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Abstract 

Direct methanol fuel cells (DMFCs) have emerged in recent years as potential power sources for 

portable electronic devices due to the high energy density of methanol and low power 

requirements of the portable electronic devices. Fuel cell system modeling plays an important 

role in the design of DMFC systems. Despite the progress in modeling of DMFCs, most of these 

models considered only some of the key operating parameters with overly simplified geometric 

shapes. In addition, since extensive simulations are usually required in design and control of 

DMFC systems, advanced modeling tools with high computation quality and efficiency are 

expected. This research focuses on study of adaptive metamodeling methods and applications of 

these methods in modeling and design of DMFC systems.  

A semi-empirical model is developed to build the relationships between all important operating 

parameters and DMFC performance measures. Coefficients of this semi-empirical model are 

obtained through experiments and data fitting. The semi-empirical model provides a basis to 

identify the optimal operating parameters of the DMFC system considering different power 

requirements. In addition, adaptive metamodeling has been employed to describe the 

electrochemical relationships in a computational fluid dynamics (CFD) based DMFC model to 

study influences of both geometric parameters and operating parameters on DMFC performance. 

The CFD-based DMFC model can be used in optimal design of geometric parameters and 

optimal control of operating parameters.    

Metamodeling methods, which were initially developed as “surrogates” of the expensive 

simulation process, can be used to model the relationship between input and output parameters in 

DMFC systems. Influences of two factors, noise level and initial sample size, on quality of 

adaptive metamodeling considering different metamodel schemes and test functions are studied 

in this work. Guidelines have been developed for selection of the proper adaptive metamodeling 

methods. In addition, a new sampling method namely weighted sequential sampling (WSS) 

method is introduced in this research to improve the accuracy of adaptive metamodeling 

considering influences of sample quality measures in both input and output parameter spaces. 

Quality of the global optimization can be improved based on the metamodel built using the WSS 

method.  



 iii 

Acknowledgements 

I would like to thank several people who assisted me during the research process for my 

doctorial degree and the composition of my thesis. My appreciation and thanks must go to my 

supervisor, Dr. Deyi Xue, for his continuous guidance and training throughout my Ph.D. 

program. I learned a lot from him not only in research, but also in many other aspects of my life. 

I also wish to thank my supervisory committee members, Dr. Theodor Freiheit and Dr. Simon 

Park, for providing valuable insights, discussions, and encouragements to my research.  

I gratefully acknowledge the financial support provided by the Canadian School of Energy and 

Environment (CSEE) and the Natural Science and Engineering Research Council (NSERC) of 

Canada for completing my Ph.D. program. Without their financial help, this research would not 

have been achievable.  

I wish to thank the following students, Dong Zhao, Gang Hong, Biao Yu and Amir Kianimanesh, 

for their valuable assistance, support, encouragement, and discussions during my program. 

Finally, I would like to extend my appreciation and grateful thanks to my mother Huifan Tong. 

Without her love, encouragement, and consistent support, my greatest achievement to date would 

not have been possible.  

 

  



 iv 

Dedication 

This thesis is dedicated to my mother and the loving memory of my father. 

 

 



 v 

Table of Contents 

Abstract ............................................................................................................................... ii 
Acknowledgements ............................................................................................................ iii 

Dedication .......................................................................................................................... iv 
Table of Contents .................................................................................................................v 
List of Tables ..................................................................................................................... ix 
List of Figures and Illustrations ......................................................................................... xi 

CHAPTER 1 INTRODUCTION .........................................................................................1 

1.1 Background ................................................................................................................1 
1.2 Problem Statements ...................................................................................................4 

1.2.1 Problems in Direct Methanol Fuel Cell System Modeling ...............................4 
1.2.2 Problems in Adaptive Metamodeling Considering Accuracy and Efficiency ...5 

1.3 Research Objectives ...................................................................................................6 
1.4 Research Summary ....................................................................................................7 

1.5 Thesis Structure .......................................................................................................11 

CHAPTER 2 LITERATURE REVIEW ............................................................................13 

2.1 Overview ..................................................................................................................13 
2.2 Modeling of Direct Methanol Fuel Cell Systems ....................................................13 

2.2.1 Modeling of Relationship between Operation Parameters and DMFC 

Performance .....................................................................................................15 

2.2.2 Modeling of Relationship between Geometric/Operating Parameters and 

DMFC Performance Based on CFD ................................................................16 
2.3 Data Sampling and Metamodel Construction ..........................................................19 

2.3.1 Design of Experiment ......................................................................................19 
2.3.2 Metamodeling Methods ...................................................................................23 

2.3.4 Influencing Factors for Metamodeling ............................................................29 
2.3.5 Validation and Comparison of Metamodels ....................................................31 

CHAPTER 3 A SEMI-EMPIRICAL MODEL CONSIDERING THE INFLUENCES OF 

OPERATING PARAMETERS ON PERFORMANCE FOR A DMFC 

SYSTEM ......................................................................................................35 
3.1 Introduction ..............................................................................................................35 
3.2 Direct Methanol Fuel Cell (DMFC) and Its Behaviors ...........................................36 
3.3 A Semi-empirical Model .........................................................................................39 

3.3.1 The Resistance Sub-model ..............................................................................40 

3.3.2 The Open Circuit Sub-model ...........................................................................40 
3.3.3 The Closed Circuit Sub-model ........................................................................41 
3.3.4 The Overall Semi-empirical Model .................................................................42 

3.4 Experiments .............................................................................................................42 
3.4.1 The Direct Methanol Fuel Cell (DMFC) – TekStak

TM
 ...................................42 

3.4.2 Experiment Setting ..........................................................................................43 
3.4.3 Design of Experiments ....................................................................................44 

3.4.4 Experimental Data Collection .........................................................................47 



 vi 

3.5 Results and Analysis ................................................................................................49 
3.5.1 Results .............................................................................................................49 
3.5.2 Verification and Accuracy Analysis ................................................................52 
3.5.3 Sensitivity Analysis .........................................................................................55 

3.6 Applications of the Semi-empirical Fuel Cell Model ..............................................57 
3.6.1 The Influences of Operating Parameters on DMFC Performance ..................57 
3.6.2 Optimal Control of the Operating Parameters .................................................59 

3.7 Summary ..................................................................................................................60 

CHAPTER 4 A CFD MODEL WITH SEMI-EMPIRICAL ELECTROCHEMICAL 

RELATIONSHIPS TO STUDY THE INFLUENCES OF GEOMETRIC 

AND OPERATING PARAMETERS ON DMFC PERFORMANCE .........62 

4.1 Overview ..................................................................................................................62 
4.2 CFD Modeling of A DMFC with Semi-empirical Electrochemical Relationships .62 

4.2.1 Physical Domains and Assumptions for CFD Modeling ................................63 
4.2.2 Theoretical Models ..........................................................................................64 

4.2.3 Approximation of Electrochemical Kinetics by Semi-empirical Relationships

..........................................................................................................................70 

4.2.4 Boundary Conditions and Numerical Methods for CFD-based DMFC 

Modeling ..........................................................................................................71 
4.2.5 Identification of Semi-empirical Relationship Coefficients through Adaptive 

Metamodeling ..................................................................................................73 

4.3 Case Study ...............................................................................................................74 
4.3.1 Experiments and Data Collection ....................................................................75 
4.3.2 Fitting of Coefficient Values in the CFD Model .............................................77 

4.3.3 Validation of the CFD Model ..........................................................................77 
4.4 Influences of Geometric and Operating Parameters on Performance ......................79 

4.4.1 Influences of Geometry Parameters on DMFC Performance ..........................79 
4.4.2 Influences of Operating Parameters on DMFC Performance ..........................81 

4.5 Summary ..................................................................................................................84 

CHAPTER 5 COMPARATIVE STUDY ON INFLUENCING FACTORS IN 

ADAPTIVE METAMODELING .................................................................86 

5.1 Overview ..................................................................................................................86 
5.2 Adaptive Metamodeling ..........................................................................................87 

5.2.1 Adaptive Metamodeling for Optimization ......................................................89 
5.2.2 Adaptive Metamodeling for Uniformity in Specific Output Space .................89 

5.3 Scope of This Study .................................................................................................91 
5.3.1 Two Influencing Factors ..................................................................................91 
5.3.2 Metamodels .....................................................................................................93 
5.3.3 Test Functions .................................................................................................96 
5.3.4 Data Sampling Methods ..................................................................................97 

5.4 Study on Influence of Noise Level in Sample Data .................................................99 
5.4.1 Adaptive Metamodeling without Influences of Noises ...................................99 

5.4.2 Adaptive Metamodeling with Influences of Noises ......................................102 
5.5 Study on Influence of Initial Sample Size .............................................................106 



 vii 

5.5.1 Influence of Initial Sample Size on Adaptive Metamodeling for Optimization

........................................................................................................................107 
5.5.2 Influence of Initial Sample Size on Adaptive Metamodeling for Uniformity in 

Specific Output Space ....................................................................................108 

5.6 Applications in DMFC Modeling ..........................................................................110 
5.6.1 A Direct Methanol Fuel Cell System ............................................................110 
5.6.2 Case Study 1: Selection of Initial Sample Size for Adaptive Metamodeling 

Based Optimization ........................................................................................113 
5.6.3 Case Study 2: Selection of Metamodel for Adaptive Metamodeling 

Considering Uniformity in Specific Output Space ........................................115 
5.7 Summary ................................................................................................................117 

CHAPTER 6 A WEIGHTED SEQUENTIAL SAMPLING METHOD CONSIDERING 

INFLUENCES OF SAMPLE QUALITIES IN INPUT AND OUTPUT 

PARAMETER SPACES FOR GLOBAL METAMODELING AND 

OPTIMIZATION ........................................................................................119 

6.1 Introduction ............................................................................................................119 
6.2 Comparison of Sampling Methods Considering Sample Quality in Either Input 

Parameter Space or Output Parameter Space .......................................................120 
6.2.1 Two Sampling Methods Considering Sample Quality in Either Input or 

Output Parameter Space .................................................................................120 

6.2.2 Test Functions ...............................................................................................121 

6.2.3 Evaluation of the Constructed Metamodel ....................................................123 
6.2.4 Comparison between the LHS and MSE Sampling Methods Considering 

Sample Quality in Either Input or Output Parameter Space ..........................124 

6.3 The Weighted Sequential Sampling (WSS) Method .............................................126 
6.3.1 Principle of the Weighted Sequential Sampling (WSS) Method ..................127 

6.3.2 Evaluation of Sample Quality Considering Input Parameter Space ..............129 
6.3.3 Evaluation of Sample Quality Considering Output Parameter Space ...........129 
6.3.5 Comparative Studies ......................................................................................130 

6.4 A Two-step Global Optimization Method Based on Weighted Sequential Sampling 

(WSS) ...................................................................................................................133 

6.4.1 The Traditional Adaptive Metamodeling-based Optimization Approach and Its 

Problem in Global Optimization ....................................................................133 
6.4.2 The Two-step Global Optimization Method .................................................133 
6.4.3 Comparative Studies ......................................................................................134 

6.5 Applications in Modeling of a DMFC System ......................................................137 
6.5.1 An Accurate Metamodel to Describe the Relationship between Operating 

Parameters and Maximum Power Density through Weighted Sequential 

Sampling ........................................................................................................137 
6.5.2 Identification of the Optimal Operating Parameters to Achieve the Maximum 

Power Density Using the Two-step Global Optimization Method ................139 
6.6 Summary ................................................................................................................139 

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ................................................142 
7.1 Conclusions ............................................................................................................142 

7.1.1 Summary of This Research ...........................................................................142 



 viii 

7.1.2 Research Contributions .................................................................................144 
7.2 Future Work ...........................................................................................................146 

7.2.1 Modeling of direct methanol fuel cell systems ..............................................147 
7.2.2 Adaptive metamodeling considering accuracy and efficiency ......................147 

REFERENCES ................................................................................................................148 

PUBLICATIONS .............................................................................................................159 
 



 ix 

List of Tables 

Table 3.1.   Operating parameters, measurement parameters, and coefficients for the semi-

empirical model.......................................................................................................... 45 

Table 3.2.   Operating parameters and five levels of these operating parameters. ....................... 46 
Table 3.3.   Forty-five test cases for the open circuit and closed circuit sub-models. .................. 46 
Table 3.4.   Five test cases for the resistance sub-model. ............................................................. 47 
Table 3.5.   Three test cases to analyze the accuracy of the semi-empirical model. .................... 52 
Table 3.6.   Comparison between the errors for the evaluation tests and the training tests. ......... 55 

Table 3.7.    p-values considering the significance of the five coefficients. ................................. 56 

Table 3.8.   Comparison between the original and the simplified semi-empirical models. .......... 56 

Table 3.9.   Different optimization models to satisfy different power requirements. ................... 60 
Table 4.1.   Physical parameters for the CFD simulation. ............................................................ 74 
Table 4.2.   Geometry parameters for the two configurations. ..................................................... 76 
Table 4.3.   Operating parameters for 4 designed tests. ................................................................ 77 

Table 4.4.   Values of model coefficients fitted using the experimental data. .............................. 77 
Table 5.1.   Comparison for optimization without influence of noises....................................... 100 

Table 5.2.   Whole output spaces and specific output spaces for different 2-D test functions. .. 101 
Table 5.3.   Comparison for uniformity in specific output space without influence of noises. .. 102 
Table 5.4.   Comparison for optimization considering influence of noises. ............................... 104 

Table 5.5.   Comparison for optimization considering influence of different levels of noises. .. 105 

Table 5.6.   Comparison for uniformity in specific output space considering influence of 

noises. ....................................................................................................................... 106 
Table 5.7.   Comparison for optimization with different initial sample sizes using kriging 

metamodel. ............................................................................................................... 107 
Table 5.8.   Comparison for uniformity in specific output space with different initial sample   

sizes .......................................................................................................................... 109 
Table 5.9.   Input parameter space. ............................................................................................. 113 
Table 5.10. Optimization results. ................................................................................................ 114 

Table 5.11. Improvement on efficiency of adaptive metamodeling for optimization. ............... 115 
Table 5.12. Improvement of quality in adaptive metamodeling for uniform in specific output 

space without considering influence of noises. ........................................................ 116 

Table 5.13. Improvement of quality in adaptive metamodeling for uniform in specific output 

space considering influence of noises. ..................................................................... 117 
Table 6.1.  Test functions and their characteristics. .................................................................... 123 

Table 6.2.  Comparison between the LHS and MSE methods using sufficient sampling points.

 ............................................................................................................................................. 124 
Table 6.3.  Comparison between the LHS and MSE methods using limited sampling points. .. 126 
Table 6.4.  Comparison among the MSE, HSS and WSS methods based on metamodeling 

efficiency. ................................................................................................................... 131 

Table 6.5.  Comparison between the LHS and WSS methods based on metamodeling 

accuracy. .................................................................................................................. 132 
Table 6.6.  Failure rates with the traditional metamodeling based optimization method. .......... 135 

Table 6.7.  Failure rates with the two-step global optimization method. .................................... 136 
Table 6.8.  Comparison between the results of the two optimization methods. ......................... 137 



 x 

Table 6.9.   Comparison among the MSE, HSS and WSS methods considering metamodeling 

efficiency. ................................................................................................................. 138 
Table 6.10. Comparison between the LHS and WSS methods considering metamodeling 

accuracy. .................................................................................................................. 139 

Table 6.11. Optimization of the DMFC operating parameters. .................................................. 139 
 

 



 xi 

List of Figures and Illustrations 

Figure 1.1.   Research results and their relations in the thesis. ..................................................... 12 
Figure 2.1.   Schematic diagram of a direct methanol fuel cell (DMFC). .................................... 13 

Figure 2.2.   Schematic diagram of a direct methanol fuel cell (DMFC). .................................... 18 
Figure 2.3.   Uniformity explained using C

2
. ................................................................................ 30 

Figure 3.1.   Curves to model fuel cell performance. ................................................................... 37 
Figure 3.2.   Components of the TekStak

TM
 DMFC stack (Parker 2006). .................................... 43 

Figure 3.3.   Schematic diagram for the direct methanol fuel cell testing system. ....................... 44 

Figure 3.4.   A snapshot of the direct methanol fuel cell testing system. ..................................... 45 

Figure 3.5.   Data obtained in a test case for the open and closed circuit sub-models. ................ 48 

Figure 3.6.   Error bars for the three tests in test case No. 2. ........................................................ 49 
Figure 3.7.   Influence of temperature on area-specific resistance. .............................................. 50 
Figure 3.8.   Collected data through experiments and predicted curves using the semi-

empirical model. ...................................................................................................... 53 

Figure 3.9.   Contribution of operating parameters to absolute error. .......................................... 55 
Figure 3.10.  Influence of the four operating parameters on DMFC performance. ...................... 58 

Figure 4.1.   Three physical domains in the CFD model. ............................................................. 64 
Figure 4.2.   Two geometric configurations of graphite end plates. ............................................. 76 
Figure 4.3.   Simulation data and experimental data for the first geometric configuration with 

operating parameters given in Table 4.3. ................................................................ 78 

Figure 4.4.   Simulation data and experimental data for second geometric configuration with 

operating parameters given in Table 4.3. ................................................................ 78 
Figure 4.5.   Simulation data to show influence of width of flow channel on DMFC 

performance. ............................................................................................................ 79 
Figure 4.6.   Simulation data to show influence of height of flow channel on DMFC 

performance. ............................................................................................................ 80 
Figure 4.7.   Pressure distributions obtained by CFD simulation in the diffusion layers of the 

three bipolar plates. .................................................................................................... 81 

Figure 4.8.   Simulation data to show influence of temperature on DMFC performance. ........... 82 
Figure 4.9.   Simulation data to show influence of methanol concentration on DMFC 

performance. ............................................................................................................ 83 

Figure 4.10. Simulation data to show influence of methanol flow rate on DMFC 

performance. ............................................................................................................ 84 
Figure 5.1.   Uniform input space and uniform output space. ...................................................... 90 

Figure 5.2.    Influence of noise level in samples. ........................................................................ 92 
Figure 5.3.    Influence of initial sample size. ............................................................................... 92 
Figure 5.4.   Influence of initial sample size for optimization using kriging metamodel. .......... 108 
Figure 5.5.   Influence of initial sample size for uniformity in specific output space ................ 110 
Figure 5.6.   Improvement of quality of adaptive metamodeling during the iterations. ............. 111 

Figure 5.7.   Curves to model fuel cell performances. ................................................................ 112 
 



                       

1 

CHAPTER 1 INTRODUCTION 

1.1 Background 

The pursuit of sustainable alternative energy systems is vital for modern industrialized countries 

especially due to the environmental concerns and volatile petroleum market. Among various 

alternative energy sources, fuel cells are considered with great potential to replace the batteries 

or work as power generators (Larminie and Dicks, 2003). A fuel cell is a device that converts the 

chemical energy from a fuel into electrical energy through a chemical reaction. The interest in 

developing fuel cell technology has increased due to its following advantages: 

 Efficiency. Fuel cells are generally more efficient than combustion engines. The maximum 

possible (theoretical) efficiency of a fuel cell with fuel of hydrogen is 80%. The efficiency 

limit for heat engines, such as steam and gas turbines, is 52% (Zhang, 2008). 

 Simplicity. The essential parts of a fuel cell are relative simple.  

 Low emissions. When hydrogen is used as the fuel, the main by-product of the fuel cell 

reaction is pure water.  

 Silence. Fuel cells are quiet, even those with extensive extra fuel processing equipment. This 

feature is important for both the portable power generators and stationary power generators 

(Larminie and Dicks, 2003). 

Various types of fuel cells have been developed in the past. These fuel cells include proton 

exchange membrane (PEM) fuel cells, alkaline fuel cells, phosphoric acid fuel cells (PAFCs), 

solid oxide fuel cells (SOFCs), and molten carbonate fuel cells (MCFC). Among these fuel cells, 

the proton exchange membrane (PEM) fuel cells are primarily used as batteries. In a PEM fuel 

cell, the electrolyte is a solid polymer with mobile protons. The PEM fuel cells usually use 

hydrogen as the fuel running at a low temperature. Sophisticated catalysts have to be used in 

PEM fuel cells to improve the reaction rates. In addition, relative pure hydrogen must be used for 

the PEM fuel cells. 

One alternative fuel to hydrogen for PEM fuel cells is methanol. The direct methanol fuel cell 

(DMFC), which is also a kind of PEM fuel cell, has emerged in the recent years as a potential 
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power source for portable electronic devices such as laptop computers and cell phones due to the 

high energy density of methanol and low power requirements of the portable electronic devices 

(Dillon et al., 2004). Methanol has the advantage that it is easier to transport and refill compared 

with hydrogen. The complex steam reforming process to produce hydrogen is also eliminated in 

DMFC systems. In addition, since methanol is fed with a large amount of water to the anode, 

humidification and water management problems associated with other types of PEM fuel cells 

are also avoided. 

To design and control DMFC systems that can be used in different applications, good 

understanding and accurate modeling of DMFC behaviors are necessary. From an engineering 

application point of view, fuel cell behaviors are usually described by performance measures 

such as output voltage and current density which are influenced by design and operating 

parameters. Typical design parameters include the type of proton exchange membrane, the 

catalyst and its preparation, the electrode structure, and the geometric shapes of the fuel cell 

components. Typical operating parameters include temperature, methanol concentration, flow 

rates of methanol and air, and pressures of methanol and air.  

In principle, the performance measures of fuel cell systems can be achieved through experiments. 

However, the experiments are usually expensive and time-consuming. To solve this problem, 

modeling of fuel cell systems based on sophisticated computer analysis programs, such as finite 

element analysis (FEA) and computational fluid dynamics (CFD), has become standard industry 

practice. However, the effective use of these computer simulation tools is largely hindered by the 

diversified model complexities and the computing intensity of simulations. Despite the 

advancement of computer technology, the cost to run complex and high fidelity computer 

analysis programs remains high, especially for engineering optimizations based on these 

simulation systems. In addition, these simulation tools do not help to discover the underling 

relationships between input and output parameters (Simpson et al., 2001) which are usually 

required to achieve the optimal product and operating parameters in fuel cell system design.  

A technique called computer experiment was introduced to achieve the relationships between 

input and output parameters (Sacks et al., 1989). In the computer experiment, a series of design 

points with different values of input parameters are generated first by using design of experiment 
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(DOE) techniques. Second, computer simulations are carried out on these design points to obtain 

the output parameter values in the form of performance measures. Finally, the results from these 

computer simulations are collected and an approximation model is built based on the data of 

input and output parameters by using some statistical methods (Fang et al., 2006). This 

approximation model is often called metamodel (Kleijnen, 1987). The created metamodel can be 

used to partially replace the sophisticated computer analysis programs with advantages in the 

following aspects: (1) efficient modeling of the relationships between input and output 

parameters, (2) easy integration of computer simulation programs, and (3) fast exploration of 

design space by using approximation models and efficient analysis tools for optimization  

(Simpson et al., 2001).  

Metamodeling techniques have been developed from many different disciplines including 

engineering disciplines. These metamodels were initially developed as “surrogates” of the 

expensive simulation process for improving the overall computation efficiency and quality 

(Wang and Shan, 2007). Kriging method, radial basis function method, and multivariate 

polynomial method are popular metamodeling methods (Zhao and Xue, 2010).  

In the past decade, metamodeling has gained increasing popularity in developing industry 

applications (Chen et al., 2006). However, the effective use of metamodels is largely dependent 

on the selected metamodeling method and the sample points which are used to train the 

metamodels. For the complicated relationships between input and output parameters, sufficient 

sample points are required to build an accurate metamodel in the traditional metamodeling 

methods. The large number of sample size leads to the low efficiency in metamodel construction. 

Depending on whether all the samples are collected at the same time, metamodeling methods are 

classified into two categories: non-adaptive metamodeling and adaptive metamodeling 

(Crombecq, 2011). The traditional methods to collect all the data once and build the metamodels 

using these data belong to the non-adaptive metamodeling approach. In these methods, data 

sampling strategies are selected, such as the data in the input parameter space are uniformly 

distributed, to improve quality of metamodeling. In adaptive metamodeling, the data are sampled 

sequentially. First an initial set of data is sampled to build an initial metamodel. The initial 

metamodel is then used to determine location of the input parameters to collect the next sample 

based on the requirement. The new sample is subsequently used to update the metamodel. The 
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iterative process of identifying the new input location for sampling based on the presently 

developed metamodel, sampling the new data at the new input location, and updating the 

metamodel using the new sample is continued until the modified metamodel satisfies the 

requirement.  

From the above discussions, it can be seen that modeling of DMFC systems and development of 

accurate and efficient metamodels for modeling of the DMFC systems are of great importance in 

optimal design and control of DMFC systems. 

1.2 Problem Statements 

Considerable research results have been obtained in the past decade for direct methanol fuel cell 

(DMFC) modeling (Yang et al., 2011) and metamodeling (Wang and Shan, 2007). However, a 

number of problems are still needed to be further addressed. These problems in DMFC system 

modeling and metamodeling are summarized as follows. 

1.2.1 Problems in Direct Methanol Fuel Cell System Modeling 

Modeling of all important operating parameters for optimal DMFC system control  

Despite the progress in research on modeling of relationships between DMFC operating 

parameters and their corresponding behaviors, these developed models focused on two key 

operating parameters: temperature and methanol concentration (Song et al., 2004; Arisetty et al., 

2009). Although the influences of methanol flow rate and air flow rate have been studied through 

experiments (Yang et al., 2010), a systematic approach to model the relationships between all 

important operating parameters and the DMFC performance measures is still required for the 

optimal control of a DMFC system.  

Modeling of both operating parameters and design parameters for optimal DMFC system design  

Furthermore, the research on modeling of relationship between DMFC operating parameters and 

behaviors focused on one specific DMFC (Yang et al., 2011). In order to model DMFC in a more 

general way, both design and operating parameters need to be considered. For the modeling of 

the relationships between design/operating parameters and performance measures, most models 
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found in the literature considered only a single channel with simple geometric shapes at the 

anode and cathode sides (Baxter et al., 1999; Scott and Argyropoulos, 2004). The impacts of 

geometric parameters at the anode and cathode on performance measures have not been well 

studied in DMFC system design. Although Ge and Liu (2006) stated their models had the 

potential to predict DMFC performance with new geometries, only data collected from a DMFC 

with the same geometric configuration were used in their model. In addition, the physical and/or 

chemical model parameters have to be calibrated manually to match the models with the 

experimental data (Yu et al., 2013). 

1.2.2 Problems in Adaptive Metamodeling Considering Accuracy and Efficiency 

Selection of the adaptive metamodeling method considering characteristics of the selected 

application 

Many popular metamodeling schemes, including kriging, radial basis function and multivariate 

polynomial, have been developed and employed in the past for adaptive metamodeling 

(Crombecq, 2011). The accuracy and efficiency of these adaptive metamodeling methods are 

influenced by many factors such as the characteristics of the relationship between input and 

output parameters, the size of the sample data, the uncertainty of the collected sample data, and 

the initial sample size. Therefore comparative studies to investigate the impacts of influencing 

factors on accuracy and efficiency of different adaptive metamodeling methods need to be 

conducted, such that the right metamodeling method can be selected based on the characteristics 

of the application.  

Sequential sampling for adaptive metamodeling considering qualities in both the input and 

output parameter spaces  

The adaptive metamodeling based optimization approach is effective to find the optimum 

through creating the sample data and searching near the optimum point. Since the sample quality 

in the whole input parameter space is not considered, the constructed metamodel may only be 

accurate at specific locations. Therefore the true global optimal solution may not be identified 

properly. Therefore development of a sampling method considering both input and output 

parameter spaces has to be conducted to build an accurate global metamodel. In the developed 
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sequential sampling methods considering sample qualities in both input and output parameter 

spaces, contributions of the sample qualities in input and output parameter spaces are not 

changed in the whole adaptive metamodeling process (Jin et al., 2002). With the increase of 

sample size in adaptive metamodeling, accuracy of the constructed metamodel is also improved 

and the sample data are more scatted in the input parameter space. Therefore a new sequential 

sampling method needs to be developed to put more weight on quality of the samples in input 

parameter space at early iterations in the adaptive metamodeling process while to put more 

weight on quality of samples in output parameter space at late iterations in the adaptive 

metamodeling process. Furthermore, a global optimization method based on an accurate 

metamodel in the whole design space is still needed. 

1.3 Research Objectives 

Based on the problems stated in Section 1.2, the overall objective of this research is to further 

improve the accuracy and efficiency of metamodeling and adaptive metamodeling methods and 

to employ these methods to model DMFC systems considering influences of design and 

operating parameters.  

The specific research objectives are in the following two aspects.  

Objective 1: Modeling of Direct Methanol Fuel Cell System Considering Both Design and 

Operating Parameters 

(1.1) Development of a DMFC system modeling method considering all important operating 

parameters for optimal DMFC system control  

(1.2) Development of a DMFC system modeling method considering both operating parameters 

and design parameters for optimal DMFC system design  

Objective 2: Improvement of Accuracy and Efficiency of Adaptive Metamodeling Methods 

(2.1) Comparative study considering impacts of influencing factors on accuracy and efficiency of 

adaptive metamodeling methods  
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(2.2) Development of a new sequential sampling method considering different contributions of 

qualities in input and output parameter spaces in different stages of adaptive metamodeling 

1.4 Research Summary 

Considerable research results have been obtained to achieve the research objectives. These 

research results are summarized in the following two categories. 

(1) Modeling of Direct Methanol Fuel Cell System Considering Both Design and Operating 

Parameters 

(1.1) Development of a semi-empirical model to describe the relationship between operating 

parameters and performance behaviors of a direct methanol fuel cell system 

A systematic approach to model the relationship between the operating parameters and the direct 

methanol fuel cell performance was introduced first in our study (Yang et al., 2011). Four 

operating parameters, including temperature, methanol concentration, flow rate of methanol and 

flow rate of air, are considered in this work. In this research, the relationship is described by a 

semi-empirical model by integrating theoretical and approximation models. Experiments were 

designed for collecting performance data under different operating conditions. These 

experimental data were used to obtain the coefficients of the semi-empirical model. The accuracy 

of this semi-empirical model was also analyzed. Compared with the theoretical models that 

require complicated processes to obtain the physical/chemical parameters, the coefficients in our 

semi-empirical model can be obtained easily through numerical data fitting using the data 

collected from experiments. Characteristics of this research are summarized as follows: 

 A better understanding of the DMFC behaviors was obtained through an analysis of the 

influences of operating parameters on the DMFC performance based on the semi-empirical 

model.   

 The modeling of the relationships between the operating parameters and the DMFC 

performance measures could also provide a basis to identify the optimal operating parameters 

of the DMFC system considering different power requirements.  
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(1.2) Development of a CFD model with semi-empirical electrochemical relationships to study 

the influences of geometric and operating parameters on DMFC performance 

A three-dimensional computational fluid dynamics (CFD) model was developed to investigate 

the influences of geometric and operating parameters on performance of a direct methanol fuel 

cell (DMFC) (Yu et al., 2013). This research was based on the research results by Yang et al. 

(2011) for DMFC modeling considering influences of only operating parameters. In this work, 

semi-empirical relationships were introduced to describe the electrochemical behaviors required 

in the CFD governing equations. Coefficients in these semi-empirical relationships were fitted 

using experimental data. Two geometric configurations with serpentine channels at the anode 

and cathode were considered in this work. Temperature, methanol concentration, and methanol 

flow rate were selected as the operating parameters. Due to the computational effort of CFD, an 

adaptive metamodeling method was developed to reduce the number of data-fitting iterations for 

obtaining the coefficients in the semi-empirical relationships. The research on CFD modeling 

was conducted by Biao Yu, a visiting Ph.D. student in the University of Calgary. The research on 

adaptive metamodeling was considered as contribution of this thesis work. This research has the 

following two advantages: 

 Compared with the existing CFD models where only simple geometric shapes are considered, 

sophisticated geometric shapes with serpentine channels were considered in this work. 

Therefore, in addition to studying the influences of geometric and operating parameters on 

DMFC performance, the CFD model has the potential to be used in optimal design of 

geometric parameters and optimal control of operating parameters for developing DMFC 

systems.    

 This research introduced a systematic approach to model the relationships between 

geometric/operating parameters and performance measures based on CFD. In the existing 

CFD models, some physical/chemical parameter values must be calibrated manually based on 

experience or heuristics to fit the data to the model. In this CFD modeling approach, semi-

empirical relationships were used to describe the electrochemical relationships. The 

coefficients in these semi-empirical relationships were fitted automatically using data 

collected from experiments.  
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(2) Improvement of Accuracy and Efficiency of Adaptive Metamodeling Methods 

(2.1) Comparative study on influencing factors in adaptive metamodeling 

In this research, influences of two factors in adaptive metamodeling, noise level of samples and 

initial size of samples, were investigated through comparative study. Two cases of adaptive 

metamodeling considering the best output point for optimization and the best fit in a specific 

output parameter space were considered. Three different metamodels, kriging, radial basis 

function and multivariate polynomial, were employed in this study. Various test functions were 

used to create the sample data and evaluate the accuracy and efficiency of the adaptive 

metamodeling methods considering influences of noise and initial size of samples. The results of 

this research provide guidelines for selecting appropriate adaptive metamodeling methods to 

solve various engineering problems. The developed guidelines were used in the selection of 

adaptive metamodeling methods in the design of DMFC systems. The theoretical contributions 

and findings identified through this research are summarized as follows. 

 A new type of adaptive metamodeling problem considering uniformity in a specific output 

space was introduced. Compared with the traditional metamodeling methods where 

uniformity in input parameter space is considered to improve metamodeling quality, the 

adaptive metamodeling considering uniformity in specific output space can improve the 

quality of metamodeling in that specific space such that better input parameter values can be 

identified to achieve a given target output parameter value.     

 The influences of noise level on different adaptive metamodeling methods were studied. Low 

noise level and high noise level were selected to test their influences on different 

metamodeling methods including kriging method, radial basis function method and 

multivariate polynomial method. 

 The influences of initial sample size on different adaptive metamodeling methods were 

investigated. In both adaptive metamodeling for optimization and adaptive metamodeling for 

uniformity in specific output space, large initial sample size and too small initial sample size 

can lead to large total sample size. Selection of an appropriate small sample size can improve 

the efficiency and accuracy in adaptive metamodeling.  
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(2.2) Development of a weighted sequential sampling method considering influences of sample 

qualities in input and output parameter spaces for global optimization 

A new sampling method namely weighted sequential sampling (WSS) method was introduced in 

this research to improve accuracy and efficiency of adaptive metamodeling considering 

influences of sample quality measures in both input and output parameter spaces. In this WSS 

method, sample quality measures in input and output parameter spaces are associated with 

weighting factors. Values of these weighting factors are changed in sequential sampling 

considering the different levels of contributions of these sample quality measures in the input and 

output parameter spaces during the adaptive metamodeling process. Since quality of the 

metamodel developed through weighted sequential sampling is good in the whole design space, 

quality of the global optimization can be improved through adaptive metamodeling based on 

weighted sequential sampling. Effectiveness of the developed method has been demonstrated 

through comparative studies using test functions. The developed method has been employed in 

the optimal design of a direct methanol fuel cell system. The contributions and findings through 

this research are summarized as follows. 

 For different problems with different relationships between input and output parameters, 

influences of sample qualities in input and output parameter spaces on the quality of the 

metamodel constructed through adaptive metamodeling approach with different sampling 

methods are different.  

 The levels of contributions of quality measures in input and output parameter spaces at 

different stages in the sequential sampling process are different. The sample quality in input 

parameter space plays a more important role in early sampling stages while the sample quality 

in output parameter space plays a more important role in late sampling stages.   

 The newly developed two-step global optimization method can improve the quality of global 

optimization by developing an accurate metamodel considering influences of both input and 

output parameter spaces, and searching for the optimal points by incorporating the uniformity 

measure in input parameter space into the optimization objective function to ensure the 

sample points are well scatted in the input parameter space to prevent the solution from falling 

into a local optimum. 
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1.5 Thesis Structure 

This thesis is composed of 7 chapters. The research results presented in four major chapters and 

their relationships are summarized in Figure 1.1.  

In Chapter 2, literature reviews on DMFC modeling and metamodeling are provided. The 

relevant methods, advantages and limitations of these methods, and their applications are 

discussed. 

In Chapter 3, a semi-empirical model is developed to build the relationship between operating 

parameters and performance considering a single-cell DMFC system. 

In Chapter 4, a single-phase 3D CFD model is introduced to study the performance of two 

DMFC systems with serpentine flow channels at anode and cathode sides considering influences 

of both geometric and operating parameters. 

In Chapter 5, a series of experiments are investigated to examine the impacts of influencing 

factors on accuracy and efficiency of adaptive metamodeling methods considering three typical 

metamodeling schemes and different test functions. 

In Chapter 6, a new sampling method namely weighted sequential sampling method is 

introduced to improve accuracy and efficiency of adaptive metamodeling considering influences 

of sample quality measures in both input and output parameter spaces. Adaptive metamodeling 

based on weighted sequential sampling is used to improve the quality of global optimization. 

In Chapter 7, the major contributions and findings of this research work are summarized and 

future work is discussed. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Overview 

Since this research focuses on modeling of direct methanol fuel cell systems and development of 

metamodeling methods for improving quality in modeling of direct methanol fuel cell systems, 

the two relevant research areas, (1) modeling of direct methanol fuel cell systems and (2) data 

sampling and metamodel construction, are reviewed in this chapter.  

In Section 2.2., a brief introduction to direct methanol fuel cell systems is first provided. 

Modeling of fuel cell systems considering influences of operating parameters and geometric 

parameters is then discussed. In Section 2.3, several research areas related to metamodeling, 

including design of experiment techniques, metamodeling methods, influencing factors for 

metamodeling, and metamodel validation and comparison, are summarized.  

 

2.2 Modeling of Direct Methanol Fuel Cell Systems 

A direct methanol fuel cell, as shown in Figure 2.1, uses methanol as fuel to generate electricity 

through reaction with the oxygen in the air. The overall reaction is described by (Larminie and 

Figure 2.1. Schematic diagram of a direct methanol fuel cell (DMFC). 
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Dicks, 2003): 

2223 COOH2O
2

3
OHCH               (2.1) 

A DMFC is primarily composed of a polymer electrolyte membrane (also called proton 

exchange membrane, or PEM), catalyzed electrodes at the anode and cathode sides, and end 

plates. The polymer electrolyte membrane and catalyzed electrodes form a membrane electrode 

assembly (MEA). Nafion by DuPont is often used as the membrane. The electrodes, including 

the anode and cathode, are thick layers of carbon paper or cloth with Pt-Ru and Pt catalysts 

deposited on the anode and cathode, respectively. The carbon paper or cloth of the anode and 

cathode also diffuses methanol and oxygen to the catalysts for reaction. The graphite end plates 

at anode and cathode sides are used to provide methanol and air through their channels, and 

withdrawn current. A number of MEAs can be connected by bipolar plates, where channels are 

provided on both sides of each plate, to form a stack. 

The reaction at the anode side is described by: 

223 COe6H6OHOHCH          (2.2) 

At the anode, the protons permeate the polymer electrolyte membrane to the cathode side, while 

the electrons travel through the external circuit to the cathode side to generate current. The 

required water comes from the methanol solution (e.g., 1 M methanol solution with 3.2% 

methanol and 96.8% water by mass).  

The reaction in the cathode side is described by:  

OH3e6H6O
2

3
22                              (2.3) 

The researches on modeling of DMFC systems are classified into two categories: (1) modeling of 

the relationship between operating parameters and DMFC performance for one specific DMFC, 

and, (2) modeling of the relationship between geometric/operating parameters and DMFC 

performance for DMFC with different designs. 
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2.2.1 Modeling of Relationship between Operation Parameters and DMFC Performance 

The influences of operating conditions on DMFC performance have been extensively studied 

through experiments (Dillon et al., 2004; Ge and Liu, 2005). In this research area, Song et al. 

(2004) investigated the influences of temperature and methanol concentration on the crossover of 

methanol, and consequently on the open circuit voltage and cell performance. They observed that 

the crossover rate increases as the methanol concentration and temperature increase. They also 

found out that the performance improves as the temperature increases despite an increase in 

methanol crossover. At low methanol flow rates, the methanol concentration is too low in the 

catalyst layer due to mass transfer resistance resulting in low current density. When the flow rate 

is high enough, any further increase in the flow rate has no significant effect on the methanol 

concentration in the catalyst layer, thus providing no influence on cell current density. Arisetty et 

al. (2009) studied the impact of methanol concentration on DMFC performance. Low methanol 

concentration reduces the reaction rate at the anode, thus resulting in a low operating voltage. 

However voltage does not simply increase with the increase of methanol concentration due to 

crossover. Yang et al. (2010) studied the influences of temperature, methanol concentration, and 

methanol flow rate on the impedance of the fuel cell. At low temperature (e.g., 30 
o
C), the slow 

methanol oxidation reaction and oxygen reduction reaction lead to poor fuel cell performance 

due to high charge-transfer resistance (CTR). At high temperature (e.g., 50 
o
C or 70 

o
C), both the 

enhanced kinetics and the low ohmic losses significantly improve fuel cell performance.    

Since experimental research is expensive and time consuming, development of sophisticated 

mathematical models plays a key role in understanding the physical-chemical processes of 

DMFCs. Scott et al. (1999) developed a model to describe the methanol transport process that 

can be used to predict the effective methanol concentration at the catalyst surface and 

polarization at the anode. They used this model, together with an empirical model of the open 

circuit voltage and a cathode overpotential model, to predict the voltage and current density of 

the DMFC. Argyropoulos et al. (2003) and Scott et al. (2006) developed semi-empirical models 

considering the influences of methanol concentration and temperature on DMFC performance. 

Through DMFC experiments, Dohle and Wippermann (2004) investigated the influences of 

operating conditions on the anode, the cathode, and methanol permeation to determine the 

parameters for a DMFC model. Wang et al. (2008b) developed a semi-empirical model to derive 
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a nonlinear equivalent circuit from a special group of impedance fuel cell models. Wang et al. 

(2008a) developed a DMFC performance model based on adaptive-network-based fuzzy 

inference with methanol concentration, temperature, and current as inputs and cell voltage as 

output. Celik and Mat (2010) studied the concentration of methanol through experiments and 

numerical methods. 
 

2.2.2 Modeling of Relationship between Geometric/Operating Parameters and DMFC 

Performance Based on CFD 

Semi-empirical relationships can be used to investigate the relationship between the operating 

parameters and DMFC performance for one specific DMFC. In order to consider both operating 

parameters and geometric parameters to obtain a general model for one type of fuel cell, 

mechanistic model should be used. Mechanistic models are transport models with differential 

and algebraic equations developed based on electrochemical and physical governing phenomena. 

In mechanistic models, the phenomena of heat, momentum, multi-component mass transport, 

multi-phase transportation, and electrochemical processes are considered. Mechanistic models 

developed based on CFD can be classified into three categories: one-dimensional (1D), two-

dimensional (2D), and three-dimensional (3D) models. Figure 2.2 shows a DMFC that is 

composed of an anode with anode flow channel (AFC), anode diffusion layer (ADL), anode 

catalyst layer (ACL), proton exchange membrane (PEM), cathode catalyst layer (CCL), cathode 

diffusion layer (CDL), and cathode with cathode flow channel (CFC). In 1D models, the physical 

and chemical behaviors are considered only along a single direction, i.e., the X-direction from 

the anode to the cathode as shown in Figure 2.2. In 2D models, the physical and chemical 

behaviors are considered along both X-direction and Y-direction (i.e., the direction from inlet to 

outlet in a channel shown in Figure 2.2). Three-dimensional models are complete models where 

the physical and chemical behaviors are considered in all three directions. Computational fluid 

dynamics (CFD) is an effective tool for building mechanistic models in research on DMFCs.  

Baxter et al. (1999) developed a one-dimensional model that considers the anode as a porous 

electrode consisting of an electronically conducting catalyst structure thinly coated with an ion-

selective polymer electrolyte. Scott and Argyropoulos (2004) introduced another one-

dimensional model to focus on DMFC anode catalyst. This model used a metal mesh supported 
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electro-catalysts structure and analyzed the multi-reaction paths of methanol oxidation. Oliveira 

et al. (2008) developed a steady-state, one-dimensional model considering coupled heat and mass 

transfer, along with the electrochemical reactions occurring in the DMFC. This model can be 

used to predict the correct trends considering the influences of current density and methanol feed 

concentration on both methanol and water crossovers. This model was further employed to study 

the influences of methanol crossover and water crossover on performance of DMFC (Oliveira et 

al., 2009). Ko et al. (2010) presented a one-dimensional, two-phase model (i.e., liquid and air 

phases) in which the two-phase species transport behavior through the porous DMFC 

components was formulated based on the Maxwell-Stefan multi-component diffusion equations, 

while the capillary-induced liquid flow in the porous media was described by Darcy’s law. 

Kulikovsky (2000) introduced a two-dimensional numerical model based on mass and current 

conservation equations. The velocity of the liquid in this model is governed by the gradients of 

membrane phase potential and pressure. Birgersson et al. (2003) developed an isothermal two-

dimensional liquid phase model for the conservation of mass, momentum, and species in the 

anode of a DMFC. Divisek et al. (2003) developed a two-dimensional model that treats the 

diffusion layer as a water-gas system in the pore space, with saturation and permeability varying 

according to capillary effects. Bigersson et al. (2004) further introduced an isothermal two-phase 

ternary mixture model that takes into account conservation of mass, momentum, and species in 

the anode of the DMFC. Rice and Faghri (2006) developed a 2-dimensional, transient, multi-

phase, multi-component model for a passive DMFC. This model can capture evaporative effects, 

as water and fuel management issues are crucial. Yang and Zhao (2007) introduced an 

isothermal, two-dimension, two-phase transport model for liquid-feed DMFC. The two-phase 

mass transport behaviors in the anode and cathode porous regions were formulated based on the 

classical multiphase flow in porous media without invoking the assumption of constant gas 

pressure in the unsaturated porous medium flow theory. 
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Although the one-dimensional and two-dimensional CFD models are easier to use, they are not 

as accurate as three-dimensional CFD models. Ge and Liu (2006) developed a three-dimensional 

single phase (i.e., liquid phase at the anode and gas phase at the cathode), multi-component 

model of a DMFC. Danilov et al. (2006) presented a three-dimensional, two-phase CFD model 

for describing gas evolution and current distribution in a DMFC. Ge and Liu (2007) improved 

their previous three-dimensional single-phase model into a three-dimensional, two-phase, multi-

component model. Liu and Wang (2007) developed a three-dimensional, two-phase, isothermal 

model for DMFC to investigate the effect of electron transport through the backing layer and the 

land in bipolar plates. Yang et al. (2007) developed a three-dimensional steady-state model. 
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Figure 2.2. Schematic diagram of a direct methanol fuel cell (DMFC). 
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2.3 Data Sampling and Metamodel Construction 

As mentioned in Section 2.2, modeling of direct methanol fuel cell systems is usually based on 

experiments and simulations. However, experiments and simulation are often expensive and/or 

time-consuming. To solve this kind of problem, an approach called computer experiment, which 

employs design of experiment techniques and approximation methods, was developed for 

surrogating complicated mathematical models and exploring design space in complex computer 

simulations (Fang et al., 2006). A computer experiment is usually carried out in two steps: design 

of experiment and metamodeling.  

2.3.1 Design of Experiment 

Design of experiments refers to the process of planning, designing and analyzing the experiment 

such that valid and objective conclusions can be achieved effectively and efficiently. Statistical 

methods are usually required for developing the experimental design methodologies (Antony, 

2003). 

In physical experiments, replication, blocking and randomization are considered as the three 

basic principles for design of experiment to control noise and bias (Santner et al., 2003). 

Replication is a process to observe the system response at the same design point several times for 

estimating the magnitude and distribution of random errors. Blocking is a process to classify 

design points into different groups according to their different characteristics. The relationships 

between design points and their corresponding system responses are first examined in each 

individual group and then combined together. Randomization is a process to reduce bias. The 

overall bias on a system response could be minimized by exploring how the system response 

changes when other controllable random factors are assigned along with input parameters. Based 

on the three basic principles, several popular methods such as orthogonal array design, factorial 

design, and optimal design have been developed and widely used for the design of physical 

experiments in engineering practice (Atkinson and Donev, 1992). 

Considering the difference between physical experiments and computer experiments, the 

principles of design of experiment are also changed correspondingly. As mentioned by Santner et 

al. (2003), in computer experiments the observation at a design point should be conducted only 
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once and design points should provide information in all parts of experimental region. Based on 

these principles, space filling design has been developed for the computer experiment design. 

The basic idea behind space filling design is to generate a small number of samples to spread all 

over the design space and capture the maximum of information about the unknown relationships 

between inputs and outputs. Typical space filling design methods include random sampling 

design, Latin hypercube design (McKay et al., 1979), and uniform design (Fang, 1980). In the 

rest of this subsection, these typical space filling designs are reviewed.  

Simple random sampling 

Simple random sampling is a basic stochastic method for design of experiment, in which a 

sequence of design points are generated randomly according to a specific distribution in the s 

dimensional unit cube C
s
 = [0,1]

s
 (Fang et al., 2006). 

Simple random sampling could be very useful in some situations, where by sampling design 

points according to some distributions in the input space and evaluating their corresponding 

system outputs, the distributions of system outputs can be observed and used for analysis of 

prediction uncertainty.  

One main drawback associated with the simple random sampling is that the design points 

generated in the s dimensional unit cube are usually not evenly distributed over the experimental 

region. It could be even worse, for instance, to use simple random sampling for high dimensional 

problems, where the design points generated by simple random sampling are usually clustered in 

some parts of the experimental region. Another issue associated with simple random sampling is 

related to input factors. In simple random sampling, even with more points spreading throughout 

the experimental region, the generated design points can still not be projected evenly for each of 

the input parameters in consideration (Santner et al., 2003). 

Latin hypercube sampling 

Latin hypercube sampling was first proposed by McKay et al. (1979). The basic idea of Latin 

hypercube sampling is to divide the design space C
s
 into n strata of equal marginal probability 

1/n and then sample once from each stratum (Fang et al., 2006). The goal is to ensure that each 

input variable has all parts of its range represented (Sacks et al., 1989). 
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Latin hypercube sampling has several obvious advantages over other sampling methods: (1) its 

sample mean value has a smaller variance compared with simple random sampling (McKay et al., 

1979), (2) it could be used for generating design points, when the number of input variables is 

large and a great many runs are required, (3) it is cheap in computing and easy for 

implementation compared with other complex sampling methods used in the area of computer 

experiment. 

Some issues associated with classical Latin hypercube sampling method have also been 

identified and several general guidelines such as (1) to reduce the variance of sample means 

(Owen, 1992; Tang, 1993), (2) to satisfy symmetric property (Park, 1994; Morris and Mitchell, 

1995), and (3) to satisfy column orthogonality (Ye, 1998) have also been developed for 

improving overall sampling performances.  

By applying optimization techniques, some experimental design optimality criteria such as 

integrated mean squared error (IMSE) (Sacks et al., 1989), maximum entropy (Shewry and 

Wynn, 1987), and minimax and maximin distance (Johnson et al., 1990) have also been 

developed and the optimized Latin hypercube sampling on the basis of these criteria is thus 

called optimal Latin hypercube sampling. However, as pointed out by Wang and Shan (2007), 

the optimality criteria do not directly relate to the comprehensiveness in capturing functional 

features and their effectiveness for improving engineering design optimization is not yet proved. 

Uniform sampling 

Uniform sampling method was initially proposed by Fang (1980). Unlike Latin hypercube 

sampling, uniform sampling is a deterministic method. This indicates that the samples obtained 

from a uniform sampling with n runs and s factors should always be the same. The basic idea of 

uniform sampling is to optimize samples according to a specific optimality criterion - uniformity. 

In practice, discrepancy, instead of uniformity, is usually used in uniform sampling. The lower 

the value of discrepancy measure is, the more uniform the distribution of samples is. Several 

popular discrepancy measures developed in the past include L2 star discrepancy (Warnock, 1972), 

centered L2 discrepancy (Hickernell, 1998a), and wrap around L2 discrepancy (Hickernell, 

1998b). 
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To build a uniform design with n runs and s factors to achieve a specific discrepancy measure is 

a NP (non-deterministic polynomial) hard problem (Fang et al., 2006). Several methods have 

been developed in the past for tackling this NP hard problem. Good lattice point method 

(Korobov, 1959), Latin square method (Fang et al., 1999), expending orthogonal array method 

(Fang, 1995) and cutting method (Ma and Fang, 2004) are popular ones. 

Several advantages of uniform sampling, such as its robustness against model change (Fang et al., 

2006) and deterministic characteristic, have been recognized. However, as a promising technique 

for design of experiment, additional studies are still needed considering characteristics of 

uniform sampling and its applications in the field of computer experiment (Wiens, 1991). 

Sequential sampling 

When sufficient sample data are collected, an accurate metamodel can usually be constructed 

based on the samples collected from one-time random sampling, such as Latin hypercube 

sampling and uniform sampling. However, when experiments and simulations are expensive 

and/or time-consuming to sample the required data, adaptive metamodeling through sequential 

sampling is often employed to build the metamodel with the required quality using only small 

number of sample data. In sequential sampling, initial samples are first collected to build an 

initial metamodel. Then location of the input parameters to sample the next data is determined 

based on the requirement (e.g., to minimize the output parameter value) and the input-output 

relationship defined in the metamodel. The output value corresponding to the newly selected 

input parameters is then sampled, and this new sample data with input and output parameter 

values is subsequently used to update the metamodel. The process of data sampling and 

metamodel updating is continued until a metamodel with good quality is achieved. Several 

sequential sampling methods have been developed in the past decade (Crombecq, 2011). Jin et al. 

(2002) introduced the mean squared error (MSE) method for global metamodeling. Xiong et al. 

(2007) developed a variable fidelity optimization method to reduce the uncertainty of surrogate 

models in engineering design. Yao et al. (2009) introduced a gradient-based sequential radial 

basis function neural network modeling method to improve the approximation accuracy. Wei et 

al. (2012) introduced a new sequential sampling method using a metamodel described by radial 

basis function to improve accuracy and efficiency in metamodeling.  
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As the initial samples may not be sufficient to build an accurate metamodel such that the right 

location of the input parameters for the next sample can be obtained especially when the 

relationship between input and output parameters is complex, the sequential sampling process 

should rely less on the constructed metamodel at the very beginning of adaptive metamodeling to 

avoid sampling the data at poor location due to the poorly developed metamodel. Several 

sequential sampling methods have been developed to identify the location of the new sample by 

considering the sample quality measures in the input parameter space, which are independent of 

the currently constructed metamodel, in addition to the sample quality measures in the output 

parameter space, which are predicted using the currently constructed metamodel. In this research 

area, Jin et al. (2002) introduced a hybrid sequential sampling (HSS) method to search for a new 

sample by maximizing the product of the predicted error considering the output parameter space 

and the minimum distance between this sample and other existing sample points considering the 

input parameter space. Busby et al. (2007) employed a flexible two-stage method to combine 

adaptive domain refinement with sequential experimental design. Crombecq et al. (2011) 

introduced a hybrid sequential design strategy, which uses Monte-Carlo based approximation of 

a Voronoi tessellation for exploration and local linear approximation of a simulator for 

exploitation. Gramacy and Lee (2009) developed a method to automatically explore the input 

parameter space while simultaneously fitting the response surface using the predicted uncertainty 

to guide the subsequent experimental runs. Wei et al. (2012) introduced an evaluation criterion to 

search for the optimal sampling point by maximizing the product of the response surface 

curvature in the output parameter space and the squared minimum distance to other input 

parameter locations.   

2.3.2 Metamodeling Methods  

Metamodeling methods are used in computer experiments to build the approximate mathematical 

relationships between design inputs and their corresponding system responses. In addition to the 

basic functionality of model approximation, metamodeling methods can also be used for design 

space exploration, problem formulation and engineering design optimizations (Wang and Shan, 

2007). 
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In order to develop a metamodeling method, some issues that need to be considered are the 

performance of fitting and prediction, prediction uncertainty, model complexity, model 

flexibility, computation efficiency, and the requirements on design of experiment. Several typical 

metamodeling methods developed in the past include kriging method (Sacks et al., 1989), radial 

basis functions method (Hardy, 1971), and multivariate polynomial method (Myers and 

Montgomery, 1995).  

Kriging method 

Kriging method was initially proposed by Krige (1951) for analysis of data mining. Subsequently, 

this work was further improved by others such as Matheron (1963) who developed the Gaussian 

kriging method for modeling spatial data in geostatistics. Kriging method was systematically 

introduced into the area of computer experiment by Sacks et al. (1989) as a popular 

metamodeling method.  

In kriging method, the random output is assumed to be obtained from a linear combination of 

regression functions plus a Gaussian random process factor as follows: 

   xx ZfY
N

j

jj 
0

  (2.4) 

where N+1 is the number of regression functions, fj(·) is a regression function, βj is the 

coefficient for fj(·), x is the design point, and Z(·) is the Gaussian random process function. It is 

assumed in kriging method that the random factor is from a Gaussian random process with zero 

mean, variance σ
2
, and a correlation function defined by the following equation: 

      2121 ,,, xxxx rZZCov   (2.5) 

where Cov(·) is the correlation function, x1 and x2 are two design points, and θ is a structural 

parameter to be optimized. The correlation function could be defined in several different ways 

such as exponential, Gaussian, linear, spherical, cubical, and spline (Lophaven et al., 2002). 

When the linear part in kriging method is assumed to be a constant, this kind of kriging method 

is called ordinary kriging, which is the most widely used method of kriging in engineering 

practice. 
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The best linear unbiased predictor (BLUP) is used here for prediction. The best linear unbiased 

predictor satisfies the following three requirements (Fang et al., 2006): (1) it is a linear 

combination of the training data outputs: 

    i

M

i

i ycg 



1

ˆ xx   (2.6) 

where ĝ is the estimated output value, M is the number of design points in the training data, yi is 

an output in the training data, and ci is the coefficient for yi; (2) it is unbiased in prediction; and 

(3) it is of the least prediction variance. 

Compared with radial basis functions method and multivariate polynomial method introduced 

later on, kriging method is more complicated in computation and sensitive to the noises in data 

due to its interpolative nature. However, by properly choosing from different forms of 

correlation functions, kriging method can be adjusted for smoothing data instead of just 

interpolating data (Simpson et al., 2001). 

Recently, with the availability of well developed computer programs (Lophaven et al., 2002), 

kriging method is widely adopted as the metamodeling tool in the research community. In 

addition, because of its flexibility in interpolating the sample points and its accuracy in dealing 

with nonlinear problems, kriging method is now considered as one of the most important 

methods in the field of metamodel-based design optimization (Wang and Shan, 2007). 

Radial basis function (RBF) method 

Radial basis function method was initially developed as an exact interpolation technique for data 

in multi-dimensional space (Powell, 1987).  

In radial basis function method, a series of center points (xj1, xj2, …, xjm) are chosen first from the 

design points (x1, x2, …, xn) based on some criteria. Then the basis functions are constructed by 

using these center points as:  

      jii fB xxx   (2.7) 

where x is the design point, xji is the center point for Bi(·), and || x-xji || is the Euclidian distance 

between the two points. The radial basis function f could have different forms such as linear, 
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cubic, thin-plate, spline, Gaussian, multi-quadratic, and inverse multi-quadratic (Powell, 1987). 

The relationship between inputs and outputs is constructed as a linear combination of radial basis 

functions:  
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0
ˆ  xx   (2.8) 

where ĝ is the estimated output value, Bj(·) is a basis function, N is the number of basis functions, 

β0 is a constant, and βj is the coefficient for Bj(·). 

Radial basis function method suffers from the problem of inefficiency in modeling large scale 

problems. When sample size is increased, more design points have to be considered for the 

selection of center points, and the number of basis functions is also increased. The efficiency of 

building a radial basis function model is thus decreased significantly. 

On the other hand, by selecting from different forms of f, radial basis function method can be 

adapted to solve different kinds of problems. 

Multivariate polynomial method 

Multivariate polynomial method is one of the most fundamental metamodeling methods used in 

computer experiment. It is mostly known from response surface method (Myers and 

Montgomery, 1995), which employs quadratic polynomial in the field of engineering design 

optimization.  

In multivariate polynomial method, basis functions are built directly by using input variable 

components (x = [x1,x2,…,xn]) and their interactions such as:  

        nn xBxBxBB  xxxx ...,,,,1 22110  (2.9) 
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A multivariate polynomial is constructed as the weighted sum of these basis functions: 

   



N

j

jjBg
1

0
ˆ  xx  (2.10) 



                       

27 

where ĝ is the estimated output value, Bj(·) is a basis function, N is the number of basis functions, 

β0 is a constant, and βj is the coefficient for Bj(·). 

Due to the way of basis functions construction, when the number of input variables and the order 

of polynomial are increased (e.g., for highly nonlinear problems), the number of basis functions 

will be increased significantly. Thus, the number of required samples also increases dramatically, 

leading to a big burden for complex computer simulations. In addition, stability problems could 

also occur in this case (Barton, 1992). Fortunately, this issue could be improved within a certain 

limit by removing unimportant basis functions. Some popular methods such as stepwise selection 

method based on Cp (Mallows, 1973), AIC (Akaike, 1974), BIC (Schwarz, 1978), and φ-criterion 

(Hannan and Quinn, 1979) have been developed to address this issue. 

However, because of its easy construction, being capable in smoothing noises and efficient in 

computation, multivariate polynomial method, especially quadratic polynomial method, is still 

the most widely used metamodeling method in engineering applications (Simpson et al., 2001). 

2.3.3 Adaptive Metamodeling  

As mentioned in Chapter 1, depending on whether all the samples are collected at the same time, 

metamodeling methods are classified into two categories: non-adaptive metamodeling and 

adaptive metamodeling. Different from the traditional metamodeling methods to collect all the 

data once and build the metamodels, the data are sampled sequentially in adaptive metamodeling. 

All the popular metamodeling methods, like kriging, radial basis function, multivariate 

polynomial, can be used for adaptive metamodeling. First an initial set of data is sampled to 

construct an initial metamodel, which is then used to determine location of the input parameters 

to collect the next sample based on the requirement. The new sample is subsequently used to 

update the metamodel. The iterative process of searching the new input location for sampling 

based on the present metamodel, sampling the new data at the new input location, and updating 

the metamodel using the new sample is continued until the modified metamodel satisfies the 

requirement.  

Adaptive metamodeling methods were primarily developed to solve two types of problems: (1) 

optimization to identify the input parameter values that lead to the minimum or maximum output 
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measure, and (2) accurate approximation of the relationship between input and output parameters 

within the whole or certain input and/or output spaces. 

When adaptive metamodeling is used for optimization, the currently developed metamodel is 

used as guidance to identify the new sample points that have potential to lead to the optimum. In 

this research area, Jones et al. (1998) introduced a response surface method to model the 

nonlinear and multimodal relationships for efficient global optimization. Wang et al. (2004) 

introduced a global optimization method based on a novel mode-pursuing sampling (MPS) 

approach to systematically generate more sample points in the neighborhood of the potential 

optimum while statistically covering the entire search space. Jeong et al. (2005) used the kriging 

metamodel to improve the accuracy of response surface for objective function evaluation in the 

optimization process. In this work, the expected improvement (EI) measure was defined and 

used to select additional sample points to explore the global optimum efficiently. Villemonteix et 

al. (2007) introduced informational approach to global optimization (IAGO) to address the 

optimization problem in which stepwise uncertainty reduction strategy was used for selecting the 

next sample point. Li et al. (2008) presented a new multi-objective design optimization approach 

in which the kriging-based metamodeling was embedded in multi-objective genetic algorithms. 

Hassing et al. (2010) developed an RBF-based adaptive metamodel for optimization of the 12 

material parameters used in McGinty’s Model for AL 6022.  

When adaptive metamodeling is used for obtaining accurate approximation of the relationship 

between input and output parameters, the whole metamodeling space and/or some critical 

regions are usually considered. Various sequential sampling methods, such as Sobol sequence 

method (Sobol 1967), minimax method and maximin method (Johnson et al., 1990), can be used 

in adaptive metamodeling for accurate approximation. In this research area, mean squared error 

(MSE) approach was introduced by Jin et al. (2002) for global metamodeling. Mourelatos et al. 

(2006) presented a method to use both global and local metamodels to detect the critical regions 

and then to obtain accurate approximation. Yao et al. (2009) developed a gradient-based 

sequential radial basis function neural network modeling method. In this method, the gradient 

information of the presently constructed metamodel is used to expand the sample set and refine 

the metamodel sequentially in order to improve the approximation accuracy effectively. Lovison 

and Rigoni (2010) developed Lipschitz sampling method through evaluation of output data to 
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build an accurate metamodel efficiently. Li et al. (2010a) introduced an adaptive approach to 

sample more design points in regions where the simulation responses are expected to be highly 

nonlinear and multi-modal to build an accurate metamodel with limited sample points. Picheny 

et al. (2010) developed an adaptive metamodeling strategy to improve the accuracy in the target 

regions. 

2.3.4 Influencing Factors for Metamodeling 

The metamodeling efficiency and accuracy are closely related to quality of samples. The three 

sampling quality merits, including sample uniformity, sample size and sample noise, are 

considered three main influencing factors for metamodeling (Zhao and Xue, 2010). 

Sample uniformity 

Uniformity is a measure for evaluating how uniform a point set is scattered in a space. Let Dn = 

{x1,x2,...,xn} be a set of sample points in the p-dimensional unit cube C
p
, and 

       pxxx 0,,,0,0,=, 21  x0  be the Cartesian space defined by x. The number of sample 

points of Dn falling in the Cartesian space  x0,  is denoted by   x0,,nDN . The ratio 

   nDN n x0,,  should be as close as possible to the volume of the Cartesian space   x0,Vol . 

As a measure for evaluating uniformity, Lq star discrepancy was defined by Hua and Wang 

(1981) as follows:  
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where q=2 is usually selected. The value of Lq star discrepancy changes from 0 to 1. The smaller 

the value of Lq star discrepancy is, the more uniform the samples are scattered in the design 

space. As an instance, a point set Dn in Figure 2.2 is scattered in a unit square C
2
. Based on the 

uniformity definition, the ratio of the number of points falling in the enclosed area    21 0,0, xx   

to the total number of points in Dn should be close to the area of    21 0,0, xx  . 
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However, Lq star discrepancy is expensive to compute. Several modified Lq discrepancies were 

developed by Hickernell (1998a) and centered L2 discrepancy is often selected because of its 

easiness in calculation. This evaluation measure can be obtained by:   
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where n is the number of design points, p is the dimension of the inputs, and xji is the i-th 

component of the j-th design point. The value of centered L2 discrepancy changes between 0 and 

1. The smaller the value of centered L2 discrepancy is, the higher uniformity the samples are of. 

Sample size 

Two types of sample sizes are considered in adaptive metamodeling: initial sample size and total 

sample size. Initial sample size refers to the small group of points sampled for building the initial 

metamodel at the very beginning in adaptive metamodeling. Total sample size is the number of 

samples when the adaptive metamodeling process is stopped. When the accuracy requirement is 

given, the total sample size can be used as a criterion to evaluate the efficiency of metamodeling. 

For the non-adaptive metamodeling, total sample size is the number of samples from the one-

time sampling before building the metamodel. 

x1 

x2 

Figure 2.3. Uniformity explained using C
2
. 
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Sample noise 

Sample noises are introduced due to the uncertainties in metamodeling, such as the uncertainties 

of the measurement devices to obtain the sampling data. Sample noise can be measured using 

probability evaluation measures such as variances or standard deviations.  

When a given mathematical function f(x) is used for evaluation of the influences of noise factors, 

artificial noises are added to the values of the output parameter using (Zhao and Xue, 2010):  

ZxfY )(=

          

(2.13)  

where  is a scaling factor, and Z is a random number sampled from the uniform distribution in 

the region (-1,1).   

2.3.5 Validation and Comparison of Metamodels 

Metamodel validation 

A metamodel needs to be validated before being used as a “surrogate” of the computation-

intensive process (Wang and Shan, 2007).  

Some popular metrics for performance measures such as R square, mean squared errors (MSE), 

root mean squared errors (RMSE), relative average absolute error (RAAE) and relative 

maximum absolute error (RMAE) can be found in literatures (Jin et al., 2001) and are widely 

used in engineering applications. Extra conformation samples, in addition to the sample points 

for constructing the model, are often required to evaluate the constructed metamodels. 

Cross validation, for which no extra samples are needed, is another type of popular method used 

in the field of computer experiment for model validation. In the leave-k-out approach (Wang and 

Shan, 2007), samples are grouped into N groups where k groups out of the N groups are used for 

prediction and the rest N-k groups used for training. A special case of the leave-k-out is the so-

called leave-one-out approach (Mitchell and Morris, 1992) in which just one group is used for 

prediction and the rest for training. The errors collected from all possible runs of a cross 

validation process are used for the performance evaluation of a metamodel. It was suggested to 

use the leave-one-out approach for low-order multivariate polynomial method and radial basis 

functions method, but leave-k-out approach for kriging method (Meckesheimer et al., 2002). 
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However, as speculated by some researchers, a metamodel that is insensitive to cross validation 

does not mean that this metamodel is accurate, and it is advised that the results achieved from 

cross validations should be used carefully along with other measures for the performance 

evaluation of a metamodel (Lin, 2004).  

Metamodel comparison 

After different metamodels have been constructed, even if they are based on the same sample 

points, the performance would be different from one to the other. The relationships among 

different metamodeling methods have been widely investigated. For instance, Fang et al. (2006) 

revealed through an analytical investigation that the predictors of the metamodeling methods 

such as kriging method, local polynomial regression method, and radial basis function (RBF) 

method could all be written as a linear combination of kernel functions. These metamodeling 

methods differ from each other only in their choices of kernel functions and the applied 

regression methods.  

Considering the complexities involved in the unknown relationships between design inputs and 

outputs, the interaction between metamodeling methods and different sampling methods, 

different computing algorithms used in metamodeling methods, and different performance 

evaluation measures, it is usually difficult to find the best metamodeling method for a specific 

problem. For solving this problem, the performance measures of metamodeling methods in 

specific cases have been observed and several insights on selection of metamodeling methods 

have also been obtained through comparative studies in the past (Wang and Shan, 2007). 

Jin et al. (2001) conducted a systematic comparative study about four metamodeling methods: 

multivariate polynomial method, kriging method, multivariate adaptive regression splines 

(MARS) method, and RBF method. Fourteen mathematical and engineering problems 

representing different nonlinearities and dimensionalities were tested. In addition to the 

traditional performance aspects such as accuracy, computing efficiency, and modeling robustness, 

model transparency and simplicity were also studied in their research. Several significant 

conclusions from their work are summarized as follows: (1) radial basis functions method 

performs the best in terms of accuracy and robustness and is not sensitive to sample size; (2) 

multivariate polynomial method is the best for test problems with noise, but kriging method is 
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very sensitive to noises; (3) multivariate polynomial method is the best in terms of efficiency 

while kriging method performs the worst; (4) design of experiment plays a very significant role 

in determining if a test will fail or success, especially for kriging method and RBF method; (5) 

multivariate polynomial method and MARS have good transparency, which is very helpful to 

reduce the scale of a problem by removing insignificant factors; (6) considering simplicity, 

multivariate polynomial method and RBF method are the easiest to implement. 

Chen et al. (2006) compared the performances of different metamodeling methods in different 

kinds of designs of experiments. Seven metamodeling methods (i.e., multivariate polynomial 

method, RBF method, kriging method, multivariate adaptive regression splines method, 

regression trees method, artificial neural network method, and least interpolating polynomials 

method) were considered in their study. Only the predictive root mean squared error was selected 

as the measure for performance evaluation. Several important conclusions from their study 

regarding metamodeling methods are listed as: (1) kriging method is accurate at the training 

sample sites, but it is slow in parameter estimation and its assumptions are difficult to verify; (2) 

RBF method is flexible in model structures and the speed of programs running is from fast to 

moderate, however, it is slow in calibrating model parameters and may have artificial periodicity 

problem; (3) multivariate polynomial method is very fast but not flexible in terms of adapting 

model forms for different kinds of problems. 

Li et al. (2010b) gave a systematic comparison of metamodeling techniques for simulation. 

Overall performance has been compared among support vector regression (SVR), kriging and 

RBF. SVR and kriging can be effectively adopted for problems with low dimension, small error 

size and homogeneous error. For complicated problems with higher dimension, larger error size 

and heterogeneous error characteristics, RBF is preferable in terms of efficiency although RBF, 

SVR and kriging are all good metamodeling choices. 

Zhao and Xue (2010) carried out a comparative study of metamodeling methods considering 

sample quality merits. Three sampling merits, sample size, sample uniformity and sample noise, 

were considered. Four performance measures, accuracy, confidence, robustness and efficiency, 

were selected. The performances of four metamodeling methods (kriging, RBF, multivariate 

polynomial and Bayesian neural network) were analyzed according to different performance 
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measures, based on sample points with different sampling merits. No one metamodeling method 

could performance the best for each of the performance measures based on the collected sample 

points. 

From the above discussions, we can see that different metamodeling methods behave differently 

for different applications. No one method is superior to all the others under all different 

application environments. Thus analyses of the influencing factors for metamodeling and 

selection of the proper metamodeling method according to the specific application environment 

are still needed. 
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CHAPTER 3 A SEMI-EMPIRICAL MODEL CONSIDERING THE INFLUENCES OF 

OPERATING PARAMETERS ON PERFORMANCE FOR A DMFC SYSTEM 

3.1 Introduction 

To design and control direct methanol fuel cell (DMFC) systems that can be used in different 

applications, good understanding and accurate modeling of DMFC behavior are necessary. 

Generally speaking, the behaviors of the fuel cells are modeled at two different levels: (1) the 

semi-empirical cell model to describe the relationships between the operating parameters and the 

fuel cell evaluation measures, and (2) the simulation-based cell model to describe the 

relationships between design/operating parameters and the fuel cell evaluation measures.  

In DMFC, four operating parameters, including temperature, methanol concentration, flow rate 

of the methanol, and flow rate of the air, play the important roles to contribute to fuel cell 

behaviors. The fuel cell evaluation measures are primarily described by the performance 

measures, such as output voltages and power densities at different current densities. The cost 

measures, such as manufacturing cost and operation cost, can also be used to evaluate designs 

and operating conditions. In the semi-empirical cell model, instead of using theoretical 

relationships, approximation relationships with coefficients are used to simplify the theoretical 

relationships to avoid the difficulty for obtaining the values of the physical parameters. The 

coefficients in the semi-empirical model are achieved through training using the data collected 

by experiments. First design of experiment (DOE) method was used to identify the test cases 

considering the four operating parameters: temperature, methanol concentration, flow rate of the 

methanol, and flow rate of the air. For each test case, the four operating parameters were 

assigned with the desired values, and the output of the fuel cells, including the output voltages 

and their corresponding current densities, were recorded. The coefficients of the semi-empirical 

model were then achieved from the collected data sets using the least-square curve-fitting 

method, a simple metamodeling method.          

The simulation-based fuel cell model, on the other hand, was developed based on the 

physical/chemical relationships between design/operating parameters and fuel cell behaviors. 

The simulation-based analysis tools, primarily the computational fluid dynamics (CFD) analysis 

tools, were used to achieve the fuel cell performance measures considering different design and 
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operating parameters. The finite element analysis (FEA) tools were also used for structure 

analysis. In the simulation-based fuel cell model, in addition to the four operating parameters, the 

design parameters, primarily the geometric parameters of the channels, the diffusion layers and 

the catalyst layers at both the anode and cathode sides, are also considered. The physical 

properties and their relationships in the fuel cell are governed by the built-in equations of the 

CFD system. The activities in chemical reactions, such as the consumption and creation of 

chemical substances, are modeled by custom programs using C++. To simplify the theoretical 

relationships and avoid the difficulty for obtaining the values of the physical parameters, the 

semi-empirical relationships with coefficients are used to model the chemical reaction activities. 

The coefficients of these semi-empirical relationships can be obtained through data training 

using the least square approximation method, a simple metamodeling method. Due to the high 

computation efforts of the CFD-based simulation, adaptive metamodeling method is required to 

achieve the values of the coefficients in the semi-empirical relationships. Since different fuel 

cells with different geometric parameters provide different performance measures, experiments 

considering multiple designs have to be conducted to collect the required data.  

The semi-empirical fuel cell model is primarily used for optimization of operating parameters in 

the fuel cell operation stage. The simulation-based fuel cell model, on the other hand, is mainly 

used for optimization of geometric parameters in the design stage.  

This chapter focuses on modeling of the relationships between operating parameters and 

performance measures for a single stack direct methanol fuel cell (DMFC) using a semi-

empirical approximation model. The simulation-based CFD model will be introduced in Chapter 

4. 

3.2 Direct Methanol Fuel Cell (DMFC) and Its Behaviors 

The structure of a DMFC and its behaviors have been briefly introduced in Section 2.2. The fuel 

cell behavior is usually described by the relationship between current density, j (A cm
-2

), and 

output cell voltage, Vcell (V), as shown in Figure 3.1.     
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The power density, Pcell (W cm
-2

), can be calculated by: 

jVP cellcell                             (3.1) 

The cell voltage, Vcell, can be calculated by (Larminie and Dicks, 2003): 

cconaconcactaactRocell EV ,,,,                              (3.2) 

where Eo is the open circuit voltage, R is the voltage loss due to ohmic polarization, act,a and 

act,c are the voltage losses at the anode and cathode due to activation polarization, and con,a and 

con,c are the voltage losses at the anode and cathode due to concentration polarization. The 

voltage loss is also called overpotential.   

The ohmic overpotential R is calculated by: 

jReR                             (3.3) 

where Re (cm
2
) is the area-specific resistance of the fuel cell, particularly contributed to by the 

resistance of the membrane in DMFC. The area-specific resistance, Re, is primarily influenced by 

the absolute temperature T (K) (Scott et al., 2006):      
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Figure 3.1. Curves to model fuel cell performance. 
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where T0 and R0 are the reference temperature and area-specific resistance, respectively, and B is 

a constant determined from experimental data.  

According to Scott et al. (2006), the open circuit voltage, Eo, can be calculated by:  
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where 
0

MEE
 
and 

0

2OE  are the standard potentials at the anode and cathode when polarization is 

not considered, j0 and j
0c

 are the exchange current densities at the anode and cathode, ref

Op
 
and po 

are the reference partial pressure and actual partial pressure of oxygen, N and No are orders of 

reaction for methanol oxidation and oxygen reduction defined as the powers to which the 

concentration terms in the rate equations are raised, and 
ref

MEC
 
and MEC  are the reference methanol 

concentration and actual methanol concentration. In Equation (3.5), i is calculated by: 

c)ME,(i  , 
RT
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  (3.6) 

where i is the transfer coefficient, ni is the stoichiometric number of electrons for a methanol 

molecule consumed in the reaction, F is the Faraday constant (96,485 C mol
-1

), R is the gas 

constant (8.314472 J (molK)
-1

), and T is the absolute temperature.  

Calculation of the overpotential measures considering activation and concentration polarizations 

at the anode and cathode is a non-trivial task. Scott et al. (2006) combined the activation and 

concentration overpotential measures separately at the anode and cathode. In their model, the 

total overpotential due to activation and concentration polarizations at the anode, a, is 

calculated by: 
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where αa is the transfer coefficient at anode, n is the stoichiometric number of electrons for a 

methanol molecule consumed in the electrode reaction, and keff is the effective mass transfer 

coefficient, which increases with the increase in temperature and methanol concentration. 

http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Concentration
http://en.wikipedia.org/wiki/Rate_equation
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According to Scott et al. (2006), the total overpotential due to activation and concentration 

polarizations at the cathode, c, is calculated by: 
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                     (3.8) 

where αc is the transfer coefficient at cathode, and k1O is the mass transfer coefficient at cathode.  

Assuming the reduction of oxygen does not proceed under mass transport limitations (Scott et al., 

2006), the second term in Equation (3.8) is not needed to calculate the c. Therefore the total 

overpotential at anode and cathode due to activation and concentration polarizations can be 

calculated by:  
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(3.9) 

Although the theoretical models are effective in describing the physical and chemical behaviors 

of DMFCs, these models are difficult to employ for the design and control of DMFC systems 

due to the complexity involved in obtaining the values of the parameters for these models. In this 

work, a semi-empirical model is developed to simplify this complexity while maintaining good 

quality for modeling DMFC behaviors.    

3.3 A Semi-empirical Model 

The semi-empirical model introduced in this research has been developed based on the 

theoretical models provided in the literature, particularly the equations given by Scott et al. 

(2006), where the relationships between operating conditions, including temperature and 

methanol concentration, and DMFC performance were extensively discussed. In our semi-

empirical model, the flow rates of methanol and air are also considered. Many parameters given 

in Scott et al. (2006) were combined and simplified as coefficients in our semi-empirical model, 

and the values of these coefficients were obtained through an approximation process using the 

data collected from experiments.  

In our semi-empirical model, the fuel cell voltage, Vcell, is described by:     
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acRocell EV                              (3.10) 

where Eo is the open circuit voltage, R is the overpotential due to ohmic polarization, and ac is 

the total overpotential due to activation and concentration polarizations at both the anode and the 

cathode. Three sub-models, including a resistance sub-model, an open circuit sub-model and a 

closed circuit sub-model, have been developed to predict ohmic overpotential, open circuit 

voltage, and activation/concentration overpotential. 

3.3.1 The Resistance Sub-model 

The resistance sub-model aims at identifying the area-specific resistance of the DMFC, Re, so the 

ohmic overpotential, R, can be calculated by Equation (3.3). 

According to Scott et al. (2006), resistance of the DMFC is dominated by the resistance of the 

polymer electrolyte membrane. Temperature is the major factor that influences the resistance of 

the DMFC. Based on these observations, the area-specific resistance, Re, in units of  cm
2
 in our 

resistance sub-model is described by: 

)(

1

3
2 a

T

a

e eaR


                            (3.11) 

where T is the absolute temperature in Kelvin, and a1, a2 and a3 are experimentally determined 

coefficients. 

3.3.2 The Open Circuit Sub-model 

The open circuit sub-model aims at identifying the open circuit voltage Eo in Equation (3.10). 

From Equations (3.5) and (3.6) and the research result of Qi and Kaufman (2002), the open 

circuit voltage is primarily influenced by temperature, methanol concentration, and partial 

pressure of oxygen. Since the partial pressure of oxygen is coupled with the flow rate of air, in 

this research the open circuit voltage is modeled as a function of temperature, methanol 

concentration and air flow rate in the open circuit sub-model: 

4321

)( )ln(ln bFTbCTbTbEE AIRME

R

oo                             (3.12) 
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where )(R

oE  is the reversible “no-loss” cell voltage, T is the temperature, CME is the molar 

concentration of methanol, FAIR is the flow rate of air in the unit of ccm (cubic centimeters per 

minute), and b1-b4 are experimentally determined coefficients. The reversible “no-loss” cell 

voltage, )(R

oE , is calculated by Larminie and Dicks (2003) as: 

V 21.1
964856

)105.698( 3
)( 









nF

g
E

fR

o                         (3.13)        

where fg  is the molar Gibbs energy released from the methanol reaction ( fg = 698.510
3
 

Jmol
-1

), n is the number of electrons transferred for each molecule of methanol (n = 6), and F is 

the Faraday constant.                                                     

3.3.3 The Closed Circuit Sub-model 

The closed circuit sub-model aims at identifying the total overpotential, ac, due to activation and 

concentration polarizations at both the anode and cathode. According to Equation (3.9), ac is 

influenced by temperature, methanol concentration, and flow rates of the methanol and air.  

To simplify the calculation, Equation (3.9) is first transformed into:  
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(3.14)
 

The transfer coefficients at the anode and cathodes, a and c, are influenced by temperature, 

methanol concentration and current density (Vera, 2007). The partial pressure of oxygen, po, is 

coupled with the flow rate of air. In addition, the flow rate of methanol also plays a role in the 

activation and concentration polarizations. Based on the above considerations, the overpotential, 

ac, is modeled as a function of the four operating parameters by: 
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(3.15) 

where j is the current density in units of A cm
-2

, T is the absolute temperature in Kelvin, CME is 

the molar concentration of methanol, FME and FAIR are the methanol and air flow rates in ccm 

(cubic centimeters per minute), and c1-c21 are 21 experimentally determined coefficients.  

3.3.4 The Overall Semi-empirical Model 

The overall semi-empirical model considering the influences of the four operating parameters on 

the DMFC performance is determined by combining Equations (3.3), (3.10)-(3.13), and (3.15): 
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 (3.16) 

Values of the coefficients in the semi-empirical model for a DMFC should be obtained by 

collecting data of operating parameters, current density and cell voltage through experiments, 

and calculating these coefficient values through numerical data fitting.   

3.4 Experiments 

3.4.1 The Direct Methanol Fuel Cell (DMFC) – TekStak
TM

 

A DMFC kit, TekStak
TM

, manufactured by Parker Hannifin Energy Systems was used to 

determine the values of the coefficients in the semi-empirical model (Parker, 2006). The DMFC 

stack is composed of a single cell with components of an MEA, two graphite end plates with 
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channels for the anode and cathode, and two plastic end plates. Components of the kit are shown 

in Figure 3.2.  

 

The MEA is composed of a Nafion 117 membrane, an anode with catalyst of Pt-Ru, and a 

cathode with catalyst of Pt. The total electrode active area, A, is 10 cm
2
 with a serpentine channel 

of 13 passes on one side of the anode or cathode as shown in Figure 3.2(b). Each of the passes is 

30.90 mm long, 1.27 mm wide, and 0.5 mm high. The rib between two passes is 1.07 mm in 

width.    

3.4.2 Experiment Setting 

Figure 3.3 shows the schematic diagram of the experimental set-up. Figure 3.4 shows a snapshot 

of the experimental set-up.  

The methanol is mixed with deionized water and pumped into the DMFC at a controlled flow 

rate using a peristaltic pump (VWR 54856-070). The air is fed into the fuel cell at a controlled 

flow rate using an air compressor and regulated by a rotameter (Omega FL-3861SA 150 mm). 

The DMFC was redesigned to replace the two plastic end plates with two aluminum end plates 

electrically insulated from the fuel cell with Teflon spacers such that a rope heater (Omega HTC) 

could be wrapped to change the working temperature of the fuel cell through a controller 

(Omega CSC32). The temperature inside the fuel cell is measured by a thermocouple (Omega 

Type K), and the temperature reading is displayed by a data acquisition unit. The anode and 

cathode outlet materials are collected by an outlet tank. The methanol container, the air pump, 

(a). Plastic end plate. (b). Electrode end plate. (c). MEA. 

Figure 3.2. Components of the TekStak
TM

 DMFC stack (Parker 2006). 
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and the outlet tank are connected with the inlets and outlets of the anode and cathode of the 

DMFC stack using polypropylene tubes. An electronic load device (BK Precision 8540) is used 

to change the current density to different levels and measure the corresponding values of the 

voltage. In addition, a potentiostat (Gamry Reference 600) is used to measure the resistance of 

the fuel cell.        

 

3.4.3 Design of Experiments 

The coefficients in the semi-empirical model were obtained by changing the operating 

parameters, measuring the output parameters, and calculating the values of the coefficients 

through a numerical data fitting technique. The operating parameters, measurement parameters, 

and the coefficients to be fitted are shown in Table 3.1. 

 

Methanol 

Container 

DMFC Stack 

Air  

Compressor 
Rotameter 

Multimeter 

Electronic 

Load 

 + 

Outlet 

Tank 

Methanol 

Pump 

Rope 

Heater 

Controller 

Power 

Supply 

Figure 3.3. Schematic diagram for the direct methanol fuel cell testing system. 

Thermocouple 
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The coefficients for the resistance and the open circuit sub-models (Equations (3.11) and (3.12)) 

can be obtained directly using the operating and measurement parameters. For the closed circuit 

sub-model, first Equation (3.10) is transformed into:      

celleocellRoac VjREVE                              (3.17) 

to calculate the ac. In Equation (3.17), the Eo is calculated using Equation (3.12), Re is 

calculated using Equation (3.11), and Vcell is measured through experimentation. The coefficients 

of the closed circuit sub-model in Equation (3.15) can then be calculated through numerical data 

fitting.  

 Table 3.1. Operating parameters, measurement parameters, and coefficients for the semi-empirical model. 

 
Sub-model Operating Parameters Measurement Parameters Coefficients 

Resistance  

Sub-model 

T: Temperature (K) Re: Area-Specific Resistance ( 

cm
-2

) 

a1,...,a3 

Open  

Circuit 

Sub-model 

T: Temperature (K) 

CME: Methanol Concentration (M) 

FAIR: Flow Rate of Air (ccm)  

Eo: Open Circuit Voltage (V)  b1,...,b4 

Closed 

Circuit 

Sub-model 

T: Temperature (K) 

CME: Methanol Concentration (M) 

FME: Flow Rate of Methanol (ccm) 

FAIR: Flow Rate of Air (ccm) 

j: Current Density (A cm
-2

) 

Vcell: Cell Voltage (V) 

c1,...,c21 

 

Figure 3.4. A snapshot of the direct methanol fuel cell testing system. 
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Four operating parameters, including temperature (T), methanol concentration (CME), flow rate 

of the methanol (FME), and flow rate of the air (FAIR), are considered in this research. For each 

operating parameter, five different levels of values are selected. The values of the operating 

parameters, selected based on the literature review and our experimental practice, are 

summarized in Table 3.2. 

 

For the resistance sub-model, only the temperature is selected as the operating parameter. Since 

five levels of this operating parameter are considered, five test cases were conducted to obtain 

the coefficients in the resistance sub-model at the same temperature levels shown in Table 3.2.   

 

The test cases of Table 3.2 can be used to obtain the coefficients in both the open circuit sub-

model and the closed circuit sub-model. The open circuit voltage is measured when the external 

Table 3.3. Forty-five test cases for the open circuit and closed circuit sub-models. 

 
Test 

Case 

No. 

Levels of Operating 

Parameters 

Testing 

Case 

No. 

Levels of Operating 

Parameters 

Testing 

Case 

No. 

Levels of Operating 

Parameters 

T CME FME FAIR T CME FME FAIR T CME FME FAIR 

1 1 3 5 2 16 3 1 5 2 31 5 1 4 5 

2 4 3 3 4 17 2 5 3 5 32 4 5 2 5 

3 3 5 2 1 18 4 4 1 3 33 5 2 1 5 

4 4 1 1 1 19 2 3 1 1 34 4 1 3 2 

5 3 4 4 2 20 3 4 1 5 35 5 4 4 3 

6 1 4 2 1 21 2 5 5 1 36 1 1 4 1 

7 3 2 2 4 22 1 2 1 2 37 3 3 2 2 

8 3 2 3 4 23 2 1 1 3 38 4 5 3 2 

9 5 5 1 2 24 1 4 5 5 39 1 1 2 5 

10 2 3 2 3 25 1 5 1 4 40 5 1 2 3 

11 1 2 3 4 26 2 1 5 4 41 5 5 5 4 

12 5 4 3 1 27 4 3 4 1 42 2 3 4 5 

13 4 2 5 3 28 2 2 3 2 43 1 5 4 3 

14 2 4 3 3 29 5 2 5 1 44 3 2 4 3 

15 3 4 4 4 30 4 3 5 5 45 5 3 2 4 

 

Table 3.2. Operating parameters and five levels of these operating parameters. 

 Operating Parameter Level 

1 2 3 4 5 

T: Temperature (K) 298 313 323 333 343 

CME: Methanol Concentration (M) 0.25 0.5 1 1.5 2 

FME: Flow Rate of Methanol (ccm) 3.5 4 4.5  5 5.5  

FAIR: Flow Rate of Air (ccm) 81.2  93.6 108.7 125.2  140.8 
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resistance circuit is disconnected. Since four operating parameters and five levels are considered, 

the complete testing requires 5
4
 = 625 cases. To reduce the testing effort, design of experiment 

methodology is employed in this research to reduce the number of test cases. In this research, a 

uniform design (UD) methodology (Fang et al., 2000) was used to determine design points that 

are uniformly scattered in the design space. A uniform experimental design considering four 

factors at five levels gives case tables for 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, and 55 tests. We 

selected the table with 45 cases considering fuel cell test efficiency and quality of numerical data 

fitting. These 45 test cases are shown in Table 3.3.  

3.4.4 Experimental Data Collection 

The area-specific resistance measures of the fuel cell at different temperatures were obtained as 

shown in Table 3.4 using the potentiostat.  

 

In these tests, the other operating parameters were selected as: 

CME = 0.5 M 

FME = 3.5 ccm 

FAIR = 81.2 ccm 

Different values of these three operating parameters have also been used to test the area-specific 

resistance measures. It was found that the influences of methanol concentration, flow rate of the 

methanol and flow rate of the air on the area-specific resistance were insignificant. The 

experimental results match with the assumptions for the semi-empirical model.   

For each of the 45 test cases, the voltage at different current densities was measured as shown in 

Figure 3.5. The voltage at j = 0 is the open circuit voltage Eo. By reducing the electronic load, the 

Table 3.4. Five test cases for the resistance sub-model. 

 
Temperature (K) Area-Specific Resistance ( cm

2
) 

298 1.42 

313 1.39 

323 1.11 

333 1.02 

343 0.98 

 



                       

48 

current density is increased and the cell voltage is decreased. For each test case, 15 or more data 

points were collected. 

Multiple tests were conducted for some of the test cases. Three additional test cases with 

methanol concentration levels of 0.25 M, 0.5 M and 1 M were added because when the methanol 

concentration is increased, the cell voltage increases at low methanol concentration (around 0.25 

M), while the cell voltage decreases at high methanol concentration (around 1 M). Other 

operating parameters for these three test cases were selected as T = 323 K, FME = 4.5 ccm, and 

FAIR = 186 ccm. In total, 65 tests were conducted for the 48 test cases.    

During the data collection process, degradation of fuel cell performance was observed for test 

cases repeated at different time points. In this work, a simple linear regression method was 

utilized to compensate the data considering this degradation. In this compensation method, a 

time parameter, in addition to the four operating parameters, was introduced to model the fuel 

cell performance. The collected data at different time points were used to obtain the coefficients 

in the linear regression model. The system performance measures for all test cases representing 

behavior at one point in time were selected to develop the semi-empirical model. 

 

For the test cases with multiple tests, an error analysis has been conducted to study the variations 

of the performance measures. In this work, the error bars with 95% of the confidence intervals 

Figure 3.5. Data obtained in a test case for the open and closed circuit sub-models. 

Cell Voltage 

Power Density 

Open Circuit Voltage 

T = 313 K, CME = 0.5 M, FME = 5.5 ccm, FAIR = 125.2 ccm 
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were selected for the error analysis. The error bars for the performance measures in test case No. 

2 are plotted in Figure 3.6. For this test case, three tests at identical conditions were carried out to 

collect 68 data points at three different time points. To better show the range of error, these 68 

data points were divided into 9 groups according to their current density values. The standard 

deviation, σ, for the data in each group was first calculated. The 1.96σ and +1.96σ boundaries, 

corresponding to 95% of the confidence interval, were then used to plot the error bar for the 

selected data point group.  

 

3.5 Results and Analysis 

The coefficients for the semi-empirical model were obtained based on numerical fitting of the 

data collected in the experiments. In addition, the accuracy of the semi-empirical model and the 

significance of the coefficients in this semi-empirical model have also been analyzed.  

3.5.1 Results  

Resistance sub-model 

Using the five test points given in Table 3.4, the coefficients in Equation (3.11) were obtained 

through nonlinear numerical data fitting using Matlab
TM

 toolbox: 

Figure 3.6. Error bars for the three tests in test case No. 2. 

+1.96 

1.96 

mean measure 

An error bar with 95% 

of confidence interval 

0.0109V~0.0242V 



                       

50 

a1 = 6.9897, a2 = 916.91, a3 = 4.6392 

Substituting these coefficients into Equation (3.11), we can get:  

)6392.4
91.916

(

9897.6


 T
e eR                         (3.18)       

The data and Equation (3.18) are shown in Figure 3.7. 

 

Open circuit sub-model 

For the open circuit sub-model, the data collected from the tests by changing the operating 

parameters of the temperature, methanol concentration, and air flow rate were used to obtain the 

coefficients in Equation (3.12) through nonlinear data fitting with Matlab
TM

. In this work, the 

data collected in the 42 test cases were used to obtain the coefficients, and the data collected in 

the remaining three test cases were used to evaluate the modeling accuracy. For each of the 45 

test cases, the test point at j=0 corresponding to the open circuit voltage was selected. When 

multiple tests were conducted for a test case, the average open circuit voltage was used. 

Therefore a total of 45 data points were used to calculate the coefficients. The obtained 

coefficients are: 

b1 = 3.753410
5

, b2 = 3.153410
4

, b3 = 6.620010
5

, b4 = 0.74990 

Substituting these coefficient values and Equation (3.13) into Equation (3.12), an expression for 

Figure 3.7. Influence of temperature on area-specific resistance. 
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the open circuit voltage is obtained:  

74990.0)ln(106200.6ln101534.3107534.321.1 545  

AIRMEo FTCTTE   (3.19)       

Closed circuit sub-model 

For the closed circuit sub-model, first the total overpotential value, ac, for each test case was 

calculated using Equation (3.17). In Equation (3.17), Eo is calculated using Equation (3.19) and 

Re is calculated using Equation (3.18), while Vcell is measured through experimentation. The 

calculated ηac, the measured current density j, and the measured cell voltage Vcell at the different 

operating parameter test cases were used to obtain the coefficients in Equation (3.15) through 

nonlinear numerical data fitting with Matlab
TM

. In this work, the 62 tests including repeated test 

cases provided ~1,200 test points used to calculate the coefficients. The obtained coefficients are: 

c1 =1.265810
5
, c2 = 46196, c3 = -4281.0 c4 = 0.40290 c5 = 18.809, c6 = 18.809,  

c7 = 10.496, c8 = 3.9056, c9 = 2.958210
-4

, c10 = 5.3466×10
7
, c11 = 5182.4,  

c12 = 1.268710
5
, c13 = -46221, c14 = 4283.6, c15 = 0.40330, c 16 =18.818,  

c 17 = 18.818, c18 = 10.572, c19= 3.8959, c20=8.240210
-4

, c21=31.583 

Substituting these coefficients into Equation (3.15), an expression for the total overpotential is 

obtained:  
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 (3.20) 

(4) The overall semi-empirical model 

Integrating Equations (3.3), (3.10), (3.18), (3.19) and (3.20), the cell voltage can be calculated 

from the following expression: 
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 (3.21) 

The effectiveness of the semi-empirical model in predicting the DMFC performance based on 

operating parameters will be explained in Section 3.5.2 through accuracy analysis. Discussion of 

the influences of individual coefficients on the accuracy of the semi-empirical model will be 

provided in Section 3.5.3 through sensitivity analysis.  

3.5.2 Verification and Accuracy Analysis  

In this research, the data from 62 tests were used as the training tests to obtain the coefficients, 

and the data from three tests were reserved to validate the semi-empirical model and test its 

accuracy. Figure 3.8 shows the measured and predicted data for the operating conditions given in 

Table 3.5 in the three evaluation tests. 

 

Table 3.5. Three test cases to analyze the accuracy of the semi-empirical model. 

 
Test Case No. T (K) CME (M) FME (ccm) FAIR (ccm) n (V) (V) max (V)

1 323 0.25 4 81.2 22 0.0106 0.0082 0.0277 

2 298 1 4.5 125.2 16 0.0236 0.0206 0.0312 

3 343 0.5 5 140.8 15 0.0137 0.0116 0.0183 

Total 53 0.0160 0.0129 0.0312 
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In this research, three measures, the standard deviation σ, the average absolute error , and the 

maximum absolute error max, are used to evaluate the accuracy of the semi-empirical model.  

The standard deviation σ shown in Table 3.5 is defined by: 

1

)(
1

2
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                             (3.22) 

where Ui is the predicted cell voltage using the semi-empirical model, iU  is the measured cell 

voltage from experiment, and n is the number of points in the test case.  

The average absolute error  shown in Table 3.5 is defined by: 
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where the i is the absolute error for the i-th data point.  

The maximum absolute error max shown in Table 3.5 for each test case is defined by: 

 n ,...,,,max 321max                              (3.24) 

Figure 3.8. Collected data through experiments and predicted curves using the semi-empirical model. 
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The absolute error at each experimental data point between the predicted and measured voltages 

was analyzed to determine if there was any systematic error pattern relative to each operating 

parameter. Each parameter (i.e., temperature, methanol concentration, and methanol and air flow 

rates) was evaluated in a generalized linear model using Minitab
TM

 against the absolute error as 

the outcome variable. The current density was included as a covariate. All factors were 

determined to be significant in contributing to the absolute error at p-values of less than 0.01. 

Figure 3.9 shows the mean absolute error of cell voltage for each level of the experimental tests. 

From this analysis, it was concluded that the model error is relatively insensitive to changes in 

temperature and methanol concentration (average error within ~0.005 V), but has a systematic 

trend for the methanol and air flows, with the error trending largest at the extremes of the flow 

ranges. The largest absolute errors are generally found in the model to occur in general at the 

extreme ranges of the parameters. The largest relative errors were generally found to occur at the 

highest methanol concentrations.   

The accuracy analysis for the 62 training tests whose data were used to obtain the coefficients of 

the semi-empirical model is summarized in Table 3.6. The errors for the training tests are 

comparable with the errors for the evaluation tests. In general, the model predicted the 

experimental data points voltage within an accuracy of 0.050 V approximately 90% of the time, 

and 0.030 V approximately 70% of the time. On a relative basis, the model was determined to 

match the experimental data within a relative accuracy of 25% approximately 90% of the time, 

and 10% approximately 50% of the time. It should be noted that as a non-linear regression 

model, some combinations of parameters will lead to estimation with a negative voltage, 

especially when these parameters are at the limits of their regression ranges. While these 

operating points generally would have very low voltage, nonetheless they should be treated with 

caution. In summary, given the experimental error, it is therefore concluded the developed semi-

empirical model is effective for predicting DMFC performance based on the operating 

parameters. 
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3.5.3 Sensitivity Analysis 

The semi-empirical model has 28 coefficients in its three sub-models: three in the resistance sub-

model (Equation (3.11)), four in the open circuit sub-model (Equation (3.12)), and 21 in the 

closed circuit sub-model (Equation (3.15)). The scientific method requires that the model should 

be parsimonious, and therefore the number of coefficients should be reduced to simplify the 

complexity of the semi-empirical model if the quality of the model can be maintained. In this 

research, a sensitivity analysis considering the 21 coefficients of the closed circuit sub-model 

given by Equation (3.15) has been conducted.  

An analysis of variance (ANOVA) (Shasha and Wilson, 2008) is employed to study the 

contribution of each of these coefficients. First a designed experiment is used to create test cases 

considering the relevant coefficients. In each test case, a coefficient is increased or decreased by 

5%, and the change in the performance measure is observed. Then a Matlab
TM

 n-way analysis of 

Table 3.6. Comparison between the errors for the evaluation tests and the training tests. 

 Test Cases n (V) (V) max (V) 

Evaluation Tests 53 0.0160 0.0129 0.0312 

Training Tests  1160 0.0224 0.0114 0.0568 

 

Figure 3.9. Contribution of operating parameters to absolute error. 
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variance (i.e., anovan) function is used to analyze the significance through the coefficient’s p-

value. A coefficient with a p-value less than or equal to 0.05 was considered significant, 

contributing to variance in the model’s predicted values. If a p-value is larger than 0.05, the 

coefficient could be considered for removal from the semi-empirical model. 

Among the 21 coefficients in the closed circuit sub-model given in Equation (3.15), five 

coefficients are considered as candidates for removal due to their large p-values given in Table 

3.7.  

 

Removing these five coefficients from Equation (3.15), the modified closed circuit sub-model 

can now be described by:
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(3.25) 

The original semi-empirical model and the simplified semi-empirical model were evaluated 

using the three evaluation test cases. A comparison of the results shown in Table 3.8 finds that 

both semi-empirical models are acceptable to predict the DMFC performance based on the four 

operating parameters. 

 

Table 3.8. Comparison between the original and the simplified semi-empirical models. 

 Semi-empirical Model (V) (V) max (V)

The original model with 28 coefficients 0.0160 0.0129 0.0312 

The simplified model with 23 coefficients 0.0126 0.0098 0.0220 

 

Table 3.7.  p-values considering the significance of the five coefficients. 

 Coefficient p-value 

c1 0.1084 

c3 0.6662 

c12 0.4931 

c13 0.7484 

c18 0.3681 
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3.6 Applications of the Semi-empirical Fuel Cell Model 

The semi-empirical fuel cell model can be used to analyze the influences of the operating 

parameters on the performance of the DMFC. The semi-empirical model can also be used to 

identify the optimal operating parameters based on the performance requirement through 

optimization.   

3.6.1 The Influences of Operating Parameters on DMFC Performance  

The semi-empirical model can be used to study the influences of the operating parameters on 

DMFC performance by changing only one of the operating parameters each time, and creating a 

curve of the relationship between the current density and cell voltage, as shown in Figure 3.10. 

The influences of the four operating parameters are summarized as follows. 

Influence of temperature (T) 

When the temperature is increased, the cell voltage will increase at different current densities as 

shown in Figure 3.10(a). For example, consider the current density at j = 0.045 A cm
-2

. When the 

temperature is increased from 298 K to 343 K, the cell voltage increases from 0.098 V to 0.179 

V, an 82.6% increase in the cell voltage. Therefore high cell temperature is expected to improve 

the DMFC performance.  

Influence of methanol concentration (CME)  

When the methanol concentration is increased, the cell voltage is increased at low methanol 

concentration, and cell voltage is decreased at high methanol concentration as shown in Figure 

3.10(b). For example, consider again the current density at j = 0.045 A cm
-2

. When the methanol 

concentration is increased from 0.25 M to 0.5 M, the cell voltage increases from 0.201 V to 

0.209 V, a 3.9% increase in the cell voltage. When the methanol concentration is increased from 

0.5 M to 1 M, the cell voltage decreases from 0.209 V to 0.177 V, a 15.2% decrease in the cell 

voltage. Therefore an optimal methanol concentration is expected to improve the DMFC 

performance.  
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Influence of methanol flow rate (FME) 

When the methanol flow rate is increased, the cell voltage in general will increase, especially 

when the current density level is high as shown in Figure 3.10(c). For example, consider again 

the current density at j = 0.045 A cm
-2

. When the methanol flow rate is increased from 3.5 ccm to 

5.5 ccm, the cell voltage will increase from 0.232 V to 0.260 V, a 12.5% increase in the cell 

voltage. Therefore high methanol flow rate is expected to improve the DMFC performance.  

Influence of air flow rate (FAIR) 

When the air flow rate is increased, the cell voltage in general will increase as shown in Figure 

3.10(d). For example, at current density j = 0.045 A cm
-2

, when the air flow rate increases from 

Figure 3.10. Influence of the four operating parameters on DMFC performance. 

(a). Change of temperature.  (b). Change of methanol concentration. 

(c). Change of methanol flow rate. (d). Change of air flow rate. 

T = 298-343 K  

CME = 0.5 M 

FME = 4.5 ccm 

FAIR = 81.2 ccm 

 

T = 298 K  

CME = 0.25-1 M 

FME = 5.5 ccm 

FAIR = 140.8 ccm 

 

T = 323 K  

CME = 0.25 M 

FME = 3.5-5.5 ccm 

FAIR = 125.2 ccm 

 

T = 313 K  

CME = 0.5 M 

FME = 3.5 ccm 

FAIR = 81.2-140.8 ccm 
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81.2 ccm to 140.8 ccm, the cell voltage increases from 0.113V to 0.214 V, a 90.1% increase in 

the cell voltage. Therefore high air flow rate is expected to improve the DMFC performance.  

3.6.2 Optimal Control of the Operating Parameters  

The quantitative relationships between operating parameters and fuel cell performance measures 

in the semi-empirical model can be used to identify the optimal operating parameters based on a 

given requirement. 

In DMFC applications, a number of fuel cells are usually connected in series to form a stack. A 

number of stacks are connected to provide the required power in a DMFC system. In addition to 

fuel cells, other modules such as methanol container, pumps, tubes, controllers, etc. are also 

needed for the fuel cell system. The operating parameters can be controlled by the controllers 

based on the power requirements. Therefore optimization of the operating parameters should be 

conducted considering the whole DMFC system.  

First the semi-empirical model given by Equation (3.16) is used to define the cell voltage as a 

function of the operating parameters and the current density. Suppose this function is described 

as: 

Vcell = f(T,CME,FME,FAIR,j)

 

(3.26) 

where Vcell is the cell voltage (V), T is the temperature (K), CME is the methanol concentration 

(K), FME is the methanol flow rate (ccm), FAIR is the air flow rate (ccm), and j is the current 

density (A cm
-2

). When ncell cells are used in the stack, the stack voltage is then defined by: 

Vstack =ncellVcell = ncellf(T,CME,FME,FAIR,j)

 

(3.27) 

A DMFC system can be composed of a number of stacks. Suppose if m stacks are connected in 

series in a DMFC system, the system voltage can be described by: 

Vsystem =mVstack = mncellf(T,CME,FME,FAIR,j)

 

(3.28) 

The total power of the DMFC system can be obtained by: 

Psystem_total = AVsystem j = Amncellf(T,CME,FME,FAIR,j)j

  

(3.29) 

where A is the active area of the fuel cell. Suppose the power used by the supporting components 
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of the DMFC system is described by 

Psystem_con = g(T,CME,FME,FAIR,j)       (3.30) 

The net system power output can be calculated by: 

Psystem_net = Psystem_total  Psystem_con = Amncellf(T,CME,FME,FAIR,j)j

 

 g(T,CME,FME,FAIR,j)     (3.31) 

Optimization can be employed to identify the optimal operating parameters based on the power 

requirements. The different power requirements and optimization models that can be used to 

optimize the system performance are listed in Table 3.9. 

 

3.7 Summary 

A systematic approach to model the relationships between the operating parameters and the 

direct methanol fuel cell performance was introduced in this chapter. Four operating parameters, 

including temperature, methanol concentration, and flow rates of methanol and air, are 

considered. A semi-empirical model was developed to describe the relationships. Experiments 

were designed and conducted to obtain the coefficients in the semi-empirical model. The 

accuracy of this semi-empirical model was also analyzed. In addition, the influences of the 

operating parameters and possible applications of the semi-empirical model were also discussed. 

Characteristics of this research are summarized as follows. 

(1) The semi-empirical model is effective to describe the relationships between the operating 

parameters and the direct methanol fuel cell performance. Compared with the theoretical 

models that require complicated processes to obtain the physical/chemical parameters, the 

Table 3.9. Different optimization models to satisfy different power requirements. 

 Power Requirement Optimization Model 

Maximum Power Output maxmin_   ,max jjjP netsystem   

Overall Power Output 
max

min

_max

j

j

netsystem djP  

Overall Power Efficiency 
max

min
_

_
max

j

j totalsystem

netsystem
dj

P

P
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coefficients in our semi-empirical model can be obtained easily through numerical data 

fitting using data collected from experiments.  

(2) Through an analysis of the influences of operating parameters on the DMFC performance 

based on the semi-empirical model, a better understanding of the DMFC behaviors was 

achieved. Furthermore, the influences of the four operating parameters on the open circuit 

voltage, resistance polarization, activation polarization and concentration polarization were 

also investigated.  

(3) Based on the modeling of the relationships between the operating parameters and the 

DMFC performance measures, the optimal operating parameters of the DMFC system can 

be indentified according to different power requirements.  
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CHAPTER 4 A CFD MODEL WITH SEMI-EMPIRICAL ELECTROCHEMICAL 

RELATIONSHIPS TO STUDY THE INFLUENCES OF GEOMETRIC AND 

OPERATING PARAMETERS ON DMFC PERFORMANCE 

4.1 Overview 

The semi-empirical model for building the relationship between all the major operating 

parameters and direct methanol fuel cell performance has already been given in Chapter 3. In 

order to study the influences of both geometric parameters and operating parameters on the 

performance of DMFC system, a three-dimensional computational fluid dynamics (CFD) model 

with semi-empirical electrochemical relationships has been developed (Yu et al., 2013). The 

CFD modeling part of this research was conducted by Biao Yu, a visiting Ph.D. student at 

University of Calgary. Modeling of the semi-empirical electrochemical relationships is the main 

contribution of this thesis work. 

In this research, semi-empirical relationships are introduced to describe the electrochemical 

behaviors required in the CFD governing equations. Coefficients in these semi-empirical 

relationships are fitted using experimental data. Two geometric configurations with serpentine 

channels at the anode and cathode are considered in this work. Temperature, methanol 

concentration, and methanol flow rate are selected as the operating parameters. Due to the 

computational effort of CFD, an adaptive metamodeling method is developed to reduce the 

number of data-fitting iterations for obtaining the coefficients in the semi-empirical relationships. 

The effectiveness of the method is demonstrated by fitting the model using the experimental data 

collected from the first geometric configuration of the DMFC and comparing the predicted 

performance of the second configuration with its experimental performance. 

4.2 CFD Modeling of A DMFC with Semi-empirical Electrochemical Relationships 

In this work, CFD is employed to model the relationships between geometric/operating 

parameters and DMFC performance. In the CFD model, the electrochemical behavior near the 

membrane is described by semi-empirical relationships. Coefficients in these semi-empirical 

relationships are fitted using experimental data. An adaptive metamodeling method is developed 
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to improve the efficiency for obtaining the values of coefficients in the semi-empirical 

relationships. 

4.2.1 Physical Domains and Assumptions for CFD Modeling 

In this CFD model, only the anode side is considered because a satisfactorily high air flow rate is 

assumed to be provided to the cathode side to guarantee a constant oxygen concentration in the 

simulation and thereby to simplify the computation. The physical domains in the CFD model 

include three fluid zones: the anode flow channel, the anode diffusion layer, and the anode 

catalyst layer. The anode catalyst layer is simplified as a thin interface with only one layer of 

mesh. Figure 4.1 shows the detailed structure of the three physical domains. The electrochemical 

kinetics in the cathode side is derived from the behaviors at the anode side. The CFD model is 

developed based on the following assumptions: 

(1) All fluid flows are laminar; 

(2) All fluids are incompressible; 

(3) The DMFC is operating at steady state under isothermal condition; 

(4) The carbon dioxide generated by the methanol oxidation is dissolved in the water 

completely, so only liquid phase exists in the anode side; 

(5) All porous media (i.e., diffusion layers, membrane and catalyst layers) are isotropic 

materials; 

(6) The membrane is operating at a fully hydrated state;  

(7) The oxygen is sufficient for all conditions, so the concentration of oxygen is assumed as a 

constant.   
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4.2.2 Theoretical Models 

The CFD model is developed using three types of governing equations: continuity equations, 

momentum equations, and species equations. In this work, the crossovers of water and methanol 

from the anode to the cathode side through the membrane are treated as source terms of the 

continuity and species equations in the CFD model to simplify the modeling process.    

Governing equations for CFD 

The governing equations are applied to all physical domains. These equations are different in the 

different zones due to their different physical and chemical characteristics, such as material 

properties and chemical reactions. The continuity equation is used to ensure that the rate at which 

mass enters a system is equal to the rate at which mass leaves the system when the system is a 

steady state process. The continuity equation is given as (He et al., 2009): 

mSv  )(


   (4.1) 

Anode Diffusion Layer 

Anode Catalyst Layer 

Anode Flow Channel 

Outlet 

Inlet 

Figure 4.1. Three physical domains in the CFD model. 
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where ε is the porosity of the physical domain (ε = 1 at the channel, ε = 0.6 at the diffusion layer, 

and ε = 0.4 at the catalyst layer), ρ is the mixture density (kg m
-3

), v


 is the velocity vector of 

mixture (m s
-1

), and Sm is the mass source term (kg m
-3

 s
-1

) caused by reaction and crossover. The 

mass source terms in the channel and diffusion layer are zeros, while the mass source term in the 

catalyst layer is calculated by: 

223 COOHOHCHm SSSS   (4.2) 

where SCH3OH, SH2O and SCO2
 are the species source terms for CH3OH, H2O, and CO2 in the anode 

catalyst layer, respectively. The detailed descriptions of these source terms are given in 

Equations (4.7), (4.8), and (4.9). The momentum equation is defined by (He et al., 2009): 

momSvPvv  )()()(


  (4.3) 

where P is pressure (Pa), μ is mixture viscosity (kg m
-1

s
-1

)), and Smom is momentum source term 

(N m
-3

) which is caused by porous media and is zero in the channel. Smom is defined by (He et al., 

2009; Le and Zhou, 2008): 

v
K

Smom


 2

 (4.4) 

where K is the permeability of porous media (m
2
). The species equations are defined as 

(Sivertsen and Djilali, 2005): 

kk

eff

kk SYDYv  )()( 
  (4.5) 

where Yk is the mass fraction of species k, and Sk is the source term that is caused by reaction and 

crossover (kg m-3s-1). The different source terms are given in Equations (4.7), (4.8), and (4.9). 

The source terms are zeros in the channel and the diffusion layer. 
eff

kD  is the effective diffusion 

coefficient of species k (m2s-1), and is defined as (Ge and Liu, 2006): 






zonesother  In,

channel  theIn     ,
5.1

k

keff

k
D

D
D


 (4.6) 

where Dk is the diffusion coefficient in the channel. As noted before, because the CFD model 

just considers the anode side, the only species in the model are CH3OH, H2O, and CO2. 
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Crossover of methanol and water 

At the anode side, methanol and water are consumed and carbon dioxide is produced because of 

the methanol oxidation reaction. At the same time, methanol and water can migrate through the 

membrane to the cathode side, leading to crossover. Penetration of carbon dioxide through the 

membrane is prevented by its macromolecule structure. To reduce the computing complexity and 

simplify the model domain, crossovers of methanol and water are treated as source terms in the 

species equations. The source term Sk in the species equation due to the chemical reaction and 

physical crossover through the membrane is defined as: 

crossoverkreactionkk SSS ,,   
(4.7)

 

The first term on the right side of Equation (4.7), Sk,reaction, is the source term caused by the 

electrochemical reaction, and the second term, Sk,crossover, is caused by the crossover. The reaction 

source terms are given by: 

























2

2

3

,

COk       ,
6

OHk   ,
6

OHCHk,
6

2

2

3

a

CO

a

OH

a

OHCH

reactionk

j
F

M

j
F

M

j
F

M

S  (4.8) 

where Mk (kg kmol
-1

) is the molecular weight of species k, F is the Faraday constant (9.6485 × 

10
7
 C kmol

-1
), and ja is the local volumetric current density (A m

-3
) at the anode defined by 

Equation (4.25). The crossover terms are given by: 
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(4.9)

 

where NCH3OH and NH2O are the local volumetric crossover rates for methanol and water through 

the membrane, respectively (kmol m
-3

s
-1

). Because the CO2 cannot migrate to the cathode side, 

its crossover rate is zero. The methanol crossover rate through the membrane is defined by (Vera, 

2007): 
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The water crossover rate through the membrane is given by (Jeng and Chen, 2002): 
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(4.11)

 

where nCH3OH and nH2O are electro-osmotic drag coefficients for CH3OH and H2O, respectively, 

eff

mOHCHD ,3
 and 

eff

OHD
2

 are effective diffusion coefficients (m2 s-1) in the membrane for CH3OH and 

H2O, respectively,  
int

3OHCHC  is the local methanol concentration at the interface between anode 

catalyst layer and membrane (kmol m-3), and z is the direction perpendicular to the plane of the 

membrane. Because the membrane is assumed to be fully hydrated, the second term in Equation 

(4.11) can be deleted. Thicknesses tmem and tacl (m) are for the membrane and anode catalyst 

layer, respectively. The electro-osmotic drag coefficient nCH3OH is given by (Ge and Liu, 2006): 

int

323 OHCHOHOHCH Xnn   (4.12) 

where 
int

3OHCHX  is methanol mole fraction at the interface between anode catalyst layer and 

membrane. Mole fraction 
int

3OHCHX  is calculated by:  
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33
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(4.13)

 

where 
int

3OHCHY  is methanol mass fraction at the interface between anode catalyst layer and 

membrane, and M (kg kmol-1) is molecular weight of the mixture and is calculated by (Lum and 

McGuirk, 2005): 
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The electro-osmotic drag coefficient nH2O is defined by (Guo and Ma, 2004): 
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The effective diffusion coefficient 
eff

mOHCHD ,3
 is calculated by (Vera, 2007): 
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where ε is the porosity of membrane. The overall methanol crossover NCH3OH,ALL (kmol s
-1

) 

through the membrane can be determined by: 

dVNN
V

OHCHALLOHCH 
33 ,  (4.17) 

where NCH3OH is local methanol crossover rate given by Equation (4.10), and V is the volume 

space of the whole anode catalyst layer (m3). 

Electrochemical kinetics in the catalyst layers 

The electrochemical kinetics in the two catalyst layers are governed by the Tafel equations (Ge 

and Liu, 2006): 
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where ηa and ηc are the overpotential values at the anode and cathode sides, respectively. The 

local current density at cathode catalyst layer, jc (A m-3), is defined by Equation (4.27), while ai0a 

and ai0c are the reference volumetric transfer current densities (A m-3) at the anode and the 

cathode sides, respectively, αa and αc are the charge transfer coefficients at anode and cathode, 

respectively, R is the gas constant (8.314 J mol-1), CCH3OH is the local methanol concentration 

(kmol m-3), 
ref

OHCHC
3

is the reference methanol concentration (kmol m-3), CO2 is the local oxygen 
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concentration (kmol m-3), and 
ref

OC
2

is the reference oxygen concentration (kmol m-3). Ck is 

calculated by: 

k

kk
M

YC


  (4.20) 

The reference volumetric transfer current densities ai0a and ai0c are calculated by (He et al., 

2009): 
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where 
ref

iaa
 
and 

ref

ica
 
are the reference volumetric current densities (A m

-3
) at 353 K, and T is the 

temperature (K) . 

It should be noted that since only one layer of mesh is used in the CFD model for the anode 

catalyst layer, the local methanol concentration CCH3OH and the anode overpotential ηa are 

constant through the thickness of the anode catalyst layer. The CO2 and ηa are also constant 

through the thickness of the cathode catalyst layer. 

Cell potential and current density 

The cell potential is defined by:  

memcacell EE   0  (4.23) 

where Ecell (V) is the cell potential, ηmem (V) is the potential loss due to the membrane resistance, 

and E0 (V) is the open circuit voltage influenced by temperature, methanol concentration and air 

flow rate. In the research, a semi-empirical equation is developed based on Equations (3.12) and 

(3.13): 

43210 )ln()ln(21.1
3

kFTkCTkTkE AIROHCH   
(4.24)

 

where k1-k4 are coefficients, and FAIR is the air flow rate (ccm). 
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In this model, Ecell is provided from experiment data, and ηa and ηc are calculated by Equations 

(4.18) and (4.19). The anode local current density of cell, ja, is calculated by: 

memacl

mem
a

Rt
j


  (4.25) 

where Rmen is the area specific resistance of the membrane (Ω m
2
) calculated by (Yang et al., 

2011): 

)exp( 3
2

1 b
T

b
bRmem   (4.26) 

where b1-b3 are coefficients. The coefficient values in Equations (4.24) and (4.26) can be found 

from Chapter 3. Cathode local current density is calculated by: 

crossoverac jjj   (4.27) 

where jcrossover (A m
-3

) is the local crossover current density caused by methanol crossover. The 

local crossover current density is calculated by:   

OHCHcrossover FNj
3

6  (4.28) 

where NCH3OH is the local volumetric crossover rate of methanol calculated using Equation 

(4.10). Cell total current I (A) is calculated by: 

dVjI
V

a  (4.29) 

Although the mechanistic models introduced in this section are effective for describing DMFC 

behavior, some parameters for modeling the electrochemical relationships are extremely difficult 

to obtain. In this research, semi-empirical models are developed to approximate these 

relationships.  

4.2.3 Approximation of Electrochemical Kinetics by Semi-empirical Relationships 

Many of the parameters presented in the CFD model cannot be obtained due to limitations in 

collecting data in this research. From the literature on CFD-based DMFC modeling, some 

parameters in these models have to be calibrated manually without good justification due to the 
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difficulty in obtaining the true values of these parameters. To simplify the CFD models, as well 

as to develop a generic CFD model that can be applied to the DMFCs with different geometric 

shapes, semi-empirical approximations of electrochemical kinetic relationships have been carried 

out to replace the theoretical Equations (4.18), (4.19), (4.21), and (4.22). These are the equations 

used to describe the relationships between the operating parameters near the membrane in the 

catalyst layers and the overpotential at the anode and cathode due to activation and 

concentration. The simplified semi-empirical relationships based on these equations are defined 

by: 
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(4.31)

 

where c1 to c8 are coefficients determined using the collected experimental data.  

4.2.4 Boundary Conditions and Numerical Methods for CFD-based DMFC Modeling 

The CFD and semi-empirical electrochemical relationships were modeled using a commercially 

CFD system, Fluent 12.0, in this work. All source terms are defined with User Defined Functions 

(UDFs) using C++ and embedded in the Fluent for the simulation. For the physical domain inlet, 

velocity is used as the boundary condition. For the physical domain outlet, pressure is used as the 

boundary condition. No-slip boundaries are employed for all walls. Other operating parameters, 

such as methanol concentration and temperature, are also used as boundary conditions for both 

the inlet and outlet. Because the ηmem in Equation (4.25) is also a function of ja, the value of ja 

cannot be solved directly by Fluent. A numerical method is developed in this work to solve this 

problem. First, by substituting Equations (4.23), (4.30), and (4.31) into Equation (4.25), ja can be 

rewritten as: 
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By substituting Equations (4.27), (4.28), and (4.10) into Equation (4.32), we get: 
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Equation (4.33) is an implicit function and cannot be solved directly. By defining f(ja) as a 

function of ja and then moving the ja in Equation (4.33) from the left side to the right side, we 

get: 
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In Equation (4.34), the c1-c8 are the eight coefficients of the semi-empirical model. These 

coefficients are assigned with best guess initial values, and refined using optimization techniques 
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and the experimental data to minimize current density fit error. The volumetric current densities 

at different locations can be obtained iteratively by solving Equation (4.34) using the secant 

method. The secant method is a root-finding algorithm that uses a succession of roots of secant 

lines to approximate the root of a function. The secant method can be considered as a finite 

difference approximation of Newton's method. The secant method is defined by a recurrence 

relation:  

)()(
)(
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1

1











nn

nn
nnn

XfXf

XX
XfXX  (4.35) 

The first two initial values are assigned to X0 and X1, and a convergence stopping condition is 

specified. Through sufficient iterations, a stable result can be obtained as the root value of 

Equation (4.34). The secant method was implemented as a UDF using C++. 

4.2.5 Identification of Semi-empirical Relationship Coefficients through Adaptive Metamodeling 

In the CFD simulation, proper values of the eight coefficients in the semi-empirical relationships 

are required. When these coefficients are incorrect, the simulation results are different from the 

experimental results. Identification of the coefficient values, however, is a nontrivial task. In this 

study, an optimization-based adaptive metamodeling method (Liu et al., 2011) has been 

employed to obtain the values of these eight coefficients.  

Metamodeling is an approach to identify the approximation relationships between input and 

output parameters using experimental input and output data (Liu et al., 2011). This method is 

effective when analytical relationships cannot be directly described. In this work, the 

approximation relationship developed is a function describing the difference between the CFD 

simulation and the experimental results in terms of the semi-empirical coefficients. Different 

mathematical functions or schemes, such as polynomials and neural networks, can be used to 

describe this coefficient/error relationship. The kriging method (Jeong et al., 2005) was chosen to 

build the metamodel in this research.  

The input parameters of the metamodel are the eight coefficients c1 to c8, and the output 

parameter is the mean fuel cell current density error between the experimental and simulation 

data for a given set of values for the eight coefficients at different voltages and operating 

http://en.wikipedia.org/wiki/Root_of_a_function
http://en.wikipedia.org/wiki/Function_(mathematics)
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conditions. This error is calculated for a number of coefficient sets such that a function can be fit 

predicting the error from the coefficients. These coefficient sets can be initially specified 

randomly, but are better set as a best guess based on simulation experience. Thus, the metamodel 

defines the mean simulation error as the output and the eight coefficients as the input. Adaptive 

metamodeling for optimization is used to find the values of the eight coefficients to minimize the 

simulation error. The algorithm for adaptive metamodeling for optimization will be further 

discussed in Section 5.2.1. The physical parameters used for the CFD simulation with adaptive 

metamodeling are given in Table 4.1.  

 

4.3 Case Study 

The CFD model introduced in Section 4.2 was tested through a case study to demonstrate its 

effectiveness for modeling the relationships between geometric/operating parameters and DMFC 

performance measures. In the case study, two DMFCs with different geometric shapes of the 

Table 4.1. Physical parameters for the CFD simulation. 

 Parameter    Value Reference 

Water density ρH
2
O 1,000 kg m

-3
  

Water viscosity μH
2

O 0.458509-5.30474×10
-3

T+2.31231×10
-

5
T

2
-4.49161×10

-8
T

3
+3.27681×10

-11
T

4
 

kg m
-1

s
-1

 

(Wang and Wang, 2003) 

Air density ρair 1.29 kg m
-3

  

Air viscosity μair 2.03×10
-5

 kg m
-1

s
-1

 (Wang and Wang, 2003) 

Diffusion coefficient of methanol in 

water DCH
3

OH 

10
-5.4163-(999.778/T)

 m
2
s

-1
 (Wang and Wang, 2003) 

Diffusion coefficient of carbon dioxide in 

water DCO
2
 

1×10
-10

 m
2
s

-1
 (Wang and Wang, 2003) 

Permeability of anode diffusion layer Kadl 1×10
-11

 m
2
 Assumed 

Permeability of anode catalyst layer Kacl 1×10
-11

 m
2
 Assumed 

Porosity of anode diffusion layer εadl 0.6 Assumed 

Porosity of anode catalyst layer εacl 0.4 Assumed 

Faraday constant F 9.6485 × 10
7
 C kmol

-1
 (Vera, 2007) 

Gas constant R 8.31 J mol
-1

K
-1

 (Vera, 2007) 

Molecular weight of methanol MCH
3

OH 0.032 kg mol
-1

 (Vera, 2007) 

Molecular weight of water MH
2

O 0.018 kg mol
-1

 (Vera, 2007) 

Molecular weight of carbon dioxide MCO
2
 0.044 kg mol

-1
 (Divisek et al., 2003) 

Molecular weight of oxygen MO
2
 0.032 kg mol

-1
 (Divisek et al., 2003) 

Molecular weight of nitrogen MN
2
 0.028 kg mol

-1
 (Divisek et al., 2003) 
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channels were tested. The experiment data collected from the first geometric configuration was 

used to obtain the coefficients of the semi-empirical relationships in the CFD model. The fitted 

model was then used to predict the performance of the second configuration of the DMFC. The 

predicted performance measures were subsequently compared with the experimental 

performance data to validate the developed model.   

4.3.1 Experiments and Data Collection 

A DMFC kit, TekStak
TM

, manufactured by Parker Hannifin Energy Systems was used for the 

experiments, which were introduced in Chapter 3. The DMFC is composed of an MEA, two 

graphite end plates with channels for the anode and cathode, and two aluminum end plates with 

Teflon
TM

 current isolators. The MEA is composed of a Nafion 117 membrane, an anode with 

catalyst of Pt-Ru, and a cathode with catalyst of Pt. Both anode and cathode are thick layers of 

carbon paper or cloth with catalysts deposited on them. The carbon paper or cloth of the anode 

and cathode also diffuses methanol and oxygen to the catalysts for reaction. The total electrode 

active area, A, is 10 cm
2
 with a serpentine flow field.  

The experiments were conducted by measuring the current density and cell output voltage when 

changing the external resistance load at different operating conditions. Three operating 

parameters considered in this work include temperature, methanol concentration, and methanol 

flow rate. Details of the experiment setup can be found in Section 3.4.2.  

One research objective is to study the impact of geometric parameters on DMFC performance. 

To achieve this objective, two geometry configurations considering different channel shapes 

were manufactured as shown in Figure 4.2. Both configurations shown in Figure 4.2 have a 

single-path serpentine flow channel with approximately the same flow field open area. The open 

area of the flow field is defined as the area of the channel exposing the MEA to methanol fuel 

(Yang and Zhao, 2005). The major difference between these two configurations is the number of 

channel passes. The first configuration has 13 passes and the second one has 19 passes. The 

widths of channels for these two configurations were selected as 1.372 mm and 0.889 mm, 

respectively, as shown in Table 4.2. 



                       

76 

 

 

Four tests were conducted for the two configurations. Three tests were conducted for the first 

configuration to obtain the coefficients of the semi-empirical relationships in the CFD model. 

One test was carried out for the second configuration to collect performance data and compare it 

with the data predicted using the fitted CFD model. Since the model was developed based on the 

assumption that the air flow rate at cathode side is sufficient large, this air flow rate was selected 

as 1,000 ccm for all the tests. Table 4.3 gives the operating parameters for the 4 tests. 

After the experiments, four groups of performance data (i.e., I-V curves) were obtained. The 42 

current-voltage data pairs from tests No. 1 to No. 3 were used to obtain the values of coefficients 

in the semi-empirical relationships. The 13 data pairs from test No. 4 were used to validate the 

developed DMFC model.  

 

Figure 4.2. Two geometric configurations of graphite end plates. 

Configuration 1 
Configuration 2 

Table 4.2. Geometry parameters for the two configurations. 

 Configuration 

No. 

Number of 

Paths 

Open Area  

(mm
2
) 

Channel Width  

(mm) 

Channel Depth  

(mm) 

1 13 558.1 1.372 0.5 

2 19 512.7 0.889 0.5 
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4.3.2 Fitting of Coefficient Values in the CFD Model 

The adaptive metamodeling method given in Section 4.2.5 was employed to obtain the values of 

the eight coefficients in the semi-empirical relationships given in Equations (4.30) and (4.31). In 

this research, the experimental data collected from tests No. 1 to No. 3 were used to obtain these 

coefficients. Values of these fitted coefficients are shown in Table 4.4. Kriging metamodeling 

tool, DACE, developed by Lophaven et al. (2002) was selected for implementing the adaptive 

metamodeling method. 

 

4.3.3 Validation of the CFD Model 

Using the CFD model with the fitted coefficients, the I-V curves considering the three operating 

conditions of the tests No. 1-3 are plotted as shown in Figure 4.3. Comparing the CFD model and 

the data from the three experimental tests, also shown in Figure 4.3, it can be seen that the CFD 

model effectively describes the relationships between current density and cell voltage at different 

operating conditions. Figure 4.4 shows the data plotted using the fitted CFD model and the data 

collected from test No. 4.   

Table 4.4. Values of model coefficients fitted using the experimental data. 

 Coefficient Value Coefficient Value 

c1 9.9033×10
-5 c5 1.5780×10

-4 
c2 5.2070×10

-9 c6 8.5645×10
-8

 

c3 -4.2782 c7 -8.8041 

c4 1.21×10
-2

 c8 2.49×10
-2

 

 

Table 4.3. Operating parameters for 4 designed tests. 

 Test 

No. 

Methanol Flow 

Rate (ccm) 

Methanol 

Concentration (M) 

Temperature (K) Geometric 

Configuration 

1 3.06 0.5 343 1st 

2 3.06 0.5 333 1st 

3 2.27 0.5 343 1st 

4 3.06 0.5 343 2nd 
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Figure 4.4. Simulation data and experimental data for second geometric configuration with operating 

parameters given in Table 4.3. 

 

Figure 4.3. Simulation data and experimental data for the first geometric configuration with operating 

parameters given in Table 4.3. 
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It should be noted that the coefficients used in the CFD model of this case study are accurate 

only around operating conditions similar to the operating parameters selected for the 

experiments. The three operating parameters for the second geometric configuration experiment 

were selected as the T = 343 K, CCH3OH = 0.5 M, and FCH3OH = 3.06 ccm, identical to test No. 1, 

and similar to the other test conditions listed in Table 4.3. 

 

4.4 Influences of Geometric and Operating Parameters on Performance 

The fitted CFD model used in this research to study the influences of geometric parameters and 

operating parameters on DMFC performance measures will be discussed in the following 

sections. 

4.4.1 Influences of Geometry Parameters on DMFC Performance 

The channel width and height are selected to study the influences of geometric parameters on 

DMFC performance. Figures 4.5 and 4.6 show the influences of channel width and height on 

DMFC performance. The operating conditions for all simulations are the same: T = 343 K, 

Figure 4.5. Simulation data to show influence of width of flow channel on DMFC 

performance. 
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CCH3OH = 0.5 M, FCH3OH = 4.0 ccm, and FAIR = 1,000 ccm. The open areas (i.e., the area of the 

channel exposing the MEA to methanol fuel) of these configurations are also very close. In 

Figure 4.5, the width of the flow channel was selected as 1.372 mm, 0.889 mm, and 0.737 mm, 

while the height was selected as 0.75 mm. In Figure 4.6, the height of the flow channel was 

selected as 0.5 mm, 0.75 mm and 1.0 mm, while the width was selected as 0.889 mm. 

 

It can be seen in Figure 4.5 that the DMFC performance increases as flow channel width 

decreases. One possible reason is that when the width of the flow channel is decreased, the total 

length of the flow channel is increased to maintain the open area of the flow field, therefore the 

pressure in the flow field also increases. High pressure can increase the velocity of methanol in 

the diffusion layer. In other words, high pressure can improve the mass transfer efficiency in 

DMFC and smaller channel width can provide better performance.  

In Figure 4.5, it can be seen that at very low current density, the voltages of the three curves are 

similar, but at high current density, the voltages are different. This is because that at low current 

density, the methanol delivered into the flow field is sufficient due to its low reaction rate. At 

high current density, however, the methanol consumption rate is higher due to its high reaction 

Figure 4.6. Simulation data to show influence of height of flow channel on DMFC 

performance. 
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rate, leading to insufficient methanol for reaction. In this case, the high pressure with smaller 

channel width can improve the reaction rate of methanol.  

From Figure 4.6, it can be seen that the DMFC performance increases with a decrease in flow 

channel height. The reason is similar to that for the change of width of the flow channel. When 

the height of the channel is decreased, pressure in the flow field is then increased, leading to 

improvement of mass transfer efficiency. It should be noted that the decrease of flow channel 

height may not always increase the cell performance, because carbon dioxide gas bubbles can 

block the flow channel when the height of the channel is very small. 

The pressure distributions obtained through CFD simulation in the diffusion layers of the three 

bipolar plates are shown in Figure 4.7. The channel widths for designs A, B, C were specified as 

1.372, 0.889, 0.737 mm. Through CFD simulation, the pressure drops  corresponding to designs 

A, B and C were calculated as 0.48, 1.45 and 1.94 kPa.  

 

Figure 4.7. Pressure distributions obtained by CFD simulation in the diffusion layers of the three bipolar plates. 

4.4.2 Influences of Operating Parameters on DMFC Performance 

As noted before, the fitted CFD model in the case study is only effective near the operating 

condition of T = 343 K, CCH3OH = 0.5 M, and FCH3OH = 3.06 ccm. Therefore a discussion on the 

influences of operating parameters on DMFC performance is qualitative in nature.  
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Figures 4.8, 4.9 and 4.10 show the influences of the three operating parameters, including 

temperature, methanol concentration, and methanol flow rate, on DMFC performance. In this 

study, the geometric parameter values are held constant to the second configuration of the 

DMFC. Figure 4.8 shows the influence of temperature on DMFC performance. Three 

temperature levels were selected as: T = 323 K, T = 333 K, and T = 343 K. The other operating 

conditions are: CCH3OH = 0.5 M, FCH3OH = 4.0 ccm, and FAIR = 1,000 ccm. From Figure 4.8, it can 

be seen that the performance of the DMFC can be improved significantly when the temperature 

is increased. As is known, the chemical energy of molecules increases with increased 

temperature, generating more ions and electrons per Equations (3.2) and (3.3). The mass transfer 

efficiency can also be improved when temperature is increased. Figure 4.9 shows the influence 

of methanol concentration on performance of the DMFC under the operating conditions of T = 

343 K, FCH3OH = 4.0 ccm, and FAIR = 1,000 ccm. Three methanol concentration levels were 

selected as: CCH3OH = 0.25 M, CCH3OH = 0.5 M, and CCH3OH = 1.0 M. It can be seen from Figure 

4.9 that when methanol concentration increases from 0.25 M to 1.0 M, the performance is 

decreased at low current density ( 0.03 A cm
-2

). This is because some methanol molecules 

cannot be consumed completely in the reaction. A portion of methanol molecules penetrate 

Figure 4.8. Simulation data to show influence of temperature on DMFC performance. 
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through the membrane to cathode side, leading to methanol crossover. A higher methanol 

concentration can lead to higher methanol crossover at low current density. At high current 

density (> 0.03 A cm
-2

), when methanol concentration changes from 0.25 M to 0.5 M, the 

performance is increased since more methanol molecules are consumed at higher methanol 

concentration and the crossover is not as significant at high current density. When the methanol 

concentration is further increased from 0.5 M to 1.0 M, the contribution of methanol crossover 

again becomes significant, thus leading to a decrease in performance.  

Figure 4.10 shows the influence of methanol flow rate on DMFC performance when T = 343 K, 

CCH3OH = 0.5 M, and FAIR = 1,000 ccm. The three levels of methanol flow rate were selected as 

FCH3OH = 4.0 ccm, FCH3OH = 5.0 ccm, and FCH3OH = 6.0 ccm. From Figure 4.10, the DMFC 

performance is observed to increase only slightly with increased methanol flow rate. This can be 

explained by an improved mass transfer of methanol in the anode catalyst layer as the methanol 

flow rate increases. However when the methanol flow rate is sufficiently high, cell performance 

does not improve significantly. Overall, the influence of methanol flow rate is not as significant 

as the influences of temperature and methanol concentration. This result is also matched with the 

findings in Chapter 3.  

 

Figure 4.9. Simulation data to show influence of methanol concentration on DMFC 

performance. 
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4.5 Summary 

A three-dimensional computational fluid dynamics model has been developed in this research to 

study the influences of geometric and operating parameters on the performance of DMFC. In this 

model, the electrochemical behaviors are described by semi-empirical relationships. Coefficients 

for these semi-empirical relationships are obtained through adaptive metamodeling using data 

collected from experiments. The developed CFD model can be used to predict performance 

based on the geometric and operating parameters. The CFD model also provides a platform for 

the design and control of DMFC systems.    

Compared with existing DMFC models, the CFD modeling approach developed in this research 

has two advantages: 

(1) Sophisticated geometric shapes with serpentine channels, rather than simple geometric 

shapes in existing CFD models, are considered in this work. Therefore, the CFD model can 

be used not only to study the influences of geometric and operating parameters on DMFC 

performance, but also to carry out optimal design of geometric parameters and optimal 

control of operating parameters for developing DMFC systems.    

Figure 4.10. Simulation data to show influence of methanol flow rate on DMFC performance. 
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(2) Based on CFD, a systematic approach to model the relationships between 

geometric/operating parameters and performance measures is introduced in this research. 

This characteristic makes our CFD model be different from existing ones, of which some 

physical/chemical parameter values must be calibrated manually based on experience or 

heuristics. In this CFD modeling approach, semi-empirical relationships are used to 

describe the electrochemical relationships. Adaptive metamodeling for optimization is used 

in fitting the data from experiments to obtain the coefficients in the semi-empirical 

relationships efficiently. 
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CHAPTER 5 COMPARATIVE STUDY ON INFLUENCING FACTORS IN ADAPTIVE 

METAMODELING  

5.1 Overview 

As introduced in Chapters 2 and 4, adaptive metamodeling is effective to describe the relations 

between input and output parameters when extensive effort is required to collect these input and 

output data through experiments or computer based simulation. In the CFD model introduced in 

Chapter 4, an adaptive metamodeling method is developed to reduce the number of data-fitting 

iterations for obtaining the coefficients in the semi-empirical relationships. The metamodels 

developed through adaptive metamodeling can also be used to describe the relationships between 

design/operating parameters and performance measures of direct methanol fuel cell (DMFC) 

systems. Compared with traditional metamodeling, adaptive metamodeling is of higher 

computation efficiency and accuracy.  

The accuracy and efficiency of different adaptive metamodeling methods are influenced by many 

factors, such as the characteristics of the relationships to be modeled, the selected metamodeling 

scheme, sampling size and quality, and so on. For different engineering problems with different 

modeling requirements, different metamodeling methods need to be selected. In this research, 

influences of two factors in adaptive metamodeling, noise level of samples and initial size of 

samples, are investigated through comparative study, such that the appropriate adaptive 

metamodeling method can be selected to solve different DMFC problems. Two cases of adaptive 

metamodeling considering the best output point for optimization and the best fit in a specific 

output parameter space are considered. Three different metamodels, kriging, radial basis function 

and multivariate polynomial, are employed in this study. Various test functions are used to create 

the sample data and evaluate the accuracy and efficiency of the adaptive metamodeling methods 

considering influences of noise and initial size of samples. The results of this research provide 

guidelines for selecting appropriate adaptive metamodeling methods to solve various engineering 

problems. Effectiveness of the developed guidelines has been demonstrated through case study 

applications.    

The issues addressed in this research are summarized as follows. 
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 Two types of adaptive metamodeling problems, adaptive metamodeling for optimization at a 

particular point and adaptive metamodeling for accurate approximation in a certain 

metamodeling space, are considered in this work. Since the quality of input data can be easily 

improved by uniform sampling in the input parameter space without using the metamodel, 

quality of the output data in terms of uniformity in a specific output space, which has to be 

achieved through adaptive metamodeling, is selected in this work.        

 Three popular metamodels, kriging, radial basis function and multivariate polynomial, are 

selected in this research.  

 Two factors in adaptive metamodeling, noise level of samples and initial size of samples, are 

investigated in this research. These two factors play important roles to influence the accuracy 

and efficiency of adaptive metamodeling.  

 Computation accuracy and efficiency are selected in this work to evaluate the quality of an 

adaptive metamodeling method. When the total sample size is given, average error and 

average relative error of the metamodel are used to evaluate the computation accuracy. When 

the required accuracy is given, the total sample size is then used to evaluate the computation 

efficiency.  

 Various test functions with different relationships between the input and output parameters 

are selected to create the sample data and to evaluate the adaptive metamodeling methods.       

5.2 Adaptive Metamodeling 

Metamodeling techniques were initiated from many different disciplines including statistics, 

computer science and engineering. The metamodels were developed as “surrogates” of the actual 

relationships that usually require expensive and extensive experiments or simulation to obtain 

(Wang and Shan, 2007). 

In metamodeling, the relationship between a vector of input parameters, x, and an output 

parameter, Y, can be formulated as:  

21
=  )(f̂Y x  (5.1) 
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where Y is a random output variable, )(ˆ f  is the approximated relationship, 1 is the error of 

sample data due to the uncertainty in measurement, and 2 is the error of metamodel due to the 

uncertainty introduced by the metamodeling method. Many different metamodels, such as 

multivariate polynomial, radial basis function (RBF) and kriging, can be used to build the 

approximation relationship )(ˆ f . In metamodeling, first m sample data (xi,yi) (i=1,2,...,m) are 

collected to build the )(ˆ f . When an input point x0 is given, the metamodel can then be used to 

predict the output Y0 using: 

)(ˆ= 00 xfY  (5.2) 

In non-adaptive metamodeling, the m sample data are collected first to build the metamodel. 

Effective sampling methods, such as the Latin hypercube sampling method (McKay et al., 1979), 

are often used to improve the quality of samples in the whole input parameter space.  

When metamodeling is used for solving specific problems, collection of sample data in specific 

parameter space, rather than the whole parameter space, is then required to improve the accuracy 

and efficiency. This issue is critical when expensive or extensive experiments/simulations are 

required to collect the sample data. Since the relationship is unknown at beginning, initial 

samples are usually collected to build the initial metamodel. This currently developed metamodel 

is then used to identify the input parameters that have the best potential to lead to the expected 

output result. Due to the errors of the metamodel, the actual output obtained from 

experiment/simulation is usually different from the expected one. The previously obtained 

metamodel is subsequently updated to improve its quality using the new pair of input-output 

data. The method to iteratively modify the metamodel through an iterative sampling process is 

called adaptive metamodeling.    

In this work, two types of adaptive metamodeling problems are considered: (1) adaptive 

metamodeling for optimization, and, (2) adaptive metamodeling for uniformity in specific output 

space.  
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5.2.1 Adaptive Metamodeling for Optimization 

The presently developed adaptive metamodeling methods are primarily used for optimization. In 

these methods, design variables are modeled as input parameters and optimization objective 

function is modeled as the output parameter. The algorithm is composed of 4 steps as follows.  

Step 1: The m initial samples with input parameters xi (i=1,2,...,m) and output parameter Yi 

(i=1,2,...,m) are collected to build the metamodel:  

)(= xmfY  (5.3) 

Step 2: Based on the metamodel relationship fm, we can identify the potential input parameters x
*
 

that lead to the minimum output through optimization: 

 x
x

m
trw

f
...

min  (5.4) 

Step 3: The optimization result of x
*
 is then selected as the vector of input parameters for the 

(m+1)-th sample xm+1. The output Ym+1 corresponding to the xm+1 is subsequently 

obtained through experiment or simulation.  

Step 4: The new pair of data, (xm+1, Ym+1), together with all the previously collected sample data 

are used to update the metamodel into a new relationship fm+1:  

 x1 mfY  (5.5) 

If the optimization criteria are satisfied, the process is stopped. If not, go to Step 2.  

In this research, the simulated annealing function called simulannealbnd() in Matlab 

R2013a global optimization toolbox was selected for obtaining the potential input parameters 

based on Equation (5.4).     

5.2.2 Adaptive Metamodeling for Uniformity in Specific Output Space 

In this research, a new case of adaptive metamodeling for uniformity in specific output 

parameter space is introduced. The traditional sampling methods focus on achieving the 

uniformity in the input parameter space, as shown in Figure 5.1(a). This approach is effective to 

predict Y0 based on the given x0 using the developed metamodel, since a metamodel developed 
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by sample data with good uniformity in the whole input parameter space is usually considered 

accurate and robust (Hickernell and Liu, 2002). In engineering design, however, the target value 

Y0 sometimes is given first, and the design is to identify the x0 to achieve the target Y0. In this 

case, uniformity of the output parameter space, as shown in Figure 5.1(b), has to be considered. 

Adaptive metamodeling is employed in this work to identify the sample points with the best 

uniformity in the output parameter space. For the design problem to obtain the input parameters 

x0 from a given target Y0, only the uniformity in a specific output parameter space needs to be 

considered.  

 

The algorithm of adaptive metamodeling for uniformity in specific output space is composed of 

4 steps. 

Step 1: The m initial samples with input parameters xi (i=1,2,...,m) from the whole design space 

and output parameter Yi (i=1,2,...,m) from the whole output space  are collected to build 

the metamodel:  

)(= xmfY  (5.6) 

Step 2: Based on the metamodel relationship fm, we can identify the potential input parameters x
*
 

that lead to the best uniformity in specific output space through optimization: 

)}(,,...,,{ max 21
...

x
x

mm
trw

fYYYuniformity  (5.7) 

where Y1,Y2,...,Ym are the m output parameter values in the m samples, and fm is the 

metamodel relationship obtained using the m samples.    

X 

Y Y 

X 

(a). Uniform input space. (b). Uniform output space. 

Figure 5.1. Uniform input space and uniform output space. 
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Step 3: The optimization result of x
*
 is then selected as the vector of input parameters for the 

(m+1)-th sample xm+1. The output Ym+1 corresponding to the xm+1 is subsequently 

obtained through experiment or simulation.  

Step 4: The new pair of data, (xm+1, Ym+1), together with all the previously collected sample data 

are used to update the metamodel into a new relationship fm+1:  

 x1 mfY  (5.8) 

If the optimization criteria are satisfied, the process is stopped. If not, go to Step 2. 

In this research, the simulated annealing function called simulannealbnd() in Matlab 

R2013a global optimization toolbox was selected for obtaining the potential input parameters 

based on Equation (5.7).     

5.3 Scope of This Study 

This research focuses on the study of influences of two factors, noise level of samples and initial 

size of samples, on accuracy and efficiency of different adaptive metamodeling methods.  

5.3.1 Two Influencing Factors 

Two influencing factors are considered in this research: (1) noise level of samples, and, (2) initial 

size of samples.  

Noise level of samples 

The various uncertainties, especially the uncertainties of the measurement devices and 

measurement processes, lead to the errors of the collected sample data that are used to train the 

metamodel. Different levels of noises have different impacts on the metamodels as shown in 

Figure 5.2. When the noise level is low as shown in Figure 5.2(a), the metamodel that can better 

interpolate the measurement points should be selected. When the noise level is high as shown in 

Figure 5.2(b), the metamodel with smoother change of the shape should be selected. 
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Initial size of samples 

In adaptive metamodeling, initial samples are collected to build the initial metamodel. When the 

initial sample size is too small, new sample points at wrong locations are often identified based 

on the poorly developed metamodel, leading to slow progress and long training time as shown in 

Figure 5.3. Although the progress with large number of samples is significant, great effort has 

already been devoted for creating these initial samples at beginning. Therefore selection of 

appropriate initial sample size is expected to obtain good tradeoff between the effort to collect 

the initial samples and the training progress. 

 

Error 
With small initial 

sample size 

Figure 5.3. Influence of initial sample size. 

Number of Samples 

With appropriate 

initial sample size 
With large initial 

sample size 

s1 s2 a1 a2 l1 l2 

Acceptable 

Error 
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Y 

(a). Low noise level. 

Figure 5.2. Influence of noise level in samples. 

Metamodel with good interpolation 

Metamodel with smooth change 

 

X 

Y 

(b). High noise level. 

True relationship 

Sample point 
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5.3.2 Metamodels 

Among various metamodels, kriging, radial basis function (RBF) and multivariate polynomial 

are the three most popular ones selected in metamodeling (Wang and Shan, 2007; Zhao and Xue, 

2010). The kriging method, although complicated, can model the approximation relationship 

accurately with small number of data. The RBF is fairly easy to implement with reasonably good 

quality. The multivariate polynomials, especially the cubic polynomial, are often used in 

numerical method for data fitting due to their simplicity. In this research, these three metamodels 

are selected for the study.       

Kriging method 

Kriging method was originated from the geostatistics community (Matheron, 1963) and used by 

Sacks et al. (1989) to model computer experiment. Kriging method is based on the assumption 

that the true system response can be modeled by:  

   xx ZfY ii

m

i


0=

=  (5.9) 

where fi(∙) is a regression function, βi is the coefficient for fi(·), m+1 is the number of regression 

functions, and Z(·) is the stochastic process with mean of zero and covariance defined by:  

      kjjkkj RCov xxθxx ,,=Z,Z 2  (5.10) 

where  is the process variance, and Rjk(·) is the correlation function. The linear part of 

Equation (5.9) is usually assumed to be a constant (called ordinary kriging), whereas the 

correlation function Rjk(θ, xj, xk) is generally formulated as:  

   kijii

p

i

kjjk xxQR ,,=,,
1=

xxθ  (5.11) 

where p is the dimension of x, xji is the i-th component of xj, xki is the i-th component of xk, and 

Q(·) is usually assumed to be Gaussian as:  

   2,, iikijii dexpxxQ   ,  kijii xxd =  (5.12) 

where θi is a coefficient to be determined.  
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The linear predictor of kriging method is formulated as:  

   yxcx Tg =ˆ  (5.13) 

where c
T
(·) is the coefficient vector, and y is the vector of the observations at the sample sites 

(x1,...,xn): 

    Tnyy xxy 1=   (5.14) 

By minimizing the prediction variance 
2

t : 

   22 ˆ= YgEt x  (5.15) 

with respect to the coefficient vector c
T
(x), the best linear unbiased predictor (BLUP) is solved as 

(Lophaven et al., 2002):  

       yRFFRFfrRFyRrx
11111=ˆ   TTTTTg  (5.16) 

where  

    TnRR xxθxxθr ,,,,= 1   (5.17) 
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     Tmff xxf 0=  (5.20) 

The coefficients θ can be obtained by using maximum likelihood estimation as (Lophaven et al., 

2002): 

  2
1

min  nRθ
θ

  (5.21) 
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where |R| is the determinant of R, and σ is obtained by generalized least squares fit as (Lophaven 

et al., 2002): 

   *T*

mn
FβyRFβy 



12

1

1
=̂  (5.22) 

where  β
*
 is the coefficients obtained from generalized least squares fit and is calculated by:  

  yRFFRFβ
111* =  TT

 (5.23) 

The kriging metamodeling function in the DACE toolbox developed by Lophaven et al (2002) 

was used in this research. 

Radial basis function (RBF) method 

The radial basis function (RBF) model was first developed by Hardy (1971). An RBF model can 

be described by:  

    ii

m

i

bf xxx  
1=

0=ˆ  (5.24) 

where xi is a center point selected from the training dataset, b(·) is the basis function, β0 is a 

constant, βi is the coefficient of a basis function, and m is the number of center points. Popular 

basis functions, including Gaussian, multiquadric and thin plate spline functions, are given in 

Equation (5.25).   
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 (5.25) 

where ε is a coefficient.  In our research, Gaussian basis function is used for low dimensional 

problems and thin plate spline basis function is used for high dimensional problems. 
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Multivariate polynomial method 

Multivariate polynomial method here refers to the polynomial used by response surface method 

(Myers and Montgomery, 1995). The general form of a multivariate polynomial model of degree 

d can be written as:  

  2

>

0=ˆ
iii

i

jiij

iji

ii

i

xxxxg   x d

iiii

i

kjiijk

jkiji

xxxx ...

>>

...     (5.26) 

where xi is a component of x, and β0,…,βi,…,βij,…,βijk,… are coefficients. Linear least squares 

estimation can be applied to this linear regression model (in terms of β) to obtain the best fit to 

the data. The stepwise forward selection scheme based on mean squared error (Miller, 2002) can 

be used to reduce the number of terms in the polynomial. 

5.3.3 Test Functions 

Test functions are used to evaluate the adaptive metamodeling methods. In research on 

metamodeling, many test functions have been developed (Simpson et al., 2001). In this research, 

five test functions are selected. These test functions are classified into two categories: low-

dimensional test functions with two input parameters and high-dimensional test function with six 

input parameters. 

(1) Low-dimensional test functions 

 Branin function 
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 Six-hump camel back function 
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 Booth function 
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 Beale function 
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(2) High-dimensional test function 

 Hartmann 6 function 
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where aij, ci and pij (i=1,2,...,4; j=1,2,...,6) are defined by: 
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(5.34)

                     

 

5.3.4 Data Sampling Methods 

Data sampling methods in adaptive metamodeling are classified into two categories: initial data 

sampling and adaptive data sampling. Initial data sampling is used to build the initial metamodel 

considering the whole input space. The regular one-time sampling method, like random sampling, 

Latin hypercube sampling and uniform sampling, can all be used for initial sampling. Adaptive 

data sampling aims at creating new sample data only in the space we are interested in.   

Latin hypercube design (McKay et al., 1979) is used in this work for initial sampling. The basic 

idea for the Latin hypercube sampling method is to divide the design space Cs into n strata with 

equal marginal probability 1/n and then sample once from each stratum (Fang et al., 2006). The 
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goal is to ensure that each input variable has all portions of its range represented (Sacks et al., 

1989). The obvious advantages of Latin hypercube sampling method have been introduced in 

Section 2.3.1. The function called lhsdesign() in Matlab R2013a was selected for Latin 

hypercube design.     

In adaptive sampling, when the adaptive metamodeling is used for optimization, the new sample 

should be created at or near the location with the minimum output. The input parameters of the 

new sample data are identified using Equation (5.4). When the adaptive metamodeling is used 

for achieving uniformity in a specific output space, the new sample should be identified at the 

location with the maximum uniformity of the output measures in this specific output space. In 

this work, several candidate points are created within the output space. For each of these 

candidate points, the modified L2 discrepancy developed by Hickernell (1998a) is used to 

evaluate the uniformity of the output data. The candidate with the best uniformity in output space 

is selected as the expected output to identify its potential input parameters using Equation (5.7) 

for a new sample. For other discrepancy measures, such as maximin and minimax, they are not 

effective to create sufficient samples when only some of the input variables have significant 

contributions to the output (Morris and Mitchell, 1995).  

The centered L2 discrepancy is calculated by:   
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where n is the number of points, p is the dimension of the output parameters, and xji is the value 

in the i-th dimension of the j-th point. Since only one output parameter is considered in 

metamodeling, p and i are selected as 1s. The value of centered L2 discrepancy ranges from 0 to 

1. The smaller the value of centered L2 discrepancy is, the more uniform the samples are 

scattered in the space.  
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5.4 Study on Influence of Noise Level in Sample Data 

The sample data with different levels of noises are obtained by adding artificial noises to the data 

created from the test functions. When the test function is defined by f(x), the sample data with 

artificial noises are created by: 

ZxfY )(=

          

(5.36)  

where = 0-2 is a scaling factor, and Z is a random number sampled from the uniform 

distribution in the region (-1,1).   

5.4.1 Adaptive Metamodeling without Influences of Noises 

When in Equation (5.36) is selected as 0, influences of noises are not considered in adaptive 

metamodeling. In this work, adaptive metamodeling is used for two cases: adaptive 

metamodeling for optimization and adaptive metamodeling for uniformity in specific output 

space. 

Adaptive metamodeling for optimization without influences of noises 

The low-dimensional Branin and six-hump camel back functions and the high-dimensional 

Hartmann 6 function are used for evaluating the efficiency of optimization methods based on 

non-adaptive metamodeling and adaptive metamodeling. The true minimum output measures for 

Branin function, six-hump camel back function and Hartmann 6 function are 0.397887, -1.03163 

and -3.32237, respectively. The optimization process is stopped when the change of the objective 

function in five consecutive iterations is less than 0.05, or the maximum number of iterations is 

reached. The maximum iteration numbers for Branin, six-hump camel back and Hartmann 6 test 

functions in adaptive metamodeling are selected as 50, 50 and 125, respectively. The evaluation 

results are summarized in Table 5.1.     
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From Table 5.1, we can see that for both the low-dimensional test functions and high-

dimensional test function, adaptive metamodeling using kriging and RBF metamodels can 

improve the optimization efficiency and accuracy by using less numbers of sample data and 

modeling the relationships accurately in the regions with the optimal solutions. The multivariate 

polynomial metamodel is not effective for the three test functions due to the multi-optimum 

nature of the test function shapes. The kriging based adaptive metamodeling methods provide 

higher optimization efficiency and accuracy than the RBF based adaptive metamodeling methods 

when noises are not considered. In addition, the low-dimensional optimization problems need 

less numbers of iterations to obtain the optimal results than the high-dimensional optimization 

problems.   

 Adaptive metamodeling for uniformity in specific output space without influences of noises 

Due to the large number of mapped regions in the input parameter space from the same output 

space in high-dimensional problems, study on adaptive metamodeling for uniformity in specific 

output space is limited to only low-dimensional test functions in this work. The four 2-D test 

Table 5.1. Comparison for optimization without influence of noises. 

Test function Metamodel 
Metamodeling 

method 

Initial 

sample size 

Total 

sample size 

Minimum 

output 

Branin Kriging Adaptive  9 23 0.3979 

Non-adaptive  50 50 0.4070 

RBF Adaptive  9 40 0.4019 

Non-adaptive  50 50 0.4274 

Polynomial Adaptive  9 35 3.1574 

Non-adaptive  50 50 16.0924 

Six-hump camel 

back 

Kriging Adaptive  9 25 -1.0319 

Non-adaptive  50 50 -1.0312 

RBF Adaptive  9 31 -1.0307 

Non-adaptive  50 50 -1.0192 

Polynomial Adaptive  9 17 0.0011 

Non-adaptive  50 50 0.2015 

Hartmann 6 

 

Kriging Adaptive  27 51 -3.3055 

Non-adaptive  125 125 -2.9820 

RBF Adaptive  27 77 -3.2699 

Non-adaptive  125 125 -2.6163 

Polynomial Adaptive  27 43 -0.0541 

Non-adaptive  125 125 -0.1686 
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functions, their original output parameter spaces, and the selected specific output spaces for this 

study are summarized in Table 5.2.     

 

For non-adaptive metamodeling, Latin hypercube sampling is used to get N sample points. For 

adaptive metamodeling, n0 initial samples are used to build the initial metamodel, and the 

metamodel is updated with a total of N samples. The initial sample size, n0, and the total sample 

size, N, are selected as n0=60 and N=160. Quality of each metamodeling method is evaluated by 

nt evaluation points. At each evaluation point, the vector with input parameter values is given as 

xi (i=1,2,..., nt), and the predicted output yi’ and the actual output yi are compared to get the 

metamodeling error at this point, i. The average error,  , considering all evaluation points is 

calculated by: 
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(5.37)  

The average relative error,  , considering all evaluation points is calculated by: 







tt n

i i

ii

t

n

i

i

t y

yy

nn 11

'11


          

(5.38)  

where i is the relative metamodeling error at each evaluation point. In this research, the number 

of evaluation points, nt, is selected as nt=200. 

The evaluation results are summarized in Table 5.3. From this table, we can see that adaptive 

metamodeling methods can improve the uniformity of the output samples considering the 

selected specific output space for all the cases compared with the non-adaptive metamodeling 

methods. The kriging method provides the best metamodeling quality in most cases. Multivariate 

Table 5.2. Whole output spaces and specific output spaces for different 2-D test functions. 

Test function Whole input space 
Whole output space  

(approximation) 

Specific output space 

selected for this study 

Branin x1[-5,10], x2[0,15] [0, 300] [140, 150] 

Six-hump 

camel back 
x1[-3,3], x2[-2,2] [-1.0316, 160] [100, 110] 

Booth x1[-10,10], x2[-10,10] [0, 2,600] [200, 220] 

Beale x1[-4.5,4.5], x2[-4.5,4.5] [0, 177,000] [50,000, 51,000] 
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polynomial method is the best for both adaptive metamodeling and non-adaptive metamodeling 

when Booth test function is used, since the Booth test function itself is a polynomial function. 

For other three test functions, multivariate polynomial method is worse than the RBF method for 

both adaptive metamodeling and non-adaptive metamodeling.  

Based on the comparisons in this section, we can see that adaptive metamodeling methods have 

demonstrated effectiveness to improve accuracy and efficiency of metamodeling compared with 

the non-adaptive metamodeling methods. In the rest of this chapter, only adaptive metamodeling 

methods will be discussed. 

 

5.4.2 Adaptive Metamodeling with Influences of Noises 

When  in Equation (5.36) is not selected as 0, influences of noises are considered in adaptive 

metamodeling. In this work, adaptive metamodeling considering influences of noises are used for 

two cases: adaptive metamodeling for optimization and adaptive metamodeling for uniformity in 

specific output space. 

Adaptive metamodeling for optimization with influences of noises 

The simulated samples with noises are created by generating samples using the given test 

functions and adding the noises based on Equation (5.36) considering different noise levels. 

Table 5.3. Comparison for uniformity in specific output space without influence of noises. 

Errors comparison for different metamodeling methods (N=160, n0=60, n1=200) 

Test 

functions 
Metamodel 

Adaptive metamodeling Non-adaptive metamodeling 

Average error 

  

Average 

relative error 

  (%) 

Average error 

  

Average 

relative error 

  (%) 

Branin Kriging 1.5046×10
-6

 1.0436×10
-6

 0.0104 7.1293×10
-3

 

RBF 0.0156 1.0811×10
-2

 0.1833 0.13 

Polynomial 15.1430 10.41 37.0716 25.5000 

Six-hump 

camel back 

Kriging 0.0112 1.0621×10
-4

 0.0331 3.1108×10
-4

 

RBF 0.0304 2.8944×10
-4

 0.1222 3.1108×10
-4

 

Polynomial 35.1793 0.3349 46.6207 0.4434 

Booth Kriging 3.2646×10
-5

 1.5573×10
-5

 0.0013 6.1524×10
-4

 

RBF 0.0150 7.1066×10
-3

 2.3647 1.12 

Polynomial 4.7751×10
-13

 2.2713×10
-13

 1.4132×10
-12

 6.7291×10
-13

 

Beale Kriging 0.0479 9.5049×10
-5

 16.9911 3.3643×10
-2

 

RBF 0.7346 1.4534×10
-3

 33.0104 6.5367×10
-2

 

Polynomial 2.5600×10
3
 5.07 1.5612×10

4
 30.91 
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When the noise level  is selected as 0, the noises in samples are not considered (see the 

discussions in Section 5.4.1).  

Two low-dimensional functions and one high-dimensional function are used for evaluating the 

efficiency and accuracy of optimization methods based on adaptive metamodeling considering 

influences of noises. The true minimum output measures for Branin function, six-hump camel 

back function and Hartmann 6 function are 0.397887, -1.03163 and -3.32237, respectively. The 

optimization process is stopped when the change of the objective function in five consecutive 

iterations is less than 0.05, or the maximum number of iterations is reached. The maximum 

iteration numbers for Branin, six-hump camel back, and Hartmann 6 test functions in adaptive 

metamodeling are selected as 100, 100, and 150, respectively. The evaluation results for the 

cases when noise level  is selected as 0.01 are summarized in Table 5.4.   

From Table 5.4, we can see that kriging and RBF metamodels can be used for optimization 

considering both cases with noises and without noises. Multivariate polynomial metamodel may 

not be able to find the optimal solution when the maximum iteration number is reached (e.g., for 

the Branin test function) or find the wrong optimal solution (e.g., for the six-hump camel back 

test function). When noises are not considered, kriging is more efficient than RBF for both the 

low-dimensional Branin function and six-hump camel back function, and the high-dimensional 

Hartmann 6 function with smaller total sample sizes. When noises are considered, RBF is more 

efficient than kriging for both the low-dimensional functions and the high-dimensional function 

with smaller total sample sizes. These results match with the finding from the previous research 

by Zhao and Xue (2010) on comparison of non-adaptive metamodeling methods that kriging 

works better than RBF when noise level is low while RBF is more effective than kriging when 

noise level is high. 
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In this research, influences of different levels of noises on the efficiency of metamodeling based 

optimization methods have also been studied. The different levels of  are selected as 0.001, 

0.002, 0.005 and 0.01. The samples without noises (i.e.,  = 0) are also considered in the 

comparison. Since the multivariate polynomial method usually has difficulty to obtain the 

optimal solutions, only kriging and RBF are selected as the metamodels to be studied. The 

comparison results are shown in Table 5.5.  

From Table 5.5, we can see that with the increase of the noise level, the total sample sizes in 

kriging based optimization methods are usually increased considerably while the total sample 

sizes in RBF based optimization methods usually remain minor variations. When noises are not 

considered (i.e.,  = 0) or low, kriging is more efficient than RBF. When noises are high, RBF is 

more efficient than kriging. 

Adaptive metamodeling for uniformity in specific output space with influences of noises 

The conditions to evaluate the quality of adaptive metamodeling methods for uniformity in 

specific output space considering influences of noises are similar to those used to evaluate the 

quality of adaptive metamodeling methods without considering influences of noises. These 

conditions include: 

Table 5.4. Comparison for optimization considering influence of noises. 

Test function Metamodel 

Without noise With noise ( = 0.01) 

Initial 

sample 

size 

Total 

sample 

size 

Minimum 

output 

Initial 

sample 

size 

Total 

sample 

size 

Minimum 

output 

Branin 

 

Kriging 9 23 0.3979 9 58 0.3980 

RBF 9 40 0.4019 9 47 0.4097 

Polynomial 9 35 3.1574 9 100 8.4329 

Six-hump 

camel back 

Kriging 9 25 -1.0316 9 73 -1.0359 

RBF 9 31 -1.0307 9 51 -1.0293 

Polynomial 9 17 0.0010 9 24 -0.0029 

Hartmann 6 

 

Kriging 27 51 -3.3055 27 150 -3.1794 

RBF 27 77 -3.2699 27 89 -3.2547 

Polynomial 27 43 -0.0541 27 150 -2.6429 
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 Only low-dimensional test functions are selected, since large number of mapped regions in 

the input parameter space can be identified from the same output space in high-dimensional 

problems. 

 

 In adaptive metamodeling, n0 initial samples are used to build the initial metamodel, and the 

metamodel is updated with a total of N samples.  

 Quality of each metamodeling method is evaluated by average error,  , and average relative 

error,  , for the nt evaluation points.  

Table 5.5. Comparison for optimization considering influence of different levels of noises. 

 
Test 

functions 

Noise level 

() 
Metamodel 

Initial sample 

size 

Total sample 

size 

Minimum 

Output 

Branin  0 Kriging 9 23 0.3979 

RBF 9 40 0.4019 

0.001 Kriging 9 25 0.3980 

RBF 9 36 0.4000 

0.002 Kriging 9 50 0.3979 

RBF 9 41 0.4213 

0.005 Kriging 9 55 0.3980 

RBF 9 41 0.4164 

0.01 Kriging 9 58 0.3980 

RBF 9 47 0.4097 

Six-hump 

camel back 

0 Kriging 9 25 -1.0316 

RBF 9 31 -1.0307 

0.001 Kriging 9 27 -1.0326 

RBF 9 29 -0.9762 

0.002 Kriging 9 35 -1.0277 

RBF 9 44 -1.0325 

0.005 Kriging 9 60 -1.0365 

RBF 9 48 -1.0238 

0.01 Kriging 9 73 -1.0359 

RBF 9 51 -1.0293 

Hartmann  6 0 Kriging 27 51 -3.3055 

RBF 27 77 -3.2699 

0.001 Kriging 27 47 -3.2625 

RBF 27 68 -3.2916 

0.002 Kriging 27 44 -3.2899 

RBF 27 77 -3.1751 

0.005 Kriging 27 54 -3.2814 

RBF 27 81 -3.1769 

0.01 Kriging 27 150 -3.1794 

RBF 27 89 -3.2547 
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In this work, the initial sample size, n0, and the total sample size, N, are selected as n0=60 and 

N=160. The number of evaluation points, nt, is selected as 200. The noise levels for the samples 

to study Branin, six-hump camel back, Booth, and Beale functions are selected as 5, 0.5, 

0.5 and 2, respectively. The evaluation results are summarized in Table 5.6.  

From this table, we can see that kriging and RBF metamodels can be used for achieving the 

uniformity in specific output space both considering noises and without considering noises for all 

four test functions. Multivariate polynomial is effective for only Booth function which is actually 

a polynomial. Multivariate polynomial cannot be used for the other three test functions. The 

kriging method provides better metamodeling quality than RBF when noises are not considered. 

The RBF is better than kriging when noises are considered.  

5.5 Study on Influence of Initial Sample Size 

Study on influence of initial sample size is based on the following two considerations: 

 When the initial sample size is too small, wrong new sample points are often identified based 

on the poorly developed initial metamodel, leading to slow progress and long training time.  

 When the initial sample size is large, although the training progress is significant, great effort 

has already been devoted for creating the initial samples at very beginning.  

Table 5.6. Comparison for uniformity in specific output space considering influence of noises. 

 
Test 

functions 
Metamodel 

Without noise With noise 

Average error 

  

Average 

relative error 

  (%) 

Average error 

  

Average 

relative error 

  (%) 

Branin  Kriging 1.5046×10
-6

 1.0436×10
-6

 0.1983 0.1400 

RBF 0.0156 1.0811×10
-2

 0.1483 0.1000 

Polynomial 15.1430 10.41 13.3713 9.4500 

Six-hump 

camel back 

Kriging 0.0112 1.0621×10
-4

 0.2823 0.0027 

RBF 0.0304 2.8944×10
-4

 0.2569 0.0025 

Polynomial 35.1793 0.3349 35.0729 0.3339 

Booth  Kriging 2.1284×10
-5

 1.0146×10
-5

 1.8279 0.8700 

RBF 0.0294 1.3955×10
-2

 0.2012 9.6098×10
-2

 

Polynomial 2.2836×10
-13

 1.0868×10
-13

 0.1949 9.2900×10
-2

 

Beale  Kriging 0.0479 9.5049×10
-5

 3.7352 7.3979×10
-3

 

RBF 0.7346 1.4534×10
-3

 0.3928 7.7669×10
-4

 

Polynomial 2.5600×10
3
 5.07 2.8910×10

4
 57.25 
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Therefore selection of appropriate initial sample size is expected to obtain good tradeoff between 

the effort to collect the initial samples and the effort in the training progress. In this research, 

influence of initial sample size on the accuracy and efficiency of adaptive metamodeling 

methods is also studied considering the two cases: adaptive metamodeling for optimization and 

adaptive metamodeling for uniformity in specific output space. Since noises are not considered 

in the study of initial sample size influence, only kriging metamodel is selected.  

5.5.1 Influence of Initial Sample Size on Adaptive Metamodeling for Optimization 

The low-dimensional Branin function and the high-dimensional Hartmann 6 function are used 

for evaluating the efficiency of adaptive metamodeling based optimization methods considering 

different initial sample sizes. The true minimum output measures for Branin function and 

Hartmann 6 function are 0.397887 and -3.32237, respectively. The optimization process is 

stopped when the change of the objective function in five consecutive iterations is less than 0.05, 

or the maximum number of iterations is reached. The maximum iteration numbers for Branin and 

Hartmann 6 test functions in adaptive metamodeling are selected as 50 and 125, respectively.  

The influence of sample size on the efficiency of adaptive metamodeling considering both the 

low-dimensional test function and the high-dimensional test function are summarized in Table 

5.7. During the study, differences in total sample sizes are observed when the different initial 

samples with the same sample size are used for adaptive metamodeling. To solve this problem, 

for one initial sample size, 25 different sample sets are created with the same sampling method. 

The average total number is used to evaluate the optimization efficiency. The average minimum 

output measures for different adaptive metamodeling methods are also provided in Table 5.7.     

 

Table 5.7. Comparison for optimization with different initial sample sizes using kriging metamodel. 

Test function Initial sample size 
Average total sample 

size for 25 sample sets 

Average minimum output 

for 25 sample sets 

 

Branin 

 

2 19.08 0.3979 

4 18.72 0.3980 
9 20.08 0.3979 

Hartmann 6  

 

 

2 38.6000 -3.1924 
4 32.8636 -3.1974 
15 45.1667 -3.2139 
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From Table 5.7, we can see that the too small initial sample sizes can lead to slightly large 

numbers of optimization iterations due to the poor quality of the initial metamodels. When the 

initial sample size is increased, the total number of samples for optimization is decreased when 

the initial sample size is too small. When the initial sample size is large, the increase of the initial 

sample size, however, leads to the increase in the total number of the samples. This result 

matches with the assumptions given in Figure 5.3.  

 

Many initial sample sizes are selected to study the influence of initial sample size on efficiency 

of adaptive metamodeling based optimization methods using the low-dimensional Branin 

function and the high-dimensional Hartmann 6 function as shown in Figure 5.4.   

5.5.2 Influence of Initial Sample Size on Adaptive Metamodeling for Uniformity in Specific 

Output Space 

The conditions to evaluate the quality of adaptive metamodeling methods for uniformity in 

specific output space considering influence of initial sample size are similar to those used to 

evaluate quality of adaptive metamodeling methods for uniformity in specific output space 

considering influence of noise. These conditions include: 

 Only low-dimensional test functions are selected, since large number of mapped regions in 

the input parameter space can be identified from the same output space in high-dimensional 

problems.  

(a). Branin test function. 

 
Figure 5.4. Influence of initial sample size for optimization using kriging metamodel. 

 

(b). Hartmann 6 test function. 
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 Since noises are not considered in the study of the influence of initial sample size, only 

kriging metamodel is selected.  

 For adaptive metamodeling, n0 initial samples are used to build the initial metamodel, and the 

metamodel is updated with a total of N samples.  

 Quality of each adaptive metamodeling method is evaluated by average error,  , and average 

relative error,  , for the nt evaluation points.  

 Due to the uncertainty, different average errors and average relative errors are observed when 

different initial samples with the same sample size are used. To solve this problem, for one 

initial sample size, 25 different sample sets are created with the same sampling method. The 

statistical average errors and average relative errors considering 25 different tests are used to 

evaluate the adaptive metamodeling methods.  

In this work, the total sample size, N, is selected as N=145. The number of evaluation points, nt, 

is selected as 200. The evaluation results are summarized in Table 5.8.  

 

From Table 5.8, we can see that the too small initial sample sizes can lead to slightly large 

average errors and average relative errors due to the poor quality of the initial metamodels. When 

the initial sample size is increased, the average error and average relative error are decreased 

when the initial sample size is too small. When the initial sample size is large, the increase of the 

initial sample size, however, leads to the large average error and average relative error due to the 

smaller number of remaining adaptive iterations in adaptive metamodeling. This result matches 

with the assumptions given in Figure 5.3.  

Table 5.8. Comparison for uniformity in specific output space with different initial sample sizes 

using kriging metamodel. 

 

Test 

function 

Initial 

sample size 

Total sample 

size 
Average error   
for 25 sample sets 

Average relative 

error   (%) for 25 

sample sets 

Branin  5 145 3.0692×10
-6

 2.1332×10
-8

 

10 145 2.9353×10
-6

 2.0371×10
-8

 

20 145 3.5358×10
-6

 2.4554×10
-8

 

40 145 4.1560×10
-6

 2.8796×10
-8
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Many initial sample sizes are selected to study the influence of initial sample size on quality 

measures, including the average error,  , and average relative error,  , of adaptive 

metamodeling for uniformity in specific output space using the low-dimensional Branin function 

and the high- dimensional Hartmann function as shown in Figure 5.5.    

 

The iteration processes with different initial sample sizes and the average errors in these 

iterations for the low-dimensional Branin function are shown in Figure 5.6.    

5.6 Applications in DMFC Modeling 

In this research, adaptive metamodeling method is employed to solve engineering problems in 

the design of a direct methanol fuel cell (DMFC) system, which has been introduced in Chapter 

3. The findings from this comparative study are used to select metamodel and initial sample size. 

Both the adaptive metamodeling for optimization and the adaptive metamodeling for uniformity 

in specific output space are considered in these case studies.  

5.6.1 A Direct Methanol Fuel Cell System 

As introduced in Chapter 2, the performance of a fuel cell is usually modeled by output voltage 

(V) measures at different current density (I) points as shown in Figure 5.7. The I-V curve for a 

particular fuel cell is influenced by operating parameters. In the research given in Chapter 3, four 

operating parameters, including temperature (T), methanol concentration (CME), methanol flow 

Figure 5.5. Influence of initial sample size for uniformity in specific output space 

using kriging metamodel. 

(a). Branin test function. 

 

(b). Branin test function. 
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rate (FME), and air flow rate (FAIR), were considered (Yang et al., 2011). The relationship among 

output voltage, current density, and the four operating parameters can be defined by: 

 AIRMEME FFCTIfV ,,,,

          

(5.39)  

 

The power density, P, another important performance measure for a fuel cell, is calculated by: 

 IFFCTIfVIP AIRMEME ,,,,

          

(5.40)  

Modeling of the relationship in Equation (5.39), however, is a non-trivial task. Extensive 

experiments are usually conducted first to model the relationship among these parameters. In the 

research work given in Chapter 3, 45 experiments with different operating conditions were 

Figure 5.6. Improvement of quality of adaptive metamodeling during the iterations. 
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conducted, and each experiment was used to collect around 15 voltage data at different current 

densities. A semi-empirical model was also developed to model the relationship (Yang et al., 

2011). The samples used in the two case studies of this research are actually obtained from the 

semi-empirical model, rather than the experiments directly, to reduce the effort to implement 

these case studies. The semi-empirical model used in this work is given by: 
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  (5.41) 

 

The five input parameters, including four operating parameters and current density, are 

summarized in Table 5.9.    

Figure 5.7. Curves to model fuel cell performances. 

Cell Voltage 

Power Density 
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5.6.2 Case Study 1: Selection of Initial Sample Size for Adaptive Metamodeling Based 

Optimization 

The Case Study 1 focuses on identification of the appropriate initial sample size for adaptive 

metamodeling based optimization to improve the computation efficiency. 

As shown in Figure 5.7, a maximum power density can be identified for each I-V curve. Each I-

V curve is achieved based on four operating conditions. The objective of the Case Study 1 is to 

obtain the values of four operating parameters, such that the maximum power density for this 

operating condition can reach its maximum value. 

In this work, 20 evenly distributed current density values from 0.0003A to 0.08A are selected for 

each I-V curve, and the power densities corresponding to these current densities are calculated 

using Equation (5.40). Among these power densities, the maximum one at the optimal current 

density is selected as the best solution considering this operating condition. The process to 

identify the optimal current density with the maximum power density for a given operating 

condition can be defined by an optimization problem: 

  IFFCTIfVIP AIRMEME
ItrwItrwItrw

,,,,max)(maxmax
.........


  

(5.42)
  

In Equation (5.42), the four operating parameters are considered as constants. The identified 

optimal current density and its corresponding maximum power density are described by I
*
 and 

Pmax. Since one maximum power density can be identified for each operating condition, the 

maximum power density, Pmax, can be defined as a function of the four operating parameters by: 

),,,(maxmax AIRMEME FFCTPP 
  

(5.43)
  

Table 5.9. Input parameter space. 

 Input parameter Symbol Unit Boundaries 

Current density I A/cm
2
 [0.0003, 0.08] 

Temperature T K [298, 343] 

Methanol concentration CME M [0.25, 2] 

Flow rate of methanol  FME ccm [3.5, 5.5]  

Flow rate of air FAIR ccm [81.2, 140.8]  
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Therefore the problem to identify the optimal operating parameters in the case study can be 

defined by: 

),,,(max max
,,,...

AIRMEME
FFCTtrw

FFCTP
AIRMEME

  
(5.44)

  

Based on the findings from this comparative study, the adaptive metamodeling is designed as 

follows. 

 Since influences of noises are not considered, kriging is used as the metamodel.  

 Since the optimization problem is defined by 4 input parameters, the initial sample size is 

selected as 4 based on the results shown in Figure 5.4. 

The optimization results are summarized in Table 5.10. 

 

The efficiency of the adaptive metamodeling with the proper initial sample size has also been 

compared with the two cases where the initial sizes are not selected properly, as shown in Table 

5.11. Improvement of adaptive metamodeling efficiency measures have also been summarized in 

Table 5.11.  The improvement of efficiency is defined by: 

n

nn *


  
(5.45)

  

where n is the total size when initial sample size is not properly selected, and n* is the sample 

size when initial sample size is properly selected.  

Table 5.10. Optimization results. 

Category Result 

Optimal operating parameters T = 342.9054 K 

CME = 0.2515 M 

FME = 5.4977 ccm 

FAIR = 140.7195 ccm 

Maximum power density Pmax
**

= 0.0151 W/cm
2
 

Initial sample size 4 

Total sample size 17 
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5.6.3 Case Study 2: Selection of Metamodel for Adaptive Metamodeling Considering Uniformity 

in Specific Output Space 

The Case Study 2 focuses on selection of appropriate metamodels for adaptive metamodeling 

considering uniformity in a specific output space. 

The objective of this case study is to obtain the metamodel such that batteries with certain 

voltage requirements can be designed by controlling the operating parameters. To simplify the 

problem, only two operating parameters, including methanol concentration, CME, and flow rate of 

methanol, FME, are selected as the input parameters in this case study. The cell voltage is selected 

as the output parameter. The other two operating parameters, the temperature, T, and the flow 

rate of air, FAIR, and the current density, I, are selected as constants. The relationship given in 

Equation (5.39) is changed into:     

 MEME FCgV ,

          

(5.46)  

The specific cell voltage space is selected as [0.35V, 0.40V]. The cells are connected in series to 

form a stack to deliver the required voltage. The two constant operating parameters are selected 

as T = 333 K and FAIR= 140.8 ccm. The current density is selected at I = 0.03 A cm
-2

.  

In adaptive metamodeling, the initial sample size is selected as 10 based on the results in Table 

5.8 and Figure 5.5, and the total sample size is selected as 145. In addition, 100 evaluation points 

are selected to evaluate the quality of the established metamodel. The next input position in 

adaptive metamodeling at the (m+1)-th iteration is identified by: 

)},(,,...,,{max 21
,...

MEMEmm
FCtrw

FCgVVVuniformity
MEME

  (5.47) 

In this case study, both the samples without noises and samples with noises are considered. 

Table 5.11. Improvement on efficiency of adaptive metamodeling for optimization. 

Metamodeling case 
Initial sample 

size 

Total 

sample size 

Efficiency 

improvement 

With too small sample size 2 18 5.56% 

With large sample size 8 40 57.5% 
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Samples without noises 

When the samples are accurately created, kriging should be selected for metamodeling. The 

average error and average relative error based on kriging method are summarized in Table 5.12.  

 

The result achieved using kriging method has been compared with the result achieved using RBF 

method when the wrong metamodel is selected.  

Improvements in average error and average relative error are also summarized in Table 5.12. The 

improvement of average error is defined by: 







*


  
(5.48)

  

where   is the average error when wrong metamodel is selected, and 
*  is the average error 

when appropriate metamodel is selected. The improvement of average relative error is defined by: 







*


  
(5.49)

  

where   is the average relative error when wrong metamodel is selected, and 
*  is the average 

relative error when appropriate metamodel is selected.  

Samples with noises 

When the samples are created with noises, RBF should be selected for metamodeling. In this 

work, the noise factor  is selected as 0.002. The average error and average relative error based 

on RBF method are summarized in Table 5.13.  

Table 5.12. Improvement of quality in adaptive metamodeling for uniform in specific output space without 

considering influence of noises. 

Category Metamodel 
Average error 

  

Improvement 

in average 

error 
  

Average 

relative error 

  (%) 

Improvement 

in relative 

error 
  

With correctly 

selected metamodel 
kriging 5.9000×10

-6 
99.84% 1.67×10

-4
 99.98% 

With wrongly 

selected metamodel 
RBF 0.0037 

 
0.9800 
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The result achieved using RBF method has been compared with the result achieved using kriging 

method when the wrong metamodel is selected. Improvements in average error and average 

relative error are also summarized in Table 5.13.  

 

5.7 Summary 

Two adaptive metamodeling cases considering the best output point for optimization and the best 

fit in a specific output parameter space were considered. Three different metamodels, kriging, 

radial basis function and multivariate polynomial, were employed in this study. Influences of 

noise level of samples and initial size of samples on efficiency and accuracy of different adaptive 

metamodeling methods were investigated in this research through comparative study. Various 

test functions were used to create the sample data and evaluate the accuracy and efficiency of the 

adaptive metamodeling methods considering influences of noise and initial size of the samples.  

The theoretical contributions and findings identified through this research are summarized as 

follows. 

(1) A new type of adaptive metamodeling problem considering uniformity in specific output 

space was introduced in this research. As the uniformity in input parameter space is usually 

considered in the traditional metamodeling methods to improve metamodeling quality, the 

adaptive metamodeling methods considering uniformity in specific output space can 

improve the quality of metamodeling in that specific space such that better input parameter 

values can be identified to achieve a given target output parameter value than the 

traditional metamodeling methods.     

Table 5.13. Improvement of quality in adaptive metamodeling for uniform in specific output space 

considering influence of noises. 

Category Metamodel 
Average 

error   

Improvement 

in average 

error 
  

Average 

relative error 

  (%) 

Improvement 

in relative 

error 
  

With correctly 

selected metamodel 
RBF 0.0035

 
97.21% 0.9200 97.52% 

With wrongly 

selected metamodel 
kriging 0.1254 

 
34.74 
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(2) The influences of noise level on different adaptive metamodeling methods were studied in 

this research. When noise level in samples is low, kriging method is usually more efficient 

than RBF for adaptive metamodeling based optimization with less number of optimization 

iterations. Kriging method can provide better quality than RBF in adaptive metamodeling 

for uniformity in specific output space with smaller errors. When noise level is high, RBF 

is usually more efficient than kriging for adaptive metamodeling based optimization. RBF 

method can provide better quality than kriging in adaptive metamodeling for uniformity in 

specific output space with smaller errors. Multivariate polynomial method is effective 

when the change of the output parameter is smooth. 

(3) The influences of initial sample size on different adaptive metamodeling methods were 

analyzed in this work. For both adaptive metamodeling for optimization and adaptive 

metamodeling for uniformity in specific output space, large initial sample size and too 

small initial sample size can lead to large total sample size. Therefore selecting of an 

appropriate small sample size can improve the efficiency and quality in adaptive 

metamodeling.  
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CHAPTER 6 A WEIGHTED SEQUENTIAL SAMPLING METHOD CONSIDERING 

INFLUENCES OF SAMPLE QUALITIES IN INPUT AND OUTPUT PARAMETER 

SPACES FOR GLOBAL METAMODELING AND OPTIMIZATION 

6.1 Introduction 

Metamodeling is an effective approach to build the relationship between input and output 

parameters using the sample data collected for these input and output parameters through 

approximation (Simpson et al., 2001). When extensive experimental and computational efforts 

are required to collect the sample data, efficiency and accuracy of the metamodeling methods 

have to be considered. The research on comparative studies of different metamodeling methods 

considering influencing factors has been introduced in Chapter 5. Since a metamodel is 

constructed using the sample data, an improvement in quality of the sample data can also lead to 

the improvement of quality of the metamodel.  

The adaptive metamodeling is usually carried out with the process of sequential sampling. In the 

developed sequential sampling methods considering sample qualities in both input and output 

parameter spaces, contributions of the sample qualities in input and output parameter spaces are 

not changed in the whole adaptive metamodeling process. With the increase of sample size in 

adaptive metamodeling, accuracy of the constructed metamodel is also improved and the sample 

data are more scatted in the input parameter space. Therefore a new sequential sampling method 

needs to be developed to put more weight on quality of the samples in input parameter space at 

early iterations in the adaptive metamodeling process while to put more weight on quality of 

samples in output parameter space at late iterations in the adaptive metamodeling process.  

The adaptive metamodeling method with sequential sampling considering different contributions 

of the sample qualities in input and output parameter spaces at different sampling stages is also 

effective to improve the quality of global optimization. The traditional adaptive metamodeling 

methods based on evaluation of sample quality in output parameter space can be used to identify 

the optimal solution efficiently. Since sample quality in the input parameter space is not 

considered, the constructed metamodel may only be accurate at specific locations. Therefore the 

true global optimal solution may not be identified properly. The objective of the research 

presented in this chapter is to develop a new weighted sequential sampling (WSS) method and a 
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two-step global optimization method based on adaptive metamodeling with weighted sequential 

sampling.  

6.2 Comparison of Sampling Methods Considering Sample Quality in Either Input 

Parameter Space or Output Parameter Space  

Since sample qualities in both the input and output parameter spaces are considered in the 

weighted sequential sampling (WSS) method, influences of sample qualities in input and output 

parameter spaces on quality of the metamodel are first studied considering different sampling 

methods and different test functions. In this research, the popular metamodeling scheme, kriging, 

is selected due to its high accuracy and efficiency in metamodeling. Details of the kriging 

method have been given in Section 5.3.2.   

6.2.1 Two Sampling Methods Considering Sample Quality in Either Input or Output Parameter 

Space 

In this research, the Latin hypercube sampling (LHS) method (McKay et al., 1979) is selected as 

the one considering sample quality in input parameter space, and the mean squared error (MSE) 

method (Jin et al., 2002) is selected as the one considering sample quality in output parameter 

space.      

The Latin hypercube sampling (LHS) method  

The basic idea for the LHS method (McKay et al., 1979) is to divide the design space Cs into n 

strata with equal marginal probability 1/n and then sample once from each stratum (Fang et al., 

2006). The goal is to ensure that each input variable has all portions of its range represented (Jin 

et al., 2002). The LHS method has some obvious advantages over other sampling methods 

(McKay et al., 1979): its sample mean has a relatively smaller variance, it can be used for 

generating design points when the number of input variables is large and a great many runs are 

required, and it is cheap in computing and easy for implementation.  
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The mean squared error (MSE) method 

The MSE method (Jin et al., 2002) aims at identifying the new sample point xC with the largest 

estimation of prediction error using the relationship between the input and output parameters 

defined in the currently developed kriging metamodel which is constructed from the existing 

sample set. Suppose the mean squared error at x can be predicted by s
2
(x) using the metamodel, 

location of the next sample point, xC, can be achieved through an optimization process defined 

by:  

)(max 2

 ...
C

x
x

C

s
trw

 (6.1) 

6.2.2 Test Functions 

In this research, four test functions have been selected to evaluate the newly developed weighted 

sequential sampling method and compare it with other sampling methods. These test functions 

have also been used to evaluate the new global optimization method and compare it with the 

traditional adaptive metamodeling-based optimization method.   

(1) Six-hump camel back function 
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(2) Rosenbrock function 
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(3) Goldstein-Price function 
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(4) Colville function (n=4)  
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i=1,2,3,4 

Selection of test functions to evaluate the influences of sample qualities in input and output 

parameter spaces is based on the following considerations and assumptions.  

(1) When the output response surface is smooth, the sample quality in input parameter space 

plays an important role to influence the quality of the metamodel. When the output response 

surface has sharp changes, influence of the sample quality in output parameter space has to 

be considered. 

(2) For a test function with many local optima, the sample quality in input parameter space 

plays an important role to scatter the sample points to well cover the regions with these local 

optima. For a test function with few local optima, the sample quality in output parameter 

space plays an important role to identify the optimal solution efficiently.      

Characteristics of the four selected test functions are summarized in Table 6.1. The six-hump 

camel back function has six minima and two of them are global optima in the whole design space. 

The response surface of this function is relatively smooth. The six-hump camel back function is 

used to study the influence of sample quality in input parameter space. The global minimum for 

the Rosenbrock function lays inside a long, narrow, parabolic shaped flat valley. To find the 

valley is trivial due to the dramatic change of the surface shape. To converge to the global 

minimum of this function, however, is difficult. The Rosenbrock function is used to study the 

influence of sample quality in output parameter space. The Goldstein-Price function has several 

minima and one of these is the global minimum. The surface is flat in most of the areas and has 

only one sharp change. The Goldstein-Price function is used to study the influences of sample 

qualities in both input and output parameter spaces. All the above three 2-D test functions are 

also used to test the new global optimization method. The Colville function is primarily used to 

evaluate the new global optimization method considering large input parameter space.  
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6.2.3 Evaluation of the Constructed Metamodel  

Quality of the constructed metamodel is evaluated by comparing the predicted output values 

using the metamodel and the true output values at the selected input parameter locations. To 

ensure this evaluation independent of the samples created using the selected sampling method, 

another set of samples, called test samples, is created to evaluate the quality of the metamodel. 

The Latin hypercube sampling (LHS) method is used to create the test samples. In this research, 

the relative prediction error (RPE) is selected for evaluating the quality of the constructed 

metamodel at a specific input parameter location. The RPE is defined by:  

i

ii
i

y

yy
RPE




ˆ
,  i=1,…, nt (6.6) 

where iŷ  is the predicted output using the metamodel, yi is the true output in the test samples, 

and nt is the number of test points. Relative errors, rather than absolute errors, are selected 

because the output values vary significantly with different test functions. The quality of the 

metamodel considering the whole design space is evaluated by the mean relative prediction error, 

RPEmean, considering all nt test points.  
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Table 6.1. Test functions and their characteristics. 

 Test function Number of 

input 

parameters 

Output surface Minima Main testing purpose 

Six-hump 

camel back  

2 Smooth 6 minima, 

2 global minima 

Influence of sample quality 

in input parameter space 

Rosenbrock  2 Sharp changes Long narrow valley,  

1 global minimum 

Influence of sample quality 

in output parameter space 

Goldstein-

Price  

2 Smooth in 

general with one 

sharp change 

Several minima,  

1 global minimum 

Influence of sample qualities 

in both input and output 

parameter spaces 

Colville  4 Sharp changes 1 global minimum Influence of large input 

parameter space 
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6.2.4 Comparison between the LHS and MSE Sampling Methods Considering Sample Quality in 

Either Input or Output Parameter Space 

The Latin hypercube sampling (LHS) method is a typical sampling method considering the 

sample quality in input parameter space in terms of uniformity. The mean squared error (MSE) 

method, on the other hand, is a typical sampling method considering the sample quality in output 

parameter space to minimize the prediction error. In this work, three 2-D test functions were 

used to compare the LHS and MSE sampling methods. The comparative study was conducted 

considering two cases: (1) with sufficient sample data, and (2) with limited sample data. 

Comparative study with sufficient sample data 

When the sample points are sufficient, an accurate metamodel can usually be constructed. In this 

case, selection of the right sampling method does not play an important role to the quality of the 

metamodel.  

In this group of comparative study, the total sample sizes for both the LHS and MSE sampling 

methods were selected as 200. The samples for the LHS method were created at one time. For 

the MSE method, the initial sample size was selected as 10. Sequential sampling in the MSE 

method was stopped when the total number of samples reached to 200. Since the different initial 

samples may lead to different qualities of the constructed metamodels, each test function for the 

MSE method was run 10 times.  

Each of the constructed metamodel was evaluated by 500 test samples which were created using 

the LHS method. The results of this comparative study are shown in Table 6.2.  

 

Table 6.2. Comparison between the LHS and MSE methods using sufficient sampling points. 

Test function Sampling method 

LHS MSE 

Sample size RPEmean Sample size RPEmean 

Six-hump camel back nt = 200 0.10% ni = 10, nt = 200 0.13% 

Rosenbrock  nt = 200 0.33% ni = 10, nt = 200 0.37% 

Goldstein-Price nt = 200 0.23% ni = 10, nt = 200 0.31% 

ni: initial sample size, nt: total sample size 
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From Table 6.2, we can see that when the total sample size is large, the different sampling 

methods for each of the test functions lead to the similar metamodeling accuracies.  

Comparative study with limited sample data 

When extensive efforts are required to collect data through experiments or simulations, 

construction of the metamodel with the required quality using limited sample data has to be 

conducted. In this case, selection of the appropriate sampling method plays an important role to 

build the metamodel. 

In this work, the comparative study considering limited sample data was conducted in the 

following way. First the MSE method was used to run the test function. The number of initial 

samples was selected as 10. In this sequential sampling process, when a new sample was 

obtained, this new sample was used to update the metamodel. The constructed metamodel was 

then evaluated using 500 test samples which were created using the Latin hypercube sampling 

method. The sequential sampling process was continued until the RPEmean for the 500 test 

samples was less than 5%. The number of total samples, nt, for a test function was then used to 

create the samples using the LHS method to evaluate the LHS method for the same test function. 

Since the different initial samples may lead to different qualities of the constructed metamodels, 

each test function for the MSE method was run 10 times.  

Each of the constructed metamodel was further evaluated by 500 test samples which were 

created using the LHS method. The results of this comparative study are shown in Table 6.3. The 

accuracies between the LHS and MSE methods are also compared by a ratio, α, representing how 

much the LHS method is better than the MSE method.  

LHSmean

LHSmeanMSEmean

RPE

RPERPE

,

,, 
  (6.8) 

From Table 6.3, we can see that the LHS method is considerable better than the MSE method for 

the six-hump camel back function. The MSE method is considerable better than the LHS method 

for the Rosenbrock function. For the Goldstein-Price function, the accuracy measures for the two 

sampling methods are comparable. The results match well with the assumptions provided in 

Section 6.2.2 and Table 6.1.   
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This comparison between the LHS and MSE sampling methods for different test functions 

considering the influences of sample qualities in input and output parameter spaces serves as the 

foundation to introduce the new sequential sampling method, called the weighted sequential 

sampling (WSS) method, considering influences of the sample qualities in both the input and 

output parameter spaces.   

6.3 The Weighted Sequential Sampling (WSS) Method 

The traditional one-time sampling methods and sequential sampling methods have the following 

problems.  

(1) In the one-time sampling methods such as the LHS method, only influences of the sample 

qualities in input parameter spaces are considered. In most of the sequential sampling 

methods such as the MSE method, only influences of the sample qualities in output 

parameter spaces are considered. These sampling methods may not be effective for the 

problems with multiple optima and dramatic changes of the output surfaces.  

(2) Although some sequential sampling methods, such as the HSS method, have been developed 

considering influences of the sample qualities in both input and output parameter spaces, the 

levels of contributions of these quality measures in input and output parameter spaces are 

not changed during the sequential sampling processes. Since the sample quality in the input 

parameter space plays a more important role in early sampling stages while the sample 

quality in the output parameter space plays a more important role in late sampling stages, a 

new sequential sampling method to automatically adjust the levels of contributions of these 

quality measures in the input and output spaces in different sampling stages needs to be 

developed. 

Table 6.3. Comparison between the LHS and MSE methods using limited sampling points. 

Test function Sampling method 
LHS MSE 

Sample size RPEmean Sample size RPEmean 

Six-hump camelback nt = 75 1.07% ni = 10, nt = 75 1.55% 44.8% 

Rosenbrock  nt = 47 4.78% ni = 10, nt = 47 2.78% -41.8% 

Goldstein-Price nt = 93 2.50% ni = 10, nt = 93 3.04% 21.6% 

ni: initial sample size, nt: total sample size 
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The weighted sequential sampling (WSS) method has been developed in this research to address 

the above two problems.  

6.3.1 Principle of the Weighted Sequential Sampling (WSS) Method 

In the WSS method, selection of the input parameter location for the next sample point, xn+1, is 

based on: (1) the quality measures in both input and output parameter spaces, and (2) the 

weighting factors considering importance of these quality measures.  

The algorithm of the weighted sequential sampling method (WSS) is composed of 4 steps. 

Step 1: The m initial samples with input parameters xi (i=1,2,...,m) and output parameter Yi 

(i=1,2,...,m) are collected to build the metamodel:  

)(= xmfY  (6.9) 

Step 2: Suppose the sample quality in the input parameter space is evaluated by fi(xn+1) (fi(x 

n+1)(0,1) from the best to the worst), and the sample quality in the output parameter 

space is predicted by fo(xn+1) (fo(xn+1)(0,1) from the best to the worst), the sample 

quality considering both the input and output parameter spaces, f(xn+1), in the WSS 

method is defined by:   

)()()( 111   nooniin fwfwf xxx   (6.10) 

where wi and wo are two weighting factors considering importance of the sample quality 

measures in the input and output spaces. The next sample point is identified through 

optimization: 
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  (6.11) 

Since both the quality measure in the input space, fi(xn+1), and the quality measure in the 

output space, fo(xn+1), need to be minimized in Equation (6.11), this optimization problem 

is a typical multi-objective optimization problem. The method to associate the different 

objective functions with weighting factors is a simple and effective way to solve the 

multi-objective optimization problems.  
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Step 3: The optimization result of x
*
 is then selected as the vector of input parameters for the 

(m+1)-th sample xm+1. The output Ym+1 corresponding to the xm+1 is subsequently 

obtained based on experiment or simulation.  

Step 4: The new pair of data, (xm+1, Ym+1), together with all the previously collected sample data 

are used to update the metamodel into a new relationship fm+1:  

 x1 mfY  (6.12) 

If the optimization criteria are satisfied, the process is stopped. If not, go to Step 2. 

The two weighting factors, wi and wo in Equation (6.10), are determined based on the importance 

levels of sample qualities in input and output parameter spaces in the sequential sampling 

process. With the increase of the sample size, the constructed metamodel is more reliable to 

search for the next sample point. Therefore a large wi and a small wo are expected at the early 

stages in WSS while a small wi and a large wo are expected at the late stages in WSS. After the 

initial samples are created, wi = 1 and wo = 0 are first assigned. In the process of sequential 

sampling, the maximum prediction uncertainty calculated using Equation (6.16), which will be 

introduced in Section 6.3.3., is checked every time when the metamodel is updated. When the 

maximum prediction uncertainty is smaller than the result obtained in the last iteration, w1 is 

scaled down by multiplying it with a scaling factor η between 0 and 1. The weighting factors for 

the n+1 sample, wi,n+1 and wo,n+1, are updated by: 

nini ww ,1,    (6.13) 

1,1, 1   nino ww -   (6.14) 

When the value of w1 is very small (<0.01), 0 is assigned to w1 and 1 is assigned to w2.  

In this research, the simulated annealing function called simulannealbnd() in Matlab 

R2013a global optimization toolbox was selected for obtaining the potential input parameters 

based on Equation (6.11).       
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6.3.2 Evaluation of Sample Quality Considering Input Parameter Space  

The centered L2 discrepancy developed by Hickernell (1998a) is used in this work to evaluate 

the uniformity of the input data. The equation for calculating the centered L2 discrepancy 

(CD(Dn))
2
 is given by Equation (2.12).  

The quality measure fi(xn+1) in Equation (6.10) is therefore defined by:   

2

1 ))(()( nni DCDf x   (6.15) 

6.3.3 Evaluation of Sample Quality Considering Output Parameter Space  

Although errors are effective measures to evaluate quality of the sampling methods using the 

metamodels constructed from these sampling methods with the known test functions, the actual 

relationships between input and output parameters are unknown in engineering applications. In 

this work, the statistically predicted standard deviation, instead of error, is selected to evaluate 

the sample quality considering the output parameter space.  

For the kriging metamodeling method selected in this research, the prediction variance at a 

location using the developed metamodel can be calculated by (Lophaven et al., 2002):  

  rRruFRFu
11122

1 1= 

  TTT

n    (6.16) 

where  

frRFu 1= T   (6.17) 

σ, F, R, r and f in Equations (6.16) and (6.17) are the same as those in Equations (5.17)-(5.23), 

and σn+1 in Equation (6.16) is the estimated prediction standard deviation at the input parameter 

location xn+1. 

The quality measure fo(xn+1) in Equation (6.10) is defined by the normalized predicted standard 

deviation:    
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where ni is the number of initial samples, and n is the total number of samples collected so far.   
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6.3.5 Comparative Studies 

The newly developed weighted sequential sampling (WSS) method has been compared with the 

hybrid sequential sampling (HSS) method, a popular method considering sample qualities in 

both input and output parameter spaces. In addition, the WSS method has also been compared 

with the LHS and MSE methods considering sample qualities only in input or output parameter 

space.  

The hybrid sequential sampling (HSS) method 

The hybrid sequential sampling (HSS) method was introduced by Jin et al. (2002) to search for 

the next sample point through maximizing the product of the predicted error using the currently 

constructed metamodel and the minimum distance between the new sample point and the 

existing sample points. In our research, the predicted error used by Jin et al. (2002) is replaced by 

the predicted standard deviation. Therefore input location of the next sample point, xn+1, is 

obtained through optimization:    

 )()( 1min1
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  (6.19) 

where σ(xn+1) is the predicted standard deviation at the new sample point xn+1 based on the 

currently constructed metamodel and calculated using Equation (6.16), dismin is the minimum 

distance between the new sample point xn+1 and the presently collected all sample points. 

Contrary to the WSS method where the weighting factors for the sample quality measures in the 

input and output spaces are changed during the sequential sampling process, the levels of 

contributions of the sample quality measures in input and output spaces in the HSS method 

remain the same during the whole sequential sampling process.   

Comparison between the WSS method and other two sequential sampling methods, the MSE and 

HSS methods  

The newly developed WSS method has been compared with the two popular sequential sampling 

methods, the MSE and HSS methods, based on computation efficiency. In this work, the total 

sampling size under certain accuracy requirement was used as the measure to evaluate the 

computation efficiency. In sequential sampling, the sample size and the modeling accuracy are 
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corellated. If the minmum sample size is reduced under the same accuracy requirement, when 

more data are sampled, the accuracy of the constructed metamodel will also be improved. In 

other words, improvement in metamodeling efficiency can lead to improvement in metamodeling 

accuracy.    

For each test with a selected sequential sampling method and a test function, 10 sets of different 

initial sample points were created. The initial sample sizes were selected as 10 for the three 2-D 

test functions and 15 for the one 4-D test function. After each time of sampling for the new point, 

the metamodel was updated and then 500 test samples created using the LHS method were used 

to evaluate the constructed metamodel. When the RPEmean of the 500 test samples was less than 

5%, the sequential sampling process was stopped, and the total number of samples, nt, was 

recorded.     

The average total sampe sizes and their standard deviations for this comparative study are 

summarized in Table 6.4.  

 

From Table 6.4, we can see that the WSS method has higher computation efficiency than the 

HSS method for all the 4 test functions. The HSS and WSS methods, which consider the 

influences of sample qualities in both input and output parameter spaces, have better 

computation efficiencies than the MSE method, which considers the influence of sample quality 

only in output parameter space. For the six-hump camel back function which is sensitive to the 

influence of sample quality in the input parameter space, the HSS and WSS methods provide 

higher computation efficiencies than the MSE method.  

Table 6.4. Comparison among the MSE, HSS and WSS methods based on metamodeling efficiency. 

Test function Sequential sampling method 

MSE HSS WSS 

ni nt t ni nt t ni nt t 

Six-hump camel back 10 75 23.6 10 65 5.48 10 57 1.70 

Rosenbrock 10 47 12.0 10 41 2.45 10 35 1.29 

Goldstein-Price 10 93 1.96 10 92 2.06 10 87 2.32 

Colville 15 171 40.5 15 189 32.1 15 142 18.5 

ni: initial sample size, nt: average total sample size, t: standard deviation of total sample size  
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Comparison between the WSS and LHS methods  

The newly developed WSS method has also been compared with the one-time sampling method, 

the LHS method, based on metamodeling accuracy. The mean prediction error, RPEmean, was 

selected as the accuracy measure to evaluate the WSS and LHS methods considering three 2-D 

test functions and one 4-D test function. For each test function, first the WSS method was used 

to create the metamodel. The initial sample sizes for the WSS method were selected as 10 for the 

three 2-D test functions and 15 for the one 4-D test function. After each time of sampling for the 

new point in WSS, the metamodel was updated and then 500 test samples created using the LHS 

method were used to evaluate the constructed metamodel. When the RPEmean of the 500 test 

samples was less than 5%, the WSS process was stopped, and the total number of samples, nt, 

was recorded. Due to the random nature in WSS, each test function was run 10 times, and the 

average total sample size was used as the nt and average RPEmean was recorded as the accuracy 

measure. The nt was then selected as the total number of samples to build the metamodel using 

the LHS method. These metamodels were further evaluated using 500 new test samples which 

were created using the LHS method. The accuracy measures for this comparative study are 

summarized in Table 6.5.     

 

From Table 6.5, we can see that the WSS method provides higher metamodeling accuracies than 

the LHS method for all the 4 test functions.  

Table 6.5. Comparison between the LHS and WSS methods based on metamodeling accuracy. 

Test function Sampling method 

LHS WSS 

nt RPEmean ni nt RPEmean 

Six-hump camel back 57 7.13% 10 57 1.91% 

Rosenbrock 35 10.4% 10 35 3.23% 

Goldstein-Price 87 10.4% 10 87 3.24% 

Colville 142 12.6% 15 142 4.61% 

ni: initial sample size, nt: average total sample size, RPEmean: mean relative prediction error  
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6.4 A Two-step Global Optimization Method Based on Weighted Sequential Sampling 

(WSS) 

Since the developed weighted sequential sampling (WSS) method can improve the accuracy and 

efficiency of adaptive metamodeling in the whole design space, the WSS method is employed in 

this research to develop a new global optimization method to improve the optimization quality. 

6.4.1 The Traditional Adaptive Metamodeling-based Optimization Approach and Its Problem in 

Global Optimization 

The traditional adaptive metamodeling-based optimization algorithm is given in Section 5.2.1. It 

is efficient to identify the optimal solution with small number of sample points. Due to the low 

accuracy of the initial metamodel, however, this optimization approach often leads to 

identification of a local optimum, rather than the global one, through improving the 

metamodeling accuracy only in a specific region by sampling data only in that region. To 

improve the quality of global optimization, a metamodel with good quality in the whole design 

space has to be constructed. 

6.4.2 The Two-step Global Optimization Method 

The new global optimization method based on adaptive metamodeling with weighted sequential 

sampling (WSS) is conducted in two steps. 

Step 1: development of an accurate metamodel based on adaptive metamodeling with weighted 

sequential sampling 

Step 2: minimization of the output parameter through adaptive metamodeling-based search with 

samples scattered in different regions in the input parameter space 

In Step 1, first ni initial samples are created using the LHS method and these samples are used to 

build an initial metamodel. Then the WSS method is employed to build the metamodel with a 

total of nt samples considering the quality in the whole design space. Details to build an accurate 

metamodel based on adaptive metamodeling with weighted sequential sampling (WSS) method 

have been well discussed in Section 6.3. 



                       

134 

In Step 2, adaptive metamodeling-based optimization is conducted to minimize the value of the 

output parameter. The method introduced in Section 6.4.1 can be employed for this purpose.  

To further improve the global optimization quality by preventing the solution from falling into a 

local optimum, the quality measure considering input parameter space can be incorporated into 

the optimization objective function. In this work, uniformity is used to evaluate the sample 

quality in the input parameter space to ensure the samples are well scatted in different regions in 

the input parameter space such that the true global optimum cannot be missed. Suppose the 

output parameter of the new sample at Xm+1 can be calculated using the metamodel constructed 

with the m samples by:  

 1 mmfY X  (6.20) 

and the quality of samples in the input parameter space is defined by the centered L2 discrepancy:       

2

1 ))(()( mmi DCDf x  (6.21) 

the objective function in the traditional adaptive metamodeling-based optimization given in 

Equation (5.4) can then be modified to: 
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where wm and wi are weighting factors considering the importance of the optimization objective 

function, fm(Xm+1), and the uniformity of the samples in input parameter space, fi(Xm+1), for the 

new sample at Xm+1. During the optimization process, value of wm is increased and value of wi is 

decreased using a similar method given in Equations (6.13) and (6.14).    

6.4.3 Comparative Studies 

The developed two-step global optimization method introduced in Section 6.4.2 has been 

compared with the traditional adaptive metamodeling-based optimization method given in 

Section 6.4.1 using the four test functions to demonstrate its effectiveness in global optimization.  
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Optimization with the traditional adaptive metamodeling-based optimization method 

The traditional adaptive metamodeling-based optimization approach introduced in Section 6.4.1 

is efficient to identify the optimal solution with small number of sample points. Since quality of 

the samples in input parameter space is not considered, a local optimum, rather than the global 

one, is often achieved. The conditions and failure rates for global optimization using the 

traditional adaptive metamodeling based-optimization method considering the four test functions 

are summarized in Table 6.6. In these optimization processes, the initial sample sizes were 

selected as 10 for the three 2-D test functions and 15 for the one 4-D test function. The 

optimization process was stopped when change of the output parameter value in five consecutive 

iterations was less than 0.05. Since different initial samples may lead to different solutions, each 

2-D test function was run 10 times and the 4-D test function was run 5 times.  

 

From Table 6.6, we can see that for the test functions with simpler shapes such as the six-hump 

camel back function and the Goldstein-Price function, the true global optima can be identified. 

For the Rosenbrock function, the true global optimum sometimes cannot be identified properly 

with 20% of the failure rate. The Rosenbrock function is a classical optimization test function, of 

which the global optimum lays inside a long, narrow, parabolic shaped flat valley and is difficult 

to reach (Molga and Smutnicki, 2005). For the 4-D Colville function, the global optimum cannot 

be identified with 100% of the failure rate. 

Global optimization with the two-step global optimization method 

The two-step global optimization approach introduced in Section 6.4.2 aims at improving the 

quality of global optimization by first constructing a relatively accurate metamodel and then 

searching for the new solution by incorporating the sample uniformity in input parameter space 

Table 6.6. Failure rates with the traditional metamodeling based optimization method. 

 Test function Initial sample 

size 

Test 

times 

Failure rate to obtain the 

global optimum 

Six-hump camel back  10 10 0% 

Rosenbrock  10 10 20% 

Goldstein-Price 10 10 0% 

Colville  15 5 100% 
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into the optimization objective function. Since the sample data used to construct the metamodel 

are well scattered in different regions of the input parameter space, the true global optimum has 

less chance to be missed in the search process. Table 6.7 shows the conditions and failure rates 

for global optimization using the newly developed two-step global optimization method.  

 

In Step 1 of these optimization processes, the initial sample sizes were selected as 10 for the 

three 2-D test functions and 15 for the one 4-D test function. The accurate metamodel for each 

test function was constructed using the adaptive metamodeling method with WSS introduced in 

Section 6.3. After each time of sampling for a new point in WSS, the metamodel was updated 

and then 500 test samples created using the LHS method were used to evaluate the constructed 

metamodel. When the RPEmean of the 500 test samples was less than 5%, the WSS process was 

stopped, and the total number of samples, nt, was recorded.  

In Step 2, adaptive metamodeling based-optimization was employed to identify the point with 

the minimum output. The optimization process was stopped when change of the output 

parameter value in five consecutive iterations was less than 0.05. In this work, each 2-D test 

function was run 10 times and each 4-D test function was run 5 times.     

From Table 6.7, we can see that in addition to the test functions with simpler shapes such as the 

six-hump camel back function and the Goldstein-Price function, the two-step global optimization 

method is effective in global optimization for the 2-D Rosenbrock function with relatively 

complicated shape and the 4-D Colville function with large input parameter space. 

In this comparative study, the initial samples that led to the seven failure cases given in Table 6.6 

were used in the two-step global optimization. The identified global optima for these cases are 

Table 6.7. Failure rates with the two-step global optimization method. 

 Test function Initial 

sample size 

in Step 1 

Total 

sample size 

in Step 1 

Test 

times 

Failure rate to obtain the global 

optimum 

Six-hump camel back  10 57 10 0% 

Rosenbrock  10 35 10 0% 

Goldstein-Price 10 87 10 0% 

Colville  15 142 5 0% 
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shown in Table 6.8. From this table, we can see that the two-step global optimization method is 

effective to achieve the global optima with high quality.   

 

6.5 Applications in Modeling of a DMFC System 

In this research, the WSS method was used to construct accurate metamodels to describe the 

relationships between operating parameters and performance measures of a direct methanol fuel 

cell (DMFC) system. The two-step global optimization method was employed to identify the best 

global operating conditions for the DMFC system. 

6.5.1 An Accurate Metamodel to Describe the Relationship between Operating Parameters and 

Maximum Power Density through Weighted Sequential Sampling 

The direct methanol fuel cell system was introduced in Chapter 3 and Section 5.6.1. The 

relationship between the four operating parameters and the maximum power density output is 

described by the metamodel. The adaptive metamodeling with weighted sequential sampling 

(WSS) method was used in this work to improve metamodeling quality in the whole design 

space. 

As shown in Figure 5.7, a maximum power density can be identified for each I-V curve. Each I-

V curve is achieved based on four operating conditions. Therefore when values of the four 

operating parameters are provided, a maximum power density can be obtained from these four 

operating parameters. In this case study, a metamodel was used to describe the relationship 

between the four operating parameters and the maximum power density. 

Table 6.8. Comparison between the results of the two optimization methods. 

 Test 

function 

True 

global 

optimum 

Test No. Optimum value found by 

the adaptive metamodel-

based optimization method 

Optimum value found 

by the two-step global 

optimization method 

Rosenbrock  0.0 Test 4 3.9542 0.0012 

Test 10 0.5934 0.0033 

Colville  0.0 Test 1 0.5655 0.0186 

Test 2 6.4320 0.0027 

Test 3 6.8199 0.0521 

Test 4 4.9155 0.0051 

Test 5 27.2019 0.0665 
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In this work, 20 evenly distributed current density values from 0.0003A to 0.08A were selected 

for each I-V curve, and the power densities corresponding to these current densities were 

calculated using Equations (5.40) and (5.41). Among these power densities, the maximum one at 

the optimal current density was selected as the maximum power density output considering this 

operating condition. Since one maximum power density can be identified for each operating 

condition, the maximum power density, Pmax, can be defined as a function of the four operating 

parameters by: 

),,,(maxmax AIRMEME FFCTPP   (6.23)
   

Kriging scheme was used to build the metamodel for describing the relationship between the four 

operating parameters and the maximum power density output. Three sequential sampling 

methods, the MSE, HSS and WSS methods, were used for collecting data points. For all these 

three sequential sampling methods, the initial sample size was selected as 15. At each iteration in 

the sequential sampling process, a constructed metamodel was evaluated by 500 test samples 

which were created using the LHS method. A sequential sampling process was stopped when the 

mean relative prediction error of these 500 test points, RPEmean, was less than 0.05. These three 

sequential sampling methods were evaluated based on the total sample sizes considering the 

computation efficiency. These total sample sizes for the three sequential sampling methods are 

summarized in Table 6.9.   

 

From Table 6.9, we can see that the WSS method has a much higher computation efficiency than 

the MSE and HSS methods to obtain the accurate metamodels to describe the relationships 

between the four operating parameters and the maximum power density measure.  

The WSS method has also been compared with the LHS method considering metamodeling 

accuracy. In this work, first the WSS method was used to get the metamodel with a total of 27 

Table 6.9. Comparison among the MSE, HSS and WSS methods considering metamodeling efficiency. 

Metamodeling relation Sampling method 

MSE HSS WSS 

ni nt ni nt ni nt 

),,,(maxmax AIRMEME FFCTPP   15 74 15 79 15 27 

 ni: initial sample size, nt: total sample size 
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samples. Then the LHS method was used to create 27 samples to build another metamodel. 

These two metamodels were further evaluated by 500 test samples. The RPEmean measures of 

these 500 test sample points for the LHS and WSS methods were then compared. The RPEmean 

measures for these two methods are given in Table 6.10.  

 

From Table 6.10, we can see that the WSS method provides better modeling accuracy than the 

LHS method.  

6.5.2 Identification of the Optimal Operating Parameters to Achieve the Maximum Power 

Density Using the Two-step Global Optimization Method 

The metamodel in Step 1 was constructed with 15 inial sample points and 27 total sample points, 

as explained in Section 6.5.1. In Step 2, adaptive metamodeling based-optimization approach 

was employed to obtain the optimal operarting parameter values. The optimization process was 

stopped when change of five consecutive output measures was smaller than 0.0005. The 

optimization results are shown in Table 6.11.  

 

6.6 Summary 

A new sequential sampling method, namely weighted sequential sampling (WSS) method, was 

introduced in this research to improve accuracy and efficiency of adaptive metamodeling 

considering the different levels of contributions of the sample qualities in input and output 

Table 6.11. Optimization of the DMFC operating parameters. 

Objective function The optimal input operating parameters The optimal 

output parameter 

),,,(maxmax AIRMEME FFCTPP   T CME FME FAIR Pmax 

342.9 K 0.2500 M 5.500 ccm 140.7 ccm 0.0151W/cm
-2

 

 

Table 6.10. Comparison between the LHS and WSS methods considering metamodeling accuracy. 

Metamodeling relation Sampling method 

LHS WSS 

nt RPEmean ni nt RPEmean 

),,,(maxmax AIRMEME FFCTPP   27 0.70% 15 27 0.61% 

ni: initial sample size, nt: total sample size  
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parameter spaces at different stages in the sequential sampling process. The WSS method was 

employed in the development of a new global optimization method, namely two-step global 

optimization method, by incorporating the uniformity measure in input parameter space into the 

optimization process to ensure the sample points are scattered in different regions of the input 

parameter space.  

The contributions and findings through this research are summarized as follows. 

(1) As different problems have different relationships between input and output parameters, 

the influences of sample qualities in input and output parameter spaces on the quality of the 

metamodel constructed through adaptive metamodeling approach may be different. Thus 

different sampling methods need to be selected. For the surface with smooth shape and 

many local optima, the sample quality in the input parameter space plays a more important 

role. In this case, the sampling methods considering sampling qualities in input parameter 

spaces, such as the LHS method, should be selected. For the surface with sharp shape and 

few local optima, the sample quality in the output parameter space plays a more important 

role. In this case, the sampling methods considering sampling qualities in output parameter 

spaces, such as the MSE method, should be selected. 

(2) The quality measures in input and output parameter spaces at different stages in the 

sequential sampling process have different magnitudes of contributions. The sample 

quality in input parameter space plays a more significant role in early sampling stages 

while the sample quality in output parameter space plays a more significant role in late 

sampling stages. The newly developed WSS method, which considers both sample 

qualities in input and output parameter spaces while updating the weighting factors of these 

quality measures during the sequential sampling process, provides better accuracy and 

efficiency than the HSS method which also uses the sample qualities in input and output 

parameter spaces for guiding selection of the new samples without considering the 

different levels of contributions of these measures at different sampling stages.  

(3) The newly developed two-step global optimization method can improve the quality of 

global optimization. In the first step, an accurate metamodel considering influences of both 

input and output parameter spaces is developed. Searching for the optimal points by 
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incorporating the uniformity measure in input parameter space into the optimization 

objective function is conducted in the second step to ensure that the sample points are well 

scatted in the input parameter space to prevent the solution from falling into a local 

optimum. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

7.1.1 Summary of This Research 

As stated in Chapter 1, the interests on research and applications of direct methanol fuel cell 

(DMFC) have grown significantly over the recent years. Modeling of fuel cell systems plays an 

important role for the optimal design and operation of the fuel cell systems. In the presently 

developed directly methanol fuel cell modeling methods, however, only some of the important 

operating parameters and simplified geometric structures were considered. In addition, since 

extensive efforts for experiments and simulations are usually required to build the DMFC models 

and achieve the DMFC behaviors, effective modeling tools also need to be developed to improve 

the quality and efficiency in DMFC modeling. To solve these problems, this research work 

focused on two aspects: (1) modeling of direct methanol fuel cell systems, and, (2) development 

of adaptive metamodeling methods to improve efficiency and quality for modeling and 

optimization of DMFC systems. 

(1) Modeling of direct methanol fuel cell systems considering both design and operating 

parameters 

(1.1) Development of a semi-empirical model to describe the relationships between operating 

parameters and performance behaviors of a direct methanol fuel cell system 

A systematic approach to model the relationships between the operating parameters and the 

direct methanol fuel cell performance was introduced in this work and explained in Chapter 3. 

Four operating parameters, including temperature, methanol concentration, flow rate of 

methanol, and flow rate of air are considered in this approach. A semi-empirical model was 

developed to describe the relationships. Experiments were designed and conducted to obtain the 

coefficients in the semi-empirical model. The accuracy of this semi-empirical model was also 

analyzed. In addition, the influences of the operating parameters and possible applications of the 

semi-empirical model were also discussed.  
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(1.2) Development of a CFD model with semi-empirical electrochemical relationships to study 

the influences of geometric and operating parameters on DMFC performance  

A three-dimensional computational fluid dynamics (CFD) model, as explained in Chapter 4, has 

been developed through collaboration with Biao Yu, a visiting Ph.D. student at University of 

Calgary, to study the influences of geometric and operating parameters on the performance of 

DMFC (Yu et al., 2013). In this model, the electrochemical behaviors are described by semi-

empirical relationships. Coefficients for these semi-empirical relationships are obtained using 

adaptive metamodeling based on data collected from experiments. Two geometric configurations 

with serpentine channels at the anode and cathode are considered for CFD simulation. My work 

in the development of the CFD model focuses on the adaptive modeling aspect, while Biao Yu’s 

work focuses on the CFD modeling aspect. 

(2) Improvement of accuracy and efficiency of adaptive metamodeling methods 

(2.1) Comparative study on influencing factors in adaptive metamodeling 

Influences of noise level of samples and initial size of samples on efficiency and quality of 

different adaptive metamodeling methods were investigated in Chapter 5 through comparative 

study. Two adaptive metamodeling cases considering the best output point for optimization and 

the best fit in a specific output parameter space were considered. Three different metamodels, 

kriging, radial basis functions (RBF) and multivariate polynomial, were employed in this study 

for comparison. Various test functions were used to create the sample data and evaluate the 

quality and efficiency of the adaptive metamodeling methods with different noises and initial 

sizes of the samples. The research results have also been applied to the modeling of a DMFC 

system 

(2.2) Development of a weighted sequential sampling method considering influencing factors of 

sample qualities in input and output parameter spaces for global optimization 

A new weighted sequential sampling (WSS) method was introduced in this research to improve 

accuracy and efficiency of adaptive metamodeling considering the different levels of 

contributions of the sample qualities in input and output parameter spaces at different stages in 

the sequential sampling process. Based on the accurate metamodel built with WSS method, a 
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new global optimization method, namely two-step global optimization method, was developed 

by incorporating the uniformity measure in input parameter space into the optimization process 

to ensure the sample points are scattered in different regions of the input parameter space. The 

developed methods have been used to identify the optimal operating parameters of a DMFC 

system.  

7.1.2 Research Contributions 

Through this study, the problems in DMFC modeling, adaptive metamodeling and applications 

of adaptive metamodeling methods in DMFC system design have been examined. The major 

contributions from this research are summarized as follows. 

(1) Modeling of direct methanol fuel cell systems  

 Modeling of all important operating parameters for optimal DMFC system control  

A semi-empirical model, which is effective to describe the relationships between the 

operating parameters and the direct methanol fuel cell performance, is introduced. Through an 

analysis of the influences of operating parameters on the DMFC performance based on the 

semi-empirical model, a better understanding of the DMFC behaviors has been achieved. In 

addition, the influences of the four operating parameters on the open circuit voltage, 

resistance polarization, activation polarization and concentration polarization were also 

achieved. The modeling of the relationships between the operating parameters and the DMFC 

performance measures provides a basis to identify the optimal operating parameters of the 

DMFC system considering different power requirements.  

 Modeling of both operating parameters and design parameters for optimal DMFC system 

design   

CFD is an effective tool to model the relationships between geometric/operating parameters 

and DMFC performance. In the CFD model, the electrochemical behavior near the membrane 

can be described by semi-empirical relationships. The efficiency to obtain the values of 

coefficients in the semi-empirical relationships can be improved through adaptive 

metamodeling. The developed CFD model with semi-empirical electrochemical relationships 
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can be used to predict performance based on the geometric and operating parameters. This 

model also provides a platform for the optimal design and control of DMFC systems. My 

work in the development of the CFD model focuses on the adaptive modeling aspect, while 

Biao Yu’s work focuses on the CFD modeling aspect. 

(2) Adaptive metamodeling considering accuracy and efficiency 

 Selection of the adaptive metamodeling method considering characteristics of the selected 

application 

A new type of adaptive metamodeling problem considering uniformity in specific output 

space was introduced in this research. Compared to the traditional metamodeling methods 

where uniformity in input parameter space is considered to improve metamodeling quality, 

the adaptive metamodeling considering uniformity in specific output space can improve the 

quality of metamodeling in that specific space to identify better input parameter values for  

obtaining a given target output parameter value.     

The influences of noise level and initial sample size on different adaptive metamodeling 

methods were studied in this research. When noise level in samples is low, kriging method is 

usually more efficient than RBF for adaptive metamodeling based optimization with less 

number of optimization iterations. Kriging method can provide better quality than RBF in 

adaptive metamodeling for uniformity in specific output space with smaller errors. When 

noise level is high, RBF is usually more efficient than kriging for adaptive metamodeling 

based optimization. RBF method can provide better quality than kriging in adaptive 

metamodeling for uniformity in specific output space with smaller errors. Multivariate 

polynomial method is effective when the change of the output parameter is smooth. As to 

initial sample, for both adaptive metamodeling for optimization and adaptive metamodeling 

for uniformity in specific output space, large initial sample size and too small initial sample 

size can lead to large total sample size. Therefore selection of an appropriate small sample 

size can improve the efficiency and quality in adaptive metamodeling.  
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 Sequential sampling for adaptive metamodeling considering qualities in both the input and 

output parameter spaces 

For different problems with different relationships between input and output parameters, 

sample qualities in input and output parameter spaces have different influences on the quality 

of the metamodel constructed through adaptive metamodeling approach with different 

sampling methods. For the surface with smooth shape and many local optima, the sample 

quality in the input parameter space plays a more significant role. In this case, the sampling 

methods considering sampling qualities in input parameter spaces, such as the Latin 

hypercube sampling (LHS) method, should be selected. For the surface with sharp shape and 

few local optima, the sample quality in the output parameter space plays a more significant 

role. In this case, the sampling methods considering sampling qualities in output parameter 

spaces, such as the mean squared error (MSE) method, should be selected. 

The newly developed weighted sequential sampling (WSS) method, which considers both 

sample qualities in input and output parameter spaces while updating the weighting factors of 

these quality measures during the sequential sampling process, provides better accuracy and 

efficiency than the hybrid sequential sampling (HSS) method which also uses the sample 

qualities in input and output parameter spaces for guiding selection of the new samples 

without considering the different levels of contributions of these measures at different 

sampling stages. With the accurate metamodel built using the WSS methods, the newly 

developed two-step global optimization method can be used to search for the optimal points 

by incorporating the uniformity measure in input parameter space into the optimization 

objective function to ensure the sample points are well scatted in the input parameter space to 

prevent the solution from falling into a local optimum. 

7.2 Future Work 

Many problems are still left unsolved in modeling of fuel cell systems as well as in adaptive 

metamodeling considering modeling accuracy and efficiency. The major issues that need to be 

addressed in our future work are summarized as follows.   
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7.2.1 Modeling of direct methanol fuel cell systems  

 Our current semi-empirical model is limited to the TekStak
TM

 DMFC. When the semi-

empirical model for a different DMFC is required, new experiments need to be conducted to 

obtain the coefficient values of the semi-empirical model. 

 To improve the CFD model that describes the relationships between geometric/operating 

parameters and performance measures, experiments considering significantly different levels 

of geometric and operating parameters should be conducted to better fit the CFD model for 

optimal geometric design and optimal operating condition control.    

7.2.2 Adaptive metamodeling considering accuracy and efficiency 

 Due to the complexity of adaptive metamodeling problems, the results achieved in the 

comparative study only provide guidelines to make decisions, such as to select the metamodel 

and initial sample size, for solving engineering problems based on adaptive metamodeling 

approach. This comparative study can be further improved by considering more influencing 

factors, metamodel schemes, and test functions with different dimensions.   

 For problems with large dimensions of input parameters, the weighted sequential sampling 

method is low in computation efficiency compared with other popular methods such as the 

Latin hypercube sampling method. Therefore further improvement of the computation 

efficiency is required for the WSS method.  
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