
PARKER IEEE Evol. Comput: Genetic Operators on Floating Point Parameters

Genetic Operators on Floating Point Parameters
J.R. Parker

Laboratory for Computer Vision
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

Abstract
The single bit mutation and one point crossover operations are most com-
monly implemented on a chromosome that is encoded as a bit string. If the
actual arguments are real numbers this implies a fixed point encoding and
decoding each time an argument is updated. A method is presented here for
applying these operators to floating point numbers directly, eliminating the
need for bit strings The result accurately models the equivalent bit string
operations, and is faster overall.

1. Introduction
The two operations that could be called the basis of genetic algorithms are the single bit

mutation and the one point crossover. Together they provide the bulk of the variability in the pa-
rameter sets that is needed for the selection process to do its work. Both operations are applied to
bit strings, which are the encoded form of the actual parameter. In the case where the parameters
are symbolic, integer, or even fixed point this representation makes a great deal of sense, and is
evocative of the original biological analogy.

For floating point (real) parameters the bit string representation requires a good deal of
time spent converting to and from bit string form. Each time the objective function is evaluated
the parameter must be decoded (converted into real form). Initially, each parameter must be en-
coded (converted to bit string form) so that the operators may be applied. In addition, some flex-
ibility is lost - some work has been done with dynamic changing of the ranges and size of the bit
string as the optimization proceeds, and this also requires encoding and decoding.

The idea of using real numbers directly has been discussed, but generally in the context of
hybrid algorithms, and the operators used are not the same - they are statistical analogies. For
example, Davis [DAVI91] suggestsreal number mutation, which is the replacing of a real num-
ber in a chromosome with a randomly selected real number. This is not a single bit mutation; in-
deed, it could change all of the bits in that number.Real number creep is also not a traditional
operator, but is an additional one that can prove useful in some circumstances but which many
purists eschew as being not general or robust.

What will be proposed here are two operators that are precise analogs of the bit string op-
erations, but which apply to real numbers. Some of the advantages are obvious for continuous
optimization problems; there are also some interesting by-products.

PARKER IEEE Evol. Comput: Genetic Operators on Floating Point Parameters

2. Single Bit Mutation
Without loss of generality the single bit mutation operator will be defined as one which re-

verses a specified bit in the encoded representation. Consider a 4-bit representation of the range
0.0 - 1.0; the values it is possible to represent are:

0.0 = 00 0.25 = 01 0.50 = 10 0.75 = 11
A bit in the low bit position has a value V=0.25 associated with it; more generally,

whereDmax is the largest value in the range,Dmin is the smallest, andn is the number of bits in
the representation. In the example, V=(1.0-0.0)/22.

Each bit in the encoded bit string representation corresponds to a power of two multiplied
by V. The low bit is20 * V, the next is21 * V and so on. It seems apparent that to do a single bit
reversal on a parameterX at bit positionn is to subtract2n * V from X if bit n is set (1), or to add
2n*V to X if bit n is clear (0).

Bit n of the fixed point bit string representation of X is set if the bit string is shifted right n
bits has the low bit set; the corresponding floating point expression is to consider the expression
(X-Dmin)/(v*2n). If this result has the low bit set then the bit corresponding to v*2n is set in the
encoding.

This argument leads to the single bit mutation function seen in Figure 1. Note that the cal-
culation of V would normally be done globally only once, and all values of V*2n could also be
pre-computed. This leaves the operation count at one floating divide, one floating multiply, two
floating subtractions and an integer division.

V
Dmax Dmin–

2
n

-----------------------------------=

/* Implement a single bit mutation */

void fmut (float *b, int n,float xmax,float xmin, int size)
{

double m, v, d3;

v = (double)(xmax-xmin)/(double)(1<<size);
m = (double)(1<<(size-n-1));
if ((int)((*b-xmin)/(v*m)) % 2)

*b = *b - v*m;
else

*b = *b + v*m;
}

Figure 1 - C code to perform a single bit mutation on a real argument b.

PARKER IEEE Evol. Comput: Genetic Operators on Floating Point Parameters

2. One Point Crossover
The crossover operation is a little more complex, but is based on the same ideas. Consider

the situation where an argument has a size of 10 bits and a range from 0.0 to 1.0. Two instances
of this argument, X and Y, are to be crossed over at bit 4; this situation is:

Argument Bit Value Real Value Crossed Bit Value Resulting Real
X 0110101010 .416016 0110010011 .393555
Y 0010010011 .143555 0010101010 .166016

This is accomplished by taking the high 4 bits of X and adding to it the low 6 bits of y (and vice
versa). In real terms, the low 6 bits can represent values up to (27-1)*V, and the high 4 bits repre-
sent values from 27*V upwards. Thus, the high 4 bits of the real value X is given by:

for n=4, which effectively masks out the low 6 bits by truncation and then shifts the value left by
the proper amount. The low 6 bits are obtained by simply subtracting this from X:

/* Perform a 1 point crossover */
void fcross1 (float *s1,float *s2, int n,float xmin, float xmax,int size)
{

int i, k, c1;
double xl, xh, yl, yh;
double v, j;

v = (double)(xmax-xmin)/(double)(1<<size);
j = (double)(1 << (size-n));
xh = (int)((*s1-xmin)/(j*v)) * (j*v);
xl = (*s1) - xh;
yh = (int)((*s2-xmin)/(j*v)) * (j*v);
yl = (*s2) - yh;
xh = xh + yl ;
yh = yh + xl ;
*s1 = (float)xh;
*s2 = (float)yh;

}

Figure 2 - C code to perform a one point crossover on real arguments s1 and s2.

Xh
X Dmin–

V 2
n×

------------------------ V 2
n××=

Xl X Xh–=

PARKER IEEE Evol. Comput: Genetic Operators on Floating Point Parameters

Now do the same forY, and finally letX = Xh+Yl andY = Yh+Xl, as seen in the code forfcross in
Figure 2.

3. Evaluation of the Methods
The single bit mutation function has been tested on tens of thousands of mutations using

various experimental protocols. For an example, a program has been written that generates ran-
dom whole-number ranges, bit string sizes, and values and then creates a bit string from the gen-
erated values. All possible one bit mutations were carried out, both on the bit string and the real
value, and the results were compared. The worst case error, the difference between the two val-
ues, was 0. For this same experiment the worst case error for the one point crossover was 5%;
this occurred in one case out of 1000. Two more cases had an error of 2%, and all of the rest
were under 1% with the average error being 0.0082%.

Speed of execution is another important issue, but a more difficult one to evaluate. There is
a very good chance that some else could code a faster bit string module than the one used in the
evaluation. Still, some evaluation must be done and, after all, all of the code was written by the
same person. For the execution profile done on a SPARCstation 2, an example that performed
2000 crossovers and 30000 mutations had the following performance:

Method Time for Mutations Time for crossovers
Real numbers 0.25 0.02
Bit strings 0.365 0.09
This experiment is flattering to the bit string representation in that some of the global over-

head is not included, and the Sun workstation does not have floating point acceleration.

4. Dynamic Sizes and Ranges
When using real arguments in the way described thus far the notion of chromosome length

is a fiction. The size and range associated with any argument is only of importance when a muta-
tion or crossover is being performed. It is therefore a simple task to change these, or possibly
even make them parameters themselves. Increasing the size of the bit string has the effect of de-
creasing V, which means that the precision of the search is improved. There is no significant im-
plementation overhead involved in using large sizes up to the maximum precision of a floating
point number.

Changing the ranges while performing an optimization can be done if it can be determined
with some reliability that the argument involved does not have an optimal value in the outlying
regions of the range. Decreasing the range while maintaining a constant size has the effect of re-
fining the step size (decreasing V again) and increasing the precision of the result while improv-
ing the speed with which the optimal value can be achieved. To modify the range in a bit string
implementation requires a decoding of the argument, a modification of the range, and then an
encoding at the new range. The real implementation does not require a change in the encoding,
and achieves high accuracy simulation of the bit string results provided that the ranges have ac-
ceptable numerical properties. Integral ranges and powers of two are best, while repeating frac-
tions and irrational numbers are worst.

5. Conclusions and Further Work
A methods for modelling the effects of single bit mutations and one point crossovers using

real arguments has been described. It has a high similarity to the equivalent bit string operations,

PARKER IEEE Evol. Comput: Genetic Operators on Floating Point Parameters

and is not a statistical approximation; moreover, it executes at an acceptably high speed. This
method has been used in a stellar photometry system now under development, and will be used
in future in applications to computer vision and image processing.

The method could be easily applied to multiple mutation and crossover, and to other oper-
ators used in genetic algorithms.

This work has been supported by the Natural Sciences and Engineering Research Council
of Canada.

6. References
[DAVI91] Davis, L. (ed), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New

York NY, 1991.
[GOLD89] Goldberg, D.E., Genetic Algorithms, Optimization, and Machine Learning,

Addison-Wesley, Reading MA. 1989.
[HOLL75] Holland, J.H., Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI. 1975.
[PARK95] Parker, J.R., A Genetic Algorithm for Stellar Photometry, University of Cal-

gary Department of Computer Science Research Report #xxx. 1995.
[SCHR90] Schraudolph, N.N. and Belew, R.K., Technical Report. #LAUR 90-2795, Los

Alamos National Laboratory, 1990.

