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Abstract

In an indoor wireless environment like an open office or laboratory, there are not enough large

obstacles to reflect or refract the main waves contributed by the scattering clusters visited by the

mobile user. Moreover, mobile WLAN users generally restrict their movements to a small area due

to the inability of most WLAN standards to accommodate hand-offs. As a result, users visit at

most one or two scattering clusters and experience only a handful of different shadowing values.

This thesis proposes the first ever appropriate composite fading / shadowing channel model, that

characterizes the combination of small scale fading and large scale shadowing for users confined

to small coverage areas in a large office environment described above. Based on a detailed in-

door measurement campaign, a joint distribution called the Joint fading and Two-path Shadowing

(JFTS) distribution is proposed that combines the Rician fading and the two wave with diffuse

power (TWDP) shadowing models.

This thesis also presents the first ever analysis of different performance metrics like outage proba-

bility, error rate performances and spectral efficiencies of existing high throughput communication

techniques like error control coding, fixed and adaptive modulation in a mobility constrained in-

door wireless environment, where the propagation scenario can be appropriately characterized by

the newly developed JFTS model. Performance evaluation is done both in presence or absence of

perfect channel state information.
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Chapter 1

Introduction

The high density and individual data rate requirements of present-day indoor wireless users have

made high capacity wireless communication systems a priority for indoor wireless environments.

Though the use of indoor pico-cells is going to grow in the future, presently this demand is primar-

ily served by indoor wireless access points. Hence it is essential to find out accurately what high

throughput wireless communication system can achieve when implemented on densely deployed

indoor wireless access points.

It is well known that indoor wireless links are affected by both small scale fading and shadow-

ing effects. In an indoor wireless environment like an open office or laboratory, there are not

enough large obstacles to reflect or refract the main waves contributed by the scattering clusters

visited by the mobile user. Moreover, mobile WLAN users generally restrict their movements to

a small area due to the inability of most WLAN standards to handle hand-offs. However, assum-

ing a constant shadowing value is also not accurate since it is possible for a user to still visit a

small handful of scattering clusters within the coverage area of a Wifi access point. This will result

in the user experiencing a small subset of the shadowing variations observed for more mobile users.

The primary goal of this thesis is two-fold. The first is to accumulate measurements and derive a

propagation model for mobility constrained densely deployed indoor wireless LAN (WLAN) sce-

narios based on the measured data. The second contribution is to analyze outage probability, error

rate performances and spectral efficiencies of existing high throughput communication techniques
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like error control coding, fixed and adaptive modulation over the newly developed propagation

model.

The rest of this chapter is organized as follows. Section 1.1 presents the key research problems

that are analyzed and solved in this thesis. Section 1.2 provides a brief summary of the key results

and insights obtained from the works done in this thesis and Section 1.3 provides a brief outline

of the contents of this thesis.

1.1 The Research Problem

The Wireless Propagation Challenge :

There are few things in nature more unwieldy than the power-limited, space-varying, time-varying,

frequency-varying indoor wireless channels. Radiowaves propagating through indoor wireless en-

vironments suffer from small scale fading (caused by transmission via different reflectors resulting

in a large variety of propagation path delays), shadowing (caused by obstacles of size much greater

than the radio wavelength), scattering (caused by the interaction of the radiowaves with objects of

dimension on the order of a wavelength or less), diffraction (caused by bending of the radiowaves

around an obstacle) and the change in pathloss due to variation in the relative distance between

the transmitter and the receiver.

In outdoor wireless channels, where the obstacles are large, variations in the average received

power of the signal due to shadowing are assumed to be constant over hundreds of wavelengths.

Variations due to shadowing in dense urban environments are assumed to be constant over tens
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of wavelengths [1, 2]. However, in an indoor environment, shadowing variations exhibit a spatial

correlation of only ten wavelengths or less [3]. As a result, the time scale of indoor shadowing

variations begin to approach that of small scale fading, and hence, it is not accurate to assume a

constant shadowing value when evaluating wireless system performance.

Attempts to model the combined effect of small scale fading and shadowing were primarily devel-

oped to characterize outdoor land mobile satellite (LMS) and macro-cellular channels, the entire

set of which can be broadly classified in two groups.The first group attempts to model propagation

channels where the channel statistics remain approximately constant in a small area over a certain

period of time and therefore are characterized using a single statistical distribution. The second

group characterizes communication channels where the signal statistics vary considerably over a

large area and hence are modeled using the weighted summation of several statistical distributions.

A summary of both these groups of narrow-band LMS channel models has been tabulated in [4].

The first group of channel models can again be divided in two sub-groups depending on the type

of shadowing considered. The first sub-group considers environments where only the LOS compo-

nents that experience shadowing due to complete or partial blockage by buildings, trees, mountains

etc., while the scattered components caused by multipath fading have a constant power level [5].

The second sub-group considers environments where both the LOS and the scattered components

suffer from random variations in the power level resulting in multiplicative shadow fading [6]. In

both [5] and [6], multipath fading is characterized by the Rician distribution and the log-normal

distribution is used to model shadowing. The channel model in [5] is extended in [7] by assum-

ing that the power of the scattered components is a log-normal variable, irrespective of the LOS

component. The channel model in [5] is generalized in [8] by including an extra additive scatter
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component.

The second group of LMS channel models consist of at least two distributions, where each distribu-

tion corresponds to a particular channel state in which the channel statistics remain constant over

a certain time period of interest. The model of [9] consists of the weighted sum of two distribution,

while that of [10] consists of three distributions.

The propagation model proposed in this thesis differs from the above mentioned composite channel

models in two fundamental ways. Firstly, our model characterizes indoor WLAN communication

scenarios in an open concept office or laboratory layout, while the LMS channel models attempt

to model the communication channel between satellites and mobile land users in an outdoor dense

urban, sub-urban or rural environment. As a result, the main waves that form the shadowing sig-

nal component in our scenario are not reflected or refracted by large obstacles. Secondly, outdoor

LMS users can be considered mobile enough to visit many scattering clusters over a certain time

period of interest. However, as most WLAN standards are incapable of handling hand-offs, mobile

WLAN users restrict their movements to a small neighborhood. As a result, users can only visit

at most one or two scattering clusters and will experience only one or two discrete shadowing values.

The Performance Analysis Challenge :

The wide variety of applications of indoor wireless communication has resulted in the increased

demand of exact theoretical analysis for such systems. For example, expressions for the aver-

age bit error rate (ABER) and outage probability are absolutely necessary for designing effective

signaling and error control coding schemes. This is because these analytical expressions provide
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insights into how system parameters affect performance and are more computationally efficient for

analyzing system performance. Another example is the dependence of the choice of the optimum

carrier signal-to-noise ratio (CSNR) region boundaries on the analytical expression of the BER of

an Adaptive Coded Modulation (ACM) technique.

A further consequence is the large demand for radio channel spectrum and high information data

rates which can only be ensured using modulation techniques with larger constellation sizes yielding

higher bandwidth efficiency. An accurate picture of what high throughput wireless communications

systems can achieve when implemented on densely deployed indoor access points is provided by

Shannon channel capacity. With the introduction of capacity achieving coding schemes [11], Shan-

non capacity is now of both theoretical and practical interest. In case of wireless links, Shannon

channel capacity characterizes the long-term achievable information rate and therefore is termed

as the ergodic capacity [12]. However, the ergodic Shannon capacity estimates are only as good as

the channel model upon which they are based.

Of the bulk of the composite fading/shadowing models available, Suzuki [13] and Nakagami -

log-normal [4] channel models are widely used.The major drawback of these two models is that

the probability density functions (PDF) of these fading models do not have closed form. A more

practical closed form composite fading model is the K-distribution [14], where log-normal shadow-

ing is approximated by Gamma shadowing and therefore the received envelope can be expressed

in terms of zero mean complex Gaussian random variables with different shape factors. Hence

in all of these cases, at higher received CSNR, the received signal envelope approaches zero mean

complex Gaussian distribution with a shape factor of 1. As a result, the achievable ergodic channel

capacity starts approaching the Shannon bound as the received CSNR increases.
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The propagation model proposed in this thesis is a convolution of the Rician fading distribution

and the two-wave with diffused power (TWDP) shadowing model. The Rician distribution can be

expressed in terms of circular bivariate Gaussian random variable with potentially non-zero mean,

while the TWDP [15] distribution is the sum of two half-Ricians. Hence, the distribution of the

received signal envelope in this case can only be expressed in terms of bi-variate non-centralized

chi-squared distribution and therefore can never be described using Gaussian random variables.

Unlike the K-fading model, the channel model proposed here has been verified using a practical

measurement campaign. The new channel model also has a closed form PDF expression as opposed

to the Suzuki or Nakagami-log-normal channel models. The parameters of this proposed distribu-

tion can also be varied to represent a wide variety of channel conditions like no-fading (infinitely

high fading parameter), no-shadowing (infinitely high shadowing parameter), heavy fading (low

fading parameter) or heavy shadowing (low shadowing parameter). Hence, the expressions for dif-

ferent performance metrics evaluated over this channel model will provide us with the achievable

performance measures over a large variety of practical channel conditions, without assuming that

the propagation environment is complex Gaussian distributed.

If perfect channel state information (CSI) is not available at the receiver, the estimated signal

envelope over traditional fading models like Rayleigh or Nakagami-m [16, 17] is a sum of two zero-

mean complex Gaussian random variables, the transmitted signal envelope and the additive white

Gaussian noise (AWGN). As a result, the estimated signal envelope is itself complex Gaussian

distributed with zero mean. Hence, the estimated instantaneous CSNR will follow the same distri-

bution as the true instantaneous CSNR. But in case of the propagation model proposed here, the
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true and the estimated received envelopes will not follow the same distribution. Hence, this thesis

will also analyze the statistical properties of the CSNR estimation error as this analysis will enable

us to predict the range of acceptable amount of error in CSNR over which a system can operate,

when the the true and the estimated CSNR do not necessarily follow the same distribution.

1.2 Summary of Results and Insights

Measurement Campaign : A detailed measurement campaign is conducted consisting of over 30

thousand individual channel measurements for capturing the impact of spatio-temporal variations

in the received signal envelope in an open-concept office or laboratory indoor wireless environ-

ment. From the measured data, individual distributions of small scale fading and shadowing are

extracted. Rician distribution is found to offer the best fit to the small scale fading distributions

while Two-wave with Diffused Power (TWDP) distribution offers best possible fit to the shadowing

distributions.

Propagation Model : The first ever propagation model that combines small scale fading and

large scale shadowing for mobility constrained indoor wireless LAN users is proposed. Rician

distribution is combined with TWDP distribution to derive the joint PDF for the large and the

small scale channel effects. The new propagation model is coined as Joint Fading and Two-path

Shadowing (JFTS) model. Based on the recorded Q-values of the incomplete Gamma function,

it can be concluded that the JFTS PDF offers a god fit to the experimentally extracted received

signal envelope over a time window larger than the coherence time of large scale shadowing. The

JFTS distribution is found to offer better fit to the measured envelopes even in comparison to the

Nakagami-m - log-normal composite fading/shadowing distribution.
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Physical Meaning of Model Parameters : This thesis is the first to explore and map JFTS

model parameters to real world propagation scenarios. The fundamental parameters of the JFTS

distribution are the fading parameters, K, the shadowing parameter, Sh and the shape parameter,

∆. Numerical values for each of these parameters can be mapped to any propagation scenario

depending on the relative position of the indoor mobile WLAN user and the access point. For

example, if the user and the access point are in the same room, the K-factor will vary from 9 dB

to 11 dB, the Sh-factor will vary from 9 dB to 12 dB, while the ∆-parameter will vary from 0.6 to

0.95. On the other hand, if the user and the access point are in different rooms separated by two

to three sets of drywalls, the K-factor will have values between 6 dB and 7 dB, the Sh-factor will

vary from - 4.5 dB to - 0.5 dB, while the ∆-parameter will vary from 0.2 to 0.3.

Fixed Modulation and Coding : This thesis developed the first ever expressions for average

bit error rate of different fixed modulation techniques over a practical measurement-based indoor

composite fading/shadowing propagation model. Performance degrades as the fading parameter

and/or the shadowing factor decreases and the shape parameter increases. If non-iterative coding

techniques are used, convolutional coding offers a 3 dB improvement in performance over linear

block codes like Hamming codes in presence of deep fading and shadowing. Soft decision decoding

offers another 3 dB enhancement in performance over hard decision decoding for a fixed set of

JFTS parameters.

Adaptive Coded Modulation : This thesis derives the first ever analytically tractable expres-

sions for ergodic capacity under different adaptive transmission schemes over an indoor composite

fading/shadowing propagation model. If perfect CSI is available at the receiver, achievable spectral
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efficiency with adaptive coded modulation over a JFTS faded/shadowed channel decreases with

the decrease in the fading and/or shadowing parameters. Discrete-rate adaptive coded M -QAM

obtains both a large spectral efficiency and a small target BER because it is able to exploit the

time-varying nature of the instantaneous received CSNR. It is found that ACM achieves an im-

provement of around 20 dB in BER performance over fixed modulation and coding techniques.

For satisfactory operation, both the adaptive variable-rate encoder and variable-rate decoder must

use the same code at any instant. A fast and error-free feedback channel is therefore essential to

ensure error-free signaling between the encoder and decoder. During periods of low CSNR, the

throughput may be low. A buffer is therefore required at the transmitter. The appropriate size of

this buffer is a subject for further research.

Impact of Channel Estimation : This thesis has derived the first ever expressions for distribu-

tion of estimation error for non-Gaussian joint faded/shadowed random variables. The statistical

properties of the estimation error like PDF, Cumulative Distribution Function (CDF) and moments

is dependent on the JFTS parameters, average received CSNR and the variance of the corrupting

additive white Gaussian noise (AWGN). Numerical results demonstrate that the estimation error

variance increases with the increase in the small scale fading and/or shadowing parameters of the

JFTS distribution, and decreases with the decreases in AWGN variance. The error variance also

decreases with the increase in the mean-squared voltages of the scattered components. However,

the estimation error is independent of the correlation coefficient between the true and the estimated

CSNR.
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1.3 Outline of the Thesis

This thesis is conveniently divided into two parts. Chapters 2 and 3 present the measurement cam-

paign and the propagation model for an indoor WLAN scenario in an open office-type environment.

Chapters 4 to 6 present analysis of performance of existing fixed and adaptive modulation and

coding techniques over a JFTS faded/shadowed communication channel in presence of perfect or

estimated CSI. The following subsections summarize the contents of each chapter.

1.3.1 Propagation Modeling

Chapter 2 presents the measurement campaign and the derivation of the analytical channel model

for an indoor WLAN scenario that represents a large open office or laboratory layout with few

obstacles to reflect or refract the transmitted signal. Most mobile WLAN users generally restrict

their movements to a small area due to the inability of most WLANs to accommodate hand-offs.

As a result, users travel through at most one or two scattering clusters and experience only one

or two shadowing values. Moreover in an indoor environment shadowing varies quickly enough to

require some channel estimation algorithms to account for both small scale and large scale statis-

tics. Therefore this chapter will present a distribution that jointly models variations due to both

small scale fading and shadowing. An analytical expression for the PDF of the joint distribution

will be derived through distribution fitting to the experimental propagation data.

Chapter 3 presents an intuitive understanding of the characteristics of the JFTS distribution

and dependence of its behavior on its fundamental parameters. The accuracy of distribution

fitting using the JFTS distribution to the joint fading and shadowing PDFs extracted from the

measurement campaign is analyzed. New expressions for the joint moments, mean, variance,

CDF and Amount of Fading (AF) of the JFTS distribution are derived in this chapter. The
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derived expressions for the theoretical mean, variance and CDF are shown to agree with the

experimental results. The AF expression is used for comparing the severity of fading imparted by

the JFTS distribution to the fading severity of other common small scale fading and composite

fading/shadowing distributions.

1.3.2 Performance Analysis

The primary contribution of Chapter 4 is to derive expressions for the error probability, spectral

efficiency and outage probability of different fixed modulation techniques with or without iterative

error control coding over a JFTS channel. In order to do that, let us assume that s(t) represents

a signal with symbol energy Es that is transmitted over a composite slow shadowed and flat faded

wireless communication channel with JFTS statistics. The received signal y(t) over the symbol

duration τs can then be expressed as,

y(t) = z(t) eφ(t) s(t) + n(t) (1.1)

where n(t) is the complex AWGN with one-sided power spectral density of N0, φ(t) is the instanta-

neous phase and z(t) denotes the composite fading/shadowing envelope which is JFTS distributed.

The system block diagram can be represented as in Fig. 1.1.

Chapter 4 uses two sets of approaches for the error probability analysis : firstly, the Moment Gen-

erating Function (MGF) - based approach using the PDF of the instantaneous CSNR and secondly,

the CDF - based approach using the CDF of the instantaneous CSNR. Finally performances of

different fixed modulation and coding are simulated over JFTS fading/shadowing channels and

compared with analytical expressions to establish the validity of the derived expressions.
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Figure 1.1: System Block Diagram.

Chapter 5 studies the optimum design of adaptive modulation techniques based on M -QAM with

or without iterative error control coding over a JFTS channel, where perfect CSI is available at

the receiver. The data rate and in some variants the transmit power are adapted to maximize the

spectral efficiency subject to average power and bit error rate constraints. The key issues stud-

ied here are how the JFTS parameters will affect the optimized transmission properties, such as

the CSNR boundaries that determine when to apply different modulation rates and power and to

what extent it affects the spectral efficiency. Optimal solutions for the rate and transmit power are

derived based on the received instantaneous CSNR. Trellis-coded M -QAM is used as a candidate

for improvement in spectral efficiency at a given average received CSNR.

The principal contribution of Chapter 6 is to derive expressions for the error probability perfor-

mance of different fixed modulation techniques without iterative coding in a JFTS channel in

presence of imperfect channel estimates. As a result, the impact of estimation error in the estima-

tion of received CSNR on the decision regions of the demodulator and the amount of degradation

in performance over a JFTS channel are analyzed. In turn, statistical properties of the estimated

12



instantaneous CSNR are derived and studied, where pilot symbol assisted modulation (PSAM) is

used for fading estimation. The expressions for BER are computed as functions of the JFTS and

PSAM parameters, using CDF of the estimated instantaneous CSNR. Finally intuitive conclusions

regarding the range of acceptable amount of error in CSNR estimation over which the system can

operate correctly in a JFTS channel are made from the expressions.
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Chapter 2

Measurement Campaign

2.1 Background

In an indoor environment, shadowing variations exhibit a spatial correlation of only ten wave-

lengths and, as a result, the time scale of indoor shadowing variations begin to approach that of

small scale multipath fading. Hence, assuming a constant shadowing value will not render accurate

evaluation wireless system performance in an indoor wireless propagation scenario. An appropriate

channel model that characterizes the transition from local small scale fading to global shadowing

statistics is necessary for this purpose.

Composite small scale fading and shadowing models for characterizing land mobile satellite (LMS)

and macro-cellular channels are well known. In bulk of those literatures, the log-normal distribution

is used to model shadowing. This is done because LMS and macro-cellular communication users

are highly mobile in an outdoor environment. As the mobile user travels a considerable distance,

it visits many scattering clusters and a range of main waves arrive at the mobile as it visits these

clusters. The strengths of each of these main waves can be drawn from the log-normal distribution.

A brief summary of the competing joint models related to this work is provided in Subsection 2.1.1.

On the other hand, in an indoor environment like an open office or laboratory, there are not enough

large obstacles to reflect and refract the main waves for the power of those waves to be accurately

characterized using the log-normal distribution. Moreover, mobile WLAN users generally restrict
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their movements to a small area due to the inability of most WLAN standards to handle hand-

offs. As a result, users visit at most one or two scattering clusters and experience only one or

two discrete shadowing values. A detailed explanation on the mechanics of shadowing in different

propagation scenarios is provided in Subsection 2.1.2.

This chapter uses propagation measurements collected for a signal bandwidth of 10 MHz, to de-

velop a statistical channel model suitable for the indoor WLAN scenario discussed above. The

transmit antenna is fixed and mounted at a height of 4 m. The receive antenna is mounted on a

cart that is moved along a path within an area representative of a typical access point coverage

area. This technique of accumulating measurement is fundamentally different from other more

recent studies of indoor propagation, a brief discussion of which is detailed in Subsection 2.1.3.

The rest of this section is organized as follows. Subsection 2.1.1 summarizes competing joint

models. Subsection 2.1.2 explains the general mechanics of shadowing while a summary of related

indoor measurement campaigns and techniques is provided in Subsection 2.1.3.

2.1.1 Composite Fading/Shadowing Models

Attempts to model the combined effect of small scale fading and shadowing were first proposed in

[13], where small scale fading was characterized by the Rayleigh distribution and the log-normal

distribution was used to model shadowing. This channel model was proposed for appropriately

describing land mobile and macro-cellular channels, where line-of-sight (LOS) communication is

rare. A variation to this model was proposed in [8] by combining non-selective Rician fading and

log-normal shadowing. It assumes an additive shadowing-fading model, where only the direct LOS

component is affected by log-normal shadowing, while the scattered components have constant

15



average power levels. This model was found to be adequate for rural land mobile satellite (LMS)

channels and was later modified in [18] by assuming a multiplicative shadowing-fading model,

where log-normal shadowing affects both the direct and diffuse components. This modified chan-

nel model was found to be suitable for both urban and rural environments.

Another extension of [8] is found in [4], where the power of the scattered components is assumed

to be a log-normal variable, irrespective of the LOS component. The channel model in [18] is

generalized in [8] by including an extra additive scatter component. The Rician fading model

was replaced by the Nakagami-m fading model in [18] yielding a joint Nakagami-m - log-normal

channel model for LMS communication. In order to derive a closed form solution for second order

statistics of combined small scale fading and shadowing in LMS channels, a new shadowed Rician

channel model was introduced in [4] where the amplitude of the LOS component is characterized

by the Nakagami-m distribution.

The work presented in this chapter is fundamentally different from the LMS channel modeling

[13]-[18]. This chapter proposes a composite fading/shadowing model that characterizes indoor

WLAN communication scenarios in an open concept office or laboratory layout, while the LMS

channel models attempt to model the communication channel between satellites and mobile land

users in an outdoor dense urban, sub-urban or rural environment. As a result, the main waves

that form the shadowing signal component in our scenario are not reflected or refracted by large

obstacles for it to be accurately characterized using the log-normal distribution.
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Figure 2.1: Outdoor LMS and Macro-cellular Propagation Scenario

2.1.2 Mechanics of Shadowing

The transition from the local Rayleigh distribution to the global log-normal distribution was first

explained by Suzuki in [13]. Let us assume that a mobile station transits between several local

neighborhoods, each of which contain different clusters of scattering objects. If a few main waves

arrive at each cluster after being attenuated by several multiplicative reflections and refractions,

the main waves can be modeled by a log-normal distribution with a standard deviation of σ, due

to these multiplicative factors.

If multiple reflections and refractions due to each scatterer are assumed to have approximately

equal amplitudes and random uniformly distributed phases, the envelope sum of these compo-

nents has a Rayleigh distribution. It is noted in [13], that the received power of the main waves

will remain approximately constant for several hundred wavelengths. However, as the mobile trav-

els a considerable distance, it will visit many scattering clusters. Therefore, a range of main waves

will arrive at the mobile as it visits these clusters, the strengths of each of which can be drawn

from the log-normal distribution for each scattering cluster that is visited. A schematic diagram
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Figure 2.2: Indoor Mobility Constrained Propagation Scenario

of such a propagation scenario is presented in Fig. 2.1.

In an indoor environment, mobile WLAN users generally restrict their movements to a small area

due to the inability of most WLAN standards to handle hand-offs. As a result, users will visit at

most one or two scattering clusters and will experience only one or two discrete shadowing values.

A schematic diagram of such a scenario is presented in Fig. 2.2.

To model the above-mentioned scenario, let us assume that each user will visit at most two scatter-

ing clusters and will therefore encounter two discrete shadowing values. In this case, the shadowing

envelope can be characterized by the Two-Wave with Diffuse Power (TWDP) distribution [19].

The ∆-parameter of the TWDP distribution will represent the transition from one scattering clus-

ter to the next and will thereby determine the shape of the distribution. The value of ∆ will range

between 0 and 1. When the magnitude of shadowing values contributed by two consecutive scat-

tering clusters will become equal, ∆ = 1, while the absence of one shadowing cluster will render

∆ = 0. Within each scattering cluster, each scatterer will contribute to multiple reflection and
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refraction and the envelope sum of these components will be characterized by the Rician distri-

bution. Since the considered measurement scenario is an indoor environment where the WLAN

access points antennas are elevated, at least one direct LOS component will be present between the

access point and the user. Hence, the small scale fading envelope will have a Rician distribution.

2.1.3 Related Measurement Techniques

The channel models developed using indoor propagation measurements can be broadly classified

in two groups, depending on the way the measurements are collected. The first group [20]-[23],

captures many channel impulse response measurements within a small area that is centered at each

measurement location (generally a square of the order of 1 meter by 1 meter). The receiver is kept

stationary during the acquisition of each impulse response. The second group [24]-[26] collects a

series of channel impulse responses while moving the receiver along a fixed path at an approxi-

mately constant velocity. For both measurement methods, the transmitter is kept stationary.

One crucial factor in indoor propagation measurements is the antenna height. Measurements

are conducted by either keeping both the transmit and receive antennas at the same height like

[20, 21, 22, 26, 27], or by installing the transmit antenna much higher than that of the receive

antenna like [23, 24, 25, 28]. For example in [27] the receive antenna is mounted on a plastic pole,

1.9 m high on the floor, while the transmit antenna is mounted on a similar 1.6 m high plastic pole

fixed on a wooden circular platform, thus keeping both the antennas almost at the same height.

On the other hand in [28] the transmitters are placed at a height of 2.5 m near the ceiling while

the reception points are kept at a height of 1.2 m.

This chapter presents a measurement campaign intended to capture propagation conditions for a
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typical open office WLAN scenario. The transmit antenna is fixed and mounted at a height of 4

m which is intended to model a ceiling mounted access point. The receive antenna is mounted on

a cart that is moved along a path within an area representative of a typical access point coverage

area. The measurements are replicated for a variety of transmit antenna locations. The receiver

cart is moved at an average velocity of 1 m/s in order to replicate the normal walking speed of

human beings, acting either as receivers or scatterers.

The rest of this chapter is organized as below. The detailed measurement set-up is presented

in Section 2.2, followed by details on the measurement scenario considered, in Section 2.3. The

procedures followed to accumulate measurement data and to extract parameters from the mea-

surement data are explained in Section 2.4 and Section 2.5. Section 2.6 presents the derivation

of the analytical channel model and distribution fitting. The concluding remarks are made in

Section A.1.

2.2 Measurement Apparatus

The main components of the measurement campaign is an Agilent E5071B Vector Network An-

alyzer (VNA) connected to either a pair of 900 MHz 5 dBi L-Com Rubber Duck antennas or a

pair of 2.4 − 2.5/4.9 − 5.3/5.7 − 5.8 GHz Tri-band L-Com Rubber Duck antennas. Both kinds

of antenna are vertically polarized and exhibit omni-directional radiation patterns. The VNA is

used to measure the sampled frequency response of the channel by capturing complex S21 mea-

surements for the channel between the transmit and receive antennas. These channel responses

are determined by scanning over a bandwidth of 10 MHz. The values of |S21| and 6 (S21) represent

the magnitude and the argument or phase of the ratio Pr/Pt respectively, where, Pr is the received
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Figure 2.3: Measurement Apparatus

signal power and Pt is the transmitted signal power.

An amplifier for the VNA signal is also sometimes used depending on the distance between the

transmitter and receiver. When the distance between the transmitter and receiver is between 0 m

and 10 m, no transmit amplifier is used. In this case, a transmit power of 0 dBm is transmitted

from the VNA, maintaining a noise floor of −96 dBm. When the distance between the transmitter

and the receiver is varied from 10 m to 120 m, a 30 dB RF amplifier is used on the transmit side.

A maximum transmit power of 25 dBm is transmitted, with a noise floor maintained at −85 dBm.

The effect of the cables and amplifier on the measurements is calibrated out using the Agilent

85033E 3.5 mm calibration kit. Separate calibrations are used for the scenarios with and without

the transmit amplifier.
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For each set of measurements, single input single output (SISO) transmission is used. The trans-

mitter is kept stationary and the transmit antenna is mounted on top of a tripod at the height of

4 m. The receiving antenna is mounted at a height of 1.4 m. The receiving antenna is connected

back to the VNA using a low loss coaxial cable. The measured data at the VNA is accumulated

back in a PC for further analysis. A block diagram of the measurement set-up is presented in

Fig. 2.3.

2.3 Measurement Scenario

Several fixed transmit locations and moving receiver routes have been chosen intentionally in sev-

eral different rooms and corridors, so that our measurement environment best reflects an “open

concept” office environment. Measurements have been collected overnight in order to avoid the

presence of people moving inside the offices. All the measurements have been done on the second

floor of the ICT building at the University of Calgary main campus.

The exact transmit positions and their corresponding receiver routes are depicted in Fig. 2.4. The

first step when conducting the measurements is to fix the transmitter position at one of the lo-

cations indicated on the figure. For example, the first round of measurements fixed the transmit

antenna at T1. Then the receiver is moved through all the receiver routes, from R1 to R9 re-

spectively. For each pairing of a transmit position and receiver route, a separate measurement

file is generated. For example, while the transmitter is fixed at T1, 9 different measurement

files are generated corresponding to 9 different receiver routes, which henceforth are denoted by,

T1 : R1, T1 : R2, . . . , T1 : R9. The same procedure is repeated for T2, T3, T4, T5 and T6

respectively. For further reference, each transmit location and each receiver route will be denoted
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by Td and Rd, respectively, where d is the numerical counter mentioned in the diagram.

2.4 Measurement Accumulation

To characterize the time varying nature of the communication channel, the coherence time of the

propagation channel is calculated from,

Tc =
9λ

16πv
=

9c

16πvfc
(2.1)

where, fc is the carrier frequency or frequency of operation, v is the mean velocity of the moving

receiver and the moving scatterers and λ is the corresponding wavelength [29]. In our case, the

selected fcs are 900 MHz, 2450 MHz and 5000 MHz. Coherence time for frequencies of operation

of 900 MHz, 2450 MHz and 5000 MHz are 61 ms, 23 ms and 11 ms, respectively.

The time required by the VNA to measure the frequency domain transfer function of the channel

must be kept much below the coherence time. Hence, the VNA is triggered every 800 µs to sweep

across a band of 10 MHz that is centered at fc and data is accumulated over 11 equally spaced

sample points. The |S21| and 6 (S21) measurements are automatically appended and stored in

the controlling PC after every sweep of 800 µs, through a General Purpose Interface Bus (GPIB)

connection. In this way, for each frequency band and for each route of the moving receiver, a new

measurement file is generated and stored for further processing. The same procedure is repeated

for each transmit location.
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Figure 2.4: Measurement scenario with different transmit locations, Td and receiver routes Rd
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2.5 Parameter Extraction

In order to model the combined effect of small scale fading and shadowing, it is necessary to sepa-

rate large scale channel effects from small scale fading in the measurement data. Extracted large

scale fading components will be further analyzed to separate out propagation pathloss components

from the variations in mean signal level due to shadowing. The small scale fading components

and the large scale shadowing components will then be used to derive the individual distributions

of small scale fading and large scale shadowing, respectively. The individual distributions will be

utilized, in turn, to derive the joint distribution for the mixture of small scale fading and large

scale shadowing, in an indoor wireless propagation environment.

The rest of this section is organized as follows. Subsection 2.5.1 explains the procedure followed

to separate out small scale fading effects and large scale channel effects from the accumulated set

of |S21| values. A few graphical samples of measurement analyses, collected in different scenarios,

are also presented. Finally Subsection 2.5.2 presents a discussion on the appropriate choice of the

time window for separating small and large scale effects.

2.5.1 Extraction of Fading and Shadowing Envelopes

The first step is to analyze the accumulated measurement files. Here each measurement file corre-

sponds to the accumulated |S21| values collected over one complete receiver route. Each 10 MHz

frequency band is sampled 11 times. Each set of corresponding 11 |S21| values are concatenated to

form a vector where, the nth 11 element vector from a file is denoted by s′n. For example, the total

distance covered by the receiver in R1 is 19.5 m, at a constant speed of 1 m/s. Hence, the total

time required to traverse the total distance is approximately 20 s. If the total number of measured

sample points in route, R1 is 275000, then we are left with 25000 s′n vectors in R1.
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Each measurement file can be considered a concatenation of P s′n vectors, sn = [s′1, s
′
2, . . . s

′
n, . . . s

′
P ].

For example, for R1, P = 25000. The next step is to remove the large scale channel effects from

sn. To accomplish that, the set of 11 |S21| values of each of s′n are first squared and then linearly

averaged over the measurement frequency band, to generate average received energy components,

e′n. In each measurement file, all the e′n values are then concatenated to form another vector,

en = [e′1, e
′
2, . . . e

′
n, . . . e

′
P ]. Large scale variations in the average received energy is determined by

filtering signal energy |en| with a moving average low pass filter operating on a small time window

of 4λs, over which large scale fading will remain stationary, as is done in [30].

The moving average filtering process produces a P -element vector fn = [f1, f2, . . . fn, . . . fP ]. The

square root of each component of the filter output is used to normalize sn, to get the small scale

fading components.

sn,nrm =

[
s′1√
f1

,
s′2√
f2

, . . . ,
s′P√
fP

]
(2.2)

Note that the vector, sn,nrm in (2.2) contains the small scale fading variations that we will later be

modeling as a small scale fading random process, X. The entire procedure is repeated for each fc.

A few samples of small scale fading envelopes at different transmit positions and receiver routes

with fc = 2.45 GHz, are presented in Fig. 2.5.

Next, a long averaging window of 150λs is used for moving average filtering of the previous filtered

output, fn. The new filter output, f ′n represents the pathloss components or variation due to

distance and is used to normalize fn to obtain the shadowing variations shn,nrm, which will later
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Figure 2.5: Small Scale Fading Envelope at fc = 2450 MHz
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Figure 2.6: Large Scale Shadowing Envelope at fc = 2450 MHz

27



be modeled as a large scale shadowing random process, Y .

shn,nrm =

[
f1

f ′1
,
f2

f ′2
, . . . ,

fP
f ′P

]
(2.3)

This is done to ensure that the average value of the large scale shadowing envelope is same from

one measurement file to the next. However, since the values contained in shn,nrm are given by

the ratio of the moving average filter coefficients, a few of the shadowing envelope values can be

expected to be negative. The filter window in this case, is chosen long enough so that the effects

of user motion on large scale attenuation are preserved in the measurements. A few samples of

shadowing envelopes at different transmit positions and receiver routes with fc = 2.45 GHz, are

depicted in Fig. 2.6. The corresponding PDFs of small scale fading and shadowing components

will be used further, to derive the joint distribution of the mixture of small scale and large scale

channel effects.

2.5.2 Separation of Large and Small Scale Channel Effects

The choice of the time window of the moving average filter used to extract the large scale channel

variation is crucial. An appropriate selection depends on the time scale of shadowing. In outdoor

wireless channels, where the obstacles are large, variations in the average received power of the

signal due to shadowing are assumed to be constant over hundreds of wavelengths. Variations due

to shadowing in dense urban environments are assumed to be constant over tens of wavelengths

[19, 20]. However in an indoor environment, shadowing variations exhibit a spatial correlation of

only 10 wavelengths or less and have a correlation distance of around 1 − 2 m, as established in

[13]. This correlation distance can then be translated to wavelengths. Wavelengths at 900 MHz,

2.45 GHz and 5 GHz are 33 cm, 12 cm and 6 cm respectively. In these cases, the choice of a 10

wavelength subinterval to remove small scale fading variation, as mentioned in [21] - [23], is too
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long and will distort the shadowing experienced in an indoor environment. A better choice is a

filter window of 4λs which corresponds to a correlation distance of approximately 1 m.

2.6 Analytical Derivation

In order to characterize the mixture of small scale and large scale channel effects, this section devises

an analytical model and expression for the joint distribution of combined small scale fading and

large scale shadowing. This is accomplished in three consecutive steps. Firstly, distribution fitting

is employed to the extracted PDFs of the small scale fading process, X, which in turn is used to

derive the distribution, fX(x), in Subsection 2.6.1. Secondly, distribution fitting is employed to

the extracted PDFs of the large scale shadowing process, Y , which in turn is used to derive the

distribution, fY (y), in Subsection 2.6.2. Finally, in Subsection 2.6.3, fX(x) and fY (y) are used to

derive the joint distribution fZ(z), where Z = XY .

2.6.1 Derivation of fX(x)

An analytical PDF, fX(x), for the small scale fading process, X, is determined by fitting an

analytical distribution to the measured data. On observation, the distributions of small scale

fading can be approximated by a Rician distribution. Hence, it can be written,

fX(x) = fX(x;K,P1) =
x

P1

exp

(
−x2

2P1

−K
)
I0

(
x

√
2K

P1

)
(2.4)

where, I0(.) is the zeroth order modified Bessel function of the first kind and the Rician K-factor,

K is given by,

K =
Specular Power

Diffused Power
=
V1

2

2P1
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Next Chi-Squared distribution fitting is used to estimate the parameters K and P1 that offer best

fit to each extracted distribution of small scale fading. A statistical measure of the goodness-of-

fit is also calculated for each case. This measure is based on the incomplete Gamma function,

Q(N−2
2
, χ1

2

2
), where χ1

2 is the Chi-Squared merit function [25] and can be written as,

χ1
2(K,P1) =

N∑
i=1

[
fXi(xi)− xi

P1
exp
(−xi2

2P1
−K

)
I0

(
xi

√
2K
P1

)
ui

]2

(2.5)

where N is the number of data points in each measurement file and ui denotes the measurement

errors. Chi-Squared distribution fitting is chosen for our application, because it is one of the most

popular non-parametric statistical procedure. A non-parametric statistical method does not rely

on data belonging to any particular distribution and does not assume that the structure of a model

is fixed. Hence, Chi-Squared distribution fitting technique does not require normal distribution or

variance assumptions about the populations from which the samples are drawn.

In order to determine K and P1 values, (2.5) is to be minimized with respect to K and P1,

respectively. For simplification, let, Ai = fXi(xi)− xi
P1

exp
(−xi2

2P1
−K

)
I0

(
xi

√
2K
P1

)
. At its minimum,

derivatives of χ1
2(K,P1) with respect to K and P1 will vanish.

0 =
∂χ1

2

∂K
= 2

N∑
i=1

Ai
ui2

(
∂Ai
∂K

)
(2.6)

0 =
∂χ1

2

∂P1

= 2
N∑
i=1

Ai
ui2

(
∂Ai
∂P1

)
(2.7)

Detailed calculation of ∂Ai
∂K

and ∂Ai
∂P1

is presented in Appendix A. Using, (2.6) and (2.7), numerical

solution for the values of K and P1 are obtained, that offer best fit to each distribution. An

example set of extracted PDFs and their best fit Rician distributions are shown in Fig. 2.7.
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Figure 2.7: Measured and Approximated PDFs for Small Scale Fading at fc = 2450 MHz
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Figure 2.8: Calculated values of K, P1 and Q over all receiver routes and transmit locations at
fc = 900 MHz
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Next, the goodness-of-fit measure is estimated by the incomplete Gamma function [25],

Q

(
N − 2

2
,
χ1

2

2

)
=

1

Γ
(
N−2

2

) ∫ ∞
χ1

2

2

e−tt

(
N−2

2

)
−1dt (2.8)

where, Q is the probability that a value of chi-square as poor as the value (2.5) should occur by

chance. If the Q-value is larger than 0.1, the distribution fitting is fine under any condition. When

it is smaller than 0.1 but larger than 0.001, the distribution fitting is fine if the measurement errors

are non-normal or have been moderately underestimated. If Q-value is less than 0.001, then the

model and / or the estimation procedure is questionable. Fig. 2.8 presents the calculated values

of K, P1 and their corresponding goodness-of-fit, Q values over all receiver routes and transmit

locations at fc = 900 MHz while, Fig. 2.9 represents calculated values at fc = 2450 MHz. All the

calculated Q-values lie between 0.08 and 0.97, which establishes the fact that our approximated

PDFs offer a good fit to the extracted PDFs, with the distribution of measurement errors being

non-normal.

2.6.2 Derivation of fY (y)

The PDF, fY (y), for the shadowing process, Y , is also determined by fitting the analytical distri-

bution to the measured data. On visual inspection of the measurement data, it is assumed that

a Two-Wave with Diffuse Power (TWDP) distribution [15] can be used for the approximation.

Though TWDP has been used by the authors of [15], to characterize small scale fading, it will be

used here to approximate shadowing. Hence, it can be written,

fY (y) = fY (y;Sh, P2,∆) =
y

P2

exp

(
−y2

2P2

− Sh
) M∑

j=1

aj D

(
y√
P2

;Sh,∆ cos
π(j − 1)

2M − 1

)
(2.9)

where,

D(α;u, β) =
1

2
exp(βu)I0

(
α
√

2u(1− β)
)

+
1

2
exp(−βu)I0

(
α
√

2u(1 + β)
)
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Figure 2.9: Calculated values of K, P1 and Q over all receiver routes and transmit locations at
fc = 2450 MHz
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Figure 2.10: Measured and Approximated PDFs for Large Scale Shadowing at fc = 2450 MHz
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Figure 2.11: Calculated values of Sh and ∆ over all receiver routes and transmit locations at
fc = 2450 MHz

The shadowing parameter, Sh-factor physically represents the range of discrete shadowing values

experienced by a user while traveling through different scattering clusters. The ∆-parameter is the

shape parameter of the shadowing distribution and represents the transition, as the user travels

from one scattering cluster to the next one. An order, M of 4 is used for this set of distribution

fitting. Using the Chi-Squared merit function to estimate the parameters Sh, ∆ and P2, that offer

best fit to the distributions, the following expression can be obtained,

χ2
2(Sh,∆, P2) =

N∑
i=1

[fY i(yi)− yi
P2

exp
(−yi2

2P2
− Sh

)∑M
j=1 ajD

(
y√
P2

;Sh,∆ cos π(j−1)
2M−1

)
vi

]2

(2.10)

where vi denotes the measurement errors. Minimizing χ2
2 with respect to Sh, ∆ and P2, three sets

of equations are obtained,

0 =
∂χ2

2

∂Sh
= 2

N∑
i=1

Gi

vi2

(
∂Gi

∂Sh

)
(2.11)
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Figure 2.12: Calculated values of P2 and Q over all receiver routes and transmit locations at
fc = 2450 MHz

0 =
∂χ2

2

∂∆
= 2

N∑
i=1

Gi

vi2

(
∂Gi

∂∆

)
(2.12)

0 =
∂χ2

2

∂P2

= 2
N∑
i=1

Gi

vi2

(
∂Gi

∂P2

)
(2.13)

where,

Gi = fY i(yi)−
yi
P2

exp

(
−yi2

2P2

− Sh
) M∑

j=1

ajD

(
y√
P2

;Sh,∆ cos
π(j − 1)

2M − 1

)

Detailed calculation of ∂Gi
∂Sh

, ∂Gi
∂∆

and ∂Gi
∂P2

is presented in Appendix A. Using, (2.11), (2.12) and

(2.13), numerical solution for the values of Sh, ∆ and P2 are obtained, that offer best fit to each

distribution. An example set of extracted PDFs and their approximated PDFs for large scale
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Figure 2.13: Calculated values of Sh and ∆ over all receiver routes and transmit locations at
fc = 5000 MHz

shadowing is presented in Fig. 2.10.

Next, the goodness-of-fit measure is estimated by (2.8). Fig. 2.11 presents the calculated values

of Sh, and ∆, while Fig. 2.12 depicts the calculated values of P2 and goodness-of-fit, Q values

over all receiver routes and transmit locations at fc = 2450 MHz. Fig. 2.13 and Fig. 2.14 present

the calculated values of Sh, ∆, P2 and their corresponding goodness-of-fit, Q values, respectively

over all receiver routes and transmit locations at fc = 5000 MHz . All the calculated Q-values lie

between 0.3 and 0.98, which establishes the fact that, our approximated PDFs offer a good fit to

the extracted PDFs, with the distribution of measurement errors being non-normal.
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Figure 2.14: Calculated values of P2 and Q over all receiver routes and transmit locations at
fc = 5000 MHz

2.6.3 Derivation of fZ(z)

The envelope of the mixture of small scale and large scale channel effects is denoted as Z where

Z = XY . In order to derive the analytical PDF fZ(z) of Z, the joint distribution fXY (x, y) will

be derived, which in turn will be mapped to fZ(z) using a linear transformation. However the

distribution fitting of fZ(z) to the measured data will be done in the next chapter to determine how

well it captures the combined effect of indoor fading and shadowing. Based on the assumption

of independent fading and shadowing, small scale fading distribution, fX(x), (2.4) derived in

Subsection 2.5.1 is combined with shadowing distribution, fY (y), (2.9) derived in Subsection 2.5.2

to derive the joint distribution fXY (x, y). Next, the term D(α;u, β) of (2.9) is expanded using
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(A.5) presented in Appendix 2.A and hence, the joint distribution fXY (x, y) can be written as,

fXY (x, y) =
xy

P1P2

exp

(
− x2

2P1

− y2

2P2

−K − Sh
)

I0

(
x

√
2K

P1

)[
751

17280
T1 +

3577

17280
T2 +

49

640
T3 +

2989

17280
T4

]
(2.14)

Now the term, 751
17280

T1I0

(
x
√

2K
P1

)
can be calculated using infinite series expansion of Modified

Bessel Function as,

751

17280
T1I0

(
x

√
2K

P1

)
= b1D

(
xy

√
2K

P1P2

;Sh,∆

)
(2.15)

the detailed calculation of which is presented in Appendix A. Similarly,

3577

17280
T2I0

(
x

√
2K

P1

)
= b2D

(
xy

√
2K

P1P2

;Sh, 0.9∆

)
49

640
T3I0

(
x

√
2K

P1

)
= b3D

(
xy

√
2K

P1P2

;Sh, 0.6∆

)
2989

17280
T4I0

(
x

√
2K

P1

)
= b4D

(
xy

√
2K

P1P2

;Sh, 0.2∆

)
(2.16)

where, b1 = 751
8640

I0(1), b2 = 3577
8640

I0(1), b3 = 49
320
I0(1) and b4 = 2989

8640
I0(1).

Next the distribution function, FZ(z) of z is obtained as,

FZ(z) = P{XY ≤ Z} =

∫ ∞
y=−∞

∫ z/y

x=−∞
fXY (x, y)dxdy (2.17)

and, hence, fZ(z) = dFZ(z)
dz

. Using linear transformation, 2.17 can be written as,

fZR(z, r) = |J(z, r)|fXY (r, z/r) =
1

|r|
fXY (r, z/r) (2.18)

where XY = Z, X = R and J represents the Jacobian matrix. Hence 2.18 can be expressed as,

fZ(z) =

∫ ∞
−∞

1

|r|
fXY (r, z/r)dr (2.19)
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Solving the integration in (2.19), the final expression for the joint distribution is obtained as,

fZ(z) =
z

P1P2

exp (−K − Sh)
4∑
j=1

bjD

(
z

√
2K

P1P2

;Sh,∆ cos
π(j − 1)

2M − 1

)

.

m∑
h=1

wh

[
1

|rh|
exp

(
rh

2(2P1 − 1)

2P1

− z2

2P2rh2

)]
(2.20)

where, K is the small scale fading Rician K-factor and is given as the ratio of the specular power

to the diffused power contributed by multiple reflections and refractions due to individual scat-

terers within a scattering cluster. The parameter Sh is defined as the range of shadowing values

experienced, while traveling through different scattering clusters and ∆, as the shape parameter of

the joint fading and shadowing distribution. The value of ∆ ranges between 0 and 1 representing

the transition from one scattering cluster to the next. When the magnitude of shadowing values

contributed by two consecutive scattering clusters become equal, ∆ = 1, while the absence of one

shadowing cluster results in ∆ = 0. The expression in (2.20) will be referred to as the Joint Fading

and Two-path Shadowing (JFTS). The detailed calculation of fZ(z) is shown in Appendix A. An

example set of measured PDFs that contain both shadowing and fading along with their best fit

JFTS distributions will be presented in the next chapter along with the discussion on how well the

JFTS model fits the joint fading and shadowing PDFs extracted from the measurements described

in Section 2.4.

2.7 Summary

A detailed measurement campaign is conducted for capturing the impact of spatio-temporal vari-

ations in the received signal envelope over an indoor wireless channel. From the measured data,

individual distributions of small scale fading and shadowing are extracted. Next Rician distri-

bution is used to approximate the small scale fading distribution and the TWDP distribution to
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approximate shadowing. Then both the distributions are combined to yield a joint distribution,

which analytically models the combined effect of small scale multipath fading and large scale shad-

owing in an indoor environment. The newly developed model is coined as the Joint Fading and

Two-path Shadowing (JFTS) distribution.

The JFTS distribution consists of three fundamental parameters, K, Sh and ∆. The parameter,

K, is the small scale fading Rician K-factor and is given by the ratio of the specular power to

the diffused power contributed by multiple reflections and refractions due to individual scatter-

ers within a scattering cluster. The parameter, Sh, is defined as the range of shadowing values

experienced, while traveling through different scattering clusters, and ∆, as the shape parameter

representing the transition from one scattering cluster to the next one.

40



Chapter 3

Propagation Model

3.1 Background

In an indoor wireless environment like an open office or laboratory, there are not enough large

obstacles to reflect or refract the main waves contributed by the scattering clusters. Moreover, due

to the inability of most WLAN standards to accommodate hand-offs, mobile WLAN users have to

limit their movements within a small area traveling between at most one or two scattering clusters.

In order to characterize the transition from local small scale fading to global shadowing statistics in

such an indoor wireless environment, a detailed measurement campaign was conducted over signal

bandwidths of 10 MHz, the description of which is presented in Chapter 2. A joint distribution that

combines Rician fading and the TWDP shadowing model was derived based on the collected mea-

surement data. However, the work in Chapter 2 is limited only to the derivation of the JFTS PDF.

The JFTS propagation model differs fundamentally from other more recent studies of indoor

propagation. Recent efforts in modeling indoor wireless communication scenarios can be broadly

classified in to two groups. The first group [31] - [33] aims at formulation of numerical techniques

that can rigorously capture the underlying physics of wireless links. The second group [34] -

[36] concentrates on modeling the stochastic or temporal variations in its power spectral density.

However, JFTS accounts for both the small scale and large scale channel effects over a small neigh-

borhood of at most two scattering clusters within a time window larger than the coherence time of

large scale shadowing. Hence, JFTS propagation model is neither site-specific like the first group,
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nor it only examines the local fading statistics like the second group.

The first contribution of this chapter therefore is to examine the breadth of the application of the

JFTS model and its capability of modeling a wide variety of indoor wireless communication scenar-

ios. In order to do that the derived PDF expression for JFTS will be fit to measured distributions

that capture the combined effect of indoor fading and shadowing. Based on the distribution fitting,

some ranges of numerical values of each parameter of the distribution will be suggested depending

on the relative position of the mobile WLAN user and the access point.

Statistical characterization of the received signal envelope in terms of its moments, like mean and

variance, and CDF is useful in the design of a mobile radio communication system and the analy-

sis of its performance. On one hand, moments of the fading and shadowing distribution are used

to develop the PDF and the Moment Generating Function (MGF) of the instantaneous received

signal-to-noise ratio (SNR) over the communication channel. These PDF and MGF expressions are

in turn used to derive analytical expressions for performance measures like average SNR, average

bit error rate (BER) and average symbol error rate (SER). On the other hand, the expression for

CDF can used to analyze the outage probability performance of communication systems. CDF

expressions can also be used to calculate higher order statistics like Level Crossing Rate (LCR) or

Amount of Fading (AF), as is done in [37].

Expressions for BER and SER do not capture all the benefits of diversity combining, as mentioned

in [38]. In this case, another performance measure called AF is used that take into account higher

moments of the combiner output SNR. The AF is a unified measure of the severity of fading and

is expressed in terms of moments of the fading distribution itself. Therefore, it can be used as
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numerical basis for comparing severity of fading contributed by the JFTS distribution to that

imparted by other commonly used fading and composite fading/shadowing distributions.

Hence, the second contribution of this chapter is to derive new expressions for the joint mo-

ments, CDF and AF of the JFTS distribution. The expression for AF will be used to compare

the severity of fading imparted by the JFTS distribution with the fading severity of Rayleigh,

Nakagami-m, K-distribution [14] and Nakagami-m - log-normal distribution [18]. This will also

enable us to calculate the values of the JFTS parameters for which the amount of JFTS fading will

be approximately equivalent to the AF contributed by the above mentioned conventional channel

distributions.

The rest of this chapter is organized as follows. Section 3.2 illustrates the application and accuracy

of the JFTS model while the analytical derivation of joint moments, CDF and AF is presented in

Section 3.3. The concluding remarks are made in Section 3.4.

3.2 PDF Characterization and Distribution Fitting

The PDF of the JFTS distribution is given by (refer to (2.20) in Chapter 2),

fZ(z) =
z

P1P2

e(−K−Sh)

4∑
j=1

biD

(
z

√
2K

P1P2

;Sh,∆Mj

) m∑
h=1

[
wh
|rh|

e

(
rh

2(2P1−1)

2P1
− z2

2P2rh
2

)]
(3.1)

where Z is the composite faded/shadowed received signal envelope, I0(·) is the zeroth order modi-

fied Bessel function of the first kind, Mj = cos((j−1)π/7) and bj = ajI0(1), where a1 = 751/17280,

a2 = 3577/17280, a3 = 49/640 and a4 = 2989/17280 for j = 1, 2, 3, 4 respectively. The parameter

K is the Rician K-factor, Sh is the range of discrete shadowing values experienced by a user as

it transits through different scattering clusters, ∆ represents the transition from one scattering
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cluster to the next one, P1 is the mean-squared voltage of the diffused components and P2 is

the mean squared voltage of the shadowed components. The variable, m is the quadrature order

(determining approximation accuracy) and the multiplier wh are the Gauss-Hermite quadrature

weight factors which is tabulated in [39] and is given by,

wh =
2m−1m!

√
π

m2[Hm−1(rh)]2

where Hm−1(.) is the Hermite polynomial with roots rh for h = 1, 2, . . . ,m and, bi = aiI0(1). For

our analysis, we have chosen m = 20, as is done for parameter estimation of composite gamma -

log-normal fading channels in [40].

The rest of this section is organized as follows. Subsection 3.2.1 discusses the behavior of the

JFTS distribution and presents an intuitive understanding of how its characteristics depend on

its three main parameters, K, Sh and ∆. Subsection 3.2.2 demonstrates how well the JFTS

model fits to the joint fading and shadowing PDFs extracted from the measurements described in

Chapter 2 - Section 2.3.

3.2.1 Behavior of the JFTS Distribution

An example set of JFTS distributions is plotted in Fig. 3.1 and Fig. 3.2, for three different combi-

nations of K and Sh. Correspondingly, ∆ is kept constant for each plot, but changed from one plot

to the next. The most predominant feature of the JFTS distribution is the existence of the two

humps, the dominant bell-shaped peak and narrow spike-shaped peak. As each of the parameter

of the three main parameters, K, Sh and ∆, are varied the distance between the two peaks as well

as the width of each peak changes. For example, when K and ∆ are varied the distance between

the humps changes, while when K and Sh are varied the width of the individual humps changes.
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Figure 3.1: PDF of JFTS generated by varying values of ∆, K from 5 dB to 10 dB and Sh from 5
dB to 10 dB.

In case of both Fig. 3.1 and Fig. 3.2, K-value is increased from 5 dB to 10 dB. As K increases,

the peaks of the distribution gets shifted due to the fact that once K ≥ 5 dB the shadowing fac-

tor essentially determines the shape of the distribution. This represents a typical indoor wireless

environment where Rician fading K-factor varies from 4 dB to 12 dB. Higher K-factor established

presence of a dominant LOS component between the transmitter and the receiver. Moreover in

an indoor environment, a group of strong reflected specular components will always exist between

the transmitter and the receiver due to the light construction of the office interior walls. As a

result, the power contributed by the specular components will always exceed that contributed by

the diffused components resulting in a positive K-factor.

In case of Fig. 3.1, Sh is increased from 5 dB to 10 dB, while in case of Fig. 3.2, it is increased

from −10 dB to −5 dB. As Sh increased, the peaks of the PDF widen. This represents scenarios
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Figure 3.2: PDF of JFTS generated by varying values of ∆, K from 5 dB to 10 dB and Sh from
−10 dB to −5 dB.

where each scattering neighborhood presents a larger range of shadowing values. A low shadowing

parameter represents the scenario where each scattering cluster contributes a very small range of

discrete shadowing values, that are encountered repeatedly. In that case Sh can assume values

between 0 and 1 resulting in negative values in the decibel scale.

As mentioned before, ∆ parameter is the shape parameter of the JFTS distribution. The value of ∆

ranges between 0 and 1 representing the transition from one scattering cluster to the next. When

the magnitude of shadowing values contributed by two consecutive scattering clusters become

equal, ∆ = 1, while the absence of one shadowing cluster results in ∆ = 0. Hence, when ∆

is increased, the magnitude of the shadowing values contributed by two consecutive scattering

clusters get closer to each other. As a result, the distribution exhibits two distinct peaks and the

distance between the humps of the distribution increases, as is evident from Fig. 3.1 and Fig. 3.2.
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3.2.2 Application to Measured Data

The JFTS distribution of fZ(z) is used for distribution fitting of the extracted joint PDFs with the

help of Chi-squared merit function. Distribution of the variations in the received signal envelope

are extracted over a time scale exceeding the coherence time of large scale shadowing. Hence, it

can be written as,

χ2(K,Sh,∆, P1, P2) =
N∑
i=1

[
F3i −

∑20
h=1

zi
P1P2

e
−K−Sh−

z2i
2P2r

2
hR
∑4

j=1D
(
zi

√
2K
P1P2

;Sh,∆Mj

)
qi

]2

(3.2)

where R = wh
|rh|

e
rh

2(2P1−1)

2P1 , F3i = fZi(zi) with individual standard deviations of qi. In order to de-

termine the values of K, Sh, P1, P2 and ∆, that best fit each fast variation envelope distribution,

(3.2) is to minimized with respect to K, Sh, P1, P2 and ∆ respectively. Following the same proce-

dures as in Subsection 2.5.1 and Subsection 2.5.2, the values for K, Sh, P1, P2 and ∆ are calculated.

Next, the goodness-of-fit measure is estimated by the incomplete Gamma function [41]. Fig. 3.3

presents the calculated values of K, Sh and ∆, while Fig. 3.4 depicts the calculated values of P1,

P2 and their corresponding goodness-of-fit, Q values over all receiver routes and transmit locations

at fc = 900 MHz. Fig. 3.5 and Fig. 3.6 present the calculated values of K, Sh, ∆, P1, P2 and

corresponding goodness-of-fit, Q values, respectively over all receiver routes and transmit locations

at fc = 2450 MHz . All the Q-values lie between 0.2 and 0.95, which establishes the fact that, our

approximated PDFs offer a good fit to the extracted PDFs. The set of measured PDFs with their

fitted approximated PDFs, with fc = 2.45 GHz, is presented in Fig. 3.7.

In order to increase confidence that JFTS offers the best possible fit to the collected measurement
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Figure 3.3: Calculated values of K, Sh and ∆ over all receiver routes and transmit locations at
fc = 900 MHz
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Figure 3.4: Calculated values of P1, P2 and Q over all receiver routes and transmit locations at
fc = 900 MHz
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Figure 3.5: Calculated values of K, Sh and ∆ over all receiver routes and transmit locations at
fc = 2450 MHz

set, a comparative distribution fitting of the joint Nakagami-m - log-normal [18] distribution and

the JFTS distribution to the measurement data set is also presented. Nakagami-m - log-normal

channel model is our preferred choice for comparison because the Nakagami-m factor can be varied

to characterize both Rician and Rayleigh fading and the log-normal distribution is used to model

shadowing in the bulk of the available composite fading/shadowing models.

The PDF of the received signal power over a log-normal shadowed Nakagami-m fading communi-

cation channel is given by,

fΞ(ξ) = fΞ(ξ;m,µ, σ2)

=

∫ ∞
0

mmξm−1

ωmΓ(m)
e−

mξ
ω

4.3429√
2πσω

e−
(10log10ω−µ)2

2σ2 dω (3.3)

where m is the Nakagami m factor and µ (dB) and σ (dB) are the mean and standard deviation of
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Figure 3.6: Calculated values of P1, P2 and Q over all receiver routes and transmit locations at
fc = 2450 MHz

the log-normal shadowing distribution respectively. The Newton - Raphson method [42] has been

used for maximum likelihood estimation (MLE) of the composite shadowing/fading distribution

parameters, m and σ (dB) for distribution fitting to the measured PDF. The sample set of ap-

proximated PDFs using Nakagami-m - log-normal distribution is also presented in Fig. 3.7. The

best fit parameters of both the distributions are tabulated in Table 3.1.

It is evident from Table 3.1 that distribution fitting using the Nakagami-m - log-normal distri-

bution yields Q-values lower than that of the JFTS distribution in the case of each of the four

scenarios considered. Particularly in the case of T1 : R7 and T3 : R9, distribution fitting with

the Nakagami-m - log-normal distribution yields Q-values lower than 0.1. As mentioned in Chap-

ter. 2, if the Q-value is lower than 0.1, the distribution fitting is fine under the constraint that

the measurement either are non-normal or have been moderately under-estimated. For both of
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Figure 3.7: Comparative distribution fitting using Nakagami-m - log-normal and JFTS distribu-
tions with the approximated PDFs for fc = 2450 MHz

these communication scenarios, distribution fitting using JFTS model yields Q-values higher than

0.1, which renders fitting to be fine without any constraint. In addition, visual inspection of the

distributions in Fig. 3.7 indicate that Nakagami-m - log-normal distribution fails to adequately

characterize the two peaks commonly seen in the fading distributions generated using the mea-

surement data presented in this thesis.

For the T2 : R1 scenario of Fig. 3.7, the calculated JFTS parameters are K = 8.19 dB, Sh = 11.51

dB and ∆ = 0.323. The measurements are taken when the transmitter is located in an open

lab room, with smaller obstacles like low tables, cabinets and equipment. The receiver is moved

through another room cluttered with large obstacles like book-shelves, equipment and file-cabinets,

soft cubicle walls, lab benches as well as small obstacles like work tables, hairs and several pieces
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Table 3.1: Parameters used for distribution fitting

Transmit Position :
Receive Position

Nakagami-m - log-normal
parameters

JFTS parameters

T2 : R1 m = 5, σ = 0 dB, Q-value
= 0.1474

K = 8.19 dB, Sh = 11.51 dB,
∆ = 0.323, Q-value = 0.626

T1 : R4 m = 2, σ = 2 dB, Q-value
= 0.227

K = 6.48 dB, Sh = −6.08 dB,
∆ = 0.155, Q-value = 0.396

T1 : R7 m = 2, σ = 2 dB, Q-value
= 0.091

K = 5.92 dB, Sh = −8.28 dB,
∆ = 0.372, Q-value = 0.372

T3 : R9 m = 4, σ = 0 dB, Q-value
= 0.046

K = 6.21 dB, Sh = 4.32 dB, ∆ =
0.48, Q-value = 0.168

of electronic equipment. The two rooms are separated by walls constructed of two thin sheets of

dry-walls with no insulation between the sheets. As a result, larger variations in the main wave

amplitudes are obtained for each scattering neighborhood, yielding a high Sh-factor. The ∆ factor

is neither very high nor very low. This represents a scenario, where there exists at least two scat-

tering clusters and the physical scattering conditions are similar over adjacent neighborhoods. On

the other hand, as the transmitter and the receiver are close to each other, there exists a group of

strong reflected specular components that arrive with relatively little attenuation due to the light

construction of the office interior walls. This has resulted in high small scale fading K-factor.

For the T1 : R4 and T1 : R7 scenarios of Fig. 3.7, the calculated JFTS parameters are K = 6.48

dB, Sh = −6.08 dB, ∆ = 0.155 and K = 5.92 dB, Sh = −8.28 dB, ∆ = 0.1973 respectively.

These measurements are taken when the transmitter is located in a lab room cluttered with large

obstacles. The receivers are moved through open lab rooms with smaller objects like low tables

and cabinets. The two rooms in concern in both cases, are very far from each other, separated

by several drywalls, doors and other in-building structures. As a result, very low Sh-factors are
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Table 3.2: Generalized range of values for the parameters of JFTS distribution

User / Access Point (AP) Positions K (dB) Sh (dB) ∆

Same room 9 to 11 9 to 12 0.6 to 0.95
Different rooms separated by 1 wall or
partition

7 to 9 6 to 11 0.3 to 0.58

Different rooms separated by 2 to 3
walls or partitions

6 to 7 - 4.5 to - 0.5 0.2 to 0.3

Different rooms separated by more
than 3 walls or partitions

5 to 6 - 5 to - 9.8 0.1 to 0.2

obtained. This represents a scenario where, each scattering cluster contributes a very small range

of discrete shadowing values, that are encountered repeatedly. The ∆ factor is also very low. This

is due to the fact that although there exists at least two scattering clusters, the magnitude of the

shadowing values encountered in one is much larger than that of the other. However, there still

exist a small group of strong specular components between the transmitter and the receiver. this

resulted in a high small scale fading K-factor, but lower than that of the first plot.

For the T3 : R9 scenario, the calculated JFTS parameters are K = 6.21 dB, Sh = 4.32 dB and

∆ = 0.48. These measurements are taken when the transmitter is located in a lab room cluttered

with large obstacles. The receive dis moved through the entire corridor. Hence, at some points the

transmitter and the receiver are very close to each other. As a result, a large range of shadowing

values are contributed by each scattering neighborhood, yielding a high Sh factor. In this case,

the product Sh∆ ≈ 2. According to the properties of the TWDP distribution mentioned in [15],

the TWDP PDF resembles a Rician PDF in shape for Sh∆ ≤ 2. Therefore, the joint distribution,

in this case, can be approximated by a bivariate Rician distribution.
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After extensive data fitting, it is possible to recommend JFTS model parameters that are suitable

for different scenarios within the indoor office environment. The different ranges of values of K,

Sh and ∆ have been compiled in Table 3.2 for these scenarios.

3.3 Statistical Properties

In this section, the expression for the joint PDF of the JFTS distribution will be used to derive the

expressions for different statistical properties like joint moments, CDF and AF of the distribution.

Subsection 3.3.1 derives the nth joint moment of the JFTS distribution which will be subsequently

used to derive the expression for AF in Subsection 3.3.2. Finally the expression for CDF is derived

in Subsection 3.3.3.

3.3.1 Joint Moments

The JFTS distribution combines Rician fading and TWDP shadowing models. Assuming mutually

independent fading, X(t), and shadowing, Y (t), processes, the received signal envelope over a JFTS

faded/shadowed channel can be given by Z = XY . In this case, the distribution of the fading

process can be expressed using the Rician distribution as,

fX(x) =
x

P1

e
− x2

2P1
−K

I0

(
x

√
2K

P1

)
(3.4)

and the distribution of the shadowing process can be expressed using the TWDP distribution as,

fY (y) =
y

P2

e
− y2

2P2
−Sh

4∑
j=1

ajD

(
y√
P2

;Sh,∆Mj

)
(3.5)

The joint probability density function, fXY (x, y) of X(t) and Y (t) will then be given by,

fXY (x, y) =
xy

P1P2

e
− x2

2P1
− y2

2P2
−K−Sh I0

(
x

√
2K

P1

) [
a1T1 + a2T2 + a3T3 + a4T4

]
(3.6)
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where,

Tj = eSh∆Mj I0

(
y
√

2Sh(1−∆Mj)/P2

)
+ e−Sh∆Mj I0

(
y
√

2Sh(1 + ∆Mj)/P2

)
(3.7)

To calculate the nth moment of fZ(z), the following integral is needed to be solved,

E{Zn} =

∫ ∞
−∞

zn fZ(z)dz (3.8)

Given two independent random variablesX and Y and a function g(x, y), where Z = g(x, y) = XY ,

E{Zn} can be expressed directly in terms of the function g(x, y) and the joint density, fXY (x, y)

[43]. Hence, (3.8) can then be written as,

E{(g(X, Y ))n} =

∫ ∞
−∞

∫ ∞
−∞

[g(x, y)]nfXY (x, y)dxdy. (3.9)

Inserting (3.4) in (3.9), (3.9) can be written as,

E{(g(X, Y ))n} =

∫ ∞
−∞

(y)n+1

P2

e
− y2

2P2
−Sh

(
a1T1 + a2T2 + a3T3 + a4T4

)
·
[ ∫ ∞
−∞

(x)n+1

P1

e
− x2

2P1
−K
I0

(
x

√
2K

P1

)
dx

]
dy. (3.10)

The integration in (3.10) can be solved by separating the integrand into two parts, A and B, which

can be evaluated as,

A =

∫ ∞
−∞

(x)n+1

P1

e
− x2

2P1
−K
I0

(
x

√
2K

P1

)
dx

= (2P1)n/2 Γ(1 + n/2) Ln/2(−K) (3.11)
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and

B =
4∑
j=1

aj

∫ ∞
−∞

Tj
(y)n+1

P2

e
− y2

2P2
−Shdy

=
4∑
j=1

aj (2P2)n/2 Γ(1 + n/2)
[
Ln/2(−(1−∆Mj)Sh) + Ln/2(−(1 + ∆Mj)Sh)

]
(3.12)

where the Laguerre polynomial Lβ(α) can be defined by the Rodrigues formula, Lβ(α) = eα

β!
dβ

dαβ
(αβ e−α)

[44] and Γ(α′) = (α′ − 1)! [45]. The detailed derivations of (3.11) and (3.12) are provided in Ap-

pendix B. Combining (3.11) and (3.12), the final expression for joint moments of JFTS distribution

is obtained as,

E{(g(X, Y ))n} = (4P1P2)n/2 {Γ(1 + n/2)}2 Ln/2(−K)
4∑
j=1

aj G
(n)(Sh,∆Mj) (3.13)

where a new function G(n)(β′, δ′) is introduced for simplification of notation and is defined as,

G(n)(β′, δ′) = [Ln/2(−(1− δ′)β′) + Ln/2(−(1 + δ′)β′) (3.14)

Next the expression for joint moments (3.13) will be used to derive the mean, second moment and

variance of the JFTS distribution.

Mean : The mean of the JFTS distribution can be obtained by putting n = 1 in (3.13),

µ1
z = E{(g(X, Y ))} = E{Z}

=
π

2

√
P1P2 L1/2(−K)

4∑
j=1

aj G
(1)(Sh,∆Mj) (3.15)

Second Moment : The second moment of the JFTS distribution can be obtained by putting

n = 2 in (3.13),

µ2
z = E{(g(X, Y ))2} = E{Z2}

= 8P1P2 (1 +K)
4∑
j=1

aj (1 + Sh) (3.16)
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Figure 3.8: Analytical and Experimental means and variances

Variance : The second central moment or the variance of the JFTS distribution can be calculated

as,

σ2
z = E{Z2} − (E{Z})2

= 8P1P2 (1 +K)
4∑
j=1

aj (1 + Sh)−
π2

4
P1P2 L

2
1/2(−K)

4∑
j=1

a2
j {G(1)(Sh,∆Mj)}2 (3.17)

In order to verify the validity of the derived expressions for mean and variance of the JFTS

distribution, all the measurement files collected over the center frequency of 2.45 GHz are chosen

for analysis. The theoretical and experimental means and variances for each measurement data set

are plotted on Fig. 3.8, where experimental mean and variance are plotted on the x-axis and the

theoretical mean and variance are plotted on the y-axis. In the case of the theoretical expressions,

the JFTS parameters used are the best fit values for each measurement file. In is evident from

Fig. 3.8, that the theoretical results agree with the experimental results. For example, for the

57



measurement file of T2 : R5, the ratio of the theoretical mean to the experimental one is −0.2 dB,

while for T3 : R4, the ratio of the means is approximately equal to −0.3 dB. Similarly, the ratio

of the theoretical variance to the experimental variance for T1 : R9 is −0.03 dB.

3.3.2 Amount of Fading (AF)

Amount of Fading (AF) is a common performance metric of wireless communication systems,

where both the first and second moments of the fading distribution are taken into consideration

for evaluating the metric. For the JFTS distribution, AF can be calculated as,

AF =
Var{Z2}
(E{Z2})2

=
E{Z4} − (E{Z2})2

(E{Z2})2
(3.18)

where E{Z4} is the 4th moment of the JFTS distribution and can be calculated by putting n = 4

in (3.13)

E{Z4} = 16P 2
1P

2
2 (K2 + 4K + 2)

4∑
j=1

aj (S2
h + 4Sh + 2 + S2

h∆
2M2

j) (3.19)

The square of the second moment of the JFTS distribution (E{Z2})2 can be calculated as,

(E{Z2})2 = 64P 2
1P

2
2 (K2 + 2K + 1)

4∑
j=1

a2
j (S2

h + 2Sh + 1) (3.20)

Hence the final expression for AF can be obtained by combining (3.19) and (3.20) as,

AF =
(K2 + 4K + 2)

∑4
j=1

(
Sh

2 + 4Sh + 2 + Sh
2∆2Mj

2
)

4 (K2 + 2K + 1)
∑4

j=1 aj
(
Sh

2 + 2Sh + 1
) − 1 (3.21)

The new expression for AF is now used to quantify the severity of fading experienced over the

channel measured in Chapter 2. Assuming that the communication channel is JFTS faded, the

theoretical amounts of fading contributed by different ranges of JFTS parameters are compiled in

Table 3.3. The values for each set of parameters used in the AF expressions are chosen from the

ranges of their numerical values proposed in Table 3.2, depending on the relative position of the
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Table 3.3: Theoretical AFs for JFTS distribution

AP/User Proxim-
ity

K (dB) Sh (dB) ∆ AF

Same Room 9 to 11 9 to 12 0.6 to 0.95 1.19 to 1.82
1 Wall Separation 7 to 9 6 to 11 0.3 to 0.6 1.29 to 1.93
2 - 3 Wall Separation 6 to 7 - 4.5 to - 0.5 0.2 to 0.3 2.61 to 3.08
> 3 Wall Separation 5 to 6 - 9.8 to - 5 0.1 to 0.2 3.09 to 3.45

mobile LAN user and the access point.

It is evident from Table 3.3 that the AF contributed by JFTS fading can vary from 1.2 to 3.45

depending on the relative position of the mobile WLAN user and the access point. It can also be

concluded that the AF of the JFTS distribution increases with a decrease in K-factor and/or the

Sh-factor. This is due to the fact that as K decreases, the power contributed by the strong specular

components decreases in comparison to that contributed by the diffused and the scattered compo-

nents. The result is an increase in fading severity. On the other hand, a low Sh factor depicts a

scenario where each scattering cluster contributes a very small range of discrete shadowing values

that are higher in magnitude and encountered repeatedly. This condition results in an increased

severity in shadowing.

The JFTS distribution has a very different PDF from common small scale fading distributions

like the Rayleigh or Nakagami-m distributions or other composite fading/shadowing distributions

like the Nakagami-m - log-normal or K-distribution. However, the AF expressions for these con-

ventional models can be used to determine the conventional channel conditions that would yield

similar AF values to Table 3.3. For example, when the AP and the user are in the same room,

the AF contributed by the JFTS fading varies between 1.19 and 1.82, which is equivalent to the

59



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Received Signal Envelope, z

C
D

F
, F

Z
 (

z)
 =

 P
r 

{Z
 ≤

 z
}

T2 : R1

 

 

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Received Signal Envelope, z

C
D

F
, F

Z
 (

z)
 =

 P
r 

{Z
 ≤

 z
}

T3 : R9

 

 

Measured
Empirical

Measured 
Empirical

Figure 3.9: Set 1 : Measured and Empirical CDFs for JFTS at fc = 2450 MHz.

AF contributed by the Nakagami-m distribution with m = 0.55 to 0.84, the K-distribution with

ν = 2.44 to 10.53 and the Nakagami-m - log-normal distribution with m = 1 and σ = 1.31 to 2.55.

Similarly, when the AP and the user are in different rooms separated by more than 3 partitions,

the AF contributed by JFTS fading varies between 3.09 and 3.45, which is equivalent to the AF

contributed by the Nakagami-m with m = 0.29 to 0.32, the K-distribution with ν = 0.82 to 0.96

and the Nakagami-m - log-normal distribution with m = 1 and σ = 3.67 to 3.88.

3.3.3 Cumulative Distribution Function (CDF)

The Cumulative Distribution Function (CDF) of the composite fading/shadowing process, Z(t)

can be defined as FZ(z)
4
= Pr{Z ≤ z} and the complimentary CDF (CCDF) of that process can

be written as, F̄Z(z)
4
= Pr{Z ≤ z} = 1 − FZ(z). By definition, the expression for JFTS CDF
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can be determined by solving,

FZ(z) =

∫ z

−∞
fU(u)du (3.22)

where U is the JFTS distributed received signal envelope with the PDF given by (3.1). Putting

(3.1) in (3.22)and rearranging, the following is obtained,

FZ(z) = C1

4∑
j=1

bj
2

20∑
h=1

R
∫ z

−∞
u e−C2u

2 [D3I0(2uD1) +D4I0(2uD2)
]
du (3.23)

where, C1 = e−K−Sh/P1P2, C2 = 1/P2r
2
h, D1 = 2

√
KSh(1−∆Mj)/P1P2, D3 = eSh∆Mj ,

D2 = 2
√
KSh(1 + ∆Mj)/P1P2 and D4 = e−Sh∆Mj . Using the infinite series expansion of the

modified Bessel function and the integral solution from [39] we can obtain the final expression of

the CDF of the JFTS distribution as,

FZ(z) =
4∑
j=1

bj
2

20∑
h=1

R e−K−Sh
∞∑
k=0

KkSk
h

(k!)2P k
1P

k
2

[
(1−∆Mj)

k eSh∆Mj + (1 + ∆Mj)
k e−Sh∆Mj

]
·
[
1− 2k(P2r

2
h)

k+1Γ

(
k + 1,

z2

2P2r2
h

)]
. (3.24)

For simplicity of analysis, the CDF expression can also be expressed in a easy-to-compute format

using Marcum Q-function, as is done while representing CDF of any non-centralized chi-squared

distribution like Rician distribution [46] In that case, the final expression for the CDF of the JFTS

distribution will be given by,

FZ(z) =
4∑
j=1

20∑
h=1

bj
2

Rrh
P1

√
P2

e−K−Sh
[
eSh∆Mj Q1(

√
KSh(1−∆Mjrh)/P1, z)

+ e−Sh∆Mj Q1(
√
KSh(1 + ∆Mjrh)/P1, z)

]
(3.25)
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Figure 3.10: Set 2 : Measured and Empirical CDFs for JFTS at fc = 2450 MHz.

where R and rh are constants and can be obtained from the Gauss-Hermite polynomial table used

in [40] and Q1 is the Marcum Q-function, monotonic and log-concave in statistical characteristics.

Next the validity of the expression in (3.25) will be evaluated by comparing it with CDF curves

generated using the measured data reported in Chapter 2. For the first set of figures in Fig. 3.9,

measurements collected over the T2 : R1 and T3 : R9 scenarios are used for a measurement band

of center frequency of 2.45 GHz. The best fit JFTS parameters for these two scenarios are found

to be K = 8.19 dB, Sh = 11.51 dB, ∆ = 0.323 and K = 6.21 dB, Sh = 4.32 dB, ∆ = 0.48,

respectively. The same set of parameters are used for CDF curve fitting. The expression is also

verified over T1 : R4 and T1 : R7 scenarios.

In order to measure the goodness-of-fit between the CDF of the measured data, FX(x) and the
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derived analytical CDF, FZ(z), we used the Kolmogorov-Smirnov (K-S) test, which can be defined

as,

D
4
= max |FZ(z) − FX(x)| (3.26)

Let H0 be defined as the null hypothesis that the measured data X belongs to the derived analytical

CDF of the JFTS distribution, as is done in [47]. The K-S test is used to compare D to a critical

level Dmax = 0.04301 and a significance level δ = 0.05. Any H0 for which, D < Dmax is accepted

with a significance level of 1−δ. For all the measurement data sets considered in both Set 1 and Set

2, the null hypothesis is accepted with 95% significance, which establishes the fact that the derived

expression for CDF offers a good fit to the CDFs of the measured data, with the distribution of

the measurement errors being non-normal.

3.4 Summary

The first contribution of this chapter is to examine the appropriateness of the JFTS distribution in

modeling mobility constrained indoor wireless environments through distribution fitting to mea-

sured PDFs of the variations in the received signal envelope. Next new expressions for the joint

moments, mean, variance and CDF of the JFTS distribution are derived. It is also established

that theoretical mean, variance and CDF of the JFTS distribution offer good agreements with the

experimental results. Next the closed-form expression for the AF of the JFTS distribution is also

derived and found that AF increases with the decrease in K - factor and/or Sh - factor. Finally the

new AF expression is used for comparing the severity of fading imparted by the JFTS distribution

with that by other common small scale fading and composite fading/shadowing distributions.
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Chapter 4

Fixed Modulation and Coding

4.1 Background

Indoor wireless communication has resulted in new technologies and applications ranging from

communications between individuals inside cars, homes, flights, boats or ferries to impersonal

communications between wireless sensors, industrial equipments, indoor machineries and home

appliances. This has resulted in the increased demand of exact theoretical analysis for such sys-

tems. For example, expressions for the average bit error rate (ABER) and outage probability are

absolutely necessary for designing effective signaling and error control coding schemes. A fur-

ther consequence is the large demand for radio channel spectrum and high information data rates

which can only be ensured using modulation techniques with larger constellation sizes yielding

higher bandwidth efficiency. In light of these considerations, this chapter provides an analytical

approach to study the performance of such communication systems in an indoor wireless environ-

ment that can be characterized by the JFTS propagation model.

The rest of this section is organized as follows. Subsection 4.1.1 summarizes the techniques used

for performance evaluation of different fixed modulation techniques. Subsection 4.1.2 provides a

brief summary of performance evaluation techniques of different iterative and non-iterative coding

techniques respectively while the discussion on channel capacity analysis is provided in Subsec-

tion 4.1.3.
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4.1.1 Fixed Modulation

M -ary Quadrature Amplitude Modulation (M -QAM) and M -ary Phase Shift Keying (M -PSK)

are the preferred modulation techniques for digital communication systems due to their high band-

width efficiency and hence they find applications in many WLAN and Wifi standards. Different

variants of the QAM and PSK techniques like Square QAM (SQAM), Binary Phase Shift Keying

(BPSK), Quadrature Phase Shift Keying (QPSK), Orthogonal Binary Frequency Shift Keying and

multi-level Amplitude Shift Keying modulation are all grouped as special cases under Rectangular

QAM (RQAM) [38]. On the other hand, Cross QAM (XQAM) is an optimal QAM constellation

for odd number of bits per symbol as it has a lower average symbol energy than RQAM [49].

XQAM finds application with constellations from 5 bits to 15 bits and has been used in ADSL and

VDSL standards. Moreover M -QAM has been been found to be useful in blind equalization [50]

and adaptive modulation [51], [52] and therefore, is adapted in DVB-C standard.

Several techniques for theoretical performance evaluation of M -QAM and M -PSK over different

fading, shadowing and composite fading/shadowing channel models have been proposed in liter-

ature. For example, generalized Average Symbol Error Rate (ASER) expression for RQAM over

fading channels is presented in [53], while that for XQAM is given in [54]. A general closed-form

Average Bit Error Rate (ABER) expression for coherent M -PSK is derived in [55], where Gray

coded bit mapping is employed. In all these cases [53] - [55], PDF of the received instantaneous

CSNR is used to deduce the nth order MGF of the instantaneous CSNR, which in turn is utilized

to obtain the expressions for ASER and ABER. However, in case of some channel models [56], [57],

MGF of the instantaneous CSNR involves higher transcendental functions which are laborious to

calculate when used for performance evaluation of higher-order modulation techniques. In those

cases, CDF of the received instantaneous CSNR is used to derive expressions for ABER utilizing
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the method proposed in [57].

The first objective of this chapter is to derive analytical expressions for the error probability

performance of a wireless communication system using fixed modulation techniques over a JFTS

joint faded/shadowed channel. This is accomplished in two steps. Firstly, expressions for error

probability of uncoded coherent M -PSK and M -QAM are deduced using PDF and nth order MGF

of the received instantaneous composite CSNR. Secondly, expressions for bit error rate of uncoded

M -PSK and M -QAM techniques are derived using CDF of the received instantaneous CSNR.

4.1.2 Error Correction Coding

Forward Error Correction (FEC) coding schemes in combination with fixed modulation techniques

like M -PSK [58], [59] are found to be effective in minimizing the impairment caused by burst errors

in the delivery of high speed data traffic over fading, shadowing or composite fading/shadowing

communication channels. The history of FEC coding dates back to Shannon’s work [60], in which

he showed that it is possible to design a communication system with any desired small probability

of error, whenever the rate of transmission is smaller than the capacity of the channel. This mo-

tivated the search for codes that would produce arbitrarily small probability of error. Specifically,

Hamming [61] and Golay [62] were the first to develop practical error control codes. Convolutional

codes [63] were later introduced by Elias, while Viterbi [64] invented a maximum likelihood se-

quence estimation algorithm for efficiently decoding convolutional codes. Bahl proposed the more

complex Maximum A-Posteriori (MAP) algorithm in [65], which is capable of achieving the mini-

mum achievable BER.

During the last decade major research efforts have been devoted to the construction and per-
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formance analysis of capacity-approaching low-complexity codes, in particular Turbo and Low

Density Parity Check (LDPC) codes [66] - [68]. In their most basic forms, Turbo and LDPC

codes employ convolutional coding as the component codes and MAP algorithm as the decoding

technique. The results in [66] - [68] proved that a performance close to the Shannon limit can be

achieved in practice with the aid of binary codes. Particularly, Turbo codes offer impressive per-

formances over fading channel conditions and hence, has recently been standardized in the ratified

third-generation (3G) mobile radio systems [69].

Performance evaluation in terms of deriving closed-form ABER expressions for Turbo and LDPC

coding is exhaustive and laborious. Hence, for Turbo codes, bulk of the existing literature [70],

[71] resort to bounding techniques based on computationally complex maximum likelihood (ML)

decoding, most of which uses the tight upper bounds provided by [71] for the AWGN and Rician

fading channel cases. While in case of LDPC codes, the analysis has been restricted to simulations

and density evolution (DE) due to the complex iterative decoding process [72] - [75].

As an alternative, the works introduced in [76] and [77] used a probability distribution to derive

the pairwise error probability of Turbo codes and Gaussian Approximation (GA) - based BER

of LDPC codes respectively, over Rayleigh fading channels. In particular, [76] showed that this

approach led to computationally efficient results. A similar approach is also used in [78] and [79]

to derive exact and efficient expressions for pairwise error probability (PEP) of Turbo codes and

approximate BER of LDPC codes respectively, over fully interleaved Nakagami-m fading channels.

The derived expressions for error probability in [76] - [79] are also approximated to yield tight

upper bounds which stay close to the exact expressions.
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The second objective of this chapter is to evaluate the error probability performance of a wire-

less communication system using FEC techniques over a JFTS joint faded/shadowed channel in

presence or absence of channel interleavers and de-interleavers. Error rate performance of iterative

coding techniques like Turbo and LDPC-coded BPSK are analyzed using PDF of the sum of the

squared independent and identically distributed (iid) JFTS random variables. Error probability

performance of non-iterative coding schemes is evaluated using simulation results only.

4.1.3 Channel Capacity

Another important performance measure for wireless communication systems is the determination

of the channel capacity, which quantifies the maximum achievable transmission rate of a system

communicating over a bandlimited channel, while maintaining an arbitrarily low probability of

error. Given the fact that the available bandwidth of all transmission media is limited, it is de-

sirable to transmit information as bandwidth efficient as possible. In recent years, the available

wireless communications frequency bands have been auctioned by the American, British, German

and other governments to service provider companies at a high price and therefore it is of great

commercial interest to exploit the available bandwidth as best as possible.

Quantifying these information theoretic limits for the JFTS faded/shadowed channel is the final

objective of this chapter. Calculating these limits, the rest of this thesis will attempt at quantifying

the ability of various fixed and adaptive modulation and coding techniques to perform as close

to the limits as possible. Bandwidth efficiency over a JFTS faded/shadowed channel will also be

calculated by normalizing the channel capacity with respect to the bandwidth occupied. A lower

bound to the channel capacity referred to as the channel’s cut-off rate will also be derived for a

JFTS channel in this chapter.
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The rest of this chapter is organized as follows. Section 4.2 describes the statistics of the in-

stantaneous received CSNR over the JFTS channel model. The error performance analysis and

the channel capacity analysis are presented in Section 4.3 and Section 4.4 respectively. Numer-

ical results and discussions are given in Section 4.5 and the concluding remarks are provided in

Section 4.6.

4.2 Statistics of Instantaneous CSNR

Let s(t) represents a signal with symbol energy Es that is transmitted over a composite slow

shadowed and flat faded wireless communication channel with JFTS statistics. The received signal

ȳ(t) over the symbol duration τs can be expressed as,

ȳ(t) = z(t) eφ(t) s(t) + n(t) (4.1)

where n(t) is the complex AWGN with one-sided power spectral density of N0, φ(t) is the instanta-

neous phase and z(t) denotes the composite fading/shadowing envelope which is JFTS distributed.

The first order statistics of the channel fading stochastic process, z(t), can be represented by the

random variable Z, which has a PDF given by (refer to (2.20) in Chapter 2),

fZ(z) =
4∑
j=1

20∑
h=1

z bj R
P1P2

e
−K−Sh− z2

2P2r
2
h D

(
z

√
2K

P1P2

;Sh,∆Mj

)
(4.2)

and a CDF given by,

FZ(z) =
4∑
j=1

20∑
h=1

bj R rh

2P1

√
P2

e−K−Sh
[
eSh∆Mj Q1

(√
KSh(1−∆Mjrh)/P1, z

)
+ e−Sh∆Mj Q1

(√
KSh(1 + ∆Mjrh)/P1, z

)]
(4.3)

69



where K is the fading parameter given by K = Specular Power / Diffused Power. The value of

the shadowing parameter, Sh, is set based on the range of shadowing values experienced by a user

while traveling through different shadowing clusters. The ∆ - parameter is the shape parameter

of the shadowing distribution and represents the transition from one scattering cluster to the next

one. The parameters P1 and P2 are the mean-squared voltages of the diffused components and

the shadowed components respectively. In the remainder of this section, Subsection 4.2.1 presents

the PDF of the received instantaneous composite CSNR. Subsection 4.2.2 presents the CDF of the

instantaneous CSNR and expression for the nth order MGF of the instantaneous CSNR is derived

in Subsection 4.2.3.

4.2.1 PDF of Instantaneous CSNR

Let the mean-squared value of the joint faded and two-path shadowed envelope, Z, be given by,

Ω = E{Z2}. The value for Ω can be obtained from Chapter 3 as, Ω = 8P1P2(1+K)
∑4

j=1 aj(1+

Sh). However, since a1 = 751
17280

, a2 = 3577
17280

, a3 = 49
640

and a4 = 2989
17280

, we can arrive at the final

value of the summation
∑4

j=1 aj = a1 + a2 + a3 + a4 = 0.5. In turn, Ω can be expressed as,

Ω = 4P1P2(1 +K)(1 + Sh) = 4P1P2K̃S̃h, where K̃ = 1 +K and S̃h = 1 + Sh.

If the received instantaneous signal power is modulated by Z2, the instantaneous CSNR per symbol

can be defined as, γ = Z2Es/N0. The average CSNR per symbol can be defined as γ = ΩEs/N0.

Hence, the PDF of the instantaneous CSNR per symbol can be written as [38],

fγ(γ) = fZ

(√
Ωγ

γ

)/(
2

√
γγ

Ω

)
(4.4)

Using the change of variables from (4.4) in (4.2) and putting Ω = 4P1P2K̃S̃h, the expression for
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the PDF of the instantaneous received CSNR per symbol can be expressed as,

fγ(γ) =
4∑
j=1

20∑
h=1

bj R K̃S̃h
γ

e
−K−Sh−

2P1γK̃S̃h
r2
h
γ D

(
4

√
KShK̃S̃hγ/γ;Sh,∆Mj

)
(4.5)

In the next section, (4.5) will be used for deriving the ABER expressions for uncoded coherent

M -PSK and M -QAM over the JFTS faded/shadowed wireless communication channel using the

MGF-based approach.

The JFTS distribution is a general composite fading/shadowing distribution that can reduce to

other distributions such as Rayleigh (K = 0, Sh =∞), Rician (K as a fading parameter by setting

Sh = ∞) and Nakagami-m (K =
√
m2−m

m−
√
m2−m and setting Sh = ∞) distributions as special cases.

This generalization property of the JFTS distribution can be used many researchers to model a

wide variety of wireless propagation conditions. However, the complicated PDF expression does

actually limit the consequent evaluation of performance measures over a JFTS faded/shadowed

channel model.

4.2.2 CDF of Instantaneous CSNR

If the average CSNR per symbol is given by, γ = E{γ} = E{Z2}Es/N0, the instantaneous CSNR

can be expressed as, γ = z2 γ
E{Z2} . Using this transformation in terms of the instantaneous and

average CSNR per symbol, the CDF of the received instantaneous CSNR can be simply expressed

as, Fγ(γ) = FZ

(√
γE{Z2}

γ

)
. Using (4.3) and E{Z2} = 4P1P2K̃S̃h, the expression for CDF of γ
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can be obtained as,

Fγ(γ) =
4∑
j=1

20∑
h=1

bj R rh

2P1

√
P2

e−K−Sh
[
eSh∆Mj Q1

(√
KSh(1−∆Mjrh)/P1,

√
4P1P2K̃S̃hγ/γ

)
+ e−Sh∆Mj Q1

(√
KSh(1 + ∆Mjrh)/P1,

√
4P1P2K̃S̃hγ/γ

)]
(4.6)

Expansion the Q-function in terms of the infinite series summation, we can arrive at the more

generalized form of the CDF of the instantaneous received CSNR, as below,

Fγ(γ) =
4∑
j=1

20∑
h=1

bjR
2

e
−K−Sh−

2P1K̃S̃hγ

r2
h
γ

∞∑
k=0

KkSk
h

(k!)2P k
1P

k
2

k∑
v=0

1

v!

(
2P1K̃S̃hγ

r2
hγ

)v

[
(1−∆Mj)

k eSh∆Mj + (1 + ∆Mj)
k e−Sh∆Mj

]
(4.7)

The expression in (4.7) can be expressed in a more shorter form by simple mathematical manipu-

lation as,

Fγ(γ) =
4∑
j=1

20∑
h=1

bjR
2

e
−K−Sh−

2P1K̃S̃hγ

r2
h
γ

∞∑
k=0

k∑
v=0

2k

v!

(
2P1K̃S̃hγ

r2
hγ

)v

[
eSh∆Mj I0

(√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj I0

(√
KSh(1 + ∆Mj)/P1P2

)]
(4.8)

We will be using (4.8) in Section 4.3 for deriving expressions of error probability using the CDF

based approach for the easiness in solving integrals using the infinite series summation formats

instead of special functions.

Application to Outage Probability :

The CDF of γ is of particular importance as it can be directly applied to analyze the outage prob-

ability performance of communication systems. The outage probability is a performance metric

that is defined as the probability that the error rate exceeds a pre-defined value or equivalently,
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the received CSNR drops below a pre-defined threshold, γ0 [38]. Hence the outage probability,

Pout, can be given as Pout =
∫ γ0

0
fγ(γ)dγ, and for the JFTS distribution can be evaluated as,

Pout =

∫ γ0

0

fγ(γ)dγ = FZ

(√
γ0E{Z2}

γ

)

=
4∑
j=1

20∑
h=1

bj R rh

2P1

√
P2

e−K−Sh
[
eSh∆Mj Q1

(√
KSh(1−∆Mjrh)/P1,

√
4P1P2K̃S̃hγ0/γ

)
+ e−Sh∆Mj Q1

(√
KSh(1 + ∆Mjrh)/P1,

√
4P1P2K̃S̃hγ0/γ

)]
(4.9)

where Q1 is the Marcum Q-function, K̃ = 1 + K and S̃h = 1 + Sh. Using (4.9), some numerical

results for the outage probability over a JFTS faded/shadowed channel are presented in Section 4.5.

4.2.3 MGF of Instantaneous CSNR

One of the most important characteristics of any distribution function is the MGF especially

when the considered distribution represents the small scale fading of the multipath channel model.

The MGF helps in the performance evaluation of wireless communication systems. For instance,

the BER calculation is one of the most important applications that in some cases can be easily

evaluated if the exact knowledge of the MGF function is available. For the JFTS distribution, the
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MGF can be evaluated as follows,

Mγ(s) = E{e−sγ}

=

∫ ∞
0

4∑
j=1

20∑
h=1

bj R K̃S̃h
γ

e
−sγ−K−Sh−

2P1γK̃S̃h
r2
h
γ D

(
4

√
KShK̃S̃hγ/γ;Sh,∆Mj

)
dγ

=
4∑
j=1

20∑
h=1

bjRK̃S̃hr2
h e
−K−Sh

2P1K̃S̃h + sr2
hγ

[
e
Sh∆Mj+

16KShK̃S̃h(1−∆Mj)r2h
2P1K̃S̃h+sr2

h
γ + e

−Sh∆Mj+
16KShK̃S̃h(1+∆Mj)r2h

2P1K̃S̃h+sr2
h
γ

]
(4.10)

The evaluation of (4.10) involves calculation using the Whittaker-M function, the details on which

is presented in Appendix B. This MGF result is a general result that can reduce easily into other

MGF expressions for different channel models such as, Rayleigh, Rician and Nakagami-m as special

cases.

4.3 Error Performance Analysis

The primary contribution of this section is to derive expressions for evaluating error probability

performances of different fixed modulation techniques with or without near-capacity achieving

iterative channel coding techniques over a JFTS faded/shadowed communication channel. The

organization of this section is as follows. Closed-form expressions for error rates of a variety

of fixed modulation techniques are derived using the MGF-based approach in Subsection 4.3.1.

The same analysis is done using the CDF-based approach in Subsection 4.3.2. Error probability

expressions for coded modulation techniques are deduced in Subsection 4.3.3, where PEP-based

approach is used for performance evaluation of Turbo codes and GA-based approach is used for

regular and irregular LDPC codes.
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4.3.1 MGF-based Approach

In order to obtain the error probability performance of a large variety of modulation techniques, the

MGF-based approach will be used in this subsection. The receivers are considered to be operating

over independent and identically distributed (iid) JFTS composite fading/shadowing conditions in

absence of any channel interleavers and de-interleavers.

Average Symbol Error Rate (ASER) :

An expression for Average Symbol Error Rate (ASER) can be obtained by averaging the conditional

symbol error rate (SER) for AWGN channels over the PDF of the received instantaneous CSNR.

Mathematically, ASER, Ps(e) for any modulation technique can be computed as,

Ps(e) =

∫ ∞
0

Ps(e|γ)fγ(γ)dγ (4.11)

where Ps(e|γ) is the conditional SER of the modulation scheme in AWGN channels and fγ(γ) is

the PDF of the instantaneous received CSNR given by (4.5). The conditional SER performance

of M -ary RQAM in AWGN channels is given as [53],

Ps(e|γ) = 2p Q(a
√
γ) + 2q Q(b

√
γ) − 4pq Q(a

√
γ)Q(b

√
γ) (4.12)

where M = MIn×MQuad, p = 1− 1/MIn, q = 1− 1/MQuad, a =
√

6/((M2
In − 1) + (M2

Quad − 1)β2),

b = βa and β = dIn/dQuad is the quadrature-to-in-phase decision distance ration with dIn and dQuad

being the in-phase and quadrature-phase decision distances respectively. The function Q(x̄) is the

Gaussian Q-function given by, Q(x̄) = 1√
2π

∫∞
x̄

e−
t2

2 dt. For convenience of analysis, (4.12) can

be expressed using an alternate representation of 1-D (1-Dimensional) and 2-D (2-Dimensional)

Gaussian Q-functions, Qd̃(x̄, φ) is defined as [38],

Qd̃(x̄, φ) =
1

π

∫ φ

0

e−
x̄2

2 sin2 θdθ x̄ > 0 (4.13)
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From (4.13), it can be shown thatQ(x̄) = Qd̃(x̄, π/2) [38] andQ(x̄)Q(ȳ) = 1
2
[Qd̃(x̄, π/2−arctan(ȳ/x̄))+

Qd̃(ȳ, arctan(ȳ/x̄))] for x̄ > 0, ȳ > 0. Thus using (4.13), (4.12) can be rewritten as,

Ps(e|γ) = 2p Qd̃(a
√
γ, π/2) + 2q Qd̃(b

√
γ, π/2)

− 2pq [Qd̃(a
√
γ, π/2− arctan(b/a)) + Qd̃(b

√
γ, arctan(b/a))] (4.14)

Substituting (4.14) into (4.11) and by algebraic manipulations, ASER for RQAM scheme denoted

by PRQAM
s (e) can be expressed as,

PRQAM
s (e) = 2p I(a, π/2) + 2q I(b, π/2) − 2pq [I(a, π/2− arctan(b/a)) + I(b, arctan(b/a))]

(4.15)

where the function I(·, ·) is defined as,

I(a, φ) =

∫ ∞
0

Qd̃(a
√
γ, φ)fγ(γ)dγ

=
1

π

∫ φ

0

∫ ∞
0

e−
a2γ

2 sin2 θ fγ(γ)dγdθ

=
1

π

∫ φ

0

Mγ

(
a2

2 sin2 θ

)
dθ (4.16)

whereMγ(·) is the MGF of γ. Thus to get an expression for (4.16), the MGF of γ is needed whose

PDF is shown in (4.5). An expression for this MGF is given by (4.10). Substituting (4.16) in

(4.10), closed-form expressions for I(x̄, π/2), I(x̄, π/2− arctan(ȳ/x̄)) and I(ȳ, arctan(ȳ/x̄)), which

will be used to evaluate (4.15) are derived in Appendix C. Thus substituting the expressions from

Appendix C and simplifying the resultant expression, a closed-form ASER expression for PRQAM
s (e)
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can be given by,

PRQAM
s (e) =
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,

32KShK̃S̃h(1−∆Mj)r
2
h

4P1K̃S̃h + (a2 + b2)r2
hγ

)
+ b e−Sh∆Mj−8KSh(1+∆Mj)r

2
h/P1 Φ

(3)
1

(
3

2
, 1,

1

2
;
5

2
;

4P1K̃S̃h

4P1K̃S̃h + (a2 + b2)r2
hγ
,

4P1K̃S̃h + b2r2
hγ

4P1K̃S̃h + (a2 + b2)r2
hγ
,
32KShK̃S̃h(1 + ∆Mj)r

2
h

4P1K̃S̃h + (a2 + b2)r2
hγ

)]
(4.17)
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where Φ1(·) is a confluent hypergeometric function of two variables. It can be expressed either in

the series form or in integral form [80] and [81],

Φ1(ā, b̄; c̄; x̄1, x̄2) =
∞∑

k̄,̄l=0

(ā)k̄+̄l (b̄)k̄ x̄k̄1 x̄l̄2
(c̄)k̄+̄l Γ(k̄ + 1) Γ(̄l + 1)

=
Γ(c̄)

Γ(ā) Γ(c̄− ā)

∫ 1

0

ūā−1 (1− ū)c̄−ā−1 eūx̄2

(1− ūx̄1)b̄
dū

(4.18)

where (ā)n̄ = Γ(ā + n̄)/Γ(ā) is the Pochammer symbol for |x̄1| < 1, n̄ ≥ 0. It can be easily and

accurately evaluated by using its finite integral representation and its infinite series representation.

For the special case of M -ary SQAM, that is when MIn = MQuad =
√
M and β = 1, it can be

shown that (4.17) reduces to (4.19), where p = 1− 1/
√
M and a =

√
3/(M − 1).

P SQAM
s (e) =

4∑
j=1

20∑
h=1

2pabjRK̃S̃hr3
h

√
γ e−K−Sh

(4P1K̃S̃h + a2r2
hγ)3/2

[
eSh∆Mj−8KSh(1−∆Mj)r

2
h/P1 Φ1

(
3

2
, 1; 2;

4P1K̃S̃h

4P1K̃S̃h + a2r2
hγ
,

32KShK̃S̃h(1−∆Mj)r
2
h

4P1K̃S̃h + a2r2
hγ

)
+ e−Sh∆Mj−8KSh(1+∆Mj)r

2
h/P1 Φ1

(
3

2
, 1; 2;

4P1K̃S̃h

4P1K̃S̃h + a2r2
hγ
,

32KShK̃S̃h(1 + ∆Mj)r
2
h

4P1K̃S̃h + a2r2
hγ

)]
−

4∑
j=1

20∑
h=1

8ap2bjRK̃S̃hr3
h

√
γ e−K−Sh

3π(4P1K̃S̃h + 2a2r2
hγ)3/2[

eSh∆Mj−8KSh(1−∆Mj)r
2
h/P1 Φ

(3)
1

(
3

2
, 1,

1

2
;
5

2
;

4P1K̃S̃h

4P1K̃S̃h + 2a2r2
hγ
,

4P1K̃S̃h + a2r2
hγ

4P1K̃S̃h + 2a2r2
hγ
,

32KShK̃S̃h(1−∆Mj)r
2
h

4P1K̃S̃h + 2a2r2
hγ

)
+ e−Sh∆Mj−8KSh(1+∆Mj)r

2
h/P1

Φ
(3)
1

(
3

2
, 1,

1

2
;
5

2
;

4P1K̃S̃h

4P1K̃S̃h + 2a2r2
hγ
,

4P1K̃S̃h + a2r2
hγ

4P1K̃S̃h + 2a2r2
hγ
,
32KShK̃S̃h(1 + ∆Mj)r

2
h

4P1K̃S̃h + 2a2r2
hγ

)]
(4.19)
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where Φ1(·)(3) is a confluent Lauricella’s hypergeometric function of three variables. It can be

expressed either in the series form or in integral form [80] and [81],

Φ
(3)
1 (ā, b̄1, b̄2; c̄; x̄1, x̄2, x̄3) =

∞∑
k̄,̄l,m̄=0

(ā)k̄+̄l+m̄ (b̄1)k̄ (b̄2)̄l x̄
k̄
1 x̄l̄2 x̄m̄3

(c̄)k̄+̄l+m̄ Γ(k̄ + 1) Γ(̄l + 1) Γ(m̄ + 1)
|x̄1| < 1, |x̄2| < 1

=
Γ(c̄)

Γ(ā) Γ(c̄− ā)

∫ 1

0

ūā−1 (1− ū)c̄−ā−1 eūx̄3

2∏
i=1

(1− ūx̄i)
−b̄idū (4.20)

It can also be easily and accurately evaluated by using its finite integral representation or its infi-

nite series representation.

Average Bit Error Rate (ABER) :

The bit error rate (BER) of most coherent modulation techniques can be found using the MGF

approach as [84],

Pb(ψ) =

∫ ∞
0

Q(
√

2ψγ)fγ(γ)dγ =
1

π

∫ π/2

0

Mγ

(
ψ

sin2 θ

)
dθ

=
4∑
j=1

20∑
h=1

1

π

∫ π/2

0

bjRK̃S̃hr2
h e
−K−Sh sin2 θ

2P1K̃S̃h sin2 θ + ψr2
hγ

·
[
e
Sh∆Mj+

16KShK̃S̃h(1−∆Mj)r2h sin2 θ

2P1K̃S̃h sin2 θ+ψr2
h
γ + e

−Sh∆Mj+
16KShK̃S̃h(1+∆Mj)r2h sin2 θ

2P1K̃S̃h sin2 θ+ψr2
h
γ

]
dθ (4.21)

where ψ is a constant associated with the modulation technique used, for example, for BPSK

ψ = 1, for coherent detection of binary frequency shift keying (BFSK) ψ = 0.5, for coherent

detection of minimum shift keying (MSK) ψ = 0.715 and for coherent detection of M -PSK, ψ =

sin2(2i− 1)π/M . The integration in (4.21) can be evaluated using the similar tactics as for (4.17)
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and (4.19) in order to obtain,

Pb(ψ) =
4∑
j=1

20∑
h=1

√
2ψbjRK̃S̃hr3

h

√
γ e−K−Sh

2(4P1K̃S̃h + 2ψr2
hγ)3/2

[
eSh∆Mj−8KSh(1−∆Mj)r

2
h/P1 Φ1

(
3

2
, 1; 2;

4P1K̃S̃h

4P1K̃S̃h + 2ψr2
hγ
,

32KShK̃S̃h(1−∆Mj)r
2
h

4P1K̃S̃h + 2ψr2
hγ

)
+ e−Sh∆Mj−8KSh(1+∆Mj)r

2
h/P1 Φ1

(
3

2
, 1; 2;

4P1K̃S̃h

4P1K̃S̃h + 2ψr2
hγ
,

32KShK̃S̃h(1 + ∆Mj)r
2
h

4P1K̃S̃h + 2ψr2
hγ

)]
(4.22)

Using (4.22), we can arrive at the final expression for ABER of coherent M -PSK as below,

PMPSK
b (e) =

2

max(log2M, 2)

max(M/4,1)∑
i=1

4∑
j=1

20∑
h=1

√
sin(2i− 1)π/MbjRK̃S̃hr3

h

√
γ e−K−Sh√

2(4P1K̃S̃h + 2ψr2
hγ)3/2[

eSh∆Mj−8KSh(1−∆Mj)r
2
h/P1 Φ1

(
3

2
, 1; 2;

2P1K̃S̃h

2P1K̃S̃h + sin2(2i− 1)π/Mr2
hγ
,

16KShK̃S̃h(1−∆Mj)r
2
h

2P1K̃S̃h + sin2(2i− 1)π/Mr2
hγ

)
+ e−Sh∆Mj−8KSh(1+∆Mj)r

2
h/P1

Φ1

(
3

2
, 1; 2;

2P1K̃S̃h

2P1K̃S̃h + sin2(2i− 1)π/Mr2
hγ
,

16KShK̃S̃h(1 + ∆Mj)r
2
h

2P1K̃S̃h + sin2(2i− 1)π/Mr2
hγ

)]
(4.23)

Following the same procedure as in [82], BER expressions for each bit in M -PSK over the JFTS

fading/shadowing communication link can also be derived.

4.3.2 CDF-based Approach

In order to obtain the ABER of a large variety of modulation techniques, the CDF-based approach

of [57] will be used in this section. In this case also, the receivers are assumed to be operating over

iid JFTS composite fading/shadowing conditions.
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Binary Modulation :

For any binary coherent and non-coherent modulation technique, the ABER over a composite flat

faded and slow shadowed wireless communication channel suffering from AWGN can be expressed

in terms of the instantaneous CSNR as [83],

PBinary
b (e) =

ᾱβ̄

2Γ(β̄)

∫ ∞
0

γβ̄−1 e−ᾱγFγ(γ)dγ (4.24)

where ᾱ = 1 for BPSK and ᾱ = 1/2 for BPSK. If the modulation is differential or non-coherent,

β̄ = 1, while for coherent modulation, β̄ = 1/2. The function Γ(ξ̄, η̄) =
∫∞
η̄

t̄ξ̄−1 e−t̄dt̄ is a

complimentary incomplete Gamma function. By substituting (4.8) in (4.24) and using the integral

solution from [48], the ABER expression for any coherent or non-coherent binary modulation

technique over a JFTS channel can be obtained as,

PBinary
b (e) =

ᾱβ̄

2Γ(β̄)

4∑
j=1

20∑
h=1

bjR
2

e−K−Sh
[
eSh∆MjI0

(√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆MjI0

(√
KSh(1 + ∆Mj)/P1P2

)]
∞∑
k=0

k∑
v=0

(−1)v2k

v!
(v + β̄ − 1)!

(
2P1K̃S̃h
r2
hγ

)v (
r2
hγ

ᾱr2
hγ + 2P1K̃S̃h

)v+β̄

(4.25)

Using the finite series summation formulas for v = 0 to k, (4.25) can be expressed as,

PBinary
b (e) =

ᾱβ̄

2Γ(β̄)

4∑
j=1

20∑
h=1

bjR
2

e−K−Sh
[
eSh∆MjI0

(√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj

I0

(√
KSh(1 + ∆Mj)/P1P2

)][ ∞∑
k=0

(−2)k(β̄ + k)!

(k + 1)!

(
2P1K̃S̃h

ᾱr2
hγ + 2P1K̃S̃h

)k+1

(
r2
hγ

ᾱr2
hγ + 2P1K̃S̃h

)β̄

2F1

(
1, β̄ + k + 1; k + 2;

2P1K̃S̃h

ᾱr2
hγ + 2P1K̃S̃h

)
− (β̄ − 1)!

ᾱβ̄

]
(4.26)

The details on the solution to the integral and finite series summation is provided in Appendix C.

81



Coherent M-ary Modulation :

In order to evaluate the error performance of M -ary coherent modulation techniques over a com-

posite fading/shadowing channel, the following integral is needed to be solved,

PM -ary
b (e, g) =

1√
2π

∫ ∞
0

Fγ

(
t̄2

g
e−

t̄2

2

)
dt̄ (4.27)

where g depends on the modulation type [84]. For a JFTS channel, substituting (4.8) in (4.27),

using the change of variables, ũ = t̄2 and then using the integral solution from [48], PM -ary
b (e, g)

can be expressed as,

PM -ary
b (e, g) =

4∑
j=1

20∑
h=1

bjR
2

e−K−Sh
[
eSh∆MjI0

(√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj

I0

(√
KSh(1 + ∆Mj)/P1P2

)][ ∞∑
k=0

(−2)k(1/2 + k)!

(k + 1)!

(
4P1K̃S̃h

gr2
hγ + 4P1K̃S̃h

)k+1

(
2gr2

hγ

gr2
hγ + 4P1K̃S̃h

)1/2

2F1

(
1, k + 3/2; k + 2;

4P1K̃S̃h

gr2
hγ + 4P1K̃S̃h

)
+

1√
2

]
(4.28)

This generalized ABER expression (4.28) for M -ary coherent modulation techniques can be used

to derive a closed-form ABER expression for any coherent modulation techniques only by changing

the value of g. Using this procedure, closed-form ABER expressions for Gray-coded RQAM and

coherently detected M -PSK over a JFTS faded/shadowed channel are deduced.

Using unified approximation, as is done in [84], the ABER expression of general order M -QAM

modulation over a fading, shadowing, or composite fading/shadowing channel is given by,

PM -QAM
b (e) =

4

log2M
(1− 1/

√
M)

√
M/2∑
i=1

PM -ary
b (e, gi,M -QAM) (4.29)

where gi,M -QAM = 3(2i − 1)2log2M/(M − 1). Substituting (4.29) in (4.28), the ABER expression

for general order MQAM modulation technique over a JFTS channel can be obtained in closed
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form as,

PM -QAM
b (e) =

4 e−K−Sh

log2M

(
1− 1√

M

)√M/2∑
i=1

4∑
j=1

20∑
h=1

bjR
2

[
eSh∆MjI0

(√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj

I0

(√
KSh(1 + ∆Mj)/P1P2

)][ ∞∑
k=0

(−2)k(1/2 + k)!

(k + 1)!

(
4P1K̃S̃h

gi,M -QAMr2
hγ + 4P1K̃S̃h

)k+1

(
2gi,M -QAMr

2
hγ

gi,M -QAMr2
hγ + 4P1K̃S̃h

)1/2

2F1

(
1, k + 3/2; k + 2;

4P1K̃S̃h

gi,M -QAMr2
hγ + 4P1K̃S̃h

)
+

1√
2

]
(4.30)

Using the same approach as followed for MQAM, the ABER expression of Gray-coded coherent

MPSK modulation over a fading and/or shadowing channel is given by,

PM -PSK
b (e) =

2

max(log2M, 2)

max(M/4−1)∑
i=1

PM -ary
b (e, gi,M -PSK) (4.31)

where gi,M -PSK = 2log2M sin2((2i − 1)π/M). Substituting (4.31) in (4.28), the ABER expression

for coherent MPSK modulation technique over a JFTS channel can be obtained in closed form as,

PM -PSK
b (e) =

2 e−K−Sh

max(log2M, 2)

max(M/4−1)∑
i=1

4∑
j=1

20∑
h=1

bjR
2

[
eSh∆MjI0

(√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj

I0

(√
KSh(1 + ∆Mj)/P1P2

)][ ∞∑
k=0

(−2)k(1/2 + k)!

(k + 1)!

(
4P1K̃S̃h

gi,M -PSKr2
hγ + 4P1K̃S̃h

)k+1

(
2gi,M -PSKr

2
hγ

gi,M -PSKr2
hγ + 4P1K̃S̃h

)1/2

2F1

(
1, k + 3/2; k + 2;

4P1K̃S̃h

gi,M -PSKr2
hγ + 4P1K̃S̃h

)
+

1√
2

]
(4.32)
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It is evident from the error probability performance expressions derived using both the MGF and

CDF based approaches over a JFTS channel depends on the channel model parameters. The slope

of the ABER/ASER curve is proportional to the product of the square of the fading parameter K

and the shadowing parameter Sh. Hence, either as K or Sh or both increases, ABER performance

improves. It can also be concluded from the expressions that error performance depends on the

∆-parameter of the JFTS channel model. However, exactly how much error rate is affected by a

change in ∆ is difficult to predict strictly by inspecting the error rate expressions. The sensitivity

to changes in ∆ is best evaluated using the plots presented in the Section 4.5.

It is also evident from the error rate expressions derived using the MGF-approach, that they

become independent of the parameter P2. The expressions derived using the CDF-approach are

though not independent of P2 is very negligibly affected by it. These observations can be gen-

eralized to infer that error probability performance of any modulation technique over a JFTS

faded/shadowed channel will be independent of P2 which is the variation of the shadowing dis-

tribution only. Intuitively, P2 represents the spread of the shadowing distribution, the shape of

which is also determined by ∆ making P2 a redundant parameters. Although, the P1 parameter

appears in the error rate expression, its effect can be considered negligible as it appears both in

the numerator and the denominator with almost equal powers.

4.3.3 Coded BER

The primary contribution of this subsection is to analyze the ABER performance of BPSK in

combination with iterative coding techniques like Turbo coding and LDPC coding over fully in-

terleaved JFTS block fading/shadowing channels. In order to do that, sm̄ ∈ {±Es} is used to

represent a BPSK symbol amplitude that is transmitted over a composite slow shadowed and flat
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faded wireless communication channel with JFTS statistics, where m̄ is an integer symbol index.

With appropriate sampling and perfect coherent demodulation, the discrete representation of the

demodulator output can be expressed as,

ȳm̄ = zm̄sm̄ + nm̄ (4.33)

where nm̄ is the iid complex AWGN component with zero mean, variance of σ2
n and power spectral

density of N0/2. The amplitude, zm̄ denotes the JFTS distributed composite fading/shadowing

envelope. Since, the communication channel is assumed to be fully interleaved, the zm̄’s are inde-

pendent. For this analysis, an Rc-rate Turbo code or regular LDPC code is used with an input

size of L bits and an output encoded stream of N bits.

As z1, z2, . . . , zτ are modeled as independent JFTS random variables, each of the z2
τ terms will

have a PDF of,

fZ(ζτ ) =
4∑
j=1

20∑
h=1

bjR
P1P2

e
−K−Sh− ζτ

2P2r
2
h D

(√
2Kζτ
P1P2

;Sh,∆Mj

)
(4.34)

where ζτ = z2
τ . The expression of the PDF in (4.34) can be derived using the procedures for

deducing bivariate and joint distributions followed in [43]. Using the infinite series expansion of

the modified Bessel function, (4.34) can be expressed as,

fZ(ζτ ) =
4∑
j=1

20∑
h=1

bjR
P1P2

e
−K−Sh− ζτ

2P2r
2
h

[
eSh∆Mj I0

(
2
√
KSh(1−∆Mj)/P1P2

)

+ e−Sh∆Mj I0

(
2
√
KSh(1 + ∆Mj)/P1P2

)] ∞∑
k=0

ζkτ (4.35)

In the rest of this section, (4.35) will be used to derive the PEP expression for Turbo coded BPSK

and BER expression for LDPC coded BPSK over a fully interleaved JFTS faded/shadowed com-

munication link.
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PEP-based Approach :

Assuming the all-zero codeword and ML decoding at the receiver, the upper bound on the word

error probability of Turbo coding can be expressed as, [85]

Pword ≤
N∑

δ1=1

C(δ1) P2(δ1) (4.36)

where C(δ1) is the number of codewords and P2(δ1) is the probability of incorrectly decoding a

codeword with weight δ1. In order to eliminate a computationally exhaustive search, an average

bound can be constructed using the average weight distribution over all possible interleavers. In

this case, the average weight distribution can be written as,

C(δ1) =
L∑

l=1

(
L

l

)
p(δ1|l) (4.37)

where
(
L
l

)
is the number of input words with Hamming weight l and p(δ1|l) is the probability that

an input word with Hamming weight l can be encoded to a codeword with Hamming weight δ1.

The average upper bound for word error rate over any fading, shadowing or composite fading /

shadowing communication channel can be given by,

Pword ≤
N∑

δ1=δ1min

C(δ1) P2(δ1)

≤
N∑

δ1=δ1min

L∑
l=1

(
L

l

)
p(δ1|l) P2(δ1)

≤
L∑

l=1

(
L

l

)
Eδ1|l

[
P2(δ1)

]
(4.38)

where δ1min is the minimum Hamming weight of the generated codewords and Eδ1|l
[
·
]

is the

expectation with respect to p(δ1|l). Consequently, the average upper bound for bit error rate can
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be expressed as,

P bit ≤
L∑

l=1

l

L

(
L

l

)
Eδ1|l

[
P2(δ1)

]
. (4.39)

This average bound can be used for computing p(δ1|l) by utilizing the state transition matrix of the

recursive systematic convolutional (RSC) encoders proposed in [86]. Subsequently, using p(δ1|l),

the PEP P2(δ1) of Turbo coded BPSK over a JFTS fading / shadowing channel will be formulated

using the PEP-based approach of [76].

Assuming perfect CSI at the receiver, the conditional PEP of decoding a codeword c0 into a

codeword cj over a fading/shadowing channel can be given by,

P (c0, cj|Z) = Q

[√√√√Es
N0

δ1∑
τ=1

ζτ

]
(4.40)

where cj differs from c0 in δ1 bit positions with a known composite fading/shadowing vector Z

indexed by 1, 2, . . . , δ1min and Q(·) is the Gaussian Q-function. As mentioned before, the PEP can

be deduced by taking the expectation over (4.40) as,

P2(δ1) = E

{
Q

[√√√√Es
N0

δ1∑
τ=1

ζτ

]}
(4.41)

By putting (4.35) in (4.41), the expression of PEP can be obtained as,

P2(δ1) =
4∑
j=1

20∑
h=1

bjR
2P1P2

e−K−Sh
[
eSh∆Mj I0

(
2
√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj

I0

(
2
√
KSh(1 + ∆Mj)/P1P2

)]∫ ∞
0

(∫ ∞
√

Es
N0

ζτ

eν
2/2dν

)
∞∑
k=0

ζkδ1τ e
− ζτ

2P2r
2
h dζτ (4.42)

Changing the order of integration and solving them using solutions from [51], the final expression

for PEP of Turbo coded BPSK over a JFTS faded/shadowed communication channel can be
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obtained as,

P2(δ1) =
4∑
j=1

20∑
h=1

bjR
2P1P2

e−K−Sh
[
eSh∆Mj I0

(
2
√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj

I0

(
2
√
KSh(1 + ∆Mj)/P1P2

)][ ∞∑
k=0

(kδ1)!

√
π

2

(
1

2P2r2
h

)kδ1+1

−
kδ1∑
v=0

(kδ1)!

2v!(Es/N0)v

Γ(v + 1/2)

(1/2P2r2
h)

kδ1−v+1(1/2 +N0/2EsP2r2
h)
v+1/2

]
(4.43)

the detailed calculation of which is provided in Appendix C.

Finally (4.43) will be used to evaluate ABER performance of Turbo coded BPSK over JFTS fad-

ing/shadowing wireless channels in Section 4.5. with the simulated ABER performance. It is to

be noted that for simulation, an iterative suboptimal soft-decision decoder will be used where each

constituent RSC is decoded separately. The constituent decoders exchange bit-likelihood informa-

tion iteratively using a log-MAP decoding algorithm.

GA-based Approach :

In this subsection, the performance of LDPC coded BPSK is analyzed over an iid JFTS fad-

ing/shadowing channels. The exact expressions for LDPC codes are mathematically intractable

due to the iterative evolution of the message PDFs. Furthermore, performance analysis methods

like Density Evolution (DE) and simulations are time consuming tasks to perform. Hence the

Gaussian Approximation (GA) approach will be used in this chapter to compute approximate

BER expressions for LDPC coded BPSK. In order to this, it is assumed that the composite fad-

ing/shadowing on each bit is independent. It is mentioned in [87], that for LDPC codes, the PDF

of the bit node message is close to the Gaussian distribution, while the PDF of the check node

message will also tend to the Gaussian distribution as the number of iterations increases. Hence,
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for a GA approach, both the PDFs of the bit and check node messages are assumed to be Gaus-

sian distributed. Only the mean value needs to be updated iteratively, as compared to numerically

tracking and updating the PDFs in DE, resulting in a significant reduction in computational time.

It is also assumed that perfect CSI is available and the block length of the code is infinite resulting

in a cycle free graph.

Let the edge degree distribution of the LDPC graph is given by, λ(z̄) =
∑δv̄

k1=2 λk1 z̄
k1−1 and

ρ(z̄) =
∑δc̄

l1=2 ρl1 z̄
l1−1, where λk1 is the fraction of edges connected to a bit node of degree k1,

ρl1 is the fraction of edges connected to a check node of degree l1, δv̄ is the maximum bit node

degree, and δc̄ is the maximum check node degree. The message passed from the bit node to the

check node is the summation of channel log-likelihood ratio (LLR) and incoming LLRs from the

neighbors of the bit node except the check node that gets the message. As the LLRs are random

variables, the summation process is equivalent to the convolution of their PDFs. Since GA-based

approach is used here, the PDFs of the bit and check node messages are approximated by Gaussian

distribution and are given by, [88]

pυ(c) =
1√

4πµυ
e−

(c−µυ)2

4µυ (4.44)

where µυ is the mean value. The BER is derived by integrating the convolution of the PDF of

channel LLR and (4.44) from −∞ to 0 due to the all-zero codeword assumption, and averaging

this expression over all the bit node degrees during the δ2th iteration. The BER is in turn used to

obtain the new mean value of the check node message. The computation is carried out iteratively

until the BER converges to zero or a constant value.
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The conditional PDF of the channel LLR can be given by [89],

po(c|ζτ , sm̄ = +1) =
σn

2ζτ
√

2π
e
− (c−2ζ2τ /σ

2
n)2

8ζ2τ /σ
2
n (4.45)

with mean 2ζ2
τ /σ

2
n and variance 4ζ2

τ /σ
2
n. The unconditional PDF of the channel LLR is obtained

by averaging (4.45) over the PDF of ζτ with the integral solution in [48] which can be evaluated

as,

po(c) =

∫ ∞
0

po(c|ζτ , sm̄ = +1)fZ(ζτ )dζτ

=
4∑
j=1

20∑
h=1

bjRσn
2
√

2πP1P2

e−K−Sh+c/2

[
eSh∆Mj I0

(
2
√
KSh(1−∆Mj)/P1P2

)
+ e−Sh∆Mj

I0

(
2
√
KSh(1 + ∆Mj)/P1P2

)] ∞∑
k=0

(
cσ2

nrh
2

√
P2

σ2
n + P2r2

h

)k+1/2

Kk+1/2

(
c

2rh

√
σ2
n + P2r2

h

P2

)
(4.46)

where Kν(·) is the modified Bessel function of the second kind. The PDF of the bit node message

is obtained by convolving (4.46) with (4.44) [75], which can be expressed as,

pD(c) = po(c) ∗ pυ(c)

=
4∑
j=1

20∑
h=1

bjR
2
√

32πP1P2

e
−K−Sh− c2

4µυ
+ c

2
−µυ

4
+
µυ(σ2

n+P2r
2
h)

8r2
h
P2

[
eSh∆Mj I0

(
2
√
KSh(1−∆Mj)/P1P2

)

+ e−Sh∆Mj I0

(
2
√
KSh(1 + ∆Mj)/P1P2

)] ∞∑
k=0

Γ(k + 1)(µυ)
k/2−1/4

(
r2
hσ

2
nP2

σ2
n + P2r2

h

)k+1

W−k/2+1/4,k/2+1/4

(
µυ(σ

2
n + P2r

2
h)

8r2
hP2

)
(4.47)

where Wµ,κ(·) is the Whittaker function of the second kind and can be defined in terms of Kum-

mer’s confluent hypergeometric function, as in [48].
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The final expression for BER is obtained by integrating (4.47) from −∞ to 0 based on all-zero

codeword assumption and averaging it over all the bit node degrees for the (δ2 + 1)th iteration,

which is evaluated as,

P δ2+1
b (e) =

∫ 0

−∞
pD(c)dc

= 1−
∫ ∞

0

pD(c)dc

= 1−
4∑
j=1

20∑
h=1

bjR
2
√

32P1P2

e
−K−Sh+

µ
δ2+1
υ (σ2

n+P2r
2
h)

8r2
h
P2

[
eSh∆Mj I0

(
2
√
KSh(1−∆Mj)/P1P2

)

+ e−Sh∆MjI0

(
2
√
KSh(1 + ∆Mj)/P1P2

)] ∞∑
k=0

Γ(k + 1)

(
r2
hσ

2
nP2

√
µδ2+1
υ

σ2
n + P2r2

h

)k+1

W−k/2+1/4,k/2+1/4

(
µδ2+1
υ (σ2

n + P2r
2
h)

8r2
hP2

)
(4.48)

The detailed calculations behind (4.46), (4.47) and (4.48) are provided in Appendix C. Finally

(4.48) will be used to evaluate ABER performance of LDPC coded BPSK over JFTS fading/shadowing

wireless channels in Section 4.5 with the simulated ABER performance. For simulation, the block

size of the LDPC code will be set to 104 and maximum number of iterations for decoding will be

set to 100. Performance of both regular and irregular LDPC codes will be evaluated.

The main difference between the error probability expressions of the fixed modulation techniques

and fixed coded modulation techniques is their dependence on the parameter P2. Error rates for

coded modulation over the JFTS channel is no longer independent of P2, as observed in case of

fixed modulations only. In this case, the slope of the BER curves both in case of Turbo coded and

LDPC coded modulations is found to be proportional to P2. Hence as P2 increases, performance

improves, since a higher P2 represents higher variance of the shadowing distribution and hence

lower severity in shadowing.
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4.4 Capacity Analysis

The principal contribution of this section is to determine the achievable channel capacity over

a JFTS faded/shadowed channel. Therefore, this section quantifies the maximum achievable in-

formation transmission rate over a bandlimited composite flat faded and slow shadowed JFTS

channel, while maintaining an arbitrarily low probability of error, in the quest for more error-

resilient, power-efficient and bandwidth-efficient channel coding schemes. In order to achieve that,

expressions for channel capacity, C, channel cut-off rate, R0, and bandwidth efficiency, η, are derived

for the JFTS faded/shadowed channel in Subsections 4.4.1, 4.4.2 and 4.4.3 respectively. For all

these derivations in this section, it has been assumed that perfect CSI is available at the transmitter

and the receiver.

4.4.1 Channel Capacity

The Shannon bound of AWGN channel is obtained by finding the capacity of a continuous input

continuous output AWGN channel, where the modulated signal itself, s(t), may be modeled by

bandlimited Gaussian noise at the channel input. The channel input is assumed to be contaminated

by the AWGN channel noise n(t). After bandlimiting, the samples of both noise sources are taken

at the Nyquist rate. The sample are iid Gaussian random variables with zero mean and variance

σ2
s for s(t) and N0/2 for n(t). The resultant sampled waveforms can be described by vectors of

Ñ discrete-time but continuous-valued samples, where Ñ = 2BT is the signal dimensionality such

that the input waveform is constrained to an ideal lowpass or bandpass bandwidth, B, and the

waveform is limited to the time interval, 0 ≤ t ≤ T . Upon exploiting that the PDFs of the input

and output waveforms are Gaussian, the Shannon bound can be expressed as [60],

CAWGN
CCMC = BT log2(1 + γ) [bits/symbol] (4.49)
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where CCMC stands for Continuous Input Continuous Output Memoryless Channel. In this case,

the channel capacity is only restricted either by the signaling energy, γ, or by the bandwidth, B.

Therefore CCMC capacity can also be referred to as the unrestricted bound.

In Ñ dimensional M -ary signals are transmitted over a Discrete Input Continuous Output Mem-

oryless Channel (DCMC), the achievable capacity can be given by,

p(si) =
1

M
, i = 1, . . . ,M (4.50)

assuming equiprobable M -ary input symbols conveying log2M bits/symbol information. The con-

ditional probability of receiving ȳ given that s was transmitted when communicating over an

AWGN channel is determined by the PDF of the noise yielding,

p(ȳ|si) =
Ñ∏
ñ=1

1√
πN0

e
− (ȳñ−siñ)2

N0 (4.51)

where N0 is the channel’s noise variance. It is to be noted here that p(ȳ|si) is also referred to

as the channel’s transition probability. By using (4.50) and (4.51), the capacity expression of the

DCMC can be simplified to [90],

CAWGN
DCMC = log2(M)− 1

M(
√
π)Ñ

M∑
i=1

∫ ∞
−∞

. . .

∫ ∞
−∞

e−|t|
2

log2

[ M∑
l=1

e−2t·dil−|dil|2
]
dt [bits/symbol]

(4.52)

where dil = (si − sl)/
√
N0 and t = (t[1], . . . , t[Ñ ]) is an integration variable.

The capacity of continuous-input continuous-output (memoryless) JFTS fading/shadowing chan-

nels can be evaluated based on the capacity formula of the Gaussian channel given in (4.49) by

simply weighting the CSNR γ of the Gaussian channel by the probability of encountering the spe-

cific CSNR determined by the JFTS fading/shadowing magnitude z i.e. zγ. Then the resultant
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capacity value must be averaged, either by integration or summation over the legitimate range of

the CSNR given by zγ, yielding [91],

CJFTS
CCMC = E

[
BT log2(1 + zγ)

]
[bits/symbol] (4.53)

where the expectation is taken over z. Hence, by substituting (4.5) in (4.53), an integral of the

form,

CJFTS
CCMC =

∫ ∞
0

BT log2(1 + γ)fγ(γ)dγ [bits/symbol]

= BT
4∑
j=1

20∑
h=1

bjRK̃S̃h
γ ln2

e−K−Sh
∫ ∞

0

ln(1 + γ) e
− 2P1K̃S̃hγ

r2
h
γ D

(
4

√
KShK̃S̃hγ/γ;Sh,∆Mj

)
dγ

(4.54)

is obtained. By expressing ln(1 + γ) =
∑∞

n=1
1
n

(
γ

1+γ

)n
for γ ≥ 0, and using the infinite series

expansion of modified Bessel function, the integral in (4.54) can be solved by using the integral

solution from [48] in order to obtain,

CJFTS
CCMC =

BT

2ln2

4∑
j=1

20∑
h=1

bjRr2
h

2P1

e
2P1K̃S̃h
r2
h
γ
−K−Sh

∞∑
k=0

1

k!

k∑
v=0

(
2P1K̃S̃h
r2
hγ

)v
Γ

(
− v, 2P1K̃S̃h

r2
hγ

)
[
(KSh(1−∆Mj))

k eSh∆Mj + (KSh(1 + ∆Mj))
k e−Sh∆Mj

]
(4.55)

where Γ(·, ·) is the incomplete Gamma function [48]. The achievable capacity bound derived in

(4.55) for a JFTS faded/shadowed channel will be used for analysis of achievable channel capacity

using M -ary modulators like coherent M -PSK in Section 4.5. The detailed derivation used for

obtaining (4.55) is provided in Appendix C.

4.4.2 Channel Cut-off Rate

The channel cut-off rate R0 of the communication link is defined as a channel capacity related

quantity such that for any Rc < R0, it is possible to construct a channel code having a block
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length ñ and coding rate of at least Rc capable of maintaining an average error probability that

obeys Pe(b) ≤ 2−ñ(R0−Rc). The channel cut-off rate is also used as an analytical bound limiting the

bit error ratio performance of various classes of random codes designed for specific channels [64].

Furthermore, R0 constitutes a lower bound of the channel capacity and it is more straightforward

to compute compared to the channel capacity. In general, the cut-off rate associated with M -ary

signaling over a fading/shadowing channel in presence of perfect channel magnitude and phase

estimates is given by, [92], [93],

R0 = 2log2(M)− log2

( M∑
i=1

M∑
l=1

C(si, sl)

)
[bits/symbol] (4.56)

where C(si, sl) is the Chernoff bound on the pairwise error probability expressed as [93],

C(si, sl) = Ez

[
e−z

2 |dil|
2

4

]
[bits/symbol]

=

∫ ∞
0

fZ(z) e−z
2 |dil|

2

4 dz [bits/symbol] (4.57)

where fZ(z) is the channel envelope PDF and |dil|2 = |si − sl|2/N0. For a JFTS channel, the

Chernoff bound can be calculated using the integral solution form [48] and can be obtained as,

C(si, sl) =
4∑
j=1

20∑
h=1

bjR
2P1P2

e−K−Sh
∫ ∞

0

z e
− z2

2P2r
2
h

−z2 |dil|
2

4

[
eSh∆Mj I0(4z

√
KSh(1−∆Mj)/P1P2) + e−Sh∆Mj I0(4z

√
KSh(1 + ∆Mj)/P1P2)

]
dz

=
4∑
j=1

20∑
h=1

bjRr2
h e
−K−Sh

P1(2 + |dil|2P2r2
h)

[
e
Sh∆Mj+

8KSh(1−∆Mj)r2h
P1(4+|dil|2P2r

2
h

) + e
−Sh∆Mj+

8KSh(1+∆Mj)r2h
P1(4+|dil|2P2r

2
h

)

]
[bits/symbol].

(4.58)

Note that (4.58) will be applied in Section 4.5 for computation of the cut-off rate for a range of

M -ary digital signaling sets, when communicating over a JFTS faded/shadowed channel.
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4.4.3 Bandwidth Efficiency

The capacity analysis of the CCMC provided in Subsection 4.4.3 determines the maximum number

of information bits conveyed per transmission symbol, as a function of the received CSNR. The

system’s bandwidth efficiency may be expressed as the capacity C normalized by the product of

the bandwidth B occupied and the symbol period T , given by,

η =
C

BT
[bits/s/Hz] (4.59)

where the associated unit is bits/s/Hz. The bandwidth efficiency of the CCMC can be expressed

as,

ηCCMC =
CCCMC

BT
[bits/s/Hz] (4.60)

and therefore for a JFTS faded/shadowed channel can be obtained from (4.55) as,

ηJFTS
CCMC = ηJFTS =

1

2ln2

4∑
j=1

20∑
h=1

bjRr2
h

2P1

e
2P1K̃S̃hγ

r2
h
γ
−K−Sh

∞∑
k=0

1

k!

k∑
v=0

(
2P1K̃S̃hγ

r2
hγ

)v
Γ

(
− v, 2P1K̃S̃hγ

r2
hγ

)
[
(KSh(1−∆Mj))

k eSh∆Mj + (KSh(1 + ∆Mj))
k e−Sh∆Mj

]
[bits/s/Hz]

(4.61)

The bandwidth efficiency of CCMC can be referred to as the normalized unrestricted bound.

However the computation of the capacity according to (4.61) requires the evaluation of an infinite

series. To efficiently evaluate the series, the series in (4.61) will be truncated and the lower and

upper bounds for ηJFTS and for the truncation error will be derived.

The bandwidth efficiency in (4.61) can be written as ηJFTS = η$JFTS + ηεJFTS, where η$JFTS is
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the expression in (4.61) with the infinite series truncated at k = $ and can be expressed as,

η$JFTS =
1

2ln2

4∑
j=1

20∑
h=1

bjRr2
h

2P1

e
2P1K̃S̃hγ

r2
h
γ
−K−Sh

$∑
k=0

1

k!

k∑
v=0

(
2P1K̃S̃hγ

r2
hγ

)v
Γ

(
− v, 2P1K̃S̃hγ

r2
hγ

)
[
(KSh(1−∆Mj))

k eSh∆Mj + (KSh(1 + ∆Mj))
k e−Sh∆Mj

]
[bits/s/Hz] (4.62)

and ηεJFTS is the associated truncation error resulting from truncating the infinite series in (4.61).

Lower Bound :

The lower bound for ηJFTS can be derived by using the relationship between the expression for

ηJFTS in (4.61) and the area under the PDF of the received CSNR, γ, fγ(γ) given by (4.5). The

first observation that can be made from (4.5) is that,

P̃JFTS = e−K−Sh
∞∑
k=0

1

2k!

[
(KSh(1−∆Mj))

k eSh∆Mj + (KSh(1 + ∆Mj))
k e−Sh∆Mj

]
= 1 (4.63)

where P̃JFTS is the area under the PDF in (4.5). Let,

P̃($−1)JFTS = e−K−Sh
$−1∑
k=0

1

2k!

[
(KSh(1−∆Mj))

k eSh∆Mj + (KSh(1 + ∆Mj))
k e−Sh∆Mj

]
(4.64)

be the sum of the series in (4.63) from k = 0 to k = $ − 1 and let,

∂P̃($−1)JFTS = e−K−Sh
1

2$!

[
(KSh(1−∆Mj))

$ eSh∆Mj + (KSh(1 + ∆Mj))
$ e−Sh∆Mj

]
(4.65)

be the contribution from the next term corresponding to k = $, then P̃$JFTS = P̃($−1)JFTS +

∂P̃($−1)JFTS. Similarly, from (4.61), let,

η($−1)JFTS =
1

2ln2

4∑
j=1

20∑
h=1

bjRr2
h

2P1

e
2P1K̃S̃h
r2
h
γ
−K−Sh

$−1∑
k=0

1

k!

k∑
v=0

(
2P1K̃S̃h
r2
hγ

)v
Γ

(
− v, 2P1K̃S̃h

r2
hγ

)
[
(KSh(1−∆Mj))

k eSh∆Mj + (KSh(1 + ∆Mj))
k e−Sh∆Mj

]
[bits/s/Hz] (4.66)
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and,

∂η($−1)JFTS =
1

2$!ln2

4∑
j=1

20∑
h=1

bjRr2
h

2P1

e
2P1K̃S̃h
r2
h
γ
−K−Sh

k∑
v=0

(
2P1K̃S̃h
r2
hγ

)v
Γ

(
− v, 2P1K̃S̃h

r2
hγ

)
[
(KSh(1−∆Mj))

$ eSh∆Mj + (KSh(1 + ∆Mj))
$ e−Sh∆Mj

]
[bits/s/Hz] (4.67)

be the corresponding values with respect to ηJFTS, such that η$JFTS = η($−1)JFTS + ∂η($−1)JFTS.

Dividing (4.67) by (4.65) yields,

∂η($−1)JFTS

∂P̃($−1)JFTS

=
1

ln2

4∑
j=1

20∑
h=1

bjRr2
h

2P1

e
2P1K̃S̃h
r2
h
γ

k∑
v=0

(
2P1K̃S̃h
r2
hγ

)v
Γ

(
− v, 2P1K̃S̃h

r2
hγ

)
[bits/s/Hz]

(4.68)

Observing that
∂η($−1)JFTS

∂P̃($−1)JFTS
monotonically increases with increasing $, that is,

∂ηrJFTS

∂P̃rJFTS

>
∂η($−1)JFTS

∂P̃($−1)JFTS

for r ≥ $ (4.69)

then,

∞∑
r=$

∂ηrJFTS >
∂η($−1)JFTS

∂P̃($−1)JFTS

∞∑
r=$

∂P̃rJFTS =
∂η($−1)JFTS

∂P̃($−1)JFTS

(
1− P̃$JFTS

)
(4.70)

Thus ηJFTS can be lower bounded by using (4.61) and (4.70) as ηJFTS > η$JFTS +ηε−LowJFTS, where

ηε−LowJFTS is the lower bound for ηεJFTS and can be expressed as,

ηε−LowJFTS =
∂η($−1)JFTS

∂P̃($−1)JFTS

×
(

1− e−K−Sh
$∑
k=0

1

2k![
(KSh(1−∆Mj))

k eSh∆Mj + (KSh(1 + ∆Mj))
k e−Sh∆Mj

])
[bits/s/Hz] (4.71)
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Upper Bound :

For deriving the upper bound for the bandwidth efficiency achievable over a JFTS faded/shadowed

communication link, let (4.61) be expressed as,

ηJFTS =
1

2ln2

4∑
j=1

20∑
h=1

bjRK̃S̃h
γ

e−K−Sh
∫ ∞

0

ln(1 + γ) e
− 2P1K̃S̃hγ

r2
h
γ

×

(
$∑
k=0

1

(k!)2

[
eSh∆Mj

(
2P1KShK̃S̃h(1−∆Mj)γ

r2
hγ

)k

+ e−Sh∆Mj

(
2P1KShK̃S̃h(1 + ∆Mj)γ

r2
hγ

)k]

+
∞∑

k=$+1

1

(k!)2

[
eSh∆Mj

(
2P1KShK̃S̃h(1−∆Mj)γ

r2
hγ

)k

+ e−Sh∆Mj

(
2P1KShK̃S̃h(1 + ∆Mj)γ

r2
hγ

)k])
dγ

[bits/s/Hz] (4.72)

Let us denote,

C$ =
$∑
k=0

1

(k!)2

[
eSh∆Mj

(
2P1KShK̃S̃h(1−∆Mj)

r2
hγ

)k

+ e−Sh∆Mj

(
2P1KShK̃S̃h(1 + ∆Mj)

r2
hγ

)k]
(4.73)

and

CR =
∞∑

k=$+1

1

(k!)2

[
eSh∆Mj

(
2P1KShK̃S̃h(1−∆Mj)

r2
hγ

)k

+ e−Sh∆Mj

(
2P1KShK̃S̃h(1 + ∆Mj)

r2
hγ

)k]
(4.74)

Therefore, ηεJFTS can be expressed as,

ηεJFTS =
1

2ln2

4∑
j=1

20∑
h=1

bjRK̃S̃h
γ

e−K−Sh
∫ ∞

0

ln(1 + γ) e
− 2P1K̃S̃hγ

r2
h
γ CRdγ [bits/s/Hz] (4.75)

where CR is presented in (4.74). Noting that k! in CR can be written as [39],

k! =
√

2πk kk e−k+θ̃/12k for k > 0, 0 < θ̃ < 1 (4.76)
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and substituting (4.76) into (4.72) and after some manipulations, CR can be upper bounded by,

CR <
∞∑

k=$+1

($ + 1)−k ek

k!
√

2π($ + 1)

[
eSh∆Mj

(
2P1KShK̃S̃h(1−∆Mj)

r2
hγ

)k

+ e−Sh∆Mj

(
2P1KShK̃S̃h(1 + ∆Mj)

r2
hγ

)k]
(4.77)

and hence can be calculated as,

CR =
1√

2π($ + 1)

(
e
Sh∆Mj+

2P1eKShK̃S̃h(1−∆Mj)

($+1)r2
h
γ + e

−Sh∆Mj+
2P1eKShK̃S̃h(1+∆Mj)

($+1)r2
h
γ −

$∑
k=0

1

k![
eSh∆Mj

(
2P1eKShK̃S̃h(1−∆Mj)

($ + 1)r2
hγ

)k

+ e−Sh∆Mj

(
2P1eKShK̃S̃h(1 + ∆Mj)

($ + 1)r2
hγ

)k])
(4.78)

After substituting (4.78) into (4.75) and evaluating the integrals by using partial integration fol-

lowed by some mathematical manipulations, the upper bound for ηJFTS can be obtained as,

ηε−UpJFTS =
4∑
j=1

20∑
h=1

bjR e(1−K)(1−Sh)−1

2ln2($ + 1)

√
$ + 1

2π

[
$ + 1

$ + 1−KShe

(
e
Sh∆Mj+

2P1K̃S̃h($+1−KShe(1−∆Mj))

($+1)r2
h
γ

+ e
−Sh∆Mj+

2P1K̃S̃h($+1−KShe(1+∆Mj))

($+1)r2
h
γ

)
− e

2P1K̃S̃h
r2
h
γ

$∑
k=0

k∑
v=0

(
2P1K̃S̃h
r2
hγ

)v

Γ

(
− v, 2P1K̃S̃h

r2
hγ

)
(
eSh∆Mj

(
KShe(1−∆Mj)

$ + 1

)k

+ e−Sh∆Mj

(
KShe(1 + ∆Mj)

$ + 1

)k)]
(4.79)

Thus, $ can be chosen such that KShe(1−∆Mj)− 1 and KShe(1 + ∆Mj)− 1 satisfy any desired

accuracy level. Combining (4.62) and (4.79) yields the upper bound for the expression in (4.61)

as ηJFTS < η$JFTS + ηε−UpJFTS. Finally from (4.71) and (4.79), ηεJFTS can be bounded by,

ηε−UpJFTS > ηεJFTS > ηε−LowJFTS (4.80)

Using (4.71) and (4.80), η$JFTS can be evaluated at different truncation levels for different JFTS

parameters. The truncation error bounds for each set of JFTS parameters can also be calculated.
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4.5 Numerical Results and Discussion

In this section, The derived analytical expressions for error probability performance and channel

capacity of coherent/non-coherent binary modulation techniques like BPSK and BFSK, general or-

der M -QAM snd coherently detected M -PSK are numerically evaluated and plotted as functions of

the parameters of the communication channel model with and without iterative and non-iterative

FEC coding techniques. The analytical results are compared with the simulation results in order

to verify the validity of the derived expressions. The parameters of the JFTS channel model are

also varied in order to demonstrate how the channel model influences system performance. For the

simulation results, Monte Carlo simulation has been used in MATLAB to generate the modulated

symbols, codewords, AWGN and JFTS random variables using the JFTS PDF of (2.20)).

The wireless communication channel between the transmitter and the receiver is assumed to be

suffering from AWGN and the composite fading/shadowing envelope is JFTS distributed, where

all the channel samples are statistically independent. All the analytical and simulation results are

evaluated using a single input single output (SISO) system and are averaged over 100 independent

random channel realizations. All the error probability performances and capacity analyses are

plotted as functions of the average received CSNR per bit, Eb/N0 in dBs.

The rest of this section is organized as follows. Subsection 4.5.1 and 4.5.2 illustrate the effects

of the modulation parameters like constellation size and the coding parameters like code length

and rate on the performance of different fixed modulation and coding techniques over a JFTS

faded/shadowed link respectively. Subsection 4.5.3 demonstrates the effect of the JFTS parameters

on the error rates, channel capacities and bandwidth efficiencies. Finally Subsection 4.5.4 exhibits
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Figure 4.1: Comparative average symbol error rate performances of RQAM, where the curves are
generated by varying the size of QAM constellation (M = 32, 128, 512) over JFTS faded/shadowed
communication link with fixed set of parameters, K = 5 dB, Sh = −6 dB and ∆ = 0.5.

how JFTS channel performance compares to more conventional channel models.

4.5.1 Effect of Modulation Techniques and Parameters

The first set of curves in Fig. 4.1 are generated for evaluating the ASER performance of general or-

der M -QAM over a JFTS fading/shadowing communication channel, where the plots are generated

by varying the constellation size M . Both analytical and simulation results are plotted for each M ,

where the analytical results are computed using the MGF approach. The JFTS parameters, K, Sh

and ∆ are fixed at 5 dB, - 6 dB and 0.5 respectively. This set of parameters are encountered when

the mobile WLAN user and the access point are separated by 2 - 3 sets of partitions are tabulated

in Chapter 3. It is evident that the derived analytical results from (4.17) offer a good agreement

with that of the simulation results. For this set of curves, three values of M are considered,

M = 32, 128, 512. It is evident that error performance degrades with the increase in M . How-
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Figure 4.2: Comparative simulation and analytical average bit error rate performances of coherent
M -PSK and M -QAM over a JFTS faded / shadowed communication link, where the curves are
generated for a fixed set of JFTS parameters, with K = 6.5 dB, Sh = 3 dB and ∆ = 0.8.

ever, this degradation gradually reduces with the increase in M , for a fixed set of JFTS parameters.

The next set of curves in Fig. 4.2 are generated for comparing analytical results with simulation

results for different modulation techniques, where the analytical results are computed using the

CDF-based approach. For this ste of curves, JFTS parameters are kept fixed at K = 6.5 dB,

Sh = 3 dB and ∆ = 0.8. This set of parameters are encountered when the user and the access

point are separated by 1 set of dry-wall or partition. It is evident from Fig. 4.2 that the derived

analytical results from (4.26) and (4.28) offer a good agreement with that of the simulation results

and they fall within 1 - 2 dB of the simulation results.

It is to be noted here that like in case of the MGF approach, the analytical results using the CDF
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Figure 4.3: Comparative simulation and analytical average bit error rate performances of coher-
ent BPSK and BFSK with that of non-coherent BPSK and BFSK over JFTS faded/shadowed
communication link with fixed K = 5 dB and ∆ = 0.7 but two different Sh of 9 dB and - 5 dB.

approach do not exactly match the simulation results as the analytical expressions contain the ap-

proximation index m. For this analysis, m = 20 is used. Increasing m further will provide a better

approximation of the error probability performances. However, only a nominal improvement in

approximation can be achieved for a large increase of m for m > 20 thereby making the expressions

computationally complex.

Comparison of ABER performances between binary modulation techniques like coherent and non-

coherent BPSK and BFSK is presented in Fig. 4.3. Two sets of JFTS parameters are selected. For

the first set of curves, K, Sh and ∆ are kept fixed at 5 dB, 9 dB and 0.7 respectively. These set

of parameters typically represent a scenario where both the user and the access point are in the

same room.
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Figure 4.4: Achievable channel capacity and cut-off rate of M -QAM when communicating over a
JFTS faded/shadowed communication link with K = 8 dB, Sh = 8.5 dB and ∆ = 0.45, where the
curves are generated by varying the constellation size M .

When Sh = 9 dB, the performance difference between non-coherent BPSK and BFSK degrades

between 2 dB and 3 dB relative to the corresponding coherent schemes. This is roughly consistent

with the results seen over standard Rayleigh or Nakagami-m channels. However, this changes when

Sh drops to - 9 dB. When this occurs, non-coherent binary modulation techniques suffer an extra

penalty of 2 - 3 dB from the coherent ones resulting in total non-coherent performance degradation

of 7 - 8 dB, as is evident from the second set of curves. A value of S=− 9 dB represents a scenario

when the user and the access point are separated by more than 3 partitions. A low Sh-factor

combined with a low K value resulted in severe fading and shadowing statistics yielding a larger

degradation in performance for non-coherent techniques in comparison to traditional small scale

fading channels.
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Fig. 4.4 and Fig. 4.5 show the achievable capacity, cut-off rate and bandwidth efficiency of the

family of M -QAM signals when communicating over JFTS fading/shadowing channel with K = 8

dB, Sh = 8.5 dB and ∆ = 0.45. It is evident from Fig. 4.4 and Fig. 4.5 that in order to achieve

a capacity of b bits/symbol, it is better to employ 2b+1-ary QAM, rather than the QAM scheme

having M = 2b or M > 2b+1. Explicitly, by doubling M from 2b to 2b+1, most of the achievable

capacity gain may be obtained when aiming for a capacity of C = b bits/symbol. For example, as

evidenced in Fig. 4.4, the CSNR required for 4-QAM, 8-QAM, 16-QAM and 64-QAM is about 25

dB, 5 dB, 2dB and 2 dB respectively when communicating over JFTS channels at a capacity of

b = 2 bits/symbol.

4.5.2 Effect of Coding Techniques and Parameters

The first three figures in this section are only simulation based, where ABER of coherently de-

tected BPSK is plotted in presence of non-iterative FEC coding techniques like Convolutional and

Hamming codes. Fig. 4.6 shows that performance improves at higher CSNR if Hamming codes

(HC) and Convolutional codes (CC) are employed at the transmit side. For the sake of comparison,

hard-decision decoding (HDD) is used at the receiver side for both the coding techniques. Viterbi

Decoding (VD) with no trace back memory is employed for CC and Hamming Decoding (HD) is

applied for the HC technique. Using the same generator polynomial, 1/2-rate CC [7, 5] with VD

is seem to offer an improvement in performance of around 5 dB and 3 dB in case of HC [7, 4] with

HD, for K-factors of 5 dB and 8 dB in the JFTS channels respectively. However, for Rayleigh

fading channels, using the same set of conditions, CC offers only a minor improvement of around

0.5 dB over HC.

Improvement in performance at higher CSNR can be achieved by employing HC and CC at the
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Figure 4.5: Achievable bandwidth efficiency of M -QAM when communicating over a JFTS
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0 2 4 6 8 10 12 14 16 18 20

10
−4

10
−3

10
−2

10
−1

10
0

Average CSNR per bit, E
b
 / N

0
 (dB)

A
ve

ra
ge

 b
it 

er
ro

r 
ra

te
 (

A
B

E
R

)

 

 

K = 5 dB − uncoded
K = 5 dB − CC / VD with HDD
K = 5 dB − HC / HD with HDD
K = 8 dB − uncoded
K = 8 dB − CC / VD with HDD
K = 8 dB − HC / HD with HDD

Figure 4.6: Comparative simulated average bit error rate (ABER) performances of BPSK with non-
iterative coding technique like Convolutional Coding (1/2-rate, [7, 5] octal) with Hard-Decision
Viterbi Decoding and Hamming Coding ([7, 4]) with Hard-Decision Hamming Decoding over JFTS
faded / shadowed communication link, where the curves are generated by varying the K-parameter
of the JFTS distribution, with fixed Sh = 2 dB and fixed ∆ = 0.3.
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Figure 4.7: Comparative simulated average bit error rate (ABER) performances of BPSK with
non-iterative coding technique like Convolutional Coding (1/2-rate, [7, 5] octal) with Soft-Decision
Viterbi Decoding and Hamming Coding ([7, 4]) with Soft-Decision Hamming Decoding over JFTS
faded / shadowed communication link, where the curves are generated by varying the Sh-parameter
of the JFTS distribution, with fixed K = 6 dB and fixed ∆ = 0.8.

transmit side with soft-decision decoding (SDD) at the receiver side as is evident in Fig. 4.7.

Similar to the results in Fig. 4.6, CC with VD is seen to offer around 3 dB improvement in BER

performance over HC with HD. This surprising behavior, for both HDD and SDD can be attributed

to the statistical characteristics of a JFTS channel, which are quite different from traditional fad-

ing channels like Rayleigh, Rician, or Nakagami-m fading channels. Summing up both the results

from Fig. 4.6 and Fig. 4.7, it can also be concluded that, for the same set of JFTS parameters,

CC offers a considerable enhancement in performance over linear block coding techniques like HC.

Fig. 4.8 is used to compare performances of non-iterative coding techniques with HDD and SDD.

As expected, each coding technique with SDD offers a 3 dB improvement in performance over

HDD for a fixed set of JFTS parameters.
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Figure 4.8: Comparative simulated average bit error rate (ABER) performances of BPSK with non-
iterative coding technique like Convolutional Coding (1/2-rate, [7, 5] octal) with Hard-Decision
and Soft-Decision Viterbi Decoding and Hamming Coding ([7, 4]) with Hard-Decision and Soft-
Decision Hamming Decoding over JFTS faded / shadowed communication link, where the curves
are generated for fixed JFTS parameters K = 5 dB, Sh = −5 dB and ∆ = 0.3.

The results in Fig. 4.9 are generated by varying the JFTS parameters, K, Sh and ∆. The values

for each set of parameters are chosen from the range of their numerical values proposed in Chap-

ter 3, depending on the relative position of the mobile WLAN user and the access point. Fig. 4.9

compares the simulated ABER with the analytical average upper bound for BER, where the exact

PEP is calculated using (4.43). For this set of results, the 1/2-rate Turbo coding with a memory

of 4 is used with generators (23, 35) and a frame size of N = 2 × 512 coded bits. It is evident

from Fig. 4.9 that the analytical average upper bound for BER tightly approximates the simulated

ABER for a broad range of JFTS channel parameter values. However, a minor difference exists

between the simulated and the predicted results for lower ABERs. The reason behind this can be

attributed to the fact that the analytical bound is truncated after codewords with distances δ1 > 8.
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Figure 4.9: Analytical and simulated average bit error rates (ABER) of 1/2-rate TC coded BPSK
with code length, N = 1024 over fully interleaved JFTS faded / shadowed communication link,
where the curves are generated by varying all the JFTS parameters, K, Sh and ∆ simultaneously.

The firsts set of curves in Fig. 4.9 are generated for K = 10 dB, Sh = 10.5 dB and ∆ = 0.8,

representing a condition where both the user and the access point are located in the same room.

As the user moves to a different room separated by one set of partition or wall form that of the

access point, system performance degrades, as exhibited by the second set of curves in Fig. 4.9.

In order to achieve an ABER of 10−4, the average CSNR per bit requirement increases by around

1.5 dB. The average CSNR requirement increases even further by around 10 dB if the user and

the access point are separated by 2 or 3 sets of partitions. This happens due to the lack of strong

specular components and the presence of at least two scattering clusters between the transmitter

and the receiver, which jointly deteriorates the overall system performance.

Fig. 4.10 compares the simulated ABER of regular and irregular LDPC coded BPSK with the

analytical average BER calculated using GA approach (4.48). For this set of plots, the block
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Figure 4.10: Analytical and simulated average bit error rates (ABER) of 1/2-rate LDPC coded
BPSK with code length, N = 104 over fully interleaved JFTS faded / shadowed communication link,
where the curves are generated by varying all the JFTS parameters, K, Sh and ∆ simultaneously.

size of the LDPC code is set to 104 and the maximum number of iterations for decoding is set

to 100. The rate 1/2 (3, 6) regular LDPC code and irregular LDPC code with degree distribu-

tion λ(z̄) = 0.3321z̄ + 0.3307z̄2 + 0.3372z̄5 and ρ(z̄) = 0.982z̄5 + 0.018z̄6 are investigated. For

the irregular LDPC code, the degree-two nodes of parity check matrix H, corresponding to the

non-systematic bits, are constructed to be free of cycles. Furthermore, H is designed to be free of

4-cycles. The CSNR threshold is obtained using DE and it is presented in Fig. 4.10. Here, the

CSNR threshold is defined as the smallest CSNR required for the system to obtain a BER of less

than 10−6.

It is evident from Fig. 4.10, that the GA results provide a good estimate for the simulated results.

The difference between the GA and simulated CSNR to achieve a BER of 10−4 is approximately 0.5

- 1 dB. Next it can be observed that the difference between the CSNR threshold of DE and GA is
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Figure 4.11: Average bit error rate performances of 16-QAM over JFTS faded / shadowed commu-
nication link, where the curves are generated by varying the K-parameter of the JFTS distribution,
with two sets of fixed Sh, 6 dB and −4 dB and fixed ∆, 0.3 and 0.9 respectively.

around 0.5 - 0.8 dB. The simulation results will approach the DE results when the simulated code

length approaches infinity. However, it is not feasible to use an infinite code length in practice.

The results obtained using the GA analysis provides a good and fast estimate for the performance

of LDPC codes with a practical length. The reason for the mismatch between DE and GA is

mainly due to approximating the message densities as Gaussian distributed. The computational

complexity of DE is high as it involves tracking the PDFs passing between bit and check nodes,

where density updates, transformation of random variables and fast Fourier transformation need

to be performed iteratively.

4.5.3 Effect of JFTS Parameters

The curves in the first subplot of Fig. 4.11 are generated by varying the K-parameter of the JFTS

distribution. The other parameters of the distribution like Sh and ∆ are kept constant at 6 dB

and 0.3 respectively, representing a condition where the user and the access point are separated by
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1 dry-wall or partition. Simulation and analytical ABER performances are plotted for 16-QAM.

The performance of 16-QAM deteriorates as the value of K decreases with fixed Sh and ∆. This

is due to the fact that as K decreases, the power contributed by the strong specular components

decreases in comparison to that contributed by the diffused and scattered components, resulting

in degradation of overall system performance.

The improvement in performance due to the increase in K-factor from 2 dB to 5 dB or 5 dB to 8

dB is not proportional to the improvement for increasing K from 8 dB to 11 dB. This is due to

the fact that for a JFTS channel, the Sh and ∆ parameters also influence the channel behavior. A

high Sh factor corresponds to a low severity in shadowing. A low ∆ represents a scenario where

only one scattering cluster dominates instead of two thereby also resulting in low shadowing sever-

ity. Hence, with a high Sh and low ∆ coupled with high K-factors, the communication channel

approaches the ”no fading” scenario. As a result, changing the K-factor from 8 dB to 11 dB does

not cause any further improvement in performance.

To emphasize the effect of Sh and ∆, the ABER performance of 16-QAM is plotted for only K = 2

dB and 8 dB in the second subplot of Fig. 4.11. In this case, a low Sh-factor of - 4 dB and a

high ∆ factor of 0.9 is used. This represents a condition where the user and the access point

are separated by 2 - 3 partitions. The difference in performance due to increase in K-factor is

completely obliterated for this set of shadowing parameters. A low Sh and a high ∆ corresponds

to a very high severity in shadowing and further degrading fading by a reduction in K does not

further degrade performance in any significant way.

Fig. 4.12, is generated by varying the Sh parameter of the JFTS distribution with fixed K and
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Figure 4.12: Average bit error rate performances of 16-QAM over JFTS faded / shadowed commu-
nication link, where the curves are generated by varying the Sh-parameter of the JFTS distribution,
with fixed K = 6.5 dB and fixed ∆ = 0.8.

∆ at 6.5 dB and 0.8 respectively. This set of K and ∆ parameters represent a scenario where

the user and the access point are separated by 2 - 3 dry-walls or partitions. It is evident from

Fig. 4.12 that lowering the Sh-parameter value results in deteriorated system performance. A larger

Sh factor represents large variations in the main wave amplitudes contributed by each scattering

neighborhood resulting in approximately equable number of high and low, thereby reducing the

overall severity of shadowing. On the other hand, a low Sh factor depicts a scenario where each

scattering cluster contributes a very small range of discrete shadowing values, higher in magnitude

and encountered repeatedly. This condition results in an increased severity in shadowing, thereby

degrading overall system performance.

The curves in Fig. 4.13 are generated by varying only the ∆-parameter of the JFTS distribution

but keeping a fixed K and Sh at 6 dB and −4 dB respectively. This set of K and Sh is encountered
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Figure 4.13: Average bit error rate performances of 16-QAM over JFTS faded / shadowed commu-
nication link, where the curves are generated by varying the ∆-parameter of the JFTS distribution,
with fixed K = 6 dB and fixed Sh = −4.

when the mobile WLAN user and the access point are separated by 2 - 3 dry-walls or partitions.

Variations in the value of the ∆-parameter affects the system performance in a way opposite to

that of the K or Sh parameter. Performance of 16-QAM degrades as ∆ increases from 0.1 to

0.7. This is due to the fact that as ∆ increases, the relative magnitudes of the shadowing values

contributed by two successive scattering clusters visited by the user increases. This results in an

increase in the shadowing severity.

The results in Fig. 4.14 are generated by varying the JFTS parameters, K, Sh and ∆. The values

for each set of parameters are chosen from the ranges of their numerical values proposed in Chap-

ter 3, depending on the relative position of the mobile LAN user and the access point. The first

curve is generated for K = 10 dB, Sh = 10.5 dB and ∆ = 0.75, representing a condition where

both the user and the access point are located in the same room. As the user moves to a different
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Figure 4.14: Average bit error rate performances of 16-QAM over JFTS faded / shadowed com-
munication link, where the curves are generated by varying all the JFTS parameters, K, Sh and
∆ simultaneously.

room separated by one set of wall or partition from that of the access point (K = 8 dB, Sh = 6.5

dB and ∆ = 0.45), system performance degrades, as exhibited by the second curve in Fig. 4.14.

In order to achieve an ABER of 10−3, the average CSNR per symbol requirement increases by

around 5 dB for the second set of parameters with respect to the first set of JFTS parameters.

It should be emphasized that Fig. 4.14 assumes a common path loss for all four scenarios. This

means that for a given CSNR, all four scenarios experience the same average path loss and the

difference in BER shown on the plot is a result of the different small scale fading and shadowing

statistics imposed by the JFTS model.

The average CSNR per symbol requirement increases even further by around 10 dB, if the user and

the access point is separated by 2 - 3 sets of partitions (K = 6.5 dB, Sh = −1.5 dB and ∆ = 0.25).

This happens due to the lack of strong specular components and the presence of at least two

116



0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

Avg. CSNR per bit, E
b
 / N

0
 (dB) 

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e 

(A
B

E
R

)

 

 

K = 5 dB − uncoded
K = 5 dB − CC / VD with HDD
K = 5 dB − TC / Log−MAP
K = 8 dB − uncoded
K = 8 dB − CC / VD with HDD
K = 8 dB − TC / Log−MAP

Figure 4.15: Comparative simulated average bit error rates (ABER) of BPSK with iterative coding
technique like Turbo Coding (1/2-rate, N = 1024), non-iterative coding technique like Convolu-
tional Coding (1/2-rate, [7, 5] octal) with Hard-Decision Decoding and uncoded BPSK over JFTS
block fading / shadowing communication link, where the curves are generated by varying the
K-parameter of the JFTS distribution, with fixed Sh = 2 dB and fixed ∆ = 0.3.

scattering clusters between the transmitter and the receiver, which jointly deteriorates the overall

system performance. However, for propagation conditions that correspond to an increase in the

number of separations by more than 3 (i. e. K = 5.5 dB, Sh = −7.5 dB, ∆ = 0.15), the average

CSNR per symbol requirement only increases by a maximum of 5 dB, in order to achieve the same

ABER performance. The reason for this can be imparted to the low ∆-factor, where the effect of

one scattering cluster is much stronger than the other one. As a result system performance is effec-

tively affected by only one scattering cluster, even in the presence of at least two scattering clusters.

Fig. 4.15 shows that the performance improves at higher CSNR if non-iterative FEC coding like

CC is employed at the transmit side. HDD using VD with no trace back memory is applied at the

receiver side. Both in the case of uncoded and CC coded BPSK, performance deteriorates with the
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Figure 4.16: CSNR requirement for a (23, 35) Turbo coded BPSK to achieve an ABER of P bit =
10−4 for varying K-factors of the JFTS distribution with fixed Sh = 2 dB and fixed ∆ = 0.3, where
the curves are generated for different codeword distances, δ1.

decrease in K-factor. As K decreases, the power contributed by the strong specular component

decreases in comparison to that contributed by the diffused and the scattered components resulting

in the degradation of the overall system performance. This difference in performance is obliterated

over the application of 1/2-rate Turbo coding with a memory of 4 and a frame size of N = 2× 512

coded bits (δ1 = 5). At the receiver Log-MAP is used for decoding with at most 25 iterations.

The fact that Turbo coding is able to eliminate the performance reduction experienced by a 3 dB

drop in K-factor is quite surprising if compared with the results for simple Rician fading channels.

The JFTS fading distribution combines Rician fading with that TWDP shadowing model. This

means that, in addition to K-factor, the shadowing factor Sh, and the shape parameter, ∆, also

affect the channel behavior. For this set of analyses, Sh = 2 dB and fixed ∆ = 0.3. A high Sh

factor corresponds to a low severity in shadowing. A low ∆ represents a scenario where only one
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Figure 4.17: Comparative simulated average word error rates (ABER) of BPSK with Turbo Coding
(1/3-rate, N = 3006) and uncoded BPSK over JFTS block fading / shadowing communication link,
where the curves are generated by varying the Sh-parameter of the JFTS distribution, with fixed
K = 6 dB and fixed ∆ = 0.8.

scattering cluster dominates instead of two thereby also resulting in low shadowing severity. Hence,

with a high Sh and low ∆ coupled with high K-factors, the communication channel approaches

the ”no fading” scenario. This means that changing the K-factor from 5 dB to 8 dB does not

increase fading enough to cause a meaningful performance degradation when Turbo codes are used.

To expand on this point, it is possible to further improve performance over a range of K-factors

by increasing the codeword distance, δ1. Fig. 4.16 exhibits the CSNR requirement to achieve an

ABER of P bit = 10−4 for different K-factors but same Sh and ∆ as in Fig. 4.15. Since we are

assuming the channel to be fully interleaved, all the fading amplitudes are independent of each

other. In that case, the codeword distance δ1 corresponds to the diversity order of the system. As

a result with the increase in diversity order, the overall performance improves for a high K-factor

even in presence of a high Sh and low ∆.

119



0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

Avg. CSNR per bit, E
b
 / N

0
 (dB) 

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e 

(A
B

E
R

)

 

 

Sim Results
N = 104

Sim Results
N = 6 X 104

K = 3 dB
K = 5 dB
K = 8 dB

Figure 4.18: Comparative simulated average word error rates (ABER) of BPSK with LDPC Coding
(1/3-rate) over JFTS block fading / shadowing communication link, where the curves are generated
by varying the K-parameter of the JFTS distribution, with fixed Sh = 6 dB and fixed ∆ = 0.8 for
two different sets of code length.

The effect of the variation in Sh-parameter on the performance of uncoded BPSK is preserved

even when TC is employed, as can be seen in Fig. 4.17. A rate 1/3 turbo code with a memory of

2, code structure of (1, 7/5, 7/5), an input block size of L bits and an output encoded stream of

N = 3(L + 2) bits is used. With both encoders terminating in the zero state, ABER performance

is analyzed for two selected codes with message block length of L = 1000 bits. The performance

of both coded and uncoded BPSK degrades with the decrease in Sh-parameter while the employ-

ment of Turbo codes offers an average coding gain of 11 dB at an ABER of P bit = 10−3. A large

Sh-factor represents large variations in the main wave amplitudes contributed by each scattering

neighborhood resulting in approximately equable number of high and low discrete shadowing val-

ues contributing to a lower severity in shadowing. While a low Sh factor represents a high severity

in shadowing as a very small range of discrete shadowing values are encountered repeatedly.
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If LDPC coding is applied, it can be observed that the CSNR thresholds found using GA analysis

are better for the more severe fading conditions (smaller K-factor) over the JFTS channel. It can

be noticed from Fig. 4.15 that the uncoded BER performance for a JFTS channel is better when

K is smaller for the lower values of average CSNR. When the CSNR increases, the performance

improves for larger values of K-factors. With the introduction of LDPC codes to JFTS channels,

and by using GA analysis, the CSNR threshold is reached at the lower values of CSNR before

increasing the CSNR. This explains why the system reaches the CSNR threshold earlier for more

severe fading conditions. For the simulation results in Fig. 4.18, it can be observed that for the

code length of 104, the performance is better for K = 5 dB followed by K = 8 dB and K = 3 dB.

However, for a larger code length of 6 × 104, the performance is better for the smaller values of

K-factor, which is consistent with the GA results, where the assumption made is an infinite code

length in the analyses.

The last set of curves of this subsection shown in Fig. 4.19 are generated by plotting the transmis-

sion outage probability as a function of BERs over the JFTS channel with different K-factors but

fixed Sh and ∆. The curves are plotted at a fixed γ of 10 dB. As the BER increases, the probability

of no transmission decreases. As the fading parameter K decreases, the power contributed by the

diffused and scattered components. exceeds the power contributed by the specular components.

As a result, the transmission outage probability increases for the same BER.

4.5.4 Comparison with Common Channel Models

To illustrate how JFTS channel performance compares to more conventional channel models,

Fig. 4.20 is used to compare performances of 16-QAM over JFTS and Nakagami-log-normal (NL)
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Figure 4.19: Transmission outage probability (Pout) of 16-QAM at different bit error rates over
JFTS faded / shadowed channel at a fixed average received carrier-to-noise ratio (γ) of 10 dB,
where the curves are generated by varying the K-parameter of the JFTS distribution, with fixed
Sh = 2 dB and fixed ∆ = 0.3.
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Figure 4.20: Average bit error rate of 16-QAM over a JFTS faded / shadowed communication link
with three different sets of JFTS parameters in comparison with that over composite Nakagami -
log-normal (NL) faded / shadowed link with three sets of NL parameters that contribute the same
Amount of Fading (AF) as the JFTS parameters.
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faded/shadowed communication channels. The channel parameters are chosen so that the JFTS

and NL channels contribute the same amount of fading (AF). As shown in Chapter 3, a JFTS

distribution with K = 7 dB, Sh = 6 dB and ∆ = 0.7, contributes an AF of 2 which is same as that

contributed by NL distribution with m = 1 and σ = 2.8 (4.4 dB). For these sets of parameters,

performance over a JFTS channel is worse than that over a NL channel for CSNRs less than 10 dB

(γ ≤ 10 dB). For higher CSNRs per bit of around 10 dB and more, JFTS offers a performance gain

over NL. While only the simulation results are shown for brevity, this same pattern in performance

repeats itself even for the sets of JFTS (K = 5, 2 dB, Sh = −5,−10 dB and ∆ = 0.3, 0.5) and

NL (m = 1, 1, µ = 1, 1, σ = 3.6, 4.2) parameters that contribute AFs of 3 and 4 respectively. This

improvement in performance for the JFTS distribution at higher CSNRs occurs due to the fact

that for the JFTS distribution, there still exists a very small group of specular components as long

as K 6= 0. While m = 1 for NL distribution represents a small scale fading condition, which is

equivalent to Rayleigh fading with the absence of any specular component.

It can be observed from Fig. 4.4 that it is harder to approach the capacity of the JFTS channel

compared to Rayleigh channel in the context of QAM, as a consequence of having wider CSNR

gap between the capacity and cut-off rate. For example, at a capacity of 3 bits/symbol, the CSNR

gap between the capacity curve and cut-off rate curve of 16-QAM when communicating over a

JFTS and a Rayleigh channel is about 18 dB and 5 dB respectively. An important conclusion

that can be made from this observation is that it is dangerous to use traditional fading models like

Rayleigh or Nakagami-m distributions to characterize composite wifi fading/shadowing scenarios

due to this very large error. This establishes the necessity of analyzing performance of different

communication techniques over a JFTS faded/shadowed communication link.
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Figure 4.21: Comparative transmission outage probability (Pout) of 16-QAM at different bit error
rates with a fixed average received carrier-to-noise ratio (γ) of 15 dB, where the curves are generated
over Rayleigh faded, Rician faded and JFTS faded/shadowed channels.

The last set of curves of this subsection plotted in Fig. 4.21 are generated by plotting the outage

probability as a function of BER over Rayleigh, Rician (K = 5 dB) and JFTS (K = 6.5 dB,

Sh = −2.5 dB, ∆ = 0.15) channels. The curves are plotted at a fixed γ of 15 dB. The outage

probability over the JFTS channel is higher than over both Rayleigh or Rician fading channels. The

poorer performance over the JFTS channel can be attributed to low Sh factor, which represents a

scenario where each scattering cluster contributes a very small range of discrete shadowing values,

that are encountered repeatedly resulting in an increased severity in shadowing.

4.6 Summary

The primary contribution of this chapter is to derive closed-form analytical expressions for the er-

ror probability performance, channel capacity and outage probability of a wireless communication

system using M -QAM and coherent M -PSK modulation techniques over JFTS fading/shadowing
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channels. In order to do so, expressions for the PDF and the CDF of the received instantaneous

composite CSNR are utilized. The derived analytical expressions are numerically evaluated and

plotted as functions of the parameters of the communication channel model and the modulation

techniques. Performance degrades as K and Sh decreases and enhances as ∆ decreases. The ana-

lytical results are found to be in agreement with the simulation results verifying the validity of the

derived expressions. It can also be concluded that for higher CSNRs, performance over a JFTS

channel model is better than the NL channel model for the same AF.

For the case of ABER performance with FEC coding techniques, it is evident that CC with

VD offers a 3 dB improvement in performance over HC with HD, and SDD offers another 3

dB improvement in performance over HDD for a fixed set of JFTS parameters. The ABER

performances of Turbo coded and LDPC coded BPSK are simulated assuming coherent detection

and perfect CSI at the receiver side. Simulated performances fall within 0.1 - 0.5 dB of CSNR

difference with that of the analytical upper bound of ABER over JFTS communication channels.
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Chapter 5

Adaptive Coded Modulation

5.1 Background

Shannon capacity is the most common measure of the maximum achievable information rate over a

communication channel. In the case of a fading/shadowing channel, ergodic capacity is determined

by averaging the achievable information rate over the composite fading/shadowing distribution.

The ergodic channel capacity depends on the knowledge of the CSI available at the receiver and/or

the transmitter. This channel capacity can be achieved by optimizing the transmission techniques

through adaptive variation of the transmit power level, symbol transmission rate, modulation con-

stellation size, coding rate/scheme or any combination of these parameters, [110], [111].

The primary contribution of this chapter is to derive analytically tractable expressions for JFTS

capacity under different adaptive transmission schemes with or without iterative channel coding

techniques. Subsection 5.1.1 introduces different adaptive transmission techniques, while a brief

summary of different adaptive coded modulation schemes is provided in Subsection 5.1.2.

5.1.1 Adaptive Transmission Techniques

If perfect CSI is available both at the transmitter and the receiver (TR-CSI), the Shannon capacity

can be achieved by adapting the transmission power and rate simultaneously relative to the chan-

nel quality [99]. This technique is called Optimal Power and Rate Adaptation (OPRA). Shannon

capacity can also be reached by using fixed power variable rate transmission if only receiver CSI
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(R-CSI) is available [112]. This technique is coined Optimal Rate Adaptation (ORA).

Variable rate transmission strategies can impose variable delays making them unfavorable for some

real-time applications. For these applications, maximum constant information rate can be main-

tained only through optimal power control with perfect transmit and receive CSI [99], [112]. The

techniques introduced in [99], [112] use fading inversion to maintain a constant carrier signal-to-

noise ratio (CSNR). Any technique that maintains a constant received CSNR by adapting transmit

power is known as Channel Inversion with Fixed Rate (CIFR). The main difference between CIFR

and OPRA is that OPRA adapts both the transmission power and rate while CIFR adapts only

the transmission power while keeping the transmission rate fixed. However, in case of Rayleigh

faded communication channel, the CIFR capacity is found to be zero.

In order to mitigate this problem, an adaptive transmission technique was introduced in [107]

referred to as Truncated Channel Inversion with Fixed Rate (TIFR). In case of TIFR, the channel

fading is compensated only when the received CSNR is above a certain cut-off fade depth. The

constant information rate that can be achieved using TIFR with an outage probability under a

certain threshold is referred to as the outage capacity [108].

Hence the first contribution of this chapter is to present the analytical expressions for the achievable

ergodic and outage channel capacities of a JFTS fading/shadowing communication channel with

different adaptation techniques like OPRA, ORA, TIFR and CIFR. The relationship between the

optimal cut-off CSNR and the average received CSNR is also explored for JFTS faded/shadowed

links when adaptive techniques like OPRA, ORA, CIFR or TIFR is applied. These results will

demonstrate the effect of JFTS parameters on the achievable channel capacity assuming perfect
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CSI to be available at the transmitter and/or the receiver.

5.1.2 Adaptive Coded Modulation

Adaptive coded modulation is an established technique to increase the data rate that can be reli-

ably transmitted over fading, shadowing or composite fading/shadowing channels. For this reason,

some form of adaptive coded modulation (or without coding) is being proposed or implemented

n many next generation wireless systems. The basic premise of adaptive coded modulation is

a real-time balancing of the link budget in flat fading and/or slow shadowing through adaptive

variation of the transmitted power level, symbol transmission rate, constellation size, BER, coding

rate/scheme, or any combination of these parameters, [94] - [100], [102], [106], [109]. Thus, without

wasting power or sacrificing BER, these schemes provide a higher average link spectral efficiency

(bps/Hz) by taking advantage of fading and/or shadowing through adaptation. Good performance

of adaptive coded modulation requires accurate channel estimation at the receiver and a reliable

feedback path between the receiver and the transmitter. The impact of estimation error and delay

on adaptive modulation schemes has been studied in [100] - [102].

Adaptive coded modulation provides many parameters that can be adjusted relative to the channel

fading, including data rate, transmit power, instantaneous BER, symbol rate and channel code

rate or scheme. The question therefore arises as to which of these parameters should be adapted to

obtain the best performance. Results from [99] indicate that the Shannon capacity of a flat-fading

channel is achieved by varying both transmission rate and power and this capacity can also be

achieved by varying the transmit power alone [107]. Moreover, [99] also indicate that varying both

power and rate leads to a negligibly higher capacity over varying just the rate alone. However,

Shannon capacity assumes that the BER is arbitrarily small, coding schemes are random and of
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unbounded length and complexity, and there is no delay constraint. Therefore, capacity results do

not necessarily yield insight into the best adaptive schemes to use under more practical constraints.

There is much recent work on adaptive coded modulation that varies one or two modulation pa-

rameters. In particular, [94] - [96], [99] and [100] investigate adapting power and/or rate, [97]

and [102] investigate adapting rate and coding, and [98] investigates adapting power, rate and

instantaneous BER. A unified study on the trade-offs in adapting all combinations of different

modulation parameters is presented in [111].

Hence, the second contribution of this chapter is to provide a systematic study on the increase in

spectral efficiency obtained by optimally varying combinations of the transmission rate, power and

instantaneous BER over a JFTS faded/shadowed communication link. It will be assumed here that

the resulting adaptive modulation schemes are subject to an average power and BER constraint.

Symbol rate adaptation is not taken into account since it is difficult to implement in real systems.

Analysis is done for both an average and an instantaneous BER constraint with or without channel

coding, where only a discrete finite set of constellations is available. Hence the goal of this chapter

is to determine the impact on spectral efficiency of a JFTS channel achievable by adapting various

modulation parameters under different constellation restrictions and BER constraints, for a large

class of modulation techniques over the JFTS fading/shadowing distribution.

The remainder of this chapter is organized as follows. Section 5.2 derives the analytical expressions

for the channel capacity under different adaptive transmission policies. Section 5.3 studies the

performance of constant power optimal rate adaptive (ORA) multi-level quadrature amplitude

modulation (M -QAM) over the JFTS channel. Section 5.4 derives the optimal power and rate

adaptation under different constraints for adaptive discrete rate M -QAM over a JFTS channel
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while the optimal rate adaptation under a BER constraint using Trellis coded adaptiveM -QAM are

derived in Section 5.4. Numerical results are presented in Section 5.5 followed by some concluding

remarks in Section 5.6.

5.2 Analysis of Channel Capacity

The principal contribution of this section is to derive analytically tractable expressions for JFTS

ergodic capacity under different adaptive transmission schemes. These expressions will provide

new insight into the behavior of ergodic capacity for indoor WLAN systems due to the nature of

the JFTS model. Subsection 5.2.1 presents the PDF of the received instantaneous CSNR over a

JFTS communication channel. Subsection 5.2.2 and Subsection 5.2.3 derives expressions for the

ergodic and outage channel capacity under different adaptive transmission policies.

5.2.1 Instantaneous CSNR

The mean-squared value of the joint faded and two-path shadowed envelope, Z, can then be

calculated using (4.2) and the integral solution from [48] as,

Ω = E{Z2} =
4∑
i=1

20∑
h=1

biP2Rr4
h

P 2
1

e−K−Sh
[
e
Sh∆Mi−KSh(1−∆Mi)

r2h
2P1

(
P1 +KShr

2
h(1−∆Mi)

)
+
(
P1 +KShr

2
h(1 + ∆Mi)

)
e
−Sh∆Mi−KSh(1+∆Mi)

r2h
2P1

]
. (5.1)

Putting (5.1) back in that expression for the PDF of γ, the final expression can be obtained in

terms of γ and Ω as,

fγ(γ) =
20∑
h=1

Ω

2γP2r2
h

[
1 − e

− Ωγ

2γP2r
2
h

]
. (5.2)

Given an average transmit power constraint, the optimal cut-off CSNR level (γ0) for any adaptive

transmission technique must satisfy the relationship [111],
∫ +∞
γ0

(
1
γ0
− 1

γ

)
fγ(γ)dγ = 1. If the
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received instantaneous CSNR level γ falls below γ0, data transmission will be suspended. In order

to find the relationship between γ and γ0 for adaptive transmission over a JFTS faded / shadowed

channel, we need to solve two integrals, [48]

I1 =

∫ +∞

γ0

fγ(γ) dγ =

∫ +∞

γ0

B
γ

dγ −
∫ +∞

γ0

B
γ
e−
Bγ
γ dγ = B Ei

(
− Bγ0

γ

)
− B log(γ0) (5.3)

and

I2 =

∫ +∞

γ0

1

γ
fγ(γ)dγ =

∫ +∞

γ0

B
γ2

dγ −
∫ +∞

γ0

B
γ2
e−
Bγ
γ dγ = −B

γ0

e−
Bγ0
γ − B

2

γ
Ei

(
− Bγ0

γ

)
− B
γ0

(5.4)

where Ei(·) is the exponential integral given by [39] and B =
∑20

h=1
Ω

2P2r2
h
. Now, putting the integral

solutions obtained in (5.3) and (5.4), back in the above mentioned relationship, we can find the

equation which the optimal cut-off CSNR should satisfy for adaptive transmission. Therefore, in

case of a JFTS faded/shadowed channel, γ0 should satisfy the following relationship,(
B
γ0

+
B2

γ

)
Ei

(
− Bγ0

γ

)
+
B
γ0

(
1− log(γ0) + e−

Bγ0
γ

)
= 1. (5.5)

5.2.2 Ergodic Capacity

Optimal Power and Rate Adaptation (OPRA):

Assuming perfect CSI at the transmitter and the receiver, the ergodic channel capacity 〈C〉OPRA in

bits/sec under an average transmit power constraint is given by, 〈C〉OPRA = B
∫ +∞
γ0

log2

(
γ
γ0

)
fγ(γ)dγ,

where B (Hz) is the channel bandwidth and γ0 is the optimal cut-off CSNR. A water-filling algo-

rithm is used for optimal power adaptation given by S(γ) = 1
γ0
− 1

γ
for all γ ≥ γ0. The optimal

rate adaptation sends a rate of log2(γ/γ0) bits/sec for a fade level of γ. In order to find the fi-

nal expression for channel capacity per unit bandwidth over a JFTS faded / shadowed channel
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(〈C/B〉JFTS
OPRA [bits/sec/Hz]), we need to solve four sets of integrals in,〈

C

B

〉JFTS

OPRA

=
1

log(2)

[ ∫ +∞

γ0

log(γ)
B
γ

dγ︸ ︷︷ ︸
I3

−
∫ +∞

γ0

log(γ0)
B
γ

dγ︸ ︷︷ ︸
I4

−
∫ +∞

γ0

log(γ)
B
γ
e−
Bγ
γ dγ︸ ︷︷ ︸

I5

+

∫ +∞

γ0

log(γ0)
B
γ
e−
Bγ
γ dγ︸ ︷︷ ︸

I6

]
. (5.6)

The expression in (5.6) can be obtained in a tractable form through the following steps of integral

solutions and mathematical manipulations. Firstly we can express,

I3 − I4 =
B
2

log2(γ0). (5.7)

Using the identities, Ei(−x) = −Γ(0, x)− log(x)+ 1
2
(log(−x)− log(− 1

x
)) and log(−x) = log(x)+ıπ,

valid for x > 0 [39] and [48], and assuming that, (Bγ0/γ) > 0 and (γ/Bγ0) > 0 and after some

algebraic manipulations, we can express,

I6 − I5 = B log(γ0)log

(
Bγ0

γ

)
+ BE log(γ0)− B

2
log2(γ0)− B

2γ0

γ
3F3

(
1, 1, 1; 2, 2, 2;−Bγ0

γ

)
.

(5.8)

where E is the Euler-Mascheroni constant with a numerical value of E ≈ 0.577216. Finally, using

(5.7) and (5.8), the expression in (5.6) can be obtained as,〈
C

B

〉JFTS

OPRA

=
B log(γ0)

log(2)

[
log

(
Bγ0

γ

)
+ E

]
− B2γ0

γ log(2)
3F3

(
1, 1, 1; 2, 2, 2;−Bγ0

γ

)
(5.9)

where pFq(·) is the generalized confluent hyper-geometric function [39] and p, q are integers.

Optimal Rate Adaptation (ORA):

Assuming perfect CSI at the receiver only, the ergodic channel capacity 〈C〉ORA in bits/sec with con-

stant power over any composite fading and shadowing channel is given by, 〈C〉ORA = B
∫ +∞

0
log2(1+
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γ)fγ(γ)dγ. It is shown in [113] that 〈C〉OPRA becomes equal to 〈C〉ORA when the transmit power

is kept constant for OPRA. Using the identity log(1 + y) = log(y) −
∑+∞

n=1
(−1)n

nyn
for |y| > 1, we

can solve the integral in the above definition [48]. Using (5.3), the final expression for channel

capacity per unit bandwidth with ORA transmission (〈C/B〉JFTS
ORA ) over a JFTS faded / shadowed

communication link can be written as,〈
C

B

〉JFTS

ORA

=
1

log(2)

[ ∫ ∞
0

+∞∑
n=1

(−1)n

n

B
γn+1

e−
Bγ
γ dγ

]
=

+∞∑
n=1

BΓ(−n)

n log(2)

(
− B
γ

)n
. (5.10)

It is evident from (5.9) and (5.10), that ergodic capacity over a JFTS distributed link depends on

the mean-squared value of the joint faded and two-path shadowed envelope, Ω. Now from (5.1),

we observe that Ω decreases exponentially with the increase either in K or Sh or both. In (5.9),

the capacity term is directly proportional to
[
log
(Bγ0

γ

)
+ E

]
. Hence, as Ω decreases,

∣∣log
(Bγ0

γ

)∣∣ in-

creases, since Ω < 1. As a result, the term
[
log
(Bγ0

γ

)
+ E
]

increases with the increase in the fading

and/or the shadowing parameters resulting in the overall increase in the ergodic capacity. Similar

intuitive conclusions can also be made from (5.10), where capacity increases with the decrease in

Ω, since
〈
C
B

〉
∝
(
− B

γ

)n
for n > 0.

Channel Inversion with Fixed Rate (CIFR):

Assuming perfect CSI at the transmitter and the receiver, the channel capacity of this technique

for any fading/shadowing communication link is given by,

CCIFR = B log2

(
1 +

1∫∞
0

1
γ
fγ(γ) dγ

)
(5.11)

Using the integral solution from (5.4) and putting it back in (5.11), it can be shown that CIFR

channel capacity is equal to zero for the JFTS channel. This result can be referred to as the

zero outage capacity or delay-limited capacity. The zero outage capacity can be defined as the
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maximum constant information rate that can be maintained over any fading and/or shadowing

conditions through the optimal control of transmission power. Since for a JFTS channel, the CIFR

channel capacity becomes equal to zero, a large amount of transmitted power will be required to

compensate for the deep channel fades if this technique is used for adaptive transmission. A better

approach will be to use truncated channel inversion with fixed rate, the channel capacity for which

has been derived in the next subsection.

5.2.3 Outage Capacity

Truncated Channel Inversion with Fixed Rate (TIFR):

In case of TIFR, channel fading is inverted only if the received instantaneous CSNR level is

above the cut-off fade depth (γ0). The channel capacity with TIFR over any fading channel

is obtained by maximizing the outage capacity (Cout) over all possible γ0 and can be expressed

as, CTIFR = maxγ0Cout, where Cout is the outage capacity. The outage channel capacity for a

fading/shadowing channel can be calculated as, 〈Cout〉TIFR = B log2

(
1 + 1∫ +∞

γ0

1
γ
fγ(γ)dγ

)
(1 − Pout),

where Pout is the outage probability. For a JFTS fading/shadowing channel, Pout can be calculated

as,

Pout =

∫ γ0

0

fγ(γ) dγ = B log(γ0)− B Ei

(
− Bγ0

γ

)
(5.12)

using the integral solution provided in (5.3). Using (5.4), we can evaluate the channel capacity

with TIFR in a JFTS faded / shadowed communication link which can be expressed as,〈
Cout

B

〉JFTS

TIFR

=

(
1 + B Ei

(
− Bγ0

γ

)
− B log(γ0)

)
log2

(
1− γ0γ

Bγ e−
Bγ0
γ + B2γ0 Ei

(
− Bγ0

γ

)
+ Bγ

)
.

(5.13)
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5.3 Adaptive Modulation

This section provides a performance analysis of constant power ORA M -QAM schemes for spec-

trally efficient transmission over slowly varying flat fading and slow shadowing JFTS channels.

Rate adaptation is achieved through the variation of the constellation size based on its advan-

tage of easy hardware implementation. Assuming perfect CSI is available at the receiver side and

negligible time delay, the analysis is done both for continuous modulation rate and discrete constel-

lations sets based on average BER constraint. However, rate adaptation based on instantaneous

BER constraint is not considered in this section, however will be studied in Section 5.4.

The remainder of this section is organized as follows. Subsection 5.3.1 describes the adaptive

M-QAM techniques considered in this thesis. The performance of constant power ORA M -QAM

schemes over JFTS channels assuming perfect channel estimation and negligible time delay is

analyzed in Subsection 5.3.2 and Subsection 5.3.3.

5.3.1 Adaptive M-QAM Modulation

For this analysis, a family of M -QAM signal constellation is considered where M denotes the

number of signal constellation points. It is assumed that the transmission is done with a fixed

symbol rate τs and ideal Nyquist data pulses are used for each constellation. Since each of the

M -QAM constellations use Nyquist data pulses (B = 1/τs), the average Es/N0 equals the average

CSNR, Es/N0 = γ, where B in Hz, is the channel bandwidth. The BER of any M -QAM technique

over a wireless communication channel suffering from AWGN can be approximated by,

BER(M,γ) ≈ 0.2exp

(
− 1.6γ

M − 1

)
(5.14)
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where Gray-coded bit mapping is used on the transmitter side and perfect clock and carrier recovery

is applied on the receive side. The inverse of the approximation in (5.14) will be used to derive

closed-form expressions for link spectral efficiency of M -QAM as a function of the CSNR and the

BER. Performance analysis over JFTS fading/shadowing channels will be done for two kinds of

adaptive M -QAM techniques, Adaptive Continuous Rate (ACR) M -QAM and Adaptive Discrete

Rate (ADR) M -QAM.

Adaptive Continuous Rate (ACR) M-QAM

Adaptive Continuous Rate (ACR) refers to adaptive modulation technique in which the number

of bits per symbol is not restricted to integer values. The spectral efficiency for any fixed M is

given by the data rate per unit bandwidth (R/B) and therefore can be expressed in bits per symbol

per Hz (bps/Hz). Assuming ideal Nyquist pulses and for a fixed CSNR (γ) and BER (B0), the

spectral efficiency of the constant power ORA ACR M -QAM is given by,〈
R

B

〉
ACR

=

∫ ∞
0

log2

(
1− 1.6γ

ln(5B0)

)
fγ(γ)dγ (5.15)

where R is the data rate given by R = log2(M/τs).

Adaptive Discrete Rate (ADR) M-QAM

If the constellation size Mn is restricted to 2n for any positive integer n, the adaptive modulation

technique is called Adaptive Discrete Rate (ADR) M -QAM. In this technique, the entire CSNR

range is divided into N + 1 fading regions and the constellation size Mn is assigned to the nth

fading region (n = 0, 1, . . . , N). hence, if the received CSNR falls in the nth region, M -QAM with

constellation size Mn is used for transmission. The average link spectral efficiency for ORA and

constant power ADR M -QAM given by,〈
R

B

〉
ADR

=
N∑

n=1

n

∫ γn+1

γn

fγ(γ)dγ (5.16)
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5.3.2 Average Spectral Efficiency

Using (5.15), the average link spectral efficiency of ACR M -QAM with constant power ORA over

JFTS faded/shadowed channel can be obtained using the identity for the logarithmic function,

ln(1 + κȳ) =
∞∑
m=1

(−1)m+1

m
(κȳ)m |κȳ| < 1 (5.17)

In this case, this identity can only be used as the logarithmic function is only defined for positive

arguments and hence the argument in the integral in (5.15) is only valid for logarithmic operation

if and only if 1 − 1.6γ
ln(5B0)

> 0 or 1 > 1.6γ
ln(5B0)

or equivalently 1 > κȳ. Hence the final expression

for the spectral efficiency of ACR M -QAM with ORA over a JFTS channel can be obtained by

putting (5.17) and (5.2) in (5.15) as below,〈
R

B

〉JFTS

ACR

=
∞∑
m=1

∞∑
k=0

(−1)m+1

mln2

(
1.6

ln(5B0)

)m
γ

(k + 1)!(k + m)!

(
2γP2r

2
h

Ω

)m−1

(5.18)

The average spectral efficiency of constant power ORA ADRM -QAM over the JFTS fading/shadowing

channel is then determined by putting (5.2) back in (5.16) and then solving the integral to obtain,〈
R

B

〉JFTS

ADR

=
N∑

n=1

nΩ

2P2r2
h

[
log

(
γn+1

γn

)
− Ei

(
− Ωγn+1

2γP2r2
h

)
+ Ei

(
− Ωγn

2γP2r2
h

)]
(5.19)

Illustrative examples demonstrating achievable spectral efficiencies by ORA with ACR M -QAM

and ADR M -QAM techniques over JFTS faded/shadowed wireless communication link are pre-

sented in Section 5.6.

5.3.3 Average Bit Error Rate

The expression for BER of ADR M -QAM with constant power ORA transmission over JFTS

faded/shadowed communication channel can be computed as the ratio of the number of bits in

error to the total average number of transmitted bits,〈
BER

〉JFTS

ADR

=

∑N

n=1 nBERn

〈R/B〉JFTS
ADR

(5.20)
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where 〈R/B〉JFTS
ADR is given by (5.19) while,

BERn =

∫ γn+1

γn

BER(Mn, γ) fγ(γ)dγ (5.21)

Using the closed-form solution to the integral from [48], the final expression of BERn can be

obtained in terms of the JFTS parameters as,

BERn =
0.2Ω

2P2r2
h

[
Ei

(
− 1.6γn+1

Mn − 1

)
+ Ei

(
γn

(
Ω

2γP2r2
h

+
1.6

Mn − 1

))
− Ei

(
− 1.6γn
Mn − 1

)
− Ei

(
γn+1

(
Ω

2γP2r2
h

+
1.6

Mn − 1

))]
(5.22)

Simulation results for the ABER over JFTS faded/shadowed channel for the different number of

fading regions N are presented in Section 5.6.

5.4 Degrees of Freedom in Adaptive Modulation

The instantaneous CSNR and its PDF only reflect the influence of the channel on the CSNR and

not the influence of a varying transmit power. In general, in an adaptive modulation scheme, the

transmit power will vary depending on γ(i) and will thus be denoted by S[γ(i)], where γ(i) is the

instantaneous received CSNR over the ith symbol. Hence, the instantaneously received CSNR can

then be given by γ(i)S[γ(i)]/S. It should be noted that the PDF of the received CSNR is different

from the PDF in (5.2) when the modulation uses a varying transmit power. To make the notation

simpler, the time index i will be omitted and γ and S(γ) will be used instead.

The rest of this section is organized as below. Subsection 5.4.1 derives the instantaneous BER (I-

BER) of adaptive power and/or rate M -QAM over a JFTS faded/shadowed channel. The optimum

rate region and power region boundaries are derived in Subsections 5.4.2, 5.4.3, 5.4.4 and 5.4.5

under different constraints of rate, power and BER.

138



5.4.1 Adaptive Rate and Power M-QAM

The transmitter adjusts the constellation size, and possibly also the transmit power, based on

the instantaneous CSNR, γ. Evaluation of the optimal power and constellation size (or rate)

adjustments, which maximize the spectral efficiency and satisfy the BER requirements, requires

an invertible expression for the BER as a function of γ. Assuming a square M -QAM with Gray-

coded bits, constellation size, Mn and transmit power, S(γ), the instantaneous BER (I-BER) as a

function of γ on an AWGN channel is approximated by,

BER(γ) ≈ 0.2exp

(
− 1.6γS(γ)

(Mn − 1)S

)
(5.23)

which is tight within 1 dB for Mn ≥ 4 and BER ≤ 10−3. Moreover the I-BER as a function of the

instantaneous CSNR γ over a JFTS faded/shadowed channel can be obtained as,

BERn(γnS/S) =

∫ ∞
γn

BER(γ)fγ(γ)dγ

=

∫ ∞
γn

0.2Ω

2γP2r2
h

e
− 1.6Sγ

S(Mn−1) dγ −
∫ ∞
γn

0.2Ω

2γP2r2
h

e
− 1.6Sγ

S(Mn−1)
− Ωγ

2γP2r
2
h dγ

=
0.2 Ω

2P2r2
h

[
Ei

(
1.6Sγn

S(1−Mn)
− Ωγn

2γP2r2
h

)
− Ei

(
1.6Sγn

S(1−Mn)

)]
(5.24)

where Ei(·) is the exponential integral.

5.4.2 Adaptive Rate, Maximum BER and Constant Power

One simple form of adaptive modulation is when only the transmission rate R = R[γ(i)] is changed

when the channel power gain changes. The BER can be kept below a certain maximum value,

although the number of bits per symbol b = b[γ(i)] is increased with increasing channel power

gain. In this case, however, no transmission should be done below a certain value of the channel

power gain or the BER will be higher than the maximum allowed value. Assuming that N different
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modulation constellations are used, each with bn bits per symbol, we can use the nth constellation

when γn ≤ γ < γn+1, where 0 ≤ n ≤ N − 1 and γN = ∞. These intervals are referred to as rate

regions. The transmit power becomes,

S(γ) =

 S γ ≥ γ0

0 γ < γ0

such that the average transmitted power is the same as when S(γ) = γ for all γ. The transmitted

power can be increased when transmission occurs, resulting in a somewhat higher received CSNR

for a given channel power gain as compared with the case when the transmit power is constant.

Thus the channel can be used at somewhat lower channel power gains without violating the BER

requirement, which will increase the spectral efficiency of the link.

A communication link should normally operate at or below a certain maximum BER. This design

goal parameter will be denoted by TBER. Thus BER(γS/S) ≤ TBER for all γ ≥ γ0, where BER(·)

is a function relating the BER to the instantaneous SNR for the modulation scheme considered.

For this particular scheme, this will be fulfilled if, BERn(γnS/S) ≤ TBER for 0 ≤ n ≤ N− 1, where

BERn(γnS/S) refers to the BER for modulation n at the received CSNR, γnS/S, which corresponds

to the lowest CSNR for this modulation . Now it remains to find the N rate region boundaries γn

fulfilling the TBER constraint with equality. Hence,

BERn(γnS/S) = TBER (5.25)

Using infinite series expansion of the exponential function used in (5.24) and putting it back in
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(5.25), the final expression for the rate region boundaries can be obtained as,

γn =
∞∑
k=0

k∑
v=0

(
γS(1−Mn)v

1.6Sγ + BS(Mn − 1)

)
W

[(
1.6Sγ + BS(Mn − 1)

γS(1−Mn)v

)

·

(
TBER(k + 1)γk+1

0.2(v!)Bk+2

)1/v(
1.6Sγ − BS(Mn − 1)

γS(1−Mn)

) k+1−v
v
]

(5.26)

where B = Ω
2P2r2

h
and W(·) is the Product Log function defined as the Lambert-W function.

The two most important performance measures of this adaptive modulation scheme is the spectral

efficiency and the average BER for a given value of N for a given value of S and γ. Assuming

Nyquist data pulses at the lowest possible bandwidth 1/τs, where τs is the symbol period of the

modulation. The spectral efficiency becomes,

η =
N−1∑
n=0

bn

∫ γn

γn−1

fγ(γ)dγ

=
N−1∑
n=0

bnB

[
log

(
γn
γn−1

)
− Ei

(
− Bγn

γ

)
+ Ei

(
− Bγn−1

γ

)]
(5.27)

where Ei(·) is the exponential integral.

5.4.3 Adaptive Rate, Average BER and Constant Power

One drawback with design procedure described above is that the instantaneous BER is lower than

the target BER, TBER at all instantaneous SNRs except the rate region boundary points, γn

for 0 ≤ n ≤ N − 1. Therefore, the average BER will also be lower than TBER for all channels.

Another design rule avoiding this drawback is to require the average BER to become equal to the

target BER. It is hard to find the rate region boundaries for this case. A suboptimal solution

to this optimization problem is to assume that all the rate region boundaries for the average

BER constraint optimization problem are equal to a constant (< 1) times the corresponding rate
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boundaries for the maximum BER design above. Then the constant needs to be found such that

the average BER constraint is fulfilled. This constant will depend on the average SNR. In order

to investigate this technique first of all the constant transmit power (average transmit power)

constraint is needed to be calculated as below,

S

S
=

1∫∞
γ0
fγ(γ)dγ

(5.28)

where γ0 is the lower threshold for instantaneous CSNR and hence,

S =
S

B

[
Ei

(
− Bγ0

γ

)
− log(γ0)

]−1

(5.29)

From the optimization criterion, the Lagrangian function can be used to form the following equality

constraint,

J(γ0, γ1, . . . , γN−1) =
N−1∑
n=0

bn

∫ γn

γn−1

fγ(γ)dγ + λ
( N−1∑

n=0

bn

∫ γn

γn−1

(BERn(γn)− TBER)fγ(γ)dγ
)

(5.30)

Using the above mentioned optimization technique, the optimum rate region boundaries can be

found through solving,

∂J

∂γn
= 0 0 ≤ n ≤ N− 1 (5.31)

resulting in,

BERn(γn) = TBER− 1

λ
(5.32)

Using infinite series expansion of the exponential function used in (5.24) and putting it back in

(5.32), the final expression for the rate region boundaries can be obtained as,

γn =
∞∑
k=0

k∑
v=0

(
γS(1−Mn)v

1.6Sγ + BS(Mn − 1)

)
W

[(
1.6Sγ + BS(Mn − 1)

γS(1−Mn)v

)

·

(
(TBER− 1/λ)(k + 1)γk+1

0.2(v!)Bk+2

)1/v(
1.6Sγ − BS(Mn − 1)

γS(1−Mn)

) k+1−v
v
]

(5.33)

where W(·) is the Product Log function defined as the Lambert-W function.
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5.4.4 Constant Rate and Adaptive Power

In the section above, the channel power gain defined the rate used in the transmitter, while the

power was kept constant. It is also possible to keep the bit rate constant but adapt the power such

that the target BER constraint is fulfilled. This means that a fixed modulation with b bits per

symbol is used when γ ≥ γ0. If the transmit power S(γ) is chosen such that BER becomes equal

to the TBER for all γ ≥ γ0, an instantaneous BER constraint is fulfilled. Hence,

∞∑
k=0

k∑
v=0

0.2v!

(k + 1)

Bk+2

γk+1

(
Sγ

1.6Sγ − BS

)k+1−v

γv e−
(

1.6S
S

+B
γ

)
γ = TBER (5.34)

The final expression for the transmit power S(γ) can be obtained as,

S =
∞∑
k=0

k∑
v=0

k + 1− v
D3

W

[
D3

D1(k + 1− v)

(
D4 e

− D2D3
D1

) 1
k+1−v

]
+ D2 γ ≥ γ0 (5.35)

where

D1 = 1.6γ, D2 = BS, D3 =
1.6γ

S
, D4 = (Sγ)k+1−v e−Bγ/γ

(
γv 0.2 v! Bk+2

TBER (k + 1) γk+1

)
(5.36)

Here γ0 must be chosen such that the average power S becomes,∫ ∞
γ0

S(γ)fγ(γ)dγ = S (5.37)

After evaluating the transmit power function Sn(γ) and the corresponding lower CSNR threshold

γ0,n for all considered modulations 0 ≤ n ≤ N− 1 using the formulas above, the spectral efficiency

becomes,

η = maxbn;0≤n≤N−1

{
bn

∫ ∞
γ0,n

fγ(γ)dγ

}

= maxbn;0≤n≤N−1

∞∑
k=0

bnB
(k + 1)!

Γ

(
k + 1,

Bγ0,n

γ

)
(5.38)

It can also be verified that the average BER becomes equal to the target BER which the scheme

was designed for.
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5.4.5 Adaptive Rate and Power

Let us now turn to the most general case of adaptive QAM modulation, where both the rate and

the power are chosen based on channel power gain information. We assume N modulations, with

the nth used when γn−1 ≤ γ < γn and carrying bn bits per symbol. When the instantaneous BER

is required to be equal to the target BER for all CSNRs, the transmit power can be obtained using

the constraint in (5.25) as,

Sn =
∞∑
k=0

k∑
v=0

(k + 1− v)S(Mn − 1)

1.6γn
W

[
γn

γ(v − k− 1)

(
γvn0.2v!Bk+2

γv(k + 1)TBER

) 1
k+1−v

]
+
BS(1−Mn)

1.6γ

(5.39)

The optimization problem can be simplified to a search for the optimal rate region boundaries.

For this purpose, the Lagrangian function can be formed from the spectral efficiency criterion and

the power constraint, which here will be treated as an equality constraint. It is given by,

J(γ0, γ1, . . . , γN−1) =
N−1∑
n=0

bn

∫ γn

γn−1

fγ(γ)dγ + λ
( N−1∑

n=0

bn

∫ γn

γn−1

Sn(γ)fγ(γ)dγ − S
)

(5.40)

where λ 6= 0 is the Lagrange multiplier. Solving,

∂J

∂γn
= 0 0 ≤ n ≤ N− 1 (5.41)

results in,

Sn−1(γn)− Sn(γn) =
bn − bn−1

λ
(5.42)

where b−1 = 0 and S−1(γ) = 0. From (5.25) and (5.38), the following expression can be arrived at,

∞∑
k=0

k∑
v=0

(k + 1− v)S

1.6γn
W

[
γn

γ(v − k− 1)

(
γvn0.2v!Bk+2

γv(k + 1)TBER

) 1
k+1−v

](
Mn−1 −Mn

)
+
BS

1.6γ

(
Mn−1 −Mn

)
=

bn − bn−1

λ
(5.43)
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or,

∞∑
k=0

k∑
v=0

1

γn
W

[(
γn
γ

) k+1
k+1−v

1

(v − k− 1)

(
0.2v!Bk+2

(k + 1)TBER

) 1
k+1−v

]

=
∞∑
k=0

k∑
v=0

1.6S

k + 1− v

(
bn − bn−1

λ(Mn−1 −Mn)
+
BS

1.6γ

)
(5.44)

Solving the above equation the expression for the optimum rate region boundaries γn can be ob-

tained.

Also in a general case, an average BER constraint can be used instead of an instantaneous BER

constraint. Then the power does not have to be chosen such that BER is equal to the target BER

for all CSNRs, but it is enough that BER on average is equal to the constraint. This problem can

also be solved using a Lagrangian method but now the Lagrangian equation has to include a third

term that corresponds to the average BER constraint in addition to the two terms used already

above in (5.41).

5.5 Adaptive Coded Modulation

The purpose of this section is to obtain closed-form expressions for average spectral efficiency

(ASE), ABER and outage probability of the adaptive Trellis coded modulation (TCM) M -QAM

over a JFTS faded/shadowed communication channel, assuming perfect CSI to be available at

the receiver. The expressions for ASE and outage probability are exact, the derivations of which

are provided in Subsection 5.5.1 and Subsection 5.5.4. The ABER expression is derived in Sub-

section 5.5.3 and is an approximation which relies on the exponential type curve fitting for the

conditional BER (CBER).
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The proposed adaptive TCM scheme utilizes a set of L two-dimensional (2L-D) trellis codes with

different constellation sizes, similar to [114], where L is a positive integer. Let N denote the number

of constellations available at the transmitter, each of size Mn with bn = log2Mn bits per symbol for

n = 1, . . . , N. A 2L-D signal constellation is obtained by L-fold Cartesian products of 2-D signal

constellations. At every Lth transmission time instant, B = L × bn coded bits are mapped onto L

symbols, each from a 2-D constellation of size Mn for n = 1, . . . , N. These symbols are sent during

L consecutive symbol intervals. At the receiver, soft decoding based on the Viterbi algorithm is

performed where the squared Euclidean distance is used as metric in the decoder.

Let {γn}Nn=0 represent the set of CSNR thresholds used to switch between N+1 different transmission

modes, including no transmission when 0 ≤ γ ≤ γ0. For convenience, let γ−1 ≈ 0 and γN ≈ ∞.

When γn−1 ≤ γ ≤ γn, the nth transmission mode is set at the transmitter employing a coding

scheme with rate Rn and CBER in this case will be denoted by CBERn(γ).

5.5.1 Average Spectral Efficiency

If the variable rate ACM over JFTS channels uses a set of N different codes with different spectral

efficiencies, the ASE can be expressed as the weighted sum of the information rates, Rn, for the

individual codes, n. Hence, the final expression for ASE can be given by,

ASE(γ) =
N∑

n=1

Rn

∫ γn

γn−1

fγ(γ)dγ (5.45)

Using the integral solution from [48], the expression from (5.45) can be written as,

ASE(γ) =
N∑

n=1

RnB

[
log

(
γn
γn−1

)
− Ei

(
− Bγn

γ

)
+ Ei

(
− Bγn−1

γ

)]
(5.46)

Subsection 5.5.2 will be concentrated on finding the optimum rate region boundaries such that the

ASE is maximized subject to two constraints. The first constraint considered in this study is the
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TBER constraint given by, BERn(γ) ≤ TBER, where BERn(γ) is the instantaneous BER of the

modulation with constellation size of Mn in terms of the instantaneous CSNR and TBER denotes

the target BER. This constraint guarantees that the average BER does not exceed the TBER.

The second constraint is the use of constant average transmit power. However, in this analysis for

adaptive coded modulation (ACM), power adaptation is not included since the gain achieved in

spectral efficiency by rate adaptation is higher than by using power adaptation and it increases

the complexity.

To find the optimal rate region boundaries, an expression for BERn(γ) is needed. The expression is

obtained by averaging BERn(γ), the instantaneous BER as a function of the instantaneous CSNR,

on an AWGN channel over all values of γ, BERn(γ) =
∫∞

0
BERn(γ)fγ(γ)dγ for n = 1, . . . , N, where

fγ(γ) is given by (5.2).

5.5.2 Adaptive Trellis-coded Modulation (TCM)

Tight approximations for the TCM BER performance on AWGN channels at high CSNR, based

on analytical or numerical methods can be expressed as,

BERn(γ) ≈
L∑

l=1

an(l)exp

(
− bn(l)γ

(Mn − 1)

)
(5.47)

Here the parameters {an(l)}Ll=1 and {bn(l)}Ll=1 are real numbers where the later set takes only

non-negative values. Consequently, using (5.47) leads to,

BERn(γ) ≈
L∑

l=1

an(l)B

[
Ei

(
bn(l)γn
1−Mn

− Bγn
γ

)
− Ei

(
bn(l)γn
1−Mn

)]
(5.48)
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The optimal rate region boundaries can then be found by using the TBER constraint as below,

γn =
∞∑
k=0

k∑
v=0

L∑
l=1

(
γ(1−Mn)v

bn(l)γ + B(Mn − 1)

)
W

[(
bn(l)γ + B(Mn − 1)

γ(1−Mn)v

)

·

(
TBER(k + 1)γk+1

an(l)(v!)Bk+2

)1/v(
bn(l)γ − B(Mn − 1)

γ(1−Mn)

) k+1−v
v
]

(5.49)

5.5.3 ABER Performance

The ABER for a general ACM technique is given by,

ABER ≈ 1

ASE

N∑
n=1

Rn

∫ γn

γn−1

CBERn(x̄)fγ(x̄)dx̄ (5.50)

where fγ(·) represents the PDF of the instantaneous CSNR. This ABER analysis is based on the

following well-known assumption for the CBER of the Trellis coded ACM scheme,

〈CBERn(γ)〉TCM ≈
L∑

l=1

an(l) exp

(
− bn(l)γ

Mn − 1

)
(1 ≤ n ≤ N) (5.51)

where {an(l), bn(l)}l=1,... ,L,n=1,... ,N is the set of exponential fitting coefficients and L is the number

of exponential approximants. Thus using the approximation (5.45) in the ABER definition given

in (5.46) yields,

〈ABER〉TCM ≈
1

ASE

N∑
n=1

L∑
l=1

Rnan(l)

·
[ ∫ γn

0

exp

(
− bn(l)γ

Mn − 1

)
fγ(x̄)dx̄−

∫ γn−1

0

exp

(
− bn(l)γ

Mn − 1

)
fγ(x̄)dx̄

]
≈ 1

ASE(γ)

N∑
n=1

L∑
l=1

Rnan(l)

[
G̃γ
(
− bn(l)

Mn − 1
; γn

)
− G̃γ

(
− bn(l)

Mn − 1
; γn−1

)]
(5.52)

where G̃γ(s; ξ)
4
=
∫ ξ

0
ex̄sfγ(x̄)dx̄ is defined as the complementary moment generating function (com-

plimentary MGF). Hence, first of all, we need to calculate the complimentary MGF for JFTS

fading/shadowing, which can be done using the integral solution from [48],

G̃γ(s; ξ) = B
∫ ξ

0

ex̄s

x̄

[
1 − e−

Bx̄
2γ

]
dx̄ = B

[
Ei(sξ)− Ei

(
ξ

(
B
γ
− s
))]

[ξ ≥ 0]. (5.53)
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Putting (5.53) back in (5.52), the expression for ABER of the Trellis coded ACM over the JFTS

faded/shadowed channel can be obtained as,

〈ABER(γ)〉TCM ≈
1

ASE(γ)

N∑
n=1

L∑
l=1

Rnan(l) B
[
Ei

(
− bn(l)

Mn − 1
γn

)
+ Ei

(
γn−1

(
B
γ

+
bn(l)

Mn − 1

))
− Ei

(
γn

(
B
γ

+
bn(l)

Mn − 1

))
− Ei

(
− bn(l)

Mn − 1
γn−1

)]
(5.54)

where Ei(·) is the exponential integral [39] and therefore can be expressed in terms of elementary

functions and infinite series summation.

5.5.4 Outage Probability

For a generic ACM, the outage probability (Pout) over a JFTS faded/shadowed channel can then

be expressed as,

Pout(γ) = 1−
∫ ∞
γ0

fγ(γ)dγ = 1−

[
∞∑
k=0

B
(k + 1)!

Γ

(
k + 1,

Bγ0

γ

)]
(5.55)

where γ0 is the threshold instantaneous CSNR below which data transmission over a JFTS channel

will be suspended.

5.6 Numerical Results and Discussion

In this section, the derived analytical expressions for achievable channel capacity, spectral effi-

ciencies and average BER of coded and uncoded adaptive M -QAM are numerically evaluated and

plotted as functions of the adaptive modulation parameters, JFTS parameters and the adaptive

transmission techniques. The analytical results for spectral efficiency and ABER are compared

with the simulation results in order to verify the validity of the derived expression. All the results

are evaluated using a single input single output (SISO) system and are averaged over 100 inde-
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Figure 5.1: (a) Calculated optimal cut-off CSNR (γ0) for different values of average received CSNR
(γ), (b) Channel capacity per unit bandwidth with TIFR over a JFTS channel with K = 6.5 dB,
Sh = −2.5 dB and ∆ = 0.25.

pendent random channel realizations.

The rest of this section is organized as follows. Subsection 5.6.1 illustrates the effects of the JFTS

parameters on achievable channel capacity of different adaptive transmission techniques over a

JFTS faded/shadowed link. Subsection 5.6.2 and Subsection 5.6.3 simulates the performances of

adaptive M -QAM and adaptive coded M -QAM over a JFTS faded/shadowed communication link

respectively.

5.6.1 Channel Capacity

It has been claimed in [12] that for any fading channel, the optimal cut-off CSNR or optimal

threshold satisfies 0 ≤ γ0 ≤ 1, if both the transmit power and the modulation rate are varied

for optimal adaptation. Results from [113], [115] also indicate that for Rayleigh and Nakagami-m
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ORA, where the curves are generated by (a) varying the K-factor (Sh = −2 dB and ∆ = 0.4) and
(b) varying the Sh-factor (K = 5 dB and ∆ = 0.9).

fading channels, γ0 converges to 1 as γ increases. For a JFTS fading/shadowing channel, the

relationship between γ0 and γ is demonstrated in Fig. 5.1(a). For a communication link with

high K and Sh (low fading and shadowing severity), γ0 converges to 1 with the increase in γ,

as is observed in [12]. However, as the channel condition deteriorates with lower K and Sh, γ0

remains significantly lower than 1 even at high γ. In such a scenario, perfect knowledge of both the

transmit side and the receive side CSI should provide an edge over the perfect knowledge of only

the receive side CSI, as claimed in [12]. As a result, regulating both the transmit power and the

modulation rate (OPRA) will result in a considerable increase in ergodic capacity over adapting

only the modulation rate (ORA). This will be verified by the next plot (Fig. 5.2).

However, for a JFTS faded/shadowed link, the value of γ0 does not obey the rule that it should be

less than 1 or 0 dB in case of sub-optimal adaptation techniques like TIFR. To illustrate this point,
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the dependence of outage capacity on the cut-off CSNR is plotted in Fig. 5.1(b). The curves are

generated for four sets of fixed γ, where the capacity is maximized at the optimal γ0. For γ ≥ 5

dB, γ0 is bigger than 0 dB. Similar results have also been exhibited in [12] for TIFR in a Rayleigh

fading channel, where γ0 > 0 dB only for γ > 5 dB. While for JFTS channels, γ0 has values more

than 0 dB even for γ = 5 dB. The reason can be attributed to the high severity in shadowing with

a low Sh. As a consequence, at a fixed γ, TIFR has a lower channel capacity and higher outage

probability than either OPRA or ORA.

It is claimed in [12] that the difference in channel capacity between OPRA and ORA is bounded by

COPRA− CORA ≥ B log2

(
1 +
∫ γ0

0
(γ− γ0)fγ(γ)dγ

)
. As a result, the channel capacity obtained using

ORA starts approaching that achievable using OPRA with the increase in γ for JFTS channels,

as is evident in Fig. 5.2(a) and Fig. 5.2(b). Hence it can be concluded by summarizing the results
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from Fig. 5.2(a) and Fig. 5.2(b) that OPRA offers improvement in ergodic capacity over ORA

only when γ0 remains significantly lower than 1. These observations are similar to that made in

[12] and [115] for Rayleigh and Nakagami-m fading channels. The gap between COPRA and CORA

increases at lower γ with the increase in severity of fading (decrease in K) and shadowing (decrease

in Sh) both of which degrade the channel quality. These results are in accordance with the general

behavior of a wireless communication system over a JFTS faded/shadowed channel. As noted in

Chapter 4, performance of any communication system over a JFTS channel deteriorates with the

decrease in K and Sh-factors.

The degradation in ergodic capacity due to the decrease in K-factor from 8 dB to 2 dB (refer

to Fig. 5.2(a)) is much less compared to the decrease in achievable channel capacity due to the

lowering of Sh-factor from 5 dB to −6 dB (refer to Fig. 5.2(b)). These results do not agree with

the observations made in Chapter 4, where bit error rate performance of BPSK is found degrade

equally either due to the decrease in the K-factor or the Sh-factor. The reason for this can be

attributed to the ∆-value chosen for each plot. For Fig. 5.2(a) a low ∆ of 0.4 is chosen. In this case

shadowing severity is reduced by the fact that only one scattering cluster dominates instead of two

clusters. For Fig. 5.2(b) a high ∆ of 0.9 is chosen, where the magnitudes of the shadowing values

contributed by each scattering cluster are almost equal. As a result, even for a high γ of 12 dB a

penalty of 3 bits/sec/Hz of achievable channel capacity is observed only for decreasing the Sh factor.

On the other hand, the outage capacity with TIFR degrades equally with the lowering of either

the small scale fading (K) factor or the shadowing (Sh) factor, as is evident in Fig. 5.3. Hence

it can be concluded that the outage capacity of a JFTS communication channel is more sensitive

than ergodic capacity to the changes in small scale fading and shadowing. This observation agrees
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with that made in case of Rician channel in presence of shadow fading in [116]. It has also been

observed in [116], increase in the severity of shadow fading improves ergodic capacity and degrades

outage capacity of a shadowed Rician channel. However, for a JFTS faded/shadowed channel both

ergodic and outage capacities are degraded significantly due to the increase in shadowing severity,

as is evident from Fig. 5.2 and Fig. 5.3.

5.6.2 Adaptive Modulation

The effect of K-parameter of the JFTS distribution on the spectral efficiency achieved by ACR

M -QAM with over JFTS faded/shadowed communication channel are demonstrated in Fig. 5.4(a).

As K decreases, the power contributed by the strong specular components reduces in comparison

to that contributed by the diffused and scattered components. This yields to a decrease in achiev-

able spectral efficiency using ACR M -QAM with the decrease in K as is evident in Fig. 5.4(a).
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However, the improvement in spectral efficiency due to the increase in K-factor from 2 dB to 5

dB is not proportional to the improvement achieved with the increase in K-factor from 8 dB to

10 dB. The reason can be attributed to the fact that both at K = 2 dB and K = 5 dB, the

channel condition is poor and the adaptive transmission is dominated by lower order modulation

(M = 2, 4). Data transmission using modulation with higher constellation sizes is only allowed as

the channel state improves with the increase in K from 5 dB to 8 dB and then to 10 dB.

Fig. 5.4(b) exhibits the average link spectral efficiency of ACR M -QAM and ADR M -QAM over

the JFTS fading/shadowing communication link with parameters, K = 5.5 dB, Sh = −7.5 dB and

∆ = 0.15 at a target BER of 10−3. The Shannon capacity for ORA is also plotted for comparison.

The achievable spectral efficiency of ACR M -QAM falls within 4 dB of the Shannon capacity

limit. A marginal additional penalty of 1 dB is inflicted by ADR M -QAM with 7 fading regions.

These results are similar to that obtained over Rayleigh fading channels in [12], except for lower

average CSNRs, γ ≤ 5 dB. For Rayleigh fading channels, achievable spectral efficiency with ADR

M -QAM is close to zero for γ ≤ 3 dB. For JFTS channels, achievable spectral efficiencies using

ACR M -QAM and ADR M -QAM are same for γ ≤ 7 dB. This enhanced performance at low γ

can have resulted from the high K-factor of 5.5 dB for this set of JFTS parameters. For Rayleigh

fading, K-factor is generally considered to be equal to 0 dB. It should be noted that this set of

JFTS parameters, the ∆-factor is very low, where the effect of one scattering cluster dominates

the other one. As a result, the system performance is effectively affected by only one scattering

cluster, even in presence of two. It can also be concluded that higher the number of fading regions

taken into account, the better will be the achievable link spectral efficiency using ADR M -QAM.

As an illustrative example, Fig. 5.5(a) exhibits the average BER for ADR M -QAM in JFTS fad-
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ing/shadowing for a TBER of 10−3. The curves are generated by plotting the analytical and

simulated ABER for a variable number of fading regions. It can be noted that both the simulated

and analytical results are always below the TBER of 10−3, while in each case of the analytically

predicted BER is slightly higher than the simulated one. This slight difference in performance

can be attributed to the approximation considered in the analytical expression using the roots of

the Hermite polynomial. It can also be observed that ABER at higher CSNRs for the case of

ADR M -QAM with a larger number of fading regions is more than that with a lower number of

fading regions. This happens due to the fact that a higher number of fading regions allow a larger

constellation size and ADR M -QAM uses the highest available constellation size at high CSNRs.

In this case, as the average CSNR increases, the ABER performance becomes dominated by the

BER performance of the highest available constellation size. These results are also similar to the

observations made in [12] for Rayleigh fading channels except for γ ≤ 10 dB, where the analytical
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BER is lower than the exact BER. The reason for this observation in [103] is contributed to the

fact that ADR M -QAM often uses the 2-QAM constellation at low γ and the resultant BER is

dominated by the BER of 2-QAM. In our case, the JFTS parameters chosen for this set of sim-

ulation is K = 8 dB, Sh = 8.5 dB and ∆ = 0.45. With high K and Sh-factors, the adaptive

transmission is not dominated by only 2-QAM constellation and hence, the predicted BER is not

lower than that of the simulated BER for γ ≤ 10 dB.

The final set of curves in this subsection in Fig. 5.5(b) are generated by plotting the average BER

of ADR M -QAM with 5 fading regions in comparison with that of ACR M -QAM over a JFTS

faded / shadowed communication channel with varying Sh-factor but fixed K and ∆. A larger

Sh factor represents larger variations in the main wave amplitudes contributed by each scattering

neighborhood. As a result, some discrete shadowing values are higher in magnitude while others

are lower, thereby reducing the overall severity of shadowing. On the other hand, a low Sh factor

depicts a scenario where each scattering cluster contributes a very small range of discrete shadowing

values, higher in magnitude and encountered repeatedly. As the link condition degrades with the

decrease in the Sh parameter, average BER performance of ADR M -QAM deteriorates. Average

BER of continuous rate adaptation remains fixed at the target BER of 10−3 while that of discrete

rate adaptation always remains below the target BER.

5.6.3 Adaptive Coded Modulation

For analyzing performance of ACM over a JFTS faded/shadowed channel, a 4-D TCM (L = 2) with

16 states, are utilized with a rate 2/3 convolutional encoder and a bit mapper similar to those used

in the International Telecommunication Union’s ITU-T V.34 modem standard. Nyquist data puls-

ing that is B = 1/τs and N = 7 2-D signaling constellations of sizes Mn ∈ {4, 8, 16, 32, 64, 128, 256},
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and ∆ = 0.1 at a TBER of (a) 10−3 and (b) 10−6.

corresponding to 4-QAM, 8-STAR, 16-QAM, 32-CROSS, 64-QAM, 128-CROSS and 256-QAM re-

spectively are presumed. At each even time instant, 2 × bn − 1 information bits are encoded to

2 × bn coded bits whicha re mapped onto two symbols, each from a 2-D constellation of size Mn.

These symbols are transmitted during the next two time instants and result in an instantaneous

data rate given by Rn = (bn − 1/2)B.

Fig. 5.6(a) shows the simulation results for spectral efficiency of the 7-state 2-D TCM coded M -

QAM at a TBER of 10−3 in JFTS fading with K = 5 dB, Sh = 5.5 dB and ∆ = 0.1. For

comparison, the analytical results for spectral efficiency with and without coding are plotted. The

analytical results of the coded case do not exhibit the 3 dB gain predicted by analytical results for

Rayleigh fading in [109] relative to the uncoded scheme. The reason for this can be contributed

to the presence of shadowing in a JFTS channel model along with fading. A high Sh and a high

K is assumed for this set of plot, that means low severity in fading and shadowing. The coding
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Figure 5.7: Coding gain of JFTS communication link with adaptive modulation (with and without
coding), where the curves are generated by (a) varying the K-factor (Sh = −2 dB and ∆ = 0.4)
and (b) varying the Sh-factor (K = 5 dB and ∆ = 0.9).

gain will get reduced even more if deep fading and shadowing are considered, which are confirmed

in Fig. 5.7(a) and Fig. 5.7(b).

The simulation results exhibit even smaller gain in comparison to the uncoded results lessened by

another 0.7 - 0.8 dB relative to the analytical results. This results from the fact that the coding

gain offered by TCM is achieved asymptotically at large CSNRs where the probability of error is

dominated by the probability of mistaking a given codeword for one of its neighbors. The CSNR

which achieves a BER of 10−3 is moderate so the effect of codewords other than the nearest neigh-

bor codewords decreases the effective coding gain.

The difference between analytical and simulation results is also higher for the coded technique in

comparison to the uncoded one. The reason can be attributed to the amount of approximation
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used in obtaining the rate region boundaries, γn, in either case. For the TCM case, an extra set

of exponential fitting co-efficients {an(l), bn(l)} are involved which are though real numbers are

exponential approximants. The level of accuracy of approximation in that case depends on the

number of exponential approximants, L, considered. For this analysis, L = 2. Increasing L further

may result in better accuracy of the analytical results but will impose a higher computational

complexity. Moreover the analytical bound with L = 2 lies within 0.5 dB of the simulation results

and hence can be considered as a believable upper bound for performance analysis of a JFTS

channel.

The difference in analytical bound and simulation results gets reduced for a lower TBER < 10−3 i.e.

10−6 as is exhibited in Fig. 5.6(b). This is due to the fact that for a TBER of 10−3, smallest gain

is exhibited by the largest signal constellation, where the total number of codewords contributing

to the error probability is the largest as confirmed in case of AWGN channels in [109]. Hence low-

ering the TBER than 10−3 for the TCM will ensure higher asymptotic gain, thereby making the

simulation results closer to the analytical bound, though sacrificing a little bit of average spectral

efficiency.

Adaptive TCM coded M -QAM offer higher improvement in performance in comparison to Adap-

tive M -QAM in presence of deep fading only (refer to Fig. 5.7(a)) than to in presence of deep

shadowing only (refer to Fig. 5.7(b)). For Fig. 5.7(a), only the K-factor is decreased from 8 dB

to 2 dB, in presence of a moderately high Sh-factor of - 2 dB and moderately low ∆ factor of

0.4. Hence in this case TCM is able to offer enhancement in performance approaching closer to

the upper achievable capacity bound at high CSNRs, as this set of JFTS parameters represents

relatively low severity in shadowing.
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But in presence of high severity in shadowing (refer to Fig. 5.7(b)), TCM fails to offer considerable

enhancement in performance. The reason can be attributed to the design of TCM which were

first proposed as bandwidth codes for Rician channels in [93]. The JFTS distribution combines

Rician fading with TWDP shadowing model. This means, that in addition to K-factor, the

shadowing factor Sh and the shape parameter, ∆, also affect the channel behavior. This leaves

ample opportunity to explore other iterative coding techniques like adaptive Turbo coded M -QAM

and adaptive LDPC coded M -QAM, in order to find the right set of coset codes that can improve

spectral efficiency in presence of both deep fading and deep shadowing.

5.7 Summary

The first aim of this chapter is to derive the analytical expressions for achievable ergodic and outage

channel capacities of different adaptive transmission techniques over JFTS fading/shadowing dis-

tribution assuming perfect CSI at the receiver and/or the transmitter. As a consequence, the effect

of the JFTS parameters on the achievable channel capacities is also determined. Both ergodic and

outage capacity decreases with a decrease in JFTS parameters K, Sh and an increase in ∆ while

outage capacity is more sensitive than ergodic capacity to the changes in the JFTS parameters.

Adaptation techniques like OPRA and ORA offer a considerable improvement in performance in

comparison to CIFR and TIFR.

The second contribution of this chapter is to derive the analytical expressions for performance eval-

uation of constant power ORA ACR and ADR M -QAM techniques over JFTS faded/shadowing

distribution assuming perfect CSI and negligible delay at the receiver. As a consequence, the ef-
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fect of the JFTS parameters on the spectral efficiency and system performance achieved by these

adaptive modulation techniques under different average BER constraints is also determined ABER

increases with the decrease in JFTS parameters K and Sh. On the other hand, spectral efficiency

decreases with the decrease in JFTS parameters K and Sh. It can also be concluded that optimal

rate adaptive techniques with continuous rate policies outperforms discrete rate ones.

The final contribution of this chapter is to provide a systematic study on the increase in spectral effi-

ciency obtained by the application of adaptive Trellis coded M -QAM over a JFTS faded/shadowed

link. The analytical results exhibit an asymptotic coding gain of only 2 dB, much less than the 3

dB gain over the uncoded technique as promised in case of that traditional fading channel models

like Rayleigh or Rician. The simulation results offer even smaller coding gain reduced by a margin

of 0.7 - 0.8 dB in comparison to the analytical results. The difference between analytical and

simulation results is also higher for the coded technique in comparison to the uncoded one. Finally

adaptive TCM coded M -QAM offers improvement in performance over uncoded adaptive M -QAM

in presence of deep fading only (lower K), however fails to offer any significant enhancement in

performance if deep fading is present in combination with deep shadowing (low K and low Sh).
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Chapter 6

Impact of Channel Estimation

6.1 Background

A typical scenario for indoor wireless radio communication assumes a channel changing so slowly

that an entire frame can be transmitted without any appreciable variation in the channel charac-

teristics [38]. If this assumption (also known as quasi-static fading/shadowing channel) is valid,

the system performance can be enhances if the receiver is made aware of the so-called channel state

information (CSI) i.e. the realization of the random channel gains affecting the transmission paths

between the transmitter and the receiver. The quality of the CSI available at the receiver depends

on the quality of the estimate of the instantaneous carrier signal-to-noise ratio (CSNR) obtained

at the receiver. The instantaneous CSNR is an indicator of the quality of the communication link

and is utilized for system functions like channel access, hand-off and power control. The efficiency

of these functions depends on how accurately the system estimates the received instantaneous

CSNR. To this purpose, a portion of the transmitted frame may consist of pilot symbols, whose

composition is known to the receiver an dis used by the later to estimate the instantaneous CSNR.

Due to noise and the finite number of pilot symbols in a frame, the CSNR estimate is not perfect.

The main purpose of this chapter is to investigate the effects of this imperfect estimation on the

system performance over a JFTS distributed channel.

The PDF, the CDF and the moments of the estimated instantaneous CSNR and the respective

estimation error obtained using pilot symbols have been derived in [117] and [17] for Rayleigh
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and Nakagami-m fading channels respectively. In these cases, the true instantaneous CSNR is

assumed to be Gamma distributed with a shape factor of 1. Analyses of Rayleigh fading channels

are presented as a special case of Nakagami-m fading channels, where m = 0. In these scenarios,

the estimated signal envelope is a sum of two zero-mean complex Gaussian random variables, the

transmitted signal envelope and the AWGN. As a result, the estimated signal envelope is itself

complex Gaussian distributed with zero mean. Hence, the estimated instantaneous CSNR will be

Gamma distributed with a shape factor of 1, same as the true instantaneous CSNR.

For a JFTS faded/shadowed channel, the transmitted signal envelope will be JFTS distributed

while the AWGN corrupting the envelope will be complex Gaussian distributed under the assump-

tion of perfectly coherent reception. In this case, the estimated envelope and the corresponding

estimated CSNR will no longer be JFTS distributed. Hence, in order to analyze the impact

of channel estimation on the performance of different communication techniques over a JFTS

faded/shadowed channel, we need to analyze the statistical properties of the CSNR estimation er-

ror and the estimated instantaneous CSNR, where the true and the estimated CSNR do not follow

the same distribution. This analysis will enable us to predict the range of acceptable amount of

error in CSNR over which a system can operate in JFTS channel conditions. this analysis will also

provide insight into how fading compensation techniques like ACM performs in JFTS channels

when compared to traditional fading channel models like Rayleigh, Nakagami-m, where the true

and the estimated CSNRs follow the same distributions.

The first contribution of this chapter is to analyze the statistical properties of the estimated in-

stantaneous CSNR and the corresponding estimation error when pilot symbol assisted modulation

(PSAM) is applied to a JFTS faded/shadowed communication link. In order to do that, the PDF
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of the estimated JFTS faded/shadowed envelope is derived which in turn is used to obtain the

PDF of the estimated CSNR. The joint PF of the true and the estimated CSNRs is used to obtain

the PDF and moments of the estimation error. Numerical results demonstrate that the range

of acceptable amount of error in CSNR over which the system can operate correctly in a JFTS

channel increases with the decrease in the mean-squared voltages of the shadowed components.

The second contribution of this chapter is to derive analytically tractable expressions for ABER of

coherent and non-coherent modulation techniques like, BPSK, BFSK, coherent M -PSK and M -

QAM over a JFTS channel, where PSAM is used at the receiver in order to estimate the present

CSI. The most common techniques prevalent in literature for doing this is to exploit the MGF [38]

and the CDF [57] of the estimated received CSNR. Hence, both the MGF and the CDF expres-

sions for the estimated CSNR will be derived, but will be focused on the CDF based approach for

deriving the error probability expressions.

The third focus of this chapter is to provide expressions that are numerically efficient and simpler

to handle. In order to achieve that, we will be deriving all the expressions in terms of the mean

power of the estimated received signal envelope. However, even in terms of mean estimated power,

the PDF of the estimated CSNR has to be represented in terms of infinite series summation. So in

order to obtain computationally simple expressions for error probability performances, we provide

analysis in two conditions, the low CSNR case and the high CSNR case. In such a scenario, the

low CSNR case is of most importance, as the estimates will more probably be affected by noise

and other channel impairments. However, considering both the scenarios, high and low CSNRs,

will provide us the flexibility of analyzing performances over a wide variety of practical indoor

WLAN environments. In all of these cases, the low CSNR evaluation will provide the lower bound
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and the high CSNR evaluation will provide the upper bound of the analytical error probability

performances.

The rest of this chapter is organized as below. Section 6.2 derives the statistics like the PDF,

CDF and moments of the estimated instantaneous CSNR and the corresponding estimation error.

The CDF of the estimated CSNR in turn is used to evaluate error performance of different fixed

modulation techniques in Section 6.3. Numerical results and discussions are provided in Section 6.4

and the concluding remarks are summarized in Section 6.5.

6.2 Pilot Symbol Assisted Channel Estimation

PSAM estimation of the composite fading/shadowing envelope estimates the received instanta-

neous CSNR using a linear combination of preceding and subsequent known pilot symbols as is

done in [17]. Let L be the number of pilot symbols that are used to estimate the received in-

stantaneous CSNR. The fading envelope can be estimated by dividing with the known symbols s,

as

Ẑ = Z +N/s (6.1)

where N is the independent and identically distributed zero mean complex AWGN component.

Using the PDF of Z from Chapter 2 and that of N , the statistics of the estimated received envelope,

estimated CSNR and CSNR estimation error in Subsection 6.2.1, 6.2.2 and 6.2.3 respectively.

6.2.1 Statistics of Estimated Envelope

Since, we are assuming coherent detection at the receiver, the phase of the information signal is

detected and rectified at the receiver. However, since the distribution of N is symmetric, dividing
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by s (equal to +/ − 1) will not have any effect on the statistical properties of the estimated

instantaneous CSNR. Hence, the PDF of the estimated fading/shadowing envelope at the time

instant of receiving the pilot symbols can be obtained as,

fẐ(ẑ) = fẐ(ẑ + n) =

∫ ∞
0

fZ,N(ẑ − z, n)dz (6.2)

where fZ(z) is the JFTS distributed envelope given by (4.2) and fN(n) is assumed to be Gaussian

distributed and can be expressed as,

fN(n) =
1√

2πσ2
n/L

e
−n

2L
2σ2
n . (6.3)

where σ2
n is the noise variance. Solving the integral in (6.2), the expression for the PDF of the

estimated fading/shadowing envelope (Ẑ) can be obtained. However, to obtain mathematically

efficient expression for fẐ(ẑ), two different scenarios are considered.

Case I : Magnitude/Power of the received envelope is low

If the magnitude/power of the received composite envelope is low i.e. z → 0, the PDF of Z

becomes,

fZ(z)low =
4∑
j=1

20∑
h=1

z bj R
P1P2

e
−K−Sh− z2

2P2r
2
h

[
eSh∆Mj + e−Sh∆Mj

]
(6.4)

where, since z → 0, 2z
√
KSh(1−∆Mj)/P1P2 → 0 and 2z

√
KSh(1 + ∆Mj)/P1P2 → 0. Hence,

I0(2z
√
KSh(1−∆Mj)/P1P2) → 1 and I0(2z

√
KSh(1 + ∆Mj)/P1P2) → 1 [39]. In this case, as-

suming that Z and N are independent random variables, the PDF of the estimated received
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envelope can be obtained as,

fẐ(ẑ)low =
4∑
j=1

20∑
h=1

bj R
P1P2

e−K−Sh√
2σ2

n/L

[
eSh∆Mj + e−Sh∆Mj

] ∫ ∞
0

z e
zẑL
2σ2
n
− z2

2P2r
2
h

− ẑ
2L

2σ2
n dz

=
4∑
j=1

20∑
h=1

bj R
P1P2

e−K−Sh√
2σ2

n/L
e
− ẑ

2L
2σ2
n

[
eSh∆Mj + e−Sh∆Mj

]
(1/2P2r2

h + L/2σ2
n)1/4

H− 1
2

(
− ẑL/σ2

n√
1/2P2r2

h + L/2σ2
n

)
(6.5)

where H− 1
2
(·) is the Hermite polynomial of order −1

2
. In this case, the mean power of the estimated

envelope, Ẑ can be obtained as,

Ω̂low = E{Ẑ2
low}

=
4∑
j=1

20∑
h=1

bj R
√
πe−K−Sh

32P1P2

[
eSh∆Mj + e−Sh∆Mj

]
(1/2P2r2

h + L/2σ2
n)3/2

F

(
1

4
,
3

2
;
1

2
;

L/4σ2
n

1/2P2r2
h + L/2σ2

n

)
(6.6)

where pFq(·) is the generalized hyper-geometric function and p, q are integers.

Case II : Magnitude/Power of the received envelope is high

If the magnitude/power of the received composite envelope is high i.e. z → ∞, the PDF of Z

becomes,

fZ(z)high =
4∑
j=1

20∑
h=1

√
z bj R

4
√
πP1P2

e
−K−Sh− z2

2P2r
2
h

(
P1P2

KSh

)1/4

·
[

eSh∆Mj

(1−∆Mj)1/4
e2z
√
KSh(1−∆Mj)/P1P2 +

e−Sh∆Mj

(1 + ∆Mj)1/4
e2z
√
KSh(1+∆Mj)/P1P2

]
(6.7)

where, since z →∞, 2z
√
KSh(1−∆Mj)/P1P2 →∞ and 2z

√
KSh(1 + ∆Mj)/P1P2 →∞. Hence,

I0(2z
√
KSh(1−∆Mj)/P1P2)→ 1

2
√
πz

(
P1P2

KSh(1−∆Mj)

)1/4

e2z
√
KSh(1−∆Mj)/P1P2 and

I0(2z
√
KSh(1 + ∆Mj)/P1P2) → 1

2
√
πz

(
P1P2

KSh(1+∆Mj)

)1/4

e2z
√
KSh(1+∆Mj)/P1P2 [39]. In this case, the
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PDF of the estimated received envelope can be obtained as,

fẐ(ẑ)high =
4∑
j=1

20∑
h=1

bj R
4
√
πP1P2

e−K−Sh√
2σ2

n/L
e
− ẑ

2L
2σ2
n

(
P1P2

KSh

)1/4

(1/2P2r2
h + L/2σ2

n)1/4

[
eSh∆Mj

(1−∆Mj)1/4

· H− 1
2

(
−
√
KSh(1−∆Mj)/P1P2 + ẑL/σ2

n√
1/2P2r2

h + L/2σ2
n

)
+

e−Sh∆Mj

(1 + ∆Mj)1/4

· H− 1
2

(
−
√
KSh(1 + ∆Mj)/P1P2 + ẑL/σ2

n√
1/2P2r2

h + L/2σ2
n

)]
. (6.8)

In this case, the mean power of the estimated envelope, Ẑ can be expressed as,

Ω̂high = E{Ẑ2
high}

=
4∑
j=1

20∑
h=1

bj Re−K−ShL
32
√
πP1P2σ2

n

(
P1P2/KSh

1/2P2r2
h + L/2σ2

n

)1/4[
eSh∆Mj

(1−∆Mj)1/4
+

e−Sh∆Mj

(1 + ∆Mj)1/4

]
· H− 1

2

(
− L/σ2

n√
1/2P2r2

h + L/2σ2
n

)
. (6.9)

6.2.2 Statistics of Estimated CSNR

Let γ̂ be the estimated instantaneous CSNR with mean E{γ̂} = γ̂. When the magnitude of

the estimated envelope Ẑ is high, the estimated CSNR will also be high, while a low magnitude

estimated envelope will render a low estimated CSNR. This can only be said under the assumption

that only the composite fading/shadowing envelope will contribute to the received CSNR. Hence,

the PDF of the estimated CSNR, γ̂, can be calculated in terms of the γ̂ and Ω̂,

fγ̂(γ̂) = fẐ

(√
Ω̂γ̂

γ̂

)/(
2

√
γ̂γ̂

Ω̂

)

=
Ω̂

2γ̂(P2r2
h + σ2

n/L)

[ ∞∑
k=0

1

(k + 1)!
Γ

(
k + 2,

Ω̂γ̂

2γ̂(P2r2
h + σ2

n/L)

)
− e

− Ω̂γ̂

2γ̂(P2r
2
h

+σ2
n/L)

]
(6.10)

where the definition for instantaneous CSNR is used as before. Now the expression in (6.10) in-

volves infinite series summation which is not that computationally attractive. Hence, it will be
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better to resort to the two limiting conditions and there by arrive at the lower and upper bounds

of the estimated instantaneous CSNR. Similar to the case of the estimated envelope, two scenarios

will be considered, the low CSNR and the high CSNR scenarios. However, the high CSNR case will

be more useful for system performance evaluation since most communication systems are designed

to have a fairly high CSNR for their pilot symbols.

Case I : Low CSNR (γ̂ → 0)

In this case, as γ̂ → 0, Γ(·) in (6.10) approaches 1. Hence the PDF in (6.10) reduces to,

fγ̂(γ̂)low =
F
γ̂

[
1− e−

F γ̂
γ̂

]
(6.11)

where F = Ω̂/2(P2r
2
h + σ2

n/L). In this expression of (6.11), Ω̂ can be calculated in terms of the

JFTS distribution parameter using (6.6). The CDF of the corresponding estimated instantaneous

CSNR, γ̂ can be obtained using integral solution from [48] as,

Fγ̂(γ̂)low = F log(γ̂)−F Ei

(
− F γ̂

γ̂

)
(6.12)

where Ei(·) is the exponential integral. It is evident from (6.11) and (6.12) that the PDF and

CDF of γ̂ is not valid for γ̂ = 0. In practicality, γ̂ = 0 denotes a condition, where the signal power

is 0 or equivalently the absence of any transmitted signal. Hence, the lower bound for γ̂ will be

assumed to be equal to 1 (0 dB), while evaluating moments and other statistical properties of γ̂.

By substituting (6.11) in the definition for MGF, the expression for MGF can be given by,

Mγ̂(s)low = F
[
Ei

(
− s− F

γ̂

)
− Ei(−s)

]
(6.13)

Using (6.11) in the nth order moment expression, µγ̂(n) = E{γ̂n}, the moments of the estimated
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CSNR can be obtained as,

µγ̂(n)low = −
[
F
n

+

(
γ̂

F

)n
Γ

(
n,
F
γ̂

)]
(6.14)

which is calculated using the integral solution from [48].

Case II : High CSNR (γ̂ →∞)

In this scenario, as γ̂ →∞, Γ(·) in (6.10) approaches 0. Hence the PDF in (6.10) reduces to,

fγ̂(γ̂)high = − F
γ̂
e
−F γ̂

γ̂ . (6.15)

In this expression of (6.15), Ω̂ can be calculated in terms of the JFTS distribution parameter using

(6.9). The CDF of the corresponding estimated instantaneous CSNR, γ̂ can be expressed as,

Fγ̂(γ̂)high = −F Ei

(
− F γ̂

γ̂

)
(6.16)

Using (6.15), the expression for MGF can be calculated as,

Mγ̂(s)high = FEi

(
− s− F

γ̂

)
(6.17)

and the nth order moment can be obtained as,

µγ̂(n)high = −
(
γ̂

F

)n
Γ

(
n,
F
γ̂

)
(6.18)

where Γ(·) is the upper incomplete function given in [39].

6.2.3 Statistics of Estimation Error

Let γ and γ̂ are considered to be correlated with a power correlation coefficient of ρ. Using the

derivation of γ̂ and ρ from [17], as E{γ̂} = γ + 1 and ρ = γ
1+γ

, the joint PDF of γ and γ̂ can be
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derived in terms of ρ, γ and (γ + 1). Hence, the final expression of the joint PDF can be obtained

as,

fγγ̂(γ, γ̂) =
BF

γ̂(γ − ργ̂)

[
1− e−

B(γ−ργ̂)
γ − e−

F γ̂
1+γ + e−

Bγ
γ

+Bργ̂
γ
− F γ̂

1+γ
]

γ̂ → 0

=
BF

γ̂(γ − ργ̂)

[
e−
Bγ
γ

+Bργ̂
γ
− F γ̂

1+γ − e−
F γ̂
1+γ
]

γ̂ →∞ (6.19)

where B = Ω
2P2r2

h
and Ω is the mean-squared value of the JFTS distributed composite fad-

ing/shadowing envelope. The CSNR estimation error in this case can be given by Φ = γ̂ − γ.

Using this equation, the statistical properties of the estimation error, Φ can be derived.

The PDF of Φ, fΦ(φ) can be determined by directly differentiating the distribution function FΦ(φ).

Hence, fΦ(φ) =
∫∞

0
fγγ̂(γ, φ + γ)dγ, Φ ≥ 0. The first step to solve this integration is to express

(6.19) in terms of γ and Φ + γ. Putting the integrand back, the integration can be solved using

the integral solutions from [48]. Hence for the low CSNR case, the PDF of the estimation error

can be expressed as,

fΦ(φ)low = I1 − I2 − I3 + I4 (6.20)

where,

I1 =
BF
φ

log

(
ρ− 1

ρ

)
(6.21)

I2 =
BF
φ

e
Bρφ
γ

[
e
Bφ(1−ρ)

γ Ei

(
Bφ(1− ρ)

γ

)
− e−

Bρ
γ Ei

(
Bρ
γ

)]
(6.22)

I3 =
BF
φ

e−
Fφ
γ+1

[
e
Fφ
γ+1 Ei

(
− Fφ
γ + 1

)
− e

Fρ
(γ+1)(ρ−1) Ei

(
Fρ

(γ + 1)(1− ρ)

)]
(6.23)
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I4 =
BF
φ

e

(
Bρ
γ
− F

1+γ

)
φ
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))]
(6.24)

For the high CSNR case, the PDF of the estimation error simply reduces to,

fΦ(φ)high = I4 − I3 (6.25)

where I3 and I4 are given by (6.23) and (6.24) respectively. Hence for the numerical analysis, only

the low CSNR case will be used for plotting the PDF of the CSNR estimation error. A brief

discussion on the statistical properties of the estimation error in presence of low CSNR is provided

in Section 6.4, where pilot symbols are used over a JFTS faded/shadowed communication channel.

6.3 Error Performance Analysis

In order to obtain the ABER of a large variety of modulation techniques, the CDF based approach

of [5] will be used in this section. The receivers are considered to be operating over independent

and identical distributed (iid) fading conditions. The error probability performances in each case

will be determined in terms of the lower bound for low CSNR and the upper bound for high CSNR.

The organization of this section is as follows. Closed-form expressions for error rates of a variety of

fixed binary modulation techniques are derived using the CDF-based approach in Subsection 6.3.1.

The same analysis is done for error probability performance of fixed M -ary modulation techniques

in Subsection 6.3.2.

6.3.1 Binary Modulation Schemes

For any binary coherent and non-coherent modulation technique, the ABER over a composite flat

faded and slow shadowed wireless communication channel suffering from AWGN can be expressed
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in terms of the CDF of the instantaneous SNR as [57],

PBinary
b (e) =

αβ

2Γ(β)

∫ ∞
0

γ̂β−1 e−αγ̂ Fγ̂(γ̂)dγ̂ (6.26)

where α = 1 for Binary Phase Shift Keying (BPSK) and α = 1/2 for Binary Frequency Shift Keying

(BFSK). If the modulation is differential or non-coherent, β = 1, while for coherent modulation,

β = 1/2. By substituting (6.12) and (6.16) in (6.26) and using the integral solution from [48],

the ABER expression for any coherent or non-coherent binary modulation technique over a JFTS

channel with estimated CSI can be obtained as,

PBinary
b (e)low =

F
2

[
ψ(β) − log(β) +

1

β

(
αγ̂

αγ̂ + F

)β
2F1

(
1, β; β + 1;

αγ̂

αγ̂ + F

)]
PBinary
b (e)high =

F
2β

(
αγ̂

αγ̂ + F

)β
2F1

(
1, β; β + 1;

αγ̂

αγ̂ + F

)
(6.27)

where ψ(·) is the Euler-Psi function given by ψ(·) = d
d(·) log(Γ(·)).

6.3.2 M-ary Coherent Modulation Schemes

In order to evaluate the error performance of M -ary coherent modulation techniques over a com-

posite fading/shadowing channel, we need to calculate an integral of the form,

PM−ary
b (e, g) =

1√
2π

∫ ∞
0

Fγ̂

(
v2

g

)
e−v

2/2dv (6.28)

where g depends on the modulation type [84]. For a JFTS channel, substituting (6.12) and (6.16)

in (6.28), using the change of variables u = v2 and then using the integral solution from [48],

PM−ary
b (e, g) can be expressed as,

PM−ary
b (e, g)low = F

[
2

√
gγ̂

gγ̂ + 2F 2F1

(
1,

1

2
;
3

2
;

gγ̂

gγ̂ + 2F

)
− E

2
− log(2g)

2

]

PM−ary
b (e, g)high = 2F

√
gγ̂

gγ̂ + 2F 2F1

(
1,

1

2
;
3

2
;

gγ̂

gγ̂ + 2F

)
(6.29)
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where E is the Euler-Mascheroni constant with a numerical value of E ≈ 0.577216 [39]. This gen-

eralized ABER expression (6.29) for M -ary coherent modulation techniques can be used to derive

ABER expressions for any coherent modulation technique only by changing the value of g.

M-ary Quadrature Amplitude Modulation (M-QAM)

Using unified approximation, as is done in [84], the ABER expression of general order M -QAM

modulation over a composite fading / shadowing channel is given by,

PMQAM
b (e) ∼=

4

log2M

(
1− 1√

M

)√M/2∑
n=1

PM−ary
b (e, gn−Q) (6.30)

where gn−Q = 3(2n − 1)2log2M/(M − 1). Substituting (6.29) in (6.30), the ABER expression for

general order M -QAM modulation technique over a JFTS channel can be expressed as,

PMQAM
b (e)low

∼=
4F

log2M

(
1− 1√

M

)√M/2∑
n=1

[
2

√
gn−Qγ̂

gn−Qγ̂ + 2F 2F1

(
1,

1

2
;
3

2
;

gn−Qγ̂

gn−Qγ̂ + 2F

)

− E
2
− log(2gn−Q)

2

]

PMQAM
b (e)high

∼=
8F

log2M

(
1− 1√

M

)√M/2∑
n=1

√
gn−Qγ̂

gn−Qγ̂ + 2F 2F1

(
1,

1

2
;
3

2
;

gn−Qγ̂

gn−Qγ̂ + 2F

)
. (6.31)

(6.32)

M-ary Phase Shift Keying (M-PSK)

Using unified approximation, as is done in [84], the ABER expression of Gray coded coherent

M -PSK modulation over a composite fading / shadowing channel is given by,

PMPSK
b (e) ∼=

2

max(log2M, 2)

max(M/4,1)∑
n=1

PM−ary
b (e, gn−P ) (6.33)
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where gn−P = 2(log2M) sin2((2n − 1)π/M). Substituting (6.29) in (6.33), the ABER expression

for coherent M -PSK modulation technique over a JFTS channel can be obtained as,

PMPSK
b (e)low

∼=
2F

max(log2M, 2)

max(M/4,1)∑
n=1

[
2

√
gn−P γ̂

gn−P γ̂ + 2F 2F1

(
1,

1

2
;
3

2
;

gn−P γ̂

gn−P γ̂ + 2F

)

− E
2
− log(2gn−P )

2

]

PMPSK
b (e)high

∼=
4F

max(log2M, 2)

max(M/4,1)∑
n=1

√
gn−P γ̂

gn−P γ̂ + 2F 2F1

(
1,

1

2
;
3

2
;

gn−P γ̂

gn−P γ̂ + 2F

)
. (6.34)

It is evident from (6.27), (6.31) and (6.34) that bit error probability performance of any modulation

technique over a JFTS communication channel is directly proportional to the mean power of the

joint faded and two-path shadowed envelope, Ω̂. Now from (6.6) and (6.9), we observe that Ω̂

decreases exponentially with the increase either in K or Sh or both. As a result, the mean power

of the received envelope decreases with the increase in the fading and/or the shadowing parameters

resulting in the overall decrease in the error probability.

6.4 Numerical Analysis and Discussion

In this section, the derived expressions for the PDF of the CSNR estimation error and error rate

performances of a variety of modulation techniques are numerically evaluated and plotted as func-

tions of JFTS parameters, AWGN parameters and average received CSNR. The ABER results are

compared with the simulation results in order to verify the validity of the derived expressions. All

the results are evaluated using a single input single output (SISO) system and are averaged over

100 independent random channel realizations.

The rest of this section is organized as below. Subsection 6.4.1 illustrates the effects of different

channel and estimation parameters on the statistics of the CSNR estimation error. Subsection 6.4.2
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Figure 6.1: Plots of the PDF of the CSNR estimation error, Φ over a JFTS faded/shadowed
communication channel with K = 4 dB, Sh = −1 dB, ∆ = 0.5, P1 = 0.45, P2 = 0.4 and a noise
variance of σ2

n = 1, where the curves are generated by varying γ.

simulates and analyzes the performance of a variety of modulation techniques over the JFTS link

in presence of estimated CSI.

6.4.1 Statistics of Estimated CSNR

An example set of PDFs of the CSNR estimation error are plotted in Fig. 6.1, where the estimation

is done using pilot symbols. For this set of curves, the access point and the mobile WLAN user

are assumed to be separated by two sets of dry-walls (K = 7 dB, Sh = −1 dB, ∆ = 0.5). The

other JFTS parameters like P1 and P2 are kept constant at 0.45 and 0.4 respectively. The noise

variance of the AWGN is considered to be constant at 1 for the PDF plots, where the estimation

error is measured either in natural units or in Logarithm units. Similar to the observations made

in case of Rayleigh fading channels in [57], the variance of both γ and γ̂ increase with the square

of the average received CSNR, γ. It is reasonable that the variance of the CSNR estimation error

also increases.
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Figure 6.3: Plots of the PDF of the CSNR estimation error, Φ over a JFTS faded/shadowed
communication channel with P1 = 0.45, P2 = 0.4, a noise variance of σ2

n = 1 and γ = 10, where
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communication channel with K = 4 dB, Sh = −1 dB, ∆ = 0.5, P1 = 0.45, P2 = 0.4 and γ = 10,
where the curves are generated by varying the noise variance σ2

n.

The second figure, Fig. 6.2 shows that the estimation error variance over a JFTS communication

link increases with the decrease in the shape parameter, P2. The parameter P2 defines the mean-

squared voltage of the scattered components in a composite JFTS faded / shadowed channel and

intuitively represents the variance of the shadowing distribution. As a result, with the increase in

P2, a large range of shadowing values contributed by each scattering cluster will be encountered.

This will result in equal number of high and low main wave amplitudes thereby lowering the overall

shadowing severity. In such a condition, the higher the value of P2, lower will be the range of values

of CSNR estimation error, thereby decreasing the variance of the difference γ̂ − γ.

Fig. 6.3 is used to compare the effect of different parameters on the estimation error variance over

JFTS faded/shadowed and Rayleigh faded channels. Four different indoor WLAN communication

scenarios are considered, where the user and the access point are in the same room (K = 13 dB,

Sh = 12 dB, ∆ = 0.9), separated by one (K = 10 dB, Sh = 6 dB, ∆ = 0.7), two (K = 7 dB,

Sh = −1 dB, ∆ = 0.5), three (K = 4 dB, Sh = −6 dB, ∆ = 0.3) or more than three partitions

179



(K = 1 dB, Sh = −12 dB, ∆ = 0.1) and Rayleigh fading no shadowing case (K = 0 dB, Sh = 0

dB, ∆ = 0). The average received CSNR γ are kept constant at 10 dB respectively in case of both

the channel models. The corrupting AWGN is assumed to have zero mean and unit variance. In

case of JFTS fading, error variance decreases with the increase in the JFTS parameters, K and Sh.

Estimation error variance gets higher than the Rayleigh fading case as soon as K decreases to 7

dB and Sh to -1 dB (2-walls separation scenario). The reason for this behavior is that smaller the

K and Sh, higher is the range of differences between the true and the estimated CSNR resulting

in the increase of the error variance.

It can also be concluded that in case of the communication scenario where both the user and the

access point (high K and Sh factors) are in the same room, the range of acceptable amount of

error in CSNR over which the system can operate correctly is higher than when the user and the

access point are separated by two sets of dry-walls (low K and Sh factors). This will be verified

by Fig. 6.5 in Subsection 6.4.2, where the estimated error rate performance starts approaching the

performance with perfect CSI at a much lower CSNR, in case of the propagation scenario where

the user and the AP are separated by one set of dry-wall than the case where the user and the AP

are separated by more than three sets of dry-walls.

The last figure, Fig. 6.4 demonstrates the effect of noise variance of the corrupting AWGN on the

CSNR estimation error over a JFTS channel. These plots inspect the WLAN scenario where the

user and the access point are separated by two sets of dry-walls (K = 7 dB, Sh = −1 dB, ∆ = 0.5).

The overall average CSNR, γ is kept constant at 10 dB. In the case of the Rayleigh and Nakagami

fading channels, the estimated signal envelope is complex Gaussian distributed with zero mean.

However, for the JFTS distributed envelope, the variance of the estimation error decreases with
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Figure 6.5: Simulated ABER performance of BPSK over a JFTS link with varying sets of pa-
rameters K, Sh and ∆, where performances with perfect CSI are plotted as benchmarks in each
propagation scenario.

the decrease in noise variance. The reason can be attributed to the fact that the PDF of the

estimated CSNR (γ̂) is a function of the individual noise variance terms whereas for the Rayleigh

and Nakagami fading channels, the PDF of γ̂ is a function of CSNR only. For a JFTS channel,

fγ̂(γ̂) is inversely proportional to the noise variance. Hence as the noise variance decreases, the

variance of γ̂ decreases thereby decreasing the variance of the difference γ̂ − γ.

6.4.2 Error Performance Analysis

The ABER performance of BPSK over a JFTS faded/shadowed link with perfect CSI is depicted

in Fig. 6.5 as the benchmark of the achievable performance. Three sets of indoor WLAN commu-

nication scenarios are considered, where the user and the AP are separated by one (K = 10 dB,

Sh = 6 dB, ∆ = 0.7), two-three (K = 7 dB, Sh = −1 dB, ∆ = 0.5) and more than three partitions

(K = 1 dB, Sh = −12 dB, ∆ = 0.1). The corrupting AWGN is assumed to have zero mean and

unit variance. A fixed pilot length of L = 100 is considered for simulation only set of results

with estimated CSI. As mentioned in Subsection 6.4.1 the estimated error rate performance starts
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approaching the performance with perfect CSI at a low CSNR in case of the propagation scenario

where the user and the AP are separated by one set of dry-wall. The reason can be attributed to

the fact that higher the K and Sh factors, lower will be the severity in fading and shadowing in

the communication link and higher will be the range of acceptable amount of error in CSNR over

which the system can operate correctly.

The final set of curves in this section (Fig. 6.6) are plotted to compare the analytical bounds

derived in Subsection 6.3.2 with that of the simulation results in presence of estimated CSI using

pilot symbols. In this case two sets propagation scenarios are considered, where the user and the

AP are separated by one (K = 10 dB, Sh = 6 dB, ∆ = 0.7) and two-three sets of dry-walls(K = 7

dB, Sh = −1 dB, ∆ = 0.5). The corrupting AWGN is assumed to have zero mean and unit

variance. A fixed pilot length of L = 100 is considered for estimating CSNR both in case of the

simulation and the analytical results. Both the analytical bounds, one considering the low CSNR

case and other considering the high CSNR case are plotted.
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In case of both the propagation scenarios, the analytical bound with high CSNR overestimates

and that with low CSNR underestimates the error rate performance. However, in case when the

AP and user are separated by 1 partition, low CSNR bound starts approaching the simulation

result at higher average CSNR. While when the AP and user are separated by 2-3 partitions, the

high CSNR bound accurately predicts performance at low CSNR region but grossly overestimates

error rate as the average CSNR increases. The low CSNR bound though underestimates the per-

formance in this case, manages to follow the simulated performance within 1 dB over the entire

average CSNR range. Hence it can be concluded that it will be more useful to use the low CSNR

bound while evaluating system performance in presence of estimated CSI over a JFTS link.

6.5 Summary

The primary contribution of this chapter is to analyze the estimation error statistics when pilot

symbol assisted channel estimation is applied to a JFTS faded / shadowed communication link.

The PDF of the estimation error in natural units is derived using the PDF of the instantaneous

CSNR. Numerical results demonstrate that the range of acceptable amount of error in CSNR over

which the system can operate correctly in a JFTS faded/shadowed channel increases with the

decrease in the mean-squared voltages of the shadowed components.The observations also reveal

that the estimation error variance increases with the increase in average received CSNR and the

increase in small scale fading parameter K and the shadowing parameter Sh. The error variance

decreases with the increase in P2 and decrease in corrupting noise variance Numerical results also

show that it will be more useful to use the low CSNR bound while evaluating system performance
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in presence of estimated CSI over a JFTS link.
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Chapter 7

Conclusions

In order to give an outline of the major achievements described in this thesis, the next section will

state the main contributions. The chapter will end with some suggestions for further research.

7.1 Major Contributions of the Thesis

• This thesis designed and conducted a measurement campaign consisting of over 30

thousand individual channel measurements in an indoor wireless environment which

represent an open concept office or laboratory. The collected measurement data

are analyzed to develop the first ever propagation model that combines small scale

fading and large scale shadowing for mobility constrained indoor wireless LAN users.

• Statistical properties of the newly developed propagation model are also derived

and used them to compare the severity of fading imparted by the JFTS distribution

with the fading severity of Rayleigh, Nakagami-m, K-distribution and Nakagami-m

- log-normal distribution.

• This thesis developed the first ever expressions for average bit error rate of different

fixed modulation techniques over a practical measurement-based indoor composite

fading/shadowing propagation model both using MGF and CDF methods. A study

on the impact of different JFTS distribution parameters on the performance is also

be conducted based on the numerical results.
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• These expressions also provide an added advantage that they are able to predict

performance for different JFTS parameter values as long as the mean power is the

same. Hence, these expressions will provide us the flexibility of analyzing perfor-

mances over a broad variety of practical indoor WLAN environments with or without

the knowledge of the distribution parameters.

• Quantifying the information theoretic limit for an indoor wireless propagation envi-

ronment is another contribution of this thesis where JFTS channel model is used to

characterize the communication scenario. The capacity expressions evaluated over

the JFTS channel model provides us with the achievable ergodic capacity measures

over a large variety of practical channel conditions, without assuming that the prop-

agation environment is complex Gaussian distributed.

• This thesis also derives the first ever analytically tractable expressions for JFTS

ergodic capacity under different adaptive transmission schemes. The relationship

between the optimal cut-off CSNR and the average received CSNR is explored for

JFTS faded/shadowed links when adaptive transmission techniques are applied.

• Finally this thesis has derived the first ever expressions for distribution of estimation

error for non-Gaussian joint faded/shadowed random variables. This provides us a

chance to analyze the statistical properties of the CSNR estimation error, where the

true and the estimated CSNR do not follow the same distribution.
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7.2 Suggestions for Further Research

A natural extension of the work done in this thesis is to propose a complete combination of discrete-

rate adaptive coded modulation at the transmit side along with channel estimation, prediction and

data detection at the receive side in order to improve overall performance in a large office-type

indoor environment. The optimal rate region boundaries for ACM can be chosen based on the

analytical expression of the BER derived from the newly developed propagation model. Finally,

the newly developed channel statistics can be incorporated as an additional inner code for the

joint channel estimator and data detector at the receiver in order to increase reliability of channel

prediction and enhance quality of the feedback information.

An investigation can be conducted into the practicality of adaptive signaling due to the varia-

tions in the JFTS channel parameters over time, resulting in a different channel at the time of

data transmission from that at the time of channel estimation. First of all, the need to consider

the channel statistics in the system design of ACM techniques can be demonstrated by calculat-

ing the degradation in the error probability due to feedback delay. Then improvement in BER

performance of ACM techniques can also be studied using JFTS channel statistics as an inner

code for the channel estimator at the receiver, when neither the Doppler frequency nor the exact

shape of the auto-correlation function of the channel fading/shadowing process is known. Trellis

and LDPC-coded M -QAM techniques can be used as competitive candidates for improvement in

bandwidth efficiency.

Power prediction can be used as a means to avoid signaling delays resulting in outdated feed-

back CSI for ACM techniques over a JFTS faded/shadowed channel. Sub-sampled Auto-regressive
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(AR) models can be used to characterize the dynamics of the channel taps and in turn can be

used in a particle filter based predictor to predict the instantaneous CSNR at any range that is

multiple of the chosen delay spacing. The optimum design of different ACM techniques can be

studied, where adaptation of channel parameters is assisted by channel prediction for the at JFTS

faded/shadowed channel. The data rate and in some cases, the transmit power can be adapted

to maximize the spectral efficiency, subject to average power and BER constraints. Finally the

feedback anomaly due to the presence of noise in the feedback channel can be conquered by the

inclusion of the JFTS statistics as an inner code at the joint channel estimator and detector of the

receiver.

Although, most of the derivations, analyses, implementations and discussions made in this thesis

are in the context of indoor WLAN applications, it is possible to apply the propagation model

and the performance analysis techniques to a wide range of problems in any field that involves

dynamic wave propagation. This is due to the fact that the parameters of the JFTS distribu-

tion can be varied to represent a wide variety of channel conditions like direct line-of-sight (LOS)

(infinitely high fading parameter), no obstruction or scattering cluster (infinitely high shadowing

parameter), Non-LOS (NLOS) (low fading parameter), Obstructed-LOS (OLOS) (low shadow-

ing parameter) between the transmitter and the receiver. Therefore the application of the JFTS

model in a wide variety of wireless propagation scenarios is a potential subject for further research.

The choice of higher frequency bands for terrestrial communications is an inevitable consequence

of scarcity of microwave spectrum and extensively high wireless traffic demands. So far, these

increasing traffic demands have been catered to by increased LTE deployments and small cell

off-loading (particularly in Wifi). However, availability of large amounts of new spectrum will be
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an indispensable requirement for couping up with the projected traffic needs of 2020 and beyond.

Millimeter wave (mmW) bands (20 - 300 GHz) is the only place where a significant amount of

unused or lightly used spectrum will be available. This has made the mmW bands an attractive

front-runner for the next generation wireless heterogeneous cellular networks. Hence, a logical

extension of this work will be to find out the appropriateness of using JFTS propagation model to

characterize the joint small scale and large scale channel effects on a dual-polarized mmW indoor

wireless channel.
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Appendix A

Joint Distribution

A.1 Calculation of the Derivatives

Calculation of ∂Ai
∂K

and ∂Ai
∂P1

:

To calculate ∂Ai
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and ∂Ai
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where I0
′(.) is the first order derivative of the modified Bessel function of the first kind and zeroth

order. Hence,
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)

∂D

∂P1

= − xi
P1

√
K

2P1

I0
′
(
xi

√
2K

P1

)
(A.3)
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Hence, it follows,

∂Ai
∂P1

=
xi

P1
2 exp

(
−xi2

2P1

−K
)
I0

(
xi

√
2K

P1

)
− xi

3

2P1
3 exp

(
−xi2

2P1

−K
)
I0

(
xi

√
2K

P1

)
+
xi

2

P1
2

√
K

2P1

exp

(
−xi2

2P1

−K
)
I0
′
(
xi

√
2K

P1

)
(A.4)

Putting the results of (A.2) back in (2.6) and that of (A.4) in (2.7), numerical solutions for the

values of K and P1 are obtained.

Calculation of ∂Gi
∂Sh

, ∂Gi
∂∆

and ∂Gi
∂P2

:

4∑
j=1

ajD

(
y√
P2

;Sh,∆ cos
π(j − 1)

2M − 1

)
=

751

17280
T1 +

3577

17280
T2 +

49

640
T3 +

2989

17280
T4 (A.5)

where, a1 = 751
8640

, a2 = 3577
8640

, a3 = 49
320

and a4 = 2949
8640

(values directly used from [15]).

T1 = exp(∆Sh)I0

(
y√
P2

√
2Sh(1−∆)

)
+ exp(−∆Sh)I0

(
y√
P2

√
2Sh(1 + ∆)

)
T2 = exp(0.9∆Sh)I0

(
y√
P2

√
2Sh(1− 0.9∆)

)
+ exp(−0.9∆Sh)I0

(
y√
P2

√
2Sh(1 + 0.9∆)

)
T3 = exp(0.6∆Sh)I0

(
y√
P2

√
2Sh(1− 0.6∆)

)
+ exp(−0.6∆Sh)I0

(
y√
P2

√
2Sh(1 + 0.6∆)

)
T4 = exp(0.2∆Sh)I0

(
y√
P2

√
2Sh(1− 0.2∆)

)
+ exp(−0.2∆Sh)I0

(
y√
P2

√
2Sh(1 + 0.2∆)

)
(A.6)

To calculate ∂Gi
∂Sh

, ∂Gi
∂∆

and ∂Gi
∂P2

, the notations, H = yi
P2

, I = exp

(
−yi2
2P2
− Sh

)
and K ′ = 751

17280
T1 +

3577
17280

T2 + 49
640
T3 + 2989

17280
T4 are used.

Therefore,

∂Gi

∂Sh
= HI

∂K ′

∂Sh
+HK ′

∂I

∂Sh
+ IK ′

∂H

∂Sh
∂Gi

∂∆
= HI

∂K ′

∂∆
+HK ′

∂I

∂∆
+ IK ′

∂H

∂∆
∂Gi

∂P2

= HI
∂K ′

∂P2

+HK ′
∂I

∂P2

+ IK ′
∂H

∂P2

(A.7)
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where,

∂H

∂Sh
= 0 and

∂I

∂Sh
= −exp

(
−yi2

2P2

− Sh
)

∂H

∂∆
= 0 and

∂I

∂∆
= 0

∂H

∂P2

= − yi

P2
2 and

∂I

∂P2

=
yi

2

2P2
2 exp

(
−yi2

2P2

− Sh
)

(A.8)

and,

∂K

∂Sh
=

751

17280

∂T1

∂Sh
+

3577

17280

∂T2

∂Sh
+

49

640

∂T3

∂Sh
+

2989

17280

∂T4

∂Sh
∂K

∂∆
=

751

17280

∂T1

∂∆
+

3577

17280

∂T2

∂∆
+

49

640

∂T3

∂∆
+

2989

17280

∂T4

∂∆
∂K

∂P2

=
751

17280

∂T1

∂P2

+
3577

17280

∂T2

∂P2

+
49

640

∂T3

∂P2

+
2989

17280

∂T4

∂P2

(A.9)

Here ∂T1

∂Sh
, ∂T1

∂∆
and ∂T1

∂P2
can be calculated as below,

∂T1

∂Sh
= ∆exp(∆Sh)I0

(
y√
P2

√
2Sh(1−∆)

)
+
y
√

1−∆√
2P2Sh

exp(∆Sh)I0
′
(

y√
P2

√
2Sh(1−∆)

)
−∆exp(−∆Sh)I0

(
y√
P2

√
2Sh(1 + ∆)

)
+
y
√

1 + ∆√
2P2Sh

exp(−∆Sh)I0
′
(

y√
P2

√
2Sh(1 + ∆)

)
(A.10)

∂T1

∂∆
= Shexp(∆Sh)I0

(
y√
P2

√
2Sh(1−∆)

)
− y

√
Sh√

2P2(1−∆)
exp(∆Sh)I0

′
(

y√
P2

√
2Sh(1−∆)

)
− Shexp(−∆Sh)I0

(
y√
P2

√
2Sh(1 + ∆)

)
+

y
√
Sh√

2P2(1 + ∆)
exp(−∆Sh)I0

′
(

y√
P2

√
2Sh(1 + ∆)

)
(A.11)

and,

∂T1

∂P2

= − y

P2

√
Sh(1−∆)

2P2

exp(∆Sh)I0
′
(

y√
P2

√
2Sh(1−∆)

)

− y

P2

√
Sh(1 + ∆)

2P2

exp(−∆Sh)I0
′
(

y√
P2

√
2Sh(1 + ∆)

)
(A.12)
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Similarly ∂T2

∂Sh
, ∂T2

∂∆
, ∂T2

∂P2
, ∂T3

∂Sh
, ∂T3

∂∆
, ∂T3

∂P2
, ∂T4

∂Sh
, ∂T4

∂∆
and ∂T4

∂P2
are calculated, which in turn are used to

numerically solve for the values of Sh, ∆ and P2.

A.2 Calculation of the Joint PDF

The term, 751
17280

T1I0

(
x
√

2K
P1

)
can be calculated using infinite series expansion of Modified Bessel

Function as,

751

17280
T1I0

(
x

√
2K

P1

)
=

751

17280
T1

∞∑
k=0

(
x22K
4P1

)k
(k!)2

(A.13)

Expanding and rearranging, (A.13) can be written as,

751

17280
T1I0

(
x

√
2K

P1

)
=

751

17280

[
exp (∆Sh)

∞∑
k=0

(
x22K
4P1

)k
(k!)2

·
∞∑
k=0

(y22Sh(1−∆)
4P2

)k
(k!)2

+ exp (−∆Sh)
∞∑
k=0

(
x22K
4P1

)k
(k!)2

·
∞∑
k=0

(y22Sh(1+∆)
4P2

)k
(k!)2

]
(A.14)

Rearranging again, (A.14) can be written as,

751

17280
T1I0

(
x

√
2K

P1

)
=

751

17280

[
exp (∆Sh)

∞∑
k=0

(
4x2y2KSh(1−∆)

4P1P2

)k
(k!)2

∞∑
k=0

(
1
4

)k
(k!)2

+ exp (−∆Sh)
∞∑
k=0

(4x2y2KSh(1+∆)
4P1P2

)k
(k!)2

∞∑
k=0

(
1
4

)k
(k!)2

]
(A.15)

If (A.14) is then returned to representing the infinite series as Modified Bessel Function, it can be

expressed as,

751

17280
T1I0

(
x

√
2K

P1

)
=

751

17280

[
exp (∆Sh)I0

(
2xy

√
KSh(1−∆)

P1P2

)
I0(1)

+ exp (−∆Sh)I0

(
2xy

√
KSh(1 + ∆)

P1P2

)
I0(1)

]
(A.16)
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which can be written in terms of D(α;K, β) as,

751

17280
T1I0

(
x

√
2K

P1

)
= b1D

(
xy

√
2K

P1P2

;Sh,∆

)
(A.17)

It can be obtained from (2.14) that,

fXY (r, z/r) =
z

P1P2

exp

(
− r2

2P1

− z2

2P2r2
−K − Sh

) 4∑
j=1

bjD

(
z

√
2K

P1P2

;Sh,∆ cos
π(j − 1)

2M − 1

)
(A.18)

Hence, (A.17) can be rewritten as,

fZ(z) =
z

P1P2

exp (−K − Sh)
4∑
j=1

bjD

(
z

√
2K

P1P2

;Sh,∆ cos
π(j − 1)

2M − 1

)
∫ ∞
−∞

1

|r|
exp

(
− r2

2P1

− z2

2P2r2

)
dr (A.19)

where, the integrand in (2.9) can be solved using Gauss-Hermite Quadrature Integration and can

written in the form,

R′ =

∫ ∞
−∞

1

|r|
exp

(
− r2

2P1

− z2

2P2r2

)
dr

≈
m∑
h=1

whf(rh)

≈
m∑
h=1

wh

[
1

|rh|
exp

(
rh

2(2P1 − 1)

2P1

− z2

2P2rh2

)]
(A.20)

where, m is the approximation index. The multiplier wh denotes the associated weights and is

given by,

wh =
2m−1m!

√
π

m2[Hm−1(rh)]2

where Hm−1(.) is the Hermite polynomial with roots rh for h = 1, 2, . . . ,m. Hence, (A.19) can be
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rewritten as,

fZ(z) =
z

P1P2

exp (−K − Sh)
4∑
j=1

bjD

(
z

√
2K

P1P2

;Sh,∆ cos
π(j − 1)

2M − 1

)
m∑
h=1

wh

[
1

|rh|
exp

(
rh

2(2P1 − 1)

2P1

− z2

2P2rh2

)]
. (A.21)
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Appendix B

Statistics of Composite Envelope

B.1 Moments of the Composite Envelope

In order to arrive at the final expression of the joint moments, the first integral that is needed to

solved can be written as,

A =

∫ ∞
−∞

(x)n+1

P1

e
− x2

2P1
−K
I0

(
x

√
2K

P1

)
dx (B.1)

Using infinite series expansion of the modified Bessel function, the integrand in (B.1) can be

expressed as,

A =

∫ ∞
−∞

(x)n+1

P1

e
− x2

2P1
−K

∞∑
k=0

1

(k!)2

(
x2K

P1

)k

dx

=
∞∑
k=0

1

(k!)2

Kk

P k+1
1

e−K
∫ ∞
−∞

(x)n+1+2k e
− x2

2P1 dx (B.2)

Putting n′ = n + 1 + 2k, p′ = 1
2P1

and q′ = 0, and using the integral solution from [39] (B.2) can

be written as,

A = (2P1)n/2
(1 + n/2)!

(n/2)!
e−K

dn/2

d(−K)n/2
(
Kn/2 eK

)
(B.3)

which can be written in terms of the Laguerre polynomial and the incomplete Gamma function

as,

A = (2P1)n/2 Γ(1 + n/2) Ln/2(−K) (B.4)
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The second integration can also be solved by following the same procedure as before to obtain,

B =
4∑
j=1

aj

∫ ∞
−∞

Tj
(y)n+1

P2

e
− y2

2P2
−Shdy

=
4∑
j=1

aj (2P2)n/2 Γ(1 + n/2)
[
Ln/2(−(1−∆Mj)Sh) + Ln/2(−(1 + ∆Mj)Sh)

]
(B.5)

where,

Tj = eSh∆Mj I0

(
y
√

2Sh(1−∆Mj)/P2

)
+ e−Sh∆Mj I0

(
y
√

2Sh(1 + ∆Mj)/P2

)

B.2 CDF of the Composite Envelope

In order to derive the CDF of the JFTS distribution, the following integral is needed to be solved

as,

I = C1

4∑
j=1

bj
2

20∑
h=1

R
∫ z

−∞
u e−C2u

2 [D3 I0(2uD1) + D4 I0(2uD2)
]

du (B.6)

Using the infinite series expansion of the modified Bessel function of the first kind, (B.6) can be

expressed as,

I = C1

4∑
j=1

bj
2

20∑
h=1

R
∞∑
k=0

D3 D2k
1 +D4 D2k

2

(k!)2

∫ z

−∞
u2k+1 e−C2u

2

du (B.7)

Using the integral solution from [39] and the incomplete Gamma function given in [45], (B.7) can

be written as,

I = C1

4∑
j=1

bj
2

20∑
h=1

R
∞∑
k=0

D3 D2k
1 +D4 D2k

2

(k!)2

[
1 − Γ(k + 1, C2z

2)

2Ck+1
2

]
(B.8)

Instead of using the infinite series representation, Marcum-Q function can be also be used to

represent the expression in (B.8) as,

I = C1

4∑
j=1

bj
2

20∑
h=1

R√
2C2

[
D3Q1

(√
2D1√
C2

, z

)
+D4Q1

(√
2D2√
C2

, z

)]
(B.9)
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B.3 Calculation of MGF of Instantaneous CSNR

In order to derive the expression for the MGF of the instantaneous received CSNR, γ, the integral

that is needed to be solved can be expressed in the form,

I1 =

∫ ∞
0

[
e
Sh∆Mj−sγ−

2P1K̃S̃hγ

r2
h
γ I0

(
8

√
KShK̃S̃h(1−∆Mj)γ/γ

)
+ e

−Sh∆Mj−sγ−
2P1K̃S̃hγ

r2
h
γ I0

(
8

√
KShK̃S̃h(1 + ∆Mj)γ/γ

)]
dγ (B.10)

The solution to this integral can be found by using the integral solution from [48] to obtain,

I1 =
1√
AB1

eSh∆Mj+
B1
2A M−1/2,0

(
B1

A

)
+

1√
AB2

eSh∆Mj+
B2
2A M−1/2,0

(
B2

A

)
(B.11)

where,

A = s + 2P1K̃S̃h/r
2
hγ

B1 = 16KShK̃S̃h(1−∆Mj)/γ

B2 = 16KShK̃S̃h(1 + ∆Mj)/γ (B.12)

and M−1/2,0(·) is the Whittaker M-function which can be expanded as,

M−1/2,0

(
B1

A

)
=

√
B1

A
e

B1
2A and M−1/2,0

(
B2

A

)
=

√
B2

A
e

B2
2A (B.13)

Using (B.13), (B.11) can now be expressed as,

I1 =
1

A

[
eSh∆Mj+

B1
A + e−Sh∆Mj+

B2
A

]
=

r2
hγ

2P1K̃S̃h + sr2
hγ

[
e
Sh∆Mj+

16KShK̃S̃h(1−∆Mj)r2h
2P1K̃S̃h+sr2

h
γ + e

−Sh∆Mj+
16KShK̃S̃h(1+∆Mj)r2h

2P1K̃S̃h+sr2
h
γ

]
(B.14)

Putting (B.14) back in the integral in (4.10), the final expression for the MGF, Mγ(s) can be

obtained in the form of (4.10).
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Appendix C

Error Probability Performance

C.1 MGF-based Error Probability Performance

Solution to I(x̄, π/2) : Substituting (4.10) in (4.16), followed by t1 = 2F3 sin2 θ
2E2 sin2 θ+E3x̄2 , t2 =

2F4 sin2 θ
2E2 sin2 θ+E3x̄2 , u1 =

(
2E2+E3x̄2

2F3

)
t1 and u2 =

(
2E2+E3x̄2

2F4

)
t2 respectively, the closed-form expression

for the integral I(x̄, π/2) can be given by,

I(x̄, π/2) =
1

π

∫ π/2

0

Mγ

(
x̄2

2 sin2 θ

)
dθ

=
4∑
j=1

20∑
h=1

[
x̄E1

√
E3

2(2E2 + E3x̄2)3/2
e
F1− F3

E2 φ1

(
3

2
, 1; 2;

2E2

2E2 + E3x̄2
,

2F3

2E2 + E3x̄2

)

+
x̄E1

√
E3

2(2E2 + E3x̄2)3/2
e
F2− F4

E2 φ1

(
3

2
, 1; 2;

2E2

2E2 + E3x̄2
,

2F4

2E2 + E3x̄2

)]
(C.1)

where,

E1 = bjRK̃S̃hr2
h e
−K−Sh

E2 = 2P1K̃S̃h

E3 = r2
hγ

F1 = Sh∆Mj

F2 = − Sh∆Mj

F3 = 16KShK̃S̃h(1−∆Mj)r
2
h

F4 = 16KShK̃S̃h(1 + ∆Mj)r
2
h (C.2)
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and φ1(·) is a confluent hypergeometric function of two variables.

Solution to I(x̄, π/2− arctan(ȳ/x̄)) : Substituting (4.10) in (4.16), followed by t1 = 2F3 sin2 θ
2E2 sin2 θ+E3x̄2 ,

t2 = 2F4 sin2 θ
2E2 sin2 θ+E3x̄2 , u1 =

(
2E2x̄2(x̄2+ȳ2)+E3x̄2

2F3
x̄2

)
t1 and u2 =

(
2E2x̄2(x̄2+ȳ2)+E3x̄2

2F4
x̄2

)
t2 respectively, the

closed-form expression for the integral I(x̄, π/2− arctan(ȳ/x̄)) can be given by,

I(x̄, π/2− arctan(ȳ/x̄)) =
1

π

∫ π/2−arctan(ȳ/x̄)

0

Mγ

(
x̄2

2 sin2 θ

)
dθ (C.3)

I(x̄, π/2− arctan(ȳ/x̄)) =
4∑
j=1

20∑
h=1

[
2x̄E1

√
E3

3π(2E2 + E3(x̄2 + ȳ2))3/2
e
F1− F3

E2

φ
(3)
1

(
3

2
, 1,

1

2
;
5

2
;

2E2

2E2 + E3(x̄2 + ȳ2)
,

2E2 + E3x̄
2

2E2 + E3(x̄2 + ȳ2)
,

2F3

2E2 + E3(x̄2 + ȳ2)

)

+
2x̄E1

√
E3

3π(2E2 + E3(x̄2 + ȳ2))3/2
e
F2− F4

E2

φ
(3)
1

(
3

2
, 1,

1

2
;
5

2
;

2E2

2E2 + E3(x̄2 + ȳ2)
,

2E2 + E3x̄
2

2E2 + E3(x̄2 + ȳ2)
,

2F4

2E2 + E3(x̄2 + ȳ2)

)]
(C.4)

where, φ
(3)
1 (·) is a confluent Lauricella’s hypergeometric function of three variables. The integral

solutions from (C.1) and (C.4) can be inserted back in (4.12) to obtain the ABER expressions of

(4.17) and (4.19).
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C.2 CDF-based Error Probability Performance

In order to obtain the expression for ABER of binary modulation techniques, the integral that is

needed to be solved can be expressed as,

I2 =

∫ ∞
0

γv+β−1 e
− 2P1K̃S̃hγ

r2
h
γ
−αγ

dγ

= (−1) (v + β − 1)!

(
r2
hγ

2P1K̃S̃h + r2
hγα

)v+β

= (−1)
(v + β)!

v + β

(
r2
hγ

2P1K̃S̃h + r2
hγα

)v+β

(C.5)

Using (4.8) and (C.5), the infinite series summation that is needed to be solved to obtain the final

expression for ABER, can be given by,

S2 =
∞∑
k=0

k∑
v=0

(
r2
hγ

2P1K̃S̃h + r2
hγα

)β[
(−1)

(v + β − 1)!

v!

(
2P1K̃S̃h

2P1K̃S̃h + r2
hγα

)v]
(C.6)

which can be solved as below,

S2 =
∞∑
k=0

(−2)k(β̄ + k)!

(k + 1)!

(
2P1K̃S̃h

ᾱr2
hγ + 2P1K̃S̃h

)k+1 (
r2
hγ

ᾱr2
hγ + 2P1K̃S̃h

)β̄

2F1

(
1, β̄ + k + 1; k + 2;

2P1K̃S̃h

ᾱr2
hγ + 2P1K̃S̃h

)
− (β̄ − 1)!

ᾱβ̄
(C.7)

Putting (C.7) back in (4.25), the final expression for ABER of binary modulation techniques can

be obtained in the form of (4.26).
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C.3 PEP-based Error Probability Performance

The inner integral in (4.42) can be solved using the infinite series representation of [48] as,

I3 =

∫ ζτ
Es/N0

0

ζkδ1τ e
− ζτ

2P2r
2
h dζτ

=
kδ1!

(1/2P2r2
h)

kδ1+1
e
− k2N0

2EsP2r
2
h

kδ1∑
v=0

kδ1!

v!

(k2N0/Es)
v

(1/2P2r2
h)

kδ1−v+1
(C.8)

Putting (C.8) in (4.42), the outer integral can be solved as below,

I4 =

∫ ∞
0

eν
2/2

(∫ ζτ
Es/N0

0

ζkδ1τ e
− ζτ

2P2r
2
h dζτ

)
dν

=
kδ1!

(1/2P2r2
h)

kδ1+1

√
π

2
−

kδ1∑
v=0

kδ1!

2v!(Es/N0)v
Γ(v + 1/2)

(1/2P2r2
h)

kδ1−v+1(1/2 +N0/2EsP2r2
h)
v+1/2

(C.9)

where Γ(·) is the upper incomplete Gamma function. Substituting (C.9) back in (4.42), the final

expression for PEP of Turbo coded BPSK over a JFTS faded/shadowed communication channel

can be obtained in the form of (4.43).

C.4 GA-based Error Probability Performance

In order to obtain the expression in (4.46), the integral that is needed to be solved can be given

by,

I5 =

∫ ∞
0

ζkτ e
− ζτ

2P2r
2
h

σn

2
√

2πζτ
e
c
2
− c

2σ2
n
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e
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(
cσ2

nrh
2

√
P2

σ2
n + P2r2

h
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Kk+1/2

(
c

2rh

√
σ2
n + P2r2

h

P2

)
(C.10)

Putting (C.10) back, the unconditional PDF of the channel LLR can be obtained in the form of

(4.46).
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In order to obtain the expression in (4.47), the integral that is needed to be solved can be calculated

as below,

I6 =

∫ ∞
0

ok+1/2 e−
o2

4µυ Kk+1/2

(
o

2rh

√
σ2
n + P2r2

h
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)
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)
(C.11)

Putting (C.11) back, the PDF of the bit node message can be obtained in the form of (4.47).

In order to obtain the expression in (4.48), the integral that is needed to be solved can be expressed

as below,

I7 =

∫ ∞
0

e
c
2
− c2

4µ
δ2+1
υ dc

=

√
πµδ2+1

υ e
µ
δ2+1
υ

4

[
1− φ1

(
−
√
µδ2+1
υ

2

)]
=

√
πµδ2+1

υ

(
µδ2+1
υ

) k+1
2

(C.12)

Putting (C.12) back, the final expression for BER of LDPC coded BPSK over a JFTS faded/shadowed

communication channel can be obtained in the form of (4.48).
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