively high accuracy percentage with the incremental 

increase of features. The maximum accuracy reached is ~99% with the top 23 features. Table 

(6.1) and Figure (6.1) summarize these results in a table and a line chart which shows the 

accuracy change for all the four algorithms with the increase in number of features used for 

classification. 

 

# Features Naïve Bayes SVM(10k), k=5 Decision Trees Random Forest (10) 

1 76.68390804 77.86001 80.30906492 80.30906492 

2 78.52776052 77.86001 80.30906492 80.30906492 

3 19.94537724 77.86001 80.30906492 80.30906492 

4 19.94537724 77.86001 80.24995799 80.22951348 

5 19.94537724 77.86001 80.34044018 80.33234334 

6 19.94537724 77.86001 80.49104086 80.44225741 

7 19.94537724 77.86001 81.15457654 81.18615398 

8 19.87776864 77.86001 81.87296813 81.86628859 

9 77.03146462 77.86001 84.04898924 84.03380761 

10 33.04903431 77.86001 84.08522207 84.07874457 

11 37.07950146 77.86001 84.19331395 84.16133129 

12 37.10217256 77.86001 84.27994981 84.26051726 

13 37.3215969 77.86001 84.84328413 84.88720933 

14 37.30803459 77.86001 85.24974384 85.24427839 

15 37.09569504 77.86001 86.18492756 86.19079765 

16 41.2115202 77.86001 86.20597924 86.18452259 

17 41.30665804 77.86001 89.88962569 89.89023294 

18 41.32001777 77.86001 93.64083814 93.64306435 

19 41.27811668 77.86001 93.65379313 93.70945842 

20 41.27811666 77.86001 93.92240189 93.99061709 

21 41.42041862 77.86001 97.38981358 97.42280801 

22 41.76696346 56.94247376 97.41511606 97.43090484 

23 45.03464493 99.43001 99.64697869 99.68786778 

24 98.36099847 99.28001 99.6919159 99.72207633 

25 98.40755524 99.28001 99.70689472 99.7710621 

26 96.50886191 99.28001 99.69191579 99.77288412 



 59 

27 95.84632453 99.28001 99.72855358 99.78685105 

28 76.60600997 99.28001 99.78583869 99.81640469 
Table 6. 1 Accuracy (%) results for different classifiers based on the list returned by 

Information Gain feature selection technique 

 

 

Figure 6. 1 Accuracy variation for different classifiers with the number of features used from 
the sorted Information Gain list 

 
When features were selected using Chi-Squared feature selection technique, we observed that 

the number of features needed to reach a good detection accuracy drops to 18 features 

compared to an average of 23 features required to achieve the same accuracy when the 

features were selected using Information Gain. Naïve Bayes performs poorly again and as can 

be seen in Figure (6.2) shows an erratic behaviour with the incremental increase in the number 

of features. Eventually, it reaches a high of ~98% with 25 features but a drop is also observed 

when the input features increase further. SVM shows a steady pattern with the accuracy 

remaining at ~77% until 16 features after which it increases to ~99% for 17 features and stays 

at that point till the end. Decision Tree and Random Forest show a similar pattern again with 
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the accuracy values following a very similar pattern with the incremental increase in the 

number of features. To conclude, top 25, 17, 16 and 16 features are respectively selected for 

Naïve Bayes, SVM, Decision Trees and Random Forest to create the models and are stored in 

pickles to be used in the testing stage. With these results, we observed a significant 

improvement in terms of number of features selected using Chi-Squared Table (6.2) compared 

to Information Gain Table (6.1). 

# Features Naïve Bayes SVM(10k), k=5 Decision Trees 
Random Forest 

(10) 

1 80.30906492 77.86001 85.18435927 85.18435927 

2 80.28639318 77.86001 85.15844946 85.16472445 

3 76.27481497 77.86001 85.81591235 85.80599372 

4 76.27785129 77.86001 85.87947254 85.88028221 

5 34.92709601 77.86001 87.9391047 87.91623117 

6 41.51535503 77.86001 88.12634309 88.11419785 

7 41.56960384 77.86001 88.54879566 88.54636659 

8 41.45361564 77.86001 88.4915105 88.54231815 

9 41.29208372 77.86001 88.71680499 88.80506053 

10 41.18824177 77.86001 88.92873983 88.9078904 

11 41.58822591 77.86001 89.17670473 89.21759332 

12 41.59369138 77.86001 89.24957596 89.2805461 

13 41.56899602 77.86001 89.62243224 89.64753238 

14 41.51677137 77.86001 89.93011067 89.93942206 

15 41.71089269 77.86001 89.94853077 89.91654856 

16 41.65522692 77.76036482 99.39598048 99.36379584 

17 41.69206751 99.67007996 99.49091559 99.4688516 

18 41.70137882 99.68007996 99.47897136 99.48868748 

19 41.72465723 99.68007996 99.57653683 99.64029897 

20 42.72259257 99.69001 99.69495207 99.71053856 

21 42.71287633 99.69001 99.72956585 99.77774225 

22 42.72279496 99.69001 99.71984961 99.7431282 

23 42.70579161 99.69001 99.71843309 99.77753982 

24 46.43256401 99.69001 99.68685522 99.78644647 

25 98.3769896 99.28001 99.75952506 99.7807786 

26 98.38387195 99.28001 99.77632598 99.78604124 

27 77.46225052 99.28001 99.78664889 99.80466432 

28 76.60600997 99.28001 99.7771346 99.8202505 
Table 6. 2 Accuracy (%) results for different classifiers based on the list returned by Chi-

Squared feature selection technique 
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Figure 6. 2 Accuracy variation for different classifiers with the number of features used from 
the sorted Chi-Squared list 

 
Features selected using Recursive Feature Elimination (RFE), used an average of 12 features to 

detect an attack with a high accuracy. Naïve Bayes performed poorly as expected and showed 

erratic results before reaching a high accuracy of ~98% using top 20 features but this does not 

last long as the accuracy drops again to ~76% as the number of features are increased further. 

SVM performs better using RFE as it reaches a high accuracy of ~99% using only 7 features and 

the accuracy does not drop further with the increase in the number of features until all the 

features are fed to the model. Decision Tree and Random Forest also perform better using 

features from RFE as they reach a high accuracy of ~99% using the top 11 features without any 

drop in accuracy as more features are seen. The top 20, 7, 11 and 11 features are respectively 

selected for Naïve Bayes, SVM, Decision Trees and Random Forest to create the models and 

stored in pickles. This is a further improvement in terms of average number of features used 

to achieve high accuracy when compared to the results from Chi-Squared feature selection 

(Table 6.2). 
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# Features Naïve Bayes SVM(10k), k=5 Decision Trees 
Random Forest 

(10) 

1 80.32525768 77.86001 80.53962227 80.54124163 

2 80.91632672 77.86001 80.67908934 80.68374503 

3 41.27265198 77.86001 81.73835546 81.74260631 

4 41.21718919 77.86001 81.92255727 81.92660569 

5 41.21496263 77.86001 82.84073859 82.83810711 

6 41.21273605 77.86001 82.86280247 82.86179037 

7 98.16950959 99.68007996 98.75673245 98.75288645 

8 42.26572981 99.68007996 98.74438488 98.74519455 

9 41.53883513 99.68007996 98.92555082 98.93283792 

10 41.53397702 99.68007996 98.85612337 98.86644684 

11 41.53438186 99.68007996 99.15226234 99.1609666 

12 41.49652914 99.67007996 99.16663489 99.17837527 

13 41.48883715 99.67007996 99.38889269 99.41500492 

14 41.50341156 99.67007996 99.39557257 99.40650321 

15 41.71838224 99.67007996 99.40427662 99.43909302 

16 41.7266815 99.67007996 99.39172656 99.43281797 

17 41.7238476 99.67007996 99.57856078 99.62795136 

18 41.69409171 99.65009495 99.7307809 99.7751107 

19 41.67810048 99.69001 99.76276277 99.77207439 

20 98.38872976 99.28001 99.71236036 99.76600165 

21 98.37010703 99.28001 99.71397949 99.76660904 

22 98.38447917 99.28001 99.76863374 99.78705363 

23 76.3037953 99.28001 99.78118382 99.80425936 

24 76.30318804 99.28001 99.77956447 99.80000859 

25 76.30318804 99.28001 99.7809814 99.82227492 

26 76.39771863 99.28001 99.78624359 99.82106031 

27 76.39771863 99.28001 99.78280241 99.80021098 

28 76.60600997 99.28001 99.78280241 99.82207204 
Table 6. 3 Accuracy (%) results for different classifiers based on the list returned by Recursive 

Feature Elimination feature selection technique 
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Figure 6. 3 Accuracy variation for different classifiers with the number of features used from 
the sorted Recursive Feature Elimination list 

 
Finally, Table (6.4) and Figure (6.4) show the results obtained when the order of features is 

selected using the novel Weighted Ranked Feature Selection (WRFS) algorithm. 

# Features Naïve Bayes SVM(10k), k=5 Decision Trees 
Random Forest 

(10) 

1 80.79143385 99.01021489 96.9942554 96.99992314 

2 16.67607741 99.94001 98.75146827 98.75713602 

3 76.27444422 99.52001 98.80855098 98.75956503 

4 76.2040018 99.42001 99.7983896 99.71134855 

5 76.20056065 99.42001 99.76903835 99.83077662 

6 75.32913865 99.42001 99.76843108 99.81255877 

7 75.32873381 99.42001 99.77086017 99.79515059 

8 76.57686135 99.28001 99.72835175 99.77632542 

9 76.57686135 99.28001 99.73381762 99.78199321 

10 76.57908798 99.28001 99.74940364 99.79697236 

11 76.57908798 99.28001 99.74677218 99.76377536 

12 76.57908798 99.28001 99.75142782 99.80081836 

13 76.5879945 99.28001 99.7404971 99.78138592 

14 76.5879945 99.28001 99.74920115 99.82612093 
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15 76.60277123 99.28001 99.76539468 99.79434087 

16 76.60317607 99.28001 99.75345203 99.78644646 

17 76.60317607 99.28001 99.73806801 99.82106047 

18 76.60479544 99.28001 99.75952541 99.80425952 

19 76.60479544 99.28001 99.75810839 99.80851053 

20 76.60459302 99.28001 99.75102368 99.81377329 

21 76.60459302 99.28001 99.75972777 99.80810542 

22 76.60520028 99.28001 99.74980905 99.81761934 

23 76.60499786 99.28001 99.74373604 99.80405708 

24 76.60499786 99.28001 99.7532498 99.81984593 

25 76.60600997 99.28001 99.73280528 99.84879166 

26 76.60600997 99.28001 99.77895682 99.82591815 

27 76.60600997 99.28001 99.78098059 99.81620224 

28 76.60600997 99.28001 99.75871471 99.81903612 
Table 6. 4 Accuracy (%) results for different classifiers based on the list returned by Weighted 

Ranked Feature Selection technique 

 

 

Figure 6. 4 Accuracy variation for different classifiers with the number of features used from 
the sorted WRFS list 
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The results show that when features are sorted using the WRFS algorithm, we only need the 

top 8 features to detect a DDoS attack using Naïve Bayes with ~76.58% accuracy. This is a 

significant improvement compared to the previous three approaches where the number of 

features required were 24, 25 and 20 to detect an attack using the Naïve Bayes classifier. The 

top 4 features are required to detect an attack with high accuracy using SVM. In the previous 

three approaches, the number of features chosen for classification were 23, 17 and 7 for list of 

features returned by Information Gain, Chi-Squared and RFE respectively. Using the WRFS list, 

only top 4 features again are required to detect an attack using the Decision Tree classifier. 23, 

16, 11 are the number of features chosen for the Decision Tree classifier when the feature 

selection is done using Information Gain, Chi-Squared and RFE respectively. Finally, WRFS also 

performs better when the classification is done using Radom Forest. The accuracy results show 

that we only need the top 5 features from the list returned by WRFS to achieve an accuracy of 

~99.83%, an improvement from 23, 16 and 11 features needed to achieve the same accuracy 

percentage when the feature selection is done using Information Gain, Chi-Squared and RFE 

respectively. 

 

Table (6.5) and Table (6.6) show the precision and recall values and the confusion matrix values 

for all the 16 models created using the optimized number of features from the sorted lists 

returned by each feature selection technique. The optimized number of features is shown 

alongside each classification algorithm based on the accuracy results from before. 

Feature Selection Classification Precision Recall 

Information Gain 

Naïve Bayes (24) 98.186 98.441 

SVM (23) - - 

Decision Tree (23) 99.779 99.733 

Random Forest (23) 99.919 99.906 

Chi-Squared 

Naïve Bayes (25) 97.288 97.944 

SVM (17) - - 

Decision Tree (16) 99.510 99.332 

Random Forest (16) 99.373 99.311 
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RFE 

Naïve Bayes (20) 97.391 97.975 

SVM (7) - - 

Decision Tree (11) 99.169 99.357 

Random Forest (11) 99.243 99.429 

WRFS 

Naïve Bayes (8) 70.984 61.528 

SVM (4) - - 

Decision Tree (4) 99.775 99.807 

Random Forest (5) 99.927 99.428 

Table 6. 5 Precision and Recall values for models created using the optimized number of 
features 

Feature Selection Classification TN FP FN TP 

Information Gain 

Naïve Bayes (24) 8945 136 253 15367 

SVM (23) - - - - 

Decision Tree (23) 9039 42 18 15602 

Random Forest (23) 9057 24 17 15603 

Chi-Squared 

Naïve Bayes (25) 8961 120 436 15184 

SVM (17) - - - - 

Decision Tree (16) 8978 103 27 15593 

Random Forest (16) 8991 90 30 15590 

RFE 

Naïve Bayes (20) 15211 409 130 8951 

SVM (7) - - - - 

Decision Tree (11) 15493 127 44 9037 

Random Forest (11) 15500 120 35 9046 

WRFS 

Naïve Bayes (8) 3672 11948 41 9040 

SVM (4) 1965 35 0 0 

Decision Tree (4) 15588 32 18 9063 

Random Forest (5) 15607 13 4 9077 

Table 6. 6 Confusion Matrix 
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For features sorted using information gain, the confusion matrix values reflect a high 

percentage of True Positive and True Negative values and a very small fraction of False 

Positives and False Negatives. This is true for Naïve Bayes, Decision Trees and Random Forest. 

The confusion matrix values for Decision Tree and Random Forest are observed to be very 

close. This is consistent with the accuracy results of these classifiers as shown in Table (6.3) 

where the variation of accuracy follows closely with the change in the number of features and 

can leads to a conclusion that Decision Tree and Random Forest perform very closely for our 

problem statement and are a good choice of classifier for early detection of a DDoS attack. The 

confusion matrix values corresponding to SVM is left blank because the Scikit-learn’s confusion 

matrix function needs more than one value to unpack and calling that function with SVM 

throws that error. This is because SVM is run only on 10,000 network packets compared to half 

a million packets for Naïve Bayes, Decision Trees and Random Forest and this is not diverse 

enough data for the confusion matrix function and therefore it fails to unpack. 

 

Similarly, when features are sorted using Chi-Squared, the results are quite like the results 

obtained from Information Gain. SVM fails to unpack again and Decision Tree and Random 

Forest show a comparable measure of the confusion matrix values with low FP, FN and high TP 

and TN. When the features sorted using RFE are used for classification by the four classifiers, 

Naïve Bayes shows high TN and relatively less TP compared to the previous two feature 

selection techniques. The values for FP and FN remain low. The metrics for Decision Tree and 

Random Forest again show a similar trend but in the reverse order. This time, the TN are high 

compared to the TP. Finally, features sorted using WRFS perform poorly for Naïve Bayes 

classifier with very high FP and 3672 and 9040 TN and TP respectively. This time SVM unpacks 

but the results returned cannot be used to make any conclusion because the FN and TP are 0. 

This is most likely because of the pruned dataset used for training the SVM model. Decision 

Tree and Random Forest show comparable performance again but with a significant 

improvement in terms of low FP and FN. 
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Based on the confusion matrix, we can say that Random Forest or Decision Tree should be used 

as the classifier if the features are sorted using the WRFS technique. 

 

6.2 Simulations 

To test the proposed model on real-time network traffic, a simulation environment was set-up 

within the University of Calgary network. The proposed application captures real-time network 

traffic and predicts the presence or absence of an attack based on the user-selected model 

through a web application interface. 

 

The set-up consists of a 64-bit, 12GB RAM, Ubuntu machine, a TP-Link AC3150 Gigabit Router, 

MacBook Air Laptop and another 64-bit, 8GB Windows machine to send attack traffic. The 

Router is connected to the University network using a LAN cable and the Ubuntu Machine, 

MacBook Air and Windows Machine is connected to the subnetwork created by the router 

through Ethernet or wirelessly. The set-up is shown in Figure (6.5). This was done to create a 

Virtual Private Network (VPN) to contain the attack simulations within the sub-network. Now, 

each of the three machines are assigned an internal IP address by the router. This is shown in 

Table (6.7). 

 

 

Figure 6. 5 Simulation test-bed setup 
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Host and Bots Assigned IP 

Ubuntu Machine (Host) 192.168.30.100 

MacBook Air (Bot 1) 192.168.30.101 

Windows Machine (Bot 2) 192.168.30.102 

Table 6. 7 Internal IP addresses assigned by the router to the machines used in the simulation 

 
The Ubuntu Machine is the host running the DDoS detection tool whereas the other two 

machines (bots) run a software called Low Orbit Ion Cannon (LOIC) to send UDP/TCP/HTTP 

attack traffic to the Ubuntu Machine. Low Orbit Ion Cannon (LOIC) is an open-

source network stress testing and denial-of-service attack application, written in C#. LOIC was 

initially developed by Praetox Technologies, but was later released into the public domain, 

[28] and now is now hosted on several open source platforms. [29] [30]. LOIC can be used to 

perform both DoS and DDoS attack (depending on the number of people using the software to 

target the same server) on a target by flooding it with TCP, UDP or HTTP packets with the aim 

of disrupting the services. The LOIC application is shown in Figure (6.6). 

 

Figure 6. 6 Low Orbit Ion Cannon (LOIC) application 

 

The DDoS detection application running on the host captures the incoming traffic at 

192.168.30.100 from the socket and processes the packets to extract the 28 features which 

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Stress_testing
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Public_domain
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are consistent with the dataset used to train the models. The incoming packets and packet rate 

is also tracked using Wireshark. The incoming packets after processing are also stored in a 

continuously updating csv file. The proposed application reads from the csv file and uses a 

sliding window technique to make windows of 100 packets each in real-time. Each window is 

pre-processed to convert categorical variables to numeric values and then the window is 

normalized based on the same max-min rule used during training. The next step depends on 

the user-selection from the web-application. 

 

The home page of the web-application is shown in Figure (6.7). The user can select the feature 

selection technique and classification algorithm to use and the application picks the pickle of 

the trained model for this combination. All the models are optimized based on the number of 

features which gives the maximum accuracy results for the selected feature selection 

technique. After the selection is made, the user can click on the ‘Start Capture’ button which 

starts capturing packets in real-time. As discussed above, the sliding windows of 100 packets 

each are formed and normalized. Based on the user selection, the corresponding pickle is 

chosen which starts predicting every packet, for every window. 

 

Figure 6. 7 Homepage of the web-application 

 

Each window is categorized as either an attack window or a normal window based on a pre-

defined threshold of 50 packets. This was done to prevent false positives which can be 
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unusually high in case of a DDoS attack because of the nature of these attacks. If more than 50 

packets in a window are categorised as attack packets, then the entire window is declared as 

an attack window. But having an attack window or two is not a string indication of an attack 

because this could be due to surge traffic as well. Therefore, another threshold is defined which 

is based on the number of windows which needs to be categorized as attack windows for the 

system to declare an attack. This threshold value is based on common trends in DDoS attacks 

over the past 10 years. A typical DDoS attack lasts between 10-20 minutes with an average 

traffic of 200-300 Gbps during that time. Based on this information, the second threshold was 

chosen to be a time-based threshold in which if the windows are categorised as attack windows 

for more than 10 minutes, then the application concludes an attack. The attack statistics in the 

form of a line chart showing attack instances, bar chart showing the number of attack packets 

and normal packets and a pie chart showing the confusion matrix values are shown to the user 

through the web application. 

 

As part of the simulations, attack traffic mixed with normal traffic was sent to the Ubuntu 

machine at 192.168.30.100 running the DDoS detection tool. 12 hours of regular traffic 

followed by 9 hours of attack traffic and again followed by 12 hours of normal traffic was 

simulated. The As part of the attack traffic, the LOIC tool was set to send HTTP packets with 10 

threads at the maximum rate possible. The result of this simulation instance is shown in Figure 

(6.8-6.9). 

 

Figure 6. 8 Attack instances in the 24-hour simulation period 
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Figure 6. 9 Number of attack packets vs normal packets during the simulation time-frame 

 

The x-axis of the line chart shows the incoming window with increasing time and the y-axis 

takes the value 0 in case the window does not have an attack and 1 in case of an attack. We 

can see that during normal activity, the proposed and suggested model predicts normal traffic 

with only a few misclassifications and predictions show a sudden surge in traffic starting from 

packet 150,239 onwards till packet 1,156,982. This was only categorized as attack after 

observing consistent high traffic for 10 consecutive minutes. The line chart drops again from 

packet 1,156,982 onwards. This is consistent with the traffic sent. We can also see through the 

bar chart that there were 5,132,451 incoming attack packets and 2,043,010 normal packets. 

This proves the efficiency and robustness of detecting a DDoS attack using as few attributes as 

possible without compromising in the efficiency of detection.  

 

6.3 Comparison with baseline approaches 

In this section, a comparison study is done by comparing the proposed approach with other 

classification-based DDoS detection techniques. Some of these baseline approaches are also 

discussed in the related work section of this thesis. The comparison is done based on the 
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number of features used by a model to detect a DDoS attack while maintaining a high accuracy 

of detection. The three commonly used datasets used by researchers working on DDoS 

detection are KDD Cup Dataset, CAIDA dataset and DARPA dataset. Each of these datasets have 

different number of attributes based on the level at which information is extracted form a 

network packet. The number of attributes in each of the datasets is shown in Table (6.8). 

Dataset Number of features 

KDD Cup 1999 Dataset [20] 41 

CAIDA DDoS Attack 2007 Dataset [31] 6 

DARPA Intrusion Detection Dataset [32] 6 

Table 6. 8 Number of features in Datasets widely used for DDoS detection 

 
Majority of the researchers chose one of these three datasets to tackle the highly pervasive 

problem of DDoS attacks. The choice of dataset usually depends on the research question and 

the level of information needed because CAIDA provides a very broad overview of a network 

packet such as source IP, destination IP, protocol, etc. whereas KDD Cup dataset provides a 

drill-down view of a packet such as source bytes, urgent packets, duration, etc. 

Classification accuracy is defined as a percentage and is the number of correctly classified 

packets from the total number of packets. It is represented in terms of TP and TN as shown in 

Equation (29). 

Classification Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 % [29] 

Table (6.9) shows comparison of classification accuracy and the number of features used across 

different models using a filter-based feature selection technique and a classifier. Our best 

model which uses the novel WRFS feature selection technique with the Random Forest 

classifier is used for comparison with the baseline approaches. To keep the comparison ground 

fair, we have only used the approaches which use the KDD’99 dataset to build their models. 
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# Approach Classifier 
Number of 

features 
Classification 
Accuracy (%) 

1 Information Gain Random Forest 23 99.68 

2 Chi-Squared Decision Tree 16 99.39 

3 CFS [33] GA 8 76.2 

4 CSE [33] GA 15 75.6 

5 
CFS, CONS and INTERACT 
[34] 

HNB_PKI_INT 7 93.72 

6 
New Medoid Clustering 
Algorithm [35] 

k-Medoid 41 96.38 

7 
Gradual feature removal 
[36] 

Cluster based, Ant 
Colony, SVM 

19 98.62 

8 
Linear correlation based 
FS [37] 

C4.5 17 99.1 

9 EMFFS [38] J48 13 99.67 

10 
Proposed approach using 
WRFS 

Random Forest 5 99.83 

Table 6. 9 Performance comparison on Accuracy and Number of Features for different 
approaches which use the KDD’99 dataset 

 
Upon comparison with similar research on DDoS detection using the KDD’99 dataset, it was 

observed that the proposed approach which uses only 5 features from the sorted list of 

features returned by WRFS is able to detect a DDoS attack with an accuracy of 99.83% which 

is highest amongst all the other approaches. It is also important to note that the accuracy of 

the proposed model does not fall below 99.83% even when the number of features are 
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incrementally increased, unlike some of the models implemented in this research where the 

classification accuracy shows an erratic pattern before reaching a steady value (Figure (6.1-

6.3)). 

 

The three categories of classifiers used for the comparison study are Genetic Algorithms (GA), 

Classification and Clustering-based techniques and we observed that the Genetic Algorithm 

based classifiers implemented in [33] perform poorly and achieve an accuracy of only ~76%, 

which is the lowest amongst all. Clustering based approaches achieve a high accuracy of ~98% 

but this comes at an expense of using more number of features. Finally, classification based 

approaches are seen to perform the best with an average accuracy of ~99% and also using 

relatively less number of features from the dataset. 
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Section 7: Conclusion and Future Work 
 

In this thesis, we proposed an approach to detect a DDoS attack using a Machine Learning 

approach. The proposed approach was also tested on real-time network traffic to corroborate 

the performance of the models to detect a DDoS attack using few number of attributes from 

the network packet. Four different feature selection algorithms were implemented including 

the novel Weighted Ranked Feature Selection (WRFS). The sorted list of features returned by 

each of these algorithms were cross coupled with four classification algorithms. Each classifier 

was trained and tested on every list. Features were incrementally increased starting from 1 till 

28 and accuracy was noted. This allowed us to find out the perfect balance between the 

number of features used and the accuracy of detection of a DDoS attack. The proposed models 

were stored in pickles and tested on real-time network traffic through a simulation 

environment which was set-up within the University of Calgary network. The proposed model 

performed as expected and used only a fraction of the attributes from a network packet to 

detect the simulated DDoS attack with a ~99.8% accuracy of detection. 

 

A comprehensive tool should have a two-fold objective – detection and mitigation of a DDoS 

attack. In the past decade, the power of a DDoS attack has increased exponentially and has 

forced organisations to use third party DDoS detection and mitigation services. Handling a 

DDoS in house is not feasible for an organisation just because of the amount of resources 

required to set-up such a system. Therefore, upon detection of a DDoS attack, the organisation 

re-routes the entire traffic to an external server with a different organisation which is equipped 

with DDoS mitigation capabilities. The job of the mitigation service is to mitigate any attack by 

either distributing the incoming traffic or by dropping malicious packets and allowing the 

regular traffic to flow through. 

 

As part of the future work of this thesis, a mitigation engine is planned which would complete 

our system and can provide a holistic approach towards detecting and mitigating a DDoS 

attack. The existing system would work as-is and detect a DDoS attack but upon detection of 
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an attack, the entire traffic would be re-routed to another application on an external server. 

This application would receive all the packets and try to mitigate the attack by keeping the 

target server up at all times without the disruption of service for legitimate users. This can be 

done by dropping all the packets which have been categorised as attack packets and 

forwarding only the normal packets to the target server. This may cause some delays on the 

server side to serve the request but can defeat the attacker by keeping the server up and 

running. 

 

A feedback loop which would re-train the model as regular intervals is also planned. The new 

incoming traffic will be used to re-train the model on existing and new data and the old pickles 

will be updated by new pickles especially after an attack instance is observed. This will ensure 

that the proposed application can update itself with the change in trends of DDoS attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78 

Bibliography 

 

[1]  M. E. M. Wesam Bhaya, “A Proactive DDoS Attack Detection Approach,” Journal of Next 
Generation Information Technology, pp. 36-47, 2014.  

[2]  A. K. P. Devi, “A Security framework for DDoS Detection in MANETs,” Telecomminication 
and Computing, pp. 325-333, 2013.  

[3]  M. James, “Data Clustering Using Entropy Minimization”.  

[4]  D. K. B. J. K. K. N. Hoque, “Botnet in DDoS Attacks: Trends and Challenges,” IEEE 
Communications Surveys and Tutorials, 2015.  

[5]  H. K. B. R. a. A. T. R. B. Blazek, “A novel approach to detection of denial-of-service attacks 
via adaptive sequential and batch-sequential change-point detection methods,” IEEE 
Systems, MAN, and Cybernetics Information Assurance and Security Workshop, pp. 220-
226, June 2001.  

[6]  R. R. B. İlker Özçelik, “Cusum - entropy: an efficient method for DDoS attack detection,” 
4th International Istanbul Smart Grid Congress and Fair (ICSG), 2016.  

[7]  J. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann Publishers, 1993.  

[8]  P. a. N. T. Clark, “The CN2 Induction Algorithm,” Machine Learning Journal 3(4), pp. 261-
283, 1989.  

[9]  R. S. J. a. C. P. Hanson, Bayesian Classification Theory. Technical Report, 1991.  

[10]  “kddcup99.html,” [Online]. Available: 
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Accessed 15 September 
2017]. 

[11]  N. M. B. Agarwal, “Optimal feature selection for sentiment analysis,” 14th International 
Conference on Computational Linguistics and Intelligent Text Processing, Samos, Greece, 
pp. 13-24, 2013.  

[12]  S. S. A. S. Z. Baig, “GMDH-based networks for intelligent intrusion detection,” Engineering 
Applications of Artificial Intelligence, 26(7), pp. 1731-1740, 2013.  

[13]  A. A. M. J. H. S. M. Moradkhani, “A hybrid algorithm for feature subset selection in high-
dimensional datasets using FICA and IWSSr algorithm,” Applied Soft Computing, pp. 119-
135, 2015.  

[14]  R. P. M. Y. a. N. J. R. Miao, “The dark menace: Characterizing network based attacks in the 
cloud,” ACM Conference on Internet Measurement Conference, pp. 169-182, 2015.  

[15]  T. Z. R. B. L. Zecheng He, “Machine Learning Based DDoS Attack Detection From Source 
Side in Cloud,” 2017 IEEE 4th International Conference on Cyber Security and Cloud 
Computing (CSCloud), 2017.  

[16]  H. M. Michael Whitman, Principles of Information Security, Course Technology; 4 edition, 
2011.  



 79 

[17]  “understanding-security-osi-model-377,” 21 March 2018. [Online]. Available: 
https://www.sans.org/reading-room/whitepapers/protocols/understanding-security-osi-
model-377. 

[18]  P. Oppenheimer, Top-Down Network Design, 3rd Edition, Cisco Press, 2010.  

[19]  N. Krawetz, Introduction to Network Security, Charles River Media, 2007, p. 31. 

[20]  E. B. W. L. a. A. A. G. Mahbod Tavallaee, “A Detailed Analysis of the KDD CUP 99 Data Set,” 
IEEE Symposium on Computational Intelligence in Security and Defense Applications, 2009.  

[21]  G. K. N. V. C. Danny Roobaert, “Information Gain, Correlation and Support Vector 
Machines,” Springer, Studies in Fuzziness and Soft Computing, pp. 463-470, 2006.  

[22]  K.-K. R. C. M. D. Opeyemi Osanaiye, “Analysing Feature Selection and Classification 
Techniques,” Southern Africa Telecommunication Networks and Applications Conference 
(SATNAC), September 2016.  

[23]  H. L. L. Yu, “Feature selection for high-dimensional data: A fast correlation-based filter 
solution,” Twentieth International Conference on Machine Learning (ICML-2003), pp. 856-
863, 2003.  

[24]  A. Stuart and K. Ord, Kendall's Advanced Theory of Statistics, Distribution Theory, Wiley; 6 
edition , 2010.  

[25]  M. N. D. V. S. Murty, Pattern Recognition, An Algorithmic Approach, Springer-Verlag 
London, 2011.  

[26]  T. Fletcher, “Support Vector Machines Explained,” 2008. [Online]. Available: 
https://cling.csd.uwo.ca/cs860/papers/SVM_Explained.pdf. 

[27]  N. Donges, 20 March 2018. [Online]. Available: https://towardsdatascience.com/the-
random-forest-algorithm-d457d499ffcd. 

[28]  Praetox, “Low Orbit Ion Cannon,” 2010.  

[29]  “LOIC | Free Security & Utilities software,” 17 11 2014. [Online].  

[30]  “NewEraCracker/LOIC · GitHub,” 22 11 2013. [Online].  

[31]  “The CAIDA UCSD "DDoS Attack 2007" Dataset,” 15 9 2017. [Online]. Available: 
http://www.caida.org/data/passive/ddos-20070804_dataset.xml. 

[32]  15 9 2017. [Online]. Available: https://www.ll.mit.edu/ideval/data/. 

[33]  P. H. C. L. S Rastegari, “Evolving statistical rulesets for network,” Applied Soft Computing 
33, pp. 348-359, 2015.  

[34]  T. M. S. S. L Koc, “A network intrusion detection system based,” Expert Syst Appl 39(18), p. 
13492–13500, 2012.  

[35]  R. R. a. G. Sahoo, “A new clustering approach for anomaly intrusion detection,” 
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.4, 
No.2, March 2014.  

[36]  K.-K. R. C. H. A. J Peng, “Bit-level n-gram based forensic authorship analysis on social 
media: Identifying individuals from linguistic profiles,” Netw Comput Appl. (Elsevier, 2016 
in press), 2016.  



 80 

[37]  A. H. T. K. S. B. H Eid, “Linear correlation-based feature selection for network intrusion 
detection model,” Proceedings of the 1st International Conference on Advances in Security 
of Information and Communication Networks (SecNet), pp. 240-248, 2013.  

[38]  H. C. K.-K. R. C. A. D. X. a. M. D. Opeyemi Osanaiye, “Ensemble-based multi-filter feature,” 
EURASIP Journal on Wireless Communications and Networking, 2016.  

[39]  M. James, “Data Clustering Using Entropy Minimization”.  

 

 

 
 


