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1 Introduction

Mathematicians since at least Euclid have been interested in finding uniform, simple, reliable pro-

cedures for solving certain mathematical problems. Hilbert, first in his 1900 address at Paris, and

later in 1928 (with Ackermann) in Principles of Mathematical Logic, made this interest explicit

and focussed on the problem of determining the values of certain functions. Matters culminated

in 1936 with Church and Turing independently discovering functions whose values cannot be de-

termined by any uniform, reliable procedure. These results depend crucially on Church’s (re-

spectively, Turing’s) thesis, which states that the functions whose values can be determined with

simple, reliable procedures are just the recursive (respectively, Turing computable) functions. The

central questions surrounding the thesis — is it true? and if so, can it be proved? — involve us

in a bewildering variety of philosophical issues. Questions about the nature of proof, justification,

conceptual analysis, and vagueness are common, and answers to the central questions typically

involve secondary answers to these secondary issues. Thus the central questions confront us with

challenging philosophical puzzles.

However, the central questions are not merely puzzles. Answers to them have deep implications

for the foundations of computer science, cognitive science, and mathematics. Computer science

is chiefly concerned with algorithms and asks: what problems can be solved by algorithms, and

which cannot? Church’s thesis is integral to answering this question for it tells us, at least in part,

about the bounds of algorithmic solvability. A related problem in cognitive science asks how, and

in what respect, human minds are computers? Answers here too rely on Church’s thesis. And,

finally, deep results in mathematics, such as Gödel’s Incompleteness Theorems, rely on Church’s

thesis for their scope and importance. Clearly the central questions are not merely of academic

interest.

That said, I do not intend to answer them; my goals are more modest. I aim to survey some

of the issues involved in certain answers to them, to point out where these answers are misguided,

and, when possible, to suggest improvements. My project, in essence, is one of philosophical path-
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clearing. By better understanding what makes the bad answers bad we can better understand what

is required for the good ones to be good.

We begin in Section 2 with a brief survey of some central concepts. We will start by reviewing

the concept of an algorithm, and will quickly move on to effective calculability. We end Section 2

by properly introducing Church’s thesis and clarifying what it says and what it does not. In Section

3 I introduce the standard view of the thesis, which holds it to be true, but unprovable. In light

of its unprovability some philosophers have suggested that the thesis is an explication or rational

reconstruction. In the latter half of Section 3 I argue that it is not. Finally, in Section 4 I examine in

detail and then argue against the premise of the standard view that effective calculability is vague.

2 Algorithms, Effective Procedures, and Church’s Thesis

This section introduces some of the main concepts with which we will be concerned. We begin with

a general characterization of algorithms and briefly mention the wide variety of known algorithmic

techniques. This leads us to a particular, narrow kind of algorithm called an ‘effective procedure’.

Following this we discuss the epistemologically interesting properties of effective procedures, and

from there we introduce Church’s Thesis. At this point I am more concerned with introducing

ideas than with philosophical rigour. The latter will come later; for now I want to lay out, in broad

strokes, our subject matter.

2.1 Algorithms

The central concept of computability theory is that of an algorithm or procedure: a finite, ordered

set of instructions designed to solve some problem, namely the problem of finding the value of

some function. Often (although not always) algorithms take something as input — a graph, a

number, a string of characters, a database, etc. — and, after a series of operations on that input,

produce something as output. When, for some function f , and for each valid input, an algorithm

eventually ends and produces the correct output we say that the algorithm computes f . As an
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example, consider the problem of adding two integers in decimal notation. The grade-school

procedure is as follows: first, write one integer above the other, lining up corresponding decimal

places in columns; then, add corresponding places and write the result below, carrying overflow

to the next column, until no more columns remain. Given valid input — two integers in decimal

notation — this procedure tells one how to reliably determine their sum, that is, it computes the

value of the function x+ y. Given invalid input — say, a graph — this procedure does not tell us

to do anything at all.

This intuitive characterization of an algorithm is clear enough, but too broad to be particularly

useful. An immediate problem is that it does not specify what kinds of instructions or operations

may occur in the procedure. Indeed, on this account both recipes and driving directions constitute

algorithms. But computability theorists (qua computability theorists) are neither chefs nor chauf-

feurs, so we require further specification of (i) what counts as an instruction (and what does not),

and (ii) what counts as acceptable input. Computer scientists in the last sixty or so years have

investigated a bewildering variety of different algorithmic techniques. Correspondingly there are

wildly divergent conceptions of (i) and (ii) in the literature.

There are, for example, conventional algorithms whose instructions include standard arithmetic

operations and whose input is some (representation of an) integer. Other algorithms take more

sophisticated objects as input, such as graphs, matrices, or even databases or networks. But it

is not essential that we use these instruction sets and these inputs. So, for example, in quantum

algorithms we work with instructions that manipulate qubits, with DNA computation we work on

strings of DNA, and with membrane computing we have instructions for moving molecules across

a cell membrane. And certainly there are many more alternatives than these.

I mention all of these examples only so that we may safely ignore them in what follows. From

here on we will be concerned with a rather narrow kind of procedure called an effective procedure.

Procedures and techniques like those described above are not our subject. This will help to avoid

confusion later when we introduce Church’s thesis.
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2.2 Effective Procedures

Effective procedures constitute a narrow but epistemologically interesting class of algorithms. First

I’ll describe them, then I’ll say what makes them interesting.

Specifying a class of algorithms involves specifying (i) what counts as an instruction, and (ii)

what counts as acceptable input. Starting with (i), an instruction is effective (or mechanical) if:

E1 it does not depend on random or outside factors (i.e. is deterministic);

E2 each instruction can be executed by a human agent with finite resources of time and space;

E3 execution requires no ingenuity or insight on the part of the executor — i.e. each instruction

must be well-defined, definite, and explicit.

Furthermore, if we have a procedure each of whose instructions is effective, plus

E4 the entire procedure can be specified fully and completely in advance,

then we say that the procedure is an effective (or mechanical) procedure.1 More vividly, a pro-

cedure is effective if it can be carried out by an (idealized) human being using only pencil and

paper, given enough time, paper, and pencil. On this account an effective instruction may require

an extraordinary (although still finite) number of resources to execute, but it may not tell one to

consult a die toss, to pick a number between 1 and 100, or to plug away at a problem until one has

an ‘aha’ moment.

Now for (ii). In what follows we restrict focus to effective procedures that determine the

value of number-theoretic functions. Such functions take as input n-tuples of natural numbers

and return natural numbers. A function f is effectively calculable (or effectively computable) if

there is an effective procedure (in the sense of E1 — E4 above) that determines f (x), for any

x. Both historical and pragmatic reasons motivate this restriction. Firstly, computability theory

developed in the first half of the 20th century out of investigations into the properties of certain

1This characterization is standard and is consonant with those found in found in, for instance, Copeland (2015),
Boolos, Burgess, and Jeffrey (2007, p. 23), and Mendelson (1990, p. 225). I have taken some liberties talking in terms
of specific instructions, but this is does not obscure any important points.
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functions of natural numbers. Correspondingly, many of the early results and ideas are stated in

terms of functions of natural numbers. This is not essential — Post (1944), for instance, works

mainly with sets of natural numbers2 — but it is congruent with standard practice and there is no

immediately compelling reason not to follow that practice. Secondly, it is notationally easier to

deal with numerical expressions than with, e.g., graphs or matrices. And besides, there are well-

known ways to express graphs, matrices, and so forth, numerically, so nothing is lost by working

with numerical expressions alone.

So far we have spoken as if effective procedures operate on numbers. But this is misleading.

Numbers are abstract objects,3 hence acausal and non-spatiotemporal, and so cannot be ‘operated’

upon in the usual sense, especially if our operator is an idealized human. Such agents manipulate

finite symbolic configurations on paper or screen. Correspondingly, when we say that effective

procedures operate on numbers we mean that our computing agents operate on finite symbolic

configurations representing those numbers, given some suitable interpretation.4 And when we say

that an effective procedure P determines the value of a function f (or, equivalently, that that f is

effectively calculable), we mean that there is some sequence of symbolic configurations produced

by an agent following P that leads from a symbol denoting x to a symbol denoting f (x).

This last point — that the effectively calculable functions are those whose values are deter-

minable by manipulating finite symbolic configurations — brings out why effectively calculable

functions are epistemologically interesting. If a function is effectively calculable then the task of

determining its values is particularly ‘easy’ — so easy, in fact, that one need only to follow some

simple instructions to do so.5 With simple enough instructions, entities with extremely limited

cognitive capacities — or, as with modern computers, entities with no cognitive capacities at all

— can determine the value of an effectively calculable function. It is this property of effectively

calculable functions, and of effective procedures more generally, that Hilbert, for example, tried to

2And works with coordinate notions such as effective enumerability, instead of effective calculability.
3Nominalists may wish to skip the rest of this paragraph.
4Just what counts as a suitable interpretation is the subject of philosophical disagreement — cf., the discussion in

Rescorla (2007).
5Note that we do not mean ‘easy’ in the complexity-theorist’s sense. On this account we may still require an

exponential amount of time to determine some functions’ value.
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capitalize on in pursuit of his finitist programme.6 Successfully executing this programme involved

solving the ‘decision problem’: the problem of effectively determining whether (the Gödel num-

ber of) an arbitrary sentence of first-order is logic is a theorem. In particular (although extremely

roughly), Hilbert’s idea was to leverage the effectivity of certain inference rules into a solution to

the decision problem. This problem exercised Church in the early-to-mid 1930’s.

2.3 Church’s Thesis

The general question Church tried to address was ‘what are the effectively calculable functions?’

And the main obstacle Church faced in answering this question was a technical one. As Church

saw it, an answer required a precise, formal characterization of the effectively calculable functions.

To see why, consider the decision problem. A formal characterization allows one to diagonalize: in

order to show that the decision problem is unsolvable, one must show that each effective procedure

gives the ‘wrong answer’ for at least one sentence of FOL. And that can be done only if one has

a way to list off the effective procedures. A formal characterization provides such a way. The

problem with effective calculability, as understood by Church and others in the 1930’s, is that it is

informal, and so one cannot make a list of all effective procedures. Thus the informality of effective

calculability stands in the way of a solution to the decision problem, hence the requirement for a

precise, formal characterization.

In virtue of what is effective calculability informal? Church (1936, p. 90) tells us that effective

calculability is a “vague intuitive notion” wanting for a definition. It is an unfortunate feature of

the literature from the ’30s that the conceptions of vagueness and intuitiveness being invoked are

left unexplained. We will spend some time below reconstructing and analyzing these notions in

detail. For now, it suffices to note that the underlying idea seems to be that effective calculability

is informal because vague. Vagueness, for Church, stands in the way of formal characterization.

Church’s solution attempts to sidestep the issue of formally characterizing effective calculability

altogether.

6For more on this see Sieg (1991, Section 1).
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In 1936 Church proposed to define effectivity in terms of recursivity, where a function is re-

cursive if it can be defined from the initial functions plus composition, primitive recursion, and

unbounded minimization (i.e. unbounded search). This proposal was not received favourably.

Post (1936, p. 291), for example, criticized Church for “masking” the identification of the effec-

tively calculable functions with the recursive functions behind a definition. Post interprets Church

as stipulating that the effectively calculable functions are recursive, when that is just the question

at issue. If by ‘define’ Church means mere verbal definition, then Post’s criticism hits its mark.

The pertinent question is just whether all effectively calculable functions are recursive. To define

the problem away misses the point of the question altogether. If instead ‘define’ here means real

definition, then we are left wanting an argument that the two notions are indeed equivalent (in the

sense of extensional equivalence). Of course, Church gives us an argument — the so-called (by

Gandy (1988, p. 77)) ‘set-by-step’ argument. But this argument had problems and did not appear

to convince anyone.7

Despite this, by the time Kleene published his 1952 textbook, Church’s proposal enjoyed

widespread (although not universal) acceptance, bolstered in large part by Turing’s 1936 paper.

Even so, the proposal was called a ‘thesis’ and not a ‘theorem’ precisely due to lingering doubts

about its correctness. Certainly Kleene was comfortable enough with the proposal to use it to de-

rive important technical results. But he was quick to point out that the evidence for the proposal

falls short of decisively showing that the thesis was true. Rather, we are left with the following as

a ‘working hypothesis’ (to use Post’s phrase):

Church’s Thesis. A number theoretic function is effectively calculable if and only if it is

recursive.8

Put extensionally, Church’s thesis tells us that the set of effectively calculable number-theoretic

7The problem: the argument relies on the requirement that each ‘step’ be recursive but fails to motivate this
requirement. For more see Sieg (1997).

8Some historically-minded philosophers (such as Copeland (2015)) call only the left-to-right direction ‘Church’s
thesis’, and the right-to-left direction ‘the converse of Church’s thesis’. A more recent trend calls the entire bicondi-
tional ‘Church’s thesis’. Since the difference is largely immaterial for our purposes, we will follow the more recent
trend.

8



functions is extensionally equivalent to the set of recursive functions.9

There are immediate questions about Church’s thesis. What kind of claim does it make? Is it

true? If so, why? Can it be proved? If so, in what sense of ‘prove’? All of these questions, and

more besides, will occupy us below. For now, however, a clarificatory remark.

Church’s thesis is a claim that the effectively calculable functions are just the recursive func-

tions, and vice versa. It is not the claim that, according to Akl (2005, p. 26), “if a function f can

be computed ‘somehow’ on ‘some model of computation’, then it is always possible to compute f

on a Turing Machine.” This is incorrect because there are models of computation which cannot be

simulated on a Turing machine. Probabilistic algorithms, for example, may include the instruction

‘toss a die’, which requires not a Turing machine but an oracle machine on whose oracle tape is

written a sequence of random digits.10 Call ‘Akl’s thesis’ the claim that any somehow-computable

function is Turing computable (as above). Now, if Akl’s thesis is true, then Church’s thesis is

true.11 But the falsity of Akl’s thesis does not imply the falsity of Church’s thesis. The existence

of a ‘somehow on some computational model’-computable yet non-Turing computable function

does not tell us whether all effectively calculable functions are recursive (or Turing computable).

Church’s thesis is not a claim about what may be calculated ‘somehow’ on ‘some model of com-

putation’ — it is a claim about the comparably narrower notion of effective calculability.

2.4 Summary

An algorithm or procedure is a finite, ordered list of instructions. We generate different kinds

of algorithms through different restrictions on what counts as an instruction. If we require that

instructions be effective, in the sense of E1 — E4, and restrict attention to procedures on natu-

ral numbers, we locate the epistemologically interesting class of effectively calculable functions.

9The equivalence of the recursive functions and the Turing computable functions leads some philosophers to state
Church’s thesis in terms of Turing computability instead of recursive definability. In what follow’s we’ll stick with the
above formulation in terms of recursiveness.

10Ignoring concerns that such algorithms do not compute functions but relations (presumably the die toss may result
in the same input producing two distinct outputs).

11As long as effective procedures count as ‘some model of computation’, which they do.
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Church’s thesis, if it is true, tells us that this class is extensionally equivalent to the class of recur-

sive functions. Of course, it is not clear at this point that Church’s thesis is true. In the next section

we will explore some of these questions in detail. In particular, we will encounter the so-called

‘standard view’ which holds that Church’s thesis is at once true, but unprovable.

3 Explication and the Standard View

The last section introduced Church’s thesis as a claim about the extensional equivalence of the

effectively calculable and the recursive functions. We also identified three main questions worth

answering: is Church’s thesis true? If so, can it be proved? And what kind of claim is it? The

distinctions underlying these questions cut across each other. Taking the first two first, we have the

following options:

(1) Church’s thesis is both true and provable.

(2) Church’s thesis is true but unprovable.

(3) Church’s thesis is false and provable.

(4) Church’s thesis is false and unprovable.

I take it that (3) is inconsistent, at least as long as provability entails truth. And (4) is only as

interesting as the bare question of the truth of Church’s thesis, since falsehood entails unprovability.

And in any event virtually no-one thinks that Church’s thesis is false, so I will not worry about (4)

in what follows.12

So (1) and (2) are the interesting options. What of the third question? If (1) is correct, then

Church’s thesis is something like a (mathematical) theorem. If (2), then it is less clear what it is. For

instance, is it a contingent empirical claim? Or a definition? Or something else entirely? Outlining

these positions gives us some sense of the logical geography surrounding Church’s thesis. As

12Akl (2005) is a counterexample to this trend, but we have already noted that their understanding of Church’s
thesis is (putting it gently) idiosyncratic. Historical skeptics include Bowie (1973) and Kalmár (1959). Bowie tries to
leverage certain supposed intensional features of effective calculability into a construction of a effectively calculable
non-recursive function; Berg and Chihara (1974) respond and show that Bowie’s argument fails. We will encounter
Kalmár’s concerns again in Section 4.
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we will see, all three questions are intimately linked, and it is difficult to answer one without

committing oneself to some answer to the others as well.

In Section 3.1 I introduce the standard stance towards Church’s thesis — the so-called ‘standard

view’. As we will see, the standard view alone does not identify the kind of claim Church’s thesis

makes. Many proponents of the standard view go on to say that Church’s thesis is an explication,

in Carnap’s sense. Section 3.2 outlines this view, and Section 3.3 argues against it.

3.1 The Standard View

The standard view tracks option (2). This is an old view, with roots in Church’s original 1936 paper.

Kleene (1952, Section 62) contains the first comprehensive statement of the view and Folina (1998)

is a prominent recent advocate. It is difficult to overemphasize the standard view’s dominance.

Certainly it was the orthodoxy amongst logicians, mathematicians, and philosophers for much

of the 20th century.13 It is still orthodox amongst computer scientists today. Indeed, a popular

introductory textbook (Linz, 2012, p. 327) states without argument, or even any acknowledgement

that this statement even needs argument, that Church’s thesis is “not provable”. But the standard

view is a substantive position and needs to be argued for, and it is to this argument that we now

turn.

Kleene (1952, p. 317) tells us that “[s]ince our original notion of effective calculability of a

function ... is a somewhat vague intuitive one, the thesis cannot be proved.” Presumably Kleene has

in mind in-principle unprovability. The concern is not that we have not yet discovered a proof of

Church’s thesis, rather, it is that there is no such proof to be found in the first place. To make sense

of Kleene’s remark we need two things: firstly, an account of proof, or in-principle (un)provability,

and secondly an account of ‘vague intuitive’ concepts according to which vague, intuitive concepts

cannot be proved. We’ll take each in turn.

Kleene does not explicitly state the conception of proof he has in mind. Folina (1998), however,

suggests that a broadly Fregean conception of at proof underlies the standard view, and indeed was

13There are exceptions, of course. Bowie (1973) and Kalmár (1959) are two examples.
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the dominant notion of proof in the 1930’s. On this account a

proof is a mathematical argument from premises accepted as true, each of whose rea-

soning steps is a deductive inference, and which could be translated into a formal

proof.14

Here ‘formal proof’ amounts to purely syntactic derivation in a suitable formal system. This con-

ception of proof is modal in that it involves what could (under suitable circumstances) be translated

into a suitable formal proof. This is ‘in-principle’ possibility, since there are mathematical argu-

ments which could not be so translated in actual fact due to restrictions of time or space.15 On this

view even informal arguments may count as proofs, modulo the translation constraint.

Folina does not dispute that there are informal arguments for Church’s thesis and cites Mendelson’s

(1990) argument for the right-to-left direction of Church’s thesis as an example.16 But she insists

that Mendelson’s argument is not a proof. For an informal argument with true premises to fail

to be a proof on Folina’s account it must either (a) be non-deductive, (b) non-mathematical, or

(c) untranslatable into a suitable syntactic derivation. So one of (a) - (c) must fail in order for

Mendelson’s argument to fail to be a proof, for there is no indication that Folina thinks that any of

Mendelson’s premises are false.

It is not clear whether Folina thinks that Mendelson’s argument is deductively sound or not. On

a wide enough conception of deduction, e.g., necessary truth-preservation, plausibly the argument

is deductively sound. On narrower conceptions perhaps not. Presumably Folina does not want to

build syntactic derivability directly into the notion of deductive inference; otherwise why explicitly

mention the latter in the definition of proof? So I take it that if Mendelson’s argument is not a

proof, it is not in virtue of failing to be deductively sound. So either it is non-mathematical or

untranslatable. The answer, it turns out, is a little of both.
14Folina (1998, p. 312).
15Say, a proof of an extraordinarily complex theorem of sentential logic which has one unique atomic sentence for

each atom in the universe. I have no idea what such a theorem would look like, but such a theorem surely exists.
16Briefly: (1) the initial functions are clearly effectively calculable; (2) composition and recursion preserve effective

calculability; so (3) every recursive function is effectively calculable.
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Effective calculability is not a wholly mathematical property — it involves, in part, spatio-

temporal considerations about what can be written down with pencil and paper and psychological

considerations about what can be done without insight or ingenuity. And given that effective

calculability is not wholly mathematical, the concern becomes that it cannot be suitably represented

in an appropriate formal system. As Shapiro (2013, p. 284) puts it, for Church and Kleene (and

Folina) “there just is no hope of rigorously proving things when we are dealing with the messy

world of space, time, and human psychology.” Of course, that does not prevent one from trying.

Gandy (1988) and Sieg (2008) are two examples. Such systems need the resources to not only talk

about functions of natural numbers but also (descriptions of) physical processes. Sieg and Gandy

achieve this by including in their system an infinite set of ‘atoms’, meant to represent basic physical

parts (of computing machines). But by the time we introduce physical properties and objects, or

even representations thereof, it is doubtful whether we’re left with a formal system, in the sense

required by Folina’s conception of proof, at all.

A second and related concern (although one less emphasized by Folina) is that effective calcu-

lability is vague. How does one go about proving that a precise mathematical notion is extension-

ally equivalent to a fuzzy and at least partly non-mathematical notion? If effective calculability is

vague, then proving the thesis “would be like trying to prove that an american philosopher is rich if

and only if she has a net worth of at least $783,299.45.”17 Shapiro (2013) locates as the source of

the vagueness the idealizations that go into the notion of an idealized human calculator.18 Suffice

it to say that whatever the source of vagueness turns out to be (if there is any), Church and Kleene

certainly thought that effective calculability was vague, and that its vagueness stood in the way of

a proof of Church’s thesis.

Thus the unprovability of Church’s thesis results from two claims. First, on the one hand, is

the claim that proof is in-principle formal syntactic derivation. Second, on the other, is the claim

that no such syntactic derivation can be had for Church’s thesis, because effective calculability

involves vague, non-mathematical notions. Once we move from the realm of mathematics to the

17Shapiro (2015, p. 284).
18More on which in Section 4.
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realm of effective procedures we move beyond the ambit of rigorous mathematical demonstration,

and hence beyond the ambit of what can be proved.

Despite all of this, the standard view also holds that Church’s thesis is true. This amounts to

the claim that of the set of effectively calculable functions and the set of recursive functions are ex-

tensionally equivalent. Correspondingly it is false if there are non-effectively calculable recursive

functions or if there are non-recursive effectively calculable functions, and true otherwise. So the

standard view holds that the effectively calculable functions and the recursive functions are exten-

sionally equivalent. It is important to be clear about what this entails. Firstly, it is generally agreed

that the set of recursive functions is precise and determinate — every object is either in the set or

not, and there are no borderline cases. But to hold that the effectively calculable functions are co-

extensive with the recursive functions one must hold that the set of effectively calculable functions

is similarly precise and determinate. For if not — that is, if there are borderline cases of effectively

calculable functions (but not of recursively definable functions) — the two sets would not be iden-

tical. Consequently, proponents of the standard view must hold that despite the vagueness of the

notion of effectivity, the set of effectively calculable functions is precise and determinate.19

If Church’s thesis cannot be proved, what evidence is marshalled in its favour? Advocates

cite quasi-empirical evidence that seems to count in favour of Church’s thesis. Firstly, despite ex-

tensive investigation, no effectively calculable non-recursive functions have been discovered, and

moreover many effective procedures (such as abacus calculation) have been shown to be recursive.

Secondly, all attempts to formally capture effective calculability produce methods that pick out the

same class of functions. For instance, the recursive functions, Turing-computable functions, and

λ-definable functions are all equivalent. Finally, proponents point to Turing’s analysis of effective

computation as capturing the essence of effectivity. However they do not think this that this last

point provides one with a proof of Church’s thesis.20

In holding that Church’s thesis is true but unprovable the standard view does not commit itself

19Incidentally, this means that any vagueness in the concept of effective calculability, if there be such, must be
epistemic.

20See Kleene (1952) for a catalog of similar arguments.
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to a particular view about the nature of Church’s thesis. Kleene (1952, p. 318) notices this and

remarks that the thesis “may be considered a hypothesis about the intuitive notion of effective

calculability, or a mathematical definition of effective calculability.” The general point that Kleene

picks up on here is that it is at least prima facie consistent with the standard view that Church’s

thesis be an (empirical) hypothesis, or a definition, or even something else entirely. The point is

that the standard view still owes us an account of the nature of Church’s thesis. Next we examine

such an account.

3.2 Explication and Explicationism

Among those who accept the standard view, some think that Church’s thesis is a “rational recon-

struction, in the sense of Rudolf Carnap and Carl Hempel.”21 A more recent trend in this vein calls

Church’s thesis an explication, again in Carnap’s sense. Murawski and Woleǹski (2006) are the

foremost proponents of this latter view. Smith (2007) and Black (2000) both think that explication

is a plausible account of Church’s thesis, even though both officially take the stronger stance that

Church’s thesis is provable. For ease of reference, we call those who adopt the view that Church’s

thesis is an explication ‘explicationists,’ and the view itself ‘explicationism.’ Explicationism is

more often suggested than argued for (as in Smith (2007)), and even Murawski and Woleǹski

(2006)’s treatment is lamentably brief. Indeed, these philosophers seem to take the suggestion that

Church’s thesis is an explication as largely unproblematic — so unproblematic, in fact, that they

neglect to state clearly what explication consists in. So, before we examine what explicationism

has to say about Church’s thesis we will first look at Carnap’s original statement of the process of

explication.

On Carnap’s view, explication (or ‘conceptual explanation’) is the process of transforming

a given more or less inexact concept into an exact one or, rather, in replacing the first

by the second. We call the given concept (or the term used for it) the explicandum,

and the exact concept proposed to take the place of the first (or the term proposed for

21Mendelson (1990, p. 229). See also Rogers (1967, p. 20).

15



it) the explicatum.22

The explicandum “may belong to everyday language, or to a previous stage in the development

of scientific language,” whereas the explicatum must be given in exact terms, with “explicit rules

for its use,” and is often a part of a “system of scientific either logicomathematical or empirical

concepts.”23 Importantly, explication is not analysis, and instead is closer to Quine’s notion of

regimentation.24 Carnap’s concern with informal, prescientific concepts is that they are imprecise.

In the best case, an imprecise concept leads to unclear truth-conditions; in the worst case, paradox.

In order to avoid these difficulties we require a (more) precise concept: the explicatum. A suitably

chosen explicatum avoids paradox and facilitates clear, precise truth-conditions.25

As an initial example we can consider an explication of ‘warmth’ in terms of ‘temperature’.26

Explication is required because statements made in terms of ‘warmth’, such as ‘the kettle is warm’,

have imprecise truth-conditions. Foremost, in this case, is the problem of subjectivity: what is

warm to one person is not necessarily warm to another. Moreover, attempts to circumvent this

subjectivity seem to fail. The requirement that in order for ‘the kettle is warm’ to be true, the kettle

must feel warm to all possible observers is clearly too stringent, while the requirement that it feel

warm to only one is too lenient. With this in mind, rather than muck about with the application

conditions of the concept of warmth,27 Carnap suggests that we avoid ‘warmth’ altogether by

explicating “warmth” in terms of ‘temperature’. There are objective and well-defined procedures

to determine an object’s temperature (just use a well-calibrated thermometer), and consequently

statements like ‘the kettle is 45◦C’ have clear and precise truth-conditions.

In this example we explicated ‘warmth’ by ‘temperature’ because the former has imprecise

applicability conditions while the latter does not. In doing so we implicitly appealed to a general

criterion indicating when a concept does or does not have imprecise applicability conditions, and

correspondingly when sentences in which the concept occurs have (or do not have) imprecise
22(1950, p. 3)
23Carnap (1950, p. 3).
24As Quine (1964, p. 258) notes, in explication we do not “expose hidden meanings,” but instead “supply lacks.”
25At least, if claims made with the explicatum are imprecise, it is not by virtue of the explicatum.
26The example is originally Carnap’s, see (1950, p. 12 — 13).
27Or the truth-conditions of sentences which involve the concept of warmth.
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truth-conditions. Next we will make the criterion explicit. Note, though, that the criterion must tell

us when a concept has imprecise applicability conditions (and so is a candidate for explication),

but it need not tell us why. There are many reasons why a concept’s applicability conditions

are imprecise — due to vagueness or underspecificity, for example — but our criterion is not

concerned with analyzing those reasons.28 Now, unfortunately Carnap does not explicitly state

the criterion. But we can cull the criterion out by examining both the above example and the

applicability conditions of suitable explicata.

In the case of ‘warmth’, Carnap’s concern is that the concept is (partly) subjective.29 This

means that there is no objective, reliable method to determine when an object is warm or not.30

‘Temperature’ rectifies this problem because it is a concept for which such methods do exist. More

generally, we already noted that Carnap (1950, p. 3) requires the explicatum to have “explicit

rules for its use”. I take this to mean that the explicatum must have explicit application conditions.

And one plausible way to have explicit application conditions is to have an objective, reliable

method to determine whether or not the concept applies. This all suggests the following sufficient

condition for imprecise application conditions: a concept has imprecise application conditions if

there is no objective, reliable method to determine if that concept applies to a given object.31 And

consequently a sentence has imprecise truth-conditions if there is no objective, reliable method

to determine the sentence’s truth-value. So on Carnap’s account, a concept requires explication

whenever there is no objective, reliable method to determine either its application conditions or the

truth-value of statements which use that concept.

We also need to make explicit the principle in virtue of which we replace talk of warmth

with talk of temperature in the example. By adopting ‘temperature’ as an explication of ‘warmth’

we avoided the the notion of warmth by substituting claims about temperature for claims about

28Put another way, the criterion is not an analysis, but an indicator, of imprecise applicability conditions.
29It might be objected that subjective concepts are not imprecise, but context-dependent, and in particular dependent

upon the context of a particular subject’s thoughts, feelings, beliefs, etc. This is probably correct, but largely immaterial
to the point being made here.

30At least according to Carnap. Note that for him the instruction ‘just touch it’ does not constitute an appropriate
method for reasons outlined in the last paragraph.

31Given Carnap’s verificationist predilections it is not surprising that this condition looks like the verification crite-
rion, though the present condition in question is not a condition on a statement’s meaning, just its preciseness.
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warmth. Carnap (1950, p. 3) writes that explication involves “replacing” the explicandum by the

explicatum and he appears to mean this quite literally. So, in general, to adopt a concept c2 as an

explicatum of some concept c1 is to adopt a rule according to which we replace talk of c1 with talk

of c2.32 More precisely, let t1 and t2 be predicates that express concepts c1 and c2, respectively.

Then to adopt c2 as an explication of c1, is to adopt an instance of the following rule-schema:33

Replacement Rule (RR). Replace expressions φ which (a) contain the predicate t1, and (b)

whose truth-conditions are imprecise due to the presence of t1, with the expression ψ in

which all occurrences of t1 are replaced by t2 (while respecting local grammar).

Instances of RR are pragmatic rules that tells us how to swap the explicandum for the explicatum.

In order to generate particular rules, replace φ and ψ with the explicandum and explicatum, respec-

tively. For example, in the example we took as the explicandum the predicate ‘... is warm’ and as

the explicatum the predicate ‘... is 45◦C.’ It was in virtue of an appropriate instance of RR that we

transformed the statement ‘the kettle is warm’ into the statement ‘the kettle is 45◦C.’34 Obviously

not all sentences containing ‘... is warm’ are this grammatically simple, but the reminder to respect

local grammar handles these details.35

As I’ve cast it, instances of the replacement rule make up the conceptual core of explication.

These instances — being pragmatic rules — are not truth-apt; they cannot be correct or incor-

rect. In this respect explications are unlike ordinary scientific or logical statements, and instead

of (in)correctness, Carnap suggests that we should instead assess the (un)satisfactoriness of a pro-

posed explication. There are four criteria governing the satisfactoriness of a proposed explicatum.

Carnap requires that the explicatum be (i) similar to the explicandum; (ii) more precise than the

explicandum; (iii) fruitful; and (iv) simple.36 All of these but (i) are straightforward to understand.

32Carnap (1950, 1963), Carus (2007, p. 279-280), Maher (2007), Murawski and Woleǹski (2006, p.322).
33The schema below is my own invention, but it seems to capture the core of Carnap’s idea.
34Likely the best choice of explicatum here is the two-place predicate ‘... is — ◦C’. Our example predicate is just

like this one, but with the second parameter already filled.
35To be sure, certain sentences may require some ‘preprocessing’ in order to preserve grammaticality after replacing

explicatum for explicandum. And spelling out just how this should work in detail is an important task. But it is not
our task, so I mention it only so that I may not worry about it in what follows.

36Carnap (1950, p. 5-8).
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(i) requires that the extension of the explicatum intersect with the extension of the explicandum,

but the intersection need not be exact — some slippage around the edges is permitted. For instance,

the concept fish37 at one point included whales in its extension. Carnap notes that the scientific

concept pisces38 is an appropriate explicatum for fish, even though some fish (namely whales) are

not pisces, because pisces is much more fruitful than fish.

This last point highlights that all of the criteria are defeasible, in the sense that no criterion

outweighs the others in all circumstances. Rather, when faced with multiple possible explicata

for a given explicandum, we pick the ‘best’ explicatum by weighing the relative strengths of each

criterion for each explicatum against each other. So, for instance, in some circumstances a simpler

explicatum is preferable to a more fruitful one, while in others the converse is true. And in the

kettle-case, ‘... is such-and-such a temperature’ is a more fruitful concept than ‘... is warm’,

because the former leads to more important generalizations. With the former we can state that

water boils at 100◦C at sea level, whereas with the latter alone we can only state that water boils

when it hurts to touch.39

Briefly summing up: we require explication when the presence of a concept leads to impre-

cise truth-conditions, and a statement’s truth-conditions are imprecise when there is no objective,

reliable method to determine whether that statement is true. We pick a concept as an explicatum

according to its similarity, exactness/preciseness, fruitfulness, and simplicity, and once we have

chosen a suitable explicatum we invoke an instance of RR in order to replace the explicandum

with the explicatum. Instances of RR are not truth-evaluable claims, but are pragmatic rules gov-

erning which concepts one allows into their theory.

The suggestion, then, that Church’s thesis is an explication amounts to a proposal to adopt

recursiveness as an explication of effective calculability. This involves adopting an instance of

RR according to which the predicate ‘... is recursive’ replaces the predicate ‘... is effectively cal-

culable’ because the latter has imprecise application conditions, and hence sentences in which it

37In Carnap’s time, at least.
38roughly closer to our modern phylogenetic characterization
39Or something along those lines.
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occurs have imprecise truth-conditions. Accordingly the biconditional claim ‘ f is effectively cal-

culable iff f is recursive’ has been replaced by an instance of the pragmatic rule RR. This instance

instantiates ‘t1’ with ‘... is effectively calculable’ and ‘t2’ with ‘... is recursive’.40 Additionally,

the satisfactoriness of ‘... is recursive’ as an explicatum is to be judged according to its simplicity,

fruitfulness, similarity. And explicationists such as Murawski and Woleǹski (2006, p. 322) think

that ‘... is recursive’ straightforwardly satisfies all four of these criteria.

It is clear even at this point that working out the details of explicationism exposes a conflict

with the standard view. For one, the standard view holds that Church’s thesis is true, whereas

explications — as instances of the replacement rule — are not even truth-apt, and hence neither is

Church’s thesis-as-explication. Of course, an explicationist may be comfortable with this, as they

still can characterize ‘... is recursive’ as a satisfactory explicatum, even if it turns out that Church’s

thesis is truth-valueless. Secondly, on the standard view, Church’s thesis is a claim in the realm of

reference — it is a claim about the extensional equivalence of two sets. Not so on explicationism.

Rather, Church’s thesis-as-explication is a pragmatic language rule, governing which terms may or

may not occur in one’s theory of computability. The point I want to emphasize here is that to adopt

Church’s thesis as an explication is already to abandon the two core commitments of the standard

view. This point apparently escaped the notice of the philosophers I mentioned at the beginning of

this section. Of course, this does not show that explicationism is incorrect; merely that it is at odds

with the standard view. It may still be that explicationism, all things considered, is the way to go.

However, as I will argue in the next section, there are good reasons to think that explicationism is

not the way to go, and indeed is headed in the wrong direction entirely.

3.3 A Problem for Explicationism

On the standard view, Church’s thesis’ primary virtue is that it allows one to derive uncomputability

results. Uncomputability results tell us about the general non-existence of effective procedures for

40To keep things simple, in what follows I will refer to both the rule-schema and its instances with ‘RR’.
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determining the values of some function.41 To show that some function is uncomputable it is

sufficient to show that it is not effectively calculable. Consequently, uncomputability results are

statements that some function or class of functions is not effectively calculable, which is to say

that there is no finite, predetermined set of instructions which can be followed without insight by

an idealized human agent to determine f (x), for any x and f .

Deriving uncomputability results on the standard view is straightforward and relies on the

left-to-right direction of Church’s thesis. Recall that this direction states that if a function is ef-

fectively calculable, then it is recursive. Taking the contrapositive, we have that if a function

is non-recursive, then it is not effectively calculable. It follows that if one can show that some

function f is not recursive, f is not effectively calculable. This use of the thesis is common and

important enough that it is has a name (actually, a few): Smith (2007, p. 277) calls this the inter-

pretive use of the thesis and Odifreddi (1992, p. 103) revealingly calls this the essential use. Note

that it is by virtue of treating Church’s thesis being truth-apt that such results can be derived. For

this means that standard rules of inference can be applied to Church’s thesis to derive claims about

uncomputability.

The essential/interpretive use of the thesis highlights its theoretical importance. A central goal

of computability theory is to discover functions whose values can be determined by purely me-

chanical means, and those whose values cannot. Church’s thesis facilitates this by providing a

bridge between claims about non-recursive functions and claims about non-effectively calculable

functions. Putting the point more metaphorically, Church’s thesis allows us to move from claims

about abstract functions to claims about (idealized) physical processes and is the point at which

the formal apparatus of computability theory ‘hooks into’ the world of concrete computation.42

Uncomputability results are important enough that an account of the nature and status of

Church’s thesis that prevents one from deriving them is not an account worth countenancing. That

is, we have a general constraint on the feasibility of any account of the nature and fit of Church’s

41Also relevant here are undecidability results, but we can treat these as a degenerate case of absolute uncomputabil-
ity for functions whose range is {0, 1}.

42Of course, Church and Turing were not concerned with the capabilities of computers as we know them, but with
the abilities of idealized human agents.
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thesis:

CON. An account of the nature of Church’s thesis is satisfactory only if it preserves the

ability to derive absolute uncomputability results.

If one abandons absolute uncomputability, one must abandon the negative solution to the

Entscheidungsproblem, the Halting Problem, and numerous other important results. Since these

results are important and widely accepted, it is a strike against any theory that advocates losing

them.

Returning now to explicationism, the main problem facing the explicationist is that their ac-

count of the nature and status of the thesis does not satisfy CON. The argument for this claim will

occupy us below. The upshot of the discussion will be to make clear that explicationism is not a

viable account of the nature of Church’s thesis. What is surprising about this is not so much that

explicationism is defective, but that proponents of explicationism think that their view is entirely

capable of deriving absolute uncomputability results. For instance, Smith (2007, p. 324) remarks

that “accepting the Thesis in a modest spirit [i.e. as an explication] is quite enough for our pur-

poses,” namely the purpose of deriving absolute uncomputability results. Unfortunately for Smith,

this is not so: one cannot both adopt Church’s thesis as an explication and derive uncomputability

results.

Next I will argue that there are functions believed to be not effectively calculable, but whose

non-effective calculability cannot be derived on the explicationist’s account. While I will discuss

only one particular non-effectively calculable function, the remarks here generalize. If we can

show that the explicationist cannot derive the non-effective calculability of an uncontroversially

non-effectively calculable function, we can show by a symmetrical argument that the explication-

ist cannot derive the non-effective calculability of any known non-effectively calculable function.

This is sufficient to show that the explicationist cannot satisfy CON, and hence is sufficient evi-

dence that explicationism should be abandoned. In particular, we will show that the explicationist
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cannot prove that the decision function:

d(n) =


1 if n is a code for a theorem of first-order logic.

0 otherwise

is not effectively calculable, even though d is widely thought to be not effectively calculable. For

our purposes the only essential property of d is that it is not effectively calculable; I choose d

simply because it is one of the better known non-effectively calculable functions. The important

point is that what goes for d goes for any old non-effectively calculable function.

What is required for the explicationist to prove that d is not effectively calculable? Minimally,

the explicationist must be able to state the claim A: ‘d is not effectively calculable’. It is in

general a necessary condition on proving that p that one be able to state that p. The problem the

explicationist faces is that they cannot even state A, and hence do not have a hope of proving A.

This follows from the explicationist’s replacement of Church’s thesis as a biconditional with an

instance RR. Recall that according to this rule expressions φ which (a) contain the predicate ‘...

is effectively calculable’, and (b) whose truth-conditions are imprecise owing to the presence of

‘... is effectively calculable’, are replaced with expression ψ which are just like φ, except ‘ ... is

effectively calculable’ is replaced with ‘... is recursive’. What we need to show, then, is that both

(a) and (b) hold for A.

Clearly (a) holds, because A is equivalent to ‘it is not the case that d is effectively calcula-

ble’, which plainly contains the predicate ‘... is effectively calculable’. Can A’s truth value be

precisely determined? That is, is there an objective and reliable method to determine whether d is

effectively calculable? From the explicationist’s perspective, there is not. Recall the definition of

effective calculability introduced in section 1. According to that definition a function is effectively

calculable just in case each value at a given input can be discovered by an agent of limited cog-

nitive capacities carrying out, with no insight or ingenuity, and with finite resources of time and

space, a step-by-step procedure. But this definition does not specify just when the agent is or is not

being insightful and ingenious, and a reliable and objective method requires a precise specification
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of these features. Indeed, explicationism is largely motivated by the concern that no such precise

specification can be had. Hence the definition of effective calculability does not suggest a reliable

and objective method to determine the truth value of A. And since no other method is forthcoming,

the sufficient condition on imprecise truth-conditions tells us that A has imprecise truth-conditions.

Consequently the explicationist is compelled to invoke RR on A to produce A′:‘d is not recursive’.

But clearly A′ is not A, and what is required to show that d is absolutely uncomputable is that

the explicationist be able to prove that A. So the explicationist cannot show that d is absolutely

uncomputable. And since we can run a parallel argument for any given (known) non-effectively

calculable function, explicationism fails to satisfy CON.

The core of the explicationists’ problem stems from the fact that they treat Church’s thesis

logically as a pragmatic rule and not as a biconditional. By adopting Church’s thesis as a prag-

matic rule, they bar themselves from using Church’s thesis as biconditional to move from non-

recursiveness to non-effective calculability. And by replacing statements about (non-)effective

calculability with statements about (non-)recursiveness, they bar themselves from even being able

to state the desired results. The key point is simple enough: one cannot prove results about non-

effectively calculable functions while at the same time adopting a rule which tells one to avoid

talking about non-effective calculability in the first place. In some sense the explicationist presents

us with a dilemma. Either we can have absolute uncomputability results, or we can have the ex-

plicationist’s account of the nature of Church’s thesis, but not both. The explicationist opts for the

latter horn, while I opt for the former. If the cost of an account of the nature of Church’s thesis is

the ability to derive claims like A, then the cost is too high.

It might be objected that the above remarks beg the question against the explicationist. Ex-

plicationism explicitly repudiates various claims about effective calculability on the grounds that

they are imprecise, and a fortiori repudiates claims about the existence of non-effectively calcula-

ble functions. The claim that there are non-effectively calculable functions assumes just what the

explicationist says is too unclear to countenance, and so is not an adequate response to explication-

ism.
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This objection misunderstands the dialectic in which explicationists find themselves. The stan-

dard view is nearly universally accepted - it is the ‘null hypothesis’. And even in spite of its

shortcomings, it is the view to beat. What the explicationist offers is an alternative to the standard

view, one which purports to make better sense of the nature of Church’s thesis than the standard

view alone. In order to make their offer attractive, the explicationist needs to show that the value

of having an account of the nature of Church’s thesis outweighs the utility of being able to derive

absolute uncomputability results. The remarks in this section attempt to show that absolute un-

computability results are more important and more useful to have than an account of the nature of

Church’s thesis. This much, at least, seems to be the attitude of actual researchers in the field, who

get along just fine with the absolute uncomputability results, and without such an account.

There are two further objections available to the explicationist here. The first is that the ex-

plicationist might complain that even on the standard view, so-called uncomputability results are

not, and never were, results in the first place. After all, the standard view accepts that effective

calculability is vague. So what sense can there be of ‘deriving’ results about effectively calculable

functions in the first place? To reiterate, the explicationist’s whole point is just that talk of effective

procedures is too imprecise to countenance at all. To assume that such talk is not too imprecise to

countenance begs the question.

I have two responses here. Firstly, absolute uncomputability results derived on the standard

view and with the help of Church’s thesis are uncontroversially accepted across most of logic and

computer science. Doubting that is a little like doubting that the external world exists. Minimally,

the explicationist owes us a systematic account about why that acceptance is misguided. Currently

no explicationist has presented such an account. Secondly, even if the explicationist’s response is

correct and such results cannot be had after all, it does not show that explicationism is correct; the

fact that absolute uncomputability results cannot be had on the standard view does not alone entail

that we ought to adopt recursivity as an explication of effective calculability.

In any event, those still unconvinced can take my argument as establishing the conditional

claim that if one wants to derive uncomputability results, then explicationism is not the way to
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go. That much alone is sufficient to show that positions such as Smith’s are untenable.43 And in

fact there are good reasons for wanting to derive uncomputability results. Recall from Section 1

our primary interest in effective procedures: they tell us something about functions whose values

can be determined by (idealized) human agents. The claim that a given function’s values can or

cannot be in-principle determined in the actual world is of central interest to computer scientists.

Indeed, I submit that the central conceptual tools of computability theorists — Turing machines,

the λ-calculus, and so forth — are only interesting insofar as they are a vehicle to claims about

(non-)effectively calculable functions. The goal is to find out what can be calculated in the world

of concrete computation. By explicating the explicationist gives that up, and proceeds to miss the

point of computability theory altogether.

The second objection is that an appeal to the utility of explicationism versus the utility of the

standard view is misguided, because what we’re after is not what is useful, but what is true. And

if it turns out that the standard view cannot give a compelling account of what is true (with respect

to the nature of Church’s thesis), then so much the worse for the standard view. But this objection

misunderstands the role of explication in scientific progress. Recall that explications (more pre-

cisely, instances of the replacement rule) are not true or false, but are satisfactory or unsatisfactory,

according to whether they are simple, similar, exact, and fruitful. Consequently, explications —

including the explication of ‘... is effectively calculable’ by ‘... is recursive’ — are adopted or not

according in part to their utility, and in this respect the explicationist’s suggestion falls short. Iron-

ically, by facilitating the derivation of absolute uncomputability results the standard view shows

itself more fruitful than explicationism. In this respect, at least, the explicationist is hoist by their

own petard: they are committed to thinking that the standard view, and not explicationism, is the

preferred view!44 The takeaway point here is that the explicationist cannot appeal to what is true

in order to defend their view, because explication does not point at truth (at least directly) but in-

stead points to what is useful. And the argument here shows that explicationism’s utility does not

outweigh the utility of the standard view, even with its defects.

43Cf. the Smith quote near the beginning of this section.
44Of course, the explicationist still thinks that her view is preferable in light of its exactness, simplicity, and so on.
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3.4 Summary

The standard view holds that Church’s thesis is true, but unprovable. As a consequence, the stan-

dard view leaves open the question of the kind of claim Church’s thesis makes. One answer is that

the thesis is an explication, in Carnap’s sense. I have argued that this view is not plausible. In par-

ticular, adopting ‘recursivity’ as an explication of ‘effective calculability’ hamstrings our attempts

to derive important uncomputability results. All things being equal, we want to be able to derive

such results. The fact that explicationism prevents this is a reason to abandon it.

4 Reexamining the Standard View

In the last section we saw that explicationism is motivated, in part, as a response to the supposed

unprovability of Church’s thesis: because the thesis is not a theorem, the standard view wants for

an account of its nature and explicationism provides one. Unfortunately, as we also saw, explica-

tionism’s answer is not as viable as it appears. So we are left with essentially the same question

we faced at the end of section 3.1 above, namely, what kind of claim does Church’s thesis make?

There are two routes one may take at this point. The first develops an alternate account of the

nature and status of Church’s thesis as we did in Section 3.2. The prospects for this option are dim.

Various alternative accounts have been proposed and most are unsatisfactory.45 Many of them

antecedently accept the standard view. Thus it is not unreasonable to suspect that they have failed

because they take the standard view as their starting point and that these failures are symptomatic

of deeper, unaddressed problems. Thus the second route returns to the standard view and examines

more carefully its presuppositions. We will take this latter path.

Above we identified two premises underlying the standard view: first, that proof is in-principle

syntactic derivation, and second, that no such derivation can be had for Church’s thesis because

effective calculability is vague and non-mathematical. Focussing on just one aspect of the second

premise, here I will argue that effective calculability is not vague. If effective calculability is

45For a detailed catalogue of the failures see Murawski and Woleǹski (2006).
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not vague, then the concern that Church’s thesis is unprovable because vague are unmotivated.

Consequently, the overarching interest of the present section is to clear away at least one obstacle

standing in the way of a proof of Church’s thesis. More modestly, if Church’s thesis is unprovable,

then it is not in virtue of vagueness on the part of any of its constituent concepts.

Section 4.1 examines the most plausible account, due to Stewart Shapiro, that effective cal-

culability is vague. In Section 4.2 I outline my disagreement with Shapiro. Section 4.3 presents

evidence that Shapiro’s account is not wholly correct, and Section 4.4 considers some objections

and argues that they are not convincing.

4.1 Is Effective Calculability Vague?

We already noted that both Church and Kleene think that effective calculability is vague. But

in what sense of ‘vague’? It is unlikely that they had anything like contemporary philosophical

vagueness in mind. More plausibly, by ‘vague’ they meant simply ‘unsettled’ or ‘indefinite’.46

The underlying notion seems to be that of a borderline case. Roughly, a borderline case of a

property is an object for which the property neither clearly applies nor clearly does not apply. In

order for effective calculability to have borderline cases, then, there must be objects — namely,

functions of natural numbers — which are neither clearly effectively calculable nor clearly not

effectively calculable.

In a recent series of articles Stewart Shapiro (2006a, 2013, 2015) suggests that effective calcu-

lability, at least at one point, was vague in something like this sense. Taking a cue from Waismann,

Shapiro (2006a, p. 441) tells us that that “in the thirties, and probably for some time afterward, this

notion [effective calculability] was subject to open-texture.”47 According to Shapiro a predicate P

exhibits open-texture

if there are possible objects p such that nothing in the established use of P, or the

46Webster’s dictionary from 1907 reports that ‘vague’ means “unsettled; unfixed; undetermined;” and “indefinite”.
So our suggestion is at least in the right ballpark.

47Here I treat open-texture as a kind of vagueness. In actual fact the relationship between the two properties is more
subtle. See Chapter 1 and the Appendix of Shapiro (2006b) for details.
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non-linguistic facts, determines that P holds of p or that P fails to hold of p.48

Thus for the predicate ‘effectively calculable’ to exhibit open-texture there must be (possible)

functions of natural numbers which are neither effectively calculable nor not effectively calculable.

We will examine two purported examples shortly. Briefly, though, note that because there is no

fact of the matter whether P holds of p, “competent speaker[s] can, in fact, go either way without

offending against the meaning of the terms, the non-linguistic facts, and the like.”49 That is,

speakers may reasonably disagree about whether or not P holds of p without thereby disagreeing

about the meaning of P or about any other relevant facts.50

Shapiro does not think that effective calculability now exhibits open-texure. Rather, in the last

eighty or so years the concept has been sharpened to what it is today. ‘Sharpening’ in the present

sense just involves fixing indeterminate cases so that they are definitively included or excluded in

the extension of a concept. For example, at one time it was controversial whether or not complex

numbers were numbers. That is, the concept ‘number’ exhibited open-texture with respect to the

complex numbers. But ‘number’ was eventually sharpened so as to include complex numbers, and

now they are well-regarded mathematical entities along with the integers, reals, and so on.51

It is useful to briefly contrast sharpening to explication, for both are, at least in part, responses

to concerns about vagueness.52 With explication we take a vague, indeterminate concept and find

a suitable replacement for it. This may involve excluding objects from the extension of the expli-

catum which were previously contained in the extension of the explicandum.53 With sharpening,

on the other hand, previously contained objects are still contained post-sharpening. With explica-

tion, differences in meaning between the explicandum and explicatum, perhaps even drastic ones,

are tolerated if they are accompanied by increased fruitfulness or exactness in the explicatum. No

such tolerance is present, at least for the decided cases, when sharpening — once a property is
48Shapiro (2013, p. 161).
49Shapiro (2006b, p. 12).
50Shapiro (2006b) notes that speakers must be reasonably consistent with their own judgements about whether P

holds of p or not. In particular, if one judges that P holds of p, then for p′ that differ only minimally from p one must
judge that P holds of p′ also. But we can put aside these details in what follows.

51The example is Shapiro’s (2013, p. 164).
52‘In part’ because explication is also concerned with, e.g., subjectivity.
53As with the explication of ‘fish’ by ‘pisces’, where whales are excluded by the explicatum.
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sharpened so as to include an object, no subsequent sharpenings can expell that object from the

property’s extension.

Very broadly, Shapiro identifies the “possible consideration[s] concerning tools and limita-

tions” involved in the notion of an (idealized) human computing agent as the source of indetermi-

nacy.54 The idea is that at the time it was unsettled just what sorts of idealizations of time, space,

available actions, and so forth, went into the notion of an idealized human computer. This inde-

teminacy manifests in two kinds of indeterminate cases for effective calculability. On the one hand

are computationally infeasible functions, such as Ackermann functions, and on the other are those

such as Kalmár’s (1959) ‘improper minimization’ function.55 Shapiro’s claim is that, at one point,

these functions, and others like them, were neither effectively calculable nor not effectively calcu-

lable — rather, the concept had to be sharpened to include them (as with Ackermann functions)

or exclude them (as with Kalmár’s). By sharpening effective calculability to include Ackermann

functions we fix effective calculability in one direction — a direction according to which feasibil-

ity is irrelevant to effective calculability. By sharpening to exclude Kalmár’s we fix in favour of

definite, well-defined instructions. These functions constitute the core of Shapiro’s evidence that

effective calculability exhibits (or exhibited) open-texture, so it is worthwhile to examine them in

some detail. We start with Ackermann functions.

Ackermann discovered his function in 1927. Here we give a version due to Rósza Péter

(1935):56

A(0,y) = Sy

A(Sx,0) = A(x,S0)

A(Sx,Sy) = A(x,A(Sx,y))

A is notable for growing extraordinarily fast even for modest inputs — Shapiro (2013, p. 169)

54Shapiro (2006a, p. 441).
55Shapiro does discuss a third case concerning partial functions. Unfortunately, due to restrictions of space I will

not be able to discuss that case here.
56S denotes the successor function.
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notes that A(5,5) is “larger than the number of particles in the known universe.” A is a paradigm

case of a computationally infeasible function. And Shapiro identifies this as being central to A (at

one time) being neither effective calculable nor not effectively calculable. For Shapiro it was not

until Mendelson (1963) and then later Mendelson (1990) that the matter was settled in favour of A

being effectively calculable.

Shapiro’s idea seems to be that before Mendelson came along considerations about compu-

tational feasibility were not built into the concept of effective calculability. As we know it now

effective calculability determinately does not imply polynomial-time calculability.57 But, the sug-

gestion goes, at one point it was unclear whether or not this implication held. And it was unclear

because the kinds of idealizations involved in effective calculability were unclear. Shapiro (2006a,

p. 442 - 443) tells us that “[t]he intuitive notion [of effective calculability] ... leaves open certain

interest-relative parameters” with respect to the idealizations imposed on the human calculator.

Presumably two such parameters are the amount of time and space required to calculate the value

of a function.

According to Shapiro, Mendelson’s argument for the so-called ‘easy half’ of Church’s thesis,

that recursiveness entails effective calculability, sharpens effective calculability to include Acker-

mann’s function.58 In the argument Mendelson simply goes through each part of the definition

of a recursive function and argues that it is effectively calculable. So, for instance, he starts by

noting that the initial functions are all effectively calculable and then argues that composition and

recursion both preserve effective calculability. Now, there is nothing here that looks obviously like

extension fixing, or A or of anything else. But Shapiro explains:

[t]he reasoning [in the argument] allows us to see where the idealization from actual

human or machine abilities comes in, and, indeed, to see what the idealization is. The

argument takes no account on the length of the sequence of functions used to define a

recursive function. By examining the argument, we see that we are to ignore, or reject,

57A function is polynomial-time calculable if, given an input of size n, the time required to determine a particular
value is polynomial in n.

58See, for example, Shapiro (2006a, p. 445).
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the possibility of a computation failing because the computist runs out of memory or

materials.59

The mechanism at work here is what Lakatos (1976) calls a ‘hidden lemma’.60 The lemma itself

says something like ‘ignore bounds on space and time when calculating the value of a function.’

And it is in virtue of the lemma that effective calculability is fixed so as to include A.

The lemma is hidden — and so not explicitly justified — but is presupposed by the argument

nonetheless. What, according to Shapiro, justifies the lemma? Apparently, not much at all. Shapiro

(2013, p. 175) suggests that “[a] community that opted for one of the other notions, such as

Turing-computable-in-polynomial-time ... cannot be accused of a failure to understand what they

are talking about,” which I take to mean that a community that rejects the hidden lemma cannot be

held irrational or misguided.

Shapiro’s second example means to show that the notion of an effective procedure as “a set

of instructions that tells the computor what to do at every stage” is indeterminate.61 The guiding

example is Kalmár’s (1959, p. 74) argument against Church’s thesis. It goes as follows.62 First,

by theorem XIV of Kleene (1935) if φ is recursive then

ψ(x) =


µy(φ(x,y) = 0) if (∃y)(φ(x,y) = 0)

0 otherwise

is not recursive. Kalmár calls ψ the ‘improper minimalization’ of φ. Now, since φ is recursive, by

Church’s thesis it is effectively calculable. Hence for any p if (∃y)(φ(x,y) = 0), then we can find

ψ(p) by calculating φ(p,0), φ(p,1), ... until we find the appropriate y. Next, if there is no such y

and if one can prove ¬(∃y)(φ(x,y) = 0) “by arbitrary correct means” then we can calculate ψ(p)

here also. Thus Kalmár has given us a (purportedly) effective procedure for calculating ψ, even

59Shapiro (2006a, p. 445).
60Prior to discussion of effective calculability Shapiro spends some time discussing Lakatos’ discussion of Euler’s

theorem. Shapiro sees important parallels between the case Lakatos discusses and Church’s thesis.
61Shapiro (2013, p. 175).
62I follow Mendelson’s (1963) cleaner reconstruction.
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though ψ is not recursive.

Now, no one, including Shapiro, thinks that Kalmár’s proposed procedure is effective; Mendelson

(1963), for instance, goes on to criticize Kalmár for the hidden and unmotivated assumption that the

proofs “by arbitrary correct means” are effectively enumerable. But, despite this, Shapiro (2013, p.

176) asks “is there something unambiguous in the pre-theoretic notion, of computability, in use in

the ’30s and a few decades after, that rules out Kalmár’s “method” definitively?” Shapiro’s answer

is ‘no’.

Shapiro takes the fact that Kalmár even considers that the above procedure is effective as ev-

idence that effective calculability had open-texture. Indeed, Kalmár was a competent mathemati-

cian — a recursion theorist, even. If anyone was well positioned to grasp indeterminacy in the

notion of an effective procedure Kalmár was. And yet he reached basically opposite conclusion of

Church and Turing. That fact wants for explanation and Shapiro finds it in open-texture.

There is an important disanalogy between the present case and that of the Ackermann function.

Reflection on the Ackermann function leads us to widen the notion of effective calculability by

including more functions as effectively calculable than before. Contrariwise, we “sharpen the con-

cept of computability [i.e. effective calculability] through the rejection” of Kalmár’s argument.63

That is, consideration of Kalmár’s procedure allows us to determine what kind of instructions are

or are not genuinely effective. Note, however, that it is not as if we discover what are effective

instructions. It is an essential feature of open-texture that competent speakers can reasonably dif-

fer about positive and negatives instance of a given (open-textured) predicate; such speakers can,

as we noted above, “go either way” without offending against either meaning or fact. In order to

sharpen, speakers must decide which way. But given that alternate ways can be equally reasonable

it cannot be that we discover which way to go, that is, which direction we sharpen in — rather, we

decide.

Overall, then, Shapiro’s account is as follows. The last eighty years or so have witnessed the

concept of effective calculability undergo a series of sharpenings whereby formerly indeterminate

63Shapiro (2013, p. 176)
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cases of effectively calculable functions were fixed. Some cases, such as the Ackermann function,

are fixed so as to be included in the extension of effective calculability. Others, such as as Kalmár’s

improper minimalization function, are fixed so as not to be included. This sharpening has left us

with a notion of effective calculability whose extension is very similar, if not identical, to the

extension of the recursive functions. Indeed, given the concept as it is now, Shapiro accepts that

Church’s thesis is true.64 But this was not always the case: “the notion of computability in use

now is the result of the last seventy years [the article is ten years old - AT] of examining texts like

Turing (1936), of reacting to proofs and refutations, and of the overwhelming success of the theory

of computability.”

4.2 Discussion

At first blush it may appear that there is no disagreement between our current goal — making room

for the suggestion that Church’s thesis is provable — and Shapiro’s account. After all, Shapiro

thinks that effective calculability now is precise, and perhaps even extensionally equivalent to

recursivity, even if it wasn’t at one point. He even thinks that Church’s thesis is susceptible to

“proof”, given a suitable understanding of what proof is.65 But isn’t this just what we want?

Where’s the disagreement?

The problem is that Shapiro gets the right conclusion from the wrong premises. Shapiro’s

view requires us to say that arguments for Church’s thesis, like Mendelson’s, and analyses of

effective calculability, like Turing’s, sharpen effective calculability. And on my view this is a

radical departure from what is actually going on. I do not think that Turing’s analysis fixes the

extension of anything, rather, it uncovers necessary conditions on human calculating capacities.

And similarly I do not think that Mendelson’s argument sharpens anything; instead it exposes

necessary entailments between properties.

We can illustrate the disagreement another way. Consider Gödel on effective calculability:

64(2013, p. 175).
65Shapiro (2015, p. 294). Note that the sense of ‘proof’ used by Shapiro is weaker than Folina’s.
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If we begin with a vague intuitive concept, how can we find a sharp concept to cor-

respond to it faithfully? The answer is that the sharp concept is there all along, only

we did not perceive it clearly at first. This is similar to our perception of an animal

first far away and then nearby. We had not perceived the sharp concept of mechanical

procedures before Turing, who brought us to the right perspective. And then we do

perceive clearly the sharp concept.66

I don’t want to get caught up in Gödel exegesis, but I take it that what Gödel is after here is

something like epistemic vagueness. The underlying idea seems to be that the extension of a

concept can be precise and determinate without the manner by which we express the concept

being similarly sharp.67 And there are mechanisms, such as conceptual analysis of the kind Turing

carried out, by which we can bring the two into alignment. That effective calculability appears

vague is due to ignorance on our part, but that ignorance can be overcome.

Shapiro directly opposes this Gödelian perspective. He tells us that

[i]t is not accurate to think of the historical proofs of Church’s thesis ... as establishing

something about absolutely sharp pre-theoretic notions. Rather, the analytical and

mathematical work served to sharpen the very notions themselves.68

And earlier in the same paper, when discussing Mendelson’s argument, Shapiro tells us that “one

might think that the argument proves something determinate about a previously sharp notion. I sub-

mit that this would be a mistake.”69 The core of the disagreement concerns the kind of vagueness

underlying effective calculability. On the Gödelian account the vagueness is merely epistemic.

Despite surface appearances effective calculability has a precise, determinate extension. It took

Turing’s reflections to sort that out, but the extension was precise all along. On Shapiro’s account

there was a time when effective calculability had indeterminate cases. Turing’s reflections here

66Wang (1996, p. 232).
67Smith (2007) gives an example: the expression “those philosophers over there” is vague even though it can pick

out a precise class of objects.
68(2013, p. 178).
69(2013, p. 172).
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did not uncover that effective calculability was extensionally equivalent to recursivity, rather, they

made it the case (at least in part, and if it be the case) that effective calculability and recursivity are

extensionally equivalent.

In what follows I defend the Gödelian perspective.70 However, my strategy is not to present

positive arguments for the view, for we do not have the space; instead I will confine myself to some

criticisms of Shapiro, and suggest the Gödelian perspective as an alternative. In what follows

I will suggest it is not clear that the historical record supports Shapiro’s view. The claim that

“in the thirties, and probably for some time afterward, this notion [effective calculability] was

subject to open-texture” is an empirical claim. Presumably inspection of how the concept was

used in the relevant literature at the time can tell us whether or not this is correct. As I will

argue, examination of remarks by central figures such as Kleene, Turing, and Church suggests the

opposite interpretation, namely that in the ’30s and the following few decades the concept was

already quite sharp, at least in the respects that interest Shapiro.

Before proceeding, a few methodological remarks are worth making. Firstly, we cannot assume

that the concept of effective calculability, as it occurred in the 30s and a few decades after, was

anything like our E1 - E4.71 After all, if Shapiro is correct then E1 - E4 are just the product

of eighty years of sharpening. Correspondingly, when I make remarks about the nature of the

concept I will make sure to confine my remarks to what is directly supported by textual evidence.

Secondly, we should also begin with a clear idea of what Shapiro takes to be the concept in the 30s

that exhibited open-texture. Shapiro (2015, p. 283) tells us that “[t]he founders, Church, Stephen

Cole Kleene, Alan Turing, et al., were thinking of computability in terms of what can be done by a

suitably idealized human following an algorithm.” So our question is whether that notion exhibited

open-texture.

Finally, I have no illusions that I will be able to decisively settle the question of whether or

not effective calculability exhibited open-texture in what follows. That task requires a much more

70In doing so I do not aim to take a general stance on vagueness. Perhaps the vagueness underlying paradigms
such as ‘bald’ or ‘tall’ is epistemic, or perhaps not. Either way, the claim that the vagueness underlying effective
calculability does not entail a stance on the vagueness underlying the paradigm cases.

71Indeed, perhaps we cannot even assume that there was a single concept of effective calculability at all.
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thorough treatment of the historical record than I am able to provide below. My sights are set

lower. Minimally, the arguments below aim to show that there are some things Shapiro’s account

cannot explain and that more is needed to vindicate the claim that effective calculability exhibited

open-texture.

4.3 Historical Evidence

We start with the evidence surrounding Kalmár’s function. Shapiro tells us that the fact that Kalmár

even considers that improper minimalization is effectively calculable is evidence of open-texture.

The alternate conclusion one might draw is that Kalmár was simply confused about effective calcu-

lability. Shapiro discounts this alternative with no discussion. But was Kalmár confused? Consider

Kleene on the matter:

I was present at the Amsterdam Colloquium of 1957 when my good friend László

Kalmár presented his argument against the plausibility of Church’s thesis ... I imme-

diately concluded, as fast as I heard it, that he had not given an effective procedure for

deciding as to the truth or falsity of (x)T (n,n,x). He would not be able to tell me in

advance in a finite communication (no matter how long we both should live) what set

of atomic rules would completely govern the concrete steps in his search for proof by

“arbitrary correct means” of (x)T (n,n,x).72

This comment suggests that, contra Shapiro, in 1957 at least one person (namely Kleene) held a

concept of effective calculability that did not have open-texture in this direction. But Shapiro has a
72Kleene (1987, p. 494 - 495). A note on why Kleene talks about the T function: Kleene’s theorem XIV is that

¬∃y[T1(x,x,y)] is not recursive — there is no recursive procedure to determine if the function coded by x is defined
after y operations when passed x as input. Kleene apparently takes Kalmár, in the argument, to be talking about T1.
Since T1 is recursive, we may recast Kalmár’s function as

ψ(x) =

{
µy(T1(x,x,y) = 0) if (∃y)(T1(x,x,y) = 0)
0 otherwise

Now, recalling Kalmár’s argument, what Kalmár purports to have shown is that, for any n, there is an effective proce-
dure to determine ψ(n). Given how we’ve recast ψ, this is equivalent to saying that, for a given n, we can determine
whether the function coded by n is defined on input n. If Kalmár is correct, then for any n we can determine if
(∃x)T1(n,n,x) is true, and consequently if (∀x)¬T1(n,n,x) is true. Incidentally, if Kalmár’s function is in fact effec-
tive, he has given us an effective procedure for solving the Halting Problem.
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reply here. He might say that it was in virtue of Kalmár’s argument that Kleene fixed the concept in

the way that he did. When confronted with Kalmár’s “effective procedure,” Kleene decided that it

was not effectively calculable, that is, he took a stance on how to sharpen the extension of effective

calculability.

Unfortunately, this is not a plausible interpretation of what happened at the Colloquium. On

the one hand it involves dubious psychological premises about what happened to Kleene’s grasp

of the concept during Kalmár’s talk. On the other, it does not explain why Kleene, “as fast as he

heard,” Kalmár’s argument was able to dismiss it. It is not as if Kalmár prompted Kleene to sharpen

his (Kleene’s) concepts on the spot; presumably, if Kleene’s concept changed during the talk he

would have reported so. The alternate account, which is more plausible given Kleene’s remarks, is

that Kleene brought a pre-sharpened concept with him. Before Kalmár had even started to speak

Kleene was operating with the concept of an effective procedure according to which all rules must

be finite, simple, and fully specified in advance — that is, Kleene’s concept already ruled out

“prove by all correct means” as an effective instruction.

But perhaps this is unfair to Shapiro. After all, he recognizes that others, such as Mendelson

(1963), were quick to dismiss Kalmár’s argument. The salient question is whether anything in the

“pretheoretic” notion of effective calculability, used in the ’30s and a little while after, rules out

Kalmár’s procedure. But plausibly by the time Church presented his thesis in 1936, procedures

like Kalmár’s were already ruled out. Reflection on Church’s argument (1936, p. 100-102) for his

thesis tells us why.

Church’s argument immediately follows the proposal to define effective calculability by re-

cursivity. In the argument, Church surveys two other candidate definientia — calculability by an

algorithm and calculability within a logic — in order to show that “no more general definition of

effective calculability than that proposed above [i.e. as recursively definable] can be obtained by

either of two methods which naturally suggest themselves.” I will focus on the second of these;

parallel remarks apply to the first. Briefly, for Church, a function F is calculable in a logic if there

is an expression f in the logic such that f (µ) = ν is a theorem iff F(m) = n is true, where µ and ν
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express m and n, respectively. Importantly, in order for “the system to serve at all the purposes for

which a system of symbolic logic is usually intended” Church requires that the logic’s inference

relation be recursive and that the axioms be effectively enumerable. This all entails that the func-

tions calculable in a logic are extensionally equivalent to the recursive functions. Now, whether

or not the argument succeeds is beside the point; for us what matters is that Church chose this

as an alternate definition of effective calculability. I submit that the fact that Church focussed on

this alternative characterizations, instead of some other, is evidence that the notion of an effective

procedure was already sharp enough in 1936 to disqualify instructions like Kalmár’s.

If effective calculability exhibited open-texture for Church in the dimension of Kalmár-style

instructions, then it is difficult to explain why Church focussed on calculability in a logic, instead

of some other notion, as an alternate definition of effective calculability. The fact that calculability

in a logic is equivalent to recursivity is key here. For that suggests that the kind of permissible

operations Church had in mind were no stronger than those available in the course of calculating

the value of a recursively defined function, namely, functional application and swapping equals for

equals in an equation. And this point generalizes. The fact that all of the different formal charac-

terizations of effective calculability proposed at the time are equivalent to the recursive functions

is evidence that the permissible instructions Church had in mind were no more sophisticated than

those available in the course of determining the value of a recursively defined function. And that

means that the instruction “prove such-and-such by any correct means” would have been automat-

ically disqualified at the time.

We can put the point another way. If in the ’30s it was genuinely indeterminate whether or

not “prove such-and-such by correct means” was an effective instruction then why did nobody

propose an alternate characterization which permitted such an instruction (or something like it)?

If Church, as Shapiro thinks, was indeed sharpening effective calculability in one direction, then

why did nobody sharpen it in another, mutually incompatible direction? After all, open-texture

implies that competent speakers may reasonably disagree about borderline cases, and hence may

reasonably disagree about how to sharpen them. Why did it take nearly thirty years for someone
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(namely Kalmár) to sharpen in the other direction? If Shapiro is correct, then we would expect that

at least a few characterizations from around the same timeframe would disagree with Church’s.

But in fact we see universal agreement, not disagreement.

So, if effective calculability had open-texture it was not in virtue of the kind of instructions

allowed to occur in an effective procedure. Next we examine the evidence that infeasible functions,

such as Ackermann’s, were neither included nor excluded in the extension of effective calculability

in the ’30s and after.

Shapiro notes that Church, Kleene, and Turing were interested primarily in human calcula-

bility. Our dispute concerns what sorts of idealization were imposed on this notion at the time.

And, according to Shapiro, reflection on functions like Ackermann’s, and subsequent arguments

like Mendelson’s, impelled researchers to ignore considerations of time and space so long as only

a finite amount of each is required. But is there any evidence that the concept of effective calcu-

lability, as used in the ’30s and a while after, was indeterminate with respect to, say, Ackermann

functions? Arguably not.

If effective calculability was indeterminate with respect to A, then we would expect to see some

sort of disagreement in the literature as to whether or not A was effectively calculable. But it is

telling that no such disagreement exists, at least in the ’30s.73 To be sure, Ackerman functions

were well-discussed. But it was apparently not until Porte (1960) that anyone thought to question

whether or not A was in fact effectively calculable.74 But the problematic point for Shapiro is that

there is no (apparent) record that A’s effective calculability was ever in question. Of course, the fact

that there is no record that A’s effective calculability was indeterminate does not necessarily entail

that A’s effective calculability was, at some point, indeterminate. But at the very least Shapiro

owes us some evidence from the 1930s that A was so indeterminate.

However, even if effective calculability did not exhibit open-texture with respect to A, a general

question remains: were any considerations of feasibility built into the concept of effective calcu-

lability as it occurred in the 1930s? Here, too, it seems not. Consider, for example, the following

73That I am aware of.
74Mendelson (1963) quickly dispatches Porte’s concern.
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example from Turing’s 1936 paper. In Section 10 (p. 142) Turing proves that π is calculable

in the sense that there is an effective procedure for finding the nth digit of π, for any n. Turing

is well aware that the decimal representation of π has infinitely many digits, and is presumably

equally aware that there are values of n for which it is infeasible (due to time, space, or whatever)

to calculate the nth digit of π. But if Shapiro is correct and the concept of effective calculability

(as understood by Turing) was indeterminate for certain cases of infeasible computations, then we

should expect that Turing would not say that π is calculable. But he does not.

What this tells us is that, contra Shapiro, by the time the ’30s came about, the Ackermann

function and π were both already sanctioned as effectively calculable. I suggest that this is because

the concept was not indeterminate at the time in this respect, for Turing or anyone else.

Before canvassing some objections I want to return briefly to a point brought up in our discus-

sion of Kalmár’s function. There we noted that the fact that the different attempts to characterize

effective calculability all turn out to be equivalent to recursivity is evidence that the permissible

effective instructions exclude Kalmár’s. I think that this idea, or something like it, generalizes.

A central component of open-texture is that reasonable, competent agents may disagree about

indeterminate cases. In the context of effective calculability this means that if effective calculability

has open-texture, then reasonable, competent agents (such as Church, Turing, Gödel, and Kleene)

may disagree about the (purported) indeterminate cases. If people may reasonably disagree about

the indeterminate cases, then they may reasonably disagree about how to fix them. This entails

that it is possible for different (communities of) speakers to fix a single notion in different, mu-

tually incompatible directions. For instance, in the context of feasibility, Shapiro (2013, p. 175)

remarks that those who “opted for one of the other notions, such as that of Turing-computable-in-

polynomial-time ... or finite-state-computable, cannot be accused of a failure to understand what

they are talking about.”

Given this consequence of open-texture it is interesting that we do not see different, mutually

incompatible notions of effective calculability emerging from the foundational work of the 1930’s.

Indeed the opposite is true. Not only was there eventual agreement that the effectively calculable
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functions were all recursive, but Turing’s 1936 analysis of effective calculability as Turing machine

computability was, for example, hailed by Gödel as “both correct and unique.”75 But what could

it mean for a given sharpening to be correct or unique? Ex hypothesi open-texture implies that the

notion of a ‘correct’ sharpening is misguided. A given sharpening may be preferred on grounds

of fruitfulness, or simplicity, or whatever.76 But to say that a sharpening is ‘correct’ misses the

point of open-texture altogether. At the very least, Shapiro owes us an account of why there was

convergence on a single sharpening at the time, given that those who (would have) disagreed would

not be confused about the meaning of ‘effective calculability’.

4.4 Objections

Here I discuss three objections to the arguments from Section 4.2 and argue that they both fail. The

first objection is that I have changed the subject — the concept I invoke in the empirical evidence

above is not the concept Shapiro has in mind. The second is to my general methodology, and

that the kind of claims I make, namely predictions about what one would expect to observe, are

misguided. The third is that, if it comes down to matters of interpretation, then at least Shapiro’s

account tells us a story about what Church and the rest meant when they said that effective cal-

culability is vague. So far I have not produced a counter-story, so my account is incomplete, at

best.

How could Shapiro’s argument so badly misrepresent the concept of effective calculability

as it occurred in the ’30s? Perhaps it is because Shapiro’s target is not the concept of effective

calculability in the first place. The above considerations hit their mark only if the concept invoked

by them is the same as the concept Shapiro identifies as supporting open-texture. So, the objection

goes, we want some further evidence that the two concepts are in fact the same, else the above

considerations are simply irrelevant to Shapiro’s point.

But plausibly Shapiro has in mind the same notion of effective calculability as does Church,

75Quoted in Wang (1974, p. 84).
76Echoing Carnap’s criteria for a satisfactory explication.
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Turing, and Kleene. Firstly, Shapiro (2015, p. 284) tells us that “[t]he founders, Church, Stephen

Cole Kleene, Alan Turing, et al., were thinking of computability in terms of what can be done by a

suitably idealized human following an algorithm.” So plausibly when Shapiro (2013, p. 169) says

that ““computability” exhibited open-texture,” he means computability in the sense of a suitably

idealized human following an effective procedure. Perhaps there is a question here about whether

Shapiro’s characterization of effective calculability at the time is correct. For instance, it is not

entirely clear that the notion of an idealized human calculator was commonly accepted before

Turing. Church, for instance, does not explicitly mention idealized humans anywhere in his 1936

paper. But even if this correct it does not mean that our above concerns miss their mark, for they

make no prior assumptions about the contents of the notion of effective calculability in play at the

time.

The second objection concerns my methodology. In general, I proceed by making claims about

what researchers at the time would have written, or more generally about what we would expect

to observe in the literature. The fact that these observations are not confirmed, then, I take to be

evidence that effective calculability did not exhibit open-texture. The objection, then, is just that

what makes it into the literature is not necessarily indicative of the nature of the concept at the

time.

Now, if the objection is just that the inferences from what occurs in the literature to the nature

of the concept are not deductively sound, then this is just a problem for empirical inquiry more

generally. But the point is well-taken: nothing I say above rules out the possibility that open-

texture was present in the notion at some point, and was subsequently sharpened away before

making it to print. However, this objection cuts both ways. For Shapiro to establish his point he

must present us with some evidence (preferably from the ’30s, not the ’50s or ’60s) that effective

calculability had borderline cases. As far as I can tell no such evidence is available, at least for

the two dimensions of open-texture I’ve focussed on here. Perhaps examination of, e.g., Church’s

personal correspondence would provide such evidence. But I’ve already noted above that my

treatment here is not meant to be exhaustive, so at best this is an argument in favour of further
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investigation.

The final objection is not so much that our present perspective is wrong, but that it falls short.

Shapiro’s account gives us a story about why (a) Church and Kleene called effective calculability

‘vague’, and (b) why the question of proving Church’s thesis has been so contentious for the past

eighty years. But if Shapiro is incorrect then we still require an explanation of (a) and (b), and so

far I have not provided anything like such an explanation.

A full answer to this question is far outside our present scope, so I will only gesture towards a

response. With respect to (a) it seems as if Church and Kleene and the rest called effective calcula-

bility ‘vague’ because they lacked for a better term. It is perhaps true that effective calculability is

vague, if by ‘vague’ we mean difficult to discern that a given procedure is effective or not. Gödel

apparently had this kind of vagueness in mind when making the above quoted remarks. But be-

ing difficult to discern does not necessarily entail the existence of indeterminate cases. Moreover,

Kleene and Church also call effective calculability ‘intuitive’ or ‘pre-theoretic’ or ‘informal’ just

as often as they call it ‘vague’, with little apparent consistency. Perhaps it is a mistake to put much

stock into these remarks. In any case, it appears that there are other conceptions of vagueness

available (namely, epistemic) which can explain the claims of vagueness but which don’t posit

extensional indeterminacy.

So much for (a). What about (b)? I suggest that the perpetual disagreement about the prov-

ability of Church’s thesis has less to do with vagueness and more to do with the relevant notion

of proof at work. In Section 3 we noted Folina (1998)’s view that the notion of proof at work in

the ’30s and after was that of derivability in a formal system. But the past eighty years has seen

that notion relaxed. Mendelson (1990, p. 233), for instance, calls the argument for the right-to-left

direction of Church’s thesis “as clear a proof as I have seen in mathematics.” What has happened

here is not that the extension of effective calculability has been fixed, but rather the extension of

‘being a proof’ has widened to accommodate informal demonstrations alongside formal deriva-

tions. Indeed, it is difficult to make sense of much of the history of mathematics if one restricts

oneself to too restricted a notion of proof. The question of proving Church’s thesis was (and still
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is) contentious because it represents a struggle between competing conceptions of proof.

4.5 Summary

Shapiro suggests that Church’s and Kleene’s remarks that effective calculability is vague are best

interpreted as claiming that effective calculability exhibits open-texture. Accordingly, Shapiro

identifies two functions — Ackermann’s and Kalmár’s — which, at one point, were neither effec-

tively calculable nor not effectively calculable. On this account it was not until the effective cal-

culability was appropriately sharpened that the functions were included (as with Ackermann’s) or

ruled out (as with Kalmár’s). I have argued that effective calculability did not exhibit open-texture

with respect to these two functions. By the time Church published his 1936 paper the kinds of

instructions sanctioned as effective already ruled out those required to make true Kalmár’s claims,

and similarly there is no evidence to suggest that Ackermann’s function was ever seriously con-

sidered, in the ’30s or after, as a possible counterexample to Church’s thesis because it relies on

unbounded resources for its calculation.

I should note that there is a third option that I have not discussed, which is the development

of the partial recursive functions. Perhaps the move from total to partial functions is an instance

of sharpening. This strikes me as plausible, but a full investigation is beyond our current scope.

Certainly it is an avenue worth investigating; unfortunately it is not one we will here explore.

5 Conclusion

At the beginning of this paper we characterized our project as one of philosophical path-clearing.

Thus the project is successful only if matters are indeed clearer now than they were before. I am

not so confident in my conclusions to say that matters are crystalline — but perhaps it is clearer

now which paths are open to us and which are not. So I will briefly summarize what has been

cleared and what remains to be cleared.

As long as one thinks that Church’s thesis is true but unprovable there will be a question about
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its nature — about the kind of claim it makes and how the evidence brought for or against it

bears on its truth. We have seen that one possible answer to this question, that the thesis is an

explication in Carnap’s sense, is implausible. As long as one wants to derive uncomputability

results (and there are good reasons to think that one should want to) then explication is not the

route to take. This is because explication prevents us from deriving uncomputability results. The

purpose of explication is to replace vague, imprecise concepts with determinate, precise ones.

But uncomputability results, at least in their most interesting form, tell us something about the

vague, imprecise notion of effective calculability, namely, that a given function is not effectively

calculable. These results are desirable. And as long as explicationism denies them to us we should

reject it.

Explicationism and the standard view are motivated by the thought that effective calculability

is vague. But is it? I have argued that it is not, or, at least, that any vagueness is merely epistemic.

And such vagueness, importantly, does not stand in the way of a proof of Church’s thesis, for it

may be ameliorated by careful conceptual analyses, such as Turing’s. Stewart Shapiro agrees that

vagueness does not stand in the way of a proof, but disagrees about why. According to Shapiro

effective calculability exhibited open-texture at one point, but that open-texture has been sharpened

away over the last eighty or so years. However, these are an empirical claims and it is not clear

that the historical record supports them. If effective calculability exhibited open-texture in the

’30s, then we would expect more disagreement between different characterizations than we in fact

observe. Moreover, Shapiro cannot explain why Church chose to argue for his thesis the way that

he did, or why there is no apparent disagreement over the effective calculability of Ackermann

functions when they were first presented. All of this suggests that, at least in the ’30s, effective

calculability did not exhibit open-texture in the way Shapiro thinks. I suggest that this is because

effective calculability never exhibited open-texture in the first place.

There is much that we have not covered. There are questions about the proper conception of

proof to consider when thinking about Church’s thesis. There are questions about whether there

are other kinds of vagueness, not mentioned above, that might be lurking in the concept of effective
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calculability. And there is the question of whether or not the move to partial recursive functions

exhibits a sharpening of effective calculability. This paper has largely been critical in that it points

out what doesn’t seem to work. But there is still much to be done to figure out what does.
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