On the molecular theory of aqueous electrolyte solutions. |V. Effects

of solvent polarizability
P. G. Kusalik®

Research School:of Chemistry, The Australian National University, Canberra, Australian Capital Territory,

Australia, 2601
G. N. Patey

Department of Chemistry, University of British Columbia, Vancouver, British Columbia,

Canada, V6T 1Y6

(Received 24 February 1989; accepted 20 September 1989)

This paper describes a new level of theory with which to study model electrolyte solutions with
a polarizable solvent. The theory considers the average local electric field experienced by a
solvent particle as a function of its separation, R, from an ion and is referred to as the R-
dependent mean-field (RDMF) approximation. Explicit expressions are derived for model
solutions consisting of hard-sphere ions immersed in a hard polarizable dipole tetrahedral-
quadrupole solvent. The lateral solvent fields are shown to cancel a large portion of the field
generated by the ionic charge. The RDMF gives rise to an effective spherical ion—solvent
potential which will affect the low-concentration limiting behavior of certain thermodynamic
properties. The reference hypernetted-chain (RHNC) approximation is solved to obtain
RDMEFE/RHNC results at infinite dilution and low concentration for several model aqueous
electrolyte solutions. The ion-ion correlations and thermodynamic quantities such as the mean
activity coefficient and partial molar volume of the solute are found to be particularly sensitive
to the treatment of the solvent polarizability as this level.

I. INTRODUCTION

Recent studies of polar-polarizable fluids using both ap-
proximate theories'® and computer simultions®'® have
shown that the many-body interactions due to molecular
polarizability are important in determining the equilibrium
properties of these systems. The importance of polarization
effects in water®''~'* and in electrolyte solutions'*'> is now
also well established.

In general, the many-body problem of polarizability is
difficult to treat in dense liquids and solutions. Fortunately,
recent work ' has demonstrated that in pure fluids it is pos-
sible to take into account the influence of many-body inter-
actions due to polarizability through effective pair poten-
tials. The self-consistent mean-field (SCMF) theory? has
been shown®'¢ to be an accurate means of reducing the
many-body potential for a fluid of polarizable particles with
dipole and tetrahedral-quadrupole moments. For purely di-
polar systems the SCMF approximation is equivalent to the
1 — R theory of Wertheim.? Unlike other methods, how-
ever, the SCMF theory uses approximations that are dis-
tinctly physical in nature. In paper I of this series'” (hereaf-
ter referred to as I) we have extended the SCMF expressions
to include ion and octupole terms in order to facilitate its
application to water-like solvents'® (which include multi-
pole moments up to octupole order) and models for aqueous
electrolyte solutions.'”!%:2°

In the SCMF theory*'” the pairwise additive potentials
which result from the reduction of the many-body interac-
tions of a polarizable system are written in terms of an effec-
tive permanent dipole moment, m,. This effective dipole mo-
ment is an gverage molecular property of the fluid and
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depends upon the polarizability and multipole moments of
the model, as well as upon the state parameters of the system.
Within the SCMF approximation, systems characterized by
m, have the same structural and dielectric properties'® as the
true polarizable fluid.

The SCMF theory has been used in the study of model
aqueous electrolyte solutions at infinite dilution'>?! where
the effective dipole moment m, must simply be that of the
pure solvent. At finite concentration we might expect m, to
vary due to the presence of the ions and the resulting changes
in the solvent structure. In I, however, it was found that
within the framework of the SCMF theory the average local
electric field acting on a solvent particle is nearly indepen-
dent of the salt concentration, at least for the model aqueous
electrolyte solutions examined. Hence, to a very good ap-
proximation the effective dipole moment can be treated as.a
constant equal to the pure solvent value. Nevertheless, we
would still expect the average local electric field in the imme-
diate vicinity of an ion to be significantly different from that
in the bulk, particularly at low concentration. It would be
very interesting to be able to examine the average local elec-
tric field experienced by a solvent molecule as a function of
its separation, R, from an ion. In this paper we will develop a
theoretical approach through which the R dependence of the
average dipole moment of a solvent can be estimated.

If we consider the case of an ion and a single polarizable
solvent particle (i.e., the low-solvent-density limit ), then the
dipole moment p induced in the molecule will be given by??

p=aq/R?, (1a)
where
a=]Tra, (1b)

a is the molecular polarizability tensor of the solvent parti-
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cle, and ¢ is the charge on the ion. It immediately follows
that the interaction between the charge and the induced mo-
ment is

2R*
However, in solution an ion is surrounded by more than one
solvent molecule. These molecules are ordered in some fash-
ion around the ion and this must give rise to changes in the
local electric field felt by the solvent particles. At finite con-
centration the ion is also surrounded by other ions which act
to screen its charge and again alter the local field. Thus, we
would expect Egs. (1a) and (1c) to be rather poor approxi-
mations in a dense system such as an electrolyte solution.
Our aim here is to extend this approach to a dense fluid (i.e.,
an aqueous electrolyte solution) taking both dielectric and
ionic screening into account.

In this article we describe a new level of theory which
goes beyond the SCMF approximation. We introduce a
more detailed formalism which can be used to estimate the
average local field experienced by a solvent particle at a dis-
tance R from an ion. As in the previous SCMF theory we
take a mean-field approach, that is to say all fluctuations are
ignored. The R-dependent mean-field (RDMF) theory, as
we shall refer to it, yields an effective spherical potential
between the ion and the solvent particle at R. Moreover, this
spherical potential is found to affect the limiting slopes for
thermodynamic quantities which depend upon ion—solvent
correlations, such as the partial molar volume of the salt.

ug, (R) =

(1c)

Il. THE R-DEPENDENT MEAN-FIELD THEORY

The RDMF theory described below is directly applica-
ble only to solutions of spherically symmetric ions, although
extensions to more general systems may be possible. In the
following explicit derivation we restrict ourselves to a polar-
izable solvent model with only dipole and quadrupole mo-
ments, where the latter is assumed to have tetrahedral sym-
metry. We remark that this solvent model has been used
extensively in our studies of aqueous electrolyte solu-
tions.”1%2% The present theory is suited to infinite dilution
or low concentration and we consider only solutions of a
single salt. However, the basic method could be applied to
other models or more general solutions. For convenience all
particles are treated as hard spheres, where d,, is the hard-
sphere diameter of species @ and d,; = (d, + dg)/2. The
notation employed is consistent with that of the SCMF theo-
ry, details of which can be found elsewhere.>!” We also make
extensive use of the rotational invariant representation as
described in L. »

In this formulation the problem addressed is that of an
ion immersed in a multipolar-polarizable solvent which may
or may not contain other ions. The RDMF theory yields
expressions for the change in the average local electric field
acting on a solvent particle due to the presence of the ion. By
considering only the case of a spherically symmetric ion, we
are able to take advantage of the fact that from the viewpoint
of the ion the surrounding fluid must be isotropic. All addi-
tional average fields generated in the surrounding solution
due to the presence of the ion must be directed radially at or

away from the ion, and hence appear as though they are
being produced by additional (screening) charges placed at
the center of the ion. Thus, at least at the mean-field level, we
need only examine the dependence of the average local field
upon R, the distance from the ion. We derive expressions for
the average local electric field as functions of R by consider-
ing the average interaction between the dipole of a solvent
particle fixed at a distance R from the ion and all other parti-
cles in the system. This average interaction can then be easily
related to the average local field.

The electric field experienced by a solvent molecule at a
distance R from an ion will, in general, have both ion and
solvent components. For the electrolyte solutions consid-
ered here, the average local electric field at R is defined by

(E,(R)) =(Ep(R)) + (E;p(R)) + (E;4(R)), (2)

where the first, second, and third terms are the dipolar, qua-
drupolar, and total ionic field contributions, respectively.
For present purposes it is more convenient to express Eq.
(2) in the form

(E,(R)) = (E,;) + (AE,(R)), (3)
in which (E,) is just the average local electric field of the
bulk as given by the SCMF theory and (AE,(R)) is the
correction to this term when a solvent particle is at a distance
R from anion. It is clear that (AE,;(R)) »0as R— . Now

at infinite dilution or sufficiently low concentration we can
rewrite Eq. (3) as

(E;(R)) = (E)) + (AE,(R)), 4

where (E?) is just the average local electric field of the pure
solvent. (AE, (R)) is the change in the bulk field at R due to
the presence of the ion and for the present system it is given
by

(AE,(R)) = <AE1p(R)> + (AE, (R)) + (AE,(R)) .
(5)

We remark that in I it was found that for the model aqueous
electrolyte solutions investigated the average local field was
essentially independent of salt concentration. Hence, at least
for some systems Eq. (4) should be applicable even at higher
concentrations.

As in the SCMF theory, we wish to determine the aver-
age total (permanent plus induced) dipole moment. In the
present context we define

m'(R) =p + a- (E,(R)), (6a)

where m’ (R) is the average total dipole moment of a solvent
molecule at adistance R from anion. Using Eq. (3) it clearly
follows that

m'(R) =m’ + Ap(R), (6b)
where
Ap(R) = a- (AE,;(R)) (6¢c)

is the average excess (i.e., due to the presence of the ion)
induced dipole moment of a solvent particle at R. In our
development of explicit expressions for (AE,(R)) (as de-
scribed below) we have found it convenient to express
(AE,(R)) in an intermolecular reference frame in which the
zaxis is along the ion—solvent vector. In the interest of math-
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ematical simplicity it is advantageous to rernove the depen-
dence upon the orientation of the solvent molecule and use

Ap(R) = a(AE,(R)) N

instead of Eq. (6c), where « is the average polarizability of
the solvent molecule given by Eq. (1b). We point out that for
the water molecule a is nearly spherically symmetric>® and
therefore Eq. (7) will be a very good approximation to Eq.
(6¢). Furthermore, Eq. (7) becomes exact in the limit of
large R (i.e., when the ion—solvent correlations become neg-
ligible).

In the SCMF theory as applied in Refs. 2 and 17, the
effective pairwise additive system is characterized by the ef-
fective permanent dipole moment, m,. This effective mo-
ment is defined as the square root of the mean-square molec-
ular dipole moment and hence is not exactly equal to m’ in
magnitude. Nevertheless, since the present theory is devel-
oped within the SCMF context, it is both convenient and
consistent to replace m’ with m, in Eq. (6b). We note that
for the present water-like solvent the difference between m’
and m, is in fact very small (i.e,, <2%).

The task of the RDMF theory is to take (AE,;(R)) and
Ap(R) into account. To this end we now define the addi-
tional ion—-solvent interaction term due to Ap(R) as

uy?(R) = — Ap(R) * (AE, (R))
— Ap(R) - [(AE,5(R)) + (AE, (R))]
+ JAP(R) + (AE,(R)) . (8)

Thefirst term in Eq. (8) is the interaction between the excess
induced moment and the ion field experienced by a solvent
molecule at a distance R. We remark that at infinite dilution
this term is trivially related to Eq. (1c). The second term in
Eg- (8) takes into account the interaction between the excess
moment and all the remaining solvent particles surrounding
the ion, while the last term is simply the energy of polariza-
tion. Since Eq. (7) ensures that Ap(R) and (AE,(R)) are
always in the same direction, we immediately have that

uy?(R) = —1Ap(R)(AE,(R)), (9a)
which can also be written in the form
u?(R) = — [Ap(R)]1*/2a . (9b)

It is interesting to point out that u3(R) is a spherically sym- '

metric potential which is always attractive relative to infinite
separation. Clearly, Eq. (9b) reduces to Eq. (1c) when
Ap(R) is given by Eq. (1a).

We now have only to determine expressions for each of
the terms in Eq. (5) contributing to (AE,(R)). However,
even for the current simplified model this is a non-trivial
task. In the present theory the various contributions to
(AE, (R)) are estimated assuming that only pair correlation
functions are known. If higher-order correlation functions
were available more accurate theories could be derived, but
this is clearly not a practical alternative at the present time.
We would expect the approximations derived below to be
most accurate at long range and at infinite dilution or low
salt concentration where many-body correlations will obvi-
ously be less important.

First, we examine the simplest case, that of (AE;(R)),
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the average local ion field at a distance R from an ion. We
identify three contributions, the first being the direct term,
(AE, (R)), due to the charge on the ion. The other two
terms, (AE,, (R)) and (AE,_ (R)), are essentially screen-
ing terms and are due to all other positive and negative ions
in the system, respectively. Therefore, we write

(AE,(R)) = (AE, (R)) + (AE,, (R)) + (AE,_ (R)) .
(10)

It is obvious {cf. Eq. (1a)] that
(AE,(R)) =¢,/R?, (11)

where g; is the charge on the ion (which we have labeled i)
and (AE,, (R)) will always be directed along the vector join-
ing the ion / and the solvent particle at R.

In order to determine the two remaining terms in Eq.
(10) we first examine the average interaction between the
dipole moment of a solvent particle at R, which we refer to as
the reference particle, and all other ions j (see Fig. 1). Asa
consequence of the C,,, symmetry of the solvent molecule we
know that the average orientation of the effective dipole mo-
ment of the reference solvent particle will be in the direction
of (AE,, (R)) and that all other orientations must average to
zero. Moreover, for the present system (AE,(R)), and
hence Ap(R), will be nonzero only along the ion—solvent
vector. Thus, using Eq. (6b) and ignoring fluctuations, we
can define

m'(R) = m,{(cos 6, (R)) + Ap(R) (12)

as the average projection of m' (R) onto the ion—solvent vec-
tor, where

(cos 0, (R))=h%', ,(R)/3g, . (R) (13a)

and

(cos&_,(R)) = —hQ_(R)/3g_,(R) (13b)

are defined in I. It is sufficient here to state simply that g,
gives theangle betweenm, andr,; = r — r, such that cos 6;
is positive when m, is favorably aligned with (AE, (R)).
Thus m'(R) is the projection of m’ (R) lying in the direction
of (AE,, (R)}. Clearly, m'(R) contains contributions due to
both the effective permanent dipole moment, m,, and the
average excess induced moment, Ap(R). We can now obtain

FIG. 1. An illustration of the method used in determining (AE, (R)). The
case where g, is negative is shown. The dipole moment m', located at a
distance R from the ion i, is that of the reference solvent particle.
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an expression for the interaction between m'(R) and a
spherical shell of ions at a distance 7 from ¢;, which we have
only to integrate (i.e., sum over shells) in order to determine
a relationship for the total interaction. In Fig. 1 we have
illustrated the problem as we have framed it, as well as indi-
cating all the variables used in the following derivation.

From Eqs. (29) and (30) of 1 it is easy to show that the
interaction between m'(R) and g; is given by

U,;(12) = [mT(R)qj/rfnj]q)(l)gl(n]’n2!f.mj)‘1 (14)
when we take ™" = 11/(Z'7%}) (which we employ exclusive-
ly in the present article). Following the conventions given in
Fig. 1 and those form'(R), and using an explicit form for the

rotational invariant (see Appendix B of Ref. 1), we rewrite
Eq. (14) in the form

u,;(12) = —sgn(g,) [m'(R)q,/r:;] cos @,  (15)

where the sgn function equals 1 if ¢; is positive and — 1if g;
is negative. From the law of cosines** we have relationships
for r},; and cos 8 in terms of R, r, and ¢ which, when substi-
tuted into Eq. (15), yield

u,;(R,r,$) = — sgn(g,)m'(R)g;
R—rcos¢

' ; 16
(”+R?—2rR cos ¢)*'? (16)

Then the average interaction potential between m'(R) and
the spherical shell of ions (positive or negative) of thickness
dr at a distance r from ¢; is

US,(Rr)=0 for r>R+d,,

Ui (R, =p; [f 8y (R U, (R,r @) dA ] dr, (17a)
in which the element of area
dA =rsingdsdy. (17b)

The limits of integration for dy are O to 2, while for d¢ they
are ¢,, to 7, where

[ 0 if |[r—R|>d,
b= cos '[(P+R?*—d%)/2rR] if |[r—R|<dj
(18)

guarantees that the ion j and the reference solvent do not
interpenetrate.

Now, in principle, we do not know g, (R,r,¢,¥). How-
ever, if we take the distribution of ions to be uniform in the
spherical shell at 7, and if we also assume it to be independent
of R, the position of the reference solvent, then we can write

&mi (R,r ) =g, (r), (19)

where g; (7) is just the ion—ion radial distribution function.
We would expect this to become a reasonable approximation
at large . Inserting Eqgs. (16) and (19) into Eq. (17a) and
integrating over dy, we obtain

US,(Rr) = —2aPp,g;(r)drsgn(q,)g;m'(R)
i (R — rcos ¢)sin ¢ 0
X-L,,. (7 + R?—2rR cos ¢)3? . (20)

Then carefully integrating Eq. (20) (using standard forms
for the trigonometric integral which may be found in ta-
bles?*) and simplifying yields the expressions

(21a)

U?nj (R,r) = —.21rr2pjg,,(")38n(q.)

\

and

' mt(R
Usy(Rir) = — 4nr'pg, (r)sgn(4,) iﬂ#‘

+
qm (2R){1+R2—r"—dfs
2rd

dr . for r<R—d;.

)dr for R —d;<r<R +d,, (21b)

Js

(21c)

We remark that Eqs. (21) are consistent with basic electrostatic theory?® which states that from an internal point of view a
spherical shell of charge is electrically nonexistent [ cf. Eq. (21a) ], and from an external point of view it is equivalent to a point
charge whose charge is equal to that contained in the shell [cf. Eq. (21c)]. "

The total average interaction potential, U,,; (R), between m'(R) and all other ions jis found by simply integrating Eqs.
(21) over all values of 7. The ions i and j are not allowed to interpenetrate so we write

U, (R) =f U, (R,
dy

and inserting Egs. (21) we obtain the necessary result
qjmf (R)

Umj(R’r) = — 417'Pj sgn(q;) R?2

R—d, 1
[f r’g, (r) dr+ —
d, 2

(22)

R+ d) R2_pP_42
Pg,(n|1 —-———-")d ] 23)
R—d, g,(r)( + 2rd;, 4 (

where we recall that j= + or —. Now for the present system it is clear that (AE;(R)) and m*(R) are parallel, and

consequently we also have that
U, (R)= —m'(R)(AE;(R)) .

(24)

Together Eqs. (23) and (24) provide an expression for (AE; (R)) for j= + , — which, when combined with Eqs. (10) and

(11), gives the desired relationship
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()

R—d,
(AE,;(R)) = sgl;(f')(q.- + Y 4m qj{L rgy(r) dr+

=%

where (AE, (R)) is always directed along the ion-solvent
-vector. We note that in obtaining Eq. (25) we have multi-
plied Eq. (11) by sgn(g;) to ensure that (AE,, (R)) has the
same directional sense as (AE, (R)).

We now turn our attention to (AE,, (R) ). If we consid-
er an ion in a polar solvent of C,,, symmetry, as is the case
here, we find that on average all the dipole moments point
either directly at or directly away from the ion [cf. Eq.
(12)]. We shall refer to these average projections as being
lateral. Clearly, all lateral dipoles in the same spherical shell
will mutually repel one another. It is this contribution to the
local dipole field which we examine.

The lateral dipole field, and hence {(AE,, (R)) in the
present theory, is determined in a manner quite similar to
that employed for (AE, (R)). Again, it is only the average
projection, m'(R), of the total dipole moments that needs to
be considered. In order to derive an expression for
(AE,, (R)) wefirst examine the interaction between the ref-
erence dipole, m'(R), and all spherical shells of dipole mo-
ments, m'(7), at a distance » from the ion i. In Fig. 2 we have
illustrated the situation being considered along with all the
necessary variables.

From Eqgs. (29) and (30) of I it can be shown that the
interaction between m'(7) and m'(R) is given by”

Uy (12) = — [mt (P! (R)/ P | DR (R, R ) -
- (26)
The rotational invariant can be written in the form!’

<1>gg,2(n,,nz,f) =2 cos 6; cos 6,

— sin 8, sin @, cos(¢, — @,) , (27)

where the angles 8, and 6, are indicated in Fig. 2, and ¢, and
&, are the azimuthal angles. It is obvious from Fig. 2 that ¢,
and ¢, must always be equal. The law of sines and the law of
cosines?* provide relationships for 72,,,,, cos 8,, cos 8,, sin 8,
and sin 0, in terms of R, r, and ¢ which can be substituted

- -

FIG. 2. Anillustration of the method used in determining (AE,, (R)). The
case where g, is negative is shown.
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R+ d,
f rg,(N[R?— (r—dy)?] dr]), (25)

js YR—d

r

into Eq. (27). Then combining the result obtained with Eq.
(26) yields
mt(rym'(R)
(7 +R?—2rR cos $)°"?
X [37rR — 2(* 4+ R?*)cos ¢ + rR cos 4] .
(28)

We remark that this expression is invariant to sgn(qg; ) since
both m'(r) and m'(R) reverse direction if the charge on the
ion is reversed [i.e., both contribute a factor of sgn(g;)].

We express the average lateral dipole—dipole interac-

tion, U™, (R,r), between m'(R) and the spherical shell of
dipoles at a distance » from the same ion as

Up (R,1 ) =

U (Rr) =p, U g (R, )t (Ror) dA ] dr, (29)

where dA is given by Eq. (17b). The limits of integration are
still 0 to 27 for dyf and ¢,, to 7 for d¢, as was the case for
(AE;(R)), but now

[ 0 if |7 — R|>d,
= cosT'[(P+R?>—d?/2rR] if [r—R|<d,’
(30)

Again, we assume that g_ (R,7,¢,¥) is spherically symmetric
(i.e., the solvents are uniformly distributed in the shell) and
independent of R so we take

g:s(Rir»¢1¢) =gis(r) . 31

We now substitute Eqs. (28) and (31) into (29) and inte-
grate, making use of standard tables of trigonometric inte-
grals.?* After considerable manipulation it can be shown
that

U= (Rr)=0 for |[r—R|>d, (32a)
.and
+ YR
Uk, (Rr) = 2mp,g, (0 TR
rZ R 2 __ d2 2
X[l — (—tEr—R————s-) ]d" for |r—R l<ds .
(32b)

The total average dipole interaction U, (R) between
m'(R) and all other dipole moments is found by integrating
Eqgs. (32) over all values of r, although only those shells for
which | — R | <d, contribute. We obtain the expression
t R+d
ap,m (R) "
——— mt(r)g,(r)
2°R? e, (r)g:(
X[(2rR)* — (P + R*—d?)*] dr. (33)

Finally, taking advantage of the fact that all the average

projected moments m'(7) are directed along the ion-solvent

Upm(R) =

J. Chem. Phys., Vol. 92, No. 2, 15 January 1990
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vector and distributed uniformly about the ion, it must fol-
low that the only nonzero component of the total average
lateral dipole field will be in the direction of m'(R). Thus
analogous to Eq. (24) we write

Upm (R) = —m"(R)(AE ;5 (R)) . (34)

Combining Egs. (33) and (34) and inserting the results
from Eqs. (12) and (13) yields the relationship

(AE;;(R))
mp, (R4 [m,h(r)
243R? Jr -, [ 3sgn(q,)
X [(P+R?—d?)?— (2rR)?*] dr. (35)

Inspection of Eq. (35) reveals two distinct contributions to
(AE,; (R)), one due only tom, and the other due to Ap(R).
This separation will prove useful in discussions below.
(AE,, (R)) is determined in a fashion very similar to
that used for (AE,, (R) ). We again consider only the contri-
bution to (AE,, (R)) due to lateral fields, where these later-
al fields are a consequence of the average projections of the
quadrupole moments of the solvent particles around the ion
i. These projections are analogous to the projections m'(r)
and are defined below. We emphasize here that this deriva-
tion applies strictly to quadrupole moments of tetrahedral
symmetry, as defined in Refs. 2 and 17. Geometrically, such
a quadrupole moment can be represented by a charge distri-
bution in which two positive and two negative charges of

+ Ap(r)g, ()

P. G. Kusalik and G. N. Patey: Aqueous electrolyte solutions. IV

equal magnitude have been placed at the corners of a square
lying perpendicular to the z axis such that like charges are
opposite one another. This is the simplest charge distribu-
tion that has a quadrupole of tetrahedral symmetry as its
lowest-order moment.

We start by defining the functions

D2(0,,Q,,f) = 022(N,,0,.7) + P2 (0,0,8) (36a)
and
D'3(0,,Q,,F) = D2 (0,0,F) + D (0,,0,,8) (36b)

analogous to those used in Refs. 2 and 21, which can be
written in the explicit forms?%>’

O2(0,,0,,8) = V6[ (%, * F1,)> — (§2* #15)?]
and
®'3(0,,0,f)
= \/6{5[(iz #1507 — ( §20#12)° (%, #yp)
—2[(Rp 0 Z) (R £15) — (§,°2,)( f’z'f'lz)]},
(37b)

where &, §, and £ are the appropriate molecular fixed unit
vectors and £, = r,,/|r,,|. Then using the definitions of the
Euler angles a, B, ¥ and the rotation matrix [see Eq. (39)]
of Ref. 27, it can be shown that

QOZZ(QI,nz’i\.) = \/3 Sinz BZ cos 272
and

(37a)

(38a)

@'2(0,,0,,8) = 6{3 cos B, sin® B, cos 2y, + 2 sin B, sin B, [cos B, cos 2y, cos(a, — @,) + sin 2y, sin(a, — a,) 1} .

Asin the case of (AE,; (R)), we need to determine the
average interaction between all average projections, Q'(r),
of the quadrupole moments in a spherical shell at a distance r
from the ion i and the dipole moment m*(R). In Fig. 3 we
have represented this geometrical problem, indicating the
variables pertinent to the following derivation. However, in
order to proceed we must first define Q*(7). It follows from
Egs. (29)-(31) of I and from Eq. (38a) that the interaction
between an ion and a quadrupole of tetrahedral symmetry is
given by?!

9:9r
X

u;0(12) = =—=—sin’ B, cos 2y, . (39)
Itis the most energetically favorable orientation with respect
to the ion i which is pictured in Fig. 3(a). This orientation of
the quadrupole moment is the only one that does not average
to zero for molecules of C,,, symmetry, so it is onto this
orientation that we determine the average projection of the
quadrupole moment. It is clear from Eq. (39) that for Q
positive, which is the case for the present water-like sol-
vent,'” this projection corresponds to

Bi:=m/2

and

(40a)

(38b)

cos 2y 1 = —sgn(q,), (40b)
where the superscript / indicates the angles as defined for the
ion reference frame [see Fig. 3(b)]. We remark that
u,0(12) is independent of @; and therefore Q*(7) is allowed
to spin freely about the z, axis. We then write that

o'(r) = =2 (®(n)),
sgn(qg;)
where (®°(r)) is just the average value of ®°%%(0,,0,,¢)
for a solvent particle at a distance r from an ion. Using an
explicit expression for (®°%2(r)}) [obtained by combining
Eq. (36a) and Eq. (2.87) of Ref. 28], Eq. (41) becomes

—QOr 8hgy(r)
sgn(q;) 58, (r)
Now the interaction u,,,(12) between the dipole mo-

ment m'(R) and the quadrupole moment Qf(r) can be ex-
pressed in the form?

(41)

o(r) = (42)

+ t
qu ( 12) = _“‘"—‘*“—'—m (R)Q (r) O123(019ﬂ29fm0) .

\/6 r, an
Unfortunately, the function ®'?*(Q,,9,,¢), as given by Eq.
(38b), is not expressed in terms of the angles shown in Fig. 3.
Thus, we must first rewrite Eq. (38b) as a function of these

(43)
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angles (i.e, @ 2,83, 71,B,»). In Appendix A we briefly outline how this may be done (a more complete description can be

found in Appendix C of Ref. 28) to give

O'3(0,,0,,#) = 6[3 cos B (cos® ® — sin® a } sin’ w) + 2 sin B, sin w cos w(1 +sin® a})] cos 2y 7 .

Finally, we replace B, by 8, (8, + 7 if g, is positive) and
eliminate the cos 2y} dependence in Eq. (44) by noting that
the products

cos BB, cos 22 = cos 6, (45a)
and

sin B, cos 2y =sin 6, (45b)

are independent of the sign of g. Combiﬁing Eqgs. (43),

(44), and (45) yields '

Uy (12)
_m'R)Q'(n

4
Fmo

[3 cos 6,(cos® @ — sin? o sin® @)

(46)

We now recall that Q' () is allowed to spin freely about the
z; axis, and therefore we cannot specify the angle a;. How-

J

+2sin 6, sinw cos @(1 +sin’aj) ] .

Umo (R,r) = 6mrpg; (m'(R)Q'(r) dr

(44)

I
ever, the a) dependence can be removed from Eq. (46) by
taking advantage of the fact that all angles a} are equally
probable (at the present level of theory) and simply angle
averaging over them. After performing the required integra-
tion we have the result

3m'(R)Q
4

: t
Upp(12) = (r) [cos 6,(cos® @ — } sin’ w)

g

+ sin 8, sin w cos @] . 47)

As above we employ the law of sines and the law of
cosines®* in order to express the functions of 6,, w, and r,,,
appearing in Eq. (47) as functions of R, 7, and ¢. The aver-
age lateral quadrupole—dipole interaction, U ‘,‘,’,‘Q (R,r), is de-
fined by an expression analogous to Eq. (29). Then inserting
Eq. (47) together with the approximation (31) and inte-
grating over dy, we obtain

XJ‘” 2PR —R*/3— GrR*+ r)cos ¢ + (PR + 3 R>)cos’ ¢ — (rR*/2)cos’* ¢
(P+R?*—2rRcos ¢)"?

sin ¢ do , (48)

where ¢, is given by Eq. (30). The integration of Eq. (48) requires considerable effort, but with the aid of tables of standard
trigonometric integrals®* and after much simplification the result can be written as

UL (Ryr) =0 for |r—R|>d,
and

(49a)

d? 2rR

N t 2_ g2\2 _p2 2
U':.‘Q(R,r)=3vﬁpsgﬂ(r)m[l—('2” d‘)]('l 2 +d’)dr for |r—R|<d,

> (49b)

We remark that these expreésions bear a striking similarity to Eqs. (32), the lateral dipole result.
The total average lateral quadrupole—dipole interaction, U,,, (R), is found by integrating Eqs. (49) over all values of 7.
Arguments very similar to those used for (AE,, (R)) can be used to show that (AE, (R)) will also only be nonzero in the

direction of m*(R), so we can write

- ~a

FIG. 3. An illustration of the method used in determining (AE,; (R)). The case where g, is positive is shown. For clarity the various reference frames and

their rotations are given separately in (b).

J. Chem. Phys., Vol. 92, No. 2, 15 January. 1990
Downloaded 26 Jul 2007 to 136.159.235.227. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1352 P. G. Kusalilk and G. N. Patey: Aqueous electrolyte solutions. IV

U,o(R) = —m'(R)(AE,(R)) .
Finally, combining these two expressions for U,

31rps QT

AE,,(R)) = ——————
(E,o(R)) 5sgn(g,)d R? Jr_4

It is interesting to point out that both (AE,,(R)) and
(AE;»(R)), as given by Egs. (35) and (51), respectively,
have an apparent 1/R ? dependence.

We now have expressions for all three terms contribut-
ingto (AE,(R)). Given the necessary projections of the pair
correlation functions, (AE, (R)) and (AE,,(R)) can be
evaluated directly. However, (AE,; (R)) must be solved
iteratively since it depends upon Ap(R) [cf. Eq. (35)],
which in turn depends upon {AE,, (R)). Once (AE,(R))
has been determined, Egs. (7) and (9) immediately give the
effective ion—solvent potential, u4?(R), for the RDMF theo-
ry.

We recall that #3”( R) is a spherically symmetric term in
the ion—solvent interaction potential. Furthermore, within
the hypernetted-chain (HNC) approximation it is possible
to show [cf. Eq. (B3) of Ref. 29] that as p,—0 and r— oo,

1
cé'8&(r)~—é—[h85‘,,( )]2——Tuoo,s(r), (52)

where p, = N,/V is the number dénsity of the salt, ¢330, (n
is the angle-independent projection of the ion-solvent direct

correlation function and kT'is the Boltzmann constant times

the absolute temperature. It immediately follows that
u47( R) may contribute to the low-concentration limiting be-
havior of C, = &%, (k=0) [cf. Eq. (34) of Ref. 29]. In
order to determine if this is in fact the case we now examine
thelarge-R low-concentration dependence of the terms con-
tributing to (AE,(R)).

It can be shown' that at p, = 0,

h3.(r)—a/P asr-o, (53)

where a is a constant. If we insert this form for A 33, () into

Eq. (51) and integrate, we discover that the integral evalu-
ates to zero. This clearly implies that at infinite dilution

Therefore, (AE,, (R)) has no long-range “tail” [i.e., it be-

comes zero as soon as h 332, (r) attains its large-r behavior],
and consequently it cannot contribute to the long-range be-
havior of u42(R) or the low-concentration limiting slope of
C,.

We now turn our attention to (AE, (R)). From Eq.
(B6) of I we have that as r— « and k-0,

99 e , - (55a)
€kT r ’
where « is the usual Debye screening parameter given by

47’, 172
o= ( kT ;p,-qf)

and ¢, is the pure solvent dielectric constant. We insert Eq.
(55a) into Eq. (25) and expand and integrate (see Appen-

(55b)

B R + d;
J- hgiz,s(r)/r[(ZrR)z_. (r2+R2

‘and hence Eg.

(50)

mo (R) and msertmg Eq. (42) gives'the desired result

d?)? ](rz—R2+ds)dr. (51)

—
dix B). Collecting terms, applying the small-x limit, and em-
ploying charge neutrality yields

(AE,(R)) = 'q"

e *®(1+«R), (56)
whxch represents the large-R low-concentration limiting be-
havior of (AE, (R)). We point out that at infinite dilution
(i.e., x =0) Eq. (56) becomes

(AE”(R) =|:—iz|, (57
which is obviously consistent with Eqs. (10) and (11).

In considering the low-concentration long-range depen-
dence of (AE,, (R)) it is convenient to split (AE,,(R)),
(35), into two separate contribu-

tions: (AE,,(R)) dueonly to m, and (AE,, (R)) due to

.Ap(R). First, we examine (AE,, (R)). Using the limiting

behavior of & &, (7) [cf. Eq. (B4) of Ref. 29], it follows that
as p,—0and R—- 0,

lg:| € —1
8d3R?

(AE,,(R))~ (1 +«kr)e™ "

2 _ 7242
X[F¥2(R2+d§)+i—r-2-d—s)—] dr.

(58)

If we perform the integration in Eq. (58) and collect terms
(see Appendix B), then we can show that in the limit x -0
and R — o0,

—2(e— 1) |l

3¢, R?
We remark that Egs. (56) and (59) are very similar. They
predict that at low concentration and long range nearly rwo-
thirds of the ion field is canceled by the lateral dipole field
due to m,. Of course, this will not be the case when ¢, is
small. This clearly demonstrates the importance of the die-
lectic screening of the solvent and is an obvious indication of
how poor an approximation Eqgs. (1) are for aqueous elec-
trolyte solutions.

In order to determine the long-range, low-concentration
behavior of (AE,, (R)) we must first know Ap(R), but
Ap(R) is a function of (AE;(R)), which in turn depends
upon (AE, (R)). However, we can solve for (AE, (R))
iteratively. The expression for (AE,, (R)) in the limit

R— w0,
R+d‘
P f Ap(r)
R—d,

e~ "®(1+«R). (59)

(AE, (R)) =

X[(P+R*—=d??— (2rR)*] dr, (60)

follows directly from Eq. (35) and the fact that g,.(r) =1
for large r. Using Eqs. (5) and (7) combined with the results
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from Egs. (54), (56), and (59), we have that the nth ap-
proximation for Ap(R) is given by

a2 la]

e "R(14+xR
36, R (1+«R)

Ap{"}(R) - a'[

+<AE§;-”(R)>]. (61)

where (AE}:‘ Y(R)) is the (n— 1)th estimate for
(AE,, (R)). Thenstarting with (AE g’} (R)) = 0 and iterat-
ing Eqs. (60) and (61), employing the explicit form for the
integral given in Appendix B [cf. Eq. (B6) 1, it is possible to
show that

2 lg;
A {o} R =a[€0+ 2l
P (R) e, RZ

X(=f+82=3+ ),

e "*(1 +KR)]

(62a)
where

§=8map,/3. (62b)
For |{| <1 (i.e., for ap, < 3/87) we recognize the last factor
in Eqg. (62a) as the Taylor-series expansion for 1/(1 + £).
We note that for water at 25 °C, £ = 0.403. Therefore, we can
immediately write

€+ 2 |_q,_|
(3 + 87ap,)e, R*
which is, of course, only valid in the limits x =0 and R — .

Let us now consider (AE, (R))) for the special case when
the solvent is polarizable but rianpolar. In such a case,
(E,) =0 and m’ = 0. Then by definition (AE,,, (R)) must
also be zero [we recall that in Eq. (35), as elsewhere, we
have replaced m’ with m_]. Using Egs. (54), (56), and
(60), together with Egs. (5) and (7), we repeat the iterative
scheme outlined above to show that for this system at large R

s lal
3 + 8map, R?

(AE,(R)) = e *®(1+«xR), (63)

(AE,(R)) = e *®(1+4+-4R), (64a)

where in the definition of x [cf. Eq. ( 55b)] €, is now the
high-frequency dielectric constant usually denoted €..The
Clausius—Mosotti relatlonshxp,
€, —1 4
= —7ap, ,

e.+2 3°
can be substituted into Eq. (64a), and taking the limitp, = 0
gives the infinite dilution relationship
eou + 2 |ql |
"3, R?

Pollock, Alder, and Pratt® have also studied the screen-
ing of the charge of a single ion placed in a nonpolar polariz-
able solvent and have obtained precisely the same expression
for thelarge-R dependence of the average local electric field.
Moreover, they found that continuum theory predicts a dif-
ferent result. When the two relationships were compared
with values for the average local field at large R determined
from computer simulation,*® Eq. (65) gave essentially exact
results while the continuum expression was accurate only
for small values of ap,.

It is also interesting to examine the long-range behavior

(64b)

(AE,(R)) = (65)

of (AE, (R)) atinfinite dilution when the solvent is polar but
not polarizable. Taking & = 0 and x = 0 in Eq. (63), we im-
mediately have that

&+2 0l

3¢¢ R
Curiously, Egs. (65) and (66) are equivalent in form, indi-
cating that the field due to a single ion is screened to the same
extent, the screening function { (¢ +2)/ 36] being a general
result, in both solvents.

It is clear from Eqgs. (7) and (63) that Ap(R) has the
same long-range, low-concentration dependence as
h %5 (r), and hence we would expect it to influerice the limit-
ing behavior of C,,. Using Eqs (7), (9b), (52), and (63)
and the definition of C,, given by Eq. (34) of Ref. 29, it is
poss1ble to show after considerable manipulation that as

p2—0,

(AE,(R)) = (66)

carcoro _3T2| 4i(S+2) ]ZK

(3 + 8map,)e,
where C 47 is the contribution to C,; due to #2?(R) and the
superscript O indicates the infinite dilution result. We now

recall the exact low-concentration relationship [cf. Eq.
(37a) of Ref. 29}

(67)

v, C, . +v_C_))
=V, C% +v_CL) +Sp+ -, (68)

where v and v_ are stoichiometric constants. For fluids of
nonpolarizable particles the HNC equation can be used to
provide an estimate for the total limiting slope, S, (see Ap-
pendix B of Ref. 29). If we define S 2* as being the contribu-
tion to S, due to u2?(R), then comblnmg Egs. (55b) and
(67) ylelds

gor o = 127adv’(g, +2)°

< T 69a
(3 4 8map, )%, (692)
where v=v, + v_ and
372
‘ A=_‘/___”;(M) i (69b)
2 €kT ~

It follows from Eq. (36) of Ref. 29 that if #5?(R) influences
S., then it must also contribute to the low-concentration
limiting behavior of G , ; = G _ ;. Therefore, u2?(R) will af-
fect the limiting slopes of all thermodynamic properties of
electrolyte solutions which have a dependence upon ion-
solvent correlations (i.e., G ;) at low concentrations. An
important example is T’z, the partial molar volume of the salt
[cf. Egs. (49) of Ref. 29].

" Ttis interesting to explore further .S 27 for nonpolar po-
larizable solvents. In this case we use Eq (64a) instead of
Eq. (63) and follow the arguments outlined above to obtain

S = _ 121@4»3’2(;) c., (70)
3 + 8map,

where 4 is given by Eq. (69b) with ¢, again replaced by €_ .

Now in Ref. 29 it is shown that at least for systems with

effective pairwise additive potentials.S, is related to the bulk

dielectric constant of the pure solvent. Specifically, for a

nonpolar polarizable model one has [cf. Eq. (56) of Ref. 29]
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N L 4
_,l_(ae“') _ =5 o
€, \dp, /r 34+ ‘
Combining Egs. (70) and (71) gives
2
RS (36,0 ) =4ra (———i——) , (72)
€\, /r 3 + 8map,

which upon integration yields the Clausius-Mosotti formula
(64b). It is gratifying to see that for the nonpolar polarizable
solvent everything is self-consistent to the Clausius—Mosotti
level.

lll. RESULTS AND DISCUSSION

The reference HNC (RHNC) approximation was used
to study the effect of the RDMF theory on model aqueous
electrolyte solutions. The models employed in these
RDMF/RHNC calculations have been previously stud-
ied"”'*?° with the SCMF/RHNC approximations and con-
sist of hard-sphere ions immersed in a polarizable dipolar
tetrahedral-quadrupolar solvent. The parameters for the wa-
ter-like solvent and the ion diameters used are summarized
in Tables I and II of I. It is helpful to recall here that the
hard-sphere diameter of the solvent, d,, was taken to be 2.8
A and that the reduced ion diameters, d* = d,/d,, were
0.84, 1.08, 1.16, 1.28, 1.44, and 1.96 for Na*, K*, CI—,
Cs*(Br™), I™, and M™*, respectively. We point out that
M is roughly similar in size to tetra-alkylammonium ions
and that Cs* and Br~ have the same diameter in the present
model. A value®' of 1.444 X 10~%* cm® was employed for the
average polarizability a of the water-like solvent. Solutions
of NaCl, KC], Csl, and MBr were examined at infinite dilu-
tion, while calculations were performed for KCl and CsI at
low concentrations, i.e., <0.1M. All the sytems investigated
were at 25 °C. The method of numerical solution of the
RDMF/RHNC equations is essenitally that of the SCMF/
RHNC theory, as given in I. The numerical solution, which
now consists of a set of c","",ff,g(r) together with Ap(R) for
each ion, is iterated until convergence is obtained.

As in our previous calculations at finite concentations, !’
the effective permanent dipole moment of the solvent was
taken to be that of the pure solvent. It was found that at the
low concentrations examined here, the inclusion of the
RDMF ion—solvent interaction had a negligible effect (e.g.,

<0.1% at 0.1M) upon the average local electric field of the
bulk. ‘

First we consider the additional ion—solvent interaction,
u4?(R), as determined from Eq. (9b). In Fig. 4 we have
compared u5(R) given by the RDMF theory of Na* at
infinite dilution with the result obtained if we ignore all the
lateral solvent fields [i.e., use Eq. (1c)]. It can be seen that
the RDMF theory predicts a spherically symmetric ion-sol-
vent interaction which is much smaller in magnitude than
the direct ion term. Clearly, the lateral solvent fields are hav-
ing a very large effect upon u4”(R), even at smaller separa-
tions. At contact we observe that the RDMF result for
#2P(R) is about seven times smaller than the direct ion term.
We remark that the contact value of #4?(R) for Na™* corre-
sponds to Ap(R =d;)=0.38D. In Fig. 4 we find that

— u%P(R) drops rapidly from contact, reaching a minimum

10‘\
- z}p(r) 13 \
— 18 > 7
kT ™
1
0
0011
040 1.0 2.0 3.0 40 50
(r-di/d,

FIG. 4. Additional ion-solvent interaction due to Ap(R) for a Na* ion at
infinite dilution. The solid curve is the RDMF result, while the dashed line
represents — u,, (R)/kT as given by Eq. (1c). Note the semilog scale.

at a separation of approximately 0.5d,, before increasing
again to a local maximum at a separation of about one sol-
vent diameter. Beyond a separation of one solvent diameter
u5P(R) exhibits very little oscillatory behavior and runs es-
sentially parallel to the u_, (R) curve, as can be seen from
Fig. 4. For separations greater than 3d, the distance between
the two curves corresponds to a factor of 17.0, which is also
the numerical result given by the infinite dilution limit of Eq.
(63) combined with Eqgs. (7) and (9) for the present water-
like solvent. For the other ions we have examined #5?(R)
exhibits rather similar behavior. As one might expect, the
oscillatory structure at smaller separations becomes less pro-
nounced with increasing ion size.

In Fig. 5 we have compared SCMF/RHNC and
RDMF/RHNC results for g, (r) for Na* at infinite dilu-
tion. Clearly, the additional attraction between an ion and
the surrounding solvent particles due to the RDMF in-
creases the structure in g, (r) for Na*. As can be seen from
Fig. 5, g, (7) is most strongly influenced at short range, par-
ticularly at contact. Qualitatively similar results were found
for all other ions considered. We also note that at infinite
dilute ¥4”( R) makes a small but clearly evident contribution
to g, (r) at long range.

] 601
20 84 )
1.01
0.0 T v v
0.0 . 1.0 2.0 3.0
(c-d )/,

FIG. 5. Ion-solvent radial distribution functions for Na* at infinite dilu-
tion. The solid line is the present RDMF/RHNC result, while the dashed
curve represents g, (7) obtained from the SCMF/RHNC theory.
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In Fig. 6 we have shown the effect of u?(R) upon un-
like-ion potentials of mean force for NaCl and MBr at infi-
nite dilution. In general, we find that the RDMF decreases
the short-range attraction, which is consistent with the fact
that the ion—solvent interaction has been increased. From
Fig. 6(a) we observe that for NaClw,; (r) becomes much less
attractive at small separations with the addition of u2P(R),
although the well near the solvent separated distance has
become somewhat deeper. At long range the RDMF/
RHNC and SCMF/RHNC curves become indistinguish-
able since the dielectric constant of the bulk solvent has re-
mained unchanged. For a pair of larger ions, such as M*/
Br~, the addition of #4”(R) shifts w; (r) to more positive
values at all separations, as can be seenin Fig. 6(b). In recent
work using McMillan-Mayer level theory, Pettitt and
Rossky>? have shown that some thermodynamic properties
of model aqueous electrolyte solutions (in particular, the
osmotic coefficients) are extremely sensitive to small
changes in w;(r). Hence, we would expect the shifts in
w; (r) observed here due to the RDMF for NaCl and MBr to
result in significant changes in properties such as the mean
activity coefficient for these solutions at finite concentra-

(a)

-4.01

0.0 1.0 2.0 3.0

(r-d,) /4,

0.0 1.0 2.0 3.0

-,
FIG. 6. Effect of the RDMF theory upon the unlike-ion potentials of mean
force for (a) Na*/Cl~ and (b) M*/Br~. The solid curves represent
Bw; (r) when #3P(R) has been included in the ion-solvent potential, while
the dashed lines are results obtained when the solvent polarizability is treat-
ed only at the SCMF level.

tions. As discussed below this is indeed the case.

The influence of the RDMF upon the like-ion potentials
of mean force at infinite dilution for Na* and M* is demon-
strated in Fig. 7. Here we find that large and small ions show
opposite effects. In Fig. 7(a) we see that for Na* the addi-
tion of u4P(R) shifts w; (7) to more negative values at all
separations. Clearly, the increased ion-solvent interaction
has increased the probability of finding two Na* ions close
together. Similar but less dramatic changes were found for
K* and C1~. For M™* we observe from Fig. 7(b) that w; ()
is shifted to more positive values at all separations with the
inclusion of the RDMF. This behavior is consistent with the
proposed'”'® hydrophobic nature of these large ions; the in-
creased ion—solvent interaction reduces their hydrophobic
nature and consequently decreases the probability of finding
them at small separations. For I~ w, (r) exhibits similar but
again less pronounced changes. We remark that for Cs* and
Br™ w, (7) showed very little sensitivity to the presence of
u®”(R).

In the derivation of the RDMF theory given above, it
was shown that #27( R) will contribute to the low-concentra-
tion behavior of C;; [cf. Eq. (67)] and an explicit expression
[cf. Egs. (69)] for S27 was obtained. In Fig. 8 we have
compared the low-concentration dependence of

12.01
(@)

8.01 !
Pw;(@)

4011}

0.0

@-dy/d, 2° 3.0

2,01

0.0 1.0

(I'-di) /ds 2.0 3.0

FIG. 7. Effect of the RDMF theory upon the like-ion potentials of mean
force for (a) Na*/Na* and (b) M*/M™. The curves are as in Fig. 6.
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FIG. 8. Effect of the RMDF theory upon (v, C, . + v_C_,). For ease of
comparison we have plotted the difference between the function’s infinite
dilution valuesand (v, C , + v_C_,) itself. The open circles are SCMF/
RHNC results for model CsI solutions, while the solid circles represent val-
ues obtained when 427( R) has been included. The dashed line is the limiting
slope S, determined from Eq. (B6) of Ref. 29. The dash-dotted line repre-
sents the sum of $27, given by Egs. (69), and the result from Eq. (B6) of
Ref. 29.

(v, C,, +v_C_,) for model CslI solutions. At very low
concentration the numerical results do approach their re-
spective limiting laws. It is obvious from Fig. 8 that S4°
makes an appreciable contribution to the limiting slope of
(v,C,..+v_C_),), virtually doubling the total value.
Clearly, u2?(R) can be expected to significantly affect the
limiting behavior of a// thermodynamic properties which de-
pend upon ion-solvent correlations at low concentration.
We point out that the infinite dilution values, C%, of C also
increase substantially with the addition of u4?(R).

Model solutions of both KCl and CsI were studied at
low concentration (i.e., for ¢<0.1M) using the RDMF/
RHNC theory. Comparison with previous SCMF/RHNC
results!”? reveals only slight changes in quantities such as
the dielectric constant and the isothermal compressibility.
As we would expect from our earlier discussion, the deriva-
tives of the logarithm of the mean activity coefficient,
(@Iny /dp,) r.p [cf. Eq. (56) of 1], showed great sensitiv-
ity to the inclusion of #2P(R), even at the low concentrations
examined. At 0.1M, the derivative for Csl was found to de-
crease in magnitude (i.e., become more positive) by more
than 50%, while for KCl the decrease was about 40%. As a
result, the values of (d1In ¥ /dp,) 1.p for both salts at 0.1M
were approximately half that given by the Debye-Hiickel
limiting law. We recall that in our previous SCMF/RHNC
calculations the theoretical curves for In ¥, deviated from
their limiting law much more slowly, in general, than the

experimental curves (cf. Fig. 10 of I). This is clearly 7ot the
case with the present RDMF/RHNC results for KCl and
Csl which are in fact larger than the experimental values at
least up to 0.1M.

The partial molar volumes of the solute, ¥,, also proved
to be particularly sensitive to the addition of ¥2?(R) to the
ion-solvent interaction. The infinite dilution values showed
strong dependence. For example, for CsI ¥ = 74.4 cm*/
mol within the SCMF/RHNC theory, and 40.1 cm3/mol
with the RDMF included. Moreover, the limiting slope for
V., S,, almost doubled due to a similar increase in S... Unfor-
tunately, even if we were to use only S'27 in determining S,
[cf. Eq. (52b) of I], we discover that this theoretical limiting
slope for ¥, still exceeds the true results for 1:1 aqueous
electrolyte solutions at 25 °C by more than a factor of 3, even
after correcting for the difference in the compressibilities of
the present water-like solvent and real water (cf. Fig. 8 of I).
In all likelihood this indicates>? that the RDMF theory over-
estimates the magnitude of u2”(R) at long range. We note
that since #47(R) depends upon the square of (AE,(R)),
any error in (AE,(R)) will have a relatively large influence
upon C,;, and hence upon its limiting slope. For example, if
we ignore dielectric screening and assume that
uP(R) = u,, (R)e ™ **(1 + kR), where u_, (R) is defined
by Eq. (1c), the limiting slope would be about 17 times larg-
er than the value we find. Since the theory contains a number
of approximations, the precise origin of the remaining error
in the magnitude of #4”(R) at large R is not clear. We have
shown above that at infinite dilution the RDMF result for
the average local electric field at long range is equivalent (to
Clausius—Mosotti level) to the expression of Pollock, Alder,
and Pratt®® for the special case when the solvent is polariz-
able but nonpolar [cf. Eq. (65)]. A very similar expression
[cf. Eq. (66)] was obtained for the case when the solvent is
polar but nonpolarizable. However, the accuracy of the lat-
ter expression is not known since there are no computer-
simulation results available for this system.

IV. CONCLUSIONS

In this article we have developed a new level of theory
with which to study electrolyte solutions containing a polar-
izable solvent. The RDMF approximation allows us to ex-
amine the average local electric field experienced by a sol-
vent molecule at a distance R from an ion. It gives rise to an
effective spherical potential between the ion and the solvent
particles around it. This general formulation is then applied
to a particular model for aqueous electrolyte solutions, one
consisting of hard-sphere ions immersed in a polarizable
hard-sphere water-like solvent with only dipole and tetrahe-
dral-quadrupole moments. Explicit expressions are derived
for electric field terms which take into account the lateral
dipole and quadrupole moments of the surrounding solvent
molecules, as well as all other ions in the system. We find
that these terms can make a significant contribution to the
average local electric field and tend to cancel the direct field
due to the charge on the ion. Particular attention has been
focused upon the long-range, low-concentration dependence
of (AE,;(R)). We have shown that the resulting effective
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spherical potential will influence the low-concentration
limiting behavior of those thermodynamic properties which
depend upon ion-solvent corrections at low concentration.

RDMF/RHNC calculations were performed for sever-
al model aqueous 1:1 electrolytes at infinite dilution and at
low concentration and compared with previous SCMF/
RHNC results'”!? at 25 °C. The electric field due to the ionic
charge was found to be substantially reduced by the lateral
solvent fields, even at small separations. The RDMF theory
had a moderate effect upon the ion—solvent structure. How-
ever, its impact upon ion—-ion correlations was generally
much more significant, and thermodynamic properties such
as the mean activity coefficient were observed to be rather
sensitive to the presence of the u27(R) potential. The addi-
tion of the effective ion-solvent interaction also had a strong
influence upon 7,, as we might expect.

We have shown that the RDMF theory can be used to
obtain an accurate expression®® for the long-range screening
of an ionic charge in the special case of a single ion immersed
in a polarizable but nonpolar solvent. For other quantities
the RDMF approximation is less satisfactory, even in the
long-range and low-concentration limits. For example, the
RDMEF contribution to the limiting slope for ¥, exceeds the
known macroscopic result for real aqueous electrolyte solu-
tions. Nevertheless, our calculations have clearly demon-
strated that the spherically symmetric induced ion-solvent
interactions considered here can have a significant impact
upon the structural and thermodynamic properties of elec-
trolyte solutions. These polarization effects clearly merit
further study and it would be interesting to test the present
RDMF formulation with careful computer simulations.
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APPENDIX A: TRANSFORMATION OF ®123(Q)4,0,,f)

We begin by expressing the unit vectors %,, §,, and Z, in
terms of the Euler angles a3, 8%, and 7; associated with the
ion reference frame (see Appendix C of Ref. 28). In order to
go from the ion reference frame to the frame (%, ¥, Z), we
must rotate about the y, axis by an angle w [see Fig. 3(b) ].
Therefore, we apply the rotation matrix?’

cosw 0 —sinw
R=| 0 1 0 (A1)
sinw O cos @

to the unit vectors £,, §,, and Z,. We can also express X, §,,
and £, in terms of the Euler angles a,, 8,, and ¥, (see Appen-
dix C of Ref. 28). Equating the components of the two repre-
sentations for %,, §,, and %, and simplifying yields several
relationships between the two sets of Euler angles associated
with the two different reference frames. Explicitly, we have

cosal cosw  sinaj

ﬁnﬁz: COos a. N
2

(A2a)

. ’
sin a,

cos B, =cos a sinw, (A2b)

in2 o

2
d —-sinzw), (A2c)
sin’ aj

cos 2y, = cos 2y; sin’ a, (&

and

sin 2y, = — 2 cos 2/ sin a, (w) . (A2d)
sin a;

We substitute these expressions into Eq. (38b), for which we

take a, =0 (this follows from our choice of reference

frame), and after considerable manipulation and simplifica-

tion (see Appendix C of Ref. 28) Eq. (44) can be obtained.

APPENDIX B: A WORKED EXAMPLE OF AN
EXPONENTIAL INTEGRAL

We consider an integral of the general form [cf. Egs.
(60) and (61)]

R+d e— "
F=af (14 «&r) [(P+R?—-d?*?
R-d r

— (2rR)?] dr, (B1)
where a is some constant expression. It is the behavior of Fas
x—0 that is required. For convenience Eq. (B1) is rewritten
in the form

Feall,+ L+ L+L+1_,+1_,)), (B2a)
where
R+d
I3=KJ‘ re *dr, (B2b)
R-—-d
R+d
IL,= f e ~dr, (B2c)
R-—-d
R+d
I,= —2«(R*>+d?) re=*dr, (B2d)
R—d
R+d
I,= —2(R*+d? e “"dr, (B2e)
R—-d
R+d
I_1=K(R2—d2)2f r-le*dr, (B2f)
R—d
and
R+d
I_,= (Rz—dz)zf r-2e="dr. (B2g)
R—d

Using standard forms®* for the integrals in Egs. (B2b)-
(B2e) and (B2g) and canceling terms whenever possible,
yields

F=a[e“"[(_ g 8 _3_)

K i© ©
+2(R2+d2)(r+£)—i(Rz—dz)ZHRM .
K r R—d
(B3)

If we then evaluate Eq. (B3) at its limits and rearrange we
find that

F=ae—xR [(%_F%)(exd_e—xd)

_ (8_d2 + -——8Rd)(e’“’ + e"‘")] .
k K

Now by expanding the exponentials, we can show that at

small x

(B4)
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el —e ™=2¢d +{K°d? (B5a)

and
e +e=244x2d2. (B5b)

Finally, combining Eqs. (B4) and (B5) and simplifying, we
obtain

3
F=16" 1 4 kR)e— (B6)

in the limit «—0.
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