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Abstract 

 

Road collisions are disasters that constitute a major cause of disability and untimely death. 

Therefore, the need for investigation of the conditions of road collisions and driver awareness on 

highways is critical. 

A great deal of huge data, with regards to road collisions such as collision properties, road 

conditions, temporal information, environmental attributes, spatial measures and road geometry  

have been accumulated.  

This thesis proposes a new fuzzy granular decision tree to generate road collision rules to apply 

to the discrete and continuous data stored in collision databases. To improve the efficiency of the 

algorithm, the fuzzy rough set feature selection is applied .The major highways in California are 

considered as a case study to examine the proposed approach. The experimental results 

demonstrate that the proposed method is more accurate and efficient than the traditional decision 

tree methods, with the less redundancy in constructing the decision tree. 
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Chapter One: Introduction 

1.1 Background Information 

Road traffic collisions are a social and public health challenge, as they often result in 

injuries and fatalities (Organization 2013). The World Health Organization (WHO) reports 

that road collisions were the ninth leading cause of death in 2004 and are expected to be 

ranked as the fifth in 2030 (Organization 2013). WHO estimates that over 1 million people 

are killed each year in road collisions, which is equal to 2.1% of the annual global mortality, 

resulting in an estimated social cost of $518 billion (Peden, Scurfield et al. 2004). In North 

America, approximately 40,000 people are killed every year on the roads (Ameratunga, 

Hijar et al. 2006).  

Previous traffic safety studies show that, in most cases, the occurrences of traffic 

collisions are seldom random in space and time; and, results indicate that the traffic 

collision concentration areas are dependent on geographic space (Anderson 2009). A 

concentration area is defined as an area or location where there is a higher probability for 

a collision to occur, based on historical data and spatial dependency. Thus, if the properties 

of high-risk locations on the roads can be identified, road safety managers can analyze the 

reasons for the high risk; and, vehicle drivers can be made aware of the danger and drive 

more carefully on the roads with high-risk properties.  

 In this regard, the identification of the risk parameters that significantly influence 

the severity of traffic collisions and determination of the relationships between factors and 



 

2 

collision severity, which can be represented as vehicle collision severity rules, are 

important research topics. 

A great amount of data attributes regarding road collisions, such as collision 

properties, road condition, temporal information, environmental attributes, spatial 

measures and road geometry, have been accumulated over time. However, it is still a 

challenge to analyze and extract rules from diverse historic collision data from large 

databases.  

Data mining is a suitable solution to help decision-makers recognize the rules of 

vehicular collision severity of large databases (Shanthi and Ramani 2011). It is an approach 

that focuses on searching for new and interesting patterns rather than confirming the 

present ones. Therefore, it can be utilized for finding yet unrecognized and unsuspected 

relations between data. The main goal of inductive inference in this study is the analysis of 

a set of historical collision instances and discovery of collision severity rules, so that 

vehicle collision severities can be predicted by applying the discovered rules.  

A decision tree is a data mining method for generating understandable rules 

(relations between attributes) (Peng and Flach 2001). It provides a hierarchical 

representation of the data and a decision path to create logical rules. The most frequent 

usage of decision tree algorithms are ID3 (Iterative Dichotomiser 3), C4.5 (extension of 

ID3), CART (classification and regression tree), SLIQ (Supervised Learning in Quest) and 

random tree, which are used as classic methods for the generation of decision trees 

(Lavanya and Rani 2011). 
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1.2 Problem Statement 

The direct application of the traditional decision tree mining methods on collision datasets 

is not feasible. There are some issues in the traditional methods that reduce the data mining 

performance and the accuracy of the results. In this section, some of the issues are 

discussed. 

Vehicle collision datasets include inconstant data. The inconsistency in the dataset 

confuses the decision tree methods. When a decision tree method is studied, wrong 

predictions can sometimes be observed when inconsistent data are present. For example, 

two instances in the dataset with same attribute values may fall into different collision 

severity classes, which may result in the traditional decision tree methods presenting the 

wrong decision for vehicle collision severity. Incorrect predictions in vehicle collision 

severity can cause erroneous decision-making for drivers. 

Collision datasets usually have a large number of attributes, such as collision 

properties, road conditions, temporal information, environmental attributes and road 

geometry.  Not every attribute contributes to collisions. Traditional decision tree methods 

are not good at handling datasets with large numbers of attributes, because many branches 

are generated with duplication and repetition of sub-trees. 

Vehicle collision data contain both discrete and continuous attributes. For example, 

the weather condition at the time of collision is a discrete attribute; and, the spatial 

measures of the vehicle collisions, such as the distance between the collision location and 

intersections, are usually continuous attributes. The conditional entropy in traditional 

decision tree algorithms considers only discrete attributes. Therefore, discretization is 
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generally applied to continuous variables before applying traditional decision tree methods. 

However, discretization of continuous values in a dataset increases the uncertainty of 

classification and reduces the accuracy of the final classification.   

The last problem is related to the selection of the proper vehicle collision attributes. 

In traditional classification methods, an attribute is chosen solely based on information 

about a node, which creates redundancy in the decision tree. 

1.3 Motivation 

This research focuses on the design and implementation of a framework that provides a 

collision prediction model based on road locations. The historical data at collision locations 

with the properties of road and environmental status can be used to predict the probabilities 

of a collision and its severity. The motivation of this study focuses on the needs of two 

types of users: 

 Drivers. The framework can provide a good sense of their risk in terms of 

specific conditions, such as different time intervals, weather or road surface 

conditions, on a road network based on the historical accident dataset. In this 

situation, the time consumption of the algorithm is important, since drivers can 

add optional attributes (conditions) to the application and allow the method 

make a new vehicle collision severity prediction. 

 Traffic road decision-makers. Using the proposed method, they can investigate 

the collision severity on major roads and make predictions based on different 

scenarios. Traffic decision-makers can also observe the extracted rules and 
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determine which attributes have the most effect on the severity of collisions on 

specific roads. The information can help them make better decisions about 

lighting, road changes or designing a traffic alarm to increase the safety at 

critical road locations.   

1.4 Research Objectives 

The goals of this thesis are to address the challenges of inconsistent vehicle collision 

datasets and to mine the collision datasets to determine the collision severity rule.  To 

achieve these objectives, the following steps needed to be taken: 

1. Construction of a feature selection model to deal with inconsistent vehicle collision 

datasets and select those vehicle collision attributes that have minimum correlation 

and improve the performance of data mining methods without losing the accuracy 

of results. The feature selection model also had the capability of selecting the most 

information-rich attributes in a dataset without the loss of information needed for 

the classification and without transformation of the data. 

2. Investigation of the role of granular computing in data mining and extraction of the 

optimal rules between vehicle collisions attributes by a decision tree method. In this 

step, the following questions needed to be answered: 

 What is a suitable learning approach using granular computing for 

employing vehicle collision attributes and generating efficient rules 

between them? 
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 How can the discrete and spatial data values be handled during the learning 

approach and rule generation process?   

 What is the best solution using the concept of granularity to involve all 

attributes for constructing each level of decision tree rather than only 

considering the attribute of one node? 

3. Application of a suitable reasoning method as a decision engine using the 

results of the learning method to determine the classes of vehicle collision 

severity. In the context of the vehicle collision classification task, answers were 

sought for the following research questions: 

 What is the best solution to involve all extracted rules to determine the 

final severity classification of a probable collision event? 

 How should the discrete and continuous data in dataset be incorporated 

into the process of vehicle collision severity classification? 

1.5 Research Contribution 

The research for this thesis makes three main contributions: 

1. Application of a fuzzy rough set and approximation concept to approximate the 

inefficient inconstant vehicle collision dataset. A fuzzy rough set feature 

selection on vehicle collision data is employed to select the features that have 

minimum correlation and considered the inconstancy in the collision dataset.  

2. Proposal of a fuzzy granular decision tree (FGDT) by introducing the fuzzy 

granular entropy to measure the degree of disorder or uncertainty of objects in 
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each granular dataset, with respect to both discrete and numerical data. In this 

regards, the spatial properties of collision events, which are considered 

continuous data, can be involved in constructing the decision tree. To ensure 

the accuracy of continuous data, the fuzzy granular entropy is calculated based 

on the exact value of the continuous value and fuzzy membership functions 

rather than using the categorized continuous attributes. 

3. Proposal of the inference process of a fuzzy reasoning based system (FRBS), 

using fuzzy membership functions as input data and fuzzy granular decision 

tree rules, which are if-then linguistic rules whose antecedents and consequents 

are composed of fuzzy statements. The FRBS can be applied as a decision 

engine to use the extracted rules from FGDT to determine the final classes of 

vehicle collision severity with respect to all extracted rules.  

 

1.6 Organization of the Thesis 

This thesis is organized as follows: Chapter 2 provides a literature review on existing 

decision tree methods and their limitations and on fuzzy decision tree methods. Chapter 3 

describes fuzzy rough set feature selection for inconsistent vehicle collision data and 

discusses how to deal with the inconstant data before constructing a decision tree. Chapter 

4 presents the proposed method fuzzy granular decision tree for vehicle collision severity 

rule extraction and fuzzy reasoning as the decision engine. Chapter 5 describes the 
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implementation of the proposed methods on twelve main highways as a case study, and 

Chapter 6 provides the conclusion of the thesis and discusses future research directions. 
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Chapter Two: Literature Review 

2.1 Introduction 

This chapter presents an overview of related research. Section 2.2 discusses rough set 

theory and feature selection, and Section 2.3 introduces conventional decision trees and 

their properties. Section 2.4 discusses fuzzy decision trees and their importance of them, 

and Section 2.5 presents a comprehensive overview of granular and rough set decision 

trees. Section 2.6 presents an overview of the fuzzy inference methods, and Section 2.7 

describes some research on traffic collisions and road safety. Section 2.8 is a quick review 

on the overall view of the proposed methods in this research. 

2.2 Rough Set Theory and Feature Selection 

There are many feature selection methods in knowledge discovery and data mining. It may 

be expected that an increasing number of attributes (features) would increase the 

information to distinguish between decision classes; however, it is not true that increasing 

the size of features in the training dataset can increase the capability and accuracy of 

classification methods to determine the final decision efficiently (Beynon 2001, Jensen and 

Shen 2002). 

A high-dimensional dataset increases the chances of a data-mining algorithm, like 

decision tree methods, and can find false patterns or rules that are not valid. Most data-

mining techniques engage feature reduction or feature selection methods in order to cope 

with high dimensional datasets (Jensen and Shen 2002). 



 

10 

One successful approach in the feature selection process is using the rough set theory (RST) 

to obtain features (Ziarko 2015). Over the past twenty years, rough set theory has become 

a topic of interest for researchers who are employed in many domains, such as 

classifications (Jing 2015), clustering (Ho, Kawasaki et al. 2003), expert systems (Shen 

and Jensen 2004) and data mining. The success of using RST in feature selection is related 

to the lack of need for additional information, such as determining thresholds or expert 

knowledge, dealing with inconsistent data in datasets, and finding minimal knowledge in 

the data (Jensen and Shen 2009). The power of RST method is the finding of the most 

informative subset of the original features from a given dataset. One of the most important 

advantages of this method is that feature selection can be applied to a dataset with the 

removal of all other features from the dataset resulting in a minimal loss of minimal 

information. 

2.2.1 Rough Set Feature Selection  

The concept of rough set feature selection (RFS) is based on the indiscernibility of 

instances in the dataset. This method tries to select those features to make better 

discernibility between instances with respect to features (conditional attribute or feature) 

and the final decision classes (decision attributes of feature). For more clarification of the 

RFS concept, let I = (U, A) be an information system, where U is a non-empty set of finite 

instances (the universe) and A is a non-empty finite set of attributes such that Va is the 

value of each row for a specific attribute (a ∈ A). Suppose for any P ⊆ A, there is an 

corresponding equivalence relation, which is called IND(P) (Jensen 2005):  

 
IND(P) = {(x, y) ∈ U2 |∀ a ∈ P, a(x) = a(y)} (1) 
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In the above statement, x and y are two values of a decision table belong to attribute 

a ∈ A. IND(P) generates the partition of U, which is denoted U/IND(P), and can be 

calculated as follows (Jensen and Shen 2009): 

U/IND(P) = ⊗{a ∈ P : U/IND({a})} 

A ⊗ B = {X∩ Y : ∀X ∈ A, ∀Y ∈ B, X∩ Y 6= Ø} 

The instances in a partition of U are indiscernible by a conditional attribute. 

Therefore, if (x, y) ∈ IND(P), then x and y are indiscernible by attributes from P. The 

equivalence classes of the P-indiscernibility relation are denoted as [x]P. Let X ⊆ U.  

In RST, the two concepts of the P-lower and P-upper are defined to approximate X 

using the information contained within them. The lower approximation (or positive region) 

is the union of all instances that can be classified certainly in one of the decision classes, 

whereas the upper approximation is a description of the instances that possibly belong to 

one of the decision classes. These two approximation set are defined as (Jensen 2005, 

Ziarko 2015): 

 

 

 

 

Let P and Q be equivalence relations over U, then the positive, negative and boundary 

regions can be defined as: 

 

 

(2) 

PX = {x | [x] P ⊆ X} (4) 

(3) 

PX = {x | [x] P ∩ X 6= Ø} (5) 

𝑃𝑂𝑆𝑃(𝑄)  =∪𝑋∈U/𝑄 𝑃𝑋 (6) 

NEGP(Q) = U − ∪𝑋∈U/𝑄 𝑃𝑋 (7) 
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The positive region contains all instances in the dataset of U that can be classified 

into the decision classes of U/Q using the information in the attributes of P. Boundary 

region BNDP(Q) is the set of instances that can possibly, but not certainly, be classified in 

decision classes. Negative region NEGP(Q) is the set of instances that cannot be classified 

to decision classes (Jensen 2005, Ziarko 2015). 

2.2.2 Calculation of Dependency between Features 

Determination of the lower and upper approximations help in the calculation of 

dependencies between attributes in feature selection methods, which is an important issue. 

A set of attributes (Q) depends totally on a set of attributes (P), if all attribute values from 

Q are solely specified by the values of attributes from P. In RST, dependency is defined in 

the following way: P, Q ⊂ A and Q depend on P to degree k, where 0 ≤ k ≤ 1.  

 

 

 

 

If k = 1, Q depends totally on P, if 0 < k < 1, Q depends partially on 

P, and if k = 0 then Q does not depend on P. 

𝐵𝑁𝐷𝑃(𝑄) = 𝑃𝑂𝑆𝑃(𝑄) −  𝑁𝐸𝐺𝑃(𝑄 (8) 

𝐾 = 𝛾𝑝(𝑄) =  
|𝑃𝑂𝑆𝑝(𝑄)|

|𝑈|
 

(9) 
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2.2.3 Limitation of Rough Set Feature Selection 

Datasets often include spatial data where the values of attributes may be both crisp and real 

valued: this is where many feature selection methods, such as those based on traditional 

rough set theory, face a problem. It is clear that there is a need for a method that provides 

the means of feature selection for crisp and real-value attributed datasets. Fuzzy sets (Zadeh 

1965) prepare a mechanism by which real-valued features can be effectively managed.  

The vagueness and uncertainty present in inconsistent datasets can be modelled by 

assigning values that belong to more than one label, using the membership function 

definition and lower and upper approximations of that dataset. This can be achieved with 

the use of fuzzy rough sets for feature selection (Sahatier 1992). Crisp RST can be extended 

with fuzzy RST, which allows all instances in upper and lower approximation sets to take 

values in the range of [0,1]. Therefore, in this research, the fuzzy RFS was applied to a case 

study dataset. 

2.3 Decision Trees 

Classification-rule learning involves finding rules or decision trees that partition the given 

data into predefined classes. For any realistic problem domain of the classification-rule 

learning, the set of possible decision trees is too large to be exhaustively searched.  In fact, 

the computational complexity of finding an optimal classification decision tree is non-

deterministic polynomial-time hard (NP-hard). The main existing decision tree algorithms, 

such as like Iterative Dichotomiser 3 (ID3) (Quinlan 1986), an extension of ID3 (C4.5) 

(Quinlan 1993), , SLIQ (Supervised Learning in Quest) (Mehta, Agrawal et al. 1996), and 
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scalable parallel classifier for data mining (SPRINT) (Joshi, Karypis et al. 1998), use 

Hunt’s method (Quinlan 1983) as the basic algorithm. 

2.3.1 Hunt’s Method 

Hunt's algorithm is an interactive method that grows a decision tree by partitioning the 

training objects into subsets. Let DT be the set of training objects that reach node t with the 

classes of decision. The general procedure is defined as below (Quinlan 1983):  

1. If DT contains instances that belong to the same class Cj, then t is a leaf node 

labeled as Cj. 

2. If DT is an empty set, then t is a leaf node labeled by the default class, Cj. 

3. If DT contains instances {O1, O2… On} that belong to more than one class.  

This method uses an attribute test to split the data into smaller subsets. Suppose T 

is partitioned into subsets DT, where DTi contains all the cases in DT that have outcome 

Oi of the chosen test. The decision tree for DT consists a decision node identifying the test 

and one branch for each possible outcome. The same tree building machinery is applied 

recursively to each subset of training cases. 

Table 2.1 shows a training data set with four data attributes and three classes. Figure 2.1 

shows how Hunt’s method works with the training dataset. In case 3 of Hunt’s method, a 

test based on a single attribute is chosen for expanding the current node. Attribute selection 

is normally based on the entropy gains of the attributes. The entropy of an attribute is 

calculated according to the information of the class distribution.  
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Table 2.2 shows the class distribution information of the weather data attribute of. For a 

continuous attribute, a binary test of all the distinct values of the attribute is considered. 

Table 2.3 shows the class distribution information of the collision time data attribute with 

three decision value of PDO (property damage traffic), injury and Fatal. Once the class 

distribution information of all the attributes is gathered, the entropy is calculated based on 

either information theory or the Gini index. One attribute with the most entropy gain is 

selected as a test for the node expansion. 

2.3.2 ID3 Algorithm 

The ID3 algorithm (Quinlan 1986) is a decision tree method in which the classification of 

instances in the dataset is specified by testing the values of their properties. It constructs 

the tree starting from a set of instances and a specification of properties in a top-down 

approach. The property of values is tested at each node of the tree, and the results are used 

to partition the instances in the dataset.  This process is internationally done till the set in a 

given sub-tree belongs to one decision class. At each node, the node is chosen based on 

maximizing the information gain and minimizing entropy. 
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Table 2.1  Small Training Dataset of Vehicle Collisions 

Granular Weather  Surface  Lighting  Time  Severity  

1 Clear Dry Day-Light 10:30 PDO 

2 Clear Dry Dusky OR Dark 8:45 PDO 

3 Clear Dry Dusky OR Dark 21:35 PDO 

4 Clear Not Dry Day-Light 11:40 PDO 

5 Clear Not Dry Dusky OR Dark 9:25 Injury 

6 Clear Not Dry Dusky OR Dark 23:30 Injury 

7 Rainy Not Dry Day-Light 10:00 Injury 

8 Rainy Not Dry Dusky OR Dark 8:45 Injury 

9 Rainy Not Dry Dusky OR Dark 19:25 Injury 

10 Fog Dry Day-Light 19.:00 PDO 

11 Fog Dry Dusky OR Dark 9:25 Injury 

12 Fog Dry Dusky OR Dark 21:25 Fatal 

13 Fog Not Dry Day-Light 10:44 Fatal 

14 Fog Not Dry Dusky OR Dark 21:17 Fatal 

 

 

 

 

 

 

 

 

 

Figure 2.1 Demonstration of Hunt’s Method 
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Table 2.2 Class Distribution Information of the Weather Attribute 

 

Table 2.3 Class Distribution Information of Collision Attributes 

Attribute Value 

Decision Classes 

PDO Injury Fatal 

8  – 14 4 4 1 

14 - 21 1 1 0 

21 - 24 1 1 2 

2.3.3 C4.5 Algorithm 

The C4.5 algorithm was proposed by Quinlan (1993).  The recursive partitioning of data is 

the main structure of the C4.5 algorithm. The algorithm considers all the possible tests and 

selects a test with the best information gain. For each discrete attribute, each distinct value 

belong to that specific attribute is tested. For each continuous attribute, the partitioning is 

applied to all attributes. In order to gather the entropy gain of all these tests efficiently, the 

training dataset belonging to the node in consideration is sorted by the values of the 

Attribute Value 

Decision Classes 

PDO Injury Fatal 

Clear 4 2 0 

Rainy 0 3 0 

Fog 1 1 3 
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continuous attribute and the entropy gains of the binary divided based on each distinct 

value. This process is repeated for each continuous attribute. 

2.3.4 C5.0/Sec 5 Algorithm 

The C5.0 algorithm is an extension of the C4.5 and ID3 algorithms. It is a classification 

algorithm that can be applied to big datasets. It is better than the C4.5 algorithm with 

respect to the speed, memory and efficiency. The C5.0 method splits the dataset for those 

attributes that provide the maximum information gain. The process continues until the 

subset belongs to just one decision class. C5.0 easily handles multi-value attributes and 

missing attributes from dataset (Patil, Lathi et al. 2012).  

2.3.5 Classification and Regression Tree  

The classification and regression tree (CART) is a popular classification statistical method. 

CART splits the data by iteration until end nodes are achieved using the present criteria. 

CART operates by analyzing all explanatory variables and then determining which binary 

division of a single explanatory variable reduces deviance in the response variable 

(Breiman et al., 1984; Efron and Tibshirani, 1991; Venables and Ripley, 1997).  

The process of CART is repeated for each part of the split data, continuing until the 

final nodes belong to one of the decision classes in a hierarchical tree. CART constructs a 

tree that describes the deviancy based on the original data. However, CART uses the 

dataset to fit it to tree. Therefore, to create a robust tree, a pruning method should be applied 

to the constructed tree. For example, the dataset is split into ten equal sets; and, to create 
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the best size of tree, the tree is generated by nine parts and validated by the last remain part 

of the dataset.  

It is obvious that the result of CART analysis is a decision tree, and a pruning 

method may select a smaller tree. A series of dichotomous splits is defined in each path of 

the tree, which specifies the conditions that lead to a most probable class. Therefore, the 

structure of the rules can be used for unknown observations to predict likely class 

membership. 

2.3.6 CHAID 

CHAID (CHi-squared Automatic Interaction Detector) is a basic decision tree learning 

algorithm. It was developed by Gordon V Kass (Kass 1980) in 1980. CHAID is easy to 

interpret, easy to handle and can be used for classification. CHAID is an extension of the 

AID (Automatic Interaction Detector) and THAID (Theta Automatic Interaction Detector) 

procedures. After detection of interaction between variables, it selects the best attribute for 

splitting the node which made a sub- node as a collection of equivalent values of the 

selected attribute. The method can handle missing values. It does not imply any pruning 

method (Patil, Lathi et al. 2012). 

2.3.7 Some Limitations of Recent Decision Tree Algorithms 

It is obviously all decision tree methods have their weakness and limitations. In this section 

some limitations of the mentioned decision tree algorithms are investigated respect to 

vehicle collision data base.  

The fragmentation problem exists if data set gradually partitioned into smaller 

segments (Setiono and Liu 1998, Yao, Liu et al. 2005). Replication and repetition can cause 
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fragmentation. Also, fragment can occur when many conditional features are involved in 

the process of construction diction tree. The algorithms like ID3 and C4.5 uses a top-down 

structure to recursively partition the training data. This strategy leads to the fragmentation 

problem because towards the end of the subdivision process, the size of the underlying data 

becomes quite small, even though a statistical test requires a data of significant size. The 

replication problem will be ignited if sub-trees are replicated in decision tree. It leads to 

the data set to be split into the smaller segments which indicate fragments problem (Setiono 

and Liu 1998, Yao, Liu et al. 2005). Partitioning in continuous data is the other issue in the 

decision trees (Jing-ti and Yu-jia 2009). Attributes having discrete values can be easily 

partitioned but continuous attributes like spatial properties of vehicle collision (ex. distance 

of collision to intersection locations or slope degree) have problem with partitioning in the 

process of creating decision tree . The algorithms like C4.5, C5.0 and CART apply the 

partitioning methods on data set and lose the accuracy of exact value of continuous 

attributes.  Repetition problem is ignited if the features are repeatedly tested along a path 

in a decision tree(Setiono and Liu 1998, Yao, Liu et al. 2005). These repetitions explode 

data set into smaller and smaller segments, hence result in fragmentation.  

 ID3, 4.5 and C5.0 willing to take multi-valued attributes (Rui-Min and Miao 2010, 

Thakur, Markandaiah et al. 2010). They always select the attribute with many values which 

causes the wrong classification result. In some cases, some non-valuable attributes have 

the highest value of gain ratio (because of the formula of the information gain and entropy) 

and some valuable attribute’s gain ratio becomes lower. So difficulty would come of 

making the root of the tree.   
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ID3 and C4.5 algorithm does not follow back in searching (Rui-Min and Miao 2010). 

Whenever certain layer of nodes in the tree chooses a property to test, it will not backtrack 

to reconsider this choice. In this way, the algorithm could easily solve the local optimal 

problems, but not global optimal issues.  

The other issue is that the decision tree algorithm does not provide rowing learning. 

Indeed, ID3 algorithm cannot accept training sample incrementally, so the each increase of 

example requires abandoning original decision tree, to restructure new decision tree, and 

to lead to lots of overhead (Jing-ti and Yu-jia 2009). 

Sometimes the dataset may have attributes with the range values. Current decision 

tree methods use the min-max, mean or medium value as representative value of that range 

which is not suitable. As an example the attributes such as slope has range value as inputs. 

We need to improve the membership grade and entropy calculation method to handle the 

attributes with the range value.  

As vehicle collision events’ databases contain both discrete and continuous 

attributes, the above-mentioned decision tree methods cannot apply the continuous values 

such as spatial measures based on their real values. So, it decreases the accuracy of decision 

tree. The fuzzy decision trees help to apply the real value of continuous values in vehicle 

collision data sets. 

2.4 Fuzzy Decision Tree 

Regarding decision trees, the ID3, CART, and C4.5 algorithms are among the most relevant 

ones. Fuzzy decision trees have also been proposed in the literature (Chang and Pavlidis 



 

22 

1977, Hori, Umano et al. 1999, Olaru and Wehenkel 2003, Janikow 2004, Tokumaru and 

MURANAKA 2010). Fuzzy decision trees combine the powerful models of mentioned 

decision trees with the ability to process uncertainty and imprecision of fuzzy systems. 

Moreover, fuzzy decision trees borrow the admirable properties of decision trees regarding 

their low computational induction cost, as well as the rules extraction properties in a low 

computational cost way. 

2.4.1 Special Issues of Fuzzy Decision Tree Methods 

Such as classical decision trees, fuzzy decision trees are constructed in a top-down 

manner by recursive partitioning of the training set into subnets. Here, we list some 

special issues of fuzzy decision trees (Chen, Wang et al. 2009): 

 Attribute selection criteria in fuzzy decision trees 

A conventional method to select an attribute in classical decision tree is to choose 

the attributed with the highest information gain. But in fuzzy decision methods, the 

information gain is depended on fuzzy membership function values. So, the 

conventional information gain methods cannot be efficient. Some modifications 

and enhancements of the basic algorithm have been proposed and studied. 

 Inference for decision assignment 

The inference procedure is an important part of FDT, and it needs to design the 

inference method so designing and analysis of inference methods increases the 

complexity of model.  
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 Stopping criteria 

In the conventional decision tree methods, the termination happens if all attributes 

belong to one decision class; or if all examples in the current node belong to the 

same class. In FDT, an example may occur in different classes with different 

membership values. 

2.5 Granular Computing and Decision Trees 

As mentioned in the decision trees issues section, decision trees suffer from getting overly 

complex and being easily affected by slight changes in the training set (Rokach 2008). To 

overcome these disadvantages, ideas from granular computing, in particular rough sets 

have been employed to investigate the relationships that exist between the complexity of 

the decision tree, data set consistency and the classification accuracy, as the dataset is 

transposed to a lower granular level. 

In particular the following three forms of relationships will be explored: 

1. The relation between accuracy, complexity and consistency of model based on the 

attribute binning.  

2.  The relation between accuracy, complexity and consistency of model based attribute 

reduction or selection.  

3.  The relation between accuracy, complexity and consistency of model based data 

modification. 
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2.5.1 Granular Computing 

As discussed earlier, one of the problems with decision trees is that they get overly complex 

with large data set. Therefore, researchers have employed other techniques to construct 

decision trees that are small and accurate. 

With combining the concept of simplicity and accuracy, the concept of granular 

computing will be emerged. Granular computing views the world by diving into entities 

called information granules that are grouped together due to their similarity, functional 

adjacency, in distinguishability or coherence (Bargiela and Pedrycz 2003). A highly 

detailed granular world can be abstracted into lower granulation using formal frameworks 

that approximates the original representation. This can be formally written as (Bargiela and 

Pedrycz 2003): 

𝐺 =< 𝑋, Ģ, 𝐴. . . > 

where 𝐺 is the granulation process, 𝑋 is the object to be granulized, Ģ is a family of 

reference and 𝐴 refers to Attributes. In this method, knowledge is split into hierarchical 

steps. Regarding this hierarchical model, the information pyramid is built where the 

granules at the base are large in number and containing the most details and the granules 

at the apex have the smallest number of details, containing only the core information 

granules. This is illustrated in the figure below: 

Moving from one step layer to another involves the process of abstraction. The 

issue of how to define the size of an information granule is one of fundamental problems 

in the field of granular computing In general, high information granularity levels are 

associated with a decrease in the usefulness of the concept. 
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In the framework of granular computing, the problem of lake comprehensibility can be 

modeled with the concept of high granulation. Decision trees also share the two primary 

motivations of all formal methods used in granular computing (Bargiela and Pedrycz 

2003) : 

1.  A need to split a problem into smaller tasks.  

2.  A need to comprehend the problem without getting into unnecessary detail. 

This sharing of principles between data mining and granular computing was also 

recognized by (Bargiela and Pedrycz 2003). Hence, granular computing serves as a 

powerful model for solving the problem of balancing accuracy and size of a decision tree. 

2.5.2 Rough Sets and Decision Trees 

Using the concept of Rough set in decision trees has mostly focused on either (a) employing 

the rough sets as an alternative of information gain to find an appropriate split attribute in 

decision tree construction, or (b) data pre-processing step using rough set theory (RST) to 

high 

GRANULALITY 

low 

Figure 2.2  Information Processing 

pyramid 
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manipulate the dataset inputted in the decision tree. RST has also been used in comparison 

studies between the two approaches of decision making. 

Han and Kim (2007) find out the disadvantages of traditional ID3 and C4.5 

algorithms since the attributes are chosen without considering the correlations so that 

sometimes high frequency attributes are selected. The entity attribute decision tree (EDT) 

and the reduce attribute decision tree (RDT) methods are proposed by them. Also, they 

showed their advantages of accuracy and rule simplification (Han and Kim 2008). 

RST has also been used to calculate the degree of dependence between the conditions and 

decision attribute. The condition attributes with the highest significance value is used as 

the splitting criteria in the construction of the decision tree (Han and Kim 2008, Wang and 

Ou 2008).  

Within the same framework of finding appropriate selection of attribute and dealing 

with missing values, Li, Ruan et al. (2007) developed an algorithm that calculated the 

weighted mean roughness of every condition attribute and then selected the attribute that 

had the smallest mean roughness.  

Rough set theory has also been used for feature selection in pre-processing step to 

eliminate redundant data. Zhou, Zhang et al. (2008) in comparisons with the C4.5 algorithm 

showed that the removal of redundant attributes can increase the prediction accuracy of a 

decision tree. 

Minz and Jain (2003), (Minz and Jain 2005, Sikder and Munakata 2009) find out  

the importance of rough sets as a pre-processing step  where the datasets is small and so no 

strong conclusions can be drawn. Their research shows the need to filter out redundant 

attributes. 
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Similar works were carried out by Yellasiri, Rao et al. (2007), which showed that rough 

sets pre-processed decision trees produced the highest accuracy compared with the ID3, 

C4.5 and CART algorithms.  

Comparisons between rough sets and decision trees done by (Sikder and Munakata 

2009) to identify important factors of earthquakes revealed that there were no statistically 

significant differences between the C4.5 method and rough sets. The fuzzy-rough sets 

approaches as a hybrid method have also been used extensively in rules induction step and 

compared with the C4.5 method produced better accuracy (Thangavel and Pethalakshmi 

2009).  

Decision tree has been used for rules generated by rough sets with the aim of visualization 

(Ilczuk and Wakulicz-Deja 2007). This research seeks the benefit of decision trees to 

provide comprehensibility in determining decisions.  

Finally, after constructing an optimal decision tree, all rules are extracted from 

constructed decision tree. A decision engine should be applied to these rules to determine 

the final classes of severity for all vehicle event objects. This method can use the extracted 

rules to classify the vehicle collision severity. 

2.6 Fuzzy Inference Systems 

Vehicle collision events may be influenced by many environmental, human, spatial and 

road geometry factors. To use these influencing factors for vehicle collision severity 

prediction, the prediction accuracy largely depends on the quality of the factors, supplied 

with the efforts expanded in collecting, analyzing and processing. On the other hand, 
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historical observations embedded with rich information can be used to infer the future 

collision severity. Therefore, this research focused on the prediction of vehicle collision 

severity based on historical recorded events. Road vehicle collision severity is, however, a 

complex, open and time variant system that often exhibits highly randomness and 

uncertainty. This challenge has bring up considerable research to be developed to this field. 

As a result, a wide range of classification and prediction method has been developed, such 

as the Kalman filter (Okutani and Stephanedes 1984) and it’s extension (Gazis and Liu 

2003), the support vector machine (Gazis and Liu 2003), Bayesian networks (Scutari, 

Howell et al. 2014), and hybrid approaches (Guo-jiang 2010). The fuzzy inference system 

(FIS) is a well-known method to deal with the incomplete dataset. This model is tolerant 

to noise, uncertainty. Also, it is an interpretable model and easy to incorporate expert and 

field knowledge (Wang and Liu 2008). Fuzzy approaches have the following properties 

with comparison to the other classification and prediction mentioned approaches: 1) the 

calculation of the dependency between inputs and out puts of a system 2) the fuzzy 

linguistic variables provides a natural way to deal with uncertainty; 3) the modeling of 

nonlinear systems can be handle by them; 4) the singular and linguistics output can be 

easily generated; 5) they are insensitive to random noise in the dataset. 

A nonlinear mapping from its inputs space to output space will be constructed by 

fuzzy inference system with crisp inputs and outputs. This mapping is done by a number 

of fuzzy if-then rules which is extracted from decision trees. In particular, the antecedent 

of a rule defines a fuzzy region in the input space, while the consequent specifies the output 

in the fuzzy region. Basically a fuzzy inference system is composed of five steps as shown 



 

29 

in Fig 2.3. The Structure of the Fuzzy Inference system is described as follows.  

 

 

 

 

 

 

 

 

 

 

Two types  of  FIS,  namely  Mamdani  FIS (Mamdani and Assilian 1999)  and Sugeno FIS 

(Sugeno 1985) are widely accepted and applied to solve  many  real-world  problems. 

In terms of use and applications, the Mamdani FIS is more widely used, mostly due 

to its reasonable results with a relatively simple structure, and its intuitive and interpretable 

nature of the rule base (Jassbi, Serra et al. 2006). Since the consequents of the rules in a 

Sugeno FIS are not fuzzy, this interpretability is lost; however, since the Sugeno FIS’s 

rules can have as many parameters per rule as input values, this translates into more degrees 

of freedom in the design than a Mamdani FIS, thereby providing the system’s designer 

with more flexibility in the design of the system (Mendel 2001). It should be noted that the 

Mamdani FIS can be used directly for either multiple input, single output (systems) or 

multiple input, multiple output (MIMO) systems, such as vehicle collision severity 

classification and prediction, whereas the Sugeno FIS can only be used in MISO systems. 
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Moreover, the classification and prediction of vehicle collision severity should be crisp to 

be useful for users and decision-makers. Since the Mamdani FIS has a defuzzification step 

to facilitate the crisp output, the Mamdani FIS was used in this research as the decision 

engine of determining the final class of events. 

2.7 Traffic Collisions Road Safety Research 

In general, the impact factors for collision risks and, thus, the reasons for variation can 

involve three interdependent realms: (1) risk exposure, (2) environment, and (3) social and 

psychological human factors. For instance,Thomson and Tolmie (2001) modeled risk as a 

function of exposure multiplied by hazard divided by traffic skill. Exposure, in their 

understanding, was mainly captured by time spent on the street, as their model refers to 

children. The degree of hazard was determined by the local traffic environment and traffic 

skills were considered as individual and household factors that affect a person's ability to 

deal appropriately with the hazard. Risk exposure is mainly an outcome of transport mode 

use, travel distances and traffic mix (Elvik, Vaa et al. 2009). For example, large proportions 

of cyclists may be associated with low risk levels, possibly because car users drive more 

carefully in regions where many people cycle (Vandenbulcke, Thomas et al. 2009).  

In terms of Collison severity, driving speeds is a major factor. Environmental 

factors include the condition of the road network, road type and design, spatial context (e.g. 

density, land-use, distances to intersections, etc.), temporal context (e.g., darkness) and 

transport context (traffic density, speed and behaviour of other transport users). Social and 

psychological factors include socio-demographic and socio-economic structures, risk 
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attitudes, lifestyles and associated behaviour. For instance, in a questionnaire survey in 

Norway of 900 young adults Elvik, Vaa et al. (2009) found that risk acceptance and risk-

seeking were more common in rural location than in urban areas. Many status and other 

social variables are also associated with the socio-spatial attributes of the neighbourhoods 

where people live (Thomson and Tolmie (2001)). Various research works have differed in 

their focus and degree of detail with respect to the impact factors of collision risk. 

Differences refer to type of road, operational speed, traffic mix, road user mix, mode used, 

site etc. 

Joly, Foggin et al. (1991) reported that "there has been little published on the 

geography of traffic accidents in two decades ago and has been changed over the last two 

decades. They discussed the difference between 'rate' and 'risk'. Indeed, accident rates 

referred to locations or areas, whereas accident risks refer to only to individuals or groups 

of road users related to some measure of exposure (Abdalla, Raeside et al. 1997). In reality, 

the location of accident shows the meaning of Collison rates, while accident risks point to 

people. Blatt and Furman (1998),Cummings, Koepsell et al. (1995) and Gooder and Charny 

(1993) investigated the differences between these two spatial approaches to road safety as 

place of accident (POA) and place of residence (POR). The data issues and possible 

deflection among POR, POA, and place of death (in case of fatal accidents) were 

considered on their study. We did a study overview of impact factors for accident risk 

which is followed by a review studies regarding to POA, studies based on POR. The POA 

and POR studies are discussed a briefs descriptions in below. 

POA-based Approaches: The attributes of places where accidents are more likely to occur 

than elsewhere have been examined in many studies. Accident counts and control for areas 
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and population size of the areas were considered in these studies. Overall, the results of 

these studies showed that high density and urbanity were associated with lower rates of 

severe injuries. The results were less conclusive when accident rates included all injuries. 

A negative relation between the density and the fatalities per resident in a study of 

448 counties in the USA was found by Ewing, Schieber et al. (2003). All fatalities were 

considered together including pedestrian fatalities.  

Accident counts for San Antonio, USA were performed by Dumbaugh and Rae 

(2009) who focused on the neighbourhood level. Variables such as size, population density, 

socio-demographics, and traffic infrastructure attributes were associated with 

neighbourhoods. This study shows that large-scale retail outlets were associated with 

increased risk of accident and injury. On the other hands, the opposite was true for 

traditional designs with high density, walkability and small-scale neighbourhood shops. 

The result of this study showed a higher speed levels on arterials and less driving in 

traditional neighbourhoods. 

A study of accidents in 80 cities in Germany was done by covering 60,000   

residents(Holz-Rau and Scheiner 2013). A relation of dense cities and lower accident rates 

was an important result of this study. Moreover, it ascribed this to lower per capita travel 

volume, i.e. to risk exposure. Another finding of this study was an increase of accident 

rates with the extension of road networks, car ownership, and use. Other related studies 

reported similar results for towns and municipalities with less than 80,000 residents.  

In contrast, the findings of Petch and Henson (2000) for Salford, UK, suggested 

higher rates of child pedestrian/cyclist casualties in inner-city areas. The findings included 

positive relationships between the fatality rates and over-crowding (persons per 
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household), traffic volume and the proportion of no-car households. The latter relationship 

may suggest that children in areas with low levels of car ownership walk and bike more 

than average. Similarly, Joly et al. (1991) reported that child pedestrian and cyclist injury 

rates tended to be concentrated in Montreal, low-income areas 

POA-based Approaches: The attributes of places where accidents are more likely to occur 

than elsewhere have been examined in many studies. Accident counts and control for areas 

and population size of the areas were considered in these studies. Overall, the results of 

these studies showed that high density and urbanity were associated with lower rates of 

severe injuries. The results were less conclusive when accident rates included all injuries. 

A negative relation between the density and the fatalities per resident in a study of 

448 counties in the USA was found by Ewing, Schieber et al. (2003). All fatalities were 

considered together including pedestrian fatalities.  

Accident counts for San Antonio, USA were performed by Dumbaugh and Rae 

(2009) who focused on the neighbourhood level. Variables such as size, population density, 

socio-demographics, and traffic infrastructure attributes were associated with 

neighbourhoods. This study shows that large-scale retail outlets were associated with 

increased risk of accident and injury. On the other hands, the opposite was true for 

traditional designs with high density, walkability and small-scale neighbourhood shops. 

The result of this study showed a higher speed levels on arterials and less driving in 

traditional neighbourhoods. 

In contrast, the findings of Petch and Henson (2000) for Salford, UK, suggested 

higher rates of child pedestrian/cyclist casualties in inner-city areas. The findings included 

positive relationships between the fatality rates and over-crowding (persons per 
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household), traffic volume and the proportion of no-car households. The latter relationship 

may suggest that children in areas with low levels of car ownership walk and bike more 

than average. Similarly, Joly et al. (1991) reported that child pedestrian and cyclist injury 

rates tended to be concentrated in Montreal, low-income areas 

POR-based approaches: The risk of injury for a population in POR-based approaches 

obtain better than studies based on POA. 

Blatt and Furman (1998) studied collision severity in the USA. Rural areas and 

small towns are showing above average risk. This study is done for all drivers, male drivers, 

young drivers, and drivers involved in crashes with child fatalities. The risk figure 

represents twice the range of world’s average in rural areas. 

Scheiner and Holz-Rau (2007)  reported case studies for two German regions and 

all age groups. The severity of injury and age were distributed but the travel mode was 

ignored in their study. Their study found that rural and suburban areas had the highest risk 

figures, with lower risk figures for city dwellers.  

Research investigations of accident risks considering variables such as income, social 

status, or ethnic background are done by Abdalla, Raeside et al. (1997) and Edwards, Green 

et al. (2008) in the UK. The studies represented that risk figures are positively related to 

social deprivation. The studies on risks in UK focused on a small-scale level with 4,765 

census areas in London distinguishing between age groups, severity of injury, and transport 

mode. This study reported that the most deprived areas to be approximately three times 

higher than those in the least deprived areas. The findings for wheelmen were similar, while 

the association between area deprivation and car occupants' injuries was less clear. 
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2.8 Overall View of Suggested Methodology 

In this section, we present an overall view of the suggested methodology, as shown in 

Figure 2.4. 

 

 

 

   

 

 

 

 

 

In the data preparation step, the dataset is investigated to remove those vehicle collision 

events with missing values and inconstant data. All spatial data, such as like vehicle 

collision events as a point layer, roads as polyline and districts as polygon layers, are then 

converted to the GCS_North_American_1983 datum coordinate system. In the next step, 

the vehicle collision events dataset is divided in two datasets – a training dataset and a 

testing dataset. Indeed, 70% of the original dataset is devoted to the training dataset, and 

30% of the original dataset is assigned to the testing dataset.  

A vehicle collision dataset contains a certain amount of redundancy between 

conditional attributes that will not discover knowledge and may, in fact, misinform the 

process. The fuzzy roughest feature selection is applied to find useful vehicle collision 
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Figure 2.4 Overall view of suggested methodology 
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features to represent the data and remove redundancy. After determining the selected 

features, the fuzzy granular decision tree is constructed to extract the vehicle collision rules. 

The fuzzy inference model is used as the decision engine based on the extracted rules and 

is applied on the testing dataset to determine the severity class of vehicle collision events 

as a predictor model.  

The accuracy, time consumption and discrepancies between the proposed method 

and some convention and common methods are investigated. 
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Chapter Three: Fuzzy Rough Set Feature Selection for Vehicle Collision 

Inconsistent Dataset 

3.1 Introduction 

Feature selection is a technique for selecting the attribute of a feature set as an important 

component of both supervised and unsupervised classification (Janecek, Gansterer et al. 

2008). Most vehicle collision datasets contain a certain amount of redundancy that will not 

get knowledge discovery and may in fact misinform the process. The feature selection step 

finds useful vehicle collision features to represent the data and removes redundancy 

between attributes. Time is also saved during the decision tree process as a result of feature 

selection.  

The main objective of feature selection in this study is threefold: preparation of the 

vehicle collision decision table with minimum correlation and redundancy, provision of 

faster efficient vehicle collision decision trees, and improved performance of the vehicle 

collision severity prediction via the predictor method. Vehicle collision datasets with the 

high dimensionality generate decision trees with a large number of nodes, redundancy and 

low performance. These problems restrict the usability of decision trees in the rule 

generation and classification for the collision data. This method prompted this research into 

the use of fuzzy rough sets for feature selection. 
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3.2 The Reasons of Using Fuzzy Rough Set Method in Vehicle Collision Rules 

Mining 

Many existing algorithms need expert knowledge and information for feature selection, 

which is a significant drawback. User knowledge is necessary to state the number of 

features or determine a threshold to terminate the algorithm. Therefore, the decision is 

dependent on user’s judgments (Jensen 2005).  

In our study, the vehicle collision dataset consists of twelve conditional features 

and one decision feature. The task of feature selection in a vehicle collision dataset is the 

determination of the smallest subset of conditional features, so that the resulting reduced 

dataset remains consistent with respect to the decision feature. A dataset is consistent if, 

for every set of instances whose attribute values are the same, the corresponding decision 

attributes are identical (Stefanowski and Tsoukias 2001).  

The vehicle collision dataset used in this study was, however, not identical. This 

means that there are some instances with the same conditional feature values, but different 

decision feature values. The non-identical vehicle collision dataset creates vagueness in 

construction of the decision tree and in rule mining. One of main problems of existing 

feature selection methods is related to modeling of vagueness data.  

With the utilization of rough set theory in the feature selection process, the vague 

concept can be modeled by the approximation of a vagueness set by a pair of precise 

concepts, called lower and upper approximations. The lower approximation, or positive 

region, is the union of all instances that can be classified certainly in one of the decision 
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values; whereas the upper approximation is a description of the instances that possibly 

belong to one of the decision values (Jensen 2005, Wang and Ou 2008). 

The values of attributes in vehicle collision datasets are both crisp and continuous (real 

valued), and this is where many feature selection methods encounter a problem. It is not 

possible to say whether two attribute values are similar and to what extent they are the 

same. The fuzzy rough set feature selection (FRFS) method employs degrees of 

membership of values in the rough set feature selection to solve the aforementioned 

problem; therefore, discretization of the values is not considered at all. For example, two 

values may both be mapped to the same label “Near to Road Intersection”, but one may be 

much more near than the other: values 10 m and 55 m could both be mapped to this class, 

although they are significantly different. This is a source of information loss, which is 

contrary to the rough set ideology of retaining information content. Further discussion of 

this issue can be found in (Beynon 2004).  

The combination of fuzzy sets and the process of fuzzification of a vehicle collision 

dataset provide a mechanism by which real-valued features can be effectively managed. 

The vagueness and uncertainty of vehicle collision datasets can be modeled by allowing 

values to belong to more than one label with various degrees of membership and involving 

the lower and upper approximation concept in the process of feature selection. This 

information may then be exploited by fuzzy methods to enable reasoning under uncertainty 

(Gupta, Saini et al. 2015). 

In this section, we apply FRFS on vehicle collisions attributes. FRFS chooses the 

most information rich attributes in a dataset without transforming the data. The FRFS 

method is highly efficient, relying on a simple set of operations, which makes it suitable as 
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a pre-processor for rules mining. Moreover, since it is often the case that vehicle collision 

data have values of attributes that may be both discrete and real-valued (continuous), FRFS 

should be better equipped to handle this uncertainty and vagueness (Jensen and Shen 2002).   

3.3 Fuzzy Rough Set Feature Selection Process 

To apply FRFS on a vehicle collision dataset, two datasets of collision vehicle events were 

considered. The first dataset contained real-valued (continuous) data and described the 

values of the conditional feature with nominal decisions, such as the values of morning, 

afternoon and evening for the time of collision. The second dataset was defined by fuzzy 

membership values, with corresponding fuzzy decision memberships, such as 10 am with 

fuzzy membership value between 0 and 1.  

To simplify the following discussion, twelve common features were considered as 

conditional features attributes in this study: weather (CF1), collision day of week  (CF2), 

road surface (CF3), collision road type (CF4), lighting  (CF5), collision time (CF6), direction 

(CF7), road condition (CF8), road radius (CF9), slope (CF10), distance from intersection 

(CF11), and distance from population center (CF12). The decision feature was the collision 

severity. Among the twelve conditional features, CF6, CF9, CF10, CF11 and CF12 were 

continuous variables, while CF1, CF2, CF3, CF4, CF5, CF7 and CF8 were discrete variables. 

The first step of FRFS is the creation of fuzzy equivalence classes, which are described in 

the next subsection. 
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3.3.1 Fuzzy Equivalence Classes 

The formation of the fuzzy equivalence classes is the first step of the FRFS method. The 

fuzzy equivalence classes are defined based on the similarity of the instances in the 

decision table S when they have the similar membership function in S. For example, 

instances x and y are considered to be similar if their membership are same as each other. 

Using the definition of the fuzzy similarity relation, the family of normal fuzzy sets 

produced by a fuzzy partitioning of the universe U can play the role of fuzzy equivalence 

classes (Dubois and Prade 1992). For example, the equivalence classes of decision feature 

DF are those instances that are partitioned by their membership functions, such as U/DF = 

{MFPDO, MFInjury, MFFatal}. The fuzzy equivalence classes are calculated for all 

conditional features (CF) and the decision feature (DF) by the inclusion of a fuzzy 

similarity relation in the vehicle collision dataset. 

3.3.2 Fuzzy Rough Set Lower and Upper Approximation 

 The next step in the process of the FRFS of the vehicle collision dataset is built on 

the notion of fuzzy lower and upper approximations to enable the reduction of dataset 

containing real-valued features. The fuzzy lower and upper approximations are derived 

from possibility and necessity theory (Dubois and Prade 1992). The lower fuzzy 

approximation evaluates the extent to which an instance is effected by the vehicle severity 

decision classes. The fuzzy upper approximation evaluates the extent to which an instance 

is consistent with the vehicle severity decision classes. Assume that P is a subset of 

universe U, the fuzzy P-lower approximation and P-upper approximations are defined in 

Equations 1 and 2 (Jensen 2005).  

(1) 
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𝜇𝑝𝑥(𝐹𝑖) = sup𝐹∈𝑈/𝑃min (𝜇𝐹(𝑥), inf𝑦∈𝑈max  {1 − 𝜇𝐹(𝑦), 𝜇𝑥(𝑦)})   ∀𝑖 ∈ 𝑈 

𝜇�̅�𝑥(𝐹𝑖) = sup𝐹∈𝑈/𝑃min (𝜇𝐹(𝑥), sup𝑦∈𝑈min  {𝜇𝐹(𝑦), 𝜇𝑥(𝑦)})   ∀𝑖 ∈ 𝑈 

 

where Fi denotes a fuzzy equivalence class belonging to U/P; 𝑖 is the number of 

membership functions; x and y are indicators of the instances in the dataset; and sup and 

inf are the supremum and infimum functions, respectively, to obtain the real values of fuzzy 

sets.  The supremum or least upper bound of vehicle collision set S of real numbers of real 

membership value is defined to be the smallest real number that is greater than or equal to 

every number in S. The infimum or greatest lower bound of vehicle collision set S  of real 

membership value  is defined to be the largest real number that is smaller than or equal to 

every number in S (Downarowicz, Frej et al. 2015). In other words, μpx and μp̅x determine 

the membership values of instances that belong to the fuzzy lower and upper approximation 

sets. These values are calculated for all instances belong to fuzzy equivalence classes. 

The next step is the calculation of the positive region of each instance. Instance x 

does not belong to the positive region only if it can be classified with certainty to the vehicle 

severity classes. The membership of an instance x∈U, belonging to the fuzzy positive 

region can be defined by the fuzzy union of the fuzzy lower approximation of the fuzzy 

equivalence classes (Equation (3)).  

𝜇𝑃𝑂𝑆(𝐷𝐹)(𝑥) =   𝑠𝑢𝑝     𝜇𝑝𝑋(𝑥), 

 

In the above equation the fuzzy positive region is calculated by the sup function of the 

fuzzy lower approximations. 

(2) 

𝑋 ∈ 𝑈/𝐷𝐹 
(3) 

http://en.wikipedia.org/wiki/Real_numbers
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An important step in FRFS is the identification of the dependencies between 

conditional attributes. Intuitively, a set of attributes DF depends totally on a set of 

conditional attributes P ∈ CF, if all attribute values from DF are uniquely arranged by the 

values of attributes from P. If there exists a functional dependency between values of DF 

and P, then DF depends totally on P. In fuzzy rough set theory, dependency is defined in 

the following way: 

𝛾𝑝(𝐷𝐹) = ∑ 𝜇𝑃𝑂𝑆𝑃(𝐷𝐹)(𝑋)𝑋∈𝑈  

 

The dependency value is between 0 and 1, which is calculated for all composition 

of vehicle collision conditional features. The higher value of dependency for a conditional 

feature indicates a more significant feature. If the significance is 0, then the conditional 

feature is dispensable. The next section describes the method of feature selection based on 

dependency values. 

3.4 Fuzzy Rough Set Quick Reduction 

In this study, we have used the dependency value to select the conditional features with a 

high dependency. The higher dependency values of conditional features show the feature 

has the capability to separate the more instances in a specific vehicle severity decision class 

in the dataset. Therefore, the dependency values of all 12 vehicle collision conditional 

features were calculated, and the highest values were then selected and added to the 

selected features set. The process was iterated until the dependency value no longer 

increased. Hence, the selected set represents the chosen features. Figure 3.1 shows an 

example of the feature selection process for a dataset with the three conditional features. 

(4) 
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Figure 3.1 Path is taken by the fuzzy-rough quick reduction algorithm 

At the first level of Figure 3.1, CF2 had the highest value of dependency among the three 

conditional features; therefore, it was chosen as the first feature in the feature set. One 

feature from CF1 and CF3 was then added to the current selected feature set {CF2}. The 

feature set {CF2, CF3} increased the dependency value more than the feature set {CF1, 

CF2}; therefore, CF3 was added to selected features set in the second level. After CF1 was 

added to CF2 and CF3  in the third level, the value of dependency did not increase. 

Therefore, the algorithm stops, and the output of the selected feature set was {CF2, CF3}. 

The dataset can now be constructed based on the selected feature set, including all instances 

as rows and only those attributes appearing in the selected feature set as columns. 

. 

 

{} 

{𝐶𝐹1} {𝐶𝐹2} 

} 

{𝐶𝐹3} 

} 

𝛾𝐶𝐹1=0.56 𝛾𝐶𝐹3=0.58 

𝛾𝐶𝐹2> 𝛾𝐶𝐹1 𝑎𝑛𝑑  𝛾𝐶𝐹3  

 

 

 {𝐶𝐹1, 𝐶𝐹2} {𝐶𝐹2, 𝐶𝐹3} 

𝛾{𝐶𝐹1,𝐶𝐹2}=0.47 𝛾{𝐶𝐹2,𝐶𝐹3}=0.84 

𝛾{𝐶𝐹2,𝐶𝐹3} > 𝛾{𝐶𝐹1,𝐶𝐹2} 𝑎𝑛𝑑 𝛾𝐶𝐹2   

 

𝛾𝐶𝐹1 𝑎𝑛𝑑  𝛾𝐶𝐹3  

 

 

 

{𝐶𝐹1, 𝐶𝐹2,𝐶𝐹3} 

𝛾{𝐶𝐹1,𝐶𝐹2,𝐶𝐹3}=0.57 

𝛾{𝐶𝐹2,𝐶𝐹3} > 𝛾{𝐶𝐹1,𝐶𝐹2,𝐶𝐹3} 

  

 

𝛾𝐶𝐹1 𝑎𝑛𝑑  𝛾𝐶𝐹3  

 

 

 

𝛾𝐶𝐹2=0.75 
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Chapter Four: Fuzzy Granular Decision Tree for Vehicle Collisions Severity 

Rules Extraction 

4.1 Introduction 

This section introduces the proposed method for the framework of fuzzy granular 

computing. As discussed previously, this research proposes a fuzzy granular decision tree 

(FGDT) for the construction of a decision tree from a vehicle collision database, in order 

to support discrete and continuous data by defining membership functions and fuzzification 

of data in the database. While decision tree methods, such as ID3, consider only discrete 

attributes, the fuzzy granular decision tree, which is an extension of the classic decision 

tree, perceives both discrete and continuous attributes. It applies the fuzzy set theory to 

represent the dataset and combines tree growing and granular computing to determine the 

structure of the tree.  

To overcome the over-fitting problem in conventional decision tree methods, the 

FGDT chooses an attribute value in favor of all nodes at the same level when splitting a 

node. However, in conventional methods, the attribute is chosen solely based on the 

information about this node, not any other nodes at the same level. Thus, in the 

conventional decision tree, different nodes at the same level may use different attributes; 

and, the same attribute with all possible values that may be used at different levels causes 

the over-fitting issue.  

Vehicle collision event rules mining was employed to demonstrate the potential of 

the fuzzy granular decision tree in solving the mentioned issues. Traffic collisions are 

usually caused by human, vehicle, environmental, roadway design and spatial factors 
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(Geurts, Wets et al. 2003). Due to the lack of sufficient human and vehicle historical 

damage data, this thesis utilized environmental, roadway design and spatial factors to test 

the proposed FGDT methodology, which is a generalization of the classical decision tree.  

All the data in the training dataset were first fuzzified in the form of membership functions. 

The fuzzy granular entropy was then calculated for each record in the dataset. According 

to the calculated fuzzy granular entropy and generality and redundancy criteria, the fuzzy 

granular decision tree was constructed. The decision method of the final classification was 

done by training and testing data using a fuzzy rules based system, which is described in 

Chapter 5. The FGDT is discussed step by step in the following sections. 

4.2 Granular Computing 

In this section, the reasons for choosing granular computing as an appropriate mathematical 

model for rules mining and classification problems are discussed. 

 Granular computing (GrC) (Lin 1997) is a rapid development of granular 

computing, and a fast growing interest in this computation has been observed. Granular 

computation and granules as a subset of the universe are regarded as the primitive notion 

of GrC. The notion of a level consisting of a family of granules is referred to as a granulated 

view. Granules in different levels are joined by order relations into a hierarchy. A granule 

in a higher level can be decomposed into many granules in a lower level; and, conversely, 

many granules in a lower level can be combined into granules in a higher level. A granule 

in a lower level provides a detailed description of the granule in a higher level, and a 

granule in a higher level has a more abstract description than the granules in a lower level. 
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From the standpoint of GrC, a concept may be illustrated by a granule and be described or 

labeled by a formula. Once concepts are constructed and described, one can develop 

computational methods for the granule and the formula, such as the sub and super concepts 

and the disjoint and overlapped concepts (Yao 2004). These relationships can be 

conveniently expressed in the form of rules, with some associated quantitative measures 

indicating strength. 

Knowledge discovery and data mining, especially rule mining, can be determined 

as a process of forming concepts and finding relationships between concepts in terms of 

granules and formulas by combining the results from granular computing and formal 

concept analysis. They are directly related to concept formation and concept relationship 

identification (Yao and Yao 2002). While concept formation involves the construction and 

description of classes, concept relationship identification involves the connections between 

classes. The rule mining and classification problem is then properly modeled by the GrC 

theory. 

4.3 Information Tables 

 The information table is the basic concept in decision tree model and consists of the 

information about objects being compiled into an information table. Indeed, information 

tables are used in GrC models and provide a convenient way to describe a finite set of 

objects, called a universe, by a finite set of attributes. It represents all available information. 

The objects in the information table are only perceived, observed or measured by using a 

finite number of properties. It was defined by (Pawlak, Grzymala-Busse et al. 1995) as:     

 S = (U, At, 𝐿, {Va|αϵAt}, {Iα|α ∈ At}) 
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where U denotes a finite nonempty set of objects, At shows a finite nonempty set of 

attributes, L represents a language defined using attributes in At, Va is a nonempty set of 

values for a∈At, and Ia:U→Va shows an information function. In language L, an atomic 

formula is given by a=v, where a∈At and v∈Va.  

Formulas can be formed by logical negation, conjunction and disjunction. If 

formula φ is satisfied by object x, it can be written as x|=Sφ or in short x|=φ (Yao 2001). 

If φ is a formula, set mS(φ) defined by mS(φ)={x∈U| x|=φ} is called the meaning of φ in S. 

If S is understood, it can be simply written as m(φ). The meaning of formula φ is the set of 

all objects having the property explained by formula φ. A connection between formulas of 

L and subsets of U is thus established.  

With the introduction of language L, we have a formal description of concepts. A 

concept definable in an information table is a pair (φ, m(φ)), where φ∈L. Moreover, φ is a 

description of m(φ) in S and the intension of concept (φ, m(φ)); and, and m(φ) is the set of 

objects satisfying φ and the extension of concept (φ, m(φ)).  

An example information table is given in Table 4.1. Based on the definition of the 

information table, we can find U = {O1, O2, O3, … O14} and At = {A, B, C, D, class}. In 

addition, attribute A has the three possible values of VA = {Clear, Rainy, Fog}. The other 

attributes have two possible values: VB = {Dry, Not Dry}, VC = {Day-Light, Dusky OR 

Dark}, VD = {Day, Night} and VClass = {PDO, Injury, Fatal}. (Note that PDO is the 

acronym for property damage only). 



 

49 

Table 4.1 Example of an Information Table 

Granular A B C D Class 

O1 Clear Dry Day-Light Day PDO 

O2 Clear Dry Dusky OR Dark Day PDO 

O3 Clear Dry Dusky OR Dark Night PDO 

O4 Clear Not Dry Day-Light Night PDO 

O5 Clear Not Dry Dusky OR Dark Day Injury 

O6 Clear Not Dry Dusky OR Dark Night Injury 

O7 Rainy Not Dry Day-Light Day Injury 

O8 Rainy Not Dry Dusky OR Dark Day Injury 

O9 Rainy Not Dry Dusky OR Dark Night Injury 

O10 Fog Dry Day-Light Night PDO 

O11 Fog Dry Dusky OR Dark Day Injury 

O12 Fog Dry Dusky OR Dark Night Fatal 

O13 Fog Not Dry Day-Light Day Fatal 

O14 Fog Not Dry Dusky OR Dark Night Fatal 

 

For decision tree construction and rule mining tasks, it is assumed that information about 

objects is given by an information table, and each object is associated with a unique class 

label. Objects can be divided into classes that form a granulation of the universe. Without 

the loss of generality, it is assumed that there is a unique attribute class taking class labels 

as its value. The set of attributes is expressed as S= At ∪ {Class} and named information 

system (IS), where At is the set of attributes used to describe the objects, also called the set 

of descriptive or conditional attributes.  
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For developing a granule tree, the universe, which is a finite set of attributes in information 

table, should be split into grouping or partitions of the same class with the atomic formula 

of the class label. A set of granules associated with the atomic formula of the attribute value 

is then constructed. The selection of the most appropriate formula and its connected granule 

for each level of granular tree needs some quantitative measures to estimate the quality of 

a generated rule, as described in the following subsections.  

Generality and Fuzzy Generality: Generality indicates the relative size of the granule. The 

generality is defined by the probability of each granule, which is defined by a formula. If 

a generality covers more instances of the universe, it is more general than the other granules 

(Yao and Yao 2002). Equation (4.2) shows the generality:  

𝐺(φ(𝑎 = 𝑣)) =
|m(φ)|

|𝑆|
 

 With the fuzzy granular decision tree (FGDT) proposed in this research, the fuzzy 

generality is introduced in Equation 2: 

𝐹𝐺(φ(𝑎 = 𝑣)) =  ∑
∑ 𝜇

𝑖𝑗
𝑁
𝑗

𝑆

𝑐

𝑖=1

 

where μij is the fuzzy membership value of the jth granule to the ith class.  Equation 2 is 

defined based on the concept of applying the value of fuzzy membership function of each 

attribute of collision events rather than using the number of granules. The summation of 

membership values of the granular set in the specific class is designed as a numerator and 

the summation of membership values of all granules in a specific formula in S is calculated 

as the denominator of this equation. The calculated generality presents the generality of the 

granular S of formula  a = v  (Kiavarz  and Wang 2014). 

(2) 

(1) 
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Confidence: Given two formulas φ and ψ Zhao and Yao (2007) introduced symbol ⇒ to 

connect φ and ψ in the form of φ ⇒ ψ .We can illustrate  φ (A = Clear) ⇒ ψ (Class = PDO) 

as an sample of the connection of the two formulas.  The ratio of the number of granules 

in a granular set that are correctly classified by the generated rules to the number of 

granules in the granular set that are created by a formula that is termed as the confidence 

or absolute support. Thus, it is a measure of the correctness or precision of the inference. 

As Equation 3 specifies, if the value of confidence of a rule is kept high, fewer association 

rules will be mined, but their prediction accuracy will be quite high (Zhao and Yao 2007). 

To calculate the confidence of a rule that is constructed by fuzzy granular decision tree, we 

introduce the Fuzzy Confidence or Fuzzy Absolute Support by Equation 3. 

𝐹𝐴𝑆(φ ⇒  ψ) =
∑ 𝜇𝑖(φ ∧ ψ)
𝑁
𝑖=1

∑ 𝜇𝑖(φ)
𝑁
𝑖=1

 

where  μi is the membership value of the ith granule to the decision class that is determined 

by formula ψ, and  N is the number of granules in the granular set that is assigned by 

connection φ ⇒  ψ.   

Coverage: Coverage is a measure that represents the suitability of the classification. It 

demonstrates the fraction of data in a class correctly classified by the rule (Kiavarz  and 

Wang 2014). The value of coverage is estimated by the fraction of the number of granules 

in a granular set that are correctly classified by the number of granule in training data with 

the same class label (Zhao and Yao 2007). To calculate the coverage of a rule that is 

constructed with the FGDT, the fuzzy coverage (FCV) in introduced in Equation 4. 

𝐹𝐶𝑉(φ ⇒  ψ) =
∑ 𝜇𝑖(φ∧ψ)
𝑁
𝑖=1

∑ 𝜇𝑖(ψ)
𝑁
𝑖=1

 
(4) 

(3) 



 

52 

where  μi is the membership value of the ith granule to the decision class that is determined 

by formula ψ, and N is the number of granules in the granular set that is assigned by 

connection φ ⇒  ψ.   

Conditional Entropy:   

Conditional entropy is the most commonly used measure for selecting attribute values in 

the construction of the decision tree for classification. Many decision tree algorithms, such 

as ID3 and common granular decision tree, require data with discrete values. Discretization 

of a continuous variable is not easy, particularly the determination of the boundary of each 

interval. An example is the distance from a collision to an intersection. The fuzzy concept 

in the FGDT method is applied, with the dataset with the fuzzy expression forming the 

FGDT.  

Based on this concept, fuzzy granular entropy is proposed to employ the continuous and 

discrete values in decision tree construction. Fuzzy granular conditional entropy is 

introduced based on defined membership values of each object in each granular set, due 

the data fuzzy expression (Kiavarz  and Wang 2014). Equation (4.6) specifies the fuzzy 

granular conditional entropy (FGCE) with the given granular universe S: 

𝐹𝑢𝑧𝑧𝑦 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎 = 𝑣) =  −∑
∑ 𝜇𝑖𝑗
𝑁
𝑗

𝑆

𝑐
𝑖=1 𝑙𝑜𝑔2

∑ 𝜇𝑖𝑗
𝑁
𝑗

𝑆
 

 

where  μij is the membership value of the jth granule to the ith class.  This equation is defined 

based on the concept of applying the value of membership function of each factor of 

collision events rather than using the crisp values. The summation of membership values 

of granular in the specific class is designed as a numerator of Equation 1 and the summation 

of membership values of all granular in a specific formula is calculated as the denominator 

(5) 
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of this equation. The calculated entropy presents the entropy of the granular S of formula  

a = v  related to training data. In the fuzzy granular conditional entropy the membership 

function (which belongs to formula  a = v for each granule) are involved to calculate 

entropy. For example, the granular set of formula A(weather) = Clear is 

{O1,O2,O3,O4,O5,O6} based on Table 3.1. Also the granular sets of decision classes of 

PDO, Injury and Fatal are {O1,O2,O3,O4,O10}, {O5,O6,O7,O8,O9,O11} and {O12,O13,O14}, 

respectively. According to the defined membership function of A(weather), the 

membership values for objects are demonstrated in Table 4.2. 

Table 4.2 Membership values of intances with  

the connection A = weather ⇒ Class=Clear 

 

 

 

 

 

 

 

The value of FGCE is calculated based on Equation (1) which is equal to FGCE (weather 

= Clear) = 0.72*0.30 + 0.28 * 1.84 + 0 = 0.73. 

4.4 Pre-processing of Inconsistent Data and Missing Attribute Values 

Data preprocessing includes the handling of inconsistent data and missing attribute values 

in the dataset. The preprocessing is applied on the dataset before applying the feature 

selection algorithm. There are missing attribute values for some events as instances of the 

Granules MF MF Values 

μA(O1) 1 

μA(O2) 1 

μA(O3) 0.9 

μA(O4) 1 

μA(O5) 0.7 

μA(O6) 0.8 
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dataset, i.e. the values of one or more attributes are empty for some instances in the dataset. 

In of data preprocessing, the missing values are marked and then simply not used in fuzzy 

granular entropy calculations.  

Inconsistent vehicle collision event data also emerge in the decision table during 

data collection. The instances with identical condition values and different decision values 

belonging to different severity classes create confusion in the construction process of the 

decision tree algorithm. The given vehicle collision database is considered as decision table 

S = (U, CF, DF). When inconsistent data appear, a new decision table – S' = (U', CF, DF) 

– can be defined according to those instances that have the maximum frequency decision 

value. 

Table 4.3 presents a sample of vehicle collision decision table with inconsistent 

data. The three instances (O1, O3 and O4 ) are  inconsistent data, the individual values of 

the decision property Severity are PDO, PDO and Injury. The proportion of the decision 

value PDO is 66% of three instances, and the decision value of Injury is 33%. Therefore, 

the instances with the identical condition values and the decision value of PDO are selected, 

and the other instances are deleted. A new decision table is obtained as shown in Table 4.4. 

Table 4.3 The Road Collision Decision Table with inconsistency Data 

 

 

 

 

 

 

U Weather Surface Lighting    Time Severity 

O1 
Clear Dry Day-Light Morning 

PDO 

O2 Clear Not Dry Dusky OR Dark Morning PDO 

O3 Clear Dry Day-Light Morning PDO 

O4 Clear Dry Day-Light Morning Injury 

O5 Raining Not Dry Day-Light Night Fatal 
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Table 4.4 The Road Collision Decision Table without Inconsistency Data 

 

 

 

 

4.5 Constructing Road Vehicle Collision Fuzzy Granular Decision Tree 

To create a road collision FGDT with minimum uncertainty, the subset of formula 

(attribute value) with the highest values of coverage, confidence, generality and minimum 

granular fuzzy entropy should be selected as a node of the tree. The road collision rules are 

then generated automatically based on the training data. Construction of the FGDT 

involves applying concepts, such as generality, which represents the presence of a granular 

set rather than the other granular set in the universe, fuzzy granular entropy, which 

measures the homogeneity of each granular set and decreases the redundancy by selecting 

those granular set that have the minimum redundancy rather than the other granular set to 

cover the universe. The redundancy in a FGDT means that an object in a granular set is 

repeatedly placed along a given branch of the tree. To reduce such redundancy, the 

proposed FGDT automatically selects more appropriate nodes based on measurement of 

the redundancy by counting the repetitive objects of a granular set and the universe in each 

step to select the node with minimum redundancy and maximum coverage of the universe 

granular set.  

This process can recognize which granule is most appropriate at the end of each 

level to be broken down first, until it reaches to the granular set whose objects will be a 

U Weather Surface Lighting    Time Severity 

O1 
Clear Dry Day-Light Morning PDO 

O2 Clear Not Dry 
Dusky OR Dark 

Morning PDO 

O5 Raining Not Dry Day-Light Night Fatal 
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subset of final classes. This granular set is called non-active granular set. The active 

granular set is a set of objects that belong to different classes. Thus, an active granule is 

further divided through efficient measures, and the construction of the tree is continued 

until all granules reach zero or near to zero fuzzy entropy, in which the union of all non-

active granules is equal to the universe set. In other words, after the union of all non-active 

granules that cover the universe at the all levels, the FGDT construction is stopped. 

The designed program extracts the rules from constructed tree automatically. In the 

constructed FGDT, each non-active granule is labeled by its decision class value. The union 

of all non-active granules in the two levels form a non-redundant covering solution of the 

consistent classification problem and the union of all inactive subsets in the two levels 

forms the universe. The steps of constructing FGDT shown below: 

 Set U as the root node of a fuzzy granule tree at the initial stage. 

 Set the status of U as active. 

o While the active granule(s) is available N 

 Extract all formula in the U 

o While the unprocessed formula is available M 

(1) Calculate fuzzy generality, fuzzy confidence, fuzzy coverage and  

fuzzy granular entropy condition for all granules. 

(2) Select the proper granule as a node with respect to below conditions: 

-  Granule with the minimum entropy, 

-  Granule with the minimum redundancy, 

-  Granule with the maximum fuzzy generality, fuzzy confidence, 

fuzzy coverage. 
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(3)  Determine the selected granule as an active or inactive granule. 

(4)  Update the activity status of N. 

(5)  Update U set based on the selected formula. 

(6)  Modify the fuzzy granule tree by adding the granule N∩m(a=v) as a  

new node, connecting it to N by an arc, and labelling it b ya=v. 

 End of Loop M 

End of Loop N. 

4.6 Reasoning with the Fuzzy Granular Decision Tree 

Fuzzy inference is the process of formulating the mapping from a given input to an output 

using fuzzy logic. The mapping then provides a basis from which decisions can be made 

or patterns discerned. The rules that are extracted from the FGDT have a description 

structure based on the if-then phrase, which is called a linguistic rule. This research 

employs the fuzzy rules based system (FRBS) to make a final decision to specify the road 

vehicle collision events in the three classes of PDO, Injury and Fatal.  

The process of FRBS is started from a given input to the output using a set of fuzzy 

if-then linguistic rules, which are generated from the FGDC, the antecedents and 

consequents of which are compounded fuzzy statements related by the concepts of fuzzy 

implication and the compositional rule of inference (Roisenberg, Schoeninger et al. 2009). 

An FRBS is a knowledge-based method, which implicates the information in the form of 

if-then fuzzy rules, i.e. if a set of conditions are satisfied, then set of consequents can be 

driven. The consequent is an output collision severity class. For example, it can be denoted 

as (Zadeh 1997): 
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𝑅𝑗: 𝐼𝐹 𝑎𝑗1 𝐼𝑆 𝑣𝑗1 𝐴𝑁𝐷…𝐴𝑁𝐷 𝑎𝑗𝑚 𝐼𝑆 𝑣𝑗𝑛  𝑇𝐻𝐸𝑁 𝑏 𝐼𝑆 𝐶𝑗                                                

where j = 1-L, which is the number of extracted rules, aj1 to ajm and b are the input and 

output variables, and vj1 to vjn and Cj are the involved antecedents and consequent labels, 

respectively.  

The fuzzy reasoning is applied to determine the final classes of collision events in 

five steps: fuzzification of the input variables, application of the fuzzy operator (AND or 

OR) in the antecedent, implication from the antecedent to the consequent, aggregation of 

the consequents across the rules, and defuzzification . The following subsections present 

the descriptions of FRBS’s steps (Straccia 2011). 

4.6.1 Fuzzification of Input Variables 

As previously mentioned, there are two different types of data in a vehicle collision 

database – discrete and continuous. Many decision tree algorithms, such as ID3 and regular 

granular tree, require data with discrete values. This results in the loss of some information 

with continuous values in the database; therefore, this research strives to use the fuzzy 

concept to construct the decision tree, substituting the training data with the fuzzy 

expression and forming the FGDT.  

The type of fuzzy membership function for each attribute is very significant in the 

creation of the FGDT. As such, various functions are tested, and an appropriate function 

for each factor is determined. Triangular and trapezoidal functions (with maximum equal 

to 1 and minimum equal to 0) are widely applied membership functions. This research uses 

triangular and trapezoidal membership functions, due to their simplicity, their learning 

capability, and the short amount of time required for designing the system. Based on the 

http://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html#FP346
http://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html#FP347
http://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html#FP347
http://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html#FP348
http://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html#a1054218661b1
http://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html#a1054218661b1
http://www.mathworks.com/help/fuzzy/fuzzy-inference-process.html#a1054218744b1
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collision data in the fuzzy membership function, the fuzzification of collision data is 

applied to the database by the defined membership functions (Tahriri, Mousavi et al. 2014). 

The first step is to take the inputs, including conditional attributes and objects, from 

the information table and determine the degree to which they belong to each of the 

appropriate fuzzy sets via membership functions. The input is a numerical value limited to 

the universe of discourse of the input variable (it has difference intervals for each attribute), 

and the output is a fuzzy degree of membership in the qualifying linguistic set (always the 

interval between 0 and 1).  

Figure 4.1 represents as example of the distance of a collision event from an 

intersection, which was built on the rules. Each of the rules depends on resolving the inputs 

into a number of different fuzzy linguistic sets: severity is PDO, Injury or Fatal, distance 

is very near, near, far, and so on. Before the rules can be evaluated, the inputs must be 

fuzzified according to each of these linguistic sets. For example, to what extent is the 

distance of the collision from an intersection really near? Figure 4.1 shows how far the 

collision is (rated on a scale of 0 to 350, via its membership function) as the linguistic 

variable distance from the intersection. In this case, the distance was rated as 210 metres, 

which, given the graphical definition of near, corresponds to µ = 0.8 for the distance from 

the intersection membership function (Zadeh 1965, Tahriri, Mousavi et al. 2014).  
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Figure 4.1 Fuzzing the input value 

At the fuzzification step, the crisp collision event data input is converted into fuzzy data by 

using defined membership functions. A value between 0 and 1 is assigned for each feature 

in the generated rules.  

4.6.2 Application of Fuzzy Operator 

After the inputs are fuzzified, the fuzzy degree of each attribute is determined as to which 

each part of the antecedent is satisfied for each rule. This subsection discusses about the 

multi-antecedent part. If the antecedent of a given rule has more than one part, the fuzzy 

operator is applied to obtain one number that represents the result of the antecedent for that 

rule. This number is then applied to the output function. The input to the fuzzy operator is 

two or more membership values from fuzzified input variables. The output is a single truth 

value (Mousakhani, Me'marzadeh Tehran et al. 2013). 

 

0.8 

Result of 

Fuzzification 

Dist from Int is 210 

Input 
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Either the AND or OR operation can be used. They can be represented by two built-in 

AND methods: min (minimum) and prod (product). Two built-in OR methods are also 

supported: max (maximum) and probor (probabilistic OR method).  

As the application of this research is vehicle collision severity classification, it is 

sensitive to each part of the rules. To consider each of the parts in the antecedent, the AND 

operator has been selected. Figure 4.2 presents an example of a multi-antecedent part and 

the use of the AND operator. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Application of Fuzzy Operator 

4.6.3 Implication Step 

Before applying the implication method, the rule’s weight must be determined. Every rule 

has a weight (a number between 0 and 1), which is applied to the number given by the 

 

Near 

 

0.3 

Day Light 0.8 

Result of 

Fuzzification 

 

1. Fuzzify Inputs 

 

2. Apply AND Operator 

(Min) Inputs 

Lighting = Day Light           AND        Dist from Int = Near 

Lighting = 3 Dis from Int = 210 

Input 1 Input 2 
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antecedent. Generally, this weight is 1 and, thus, has no effect at all on the implication 

process. In this research, the weight of each rule is considered as 1 (Zadeh 1965, Kulkarni 

2001). After proper weighting is assigned to each rule, the implication method is applied.  

A consequent is a fuzzy set represented by a membership function, with an 

appropriate weight attributed to the linguistic characteristics. The consequent is reshaped 

using a function associated with the antecedent (a single number).  A single number is 

assigned as the input value for the implication process given by the antecedent, and the 

output is a fuzzy set.  

Implication is implemented for each rule. Two built-in methods are supported, and they are 

the same functions used by the AND method: min (minimum), which truncates the output 

fuzzy set, and prod (product), which scales the output fuzzy set (Zhu, Wang et al. 2014). 

Figure 4.3 shows an example of the implication method applied to one rule of vehicle 

collision. 
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4.6.4 Aggregation of Outputs 

Since the decisions in a fuzzy reasoning are based on the testing of all rules, the rules must 

be combined in some manner in order to make a decision. The fuzzy sets that represent the 

outputs of each rule are combined into a single fuzzy set by the aggregation process. 

 

Near 

 

0.3 

Day Light 

Result of 

Fuzzification 

 

Fuzzify Inputs 

 

Apply AND Operator 

(Min) Inputs 

Lighting = Day Light           AND        Dist from Int = Near                    Then 

Lighting = 3 Dis from Int = 210 

Input 1 Input 2 

Antecedent 

  Severity 

0.8 

0.3 

Severity = Injury 
Result of 

Implication 
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Aggregation only occurs once for each output variable, just prior to the fifth and final step, 

defuzzification. The list of truncated output functions returned by the implication process 

for each rule is the input of the aggregation process. The output of the aggregation process 

is one fuzzy set for each output variable (Liu, Jiao et al. 2013). 

In the aggregation step, the order in which the rules are executed is unimportant so 

long as the aggregation method is applied to the outputs of all rules. Three built-in methods 

are available: max (maximum), probor (probabilistic OR) and sum (simply the sum of each 

rule's output set). As all outputs of rules can be important, the max function was selected 

as the aggregation function in this study (Liu, Jiao et al. 2013). 

Figure 4.4 is an example of the use of the aggregation method on vehicle collision input 

data. All three rules have been placed together to show how the output of each rule is 

combined, or aggregated, into a single fuzzy set. 
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Figure 4.3 Aggregation step of Fuzzy Inference 

 

    

Rule 1. 

 

Rule 2. 

  

Rule 3. 

   

 

If    Weather = Clear   and     Road Surface = dry     then            Severity = PDO 

If    Weather = Unclear   and     Road Surface = Wet     then        Severity = Injury 

If    Weather = Fall   and     Road Surface = Icy     then                Severity = Fatal 

Rule 2 has no 

dependency 

on input 2 

Weather = 4 Lighting = 5 

Input 1 Input 2 

 

 

4. Apply 

aggregation 

method(ma

x) 

Result of 

aggregation 

Clear Dry PDO 

Unclear 
Injury 

Fall Icy 
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4.6.5 Defuzzification 

The last step is called defuzzification and is used to convert fuzzy values to the final crisp 

classes of PDO, Injury and Fatal value. In collision severity, a single crisp output is desired 

from an FRBS. The input for the defuzzification process in vehicle collision is a fuzzy set 

(as shown in the aggregate output fuzzy set), and the output should be a single number to 

determine the exact final severity class. As much as fuzziness helps the rule evaluation 

during the intermediate steps, the final desired output for each variable is generally a single 

number. However, the aggregate of a fuzzy set encompasses a range of output values, 

which must be defuzzified in order to obtain a single output value from the set (Pradhan 

2013). 

Perhaps the most popular defuzzification method is the centre of gravity, which 

returns the centre of the area under the curve. Five built-in methods are supported: 

centroid, bisector, middle of maximum (the average of the maximum value of the output 

set), largest of maximum, and smallest of maximum (Pradhan 2013). 

In this research, the centroid method of defuzzification, which calculates the centre 

of gravity of the individual fuzzy sets aggregated with the maximum connective, was 

considered. The centroid defuzzification method finds a point representing the centre of 

gravity of the aggregated fuzzy set A on the interval [a,b], the calculation of which is (Erdik 

2014): 

𝑧𝐶𝑂𝐺 =
∫ 𝑧
𝑏
𝑎 .𝜇𝐴(𝑧)𝑑𝑧

∫ 𝜇𝐴(𝑧)𝑑𝑧
𝑏
𝑎

 

where  zCOG is the crisp output, μA(Z)  is the aggregated membership function and z is the 

output variable. In the case study section, there is an example of FRBS based on real data 

(6) 
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of collision events. Figure 4.5 is an example of deffuzzification method on vehicle collision 

input data. 

 

 

 

 

 

 

 

 

Figure 4.4 Defuzification Step of Fuzzy Inference 

After calculating the single number with defuzzification, the decision attribute membership 

function can be performed to determine the final linguistic classes of severity (Kiavarz  and 

Wang 2014). Figure 4.6 represents how the final classes of an object in the database can 

be determined. Indeed, it is an example of a membership function of severity in the class 

of PDO, Injury and Fatal. As this figure shows the final class was Injury. 

After calculating the single number of defuzzification, the decision attributes membership 

function can be performed to determine the final linguistic classes of severity (Kiavarz  and 

Wang 2014). The figure 4.6 represents how the final classes of an object in the database 

can be determined. Indeed, it is a sample of membership function of severity in the class 

of PDO, Injury and Fatal. As this figure shows the final class is Injury. 
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Figure 4.5 Determination of the Final Discrete Class 
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Chapter Five: Case Study and Results 

5.1 Case Study Data Description 

 The data set for the case study contains traffic collision records of the twelve major 

highways in California. It holds the collision details from January 2011 to April 2013. The 

raw data were obtained from the California Collision Database & Synopses web site in a 

spreadsheet file. These data were stored in an excel file format with 16 attributes along 

with the coordinate system of collisions to describe each record. After the preprocessing 

step, the dataset had 45621 collisions instances in 12 counties of California (as shown in 

Figure. 5.1). All the instances in the data set were divided into 12 subsets based on the 

highways. The feature selection rule mining by decision tree and classification algorithms 

by fuzzy inference were applied to each subset. The 12 significant existing attributes were 

classified them into three groups: environmental, road geometry, and spatial attributes. The 

environment specific attributes were comprised of weather (CF1), collision day of week 

(CF2), road surface (CF3), collision road Type (CF4), lighting (CF5), collision time (CF6) 

and road surface condition (CF7). The road geometry related attributes are direction (CF8), 

road radius (CF9) and slope (CF10). The spatial attributes include distance from 

intersection (CF11) and distance from population center (CF12). The collision data set is 

separated into a training data set with 70% of the original dataset and a testing data set with 

30% of original dataset.  

All spatial data, including collision event points, of the California Roads and 

County’s layer coordinate systems were converted to the GCS_North_American_1983 
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datum coordinate system.  In the data preparation phase, the collision dataset was converted 

into two spatial datasets, using the latitude and longitude values in the two feature classes 

(CF11 and CF12) separated into the training and testing datasets. The training and testing 

datasets were classified in three severity classes: fatal, injury and property damage only 

(PDO).  

Traffic crashes occur due to the interactions of vehicle, driver, roadway and 

environmental factors. All these factors interact with each other and simultaneously 

influence the occurrence and severity of collisions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 The US Highway Road Vehicle Collisions in California State in the dataset 
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Although driver error is often a significant contributor to the occurrence of any particular 

collision event, the analysis of roadway and environmental factors help explain why 

collisions are more frequent in some locations than in the others. This research 

implemented spatial, road geometry and environmental factors for road collision severity 

rule generation and ignored driver error, due to the lack information in the dataset. The 

study helps to identify the potential of collisions in the other locations of the roads 

regarding the influential factors.  

The fuzzy rough set feature selection (FRFS) method was applied to vehicle 

collision features. FRFS selected and reduced the attributes from the environmental, 

geometry and spatial collision features to improve the performance and accuracy of the 

decision tree and help handle a large number of features. 

5.2 Applying the FRFS Method on the Dataset  

To achieve minimum correlated features and redundancy, the FRFS was performed on the 

dataset. The selection process was conducted by calculating the dependency of features in 

each step. Features with maximum dependency were added to the selected feature set. 

Table 5.1 presents the calculated dependency values for each step. Each column of 

the table shows the step of selecting the attributes with the highest dependency value. From 

the first column, it can be seen that conditional feature CF1, with a dependency value of 

0.557, had the greatest dependency degree in step 1. Therefore, CF1 was chosen and added 

to the selected feature set. The process was then iterated, and the two-dependency degrees 

were calculated. The addition of CF5 to the selected feature set caused the largest increase 

in dependency; therefore, the new candidate became {CF1, CF5}.
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CF(γ1
′ ) CF(γ2

′ ) CF(γ3
′ ) CF(γ4

′ ) CF(γ5
′ ) CF(γ6

′ ) CF(γ7
′ ) CF(γ8

′ ) CF(γ9
′ ) 

CF1 (0.557) 
{CF1,CF2} (0.516) 

{CF1,CF5,CF2} 

(0.521) 

{CF1,CF5,CF9

,CF2} (0.566) 

{CF1,CF5,CF9,C

F3,CF2} (0.572) 

{CF1,CF5,CF9,CF3,

CF10,CF2} (0.576) 

{CF1,CF5,CF9,CF3,CF1

0,CF6,CF2} (0.576) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF2

} (0.579) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF1

1,CF2} (0.571) 

CF2 (0.249) 
{CF1,CF3} (0.284) 

{CF1,CF5,CF3} 

(0.286) 

{CF1,CF5,CF9

,CF3} (0.606) 

{CF1,CF5,CF9,C

F3,CF4} (0.376) 

{CF1,CF5,CF9,CF3,

CF10,CF4} (0.371) 

{CF1,CF5,CF9,CF3,CF1

0,CF6,CF4} (0.361) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF4

} (0.360) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF1

1,CF4} (0.578) 

CF3 (0.357) 
{CF1,CF4} (0.286) 

{CF1,CF5,CF4} 

(0.318) 

{CF1,CF5,CF9

,CF4} (0.347) 

{CF1,CF5,CF9,C

F3,CF6} (0.452) 

{CF1,CF5,CF9,CF3,

CF10,CF6} (0.687) 

{CF1,CF5,CF9,CF3,CF1

0,CF6,CF7} (0.283) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF7

} (0.281) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF1

1,CF7} (0.280) 

CF4 (0.279) 
{CF1,CF5} (0.573) 

{CF1,CF5,CF6} 

(0.406) 

{CF1,CF5,CF9

,CF6} (0.428) 

{CF1,CF5,CF9,C

F3,CF7} (0.287) 

{CF1,CF5,CF9,CF3,

CF10,CF7} (0.285) 

{CF1,CF5,CF9,CF3,CF1

0,CF6,CF8} (0.406) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF8

} (0.399) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF1

1,CF8} (0.376) 

CF5 (0.514) 
{CF1,CF6} (0.403) 

{CF1,CF5,CF7} 

(0.231) 

{CF1,CF5,CF9

,CF7} (0.258) 

{CF1,CF5,CF9,C

F3,CF8} (0.416) 

{CF1,CF5,CF9,CF3,

CF10,CF8} (0.417) 

{CF1,CF5,CF9,CF3,CF1

0,CF6,CF11} (0.577) 

{CF1,CF5,CF9,CF3,

CF10,CF6,CF12,CF1

1} (0.734) 

 

CF6 (0.396) 
{CF1,CF7} (0.230) 

{CF1,CF5,CF8} 

(0.406) 

{CF1,CF5,CF9

,CF8} (0.419) 

{CF1,CF5,CF9,C

F3,CF10} (0.654) 

{CF1,CF5,CF9,CF3,

CF10,CF11} (0.577) 

{CF1,CF5,CF9,CF3,CF1

0,CF6,CF12} (0.701) 

  

Table 5.1 The Fuzzy Rough Set Feature Dependency 

The Fuzzy Rough Set Feature Dependency 
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CF7 (0.225) 
{CF1,CF8} (0.4) 

{CF1,CF5,CF9} 

(0.598) 

{CF1,CF5,CF9

,CF10} (0.561) 

{CF1,CF5,CF9,C

F3,CF11} (0.576) 

{CF1,CF5,CF9,CF3,

CF10,CF12} (0.568) 

   

CF8 (0.315) 
{CF1,CF9} (0.510) 

{CF1,CF5,CF10} 

(0.521) 

{CF1,CF5,CF9

,CF11} (0.572) 

{CF1,CF5,CF9,C

F3,CF12} (0.543) 

 

   

CF9 (0.443) 
{CF1,CF10} (0.510) 

{CF1,CF5,CF11} 

(0.558) 

{CF1,CF5,CF9

,CF12} (0.542) 

  

   

CF10 (0.460) {CF1,CF11} (0.549) 

{CF1,CF5,CF12} 

(0.502) 
   

   

CF11 (0.5) {CF1,CF12} (0.572)        

CF12 0.413)         
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The process stopped in iteration 9 (column CF(γ9
′ )), because there was no increase in the 

degree of dependency in iteration 9. Ultimately, eight features {weather (CF1), road surface 

(CF3), lighting (CF5), collision time (CF6), road radius (CF9), slope (CF10), distance from 

intersection (CF11) and distance from population centre (CF12)} were selected as the 

features to create the decision table. 

5.3 Review of Selected Feature Definitions and Properties of Selected Highways in 

California 

The eight selected features were determined based on the FRFS method. Table 5.2 presents 

a brief description of each selected conditional feature. 

Table 5.2 The infused factors of vehicle collision severity 

 

Type of Factors Factors Description 

Road geometry 

Radius 
The lower  road radius of curvature has more potential of 

accidence 

Slope 
Locations on roads with higher slope have higher  potential for 

accidence 

Spatial Measures 

Distance from Intersection 
Locations on roads closer to intersections have  higher collision 

potential 

Distance from Population 

Centers 

Locations on roads closer to the population centers such as 

cities have higher collision potential 

Environmental 

Weather Falling and Unclear condition increase the collision potential 

Surface Dry and icy surface increase the collision potential 

Lighting 
Dusky and dark road lighting have higher  potential for 

accidence 

Time Rush hours have high potential of road collisions 
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 All collision events were divided into 12 subsets (feature classes) based on the major 

highways in California. The highways were selected based on the frequency of collisions 

and the diversity in influential factors of collision events. Rule generation and classification 

algorithms were applied to each and every subset. These highways were chosen based on 

the following types: U.S highways, interstate highways and state and county highways. 

The following subsections provide brief descriptions of the selected highways. 

US Highway 50           run east and west from San Francisco to South Lake Tahoe and 

down through Carson City, Nevada. This is a major highway that travelers use to get from 

Sacramento to South Lake Tahoe. Weekday morning and evening rush hours in 

Sacramento and San Francisco expects traffic. Road closures are rare but can occur during 

the winter months. Carry chains and expect road closures during the winter between 

Placerville and Lake Tahoe. There were 1329 collision events considered to be related to 

this highway in the dataset. 

US Highway 101       runs north and south along the coast from Los Angeles to beyond the 

Oregon border. This highway passes through most of California's major coastal 

communities. It is slow going through San Francisco and Los Angeles. Major wine 

producing regions like Napa, Sonoma, Santa Barbara and San Luis Obispo can be easily 

reached from this highway. The 'Pacific Coast Highway' (Hwy 1, PCH) often mirrors the 

101 to the west but is slower as it winds, climbs and dips along the coast. There were 8023 

collision events considered to be related to this highway in the dataset. 

US Highway 395          runs north and south connecting Southern California with the 

Northern Sierras and Oregon. Traffic is heavier in winter with skiers heading to Mammoth 
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Mountain, June Lake, and Lake Tahoe. The southernmost portion from Hesperia to 

Ridgecrest is a dangerous stretch of two lane highway. Many travelers prefer to avoid this 

section by taking Highway 14 through Mojave. To the south, US highway 395 follows 

along the Eastern Sierras through the high desert communities of Lone Pine and Bishop. 

Mt. Whitney, the highest peak in the lower 48 states, and Death Valley, the lowest point in 

the U.S. are both accessible from Lone Pine. Ancient lava flows are evident in the southern 

regions. Road closures are common during the winter months between June Lake and the 

Nevada border. Carry chains orders occur between Bishop and Nevada during the winter. 

The 395 re-enters California north of Lake Tahoe and traverses the remote, less traveled, 

northeast corner of the Shasta Cascade. The stretch between Bishop and Inyokern has 

impressive volcanic topography. Totally 310 collision events are considered to be related 

to this highway in the dataset. 

Interstate Highway 5         runs north and south and is the main nervure for travel within 

California. Interstate 5 is the only highway that traverses the entire state from the Oregon 

to Mexico borders and passes through major cities, like Sacramento, Los Angeles, 

Anaheim and San Diego. The stretch of highway between Redding and Bakersfield passes 

through Central Valley and the rural farm belt of the state referred to as the California 

Heartland. North of Redding, Interstate 5 climbs into the pine trees of the Shasta Cascade 

to the Oregon border. To the south, the entire stretch between Castaic and the Mexico 

border is urban sprawl. There were 46362 collision events considered to be related to this 

highway in the dataset. 

Interstate Highway 8           runs east and west from San Diego paralleling the Mexico 

border, to Arizona. From San Diego, Interstate 8 climbs into the Cleveland National Forest, 
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descends to El Centro in the desert and continues on through Yuma, Arizona. Off-roading 

is a popular activity in the desert sand dunes of Interstate 8. Totally 679 collision events 

are considered related to this highway in the dataset. 

Interstate Highway 10  runs east and west connecting the beach city of Santa Monica with 

Los Angeles, the Inland Empire, Palm Springs and the Colorado River on the Arizona 

border. The popular mountain communities of Big Bear Lake and Idyllwild are also 

accessible from Interstate 10. Totally 3690 collision events are considered related to this 

highway in the dataset. 

Interstate Highway 15      runs northeast from San Diego to Las Vegas, Nevada, and 

passes through Temecula wine country, the Inland Empire and the high desert communities 

of Barstow and Baker. Baker has the world’s tallest thermometer. Interstate 15 is prone to 

Las Vegas traffic heading northbound on Friday night into Saturday and southbound on 

Sundays. Totally 2100 collision events are considered related to this highway in the dataset. 

Interstate Highway 40        runs east and west from Interstate 15 in Barstow to Lake 

Havasu on the Arizona border. It has access to the Providence Mountains State Recreation 

Area from Interstate 40.  Totally 184 collision events are considered related to this highway 

in the dataset. 

Interstate Highway 80      runs east and west from San Francisco to North Lake Tahoe 

and down through Reno, Nevada. This is a major highway that travelers use to commute 

between San Francisco and Sacramento to North Lake Tahoe. Carry chain orders and road 

closures can be expected during the winter between Auburn and Lake Tahoe. There are 80 

passes through the Gold Country town of Auburn and the nearby towns of Grass Valley 
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and Nevada City. There were 1284 collision events considered related to this highway in 

the dataset. 

Interstate Highway 580    runs southeast from San Rafael in the North Bay to Interstate 

580 is a main highway for travelers coming from central and southern California to San 

Francisco and the North Coast. A toll may be required at the Richmond / San Rafael Bridge. 

There were 174 collision events considered related to this highway in the dataset. 

State and County Highway 14        runs northeast from Interstate 5 in Santa Clarita to the 

U.S. highway 395 in Inyokern. Travelers from the south use this highway as a safer 

alternative to connect with U.S. highway 395. Although highway 14 becomes two lanes 

after the Mojave Desert, it is still a safer stretch of road than the southern portion of 

highway 395. Vasquez Rocks are located just north of the Interstate 5 connection. Highway 

14 passes through the high-crime zones of Palmdale and Lancaster. The drivers try to have 

enough fuel to pass through these areas without stopping. There were 882 collision events 

considered related to this highway in the dataset. 

State and County Highway 99      runs north and south from Red Bluff to Bakersfield. 

Highway 99 parallels interstate 5 and is a more safe drive. Highway 99 travels through the 

major cities of Fresno, Modesto and Sacramento. There were 5097 collision events 

considered related to this highway in the dataset. 

5.4 Transformation and Fuzzification of Input Data 

In this step, the discrete values in the information table are converted to digital 

representation, which can be assigned to the fuzzy membership function. The information 

table used in our study contained integer and float values for all attributes. Therefore, the 

 

 

http://www.carevealed.com/towns_gc.php#nevada
http://www.carevealed.com/sf.php
http://www.carevealed.com/sf.php
http://www.carevealed.com/nc.php
http://www.carevealed.com/la.php#vasquez


 

79 

categorical variable were identified and coded by converting text into integers. For 

example, weather was derived to include the input discrete values of A (clear), B (cloudy), 

C (raining), D (snowing), E (fog) and F (wind). The text values were converted to digital 

values such as 1 (clear), 2 (wind), 3 (fog), 4 (raining) and 5 (snowing), based on the three 

membership functions of clear, unclear and fall. The descriptions in the following 

subsections represent the membership functions and their equation of each mention of 

influential factors of vehicle collisions used in the dataset. 

Fuzzy membership functions were designed using MATLAB 2012, which is a high-

performance language for technical computing. MATLAB was selected for several 

reasons. It integrates computation, visualization and programming in an easy-to-use 

environment, where problems and solutions are expressed in familiar mathematical 

notations. MATLAB also has a special toolbox to handle fuzzy programming, i.e. the 

Fuzzy Logic Toolbox. 

 Weather 

 This factor shows the weather condition at the time of the collision. Falling and 

unclear conditions increase the collision potential. Table 5.3 shows the values of 

the weather conditions in the information table and their corresponding digital 

values assigned based on the fuzzy membership function, which is represented in 

Figure 5.2. 
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Table 5.3 Conversion of Text Value Format to Digit Representation of Weather Attribute 

Text Value in the Dataset Assigned Digital Values 

Clear 1 

Cloudy 2 

Wind 3 

Fog 4 

Raining 5 

Snowing 6 

 

Prior to calculating the fuzzy granular conditional entropy (FGCE) and constructing the 

fuzzy granular decision trees, the membership functions of each factor had to be specified 

using expert knowledge. Based on the collision data in the information table of the fuzzy 

membership function, the fuzzification of collision data in the information table was 

applied by the membership functions. The membership functions of the weather attributes 

are represented in Figure 5.2. 
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Figure 5.2 Membership Functions of Weather Attributes 

The following equations express the membership functions of the weather attribute: 

 

 

 

 

 

 

 

 Road Surface 

This factor shows the road surface condition at the time of the collision. Wet and 

icy surfaces increase the collision potential. Table 5.4 shows the values of the road 

surface conditions in the information table and their corresponding digital values 

assigned based on the fuzzy membership functions, which are represented in Figure 

5.3. 

𝜇𝐶𝑙𝑒𝑎𝑟 = {
1              𝑥 < 2

2 − 𝑥            1 ≤ 𝑥 ≤ 2
   

𝜇𝑈𝑛𝑐𝑙𝑒𝑎𝑟 =

{
 
 

 
 
𝑥 − 1.5

0.5
             1.5 ≤ 𝑥 ≤ 2

1                         2 ≤ 𝑥 ≤ 4
4.5 − 𝑥

0.5
             4 ≤ 𝑥 ≤ 4.5

   

𝜇𝐹𝑎𝑙𝑙 = {
𝑥 − 4               4 ≤ 𝑥 ≤ 5
1                           𝑥 > 5
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Table 5.4 Conversion of Text Value Format to Digital Representation of Road Surface 

Attributes 

Text Value in the Dataset Assigned Digital Values 

Dry 1 

Wet 2 

Slippery (Muddy, Oily, etc.) 3 

Snowy or Icy 4 

 

The membership function of Weather attribute represents in figure 5.3: 

 

 

Figure 5.3 Membership Functions of Road Surface Attributes 

The following equations express the membership functions of road surface attribute: 

 

 

 

 

𝜇𝐷𝑟𝑦 = {
1              𝑥 < 1.75

1.75 − 𝑥

0.25
            1 ≤ 𝑥 ≤ 1.75

   

𝜇𝑊𝑒𝑡 =

{
 
 

 
 
𝑥 − 1.5

0.5
             1.5 ≤ 𝑥 ≤ 2

1                         𝑥 = 2
2.5 − 𝑥

0.5
             2 ≤ 𝑥 ≤ 2.5
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 Road Lighting 

This factor shows the road lighting condition at the time of the collision. Dusky and 

dark road lighting present higher accident potential. Table 5.5 shows the values of 

road lighting conditions in the information table and their corresponding digital 

values assigned based on the fuzzy membership functions, which are represented 

in Figure 5.4. 

Table 5.5 Conversion of Text Value Format to Digital Representation of Road Lighting 

Attributes 

Text Value in the Dataset Assigned Digital Values 

Daylight 1 

Dusk – Dawn 2 

Dark - Street Lights 3 

Dark - No Street Lights 4 

Dark - Street Lights Not 

Functioning 

5 

 

 The membership function of Weather attribute represents in figure 5.4: 

𝜇𝑆𝑙𝑖𝑝𝑝𝑦 = {
𝑥 − 2.75

0.75
               2.75 ≤ 𝑥 ≤ 3

1                           𝑥 > 3
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Figure 5.4 Membership Functions of Road Lighting Attributes 

The following equations express the membership functions of road lighting attribute: 

 

 

 

 

 

 

 Time of Collisions 

This factor shows the time of day of collisions. Rush hours have a high potential for 

collisions. Time attributes have continuous values; therefore, there was no need for 

conversion to digital values. In this study, the exact values of the time attribute in the 

information table were applied in the construction of the fuzzy granular decision tree 

(FGDT). The designed membership functions are illustrated in Figure 5.5. 

 

𝜇𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡 = {
1              𝑥 < 2

2 − 𝑥            1 ≤ 𝑥 ≤ 2
   

𝜇𝐷𝑢𝑠𝑘−𝐷𝑎𝑤𝑛 = {
𝑥 − 1             1 ≤ 𝑥 ≤ 2
1                         𝑥 = 2
3 − 𝑥             2 ≤ 𝑥 ≤ 3

   

𝜇𝐷𝑎𝑟𝑘 = {
𝑥 − 2

1.5
               2 ≤ 𝑥 ≤ 3.5

1                           𝑥 > 3.5
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Figure 5.5 Membership Functions of the Time of Collisions 

The following equations express the membership functions of time attribute: 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜇𝑁𝑖𝑔ℎ𝑡 = {
1              𝑥 < 4

8 − 𝑥

4
            4 ≤ 𝑥 < 8

   

𝜇𝑀𝑜𝑟𝑛𝑖𝑛𝑔 =

{
 
 

 
 
𝑥 − 6  

2
           6 ≤ 𝑥 < 8

1                      8 ≤ 𝑥 ≤ 12
15 − 𝑥

3
              12 < 𝑥 ≤ 3

   

𝜇𝐴𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛 =

{
 
 

 
 
𝑥 − 12  

4
           12 ≤ 𝑥 < 16

1                      16 ≤ 𝑥 ≤ 18
22 − 𝑥

4
              18 < 𝑥 ≤ 22

   

𝜇𝑁𝑖𝑔ℎ𝑡 = {
𝑥 − 18

2
               18 ≤ 𝑥 < 20

1                           𝑥 ≥ 20
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 Slope 

This factor shows the situation of the vertical curve of the road. Locations on roads with 

higher slope have higher potential for collisions. The slope attribute has continuous values; 

therefore, there was no need for conversion to digital values. In this study, the exact values 

of the slope attribute in the information table were applied in the construction of the FGDT. 

The designed membership functions are depicted in Figure 5.6.

 

Figure 5.6 Membership Functions of the Road Slope 

The following equations express the membership functions of slope attribute: 

 

 

 

 

 

 

 

 

𝜇𝐿𝑜𝑤 = {
1              𝑥 < 3

5 − 𝑥

2
            3 ≤ 𝑥 < 5

   

𝜇𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 =

{
 
 

 
 
𝑥 − 4  

2
           4 ≤ 𝑥 < 6

1                      6 ≤ 𝑥 ≤ 8
10 − 𝑥

2
              8 < 𝑥 ≤ 10

   

𝜇𝐻𝑖𝑔ℎ = {
𝑥 − 9

2
               9 ≤ 𝑥 < 11

1                           𝑥 ≥ 11
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 Radius 

This factor shows the vertical radius of road at the location of a collision. Road locations 

where the vertical radius is small have greater collision potential.  The vertical radius of 

road attribute has continuous values; therefore, there was no need for conversion to digital 

values. In this study, the exact values of the radius attribute in the information table were 

applied in the construction of the FGDT. The designed membership functions are figured 

out in the figure 5.7: 

 

 

 

 

 

 

 

 

 

The following equations express the membership functions of collision distance from 

intersection attribute. 

 

 

 

 

𝜇𝑠𝑚𝑎𝑙𝑙 = {
1              𝑥 < 350

500 − 𝑥

150
            350 ≤ 𝑥 < 500

   

𝜇𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 =

{
 
 

 
 
𝑥 − 300  

200
           300 ≤ 𝑥 < 500

1                      500 ≤ 𝑥 ≤ 750
1000 − 𝑥

250
              750 < 𝑥 ≤ 1000

   

𝜇𝐹𝑎𝑟 = {
𝑥 − 200

50
               200 ≤ 𝑥 < 275

1                           𝑥 ≥ 275
   

 

Figure 5.7 Membership Functions of the Road Radius  
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 Distance from Intersection 

This factor shows the distance of the crash location to the nearest intersection. Locations 

closer to intersections have higher collision potential, especially close to cities. The 

distance from the intersection attribute has continuous values; therefore, there was no need 

for conversion to digital values. In this study, the exact values of the distance from the 

intersection attribute in the information table were applied in the construction of the FGDT. 

The membership functions are illustrated in Figure 5.8. 

 

 

Figure 5.8 Membership Functions of the Distance from Intersection 

The following equations express the membership functions of collision distance from 

intersection attribute: 

 
𝜇𝑉𝑒𝑟𝑦𝑁𝑒𝑎𝑟 = {

1              𝑥 < 100
175 − 𝑥

75
            100 ≤ 𝑥 < 175

   

𝜇𝐻𝑖𝑔ℎ = {
𝑥 − 900

250
               750 ≤ 𝑥 < 900

1                           𝑥 ≥ 900
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 Distance from Population Centers 

This factor shows the distance of a crash location to the nearest population centre. 

Locations on roads closer to the population centres, such as cities, have higher collision 

potential. The distance from population centre attribute has continuous values; therefore, 

there was no need for conversion to digital values. In this study, the exact values of the 

distance from population centres attributes in the information table were applied in the 

construction of the FGDT. The designed membership functions are depicted in Figure 5.9. 

 

Figure 5.9 Membership Functions of the Collision Distance from Population Center 

The following equations express the membership functions of collision distance from 

population centers attribute: 

 

𝜇𝑁𝑒𝑎𝑟 =

{
 
 

 
 
𝑥 − 100  

50
           100 ≤ 𝑥 < 150

1                      150 ≤ 𝑥 ≤ 200
250 − 𝑥

50
              200 < 𝑥 ≤ 250

   

𝜇𝐹𝑎𝑟 = {
𝑥 − 200

50
               200 ≤ 𝑥 < 275

1                           𝑥 ≥ 275
   

𝜇𝑁𝑒𝑎𝑟 = {
1              𝑥 < 450

700 − 𝑥

350
            400 ≤ 𝑥 < 750
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 Severity 

This attribute expresses the final class of vehicle collision severity. The severity attribute 

is a decision attribute that has text values that need to be converted to digital values. Table 

5.6 shows the values of severity in the information table and their corresponding digital 

values assigned based on the fuzzy membership 

Table 5.6 Conversion of Text Value Format to Digital Representation of Severity 

Attribute 

 

 

 

 

 

 

 

The membership function of Severity attribute represents in figure 5.10: 

Text Value in the Dataset Assigned Digital Values 

PDO 1 

Injury (Complaint of Pain)  2 

Injury (Other Visible) 3 

Injury (Severe) 4 

Fatal 5 

𝜇𝑁𝑒𝑎𝑟 =

{
 
 

 
 

𝑥 − 400  

400
           400 ≤ 𝑥 < 800

1                      800 ≤ 𝑥 ≤ 1200
1600 − 𝑥

400
              1200 < 𝑥 ≤ 1600

   

𝜇𝐹𝑎𝑟 = {
𝑥 − 1200

400
               1200 ≤ 𝑥 < 1600

1                           𝑥 ≥ 1600
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Figure 5.10 Membership Functions of the Collision Severity 

5.5  Implementation of Fuzzy Granular Decision Tree for Vehicle Collision Events 

In this section, the calculation of the proposed FGDT measures with a sample of 

information table, according to the mentioned methodology, is described. The information 

table of training dataset in this research was constructed from 48150 instances, and 20635 

instances were used as testing data. Table 5.7 shows a sample of an information table with 

16 rows of unique objects and nine columns of attributes.  

To produce the FGDT, the proposed methodology was designed and implemented with 

MATLAB software. To select the proper nodes and construct the FGDT by computing the 

fuzzy generality, fuzzy coverage, fuzzy confidence and fuzzy granular conditional entropy 

based on a need for more information, more consistent and high-quality granules were 

needed, as well as less redundancy with the universe. Table 5.8 demonstrates the sample 

of the first level of FGDT measures, so that the universe was equal to {O1, O2, O3, O4, O5, 

O6, O7, O8, O9, O10, O11, O12, O13, O14, O15, O16 }, where is Oi are object numbers with i = 

1,…,16. 
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Table 5.7  The Road Collision Decision Table 

 

Seven granules of formulas (road lighting = daylight, distance to intersection = far, weather 

= clear, distance to intersection = very near, collision time = morning, road radius = small, 

road slope = low) had minimum entropy values. They were chosen first as candidate 

granules to be nodes of a decision tree based on the value of entropy and generality. They 

were sorted in order of their value of entropy. The formula of road lighting = daylight with 

Objects Weather Surface Lighting Time 
Radiu

s (m) 

Slope 

(%) 

Distance 

from 

Intersectio

n(m) 

Distance 

from 

Population 

Centers(m) 

Severity 

O1 Clear Dry DayLight 11 800.00 3.00 360.00 1700.00  PDO 

O2 Clear Dry 
Dusky/D

ark  
10 850.00 7.00 180.00 2800.00 PDO 

O3 Clear Dry 
Dusky/D

ark  
20 900.00 8.00 280.00 1000.00 Injury 

O4 Clear Not Dry DayLight 9 300.00 4.00 200.00 1900.00 Injury 

O5 Clear Not Dry 
Dusky/D

ark  
13 550.00 11.00 90.00 900.00 Injury 

O6 Clear Not Dry 
Dusky/D

ark 
21 880.00 3.50 170.00 1800.00 Injury 

O7 Raining Not Dry DayLight 12 890.00 4.00 420.00 1100.00 PDO 

O8 Raining Not Dry 
Dusky/D

ark 
14 350.00 10.00 220.00 750.00 Injury 

O9 Raining Not Dry 
Dusky/D

ark 
15 350.00 18.00 75.00 420.00 Fatal 

O10 Fog Dry DayLight 11 770.00 6.00 320.00 1450.00 PDO 

O11 Fog Dry 
Dusky/D

ark 
10 500.00 9.00 240.00 350.00 Injury 

O12 Fog Dry 
Dusky/D

ark 
21 780.00 13.00 130.00 980.00 Injury 

O13 Fog Not Dry DayLight 10 
1500.0

0 
4.00 170.00 1200.00 PDO 

O14 Fog Not Dry 
Dusky/D

ark 
20 450.00 3.00 110.00 650.00 Fatal 

O15 Fog Not Dry 
Dusky/D

ark 
22 600.00 7.00 110.00 650.00 Fatal 

O16 Fog Not Dry 
Dusky/D

ark 
21 850.00 14.00 110.00 650.00 Fatal 
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the granule of {O1, O4, O7, O10, O13} was chosen as the first node of the FGDT, given its 

lowest entropy value. The other six granules could not cover the universe; therefore; they 

were not a covering solution to reduce redundancy.  

The algorithm searched and analyzed other granules, in order to find a set of 

granules that cover the whole universe. The algorithm considered the non-redundant 

covering and removed those six addition candidates, since they could not form a non-

redundant covering. As a consequence, these granules could not be selected, even if other 

measures were in favour of this granule. Granules were to cover the universe and were 

chosen accordingly. 
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Formula Granular Generality 

Confidence Coverage Granular Fuzzy 

Conditional 

Entropy 
PDO Injury Fatal PDO Injury Fatal 

Weather = Clear {O1,O2,O3,O4,O5,O6} 0.38 0.33 0.67 0.00 1.00 1.00 0.00 0.92 

Weather = Unclear {O7,O8,O9} 0.19 0.33 0.33 0.33 1.00 1.00 1.00 1.58 

Weather = Fall 
{O10,O11,O12,O13,O14,O15,O16

} 
0.44 0.29 0.29 0.43 1.00 1.00 1.00 1.56 

Road Surface = Dry {O1,O2,O3,O10,O11,O12} 0.38 0.50 0.50 0.00 1.00 1.00 0.00 1.00 

Road Surface = Wet 
{O4,O5,O6,O7,O8,O9,O13,O14,

O15,O16} 
0.63 0.29 0.14 0.57 0.67 1.00 1.00 1.38 

Road Lighting = Day 

Light 
{O1,O4,O7,O10,O13} 0.31 0.80 0.20 0.00 1.00 1.00 0.00 0.72 

Road Lighting = 

Dusk-Down 

{O2,O3,O5,O6,O8,O9,O11,O12,

O14,O15,O16} 
0.69 0.17 0.17 0.67 0.25 1.00 1.00 1.25 

Collision Time = 

Morning 

{O1,O2,O4,O5,O7,O8,O10,O11,

O13} 
0.56 0.63 0.38 0.00 1.00 1.00 0.00 0.96 

Collision Time = 

Night 
{O3,O6,O9,O12,O14,O15,O16} 0.44 0.00 0.44 0.56 0.00 0.57 1.00 0.99 

Road Radius = Small {O4,O8,O9,O11,O14} 0.31 0.00 0.60 0.40 0.00 1.00 1.00 0.97 

Road Radius = 

Moderate 
{O5,O15} 0.13 0.00 0.50 0.50 0.00 0.34 0.44 1.00 

Road Radius = High 
{O1,O2,O3,O6,O7,O10,O12,O13

,O16} 
0.56 0.53 0.33 0.14 1.00 1.00 1.00 1.41 

Table 5.8  The Measures of Fuzzy Granule 
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Road Slope = Low {O1,O4,O6,O7,O13} 0.31 0.62 0.38 0.00 1.00 1.00 0.00 0.96 

Road Slope = 

Moderate 
{O2,O3,O8,O10,O11} 0.31 0.57 0.43 0.00 1.00 1.00 0.00 0.99 

Road Slope = High {O5,O9,O12,O14,O15,O16} 0.38 0.00 0.50 0.50 0.00 0.80 1.00 1.00 

Dist to Intersection = 

Very Near 
{O5,O9,O12,O14,O15} 0.31 0.00 0.37 0.63 0.00 0.96 0.76 0.95 

Dist to Intersection = 

Near 
{O2,O4,O6,O8,O11,O13,O16} 0.44 0.40 0.56 0.04 1.00 0.82 0.33 1.18 

Dist to Intersection = 

Far 
{O1,O3,O7,O10} 0.25 0.75 0.25 0.00 1.00 0.56 0.00 0.81 

Dist to Population 

Centers = Near 
{O9,O11} 0.13 0.00 0.50 0.50 0.00 1.00 0.63 1.00 

Dist to Population 

Centers = Moderate 

{O3,O5,O7,O8,O12,O13,O14,O1

5,O16} 
0.56 0.26 0.50 0.24 0.84 1.00 0.97 1.50 

Dist to Population 

Centers = High 
{O1,O2,O4,O6,O10} 0.31 0.56 0.44 0.00 1.00 1.00 0.00 0.99 
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It can be verified that the union of two chosen formula granules {O1,O4,O7,O10,O13} and 

{O2,O3,O5,O6,O8,O9,O11,O12,O14,O15,O16} satisfied universal coverage with no 

redundancy. The objects in road lighting = daylight and road lighting = dusk-down could 

not belong to the same decision classes, because they were active nodes (as mentioned in 

methodology section); therefore, further granulation to this granule needed be conducted 

in order to find smaller definable granules.  

The road collision FGDT that was constructed with this algorithm is demonstrated 

in Figure 5.11. Rules extracted from the sample constructed FGDT are illustrated in Figure 

5.12.  

Considering fuzzy granular entropy, fuzzy generality and non-redundant covering, 

the other nodes for fuzzy decision tree would be chosen until all nodes were non-active. 

By running the algorithm on 12 major highways with 25,000 collision events as objects of 

a collision information table, the numbers of rules were inferred at three levels of the 

decision tree, which were labeled by a granular set; and, each branch was labeled by an 

attribute value of the parent. Table 5.9 demonstrates the number of rules that were extracted 

from the FGDT algorithm. 
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Figure 5.11 Fuzzy Granular Decision Tree 
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Figure 5.12 The extracted rules from fuzzy granular decision tree from sample 

information table 

5.6 Implementation of the Reasoning with Fuzzy Granular Decision Tree 

As mentioned in the methodology section, the fuzzy inference process comprises four parts 

fuzzification, rule evaluation, aggregation of the rule outputs, and defuzzification which 

were applied on testing data using MATLAB programing. The first step was the 

fuzzification interface, which transformed crisp data into fuzzy sets  
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Table 5.9 The number of extracted rules from FGDT method 

 

Rule evaluation was then applied on the all extracted rules belonging to the 12 

major highways, and the strengths of the rules were computed based on the extracted rules 

and inputs. They were applied to antecedents of the fuzzy rules. In our study, the minimum 

(AND) fuzzy value was applied as the strength of rules.  

  

 

Road Name The Number of Events Number of rules 

All Roads 25000 87 

US Highway 50 466 55 

US Highway 101 2809 52 

US Highway 395 187 23 

Interstate Highway 5 16227 77 

Interstate Highway 8 270 21 

Interstate Highway 10 1292 48 

Interstate Highway 15 850 61 

Interstate Highway 40 85 19 

Interstate Highway 80 450 56 

Interstate Highway 580 100 22 

State and County Highway 14 480 61 

State and County Highway 99 1784 56 
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The third step was the aggregation of the extracted rules, which was the process of 

unification of the outputs of all extracted rules. In this step, the implication operator was 

applied, and the consequent was reshaped using a function associated with the antecedent. 

The input for the implication process was a single number given by the antecedent, and the 

output was a fuzzy set. In this study, multiple rules can fire simultaneously for the same 

collision event as a testing object; therefore, the implication was implemented for each rule 

extracted by the FGDT.  

Figure 5.13 presents the rule viewer display, which shows a roadmap of the whole 

fuzzy reasoning process. It is based on the fuzzy inference. There are 198 plots nested in 

the roadmap of Figure 5.13. The three plots across the top of the figure represent the 

antecedent and consequent of the first rule. Each rule is a row of plots, and each column is 

a variable. The rule numbers are displayed on the left of each row. In the designed system, 

we can click on a rule number to view the rule in the status line. 

In the last step that is called defuzzification, the fuzzy rule which in turn translates 

the results back to the real world values. The testing data with the 10700 events are used 

in the deffuzification step and then the final collision severity class are determined based 

on the final value of defuzzification step. The below show the code implementation of the 

last step in MATLAB : 

Checkdata = xlsread('CheckData.xlsx'); 
ConditionalAttCheckdata = Checkdata(:,2:5);  
FuzzyParameters = readfis('Collision_MF.fis'); 
  
for j=1:size(ConditionalAttCheckdata,1) 
     
        Object = Checkdata(j,:); 
        FinalClasses(j,1) = evalfis(Object,FuzzyParameters); 
End 
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Figure 5.13 Rule Viewer Displays of a Roadmap for the Whole Fuzzy Reasoning 

Process 

5.7  Accuracy Assessment of Fuzzy Granular Decision Tree  

To demonstrate the suitability of the FGDT over that of the existing problem-solving 

approaches, such as ID3, C4.5, CART, SLIQ and Random Tree, all these decision tree 

algorithms were implemented in MATLAB using the road vehicle collision event dataset. 

Moreover, the accuracy of the classification methods was compared with respect to all and 

selected conditional attributes.  To assess the accuracy of the result classes, the confusion 

matrix was employed in the classification accuracy assessment (Zhao, Yao et al. 2007). 

The diagonal elements in this matrix indicated the numbers of collision events for which 
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the classification results agreed with the testing data, and the off-diagonal elements in each 

row presented the numbers of collision events that had been misclassified.  

In order to properly generate the confusion matrix, testing data were needed. The overall 

accuracy was derived from the confusion matrix for all classification methods and was the 

sum of the major diagonal elements (i.e. correctly classified sample units) divided by the 

total number of sample units in the confusion matrix. This value was the most commonly 

reported accuracy assessment statistic, which is figure out in the below equation 7.  

 

 

 

where 𝑎𝑖𝑖 is the number of collision events in class i in row i, which is classified by 

classifiers, and class j in column j, which are labeled in reality. 

To assess the effect of the fuzzy rough set feature selection (FRFS) method in the 

process of constructing the decision tree, the confusion matrix of instances considering all 

and selected features was employed in the assessment of classification accuracy and time 

consumption of the decision tree method. The results obtain from various classification 

algorithms are given in Table 5.10. As shown in in this table, FRFS outperformed other 

algorithms with higher accuracy and shorter running times. 

 

 

 

 (7) 
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Table 5.10 Comparison of Overall Accuracy based on the Fuzzy Rough Set Feature 

Selection 

Decision Tree 

Methods 

All 

Features 

(Accuracy) 

Total Time 

(s) 

Selected 

Features 

(Accuracy) 

Total Time (s) 

ID3 65.2 36.21 65.2 24.14 

C4.5 68.6 120.47 68.5 71.70 

Rnd Tree  61.3 116.93 61.9 67.59 

SLIQ 60.2 99.98 59.9 66.63 

CART 71.3 1160.27 71.1 651.81 

FGDT 84.7 29.38 84.7 19.56 

 

From Table 5.10, it can be concluded that the FRFS algorithm decreased the time 

consumption of the decision tree construction. Although the time consumption decreased, 

the accuracy did not change considerably in all methods. Therefore, the FRFS method can 

have a positive effect on the performance of the mentioned decision tree methods. The 

following assessments are based on features selected by the FRFS method. 

Table 5.11and Figure 5.14 represent the overall accuracy of different decision tree 

algorithms which is estimated for the major highways of California. It can be observed that 

the FGDT gives the most accurate results in the all instances and the instances belong to 

each road separately rather than the other decision tree algorithms in classifying the 

instances based on the manner of collision. All extracted rules are used in the fuzzy 

reasoning process to classified the instances belong to testing dataset to determine the 

severity classes. It can be concluded that the extracted rules from FGDT are more accurate 

than the other decision tree algorithms.  
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Highway Names Overall Accuracy 

ID3 C4.5 Rnd Tree  SLIQ CART FGDT 

All Roads 
65.2  68.5 61.9 59.9 71.1 84.76 

US Highway 50 
67.6  70.9 64.2 62.2 73.9 87.9 

US Highway 101 
58.9  61.8 55.9 54.2 64.2 82.8 

US Highway 395 
69.8  73.2 66.3 64.2 76.1 90.7 

Interstate Highway 5 
68.3  71.7 64.9 62.8 74.4 88.8 

Interstate Highway 8 
68.5  71.9 65.1 63.1 74.7 89.1 

Interstate Highway 10 
63.2  66.7 60.1 58.1 68.9 82.2 

Interstate Highway 15 
65.3  68.6 62.2 60.2 71.8 84.9 

Interstate Highway 40 
73.2  76.8 69.5 67.3 79.9 95.2 

Interstate Highway 80 
60.2 63.2 57.2 55.9 65.6 78.3 

Interstate Highway 580 
63.3 66.7 60.1 58.2 68.9 82.3 

State and County Highway 14 
65.3 68.6 62.1 60.1 71.2 84.9 

State and County Highway 99 
66.9 70.2 63.5 61.5 72.9 86.0 

Table 5.12 Vehicle Events Classification Accuracy for the major highway of California 

 

Table 5.11 Vehicle Event Classification Accuracy for the Main Highways of California 

Vehicle Events Classification Accuracy for the main highway of California 
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Other measures that could affect the interpretability and performance of the decision tree 

are the time consumed in constructing the decision tree and the number of rules extracted 

from the decision tree. Table 5.12 and Figure 5.15 present the time consumption of 

different decision tree algorithms used for collision database of the major highways of 

California. As Table.5.12 and Figure 5.15 show, the time consumption of the ID3 algorithm 

was less to build a model among the six classifiers for small datasets. However, the CART 

algorithm provided better accuracy than the other methods, except for the FGDT, but the 

time consumption of this method was high. 

A measure of the usefulness of the decision tree can be based on the discriminatory 

power of the leaves, with leaf nodes being more desirable if they have low ambiguity with 

regards to the class to which a case is to be assigned. In our study, the discriminatory power 

of a decision tree was considered as the number of leaves in which more than 50% of the 

objects belonged to one class of severity. Table 5.13 and Figure 5.16 present the 

discriminatory power percent of each decision tree algorithm for the major highways of 

California. 
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Highway Names 
Time(s) 

ID3 C4.5 Rnd Tree  SLIQ 
 

CART 
FGDT 

All Roads 
24.14 71.70 67.59 66.63 651.81 19.56 

US Highway 50 
0.45 1.34 1.26 1.24 4.56 0.82 

US Highway 101 
2.71 8.05 7.89 7.48 210.15 2.85 

US Highway 395 
0.18 0.53 0.50 0.49 0.91 0.19 

Interstate Highway 5 
15.67 46.54 43.88 43.25 456.89 14.85 

Interstate Highway 8 
0.26 0.78 0.73 0.72 0.85 0.32 

Interstate Highway 10 
1.25 3.71 3.50 3.45 105.30 0.98 

Interstate Highway 15 
0.83 2.46 2.32 2.29 87.35 0.89 

Interstate Highway 40 
0.08 0.24 0.22 0.22 0.32 0.12 

Interstate Highway 80 
0.43 1.28 1.20 1.19 3.50 0.53 

Interstate Highway 580 
0.09 0.28 0.52 0.25 0.85 0.18 

State and County Highway 14 
0.46 1.37 1.29 1.27 4.98 0.58 

Figure 5.12. Different decision tree methods time running based on California major 
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State and County Highway 99 
1.72 5.11 4.82 4.75 132.89 1.03 

Highway Names Discriminatory of Decision Tree (%) 

ID3 C4.5 Rnd Tree  SLIQ CART FGDT 

All Roads 
43 58 60 65 73 82 

US Highway 50 
45 55 59 65 70 91 

US Highway 101 
39 54 51 52 70 82 

US Highway 395 
46 52 52 58 65 85 

Interstate Highway 5 
48 61 58 65 69 96 

Interstate Highway 8 
38 66 56 67 75 95 

Interstate Highway 10 
44 55 56 68 75 86 

Interstate Highway 15 
48 54 57 68 81 85 

Interstate Highway 40 
42 52 48 61 82 83 

Interstate Highway 80 
40 51 49 59 72 92 

Interstate Highway 580 
35 61 51 62 73 81 

State and County Highway 14 
45 50 48 55 69 80 

State and County Highway 99 
12 48 51 61 69 86 

Table 5.13 Total Percentage of Discriminatory Power of Decision Tree Methods 

Total Percentage of Discriminatory Power of Decision Tree Methods 
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Figure 5.14 Accuracy of 6 Decision Tree Methods 

 

 

0

10

20

30

40

50

60

70

80

90

100

Overall Accuracy Fuzz ID3

Overall Accuracy Fuzzy C4.5

Overall Accuracy Rnd Tree

Overall Accuracy Fuzzy SLIQ

Overall Accuracy Fuzzy CART

Overall Accuracy FGDT



 

109 

 

Figure 5.15 Computational Time of 6 Decision Tree Methods 
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Figure 5.16 Discriminatory Power of six decision tree methods 
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By observing the experimental analysis, FGDT algorithm yields better accuracy compared 

to the other five decision trees for both small and large data sets. The time complexities to 

build a decision tree model using FGDT are better than the other methods for large data 

sets. Also, more than 80% of nodes in the FGTD are useful in the tree.  It causes 

constructing smallest tree with useful rules and more accurate result. Hence, FGDT serves 

as a powerful model for solving the problem of balancing accuracy, size and time 

complexity of a decision tree. 
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Chapter Six: Conclusion and Future Works 

 

6.1 Conclusion 

This thesis proposes a new approach to extract rules for predicting the severity of vehicular 

road collisions. The results indicate that the fuzzy granular decision tree (FGDT) finds the 

most suitable granules defined by an attribute-value pair that is selected considering the 

continuous and discrete values in the database. Moreover, using fuzzy data input and fuzzy 

entropy impacts the performance of the learning by efficiently involving the discrete and 

continuous values in the database.  

The fuzzy rough set selection is applied to a vehicle collision dataset to select the 

conditional features with minimum correlation and improve the performance of a 

constructed decision tree. As vehicle collision events databases include inconsistent objects 

(uncertainty and vagueness), the fuzzy rough set feature selection algorithm is applied to 

deal with uncertainty and vagueness. 

This research solves some challenges in traditional decision tree methods, which 

have problems with a large number of branches, causing duplication and repetition of sub-

trees within the tree when dealing with the large number of instances. Both repetition and 

duplication result in redundancy in the decision tree. In this case, the tree needs to be 

pruned, while maintaining the accuracy of the tree.  

Another advantage of the proposed decision tree is its selection of the proper 

splitting entropy to dealing with over-fitting. The proposed decision tree solves this 

problem by creating a decision tree with the selection of the appropriated granular in each 
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node of the tree and the construction of a decision tree with high performance. An attribute 

in this method is chosen based not solely on information about the node causes redundant 

attributes at different levels. This solution also prevents redundancies in the decision tree.  

The vehicle collision events’ database contains two different kinds of attributes: 

discrete and continuous. The proposed entropy in the FGDT algorithm considers both 

discrete and continuous attributes, such as spatial measures, which are some of the 

important factors in vehicle incidents. With the use of the granular computing concept in 

the FGDT method, the nodes of the decision tree include the granules with high 

discrimination. This leads to the creation of an efficient decision tree with the most 

accuracy and a logical running time for large datasets. 

6.2 Future Works 

This research applied 12 conditional attributes in the decision table to extract the vehicle 

collision rules for predicting the vehicle collision severity. In future research, more 

conditional attributes may be used in a huge database; and, the different feature selection 

algorithm may be applied to have a comparison between different feature selection 

algorithms and the fuzzy rough set feature selection (FRFS) algorithm.  

Moreover, the concept of lower and upper approximations may be applied to create 

an FGDT, because rough set theory provides a new mathematical method to deal with 

uncertainty and vagueness in a dataset in the construction of the decision tree.  

In this study, the membership functions of vehicle collision event input data were 

defined based on experimental knowledge. We used the Mamdani model as a decision 

engine for decision-making. In the future, the Sugeno model can be tested as a fuzzy 



 

114 

reasoning engine, as it is a more compact and computationally efficient representation than 

the Mamdani model. The Sugeno model lends itself to the use of adaptive techniques for 

constructing fuzzy models. This adaptive model can be used to customize the membership 

functions, so that the fuzzy system best models the data.   

The proposed decision tree has been applied to make rules for prediction in vehicle 

collision severity classification, often obtaining good results. Different decision-making 

methods for rule extraction can be used to solve the vehicle collision severity problem; 

however, one decision tree cannot often obtain a well-supported decision, and a single 

method presents weaknesses for rule extraction or classification. In future research, we can 

use the information fusion technique based on different decision tree methods at the rules 

level, which can integrate the respective strengths from different decision tree methods to 

improve the prediction accuracy rate. Different decision tree results can be fused to gain 

the prediction results for reliable decision. 
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