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Abstract 

The thesis introduces robust cross-layer (Physical Layer, Selection Layer, 

Positioning Layer, and Network Layer) solutions for existing wireless location problems 

for both infrastructure and distributed systems. The proposed physical layer solution 

provides a novel Multi-Resolution Estimation (MRE) technique based on an orthogonal 

search to enhance the sensitivity of the Maximum Likelihood Estimator (MLE) and to 

estimate the propagation delay between a transmitter and a receiver without bias by 

resolving the Direct Path (DP) ray from the Multipath (MP) rays. Above the physical 

layer, a novel Skew-Normal Outlier Detection (SNOD) technique is introduced at the 

selection layer to offer further robustness against multipath rays. The SNOD technique is 

based on the Skew-.Wormal (SJr) distribution which is a new class of distributions that 

have not been considered before either in wireless communication nor in wireless 

location. On top, several novel robust estimation techniques based on Iterative 

Reweighted Least Squares (IRLS), and L1 - norm are introduced at the positioning layer 

to provide a robust position estimate for a radio device with unknown location. These 

robust estimation techniques have also been introduced at the network layer to put 

forward a reliable solution for the unavailability of Reference Stations (RSs) in 

distributed systems. 
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Chapter One: INTRODUCTION 

Wireless technologies have dramatically changed people's life style. Wireless 

networks allow people on the move to communicate using a range of services such as 

voice, Short Message Service (SMS), Multimedia Messaging Service (MMS), and email. 

With such technological advances, people start to have more expectations regarding 

future wireless networks. Reliable and affordable communications among people and 

devices regardless of physical limitations is already a prime objective. Another 

challenging objective is the need for a reliable wireless location solution. 

Wireless location, also commonly termed radiolocation, has recently received 

increased attention from both industry and academia. Wireless location refers to the 

method of obtaining the position information of a radio device using wireless networks. 

The position information is usually given in terms of geographic coordinates [1][2]. In 

this chapter, I will briefly review the history of wireless location and its applications. 

Challenges and motivations are also discussed. Finally, an overview of the thesis, its 

contributions, and its outcomes are presented. 
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1.1 history Perspective of Localization 

Determining location is an old question that reappeared in many different contexts 

throughout history. Figure 1 illustrates the time frame of several localization methods 

discussed in this subsection. Localization first appeared in the context of navigation when 

travelling through land or sea where the stars have been used as Reference Stations 

(RSs). In the 1940s, the hyperbolic navigation system known as LORAN (LOng RAnge 

Navigation) was developed in the United States (U.S.), hence, the start of the wireless 

location era. In LORAN, the RSs are located on the earth surface and the accuracy of the 

system ranges between a few hundred meters to a few kilometres. The potential of 

localization changed in the 1960s when a need to track satellites in space came up. This 

was followed in the late 1980s by a roll-out of the US developing the Global Positioning 

System (GPS) where satellites are used as RSs. The late 1990s witnessed the emergence 

of network-based wireless location systems that are capable of locating mobile users. 

Finally, in the 2000s a new localization application has emerged in the form of 

distributed networks, especially in localizing sensor nodes for many applications using 

Wireless Sensor Networks (WSNs). In distributed systems, there is no infrastructure; and 

therefore, there are no predetermined RSs to rely on! 
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Figure 1 Shows the history of localization methods 

1.2 Applications based on Location Awareness 

Wireless location provides a multitude of new applications and services. Among 

the new services and applications are: 1) Outdoor person/asset tracking, 2) Enhanced-

911, 3) Location sensitive billing, 4) Fraud protection, 5) Fleet management, 6) 

Intelligent transportation systems, 7) Cellular system design and management, and 8) 

Mobile yellow pages. In addition, many new applications for distributed systems are 

waiting for a practical and reliable localization solution. In this thesis, I select WSNs as a 
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model for distributed systems. Unfortunately, to date, there is no single practical nor 

reliable localization solution for WSN. If localization exists, many new applications, are 

enabled. For example: 1) indoor (i.e. people, assets and merchandise) tracking, 2) animal 

tracking, and 3) disaster monitoring. In addition, new research directions based on 

location awareness such as location-aware routing [3] and network security are currently 

being investigated for WSNs [4]. 

Wireless location technologies can be divided into two main categories: 

infrastructure and distributed systems. Infrastructure systems can be further divided into: 

hand-set based, and network-based. This section provides a brief review the basic ranging 

measurements techniques followed by a concise review of the theory of operation behind 

several wireless location systems. 

1.3 Ranging Measurement Techniques 

Received Signal Strength (RSS), Time-Of-Arrival (TOA), Time-Difference-Of 

Arrival (TDOA), Round Trip Delay (RTD), and Angle-Of-Arrival (AOA) are the basic 

approaches for estimating ranges between the device to be localized and a set of RSs. In 

this subsection, I review the definition of each of the ranging measurement techniques: 

1. RSS: measures the power of the signal at a receiver using a Received 

Signal Strength Indicator (RSSI) algorithm, and estimates the range 
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between transmitter and receiver according to some channel propagation 

loss model, assuming that the power of the transmitted signal is known. 

2. TOA: measures the time of arrival of the transmitted signal at the receiver 

with respect to a local clock. In order for the TOA to be useful, all local 

clocks should be synchronized and the time of transmission should be 

known. 

3. TDOA: measures the time of arrival of the transmitted signal at a receiver 

with respect to the time of arrival of the transmitted signal at another 

receiver, in order to remove the need to know the time of transmission of 

the transmitted signal. 

4. RTD: measures the forward link propagation delay (from transmitter 1 to 

receiver 2) and the backward link propagation delay (from transmitter 2 to 

receiver 1). In this case, clock synchronization and time of transmission 

are not required. 

5. AOA: measures the angle of arrival, of the transmitted signal at the 

receiver. In this case, only two RSs are required to estimate the 2D 

position of the device. 
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1.4 Wireless Location for Infrastructure Systems 

Infrastructure wireless location technologies fall into two main categories: 

1.4.1 Hand-Set Based Wireless Location 

In hand-set based wireless location systems, the radio device to be localized (i.e. 

the GPS receiver or the Cellular phone) determines its location from signals received 

from some RSs (i.e. from some GPS Satellites or from some Base Stations). TOA and 

AOA are the two main ranging measurement techniques used in hand-set based location 

systems. For example, in GPS-based estimations, the GPS receiver receives and estimates 

the signal parameters from at least four satellites out of the current network of 24 GPS 

satellites. The parameter measured by the GPS receiver for each satellite is the 

propagation delay between a number of RSs (i.e. a number of satellites) and itself [1]. 

Also a hybrid technique uses both the GPS technology and the cellular 

infrastructure and is known as Assisted-GPS (A-GPS). In this case, the cellular network 

is used to aid the GPS receiver that is embedded in the cellular telephone to improve 

accuracy and acquisition time. 

1. 4.2 Network-Based Wireless Location 

Network-based location technology relies on a network of RSs, which attempts to 

determine the position of the radio device by measuring its signal parameters when 
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received at the RSs. In this technology, the estimated parameters are relayed to a central 

site for further processing to provide an estimate of the location of the device. TDOA is 

the ranging measurement technique most commonly used for Network based wireless 

location [1][5]. 

1.5 Wireless Location for Distributed Systems 

Current infrastructure localization techniques are typically inadequate for many of 

the WSN applications due to stringent hardware requirements on the radio device (i.e. on 

the sensor node) such as: low-cost, small size, and low battery consumption. In addition, 

current systems have inherent accuracy limitations that inhibit them in some WSN 

applications [4]. 

WSNs are one form of distributed wireless networks. Hence, there are no 

predetermined Reference Stations (RSs) available to rely on, neither in wireless 

communication nor in wireless location. Therefore, sensor nodes must cooperate to 

define their reference sensor nodes, build their own local coordinate system within each 

cluster, and then merge these local coordinates to a unique coordinate system for the 

WSN. This type of wireless localization has been called Collaborative Localization (CL). 

Figure 2 illustrates different stages for CL. 
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local coordinates 

!,,,Positioning Layer } 

Localized WSN 
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 > 
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Figure 2 The Collaborative Localization (CL) process. 
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1.6 Challenges and Motivation 

A Cross-layer approach has never been investigated before for wireless location. 

The cross-layer approach allows researchers to use different tools, to collaborate across 

layers, and to concatenate diverse methods to optimize their solutions toward the 

objective of improving wireless location performance. A simplified layer stack for 

wireless location is proposed in this thesis and is shown in Figure 3. The responsibility of 

the physical layer is to estimate ranges (i.e. Euclidean distances between transmitters and 

receivers) using any of the many available ranging measurement techniques which will 

be discussed later in this chapter. The fusion of these ranging estimates is used to 

estimate, fix, the position of a device with unknown location. This fusion process takes 

place at the positioning layer after a set of ranging estimates is selected at the selection 

layer. 

Due to the unavailability of RSs in distributed systems, local coordinates have to 

be built to fix positions of radio devices. The network layer for infrastructure networks 

(e.g. Global Positioning System (GPS), Network based systems, and Hand-set based 

systems) is predesigned before network operation (i.e. the RSs have known coordinates 

and have synchronized clock). While in distributed systems, there is neither infrastructure 

nor RSs with known location to rely on. Hence, devices have to cooperate at the network 

layer in order to merge local coordinates, which have been built at the positioning layer 

within the many network clusters. Different wireless location applications can fit within 
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the application layer. Hence, the wireless location layer stack provides a comprehensive 

representation for most problems related to wireless location. 

Application Layer 

Network Layer 

Positioning Layer 

Selection Layer 

-) 

Wireless location applications 

Merging and transforming coordinates 

Fixing Positions 

Selection of appropriate ranging measurements 

Ranging measurement techniques (i.e. Range Estimation) 

Figure 3 Simplified layered structure for wireless location 

This thesis proposes to use a cross-layer approach as shown in Figure 3 to 

investigate three major problems in wireless location. These problems are 1) weak 

received signal (i.e. low received SNR), 2) multipath reception (i.e. correlated and non-

correlated), and 3) the unavailability of RSs in distributed systems (e.g. Wireless Sensor 

Networks (WSNs)). The following represents the motivation behind the thesis in the 

context of the first four layers: 

1. At the Physical Layer: Several ranging measurement techniques are based 

on estimating the propagation delay between a transmitter and a receiver. 

The receiver commonly uses a correlator followed by a peak detector to 

estimate such delays, assuming that the correlation peak is unbiased. Such 
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an assumption is not generally true. A Non-Line-Of-Sight (NLOS) 

channel, where Multipath (MP) rays which follow the Direct Path (DP) 

ray, can cause a bias to the estimated time delays out of the peak detector 

and consequently to the position estimate. To separate closely spaced MP 

rays from the DP ray, super-resolution estimation algorithms have to be 

used. A number of super-resolution algorithms have been introduced in 

the literature. I can classify them based on their theory of operation into: 

1) Least Square (LS) methods, which introduce significant additional 

errors due to noise enhancement that arises from the ill-conditioning of the 

matrices that are involved in the LS operation. 2) Sub-space methods, 

which rely on the unrealistic assumption that the received rays, i.e. the DP 

and the closely spaced MP rays, are uncorrelated. Therefore, a new 

method has to be developed to consider closely spaced MP rays (i.e. 

correlated MP rays). This is the motivation behind chapter two of this 

thesis. 

2. At the Selection Layer: Large ranging errors implicit over a MP channel 

and with low received SNR. can cause large positionihg error. Several 

Cramer-Rao Lower Bound (CRLB) studies recommend the detection and 

rejection of RS observations, which are encountering such large delay 

errors rather than estimating and removing their respective biases. Several 

techniques have been developed to detect signals with large ranging errors. 
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Generally, they model the problem of detecting MP signals as a binary 

hypothesis detection problem. If the distribution under the MP hypothesis 

is known, then the detection problem can be solved using conventional 

hypothesis testing [23]. However, the distribution of ranging 

measurements under the Mi? hypothesis is usually unknown. After 

natively, Geometrical Dilution of Precision (GDOP) and Receive Signal 

Strength (RSS) can be used to help in selecting appropriate RSs, however 

optimality is not guaranteed in this case. Therefore, a practical detection 

technique, which does not assume the knowledge of the distribution of the 

large ranging errors, should be developed. This is the motivation behind 

chapter three. 

3. At the Positioning Layer: Current techniques that are used to fix the 

position of a radio device generally assume that the channel is an Additive 

White Gaussian Noise (AWGN) channel with no large ranging errors. 

Such assumption is not realistic and require a new positioning method that 

is robust against large ranging errors. This is the first motivation behind 

chapter four of this thesis. The second motivation behind chapter four of 

this thesis is as follows. In distributed systems, the unavailability of RSs 

encourages researchers to think about building local coordinates within the 

distributed networks. A method found in [2] is used to build local 

coordinates for WSNs. This is the only work of its kind as far as building 
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local coordinates within a WSN is concerned. The algorithm has the 

following drawbacks: 1) the method requires that each sensor node build 

its local coordinate system. Hence, the number of local coordinate systems 

grows linearly with the size of the WSN. 2) The algorithm does not 

consider the effect of measurement imperfections such as noise and large 

ranging errors. 3) The algorithm does not consider the effect of GDOP on 

the location accuracy. 

4. At the Network Layer: Infrastructure systems have a unique coordinate 

system which belongs to the coordinate system of the RSs. On the other 

hand, distributed systems do not have a unique coordinate system. 

Therefore, merging local coordinates, is mandatory in distributed systems 

in order to have a unique set of global coordinates for the entire network. 

A method found in [62], referred to as the directional method, is used to 

merge local coordinates built by sensor nodes. The drawbacks of this 

method are 1) the local coordinates are merged without attention to 

positioning errors implicit to any WSN, which can lead to substantial 

positioning error within the entire WSN due to the propagation of ranging 

errors. 2) The directional method requires more than twice the number of 

computations compared to a technique proposed in this thesis: Two-

Dimensional Coordinate Transformation Models (2D-CTMs). 3) The 

directional method does not consider the scaling factor between the 
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various local coordinates systems as a merging parameter to be estimated. 

This is the motivation behind chapter five of this thesis. 

1.7 Overview of Contributions 

This thesis attempts to address fundamental problems in current wireless location 

systems. Novel methods are proposed in this thesis which can advance the wireless 

location industry, both for infrastructure wireless location networks (i.e. GPS and 

Network Based Location), and for distributed systems. The contributions of the thesis in 

the context of the first four layers: physical layer, selection layer, positioning layer, and 

network layer are as follows: 

Contribution 1 - At the Physical Layer: 1.1) A novel Multi-Resolution Estimation 

(MRE) technique based on an orthogonal search is introduced to enhance the sensitivity 

of the wireless location receiver. 1.2) In addition, the proposed technique attempts to 

resolve the problem of closely spaced rays (i.e. correlated MP rays) and to estimate their 

time delays without bias. These contributions are contained in chapter two of the thesis. 

Contribution 2 - At the Selection Layer: 2.1) A novel Skew-Normal Outlier Detection 

(SNOD) technique has been introduced to offer further robustness against MP rays in 

particular, and large ranging errors in general. The SNOD technique is based on the 

Skew-JVormal (SIT) distribution which is a new class of distributions that have not been 
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considered before either in wireless communication nor in wireless location. 2.2) In 

addition, the SNOD technique is the only detection technique that considers multiple time 

delay estimates from a single RS. These contributions are contained in chapter three of 

the thesis. 

Contribution 3 - At the Positioning Layer: 3.1) Robust positioning error minimization 

techniques based on IRLS (e.g. Huber, and L1 - L2), L1 - norm, and combined 

estimators are introduced. 3.2) I propose the subspace method to be used within the Free 

Network Adjustment (FNA) technique to resolve the singularity found within the normal 

matrix. FNA is a common technique used in Geomatics Engineering to minimize 

positioning error. 3.3) I propose augmented FNA techniques, which are robust against 

large ranging errors. 3.4) A novel CL technique is introduced to overcome the 

unavailability of RSs in WSNs. The proposed CL technique is self-configurable, scalable, 

and independent of any positioning system. The introduced CL technique uses the RSS 

and the GDOP found at the selection layer as factors for building Cluster Local 

Coordinates (CLCs). These contributions are contained in chapter four of the thesis. 

Contribution 4— At the Network Layer: 4.1) I introduce 2D-CTMs which are 

commonly used in Surveying Engineering to merge CLCs in distributed systems. 4.2) I 

also introduce augmented 2D-CTMs, which are robust against large ranging errors. 4.3) 

The scale factor is considered as a merging parameter to be estimated due to different 

ranging errors that are found between the clusters in the distributed network. 4.4) A 

15 



complete 2D-CTM based on L1 - norm estimation, is introduced. These contributions 

are contained in chapter five of the thesis. 

Figure 4 shows the thesis contributions in the context of the first four layers: the 

physical layer, the selection layer, the positioning layer, and the network layer. 

Network Layer: Geometrical Dilation Of Precision, 

Least Square, Iterative Reweighted Least Square, Li-
norm, and Combined Estimation. 

Positioning Layer: Least Square, Iterative 

Reweighted Least Square, Li-norm, and Combined 
Estimation. 

Selection Layer: Skew-Normal Outlier Detection 
Technique 

Physical Layer: Multi-Resolution Estimator 

Figure 4 Contribution of the thesis with respect to the layers in wireless location. 
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1.8 Outline of the Dissertation 

This thesis consists of six chapters. The first chapter is an overview of wireless 

location applications and systems. Challenges and motivation behind the research work in 

the thesis are also addressed in the first chapter as well as thesis contributions and 

outcomes. Chapter two introduces a novel MRE technique in the physical layer, while 

chapter three proposes the SNOD technique in the selection layer. In chapter four, robust 

positioning error minimizatibn techniques are introduced at the positioning layer, as well 

as a unique solution to resolve the wireless location problem associated with the 

unavailability of RSs in distributed systems (i.e. WSNs). Chapter five introduces robust 

merging coordinate techniques to be used at the network layer to merge CLCs of the 

distributed systems. Finally, chapter six concludes the thesis and addresses future 

potential work. 
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Chapter Two: PHYSICAL LAYER 
A NOVEL MULTI-RESOLUTION PROPAGATION DELAY ESTIMATION 

TECHNIQUE USING ORTHOGONAL SEARCH 

This chapter deals with the problem of estimating the range between a transmitter 

and a receiver using measurements obtained over the wireless channel. In this chapter, I 

propose a Multi-Resolution Estimation (MIRE) technique based on an orthogonal search 

to enhance the sensitivity of the Maximum Likelihood Estimator (MLE) and to estimate 

the propagation delay between a transmitter and a receiver without bias by resolving the 

Direct Path (DP) ray from the Multipath (MP) rays. 

2.1 Introduction 

The most widely employed ranging measurement technique is based on 

estimating the propagation delay (or its differences) as measured via DP from the 

transmitter to the receiver. A maximum Likelihood Estimator (MLE) uses a correlator 

followed by a peak detector to estimate such delays. This estimation technique is 

asymptotically unbiased only when the separation between the DP and the MP rays is 

asymptotically larger than the Rayleigh resolution of the system as shown in Figure 5. In 

many cases, the DP ray is followed closely by a number of MP rays that arrive at the 

receiver within a short time delay. If this delay is, smaller than the duration of the 

Rayleigh resolution of the system, as shown in Figure 6, then the two rays can 
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significantly overlap thereby causing a bias in the time delay estimated by the peak 

detector. 

Overlapped Rays 

-4- Direct Path Ray 
-- Mulilpath Ray 

Composed Signal 

0.8 

0.2 

-0.2 

30 40 50 60 70 
Propagation Delay (microsecond) 

80 

Figure 5 The DP ray leads the MP ray by a time delay larger than the Rayleigh resolution 
of the system. 
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Overlapped Rays 

30 40 50 60 70 
Propagation Delay (microsecond) 

80 

Figure 6 The DP ray leads the MP ray by a time delay less than the Rayleigh resolution. 

To separate rays that are spaced closer than the Rayleigh resolution, several 

super-resolution estimation algorithms have been proposed. Based on their theory of 

operation, I can classify them into: 1) Least Squares (LS) methods and 2) Sub-space 

methods. LS methods can introduce significant additional errors when the rays are spaced 

closer than the Rayleigh resolution due to the noise enhancement that arises from the ill-

conditioned nature of the matrices that are involved in the LS operation [1]. In order to 

overcome the noise enhancement problem related to LS methods, sub-space approaches 

have been introduced. In sub-space methods, the received signal is split into two 

orthogonal subspaces known as the signal subspace and the noise subspace using spectral 
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(or Eigen) decomposition, which is based on the Singular Value Decomposition (SVD) 

algorithm. These approaches show improvement in estimating the propagation delay over 

the LS approach [1]. However, the orthonormal Eigen vector bases formed by the SVD 

algorithm assume that the received rays are independent. If some of the rays are partially 

correlated, which is the case in closely spaced MP rays, the Eigen value matrix is no 

longer diagonal (i.e. becomes defective), and I therefore cannot reconstruct the received 

signal due to the shortage of Eigen vectors [6]. Signal decorrelation by smoothing was 

found in [1] to be helpful but not efficient in the use of the observation data. Multiple 

Signal Identification and Classification (MUSIC), one of the super-resolution algorithms, 

is based on the sub-space methods. Appendix A discusses MUSIC and its corresponding 

signal decorrelation by smoothing [1]. 

In this chapter, I am going one-step further to consider the correlation between 

closely spaced rays. I am not only projecting the received signal into two orthogonal sub-

spaces: signal and noise, but additionally, in the signal subspace, I propose to conduct a 

multi-dimensional orthogonal search to guarantee projecting a number of the correlated 

rays into different orthogonal bases. In order to ensure the sufficiency of the proposed 

multi-resolution orthogonal search, at each step, the Mean Square Error (MSE) is 

minimized to evaluate the contribution of the resolved ray(s). This process is performed 

using an orthogonal search technique based on the Orthogonal Least Square Regression 

(OLSR) algorithm. A Fast Orthogonal Search (FOS) technique, which is based on the 

OLSR algorithm, is discussed in Appendix B. 
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2.2 Problem Formulation 

In this section, I consider signals that are transmitted through a radio channel and 

which are corrupted only by Additive White Gaussian Noise (AWGN) and by MP. The 

MP channel is generally modeled as a linear filter. If s (t) is the transmitted lowpass 

equivalent signal, then over a MP channel, the received lowpass equivalent signal, r(t), 

can be modeled as 

r(t) = E1=1 aks(t - Tk)ef Bk + n(t) (1) 

where 

M is the number of MP arrivals, 

ak is the amplitude of the kth arrival, 

Tk is the time delay of the kthi arrival, 

0k. is the phase of the kthl arrival, 

n(t) is the AWGN. 

Of interest here is that the received signal is the sum of a number of scaled, phase 

shifted, and time delayed replicas of the transmitted signal. Without loss of generality, I 

will assume throughout the thesis that t <TM, and that the time delay T1, of 

the first replica, s1, is the desired value to be estimated. 

I can rearrange the sampled version of (1) into a matrix form 
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[ r(t1)1 {s(t1—x1)1 rs(t1 —r2)i 

I= aie19i s(t2 - + a2eJ02 s(t2 2) I + 

r(tN)i Ls(tN—Tl) {s(tN_2)i 
-.-------

Nx1 Nx1 NX1 
R S1 S2 

rs(t1 — TM) 1 rn(t1)1 

+aM ej0M (2 .M)I+ I(2), 
LS(tN - TM)] LflN)i 
• N5<1 Nx1 

SM 

where t1, t2, ..., tN are the sampling times. 

Equivalently, 

where 

R=S A + N 
%IJ J J 

Nx1 NxMMx1 Nx1 

R = [r(t1) ... r(tN)] T is a vector form of the sampled received signal, 

(2) 

(3) 

S is an N X M matrix, which represents the M delayed replicas of the transmitted 

signal, 

A [a1ef°1 a2 e1°2 ... aMe1BMJT, is a vector, which represents the amplitude 

and the phase of the M arrival rays, and 
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N = [n(t1) n(tN)] T, is a vector form of the sampled noise. 

S can be rearranged, so that S = [Si SM], where 

Sk = [s(t1 - Xk) s(t2 - Xk) ... s(tN - _1k )]T, 1 ≤ k ≤ M, 

2.3 The Proposed Multi-Resolution Estimation (MRE) Technique 

In this section, the proposed MRB technique is explored. The OLSR algorithm, 

which is the core algorithm of the orthogonal search in the proposed technique; is 

customized for the problem at hand. 

2.3.1 Orthogonal Search: the OLSR algorithm 

The OLSR algorithm is a forward regression procedure used to select a suitable 

set of regressors or, bases, from a large set of candidates. It involves the transformation of 

the set of bases vectors, Sk, into a set of orthogonal basis vectors 1D at a time, and thus 

makes it possible to calculate the individual contribution of each basis vector to the 

problem at hand. At each step, the newly added basis vector is examined in order to 

maximize its contribution toward our desired goal of estimating the time delay r. 

Therefore, the problem of oversized and ill-conditioned matrices associated with the LS 

method, can be automatically avoided [7]. 

In OLSR, the basis matrix S is decomposed into 
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S=W T (4) 
, _J 

NxM NxM MxM 

where 

T is an upper triangle matrix with l's on the diagonal, and zeros below the diagonal, 

and 

W is an N X M matrix with its kth column Wk = [Wi W2 W N ]T chosen to be 

orthogonal to the other columns of W for k = 1, ..., M. 

Any orthogonal decomposition method such as Gram-Schmidt (GS), modified 

GS, QR factorization, or Householder transformation can be used to decompose S in (4). 

Using (4) in (3), I obtain: 

R = W T A + N (5) 
J 

Nx1 NxMMxMMx1 Nx1 

R = W G + N (6) 
Nx1 NxMMx1 Nx1 

where •G = TA is an M x 1 vector. 

The LS solution for G in (6) is given by 
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=( )_1 WT R Li LIJ %d 
Mx1 MxNNxM MxNNx1 

or equivalently, the k1h element ,61, of is given by 

T 
- Wk  

(W k Wk) 

The geometrical interpretation of (8) can be described as the projection of the matrix R 

into its new basis vectors Wk. 

(7) 

(8) 

The number M of basis vectors, Wk, selected on W is determined based on a 

stopping criterion. In general, there are three possible stopping criteria in the OLSR: 

1) An acceptable MSE is reached: 

MSE = RTR -  Em  g WWk (9) 

2) A specific number, M, of terms is selected, or 

3) When none of the remaining candidate basis vectors yields a sufficient MSE reduction. 
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At the ktht step, the size of the space spanned by the selected vector, Wk, is 

increased from k - 1 to k by introducing a new basis vector. The newly added basis 

vector further reduces the MSE. Let us define a function, °1D that measures the 

contribution of the newly added basis vector. The reduction of the MSE, which is given 

by (9), indicates the contribution of the newly added basis vector Wk: 

OID = 9WWk (10) 

The value of °1D has to be evaluated for a candidate to be selected in the system model 

[7]. 

2.3.2 The Multi-Resolution Estimation (MRE) Procedure 

In the previous section, I explored how to project the received signal into 

orthogonal vectors, and hence decompose the received signal into independent rays. In 

this section, I explore the 1D level and the 2D level of the MRE technique. 

The 1D level of the Multi-Resolution Estimation (MRE) Technique  

The aim of the 1D level is 1) to increase the sensitivity of the ML estimator and 

2) to resolve MP rays that are separated in their arrival times by more than the duration of 

the Rayleigh resolution of the system relative to the first arrival ray. The procedure is as 

follows: 
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Step 1: Form the set S (s1, s2, ... ,SM) of all candidates 5 i' S2, ..., sM, which correspond 

to the time delays r1, T2 ' ... respectively. 

Step 2: Determine their corresponding weights ' ..• §M as follows: 

s1R 
2i r 

S's1 

- s2R 
22 T s2s2 

SMR 

T 
SMSM 

Step 3: Choose the candidate in S = (s,, S2, SM) that maximizes the function 

(t)2sTs. I will refer to such candidate as w1 (=- S. 

Step 4: Orthogonalize the remaining candidates in S with respect to w1 to obtain the set 

W of orthogonal bases vectors, where W = (w1, W2, ..., w). 

Step 5: Determine the weights , , ... , corresponding to w1, w2, ... , w 

respectively, where 

91 =th 
•_, wR 
22 — T 

w 2w2 

WMR 

T 
WMWM 

Step 6: Arrange the set W in a descending order according to its °1D value, i.e. according 

to: (g)2ww1, (g) 2ww2, ... , (g') 2wTw 
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Step 7: Use the chosen stopping criterion to estimate M. 

Step 8: Choose the time delay that corresponds to the earliest time delay among the M 

selected candidates as i.e. as the estimated time delay of the DP using a 1D search. 

In the case when closely spaced MP rays are present, a multi-dimensional search 

has to be conducted since the 1D orthogonal search often fails to distinguish between 

such rays. 

The 2D level of the Multi-Resolution Estimation (MRE) Technique  

The aim of the proposed 2D level of the MRE technique (i.e. of the 2D 

orthogonal search) is to resolve closely spaced MP rays. The procedure of the proposed 

multi-resolution algorithm is as follows: 

Step 1: Obtain the time delay estimate 'I of the DP ray using the 1D level of the MRE 

technique as discussed above. 

Step 2: Form a search domain, which consists of two independent search windows: A 

backward search window to the left of f ID and a forward search window to the right of 

.1D• Each search window spans a time duration equal to the Rayleigh resolution, tR, of 
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the system, i.e. it spans - tR, .1D + tRJ as shown in Figure 7. The two search 

windows correspond to the 2D orthogonal search of the proposed algorithm. 

Step 3: Form the set Sb = {Slb ,. 

the backward time delays X1b, 

(S1f, ..., Sp1jf) of 1D vectors 5ip 

Tlf' T2f, IMf, respectively. 

SMb} of 1D vectors 5 1b' •.•, sMb which correspond to 

TMb, respectively. Also, form the set 

5Mf which correspond to the forward time delays 

Step 4: Form the set S2D = [... ,(Sib, 5ff ),") of 2D vectors, which consists of all 

possible combinations of 1D vectors in Sb and in S. 

Backward Search 
Window 

V 

Search Domain 

Forward Search 
Window 

TI-ID ±t] 

Time Delay 

Figure 7 The two search windows for the 2D level of the MRE technique. 
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Step 5: Orthogonalize each 2D vector in S2D to obtain a set W2D = { ... , (ivI,, Jf) } 

of orthogonal 2D vectors. 

Step 6: Determine the corresponding weights b' and for each 2D vector 

(Wib, Wjf), where 

-'2D - wibR 
Yib - T 

WjbWtJ, 

-2D W1fR 
,gff= T 

Wjf W3f 
V i,j 

Step 7: Arrange the set W2D in a descending order according to its °2D value: i.e. 

according to (2D ) 2 ib T W 1j, + (91f Wif 2 WJf V i,j. 

Step 8: Choose the set that corresponds to the maximum 02D as the set which 

corresponds to the DP. I will refer to such set as (WIb, W3f )opt .  The time delay i12D that 

corresponds to the estimated DP is obtained as the backward time delay in (wb, Wjf )opt 

In the case when no set has sufficiently contributed to the MSE threshold, an 

upgrade of the search can be conducted. A 3D orthogonal search can be used where two 

independent backward search windows and one forward search window are selected. 
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2.4 Simulation Results 

In this chapter, I examine the capability of the proposed MRE technique in 

resolving correlated MP rays through simulation. The simulation parameters are found in 

Table I. 

2.4.1 The JD level of the Multi-Resolution Estimation (MRE) Technique: 

A comparison for the MSE of the time delay estimates between the 1D level of 

the proposed MRB technique and the conventional peak detector is shown in Figure 8 for 

different values of Signal-to-Noise Ratio (SNR). When the SNR reaches a certain 

threshold, the noise generates false peaks that can be larger than the true correlation peak, 

hence confusing the peak detector and causing outliers. This is referred to as the 

"threshold effect". Figure 8 shows that the threshold effect for the proposed multi-

resolution orthogonal search occurs at 15 dB, while for the conventional peak detector it 

occurs at 12 dB. This implies that the sensitivity of the proposed 1D orthogonal search 

outperforms the sensitivity of the peak detector by 3 dB. 

A comparison for the Probability of Detection (PD) between the 1D level of the 

proposed MRE technique and the peak detector is shown in Figure 9 for different SNR 

levels. In this simulation, I assume that if the error in the time delay estimate is less than 

1.25 bus, then a correct decision (i.e. a correct detection) has been made. Figure 9 shows 

that the proposed MRE technique has a 3 dB performance improvement over the peak 

detector. 
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2.4.2 The 2D level of the Multi-Resolution Estimation (MRE) Technique: 

In this chapter, I consider the 2D level of the proposed MRB technique. In the 

examined scenarios, I consider the case of one MP ray that is correlated to the DP ray and 

many MP rays that are separated in their arrival time by durations larger than the 

Rayleigh resolution of the system. In these simulations, I use high SNR levels to compare 

the performance of the 2D level of the proposed MRB technique with the performance of 

the peak detector to guarantee that the bias in the time delay estimate of the DP ray is due 

to correlated MP rays and not caused by the threshold effect. Table II to IV compare the 

error in the time delay estimates for the 2D level of the proposed MRB technique with 

that of the MLE for various delays and phase shifts between the DP and the MP. These 

results corresponds to a multipath channel with two rays: the DP ray and the MP 

component. The PD is defined in Table II to IV as the probability of detecting the two 

rays (i.e. the DP ray and the MP component). Table II to IV show that the peak detector 

has a TOA eror with a mean that is directly proportional to the delay of the MP 

component. 

Table I_Simulation Parameters for the Positionin: La er 

Parameter Value 
Rayleigh resolution of the 1 ps 
system 
system bandwidth 1 MHz 
oversample 8 
no. of iterations 10000 
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Figure 8 The MSE of the time delay estimation of the 1D of the proposed MRE technique 
and of the MLE technique. 
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Figure 9 The PD of the 1D of the proposed MRE technique and for the MLE technique. 
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Table II MRE vs. MLE, SNR=22 dB, Ration between the DP and the MP component = 
6 dB, Phase Difference between the DP and the MP component is 00 

Delay of 

MP 

component 

relative to 

the DR ray 

is (ns) 

Peak 

Detector 

TOA Error 

Mean in ns 

2D MRE 

TOA Error 

Mean inns 

Peak 

Detector 

TOA PD 

2D MRE 

TOA PD 

No Mp -4 -192 0% 0% 

250 164 -6 0% 7% 

500 336 117 0% 33% 

750 512 137 0% 70% 

1000 700 12 0% 97% 

1250 911 -84 0% 100% 

2000 1850 184 100% 100% 

3000 3141 -25 100% 100% 
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Table III MRE vs. MLE, SNR=22 dB, Ration between the DP and the MP component = 
= 6 dB, Phase Difference between the DP and the MP component is 900 

Delay of 

MP 

component 

relative to 

the DR ray 

is (ns) 

Peak 

Detector 

TOA Error 

Mean in ns 

2D MRE 

TOA Error 

Mean in ns 

Peak 

Detector 

TOA D 

2D MRE 

TOA PD 

250 238 -4 0% 20% 

500 486 48 0% 80% 

750 754 -71 43% 97% 

1000 1034 -99 90% 100% 

1250 1305 -94 100% 100% 

2000 2022 -30 100% 100% 

3000 2960 8 100% 100% 
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Table IV MRE vs. MLE, SNR=22 dB, Ration between the DP and the MP component = 
= 6 dB, Phase Difference between the DP and the MP component is 1800 

Delay of 

MP 

component 

relative to 

the DR ray 

is (ns) 

Peak 

Detector 

TOA Error 

Mean in ns 

2DMRE 

TOA Error 

Mean in ns 

Peak 

Detector 

TOA D 

2D MRE 

TOA PD 

250 266 76 0% 7% 

500 549 210 17% 57% 

750 840 4 67% 97% 

1000 1120 -102 100% 97% 

1250 1374 -134 100% 100% 

2000 2036 -41 100% 100% 

3000 2927 7 100% 100% 
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Table V MRE vs. MLE, SNR=15 dB, Ration between the DP and the MP component = 
6 dB, Phase Difference between the DP and the MP component is 00 

Delay of 

MP 

component 

relative to 

the DR ray 

is (ns) 

Peak 

Detector 

TOA Error 

Mean inns 

2D MRE 

TOA Error 

Mean in ns 

Peak 

Detector 

TOA D 

2D MRE 

TOA PD 

NoMp 5 -157 0% 0% 

250 164 -69 0% 3% 

500 337 31 0% 20% 

750 514 10 0% 40% 

1000 704 -104 0% 40% 

1250 916 -159 0% 53% 

2000 1890 151 17% 57% 

3000 2973 -47 80% 50% 

39 



Table VI MRB vs. MLE, SNR=15 dB, Ration between the DP and the MP component = 
= 6 dB, Phase Difference between the DP and the Ml? component is 900 

Delay of 

MP 

component 

relative to 

the DR ray 

is (ns) 

Peak 

Detector 

TOA Error 

Mean in ns 

2DMRE 

TOA Error 

Mean in ns 

Peak 

Detector 

TOA D 

2D MRE 

TOA D 

250 246 -171 0% 7% 

500 500 -140 0% 47% 

750 765 -57 7% 70% 

1000 1019 -22 27% 80% 

1250 1284 12 37% 80% 

2000 2018 -7 37% 83% 

3000 2971 8 43% 77% 
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Table VII MRE vs. MLE, SNR=15 dB, Ration between the DP and the MP component = 
= 6 dB, Phase Difference between the DP and the MP component is 1800 

Delay of 

MP 

component 

relative to' 

the DR ray 

is (ns) 

Peak 

Detector 

TOA Error 

Mean in ns 

2D MRE 

TOA Error 

Mean inns 

Peak 

Detector 

TOA PD 

2D MRE 

TOA PD 

250 273 58 0% 13% 

500 577 222 0% 20% 

750 859 -1 7% 30% 

1000 1139 81 20% 37% 

1250 1383 86 30% 47% 

2000 2026 -43 43% 50% 

3000 2929 -76 43% 67% 

2.5 Conclusion 

In this chapter, a novel Multi-Resolution Estimation (MRE) technique based on 

orthogonal search is introduced to enhance the performance of the MLE. More 

specifically, the proposed technique attempts to resolve the problem of closely spaced 

rays (i.e. of correlated MP rays), and to estimate their time delays without bias. 

Simulation results have shown that when the 1D MRE algorithm is used, the sensitivity 

of the MLE is improved by 3 dB. A comparison between the conventional MLE and the 
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2D MRE algorithm showed a significant improvement in resolving correlated MP rays in 

addition to the 3 dB improvement in sensitivity. 
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Chapter Three: SELECTION LAYER 
A NOVEL SKEW-NORMAL OUTLIER DETECTION TECHNIQUE 

This chapter deals with the problem of estimating the 2D position of a radio 

device based on the collection of a number of ranging estimates obtained between the 

radio device and a number of RSs of known positions. 

3.1 Introduction 

Different positioning estimation techniques are available, see for example [1] [18]. 

The overall objective of these techniques is to minimize the effect of ranging 

measurements error on the positioning error. In the previous chapter, I have improved the 

sensitivity of the Maximum Likelihood range estimator by 3 dB and reduced the effect of 

multipath on the biasing of the range estimate. In this chapter, I limit once again the 

sources of error in the ranging estimates to two: 1) AWGN and 2) bias. In other words, I 

have two scenarios per received delay estimate: A scenario where the propagation delay 

estimate is unbiased Additive White Gaussian (AWG), and a scenario where the 

propagation delay estimate is biased AWG. I will refer to the unbiased scenario as the DP 

scenario, and to the biased scenario as the MP scenario (also known as the NLOS 

scenario). 
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Many studies offer a solution for the biased scenario based on estimating an extra 

parameter, which is the bias in the ranging estimate. Meanwhile, different analytical 

studies for CRLB show that by detecting and then rejecting biased estimates, position 

estimates improve considerably [20] [21] [22]. Hence, different techniques have been 

developed to detect biased estimates. Generally, the problem of detecting biased 

estimates is modeled as a binary hypothesis detection problem. The probability density 

function (pdf) of the ranging measurements under the unbiased hypothesis is usually 

known except for its mean, which is determined by the true range. If the distribution 

under the biased hypothesis is also known, then the detection problem can be solved 

using conventional hypothesis testing. However, the pdf of ranging measurements under 

the biased hypothesis is usually unknown. Therefore, a detection technique, which does 

not assume the knowledge of the biased pdf should be developed [23]. 

In this chapter, a novel selection technique based on the SNOD technique is 

introduced. The SNOD technique is based on the Skew - Normal (51V) distribution, 

which is a new class of distributions that have not been considered before either in 

wireless communication nor in wireless location. The SJ\1 class of pdf s extends the 

Gaussian distribution model by allowing a shape parameter to account for its skewness 

[29][31][32][33], hence, encompassing a large number of popular distributions as shown 

below. 
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3.2 Background 

Currently, there are two techniques are used to select RSs to be used to fix the 

position of a radio device. These techniques are 1) Received Signal Strength (RSS) and 

2) Geometrical Dilution of Precision (GDOP). RSS is used by allowing RSs that their 

RSS at the radio device are exceeding certain threshold. 

3.2.1 Geometrical Dilution of Precision 

GDOP is a factor that links between the ranging error to the positioning error, as 

follows 

PE=RE•GDOP (11) 

where 

PE is the positioning error, and 

RE is the ranging error 

Equation (11) implies that I can have different values for the positioning error, PE, 

for the same ranging error, RE, due to GDOP. Figure 10 shows fixed ranging errors for 

different positioning errors of a receiver with an unknown position using two RSs: RS1 

and RS2, with known positions. 
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Figure 10 The effect of GDOP is illustrated as a function of the ranging error. The shaded 
areas are the different positioning errors. 

3.2.2 Preliminaries 

Consider a simple case of propagation delay estimation, where a radio device (e.g. 

a mobile device or a GPS receiver) with an unknown location receives a radio signal 

from a number of RSs with known locations (e.g. Cellular Base-Stations or GPS 

satellites). Without loss of generality, I will assume in this chapter that the position of the 

radio device is estimated using hand-set based wireless location. In other words, in this 

chapter, wireless location is performed based on the delay estimates obtained from all 
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RSs. Let R = (1,2, , R) be the set of indices of the RSs, whose positions (Pr = 

(Xr, yr)T, r E R) are known. Let NL = {k1, k2, ••, kN} be a set of biased estimates, which 

can be relabelled as (1,2, •••, N). Let the complement of NL, be denoted as L = R - NL 

(i.e.the set of unbiased estimates). The parameters to be estimated are the position 

= (x, y)Tof the radio device and the N propagation induced path length biases, 

1 = (1, IN )T, with 1i > 0, Vi, i = 1, , N . For convenience, I define an (N + 2)-

dimensional vector 0 by concatenating the unknown p and I parameters. 

0 (x,y,ll,12,...,IN)T (12) 

A delay estimate can be approximated as 

1rr+flr, for rER (13) 

where the delay tr is 

Tr (J(Xr _X)2 +(yr _y) 2 +1r), for r E R (14) 

with 1, = 0 for r E L, and the estimation error n. in (12) conforms to a Gaussian 

distribution JV'(0, o) with zero mean and variance r7?. 
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This leads the rth unbiased estimates to have a Gaussian pdf J'T(/IDP, Op) with 

mean I2Dp and variance Op where 4UDp is the true range J(Xr - x)2 + (Yr - Y)2 

assumed in this chapter to be a deterministic unknown quantity. On the other hand, the 

th biased estimate must have a Gaussian pdf J'T(ILMp,, 4p,), where the mean I1Mp,j = 

I1MP,i + l, for i = 1, , N. In the following analysis, I assume that no a priori statistic of 

1 = (ljj 12, ..., 1N )T is available. 

A literature review is carried out in the following subsections. Previously 

proposed statistical models for the NLOS environment are reviewed in subsection 3.3 

followed by their corresponding detection techniques in subsection 3.4. 

3.3 Distributions Models for the biased estimates 

Knowing the distribution model for the biased estimates can give insight about the 

best detection technique to use and its corresponding threshold value. There are two 

sources of bias in the range estimate as discussed in chapter two. The first source is due 

to MP and the second is due to the threshold effect. In this chapter, I will deal uniquely 

with MP. Therefore, in this section, I review previous studies in modeling the pdf 

distributions of MP. The Rician model and by extension the Rayleigh model have been 

suggested to model the pdf of MP signals [34]. Rician and Rayleigh distributions are 

based on some key assumptions. For both models, a large number of independent 
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components are presumed to be received, with unknown amplitudes and random phases. 

Another key assumption behind the Rician model is that the DP signal is present. In most 

cases, DP signals are visible, but generally shadowed due to propagation through building 

materials. Therefore, the lognormal distribution is used to model shadowing. A statistical 

distribution called a Loo distribution combines the MP characteristic of Rayleigh fading 

with a lognormal distribution for the shadowed DP signal [34]. Considering the 

application of Loo's pdf distribution for MP, some improvement over the Rician model is 

possible because the Loo distribution accounts for a shadowed signal. A Karasawa Three 

State Fade Model (KTSFM) consisting of a weighted distribution of Rayleigh, Rician, 

and Loo functions is proposed in [34]. A modified version of KTSFM called Urban Three 

State Fade Model ([JTSFM) is proposed in [34]. An evaluation of the KTSFM and of the 

UTSFM can be found in [34]. 

Numerical analysis has also been conducted to further examine the CRLB in the 

presence of MP signals. CRLB is the inverse of the Fisher Information Matrix (FIM). It is 

found that the FIM becomes generally singular in the presence of MP signals, making its 

inverse non-existent, i.e. there can be no guarantee of a finite error variance [20]. Based 

on the singularity of the FIM, [20] suggests to model the MP distribution as a "half-

Gaussian" distribution because the distribution must have a local maximum. Another 

analytical study suggests modeling the MP distribution as a Gamma distribution due to 

the nonnegative nature of the additive MP bias [21] [35] [36]. 
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3.4 Detection of Multipath (MP) signals 

3.4.1 Theoretical Decision Approach 

[37] proposes a theoretical decision framework for the detection of MP signals. 

The analysis assumes a complete lack of characterization of the MP signal, hence, the 

approach in [37] relies on the fact that the variance of the MP signals is greater than that 

of the DP signals. Therefore, the hypothesis testing can be based on 

H0: a2 = aDP 
ii. 2 _ 2 a - aMP 

The unbiased estimator using sample variance estimates is given by: 

where 

H1 
82 , 

H0 

(15) 

(16) 

Y is an unknown threshold value to be found. If I consider H1 such that 

82 > ap, then y = ap. 
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3.4.2 Non-Parametric Approach 

This approach has been proposed by [23]. In this case, the hypothesis testing is 

based on: 

where 

H0: g(r) = YDP(r) = r + n 
H1: g(r) = gMp(r) = r + r + e 

ej corresponds to the bias. 

(17) 

The pdf of the noise, n, is given by f (x), which is completely known. Thus, the 

pdf of the measurements in the DP hypothesis case is given by f (x r). Note that this 

distribution is completely known except for one parameter,r, which affects only the mean 

of the distribution. The main idea in the non-parametric MP detection technique is to 

compare the closeness of this pdf to the pdf of the range measurements. Thus, [23] first 

approximates the pdf of the range measurements non-parametrically, then it compares the 

closeness of this pdf to the DP pdf by defining a distance metric, and finally it decides on 

a DP hypothesis versus a MP one after a threshold test. 
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3.4.3 Statistical Approach 

Since MP signals add a large positive bias to the true range, it can be expected 

that the measured range has a skew distribution [38] [39]. To test if MP signals are 

present, certain outlier tests can be employed as shown below. 

Skewness and Kurtosis Test:  

When a normal sample with an unknown mean contains some observations, 

which have a shift in the mean (also unknown) in the same direction, the locally best 

invariant single-sided test for detecting MP signals is the Skewness test. The third 

moment of skewness test is based on the skewness, which is defined as: 

Skewness = !vTs (xt f 3 
I 

where 

TS is the number of x1 samples 

is the average of the samples 

is the standard deviation 

(18) 

When the Skewness is greater than zero, the data is skewed to the right of the 

mean and vice versa. When less than 21% of the observations are normal with a shift in 
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the mean, regardless of direction, then the Kurtosis test, which is based on the fourth 

moment, is the locally best invariant test for detecting outliers. In other words, the 

Kurtosis test is based on the value of the Kurtosis, which is defined as: 

Kurtosis -- E(x1-u)4 

where p is the mean value of; 

(19) 

The Skewness and Kurtdsis tests lead to acceptance or rejection of one of the 

hypotheses at some significant level. However, while using moment based tests, 

problems might arise when a skewed distribution has odd moments of zero or when a 

non-normal density has a kurtosis of three, similar to a Gaussian distribution [39]. 

Reliability Analysis (A posterior Outlier Detection:  

From normal probability theory, residuals are expected to be small and randomly 

distributed. Although residual sizes can suggest observational errors, they do not 

necessarily identify the observations that contain outliers. This is due to the fact that 

Least Squares (LS), which is a common estimation method used in wireless location, 

generally spreads a large observational error or outliers out radially from its source. 
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However, this condition is not unique to LS since any closed form estimation method will 

also spread a single observational error throughout the entire observational set [73]. 

3.5 Problem Formulation Based on the Skew-Normal Distribution 

A detection problem is considered in this section. The radio device to be located 

receives a radio signal transmitted from a number of Ms. The best location estimate of 

the radio device is obtained by processing the delay estimates obtained only from DP 

signals. 

In this section, I propose to use a new type of distribution called the SN 

distribution [40]. SN refers to a parametric class of probability distributions which 

includes the Gaussian distribution among others. The SN class of densities extends the 

normal distribution model by allowing a shape parameter to account for its skewness 

[40][43][44]. In this chapter, the pdf of the SN distribution is given by 

f(; cY, it, A) = .. ço (x-") (A - 

0• CT ' CT) 
(20) 

where çø and J represent the pdf and the cumulative density function (cdf) of the 

Gaussian distribution, respectively, and A is a real number which indicates the skewness 
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of the distribution. If A is a positive number, the SJV distribution is positively skewed, 

while a negative A indicates that the SJV distribution is negatively skewed. 

The SJV' distribution, due to its mathematical tractability and inclusion of the 

standard normal distribution, has attracted a lot of attention in the statistical literature. 

[32][33] discuss basic mathematical and probabilistic properties of the SJ'1 distribution. 

[41] [45] focus on the theoretical developments of varies extensions and multivariate 

generalizations of the SJV' distribution. [47] tabulates the cdf of the SJV distribution and 

illustrates the use of their table in a goodness-of-fit testing. [48] analyzes the S.W 

distribution based on the Bayes approach. The SJV distribution was found to be quite 

useful in modeling real data in [41]. There is a growing statistical literature focused on 

the use of sampling models that are able to capture the non-Gaussian behaviour of real 

data [31]. 

Some basic properties of the SJV' distribution are as follows [29][42] 

1) When A 0, the SJV (it, o, A) distribution becomes a Gaussian distribution 3V(/2, ci). 

2) When A - ±00, the SJV'(u, ci, A) distribution tends to the half-normal distribution. 
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3) For any positive value of A, the SJVi, o, A) can be modeled as a positively skewed 

distribution. Therefore, the SJV distribution matches the analytical derivations and the 

experimental studies, in which: 

i. When only DP signals are present, its distribution is Gaussian, which is the case 

when A = 0, 

ii. When MP signals are present, the FIM is singular [20], which is the case 

when A---->  ±co, since in this case, the corresponding distributions are half-

normal. 

iii. One of the analytical studies [35] assumed that the distribution in the case of MP 

signals belong to a Gamma distribution, while many experiments modeled the MP 

distribution as other distributions as discussed above. All such distributions can be 

grouped under the class of the 51V distribution. 

This chapter presents a novel SNOD technique based on the SJVt, 0, A) 

distribution to be used to detect MP signals. 
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3.6 The Skew-Normal Outlier Detection (SNOD) Technique 

3.6.1 Binary Hypothesis 

As mentioned before, I have two scenarios per received delay estimate: A DP 

scenario where the propagation delay estimate is unbiased AWG, and a MP scenario 

where the propagation delay estimate is biased AWG. First, I propose to find the six 

possible location estimates, also referred to as crossings, formed from the intersection of 

three circles as shown in Figure 11. Three is a minimum number of RSs required to 

obtain a unique solution for the DS position p = (x, y)T. Each circle in Figure 11 is 

centered around a RS and its radius corresponds to the time delay estimate of the signal 

traveling from the RS to the DS. In this chapter, I shall define two types of crossings: 

clustered crossings and non-clustered crossings. In Figure 11, there are three clustered 

crossings, shown in a dark color, and three non-clustered crossings, shown in a light 

color. The two types of crossings originate from the fact that every two intersecting 

circles cross in a maximum of two points. Over a noiseless DP channel, one of the two 

intersection points correspond to the position of the radio device while the second 

correspond to an ambiguity solution. In order to remove the ambiguity, a third circle is 

required. Over an AWGN DP signal channel, the three clustered crossings are unbiased 

estimates of the position of the radio device while the three non-clustered crossings are 

biased estimates of the position of the radio device. 

The type of crossings in Figure 11 is not unique. Figure 12 shows a second type 

of crossings, where there are two sets of clustered crossings. Over an AWGN DP 
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channel, only one set of the clustered crossings correspond to unbiased AWG estimates 

of the position of the radio device. I will refer to the second set of clustered crossings, 

which correspond to biased estimates of the position of the radio device, as the set of 

bifurcating crossings. 

o Clustered Crossing 
0 Non-Clustered Crossing 

Figure 11 The six possible location estimates, crossings, are formed from the intersection 
of three circles each formed around one RS with the radius of each circle corresponding 

to its respective time delay estimate. 
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Figure 12 Two cluster sets are formed each consisting of three crossings. This scenario 
occurs due to poor RSs geometry. 

Generally speaking, one can have the situation where one or more circles do not 

intersect. In this chapter, I only consider the case of intersecting circles. Hence, for each 

set of three RSs, I have a set of six crossings. Each crossing is associated with a position 

estimate 3 which has two elements: 2Pand 9,. I can model (2p, 9) as having a bivariant 

SJV distribution. For the sake of simplicity, I will talk about 2P or qp individually as 

having a univariant SJ'/' distribution defined as SJf(,.i, o, At,). If the received signals, 

which are used to estimate the DS position are DP signals, the pdf of the estimated 

position, 1DP belongs to SN(ji, up, AP = 0). On the other hand, when at least one of the 

RSs, which is used to locate the radio device, encounters a MP condition, the pdf of the 

estimated position, PMp belongs to S.W(ji,, o, )L), where Ap # 0. Therefore, (16) can 

be tuned to model the detection problem as follows: 
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H0: 2P  'PDP 

H1: A O PMP 
(21) 

In the next subsection, I investigate the proposed method to distinguish the SJV 

distributions according to (21). 

3,6.2 Test of Slçewness 

In this section, I discuss the common statistics that are used to define the middle 

or the center of a distribution. The mean is certainly the best-known center of a 

distribution, while the median is known to be the middle of the distribution. For a 

Gaussian distribution, the mean and the median are asymptotically equal i.e. for an 

infinite number of samples [46]. However, for a finite number of samples, the mean and 

median are very close but not necessarily equal. In this chapter, I use the difference 

between the mean and the median to examine the skewness of the distribution of a 

random variable. In other words, I detect if AP is equal to zero or not based on: 

where 

H1 
I mean - medianj 8 

H0 

8 is a threshold to be estimated and H0 and H1 are defined in (21). 
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3.7 The Proposed Receiver for Wireless Location 

In this section, the four steps of the proposed wireless location receiver as shown 

in Figure 13 are investigated. The proposed technique is based on the assumption that 

redundancy exists in the number of RSs that are visible to the radio device to be located. 

In other words, I assume in this chapter that more than three RSs form intersecting 

circles. 

• Step 1: Generally speaking, the receiver of the radio device is responsible to 

estimate the time delay corresponding to the DP signal received from each visible 

RS. I propose in this chapter to use the MRE technique that was proposed in 

chapter two to estimate the time delay for the signal received from each visible 

• RS.. In this chapter, I shall consider that the MRE provides up to two estimates 

for the time delay of each received signal: T^il and 1j2• The first estimate T^il is the 

value generated, from the 1D level of the proposed MRE technique, while the 

second estimate j2 is the value generated from the 2D level of the proposed MRE 

technique. This can be generalized to include any number of estimates generated 

from any time delay estimator. 
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Figure 13 The proposed wireless location receiver. 

Step 4 

Position 

• Step 2: Using all delay estimates, fil and I2, for i =1, ..., R from step 1, a circle 

centered at each corresponding RS is formed per estimate. Hence, I obtain six 

crossings for each set of three intersecting circles. Equation (22) gives the number 

of combinations of three RSs by taking three circles out of a total of n: 

n! 

(n-3)!3! 
(23) 

where n is the total number of delay estimates, which is equal to two R 

according to Figure 13. 
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• Step 3: For each set of three intersecting circles, detect the three non-clustered 

crossings using the skewness test. This is accomplished as follows. Given the fact 

that I have six crossings per three intersecting circles, form all twenty 

combinations of three crossings out of the six crossings. Perform the skewness 

test for each one of the twenty combinations of three crossings. If all three circles 

correspond to DP signals, with no bifurcation crossings, only the three clustered 

crossings pass the test. If any one of the three circles corresponds to a biased time 

delay estimate, there will be no combinations of crossings that will pass the 

skewness test. If all three circles correspond to DP signals with bifurcation 

crossings, both sets of clustered crossings will pass the skewness test. Hence, the 

occurrence of bifurcation can be detected. In order to decide which set of 

clustered crossings is non-bifurcating, two possible treatments are available: 1) 

ignore such a set of crossings due to its poor geometry, or 2) find the median of 

the other sets of crossing combinations that do not bifurcate and choose from the 

set of crossings which are encountering bifurcation the set of crossings that are 

close to such a median value. 

Sometime, I encounter the special case where two of the circles with 

outliers, are approximately equal in magnitude but of opposite directions. In this 

case, different sets of crossings will pass the skewness test. If this happens, the RS 

selection process encounters a conflict in selecting the RSs, hence, a second stage 

test, which tests the standard deviation of the selected sets has to be conducted. 
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The standard deviation examines the dispersion of the data. Hence, the set, which 

has two outliers with approximately equal magnitude but opposite directions, is 

expected to have a smaller standard deviation. 

• Step 4: In this step, the selected RSs from step three are used to find a final 

location estimate. When the number of selected RSs is three, a unique solution is 

available. When the number of selected RSs is less than three, an infinite number 

of solutions is available. When the number of selected RSs is more than three, no 

solution is available. In the last case, a Least Square Estimator (LSE) can be used 

to find a solution after linearizing (13). This is discussed further in chapter five. 

The four steps in the SNOD technique are illustrated through the following three 

examples. 

Example 1: 

Step 1: Consider the case of four intersecting circles (Cl, C2, C3, and Q. 

Step 2: Compute all sets of six crossings, using three circles per set. 
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Set 123: C1 
Set 124: C1 
Set 134: C1 
Set 234: C2 

C2 C3 
Cl C4 
C3 C4 
C3 C4 

Step 3: Perform a skewness test for each of the twenty combinations of three crossings 

for Set 123. If a combination passes the skewness test, hence this combination can be 

used to estimate the true position of the radio device. By repeating the skewness test for 

Set 124, Set 134, and Set 234, I obtain all combinations that pass the skewness test. 

Step 4: All combinations identified from the last step are used to find the final position 

estimate for the radio device using LSE. 

Example 2:' 

Step 1: Consider the case of five intersecting circles f C1, C2, C3, C4and C5), where 

{C4and C5) corresponds to the same RS, say RS4 (i.e. the circle C4 has a radius 41 and 

the circle C5 has a radius t42). 

Step 2: Compute all sets of six crossings, using three intersecting circles per set. 

65 



Set 123: C1 C2 C3 
Set 124: C1 C2 C4 

Set 125: C1 C2 C5 
Set 134: C1 C3 C4 
Set 135: C1 C3 C5 
Set 145: x x x 
Set 234: C2 C3 C4 
Set 235: C2 C3 C5 
Set 245: x x x 
Set 345: x x x 

Notice that {C4and C5} are not used simultaneously in one set. Step 3 and Step 4 are the 

same as in the previous example. 

Example 3: 

Consider the case of five circles used to estimate the position of a radio device. In 

this example, I would like to consider two methods for Step 2: Method A: choose sets of 

three circles to fix the position of the radio device, and Method B: choose sets of four 

circles to fix the position of the radio device. The robustness of the two cases is 

investigated here: 

Case I: Only one biased time delay estimate is present, 

Case II: Two biased time delay estimates are present. 
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Step 2: Method A: choosing all sets of three circles, I have eight sets: 

Set 123, Set 124, Set 125, Set134, Set 135, Set 234, Set 235, and Set 345. 

Method B: choosing all sets of four circles, I have five sets: 

Set 1234, Set 1235, Set 1245, Set 1345, and Set2345 

• Case I: One biased time delay estimate exists corresponding to C1 

o In Method A: Set 234, Set23S, and Set 345 will pass the skewness test 

performed in Step 3, and three circles will be selected in Step 4. 

o In Method B: Only Set2 345 will pass the skewness test performed in Step  

3., and Step 4 will not add anything in this case. 

• Case II: Two biased time delay estimate exist corresponding to C1 and C2 

o In Method A: Only Set 345 will pass the skewness test performed at Step  

3., and Step 4 will not add anything in this case. 

o In Method B: no sets will pass the skewness test performed in Step 3. 

67 



Example 3, shows that by choosing the minimum number of RSs (i.e. three) 

provides for better RS selectivity and therefore, provides for better robustness against 

biased time delay estimates. 

This can be explained from the following simple rule 

flb≤flfl1 (24) 

where 

b is the number of biased circles to be detected 

nj is the number of intersecting circles in Step  

n is the total number of circles, RSs. 

In order to maximize nb, ni must be minimized which in this case, corresponds to 

three. 
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3.8 Simulations 

In this section, I examine the performance of the proposed SNOD technique 

through simulations. The parameters of the simulation environment are summarized in 

Table VIII. 

Throughout the simulations, the four steps described in the last section are 

followed, using ni = 3, hence generating six crossings in Step 2. 

Table VIII Simulation Environment for Selection La er 

Parameter Value 
BW 50 MHz 
Tx Power 0dBm 
large time delay error 2 - 8 ts 
(outlier) 
position ofRS1 (0,0) m 
position ofRS2 (10,150) in 
position ofRS3 (120,900) in 
position of RS4 (500,700) in 
position of DS 30,300 in 

In this section, I investigate the performance of the SNOD technique with respect 

to the Probability of Detection (PD) and the Probability of False Alarm (PFA). In this 

chapter, I use two different types of probability of detection: 1) the Probability of total 

Detection (PD) which is defined as the probability of detecting all DP RSs and rejecting 
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all RSs that are encountering MP signals, and 2) the Probability of partial Detection (PD ) 

which is defined as the probability of detecting some DP RSs. 

3.8.1 Only One Circle per RS 

Figure 14 to Figure 18 examine the SNOD technique for four RSs when there is 

zero, one, two, three, or four outliers, respectively. The threshold value is chosen to keep 

the PFA below 10%. I can see from Figure 14 that the PD, for the RSs that are not 

encountering an outlier is over 95%, while the PD is 100% in this case. Figure 15 shows 

that the PD is almost 93% while the PD, reaches 40% when a MP signal follows the LOS 

signal by 3 ps. The PD, reaches 65% when the MP signal follows the LOS signal by 

8 ,us. Figure 16 shows that for two outliers, the PD after 0.06 1us is 100%, while the PD, 

reaches 80% and 90% when the MP signal follows the LOS signal by 4 and 8 ps, 

respectively. Figure 17 and Figure 18 show that as the number of outliers increases the 

PD, also increases. As I can see in Figure 17 that at 1 ,us with three outliers, the PD, 

reaches 65%, while for four outliers, the PD, reaches 75% as shown in Figure 18. The 

PDP for two, three, or four outliers are all almost the same. 
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3.8.2 Multiple Circles per RS 

Figure 19 to Figure 21 examine the performance of the SNOD technique in the 

presence of multiple propagation delay estimates for a RS. In these three simulations, I 

consider three RSs, in which multiple delay estimates are available. Figure 19 shows the 

performance of the SNOD technique when I have three RSs, one of them with two delay 

estimates. Figure 19 shows that the PFA is less than 5%, while the PD is almost 98%. 

The PD, increases as the MP signal is delayed from the actual LOS signal. One can see 

that the PD, reaches 68%, when the MP signal is delayed around 1.2 ,us. Figure 20 shows 

the performance of SNOD technique when two RSs have two propagation delay 

estimates. The PFA is less than 10%, while the PD is almost 92%. The PD, reaches 52%, 

when the MP signal is delayed by 3 ,us. Figure 21 shows the performance of SNOD 

technique when three RSs have two propagation delay estimates. The PM is less than 

10%, while the PD is almost 94%. The PDt reaches 55%, when the MP signal is delayed 

by 5 jis relative to the actual DP signal. 

3.8.3 Up to Two Circles per RS 

Figure 22 shows the performance of the SNOD technique for four RSs. One of these 

RSs has an outlier, while another RS has two propagation delay estimates. The PFA is less 

than 10%, while the PD is almost 94%. The PDt reaches 55%, when the MP signal is 

delayed by 2 ps relative to the actual DS signal. 
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SNOD of Four RSs with No Outlier 
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Figure 14 The PFA, PD and PD for four RSs with no outlier. 
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SNIOD of Four RSs and One Outlier 
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Figure 15 The 1FA, 'D' and PD for four RSs with one outlier. 
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SNOD of Four RSs with Two Outlier 
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Figure 16 The PD, and PD for four RSs with two outlier. 
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SNOD of Four RSs with Three Outlier 
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Figure 17 The PDt d PD for four RSs with three outlier. 
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SNOD of Four RSs Each RS has an Outlier 
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Figure 18 The PDt and PD for four RSs with four outlier. 
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SNOD of Three RSs with one LOS Candidates from One RSs 
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Figure 19 The PFA, PD,,and PD for three RSs, with one of the RSs having two 

propagation delay estimates. 

77 



SNOD of Three RSs with two LOS Candiadates from Two RSs 
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Figure 20 The PFA, EDt' and PD for three RSs, with two of the RSs having tow 

propagation delay estimates. 
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SNOD of Three RSs and three Candidates from Each 
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Figure 21 The PPA, EDt' and PD.P for three RSs, each of the three RSs having two 

propagation delay estimates. 
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SNOD of Four RSs with two LOS Candidates from One RS and another RS has an Outlier 

0.9   

0.6 -  

0.7 

0.6 

0.4 

0.3 

0.2 

0.1 

 --F  

—9-- PFA 

—9 —Pot 
—F-- POp 

0 

1 2 3 4 5 6 7 
Oultier Delay Bias 

Figure 22 The PFA, EDt, and PD P for four RSs, with one RS having an outlier and another 

RS having two propagation delay estimates. 

3.9 Conclusion 

In this chapter, I have introduced a novel wireless location receiver based on the 

SNOD technique. I have proposed the SN distribution as a general distribution model for 

multipath (MP) signals. When the RS has two propagation delay estimates, I proposed to 

use two time delay estimates per RSs. Simulation results demonstrate the capacity of the 

SNOD technique in detecting outliers. 
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Chapter Four: POSITIONING LAYER 
FIXING POSITIONS USING ROBUST ESTIMATION TECHNIQUES 

4.1 Introduction 

This chapter deals with the problem of fixing the position of a radio device using 

a number of RSs. In network-based and in handset-based systems, the RSs have known 

location, while in distributed networks (e.g. WSN), there are neither infrastructure nor 

RSs to rely on. In this chapter, I propose several estimation techniques to fix the position 

in infrastructure (e.g. network based and handset based) and in distributed (e.g. WSN) 

systems. 

Physical Layer 

Ranging 
Techniques 

Selection Layer 

p 

SNOD 

RSS 

GDOP 

Positioning Layer 

Fix and 
Minimize 

Positioning 
Error 

Network Layer 

Merging and 
Transforming 

Local 
Coordinates 

Figure 23 A Cross-Layer representation in wireless location. 
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4.2 Problem Formulation 

The main geometrical approach to solve for the location of a radio device using 

either Received Signal Strength (RSS), Time Of Arrival (TOA), or Round Trip Delay 

(RTD) is through circular trilateration. The ranging measurement equation can be written 

generally as: 

dij =J( —x)2+(y —y1)2+e11 (25) 

where 

dij is the estimated range between radio device j and RS 1; 

are the estimated coordinates for radio device j; 

are the known coordinates for RS 1; 

is the error in the ranging measurement which follows a Gaussian 

distribution JV'(.t, r2), with a mean it and a variance cr2. When dii 

is biased, it is non zero. 

4.3 Fixing Positions Using the Iterative Reweighted Least Square (IRLS) Estimation 

In this section, a popular technique used in robust estimation, is presented. Let eij 

be the error of the ranging measurement between a RS I and a radio device j. The 
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standard Least Square (LS) estimation tries to minimize Zij e, i.e. the summation of 

ranging errors, which can be sensitive if there are outliers (i.e. large ranging error) 

present in the ranging measurements [76]. M-estimators have been proposed to reduce 

the effect of outliers by replacing the squared error e, by another function of the error, Li 

p(e j), yielding 

min Zjj p(eU) (26) 

where p is a symmetric, positive function with a unique minimum at zero, and is 

chosen to be less increasing than the square function in e. 

Instead of solving this problem directly, I can implement it using the IBIS 

estimation [76], which is given by 

min 1 w(e [n - 1])e (27) 

where [n] indicates the iteration number, and w(•) is a robust weighting function. 
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In general, the procedure of Iterative Reweighted Least Square (IRLS) estimation 

can be summarized as follows: 

• Step 1: Find an initial solution based on standard LS estimation. 

• Step 2: Use errors obtained from the first step of the IRLS procedure to obtain 

new weights, which are rescaled based on a robust weighting function. 

Step 3: Use the new weights to obtain a new solution based on LS estimation. 

• Step 4: Iterate by repeating the second and the third steps of IRLS procedure until 

termination. The are several possible criteria for termination [77]: 1) based on the 

maximum number of iterations, 2) based on the maximum amount of corrections, 

and 3) based on the monitoring of the reference variance [71]. In this chapter, a 

combination of the first and second termination criteria is used. 

4.3.1 The First step of the IRLS Procedure to fix positions of radio devices 

Solving for the two unknowns (' y), in (25) using linear LS estimation has been 

proposed in several literature. LS estimation problems fall into two categories, linear and 

nonlinear. The linear LS problem has a closed form solution, while the non-linear LS 

problem has to be solved by iterative refinement, as it does not have a closed form 
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solution, unless it can be replaced by a linear LS problem through: 1) a transformation of 

parameters or 2) a separability of parameters. The transformation of parameters method 

is used in the next chapter. 

For non-linear problems, initial values must be found for the parameters. 

Parameters are refined iteratively, in which values are obtained by successive 

approximations. In this section, I have elected to solve (25) using LS estimation for 

nonlinear problems. In this case, a first-order Taylor series approximation is used to 

linearize (25). Hence, the linearized form is given by: 

4 d00 + (L dx1 + dd ( d y"i) dy (ddQ) dxj + dy + H. 0. T + e1 (28) 
dxj 1  0 •dy, )0 

(tIi ddi\where H. 0. T are the higher order terms of Taylor series expansion; -) and 

(Odi i) are the partial derivatives of the ranging measurement function du with respect to YL 0 

xi and y1, which are evaluated with coordinate value approximates (xjo, Yj 0); (, Yj) are 

unknown parameters, and dx1 and dy are unknown corrections to the coordinate value 

approximates such that 

Yj =y 0+dy 
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By dropping the H. 0. T from the Taylor series, (28) becomes only a linear approximation 

of (25). (28) shows that there are four unknowns per radio device that are required to be 

estimated. These unknowns are 1) two initials coordinate values and 2) two coordinate 

corrections. 

To estimate the two initial coordinate values, a minimum number of RSs can be 

used using the RSS and the GDOP found at the selection layer. After I have estimated the 

initial coordinate values, the weighted LS estimation for the second set of unknowns (i.e. 

the coordinate corrections) can be obtained as: 

where 

0= 

dx( 
dy 

dx 

dy1 

dx 

2zxl 

= (JTwfl—lJTwJc = N_1JTWK (30) 

is the coordinate correction for the unknown radio devices, and z is 

the number of radio devices within the network. In case of a 

handset-based system, z = 1, 
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Zt Zn 

aF1 0 F a F1 OF1 

ax1 ayi Ox, ay, 

OFm 0Fm OFm OFm  

Ox1 0Yt ax TYTj 
mX2Z 

W=Q_1 =diagfri 2 

t11 —Ft, 

tlh — Flh 

mxl 

mxm 

is the Jacobean matrix for the unknowns, 

and m is the number of observations, 

is the weighting matrix, which is equal to 

the inverse of the variance-covariance 

matrix Q of the ranges, 

is the misciosure vector, which is the difference between 

the observed ranges and the Euclidean distances 

evaluated from the estimated coordinates, and 

N = (JTWT) is the normal matrix. 
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4.3.2 The second step of the IRLSprocedure 

There are many robust weighting functions w(.), which can be used in the IRLS 

procedure [76] [81]. In this chapter, I am proposing both the Huber weighting function 

and the L1 - L2 weighting function. The Huber weighting function is defined as 

(1 lei ≤k 
Wffubr (e) k lei >k 

(31) 

Equation (31) shows that the Huber's weighting function behaves like a parabola in the 

vicinity of zero, and increases linearly at a given level where let > k. The 95% 

asymptotic efficiency on the Gaussian distribution is obtained with a tuning constant 

k = 1.345 [76]. 

The L1 - L2 weighting function combines the advantage of the L1 norm 

estimation, which reduces the influence of outliers with that of the L2 - norm 

estimation, which forces the objective function to be convex [76]. The L1 - L2 weighting 

function behaves like an L2 - norm estimation for small errors and like an L1 - norm 

estimation for large errors. The L1 - L2weighting function is defined as 

iwL1_L2(e) =  e2 
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The LS error vector E is given by 

EJe—K (33) 

Elements of the error vector E are resealed using one of the weighting functions 

found in equations (3 1) or (32). 

4.3.3 The third Step of the IRLS procedure 

The solution vector of the IRLS estimation is obtained as 

[n] = (jTW[n - i]J) 1W[n - 1]K (34) 

4.4 Fixing Positions Using the L1 - norm Estimation 

A novel minimizing position technique based on L, - norm estimation is 

developed. L1 - norm estimation is very robust against outliers. The robustness 

breakdown point for L1 - norm estimation is 50% due to the median used in parameter 

estimation [81]. 
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There is no closed form solution for L1 - norm estimation. Combinations of 

three RSs with known locations are required to estimate the position of a radio device 

using circular trilaterations. A radio device can have several position estimates from 

different RSs combinations. The median (med) is used to estimate the final location of 

the radio device. Hence, the location of a radio device is estimated as 

where 

Thx and Ply 

FRS 

21 = med({Pix Pr Sx]) 
= med([Piy Prgs y]) 

(35) 

are the x and the y coordinates, estimated from the 1th combination of 

RSs, respectively. 

is the number of RSs. 

4.5 Fixing Positions Using Combined Estimation 

A solution based on a combination of IRLS and L1 - norm estimation is 

proposed in this section. The IRLS estimation procedure starts with estimated errors 

based on LS estimation. Hence, in the presence of outliers, the LS estimation will be 

90 



perturbed due to its sensitivity to outliers. Therefore, errors estimated from LS estimation 

will be affected as well. Hence, an initial error estimated from the L1 - norm procedure 

is used instead of the LS estimation errors used in the first step of the IRLS procedure. 

The second and the third steps of the IRLS estimation procedure are the same as 

discussed above. 

4.6 Distributed Systems: Wireless Sensor Networks 

In WSNs, sensor nodes must cooperate to define their reference sensor nodes, 

build their own Cluster Local Coordinate systems (CLCs), and then merge these local 

coordinates to a unique coordinate system for the WSN. Hence, this type of wireless 

localization is referred to in this thesis as Collaborative Localization (CL). In this chapter, 

I present the part of the process that belongs to the positioning layer, which is the 

building of CLCs. In the next chapter, I will learn about merging CLCs to form a unique 

set of coordinates for the entire distributed network. 

In the considerable literature, such systems have alternatively been described as 

"cooperative," "relative," "distributed," "GPS-free," "multihop," "self-localization;" 

"adhoc" or "sensor" positioning. CL radios, typically used to convey the sensed data, are 

also used to determine pair-wise distances between adjacent sensor nodes. Hence, CL 

does not contribute generally to the sensor node cost, size, or transmission power 

consumption. Furthermore, the proposed solution offers the following features: 
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• Seif-conjigurability: the proposed CL technique is decentralized. Each cluster has 

a cluster head which is responsible for scheduling communication, routing data, 

and acting as a gateway for other sensor nodes within each cluster [56], [57]. 

Figure 24 shows a WSN consisting of three clusters, each having its own CLC 

system. 

Wireless Sensor Networks 

C' 

Cluster I 

0 Cluster Head 

Cluster 2 

V 
x" Cluster 3 'y" 

Sensor Node 

Figure 24 Example of a WSN which consists of three clusters. Each cluster has its local 
coordinates. 

• Scalability: the proposed CL solution can be scaled by adding WSN clusters or 

adding new sensor nodes within a cluster or both. Adding a new cluster does not 

require remerging the entire set of CLC systems. The new cluster will be 
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integrated with minimum computational effort by estimating its merging 

parameters with respect to the WSN global coordinate system as I will see at the 

network layer in the next chapter. Adding new sensor nodes within a cluster 

means extra ranging measurements that can improve the overall sensor node 

positioning accuracy. 

• Independence: the proposed CL solution is a stand-alone solution, which does not 

depend on any existing network. However, the global WSN coordinate system 

can be tuned to the global GPS coordinate system, if there are at least two sensor 

nodes equipped with a Global Navigation Satellite System (GNSS) receiver or 

with known global GPS coordinates (in 2D positioning). Further discussion can 

be found at the network layer contained in chapter six. 

• Robustness: the proposed CL solution can tolerate large ranging measurement 

errors. Ranging measurement errors are divided into: 1) WGN ranging errors with 

zero mean and r2 variance, and 2) large ranging errors (outliers) commonly found 

in the wireless channel due to MP arrival, threshold effect and bifurcation. In this 

chapter, I treat ranging outliers as an additive ranging bias [58]-[61]. 

In this subsection, the proposed CL is divided into a two-step process. Step (A) is 

responsible for building local coordinates, and Step (B) is responsible for minimizing 
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positioning error in the CLC systems. Figure 25 shows the CL algorithm within the 

wireless location stack provided in this thesis. 

Physical Layer 

Ranging 
Techniques 

Selection Layer 

SNOD 

Rss 

GDOP 

Positioning Layer 

Building 
Local 

Coordinates 
to Fix the 
Position 

 1 

Minimize 
Positioning 

Error 

Network Layer 

Figure 25 A Cross-Layer representation in CL. 

I 
Merging and 
Transforming 

Local 
Coordinates 

4.6.1 Step (A). Building Cluster Local Coordinates 

[62] introduces a method to build WSN local coordinates, which is the only work 

found in the literature as far as building local coordinates within a WSN is concerned. 

The algorithm builds a local coordinate system for each sensor node. Each sensor node 
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becomes the center of its own local coordinate system with the position (0,0) and the 

positions of its neighbors are computed accordingly. This algorithm has the following 

drawbacks: 1) the method requires that each sensor node builds its local coordinate 

system. Hence, the number of local coordinate systems grows linearly with the size of the 

WSN. 2) The algorithm does not consider the effect of measurement imperfections such 

as noise and large ranging errors (outliers). 3) The algorithm does not consider the effect 

of GDOP [63][64] on the location accuracy. For all these reasons, 

• I introduce a modified algorithm to build each CLC system using the RSS 

and the GDOP found at the selection layer. 

• I propose to use a Free Network Adjustment (FNA) technique [73][74], 

which is an approach commonly used in the field of Surveying 

Engineering, to minimize positioning error. FNA is based on LS 

optimization. 

• I propose to use a subspace method to resolve the singularity found in the 

normal matrix of the LS required in the FNA technique. 

• I propose to use several robust FNA techniques that provide robustness 

against large ranging errors. These techniques are based on the IRLS 
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estimation and on the L1 - norm estimation, as introduced in sections 4.3 

and 4.4, respectively. 

In distributed systems, equation (28) shows that there are eight unknowns per 

pair-wise sensor nodes that are required to be estimated. These unknowns are 1) four 

initials CLC coordinates and 2) four coordinate corrections. First, I start by finding the 

initial CLCs for the sensor nodes by building a CLC system. A cluster head 

communicates in a peer-to-peer manner with adjacent sensor nodes to determine its 1-hop 

sensor nodes. Adjacent sensor nodes communicate with each other to determine their 

pair-wise distances. 

Let us choose two sensor nodes, p and q, within the 1-hop to the cluster head i, 

such that: 1) the inter-distance between sensor nodes p and q, is known and 2) they are 

not lying on the same line as the cluster head i (i.e. dpq < dip + djq, where dlh represent 

the Euclidean distances between sensor node I and sensor node h). Without loss of 

generality, assume that p and q are two sensor nodes having positive x-values and 

positive y-values as shown in Figure 26. I can uniquely define the CLC system of the 

cluster head i, by two sensor nodes, p and q, such that: CLCs of i, p and q are (0,0), 

(d1) 0), and (djq cos8, djq sinO), respectively, where y is the angle L(p, i, q) as shown in 

Figure 26 and can be estimated as: 
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(di?q+d? —d2 ip pq  

y=cos 2diq (36) 

To locate another sensor node j, where j is located within the 1-hop to cluster 

head i, distances d1, dqj, and dpj must be estimated. Therefore, CLCs of the sensor 

node j can be estimated as: 

ya.xis 

dcos y 

Cluster 
Head i 

(0,0) 

Sensor 
node  

Sensor 
node p 

(d, ,0) xaxis 

Figure 26 Illustration of the local coordinates within a WSN cluster. 

Ix = d ii . cos aj 

( d1 • sin cr 
f =—d sina1 

0 

[ij—k—vI]<<[fj—kiI] 
[j—Ic—yI]≥[I—k+vI1 

otherwise 
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where 

fli 

aj is the angle L(p, i,j) as shown in Figure 27. 

is the angle L(j, i, q) as shown in Figure 27. 

indicates that I have to choose a different sensor node with a better GDOP 

to locate the] sensor node. 

Sensor 
node  

yaxis 

Cluster 
Head i 

Sensor 
nodej. - - - --

1. 

Sensor 
node p 

x axis 

Sensor --- --

nodej 

Where? 

Figure 27 An example illustrating how to locate sensor node] within a WSN cluster. 

The same notations in [62] are used here in order to show that the proposed 

solution is able to tolerate expected imperfections in the estimated angles due to the 

introduction of GDOP as a factor in building CLC systems. More specifically, (37) can 
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be considered as a comparison between 1) the two Euclidean distances formed by the 

positive and negative y - axes and 2) the observed ranges between sensor nodes 

j and q. 

RSS and GDOP discussed earlier at the selection layer are used in this chapter: 1) 

in order to improve the position estimate of sensor node j by selecting sensor nodes that 

have relatively higher RSS and good geometry with respect to sensor node j to cooperate 

in determining its location; 2) in order to reduce the effect of outliers by rejecting small 

angles. Sensor nodes encountering outliers generally have a position far from other 

sensor nodes due to the large ranging error caused by the outlier. Figure 28 shows the 

relationship between a position affected by an outlier and the angle formed using other 

sensor nodes. Hence, if I restrict angles formed between sensor nodes which cooperate in 

determining the position of a sensor node to be within (0 0 - 1500), I will diminish the 

chances of any sensor node which is encountering an outlier to cooperate [74]. 
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S. _______ 

A Sensor encountering 
Outlier 

Figure 28 The angle a formed between S, which is encountering an outlier and two 
other sensor nodes is small compared to a typical angle, 0, in a WSN cluster. 

4.6.2 Step (B).• Minimize Positioning Error 

The main geometrical approach to solving for the location of a sensor node using 

either RSS or RTD is through circular trilateration. In this case, the RTD between a 

sensor node and three other sensor nodes is measured. In order to minimize positioning 

error, several CL techniques have been developed. Most of these approaches are based on 

convex optimization, gradient, and conjugate gradient algorithms [65]-[68]. [55] shows a 

comparison between these techniques with respect to 1) the WSN deployment type, 2) 

the WSN size, 3) the real time vs. post mission time, and 4) 2D positioning vs. 3D 
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positioning. After I have estimated the initial CLCs of a sensor node, the weighted LS 

estimation is used to estimate the second set of unknowns (i.e. the CLC corrections) 

found in (30). 

It is common for the normal matrix N of this type of ranging problems to have a 

singularity (i.e. be defective) [73] [74]. The rank defect occurs due to the large number of 

unknowns (i.e. the CLCs of sensor nodes) compared to the number of known parameters 

(i.e. observations). The rank defect indicates that the geometry of the network must 

remain fixed, which means that the corrections of the estimated coordinates cannot 

change the network geometry [78]. 

In Geomatics Engineering, the singularity of the normal matrix is overcome by 

fixing two points (four coordinates), i.e. the coordinates of two points are considered to 

be known [71] [74]. Therefore, estimating their coordinate corrections is not required. The 

two points chosen to be fixed are called control coordinates. Precise surveying must be 

conducted to diminish any position error found in the control coordinates, which may 

propagate to the network. This solution is inadequate for WSN. Hence, in order to avoid 

the arbitrariness of fixing sensor node coordinates, a subspace method is used instead to 

resolve the rank defect of the normal matrix [79] as follows: 1) compute the SVD for the 

Jacobean matrix. 2) Arrange the eigenvalues diagonal matrix A = diag[ 1 in 

a descending order, where Ai are the corresponding eigenvalues. 3) Remove the 

101 



eigenvalues which are too small or equal to zero. 4) Recompute the inverse of the normal 

matrix [79], [80]. 

4.7 Simulation Results 

Table IX summarizes the simulation environment parameters assumed in this 

chapter. The system bandwidth is assumed to be 50 MHz, whereas the SNR varies from 

16 - 31 dB. A Free space wireless channel model is assumed. Outliers are modeled as an 

additive bias of 900 meter, which is equivalent to a 3 ,ts time delay. 

Table IX Simulation Environment for the Positionin La er 
Parameter Value 

no. of Mont-Carlo runs 10,000 

no. of sensor nodes per cluster 6 

no. of clusters 2 

SNR 16-31dB 

bandwidth 50 MHz 

outliers 3 p.s 

path loss exponent 2 

total CL algorithm execution time —p162 sec. 
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4.7.1 Evaluating Robust Positioning Estimation Techniques 

Comparisons between the various proposed robust estimation techniques are 

investigated. Figure 29 and Figure 30 compare the average radial error of one cluster 

using LS, L1 - L2, Huber, L1 - norm, and Huber(L1) estimation techniques. The radian 

error is defined as the Mean Square Errors (MSE) found in the x - axis and y - axis for 

a radio device. The LS estimation outperforms other estimation techniques for AWGN, 

while the proposed L1 - norm estimation shows a better performance in the presence of 

outliers. 

For distributed systems, I examine two WSN clusters each one consisting of six 

sensor nodes. Within each cluster, sensor nodes must communicate in a peer-to-peer 

manner with at least three other sensor nodes in order to be localized. The location of 

these sensor nodes is randomly selected. Four of the twelve sensor nodes are randomly 

chosen to be tie senor nodes. 

In order to further investigate the difference between the proposed closed-form 

and open-form estimation techniques, two sensor nodes, S3 and S4, are examined. Figure 

31 and Figure 32 compare the estimation performance for the various proposed 

estimation techniques in the presence of outliers affecting one of the ranging 

measurements of sensor node 54. Figure 31 and Figure 32, show that the radial error 

estimated by the L1 - norm estimation for sensor nodes S3 and S4 behaves differently 

due to the outlier that is affecting S4. Hence, L1 - norm estimation shows superior 
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resilience against outliers by isolating the effect of outliers that affect some sensor nodes, 

from affecting the entire cluster due to its open form solution. 

4.7.2 Evaluating Building Local Coordinates Algorithm 

The examined clusters consist of six sensor nodes. I assume that sensor nodes 

CLCs are randomly selected. The range estimate between any two sensor nodes is 

subjected to two types of ranging measurement errors as discussed before: AWGN and 

bias. Figure 33 shows that GDOP can reduce the coordinate mirroring error rate, which is 

the probability of error for the y - axis direction of a sensor node to be chosen in the 

positive side while the negative side of the y - axis is the correct side, and vice versa. 

Figure 34 shows that the GDOP factor can also enhance the receiver resilience against 

outliers by rejecting small angles. 
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Figure 29 The average MSE for the position of a radio device for different SNR in 
AWGN in the absence of outliers. 
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Figure 30 The average MSE for the position of a radio device for different SNR in non-
Gaussian noise in the presence of outliers. 
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Radial Error for the Sensor Node S3 with Outliers 
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Figure 31 The radial error of the sensor node S3 for different SNR in non-Gaussian noise 
in the presence of outliers. 
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Radial Error for the Sensor Node 54 with Outliers 
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Figure 32 The radial error of the sensor node 54 for different SNR in AWGN, in the 
presence of outliers. 
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Figure 33 The effect of GDOP in the mirroring error without outliers. 
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Figure 34 The effect of GDOP in the mirroring error in the presence of outliers. 

4.8 Conclusion 

The proposed robust estimation techniques to fix the positions of radio devices 

outperform the LS in the non-Gaussian environment due to the presence of outliers. The 

proposed CL solution is self-configurable, scalable and independent of any positioning 

system. Extensive simulations have been carried out to evaluate its performance in terms 

of accuracy, and robustness under different wireless channel environments using several 

estimation techniques. I introduced the GDOP as a factor for building CLCs. I proposed 

the subspace method to be used within FNA to resolve the singularity found within the 

normal matrix. I introduced novel FNA techniques, which are robust against outliers. 
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Chapter Five: NETWORK LAYER 
MERGING LOCAL COORDINATES USING ROBUST ESTIMATION 

TECHNIQUES 

This chapter deals with the problem of merging local coordinates in distributed 

systems. In this chapter, I complete the CL solution, which has been introduced at the 

positioning layer to build WSN Cluster Local Coordinates (CLCs), by merging these 

coordinates in order to create a set of global WSN. 

5.1 Introduction 

Merging CLCs is mandatory to have a unique global coordinate system for the 

entire distributed network. [62] introduces a method, referred to as the directional 

method, which is used to merge local coordinates built by sensor nodes. The drawbacks 

of this method are as follows. 1) The local coordinates are merged without attention to 

positioning errors implicit to the sensor nodes position estimates. This can lead to 

substantial positioning error within the entire WSN due to the propagation of ranging 

errors. 2) The directional method requires more than twice the number of computations 

compared to a technique I propose to use in this chapter: Two-Dimensional Coordinate 

Transformation Model (2D-CTM) [73]. The 2D-CTM method is commonly used in 

surveying Engineering to merge network coordinates. 3) The directional method does not 

consider the scaling factor between the various local coordinates systems as a merging 
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parameter to be estimated. Another paper [69], proposes a robust geodetic coordinate 

merging model based on L1 - norm estimation. However, it does not consider all the 

parameters required for 2D-CTM. 

At the network layer, as presented in this chapter: 

• I introduce a novel 2D-CTM based on General LS (GLS) estimation in order to 

take into account the positioning errors found in the CLC systems. 

• I demonstrate the need for estimating a scale factor to merge the CLC systems. 

• I propose several novel 2D-CTMs that provide robustness against outliers, based 

on the Iterative Reweighted Least Square (IRLS) technique and the L1 - norm 

technique. 

5.2 Problem Formulation 

I assume that some sensor nodes can be located within another cluster. These 

sensor nodes are referred to as tie sensor nodes. At least, two tie sensor nodes are 

required to merge 2D local coordinates [65]. The 2D-CTM is a model that involves 1) 

translation: to create a common origin for the two coordinate systems; 2) rotation: to 
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make the reference axes of the two systems parallel and 3) scaling: to create equal 

dimensions between the two CLC systems [71][74]. 

Consider two 2D CLC systems, xy and XY, corresponding to two clusters. The 

basic equations to merge the CLC system xy to the CLC system XY is given by 

where 

0 

Tx and T 

X(ScosO).x(Ssino).y+Tx 
Y= (Ssin9)•x—(S.cos0).y+T 

(38) 

is the rotation angle between the two CLC systems, and 

are the translations in the X - axis and in the Y - axis directions, 

respectively. 

To overcome the nonlinearity found in equation (38) the following 

transformations are assumed S. cosO = a, S sin9 = b, Tx = c, and T = d. Therefore, 

the linear version of equation (28) is given by 

X=a•x—b•y+c 
Y=b•x+a•y+d 
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where a, b, c and d are the unknown 2D-CTM parameters, which I would like to 

estimate. 

5.3 Merging Coordinates Using the Iterative Reweighted Least Square (IRLS) 
Estimation 

In this section, robust 2D-CTMs are considered. 2D-CTMs based on IRLS 

estimation are introduced. I propose an improvement in the first step of the IRLS 

estimation procedure which is to find a solution based on General LS (GLS) estimation. 

The linear LS estimation discussed before is not suitable for merging WSN CLC systems 

due to the positioning errors found in CLC systems at each cluster. GLS is investigated in 

[71] to propagate the variance-covariance of the sensor nodes CLCs found after 

minimizing position error within two clusters. 

GLS estimation not only considers a, b, c, and d as unknowns, but it also 

considers x, y, X, and Y found in equation (3 9) as parameters to be adjusted. Hence, a 

nonlinear observation model is developed and is given by: 

F (x, y, X, Y) = a (x + e) - b (y + e) + c - (X + ex) 

G1 x,y,X,Y) = b(x+ ex) +a(y+e)+d—(Y+ ey) 
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where e, e, ex, and ey are the ranging errors of the tie sensor nodes at the two CLCs 

systems. 

Equation (40) is a nonlinear function and Taylor series is used once again for 

linearization. Hence, initial approximates for the eight unknowns a, b, c, d, x, y, X, and Y 

have to be obtained. The approximate values of x, y, X, and Y are chosen to be the CLCs 

of the tie sensor nodes in both clusters, while the initial approximations for a, b, c, and d 

are chosen either by using standard LS estimation of all tie sensor nodes, or by solving 

equation (39) for two tie sensor nodes [71]. 

In solving the GLS, an equivalent solution is obtained by evaluating the following 

equivalent weight matrix: 

We = (BQMcBT) 1 (41) 

where 
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B= 

S1 

OF1 a F1• OF1 OF1 

Ox ay ax ay 
OG1 OG1 0G1 0G1 

Ox ay OX OY 

0 

0 

Si 

2rx4r 

S 

0 

0 
OFr aFF OFr OF 

Ox ay OX OY 

OGr OGr OGr OG 

Ox ay ax o 

Jacobean matrix for CLCs of the tie sensor nodes, and 

is the 

r is the number of tie sensor nodes, F1 and G1 represent (40) for tie sensor nodes 

Si Sr 

QMC = 

o 5 xy 0 
cr 0 

0 0 4 
0 0 TXy 

0 
0 

cixy 
2 dy 

0 

0 

b......... 
0 .........0 

0 

0 
o- cTxy 0 

dxy cr 
0 0 dI 

0 0 °•xY 

0 
0 
o-xy 

4 

is 

4rx4r 

the coordinate variance-covariance matrix for the tie sensor nodes propagated 

from the first step of the CL process, 
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The variance-covariance matrix of the tie sensor nodes at both coordinates are 

propagated from the FNA formed at each cluster and is given by: 

= (El WIEI) N[1 

where 

is the cluster number, 

ri is the number of degrees of freedom for the 1th cluster. 

The GLS solution vector is obtained as: 

eMC = (JMC 11TeJMC) 1J C 1'tTeKMC 

where 

OMc[a b c d]T 
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ap1 t3F1 oF1 OF1-

aci Ob ac ad 
0G1 0G1 0G1 0G1 

Oa .3b ac ad  

JMC = 

KMC = 

OFr OFr OFr 0 r 

Oa Ob Ob ad 
OGr OGr OGr OGj 

•Oa Oh Oh ad-

21'x4 

-Xi - (ax - by, + c) 
Y1—(bx1+ay1+cl)  

Xr - (axr - byr + c) 

2rxl 

Xj and Yj 

is the Jacobean matrix of the unknown 2D-

CTM parameters, 

is the misciosure vector of the 

difference between the CLCs of the 

tie sensor nodes within the XY CLC 

system and the estimated 

coordinates using a, b, c, and d 

estimated within the merged 

solution. 

are the tie sensor nodes CLCs at XY coordinate system, 

whereas x1 and yj are the tie sensor nodes CLCs at xy 

coordinate system, for tie sensor nodes i E [1, , r}. 
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The four 2D-CTM parameters required for merging coordinates are estimated as: 

D=c, D=d, êtan_1(.), 
Cos 0 

The error vector of the merging coordinates is given by: 

(44) 

I? _ 11 DT(T 
-'GLS - MCD VVTA7eJMCOMC KMC) (45) 

The second and the third steps for IRLS estimation are the same as described in the 

previous chapter. 

5.4 Merging Coordinates Using the L1 - norm Estimation 

In this section, I propose a complete 2D-CTM based on L1 - norm estimation. 

[69] proposes a technique to estimate the two translation parameters, while assuming that 

the other two parameters, i.e. the rotation angle and the scale factor, vary slightly and are 

independent of the translation parameters. The CLCs built within the WSN can freely 

have any direction. Therefore, a precise estimate for the rotation angle parameter has to 

be considered. A mathematical derivation showing the dependency between the four 2D-
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CTM transformation parameters based on L1 - norm estimation is shown in Appendix 

C. 

The median of the differences between the CLCs of the two tie sensor nodes is 

used to estimate the two translation parameters, as follows: 

D=c=med[(x1 — X) ,i=1,..•,F] 

PX = d = med[(y1 - Y) , I = 1,, FJ 
(46) 

The scale a and b merging parameter, amed and bmed, respectively, can be estimated by: 

= meä I-XI,. (Xi- C (i ' 1 - (xj)2+(y)2))+ (x)2+j)2 .(Y -  yj  - d)J 
\ 

- med r 
tt—dyj(X—c)  

-  (xj)2+(yj)2 .1 
(47) 

(47) shows a dependency between the four 2D-CTM parameters based on 

L1 - norm, estimation. A mathematical proof is shown in appendix D. The scaling factor, 

Smed, and the rotation angle, 9med' can be estimated using (43). 
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5.5 Simulation Results 

Table X summarizes the simulation environment parameters assumed in this 

chapter. In these simulations, I examine two WSN clusters each one consisting of six 

sensor nodes. Within each cluster, sensor nodes must communicate in a peer-to-peer 

manner with at least three other sensor nodes in order to be localized. The location of 

these sensor nodes is randomly selected. Four of the twelve sensor nodes are randomly 

chosen to be tie senor nodes. The system bandwidth is assumed to be 50 MHz, whereas 

the SNR varies from 16 - 31 dB. A Free space wireless channel model is assumed. 

Outliers are modeled as an additive bias of 900 meters which is equivalent to a 3 ts time 

delay. 

Table X Simulation Environment for the Network Layer 

Parameter Value 

no. of Mont-Carlo runs 

no. of sensor nodes per cluster 

no. of tie sensor nodes 

no. of clusters 

SNR 

bandwidth 

outliers 

path loss exponent 

total CL algorithm execution time 

10,000 

6 

4 

2 

16 - 31 dB 

50 MHz 

3 p.s 

2 

-'162 sec. 
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5.5.1 Evaluating Merging CLC algorithm 

Figure 35 - Figure 43 compare the estimation of the four 2D-CTM parameters 

based on the GLS, Huber, L1 - L2, and L1 - norm estimation techniques in AWGN 

where the GLS estimation shows a superior estimation performance. Figure 38 - Figure 

40 examine the four 2D-CTM parameters in the presence of an outlier. The L1 - norm 

estimation outperforms GLS and the other examined robust estimators. The two 

translations parameters, Tx and T, estimated using the L1 - norm estimator are shown 

in Figure 35 - Figure 40 match the conclusions found in [69]. In this chapter, I further 

investigate the complete L1 - norm estimation performance for 2D-CTM. I investigate 

two CLC systems, which are inclined with respect to each other by large inclination 

angles. The attached simulation corresponds to one of these cases, which has a 

inclination angle. Figure 41— Figure 43 show significant performance degradation for 

- norm estimation occurring due to the large inclination angle found between the two 

CLC systems. The 2D-CTM based on L1 - norm estimation has a bias due to the 

independence between the translation parameters and the rotation angle. Simulation 

results show that when the rotation angle is 00, 90°, 180° or 270°, the 2D-CTM based 

on the L1 - norm estimation behave properly. A mathematical proof for this conclusion 

can be found in Appendix D. 
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Figure 35 The MSE of the two transformation parameters T and T for different SNR in 

AWGN in the absence of outliers. 
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Figure 36 The absolute error of the rotation angle transformation parameter for different 
SNTR in AWGN, in the absence of outliers. 
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Absolute Error for the Scale Factor without Outlier 
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Figure 37 The absolute error of the scale factor transformation parameter for different 
SNR in AWGN, in the absence of outliers. 
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Figure 38 The MSE of the two transformation parameters T and T for different SNR in 

non-Gaussian noise, in the presence of outliers. 
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Figure 39 The absolute error of the rotation angle transformation parameter for different 
SNR in non-Gaussian noise, in the presence of outliers. 
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Figure 40 The absolute error of the Scale Factor transformation parameter for different 
SNR in non-Gaussian noise, in the presence of outliers. 

124 



2MSE in CTP for the Translation Parameter without Outlier 
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Figure 41 The MSE of the two transformation parameters T and T for different SNR in 

AWGN, in the absence of outliers. The, two coordinate systems have rotation angle 

betveen them. 
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Figure 42 The absolute error of the rotation angle transformation parameter for different 

SNR in AWGN, in the absence of outliers. The two coordinate systems have 1 rotation 

angle between them. 
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Figure 43 The absolute error of the Scale Factor transformation parameter for different 

SNR in AWGN, in the absence of outliers. The two coordinate systems have rotation 

angle between them. 

5.6 Conclusion 

I introduced a 2D-CTM based on General LS (GLS) estimation to take into 

account the positioning errors found in the CLC systems. I introduced augmented 2D-

CTMs, which are robust against large ranging errors. The scale factor was suggested as a 

merging parameter to be estimated due to the different ranging errors found between 

c1uters. A complete 2D-CTM based on L1 - norm estimation was introduced. New 

conclusion about the suitability of the 2D-CTM based on L1 - norm estimation was 

achieved by derivation and simulations. 
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Chapter Six: CONCLUSION AND FUTURE WORK 

The objective of thesis is to use a cross-layer approach to investigate three major 

problems in wireless location. These problems are 1) weak received signal (i.e. low 

received SNR), 2) multipath reception (i.e. correlated and non-correlated), and 3) the 

unavailability of RSs in distributed systems (e.g. Wireless Sensor Networks (WSNs)). 

The objective of the thesis has been achieved by introducing fundamental contributions to 

wireless location. Figure 44 summarizes such contributions within the wireless location 

layer stack and section 6.1 reviews them. Potential research directions for future work are 

addressed in section 6.3. 
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> Wireless location applications for network based, hand-
set based, and distributed systems 

Robust algorithms to merge coordinates (e.g. IRIS, Ii, 
and a combination of both. 

Robust Estimation: IRIS, Li, and a combination of both. 
Robust algorithm to build local coordinates (e.g. RSS and 
GDOP) in distributed systems. 

Skew-Normal Outlier Detection (SNOD) Technique 

Multi-Resolution Estimator (MRE) 

Figure 44 Contributions of the thesis within the wireless location stack 

6.1 Thesis Conclusions 

6.1.1 Contributions to the Physical Layer 

The contribution to this layer is contained in chapter two of the thesis. A novel 

MRB technique, based on an orthogonal search, is introduced to enhance the performance 

of the MLE. More specifically, the proposed technique attempts to resolve the problem of 

closely spaced rays (i.e. of correlated MP rays), and to estimate their time delays without 

bias. Simulation results show that when a 1D orthogonal search is used, the sensitivity of 

the MLE is improved by 3 dB. A comparison between the conventional peak detector and 
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a 2D orthogonal search shows a significant improvement in resolving correlated MP rays 

in addition to the 3 dB improvement in sensitivity. 

6.1.2 Contributions to the Selection Layer 

The contribution to this layer is contained in chapter three of the thesis. Several 

CRLB studies recommend the detection and rejection of RS observations, which are 

encountering large ranging errors rather than estimating and removing their respective 

biases. In this context, a novel wireless location receiver is proposed in order to detect 

and reject such large ranging errors where a SJ'/' distribution is used as a statistical model 

for MP signals and a SNOD technique is introduced. Simulation results of the proposed 

SNOD technique show that the average PD P of the SNOD is up to 95%, while the 

average PD, is up to 79%, which varies based on the delay amount of the MP signal and 

the type of outlier, 

6.1.3 Contributions to the Positioning Layer 

The contribution to this layer is contained in chapter four of the thesis. Novel 

robust estimation techniques based on Iterative Reweighted Least Squares (IRLS) 

estimation, L1 - norm estimation, and a combination of both are proposed to fix the 

positions of radio devices in a robust fashion. For distributed systems, WSN consisting of 

several clusters is considered for localization. Sensor nodes within each cluster are 
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responsible in building their own CLC systems. In this layer, GDOP is used to minimize 

initial positioning errors and to mitigate large ranging errors (outliers). FNA technique is 

augmented for CL to match the WSN theory of operation and to offer robustness against 

outliers. Simulation results are presented to prove the GDOP effect in building robust 

CLC systems. LS, IRLS, and L1 - norm estimations are compared with respect to FNA. 

For FNA, LS estimation demonstrates a superior performance in Gaussian noise 

compared to IRLS estimation and compared to L1 - norm estimation. While, in the 

presence of outliers, the proposed L1 - norm estimation outperforms LS estimation and 

IRLS estimation. 

6.1.4 Network Layer 

The contribution to this layer is contained in chapter five of the thesis. Novel 

robust 20-CTMs based on IRLS estimation and L1 - norm estimation are introduced to 

merge CLCs built at the positioning layer. The 2D-CTM IRLS estimation outperforms 

other examined estimation techniques. 
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6.2 Thesis Outcomes 

6.2.1 Patents 

1. Mohamed Youssef, Naser El-Sheimy, and Michel Fattouche, "Method and 

Apparatus for Collaborative Localization", in preparation 

2. Mohamed Youssef, Michel Fattouche, and Naser El-Sheimy, "Outlier Detection 

Technique", in preparation 

3. Mohamed Youssef, Michel Fattouche, and Naser El-Sheimy, "Multi-Resolution 

Propagation Delay Estimation Technique", in preparation 

6.2.2 Journal Papers 

1. Mohamed Youssef, Naser El-Sheimy, and Michel Fattouche, "Robust 

Collaborative Localization Techniques for Wireless Sensor Networks," IEEE 

Journal of Selected Topics in Signal Processing. Submitted 

2. Mohamed Youssef, Michel Fattouche, and Naser El-Sheimy, "A Novel Skew-

Normal Outlier Detection Techiique," IEEE Transaction in Communication. To 

be submitted upon patent submission. 
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3. Mohamed Youssef, Michel Fattouche, and Naser El-Sheimy, "A Novel Multi-

Resolution Technique Based on Orthogonal Search," IEEE Transaction in 

Wireless Communication. To be submitted upon patent submission. 

6.2.3 Conference Papers 

1. Mohamed Youssef, Naser El-Sheimy, "Wireless Sensor Networks: Research vs. 

Reality", the Fifth Annual IEEE/ACM Conference on Communication Networks 

and Services (CNSR 2007) New Brunswick, Canada. 

2. Mohamed Youssef, Aboelmagd Noureldin, Abdel Fattah Yousif, and Naser El 

Sheimy, "Self Localization Techniques for Wireless Sensor Networks," 

IEEE/ION Position Location and Navigation Symposium, PLANS 2006, CA, 

USA. 

6.3 Potential Research Directions for Future Work 

The focus of my future research is to investigate jointly reliable communication 

and location techniques for infrastructure and distributed systems with a particular 

emphasis on statistical and digital signal processing. Some of the potential projects are 

described below. 
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1. Build over my PhD research work by going one-step further by investigating 

wireless location tracking, especially for GPS systems. The novel methods 

developed during my PhD requires new techniques to be investigated in order to 

be able to track people and merchandise (i.e. indoor applications). 

2. Knowing the location of the radio device can help in several research areas such 

as: synchronization, channel estimation, interference cancellation and cooperate 

communication. These have not yet been deeply investigated, except in WiMAX 

where ranges have been used to help in synchronization. 

3. Develop a technique that can reduce the positioning error propagation in 

distributed systems though the use of virtual nodes. 
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Appendix A: MUSIC and Decorrelation of Signals 

MUSIC is widely discussed in the literature. A concise summary is given here for 

convenience. Consider a signal of L uncorrelated sinusoids in AWGN with zero mean 

and variance cr2. Let RMusJc be the (M + 1) by (M + 1) ensemble averaged correlation 

matrix of the signal, which can be expressed as 

RMUSJC = SMUSICJJSMUSIC H + cr2l (48) 

where H indicates Hermitian transpose and I is the (M + 1) by (M + 1) identity matrix. 

SMUSIC is an (M + 1) by L matrix of the form 

SMUSIC [SMUSJC1, SMUSIC 2' SMUSICLI 

1 1 •..1 
= eJ°1 eJ°-'2 ... e 3° 

ejMc01 ejM)2 

where 

D is the correlation matrix of the sinusoid. 

(49) 

Let (v1, v2, , VM+1} be the eigenvectors of RMUSJC. The MUSIC spectrum is 

obtained from 
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1  
SMUSIC(co) = H 

SM,JSJC ((.)VNVSMUS1C (()) 

where 

(50) 

SMUSIC (ü) = [1 •. e_JMO ]T is the variable frequency scanning vector, 

VN = [vL+j 12M+1] 

Decorrelation of Signals: Signal decorrelation by smoothing has been found 

helpful, but not efficient. Consider the N data points [x(0) x(1) ... x(N - 1)]. A 

subarray is formed consisting of M + 1 points where M + 1 <N. Smoothing is 

introduced by sliding the subarray across the full array of data points in both the forward 

and backward directions. This is accomplished by structuring a data matrix A MUSIC in the 

form 

X(M) ... x(N-1) 
H x(M-1) ... x(N-2) 

AMUSIC - 

x(0) ... x(N—M+1) 

f(0) ... x(N—M+1) 
x*(1) x*(N_M+2) 

x*(M) ... x*(N_..1) 

(51) 

The left half of 4USJC contains the subarrays for forward smoothing whereas the right 

half consists of the subarrays for backwards smoothing. The ensemble averaged 

correlation matrix RMUSIC is defined as the expected value of the product of the data 
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matrix AMUSIC , with Hermitian (i.e. complex conjugate). In practice, it is not known and 

must be estimated from the a sample average. The estimation of RMUSJC will then be 

where 

1  
RMUSIC = A74USJCAMUSJC 2(N-M) 

2(N - M) is the number of points average 
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Appendix B: Fast Orthogonal Search (FOS) Procedure 

The Fast Orthogonal Search (FOS) method, was developed by Korenberg as a fast 

efficient method of building models of time-series and of systems with unknown 

structure. It is a modified version of the OLSR technique. 

FOS has been developed to reduce both the computation power and time. The 

9j'OS coefficients found by (7) or (8) can be obtained as 

where 

where 

FOS - - C(k) 
9 k  D(k,k) 

D(O,O) = 1 

D(k, 0) = Pk() 

(53) 

(54) 

D(k,r) = Pk()Pr(fl) —1D(k,i) (55) 

r = 0,...,k — 1, and 

kr 
D(k,r) 

D(r,r) 

Let C(0) = r(n) = R, then 
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- C(k) = r(n)Pk(n) r=O riC(T) (56) 

which represents one form of Cholesky decomposition. 

In general, the MSE is given by 

Equivalently, 

MSE = R T R - Mi=i(g0s)2 D (k, k) 

MSE = y2 (n) — EM j1(g/°5)2D(k,k) 

Therefore, the 0FOS function is given by 

0FOS = (gjTOS)2D(k,k) 

148 

(57) 

(58) 

(59) 



Appendix C: A proof for the special angles of 2D-CTM based on L1 - norm 

estimation 

The Euclidean distance estimated from sensor nodes CLCs are equal to the 

observed ranges due to the unit circle that govern the relation between x and y 

coordinates lased on L2 - norm, while for L1 - norm this assumption is not valid due 

to the unit rhomboid which controls the relationship between x and y coordinates. Figure 

45 shows how the L2 - norm unit circle and the L1 - norm unit rhomboid meet only 

when the relation between x and y coordinates is 0°, 90° 180°, or 270°. Therefore, 

L1 - norm behaves probably if the inclination angle between the two. CLC systems is 

00, 900, 1800, or 2700. 
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Appendix D: A complete derivation for the 2D-CTM based on L1 - norm estimator 

a•x—b•y+c=X 

a•y+b•x+d=Y =>a= 
X — c+b•y 

X 

X—C y2 = x.(Y—d)— (x —c).y 
  y+—•b+b x+d Yb   
X y2+x2 

Therefore, for all tie sensor nodes 

c•(@"(—d)—&'i—)\ a = medF X+yt ) 
xl 

=med {!.(Xi_ c . 1—  Lxt • )) x1 -i-y 

b = med   
xi+yi 

where c and d can be given by 

c = med[(x1 - X1)] 
d = med[(y1 - Y3] 
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Figure 45 The difference between the unit circle (Euclidean distance) of L2 - norm and 
unit the rhomboid of L1 - norm. 
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