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Abstract

Secure communication ensures the integrity and confidentiality of communication between connected devices.

An information-theoretic approach to secure communication gives the strongest confidentiality guarantee by

assuming that the attacker has unlimited computing power. The earliest formal model and definition of

information-theoretic secure communication is by Shannon, who employed a secret key shared between

communicating parties to provide confidentiality. An alternative elegant information-theoretic approach to

secure communication views the natural characteristics of the environment (i.e., channel’s noise) as a resource

to build security functionalities. This approach was first proposed by Wyner, and the corresponding secure

communication model is called the wiretap channel model. These two approaches introduce two primary

resources for providing information-theoretic secure communication: the shared secret key and physical

properties of the communication medium.

In this thesis, we study how to employ the above two resources for secure message transmission. We

study this by using channel’s noise in the wiretap channel model. In this model, a sender is connected to the

receiver and the adversary through two noisy channels. We propose a new wiretap encoding scheme with

strong secrecy that provides perfect secrecy and reliability, asymptotically. The construction treats the noise

in the adversary’s channel as a source of randomness that is extracted and used to hide the message from

the adversary. We realize the wiretap channel model using cooperative jamming to evaluate the performance

of wiretap codes in practice. We consider a model called keyed wiretap channel that unifies Wyner’s model

with Shannon’s model of perfect secrecy for information systems, and propose a keyed encoding schemes

with strong secrecy and other properties that are attractive in practice.

We also study two-party information-theoretic secret key agreement when the two parties have access

to samples of a common source of randomness and use a single message transmission to arrive at a shared

random key. We propose a secret key agreement protocol in this setting, prove its security, and show its

superior performance compared to other known protocols with the same properties. Finally, we propose an

information-theoretic secret key agreement over a virtual wiretap channel created by cooperative jamming.

ii



Acknowledgements

First of all, I would like to thank my supervisor, Dr. Reihaneh Safavi-Naini for her extensive support,

patience and guidance during my studies, and for the opportunity to work in her exceptional research group.

My sincere thanks goes to my supervisory committee, Dr. Michael J. Jacobson and Dr. Carey Williamson

for providing valuable directions to improve my research outcome. I’m also thankful to Dr. Christoph Simon,

Günther Ruhe and Dr. Prakash Narayan who provided me with constructive comments on this thesis. I

appreciate that despite their busy schedule, they accepted to be members of my examining committee.

I would especially like to thank Fuchun Lin and Alireza Poustindouz for their significant collaborations.

I would like to thank the fellows of the ISPIA lab and the vibrant academic community of the department

of computer science at the University of Calgary whom I had the pleasure of working with during my research

tenure.

I am also thankful to my friends Sepideh Avizheh, Niloufar Dadkhah, Mahshid Marbouti, and all those

who were my best friends and companions on this journey.

Last but not the least, I am thankful to my wonderful family for their unlimited support during my

studies. I owe a great debt to my brother, mother, and father without whom none of this would be possible.

iii



Dedicated to the memory of all the dear stolen lives of flight PS752.

iv



Table of Contents

Abstract ii

Acknowledgements iii

Dedication iv

Table of Contents viii

List of Figures ix

List of Tables x

List of Abbreviations xi

Epigraph xiii

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Problem 1: How to securely transmit a message using noisy channels? . . . . . . . . . 3
1.1.2 Problem 2: How to securely transmit a message using noisy channels and a secret key? 6
1.1.3 Problem 3: How to establish an information-theoretic secret key? . . . . . . . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Modular semantically secure wiretap encoding . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Modular semantically secure keyed wiretap encoding . . . . . . . . . . . . . . . . . . . 12
1.2.3 Information-theoretic secret key agreement . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Information measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Communication channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Randomness extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I Modular Semantically Secure Wiretap Encoding 19

2 Hash-then-Encode: A Modular Semantically Secure Wiretap Code 20
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 A modular construction of efficiently invertible UHFs (ei-UHF) . . . . . . . . . . . . . . . . . 26
2.4 The HtE (Hash-then-Encode) construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Hash-then-Encode (HtE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Achieving the capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.4.3 Effective rate for short messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Post-Quantum Security using Channel Noise 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 A Virtual Wiretap Channel for Secure Message Transmission 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Preliminaries and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 QAM and OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 iJam and Basic iJam Transmission (BiT) protocol . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Eavesdropper’s strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 BiT as a virtual wiretap channel – An example . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Virtual wiretap channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Secure message transmission using BiT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 A semantically secure wiretap code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 Using the wiretap construction with BiTNη,q . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 BiT over noisy receiver’s channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Conclusion and future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

II Modular Semantically Secure Keyed Wiretap Encoding 60

5 A Modular Semantically Secure Wiretap Code with Shared Key for Weakly Symmetric
Channels 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Notations and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Wiretap channel with shared key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 The capacity-achieving construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 The KHtE construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 72
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Communication channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Randomness extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Wiretap channels and keyed wiretap channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Wiretap coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Constructions of wiretap codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.3 Wiretap channel with a shared key. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.4 Codes for keyed wiretap channel encryption . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.5 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 KHtE∗: A new keyed wiretap encryption scheme . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.2 KHtE∗ construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.3 Amortizing the seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vi



6.5 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.5.1 Wiretap chanel construction: RK = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.2 One-Time Pad: Cs(WT) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Using the construction in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6.1 Single block encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6.2 Encryption of 2t blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.7 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

III Information-Theoretic Secret Key Agreement 108

7 A Capacity-Achieving One-Message Key Agreement with Finite Blocklength Analysis 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.2 Universal Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.3 SKA in source model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 One-way secret key capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 ΠSKA: A one-message SKA protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5 Comparison with related protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Secret Key Agreement using a Virtual Wiretap Channel 124
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 Randomness extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2.2 Wiretap codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2.3 iJam and BiT protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2.4 Modelling BiT as a wiretap channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2.5 Using BiTNη,q to provide security for message transmission . . . . . . . . . . . . . . . . 134

8.3 Key agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.4 Two-way SKA over a pair of wiretap channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.5 Discussion of the self-jamming strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9 Conclusion and Future Work 145
9.1 Modular semantically secure wiretap encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.2 Modular semantically secure keyed wiretap encoding . . . . . . . . . . . . . . . . . . . . . . . 147
9.3 Information-theoretic secret key agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 150

A Contributions to the Co-authored Papers 163

B Appendices of Chapters 165
B.1 Appendix of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.2 Appendix of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.3 Appendices of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.3.1 Achievable Transmission Rate using BiTNq,η . . . . . . . . . . . . . . . . . . . . . . . . 169
B.3.2 BiT over Noisy Receiver’s Channel — An Example . . . . . . . . . . . . . . . . . . . 169

B.4 Appendices of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
B.4.1 KXtX: The Second Keyed Wiretap Construction . . . . . . . . . . . . . . . . . . . . 173
B.4.2 Regular Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.5 Appendix of Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

vii



B.5.1 LHL for Average Smooth Min-entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C Generalized KEM and its Combiners 185
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
C.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C.2.1 A public-key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
C.2.2 Hybrid Encryption and KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
C.2.3 Secret Key Agreement from Correlated Randomness . . . . . . . . . . . . . . . . . . . 195

C.3 gKEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
C.3.1 iKEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.3.2 An iKEM with provable security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C.4 gKEM combiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
C.4.1 Combiners for iKEM and computational gKEMs . . . . . . . . . . . . . . . . . . . . . 209

C.5 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
C.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

viii



List of Figures

1.1 Wiretap channel encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Source model key agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 A binary symmetric channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 A degraded channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 General and degraded wiretap channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Hash-then-Encode (HtE) construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 The encoded blocks in XtX and HtE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Degraded wiretap channel using IdECC() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 The effective rate of ItE and HtE over a BSCp with σ = 32 bits . . . . . . . . . . . . . . . . 39
3.3 The effective rate of ItE and HtE over a BSCp with σ = 64 bits . . . . . . . . . . . . . . . . 39

4.1 BiT when a single 4-QAM (OFDM with N = 1) is used. . . . . . . . . . . . . . . . . . . . . 49
4.2 Secure message transmission based on BiT protocol . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 BiT protocol when Bob’s physical channel is noisy . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Wiretap Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 (i) Wiretap channel with the main channel T and the wiretapper’s channel W; (ii) Degraded
wiretap channel with the main channel T and the wiretapper’s channel W that is the concate-
nation of two channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Comparing the finite-length bounds of (7.15) and (7.14) . . . . . . . . . . . . . . . . . . . . . 121

8.1 Secure message transmission using BiTNη,q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2 SKA-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3 SKA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.4 SKA-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.1 The secrecy rate and capacity (bits per channel use) of BiT . . . . . . . . . . . . . . . . . . . 170

C.1 Security game INDatk-0
Π,A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C.2 Security game KINDatk-b
K,A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.3 KEM Combiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
C.4 Key indistinguishability game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
C.5 gKEM Combiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
C.6 A PRF distinguishing game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.7 Four close games to prove the security of the PRF-then-XOR combiner . . . . . . . . . . . . 213

ix



List of Tables

1.1 Table of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Comparing the encryption step of seeded wiretap codes . . . . . . . . . . . . . . . . . . . . . 33

3.1 Length of the secure message block with HtE . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 The comparison of OM-SKA protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

x



List of Abbreviations

Abbreviation Definition

AWGN Additive White Gaussian Noise

BiT Basic iJam Transmission

BISC Binary Input Symmetric Channel

BER Bit Error Rate

BPSK Binary Phase Shift Keying

BSC Binary Symmetric Channel

DHKE Diffie-Hellman Key Exchange

DL Discrete Logarithm

DMC Discrete Memoryless Channel

DS Distinguishing Security

ei-UHF efficiently invert Universal Hash Function

ECC Error Correcting Code

FLR Finite-Length Rate

FFT Fast Fourier Transform

HtE Hash-then-Encode

IC Interference Channel

IFFT Inverse Fast Fourier Transform

IID Independent Identically Distributed

IoT Internet of Things

ItE Invert-then-Encode

KEM Key Encapsulation Mechanism

KHtE Keyed Hash-then-Encode

KXtX Keyed eXtract-then-Xor

xi



LDPC Low-Density Parity-Check

LHL Leftover Hash Lemma

LTE Long-Term Evolution (wireless standard)

LWE Learning With Errors

MAC Multiple Access Channel

MIS Mutual Information Security

OFDM Orthogonal Frequency-Division Multiplexing

OM-SKA One-Message Secret Key Agreement

OTP One-Time Pad

OW-SK One Way Secret Key

PD Public Discussion

QAM Quadrature Amplitude Modulation

RDS Random message Distinguishing Security

RFID Radio Frequency IDentification

RItE Repeat Invert-then-Encode

RSA Rivest, Shamir, and Adleman (cryptosystem)

SKA Secret Key Agreement

SS Semantic Security

SSH Secure SHell

SSL Secure Socket Layer

TLS Transport Layer Security

TWC Two Way Channel

UHF Universal Hash Function

WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access

XtX eXtract-then-Xor

xii



“What Tarquin the proud communicated in his garden with the beheaded

poppies was understood by the son but not by the messenger.”

- Johann Georg Hamann

xiii



Chapter 1

Introduction

In a basic secure communication model, a sender transmits information in the form of a message to a receiver

over a communication channel. The transmission is subject to undesired effects of the communication medium

known as noise, and a third entity eavesdrops the communication. The ultimate goal is to send the message

“reliably” and “securely” in the presence of noise and an eavesdropper. “Reliability” means the receiver is

able to recover the original message with high probability, and “security” implies that the eavesdropper only

obtains negligible information about the message. Encoding schemes and encryption protocols are designed

and implemented to satisfy these two goals. The secure communication model is useful for studying the

security of many real-world communication systems, such as the wireless communication systems where the

broadcast nature of communication becomes the Achilles’ heel of security by allowing unauthorized users

(eavesdroppers with a radio receiver) to capture the communication that may carry confidential information.

The conventional approach is to meet the above goals separately. Error correcting codes are applied to

the physical layer of communication to provide reliability. Communication at higher layers of the network

protocol stack is assumed to be noise-free due to the application of error correcting codes. Cryptographic pro-

tocols are then used at the higher layers of the protocol stack to provide security requirements. For example,

the Transport Layer Security (TLS) protocol [109] forming a significant proportion of secure communication

on the Internet is implemented at the transport layer and uses public-key cryptography to authenticate the

communicating parties and to establish a shared secret key, which is then used for message encryption in

symmetric cryptography.

Most of the public-key cryptosystems assume the eavesdropper’s computational power is bounded, and

the system’s security relies on the computational difficulty of solving certain problems. Two examples of these

problems are discrete logarithm (DL) and integer factorization problems that form the basis of the security

of Diffie-Hellman Key Exchange (DHKE) protocol, and RSA cryptosystem, respectively. Providing security
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by relying on the difficulty of solving hard problems is not sufficient because computation hardware is getting

cheaper every day, and some of the computational security schemes that are currently considered secure may

no longer be in the future. Moreover, the security of these protocols is threatened since Peter Shor [124] gave

efficient (polynomial-time) quantum algorithms to factor large numbers and compute discrete logarithms,

which breaks all of today’s Internet secure protocols with the deployment of the quantum-computer. Recent

developments in quantum computers have led to the announcement by security agencies [128] to move to

quantum-safe algorithms, and this has been followed by standardization efforts [26] in this domain.

Concerns about the breakdown of computational cryptosystems can be addressed by the information-

theoretic security approach that removes computational assumptions. However, the security of such a system

may rely on the availability of a secret key [115] or some correlated randomness [92] to communication parties,

or requires assumptions about the probabilistic behavior of nature, for instance of a noisy channel [143] or

a quantum measurement [14]. Shannon [115] initiated the study of secure communication problem from an

information-theoretic perspective. He considered a noiseless communication scenario, in which the sender

and the receiver share a secret key that is unknown to an eavesdropper. Used as a one-time-pad (OTP), this

secret key enables secure transmission of the confidential messages.

This thesis is concerned with information-theoretically secure encoding and key agreement for secure

communication. In this work, the inherent noise over the communication channel and the secret shared key

are the main resources for secure message encoding and any kind of shared correlated randomness is the

main resource for secret key agreement (SKA). To use noise in the communication channel, one needs to

consider the physical layer of the channel and so the thesis studies the physical layer security.

1.1 Objectives

In this thesis, which is a collection of papers (manuscript-based thesis), three research problems are targeted

in the context of information-theoretic security.

Problem 1: How to securely transmit a message using noisy channels?

Problem 2: How to securely transmit a message using noisy channels and a secret key?

Problem 3: How to establish an information-theoretic secret key?

Each problem is deliberated in a particular and well-studied information-theoretic communication model

that allows formalization of the study and portraying the detailed objectives. The models are introduced

briefly in the following.

• Wiretap Channel Model : In the communication model that is known as the “wiretap channel model”,

instead of limiting the computational power of the eavesdropper, the assumption is that the channel
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from the transmitter to the legitimate receiver (main channel) has a physical advantage over the channel

from the transmitter to the eavesdropper, who is also referred to as the “wiretapper” in this context.

The physical advantage is associated with the noise level over the main and wiretapper’s channels and

is exploited to enable secure communication by deploying wise coding and pre-coding schemes. The

wiretap channel model was first proposed by Wyner [143] for degraded channels (where the wiretapper

receives a noisy version of the receiver’s view) and then extended by Csiszár and Körner [34] to model

any broadcast communication concerned with confidentiality. This model turns out to be a powerful

model for capturing wireless secure communication requirements. When the physical advantage of the

receiver’s channel over the eavesdropper’s cannot be guaranteed, the application of the wiretap channel

model in wireless communication is possible by the introduction of artificial noise using a technique

called “cooperative jamming” [81, 86, 132], in which a helper party introduces an artificial noise in the

channel to provide secrecy.

• Keyed Wiretap Channel Model : A keyed wiretap channel model is a variation of the wiretap channel

model in which a secret key is pre-shared between the legitimate communication parties. The goal is

to take advantage of the noise over the adversary’s channel as well as the secret key that is shared by

the participants. These two are primary resources available to the sender and the receiver for securing

communication, without making any computational assumption. Yamamoto [145] initiated the study

of the (noisy) wiretap channel with a shared secret key.

• Source Model for Key Agreement : In the source model of key agreement, two legitimate parties Alice

and Bob have samples of two correlated random values, and an eavesdropper Eve has side-information

in the form of a third random value correlated with Alice’s and Bob’s. Alice and Bob communicate

over a noise-free public channel that is visible to Eve, to extract a common shared key that is perfectly

secret from Eve. The setting was independently considered by Maurer [92] and Ahlswede and Csiszár

[2], and has been widely studied since. The source model can be realized by a satellite broadcasting a

random string that is received by nodes over noisy channels.

1.1.1 Problem 1: How to securely transmit a message using noisy channels?

One of the central problems of security is studied: Alice wants to send a message reliably and securely over

a channel in presence of an adversary Eve. The wiretap channel model is used for the study of this problem.

The resulting encoding scheme is referred to as a wiretap channel encoding scheme. In this model (See Figure

1.1), the sender (Alice) is connected to the receiver (Bob) and the wiretapper through two communication

channels, namely the main channel T and the wiretapper’s channel W. The outputs of the two channels are
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publicly known probabilistic functions of the input. The sender uses a randomized encoding algorithm Enc

to encode a message m to a codeword (ciphertext) X that is the input to the two channels. The receiver

and the wiretapper will receive Y = T(X) and Z = W(X) through their respective channels. The receiver

will use a decoding function Dec(Y ) to recover a message m̂. The decoding will be in error if m 6= m̂. The

wiretapper’s view of the communication is denoted by Z.

Alice

Bob

Eve

m XEnc()

Dec()T()

W()

Y
m̂

Z

Figure 1.1: Wiretap channel encoding

The goal of the coding scheme is to provide secrecy against the wiretapper, and reliability for Bob.

Secrecy is evaluated by finding a bound on the average information leakage, and reliability is quantified by

the probability of error for a uniformly distributed message space [34, 143]. The definition of secrecy was

later strengthened to bound the total information leakage in [90] and then to bound the total information

leakage for any message distribution in [11]. The latter notion is the strongest existing secrecy notion for the

wiretap channel and is shown to be equivalent with semantic security and distinguishing security notions of

[58], adjusted for communication over the wiretap channel.

The efficiency of a wiretap coding system is measured by the rate R(n), which is the ratio of the message

length to n, the number of times that the wiretap channel is used for transmitting the encoded block with

secrecy and reliability. The number n is referred to as the “number of channel uses” in this thesis. The

rate R is achievable over a wiretap channel if there exists a family of wiretap codes indexed by n, such that

as n grows, their rate approaches R and the error probability and information leakage vanish. The secrecy

capacity of a wiretap channel is the highest achievable rate of all the coding schemes. Wyner [143] and

respectively, Csiszár and Körner [34], calculated the secrecy capacity of the corresponding wiretap channel

in their works using a non-constructive argument.

Explicit construction of capacity-achieving wiretap coding systems was a continuing open problem.

Capacity-achieving schemes have been proposed recently for a limited class of communication channels.

Existing constructions can be categorized into two different kinds: those that are based on a specific error

correcting code [87, 136], and modular constructions that separate coding for secrecy from coding for relia-

bility (for the main channel) and so are not restricted to a specific error correcting code (ECC)[11, 66, 138].
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An important step forward in the construction of wiretap encryption system is due to Bellare, Tessaro

and Vardy [11] who proposed the notion of semantic security for wiretap codes and introduced an elegant

explicit modular construction of capacity-achieving wiretap codes that provide semantic security for the

encoded message.

Modular constructions are attractive from theoretical and practical viewpoints, and provide flexibility

in the choice of error correcting codes, which is particularly important in practice. The proposed wiretap

construction in [11] is an example of wiretap modular construction. At the heart of the construction is a

seeded encoding system that assumes a public random string called the seed can be shared by the sender and

the receiver for encoding. The instantiation of this seeded encoding uses invertible extractors (See Section

1.3.4) that was first introduced in [28] for a different type of wiretap channel model [100]. Bellare et al.

[11] introduced a generic approach called seed recycling to show that the seed can be amortized over many

message blocks and so in the final construction, the public discussion channel is not needed. The proof of

security uses a two step approach: first, security is proved for a random message and then, it is proved that

for certain types of seeded encryption systems and wiretap channels, security against a random message

implies security for any message. The authors left the direct security proof of their construction as an open

problem.

Wireless communication is a setting in which the wiretap model naturally arises. However, in many

settings, the eavesdropper channel is not sufficiently noisy, and so the setting does not provide secrecy

capacity. One can also create the effect of a wiretap channel for an eavesdropper by using techniques such

as cooperative jamming, where the communicating parties cooperate to jam the eavesdropper’s view. The

existence of a helper jammer ensures that the legitimate parties have enough physical layer advantage over

the eavesdropper that enables them to communicate securely [81, 86, 132]. It is required to carefully analyse

the interaction between the helper jammer and other communication parties, estimate parameters of the

realized wiretap channel and choose an appropriate coding scheme for secure communication. The next

step is to evaluate the performance of the system in practice to disclose deficiencies of the existing coding

techniques once the performance of the system is evaluated.

Objectives

My objectives toward the problem of secure message encoding using noisy channels are listed below:

• To propose a new modular construction of a wiretap coding system with proof of semantic security

and achieving capacity for a broad class of wiretap channels. It is also desired to have a construction

with the potential of being combined with keyed encoding schemes to take advantage of a shared key
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when available.

• To improve the computational efficiency of the construction, and to estimate the parameters of the

encoding system for finite-length messages for comparing the construction with other existing con-

structions in practical scenarios.

• To explore the implementation of wiretap codes in practice, in particular, model and analyze a secure

communication protocol that uses cooperative jamming as an instance of creating a virtual wiretap

channel.

1.1.2 Problem 2: How to securely transmit a message using noisy channels and

a secret key?

Shannon initiated the study of secure message encoding with a shared key from an information-theoretic

viewpoint [115, 116]. His solution was to first meet reliability through the application of error correcting

codes, and then provide security over the reliable communication by the OTP encryption scheme. In OTP,

the pad is the random secret key that is XORed with the message to completely hide it from the eyes of the

eavesdropper. Shannon showed perfect security against an eavesdropping adversary is obtained if the shared

secret key is at least as long as the message.

Combining Shannon’s secret key based secure communication [116], and Wyner’s wiretap channel [143]

approaches results in reducing the length of the required key of OTP. This model is called the keyed wiretap

channel model that is first considered in [145] and followed by [78, 94, 141]. In this framework, the randomness

of the wiretapper’s channel is treated as an extra resource for partially hiding the message, and can reduce

the required key length of the OTP system for completely hiding the message. In the general keyed wiretap

channel model of [78], Alice wants to send a message privately to Bob through the main channel T, while Eve

intercepts the communication through the channel W, and a secret key with given rate is shared between

Alice and Bob. The rate of a shared key is defined as the key length divided by n, the number of channel

uses. Similarly, the rate of an encoding scheme is defined as the length of the codeword divided by n. The

achievable rate of an encoding family is the asymptotic rate of the encoding system that is achieved as n

grows, and the secrecy capacity is the highest achievable rate. From the wiretap channel point of view, the

secrecy capacity of a keyed wiretap channel is increased by the rate of the shared key as long as it does not

exceed the reliability capacity of the main channel. This is shown in [78], where the general secrecy capacity

of a keyed wiretap channel is derived by showing the existence of a random encoding scheme.

The secrecy of a keyed encoding scheme for a keyed wiretap channel is defined for a uniformly distributed

message space, and stronger secrecy notions for any message distribution have never been considered. Explicit
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construction of a keyed encoding scheme for this setting has been recently proposed in [141], which is based

on the application of specific error correcting codes called polar codes [6] in the construction.

Objectives

My objectives for the problem of secure message transmission using noisy channels and a shared secret key

are listed below:

• To make the secrecy notion of encoding over the keyed wiretap channel stronger.

• To use all the available resources (in particular, the secret key and the channel noise) in a communi-

cation setting to achieve information-theoretic security. An ideal construction for this purpose enables

secure communication when at least one of the resources is available.

1.1.3 Problem 3: How to establish an information-theoretic secret key?

Establishing a shared secret key between two parties is one of the fundamental problems in cryptography.

Once such a secret key is established, through the OTP, a secure message transmission protocol is immediately

constructed.

Source model secret key agreement that is also referred to as secret key agreement by public discussion

from correlated randomness, was initiated by Maurer [92] and Ahlswede and Csiszár [2] independently. In

this model, Alice and Bob have two dependent samples of a correlated randomness source, namely X and Y ,

respectively, and an eavesdropper Eve has side-information in the form of a third dependent sample Z. Alice

and Bob communicate over a reliable public channel that is visible to (but not physically vulnerable by)

Eve, to extract a common shared key that is perfectly secret from Eve. The correlated randomness can be

generated from different processes, for example when the samples of a beacon that broadcasts randomness

are received by all parties over their individual channels (e.g., a satellite broadcasting samples of a random

source (See Figure 1.2), or Alice simply generating a random string X and sending it over the wiretap

channel, resulting in Y and Z, at Bob and the wiretapper, respectively. Maurer [92] showed that when

a public discussion channel, in addition to the correlated randomness, is available to Alice and Bob, they

are able to establish a shared secret key even if the channel secrecy capacity is zero. He also showed that

this setting is a “minimum” setting, meaning that without any initial correlated randomness, secret key

agreement is impossible.

One-message secret key agreement (OM-SKA) is a class of secret key agreement protocols under the

source model with two distinctive properties, namely (i) only one-way communication from Alice to Bob is

allowed, and (ii) Alice is only allowed to send one message to Bob for the purpose of key agreement. This
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Y

Figure 1.2: Source model key agreement

problem was first explored by Holenstein and Renner in [74], where the first explicit OM-SKA protocols

were proposed. The study was followed in [105] and [29] and other explicit OM-SKA protocols based on

polar codes were proposed. One-message key agreement protocols are sometimes preferred over interactive

alternatives, especially by small devices with power constraints, since the cost of interaction for secret key

agreement can become excessive for conventional key sizes. Moreover, the environment may change (e.g., in

ad hoc networks) during the interaction or transmission of more than one message, and the initial physical

assumptions may not hold and therefore, the security is not guaranteed anymore.

The efficiency of a secret key agreement protocol when Alice, Bob and Eve have n samples of the

correlated random source is measured in terms of the secret key rate (achievable key length divided by n).

The highest asymptotic (n→∞) key rate that can be achieved in a setting is the secret key capacity of the

setting. Bounds on the secret key capacity in source model are given in [2] and [92]. The non-asymptotic

efficiency of a SKA protocol is important in the real-life deployment of the protocol. This has been recently

noted in [68], where bounds on secret key length of an interactive SKA are established in finite blocklength

regime using higher order approximations. However, such analysis for OM-SKA does not exist in literature.

Wiretap channel codes for secure message transmission can also be used for SKA: Alice generates a random

key and sends it (as a message) securely to Bob. The secret key in this setting can only be established when

the main channel has physical advantage over the wiretapper’s channel. The physical advantage can be

“virtually” generated by cooperative jamming.

8



Objectives

My objectives on the secret key agreement problem are listed below:

• To formally analyze the generated key in a practical protocol proposed in [59] that uses self-jamming

technique, and to use an abstract wiretap channel model to propose a complementary SKA protocol(s)

for establishing an information-theoretic secure key in this framework.

• To propose a practical OM-SKA protocol with an analysis for finite blocklength.

1.2 Contributions

The contributions of this thesis are in the form of four published papers, one poster paper and three unpub-

lished papers that cover the above objectives. These contributions are given in three parts, where each part

is directed by one of the introduced research problems. The list of papers included in this thesis is given in

Table 1.1.

In the following, three main parts of this thesis are introduced. Contained papers in each part are listed,

and corresponding contributions of each paper are elaborated.

1.2.1 Modular semantically secure wiretap encoding

Highlights of the contributions: Semantic security is the strongest notion of secrecy for wiretap encoding.

The proposed construction in P.1 guarantees semantic security for encoding and improves the efficiency of

previously known constructions. The application of wiretap codes in practice requires a framework to

evaluate their efficiency for the encoding of finite-length messages. Such a framework is proposed in P.2.

Another important step toward the application of wiretap codes in practice is the study of techniques or

communication settings that realizes wiretap channels. In P.3, realization of a wiretap channel through the

cooperative jamming is studied.

P.1 Hash-then-Encode: A Modular Semantically SecureWiretap Code [120].

Contributions: A new modular construction of a wiretap encoding system with efficient encoding and

decoding is proposed. The construction is called Hash-then-Encode (HtE) as the encoding consists of

a hash function calculation, followed by an error correcting code application and decoding consists of

encoding an error correcting code, followed by a hash function calculation. This makes the proposed

wiretap encoding/decoding operations the most computationally efficient among existing modular con-

structions because it skips the hash inversion step used in other constructions [11, 66, 138].
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ID Publication Publication Type Chapter Problem

P1

S. Sharifian, F. Lin, and R. Safavi-Naini, “Hash-
then-Encode: A Modular Semantically Secure
Wiretap Code,” in Proceedings of the 2nd Work-
shop on Communication Security (WCS 2017).
Springer, 2018, pp. 49–63

Conference paper Chapter 2 Problem 1

P2

S. Sharifian, R. Safavi-Naini, and F. Lin, “Post-
Quantum Security using Channel Noise,” in Pro-
ceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser.
CCS ’18. New York, NY, USA: ACM, Oct 2018,
pp. 2288–2290

Poster paper Chapter 3 Problem 1

P3

S. Sharifian, R. Safavi-Naini, and F. Lin, “A Vir-
tual Wiretap Channel for Secure Message Trans-
mission,” in International Conference on Cryp-
tology in Malaysia. Springer, 2017, pp. 171–192

Conference paper Chapter 4 Problem 1

P4

S. Sharifian and R. Safavi-Naini, “A Modular
Semantically Secure Wiretap Code with Shared
Key for Weakly Symmetric Channels,” in 2019
IEEE Information Theory Workshop (ITW).
IEEE, Aug 2019, pp. 1–5

Conference paper Chapter 5 Problem 2

P5

S. Sharifian, R. Safavi-Naini, and F. Lin,
“Semantically Secure Keyed Wiretap Encod-
ing Schemes,” Journal of Cryptology, 2020,
manuscript submitted for review.

Journal paper
(under review)

Chapter 6 Problem 2

P6

S. Sharifian, A. Poostindouz, and R. Safavi-
Naini, “A One-Round Key Agreement Proto-
col with Information-Theoretic Security,” ISIT,
2020, manuscript submitted for review. [Online].
Available: http://arxiv.org/abs/1905.04280

Conference paper
(under review)

Chapter 7 Problem 3

P7

S. Sharifian, F. Lin, and R. Safavi-Naini, “Secret
Key Agreement using a Virtual Wiretap Chan-
nel,” in IEEE INFOCOM 2017 - IEEE Con-
ference on Computer Communications. IEEE,
May 2017, pp. 1–9

Conference paper Chapter 8 Problem 3

P8
R. Safavi-Naini and S. Sharifian, “General-
ized KEM and its Combiners,” ITC, 2020,
manuscript submitted for review.

Conference paper
(under review)

Appendix C Bonus Problem

Table 1.1: Table of contributions
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• The semantic security of the construction is proved using the framework in [11] and the capacity-

achieving of the construction is shown for a large class of wiretap channels.

• A general construction of invertible Universal Hash Family (UHF) from XOR-UHFs is given.

• The proposed construction can easily be modified to also take advantage of a possibly existing

shared secret key between the sender and the receiver (this is noted in Chapter 6 where the keyed

wiretap channel encoding is studied).

P.2 Post-quantum Security using Channel Noise [121].

Contributions: Long-term security in general and post-quantum security in particular is a strong require-

ment for Internet of Things (IoT) systems that consist of low-complexity devices with energy constraints.

Modular wiretap schemes are computationally efficient secure encoding methods that guarantee long-

term security. The application of wiretap codes in practice requires a concrete estimate of performance

parameters for finite-length messages.

• A framework for comparing the efficiency of modular constructions is proposed by defining the

finite-length rate (FLR).

• The finite-length rate of two modular semantically secure wiretap encoding schemes (HtE in [120]

and ItE in [12]) are compared for conventional IoT message blocks.

P.3 A Virtual Wiretap Channel for Secure Message Transmission[119].

Contributions: The iJam protocol, proposed by Gollakota and Katabi [59], uses friendly jamming by the

receiver to establish an information-theoretically secure shared key between the sender and the receiver.

The protocol relies on the Basic iJam Transmission protocol (BiT protocol) that uses properties of

OFDM (Orthogonal Frequency-Division Multiplexing) to create uncertainty for Eve in receiving the

sent information, and uses this uncertainty to construct a secure key agreement protocol.

• An abstract model for BiT protocol as a wiretap channel is proposed, which is referred to as a

virtual wiretap channel.

• Parameters of the virtual wiretap channel are theoretically estimated.

• The secrecy capacity of the virtual wiretap channel is derived, and a secure message transmission

protocol with provable semantic security for the channel is designed.
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1.2.2 Modular semantically secure keyed wiretap encoding

Highlights of the contributions: In P.4, the notion of secrecy for keyed wiretap encoding is strengthened

by defining semantic security for keyed wiretap channels and a new construction that guarantees semantic

security and achieves the capacity for a limited class of wiretap channels is proposed. In P.5, the construction

has been improved to provide secrecy for keyed encoding over a large class of wiretap channels. The proof

techniques of P.5 can be used for finite-length analysis of the encoding scheme.

P.4 A Modular Semantically Secure Wiretap Code with Shared Key for Weakly Symmetric Channels [117].

Contribution: Information-theoretic security for a keyed wiretap channel setting emerges from two

resources, namely, the shared secret key, and the physical advantage of the receiver’s channel due to

noisier view of the wiretapper. The proposed keyed wiretap encoding scheme is called KHtE (Keyed

Hash-then-Enocde), which can be viewed as an extension of the wiretap coding construction, HtE [120]

that allows us to take advantage of the available shared key besides the wiretapper’s channel noise for

providing confidentiality.

• Semantic security and seeded encription are defined for keyed wiretap encoding.

• A modular semantically secure construction of keyed wiretap codes that achieves secrecy capacity

of weakly symmetric wiretap channels is proposed.

• Concrete parameters of the construction to achieve a desired level of secrecy and reliability are

derived for finite-length messages.

P.5 Semantically Secure Keyed Wiretap Encoding Schemes [123].

Contribution: The HtE construction in [120] fails to achieve security when the secrecy capacity of the

wiretap channel is zero, and the KHtE construction in [117] is not secure when a shared key doesn’t

exist. In this chapter, a modular keyed wiretap encoding scheme called KHtE∗ is proposed that can be

constructed from any error correcting code and is secure even in the absence of a shared key or when

the secrecy capacity of the wiretap channel is zero.

• Semantic security of the constructions are shown for any wiretap channel.

• The schemes are shown to be capacity-achieving for weakly symmetric wiretap channels.

• In the absence of a shared key, the proposed constructions are compared with other modular wiretap

encoding schemes in terms of secrecy, capacity-achieving and types of required error correcting codes

in the construction.
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• A framework for converting any seeded encoding scheme to seedless encoding scheme with small

secrecy sacrification is proposed.

1.2.3 Information-theoretic secret key agreement

Highlights of the contributions: An information-theoretic secret key agreement protocol is proposed

in P.6 that only requires the transmission of one message. The efficiency of this protocol is evaluated and

compared to other one-message secret key agreement protocols. The analysis of the protocol gives a precise

approximation of the maximum possible secret key length that can be established by the protocol for a given

secrecy and reliability levels. In P.7, secret key agreement over a wiretap channel that is realized by a specific

cooperative jamming technique is studied, and efficient secret key agreement protocols are proposed.

P.6 A One-Round Key Agreement Protocol with Information-Theoretic Security [122].

Contributions: An explicit construction of a source model OM-SKA protocol is proposed that achieves

the one-way secret key (OW-SK) capacity of the model. Following the SKA framework of [24], the two

main steps in the protocol are information reconciliation and privacy amplification. In order to find

sharp bounds on finite achievable key length, a reconciliation method inspired by information spectrum

analysis of [68] and tight bounds in [108] are used.

• An OM-SKA protocol is proposed and its security is analyzed.

• Finite-length lower-bound for the key length and upper-bound for communication cost is derived

and compared with the OM-SKA protocol in [73].

• It is shown that the proposed construction achieves the OW-SK capacity in source model.

P.7 Secret Key Agreement using a Virtual Wiretap Channel [118].

Contributions: In this chapter, key agreement using the physical layer properties of communication

channels is studied. It is shown in [119] that iJam creates a virtual wiretap channel for the adversary

through a subprotocol between the sender and the receiver that uses self-jamming by the receiver. This

wiretap model is used to design secret key agreement protocols with provable security.

• Three protocols are proposed. Two of them use the wiretap channel once from Alice to Bob, and

the third protocol uses two wiretap channels, one from Alice to Bob, and one in the opposite

direction for secret key agreement.

• Security proof and efficiency analysis for the protocols are given.
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1.3 Background

The results of the chapters contained in this thesis are built on a common background from probability theory

and information theory. In this section, basic definitions, essential inequalities, and fundamental relations

that are repeatedly used in the thesis are summarized for the ease of reference. However, each chapter of

this thesis (as an independent manuscript) is self-contained and introduces more specialized preliminaries

that are tailored for that chapter.

Notations1: A random variable X is defined by a set X and a probability distribution Pr (X) over X . The

variable takes a value x ∈ X with probability Pr (X = x). For two random variables X and Y , PXY denotes

their joint distribution, PX|Y denotes the conditional distribution of X when Y is given, and PX denotes

the marginal distribution of X. The expected value of a random variable X is denoted by E(X) and is given

by E(X) =
∑

x∈X
x · Pr (X = x) .

The uppercase U is reserved for uniform distribution and UX denotes uniform distribution over X and

U` denotes uniform distribution over {0, 1}`. Bold lowercase letters are used to denote vectors and bold

uppercase letters to denote matrices. Sans-serif capital letters denote functions or associated functions with

channels. To denote concatenation we use “‖”. All the logarithms are in base 2.

1.3.1 Inequalities

Markov’s inequality [110, Proposition 2.1]. Let X be a non-negative random variable and suppose that

E(X) exists. For any a > 0,

Pr (X > a) ≤ E(X)

a
. (1.1)

Jensen’s inequality [30, Theorem 2.6.2]. Let f be a convex function and X be a random variable, then

E(f(X) ≥ f(E(X)). (1.2)

1.3.2 Information measures

For a random variable X ∈ X with distribution PX(x), the Shannon entropy is denoted by H(X) and is

defined as:

H(X) , −
∑

x∈X
PX(x) logPX(x). (1.3)

1In different chapters of this thesis, slightly different notations for showing the same concepts may have been used (e.g.,
m and m for denoting the message). However, all notations are introduced at the beginning of each chapter. Here, we have
referred to the most recent notations used in Part II of this thesis.
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For random variables X ∈ X and Y ∈ Y with joint distribution PXY , conditional distribution PX|Y , and

marginal distributions PX and PY , joint entropy H(X,Y ), conditional entropy H(X|Y ), and mutual

information I(X;Y ), are respectively given by

H(X,Y ) = −
∑

x∈X

∑

y∈Y
PXY (x, y) logPXY (x, y), (1.4)

H(X|Y ) = −
∑

x∈X

∑

y∈Y
PXY (x, y) logPX|Y (x|y), (1.5)

I(X;Y ) =
∑

x∈X

∑

y∈Y
PXY (x, y) log

PXY (x, y)

PX(x)PY (y)
. (1.6)

Lemma 1.1. [30] The following relationship holds between mutual information and Shannon entropy.

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ). (1.7)

The min-entropy of a random variable X ∈ X with distribution PX(x) is denoted by H∞(X) and is

defined as:

H∞(X) , − log
(

max
x

(
PX(x)

))
. (1.8)

The statistical distance between two random variables X and Y over a set U is defined as:

SD(X,Y ) , 1

2

∑

u∈U
|Pr (X = u)− Pr (Y = u) |. (1.9)

The collision probability of a random variable X with distribution PX is defined as:

CP (X) ,
∑

x∈X
PX(x)2. (1.10)

1.3.3 Communication channels

In a communication system, a channel is a physical transmission medium such as a wire or environment

through which an information signal is transmitted from one or more senders to one or more receivers. The

communication channel is modeled with a randomized function that maps an input random variable X to

an output random variable Y . The input random variable X represents symbols from the input alphabet

X that are generated with some probability distribution PX , and are input to the channel. The random

variable Y represents symbols from the output alphabet Y with probability distribution PY that are received
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from the channel. A realization of the random variable X is the information signal that the sender wants to

transmit. The received information signal is the corresponding realization of the output random variable Y .

A channel is called discrete when its input and output alphabet sets are discrete sets. Such a channel is

memoryless (DMC) if its output at any time interval only depends on its input in the corresponding time

interval.

A channel as a randomized mapping is described by the conditional probability of each output symbol

given an input symbol. Suppose members of the input alphabet X are indexed from 1 to |X | and members

of the output alphabet are labeled from 1 to |Y|. The transition probability matrix of the channel is denoted

by CH. Then pi,j , the element of i-th row and j-th column in matrix CH, is pi,j = Pr (Y = yj |X = xi) .

A DMC with input alphabet X , output alphabet Y and transition probability matrix CH is denoted

with CH〈X ,Y,CH〉. The other way of describing the channel is as a probabilistic function, where CH(X) =

Y denotes a channel with input X and output Y . The probability distribution of Y is dependent on

the probability distribution of X and the channel. CHn(·) denotes the function that is obtained from n

independent applications of the channel.

A message m ∈ M can be transmitted over the channel provided that an appropriate encoding function

Enc maps {0, 1}b to Xn and a corresponding decoding function Dec maps Yn to {0, 1}b, where n is the

number of channel uses. For ideal encoding/decoding functions we have Dec(CHn(Enc(m))) = m. Due to

channel randomization, there is a probability that the above equation doesn’t hold. The error probability of

a pair of encoding/decoding functions is defined as:

Pe = max
m∈M

Pr[Dec(CHn(Enc(m))) 6= m], (1.11)

where probability is taken over the randomness of the channel. The encoding function adds redundancy to

the message to limit the error probability.

The rate of the transmission (bits per channel use) is defined by R = b/n. Rate ρ is achievable for a

family of encoding/decoding functions, if lim
n→∞

Pe = 0, and ρ = lim
n→∞

R. Usually rate R is a function of n,

the number of channel uses. In these cases, the rate is denoted by R(n) to show the dependency of the rate

on n. The capacity of CH, denoted by (CCH), is the maximum of all achievable rates. Shannon in [115]

showed the channel capacity is given by:

CCH = max
PX

I(X; CH(X)). (1.12)

A channel is called symmetric when the rows of the channel’s transition probability matrix are permu-
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tations of one another and the columns are also permutations of each other.

An example of a symmetric channel is the Binary Symmetric Channel (BSC). Such a channel flips

the input with probability p. The BSC function is captured in Figure 1.3.

1− p

1− p

p

p

0

1

0

1

Figure 1.3: A binary symmetric channel

An important class of symmetric channels are described by additive noise channels. For an additive

noise channel, the input and output alphabet set of the channel are the same Galois field with q elements

denoted by Fq. For random variable Z ∈ Fq, the additive noise channel is modeled as:

CH(X) = X ⊕ Z, (1.13)

where addition is over Fq and Z is independent from X.

CH2 is degraded with respect to CH1 when CH2 is the cascade of CH1 and CH3. In this case, we have

CH2 = CH1 ×CH3, where “×” denotes matrix multiplication. The case is captured in Figure 1.4.

X CH1

Y
CH3 Z

CH2

Figure 1.4: A degraded channel

1.3.4 Randomness extraction

Randomness extractors aim to extract randomness from imperfect sources. The existence of such functions

is proven in [99].

A random variable X ∈ {0, 1}m where H∞(X) ≥ d (i.e., if for all x ∈ {0, 1}m, P r[X = x] ≤ 2−d) is called

an (m, d)-source. We can extract at most d bits of randomness from this variable.

17



A (d, ε)-strong extractor is a function EXT : {0, 1}m × S → {0, 1}` such that for any (m, d)-source X

and a uniformly random S over S we have SD
(

EXT
(
(X,S), S

)
;
(
U`, S

))
≤ ε.

An inverter for the extractor EXT(·, ·) is the function INV : {0, 1}r × S × {0, 1}b → {0, 1}n, if for a

uniform R ∈ {0, 1}r and for all S ∈ S and Y ∈ {0, 1}b, the random variable INV : (S,R, Y ) is uniformly

distributed over all preimages of Y under EXT(S, ·).

One of the known constructions for randomness extractors is obtained by using hash functions. A family

{hs|s ∈ S} of functions hs : X → Y is a 2-Universal Hash Family if for any x 6= x
′
, Pr{hS(x) = hS(x

′
)} ≤ 1

|Y| ,

where the probability is on the uniform choices over S.

(Leftover Hash Lemma (LHL))[76, 77]: Let h(·) be a randomly chosen function from H : {0, 1}m →

{0, 1}` and let ` = d− 2 log 1/ε, then for any (m, d)-source X,

SD
((

hS(X), S
)
;
(
U`, S

))
≤ ε. (1.14)

1.4 Organization

This thesis is based on eight manuscripts, seven included in the main body and one in the appendix. The

thesis is organized in three main parts and three appendices. The content of each part is a collection of

papers, each given as a separate chapter. Part I is on modular semantically secure wiretap encoding and

consists of chapters 2 to 4. In Chapter 2, a modular semantically secure wiretap code is proposed. In

Chapter 3, the efficiency of the construction is evaluated, and in Chapter 4, a realization of a wiretap

channel is discussed. The second part of this thesis is on modular semantically secure keyed wiretap codes

and consists of Chapters 5 and 6. In Chapter 5, the construction of a new keyed wiretap code is proposed

for a limited class of channels. This construction is refined in Chapter 6 to provide semantic security for

a wider class of communication channels. The third part of this thesis is on information-theoretic secret

key agreement and consists of two chapters. In Chapter 7, a one-message secret key agreement protocol is

proposed and its efficiency is discussed. In Chapter 8, information-theoretic secret key agreement protocols

over a realization of a wiretap channel are proposed. The thesis is concluded in Chapter 9.
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Part I

Modular Semantically Secure Wiretap

Encoding
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Chapter 2

Hash-then-Encode: A Modular Semantically Secure

Wiretap Code1

Abstract. We propose a modular construction of a semantically secure wiretap code that

achieves the secrecy capacity of a large class of wiretap channels. The security of the con-

struction is proved by interpreting the construction as an instance of an invertible extractor, and

use the framework in [11] to complete the proof. The construction has computation for encoding

and decoding equivalent to hashing, and the smallest effective transmission rate among known

modular capacity-achieving constructions. We also give a modular construction of invertible

Universal Hash Families (UHF) from XOR-UHFs that is of independent interest.

2.1 Introduction

Consider a scenario where Alice wants to send a message to Bob over a (noisy) channel that is eavesdropped

by Eve. Alice and Bob do not share a key and Eve is computationally unbounded. Wyner [143] made the

ingenious observation that noise in Eve’s channel can be used as the cryptographer’s resource to provide

security, while providing reliability for the communication. In Wyner wiretap model, and its extension by

Cziszár and Körner [34], the sender is connected to the receiver and the eavesdropper (wiretapper) through

two noisy channels, referred to as the receiver’s channel, T, (also called the main channel) and the wiretapper’s

channel, W, respectively. It has been proved [34, 143] that communication with secrecy and reliability is

possible if the wiretapper’s channel is “noisier” than the receiver’s channel. Wiretap model captures wireless

communication scenarios where a sender’s transmitted message can be intercepted by a nearby eavesdropper,

and so the sent message is received by the intended receiver and the wiretapper through the two channels T

1The content of this chapter is published as a paper [120] in proceedings of WCS 2017.
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Figure 2.1: (i) Wiretap channel with the main channel T and the wiretapper’s channel W ; (ii) Degraded
wiretap channel with main channel T and the wiretapper’s channel W that is the concatenation of two
channels.

and W, respectively. The model has intrigued the research community and has generated a huge amount of

research because of the promise of information-theoretic security without the need for a shared secret key.

Wiretap model. In the wiretap model (See Figure 2.1) the sender uses a randomized encoding (also

called encryption) algorithm Enc : {0, 1}b → {0, 1}n that encodes (encrypts) a message m and generates a

codeword (ciphertext) X, that is the input to the receiver’s channel T and the wiretapper’s channel W. The

receiver will use a decoding (decryption) function Dec : {0, 1}n → {0, 1}b on Y , to recover a message m′.

The decryption will be in error if m′ 6= m. The wiretapper’s view of the communication is denoted by Z.

The goal of the encryption system is to provide secrecy and reliability for the receiver.

Wyner defined security and reliability as asymptotic values of I(M ;Z)/b, and Pr[Dec(Y ) 6= M ] when

b→∞, respectively, assuming messages are uniformly distributed. Here I(A;B) is the mutual information

between the two random variables A and B, and M denotes the random variable corresponding to message

space. The security definition of wiretap model has been strengthened by replacing the rate of leakage

of information, I(M ;Z)/b, with the total information leakage I(M ;Z) in [90], and more recently with

max
PM

I(M ;Z) in [11], which is shown to be equivalent to the semantic security [58].

The transmission efficiency of wiretap encryption systems is measured by the rate, R = b
n , of sending

messages with secrecy and reliability. The secrecy capacity of a wiretap channel is denoted by Cs, and is the

highest achievable rate of communication, satisfying the security and reliability requirements.

It has been shown that when T and W are symmetric and W is degraded with respect to T, secrecy

capacity is given by Cs = CT − CW, where CT and CW are Shannon (reliability) capacity of the receiver’s

and the wiretapper’s channels, respectively.

An explicit construction of capacity-achieving wiretap encryption systems with efficient encoding and

decoding has been a longstanding open problem. The first explicit capacity-achieving construction for a

large class of wiretap channels was by using polar codes and their properties [87]. More recently, capacity-

achieving modular constructions with efficient encoding and decoding have been proposed [11, 66, 138].
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These constructions can use any capacity-achieving error correcting code and because of the flexibility in

the choice of the error correcting code, are attractive in practice.

In the existing modular constructions, wiretap encoding has two steps: the first step is a randomized

coding using an invertible seeded extractor, and the second step is an Error Correcting Code (ECC) that

encodes the output of the first step. The extractor is implemented using a Universal Hash Family (invertible

UHF). The seed for the UHF may be pre-shared by the sender and the receiver [66], or sent reliably (without

secrecy) across the main channel [11, 138]. In this latter case, the seed can be used for encryption of a long

message with many blocks, and its required transmission is thus amortized over many blocks of the message.

All known wiretap encoder constructions require inverting a hash function. The commonly used construction

for invertible UHF uses multiplication over finite fields for forward hashing, and finding the inverse of a field

element followed by a finite field multiplication for inverting the hash.

Wiretap codes are evaluated in asymptotic regime. That is, when the message length approaches infinity.

In practice, however, wiretap codes will be primarily used for sending single finite-length messages. This will

be a common setting in networks of small devices that commonly occurs in the future Internet of Things

(IoT). In such settings, the seed must be sent with each message and its length will not be amortized over

many blocks. Hence the effective rate of communication must take the seed length into account.

2.1.1 Our work

We start by giving a modular construction of an invertible UHF from any XOR-UHF. A hash function

h : X → Y maps the elements of a domain X to the elements of Y. In our applications |Y| < |X | and so

y ∈ Y corresponds to a set hInv(y) of pre-images. An inverter function for h is a randomized function that

for any y ∈ Y outputs, randomly (and uniformly), an element of the pre-image set hInv(y).

A UHF (Definition 2.3) is a family of hash functions with the same domain and range indexed by the

seed, and has the property that for any pair of different elements x,x′ ∈ X we have Pr[hS(x) = hS(x′)] ≤ ε,

where probability is over the random choice of the seed. The family is invertible if there is an inverter

function for each member of the family.

A modular construction of invertible UHF. In Section 2.3, we show a modular construction of an

invertible UHF. The construction uses an XOR-UHF (Definition 2.4) that maps X → Y, and the XOR

property requires that for any pair of different elements x,x′ ∈ X we have Pr[hS(x) ⊕ hS(x′) = a] ≤ ε for

any a ∈ Y, where probability is over the random choice of the seed. The resulting invertible UHF maps

X × Y → Y and has the same ε.

Leftover Hash Lemma (LHL) (Lemma 2.2) shows that a UHF family can be used as a seeded extractor.
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Figure 2.2: Hash-then-Encode (HtE) construction

Our result thus, gives an invertible seeded extractor from any XOR-UHF with the property that the inversion

operation of a hash function is simply computing a hash function (a member of UHF). Invertible extractors

(and invertible UHF) are of interest because of their applications to the construction of wiretap codes (both

Wyner wiretap and wiretap II), and secret sharing schemes from codes [33].

A new modular construction of capacity-achieving wiretap encryption system. Our main con-

tribution is a new modular construction of a semantically secure wiretap encryption system with efficient

encoding and decoding that for a large family of channels achieves the channel secrecy capacity. We call the

construction Hash-then-Encode (HtE) as wiretap encoding amounts to calculating a hash function (from

the XOR-UHF), followed by using an ECC. This makes our wiretap encoding operation the most efficient

among existing modular constructions of wiretap codes. We prove the semantic security and capacity-

achieving properties of our construction by showing that it fits within the framework of [11] and so their

approach can be used to prove the required properties. We consider the application of wiretap codes in

practice, and define the effective rate of the codes as the total transmission, including the seed, divided by

the message length. The first (and the only) other construction of capacity-achieving wiretap code with se-

mantic security, called Invert-then-Encode (ItE), is in [11, 138]. We show that for the same level of semantic

security and reliability, our construction needs a shorter seed and so has a higher effective rate, compared to

the construction in [11, 138]. Our construction is shown in Figure 2.2.

2.1.2 Related works

Wiretap channel is a widely studied area. Wyner’s original model [143] considers a degraded channel (See (i)

of Figure 2.1) where W is the concatenation of T and a second noisy channel W′. Csiszár and Körner [34]

extended this model to the broadcast setting (See (ii) of Figure 2.1). The known modular constructions of

wiretap codes result in capacity-achieving constructions for Wyner’s original model. Hayashi and Matsumoto

[66] used invertible UHFs to construct capacity-achieving modular wiretap encryption systems where security

is proved for uniformly distributed messages. Bellare et al. [11] introduced the notion of semantic security

for wiretap codes and gave the first modular construction that provides semantic security. They also gave a

construction [12], referred to as XtX whose encoding resembles our construction, but the capacity-achieving
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property of the construction was left as an open question. Our work answers this question using a new

interpretation of the construction in terms of invertible UHF. Section 2.4.2 provides more details.

2.2 Preliminaries

Probability Distributions. We use uppercase letters X to denote random variables and bold lowercase letters

x to denote their corresponding realization. UΩ denotes the uniform random variable over Ω. In particular

U` denotes the uniform variable over {0, 1}`. The calligraphic letters X are used for sets of elements. |X |

denotes the number of elements in a set. By X ∈ X , we mean random variable’s distribution is over X . In

particular, x
$← X means element x is chosen with probability 1

|X | and X
$← X means X is a variable with

uniform distribution over X . Pr[X = x] (or PX(x)) denotes the probability of the random variable X = x.

For two random variables X and Y , PX|Y denotes their conditional distribution. For a random variable

X ∈ X with distribution PX(x), the Shannon entropy is H(X) = −∑x∈X PX(x) logPX(x). The min-

entropy H∞(X) is given by H∞(X) = − log(max
x

(PX(x))). The average conditional min-entropy [44] is

defined as, H̃∞(X|Y ) = − logEy∈Y max
x∈X

PX|Y (x|y). The statistical distance of two random variables X,Y ∈

Ω is given by, SD(X;Y ) =
1

2

∑
ω∈Ω |Pr(X = ω)−Pr(Y = ω)|. We say X and Y are ε-close if SD(X;Y ) ≤ ε.

Lemma 2.1. [108] The ε-smooth min-entropy Hε
∞(P ) of a distribution P is defined as:

Hε
∞(P ) = max

Q:SD(P ;Q)≤ε
H∞(Q).

Let X1, . . . , Xn be independent samples from a distribution X on a finite set X and let δ > 0. Then for

ε = 2
− nδ2

2 log2(|X|+3) one has Hε
∞(X1, . . . , Xn) ≥ nH(X)− nδ.

A random source is a random variable with lower-bound on its min-entropy. We say a random variable

X ∈ {0, 1}n is an (n, d)-source if H∞(X) ≥ d.

Randomness extractors. Randomness extractors extract close to uniform randomness from a random

source with some guaranteed entropy. Randomness extractors have found wide applications in cryptography.

For more details on randomness extractors see [99].

Definition 2.1. A function Ext : {0, 1}n × S → {0, 1}` is a strong (seeded) (d, ε) extractor if for any

(n, d)-source X we have

SD((S,Ext(X,S)); (S,U`)) ≤ ε,

where S is chosen uniformly from S.
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Definition 2.2. Let V be a random variable possibly dependent on X, Ext is called a (d, ε) average case

strong extractor, if for all (V,X) with H̃∞(X|V ) ≥ d,

SD((S, V,Ext(X,S)); (S, V, U`)) ≤ ε,

where S denotes a random seed chosen uniformly from S.

Randomness extractors can be constructed from (2-)Universal Hash Families (UHFs) using the so called

Leftover Hash Lemma [77].

Definition 2.3. A family {hs|s ∈ S} of functions hs : X → Y is a UHF if for any x 6= x
′
,

Pr[hS(x) = hS(x
′
)] ≤ 1

|Y| ,

where S denotes a random seed chosen uniformly from S.

Definition 2.4. A family {hs|s ∈ S} of functions hs : X → Y = {0, 1}` is an XOR-UHF if for any x 6= x
′
,

Pr[hS(x)⊕ hS(x
′
) = a] ≤ 1

|Y| , for all a ∈ {0, 1}`,

where S denotes a random seed chosen uniformly from S.

Remark 2.1. XOR-UHF implies UHF. The UHF family Hmult is defined using finite field multiplication.

Let X = {0, 1}n, Y = {0, 1}` and S = {0, 1}n. Then Hmult = {hs|s ∈ S} with hs : X → Y defined as follows

is an XOR-UHF.

hs(x) = (s� x)|`, (2.1)

where � is the finite field multiplication and |` is the ` lower order (index) components of the vector repre-

sentation of a finite field element.

The following average-case version of LHL is due to [44].

Lemma 2.2. Let {hs|s ∈ S} be a UHF with hs : {0, 1}n → {0, 1}`. Let X and Z be random variables over

{0, 1}n and {0, 1}∗, respectively satisfying H̃(X|Z) ≥ `+ 2 log 1
ε − 2. Let S be uniform over S. Then

SD((S,Z, hS(x)); (S,Z, U`)) ≤ ε.

This, according to Definition 2.2, says that UHF is an average-case (`+ 2 log 1
ε − 2, ε) strong extractor.
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Modular constructions of wiretap encryption systems use invertible extractors, first used in the construc-

tion of wiretap II codes [28].

Definition 2.5. [28] Let Σ be a finite alphabet and consider the mapping f : Σn → Σ`. A function

fInv : Σ` × {0, 1}r → Σn is called an inverter for f if the following conditions hold:

1. (Inversion) Given y ∈ Σ` such that the pre-image set f Inv(y) is nonempty, for every r ∈ {0, 1}r we

have f(fInv(y, r)) = y.

2. (Uniformity) fInv(UΣ` , Ur) = UΣn .

An inverter is called efficient if there is a randomized algorithm that runs in worst case polynomial time

and, given y ∈ Σ` and the randomness r, computes fInv(y, r). A mapping is invertible if it has an efficient

inverter.

A family of functions is invertible if all its members is invertible.

In [11], invertibility is defined for regular extractors. A seeded extractor is regular if for every seed s,

every point in the range of Ext(·, s) has the same number of pre-images. An inverter of a regular extractor

takes a seed s and a point y in the range of Ext(·, s) as input, and returns a uniformly selected element of

the pre-image set of y under that seed. The two definitions of invertibility become the same when each map

f in Definition 2.5 is surjective. This is the case for our construction.

Definition 2.6 (Seeded Randomized Encryption E[S]). Let {E[s]|s ∈ S} be a family of randomized encoders

with E[s] :M× {0, 1}r → X . A seeded randomized encryption E[S] is a probabilistic encryption algorithm

that uniformly samples a seed s
$← S and encrypts using the function E[s]. For each E[s] there exists a

decoder D[s] such that D[s](E[s](m)) = m, for any m ∈M.

Modular constructions of wiretap encryption consist of a seeded randomized encryption step and an ECC

step.

2.3 A modular construction of efficiently invertible UHFs (ei-

UHF)

Let H = {hs|s ∈ S} be a family of (possibly non-invertible) XOR-universal hash functions. We propose a

modular construction for an invertible UHF, G, called ei-UHF, that expands the domain of H while keeping

the range the same. The important property of the construction is that inversion of ei-UHF has almost the

same computational cost as (forward) hashing in H.
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Lemma 2.3 (ei-UHF). Let H = {hs|s ∈ S} be a family of XOR-universal hash functions hs : X → Y.

Define gs : X × Y → Y as follows.

gs(x,y) = hs(x)⊕ y. (2.2)

The set G = {gs|s ∈ S} is a family of universal hash functions.

Moreover, for y ∈ Y, and any r ∈ X define,

gInv
s (y, r) = (r, hs(r)⊕ y). (2.2’)

Then {gInv
s |s ∈ S} is the set of inverter functions for G. The computation cost of inversion of ei-UHF is

equal to the forward hashing of XOR-UHF together with an XOR.

Proof. For any (r,y) 6= (r
′
,y
′
), we first show that,

Pr[gS(r,y) = gS(r
′
,y
′
)] ≤ 1

|Y| .

According to (2.2),

gS(r,y) = gS(r
′
,y
′
)⇔ hS(r)⊕ hS(r

′
) = y ⊕ y

′
.

If r 6= r
′
, from the XOR-Universality of H = {hs|s ∈ S} we have

Pr[hS(r)⊕ hS(r
′
) = y ⊕ y

′
] ≤ 1

|Y| .

If r = r
′
, by the assumption (r,y) 6= (r

′
,y
′
), we have y 6= y

′
. This implies

Pr[hS(r)⊕ hS(r
′
) = y ⊕ y

′
] = 0,

which concludes the first part of the proof.

To verify that gInv
s is an inverter of gs, we first verify inversion:

gs(r, hs(r)⊕ y) = hs(r)⊕ (hs(r)⊕ y) = y, for any r ∈ X .

To show uniformity, by (2.2’), for every r there is a pre-image. If r is sampled uniformly from X , then

gInv
s (UY × UX ) = UX×Y .

For efficiency, we note that computing gInv
s consists of computing hs and XOR, which are both efficient

operations.
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ei-UHF is regular because for each y the size of the pre-image set is |X |. We use an instance of ei-UHF

where the XOR hashing is based on Hmult. The original Hmult uses the same set for domain and seed. The

lemma below shows a modification of Hmult that removes this restriction.

Lemma 2.4. Let X = {0, 1}r and Y = {0, 1}b. Let S = {0, 1}r if r ≥ b and S = {0, 1}b, otherwise. Let

hs : X → Y be defined as follows.

hs(x) =





(s� x)|b, if r ≥ b

s� (x||0b−r), otherwise,
(2.3)

where � is the finite field multiplication and |b denotes the first b bits of the vector representation of a finite

field element. Then G = {gs|s ∈ S} with gs : X × Y → Y defined in (2.2) is a family of ei-UHF.

The proof is given in Appendix B.1.

2.4 The HtE (Hash-then-Encode) construction

The ei-UHF construction together with an ECC give a modular construction of wiretap codes (single block

seeded encryption [11]) from an XOR-UHF and an ECC.

2.4.1 Hash-then-Encode (HtE)

Let H = {hs|s ∈ S} where hs : {0, 1}k → {0, 1}b, be an XOR-UHF satisfying hs(0
k) = 0b, and ECC be an

error correcting code.

HtE construction,assuming the seed is available at the receiver, works as follows. To encode a message

m ∈ {0, 1}b,

1. Seed selection: s
$← S; seed is available to the decoder.

2. Encoding: HtE(k, s,m) = ECC(k‖hs(k)⊕m), where k
$← {0, 1}k.

3. Decoding: The received block is decoded using the decoder of ECC, and parsed to obtain (x,y). The

message m = hs(x)⊕ y.

In practice, the seed is sent to the receiver reliably using an error correcting code. This reduces the

transmission efficiency of the system as the total required transmission for a single message grows. To prove

the security of the HtE construction and also address the inefficiency of sending the seed, we follow the

approach in [11]. In the following, we provide an outline of this approach, and then use it to complete

security and efficiency proofs of HtE construction.
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Invert-then-Encode (ItE) and Repeated ItE (RItE).

In [11], a modular construction of wiretap codes that provides semantic security, the strongest notion of

cryptographic security for encryption systems, is proposed. The construction is a seeded encryption system

and its security and efficiency are proven using two components. The first component is a single block

seeded encryption system that assumes the random “seed” is known to the decryption function, and with

this assumption proves semantic security of the construction. To remove the assumption of knowing the seed,

it can be reliably (using error correction) sent over the channel. The authors show that for long messages,

the same seed can be used for the encryption of many message blocks, and so the transmission cost of sending

the seed will become negligible for long messages.

The modular construction, called ItE (Invert-then-Encode), uses two building blocks: an invertible

extractor and an ECC. For long messages RItE (Repeat Invert-then-Encode) construction is used that

repeatedly uses ItE on consecutive blocks of a message, using the same seed. Semantic security of RItE is

then reduced to semantic security of ItE [11, Lemma 12]. This proof is general and applicable to any seeded

encryption with semantic security.

Semantic security of ItE construction is proved in two steps: in the first step ([11, Lemma 13]), a weaker

notion of security known as random message distinguishing security (RDS) is proved for the construction.

This result is general and is applicable when the extractor is regular and the adversary’s channel is symmetric.

The next step ([11, Lemma 14]) proves that RDS implies semantic security when the seeded encryption

satisfies two properties: being separable and message linear .

Security and efficiency of HtE.

Using an approach similar to [11], we will use Repeat-Hash-then-Encode, to amortize the seed length over

many message blocks. The security reduction of RHtE to HtE follows from Lemma 2 in [11].

To prove semantic security of HtE when the seed is shared, the main observation is that the HtE

construction can be seen as using the inverter function of ei-UHF construction, to obtain a pre-image for the

message m, and then using an ECC. Thus the construction fits the ItE framework, and to prove semantic

security we must show that HtE(k, s,m) is separable and message linear. (We noted that the construction

of ei-UHF results in a regular invertible extractor.)

Lemma 2.5. HtE(k, s,m) satisfies the following two properties.

1. (separable): HtE(k, s,m) = HtE(k, s, 0b)⊕HtE(0k, s,m), for any k ∈ {0, 1}k, s ∈ S and m ∈ {0, 1}b;

2. (message linear): HtE(0k, s,m1⊕m2) = HtE(0k, s,m1)⊕HtE(0k, s,m2), for any s ∈ S and m1,m2 ∈

{0, 1}b.
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Proof. We show HtE(k, s,m) = ECC(k||hs(k)⊕m) satisfies these two properties. Note that ECC is linear

and ei-UHF is constructed from an XOR-UHF that satisfies hs(0
k) = 0b.

1. Separable:

ECC (k||hs(k)⊕m) = ECC
(
(k||hs(k)⊕ 0b)⊕ (0k||0b ⊕m)

)

= ECC
(
k||hs(k)⊕ 0b

)
⊕ ECC

(
0k||0b ⊕m

)

= ECC
(
k||hs(k)⊕ 0b

)
⊕ ECC

(
0k||hs(0

k)⊕m
)
,

where the second equality follows from the linearity of ECC and the last equality from hs(0
k) = 0b;

2. Message linear:

ECC
(
0k||hs(0

k)⊕ (m1 ⊕m2)
)

= ECC
(
0k||m1 ⊕m2

)

= ECC
(
0k||m1

)
⊕ ECC

(
0k||m2

)

= ECC
(
0k||hs(0

k)⊕m1

)

⊕ECC
(
0k||hs(0

k)⊕m2

)
,

where the first and the last equalities follow from hs(0
k) = 0b, and the second equality from the

linearity of ECC .

2.4.2 Achieving the capacity

The RDS advantage Advrds of HtE with respect to a wiretapper’s channel W : X → Z is defined as,

Advrds(HtE,W) = E[SD((W(HtE(K,S,M)),M)); (W(HtE(K,S,M ′)),M))]

where E() denotes the expectation over all choices of S ∈ S, and M and M ′ are two messages that are chosen

from the message space, independently and with uniform distribution. Let ECC(·) be an error correcting

code from n = k + b to N bits; using [9, Lemma 5.5], Advrds(HtE; W) is bounded as,

Advrds(HtE,W) ≤ 2 · 2
−nδ2

2 log2(|Z|+3) + 2−
n−N(log |Z|−H(W)+δ)−b+2

2 .

The right hand side is 2ε1 + ε2 where ε1 = 2
−nδ2

2 log2(|Z|+3) is from entropy smoothing Lemma (Lemma 2.1),

and ε2 = 2−
n−N(log |Z|−H(W)+δ)−b+2

2 is from the extractor (Lemma 2.2). The parameter 0 < δ < 1 bounds the

difference between the smooth min-entropy of multiple independent samples and n times Shannon entropy

30



of an individual sample (See Lemma 2.1). In the second expression, H(W) = H(Z|X = x) for any x ∈ X .

Note that since W is a symmetric channel, H(W) is independent of choice of x. Moreover, the symmetry of

the channel implies H(Z|X) = H(Z|X = x) = H(W).

As long as b ≤ n−N(log |Z|−H(W) + δ) + 2, for any δ chosen as above, one can choose sufficiently large

n and N , to achieve arbitrarily small Advrds. Therefore, the maximum achievable rate is

limN→∞
n−N(log |Z| −H(W) + δ) + 2

N
= limN→∞[

n

N
− (log |Z| −H(W))].

When both the receiver and the wiretapper’s channels are symmetric, and W is degraded with respect to

T, the secrecy capacity is given by the difference between Shannon’s capacities of the two channels: CT−CW.

The construction achieves the secrecy capacity when i)limN→∞ n
N = CT and ii) log |Z| −H(W) = CW. The

first condition is satisfied by using an error correcting code that achieves the secrecy capacity of T, and the

second condition is satisfied if a uniform input to the wiretapper’s channel produces a uniform output.

An extension of the ItE construction that achieves the secrecy capacity for an arbitrary symmetric

wiretapper’s channel, including continuous output alphabet channels is proposed in [131]. The extension

uses a letter splitting function on the wiretapper’s channel output 2 that effectively copies the wiretapper’s

channel output symbols so that the more probable symbols are repeated more. This creates an almost

uniform distribution over the splitting function output symbols. The combination of the splitting function

and the wiretapper’s channel is equivalent to the original wiretapper’s channel. Hence, the letter splitting

function indeed creates an equivalent channel with almost uniform output, and application of ItE over

this channel asymptotically achieves the secrecy capacity. This extension can also be used for the HtE

construction with similar results, that is the construction achieves the capacity for any symmetric channel.

To obtain concrete parameters and derive the exact expressions for the secrecy capacity, we consider

the case that the main channel is noiseless, and W is a BSCp. In this case, we have X = Z = {0, 1} and

H(W) = h2(p), where h2(·) is the binary entropy function. Now as n grows, ε1 goes to 0. Moreoever,

ε2 = 2−
n−n(1−h2(p)+δ)−b+2

2 will also go to 0 as long as we have h2(p) − δ − R > 0, where R = b
n is the

information rate of HtE in this special case. As noted earlier, δ can be chosen arbitrarily small, and so we

have R approaching h2(p), which is the secrecy capacity of the wiretap channel.

Comparison of XtX and HtE

Figure 2.3 shows the two constructions eXtract-then-Xor (XtX) [12] and HtE. However, a subtle difference

between the two constructions results in the latter to be capacity-achieving, while the former is not. The

2The paper [131] constructs an optimal letter splitting function using a greedy algorithm.
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main reason is that XtX does not use all the noise in the adversary’s channel and so effectively overprotects

the message. To better explain this difference, we first review XtX.

XtX:

ECC1(kXtX) W1 Zk
XtX

Randomness extraction from (kXtX |Zk
XtX)

One-time Pad/Secure Block

ECC2(hs(kXtX)⊕m) W2 ZXtX

HtE:

ECC((kHtE‖hs(kHtE)⊕m W ZHtE

Semantic Secure Block

Figure 2.3: The encoded blocks in XtX and HtE

XtX construction uses a family of hash functions H = {hs|s ∈ S}, together with two capacity-achieving

error correcting codes En1 and En2 (for the main channel). For a hash function hs : {0, 1}kXtX → {0, 1}b in

H the encoder output consists of two blocks, En1 : {0, 1}kXtX → {0, 1}n1 and En2 : {0, 1}b+|S| → {0, 1}n2 .

The two encoding blocks of XtX are defined as ([12], Section 5.2):

En1 = ECC1(kXtX),

En2 = ECC2(hs(kXtX ⊕m).

Assuming that the receiver’s and the wiretapper’s channels are splittable, the channel is independently

applied to the output of En1 and En2. Let W1 : {0, 1}n1 → {0, 1}d1 and W2 : {0, 1}n2 → {0, 1}d2 denote

applications of the wiretapper’s channel on En1 and En2, respectively. The generalized leftover hash lemma

[12, Lemma 5.1] is used to extract randomness from kXtX , given the wiretapper’s view Zk
XtX . Thus hs(kXtX)

results in an (almost) random pad that (almost) perfectly hides the message m. Note that although kXtX is

sent over the channel, because of the noise in adversary’s channel W1, its value will be seen with uncertainty

by the adversary, and this uncertainty is extracted in the form of the pad. This shows that the available

noise in W2 does not contribute to security, and the scheme uses only part of the channel noise.

In HtE construction, the adversary’s channel is applied on the whole encoded block. This enables us

to use extractable noise (of the channel) on the whole block, for providing security and (asymptotically)

achieves the secrecy capacity.
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Scheme Capacity- Semantic Enc/Dec Effective rate
(encryption step) achieving security computation

[66]: Inv(hS)(m) X × F2b+r mult.,F2b+r inv. pre-shared seed

XtX: R ‖ (hS(R)⊕m) × X F2b+r mult.,XOR b
2(b+r)+b

ItE: Inv(hS)(m) X X F2b+r mult.,F2b+r inv. b
2(b+r)

HtE: K ‖ (hS(K)⊕m) X X F2max{b,r} mult., XOR b
(b+r)+max{b,r}

Table 2.1: Comparing the encryption step of seeded wiretap codes (assume main channel is noise free and the
hashing is multiplication in finite field). [66] assume a pre-shared seed and only consider strong secrecy. The

length of R in XtX [12] is chosen such that limn→∞
|m|
|R| = Cs and only achieves asymptotic rate Cs

1+Cs
< Cs.

ItE and HtE are both semantically secure and capacity-achieving with efficient encoding/decoding.

2.4.3 Effective rate for short messages

In application scenarios such as communication between an RFID (Radio Frequency Identification) tag and

a reader, a single message must be protected against wiretappers. There are four seeded constructions

of wiretap codes, three are capacity-achieving. We define the effective communication rate of a seeded

encryption with σ bits security by Rσ =(mess. len. )/(enc. block len. + seed len.). Here, σ bit security

means that the adversary’s advantage is bounded by 2−σ.

Table 2.1 compares these constructions, and clearly shows that HtE has the most efficient encoding and

decoding computation, and achieves the highest effective rate in finite-length regime.

2.5 Concluding remarks

We proposed a new modular construction of wiretap codes with semantic security that enjoys efficient

encoding and decoding, and achieves the capacity for a large class of channels. To prove security, we used

the framework of [9] that uses a number of steps. Providing a compact security proof for the construction is

an interesting open problem.

Our construction has the interesting property that the computational costs of encoding and decoding are

almost the same and is equivalent to the cost of finding a hash value. Thus, with an appropriate choice of

the hash function, one could construct a linear-time wiretap code. We will explore this in our future work.

Ackowledgement. This work in part is supported by Natural Sciences and Engineering Research Council

of Canada.
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Chapter 3

Post-Quantum Security using Channel Noise1

Abstract. Post-quantum secure communication has attracted much interest in recent years.

Known computationally secure post-quantum key agreement protocols are resource intensive for

small devices. These devices may need to securely send frequent short messages, for example to

report the measurements of a sensor. Secure communication using physical assumptions provides

information-theoretic security (and so is quantum-safe) with small computational overhead. Se-

curity and efficiency analysis of these systems however is asymptotic. In this poster, we consider

two secure message communication systems, and derive and compare their security and efficiency

for finite-length messages. Our results show that these systems indeed provide an attractive

alternative for post-quantum security.

3.1 Introduction

Internet of Things (IoT) promises universal connectivity of billions of sensors that will sense our environment

and automate many aspects of our lives [140]. In many scenarios, data that is collected by sensors and

exchanged among devices are highly sensitive and must be protected over a long period of time. Most of

today’s cryptographic algorithms and protocols assume a computationally bounded adversary, and for their

security rely on the computational difficulty of solving problems such as discrete logarithm (DL) and integer

factorization problems. These problems are the basis of the security of Diffie-Hellman Key Exchange (DHKE)

protocol, and RSA cryptosystem. Peter Shor [124] proposed efficient (polynomial-time) quantum algorithms

for both DL and integer factorization problems that effectively breakdown the cryptographic infrastructure

of the Internet, if a quantum-computer is developed. Recent developments in quantum technologies has

led to the announcement by security agencies [128] to move to quantum-safe algorithms and this has been

1The content of this chapter is published as a poster [121] in proceedings of CCS 2018.
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followed by standardization efforts [26] in this domain.

To provide post-quantum security one can use computational assumptions and use problems like Learning

With Error (LWE) [103], for which no quantum algorithm is known, and use secure key agreement protocols

that are based on these assumptions. Many such protocols including the ones in [4] and [20] are not suitable

for resource constrained devices that are common in IoT systems. For example, according to [20], establishing

a key with 144 bits of classical security and 130 bits of quantum security roughly requires 22.5 Kbytes of

communication using Frodo (an LWE-based key exchange) protocol, while a practical RSA key agreement

protocol with 128 bits of claimed classical security and no quantum security requires almost 0.7 Kbytes of

communication.

An alternative approach to providing post-quantum private communication is by using physical layer

assumptions. Physical layer security adds a layer of security to communication that is afforded by small

devices and can be complemented by extra layers of security using traditional cryptographic systems [97].

Using physical layer assumptions for securing communication dates back to Wyner’s pioneering work [143]

on providing communication secrecy using the channel noise. Wyner’s innovation was to treat the noise in

the environment as a resource for cryptography. Wyner wiretap model is extended by Csiszár and Körner [34]

to a broadcast channel model. In this model, the sender is connected to the receiver and the eavesdropper

(wiretapper) through two noisy channels, referred to as the receiver’s channel, T, (also called the main

channel) and the wiretapper’s channel, W, respectively. The works in [34, 143] proved that in this model,

secure communication with asymptotic perfect secrecy and reliability is possible without using any secret

key, as long as the wiretapper’s channel is “noisier” than the main channel. Wiretap model can be realized

by wireless communication systems in which an eavesdropper at a relatively far distance from the broadcast

station receives a weaker form of the broadcast message compared to the legitimate closer receivers. The

model is attractive to the research community as well as system developers who are interested in lightweight

but strong cryptographic solutions because it promises information-theoretic security with long-term security

guarantee without the need for a shared secret key.

The design of a wiretap protocol requires correct estimation of the noise over communication channels

that may be challenging. In an IoT setting, however, since many sensors sense the environment, building

a model of the environment and noise in the communication channel can be robustly done. Wiretap codes

are traditionally analyzed in the asymptotic regime. While this analysis is essential to gain confidence

about security, for real-world applications, one needs to estimate concrete performance parameters of the

codes in the finite-length regime. To compare the efficiency of wiretap codes in practice, the rate of secure

communication for finite-length messages must be found. Finite-length comparison of wiretap codes, in

addition to estimating the decoding error of the receiver (reliability error), must also consider the secrecy
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level that is offered by the code for the finite-length messages. This is a challenging problem that has found

significant attention in recent years [102]. In this poster, we outline an approach for evaluating the security

of modular wiretap codes and use it to compare two constructions.

3.2 Approach

A capacity-achieving wiretap code is an encoding scheme for a wiretap channel that achieves the highest

theoretically possible rate of secure message transmission (number of securely transmitted message bits per

channel use). Explicit constructions of wiretap codes can be divided into those that are based on a specific

error correcting code [87, 136], and constructions that separate coding for security (or secure coding), from

coding for reliability (for the main channel), and so are not restricted to a specific error correcting code

(ECC). The latter constructions are called modular that are attractive from a practical viewpoint due to

their flexibility in the choice of error correcting codes. These constructions are seeded encryption systems

and require a random seed to be shared by a transmitter and a receiver. The seed can be sent by the sender

to the receiver over the main channel using an error correcting code to provide reliability. The seed length

does not affect the asymptotic efficiency of the system because it can be reused for encrypting multiple

blocks. The only two constructions that provide semantic security are in [120] and [11]. We will focus on

these constructions.

In this work, we first propose a framework for comparing the efficiency of modular constructions by

defining the finite-length rate (FLR), and then compare the FLR for the two modular constructions called

Hash-then-Encode (HtE) [120]- and Invert-then-Encode (ItE) [11].

Finite-length Efficiency. In [120], the effective communication rate of a seeded wiretap code is in-

troduced that takes into account the length of the seed. This rate will be used to define and subsequently

compare the finite-length rate (FLR) of the security coding components of the two known seeded wiretap

constructions i.e., HtE and ItE.

Definition 3.1. The effective communication rate of a seeded encryption system, taking into account the

transmission cost of the seed, is R =
message length

encryption block length + seed length
.

For finite-length messages, security and reliability losses will be non-zero values and must be estimated

for a given message length and wiretapper’s channel. This analysis in general is complex and will require

finite-length analysis of the specific ECC that is used for correcting errors in the receiver’s channel, or

obtaining general bounds on the decoding error for a finite-length ECC [102]. The following definition of

FLR considers the security and reliability of the finite-length wiretap codes.
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Figure 3.1: (a) Degraded wiretap channel; (b) Using IdECC() to remove noise from the receiver’s channel.

Definition 3.2. For a wiretap channel W(·) and a single message block m of length b, a wiretap code with

encoder WtEnc(·) has the finite-length rate (ε, δ)-FLR[b](ε, δ), if

1. For any m0 and m1,

SD[W(WtEnc(m0))); W(WtEnc(m1)))] ≤ ε.

2. For any message mA sent by Alice, the corresponding message mB received by Bob will satisfy

max
mA∈{0,1}b

Pr[mA 6= mB ] ≤ δ.

3. For any message m, the encoding rate satisfies

b

|WtEnc(m)| ≥ FLR
[b](ε, δ).

In seeded encryption systems, the ciphertext of a message m is ECCT(S||fS(U,m)), where ECCT is a

capacity-achieving (for channel T) error correcting code, and fS(U,m) is the secrecy coded block, where U

is the randomness of encoding. For these codes, the effective (ε, δ)-FLR (item 3 in definition above) will be

replaced by,

b

|S|+ |ECCT(S||fS(U,m))| ≥ FLR
[b](ε, δ). (3.1)

In modular constructions, an error correcting code is used to provide reliability for the receiver’s channel.

This code slightly affects parameters of the secrecy coding part of the construction, which makes the finite-

length analysis of the wiretap encryption dependent on the choice of the error correcting code. To avoid this

dependency, and focus on the secrecy coding part, we introduce an ideal error correcting code for a degraded

wiretap channel.

An ideal error correcting code, denoted by IdECC(W), for a degraded wiretap channel (W = W′ ◦ T),

is an error correcting code with an pair of encoder and decoder, (IdEnc, IdDec), satisfying the following

properties: for a message x of any length,
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(i) IdDec(T(IdEnc(x))) = x, and (ii) IdDec(W(IdEnc(x))) = W′(x), and (iii) the rate of the code is fixed

for all message lengths.

In other words, the ideal encoder (i) allows perfectly reliable transmission over the receiver’s channel T for

any message, and (ii) it partially removes noise from the wiretapper’s channel resulting in the wiretapper’s

channel W′(x) for Eve, and allowing Eve’s view Z to have (possibly stronger) correlation with the message,

and (iii) the required redundancy of the error correction is proportional to the message length. Figure 3.1

illustrates the effect of an ideal ECC on a degraded wiretap channel. Figure 3.1(a) is a degraded wiretap

channel with x = IdECC(s||fs(m)), and Figure 3.1(b) shows the effect of the IdECC() on the secrecy

coded block.

Because of the constant rate of the code for all message lengths, for comparing the performance of wiretap

codes over the wiretap channel (T = BSCp1 ,W = BSCp2), one only needs to compare its performance over

the wiretap channel (T = BSC0,W
′ = BSCp).

3.3 Results

To obtain the effective rate FLR[b](ε) of a construction, we need to derive the encryption block length for

a given message length b, at the secrecy level ε = 2−σ, in the noiseless main channel setting. For ItE, we

will use an expression in [131] (Expression (7)) that relates these parameters. For the HtE construction,

the expression (3.1) in Theorem 3.1 gives the required relation.

Theorem 3.1. The HtE construction provides semantic security for a wiretap channel (with symmetric

main and wiretapper’s channels), and when the wiretapper’s channel is BSCp, for semantic security level σ,

the length of the randomness k satisfies the following inequality,

2σ ≤ (k + b)h2(p) · log 5(
√

2k(σ + 3) +
√

2b(σ + 3))− b− 7, (3.2)

where h2(p) is the binary entropy function, that is h2(p) = −p log p− (1− p) log(1− p).

The proof is given in Appendix B.2.

To obtain the seed length that is required for the encoder, the extractor should be specified. For ItE,

the hash function family Hmult : {0, 1}r+b × {0, 1}r+b → {0, 1}b is used which, on seed S ∈ {0, 1}r+b\0b+r

and input X ∈ {0, 1}b+r, outputs the first b bits of X � S. Here, � is multiplication over GF (2b+r). For

HtE, a variation of this extractor is used in [120, Lemma 4] that for inputs X1 ∈ {0, 1}b and X2 ∈ {0, 1}k

the seed length is max(b, k). We use these two instantiations to calculate and compare the effective rates of

the HtE and ItE constructions.
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Figures 3.2 and 3.3 graph the FLR of the constructions, as a function of message length, for secrecy levels

σ = 32 and σ = 64 bits, respectively. We consider a single block encryption. Comparing the constructions for

a fixed wiretapper’s channel (fixed p in BSCp) shows that for small p and very small message block lengths,

ItE slightly outperforms HtE. However, for larger message lengths and/or noisier wiretapper’s channel,

when p ≥ 0.15 and b ≥ 5000, FLR[b](ε) for HtE is always higher than for ItE.

Figure 3.2: The effective rate of ItE and HtE over a BSCp with σ = 32 bits. Flipping probabilities are
p = 0.15, 0.25, 0.35.

Figure 3.3: The effective rate of ItE and HtE over a BSCp with σ = 64 bits. Flipping probabilities are
p = 0.15, 0.25, 0.35.

The break in the graphs associated with HtE is because the seed length is given by max{b, k}, and for

each noise level, as the message length increases, there is a value of b for which s = max{b, k} = b. When

k = b, we have FLR[b](ε) = 1
3 . Both figures show that for message lengths bigger than this value of b,

FLR[b](ε) of HtE is higher than the corresponding value of ItE.
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σ(bits)
b (bits)

0.5Kbit 1Kbit 4Kbit

32 78Kbit 91Kbit 155Kbit
64 136Kbit 151Kbit 223Kbit

Table 3.1: Length of the secure message block with HtE

A typical message length in an IoT setting to provide an acceptable level of reliability is 0.5K to 4K

bits. The noise level can be estimated with the BER (Bit Error Rate) of the system, which is typically less

than 10−2 [95]. Table 3.1 shows the required communication for transmitting a single message of lengths

0.5K, 1K and 4K bits, security levels σ = 32 bits and 64 bits, and p = 10−2, using HtE.

3.4 Conclusion

Modular wiretap coding provides long-term security with efficient computation and communication, and

therefore is an attractive solution for post-quantum communication security in an IoT setting. This approach

can be viewed as complementing and enhancing end-to-end communication security of the system.

We compared the finite-length rate of two modular coding schemes (HtE and ItE) that provide semantic

security. Both these schemes have computationally efficient encoding and decoding algorithms. Our results

show that in most cases HtE has a higher finite-length rate than ItE. We derived the length of the encrypted

secure block for typical IoT message blocks.
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Chapter 4

A Virtual Wiretap Channel for Secure Message

Transmission1

Abstract. In Wyner wiretap channel, a sender is connected to a receiver and an eavesdropper

through two noisy channels. It has been shown that if the noise in the eavesdropper’s channel is

higher than the receiver’s channel, information-theoretically secure communication from Alice to

Bob, without requiring a shared key, is possible. The approach is particularly attractive noting

the rise of quantum computers and possibility of the complete collapse of today’s cryptographic

infrastructure. If the eavesdropper’s channel is noise-free, however, no secrecy can be obtained.

The iJam protocol, proposed by Gollakota and Katabi [59], is an interactive protocol over noise-

free channels that uses friendly jamming by the receiver to establish a secure shared key between

the sender and the receiver. The protocol uses properties of OFDM (Orthogonal Frequency-

Division Multiplexing) to create uncertainty for Eve (hence noisy view) in receiving the sent

information, and uses this uncertainty to construct a secure key agreement protocol. The pro-

tocol has been implemented and evaluated using extensive experiments that examines the best

eavesdropper’s reception strategy.

In this chapter, we develop an abstract model for BiT (Basic iJam Transmission) protocol as

a wiretap channel and refer to it as a virtual wiretap channel. We estimate parameters of this

virtual wiretap channel, derive the secrecy capacity of this channel, and design a secure mes-

sage transmission protocol with provable semantic security using the channel. Our analysis and

protocol gives a physical layer security protocol, with provable security that is implementable in

practice (BiT protocol has already been implemented).

1The content of this chapter is published as a paper [119] in proceedings of MyCrypt 2016.
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4.1 Introduction

Wireless communication provides flexible communication for mobile users, and with the increasing number

of sensors and growth of IoT (Internet of Things) systems, will soon become the dominant form of communi-

cation. Wireless communication is vulnerable to passive eavesdropping. Wired Equivalent Privacy (WEP) is

a security algorithm that was introduced to provide security for wireless access points, and was later replaced

by Wi-Fi Protected Access (WPA) protocol [112]. Other communication security protocols such as Secure

Socket Layer (SSL) [52] and Secure Shell (SSH) [146] are used for providing secure services over networks.

All these protocols rely on public-key infrastructure to establish a secure shared key between the sender and

the receiver. Shor [124] proposed a quantum algorithm that efficiently solves the discrete logarithm and

integer factorization problems, rendering today’s public-key infrastructure completely insecure if a quantum

computer is invented. With advances in quantum technologies and projection of 10 years [39] to the devel-

opment of such computers, the interest in the development of quantum-resistant cryptographic systems is

rapidly growing.

In this chapter, we consider information-theoretically secure communication systems that are secure

against an adversary with unlimited computational power. Information-theoretic security against a passive

eavesdropper can be achieved using one-time-pad. This assumes sender and receiver share a secret key

that is uniformly random and is of the same length as the message. The key must be chosen afresh for

every message. These requirements severely limit the application of one-time-pad in practice. Wyner [143]

proposed an ingenious model for information-theoretically secure communication that is particularly suited

for securing wireless communication. In Wyner wiretap model, a sender Alice is connected to a receiver Bob

over a main channel. The eavesdropper, called Eve, receives the communication from the sender through

a second channel referred to as the wiretapper’s channel. Wyner proved that as long as the wiretapper’s

channel is a degraded version of the main channel (or more generally noisier than the main channel), there

exists an encoding method that provides information-theoretic security for the receiver against Eve. A

wiretap code is a randomized code that is used by the sender to encode the message. Wiretap channel

allows achieving quantum-resistant security using physical layer properties of the communication channels

and complements the security that is provided at the higher layers of the protocol stack by using traditional

cryptographic protocols. The security definition of wiretap channels has been strengthened over time with

the latest security notion being semantic security: the strongest security notion for message confidentiality.

Wiretap channels, however, rely on noise in the channel and need a correct estimate of the noise level in the

wiretapper’s channel.

In [59], an innovative interactive physical layer protocol for key establishment over a noiseless channel
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with security against a passive eavesdropper was introduced. The protocol was implemented and shown to

provide security in practice, by measuring the received signal at Eve, and using the best decoding strategies

to recover the sent information at Eve. The protocol uses cooperative jamming where the receiver sends

a jamming signal that is combined with the sender’s signal at Eve and creates an uncertain view of the

communication for Eve, and uses that for providing security. One can view the approach as the sender and

the receiver cooperatively creating a virtual wiretap channel and use that to establish a shared key.

In this chapter, we follow this intuition and model the main building block of iJam, referred to as Basic

iJam Transmission (BiT) protocol, as a virtual wiretap channel, and use it to provide efficient quantum-

resistant secure message transmission with provable security.

4.1.1 Our work

The BiT protocol uses a coordinated jamming signal of the receiver to construct a noisy view of transmission

for Eve. This is achieved by the sender repeating its transmitted information block in two consecutive

time subintervals, and the receiver randomly jamming one of the time samples of the two subintervals.

Coordinated jamming ensures that the receiver is able to perfectly receive the time samples that allow them

to reconstruct a complete copy of the sent information block, while Eve will have a combination of jammed

and unjammed samples, which results in an uncertain view. This is shown to be achievable using appropriate

choices of modulation and transmission technique (OFDM and 2q-QAM modulation - See Section 4.2.1 for

description).

We analyze BiT and show how it can be modelled as a virtual wiretap channel. Since the receiver is

able to perfectly recover the transmitted information block, the corresponding virtual wiretap channel has

a noiseless main channel. We estimate the parameters of this channel and use them to compute the secrecy

capacity of the virtual wiretap channel that gives the best asymptotic efficiency for message transmission

over this channel.

The modelling also allows us to adapt existing constructions of wiretap codes for providing message

secrecy. We show how to use the wiretap encoding (seeded encryption) scheme of [11] to encode messages

and then transmit the codeword using information block coding of the BiT protocol. The BiT protocol

creation of a virtual wiretap channel ensures the seeded encryption will result in message transmission with

information-theoretic semantic security. The protocol achieves optimal efficiency asymptotically. The system

thus provides provable quantum-resistant security, and is implementable in practice (thanks to starting from

an already implemented protocol).

In Section 4.6, we show how this interpretation of BiT (a mechanism to add uncertainty to Eve’s view)
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can be used to extend the application of physical layer security protocols that use the wiretap model. In

particular, we consider a setting where transmission in the physical channel from the sender to the receiver

is corrupted by Additive White Gaussian Noise (AWGN), but Eve has a noise-free channel. Using the

known results for wiretap channels, secure communication using wiretap codes in this setting is impossible.

Using BiT protocol in this setting however, introduces uncertainty in Eve’s view and so can enable secure

communication. Figure 4.3 shows how to effectively use the BiT protocol to create a virtual wiretap channel

when both the main channel and the wiretapper’s channel are noisy. The noise in the main channel is the

physical noise, while the noise in the wiretapper’s channel is the result of the BiT protocol. Alice can send

secret messages to Bob as long as the virtual wiretap channel is a stochastically degraded broadcast channel.

4.1.2 Related works

Wiretap channel model was proposed by Wyner [143]. The model has attracted the attention of theoreticians

and practitioners, resulting in a large body of work on the topic. A number of generalizations of the model

has been proposed [34, 84, 85], and the notion of security has been strengthened [11, 98] over years, bringing

it on par with the strongest notion of security in cryptography. It has been proved that secure communication

is possible if the eavesdropper’s channel (signal reception ability) is worse than the receiver’s [34]. There are

efficient constructions of wiretap codes [11, 87, 136], with the more recent ones using a modular approach

that can be used with any error correcting code.

Some of physical layer security protocols are constructed by injecting a jamming signal in the eaves-

dropper’s view [81, 86, 132]. It has been shown that cooperative jamming can increase the secrecy capacity

[133–135]. In a general cooperative jamming setting, a trusted helper jams the transmitted signal. The legiti-

mate receiver has some information about the jamming signal, which is their advantage over the eavesdropper

who is entirely oblivious to the jamming signal. This results in an inferior channel for the eavesdropper and

so allows secure communication in presence of the eavesdropper. This type of jamming has also been referred

to as “helping” [144], or “friendly” [62] jamming. BiT protocol uses a variation of friendly jamming in which

the receiver plays the role of the trusted helper.

The BiT protocol [59] was used to construct a secret key agreement protocol (called iJam). The iJam

key agreement uses multiple invocations of the BiT protocol to establish a secret key that is generated as

the XOR of multiple random strings, each transmitted in one invocation of BiT. The security of iJam has

been experimentally evaluated.

Organization. Section 4.2 gives the background and an outline of the BiT protocol. Section 4.3 is an

example that motivates our approach, for modeling BiT as a virtual wiretap channel. In Section 4.4, we
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give our model of BiT as a virtual wiretap channel when the transmission from the sender to the receiver is

noise-free. Section 4.5 introduces a physical layer protocol for message transmission using a known seeded

encryption algorithm and the BiT protocol. In Section 4.6, we study the case that the transmission from

the sender to the receiver is corrupted by AWGN. Conclusion and future works are given in Section 4.7.

In Appendix B.3.1, we provide approximation data and graphs of the information rate for the message

transmission protocol in Section 4.5. In Appendix B.3.2, we provide an example of the noisy virtual main

channel and virtual wiretapper’s channel of Section 4.6.

4.2 Preliminaries and notations

We use uppercase letters X to denote random variables and bold lowercase letters to denote their corre-

sponding realization. By Pr[X = x], we mean the probability that X takes the value x. This is also shown

as PX(x). Calligraphic letters X denote sets, and |X | denotes the cardinality (number of elements) of a

set. For two random variables X and Y , PXY denotes their joint distribution, PX|Y denotes their con-

ditional distribution, and PX denotes X’s marginal distribution. All logs are in base 2 and ‖ is used to

denote concatenation of two binary strings. For a random variable X ∈ X , Shannon entropy is given by

H(X) = −∑x∈X PX(x) logPX(x). For two random variables X ∈ X and Y ∈ Y with joint probability

distribution PXY (x,y) and conditional probability distribution PX|Y (x|y), the conditional entropy H(X|Y )

is defined as:

H(X|Y ) = −∑x∈X
∑

y∈Y PXY (x,y) logPX|Y (x|y),

and the mutual information between the two is given by I(X;Y ) = H(X) −H(X|Y ). The min-entropy of

a random variable X ∈ X , denoted by H∞(X), is given by H∞(X) = − log(max
x

(PX(x))). The statistical

distance between two random variables X,Y ∈ X is defined by

SD(X,Y ) , 1

2

∑

x∈X
|Pr(X = x)− Pr(Y = x)|.

A communication channel is modelled as a probabilistic function that maps an input alphabet X to an

output alphabet Y. The channel W(X) = Y takes input X ∈ X , and outputs Y ∈ Y. The probability

distribution of Y depends on the distributions of X and the probabilistic function W (·). In many com-

munication systems, input and/or output of the channel take values from real numbers. These are called

continuous channels. An AWGN channel is a continuous channel in which the random variables X and Y

corresponding to the input and output of the channel respectively, are related as Y = X + N , where N is

the noise and is a random variable that is drawn from a zero-mean Gaussian distribution with variance N0

2 ;

45



that is, N (0, N0

2 ). If the noise variance is zero or the input is unconstrained, there exist an infinite subset of

inputs that are distinguishable at the output with arbitrarily small error probability. However, in practice

the variance is always non-zero and the input is always power-limited. The input signal energy for each bit of

the transmitted information block is denoted by Eb. This constrains the input signal energy and power. In a

discrete channel W, the input and output alphabets are discrete sets. The channel is specified by a transition

probability matrix PW, where rows and columns are labelled by the input and output alphabets, respectively,

and entries are conditional probabilities, PW[x,y] = pxy = Pr(Y = y|X = x). A channel is called strongly

symmetric if the rows of the transition matrix are permutations of one another, and so is the case for the

columns. The channel W(·) is symmetric if there exists a partition of the output set Y = Y1 ∪ · · · ∪ Yn, such

that for all i, the sub-matrix PWi = PW[X ,Yi] is strongly symmetric.

Wiretap channel model. In the general wiretap model, also called the broadcast model [34], a sender

is connected to the receiver through the main channel W1 : X → Y, and to the eavesdropper through a

second channel W2 : X → Z, called the wiretapper’s channel. Thus, WT : X → Y × Z. In Wyner’s original

model, the wiretapper’s channel is a degraded version of the main channel, and the Markov chain X−Y −Z

holds. We consider the original Wyner wiretap model. The goal of wiretap channel coding is to provide

communication secrecy and reliability. Efficiency of wiretap codes is measured by the information rate, which

is the number of information bits that can be transmitted reliably and secretly, per usage of the wiretap

channel. One can also use a normalized form R/ log |Σ| of the communication rate (cf. [61]), where Σ is

the code alphabet. For example, the information rate of linear codes is usually defined as the ratio of the

code dimension to the block length. The information rate of wiretap codes is upper-bounded by the secrecy

capacity Cs of the wiretap channel.

Theorem 4.1. [84] The secrecy capacity of Wyner wiretap channel when W1 and W2 are symmetric is given

by

Cs = CW1 − CW2 ,

where CW1 and CW2 are the (reliability) channel capacities of W1 and W2.

Since the capacity of a broadcast channel depends on the conditional marginal distributions only [17],

the above capacity result also holds for a stochastically degraded broadcast channel that is defined below.

Definition 4.1. A broadcast channel X → Y×Z with conditional marginals W1 : X → Y and W2 : X → Z

is said to be stochastically degraded if there exists a third channel W3 : Y → Z such that,

PW2 [x, z] =
∑

y∈Y
PW3 [y, z]PW1 [x,y], (4.1)

46



or equivalently

PW2
= PW3

×PW1
.

4.2.1 QAM and OFDM

OFDM is a multicarrier modulation scheme that is widely used in modern wireless technologies and standards

such as 4G mobile communications, WiMax, LTE and 802.11 a/g/n [114]. In OFDM, the information

is transmitted using many narrowband signals at different frequencies, each carrying a small amount of

information (number of bits). The narrowband signals may use modulations such as Quadrature Amplitude

Modulation (QAM), which can be expressed as:

s(t) = AIcos2πfct−AJsin2πfct, 0 < t < T,

where AI andAJ are the amplitude for in-phase and quadrature phase components, fc is the carrier frequency,

and T is the symbol time duration. The OFDM signal is constructed at the transmitter by (i) taking N

(for example N = 64 in 802.11) QAM modulated signals, and (ii) applying Inverse Fast Fourier Transform

(IFFT) to obtain OFDM time samples that will be sent over the channel. For N carrier frequencies, let ak

denote the OFDM time sample in the k-th time interval and obtained using IFFT:

ak =
N−1∑

n=0

Ane
i2πkn/N k = 0, 1, ..., N − 1, (4.2)

where An is a complex number. Each OFDM symbol consists of N time samples (a0,a1, ...,aN−1). The

transmitted signal is a sequence of OFDM time samples, each with Gaussian distribution. This is because

each OFDM sample is a linear combination of N modulated signals, which because of central limit theorem

results in a Gaussian distribution.

4.2.2 iJam and Basic iJam Transmission (BiT) protocol

iJam [59] is a protocol for key agreement between two parties, and uses BiT protocol as a subprotocol. Our

focus is on BiT protocol. BiT protocol is a protocol between a sender and a receiver who also takes the

role of a jammer, resulting in outputs for the receiver and the eavesdropper. The sender sends each OFDM

symbol twice (the symbol and its identical copy) in two consecutive subintervals. Thus, the time interval for

sending an OFDM symbol is twice a subinterval (effectively doubling the sending time). An OFDM symbol

is received as a sequence of time samples. The receiver randomly jams a time sample in the original symbol

in the first subinterval, or its copy in the second subinterval. Jamming is by sending a Gaussian distributed
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jamming signal with the same distribution as the transmitted time samples, over the channel. The receiver

will receive unjammed (clean) time samples of the two subintervals, and reconstruct the OFDM symbol with

perfect reliability.

4.2.3 Eavesdropper’s strategies

In BiT, the sent time sample and the jamming signal will be combined at Eve’s receiver. Thus for each

OFDM symbol, Eve will receive two copies, each consisting of some jammed and some clean time samples.

The eavesdropper can use different decoding strategies. They may treat the jamming signal as the noise and

try to decode in presence of jamming; or they can implement interference cancellation or joint decoding in

an attempt to simultaneously decode the jamming signal and the original transmission. In [59], the authors

discuss strategies that can be used for the receiver’s jamming signal to reduce the detectability of the jammed

samples. For example the jammer can transmit at an excessively high rate in an attempt to remove the

possibility of joint decoding. This is because according to multiuser information theory, decoding multiple

signals is impossible if the total information rate is outside the capacity region [137].

4.3 BiT as a virtual wiretap channel – An example

BiT is an interactive physical layer protocol between Alice and Bob that takes an input from Alice and Bob,

and generates outputs for Bob and Eve. Alice’s input is an information signal consisting of two copies of an

input block of information bits; Bob’s input is a coordinated jamming signal. The output of Bob is a block

of information bits sent by Alice, and Eve’s output is an element of Alice’s space of block of information

bits. We use a small example to provide intuition for our approach. In Example 4.1, we consider a scenario

where Alice wants to send a 2-bit information block x to Bob. Let xs denote a 4-QAM modulated signal

that carries the information block x. For this small example, the OFDM symbol consists of only one signal

(N = 1) and there is only a single time sample. Alice’s input to the BiT protocol is two copies of the

OFDM symbol (in this case xs), i.e. (xs,xs) that are sent in two consecutive time subintervals. Bob’s

coordinated jamming signal is sent coordinated with Alice’s transmission: Bob randomly chooses one of

the two subintervals, corresponding to the two copies, and sends the jamming signal in that time slot. For

example, when Bob jams the second time slot, the jamming signal is (-, J′s).

Bob will receive the signal corresponding to the unjammed time slot and will obtain the information

block x. Continuing with the above example, if Bob’s input to the BiT protocol is (-, J′s), he receives (xs, -).

Eve will receive a combination of the signals sent by Alice and Bob, Vs = (xs,xs + Js) where Js is the

jamming signal that is received by Eve’s antenna. If Eve cannot sufficiently distinguish the jammed signal
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from the unjammed one, the result will likely to cause an error in decoding. We denote Eve’s decoder output

by z.

The above protocol can be seen as creating a wiretap (broadcast) channel from Alice to Bob and Eve

that can be described by the probability distribution Pr(y, z|x), where x, y, and z are the input of Alice,

and outputs of Bob and Eve, respectively, as information blocks. Since y = x, the channel is characterized

by Pr(z|x), which represents the cumulative effects of the jamming detection, and the decoding error caused

by the jamming signal Js.
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Figure 4.1: BiT when a single 4-QAM (OFDM with N = 1) is used.

Example 4.1. Let x be a 2-bit information block that is sent using the BiT protocol and the 4-QAM

modulation with frequency f1. Figure 4.1 shows the transmission of an information block x = 00 using the

BiT protocol. The process of Eve constructing their view of the channel is represented using a graph. In the
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graph, the physical output of the BiT protocol at Eve’s side is a pair of signals denoted by Vs. One of the

two signals is jammed and Eve tries to figure out which one. If Eve fails to distinguish the jammed signal

from the clean one, Vs is decoded across one of the two edges labelled by V = (x⊕ J)‖x and V = x‖(x⊕ J),

respectively. The list of 4-tuples following these edges, represent Eve’s decoder’s outputs after receiving

the signal pairs and assuming the jammed subinterval is not detected. The next set of edges represent Eve’s

decision of information block based on the decoder’s output. Note that when the decoder output is (0000),

Eve decides correctly. In all other cases, Eve might make an error. For simplicity, we assume the decoder’s

output of the two subintervals are different, Eve randomly chooses one of the two (they know one of the two

are correct). The receiver, who is also the jammer, can always perfectly locate the unjammed subinterval and

hence have a perfect reception y = x = 00 . In the following, we provide more details on how the probability

of Eve’s outputting a particular information block can be obtained.

Eve receives two copies of the OFDM (here a 4-QAM) symbol denoted by Vs. Eve may use various decoding

approaches to distinguish the jammed signal from the unjammed one. If Eve can detect the jammed subinterval

(e.g., high reception power), they can distinguish the jammed subinterval and can correctly receive the sent

information block: they will simply discard the jammed subinterval and decode the unjammed one. Suppose

Eve detects the correct jammed signal with probability 0 < δ < 1 (the dashed arrow in Figure 4.1). This will

create the output Z = x = 00 for Eve. If Eve’s decoder cannot detect the jammed signal, the best thing they

can do is to decode each OFDM symbol and then use the information about the BiT protocol (repeated symbol)

to find the sent information block. Eve’s OFDM symbol decoder takes Vs and outputs either V = x‖(x⊕ J)

or V = (x ⊕ J)‖x, depending on the receiver’s choice of the jammed subinterval. Here J is a 2-bit random

variable capturing the effect of the jamming on Eve’s OFDM symbol decoding. The random variable J depends

on the jamming signal power, the location of the adversary, and Eve’s decoding capabilities, and does not

depend on the sent OFDM symbol. Let P [J = α] denote the probability that jamming creates an offset α to

the original information block. In our example, we set P [J = 01] = p1, P [J = 10] = p2, P [J = 11] = p3

and P [J = 00] = p4. To find the original transmitted information block, the adversary maps V ∈ {0, 1}4

to Z ∈ {0, 1}2. When J = 00, V consists of two identical information blocks and so is correctly mapped to

the transmitted information block x (dotted arrows in Figure 4.1). When J 6= 00, Eve randomly chooses the

decoded OFDM symbol of one of the two subintervals for Z = z. One can use other distributions to choose

the output OFDM symbol that better models the adversary’s receiver. To summarize, the probability that Eve

correctly outputs the correct sent information block x = 00 consists of (i) the probability of Eve correctly

detecting the jammed subinterval with probability δ,(ii) the probability that Eve cannot successfully detect the

jammed interval, but J = 00 with probability (1− δ)p4 and, (iii) the probability of jamming is not detected,
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J 6= 00 but Eve’s guess of the sent information block is correct with probability (1− δ) 1−p4
2 ). Therefore:

P [Z = 00|X = 00] = δ + (1− δ)p4 + (1− δ)1− p4

2
= δ + (1− δ)1 + p4

2
.

Next, we study the probability of Eve having an incorrect output. To simplify the discussion, let p1 = p2 =

p3 = (1−p4)
3 . Then for any x′ ∈ {0, 1}2 such that x′ 6= x , we have P [Z = x′|X = 00] = (1− δ) 1−p4

6 .

For any x ∈ {0, 1}2, the probability that the adversary obtains the correct information block is calculated

similar to x = 00. Let η = δ + (1− δ) 1+p4
2 . The result of the above process specifies the probabilities of the

wiretapper’s channel as follows:

P [Z = x|X = x] = η,

P [Z = x|X 6= x] =
1− η

3
.

Thus, the transition matrix of the virtual wiretapper’s channel W is as follows.

PW =




η 1−η
3

1−η
3

1−η
3

1−η
3 η 1−η

3
1−η

3

1−η
3

1−η
3 η 1−η

3

1−η
3

1−η
3

1−η
3 η



,

In summary, using BiT results in Eve receiving the information block x through a probabilistic channel with

output Z ∈ {0, 1}2, resulting in a wiretapper’s channel that is noisier than the main channel (which is

noiseless), hence enabling secure communication.

Remark 4.1. According to [59], when the three conditions described in Sections 4.2.1, 4.2.2 and 4.2.3 are

met, we can have η < 1 (the above example does not satisfy Section 4.2.1, so η = 1). We use the above

example for the purpose of illustrating ideas.

4.4 Virtual wiretap channel model

In the following, we extend the above ideas to the general case where a complex OFDM signal is used.

Eavesdropper’s view. Consider an OFDM signal with N frequencies where each signal uses 2q-QAM

modulation. Let X ∈ {0, 1}Nq denote the information block that is transmitted using an OFDM symbol

(a0,a1, · · · ,aN−1). By invoking the BiT protocol, for each information block, 2N time samples are generated

and sent over 2N consecutuve time intervals. Eve receives 2N time samples. For the two corresponding
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samples, one is a clean sample and the other is the jammed one. Let Vs ∈ C2N be the random variable

representing the 2N time samples. The received signal is mapped into an Nq-bit information block using the

following eavesdropper decision unit (that includes their jamming detection, OFDM decoder and information

block decision).

E : C2N → {0, 1}Nq.

There are two cases:

1. The recovery of the information block is successful. The adversary can correctly detect all N jammed

samples, for example by examining the received signal power [130]. Using all the correct time samples,

the adversary correctly recovers the OFDM symbol and the information block, respectively. There are

two other cases in which information block recovery is successful; one is when the jamming signal does

not change any of the time samples, and the other case is when the adversary’s random guess for the

clean sample is correct for all the clean samples. We denote the probability that the adversary recovers

the information block correctly by η, for 0 < η < 1 .

2. The recovery of the information block fails. If the adversary cannot correctly detect even one of the

jammed time samples, because of the use of Fast Fourier Transform (FFT) on the time samples, all the

recovered frequency samples will be affected and the recovered information block will be incorrect. For

the simplicity of calculations, we assume Eve outputs any of the incorrect information blocks from the

set {0, 1}Nq\{X}, with the same probability, that is each possible incorrect 2Nq − 1 string occurs with

probability 1−η
2Nq−1

. As noted earlier, this can be replaced by other distributions that better estimate

Eve’s reception.

Let the random variable Z ∈ {0, 1}Nq denote the information block that is output by Eve’s decision unit

E; that is, Z = E(V ). We refer to Z as Eve’s view. The conditional distribution of Eve’s view of the sent

information block X is denoted by Z|X and is given as follows:

P [Z = x|X = x] ' η,

P [Z = x|X 6= x] ' 1− η
2Nq − 1

.

52



Thus, we have a virtual noisy channel W : {0, 1}Nq → {0, 1}Nq with the following transition matrix:

PW =




η 1−η
2Nq−1

. . . 1−η
2Nq−1

1−η
2Nq−1

η . . . 1−η
2Nq−1

...
...

. . .
...

1−η
2Nq−1

1−η
2Nq−1

. . . η



. (4.3)

We call this channel a virtual wiretapper’s channel from the sender to Eve, represented by Z = W(X).

Receiver’s view. The receiver always knows the unjammed time sample and so is effectively connected to

the sender via a noiseless main channel.

Definition 4.2. Let η denote the probability that Eve correctly recovers an information block that is sent

using a BiT that uses OFDM with N -frequencies, each using 2q-QAM. We define a virtual wiretap channel

and denote it by BiTNη,q. This wiretap channel has noiseless main channel and the transition probability

matrix of the wiretapper’s channel is given by PW in (4.3).

Theorem 4.2. The secrecy capacity of BiTNη,q wiretap channel is given by

Cs(BiTNη,q) = −{η log η + (1− η) log
1− η

(2Nq − 1)
}.

Proof. Channel W(·) is symmetric and degraded (according to Definition 4.1) with respect to the noiseless

main channel.

The secrecy capacity of the wiretap channel is given by Theorem 4.1.

Cs = H(X|Z)−H(X|Y ) = H(X|Z),

where X is uniform, and Y and Z are the output of the main channel and the wiretapper’s channel, re-

spectively. Note that in the above equation H(X|Y ) = 0 because the main channel is noiseless. Using the

transition probability matrix, we have

H(X|Z) =
∑

z∈{0,1}Nq
P [Z = z]H(X|Z = z)

= −{η log η + (1− η) log
1− η

(2Nq − 1)
}.

(4.4)
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4.5 Secure message transmission using BiT

BiT had been introduced in [59] to construct a key agreement protocol. Using the above model, we construct

a secure message transmission protocol with provable security. We will use capacity-achieving wiretap coding

construction in [11] that provides semantic security, and has efficient encryption and decryption functions.

The wiretap construction in [11] is for binary input symmetric channels. The q-ary channel alphabet is from

[9, Section 5.5] and its extension [12].

4.5.1 A semantically secure wiretap code

The construction is a seeded encryption and uses an invertible extractor.

Definition 4.3. [44] A function EXT : Sds × {0, 1}n → {0, 1}` is a (d, ε)-strong, average-case extractor if,

SD((EXT(S,X), Z, S); (U,Z, S)) ≤ ε for all pairs of correlated random variables (X,Z) over {0, 1}n×{0, 1}∗,

assuming H̃∞(X|Z) ≥ d.

Seeded encryption. For a public uniformly distributed random variable S ∈ Sds and an arbitrarily

distributed message M ∈ {0, 1}b, the seeded encryption function SE : Sds× {0, 1}b → {0, 1}nNq, outputs a

ciphertext SE(S,M). The corresponding seeded decryption function is SDE : Sds×{0, 1}nNq → {0, 1}b such

that for all S ∈ Sds and M ∈ {0, 1}b we have SDE(S, SE(S,M)) = M .

Inverting extractors. The function INV : {0, 1}r×Sds×{0, 1}b → {0, 1}nNq is an inverter for the extractor

EXT(·, ·) in Definition 4.3, if for a uniform R ∈ {0, 1}r and for all S ∈ Sds and Y ∈ {0, 1}b, the random

variable INV : (S,R, Y ) is uniformly distributed over all preimages of Y under EXT(S, ·).

Let Sds = {0, 1}nNq\0nNq. For inputs S ∈ Sds and X ∈ {0, 1}nNq and nNq > b, the function EXT :

Sds× {0, 1}nNq → {0, 1}b is defined as follows:

EXT(S,X) = (S �X)|b,

where � denotes the multiplication over FnNq2 = {0, 1}nNq, and X|b denotes the first b bits of X. An efficient

inverter for EXT(S,X) is given by INV(S,R,M) = S−1�(M‖R), where S−1 denotes the multiplicative inverse

of S in FnNq2 and R is a uniformly distributed variable over {0, 1}n−b. For the message block M ∈ {0, 1}b,

S ∈ Sds, and R
$← {0, 1}r, the seeded encryption function SE(S,M) is defined as follows:

X = SE(S,M) = INV(S,R,M) = S−1 � (M‖R).
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4.5.2 Using the wiretap construction with BiTN
η,q

Let ENC denote the construction that uses wiretap coding for BiTNη,q.

M ∈ {0, 1}b
SE(S,M)

X ∈ {0, 1}nNq
BiTNη,q

ENC

Figure 4.2: Secure message transmission based on BiT protocol

As illustrated in Figure 4.2, the encryption block ENC consists of two sub-blocks:

1. A seeded wiretap encryption code SE : Sds×{0, 1}b → {0, 1}nNq that encrypts each information block

of size b bits into a codeword of size nNq bits.

2. The BiTNη,q block that breaks the codeword into Nq-bit units, and sends it using the BiT protocol.

To capture the efficiency of the proposed message transmission protocol, we define the communication rate R

of the system as the number of transmitted bits that are sent with security and reliability, in each application

of BiTNη,q. This is similar to the definition of rate in the wiretap channel literature (cf. [34]).

Definition 4.4. The rate of the message transmission protocol over BiTNη,q in Figure 4.2 is R = b
n .

The rate of the ENC block in Figure 4.2 asymptotically approaches the secrecy capacity of the virtual

wiretap channel BiTNη,q. The construction provides semantic security and reliability. The codeword length

from SE(S,M) is nNq = b + r, where b is the total length of the message and r is the length of the

concatenated random string. For σ bit semantic security, the length of r is given in [131] as recalled below:

r ≥ d2(σ + 1) +
√
n log(2Nq + 3)

√
2(σ + 3) + (n)ψ(W)e,

where ψ(W) = | logZ| −H(W) = Nq −H(X|Z) in the above equation. The secrecy capacity of BiTNη,q for

N = 64 and various values of η and q are given in the Appendix B.3.1.

4.6 BiT over noisy receiver’s channel

In Wyner wiretap model, the secrecy capacity is zero when the main channel is noisy while the eavesdropper’s

channel is noise-free. That is, one cannot expect any secure communication from Alice to Bob. BiT creates
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a virtual wiretap channel for Eve when the physical channel between Alice and Bob is noise-free. In the

following, we will show that when the receiver’s physical channel is corrupted by Additive White Gaussian

Noise (AWGN) (while the eavesdropper’s physical channel remains noise-free), BiT can be used to introduce

noise in Eve’s channel and make secure communication possible. Figure 4.3 shows the application of BiT

when the main channel is corrupted by AWGN.

Figure 4.3: BiT protocol when Bob’s physical channel is noisy

Eavesdropper’s view. The eavesdropper’s channel is the same as in Section 4.4, created by the BiT

protocol. This is because the noise only affects the transmission in the main channel. Eve receives Vs =

(xs ⊕ Js)‖xs or Vs = xs‖(xs ⊕ Js), and the eavesdropper’s channel transition probability is given by PW in

(4.3).

Receiver’s view. The receiver’s channel, however, is corrupted by AWGN. We first consider the effect of

AWGN on a single 2q-QAM signal (i.e., OFDM with a single frequency) and then generalize it to an OFDM

with N frequencies.

Let AWGN(·) denote the AWGN channel where the noise is added to the input. Bob knows which

subinterval is jammed. Therefore, his reception is one OFDM symbol corrupted by the AWGN noise. That

is

AWGN(xs) = xs +Ns,

where Ns denotes the random signal corresponding to the white Gaussian noise. Let B(·) be the function

that maps Bob’s received signal to an Nq-bit string. The virtual main channel from Alice to Bob is defined
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as:

Y = M(X) = B(AWGN(xs)).

Let the transition probability matrix of a 2q-QAM signal that is corrupted by AWGN be denoted by

PM,q. Using the error probability calculation of Binary Phase Shift Keying (BPSK) in [57] Chapter 6.1.2,

the 4-QAM transition probability matrix will be given as:

PM,2 =




(1− Pb)(1− Pb) Pb(1− Pb) Pb(1− Pb) P 2
b

Pb(1− Pb) (1− Pb)(1− Pb) P 2
b Pb(1− Pb)

Pb(1− Pb) P 2
b (1− Pb)(1− Pb) Pb(1− Pb)

P 2
b Pb(1− Pb) Pb(1− Pb) (1− Pb)(1− Pb)



,

where the probability Pb is computed as follows:

Pb = Q(

√
Eb
N0

),

and Eb is the energy-per-bit of the input signal, N0

2 is the variance of the AWGN, and Q(z) is the probability

that a Gaussian random variable x with mean 0 and variance 1 takes a value larger than z, namely,

Q(z) = P[x > z] =

∫ ∞

z

1

2π
e−x

2/2dx.

The function Q(·) can be efficiently computed using approximations such as the one in [80].

For an OFDM signal with N frequencies, assuming noise independently corrupts each frequency, the

transition probability matrix PM will be given as,

PM = P⊗NM,q . (4.5)

We thus have a virtual wiretap channel for the BiT protocol in the setting where the receiver’s physical

channel is an AWGN (and the eavesdropper has a noise-free physical channel).

Definition 4.5. Let η denote the probability that Eve correctly recovers an information block that is sent

using a BiT that uses OFDM with N -frequencies, each using 2q-QAM. We define a virtual wiretap channel

for the setting where the receiver’s physical channel is an AWGN and denote it by AWGN-BiTNη,q. This

wiretap channel has a noisy main channel with transition probability matrix given by PM in (4.5) and a
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wiretapper’s channel with the transition probability matrix given by PW in (4.3).

Theorem 4.3. The secrecy capacity of AWGN-BiTNη,q is given by,

Cs = CM − CW,

if the matrix R = PW × P−1
M is the transition probability matrix of a channel, namely, R satisfies the

following two conditions,

1. R does not have any negative component,

2. The sum of the components in each row of R is equal to 1.

Remark 4.2. Condition 1 in Theorem 4.3 can be satisfied by imposing a relation between η (the parameter

characterizing the virtual wiretapper’s channel W ) and Pb (the parameter characterizing the virtual main

channel M). Condition 2 can be verified directly by computation. We provide more details by giving an

example for N=1 in Appendix B.3.2.

Proof. From R = PW ×P−1
M , we have

R×PM = PW.

Conditions 1 and 2 are sufficient to ensure that R is a transition probability matrix for a channel and so

using Definition 4.1, PW is a stochastically degraded channel with respect to PM. The rest of the proof

follows from Theorem 4.1.

4.7 Conclusion and future works

BiT uses an innovative way of coordinated jamming to construct a virtual wiretap channel and enables

information-theoretically secure communication without a shared key. We showed how to model BiT as a

virtual wiretap channel, estimate its parameters, and use the model to design a provably secure message

transmission protocol.

BiT is a subprotocol of the iJam protocol that had been implemented and experimentally analyzed. By

formal modelling of the BiT protocol and developing a provably secure message transmission scheme based on

that, we have effectively constructed a keyless information-theoretically secure message transmission system

that can be used in practice.

Our scheme asymptotically achieves the secrecy capacity of the virtual wiretap channel. The primary

assumption underlying our modelling is that the decoding error probability of Eve can be estimated. This
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probability depends on factors such as the sender and receiver (jamming) signal power, and the location

and receiving equipments of the eavesdropper. An interesting direction for future work would be to design

protocols that are more robust with respect to the imprecise estimation of the error probability. Extending

our analysis and approach to other physical layer security protocols is also an interesting direction for future

work.
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Part II

Modular Semantically Secure Keyed

Wiretap Encoding
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Chapter 5

A Modular Semantically Secure Wiretap Code with

Shared Key for Weakly Symmetric Channels1

Abstract. We study the problem of secure communication over a wiretap channel when the

sender and the receiver have access to a shared secret key. We propose a modular secure construc-

tion of wiretap codes for a shared key setting that achieves secrecy capacity for weakly symmetric

wiretap channels, and has computationally efficient encoding and decoding. The construction’s

security and reliability guarantees are in terms of semantic security, which is the strongest notion

of security for these channels, and worst case error, respectively. We give concrete parameters of

the construction for finite-length messages to obtain a desired level of security and reliability.

5.1 Introduction

Alice and Bob are connected by a noisy channel that is eavesdropped by an adversary Eve with unlimited

computational power. Alice wants to send a message to Bob such that (i) with a high probability, Bob

correctly receives the message, and (ii) the eavesdropper does not learn anything about the message.

Shannon [115],[116] gave a two-step solution to this problem: first, provide reliable communication to

the receiver (by using channel codes), and then provide security against the eavesdropper by using an OTP

(One-Time-Pad) encryption system, using a shared secret key. The main drawback of this solution is that

each message needs a fresh shared secret key whose entropy is lower bounded by the message entropy.

Wyner [143] pioneered a new approach to the problem by introducing the wiretap model where Alice’s

transmission to Bob is also received by Eve, through a second channel that is a degraded version of Bob’s

channel, and showed that the extra noise in Eve’s reception can be used to provide confidentiality. Csiszar

1The content of this chapter is published as a paper [117] in proceedings of ITW 2019.
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and Korner [34] extended this model to the case that Alice is connected to Bob and Eve through two

independent channels: the main channel and the wiretapper’s channel, respectively, and proved that secure

and reliable communication is possible as long as the main channel is more “capable” (See expression (12) in

[34]) than the wiretapper’s one. A very attractive aspect of this approach is that Alice and Bob do not need

a shared secret key, and it is sufficient to use randomized coding to achieve (asymptotic) perfect secrecy for

the communication. One of the challenges of this approach is that depending on the difference between the

quality of the main and the wiretapper’s channel, one may have to send the message at a very low rate (the

number of securely transmitted information bits divided by the total number of channel use).

A natural question is if the two models can be combined: that is, use a secret key to achieve higher rate,

while taking advantage of the noise in Eve’s channel to shorten the key. This problem is first considered

by Yamamoto [145] and later by Merhav [94], Kang et al.[78] and Schaefer et al. [113], under different

assumptions and reception quality criteria. Kang et al. [78] derived the secrecy capacity of wiretap channels

with shared key under weak secrecy condition, and used random codes for a uniformly distributed message

space to prove the achievability result. The capacity result (See Theorem 5.1) reduces to wiretap channel

capacity when the secret key rate is zero. Wang et al. [141] proposed a construction of capacity-achieving

codes for wiretap channels with shared key under strong secrecy condition (the total leakage rather than the

leakage rate), using polar codes.

Constructions of message transmission with perfect secrecy. The only secure message transmission construc-

tion with perfect information-theoretic secrecy in a shared key setting is OTP. Early constructions of wiretap

codes rely on special classes of error correcting codes, for example LDPC codes in [98, 136], and polar codes

in [87]. Modular constructions of wiretap codes [66] separate randomization of the encoder for achieving

secrecy, from error correction for reliability, and can work with any capacity-achieving error correcting code

that satisfies the requirement of the construction. Bellare et al. [11] introduced semantic security of wiretap

codes, and proposed a modular capacity-achieving construction for binary input degraded symmetric wiretap

channels. The construction is later shown to achieve the same properties for degraded symmetric wiretap

channels in [131]. Other modular constructions of capacity-achieving wiretap codes with semantic security

are by Tyagi et al.[138] for Gaussian wiretap channels, and Sharifian et al. [120] for discrete symmetric

wiretap channels.

5.1.1 Our work

We propose a modular capacity-achieving construction of wiretap codes with key (keyed wiretap for short)

that provides semantic security. The construction can be instantiated to have efficient encoding and decoding.
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Similar to all modular constructions of wiretap codes, the construction uses a seed, which is a random string

shared by Alice and Bob (e.g., can be sent over a reliable channel). Compared to existing constructions of

keyed wiretap codes in [78], [113] and [141], our construction has the unique properties of being modular and

providing semantic security. The construction can be used for weakly symmetric channels, which includes

the class of channels for which modular semantically secure wiretap code (without key) is known [11, 120].

Extending these latter constructions to keyed wiretap setting is an interesting open question.

5.2 Preliminaries

5.2.1 Notations and background

Random variables are denoted by capital letters and their corresponding realizations are denoted by lowercase

letters. Sets are denoted by calligraphic letters e.g., X and the size of X is denoted by |X |. A function f(·)

(either deterministic or randomized) is denoted by Sans-serif letters. UX denotes uniform distribution over

X , and U` denotes uniform distribution over {0, 1}`. We use “‖” to denote concatenation. All logarithms

are in base 2. A Markov chain among random variables X, Y , and Z, is denoted by X − Y − Z, and the

corresponding probabilities satisfy P (yz|x) = P (y|x) ·P (z|y). A sequence of random variables is denoted by

Xn = (X1, X2, ..., Xn).

The statistical distance betweenX and Y overR is defined as SD(X,Y ) = 1
2

∑
r∈R |P [X = r]−P [Y = r]|.

The min-entropy of a random variable is a measure of the number of its extractable random bits, and is

given by H∞(X) = − log(max
x

PX(x)). The maximum number of extractable random bits from a random

variable is given by its smooth min-entropy [107] defined as Hε
∞(X) = max

Y :SD(X,Y )≤ε
H∞(Y ).

A (γ, ε) strong seeded extractor is a family of functions Ext : X ×S → Y, that for any X with H∞(X) ≥ γ,

we have SD((S,Ext(X,S)), (U`, S)) ≤ ε, where S is uniformly sampled from S. A special class of extractors

is pairwise Universal Hash Family (UHF) [76]. A family {hs|s ∈ S} of functions hs : X → Y is a pairwise

UHF if for any x 6= x
′
, and all α, β ∈ Y, Pr[hS(x) = α ∧ hS(x′) = β] ≤ 1

|Y|2 , where S denotes a random seed

chosen uniformly from S. In our construction, we use a UHF called Hmult: let t and b be two integers and

t < b. Then the hash family Hmult = {hs : s ∈ {0, 1}b\{0b}} is defined as hs(x) = (x‖0t−b)� s. Here, � is

multiplication over GF (2b).

5.2.2 Channels

A discrete memoryless channel (DMC) is a probabilistic function W : X → Y that maps an element of X

to a probability distribution over Y, and is specified by the transition probabilities PY |X . The transition
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Figure 5.1: Wiretap Channel Model

probability matrix of the channel represents the transition probability of the channel from input x to output y.

For a codeword of length n channel symbol Wn : Xn → Yn and the transition probability is PnY |X(yn|xn) :=

Πn
i=1PY |X(yi|xi). A DMC W : X → Y is said to be weakly symmetric if every row of the transition matrix is

a permutation of every other row, and the sum of elements in each column is the same for all columns [30].

The capacity of a transmission channel W is denoted by CW, and is the highest rate in bits per channel

use at which information can be sent over the channel with error probability approaching zero as information

size grows. When W : X → Y is a weakly symmetric channel, its capacity is given in [30, Theorem 8.2.1] by

CW = log |Y| −H(row of transition matrix).

Wiretap channel model. In a general wiretap (also called broadcast [34]) channel WT : X → Y × Z

(See Figure 5.1), a sender is connected to the receiver through the main channel T : X → Y, and to

the eavesdropper through a second channel W : X → Z, called the wiretapper’s channel; the transition

probability of the channel pair is described by PY Z|X , where X ∈ X , Y ∈ Y and Z ∈ Z. In Wyner’s

original model [143], the wiretapper’s channel is a degraded version of the main channel, and the Markov

chain X − Y − Z holds.

A wiretap encoder is a randomized encoding algorithm Enc :M→ Xn that encodes a message b ∈M, to

a codeword Xn. The receiver receives Y n = T(Enc(b)) and uses a deterministic decoding function Dec(·) to

recover a message b̂. The decryption will be in error if b̂ 6= b. A randomized encoding system must provide

(i) reliability for the receiver, and (ii) secrecy against the eavesdropper.

Reliability: For 0 < σ < 1, we define reliability as follows:

max
b∈M

Pr[(b 6= b̂)] < σ (5.1)

Distinguishing security. We use the following distinguishing-based definition for secrecy.

Advds(Enc; W) = max
b0,b1

SD(W(Enc(b0)); W(Enc(b1)))

≤ 2 max
b

SD(W(Enc(b));UZ) < ε (5.2)
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for any 0 < ε < 1. This is the strongest security notion for confidentiality in cryptography, and is equivalent

to semantic security [58].

Secrecy rate: The rate of an encoding scheme for a given wiretap channel is defined as R(n) = log |M|
n ,

where n is the number of channel use. A rate R for a wiretap channel W is achievable if there exists a family

of wiretap codes indexed by the codeword length, n, such that as n → ∞, σ(n) and ε(n) in the reliability

and distinguishing security definition approach zero, and R(n) approaches R. From now on, for simplicity of

the representation, we abuse the notation and denote R(n), σ(n) and ε(n) by Rn, σn and εn respectively2.

The secrecy capacity of a wiretap channel is the highest achievable rate as defined above, and has been

proved [34] to be Cs = max
V−X−Y Z

(I(V ;Y )− I(V ;Z)), where the maximum is taken over all random variables

V satisfying V −X − Y Z.

For a degraded wiretap channel (X − Y − Z holds), when the main channel T and the Eve’s channel W

are weakly symmetric, the capacity is achieved for uniform distribution over X, and the capacity is given by

Cs = CT −CW [84]3.

5.3 Wiretap channel with shared key

We consider a discrete memoryless wiretap channel WT : Xn → Yn × Zn where T(·) is the main channel,

and W(·) is the wiretapper’s channel. The sender wants to send a private message b ∈M to the receiver. A

uniformly distributed secret key K ∈ K with rate RK = log|K|
n is shared between the sender and the receiver.

Definition 5.1. For a wiretap channel with shared secret key rate RK > 0, a secrecy rate R > 0 is

achievable if there exists a family of wiretap codes with rate Rn, and reliability and security parameters σn

and εn, respectively (expressions (5.1) and (5.2)), such that as n → ∞, we have σn, εn → 0, and Rn → R.

The secrecy capacity Cs is the supremum of all achievable secrecy rates.

Keyed seeded encryption: Modular constructions of wiretap codes use seeded extractors, and are

referred to as seeded encryption [11]. Seeded encryption schemes are randomized coding schemes without a

shared key. The seed is a random string that is shared over the main channel reliably, and is assumed to be

known by the eavesdropper. The following extends the definition of seeded encryption to include the shared

key of the sender and the receiver.

Definition 5.2. For a wiretap channel with a shared key as described above, an (n, σn, εn) keyed seeded

encryption scheme (0 < σn, εn < 1) consists of a seeded encryption algorithm SKEnc : S × K ×M → Xn,

2We will also use bn and b̂n instead of b(n) and b̂(n) later.
3In [84] the result is stated for symmetric DMCs. Using [84, Theorem 4] implies that the same result holds when both

channels are weakly symmetric.
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and a seeded decryption algorithm SKDec : S × K × Yn → M, that satisfy the following reliability and

distinguishing security properties:

Reliability.

E
K,S

[
max
b∈M

Pr[SKDecS(T(SKEncS(b, k)) 6= b]

]
< σn

Distinguishing security.

Advds(SKEnc; W) = E
K

[max
b0,b1

SD((S,W(SKEncS(b0, k))); (S,W(SKEncS(b1, k))))]

≤ 2E
K

[
max
b

SD((S,W(SKEnc(b, k))); (S,UZn))

]
< εn

Remark. Our definition of reliability uses the worst-case error probability, and the distinguishing-based

security definition does not assume a specific probability distribution for messages. It is easy to see that the

upper-bounds in [78] and [113] for achievable rate and secrecy capacity will also hold for our definitions that

are more demanding (i.e., our notions of reliability and security imply those of these latter works).

We recall the following theorem that gives the capacity of a wiretap channel with shared key, when

message space is uniformly distributed.

Theorem 5.1 ([78]). The secrecy capacity of the general wiretap channel with a shared key of rate RK under

reliability and security conditions given by [78, Eq.(1), Eq.(2)] respectively, is

max
U−V−X−Y Z

min
(
[I(V ;Y |U)− I(V ;Z|U)]+ + RK , I(V ;Y )

)
,

where [a]+ is the maximum between 0 and a. The secrecy capacity of a degraded wiretap channel with shared

secret key is therefore max
X−Y−Z

min
(
I(X;Y )− I(X;Z) + RK , I(X;Y )

)
.

In the next section, we describe our seeded encryption construction for keyed wiretap channel, and show

that its rate achieves the above capacity for weakly symmetric channels.

5.4 The capacity-achieving construction

Overview: In a keyed wiretap channel setting, the sender and receiver have two resources to achieve

confidentiality: a shared secret key, and the fact that the wiretapper’s channel is noisier than the main

channel. Each of these resources can be optimally and independently used for providing confidentiality, and

so one would expect that the capacity of a keyed wiretap channel to be the sum of these two capacities. In
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[78], it is shown that the secrecy capacity of this setting is indeed the sum of the capacities of the two cases.

Note that the shared key is available at the sender and the receiver before transmission starts, while the

noise advantage is provided once the message is transmitted over the channel. The desired scheme should

use the shared key at the sender for partially masking the message such that in combination with the channel

noise, the transmitted message is perfectly hidden from the wiretapper. We propose a scheme that extends

a wiretap coding construction, known as HtE (Hash-then-Encode) [120] that allows us to take advantage of

the available key rate. We call the new construction KHtE (Keyed Hash-then-Enocde). We first introduce

the construction and show how to choose its parameters for the desired security and reliability guarantees,

and then prove for a weakly symmetric wiretap channel, the secrecy rate of the construction approaches the

secrecy capacity of the system as the code length increases.

5.4.1 The KHtE construction

For a message space M = {0, 1}b, a wiretap channel WT : {0, 1}` → {0, 1}e × {0, 1}d, and the shared key of

t bits, let hs : {0, 1}t → {0, 1}b be a family of pairwise universal hash functions, and ECC :{0, 1}b̂ → {0, 1}n.`

be a family of error-correcting codes for the main channel. Let a random secret key K ∈ {0, 1}t and a

random seed S be shared by the sender and the receiver. The seed S can be generated by the sender and

sent to the receiver over a reliable (public) channel. Note that publicly shared randomness is also used in

random code constructions and is not considered in computing the secrecy rate of the construction. The seed

length of our proposed construction is significantly shorter than the public randomness in this latter case

(public randomness in random coding is exponential in n, while in our proposed construction the seed length

is n. log |M|). Our proposed keyed seeded encryption function denoted by KHtE[hs,ECC], uses a UHF and

a capacity-achieving error correcting code (ECC) with encoding and decoding function pairs ECC.enc and

ECC.dec, respectively. For a message b ∈ M, the encryption (randomized encoding with secret key) and

decryption (decoding with secret key) functions are defined as follows.

1. Encryption:

KHtE.enc(S,K, b) = ECC.enc((hS(K)⊕ b)‖Ub̂−b).

2. Decryption: For a received vector Y we have

KHtE.dec(S,K, Y ) = ECC.dec(Y )⊕ hS(K).

Theorem 5.2. Consider a degraded weakly symmetric wiretap channel (both channels are weakly symmetric)

with the main channel T : {0, 1}` → {0, 1}e and the wiretapper’s channel W : {0, 1}` → {0, 1}d, a message
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space M = {0, 1}bn and a shared secret key with a non-zero rate RK . Let ECC :{0, 1}b̂n → {0, 1}n.`,

(b̂n ≥ bn) be a family of capacity-achieving error-correcting codes for channel T such that the maximum

error probability for length n (channel use) code is bounded by σn, and let hs : {0, 1}n.RK → {0, 1}bn be a

pairwise universal hash function such that n.RK < bn. Then the KHtE construction gives a (n, σn, 4εn)

keyed seeded encryption scheme (Definition 5.2) that achieves secrecy capacity of the channel, if

bn ≤ n.RK + b̂n − n.CW −
√
n log(2` + 3).

√
2log

1

εn
+ 2logεn. (5.3)

Here, CW is the capacity of the wiretapper’s channel.

Proof overview: To prove Theorem 5.2, we first prove Lemma 5.1. The lemma shows that a uniformly

distributed shorter key can be expanded to a longer key that is close to uniform, using the channel noise.

To complete the proof, we show that when parameters of KHtE are chosen with respect to Lemma 5.1, the

rate of KHtE achieves the capacity expression of Theorem 5.1 as n grows.

KHtE in practice: For a wiretap setting with shared key rate RK , Theorem 5.2 gives an asymptotically

tight upper-bound on the length of the message with concrete reliability and security guarantees. To use

the construction in practice, one determines the minimum n for the error correcting code family ECC of the

main channel T, such that the decoding error of the code with length n (channel symbol) is σn ≤ σ. The

corresponding input size for this error correcting family is b̂n. Then for a chosen εn, expression (5.3) gives

the maximum length of message bn that can be encrypted.

Lemma 5.1. Let {hs|s ∈ S} be a family of pairwise UHFs hs : {0, 1}t → {0, 1}b, where b ≥ t and f :

{0, 1}b̂ → {0, 1}` be an injective function (` ≥ b̂), W : {0, 1}` → {0, 1}d be a weakly symmetric channel,

where max
x∈{0,1}`,z∈{0,1}d

Pr(W(x) = z) ≤ 2−ν , and K ∈ {0, 1}t be a uniformly random variable such that

b ≤ t+ ν + b̂− d+ 2 log ε. Then

SD
(
(S,W(f(hS(K)‖Ub̂−b))); (S,U`)

)
≤ ε. (5.4)

Proof. Let PV be the distribution of the channel’s output for a reference input r ∈ {0, 1}`. Then for the

random variable V ∈ {0, 1}d with distribution PV we have H∞(V ) ≤ ν. Since W is weakly symmetric, the

distribution of the channel output for other inputs (not equal to r) in {0, 1}` can be obtained by applying

a permutation on the channel output set with distribution PV (i.e., a permutation on V ). Therefore,

W(f(hS(K)‖Ub̂−b)) = τf((hS(K)‖Ub̂−b)(V ), where τx(V ) is the permutation on the channel output set with

distribution PV that results in the output distribution that is generated by x input to the channel.

According to [76, claim 2], any distribution over a finite set ∆ with collision probability 1+2ε2

|∆| is ε-close
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to the uniform distribution. We now bound the collision probability of (S, τf((hS(K)‖Ub̂−b)(V )) as follows:

Pr[
(
S, τf((hS(K)‖Ub̂−b)(V )

)
=
(
S
′
, τf((hS′ (K′)‖U ′b̂−b)

(V ′)
)

]

= Pr[S = S
′
] · Pr[Ub̂−b = U

′

b̂−b]·

Pr[τf((hS(K)‖u)(V ) = τf((hS(K′)‖u)(V
′)],

where u is uniformly sampled from {0, 1}b̂−b. Note that since f is injective, hS(K)‖u = hS(K)‖u′, if and

only if u = u′. Thus

Pr[
(
S, τf((hS(K)‖Ub̂−b)(V )

)
=
(
S
′
, τf((hS′ (K′)‖U ′b̂−b)

(V ′)
)

]

≤ 2b−b̂−k

|S| ·
(

2−ν

+Pr[τf((hS(K)‖u)(V ) = τf((hS(K′)‖u)(V
′)|K 6= K ′]

)
.

Now Pr[τf((hS(K)‖u)(V ) = τf((h′S(K′)‖u)(V
′)|K 6= K ′] =

∑
v∈{0,1}d

∑
v′∈{0,1}d

(
Pr[V = v] · Pr[V ′ = v′]·

Pr[τf((hS(K)‖u)(v) = τf((hS(K′)‖u)(v
′)|K 6= K ′]

)
.

Pr[τf((hS(K)‖u)(v) = τf((hS′ (K′)‖u)(v
′)] is either zero, or is non-zero for f(hS(K)) = x1 and f(hS(K ′)) = x2.

Since f is injective, this is equivalent to hS(K) = f−1(x1) and hS(K ′) = f−1(x2), and since hS(·) is pairwise

independent, we have

Pr[τhS(K)‖u(v) = τhS(K′ )‖u(v′)] ≤

Pr[hS(K) = f−1(x1) ∧ hS(K ′) = f−1(x2)|K 6= K ′] ≤ 2−2b.

Finally,

Pr[τhS(K)(V ) = τhS(K′)(V
′)]

≤ 2−2b ·∑v

∑
v′ Pr[V = v] · Pr[V ′ = v′] ≤ 2−2ν−2b.

Therefore, the collision probability can be bounded as:

Pr[
(
S, τf(hS(K))(V )

)
=
(
S
′
, τf(h

S
′ (K′ ))(V

′
)
)

]

≤ 1
|S|2d ·

(
2−(t+ν+b̂−b−d) + 2−(2ν+b+b̂−d)

)
.

(5.5)

Since b ≤ t+ ν + b̂− d+ 2 log ε, the first term 2−(t+ν+b̂−b−d) ≤ ε2 and since 2t ≤ 2b, the second term is also

bounded by ε2. Therefore, the collision probability is bounded by 2ε2

|S|2d ≤ 1+2ε2

|S|2d and the statistical distance

is bounded by ε.
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Proof of Theorem 2. We need to prove (i) reliability, (ii) security and (iii) capacity-achieving property of the

scheme for the given channel.

Reliability: Since the ECC in the construction is capacity-achieving, we have limn→∞ σn = 0. Thus, the

decryption error of KHtE is σn, which approaches 0 as n grows. Moreover, limn→∞RECC = limn→∞
b̂n
n =

CT.

Security: To prove security of the construction, let the distribution Wn(rn) for a reference rn ∈ {0, 1}n.`

be V n. Since W is weakly symmetric and Wn is discrete memoryless, then Wn is weakly symmetric, and

the output of the channel for an input xn 6= rn is a permutation of V n denoted by τxn(V n). Since the

channel is memoryless, V n is n independent identically distributed (IID) samples of W output, and H(V n) =

n ·H(V ). Let Vεn be the random variable over {0, 1}n.` that satisfies the smooth min-entropy of V n, that is

SD(Vεn ;V n) ≤ εn and Hεn∞ (V n) = max
V̂εn :SD(V n;V̂εn )≤εn

H∞(V̂εn) = H∞(Vεn). From [107, Lemma 4.2], we have

H∞(Vεn) = Hεn
∞ (V n) ≥ n.H(V )− nδn, (5.6)

where δn = log(2` + 3).
√

2log 1
εn
/n.

Since W is a weakly symmetric channel, CW = d−H(V ). Then, from (5.3), (5.6),

bn ≤ n.RK +H∞(Vεn) + b̂n − n.d+ 2logεn. (5.7)

Now consider an abstract channel Wεn : {0, 1}n.` → {0, 1}n.d, where the output distribution of rn ∈

{0, 1}n.` is Vεn and for any other xn 6= rn, the distribution is given by τxn(Vεn), where τxn is a permutation

on the output set. This abstract channel Wεn by definition is weakly symmetric.

Suppose ECC(hS(K)⊕ b‖Ub̂−b) is used as the input to the channel Wεn . From Lemma 5.1, we have

SD
(
(S, τ(ECC(hS(K))(Vεn)⊕ b‖Ub̂−b))); (S,Un.`)

)
≤ εn.

On the other hand, since SD(V n, Vεn) ≤ εn, from the triangular inequality it follows that,

SD
(
(S, τ(ECC(hS(K))(V

n)⊕ b‖Ub̂−b))); (S,Un.`)
)
≤ 2εn

⇒ SD
(
(S,Wn(ECC(hS(K)⊕ b‖Ub̂−b))); (S,Un.`)

)
≤ 2εn.

Thus, Advds(KHtE) ≤ 4εn (from the distinguishing advantage in Definition 5.2), and for εn = O(1/n2), the

ds advantage goes to zero as n grows.
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Capacity-achieving: The achievable rate of the construction is bn/n. We have

bn ≤ b̂n + n.RK − n.CW −
√
n log(2` + 3).

√
2log

1

εn
+ 2logεn

⇒ bn
n
≤ b̂n

n
− CW −

√
n

n
(log(2` + 3))−

2log( 1
εn

)

n
+ n.RK

⇒ R ≤ lim
n→∞

bn
n

= (CT − CW) + RK .

From Shannon’s coding theorem, we have R ≤ I(X;Y ). Finally, the combination of the latter two inequalities

completes the proof:

R ≤ min
(
(CT − CW) + RK , I(X;Y )

)

= max
X−Y−Z

min
(
[I(X;Y )− I(X;Z) + RK , I(X;Y )

)
,

where the upper bound is achieved when bn in (5.3) is set to its maximum.

Concluding remarks. We gave a modular and semantically secure construction of a capacity-achieving

wiretap code with shared secret key that has efficient encoding and decoding. This is the only known

construction that takes advantage of the shared key and the wiretap channel, and achieves semantic security.

The construction works for weakly symmetric channels. Extending this result to more general discrete

memoryless channels, and extending other known modular construction of wiretap codes (with semantic

security) to support shared secret key, are interesting research questions.
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Chapter 6

Semantically Secure Keyed Wiretap Encoding

Schemes1

Abstract. In the wiretap model, the sender is connected to the receiver and the eavesdropper

through two noisy channels, called the main channel and the wiretapper’s channel, respectively.

When the main channel is noisier than the wiretapper’s channel, a wiretap code can be used

to achieve (asymptotically) perfect secrecy and perfect reliability for message transmission. The

efficiency of a wiretap code is in terms of its achievable rate that is defined as the number of bits

that is transmitted reliably and securely, in each use of the channel when the channel is used

sufficiently many times. Capacity-achieving constructions provide the highest achievable rate for

encoding over a wiretap channel.

In a keyed wiretap channel, the sender and the receiver can also take advantage of a secret key

that is shared between them to increase the secrecy rate. We propose a modular construction of a

capacity-achieving keyed wiretap code for weakly symmetric channels. The modular construction

allows to separate coding for secrecy and coding for reliability, and so can be used with any

capacity-achieving error correcting code. The construction optimally uses the available secrecy

capacity of the underlying wiretap channel, and its secrecy rate reduces to the key rate if the

secrecy rate of this channel is zero. This is the first explicit construction that provides semantic

security for any discrete memoryless wiretap channel with binary alphabet input. Our security

proof gives an achievability bound on the rate of the construction that can be used to evaluate

the efficiency of the construction in the finite-length regime.

1The content of this chapter is submitted to the Journal of Cryptology [123].
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6.1 Introduction

We study the problem of secure communication from an information-theoretic perspective: Alice and Bob

are connected by a noisy channel that is eavesdropped by a computationally unbounded adversary Eve; Alice

wants to send a message reliably and securely over the channel. Reliability means the receiver should be

able to recover the message with high probability, and the security condition implies Eve not to obtain more

than negligible information about the message by eavesdropping the channel.

Shannon considered the above problem and proposed the first formal model and definition of the information-

theoretic secure communication [115],[116]. His approach toward the secure communication problem is to

meet the reliability and security requirements, consecutively. That is, first remove the noise from the channel

by using error correcting codes, and then provide security against the eavesdropper by using an OTP (One-

Time Pad) encryption system that uses a shared key. Despite the theoretical importance of this solution as

the first and the only encryption scheme with perfect secrecy, the practicality of this solution is questioned

since each message needs to be encrypted with a fresh shared key whose entropy is at least as much as the

message entropy.

The information-theoretic approach to physical layer security is pioneered by Wyner [143]. He introduced

the wiretap channel to model a setting in which Alice’s transmission to Bob is also received by Eve through

a second channel, which is a degraded (i.e., noisier) version of Bob’s channel (See Figure 6.1(ii)). Wyner’s

brilliant idea was to use the extra noise at Eve’s reception to provide confidentiality. Csiszár and Körner [34]

extended this model to the case that Alice is connected to Bob and Eve through two independent channels:

receiver’s channel (also called the main channel), and the wiretapper’s channel, respectively (Figure 6.1(i)),

and proved that secure and reliable communication is possible as long as the main channel is more “capable”

(See expression (12) in [34]) than the wiretapper’s one.

The rate of secure message transmission in a wiretap setting is defined as the number of bits securely

transmitted in each application of the channel. The secrecy capacity is the highest achievable rate of

transmitting the message from Alice to Bob satisfying reliability and security conditions. The explicit

capacity-achieving schemes for Wyner’s setup are known only for degraded channels. The early constructions

of capacity-achieving wiretap codes use special classes of codes e.g., LDPC codes in [98, 136], and polar codes

in [87]. A modular construction of a wiretap code [66] separates randomization for achieving secrecy from

error correction for reliability, and can be used with any capacity-achieving error correcting code. Bellare

et al. [11] strengthened the security of wiretap codes by introducing semantic security, and proposed a

modular construction that is capacity-achieving and provides semantic security. Other modular constructions

of capacity-achieving wiretap codes with semantic security are by Tyagi et al.[138] for Gaussian wiretap

73



Figure 6.1: (i) Wiretap channel with the main channel T and the wiretapper’s channel W; (ii) Degraded
wiretap channel with the main channel T and the wiretapper’s channel W that is the concatenation of two
channels.

channels, and Sharifian et al. [120] for discrete symmetric wiretap channels.

A very attractive aspect of these constructions is that Alice and Bob do not need a shared secret key.

When the wiretapper’s channel is noisier than the main channel, wiretap codes increase the randomization

of the noise difference in the wiretapper’s view by using sufficient randomization in the encoder and provide

asymptotic perfect secrecy for the communication. Modular constructions are even more appealing from the

practical viewpoint due to their flexibility in the choice of error correcting codes. The drawback of wiretap

encoding schemes, however, is that secure communication is not possible when the main channel is noisier

than the wiretapper’s channel, and the achievable rate of secure communication is small when the difference

between the quality of the main and the wiretapper’s channel is small.

A natural question is if Wyner’s approach can be combined with Shannon’s OTP encryption system:

that is, use the secret key to achieve higher rate, while taking advantage of the noise in Eve’s channel.

Alternatively, the noise in Eve’s channel is used to reduce the key length of the OTP encryption scheme.

As a result, Shannon’s model of perfect secrecy [116] and Wyner’s model [143] can be understood under

a unified framework that combines the conventional information-theoretic security approaches. Yamamoto

[145] initiated the study of the wiretap channel with a shared secret key. This model is studied in a few

works including [78, 94, 113]. The secrecy capacity of a general wiretap channel with a shared secret key is

given in [78] and the first explicit construction of a wiretap code with a shared secret key is given in [117].

This construction is modular and is shown to provide semantic security, and achieve the secrecy capacity

when the main channel and Eve’s channel are weakly symmetric. The construction, however, requires the

key rate to be positive.

In this work, we improve the construction of [117] to provide secure encoding over the keyed wiretap

channels that reduces to a conventional wiretap code when the key rate is zero. We show the proposed

construction is semantically secure for discrete memoryless channels with binary alphabet input. No other

known explicit wiretap code or keyed wiretap code is shown to provide semantic security for this wide class

of channels. The randomization of the proposed construction is made explicit by transmitting a random seed
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publicly to the receiver. We show the secrecy capacity of weakly symmetric wiretap channels with a shared

key (and also the conventional wiretap channels) is asymptotically achieved by our proposed construction

when the same seed is used for the encryption of multiple messages (message blocks) as the number of blocks

goes to infinity. Using the same seed for the encryption of multiple blocks is called seed recycling, which

is first introduced in [11] to show their proposed construction achieves the secrecy capacity of binary input

symmetric channels asymptotically. We show the seed recycling technique can also be used for the encryption

of the finite number of message blocks by providing a security guarantee on the encryption of individual

blocks encrypted using the same seed.

Organization: The backgrounds are reviewed in Section 6.2. The definitions of wiretap channel and

keyed wiretap channel, and the corresponding existing constructions, are given in Section 6.3. In Section 6.4,

we propose our keyed wiretap encryption scheme and prove its reliability, security and capacity-achieving

properties. In Section 6.5, we study the proposed construction in two special cases, namely, when the shared

key doesn’t exist, and when the wiretap channel secrecy capacity is zero. We then compare our construction

in these special cases with the best known results. In Section 6.6, we elaborate on the application of the

construction in practical settings with finite-length messages. Related works are addressed in Section 6.7,

and we conclude this work in Section 6.8.

6.2 Preliminaries

6.2.1 Notations

A function F(·) (either deterministic or randomized) is denoted by Sans-serif letters, and bold capital letters

denote matrices. Random variables are denoted by capital letters and their corresponding realizations are

denoted by lowercase letters. Sets are denoted by calligraphic letters e.g., X and the size of X is denoted

by |X |. By x
$← X we mean element x is chosen with probability 1

|X | . A sequence of random variables is

Xn = (X1, X2, . . . , Xn), and a sequence of realizations of random variables is xn = (x1, x2, . . . , xn). When

the items of a sequence are dependent on their index, we use “(n)” as a superscript, e.g., λ(n).

Pr[X = x] denotes the probability that the random variable X is equal to x. A probability distribution

over X is denoted by PX , and PX(x) is an alternative notation for Pr[X = x]. The uppercase U is reserved

for uniform distribution, and UX denotes uniform distribution over X , and U` denotes uniform distribution

over {0, 1}`. To denote concatenation, we use “‖”. All logarithms are in base 2.

A Markov chain among random variables X, Y , and Z, is denoted by X−Y −Z, and probabilities satisfy

P (yz|x) = P (y|x) · P (z|y).
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For two random variables X and Y , PXY denotes their joint distribution, and PX|Y denotes the condi-

tional distribution of X when Y is given.

For a random variableX ∈ X with distribution PX(x), Shannon entropy isH(X) = −∑x∈X PX(x) logPX(x).

The min-entropy H∞(X) is given by H∞(X) = − log(max
x

(PX(x))). The average conditional min-entropy

[44] is commonly defined as,

H̃∞(X|Y ) = − logEy∈Y max
x∈X

PX|Y (x|y).

The maximum number of extractable random bits from a random variable is given by its smooth min-

entropy, which is introduced in [107] as:

Hε
∞(X) = max

Y :SD(X,Y )≤ε
H∞(Y ).

Lemma 6.1. [107] Let Xn = X1, X2, . . . , Xn be n independent random variables over X , then:

Hε
∞(Xn) ≥ H(Xn)− n.δ,

where δ > 0 and ε = ε(δ, n, |X |) = 2
−nδ2

2 log2(|X|+3) .

The statistical distance of two random variables is defined as follows. For X,Y ← Ω,

SD(X;Y ) =
1

2

∑

ω∈Ω

|Pr(X = ω)− Pr(Y = ω)|.

We say X and Y are ε-close if SD(X,Y ) ≤ ε.

Lemma 6.2. For any two random variables X and Y over Ω, and every possibly randomized function F(·),

SD(F(X); F(Y )) ≤ SD(X;Y ). The equality holds when F(·) is injective.

6.2.2 Communication channels

A discrete memoryless channel (DMC) CH is a probabilistic function that is specified by a tuple 〈CH,X ,Y〉,

where X and Y are the domain and co-domain of the function, respectively, and CH is a transition probability

matrix with rows and columns labelled with elements of X and Y, respectively, and for x ∈ X and y ∈ Y,

CH(x, y) = PY |X(y|x). An input with probability distribution PX generates an output with probability

distribution PY , where PY (y) =
∑
x∈X PX(x)PY |X(y|x). The channel can be written without explicit

mention of the channel’s transition matrix as a probabilistic function CH : X → Y, where Pr(CH(x) = y) =

CH(x, y). The probabilistic nature of the channel has been used by Wyner [143] as a source of randomness
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to obstruct the view of the adversary and provide secrecy for communication. In Section 6.4, we treat the

channel as a source of randomness and use extractors to extract this randomness.

To transmit a codeword of length n, the channel is used n times. This is shown by CHn〈CH⊗n,Xn,Yn〉.

The transition probability of the n times application of a discrete memoryless channel is PnY |X(yn|xn) :=

Πn
i=1PY |X(yi|xi), for xi ∈ X and yi ∈ Y and Pr(CHn(xn) = yn) = CH⊗n(xn, yn).

A DMC is called symmetric if the set of outputs can be partitioned into subsets in such a way that for

each subset the transition matrix of probabilities (using inputs as rows and output of subsets as columns)

has the property that each row is the permutation of other rows and the columns are also permutations of

each other. When X = {0, 1}, the channel is known as Binary Input Symmetric Channel (BISC). When

X = {0, 1} and Y = {0, 1}, the channel is a Binary Symmetric Channel (BSC). In this channel, input and

output sets are {0, 1} and an input bit flips with probability p ≤ 1/2 (crossover probability).

A channel is said to be weakly symmetric if every row of the transition matrix is a permutation of every

other row, and all the column sums are equal [30].

For a communication channel CH : X → Y with input X ∈ X and output Y ∈ Y, channel capacity

denoted by CCH is defined as:

CCH = max
PX

I(X;Y ).

When CH : X → Y is weakly symmetric, the channel capacity is [30, Theorem 8.2.1]:

CCH = log |Y| −H(row of transition matrix).

Channel coding

A (M, n, σ)-code for channel CH : X → Y consists of an input set M as well as an encoding function

Enc :M→ Xn and a decoding function Dec : Yn →M, where

Pe = max
m∈M

Pr[Dec
(
Enc(m)

)
6= m] ≤ σ.

Pe is called the maximal error probability. The average error probability is defined similarly as P̃e =

1/|M|Pr[Dec
(
Enc(m)

)
6= m]. The above codes are also called error correcting codes (ECC). We say a code

is a “good” error correcting code when its decoding is possible with small maximal error probability.

The rate of a code is defined as log |M|
n and is in terms of information bits per “channel use”. A family

of codes indexed by n are a family of (M(n), n, σ(n))-codes, and a rate ρ is said to be achievable if there

exists a family of codes indexed by n with rate R(n), such that σ(n), the maximal error probability, tends
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to 0 and R(n) tends to ρ as n → ∞. Although P̃e ≤ Pe, in channel coding a small average probability of

error implies a small maximal probability of error at essentially the same rate [30, Theorem 8.7.1].

Shannon’s channel coding theorem [116] shows the channel capacity is the supremum of all achievable

rates. Furthermore, it shows there always exists a family of codes indexed by n that achieves an arbitrary

rate ρ below the channel capacity.

6.2.3 Randomness extractors

Randomness extractors extract close to uniform randomness from input sequences that are not uniform

but have some guaranteed entropy (See [99] and references there, for more information about randomness

extractors). Randomness extractors have found wide applications in cryptography. A randomness source

is a random variable with lower bound on its min-entropy. We say a random variable X ∈ {0, 1}n is an

(n, d)-source if H∞(X) ≥ d.

Definition 6.1. A function Ext : {0, 1}n × S → {0, 1}` is a strong (seeded) (d, ε)- extractor if for any

(n, d)-source X, SD((S,Ext(X,S)); (S,U`)) ≤ ε, where S is chosen uniformly from S.

For some applications, we need an average-case strong extractor, which is defined with the help of

conditional min-entropy. Let V be a random variable possibly dependent on X. Ext is called a (d, ε)-

average-case strong extractor if for all (V,X) with H̃∞(X|V ) ≥ d, SD((S, V,Ext(X,S)); (S, V, U`)) ≤ ε,

where S denotes a random seed chosen uniformly from S.

One of the well-known constructions for randomness extractors is obtained by using (2-)Universal Hash

Families (UHF) via the so called Leftover Hash Lemma (LHL), studied since [77].

Definition 6.2. A family {hs|s ∈ S} of functions hS : X → Y = {0, 1}` is a pair-wise UHF if for any

x, x′ ∈ X that x 6= x
′
, Pr[hS(x) = a∧ hS(x

′
) = b] ≤ 1

|Y|2 , for all a ∈ {0, 1}`, where S denotes a random seed

chosen uniformly from S.

Definition 6.3. A family {hs|s ∈ S} of functions hs : X → Y = {0, 1}` is an XOR-UHF if for any x, x′ ∈ X

that x 6= x
′
, Pr[hS(x) ⊕ hS(x

′
) = a] ≤ 1

|Y| , for all a ∈ {0, 1}`, where S denotes a random seed chosen

uniformly from S.

Remark 6.1. We note that XOR-UHF implies pair-wise UHF. The following family Hmult of finite field

multiplication based universal hash functions are well known for their simplicity and versatility [15, Lemma

1]. Let X = {0, 1}n, Y = {0, 1}` and S = {0, 1}n. Then Hmult = {hs|s ∈ S} with hs : X → Y defined as

follows is an XOR-UHF:

hs(x) = (s� x)|`, (6.1)
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where � is the finite field multiplication and |` denotes the first most significant ` bits of the vector repre-

sentation of a finite field element.

Lemma 6.3. [43, Lemma 3.6] Let {hs|s ∈ S} be a family of XOR-universal hash functions hs : {0, 1}n →

{0, 1}`. If random variables A over {0, 1}n and B over {0, 1}` are independent, then:

SD((S, hS(A)⊕B); (S,U`)) ≤
√

2−(H∞(A)+H∞(B)−`−1).

In other words, SD((S, hS(A)⊕B); (S,U`)) ≤ ε, as long as H∞(A) +H∞(B) ≥ `+ 2 log( 1
ε ) + 1. This says,

in particular, that Ext(S,A,B) = hS(A)⊕B is a two-source (seeded) extractor.

6.3 Wiretap channels and keyed wiretap channels

In a general wiretap (also called broadcast [34]) channel WT : X → Y × Z (Figure 6.1(i)), a sender is

connected to the receiver through the main channel T : X → Y, and to the eavesdropper through a second

channel W : X → Z, called the wiretapper’s channel. The transition probability of the channel pair is

described by PY Z|X where X ∈ X , Y ∈ Y and Z ∈ Z. In Wyner’s original model [143], the wiretapper’s

channel is a degraded version of the main channel, and the Markov chain X − Y − Z holds (Figure 6.1(ii)).

6.3.1 Wiretap coding

An (M, n, σ, ε)-wiretap code for the above described wiretap channel consists of an input set M as well as

an encoder Enc :M→ Xn and a decoder Dec : Yn →M with error probability bounded by σ and security

advantage bounded by ε. We will discuss the definition of error probability and security advantage later in

this section. The encoder provides an input X ∈ X to the wiretap channel by using a randomised encoding

(alternatively called randomised encryption) algorithm that encodes a message m ∈ M to a codeword Xn.

This encoded message is transmitted by n applications of the channel. The receiver receives Y n = T(Enc(m))

and uses a deterministic decoding function Dec(·) to recover a message m̂. The decryption will be in error

if m̂ 6= m. The wiretapper’s view of the communication is denoted by Z. The randomized encoding system

is to provide (i) reliability for the receiver, and (ii) (asymptotic) perfect secrecy against the eavesdropper.

Reliability of a wiretap code

Reliability is satisfied at the receiver’s side if the receiver recovers the transmitted message correctly with

high probability. For source outputs with blocks of length b, Wyner defined the reliability by bounding the
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(normalized) average error probability of recovering a uniformly distributed message, that is:

P̃e(n) =
1

b
Pr[Dec(Y n) 6= M ] =

1

b.|M|
∑

m∈M
Pr[Dec(Y n) 6= m] < σ.

On the other hand, Csiszár and Körner [34] defined reliability by bounding the (normalized) maximal

error probability:

Pe(n) =
1

b
max
m∈M

Pr[(Dec(Y n) 6= m)] < σ.

Although P̃e(n) ≤ Pe(n), the proof of the converse part of Theorem 1 in [34] shows that both definitions

lead to the same result for secrecy capacity of the wiretap channel. Note that this does not hold for other

types of channels because Dueck in [48] showed that maximum-error probability capacity regions of multiple

access channel (MAC), two way channel (TWC), and interference channel (IC) can be strictly smaller than

their average error probability capacity regions.

Security of a wiretap code

Security is provided when only negligible information about the transmitted message leaks to the adversary

who is eavesdropping the main channel. Wyner and later Csiszár and Körner [34] defined the security of

a wiretap channel by bounding the leaked information from the message space M to the eavesdropper in

terms of the normalized mutual information as:

Weak Security:
I(M ;Zn)

b
< ε, (6.2)

where M ∈M denotes the random variable corresponding to the distribution over the message space.

The security definition for wiretap channel was strengthened in [90] and [89], by replacing the above

measure with the total information leakage as:

Strong Security: I(M ;Zn) < ε, (6.3)

for any 0 < ε < 1. The weakness of above security definitions was considered by Bellare et al. in [11]. In both

above security definitions, it is required to have uniform distribution over the message space. Bellare et al.

suggested the so-called mutual information security (MIS) definition, instead of random mutual information

security (MIS-R) definition:

Mutual information security: max
PM

I(M ;Zn) < ε, (6.4)
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where PM is the distribution over the message space. This is the strongest security notion for confidentiality

in cryptography. Two different strong security definitions, inspired by the cryptographic approach to secrecy,

were proposed in [11]. Cryptographers [58] define secure encryption as hiding all partial information about the

message. In other words, given the encrypted message (ciphertext), the adversary should have little chance

in computing a function of the plain message. This notion of security is referred to as Semantic Security

(SS) [58]. Bellare et al. extended the semantic security definition to the wiretap setting by bounding the

Advss(Enc; Wn) of the encryption function Enc and the wiretapper’s channel Wn. The Advss(Enc; Wn) is

defined as follows:

Advss(Enc; Wn) = max
F,PM

(
max

A

(
Pr[A(Wn(Enc(M)) = F(M)

)
−max

Sim

(
Pr[Sim(b) = F(M)]

))
.

This advantage captures the maximum in the difference of two probabilities: first the probability of an

adversary A, who receives the encrypted message Enc(M) through the wiretapper’s channel Wn, computes

the result of function F(·) on the message, and second the probability that an algorithm called simulator

Sim, with access to only b, the length of the message, can do the same.

The other equivalent security definition in [11] is the extension of indistinguishability in [58] and is called

Distinguishing Security (DS). This security notion bounds the advantage of the adversary in the following

game: initially the adversary outputs two messages m0,m1 ∈M and is subsequently given Wn(Enc(mβ)) for

a random bit β. The adversary wins the game if it outputs β correctly. The advantage of the adversary in

this game is subsequently:

Advds(Enc; Wn) = max
A,m0,m1

2 Pr[A(m0,m1,W
n(Enc(mβ))) = β]− 1

= max
m0,m1

SD(Wn(Enc(m0); Wn(Enc(m1)).

The challenge bit β is uniformly random over {0, 1} and the maximum is over all b-bit messages m0,m1 and

all adversaries A. An encryption system is considered ε-indistinguishable when the adversary’s advantage in

the described game is less than ε.

Instead of comparing the distribution of channel’s output for two distinct messages, one can compare

the distribution of channel’s output for a given message with the uniform distribution. This indeed is

distinguishability from uniform distribution that we denote by Advdsu:

Advdsu(Enc; W) = max
m∈M

SD(Wn(Enc(m));UZn)), (6.5)
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where UZn is the uniform distribution over Zn. The relation between Advds and Advdsu is straightforward

from triangle inequality:

Advds(Enc; Wn) = max
m0,m1∈M

SD(Wn(Enc(m0)); Wn(Enc(m1)))

≤ max
m0∈M

SD(Wn(Enc(m0));UZn) + max
m1∈M

SD(Wn(Enc(m1));UZn)

= 2Advdsu.

Therefore, in order to bound the distinguishing advantage, it is sufficient to bound Advdsu.

The distinguishing security, semantic security and the mutual information security are shown to be

equivalent in [12].

Secrecy rate

The Secrecy rate of a wiretap code is R = log |M|
n . A family of (M, n, σ(n), ε(n))-wiretap codes indexed by

n achieve the rate ρ if as n→∞, we have σ(n)→ 0, ε(n)→ 0 and R(n)→ ρ.

Secrecy capacity

The Secrecy capacity of a wiretap channel X − Y Z is the highest achievable rate, and was derived in [34]

as follows:

Cs = max
V−X−Y Z

(I(V ;Y )− I(V ;Z)), (6.6)

where the maximum is taken over all random variables V satisfying V −X − Y Z.

For a degraded wiretap channel (X − Y − Z holds), when the main channel Tand Eve’s channel W are

weakly symmetric, the above expression is maximized for the uniform distribution and the capacity is given

by Cs = CT − CW [84]2.

6.3.2 Constructions of wiretap codes

Existing constructions of wiretap codes can be divided into those that are based on a specific error correcting

code (e.g., LDPC codes in [98, 136] and polar codes in [87]), and modular constructions that separate coding

for security (or secure coding) from coding for reliability (for the main channel), and so are not restricted to

a specific error correcting code (ECC). Known modular constructions are [11, 66, 120, 138].

Modular constructions are attractive from theoretical and practical viewpoints since they provide flexi-

bility in the choice of error correcting codes, which is important in practice.

2In [84] the result is stated for symmetric DMCs. Using [84, Theorem4] implies that the same result holds when both
channels are weakly symmetric.
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All known constructions are seeded encoding3 systems and require a random seed to be shared by the

transmitter and the receiver. The seed can be sent by the sender to the receiver over the main channel using

an error correcting code to provide reliability. The seed can be reused, and so the seed length does not affect

asymptotic efficiency of the system.

Definition 6.4 (Seeded coding). Given a wiretap channel WT with the main channel T : Xn → Yn, a

seeded coding scheme consists of an encoding/decoding pair, where the seeded encoding is a randomized

mapping SEnc : S ×M → Xn that takes a seed s ∈ S and a message m ∈ M and returns a code-word

SEncs(m). Each seed s defines a deterministic function SEncs :M→ Xn. A seeded decoding function is a

deterministic mapping SDec : S × Yn →M such that SDecS(T(SEncS(m)) = m.

The decryption error of SEnc, SDec and T is defined as:

E
[

max
m∈M

Pr [SDecS(Tn(SEncS(m)) 6= m)]

]
,

where the expectation is taken over the choice of S
$← S and Pr[·] is from channel randomization.

The distinguishing advantage of SEnc is defined as:

Advds(SEnc; Wn) = max
m0,m1∈M

SD((S,Wn(SEncS(m0))); (S,Wn(SEncS(m1))))

≤ 2 max
m∈M

SD((S,Wn(SEncS(m))); (S,UZn)), (6.7)

Sharing a seed incurs communication cost. To remove the effect of this extra communication on asymp-

totic rate of wiretap codes, Bellare et al. [9] proposed seed recycling to allow amortizing the cost of seed

transmission in encoding a message that consists of many blocks. They showed that the same seed can be

used for encoding multiple blocks without losing the security of the whole system, as long as the seed is

chosen at random from the adversary’s view.

Hash-then-Encode (HtE) [120] is a seeded encoding that uses an XOR-UHF and an ECC. Suppose hS(·)

belongs to an XOR-universal family of hash functions, D is a uniformly chosen random variable, and S is

a random seed that is shared with the receiver. ECC is a capacity-achieving error correcting code for the

receiver’s channel. The HtE construction works as follows.

• Encoding:

HtE.enc(m) = ECC((m⊕ hS(D)‖D),

3In [11], a wiretap encoding scheme with a random seed is called a seeded encryption scheme. In this work, however, we
use “encryption” only when a secret key is involved in encoding and use seeded encoding to refer to a keyless wiretap encoding
scheme.
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where D
$← {0, 1}d.

• Decoding: HtE.dec uses the decoder of ECC to obtain D‖
(
m ⊕ hS(D)

)
that is concatenation of two

parts, and then finds hS(D) by applying hS(·) on the first part of the block. By XORing hS(D) with

the second part of the received block, the decoder finds m and recovers the message.

To prove security, HtE uses the security proof framework of [11]. In this framework, the security proof

is by first showing that the wiretap coding scheme is secure for uniformly distributed messages, and then

showing that for a particular class of encoding functions (including their proposed construction), when

the wiretapper’s channel is symmetric, uniform message distribution security is equivalent to any message

distribution security. This proof method is referred as an indirect security proof in this chapter. The security

proof of HtE is effectively by showing that the HtE construction fits in the framework of [11]. When the

XOR-UHF is Hmult (See Remark 6.1), a single multiplication over a finite field and an XOR is required

before the application of ECC.

6.3.3 Wiretap channel with a shared key.

In Shannon’s model of secrecy [115], transmitter and receiver share a secret key and the communication

channel is assumed noiseless that can be established using a good error correcting code. OTP is proposed

by Shannon to provide information-theoretic security for such a reliable communication, which needs a key

as long as the message. Wyner, on the other hand, uses noise in the channel to obtain secrecy. One can

consider a model that both a shared key and noise in the channel are treated as resources for providing

secrecy by combining Shannon’s model with the wiretap channel model resulting in a wiretap channel with

shared key model. We refer to this model by the keyed wiretap channel model.

In the general keyed wiretap channel setting in [78], a discrete memoryless wiretap channel WTn : Xn →

Yn × Zn is considered, where T(·) is the main channel, and W(·) is the wiretapper’s channel. The sender

wants to send a message m ∈ M privately, to the receiver. A uniformly distributed secret key K ∈ K,

with given rate RK > 0, where RK = log|K|
n , is shared between the sender and the receiver. A keyed

(M, n, σ(n), ε(n))-code is used for keyed wiretap encryption and is defined in the following.

Definition 6.5. [78] For a uniformly distributed M and K over their corresponding alphabets and any

σ(n), ε(n) > 0, a keyed (M, n, σ(n), ε(n))-code consists of a randomized encoder, KEncQ : K ×M → Xn,

defined by a conditional probability Q(xn|m, k) and the decoder KDec : K × Yn → M, where the average

error probability of decoding is less than ε(n) and the information leakage to the adversary (Zn) is smaller

than σn i.e.,
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1

|K||M|
∑

m∈M

∑

k∈K

∑

xn∈Xn
Q(xn|m, k)

∑

zn∈Zn

∑

yn:KDec(K,m)6=m
Pr[WTn(xn) = (yn, zn)]] ≤ ε(n), (6.8)

and

1

n
I(M ;Zn) ≤ σ(n) (6.9)

The equation (6.9) is used in [78] for the secrecy definition and could be modified to the strong secrecy

definition (I(M ;Zn) ≤ σ(n)), aiming to have the total amount of information leaked to the eavesdropper

small. This secrecy definition for keyed wiretap channel is used in [113]. Any encoding scheme satisfying

strong secrecy automatically satisfies weak secrecy due to [19].

For a keyed wiretap channel setting with a given key rate RK > 0, a rate ρ > 0 is an achievable secrecy

rate if for every R(n) < ρ, there exists a family of keyed (M, n, ε(n), σ(n)) codes, with rate R(n) such that

ε(n) and σ(n) approach zero as n grows. The secrecy capacity Cs is given by the supremum of all achievable

secrecy rates R.

Secrecy in this setting is provided by two contributors, namely, the shared key and the noise over the

wiretapper’s channel. The expected result can be captured from two different viewpoints:

• OTP viewpoint: The length of the shared key for encrypting (masking) a message is decreased

because the noise over the wiretapper’s channel can potentially mask part of the message due to

wiretap channel model results. The decrease is expected to be at most equal to the wiretap channel’s

capacity in each channel use.

• Wiretap channel viewpoint: The capacity of the wiretap channel is expected to increase at most

by the key rate because the random key adds an extra confusion (besides the wiretapper’s channel

noise) for the adversary.

The secrecy capacity of a wiretap channel with a shared key and uniformly distributed message space is

given in [78] and restated in the following.

Theorem 6.1 ([78]). The secrecy capacity of the general wiretap channel with a shared key of rate RK under

reliability and security conditions given by Eq.(6.8) and Eq.(6.9) respectively, is:

max
U−V−X−Y Z

min
(
[I(V ;Y |U)− I(V ;Z|U)]+ +RK , I(V ;Y )

)
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where [a]+ is the maximum between 0 and a.

Theorem 6.1 matches our expectation when combining Shannon’s model and the wiretap channel model.

The secrecy capacity of the wiretap channel is increased by the key rate. However, the secrecy capacity cannot

exceed the reliability capacity of the channel due to Shannon’s coding theorem. For weakly symmetric main

and Eve’s channels T and W, when W is degraded with respect to T, the above expression is maximized for

the uniform distribution and the capacity is given by:

Cs = min
(
[CT − CW]+ +RK ,CT

)
. (6.10)

6.3.4 Codes for keyed wiretap channel encryption

A variation of Wyner’s original scheme based on random coding is proposed by Yamamoto [145] for a degraded

wiretap channel that enables the use of a shared key in the construction. The random code construction for

general keyed wiretap channel is proposed in [78]. This scheme is shown to satisfy the weak secrecy condition

of (6.9). An alternative construction for the general keyed wiretap channel is proposed in [113]. The main

idea of this construction is to use the secret key as a one-time pad to encrypt as much of the message as

possible and use the wiretap random coding approach to protect the remaining part of the message. This

idea has appeared in previous works including [5] but the security of the construction under strong secrecy

condition is shown for the first time.

Explicit constructions of keyed wiretap channel codes (similar to regular wiretap codes) can be divided

into modular and non-modular codes. The only explicit non-modular construction of a keyed wiretap channel

is based on polar codes and is proposed in [141]. This construction satisfies strong secrecy condition and

achieves the secrecy capacity of the keyed wiretap channel.

The only known modular keyed wiretap code is the KHtE (Keyed Hash then Encode) construction

proposed in [117]. We review this construction in the following for the sake of completeness.

Let K be the shared key and D be a uniformly distributed random variable. The KHtE[hS ,ECC], with

encoding and decoding function pairs ECC.enc and ECC.dec, respectively, is defined as follows for encrypting

message m.

1. Encryption:

KHtE.enc(K,m) = ECC.enc((hS(K)⊕m)‖D).
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2. Decryption: For a received vector Y :

KHtE.dec(K,Y ) = ECC.dec(Y )⊕ hS(K).

The KHtE construction provides semantic security (in the sense of [12]), and achieves the secrecy capacity

of degraded keyed weakly symmetric wiretap channel for a given key rate RK > 0.

We note that the KHtE construction is based on the HtE construction, which is a modular semantic

secure wiretap code, and so it is tempting to think one can straightforwardly construct a keyed version of

other modular semantically secure wiretap codes. For example, in ItE construction in [9], one may use a key

K to one-time pad part of the randomization message R (call it M0) and treat M0 as a secret message too4.

This modified scheme may achieve the secrecy capacity, but will not provide semantic security because it does

not satisfy the message separable condition that is required to imply distinguishing security (equivalently

semantic security) from random message security [9, Lemma 5.6]. In other words, the above scheme is only

secure for a uniformly distributed message space. Constructing other semantically secure keyed wiretap

codes is an interesting research question.

6.3.5 Our work

The KHtE construction is the only known modular semantically secure keyed wiretap code. This construc-

tion requires a positive key rate to guarantee the secrecy of the encrypted block and is not applicable for

conventional wiretap channels, where there is no shared key. Also the security of the KHtE construction is

shown for weakly symmetric channels.

In this work, in contrast to [117] that only considers 0 < RK , we consider 0 ≤ RK . This allows us to

combine the conventional wiretap encoding schemes and OTP encryption using a single construction that is

secure for RK = 0 as well as RK > 0.

In Section 6.4, we propose a new keyed wiretap coding scheme by a slight modification to the KHtE

construction. The new construction is called KHtE∗. In both constructions, a random seed is transmitted

reliably over a public channel to the receiver as part of the construction.

We prove the reliability, semantic security and capacity-achieving properties of this construction. Achiev-

ing the secrecy capacity is asymptotically possible by amortizing the cost of sending the seed. This is by

using the same seed for encrypting many message blocks. This technique has been introduced in [11] to

prove the capacity-achieving property of a seeded wiretap code. We use this technique to show that the

KHtE∗ construction achieves the secrecy capacity of weakly symmetric wiretap channels.

4This was suggested by an anonymous referee of ITW 2019.
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The KHtE∗ construction corresponds to the wiretap coding scheme HtE when the key rate is zero. The

proof of Lemma 6.4 gives a direct security proof (without relying on the framework in [11]) for the HtE

construction. Moreover, when the secrecy capacity of the wiretap channel is zero, the construction becomes

an ε-secure OTP.

In Section 6.6, we analyze the application of the construction to finite-length messages and answer how

the same seed can be used for encryption of finite number of message blocks. This is by introducing a

t-resilient construction that allows the encryption of 2t message blocks with a same seed while guaranteeing

the security of each encrypted block.

In Appendix B.4, we also propose another wiretap construction with semantic security for splittable

channels, called KXtX, and show it achieves the secrecy capacity of weakly symmetric channels. This

scheme is the keyed version of the XtX construction that was proposed in [12], and while its semantic

security was proven, its capacity achieving property was unknown. We show that the XtX construction,

and its keyed version KXtX, achieve the secrecy capacity of weakly symmetric wiretap channels. This is

possible because we choose the parameters of the construction based on tight bounds in Lemmas B.4.1 and

B.4.2.

6.4 KHtE∗: A new keyed wiretap encryption scheme

In this section, we consider the same communication setting as [78], that is a wiretap channel WTn : Xn →

Yn ×Zn with the main channel Tn : Xn → Yn, the wiretapper’s channel Wn : Xn → Zn, and a shared key

of rate RK with the goal of secure and reliable transmission of the message m ∈M.

In a wiretap channel with shared key setting, the sender and receiver have two resources: the shared

secret key, and the wiretap channel. A keyed wiretap construction uses the shared key in combination

with channel randomness in an optimal way to completely hide the message m. However, the shared key

is available at the sender and receiver before transmission, while the noise advantage is provided once the

message is transmitted over the channel. The desired scheme should use the shared key at the sender for

partially masking the message such that in combination with the extracted randomness from channel noise

during transmission, the message is perfectly hidden from the wiretapper.

Definition 6.6. For a wiretap channel with a shared key as described above, an (M, n, σ(n), ε(n)) keyed

seeded encryption scheme (0 < σ(n), ε(n) < 1) consists of a seeded encryption KSEnc : S × K ×M → Xn,

and a seeded decryption KSDec : S × K × Yn → M algorithms that satisfy the following reliability and

distinguishing security properties:
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Reliability.

E
S∈S

[
max
m∈M

Pr[KSDecS(Tn(KSEncS(K,m)) 6= m]

]
< σ(n) (6.11)

Distinguishing Security.

Advds(KSEnc; W) = max
m0,m1

SD

((
S,Wn

(
KSEncS(m0, k)

))
;
(
S,Wn

(
KSEncS(m1, k)

)))
< ε(n) (6.12)

6.4.1 Overview

The KHtE∗ construction uses bitwise XOR for encoding the message. Therefore, our analysis is for a binary

alphabet setting. This simplifies the representation of parameters and entropies in bits as well5.

We show the KHtE∗ construction is reliably decryptable, provides distinguishing security and achieves

the secrecy capacity of a degraded weakly symmetric channel.

• Reliability: For KHtE∗[hS ,ECC], reliability according to (6.11) is satisfied when ECC is a good error

correcting code for T, the main channel. This is given in Theorem B.4.1.

• Security: The hash function at the heart of the construction extracts randomness from the shared key

and channel’s noise and effectively employs it to completely hide the message from the adversary’s

view. The available randomness from channel’s noise is proportional to n, the number of channel uses

for sending the encrypted block. In order to access enough randomness for masking the message from

channel noise, we extend the length of the encrypted block by concatenating a randomness D to the

masked message part of the encryption. This randomness is first concatenated with the key to be

hashed, and then concatenated with the encrypted block to be encoded with an error correcting code.

In Theorem 6.3, distinguishing security of KHtE∗[hS ,ECC] is proved using Lemma 6.4. This lemma

is an extension of Lemma 6.3 given in [43] that enables randomness extraction from two independent

randomness sources. As noted, here two sources of randomness are the random key and channel

randomness.

• Capacity-achieving: We show that for a weakly symmetric wiretap channel (weakly symmetric main

and wiretapper’s channels), when the error correcting code in the KHtE∗ construction is from families

that achieve the capacity of the main channel T, and the length of random string D is sufficient (with

respect to Theorem 6.4), the KHtE∗ construction achieves the secrecy capacity given by (6.10).

5Note that in digital communication, messages are always represented as binary strings and this assumption doesn’t force
any limitation to the communication model in practice.
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6.4.2 KHtE∗ construction

For a message space M = {0, 1}b, a wiretap channel WT : {0, 1}` → {0, 1}t × {0, 1}w, let H = {hs|s ∈ S},

where hs : {0, 1}d1+d2 → {0, 1}b, be a family of pairwise universal hash functions, and ECC :{0, 1}b+d1 →

{0, 1}n.` be a family of capacity-achieving error correcting codes for the main channel. Let a random secret

key K ∈ {0, 1}d2 be shared by the sender and the receiver and a random seed S be publicly available to the

sender, receiver and the eavesdropper.

The KHtE∗[hS ,ECC], with encoding and decoding function pairs ECC.enc and ECC.dec, respectively, is

defined as follows.

1. Encryption:

KHtE∗.enc(K,m) = ECC.enc
((

hS(K‖D)⊕m
)
‖D
)
,

where D
$← {0, 1}d1 .

2. Decryption: For a received vector Y n:

KHtE∗.dec(K,Y n) = ECC.dec(Y n)⊕ hS(K‖D).

In the following, we derive the relationship between parameters in the proposed encoding system so that the

desired reliability and security requirements are satisfied. We then find the achievable rate of the encryption

system and show it achieves the secrecy capacity of weakly symmetric wiretap channels.

Decryptability of KHtE∗

Let T : {0, 1}` → {0, 1}t with Shannon capacity CT be the main channel and ECC(n) : {0, 1}b(n)+d1(n) →

{0, 1}n.`1 be a family of error correcting codes indexed by n for channel T, with decryption function

ECC.dec(n) and maximal decryption error σ(n). The decryption algorithm applies the decoder of ECC(n)

to the received vector Y n and parses the result into its first b(n) bits hS(K‖D) ⊕m and its last d1(n) bits

D. Finally, message m is decrypted by the XOR of the first b(n) bits with hS(K‖D) using the shared key.

Theorem 6.2 (Reliability of KHtE∗). Let the keyed seeded encryption function KSEnc(n) = KHtE∗.enc[hs,ECC(n)],

where ECC(n) is described above. Then KSDecS = KHtE∗.dec[hs,ECC(n)] is a decryption function for KSEnc

with decryption error at most σ(n) and there exist ECC(n) such that limn→∞ σ(n) = 0

Proof. There always exists ECC(n) achieving rates less than CT, with maximal error probability approaching

0 as n grows. Such an ECC guarantees that (
(
hS(K‖D)⊕m

)
‖D is correctly recovered and the decryption
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algorithm above can recover m. The maximal decryption error σ(n) is upper-bounded by the maximal error

probability of the ECC that goes to 0. Thus limn→∞ σ(n) = 0.

Distinguishing security of KHtE∗

To prove security of KHtE∗, we bound Advdsu and use the relation Advds ≤ 2Advdsu. We interpret the

channel as a source of randomness and use the maximum probability in the channel’s transition matrix as

an indication of the minimum randomness that the channel provides at its output for any input. We refer

to this as channel min-entropy and denote it by H∞(CH) for channel CH〈CH, {0, 1}`, {0, 1}w〉.

H∞(CH) = − log
(

max
x∈{0,1}`,y∈{0,1}w

CH(x, y)
)

Consider a message space M = {0, 1}b(n), a shared secret key of rate 0 ≤ RK ≤ 1, a wiretap channel

WT with the main channel T : {0, 1}` → {0, 1}t, and the wiretapper’s channel W : {0, 1}` → {0, 1}w,

where H∞(W) ≥ ν. Let {hs|s ∈ S}, for uniformly random s, be a family of pair-wise universal functions

hs : {0, 1}d1(n)+n.RK → {0, 1}b(n) and ECC : {0, 1}b(n)+d1(n) → {0, 1}n.` be an arbitrary error correcting code

for T. The following theorem shows the security of KHtE∗ construction.

Theorem 6.3. [Security of KHtE∗] The keyed encryption scheme KSEnc = KHtE∗[hS ,ECC], with key

rate RK , hS and ECC related to the wiretap channel WT described above, provides 2ε(n)-distinguishing

security, i.e., Advds(KSEnc; Wn) ≤ 2ε(n), assuming n.RK + d1(n)− 2 log 1
ε(n) ≤ b(n) and

n.RK + d1(n) + n.ν ≥ n.w + 2log(
1

ε(n)
). (6.13)

To prove Theorem 6.3, we use Lemma 6.4. Informally, this lemma shows that for an arbitrary injective

function F(·) and a uniform random variable D ∈ {0, 1}d1 , the output of a channel CH with an input

F
(
hS(X)‖D

)
is almost uniform over channel’s output alphabet when the sum of the min-entropy of X, d1

and channel min-entropy is almost equal to the output size of the channel. This lemma can be viewed as

the channel version of the Leftover Hash Lemma in [77].

Lemma 6.4. Let {hs|s ∈ S} be a family of pair-wise universal hash functions hs : {0, 1}d2 → {0, 1}b for

uniform s and F : {0, 1}b+d1 → {0, 1}` be an injective function (b + d1 ≤ `). For a channel CH : {0, 1}` →

{0, 1}w, where H∞(CH) ≥ ν, a random variable X ∈ {0, 1}d2 and uniform random variable D ∈ {0, 1}d1 ,
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suppose H∞(X) + d1 − 2 log 1
ε ≤ b and H∞(X) + d1 + ν ≥ w + 2 log( 1

ε ). Then

SD

((
S,CH

(
F
(
hS(X)‖D

)))
;

(
S,Uw

))
≤ ε. (6.14)

Proof. According to [76, Claim 2], any distribution over a finite set Σ with collision probability at most

1+2ε2

|Σ| is ε-close to the uniform distribution. We bound the collision probability Pr[(S,CH
(

F
(
hS(X)‖D

))
=

(S
′
,CH′

(
F
(
hS′(X

′)‖D′
))

], where S
′
, X

′
and D′ are sampled independently from the same distribution as

S, X and D, respectively, and CH and CH′ are the same channels but in different applications. We have

Pr[
(
S,CH

(
F
(
hS(X)‖D

))
=
(
S
′
,CH′

(
F
(
hS′(X

′)‖D′
))

]

= Pr[S = S
′
] · Pr[D = D′] · Pr[CH

(
F
(
hS(X)‖D

))
= CH′

(
F
(
hS(X ′)‖D

))
]

=
2−d1

|S|

(
Pr[X = X ′] · Pr[CH

(
F
(
hS(X)‖D

))
= CH′

(
F
(
hS(X)‖D

))
]+

Pr[X 6= X ′] · Pr[CH
(

F
(
hS(X)‖D

))
= CH′

(
F
(
hS(X ′)‖D

))
|X 6= X ′]

)
. (6.15)

Since

Pr[X = X ′] =
∑

x∈{0,1}d2
Pr[X = x].Pr[X ′ = x]

≤ 2−H∞(X) ·
∑

x∈{0,1}d2
Pr[X ′ = x] = 2−H∞(X),

and

Pr[CH
(

F
(
hS(X)‖D

))
= CH′

(
F
(
hS(X)‖D

))
]

=
∑

z∈{0,1}w
Pr[CH

(
F
(
hS(X)‖D

))
= z] · Pr[CH′

(
F
(
hS(X)‖D

))
= z]

≤ 2−ν ·
∑

z∈{0,1}w
Pr[CH′

(
F
(
hS(X)‖D

))
= z] = 2−ν ,

from (6.15),

Pr[
(
S,CH

(
F
(
hS(X)‖D

))
=
(
S
′
,CH′

(
F
(
hS′(X

′)‖D′
))

]

≤ 2−d1

|S|
(

2−ν−H∞(X) + Pr[CH
(

F
(
hS(X)‖D

))
= CH′

(
F
(
hS(X ′)‖D

))
|X 6= X ′]

)
. (6.16)

Now we bound Pr[CH
(

F
(
hS(X)‖D

))
= CH′

(
F
(
hS(X ′)‖D

))
|X 6= X ′]. Let ImF be the set of all the images of
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{0, 1}b+d1 in {0, 1}` under the transform F(·). Then because of the injective property of F(·), |ImF| = 2b+d1 .

We have

Pr[CH
(

F
(
hS(X)‖D

))
= CH′

(
F
(
hS(X ′)‖D

))
|X 6= X ′]

=
∑

(x,x′)∈{0,1}d2×{0,1}d2
x 6=x′

Pr[X = x].Pr[X ′ = x′] · Pr[CH
(

F
(
hS(x)‖D

))
= CH′

(
F
(
hS(x′)‖D

))
|x 6= x′]

≤
( ∑

(y,y′)∈ImF×ImF

Pr[F
(
hS(x)‖D

)
= y].Pr[F

(
hS(x′)‖D

)
= y′]·

Pr[F
(
hS(x)‖D

)
= y ∧ F

(
hS(x′)‖D

)
= y′|x 6= x′]

)
·
( ∑

z∈{0,1}w
Pr[Z = z] · Pr[CH(y) = CH′(y′) = z]

)
.

(6.17)

Since F(·) is injective, Pr[F
(
hS(x)‖D

)
= y ∧ F

(
hS(x′)‖D

)
= y′] = Pr[hS(x) = F−1(y)|b∧hS(x′) = F−1(y′)|b],

where the probability is over the choices of S, and since hS(·) is pairwise independent, for x 6= x′,

Pr[hS(x) = F−1(y)|b ∧ hS(x′) = f−1(y′)|b] ≤ 2−2b. (6.18)

Therefore, by using (6.18) to upper-bound (6.17):

Pr[CH
(

F
(
hS(X)‖D

))
= CH

(
F
(
hS(X ′)‖D

))
|X 6= X ′]

≤ 2−2b ·
( ∑

(y,y′)∈ImF×ImF

∑

z∈{0,1}w

Pr[Y = y] · Pr[Y ′ = y′] · Pr[Z = z] · Pr[CH(y) = CH′(y′) = z]
)

(6.19)

≤ 2−2b ·
( ∑

(y,y′)∈ImF×ImF

∑

z∈{0,1}w

Pr[Y = y] · Pr[Y ′ = y′] · Pr[Z = z] ·CH(y, z) ·CH(y′, z)
)

(6.20)

≤ 2−2b−ν ·
( ∑

y′∈ImF

Pr[Y ′ = y′] ·
∑

y∈ImF

∑

z∈{0,1}w

Pr[Y = y] · ·Pr[Z = z] ·CH(y, z)
)

(6.21)

≤ 2−2b−ν ∑

y∈ImF

∑

z∈{0,1}w
Pr[Y = y] · Pr[Z = z] ·CH(y, z) (6.22)

= 2−2b−ν .2b+d1 = 2−ν−b+d1 . (6.23)

Here, (6.20) is obtained from (6.19) by using the transition probability matrix of the channel instead of

Pr[CH(y) = z] and Pr[CH(y′) = z]. (6.21) is concluded from (6.20) since CH(y′, z) ≤ 2−ν and (6.22) is
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obtained because
∑

y′∈ImF

Pr[Y ′ = y′] = 1. For getting (6.23) from (6.22), we note that the sum of each row

in a transition probability matrix of a channel is 1; that is
∑

z∈{0,1}w
Pr[Z = z] · CH(y, z) = 1, and since

|ImF| = 2b+d1 ,
∑

y∈ImF

∑

z∈{0,1}w
Pr[Y = y] · Pr[Z = z] ·CH(y, z) = 2b+d1 .

We then conclude from (6.16) and (6.23) that the collision probability is bounded as follows:

Pr[CH
(

F
(
hS(X)‖D

))
= CH

(
F
(
hS(X ′)‖D

))
]

≤ 1
|S|2w ·

(
2−(d1+H∞(X)+ν−w) + 2−(ν+b−w)

)
.

(6.24)

From the assumptionsH∞(X)+d1+ν ≥ w+2 log 1
ε , andH∞(X)+d1−2 log 1

ε ≤ b. Thus, 2−(H∞(X)+d1+ν−w) ≤

ε2 and 2−(ν+b−w) ≤ 1, and the collision probability is bounded by 1+ε2

|S|2w ≤ 1+2ε2

|S|2w and the statistical distance

is bounded by ε. Therefore,

SD

((
S,CH

(
F
(
hS(X)‖D

)))
;

(
S,Uw

))
≤ ε. (6.25)

We use Lemma 6.4 to give a direct security proof for the security of KHtE∗ construction in the wiretap

setting.

Proof of Theorem 6.3. We bound Advdsu of the KHtE∗ construction. Let d1(n) satisfy (6.13), that is

n.RK + d1(n) + n.ν ≥ n.w + 2log(
1

ε(n)
).

K ∈ {0, 1}d2 is the key in the construction and its length is d2 = n.RK . Since the key is uniformly

distributed, n.RK = H∞(K), and for the randomness D ∈ {0, 1}d1 , H∞(K) ≤ H∞(K‖D). Thus, d1(n)

satisfies:

H∞(K‖D) + d1(n) + n.ν ≥ w + 2log(
1

ε(n)
),

and n.RK + d1(n) − 2 log 1
ε(n) ≤ b(n) from the assumption. Now from Lemma 6.4, and since ECC(·) is an

injective function

SD

((
S,Wn

(
ECC

(
hS(K‖D)‖D

)))
;

(
S,Unw

))
≤ ε(n).
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For any m ∈ {0, 1}b(n), if hs(·) is a pairwise UHF, so is hs(·)⊕m. Therefore,

Advdsu(KSEnc; Wn) = SD

((
S,Wn

(
KHtE∗(K,m)

))
;
(
S,Unw

))
< ε(n).

Finally, for any m0 and m1,

Advds(KSEnc; Wn) ≤ Advdsu(KSEnc; Wn) ≤ 2ε(n).

Achieving secrecy capacity in KHtE∗

In the following, we show the KHtE∗ construction achieves the capacity of keyed wiretap channel as given

in (6.10), for weakly symmetric main and wiretapper’s channels.

Theorem 6.4. Consider a keyed wiretap channel WT consisting of a weakly symmetric main channel T :

{0, 1}` → {0, 1}t with capacity CT, the wiretapper’s channel Wn : {0, 1}` → {0, 1}w with capacity CW

and the shared secret key rate 0 ≤ RK ≤ 1, and an ECC(n) : {0, 1}b(n)+d1(n) → {0, 1}n.` that achieves

the capacity of the main channel. Then the secrecy capacity of the keyed wiretap setting is achievable by

KSEnc = KHtE∗[hS ,ECC].

Proof. Suppose the output distribution of W for an arbitrary reference input yr is PV over {0, 1}t and

for y ∈ {0, 1}`, y 6= yr is PZ over {0, 1}t. Since W is weakly symmetric, for any v ∈ {0, 1}t there is a

z ∈ {0, 1}t such that PV (v) = PZ(z). Let us define a permutation over {0, 1}t called τy(·), where τy(v) = z

if PV (v) = PZ(z) and for y = yr, let τy(·) be the identity function. Then, for V , a random variable vector

with distribution PV n ,

W(y, z) = Pr[W(y) = z] = Pr[
(
τy(V )

)
= z]. (6.26)

Now let ynr = (yr1 , yr2 , . . . , yrn) ∈ {0, 1}n.` be the reference input vector for Wn, and PV n be the output

distribution over {0, 1}n.t. Since W is a DMC, PV n is a distribution with n independent samples, and since W

is weakly symmetric, so is Wn. Then, for V n = (V1, V2, . . . , Vn), a random variable vector with distribution

PV n . Form (6.26),

W⊗n(yn, zn) = Pr[Wn(yn) = zn] = Pr[
(
τyn(V n)

)
= zn]. (6.27)

Suppose Vε(n) is the random variable that achieves the ε-smooth min-entropy of V n, that is,

Hε(n)
∞ (V n) = max

Vε(n):SD(V n,Vε(n))≤ε(n)
H∞(Vε(n)).
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From Lemma 6.1,

H∞(Vε(n)) = Hε(n)
∞ (V n) ≥ H(V n)− nδ(n), (6.28)

where δ(n) = log(2` + 3).
√

2log 1
ε(n)/n.

Now consider a virtual channel Wε(n) : {0, 1}n.` → {0, 1}n.w as follows: the output distribution of Wε(n)

for ynr ∈ {0, 1}n.` is the distribution of Vε(n), and for any yn 6= ynr the distribution is the distribution of

τyn(Vε(n)). From the application of Theorem 6.3, Advdsu(KSEnc; Wε(n)) ≤ ε(n) for any d1(n) satisfying

d1(n) + n.RK +H∞(Vε(n)) ≥ n.w + 2logε(n),

and from (6.28), it is sufficient to have

d1(n) ≥ n.w −H(V n) +
√
n. log(2` + 3).

√
2log

1

ε(n)
− 2logε(n)− n.RK . (6.29)

In other words, for d1(n) satisfying (6.29),

Advdsu(KSEnc; Wε(n)) = SD

((
S,Wε(n)

(
KHtE∗(K,m)

))
;
(
S,Unw

))
< ε(n). (6.30)

On the other hand, for any yn ∈ {0, 1}n.`,

SD(V n;Vε(n)) ≤ ε(n)
Lemma 6.2⇒ SD

(
τyn(V n); τyn(Vε(n))

)
≤ ε(n),

and since from (6.26),

Pr[
(
τyn(V n)

)
= zn] = Pr[Wn(yn) = zn],

and

Pr[
(
τyn(Vε(n) = zn] = Pr[Wε(n)(y

n) = zn],

we have

SD
((

Wn
(
KHtE∗(K,m); (Wε(n)

(
KHtE∗(K,m)

))
≤ ε(n) (6.31)
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By the triangular inequality

SD

((
S,Wn

(
KHtE∗(K,m)

))
;
(
S,Unw

))

≤ SD

((
S,Wn

(
KHtE∗(K,m)

))
;
(
S,Wε(n)

(
KHtE∗(K,m)

))

+ SD

((
S,Wε(n)

(
KHtE∗(K,m)

))
;
(
S,Unw

))
, (6.32)

where the first term on the right-hand side of the inequality is bounded by (6.31) and the second term is

bounded by (6.30). Thus,

SD

((
S,Wn

(
KHtE∗(K,m)

))
;
(
S,Unw

))
≤ 2ε(n),

and for the KHtE∗ construction with the given d1(n), Advds(KSEnc; Wn) ≤ 2Advdsu(KSEnc; Wn) ≤

4ε(n).

The achievable rate of the construction is R = limn→∞
b(n)
n . For d1(n) satisfying (6.29) and a capacity-

achieving ECC,

lim
n→∞

b(n) + d1(n)

n
= CT

⇒ lim
n→∞

b(n)

n
= CT − lim

n→∞
d1(n)

n
.

For CT ≥ CW,

R ≤ CT − CW +RK .

From Shannon’s coding theorem, R ≤ CT. Therefore,

R ≤ min
(
[CT − CW] +RK ,CT

)
,

where the upper bound is achieved when d1(n) in (6.29) is set to its minimum.

For CT ≤ CW,

R ≤ min
(
RK ,CT

)
.

This is discussed in Section 6.5.2.
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6.4.3 Amortizing the seed

In seeded encryption systems, the seed must be sent reliably to the receiver. In the absence of additional

channels, the seed must be encoded using an ECC and sent over the wiretap channel (no secrecy required).

This incurs an extra cost for sending the seed that would affect the final rate of the system. In [11], the

notion of seed recycling is introduced, which effectively means the seed can be used many times, without

compromising security. Using seed recycling allows the cost of sending the seed to be amortized over multiple

blocks, hence the final rate of the seeded encryption system approaches the secrecy capacity of the wiretap

channel. Seed recycling is directly applicable to the KHtE∗ construction.

Lemma 6.5. [9, Lemma 4.2] For t ≥ 1, let CH = CH0‖CHt1 be a channel such that CH0 : {0, 1}`0 → {0, 1}w0

and CH1 : {0, 1}` → {0, 1}w. For a seeded encryption scheme SEnc : S × {0, 1}b → {0, 1}` and an error

correcting code ECC0 : S → {0, 1}`0 , the seed recycling encryption scheme SRt[SEnc,ECC0] uses SEnc to

encrypt t blocks of b bits with the same random seed S ∈ S, and concatenates ECC0(S) to the encrypted

block. Then

Advds(SRt; CH) ≤ t ·Advds(SEnc; CH1).

The rate of the encryption scheme SR
(n)
t(n)[SEnc(n),ECC

(n)
0 ] consisting of SEnc(n) : S(n) × {0, 1}b(n) →

{0, 1}`(n) and ECC
(n)
0 : S(n) → {0, 1}`0(n), achieves the rate of SR(n) asymptotically, by letting `0(n) =

o(n · t(n)) and t(n) = O(log(n)).

Note that the above lemma, as well as Theorem 5.2, is in the form of averages over the choice of the

seeds. In other words, for a given adversary’s channel W̃, there exists some seed s for which Advds can’t be

bounded. This means the random seed in the construction should be chosen once the adversary’s channel is

fixed (because otherwise, the adversary can choose a view corresponding to W̃ for a given s). Thus, a hard

coded seed cannot be used in this construction.

6.5 Special cases

In the following, we consider two extreme cases: i) the wiretapper’s channel is the only available resource,

and ii) only a shared key is available to the communicants. We show that the KHtE∗ construction results

in a capacity-achieving wiretap code with semantic security, and the traditional one-time-pad, in the two

cases respectively.
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6.5.1 Wiretap chanel construction: RK = 0

The KHtE∗ reduces to the HtE wiretap code when the key rate is zero6. In [120], the security of the

HtE construction is proved by using the framework of [11]. This framework consists of two steps: first the

security of an encoded uniformly distributed message is proved when the wiretapper’s channel is a BISC or

an additive noise channel, and then using message linear and separable properties of the encryption systems,

security for random message is shown to be equivalent to security for any message. We call this approach for

proving security an indirect approach. The direct approach on the other hand, is to prove security for any

message distribution in one step. The direct security proof of the HtE construction follows from Theorem

6.3 by letting RK = 0. The security proof holds for a wide class of wiretapper’s channels, namely, DMCs

with binary alphabet input. This means the HtE construction is the first semantically secure wiretap code

for such general DMCs.

Comparison

We compare the HtE construction (given the new security proof) with other existing modular wiretap

constructions including two other seeded encryption systems, XtX (Extract then XOR) construction in [12]

and ItE (Invert then Encode) construction in [11], and a construction by Hayashi and Matsumoto [66] that

uses invertible universal hash functions to construct a modular wiretap code.

1. Semantic security: The XtX construction provides distinguishing security when the wiretap channel

is splittable (See Appendix B.4.1 for the definition of splittable channels), that is the main channel is

T = T1‖T2 and the wiretapper’s channel is W = W1‖W2, and the first part of the wiretapper’s channel

W1 is also splittable. ItE construction is semantic secure for BISCs and additive noise channels (it is

unknown if RDS yields DS for a more general channel7). The construction in [66] achieves strong secu-

rity defined as the total information leakage [90], and assumes uniformly distributed messages. In [67],

the security of [66] is shown for more general distributions namely “weak asymptotically conditionally

uniform” distributions. The channel in [67] is regular in the sense of [37] (See Appendix B.4.2 for def-

inition and discussion on regular channels), and the proposed construction is over a binary alphabet.

The HtE construction provides distinguishing security when the wiretapper’s channel is a DMC with

binary alphabet input of the form {0, 1}`.

2. Capacity-achieving: XtX is not capacity-achieving. The construction in [66] is capacity-achieving

under certain conditions (if the distribution PV on V realizing (6.6) also maximizes the mutual in-

6However, the hash function in the HtE construction belongs to an XOR-universal family of hash functions while the hash
function in the KHtE∗ construction belongs to the more general family of pair-wise universal hash functions.

7It is likely that RDS yeilds DS for regular channels based on the proof method used in [12]
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formation I(V,Z|V )). The ItE construction is capacity-achieving for degraded wiretap channels with

symmetric main and wiretapper’s channels in which uniform input to the wiretapper’s channel gener-

ates uniform output. Using the channel upgrading technique in [131], the latter conditioned for the

ItE construction is relaxed. The HtE construction is capacity-achieving for degraded wiretap channels

with weakly symmetric main and wiretapper’s channels and binary alphabet input of the form {0, 1}`.

3. Error correcting code: The required error correcting code for ItE is linear and message seperable.

The error correcting code for XtX is systematic and the error correcting code for HtE and [66] is any

good ECC.

Remark 6.2. To have a fair comparison, we note that the definition of strong symmetric/symmetric channels

in [11] (for ItE construction) is based on the definitions in [54], while the symmetric/weakly symmetric

channels definitions in this work are from [30]. The definition of strong symmetric channels in [54] coincides

with the definition of symmetric channels in [30]. However, according to [54], a channel with transition

probability matrix CH is called symmetric if with appropriate indexing of the input and output alphabet, one

can write CH in the form of [CH[1] · · ·CH[`]], where each sub-matrix CH[i] is a transition probability

matrix of a strongly symmetric channel. Theorem 6.4 is given for weakly symmetric channels according

to the definition of [30]. However, the proof easily and without any change works for symmetric channels

according to definitions of [54].

6.5.2 One-Time Pad: Cs(WT) = 0

When the secrecy capacity of the wiretap channel is zero (CT ≤ CW for weakly symmetric channels),

the shared key is the only accessible source for providing security. In this case, the classic one-time pad

construction provides message security. However, we can also rely on the proposed constructions to provide

security. Since the proposed construction provides ε-indistinguishability, we call the construction ε-secure

OTP, which is the KHtE∗ construction satisfying Theorem 6.3 for ν = 0 (we set channel’s min-entropy to

zero because we cannot extract any randomness for secrecy from the channel noise when Cs = 0) and denote

it with OTPε.

For a message m ∈ {0, 1}b(n), the key rate RK , the random string D ∈ {0, 1}d1(n), the main channel T

and the wiretapper’s channel W : {0, 1}` → {0, 1}w, from Theorem 6.3, Advds(KSEnc; Wn) ≤ 2ε(n) if:

n.RK + d1(n) ≥ n.w + 2log(
1

ε(n)
), (6.33)

n.RK + d1(n)− 2 log
1

ε(n)
≤ b(n). (6.34)
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On the other hand, for a weakly symmetric wiretap channel,

n.w ≥ n.CW ≥ n.CT ≥ b(n) + d1(n),

and from (6.33),

n.RK + d1(n) ≥ b(n) + d1(n) + 2log(
1

ε(n)
)

⇒ n.RK ≥ b(n) + 2log(
1

ε(n)
). (6.35)

To satisfy (6.34) and (6.35) simultaneously, we should set d1(n) = 0 and have

n.RK − 2log(
1

ε(n)
) = b(n).

The resulting coding scheme is then

1. Encoding:

OTPε.enc[hS ,ECC](m) = OTPε.enc[hS ,ECC](m) = ECC
(
m⊕ hS(K)

)
;

2. Decoding:

OTPε.dec(Y ) = OTPε.dec(Y ) = ECC.dec(Y )⊕
(
hS(K)

)
.

The achievable rate of the construction is min(RK ,CT), where CT is the capacity of the main channel.

6.6 Using the construction in practice

We discussed the asymptotic behaviour of the proposed construction in Section 6.4. We are also interested

in finite-length behaviour of the construction in practice.

6.6.1 Single block encryption

The bounds in Theorems 6.3 and B.4.3 corresponding to (6.13) and (6.29) enable finite-length analysis of

a single block encryption.

Example 6.1. Consider a setting where T is noiseless and W is a BSC, with error probability 0.2. Suppose

a shared key of rate RK = 0.4 is available. Alice wants to send a message m of length 1000 bits to Bob with

secrecy guarantee of ε ≤ 2−100. When the main channel is noise-free, both constructions become the same.
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From (6.13) (or (B.15)),

n.Rk + d1 + n.ν ≥ n.w + 2log
1

ε
+ 2.

For a BSC with error probability 0.2, H∞(BSC) = − log(1− 0.2) = 0.32 and since the main channel is

noise-free, w = b+ d1. Thus,

0.4n+ d1 + 0.32n ≥ 1000 + d1 + 202

⇒ 0.72n ≥ 1202⇒ n ≥ 1670 and d1 ≥ 670.

For Alice to send a message m of length b to Bob with perfect security, she can use Shannon’s approach

and use a OTP encryption algorithm to perfectly mask the message. Note that in the above example, the

shared key for encrypting a 1000 bits message is at least n.RK ≥ 0.4× 1670 = 668 bits. By comparing this

key length with the regular OTP that requires a key as long as the message, we can see that the required

length of key is decreased by 332 bits due to the use of noise over the wiretap channel.

6.6.2 Encryption of 2t blocks

To encrypt 2t blocks for a fixed t, we can still use the seed recycling technique. However, Lemma 6.5

upper-bounds the distinguishing advantage of a group of 2t encrypted blocks when the same seed is used

for encryption. The distinguishing advantage of each encrypted block in this case is less than the bound in

Lemma 6.5, which is 2t times the advantage of a single encrypted block with a fresh seed. We are interested

in a tighter guarantee on the security of each encrypted block when the same seed is used for encryption.

We show such a tight bound can be found by making the construction of “t-resilient” extractor.

t-resilient extractors. Performance of strong extractors with respect to multiple given sources was investigated

in [8], where the authors consider a true random number generator that is operating in a hostile environment

where an adversary can influence the distribution to be one of the 2t distributions. A t-resilient extractor is

required to output almost uniform randomness with high probability, in this hostile environment, when the

seed is chosen uniformly random.

Definition 6.7. [8] A seeded extractor is called a t-resilient extractor if its output is ε-close to uniform for

2t pre-determined source distributions with probability at least 1 − ε, when the seed is chosen uniformly

random.

Explicit constructions of t-resilient extractors from `-wise independent UHF are given in [8]. We show

for a range of parameters in KHtE∗ construction, the construction has t-resilience in the sense that each

coded block is ε close to the uniform distribution with high probability. The construction can be interpreted
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as a “two-source t-resilient extractor”, which extracts from channel randomness as well as a second source

that is the input to the channel. The 2t pre-determined source distributions can be any combination of

distributions over the channel’s input and randomness. This construction of a two-source t-resilient extractor

is of independent interest, for example, in the study of true random number generators.

Lemma 6.6. Let {hs|s ∈ S} be a family of pair-wise universal hash functions hs : {0, 1}d2 → {0, 1}b for

uniformly chosen s, and F : {0, 1}b+d1 → {0, 1}` be an injective function (` ≥ b+ d1). For a channel

CH : {0, 1}` → {0, 1}w with transition probability matrix CH, where H∞(CH) ≥ ν, a uniform random

variable D ∈ {0, 1}d1 and a random variable X ∈ {0, 1}d2 such that H∞(X) + d1 ≤ b, with probability (over

uniform random S) at least 1− 2−u,

SD

(
CH
(

F
(
hS(X)‖D

))
;Uw

)
≤ ε, (6.36)

where

u ≥ H∞(X) + d1ν − w − 3 log(
1

ε
)− 4. (6.37)

In particular, CH
(
F
(
hS(X)

)
is a two-source t-resilient extractor for

t ≤ H∞(X) + d1 + ν − w − 4 log(
1

ε
)− 4. (6.38)

Proof. Let z ∈ {0, 1}w be an output of CH
(

F
(
hs(X)‖D

))
. An output z is called light if 1

2w−Pr[CH
(

F
(
hs(X)‖D

))
=

z] ≥ 1
2w · ε. Then a hash function hs is called good if the number of its light outputs is less than 2w · ε. More

precisely, let L(hs) denote the set of light outputs of hs. Then hs is good if |L(hs)| < 2w · ε; otherwise, it is

called bad. We can readily bound SD

(
CH
(

F
(
hS(X)‖D

))
;Uw

)
for a good hash function hs as

SD

(
CH
(

F
(
hS(X)‖D

))
;Uw

)
≤ 2w(

1

2w
· ε

2
) +

1

2w
(2w · ε

2
) = ε.

We then proceed to bound Pr[hS is bad]. First, by Markov’s inequality for the random variable |L(hS)|,

Pr[hS is bad] = Pr[|L(hS)| ≥ 2w · ε
2

] ≤ ES (|L(hs)|)
2w · ε2

. (6.39)

Denote

Λ(s, z) =





1, if 1
2w − Pr[CH

(
F
(
hs(X)‖D

))
= z] ≥ 1

2w · ε2 .

0, otherwise.
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We have

ES (|L(hS)|) =
∑

s∈S
Pr[S = s].

∑

z∈{0,1}w
Λ(s, z)

=
∑

z∈{0,1}w

∑

s∈S
Pr[S = s].Λ(s, z)

=
∑

z∈{0,1}w

(
Pr[

1

2w
− Pr[CH

(
F
(
hS(X)‖D

))
= z] ≥ 1

2w
· ε

2

)
.

Pr[ 1
2w − Pr[CH

(
F
(
hS(X)‖D

))
= z] ≥ 1

2w · ε2 is bounded by the application of Chebychev’s inequality as

follows,

Pr
[( 1

2w
− Pr[CH(F(hS(X)‖D)) = z]

)
≥ 1

2w
· ε

2

]
≤

ES
(
( 1

2w − Pr[CH(F(hS(X)‖D)) = z])2
)

(
1

2w · ε2
)2 . (6.40)

The numerator is bounded as:

ES
(
(

1

2w
− Pr[CH(F(hS(X)‖D) = z])2

)
(6.41)

=
1

22w
− 2

2w
· ES

(
Pr[CH(F(hS(X)‖D) = z])

)
+ ES (Pr[CH(F(hS(X)‖D) = z])

2
(6.42)

≤ 1

22w
− 2

2w
+ ES (Pr[CH(F(hS(X)‖D) = z])

2
(6.43)

≤ ES (Pr[CH(F(hS(X)‖D) = z])
2

(6.44)

≤ ES Pr[Z = z] · 1

2w
·
(

2−(H∞(X)+d1+ν−w) + 2−(ν+b−w)
)

(6.45)

≤ Pr[Z = z] · 2

2w
· ES

(
2−(H∞(X)+d1+ν−w)

)
. (6.46)

Here, (6.43) is obtained from (6.42) because ES
(

Pr[CH(F(hS(X)‖D) = z])
)
≤ 1, where (6.42) is the expan-

sion of (6.41). Since 1
22w − 2

2w < 0, (6.44) holds, and then using (6.24) we obtain (6.45). Finally, (6.46) is

concluded from (6.45) since H∞(X) + d1 ≤ b. Now as long as H∞(X) + d1 + ν ≥ w + 3 log( 1
ε ) + u+ 4,

ES
(
(

1

2w
− Pr[CH(F(hS(X)‖D) = z])2

)
≤ Pr[Z = z] · 2−u−3ε3

2w
,

which when substituted into (6.40) gives

Pr[
1

2w
− Pr[CH(F(hS(X)‖D)) = z] ≥ 1

2w
· ε

2
] ≤ 2−u · ε

2
,
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which in turn, when substituted into (6.39), gives the desired bound:

Pr[hS is bad] ≤ 2−u.

From the union bound, in order to make the extractor t-resilient, one needs to have 2t−u ≤ ε, which gives

t ≤ u− log( 1
ε ).

Theorem 6.5. For the keyed seeded encryption scheme KSEnc = KHtE∗[hS ,ECC] in Section 6.4 satisfying

n.RK + d1(n) + ν ≥ w + t + 4log( 1
ε(n) ) + 4, each encrypted block is ε-close to the uniform distribution with

probability 1− ε, and Advds(KSEnc; Wn) ≤ 4ε(n)− 2ε(n)2 for 2t pre-determined input distributions.

Proof. The proof follows similar steps as the proof of Theorem 6.3. We first bound Advdsu of KHtE∗,

and then using Advds ≤ 2Advdsu, we can bound Advdsu. Parameters of KHtE∗ construction satisfy (6.38).

Therefore, the application of Lemma 6.6 immediately proves each encrypted block is ε(n)-close to the uniform

distribution with probability 1− ε(n), where the probability is over the choice of a random seed. By taking

average over the choice of seed,

Advdsu(KSEnc; Wn) ≤ ε(n) · (1− ε(n)) + 1 · ε(n) = 2ε(n)− ε2(n)

⇒ Advds(KSEnc; Wn) ≤ 4ε(n)− 2ε(n)2.

The above theorem shows the same seed can be used for encrypting 2t blocks (one can view each block as a

shift to the input distributions of the extractor and therefore, using a same seed for 2t messages means having

2t pre-determined distributions), while each block is guaranteed to be ε-close to the uniform distribution

with probability at least 1−ε over the choice of seed. For the convenience of representation, when parameters

of the KHtE∗ construction satisfy Theorem 6.5, we denote it by KHtE∗t .

Remark 6.3. It is possible to amortize the seed length in KHtE∗ and achieve capacity when the number

of blocks goes to infinity. For t ≥ 1, let CH = CH0‖CHt1 be a channel such that CH0 : {0, 1}`0 → {0, 1}w0

and CH1 : {0, 1}` → {0, 1}w. The seed recycling encryption scheme KRSE2t [KSEnc,ECC0], with KSEnc =

KHtE∗t [hS ,ECC1,ECC2] and ECC0 : S → {0, 1}`0 , uses KSEnc to encrypt 2t blocks of b bits with a same

random seed S ∈ S and concatenates ECC0(S) to the encrypted block. Then by using the triangular inequality
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it follows that

Advds(KRSE2t ; CH) ≤ 2t ·Advds(KSEnc; CH1).

Let t = O(log n) and RKRSE2t
(n) denote the rate of KRSE2t and RKSEnc(n) the rate of RKRSE2t

(n), then

limn→∞RKRSE2t
(n) = RKSEnc(n), which shows we can amortize the cost of sending a seed over multiple usages

of the channel. Note that when the parameters of KSEnc are chosen according to Theorem 6.5 instead of

Theorem 6.3, still the capacity of a degraded weakly symmetric channel is achieved by the use of a capacity-

achieving family of error correcting code. The difference between the length of d1(n) in Theorem 6.5 and

Theorem 5.2, ignoring some constant terms, is the term “t”, which can be seen as the price of achieving

t-resilience. For t = O(log n), limn→∞ t
n = 0.

6.7 Related works

Wiretap channel constructions

Hayashi and Matsumoto [66] used an invertible UHF to construct modular wiretap encryption systems satis-

fying strong secrecy requirement for random messages that are capacity-achieving under certain conditions.

Bellare et al. [11] introduced the notion of semantic security for a wiretap channel and proposed a novel

approach to construct a capacity-achieving scheme over a wide range of discrete symmetric wiretap channels

using invertible extractors with semantic security. Their security proof has two steps and semantic security is

guaranteed if the randomised encryption system is message linear and separable (See Definition [12, Section

4.6].). The construction in [11] uses a UHF (e.g., using finite field multiplication UHF), followed by a linear

ECC, and satisfies these properties. Tal and Vardy [131] generalized this construction to a wider class of

channels by using letter splitting method. Tyagi and Vardy [138] constructed semantically secure wiretap

codes for Gaussian wiretap channels with infinite alphabet. This construction however, provides uniform

message security only. An alternative efficient semantically secure wiretap code for discrete symmetric wire-

tap channels is given in [120]. The construction is called Hash-then-Encode (HtE) and uses universal hash

functions. In Section 6.5.1, we gave a more detailed comparison of existing modular constructions.

An explicit construction using polar codes, with weak security, for BISCs (Binary Input Symmetric

Channel) was proposed in [71]. In [87], a polar code based capacity-achieving construction with strong

secrecy for BISC was given8.

8Using the framework of [11] (relation between uniform message and any message security), the construction of [87] was
later shown to have semantic security.
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Wiretap channel with extra resources

Wiretap channels with extra resources are considered in a class of works. Public communication between the

legitimate users is considered in [92] and it is shown that this extra resource increases the secrecy capacity of

the setting. Lai et al. [82] consider a modulo-additive wiretap channel with noisy feedback, and characterize

its capacity. The general wiretap channel with noisy feedback is studied in [60]. Ahlswede and Cai [1]

characterized the secrecy capacity of the physically degraded wiretap channel with secure output feedback.

An upper-bound for the secrecy capacity of general wiretap channel with secure feedback is given in [5]. For

the case of physically degraded wiretap channel, it is shown that receiver can ignore what they receive and

substitute secure “fresh” randomness (that plays the role of a secret key) with secure feedback. A wiretap

channel with a shared secret key is studied in [145], where distortion is allowed at the receiver. Merhav [94]

considered the same setting in presence of side information (correlated to the source), which is available both

to the receiver and the wiretapper, and characterized the secrecy capacity for the degraded wiretap channel.

In [78], the secrecy capacity of a general wiretap channel with a shared secret key of a given rate is derived.

The construction uses random encoding, and is for uniformly distributed messages. The construction does

not consider distortion or side information. Secure broadcasting with independent secret keys is studied in

[113].

6.8 Concluding remarks

We proposed the first construction of modular keyed wiretap codes with semantic security, that reduces to

wiretap code or an ε-OTP, if the key rate or the secrecy capacity of the wiretap channel is zero, respectively.

The construction achieves the secrecy capacity of the wiretap channels with weakly symmetric main and

wiretapper’s channel. We compared our construction with other constructions that achieve similar properties

and showed the advantages of our construction. Similar to other modular constructions, our construction

requires a seed that must be reliably sent to the receiver. We discussed seed recycling where the same seed

is used for the encryption of multiple blocks, allowing the seed length to be amortized over multiple blocks

leading to a capacity-achieving construction. We proposed a stronger seed recycling approach where instead

of security guarantee for a group of blocks, the guarantee is for individual message blocks. This seed recycling

approach enables communication of finite-length messages with security guarantee for each individual block.

Our analysis provides the first step towards finite-length analysis of the construction for a given level of

reliability and secrecy. Another interesting direction for future works is to explore if the construction can

achieve the secrecy capacity of other types of channels.
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Part III

Information-Theoretic Secret Key

Agreement
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Chapter 7

A Capacity-Achieving One-Message Key Agreement

With Finite Blocklength Analysis1

Abstract. Information-theoretic secret key agreement (SKA) protocols are a fundamental cryp-

tographic primitive that are used to establish a shared secret key between two or more parties.

In a two-party SKA in source model, Alice and Bob have samples of two correlated variables that

are partially leaked to Eve, and their goal is to establish a shared secret key by communicating

over a reliable public channel. Eve must have no information about the established key. In this

chapter, we study the problem of one-message secret key agreement where the key is established

by Alice sending a single message to Bob. We propose a one-message SKA (OM-SKA) protocol,

prove that it achieves the one-way secret key capacity, and derive finite blocklength approxima-

tions of the achievable secret key length. We compare our results with existing OM-SKAs and

show the protocol has a unique combination of desirable properties.

7.1 Introduction

Key agreement is a fundamental problem in cryptography: Alice wants to share a secret key with Bob that

will be completely unknown to Eve. In this chapter, we consider information-theoretic secret key agreement

(SKA) that uses physical layer assumptions to achieve security. Wyner [143] pioneered the use of physical

layer properties, in his case noise in the channel, for secure message transmission. The approach has found

significant attention because of its application to many wireless communication settings, and its information-

theoretic security, which provides security even if a quantum computer exists. Information-theoretic secret

key agreement was first proposed by Maurer, and Ahlswede and Csiszár independently [2, 92]. In the so-

1The content of this chapter is submitted to ISIT 2020 [122].
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called source model of [2], Alice and Bob have samples of correlated random variables (RVs) X and Y , and

want to agree on a secret key by exchanging messages over a public (authenticated and error free) channel

that is visible to the eavesdropper Eve, who has initial side information Z about the correlated variables.

The three variables X,Y , and Z have a joint distribution PXY Z that is public.

In this chapter, we study one-message secret-key agreement (OM-SKA), where the key is established by

Alice sending a single message to Bob. The problem is first studied by [74] and [73], and later, OM-SKA

constructions based on polar codes were proposed in [105] and [29]. The problem is important in practice

because it avoids interaction between Alice and Bob that would require stateful protocols with vulnerabilities

in implementation. It is also interesting theoretically due to [74] because it is related to circuit polarization

and immunization of public-key encryption, or it can be used for oblivious transfer [23].

Efficiency of an SKA is measured by the length ` of the established secret key. When Alice, Bob and Eve

have n independent samples of their random variables, denoted by (Xn, Y n, Zn), the rate of the secret key

is given by `/n. The secret key capacity associated with a distribution PXY Z is the highest achievable key

rate when n→∞.

The secret key (SK) capacity Cs(X,Y |Z) of a general distribution is a long-standing open problem.

When the three variables form a Markov Chain X − Y − Z, the secret key capacity is given by Cs(X,Y |Z) =

I(X;Y |Z) [2].

The secret key capacity of a general distribution when the public communication channel is one-way

(i.e., only Alice sending to Bob), is called the one-way secret key (OW-SK) capacity, and is denoted by

Cows (X,Y |Z). This capacity, by definition, is a lower-bound to the SK capacity, that is Cows (X,Y |Z) ≤

Cs(X,Y |Z) [2].

In a real life deployment of SKA protocols, n, the number of available initial samples to each party, is finite

and the efficiency of a protocol is measured by `. In [68], bounds on secret key length in finite blocklength

regime are established using higher order approximations. The given lower-bound of [68], however, cannot

be used for OM-SKA because the proposed SKA protocol is interactive and uses many (O(n)) rounds of

public communication.

The first explicit constructions of OM-SKA protocols are given in [73, 74]. The construction of [74] uses

the concatenation of a random linear code with a Reed-Solomon code to allow Bob to recover the variable of

Alice, and use that to derive a shared key. The protocol achieves the OW-SK capacity. There is no explicit

finite blocklength analysis of this construction in [74], although as shown in Proposition 7.1, the work of

[73] can be extended to obtain a lower-bound on the key length. Renes, Renner and Sutter [105], and

Chou, Bloch and Abbe [29] proposed constructions of OM-SKA using polar codes. These constructions are

capacity-achieving, but their finite blocklength analysis, which is not discussed in [29, 105], will be directly
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related to the finite blocklength analysis of the underlying polar codes.

Our work. We propose a OM-SKA protocol, analyze its security and derive a finite blocklength lower-

bound for the key length. The construction (and hence the bound) holds for the more general case that

the n samples that are held by the parties are independent, but could be drawn from different distributions

(this was called “independent experiments” in [108]). The construction achieves the OW-SK capacity and

provides a finite blocklength lower-bound for one-way SKA. We compare the finite blocklength lower-bound

of the protocol with the only other lower-bounds that we derived based on the constructions in [73], and

show its superior performance. In particular, as we illustrate in a numerical example, the latter bound of

[74] becomes positive only when n, the number of samples, is larger than a high threshold (∼ 109 bits), while

our bound is positive for values of n starting from 103 bits (See Figure 7.1).

An important property of our OM-SKA protocol is that it gives an explicit finite blocklength upper-

bound on the required public communication for achieving the OW-SK capacity. The bound only depends

on n, PXY Z , and key’s secrecy and reliability properties. The full comparison of our protocol with all the

known OM-SKA is given in Table 7.1.

Related works. Maurer [92] and Ahlswede and Csiszár [2] initiated the study of information-theoretic

secret key agreement, and derived lower and upper-bounds on the secret key capacity of the source model.

There have been many follow up works, most notably for our study, deriving upper and lower-bounds for

the secret key length with matching (i.e., optimum) second order approximations [68], assuming the Markov

chain X − Y − Z holds.

One-way secret key (OW-SK) capacity was introduced by Ahlswede and Csiszár [2], who derived an

expression to calculate OW-SK capacity. Holenstein and Renner [74] considered one-message SKA protocols

and gave constructions that achieve OW-SK capacity. Their constructions have the computational complexity

of O(n2). In [105] and [29], two capacity-achieving OM-SKA constructions using polar codes are given.

Although, these SKA protocols require specific construction of a polar code (i.e., computation of the index

sets) for the underlying distribution, they can benefit from progresses in polar code constructions. These

codes do not provide finite blocklength bounds for the key length.

Organization. The background is given in Section 7.2 and in Section 7.3 we discuss the OW-SK capacity.

Our main results are in Section 7.4. We conclude this chapter in Section 7.5 by comparing our results with

previous works.
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7.2 Background

7.2.1 Notations and definitions

We denote random variables (RVs) with upper-case letters (e.g., X), and their realizations with lower-case

letters, (e.g., x). Calligraphic letters show the alphabet of a random variable (e.g., X ). The probability mass

function (p.m.f) of an RV X is denoted by PX(x) = Pr (X = x).

Shannon entropy of an RV X over the alphabet X is H(X) = −∑x∈X PX(x) logPX(x). The aver-

age conditional min-entropy is H̃∞(X|Y ) = − logEPY maxx∈X PX|Y (x|Y ) [44]. The maximum number

of extractable random bits from a random variable is given by its smooth min-entropy [107] defined as

Hε
∞(X) = max

Y :SD(X,Y )≤ε
H∞(Y ).

The mutual information between X and Y is I(X;Y ) = H(X) − H(X|Y ). The conditional mutual

information between X and Y given Z is I(X;Y |Z) = H(X|Z)−H(X|Y,Z).

If for RVs (X,Y, Z) the Markov relation X−Y −Z holds, i.e., PXY Z(x, y, z)PY (y) = PXY (x, y)PY Z(y, z)

then, I(X;Y |Z) = H(X|Z)−H(X|Y ).

The statistical distance between two RVs X and Y with p.m.f’s PX and PY , defined over a common

alphabet W, is given by SD(X;Y ) = 1
2

∑
w∈W |PX(w)− PY (w)| .

Lemma 7.1 (Berry-Esseen Inequality [18, 50]). Let PWn be an IID distribution, then for any −∞ < α <∞

∣∣∣∣∣∣
Pr




n∑

j=1

Wj ≤ nµ− α
√

∆n


−Q(α)

∣∣∣∣∣∣
≤ 3ρ

∆3/2
√
n
,

where µ = E{W},∆ = Var {W} , ρ = E{|W − µ|3}, and Q(·) is the tail probability of the standard Gaussian

distribution.

7.2.2 Universal Hash Functions

Definition 7.1 (2-Universal Hash Family (2-UHF)[25]). A family {hs|s ∈ S} of functions hs : X → Y is a

2-UHF if for any x 6= x
′
, Pr{hS(x) = hS(x

′
)} ≤ 1

|Y| , where the probability is on the uniform choices over S.

The Leftover Hash Lemma (LHL) [77] states that 2-UHFs extract randomness from a source with a

lower-bound on its min-entropy [77]. The average-case version of LHL is given in [45].

7.2.3 SKA in source model

An information-theoretic key agreement protocol has two main steps [24]: information reconciliation where

the goal is to arrive at a common string, and privacy amplification where the goal is to extract a secret key
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from the shared string. Sometimes an initiation phase is included in the protocol during which protocol

parameters and public values are determined. The following definitions for information-theoretic SKA are

consistent with the corresponding ones in [74].

Definition 7.2 (See [68, 74, 139]). Let Alice and Bob be two parties with inputs X and Y and local inde-

pendent randomness sources UA and UB , respectively. A random variable K over K is an (ε, σ)-Secret Key

(in short (ε, σ)-SK), if there exists a protocol with public communication F , and two functions KA(X,UA,F )

and KB(Y,UB ,F ), that satisfy the following reliability and security properties:

(reliability) Pr (KA = KB = K) ≥ 1− ε, (7.1)

(security) SD ((K,F , Z); (U,F , Z)) ≤ σ, (7.2)

where U is sampled uniformly from K, and Z is a random variable corresponding to Eve’s side information.

Efficiency of an SKA protocol is in terms of the secret key length that is obtained for a given set of

variables.

Definition 7.3 ([68]). For a given source model (X,Y, Z) with joint distribution PXY Z , and pair of reliability

and secrecy parameters (ε, σ) ∈ [0, 1)2, the highest achievable key length is denoted by Sε,σ(X,Y |Z), and is

defined by the supremum of the key length log |K| for all (ε, σ)-SKA protocols Π :

Sε,σ(X,Y |Z) = sup
Π
{log |K| | K is (ε, σ)-SK for (X,Y, Z)}.

7.3 One-way secret key capacity

Ahlswede and Csiszár [2] derived the “forward key capacity” (or what we call the one-way secret key capacity)

of the source model. Let Xn = (X1, . . . , Xn), Y n = (Y1, . . . , Yn) and Zn = (Z1, . . . , Zn) denote n IID samples

of the distribution PXY Z that is publicly known, and consider a protocol family indexed by n, achieving a

secret key of length `(n).

The secret key rate of the protocol, indexed by n, is given by R(n) = `(n)/n, and the achievable rate of

the family is given by R∗ = lim infn→∞ `(n)/n. The secret key capacity is the supremum of the achievable

key rate of all protocol families for the same setting. The following definition follows the definitions in [68].

Definition 7.4 (One-way Secret Key Capacity 2). For a source model with distribution PXnY nZn , the secret

2In some works including [73, 105, 108] the term “capacity” is reserved for physical channels, and for source model only “key
rate” is used.
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key capacity Cows (X,Y |Z) is defined by

Cows (X,Y |Z) = sup
Πn

lim inf
n→∞

1

n
Sowεn,σn(Xn, Y n|Zn), (7.3)

where the supremum is over all protocols Πn with reliability and secrecy parameters εn, σn, such that

lim
n→∞

(εn + σn) = 0 and Sowεn,σn(Xn, Y n|Zn) is the corresponding key length from the OW-SKA protocol Πn.

It was shown [2, Theorem 1] that one-way secret key capacity is given by the supremum of H(U |Z, V )−

H(U |Y, V ), where the supremum is over all distributions PUV satisfying V − U −X − Y Z. This result also

follows from [34, Corollary 2]. Holenstein and Renner [74, Theorem 3] proved the supremum can be taken

over all distributions PUV |X satisfying X − U − V , and that the supremum can always be achieved by a

OM-SKA protocol [73, Theorem 3.3], and so we have the following theorem for OW-SKA capacity.

Theorem 7.1 (Theorem 1 of [74]). For any given source model (X,Y, Z) with IID distribution PXnY nZn ,

the OW-SK capacity is given by

Cows (X,Y |Z) = max
PUV |X

H(U |Z, V )−H(U |Y, V ), (7.4)

where optimization is over joint distributions PUV |X ’s such that X − U − V holds.

Finding explicit solution to (7.4) in general is not known. For some source models, the optimizing PUV |X

can be analytically calculated [73, 74], and be used to construct OM-SKA that achieves the OW-SK capacity

[74].

Corollary 7.1 (Corollary 4 of [105]). For a source model with IID distribution PXnY nZn such that for any

RV U satisfying U −X − (Y,Z), we have I(U ;Y ) ≥ I(U ;Z),

Cows (X,Y |Z) = H(X|Z)−H(X|Y ). (7.5)

A special case of Corollary 7.1 is when the Markov chain X − Y − Z holds. In this case, the OW-SK

capacity is equal to Cows (X,Y |Z) = H(X|Z)−H(X|Y ) = I(X;Y |Z).

7.4 ΠSKA: A one-message SKA protocol

Consider the source model setting, and assume Alice, Bob and Eve have their corresponding n components

of the source (Xn, Y n, Zn). Let the required secrecy and reliability parameters of the key be σ and ε,

respectively. Alice and Bob choose two 2-UHFs hs : Xn → {0, 1}t and ĥs′ : Xn → {0, 1}`, and share (over
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Protocol 1: ΠSKA: A Capacity-achieving SKA

Public Information: PXY Z
Input: n−fold samples xn ∈ Xn and yn ∈ Yn, ε, σ.
Output: Key estimates kA and kB .

// Initiation Phase

• Alice and Bob, (i) find and share λ, and ` and t for the hash functions hs : Xn → {0, 1}t and

ĥs′ : Xn → {0, 1}`, (ii) generate and share the seeds s ∈ S and s′ ∈ S ′ for the hash function.

// Information Reconciliation Phase

1 Alice sends the hash value v = hs(x
n) to Bob.

2 Bob forms a list of guesses for xn,

T (Xn|yn) = {x̂n : − logPXn|yn(x̂n|yn) ≤ λ}. (7.6)

3 Bob finds, if exists, a unique x̂n ∈ T (Xn|yn) such that hs(x̂n) = v.

4 if no x̂n was found or x̂n was not unique then
Abort the protocol.

// Key Extraction Phase

5 Alice computes kA = ĥs′(x
n).

6 Bob computes kB = ĥs′(x̂n).

public channel) two uniformly random seeds s ∈ S and s′ ∈ S ′ for the two families. (In the following we

show how the values of t and ` will be determined.) In the rest of this paper, we use the multiplicative hash

family (See Section 7.2) for the 2-UHF.

Our SKA protocol (ΠSKA) works as follows: Alice uses hs(·) to compute the hash value of her sample

vector xn, and sends it to Bob; Bob uses the received hash value, his sample vector yn, and the known

probability distribution of the source, to recover Alice’s sample vector (reconciliation). The main idea

behind the reconciliation technique of Protocol 1, used by Bob, is to divide the range of PXn|Y n=yn values

into two parts, and search in only the main part to find Alice’s vector. This reduces search complexity at the

cost of increased error. By choosing an appropriate value for t, Bob can bound the reconciliation error to ε.

The transmitted hash value will also be used in conjunction with their vector zn to learn about the key, and

so longer key hash values (reduced error probability) will result in shorter keys. Alice and Bob will estimate

the total leaked information about their common strings, and remove it during the privacy amplification

(key extraction) phase that is implemented by using a second 2-UHF hash function ĥs′ .

The security and reliability of the protocol, and the choice of the hash functions’ parameters that result

in an (ε, σ)- SKA are given in Theorem 7.2. We prove the theorem for the case that the distribution

PXnY nZn = ΠjPXjYjZj is due to independent experiments that are not necessarily identical. Corollary 7.2

shows that the resulting bound from the theorem can be tightened for IID case.

Theorem 7.2. Let the source model (Xn, Y n, Zn) be described by a joint distribution PXnY nZn = ΠjPXjYjZj .
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For any pair of real numbers (ε, σ) where 0 < ε, σ < 1, ΠSKA Protocol 1 gives an (ε, σ)-SK with maximum

key length of,

max(`ΠSKA
ε,σ ) = H(Xn|Zn)−H(Xn|Y n)−√nfε,σ(|X |)− log

4n3

εσ2
+O(

1√
n

), (7.7)

where fε,σ(|X |) =
√

2 log(|X | + 3)
(√

log 1/ε+
√

log 2/σ
)

.

Proof. Reliability. Bob’s recovery algorithm searches the set T (Xn|yn) for vector(s) that their hash value

match the received hash value, and fails in two cases: (i) x is not in the set, and (ii) there are more

than one vector in the set whose hash value matches the received hash value v. Bob’s failure probability

Pe = Pr (KA 6= KB) is upper-bounded by finding the probabilities of the above two events. Each event

corresponds to the possible samples of Alice, as shown below.

ξ1 = {xn : − logPXn|Y n(xn|yn) > λ}

ξ2 = {xn ∈ T (Xn|yn) : ∃ x̂n ∈ T (Xn|yn) s.t.

hS(x̂n) = hS(xn)}.

To bound Pr (ξ1), we use the result of [75, Theorem 2], for n-IID samples of a joint distribution that

states:

Pr[− logPXn|Y n(xn|yn) > H(Xn|Y n) + nδ}] ≤ β.

for β = 2
− nδ2

2 log2(|X|+3) . By choosing

λ = H(Xn|Y n) + nδ1, (7.8)

where δ1 satisfies ε1 = 2
−n(δ1)2

2 log2(|X|+3)) for some chosen value of ε1 ≤ ε, we have ξ1 = {xn : − logPXn|Y n(xn|yn) >

H(Xn|Y n) + nδ1}, and Pr (ξ1) ≤ ε1.

To bound Pr (ξ2), we note that for a x̂n ∈ T (Xn|yn), the collision probability with any other xn ∈ Xn

is bounded by Pr
(
hS(x̂n) = hS(xn)

)
≤ 2−t (Definition 7.1), and so the total probability that some element

T (Xn|yn) collides with an element in Xn is |T (Xn|yn)| · 2−t. That is

Pr (ξ2) ≤ |T (Xn|yn)| · 2−t.

On the other hand, since the probability of each element of T is bounded by 2−λ, we have 2−λ|T (Xn|yn)| ≤

Pr (T (Xn|yn))) ≤ 1, and we have |T (Xn|yn)| ≤ 2λ. Let t = λ− log ε2 for some chosen value of ε2 ≤ ε. Then
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we have Pr (ξ2) ≤ ε2. That is

t = H(Xn|Y n) + nδ1 − log ε2 (7.9)

The above shows that the choice of ε1 determines δ1, and then λ, which together with the choice of ε2,

determines t. Finally, ε = ε1 + ε2 and Pe ≤ ε. Equation (7.9) clearly shows the relation between t and the

error probability: smaller ε1 and ε2 give larger t. This is expected since larger t provides more information

about Xn to Bob for reconciliation. We also note that larger information about Xn reduces achievable key

length of the protocol.

Key secrecy. To show the secrecy of the key, we need to bound the statistical distance of the joint distribution

of the derived key and the adversary’s information, from the joint distribution of the uniform distribution

and the adversary’s information.

According to Lemma B.5.1 in Appendix B.5, we have

SD((ĥS′(X
n), hS(Xn), S′, S, Zn);

(U`, hS(Xn), S′, S, Zn)) ≤ 2ε′ +
1

2

√
2t+`−H̃ε

′
∞(Xn|Zn), (7.10)

We now note the following:

(ii) The relation between the smooth average min-entropy and the smooth conditional min-entropy is

given in [45, Appendix B], and states H̃ε′
∞(Xn|Zn) ≥ Hε′

∞(Xn|Zn).

(iii) Using [75, Theorem 1], we have Hε′
∞(Xn|Zn) ≥ H(Xn|Zn)− nδ′, with ε′ = 2

−nδ′2
2 log2(|X|+3) . Therefore,

we can substitute H̃ε′
∞(Xn|Zn) in (7.10) with H(Xn|Zn)− nδ′:

SD((ĥS′(X
n), hS(Xn), S′, S, Zn);

(U`, hS(Xn), S′, S, Zn)) ≤ 2ε′ +
1

2

√
2t+`−H(Xn|Zn)+nδ′ ,

where ε′ = 2
−nδ′2

2 log2(|X|+3) and thus δ′ =

√
(log 1

ε′ )(2 log2(|X |+3))

n . To satisfy σ-secrecy of the key agreement

protocol, it is sufficient to have 2ε′ + 1
2

√
2t+`−H(Xn|Zn)+nδ′ ≤ σ. Thus, the maximum achievable key length

of the protocol must satisfy,

√
2t+`−H(Xn|Zn)+nδ′ ≤ 2(σ − 2ε′)

⇒ ` ≤ H(Xn|Zn)− nδ′ − t+ 2 + 2 log(σ − 2ε′)

To have error probability bounded by ε, we will use t from (7.9) and obtain the maximum achievable key
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length with (ε, σ) parameters, as

` ≤H(Xn|Zn)−H(Xn|Y n) + 2 + log ε2(σ − 2ε′)2

−
√

2n log(|X |+ 3)(

√
(log

1

ε′
) +

√
(log

1

ε1
)). (7.11)

We will then optimize the bound by choosing appropriate values for ε′, ε1 and ε2.

ε′ is the smoothing parameter and can be chosen arbitrarily subject to satisfying ε′ ≤ σ
2 . The effect of ε′

on the upper-bound (7.11) appears in two terms: larger values of ε′, in log(σ − 2ε′) reduce the RHS of the

bound, and as part of the coefficient of the term −√n, increase the RHS of the bound. However the effect

of the latter will be multiplied by the
√
n, and so we will choose ε′ = n−1

2n σ.

For ε1 and ε2 we have ε1 + ε2 ≤ ε. In the bound (7.11) (log 1
ε1

) is the coefficient of
√
n, and its larger

values correspond to larger value of the RHS of the bound. ε2 however appears within a constant term. We

thus choose ε1 = n−1
n ε and ε2 = ε

n . These are reasonable choices for bounding error probabilities of ξ1 and

ξ2: ξ1 is the error of xn being outside of T (Xn|yn), while ξ2 is related to the collision probability of the hash

function, and is expected to be much smaller than ξ1. Using these substitutions, we have

max(`ΠSKA
ε,σ ) = H(Xn|Zn)−H(Xn|Y n) + 2 + log

εσ2

n3

−
√

2n log(|X |+ 3)
(√

log
n

(n− 1)ε
+

√
log

2n

(n− 1)σ

)
. (7.12)

Since
√

log an
(n−1)b =

√
log a

b +O(1/n), we have

max(`ΠSKA
ε,σ ) = H(Xn|Zn)−H(Xn|Y n)

−√nfε,σ(|X |)− log
4n3

εσ2
+O(

1√
n

), (7.13)

which completes the proof.

Remark 7.1. The third order term of these bounds can be further improved by choosing ε1, ε2, and ε′

differently. For example, let ε′ =
4
√
n−1

2 4
√
n
σ, ε1 =

√
n−1

2
√
n
ε, and ε2 = ε√

n
. Then

max(`ΠSKA
ε,σ ) = H(Xn|Zn)−H(Xn|Y n)

−√nfε,σ(|X |)− log n+O(1), (7.14)
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which follows from the fact that

√
log

a
√
n

(
√
n− 1)b

=

√
log

a

b
+

1

2 ln 2
√
n log a

b

+O(
1

n
).

Theorem 7.2 gives the maximum achievable key length `ΠSKA
ε,σ of the protocol and provides a lower-bound

on the maximum key length of OW-SKA protocols. That is, Sowε,σ(Xn, Y n|Zn) ≥ max(`ΠSKA
ε,σ ). Next corollary

tightens the lower-bound for IID sources, using Berry-Esseen inequality [18, 50].

Corollary 7.2. For any source model described by IID distribution Pn = ΠjPXjYjZj we have

Sowε,σ(Xn, Y n|Zn) ≥ n(H(X|Z)−H(X|Y ))−√ngε,σ −
3

2
log n+O(1), (7.15)

where

gε,σ = Q−1(ε)
√

∆X|Y +Q−1(
σ

2
)
√

∆X|Z ,

and ∆U |V = Var
{
− logPU |V

}
.

Proof. We revisit the proof of Theorem 7.2. For reliability, we bound the probability of these two events:

ξ1 = {xn : − logPXn|Y n(xn|yn) > λ}

ξ2 = {xn ∈ T (Xn|yn) : ∃ x̂n ∈ T (Xn|yn) s.t. hS(x̂n) = hS(xn)}.

Let Wi = − logPXi|Yi and λ = nH(X|Y ) +
√
nVX|YQ−1(ε− θn), where ∆X|Y = Var

{
− logPX|Y

}
, and

θn = 1√
n

+ 3ρ

V
3/2

X|Y
√
n

. Then by Lemma 7.1, Pr (ξ1) ≤ ε − 1√
n

. By choosing t = λ − log 1√
n

, we will get

Pr (KA 6= KB) ≤ Pr (ξ1) + Pr (ξ2) ≤ ε.

For the secrecy constraint, we use Lemma B.5.1. By this lemma, and noting the fact that H̃ε′
∞(Xn|Zn) ≥

Hε′
∞(Xn|Zn), we have

√
2t+`−Hε

′
∞(Xn|Zn) ≤ 2(σ − 2ε′), for any ε′. This implies that for ηn = 2√

n
we get:

` ≤ H
σ−ηn

2∞ (Xn|Zn)− t+ log 4η2
n.

From [65], we know that for IID distribution PXnZn ,

Hδ
∞(Xn|Zn) = nH(X|Z)−Q−1(δ)

√
n∆X|Z +O(1),
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where ∆X|Z = Var
{
− logPX|Z

}
. Thus,

` ≤n(H(X|Z)−H(X|Y ))

√
n

(
Q−1(ε− θn)

√
∆X|Y +Q−1(

σ − ηn
2

)
√

∆X|Z

)

− 3

2
log n+O(1),

and thus the proof is complete by using Taylor expansions to remove θn and ηn.

Corollary 7.3 (OW-SK Capacity). For IID distribution PXnY nZn , Protocol ΠSKA achieves the OW-SK

capacity.

Proof. If variables U and V can be found for a given source model (X,Y, Z) with distribution PXY Z , such

that X − U − V holds and PUV |X maximizes H(U |Z, V ) − H(U |Y, V ), then the protocol ΠSKA achieves

Cows (X,Y, Z), i.e., the OW-SK capacity. To prove this, first note that ΠSKA achieves the SK rate of

R = H(X|Z) −H(X|Y ) for any given source model (X,Y, Z). Due to this protocol, parties first reconcile

on Xn and then extract the key from Xn knowing that the adversary has access to a correlated variable

Zn. Assume for a given source model (X,Y, Z) the optimal variables U and V can be calculated such that

X − U − V holds, and Cows (X,Y, Z) = H(U |Z, V ) − H(U |Y, V ). In the IID regime, parties observe IID

variables (Xn, Y n, Zn). Thus, in the first step, Alice, who has access to Xn, generates Un and V n. Then

she broadcasts V n over the public channel. Note that now Eve also has access to both side information

variables Zn and V n. After these initial steps, Alice and Bob run Protocol ΠSKA to reconcile on Un. For

the reconciliation step Bob uses his side information, i.e., (Y n, V n) to find Un. To extract the key from Un,

parties know that Eve has access to (Zn, V n), thus by performing the appropriate key extraction the final

SK rate will be H(U |Z, V )−H(U |Y, V ), which is equal to Cows (X,Y, Z). Hence, the proof is complete. This

proof is due to [2], Section IV. Also see [105], Section III.B.

In Figure 7.1, we compare the two lower-bounds of (7.15) and the lower-bound given in (7.14) for a source

model where X is a uniformly distributed binary variable, Y = BSCp(X), and Z = BSCq(Y ) are obtained as

the output of binary symmetric channels on X and Y , respectively, and BSCp(·) denotes a binary symmetric

channel with crossover probability p. For this example, the OW-SK capacity is Cows = h2(p∗q)−h2(p), where

p ∗ q = p(1− q) + (1− p)q, and h2(·) is the binary entropy given by h2(p) = −p log p− (1− p) log(1− p). For

p = 0.02, q = 0.15, and ε = σ = 0.05 we have Cows = 0.5. The maximum secret key length by ΠSKA achieves

this OW-SK capacity. The finite blocklength bounds of (7.15) and (7.14) are converted to key rate (divided

by n), and are depicted for this example in Figure 7.1. The graph shows the bound of (7.15) is tighter than
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Figure 7.1: Comparing the finite-length bounds of (7.15) and (7.14). Here, PXnY nZn is IID, X is binary
uniform, Y = BSC0.02(X), Z = BSC0.15(Y ), reliability and secrecy parameters are ε = σ = 0.05, and the
secret key capacity is 0.5. The sample’s length n ∈ [2000, 20000]. For this range of n, the bounds of (7.18)
and (7.19) give SK rate of 0. In this example, bounds of (7.18) and (7.19) are positive only for n > 107, and
n > 1.1× 109, respectively.

the bound of (7.14), and is closer to the capacity. In Section 7.5, we derive the bounds associated with the

constructions in [73]. These bounds will not have positive values for the range of n used in Figure 7.1 and

so are not included.

Corollary 7.4 (Public communication cost). For the source model described by distribution PXnY nZn =

ΠjPXjYjZj , let F omε,σ denote the least communication cost (in bits) that is needed for a OM-SKA Sowε,σ(Xn, Y n|Zn).

Then

F owε,σ ≤ H(Xn|Y n) +
√
nBε1(|X |) +

1

2
log n+O(1), (7.16)

where Bε1(|X |) =
√

2 log(|X |+ 3)
√

log 1
ε . Moreover, for the case of IID source distributions we have

F owε,σ ≤ nH(X|Y ) +
√
nBε2 +

1

2
log n+O(1), (7.17)

where Bε2 = Q−1(ε)
√

∆X|Y .

7.5 Comparison with related protocols

We compare Protocol 1 with other known OM-SKA protocols. We compare the protocols based on the type

of reconciliation, SK length, public communication cost, and the computational complexity of the protocol

for Alice and Bob, individually. A summary of this comparison is given in Table 7.1. We list these protocols

in the following:
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HR05 Holenstein and Renner proposed a key agreement method in [74] that achieves the OW-SK capacity

of a general distribution. The reconciliation message uses linear codes. We derive two finite blocklength

lower-bounds for the two variations of their SKA [73], one using a random linear code, and the second a

concatenation of a linear code with a Reed-Solomon code. The bounds given in Theorem 3.13, and Theorem

3.15 of [73], are re-derived in the following proposition as functions of ε and σ. In [73], the bounds are

expressed in the form of B(n) = n(Cows − fB(κ1, κ2)), where nκ1 = log(1/ε) and nκ2 = log(1/σ).

Proposition 7.1. For any source model with IID distribution PXY Z , let Rn = H(Xn|Zn) − H(Xn|Y n).

Then for large enough n and any ε, σ < 1/4 we have

Sowε,σ(Xn, Y n|Zn) ≥ [Rn −
√
nf ′ε,σ]+, (7.18)

Sowε,σ(Xn, Y n|Zn) ≥ [Rn − 4
√
n3g′′ε,σ −

√
nf ′′ε,σ]+, (7.19)

where [a]+ = max{0, a}, and

f ′ε,σ = 90 log(|X ||Y|)(
√

log 1/ε+
√

log 1/σ),

g′′ε,σ =
4

√
222 log(1/ε) log2(|X |) log2(|X ||Y|),

f ′′ε,σ = 8 log(|X |)
√

log(1/σ).

The first bound (7.18) corresponds to random linear codes and second bound is due to concatenated

codes. For both lower-bounds (7.18) and (7.19), the SKA protocol uses O(n2) bits of communication. The

computational complexity of Alice corresponding to both bounds is O(n2). The computational complexity

of Bob is O(n2)|X |n and O(n2), respectively corresponding to (7.18) and (7.19). As mentioned in [74, 105],

the computational complexity of (7.19) for Alice and Bob is efficient (i.e., in O(nd)) but it is not practically

efficient (i.e., it is not in O(n) or O(n log n)).

We note that our derived finite-length bounds in (7.15) and (7.14) are far closer to the capacity upper-

bound than the finite-length bounds of HR05. For instance, considering the same setting and parameters

of the example given for Fig 7.1, the rate associated with (7.19) (i.e., bound of (7.19) divided by n) will be

positive n > 1.1× 109.

RRS13 Renes et al. proposed an SKA protocol that used polar codes for both reconciliation and privacy

amplification [105]. The implementation cost of the protocol is O(n log n) for both Alice and Bob, but the

code construction for any given distribution might not be straighforward. The protocol uses a single message

of length O(n). Their analysis of the protocol does not provide finite-length approximation of the key length.
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Protocol HR05 RRS13 & CBA15 ΠSKA

Coding Method linear codes polar codes universal hashes

Comm Cost O(n2) O(n) O(n)

Comp A O(n2) O(n log n)(∗∗) O(n log log n)

Comp B O(n2)(∗) O(n log n)(∗∗) O(2n.H(X|Y ))

FL Bound yes no yes

Table 7.1: The comparison of Protocol 1 with other protocols. Comm cost refers to the public communication
bits required for the protocol. Comp A and Comp B refer to the computational complexity of implementation
for Alice and Bob, respectively. FL bound stands for finite-length lower (achievability) bounds. (*) For
the lower-bound given in (7.18) this computational complexity is O(2n). (**) Note that for SKAs using
polar codes, parties need to compute the index sets that are required for code construction. The exact
computational complexity of this step should be considered in addition to the implementation costs.

CBA15 In [29], authors propose an SKA protocol using polar codes. The reconciliation and privacy

amplification is combined in one step polar coding, and the protocol requires a small pre-shared secret seed

of length O(2−a.n). The public communication cost of this protocol in terms of bits is O(n), and the analysis

of [29] does not give any finite-length approximations for the final key length.

ΠSKA (Protocol 1) This protocol uses universal hash functions for both reconciliation and privacy am-

plification. This protocol is very efficient in terms of public communication because it uses a single message

of length O(nH(X|Y )) (See Corollary 7.4). This protocol gives achievable finite-length bounds as given

in (7.14) and (7.15). The computation cost of Alice is practically efficient; i.e., O(n log log n) (computing

a single hash value). However, unfortunately for Bob, the computation cost is in O(2n.H(X|Y )); i.e., the

implementation is not efficient.

7.6 Conclusion

We studied OM-SKA protocols in source model. These protocols are important for practical reasons because

they do not require any interaction. They are also important from theoretical viewpoint since they can

achieve the secret key capacity of one-way SKA, and also are related to problems in computational cryptog-

raphy. Our construction uses a reconciliation method that is inspired by information spectrum analysis of

[68]. Interesting open questions are providing efficient decoding algorithm for Bob, and refine the reconcili-

ation to improve the lower-bound. Obtaining finite blocklength bounds for SKA using polar coding is also

an interesting open question for future work.
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Chapter 8

Secret Key Agreement using a Virtual Wiretap

Channel1

Abstract. Key agreement using the physical layer properties of communication channels is a

well-studied problem. iJam is a physical layer key agreement protocol that achieves security by

creating a “virtual” wiretap channel for the adversary through a subprotocol between the sender

and the receiver that uses self-jamming by the receiver. The protocol was implemented and

its security was shown through extensive experiments. The self-jamming subprotocol of iJam

was later modelled as a wiretap channel and used for designing a secure message transmission

protocol with provable security. We use the same wiretap model of the subprotocol to design

secret key agreement protocols with provable security. We propose two protocols that use the

wiretap channel once from Alice to Bob, and a protocol that uses two wiretap channels, one from

Alice to Bob, and one in the opposite direction. We provide the security proof and efficiency

analysis for the protocols. The protocols effectively give physical layer security protocols that

can be implemented and have provable security. We discuss our results and propose directions

for future research.

8.1 Introduction

Wireless communication provides flexibility for mobile users and with the increasing number of sensors and

growth of the Internet of Things, may soon become the dominant form of communication. A major drawback

of wireless communication is its vulnerability to passive eavesdropping. Wireless signals can be intercepted

from afar, and so wireless communication is considered completely insecure.

1The content of this chapter is published as a paper [118] in proceedings of INFOCOM 2017.
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Wyner [143] proposed an ingenious model for secure communication in presence of an eavesdropper, that

is particularly suited for securing wireless communication. In Wyner wiretap channel model, a sender is

connected to a receiver over a main channel, and the transmission to the receiver is eavesdropped by an

eavesdropper Eve, through a second channel that is referred to as the wiretapper’s channel. A wiretap code

is a randomized code that is used by the sender to encode the message before transmission over the main

channel. Wyner proved that as long as the wiretapper’s channel is noisier than the main channel, there

exists an encoding that provides perfect secrecy for the communication. Wiretap channels have been used

for secure message transmission and secret key agreement. The two problems, although related, may achieve

different levels of efficiency.

In [59], an innovative secret key agreement protocol, called iJam, was proposed that uses interaction

between the sender and the receiver, to establish a shared key between the sender and the receiver over a

noiseless channel. The basic subprotocol that is used for providing secure communication, and we refer to

it as Basic iJam Tranmission (BiT), uses cooperative self-jamming by the receiver to create uncertainty

for the eavesdropper. The BiT protocol was experimentally evaluated. The authors considered the best

adversarial strategies to measure the information leakage to the adversary, and showed that by careful

choices of the modulation and the coding systems by the sender and receiver, BiT can create uncertainty for

the eavesdropper about the transmitted information, and this can be used to establish a secret shared key.

The protocol analysis was experimental.

In [119], BiT was modelled as a virtual wiretap channel, where “virtual” meant that the wiretap channel

was not because of the physical noise in the environment, but was created effectively by using friendly

jamming of the receiver that created a noisy view for the eavesdropper, while the receiver enjoyed an

error-free communication. This model was then used to construct a one-way protocol for secure message

transmission. As noted earlier, iJam and BiT were implemented and analyzed for the setting that the

channel from Alice to Bob was noise-free, and running BiT created the eavesdropper’s uncertain view of the

communication. Sharifian et al. [119] showed that by running BiT over a physical wiretap channel between

Alice, Bob and Eve, and the interpretation of BiT as a virtual wiretap channel, one can effectively “make

Eve’s channel noisier”.

Our work

The goal of this paper is to use BiT to construct key agreement protocols with provable security. As noted

earlier, execution of BiT enables Alice and Bob to communicate over a wiretap channel. The transition

matrix of this channel is determined by the Bit Error Rate (BER) of Eve for the transmitted message and
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as a result of using BiT for message transmission.

Assuming adversary’s BER can be estimated, we have a setting that Alice and Bob are connected by a

wiretap channel with known parameters, and the goal is to establish a shared secret key. One can also use

the plain communication channel between Alice and Bob as a public discussion (PD) channel: a channel

that can be perfectly eavesdropped by Eve.

We recall the formal security and efficiency definitions of information-theoretic Secret Key Agreement

(SKA) problem when there is a wiretap channel from Alice to Bob, together with a public discussion channel

that can be used in both directions (Alice to Bob and vice versa), and design three protocols with provable

security in this model.

C1 The first protocol uses the wiretap channel from Alice to Bob created by BiT (one-way) together with

the public discussion (PD) channel in the same direction, and is a direct application of the message

transmission protocol with semantic security that was proposed in [119]. For the secret key agreement

protocol, Alice chooses a random string and uses the message transmission system to send it to Bob.

Intuitively, security of the resulting shared key follows from the semantic security of the message

transmission system.

C2 The second protocol is a pure key agreement protocol: Alice chooses a random string and sends it

through the virtual wiretap channel (invoking BiT protocol) to Bob. Bob receives the string with

perfect reliability. However, the string is partially leaked to the adversary and the amount of leakage

can be estimated using the parameters of the virtual wiretap channel. Alice and Bob then use a seeded

extractor to extract the available randomness in the string and thus obtain a shared key. The seed of

the extractor is sent from Alice to Bob over PD.

C3 The above two protocols assume Eve’s BER is known and the parameters of the wiretap channel can

be correctly estimated. To relax these assumptions, we will use a protocol that uses two invocations

of BiT: one by Alice and one by Bob. Using two invocations provides some level of robustness in the

sense that, assuming a fixed adversary, if BER for one direction is under-estimated, it will be over-

estimated in the opposite direction. We use a novel way (Lemma 8.4) of extracting randomness from

two independent sources to generate the final secret key, and use it to allow Alice and Bob to extract

a shared key.

We will provide formal analysis and security proofs for all these protocols.
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Related works

Modelling iJam as a wiretap channel was first considered in [119] where the model was used to construct a

secure message transmission system with perfect secrecy. Our work focuses on key agreement problem. The

two problems are related, but the highest achievable rate of the two problems, for the same communication

setting, could be different. For example, in Section 8.3 we have two one-way protocols: the first one using the

wiretap code in [11] and the second using a direct key agreement protocol. Both of these protocols achieve

the same asymptotic secret key rate. However, the second protocol in Section 8.3 cannot be directly used

for message transmission.

It has been known that cooperative jamming could be used for physical layer security by mixing a

jamming signal in the eavesdropper’s view [81, 86, 132]. Wiretap channels have been used to model and

analyze these systems. In a general cooperative jamming system, a trusted third party sends a jamming

signal that is partially known to the legitimate communicants, while completely unknown to the adversary.

This type of jamming is referred to as “helper” [144], “cooperative” [81], or “friendly” [62] jamming. iJam

[59] uses a variation of friendly jamming where the role of the trusted third party is given to the legitimate

receiver.

The rest of this chapter is organized as follows. In Section 8.2, we provide an overview of iJam self-

jamming subprotocol, and how it was modelled by a virtual wiretap channel. We also provide the required

background for secure message transmission over wiretap channels. In Section 8.3, we give two one-way

secret key agreement protocols and prove their security and capacity-achieving properties. In Section 8.4, we

give a two-way SKA protocol and prove its security. In Section 8.5, we propose some alternative self-jamming

strategies, and Section 8.6 concludes the paper.

8.2 Preliminaries

We use uppercase letters X to denote random variables and bold lowercase letters to denote their corre-

sponding realization. By Pr[X = x] we mean probability of X = x. We also use PX(x) as an alternative

notation for Pr[X = x]. The calligraphic letters X denote sets, and |X | denotes the number of elements in a

set. We write X ∈ U to denote a random variable that is defined over the set U . For two random variables

X and Y , PXY , PX|Y and PX denote their joint distribution, conditional distribution, and the marginal

distribution of X, respectively. All logarithms are in base 2, and x ‖ y denotes concatenation of two binary

strings x and y.
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Shannon entropy of a random variable X ∈ X is given by

H(X) = −
∑

x∈X
PX(x) logPX(x),

and its min-entropy is given by

H∞(X) = − log(max
x

(PX(x))).

For two random variables X ∈ X and Y ∈ Y with joint and conditional distributions PXY (x,y) and

PX|Y (x|y), respectively, the conditional entropy H(X|Y ) is defined as follows:

H(X|Y ) = −
∑

x∈X

∑

y∈Y
PXY (x,y) logPX|Y (x|y).

The mutual information between two random variables is:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X),

and the average conditional min-entropy [44] is given by

H̃∞(X|Y ) = − logEy∈Y max
x∈X

PX|Y (x|y).

The statistical distance of two variables X,Y ∈ U is given by

SD(X,Y ) , 1

2

∑

u∈U
|Pr(X = u)− Pr(Y = u)|.

Min-entropy and statistical distance are related through the definition of smooth min-entropy.

Definition 8.1. [107] For a random variable X ∈ X , the smooth min-entropy is:

Hε
∞(X) , max

Y ∈X :SD(X,Y )≤ε
H∞(Y ).

The following lemma states that Shannon entropy and smooth min-entropy almost behave the same when

the experiment is repeated independently a large number of times.

Lemma 8.1. [107] Let X1, X2, ..., X` be ` independent random variables over X with probability distribution

PX(x), then we have

Hε
∞(X1, ..., X`) ≥ `(H(X)− δ),
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where δ > 0 and ε = 2

−`δ2

2 log2(|X |+ 3) .

A physical communication channel, such as a wire, provides an environment through which information

signal is sent from a sender to a receiver. Channels can be probabilistic or adversarial. A noisy channel

modifies the transmitted signal probabilistically as it travels through it. A noisy communication channel

can be modelled by a randomized function W : X → Y that is specified by a transition probability matrix

W, where the element W[x, y] is the probability that input x generates output y. Let the channel input be

a random variable X ∈ X ; then the output random variable Y ∈ Y will be W(X) = Y . A channel is called

strongly symmetric if the rows of the transition matrix are permutations of one another, and so is the case

for the columns. The channel W(·) is symmetric if there exists a partition of the output set Y = Y1∪· · ·∪Yn,

such that for all i the sub-matix Wi = W[·,Yi] is strongly symmetric.

We denote ` times independent applications of the channel on ` independently sampled inputs by W`(·).

8.2.1 Randomness extractors

An important building block of our constructions is a randomness extractor.

Definition 8.2. [44] A function EXT : Sds × {0, 1}n → {0, 1}` is a (d, ε)-strong, average-case extractor if,

SD((EXT(S,X), Z, S); (U,Z, S)) ≤ ε for all pairs of correlated random variables (X,Z) over {0, 1}n×{0, 1}∗,

assuming H̃∞(X|Z) ≥ d.

A well-known construction of randomness extractors is from (2-)Universal Hash Families (UHFs).

Definition 8.3. A family {hs|s ∈ S} of functions hs : X → Y is a UHF if for any x 6= x
′
,

Pr[hs(x) = hs(x
′
)] ≤ 1

|Y| ,

where S denotes a random seed chosen uniformly from S.

The construction uses the so called Leftover Hash Lemma (LHL) [77]. The following average-case version

of LHL is given in [44].

Lemma 8.2. Let {hs|s ∈ Sds} be a UHF with hs : {0, 1}n → {0, 1}`. Let X and Z be random variables

over {0, 1}n and {0, 1}∗, respectively. Then

SD
(
(S,Z, hS(X)); (S,Z, U`)

)
≤ 1

2

√
2`−H̃∞(X|Z),

where S denotes a random seed chosen uniformly from the set Sds.
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Using Definition 8.2, the lemma says that UHF is an average-case (`− 2− 2 log ε, ε)-strong extractor.

Definition 8.4. A family {hs|s ∈ Sds} of functions hs : X → Y = {0, 1}` is an XOR-UHF if for any x 6= x
′
,

Pr[hS(x)⊕ hS(x
′
) = a] ≤ 1

|Y| , for all a ∈ {0, 1}`,

where S denotes a random seed chosen uniformly from Sds.

Lemma 8.3. [43] Let {hs|s ∈ Sds} be a family of XOR-universal hash functions hs : {0, 1}n → {0, 1}`. If

random variables A over {0, 1}n and B over {0, 1}` are independent. Then

SD
(
(S, hS(A)⊕B); (S,U`)

)
≤ ε,

as long as H∞(A) +H∞(B) ≥ `+ 2 log( 1
ε ) + 1.

8.2.2 Wiretap codes

In Wyner wiretap model, the sender is connected to the receiver through a channel W1, referred to as the

main channel that maps input X ∈ X to output Y ∈ Y, and to the eavesdropper through a second channel

W2 called the wiretapper’s channel that maps X ∈ X to Z ∈ Z, such that the Markov chain X → Y → Z

holds. In the following, we will denote a wiretap channel by {WT : X → Y × Z}. This original Wyner

wiretap model assumes that W2 is a physically degraded version of the channel W1. This definition was

extended to a broadcast channel where the above Markov chain does not necessarily hold.

The goal of wiretap coding is to provide secrecy and reliability for message transmission. A wiretap

code C is specified by a tuple (M, N,X , ε, δ), denoting the message space, code length, alphabet set, and

upper-bounds on the secrecy loss and the error probability, respectively. When other parameters are clear

from the context, we refer to the code as an (ε, δ) code. The rate of a wiretap code is defined by the number

of secure transmitted bits in each application of the channel; that is, R = log |M|
N . An (ε, δ) wiretap code

family is a family {CN} of (ε, δ) wiretap codes, indexed by the code length N . The rate R0 is achievable

by an (ε, δ) wiretap code family, if for any sufficiently small ξ > 0, there exists an integer N0 such that

for all N ≥ N0 we have R(CN ) ≥ R0 − ξ, the secrecy requirement satisfies ε ≤ ξ, and the decoding error

probability satisfies δ ≤ ξ. The secrecy capacity of a wiretap channel is the highest achievable rate of all

(ε, δ) wiretap code families for the channel and is denoted by Cs. This secrecy capacity is for transmission

of secure messages.

Theorem 8.1. [84] The secrecy capacity of Wyner wiretap channel when W1 and W2 are symmetric is given
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by

Cs = CW1
− CW2

,

where CW1
and CW2

are (reliability) channel capacities of W1 and W2, respectively.

To achieve the secrecy capacity, one must consider security and reliability requirements together. This

is because error-correction reduces noise over both of the main and the adversary’s channels. The first

construction of capacity-achieving wiretap codes in [87] used specific error correcting codes. Modular con-

structions of wiretap codes separate coding for security and reliability, and can be used with a much larger

class of (reliability) capacity-achieving error correcting codes.

The modular construction in [11] uses invertible extractors. A function INV : {0, 1}r × Sds × {0, 1}b →

{0, 1}n is an inverter for the extractor EXT(·, ·) in Definition 8.2, if for a uniform R ∈ {0, 1}r and for all

S ∈ Sds and Y ∈ {0, 1}b, the random variable INV : (S,R, Y ) is uniformly distributed on all preimages of Y

under EXT(S, ·)

Definition 8.5. [11] Let S ∈ Sds be a uniformly distributed random seed that is chosen by the encryptor,

and sent to the decryptor over a public channel. For an arbitrarily distributed message space {0, 1}b, the

seeded encryption function SE : Sds × {0, 1}b → {0, 1}n, outputs a ciphertext SE(S,M) for a message

M ∈ {0, 1}b. The corresponding seeded decryption function is SD : Sds × {0, 1}n → {0, 1}b, where for all

S ∈ Sds and M ∈ {0, 1}b we have SD(S,SE(S,M)) = M .

Let Sds = {0, 1}n\0n. For inputs S ∈ Sds and X ∈ {0, 1}n and n > b, the function EXT : Sds×{0, 1}n →

{0, 1}b is defined as:

EXT(S,X) = (S �X)|b,

where � denotes multiplication over Fn2 = {0, 1}n, and X|b is the first b bits of X.

An efficient inverter for EXT(S,X) is given by INV(S,R,M) = S−1 � (M‖R), where S−1 denotes the

multiplicative inverse of S in Fn2 , and R is uniformly distributed over {0, 1}(n−b). For the message block

M ∈ {0, 1}b, S ∈ Sds, and R
$← {0, 1}r, the seeded encryption function SE(S,M) is defined as follows:

X = SE(S,M) = INV(S,R,M) = S−1 � (M‖R)

The encrypted message is transmitted over the wiretap channel, and the seed is sent reliably to the

receiver over the public channel.

The Mutual Information Security (MIS) advantage associated with an encoding function E : {0, 1}b →
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{0, 1}n and a wiretapper’s channel W is defined by:

Advmis(E ; W) = max
PM

I(M ; W(E(M))), (8.1)

where the maximum is over all random variable M ∈ {0, 1}b. It is shown in [11] that this metric of measuring

security is equivalent to Goldwasser and Micali’s semantic security (SS) [58]. Furthermore, if W is symmetric

and E satisfies the so-called “separable” and “message linear” properties (satisfied by the above construction),

the MIS metric is equivalent to the following mutual information security-random message (MIS-R) metric

[11].

Advmis-r(E ; W) = I(Ub; W(E(Ub))),

where Ub denotes uniform b-bit string.

8.2.3 iJam and BiT protocol

In [59], a physical layer secret key agreement protocol called iJam was proposed and experimentally evaluated.

iJam uses the Basic iJam Transmission (BiT) protocol that employs OFDM (Orthogonal Frequency-Division

Multiplexing) with 2q-QAM (Quadrature Amplitude Modulation) and works as follows: The sender generates

a uniformly random string of length Nq bits and divides it into N blocks of q-bit each. The blocks are

modulated into a sequence of N complex numbers A1, · · · , AN using 2q-QAM, and each Ai is transmitted over

a carefully selected frequency (N frequencies in total) of the OFDM signal. The next step is to apply Inverse

Fast Fourier Transform (IFFT) on the N frequencies to obtain N time samples: ak =
∑N
n=0Ane

i2πkn
N , k =

1, · · · , N. Each time sample xk is a linear combination of N random values Ai, and so by the central limit

theorem, ak will have approximately a Gaussian distribution. This property is used to create uncertainty

for the eavesdropper.

In the BiT protocol, Alice transmits each OFDM time sample twice: (a1, · · · , aN ) ‖ (a1, · · · , aN ). The

receiver (i.e., jammer) Bob randomly jams one of the pairs, ai or its repetition, using a random sample that

is drawn from the same Gaussian distribution of ak. Since the sum of the two Gaussian distributions is a

Gaussian distribution, it is difficult for the eavesdropper to distinguish a clean sample (unjammed) and a

jammed sample. The (jammer) receiver, however, obtains the unjammed samples, stitches them together

and obtains the original OFDM signal. The eavesdropper’s uncertainty in distinguishing the jammed sample

and the clean sample is measured in terms of their Bit Error Rate (BER). In [59], various strategies of the

attacker to recover the original signal is considered, and it was shown that BER of the adversary is maximised

when the power ratio of the signal from the jammer to the signal from the sender at Eve’s receiver is between
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1 and 9. This power ratio depends on factors such as the sender transmission power, the jamming signal

power, and the eavesdropper’s location.

8.2.4 Modelling BiT as a wiretap channel

In [119], the BiT protocol described above was interpreted as creating a virtual wiretap channel with noiseless

main channel and a noisy wiretapper’s channel W : {0, 1}Nq → {0, 1}Nq.

Let η, 0 < η < 1, denote the probability that the eavesdropper (correctly detects all the transmitted time

samples and) outputs the correct OFDM signal, and recovers the correct message block. For Eve’s view Z

and the transmitted sequence X, the conditional probability distribution Z|X is given by:

P (Z = i|X = i) ' η,

P (Z = i|X 6= i) ' 1− η
2Nq

.

We also refer to this as a BiTNη,q. The virtual wiretap channel is defined as follows:

Definition 8.6. [119] Let η be the probability that all the N clean time samples are distinguishable from

their jammed counterparts. The BiT protocol approximation of the wiretap channel, denoted by BiTNη,q, is

defined by a noiseless main channel and a wiretapper’s channel W : {0, 1}Nq → {0, 1}Nq with the following

transition probability matrix:

W =




η 1−η
2Nq−1

. . . 1−η
2Nq−1

1−η
2Nq−1

η . . . 1−η
2Nq−1

...
...

. . .
...

1−η
2Nq−1

1−η
2Nq−1

. . . η



.

The following follows from Theorem 1.

Corollary 8.1. [119] The secrecy capacity of BiTNη,q is given as follows:

Cs(BiTNη,q) = −
(
η log η + (1− η) log

1− η
2Nq − 1

)
. (8.2)

Remark 8.1. To interpret an execution of BiT as creating a virtual wiretap channel, we need the following

assumptions.

1. Message blocks of size q should be IID to ensure the central limit theorem is applicable, and the distri-

bution of each OFDM time sample can be approximated by Gaussian.
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2. Jamming signal should be taken from a Gaussian distribution with appropriate parameter so that the

jammed samples and the original ones become indistinguishable.

3. The jammer must transmit at a relatively high rate to avoid the joint decoding.

8.2.5 Using BiTN
η,q to provide security for message transmission

In [119], the wiretap coding method of [11] was used to construct a message transmission protocol over

BiTNη,q .

M ∈ {0, 1}b
SE(S,M)

X ∈ {0, 1}nNq
BiTNη,q

ENC

Figure 8.1: Secure message transmission using BiTNη,q

The construction is shown in Figure 8.1. ENC consists of two modules:

1. A seeded wiretap encryption block SE : Sds × {0, 1}b → {0, 1}nNq that encrypts a message block of

length b bits to a codeword of length nNq bits.

2. The BiTNη,q block that breaks the codeword into qN -bit units, copies each unit, and sends the original

unit together with its copy over the channel using OFDM over 2q-QAM.

The efficiency of the message transmission protocol is measured by the number of secret bits transmitted

per usage of BiT.

Definition 8.7. [119] The rate of the message transmission protocol over BiTNη,q (see Figure 8.1) is R = b
n .

Theorem 8.2. [119] The rate of the message transmission protocol over BiTNη,q (see Figure 8.1) is asymp-

totically Cs(BiTNη,q).

8.3 Key agreement

One of the fundamental problems in cryptography is establishing a shared secret key between two parties.

Once such a secret key is established, through one-time-pad, we immediately have a secure message trans-

mission protocol. Secret key agreement protocols in information-theoretic setting have been widely studied

in [2, 92, 108].
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Definition 8.8. A Secret Key Agreement (SKA) protocol with respect to a wiretap channel {WT : X →

Y × Z} is defined as follows: Alice chooses a random variable X ∈ X . Alice samples X for n times, and

transmits the samples across the wiretap channel to generate (Y n, Zn) = WT(Xn), where Bob receives

Y n and Eve receives Zn. Alice and Bob can communicate through a public discussion channel, where we

assume that Alice sends messages C1, C3, C5, · · · , and Bob sends messages C2, C4, C6, · · · , Each message can

depend on the sender’s entire view of the protocol and possibly on privately generated random bits. After

the communication phase, Alice and Bob each either accepts or rejects the protocol execution, depending

on whether they believe to be able to generate a shared secret key. If Alice accepts, she generates a key KA

depending on her view of the protocol. Similarly, if Bob accepts, he generates a key KB depending on his

view of the protocol. Even if a party does not accept, they may generate a key.

Let C = C1, C2, C3, · · · , denote the total communication during the communication phase. A secret key

rate Rsk is achievable if, for every ε > 0 and sufficiently large n, there exists a SKA protocol (as described

above) that uses the wiretap channel n times and satisfies:

Pr[KA 6= KB ] < ε, (8.3)

1

n
H(K) > Rsk − ε, (8.4)

I(K;Zn, C) < ε, (8.5)

H(K) > log |K| − ε. (8.6)

The largest achievable secret key rate is called the secret key capacity Csk.

Remark 8.2. In Definition 8.8, requirement (8.3) captures reliability, requirement (8.4) is on the secret

key rate, and the requirements (8.5) and (8.6) capture secrecy and randomness of the key. These two latter

conditions can be replaced by:

SD(Zn, Ct,K;Zn, Ct, UK) < ε, (8.7)

where UK is uniformly distributed over K. See [105] for further discussion.

We propose two one-way key agreement protocols that use BiTNη,q to create a virtual wiretap channel for

Eve.
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SKA-I

This protocol uses the message transmission protocol in [119]. Alice and Bob are connected by a two-way

noiseless channel. Alice can either directly transmit (without Bob’s jamming) over the channel or use BiTNη,q

with Bob’s contribution, creating the virtual wiretap channel WT in Definition 8.6. The protocol is given in

Figure 8.2:

Figure 8.2: SKA-I

1. Alice does the following:
– Samples a uniform seed S ∈ Sds and directly transmit to Bob.
– Generates a random string K ∈ {0, 1}b, and encrypts it using the wiretap code in [11], SE(S,K) =
Xn ∈ {0, 1}nNq.
– Sends Xn to Bob using BiTNη,q: X

n is divided into n blocks of Nq bits: X1, X2, ..., Xn. Each

Xi ∈ {0, 1}Nq is transmitted using BiTNη,q.

2. Key derivation:

• Alice outputs K;

• Bob receives Y n = Xn = X1, X2, ..., Xn, decodes Xn using the decryption block SDE(S,Xn)
and recovers the key K.

Theorem 8.3. The protocol SKA-I is an SKA with respect to BiTNη,q that achieves the rate Cs(BiTNη,q).

Proof. -Correctness of the key: it follows from the reliability of the message transmission scheme, that

follows from the fact that the main channel of the virtual wiretap channel is noiseless.

-Security of the key: We use definitions (8.5) and (8.6). First, according to the MIS metric of the

message transmission scheme, we have (8.1), which implies (8.5). Second, (8.6) follows from the fact that K

is sampled uniformly.

-Secret key rate: Here, the secret key rate is equal to the rate of the message transmission scheme,

which was shown to achieve 1
2NqCs(BiTNη,q) [119].

SKA-II

Using the same setting in this protocol, Alice sends a random string to Bob over a BiTNη,q that will be

partially leaked to Eve. She will also send the seed for an extractor that is used by both of them. Both use

the seed to extract a shared key. Figure 8.3 shows the protocol:

Theorem 8.4. SKA-II is an SKA with respect to BiTNη,q and achieves the rate Cs(BiTNη,q).
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Figure 8.3: SKA-II

1. Alice does the following:
– Samples a uniform seed S ∈ Sds. S is directly transmitted.
– For i = 1, · · · , n, Alice chooses a vector Xi that is uniformly distributed over {0, 1}Nq, and sends
it to Bob using BiTNη,q.

2. Key derivation:
Let EXT : Sds × {0, 1}nNq → {0, 1}b be a strong average-case extractor in Definition 8.2 from a
UHF (see Lemma 8.2), where b is chosen according to the value of n, η and the security parameter
ε (see (8.9)).

• Alice computes KA = EXT(Xn), where Xn = X1, X2, ..., Xn;

• Bob receives Y n = Xn = X1, X2, ..., Xn and computes KB = EXT(Y n).

Proof. -Correctness of the key: The correctness follows from the fact that transmissions are over noiseless

channel and Y n = Xn.

-Security of the key: To prove the secrecy and the randomness of the key we use security definition

given by the inequality (8.7), which, for the proposed protocol, becomes

SD((K,Zn, S); (UK, Z
n, S)) ≤ ε, (8.8)

where UK is a uniform distribution over K. We need to show that for any ε > 0, there exists sufficiently big

n such that:

SD((EXT(S,Xn), Zn, S); (UK, Z
n, S)) ≤ ε.

According to the probability matrix of the wiretapper’s channel W of BiTNη,q , we have Z = W (X) =

X ⊕∆, where ∆ ∈ {0, 1}Nq has the following distribution:

Pr[∆ = α] =





η, if α = 0Nq;

1−η
2Nq−1

, otherwise.

Let ε′ = ε
4 . Suppose ∆ε′ is a random variable with ε′-smooth min-entropy with respect to ∆. According to

Lemma 8.1, we have

Hε′
∞(∆1, ...,∆n) ≥ n(H(∆)− δ),
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for δ > 0 satisfying ε′ = 2

−nδ2

2 log2(|Z|+ 3) . Let Zε′
n = Xn ⊕∆n

ε′ . We then have,

H̃∞(Xn|Zε′n)

= − log
(∑

zε′n∈Zn Pr[Zε′
n = zε′

n] ·

max
xn∈Xn

Pr[Xn = xn|Zε′n = zε′
n]

)

(i)
= − log

(∑
zε′n∈Zn max

xn∈Xn
Pr[Xn = xn] ·

Pr[Zε′
n = zε′

n|Xn = xn])

= − log

(∑
zε′n∈Zn

1
|Xn| max

xn∈Xn
Pr[xn ⊕∆n

ε′ = zε′ ]

)

(ii)

≥ − log
(∑

zε′n∈Zn
1
|Xn| · 2−n(H(∆)−δ)

)

= n(H(∆)− δ),

where (i) follows from uniform distribution of Xn and (ii) is because Pr[xn⊕∆n
ε′ = zε′ ] = Pr[∆n

ε′ = xn⊕zε′ ] ≤

2H∞(∆n) = 2−n(H(∆)−δ).

Let EXT(S,X) = hS(X) where {hs|s ∈ Sds} is a UHF with hs : {0, 1}nNq → {0, 1}b and

b = n(H(∆)− δ) + 2 log ε

= n(η log η + (1− η) log
1− η

2Nq − 1
− δ) + 2logε (8.9)

Relation (8.9) relates b to η, which is the channel’s parameter becauseH(∆) = −
(
η log η + (1− η) log 1−η

2Nq−1

)
.

Let Xn be the input to hs(·). Then, for the pair of correlated random variables (Xn, Zε′
n), Lemma 8.2

implies:

SD((EXT(S,Xn), Zε′
n, S); (UK, Zε′

n, S)) ≤ ε

2
.

Since SD(Z;Zε′) ≤ ε′ and Z1, . . . , Zn are independent, then SD(Zn;Zε′
n) ≤ ε′. We have

SD((EXT(S,Xn), Zn, S); (UK, Z
n, S))

≤ SD((EXT(S,Xn), Zn, S); (EXT(S,Xn), Zε′
n, S))

+SD((EXT(S,Xn), Zε′ , S); (UK, Zε′
n, S))

+SD((UK, Z
n, S); (UK, Zε′

n, S)) ≤ ε′ + ε

2
+ ε′ = ε.

That is the required condition (8.8) for security of the key.
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-Secret key rate: b is the length of the extracted key. The achievable rate of the construction is then:

Rsk =
b

n
=
H̃∞(Xn|Zε′n)− 2 log 1

ε

n
.

When n→∞, we have

lim
n→∞

Rsk = lim
n→∞

H̃∞(Xn|Zε′n)− 2 log 1
ε

n

≥ lim
n→∞

n(H(∆)− δ)− 2 log 1
ε

n

= H(∆)− lim
n→∞

δ

n
− lim
n→∞

2 log 1
ε

n

= H(∆) = Cs(BiTNη,q).

Remark 8.3. According to [2, Corollary 2], if the wiretap channel {WT : X → Y×Z} satisfies the condition

WT(y, z|x) = W1(y|x) ·W2(z|x), then the secret key capacity is equal to the secrecy capacity of the wiretap

channel. So SKA-I and SKA-II are both capacity-achieving.

8.4 Two-way SKA over a pair of wiretap channels

The above two SKA’s assume that a good estimation of η that is directly related to Eve’s BER, is available.

For fixed receiver device for Eve, and transmission and jamming signal power, η is primarily a function of

the location of Eve. To provide some level of independence to Eve’s location, we consider a two-way protocol

where Alice and Bob invoke BiTAq initiated by Alice and BiTBq initiated by Bob, respectively, and the final

key is a combination of the two shared strings that are obtained through this invocation. The authors in

[59] pointed out (and verified in their experiment) that for a fixed static (not moving) adversary, in most

cases, at least one of BiTAq or BiTBq gives the eavesdropper a corrupted view.

A direct approach to constructing a key from the two shared partially leaked strings is to apply an

extractor on each individually, and then concatenate the results of the two. In the following, we use a novel

way (Lemma 8.4) of extracting randomness from two independent sources, corresponding to the two strings

generated by Alice and Bob, to generate the secret key. Intuitively, as long as the combined entropy of the two

sources is sufficient, the secret key will be secure. This allows the key to remain secure in the situation when

increasing the entropy of one source implies decreasing the entropy of the other source, which is typically

the case in our two-way SKA. The source here is a uniform string conditioned on the eavesdropper’s view of
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Figure 8.4: SKA-III

1. Alice does the following.
–Samples a uniform seed S ∈ Sds. S is directly transmitted to Bob.
– For each i = 1, · · · , n, Alice chooses a vector Xi that is uniformly distributed over {0, 1}Nq, and
sends to Bob using BiTAq .

2. Bob does the following.
–For each i = 1, · · · , n′, Bob chooses a vector Y ′i that is uniformly distributed over {0, 1}Nq, and
transmit to Bob using BiTBq .

3. Key derivation:

• Alice computes KA = hS(Xn)⊕ Y ′n′ ;
• Bob computes KB = hS(Y n)⊕X ′n′ ,

where (Y n, Zn) = WTn(Xn), (X ′n
′
, Z ′n

′
) = WT′n

′
(Y ′n

′
) and hS : {0, 1}nNq → {0, 1}n′Nq is an

XOR-universal hash function. Suppose BiTAq =BiTNη,q and BiTBq =BiTNη′,q. The parameters n and

n′ should satisfy the relation n
n′ >

1−Cs(BiTN

η′,q)

Cs(BiTN

η,q)
.

the string, which in the case when the jamming power is fixed depends on the eavesdropper’s location.

We abuse the notion of SKA with respect to a wiretap channel a little bit to allow a pair of wiretap

channels {WT : X → Y × Z} and {WT′ : Y → X × Z}. In particular, Alice uses the wiretap channel WT

for n times and Bob uses the wiretap channel WT′ for n′ times. The public discussion phase together with

the rest of the definition remain the same (see Definition 8.8). We then call it a two-way2 SKA over a pair

of wiretap channels. Our protocol in this model is given in Figure 8.4.

We need the following lemma for the security proof of our two-way SKA protocol. The lemma proves a

generalization of the two-source extractor in Lemma 8.3, when both sources are all conditioned on other ran-

dom variables. An intermediate generalization of Lemma 8.3 to the case when only one source is conditioned

on another random variable was shown in [120].

Lemma 8.4. Let {hs|s ∈ Sds} be a family of XOR-Universal hash functions hs : {0, 1}n → {0, 1}`. Let A be

a random variable over {0, 1}n and B be a random variable over {0, 1}`. Assume A are B are independent.

Let VA and VB be random variables, possibly dependent on A and B, respectively. VA is independent of B

2Note that the term “one-way” and “two-way” were used to refer to the public discussions in some papers. Here we refer to
the wiretap channels.
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and VB is independent of A. Then

SD((S, VA, VB , hS(A)⊕B); (S, VA, VB , U`))

≤
√

2−(H̃∞(A|VA)+H̃∞(B|VB)−`−1),

or equivalently,

SD((S, VA, VB , hS(A)⊕B); (S, VA, VB , U`)) ≤ ε,

if H̃∞(A|VA) + H̃∞(B|VB) ≥ `+ 2 log( 1
ε ) + 1.

Proof. Consider the fixed values VA = vA, VB = vB , and apply Lemma 8.3 to A|V = vA and B|V = vB .

We will have,

SD ((S, hS((A|V = vA)⊕ (B|V = vB)); (S,U`))

≤
√

2−(H∞(A|V=vA)+H∞(B|V=vB)−`−1).

Taking expectation over vA, vB on both sides yields,

SD ((S, VA, VB , hS(A)⊕B); (S, VA, VB , U`))

≤ EvA, vB

(√
2−(H∞(A|V=vA)+H∞(B|V=vB)−`−1)

)

≤
√

EvA, vB

(
2−(H∞(A|V=vA)+H∞(B|V=vB)−`−1)

)

=
√

2−(H̃∞(A|VA)+H̃∞(B|VB)−`−1),

where the second inequality follows from applying Jensen’s inequality to the function f(x) =
√
x, and the

equality follows directly from the definition of conditional min-entropy. �

An instantiation of the XOR-UHF Let X = {0, 1}n and Y = {0, 1}n′ . Let Sds = {0, 1}n if n ≥ n′ and

Sds = {0, 1}n′ , otherwise. Let hs : X → Y be defined as follows.

hs(x) =





(s� x)|n′ , if n ≥ n′

s� (x||0n′−n), otherwise,
(8.10)

where � is the finite field multiplication and |n′ denotes the first n′ bits of the vector representation of a

finite field element.

Theorem 8.5. Two-way SKA protocol is an SKA as long as n
n′ >

1−Cs(BiTN

η′,q)

Cs(BiTN

η,q)
.

Proof. The correctness of the derived key is straightforward as Alice receives X ′n
′

= Y ′n
′

from Bob and Bob
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receives Y n = Xn and S from Alice. They both are able to derive the shared key as follows:

K = KA = KB = hS(Xn)⊕ Y ′n′ = hS(Y n)⊕X ′n′ .

To prove the secrecy of the key we show the following:

SD(S,Zn, Z ′n
′
,K;S,Zn, Z ′n

′
, UK) ≤ ε, (8.11)

where UK is uniformly distributed over K. This is using condition (8.7) for proving the security of the

scheme.

Let β = Cs(BiTNη,q) and β′ = Cs(BiTNη′,q). According to the construction, the numbers of random bits

transmitted through virtual wiretap channels in both directions, nNq from Alice to Bob and n′Nq bits from

Bob to Alice, should satisfy

n

n′
>

1− β′
β

.

Assume n
n′ = 1−β′

β +ξ, where ξ > 0. We now want to show that for any security parameter ε > 0, (8.11) holds

for large n. Let ε′ = ε
8 be the smooth entropy parameter for both Z and Z ′, and denote the corresponding

smoothed distributions Zε
′

and Z ′ε
′
. By replacing Z with Zε

′
and Z ′ with Z ′ε

′
, ε8 × 4 = ε/2 is lost. Finally,

since the secret key K = hS(Xn)⊕Y ′n′ is the output of the two source extractor in Lemma 8.4, (8.11) holds

as long as

H̃(Xn|Zε′n) + H̃(Y ′n
′ |Z ′ε′n

′

) ≥ n′Nq + 2 log
1

ε/2
+ 1. (8.12)

It was shown in the proof of Theorem 8.4 that

H̃(Xn|Zε′n)

nNq
→ β (also

H̃(Y ′n
′ |Z ′ε′n

′

)

n′Nq
→ β′).

We simply write

H̃(Xn|Zε′n) = nNqβ − o(n)

H̃(Y ′n
′ |Z ′ε′n

′

) = n′Nqβ′ − o(n′).

Substituting n
n′ = 1−β′

β + ξ, we then have

H̃(Xn|Zε′n) + H̃(Y ′n
′ |Z ′ε′n

′

) = n′Nq
(
nβ
n′ + β′

)
− o(n) = n′Nq + n′Nqξβ′ − o(n),

where the right hand side can be made bigger than the right hand side of (8.12) for large n. This concludes

the proof.
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8.5 Discussion of the self-jamming strategies

In this section, we examine different self-jamming strategies to see possibilities of improving the achievable

effective rate of the message transmission systems using them. More concretely, we ask the following question:

are there jamming strategies other than the “repeat-and-jam-one of the two” strategy used in BiT that can

improve the communication rate. BiT enables secret transmission by giving the receiver one correct time

sample while giving the eavesdropper two time samples, one correct, and one jammed, such that with careful

choice of system parameters, distinguishing the correct sample has small probability. This is realized by

the “repeat-and-jam-one of the two” strategy. Repeating the sent signal allows the receiver to obtain one

correct sample left for the receiver, and jamming one generates uncertainty for the eavesdropper. A direct

generalization of this strategy suggests a jamming strategy where three copies of the signal is sent, and two

of them jammed by the receiver. More generally, one may consider the case that the information, instead of

being repeated multiple times, be coded into a string of n components such that recovery of k components

by the receiver will recover the information. Note that since the receiver is the jammer and so can identify

the correct components, recovery will be equivalent to erasure decoding. However, for Eve, who will receive

the n components through a noisy channel, decoding of the n components and recovering k correct ones,

will be with high uncertainty. Implementing such strategies and experimental results on the BER of the

eavesdropper is an interesting direction for future research.

8.6 Conclusion

Concluding remarks

Physical layer security is a promising direction for providing secure communication. Protocols using this

approach are commonly evaluated using extensive experiments. While such results could provide a good level

of assurance for some settings, providing formal models and analysis can provide a deeper understanding

of important parameters of the system, and suggest novel constructions. Our abstraction of BiT allowed

us to propose three secret key agreement protocols with provable security. It also suggested new jamming

strategies that could improve the rate of communication.

In our constructions, we obtained asymptotic rates and assumed that communication cost of seed is

amortized over long length of key. Finding the effective key rate for finite-length key, and taking into

account the transmission cost of the seed, is our future work.
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Future work

Our results suggest a number of interesting directions for the future work.

• Although asymptotic performance of the two one-way protocols in C1 and C2 are the same, an inter-

esting question is the comparison of the actual cost of establishing an `-bit key. Such a cost must take

into account the cost of reliable transmission of an extractor seed to the receiver. We will leave this as

an open question.

• Eve’s BER is determined by (i) the transmitter power level, (ii) reception device of Eve and (iii) the

location of Eve. Considering strategies that can be used to reduce the dependence of the security

guarantee on the actual value of BER is an interesting direction of future work.

• In our work, we started from an implementation of a physical layer security system, devised a formal

model for it, and developed protocols for key agreement with provable security. The resulting protocols

are practical in the sense that the underlying mechanism has already been implemented and studied

and the proposed protocols use this mechanism as a black box and relate the final security to the

properties of this box. In Section 8.5, we propose some alternative strategies of jamming. These

strategies need to be implemented and evaluated in practice (similar to the evaluation of iJam). The

interaction between theoretical and experimental systems is an exciting direction for future work.
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Chapter 9

Conclusion and Future Work

Information-theoretic security provides secrecy guarantee for information communication systems without

any computational assumption. In these systems, the noise over communication channels and the secret

key shared by communicating parties are the primary resources that provide information-theoretic security.

The main focus of this thesis was on secure communication using these two resources. In this context, three

research problems were studied. In the first problem, secure message transmission using only noise over

communication channels was studied. In the closely associated second problem, the shared secret key and

the noise over channels both contribute to providing security for message transmission. In the third research

problem of this thesis, the establishment of a shared key was questioned. The established information-

theoretic secret key can be used for secure message transmission individually or coupled with noise (as in

the second problem).

In the following, results of studying the above three main problems are summarized and open questions

and future directions to pursue are pointed out.

9.1 Modular semantically secure wiretap encoding

In this thesis, the wiretap channel model is employed to study secure message transmission using noisy

channels. A wiretap encoding scheme exploits the noise over the communication channel and provides

secrecy for the message transmission. The secrecy notion of message encoding over the wiretap channel has

been strengthened by the introduction of semantic security for wiretap channels by Bellare et al. [11] who

also proposed a modular construction of wiretap encoding systems with semantic security that achieves the

secrecy capacity of binary input discrete memoryless channels.

In Chapter 2, a new modular construction of wiretap codes called HtE is proposed. The construction
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is a seeded encoding system that uses a public channel for sharing a random seed. This construction

outperforms the computational efficiency of previously proposed modular semantically secure constructions,

and has lower public transmission cost of encoding in comparison to other seeded encryption schemes due

to using an essentially shorter random seed for encoding. In Chapter 3, a concrete framework for comparing

the transmission efficiency of seeded wiretap encoding schemes in a finite-length regime is proposed.

The security proof of the construction in Chapter 2 is indirect and follows the framework of [11] by first

proving the security for uniformly distributed message space and then concluding security for any message

distribution when the encoding is separable and message linear. This results in showing the semantic security

and capacity-achieving properties of the HtE construction for similar channels as the ones in [11]. The HtE

construction is revisited in Chapter 6 as a special case of the more general keyed construction. Using this

chapter’s results, semantic security and capacity-achieving of the HtE construction are proved for a wider

class of channels. In particular, the semantic security of the construction for DMCs over binary alphabets,

and the capacity-achieving property for weakly symmetric wiretap channels are shown.

A practical physical layer security protocol with provable security is studied in Chapter 4, where a wiretap

channel is realized. An already implemented cooperative jamming protocol in [59] is abstractly modelled

as a wiretap channel and referred to as a virtual wiretap channel. Subsequently, channel parameters of the

abstract model are estimated, the secrecy capacity is derived, and a secure message transmission protocol

with provable semantic security for secure message transmission over the channel is introduced.

Open questions and challenges. This work creates a number of questions and challenges that remain to

be answered.

• Deterministic semantically secure wiretap codes: Wiretap constructions considered here are seeded

constructions. Although the seed value is public and its secrecy is not a concern for the encoding

scheme, reliable transmission of the seed is costly. The proposed construction in this thesis requires

the shortest seed length and consequently the least cost for transmitting the random seed among all

wiretap seeded encryption systems. A direction for future research is exploring deterministic wiretap

codes that don’t use a random seed but still have other attractive properties of the seeded wiretap

codes including modularity, semantic security and capacity-achieving. A good start in this direction is

the modular deterministic wiretap code in [66] that is only shown to provide the strong security and

not the semantic security.

• Active adversary: In this thesis, a passive adversary that only eavesdrops on the communication channel

is studied. It is fair to ask if it is possible to transmit a message reliably and securely over a wiretap
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channel in the presence of an active adversary. An active adversary for a wiretap channel needs to be

carefully modelled to reflect the real-world capabilities and limitations of communication devices. For

example, an active adversary in the wiretap channel model may have to choose between eavesdropping

or jamming the communication in different time slots because most wireless devices cannot transmit

and receive simultaneously.

• Wiretap channel creation: A self-jamming technique as a special type of cooperative jamming for

realizing a wiretap channel is considered here. The framework of using practical physical layer com-

munication techniques to realize a wiretap channel and design protocols with strong (in particular,

information-theoretic) security guarantees can be considered in future research.

9.2 Modular semantically secure keyed wiretap encoding

In an information-theoretic context, using the shared secret key and the noise over the eavesdropper’s channel

for secure message transmission immediately results in the combined model of Wyner [143] and Shannon

[116], known as the keyed wiretap channel model. The security of message encryption in this model has been

defined for uniformly distributed message space, and the general secrecy capacity is derived in [78]. The

only explicit construction of a keyed wiretap encryption scheme was the polar code-based construction of

[141]. In Chapter 5, for the first time, semantic security is defined for the keyed wiretap channel encryption,

and a modular construction named KHtE is proposed that provides semantic security and achieves the

secrecy capacity of weakly symmetric wiretap channels. This construction cannot guarantee security in the

absence of a shared key. The construction is improved in Chapter 6 to ensure that message encryption is

secure as long as at least one of the two security contributors (shared key or noise over the wiretapper’s

channel) is available in the communication setting. The new construction is called KHtE∗ and shown to

provide semantic security for any DMC with an arbitrary binary alphabet, and achieves the secrecy capacity

of weakly symmetric wiretap channels.

Open questions and challenges. The open questions of this work are listed below:

• Keyed wiretap codes for other types of channels: Proposed constructions in this thesis are for DMCs.

It is interesting to explore keyed wiretap codes for other types of channels such as Gaussian wiretap

channels. Moreover, achieving the capacity of general DMCs still remains open. Showing the KHtE∗

construction, or any other explicit construction, achieves the general secrecy capacity of a keyed wiretap

channel is an interesting open question for future work.
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• Finite-length analysis of existing keyed wiretap codes: The finite-length analysis of keyed wiretap codes

is a step toward evaluating their efficiency in practice. Bounds on the achievable rate of the KHtE∗

construction follow from the proof of semantic security. However, accurate approximation of second

order terms, finding finite-length converse bounds and comparing the achievable and converse bounds

is a direction for future research. This kind of analysis can also be considered for the polar code-based

construction of [141].

9.3 Information-theoretic secret key agreement

Secret key agreement using physical layer assumptions is a desirable candidate for providing long-term

security. Using the one-time-pad (OTP) encryption method, or any other symmetric key encryption scheme,

a key agreement scheme can be directly converted into an encryption scheme. In Chapter 7 of this thesis,

physical layer properties are abstracted in the source model, and information-theoretic secret key agreement

in this model is considered. An OM-SKA protocol is proposed that achieves the OW-SK capacity of n−IID

sources. The protocol uses the concept of information spectrum to design the information reconciliation

phase of the protocol such that it achieves a close to optimal key length. The protocol also provides an

upper-bound on the public communication cost (in terms of the transmitted bits) of the protocol in the

finite-length regime.

Physical layer properties of the communication medium can be exploited by self-jamming techniques.

The abstract “virtual” wiretap channel model of Chapter 4 is used in Chapter 8 to propose key agreement

protocols using this technique and to suggest effective self-jamming strategies. Using this abstraction, the

proposed key agreement protocols in this chapter are shown to be information-theoretically secure and their

efficiency is formally analysed.

Open questions and challenges. This work raises many questions and directions for future works.

• Efficient OM-SKA protocols: A close investigation of the OM-SKA protocol in Chapter 7 shows that

despite the relatively simple computation of the reconciliation phase, the protocol computation quickly

becomes unwieldy. The construction of polar code-based OM-SKA protocols is also not efficient in

practice. Modifications to the OM-SKA protocol of this thesis, or finding new efficient OM-SKA

protocols that achieve the OW-SK capacity of the source model remains open for future research.

• Tighter bounds on the achievable OM-SKA length: Hayashi et al. [68] give a tight finite-length lower-

bound (that matches a finite-length upper-bound up to the second order term in O(
√
n)) using an

interactive protocol for the source model SKA. The achievable lower-bound of the proposed OM-SKA
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protocol in this thesis does not match this tight bound. Any refinement of the protocol to improve

its achievable bound or showing the impossibility of achieving tighter bounds with OM-SKA protocols

can be a subject for future work.

• Information-theoretic KEM: The key encapsulation mechanism (KEM) is a public-key encryption

scheme that generates the encryption of a random key that is decryptable by the receiver. The infor-

mation flow in source model OM-SKA is aligned with the one-way information flow from the encapsuler

to the decapsuler in KEM. Making a direct connection between a KEM and a one-message secret key

agreement protocol is an interesting direction of future work. This study is initiated in Appendix C of

this thesis.

• Information-theoretic SKA in a network: OM-SKA protocols are desired in networks, where interaction

adds an extra layer of complexity to the network design. Information-theoretic key agreement for

multiple terminals is studied in [56]. Studying OM-SKA protocols in networks with multiple terminals

is subject to future researches.

• SKA with Feedback: The role of a feedback channel in improving the secrecy rate of a wiretap channel

has been considered in works such as [83] and [5]. Abstracting a cooperative jamming or a self-

jamming system by a wiretap channel with a feedback model enables the study of such systems from

an information-theoretic viewpoint.
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[114] H. Schulze and C. Lüders, Theory and Applications of OFDM and CDMA. Wiley, Jul 2005.

[115] C. E. Shannon, “Communication Theory of Secrecy Systems*,” Bell System Technical Journal, vol. 28,

no. 4, pp. 656–715, Oct 1949.

[116] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27,

no. 3, pp. 379–423, Jul 1948.

[117] S. Sharifian and R. Safavi-Naini, “A Modular Semantically Secure Wiretap Code with Shared Key

for Weakly Symmetric Channels,” in 2019 IEEE Information Theory Workshop (ITW). IEEE, Aug

2019, pp. 1–5.

[118] S. Sharifian, F. Lin, and R. Safavi-Naini, “Secret Key Agreement using a Virtual Wiretap Channel,”

in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. IEEE, May 2017, pp.

1–9.

[119] S. Sharifian, R. Safavi-Naini, and F. Lin, “A Virtual Wiretap Channel for Secure Message Transmis-

sion,” in International Conference on Cryptology in Malaysia. Springer, 2017, pp. 171–192.

159



[120] S. Sharifian, F. Lin, and R. Safavi-Naini, “Hash-then-Encode: A Modular Semantically Secure Wiretap

Code,” in Proceedings of the 2nd Workshop on Communication Security (WCS 2017). Springer, 2018,

pp. 49–63.

[121] S. Sharifian, R. Safavi-Naini, and F. Lin, “Post-Quantum Security using Channel Noise,” in Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’18. New

York, NY, USA: ACM, Oct 2018, pp. 2288–2290.

[122] S. Sharifian, A. Poostindouz, and R. Safavi-Naini, “A One-Round Key Agreement Protocol with

Information-Theoretic Security,” ISIT, 2020, manuscript submitted for review. [Online]. Available:

http://arxiv.org/abs/1905.04280

[123] S. Sharifian, R. Safavi-Naini, and F. Lin, “Semantically Secure Keyed Wiretap Encoding Schemes,”

Journal of Cryptology, 2020, manuscript submitted for review.

[124] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1484–1509, Oct 1997.

[125] V. Shoup, “On Formal Models for Secure Key Exchange,” Cryptology ePrint Archive, Report 1999/012,

1999.

[126] V. Shoup, “Using Hash Functions as a Hedge against Chosen Ciphertext Attack,” in International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2000, pp. 275–

288.

[127] V. Shoup, “A proposal for an ISO standard for public key encryption (version 2.1),” IACR e-Print

Archive, vol. 112, 2001.

[128] T. Simonite, “NSA Says It ‘Must Act Now’ Against the Quantum Computing

Threat,” Feb 2016. [Online]. Available: https://www.technologyreview.com/s/600715/

nsa-says-it-must-act-now-against-the-quantum-computing-threat/

[129] D. Stebila, S. Fluhrer, and S. Gueron, “Design issues for hybrid key exchange in TLS 1.3,” Internet-

Draft draft-stebila-tls-hybrid-design-01, Internet Engineering Task, Tech. Rep., 2019.
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Appendix B

Appendices of Chapters

B.1 Appendix of Chapter 2

Proof of Lemma 2.4

Proof. According to Lemma 2.3, we only need to show that {hs|s ∈ S} is XOR-Universal, which is easily

verified.

• When r ≥ b, hs(x)⊕hs(x
′
) = a if and only if there exists an e ∈ {0, 1}r−b satisfying s�(x⊕x

′
) = (a||e).

Since we assume x 6= x
′
, s = (a||e) � (x ⊕ x

′
)−1 is uniquely determined by the right hand side. The

number of s satisfying hs(x) ⊕ hs(x
′
) = a is exactly the number of e ∈ {0, 1}r−b, which is 2r−b. The

total number of seeds |S| in this case is 2r. Hence Pr[hs(x)⊕hs(x
′
) = a] ≤ 1

2b
for any x 6= x

′ ∈ X and

a ∈ Y.

• When r < b, hs(x) ⊕ hs(x
′
) = a if and only if s � (x ⊕ x

′ ||0b−r) = a. Since we assume x 6= x
′
,

s = a � (x ⊕ x
′ ||0b−r)−1 is uniquely determined by the right hand side. The number of s satisfying

hs(x) ⊕ hs(x
′
) = a is exactly 1. The total number of seeds |S| in this case is 2b. Hence Pr[hs(x) ⊕

hs(x
′
) = a] ≤ 1

2b
for any x 6= x

′ ∈ X and a ∈ Y.

B.2 Appendix of Chapter 3

Proof of Theorem 3.1

To prove Theorem 3.1, we first prove a lemma.
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Lemma B.2.1. Let {hs|s ∈ S} be a family of XOR-Universal hash functions hs : X → Y = {0, 1}`. Let

A and B be two independent random variables over X and Y, respectively. Let V be a third variable that is

independent of B but is possibly dependent on A. Then

SD((S, V, hS(A)⊕B); (S, V, U`)) ≤
√

2−(H̃∞(A|V )+H∞(B)−`−1).

Equivalently,

SD((S, V, hS(A)⊕B); (S, V, U`)) ≤ ε, if H̃∞(A|V ) +H∞(B) ≥ `+ 2 log(
1

ε
) + 1.

Proof. Consider a fixed value V = v and apply Lemma 3.6 in [43] to the two variables, A|(V = v) and B.

SD ((S, hS((A|V = v)⊕B); (S,U`)) ≤
√

2−(H∞(A|V=v)+H∞(B)−`−1).

Taking expectation over v on both sides yields

SD ((S, V, hS(A)⊕B); (S, V, Ub)) ≤ Ev

(√
2−(H∞(A|V=v)+H∞(B)−`−1)

)

≤
√

Ev

(
2−(H∞(A|V=v)+H∞(B)−`−1)

)

=
√

2−(H̃∞(A|V )+H∞(B)−`−1),

where the second inequality follows from applying Jensen’s inequality to the function f(x) =
√
x, and the

equality follows directly from the definition of conditional min-entropy H̃∞(A|V ).

Proof of Theorem 3.1. When the main channel is noise-free, HtE(K,S,m) = K‖hS(K) ⊕m, where m ∈

{0, 1}b, K ∈ {0, 1}k is a uniformly distributed random string and S ∈ S is a uniformly random seed of an

XOR-universal hash family {hs|s ∈ S}. The distinguishing advantage of the seeded encryption scheme is

defined as:

Advds = max
m0,m1∈M

{SD ((S, VK , VS,m0
); (S, VK , VS,m1

))} .

Here VK is the wiretapper’s view of the random string K appended to the encrypted message, and VS,m is the

wiretapper’s view of hS(K)⊕m. When the wiretapper’s channel W is BSCp used for n times, the effect of the

channel can be given by a random variable N ∈ {0, 1}n (that is n IID samples of a Bernoulli random variable

with Pr[X = 1] = p), added to channel’s input. Therefore, VK = K ⊕NK and VS,m = hS(K) ⊕m ⊕NM ,

where NK and NM denote two independent variables denoting channel noise added to the two parts of

the transmission. The first part of the transmission is VK , which does not contain any direct information
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about the message, but is useful when it is used together with VS,m, which is the message m masked by

a random string hS(K) ⊕ NM . Using Lemma B.2.1, the string hs(K) ⊕ NM , can be seen as the output of

an average-case two-source (seeded) extractor, and so have (close to) uniform distribution. Thus, from the

viewpoint of the wiretapper the message is protected by an almost uniform pad. This intuition is formalized

as follows.

SD ((S, VK , VS,m0); (S, VK , VS,m1))

= SD ((S, VK ,m0 ⊕ hS(K)⊕NM ); (S, VK ,m1 ⊕ hS(K)⊕NM ))

≤ SD ((S, VK ,m0 ⊕ hS(K)⊕NM ); (S, VK ,m0 ⊕ Ub))

+SD ((S, VK ,m0 ⊕ Ub); (S, VK ,m1 ⊕ Ub))

+SD ((S, VK ,m1 ⊕ Ub); (S, VK ,m1 ⊕ hS(K)⊕NM ))

= 2SD ((S, VK , hS(K)⊕NM ); (S, VK , Ub)) ,

which holds for any pair of messages m0 and m1. We then have

Advds ≤ 2SD ((S, VK , hS(K)⊕NM ); (S, VK , Ub)) . (B.1)

Now Lemma B.2.1 yields the following bound.

Advds ≤ 2
√

2−(H̃∞(K|VK)+H∞(NM )−b−1), (B.2)

that implies semantic security.

For the code to be capacity-achieving we need to further bound Advds in terms of smooth entropy.

Let Nε
M be a random variable that is sampled from a distribution that achieves the ε-smooth min-entropy

of the distribution of NM , that is, H∞(Nε
M ) ≥ b(h2(p) − δM ), where δM = log 5 ·

√
2 log( 1

ε )

b . Similarly,

denote VK = K ⊕ NK and let Nε
K be sampled from a distribution achieving the ε-smooth min-entropy of

the distribution of NK , namely, H∞(Nε
K) ≥ k(h2(p) − δK), where we have δK = log 5 ·

√
2 log( 1

ε )

k . Write
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V εK = K ⊕Nε
K . Now

1
2Adv

ds ≤ SD ((S, VK , hS(K)⊕NM ); (S, VK , Ub))

≤ SD (S, VK , hS(K)⊕NM ;S, V εK , hS(K)⊕NM )

+SD (S, V εK , hS(K)⊕NM ;S, V εK , hS(K)⊕NMε)

+SD ((S, V εK , hS(K)⊕NMε); (S, V εK , Ub))

+SD ((S, V εK , Ub); (S, VK , Ub))

≤ ε+ ε+ SD ((S, V εK , hS(K)⊕NMε); (S, V εK , Ub)) + ε

≤ 3ε+
√

2−(H̃∞(K|V εK)+H∞(NMε)−b−1),

where the last inequality follows from Lemma B.2.1. The next step is to bound
√

2−(H̃∞(K|V εK)+H∞(NMε)−b−1).

From Lemma 2.1, we have H∞(NM
ε) ≥ b(h2(p)− δM ), where h2(p) is the binary entropy function given by

h(p) = −p log p− (1− p) log(1− p). We have yet to bound H̃∞(K|V εK):

H̃∞(K|V εK) = − log
(∑

vε∈{0,1}k Pr[V εK = vε] maxk∈{0,1}k Pr[K = k|V εK = vε]
)

= − log
(∑

vε∈{0,1}k maxk∈{0,1}k Pr[K = k] · Pr[V εK = vε|K = k]
)

= − log
(∑

vε∈{0,1}k
1
2k

maxk∈{0,1}k Pr[k⊕Nε
K = vε]

)

≥ − log
(∑

vε∈{0,1}k
1
2k
· 2−k(h2(p)−δK)

)
= k(h2(p)− δK).

We then have Advds ≤ 8ε if

√
2−(H̃∞(K|V εK)+H∞(NMε)−b−1) ≤ 2−

(k+b)h2(p)−kδK−bδM−b−1

2 ≤ ε.

In particular, Advds ≤ ε holds if

(k + b)h2(p)− log 5 ·
(√

2k log( 8
ε ) +

√
2b log( 8

ε )
)
− b− 1

2
= log(

8

ε
).

Finally (3.1) follows by substituting log( 1
ε ) = σ.
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B.3 Appendices of Chapter 4

B.3.1 Achievable Transmission Rate using BiTN
q,η

For a noise free main channel, the secrecy capacity of BiTNq,η is given by:

Cs(BiTNη,q) = −{η log η + (1− η) log
1− η

(2Nq − 1)
}.

Figure B.1 shows the rate of communication when, the information block length is Nq bits, q = 2, 3 and

4, and N = 64. The graphs show the achievable rates for σ = 128 semantic security, and η = 0.2 (upper

graph) and η = 0.4 (lower graph). The figures show that the achievable secrecy rate and secrecy capacity

decreases as η grows. This is expected because higher η means that the adversary has a better chance of

correctly decoding the jammed signal.

B.3.2 BiT over Noisy Receiver’s Channel — An Example

In this section we derive a sufficient relation between Pb and η so that the virtual wiretap channel is

a stochastically degraded broadcast channel. Following Section 4.3, the transition matrix of the virtual

wiretapper’s channel W for q = 2 is given by:

PW =




η 1−η
3

1−η
3

1−η
3

1−η
3 η 1−η

3
1−η

3

1−η
3

1−η
3 η 1−η

3

1−η
3

1−η
3

1−η
3 η



,

where u = 1−η
3 , and v = η − 1−η

3 = 4η−1
3 . Note that the sum of each row is 4u+ v = 1. On the other hand,

we can compute:

P−1
M = 1

(1−2Pb)2
·



(1− Pb)(1− Pb) −Pb(1− Pb) −Pb(1− Pb) P 2
b

−Pb(1− Pb) (1− Pb)(1− Pb) P 2
b −Pb(1− Pb)

−Pb(1− Pb) P 2
b (1− Pb)(1− Pb) −Pb(1− Pb)

P 2
b −Pb(1− Pb) −Pb(1− Pb) (1− Pb)(1− Pb)



.
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Figure B.1: The secrecy rate and capacity (bits per channel use) of BiT for N = 64 and different values of
q for η = 0.2 (upper graph) and η = 0.4 (lower graph).
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Let a = 1− Pb and b = Pb. The above matrix can be written as:

P−1
M =

1

(a− b)2
·




a2 −ab −ab b2

−ab a2 b2 −ab

−ab b2 a2 −ab

b2 −ab −ab a2



.

The sum of entries of each row is given by, 1
(a−b)2 (a2 − 2ab + b2) = 1. The following is used to prove the

required relation.

Lemma B.3.1. Let there be two matrices

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

an1 an2 . . . ann



, B =




b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
...

bn1 bn2 . . . bnn



.

If
∑n
j=1 aij = 1 and

∑n
j=1 bij = 1 for any i ∈ [n], then

∑n
j=1(AB)ij = 1, for any i ∈ [n].

Proof. For any i ∈ [n],
∑n
j=1(AB)ij =

∑n
j=1 (

∑n
k=1 aikbkj)

=
∑n
k=1 aik ·

(∑n
j=1 bkj

)

=
∑n
k=1 aik

= 1.

Lemma B.3.2. The virtual wiretap channel is a stochastically degraded broadcast channel if Pb ≤ 1−
√

4η−1
3

2

and η > 1
4 .

Proof. The virtual wiretap channel is a stochastically degraded broadcast channel if there exists a matrix R

such that PW = PM ×R, and R is a channel transition matrix; that is, has non-negative entries and each
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row sums to 1. Using the matrices PM and PW above, we have:

R = PW ×P−1
M

= 1
(a−b)2




u(a− b)2 + va2 u(a− b)2 − vab u(a− b)2 − vab u(a− b)2 + vb2

u(a− b)2 − vab u(a− b)2 + va2 u(a− b)2 + vb2 u(a− b)2 − vab

u(a− b)2 − vab u(a− b)2 + vb2 u(a− b)2 + va2 u(a− b)2 − vab

u(a− b)2 + vb2 u(a− b)2 − vab u(a− b)2 − vab u(a− b)2 + va2



.

Using Lemma B.3.1, entries in each row of R sum to 1.

To ensure entries of R are all non-negative, we first note that u(a− b)2 +va2 > 0 and u(a− b)2 +vb2 > 0.

So the virtual wiretap channel is a stochastically degraded broadcast channel if u(a− b)2 − vab ≥ 0 and so:

u(a− b)2 − vab ≥ 0 ⇔ ua2 + ub2 − (2u+ v)ab ≥ 0

⇔ ua2 + ub2 − (2u+ 1− 4u)ab ≥ 0

⇔ ua2 + ub2 − (1− 2u)ab ≥ 0

⇔ u(a+ b)2 − ab ≥ 0

⇔ u− ab ≥ 0

⇔ P 2
b − Pb + u ≥ 0,

where 4u+v = 1 and a+ b = 1 are repeatedly invoked to simplify the expressions. The solution to the above

inequality depends on the determinant 1− 4u. When 1− 4u > 0, we have

P 2
b − Pb + u ≥ 0 ⇔

(
Pb − 1−√1−4u

2

)(
Pb − 1+

√
1−4u
2

)
≥ 0

⇔
(
Pb − 1−√v

2

)(
Pb − 1+

√
v

2

)
≥ 0

⇔
(
Pb − 1−

√
4η−1

3

2

)(
Pb − 1+

√
4η−1

3

2

)
≥ 0

⇔ Pb ≤ 1−
√

4η−1
3

2 or Pb ≥ 1+
√

4η−1
3

2 .

By assumption, Pb ∈ [0, 1
2 ] and so Pb ≤ 1−

√
4η−1

3

2 = 1
2 −

√
4η−1

12 .

Example B.1. Let Pb = 0.1 and Let η = 0.55. Therefore,

PM =




0.81 0.09 0.09 0.01

0.09 0.81 0.01 0.09

0.09 0.01 0.81 0.09

0.01 0.09 0.09 0.81
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and

PW =




0.55 0.15 0.15 0.15

0.15 0.55 0.15 0.15

0.15 0.15 0.55 0.15

0.15 0.15 0.15 0.55



.

Therefore

R = PW ×P−1
M =




0.66 0.094 0.094 0.156

0.094 0.66 0.156 0.094

0.094 0.156 0.66 0.094

0.156 0.094 0.094 0.66



.

R is the transition probability matrix of a virtual channel that confirms PW is degraded with respect to

PM. The secrecy capacity in this example is

Cs = CM − CW = (2− 0.7624)− (2− 1.1515) = 0.3891.

B.4 Appendices of Chapter 6

B.4.1 KXtX: The Second Keyed Wiretap Construction

The KXtX construction is the keyed version of the XtX construction proposed in [12]. The choice of

parameters in [12] for the XtX construction are such that the construction does not achieve the secrecy

capacity of a BSC. We show with the appropriate choice of parameters (according to Theorem B.4.2), the

KXtX construction achieves the secrecy capacity of a keyed wiretap channel with shared key for a weakly

symmetric splittable wiretap channel (weakly symmetric splittable main and wiretapper’s channels). As a

special case of the KXtX construction with key rate equal to zero, our proof also shows the XtX construction

achieves the secrecy capacity of weakly symmetric splittable wiretap channels.

Splittable channels are defined in [12]. A channel CH : {0, 1}`1+`2 → Y1×Y2 is (`1, `2)-splittable if there

are channels CH1 : {0, 1}`1 → Y1 and CH2 : {0, 1}`2 → Y2 such that for all x1 ∈ {0, 1}`1 and x2 ∈ {0, 1}`2 we

have CH(x1‖x2) = CH1(x1)‖CH2(x2). In these channels the application of the channel on an input of length

`1 + `2 can be written as independent applications of two channels with input length `1 and `2 respectively.

In this case, for the ease of representation we write CH = CH1‖CH2. BSC channels for inputs of length ` are

(`1, `2)-splittable for all non-negative integers `1 and `2 with `1 + `2 = ` (this is because the application of

channel on each input bit is independent from other inputs).
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Suppose CH is a (`1, `2)-splittable channels, where CH = CH1‖CH2 and CH1 : {0, 1}`1 → Y1 and CH2 :

{0, 1}`1 → Y2. Then there always exist families of codes with encoders Enc1 : M(n)
1 → {0, 1}n.`1 and

Enc2 : M(n)
2 → {0, 1}n.`2 and achievable rates R1 ≤ CCH1

and R2 ≤ CCH2
respectively that achieve the

capacity of CH when used together for encoding over CH1.

The only assumption made about the wiretap channel for the KXtX construction is that it is (`1, `2)-

splittable (in the sense of [12]). A (`1, `2)-splittable wiretap channel is denoted as WT : {0, 1}`1+`2 →

{0, 1}t1+t2×{0, 1}w1+w2 (both receiver T : {0, 1}`1+`2 → {0, 1}t1+t2 and adversary channels W : {0, 1}`1+`2 →

{0, 1}w1+w2). For a message spaceM = {0, 1}b, an (`1, `2)-splittable wiretap channel, and a shared key K of

d2 bits, let {hs|s ∈ S} be a family of pair-wise Universal hash functions where hs : {0, 1}d1+d2× → {0, 1}b for

uniformly random seed s. Let ECC1 : {0, 1}d1 → {0, 1}`1 and ECC2 : {0, 1}b → {0, 1}`2 be appropriate error

correcting codes for satisfying reliability for the legitimate receiver channel. For unifirmly selected public

seed S, the KXtX[hS ,ECC1,ECC2] construction consists of an encoding and decoding functions as follows

1. Encryption:

KXtX.enc[hS ,ECC1,ECC2](K,m) = ECC1(D)‖ECC2

(
m⊕ hS(D‖K)

)
,

where D
$← {0, 1}d1 .

2. Decryption: The received block Y is parsed to obtain (Y1, Y2).

KXtX.dec(K,Y ) = ECC2.dec(Y2)⊕
(
hS(ECC1.dec(Y1)‖K)

)
.

• Reliability: Suppose the receiver channel splits as T : T1‖T2. If ECC1 is a good ECC for T1 and ECC2

is a good ECC for T2 then KXtX[hS ,ECC1,ECC2] is decryptable. This is given in Theorem B.4.1.

• Security: In the KXtX construction, the adversary channel splits as W : W1‖W2. The randomness D

is first encoded over W1 (this is for collecting randomness from W1), and then concatenated with the

key and hashed to encrypt the message which will be encoded over W2. This part collects randomness

from the channel proportional to its length. The construction combines the key randomness with the

collected randomness from W1 and W2 to hides the message. Lemma B.4.1 captures how much ran-

domness is collected by sending random D over W1. Distinguishing security of KXtX[hS ,ECC1,ECC2]

is proved in Theorem B.4.2 using lemma B.4.2 that is the average-case version of Lemma 5.1 and

1The achievable rate of such a combined code is R1 + R2. On the other hand, by the application of chain rule for mutual
information in the definition of capacity, one can show the capacity of such a channel is upper bounded by CCH = CCH1

+ CCH2
.

Therefore, it is always possible to find R1 ≤ CCH1
and R2 ≤ CCH2

such that R1 +R2 = CCH.
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enables conditioning on view of the adversary from the encoded block over W1. The two sources of

randomness in this construction are channel randomness from W1 concatenated with the random key,

(which means this source is itself concatenation of two randomness sources) and W2 randomness.

• Capacity Achieving: We show that the KXtX construction achieves the capacity of the keyed wiretap

channel with weakly symmetric channels when error correcting codes are from families that achieve

the capacity of the main channel T and the length of random string D is sufficient (with respect to

Theorems B.4.3.

In the following we describe the choice of parameters in the proposed encoding system to meet the desired

reliability and security requirements. We then find the achievable rate of the encryption system and show it

achieves the secrecy capacity of weakly symmetric splittable wiretap channels.

Decryptability of KXtX

Consider a receiver channel T of the form T = T1‖T2 where T1 : {0, 1}`1 → {0, 1}t1 with Shannon capacity

CT1 , and T2 : {0, 1}`2 → {0, 1}t2 with Shannon capacity of CT2 . Let ECC
(n)
1 : {0, 1}d1(n) → {0, 1}n.`1 be

a family of error correcting codes indexed by n for channel T1, with decryption function ECC1.dec(n) and

decryption error σ1(n) and ECC
(n)
2 : {0, 1}b(n) → {0, 1}n.`2 be a family of error correcting codes indexed by

n for channel T2, with decryption function ECC2.dec(n) and decryption error σ2(n).

The decryption algorithm parses the received ciphertext into its first n.t1 bits Y1, and its last n.t2 bits

Y2. The decoder of ECC
(n)
1 decodes D from Y1, and the decoder of ECC

(n)
2 decodes m ⊕ hS(D‖K) from Y2.

Finally, message m is obtained from the XOR of the two parts. Note that K is the shared key and known

by the receiver.

Theorem B.4.1 (Reliability of KXtX). Let KSEnc
(n)
S = KXtX.enc[hs,ECC

(n)
1 ,ECC

(n)
2 ] be a keyed seeded

encryption function, where ECC
(n)
1 and ECC

(n)
2 are described above. Then the decryption function for KSEnc

is KSDecS = KXtX.dec[hs,ECC
(n)
1 ,ECC

(n)
2 ] with decryption error at most σ1(n)+σ2(n) and limn→∞ σ1(n)+

σ2(n) = 0

Proof. Using the union bound, the decryption error is bounded by bounded by (σ1(n) + σ2(n)), where

limn→∞ σ1(n) = limn→∞ σ2(n) = 0 for (reliability) capacity-achieving codes ECC
(n)
1 and ECC

(n)
2 .

Distinguishing security of KXtX

Consider a message space M = {0, 1}b(n), a shared secret key of rate 0 ≤ RK ≤ 1 and a wiretap channel

with an (`1, `2)-splittable main channel T = T1‖T2 and wiretapper’s channel W = W1‖W2, such that
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T1 : {0, 1}`1 → {0, 1}t1 , T2 : {0, 1}`2 → {0, 1}t2 , W1 : {0, 1}`1 → {0, 1}w1 and W2 : {0, 1}`2 → {0, 1}w2 ,

where H∞(W1) ≥ ν1 and H∞(W2) ≥ ν2. Let {hs|s ∈ S} for a uniformly random S, be a family of

pair-wise universal functions hs : {0, 1}d1(n)+n.RK → {0, 1}b(n), and ECC1 : {0, 1}d1(n) → {0, 1}n.`1 and

ECC2 : {0, 1}b(n) → {0, 1}n.`2 be error correcting codes for T1 and T2 respectively. The following theorem

shows the security of the KXtX.

Theorem B.4.2. [Security of KXtX] For the described setting above, the keyed encryption scheme

KSEnc = KXtX[hS ,ECC1,ECC2], provides ε(n)-distinguishing security, i.e.,Advds(KSEnc; Wn) ≤ 2ε(n)

when parameters satisfy

n.RK + d1(n) + n.ν1 + n.ν2 ≥ n.w1 + n.w2 + 2log(
1

ε(n)
).

To prove Theorem B.4.2, we need to prove two lemmas. In Lemma B.4.1 we find a lowerbound on

the average conditional min-entropy of a uniformly distributed random variable X given CH
(
F(X)

)
, where

CH(·) is the probabilistic map of the channel, and F(·) is an arbitrary injective function. In the proposed

construction, F(·) will be realized by an error correcting code and X will be realized by a uniformly random

variable that is transmitted over the channel to collect randomness from it for hiding the message. The

intuition is that sending a string over the channel results in a noisy version of the string that has some

min-entropy related to the channel’s randomness (i.e., channel’s min-entropy). This min-entropy however is

partially leaked. The remaining min-entropy can be extracted and used in hiding the message. Lemma B.4.1

gives a lower-bound on the amount of this remaining min-entropy.

In Lemma B.4.2, we prove the average case version of Lemma 5.1 for a null randomness and, bound

the statistical distance of CH
(
F(X)

)
with uniform distribution conditioned on a third random variable V

dependant on X. In the proposed construction, V is realized by the view of the wiretapper from the

transmitted dummy message.

Lemma B.4.1. Let F : {0, 1}d → {0, 1}` be an injective function for d < ` and X ∈ {0, 1}d be an independent

uniformly distributed random variable. For a channel CH : {0, 1}` → {0, 1}w with H∞(CH) ≥ ν, let Z =

CH(F(X)), then the average conditional min-entropy of X|Z is bounded as

H̃∞(X|Z) ≥ d+ ν − w.
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Proof. We start with the definition of average conditional min-entropy of X|Z.

H̃∞(X|Z) = − logEz max
x

Pr[X = x|Z = z] (B.3)

= − logEz max
x

Pr[X = x] ·CH(F(x), z)

Pr[Z = z]
(B.4)

= − logEz max
x

Pr[X = x] ·CH(F(x), z)

CH(F(X), z)
(B.5)

= − logEz max
x

Pr[X = x] ·CH(F(x), z)∑

x∈{0,1}d
Pr[X = x].CH(F(x), z)

(B.6)

≥ − log 2−νEz
1∑

x∈{0,1}d
CH(F(x), z)

(B.7)

= − log 2−ν
∑

z∈{0,1}w

Pr[Z = z]∑

x∈{0,1}d
CH(F(x), z)

(B.8)

= − log 2−ν
∑

z∈{0,1}w

CH(F(X), z)∑

x∈{0,1}d
CH(F(x), z)

(B.9)

= − log 2−ν
∑

z∈{0,1}w

∑

x∈{0,1}d
Pr[X = x] ·CH(F(x), z)

∑

x∈{0,1}d
CH(F(x), z)

(B.10)

= − log 2−ν−d
∑

z∈{0,1}w
1 (B.11)

= − log 2−ν−d+w = ν + d− w (B.12)

where (B.4) follows from (B.3) using the Bayes rule. Subsequently (B.5) is obtained from (B.4) by sub-

stituting Pr[Z = z] with CH(F(X), z). Next in (B.6), CH(F(X), z) in the denominator is expanded to
∑

x∈{0,1}d
Pr[X = x] · CH(F(x), z). Since X is uniformly distributed, Pr[X = x] = 2−d which cancels from

the denominator and nominator and since max
y,z

CH(y, z) ≤ 2−ν , we have (B.7). The average probability

over Z is calculated in (B.8). Then Pr[Z = z] is replaced by CH(F(X), z) in (B.9) and then expanded

to
∑

x∈{0,1}d
Pr[X = x] · CH(F(x), z) in (B.10). Finally, we get (B.12) by using Pr[X = x] = 2−d and

∑

z∈{0,1}w
1 = 2w.

Lemma B.4.2. Let {hs|s ∈ S} be a family of pair-wise Universal hash functions hS : {0, 1}d → {0, 1}b for

uniform S and F : {0, 1}b → {0, 1}` be an injective function (` ≥ b). For channel CH : {0, 1}` → {0, 1}w,

where H∞(CH) ≥ ν, a random variable, X ∈ {0, 1}d, and a random variable V ∈ {0, 1}∗ possibly dependent

177



on X and not dependent on the channel, suppose H̃∞(X|V ) + ν ≥ w + 2 log( 1
ε ) and b ≥ H̃∞(X|V ). Then

SD

((
S, V,CH

(
F
(
hS(X)

)))
;

(
S, V, Uw

))
≤ ε. (B.13)

Proof. From Lemma 5.1, by letting D = null and d1 = 0, for H∞(X) + ν ≥ w + 2 log( 1
ε ) and b ≥ H∞(X),

we have

SD

((
S,CH

(
F
(
hS(X)

))
;

(
S,Uw

))
≤ ε, (B.14)

To prove (B.13), consider an arbitrary value V = v and apply the above result for random variable

X|(V = v) instead of X, we have

SD

((
S,F

(
hS(X|V = v)

))
;
(
S,Uw

))
≤
√

2−H∞(X|V=v)−ν+w.

Taking expectation over v on both sides yields

SD

((
S,F

(
hS(X|V = v)

))
;
(
S,Uw

))
≤ Ev

(√
2−H∞(X|V=v)−ν+w

)

≤
√
Ev

(
2−H∞(X|V=v)−ν+w

)

=
√

2−H∞(X|V=v)−ν+w

≤ ε

where the second inequality follows from applying Jensen’s inequality to the function f(x) =
√
x, and the

equality follows directly from the definition of conditional min-entropy H̃∞(X|V ).

We use Lemma B.4.1 and Lemma B.4.2 to give a direct security proof for the KXtX construction in the

wiretap setting.

Proof of Theorem B.4.2. Let

∆(m0,m1) = SD

((
S,Wn

(
KSEncS(m0, k)

))
;
(
S,W

(
KSEncS(m1, k)

)))
,

and

Γ(m) = SD

((
S,Wn

1

(
ECC1(D)

)
,Wn

2

(
KXtX(K,m)

))
;
(
S,Wn

1

(
ECC1(D)

)
, Unw2

))
.

Then

Advds(KSEnc; Wn) = max
m0,m1

∆(m0,m1),
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and

∆(m0,m1) = SD

((
S,Wn

1

(
ECC1(D)

)
,Wn

2

(
KXtX(m0, k)

))
;

(
S,Wn

1

(
ECC1(D)

)
,Wn

2

(
KXtX(m1, k)

)))

≤ SD

((
S,Wn

1

(
ECC1(D)

)
,Wn

2

(
KXtX(m0, k)

))
;
(
S,Wn

1

(
ECC1(D)

)
, Unw2

))

+ SD

((
S,Wn

1

(
ECC1(D)

)
, Unw2

)
;
(
S,Wn

1

(
ECC1(D)

)
,Wn

2

(
KXtX(m1, k)

)))

= 2Γ(m).

Now we bound Γ(m). In the described setting, the eavesdropper receives Wn
1 (ECC1(D)) through its channel.

From Lemma B.4.1

H̃∞
(
D|Wn

1

(
ECC1(D)

))
≥ d1(n) + n.ν1 − n.w1.

The independent random key K of rate RK is concatenated to D, and so

H̃∞
(
(D‖K)|Wn

1

(
ECC1(D)

))
≥ n.RK + d1(n) + n.ν1 − n.w1.

Now since d1(n) satisfies

n.RK + d1(n) + n.ν1 + n.ν2 ≥ n.w1 + n.w2 + 2log(
1

ε(n)
) + 2 (B.15)

⇒ H̃∞
(
(D‖K)|Wn

1

(
ECC1(D)

))
+ n.ν2 ≥ n.w2 + 2log(

1

ε(n)
) + 2. (B.16)

From Lemma B.4.2 for any message m

SD

((
S,Wn

1

(
ECC1(D)

)
,Wn

2

(
KXtX(K,m)

))
;
(
S,Wn

1

(
ECC1(D)

)
, Unw2

))
< ε(n)/2.

Therefore, for any m0 and m1,

∆(m0,m1) ≤ 2Γ(m) ≤ ε(n).
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Achieving secrecy capacity using KXtX

In the following we show KXtX construction is capacity-achieving for keyed wiretap channels with weakly

symmetric main and wiretapper’s channels.

Theorem B.4.3. In the described (`1, `2)-splittable wiretap channel WT with the shared secret key of rate

0 ≤ RK ≤ 1, suppose an injective ECC
(n)
1 : {0, 1}d1(n) → {0, 1}n.`1 and ECC

(n)
2 : {0, 1}d2(n) → {0, 1}n.`2

in the KXtX construction achieve rates R1 and R2 respectively such that R1 + R2 = CT. For degraded

weakly symmetric T and W, the secrecy capacity of the keyed wiretap setting is achievable by KSEnc =

KXtX∗[hS ,ECC1,ECC2]

Proof of Theorem B.4.3. From the definition of weakly symmetric channels (see Section 6.2), it is easy to

see that when W = W1‖W2 is a weakly symmetric channel, then each of W1 and W2 is a weakly symmetric

(suppose one of W1 or W2 is not weakly symmetric, then W cannot be symmetric). Suppose the distribution

of Wn
1 for a reference vector ynr ∈ {0, 1}n.`1 is V n, and the distribution of Wn

2 for a reference vector ŷnr ∈

{0, 1}n.`2 is V̂ n. Since W1 and W2 are weakly symmetric, then Wn
1 and Wn

2 are weakly symmetric. Then

the output of the two channels for any input yn 6= ynr ŷ
n 6= ŷnr is a permutation of V n and V̂ n, say τyn(V n)

and τŷn(V̂ n), respectively. Since the channels are DMCs, V n, and V̂ n are vectors of n independent random

variables. Moreover, H(V n) = n ·H(V ) and H(V̂ n) = n ·H(V̂ ). Suppose Vε1(n) is the random variable that

achieves the ε1-smooth min-entropy of V n and V̂ε2(n) is the random variable that achieves the ε2-smooth

min-entropy of V̂ n i.e.,

Hε1(n)
∞ (V n) = max

Vε1(n):SD(V n,Vε1(n))≤ε1(n)
H∞(Vε1(n)),

and

Hε2(n)
∞ (V̂ n) = max

V̂ε2(n):SD(V̂ n,V̂ε(n))≤ε2(n)
H∞(V̂ε2(n)).

From Lemma 6.1 we have

H∞(Vε1(n)) = Hε1(n)
∞ (V n) ≥ n.H(V )− nδ1(n), (B.17)

where δ1(n) = log(2`1 + 3).
√

2log 1
ε1(n)/n and

H∞(V̂ε2(n)) = Hε2(n)
∞ (V̂ n) ≥ n.H(V̂ )− nδ2(n), (B.18)

where δ2(n) = log(2`2 + 3).
√

2log 1
ε2(n)/n.

Now consider a virtual channels Wε1(n) : {0, 1}n.`1 → {0, 1}n.w1 and Ŵε2(n) : {0, 1}n.`2 → {0, 1}n.w2 as

180



follows: the output distribution of W1 for yr
n ∈ {0, 1}n.`1 is Vε1(n) and for any yn 6= ynr the distribution is

τyn(Vε1(n)) and the output distribution of W2 for ŷnr ∈ {0, 1}n.`2 is V̂ε2(n) and for any ŷn 6= ŷnr the distribution

is τŷn(V̂ε2(n)). The virtual channels Wε1(n) and Ŵε2(n) are weakly symmetric channel by definition.

Now let d1(n) satisfy

n.RK + d1(n) +H∞(Vε1(n)) +H∞(V̂ε2(n)) ≥ n.w1 + n.w2 + 2log(
1

ε(n)
) + 2. (B.19)

Since W1 and W2 are weakly symmetric, CW1
= w1 −H(V1) and CW2

= w2 −H(V2). Therefore, from

(B.17) and (B.18), To satisfy (B.19), it is sufficient for d1(n) to satisfy the bound (B.20) below,

d1(n) ≥ n.CW −
√
n

[
log(2`1 + 3).

√
2log

1

ε1(n)
+ log(2`2 + 3).

√
2log

1

ε2(n)

]

− 2logε1(n).ε2(n)− n.RK + 2. (B.20)

The application of Theorem B.4.2 and triangular inequality yeilds that the KXtX construction with the

given choice of d1(n) gives Advds(KSEnc; Wn) ≤ 2ε(n).

The corresponding rates of ECC1 and ECC2 are R1 and R2 respectively, where R1 + R2 = CT. The

achievable rate of the construction is R = R2 = limn→∞
b(n)
n . By substituting d1(n) from ( B.20) we have

lim
n→∞

d(n)

n
≥ CW −RK

⇒ R1 ≥ CW −RK

⇒ CT −R2 ≥ CW −RK

⇒ R2 ≤ CT − CW +RK .

From Shannon’s coding theorem we have R ≤ CT. The combination of the latter two inequalities completes

the proof,

R ≤ min
(
[CT − CW] +RK ,CT

)

where the upper bound is achieved when d1(n) in (B.20) is set to its minimum.

The XtX construction.

The KXtX construction reduces to the XtX construction for RK = 0.
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1. Encoding:

XtX.enc[hS ,ECC1,ECC2](m) = ECC1(D)‖ECC2

(
m⊕ hS(D)

)
,

where D
$← {0, 1}d1 .

2. Decoding: In the XtX construction the received block Y is parsed to obtain (Y1, Y2).

KXtX.dec(Y ) = ECC2.dec(Y2)⊕
(
hS(ECC1.dec(Y1))

)
.

The security of this wiretap construction follows from Theorem B.4.2 by letting RK = 0. Note that since

the security proof of Theorem B.4.2 holds for any (`1, `2)-splittable DMC, this special case is a semantically

secure modular wiretap encoding scheme for any (`1, `2)-splittable DMC. The asymptotic achievable rate of

this construction for a splittable wiretap channel with weakly symmetric main and wiretapper’s channels,

according to Theorem B.4.3 and letting Rk = 0, is CT − CW which is the secrecy capacity of a degraded

wiretap channel with weakly symmetric main and wiretapper’s channels.

B.4.2 Regular Channels

Suppose |X | = q is a prime power. This allows one to endow |X | with the structure of the Galois field GF (q).

The additive group of GF (q) acts on Y as a permutation; that is each element x ∈ X defines a permutation

τx on the set Y with the property

τx(τ ′x(y)) = τx+x′(y)

for all x ∈ X , x′ ∈ X , y ∈ Y. Then the channel is called regular if the probability Pr(y|x) depends only on

τx(y).

Remark B.4.1. It turns out that regular channels are symmetric [37]. But, no all symmetric channels are

regular as the input size of a regular channel is always a prime power while symmetric channels’ input size

is arbitrary. However, a (weakly) symmetric channel on a binary alphabet is a regular channel.

Lemma B.4.3. Let CH : {0, 1}b → {0, 1}` be a symmetric channel and let W be the transition probability

matrix of CH. Then there exists a family {τm}m∈{0,1}b of functions τm : {0, 1}` → {0, 1}` such that τ0b is

the identity permutation on {0, 1}`, and for all m,m′ ∈ {0, 1}b, and y ∈ {0, 1}`,

τm⊕m′(y) = τm(τm′(y)),

Proof. Since the channel is symmetric, all rows are permutations of the first row. Then for any pair of
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m,m′ ∈ {0, 1}b and y ∈ {0, 1}`, there exists a y′ ∈ {0, 1}` such that W(m, y) = W(m′, y′). We define the

family {τm}m∈{0,1}b of functions τm : {0, 1}` → {0, 1}` as follows:

τm⊕m′(y) = y′.

Since W(m, y) = W(m, y), then τm⊕m(y) = τ0b(y) = y. Moreover, τm(·) is self-inverse, that is, τm(τm(y)) =

y.

For any m′ and y, there exists y′ such that W(0b, y) = W(m′, y′) and therefore τm′(y) = y′ and

τm′(y
′) = y which implies W(m′, y) = W(0b, y′).

From the symmetry of the channel, for any m, y′, there exists y∗ such that W(0b, y′) = W(m, y∗). This

implies y∗ = τm(y′) (due to the definition of τ(·)) and since y′ = τm′(y),

y∗ = τm(τm′(y))

On the other hand, for any m, m′ and y, there exists ȳ such that W(m′, y) = W(m, ȳ) then ȳ = τm⊕m′(y)

and since W(m′, y) = W(0b, y′) = W(m, y∗). Then y∗ = ȳ and therefore τm⊕m′(y) = τm(τm′(y)).

B.5 Appendix of Chapter 7

B.5.1 LHL for Average Smooth Min-entropy

Lemma B.5.1. Let family {hs|s ∈ S} of functions hs : {0, 1}n → {0, 1}` be a 2-UHF. Then for possibly

correlated random variables X ∈ {0, 1}n, V ∈ {0, 1}t and Z ∈ {0, 1}∗,

SD((S,Z, V, hS(X)); (S,Z, V, U`)) ≤ 2ε+
1

2

√
2`+t−H̃ε∞(X|Z).

Proof. From the average-case version of LHL in [45, Lemma 2.3] we have

SD((S,Z, V, hS(X)); (S,Z, V, U`)) ≤ 2ε+
1

2

√
2`−H̃∞(X|Z,V ),

and then for V ∈ {0, 1}t from [45, Lemma 2.2(b)] we have

H̃∞(X|Z, V ) ≥ H̃∞(X|Z)− t,
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and therefore

SD((S,Z, V, hS(X)); (S,Z, V, U`)) ≤ 2ε+
1

2

√
2`+t−H̃∞(X|Z).

Since H̃ε
∞(X|Z) = max

(X̂,Ẑ):SD((X,Y );(X̂,Ẑ))≤ε
H̃∞(X̂|Ẑ), we have SD(Z; Ẑ) ≤ ε and SD(X; X̂) ≤ ε and therefore,

SD(hS(X);hS(X̂)) ≤ ε. We have

SD((S,Z, hS(X)); (S,Z, U`))

≤ SD((S,Z, hS(X)); (S,Z, hS(X̂)))

+ SD((S,Z, hS(X̂)); (S, Ẑ, hS(X̂))

+ SD((S, Ẑ, hS(X̂)); (S,Z, U`))

≤ 2ε+
1

2

√
2`−H̃∞(X̂|Ẑ).
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Appendix C

Generalized KEM and its Combiners

Abstract. Public-key encryption systems have restricted message spaces. A hybrid encryption

system uses a public key part known as key encapsulation mechanism (KEM), and a symmetric

key part known as data encapsulation mechanism (DEM), to obtain a public-key encryption

system for arbitrary length messages: KEM establishes a shared key between the sender and the

receiver, which is used by the symmetric key part to encrypt the actual message. KEM/DEM

paradigm is widely used for securing the Internet communication.

In this paper we make a direct connection between a KEM and a one-message secure key estab-

lishment protocol, and initiate the study of information theoretic KEM, or iKEM for short. We

introduce the framework of generalized KEMs (gKEM) that includes iKEM and computational

KEM as special cases, and define its security. We construct an iKEM and prove its security with

respect to the iKEM specialization of the gKEM framework. Finally, we define gKEM combin-

ers that combine an iKEM and a traditional KEM, and guarantee that the security of the final

combined gKEM will hold if one of the two ingredient gKEMs remains secure. We also give two

black-box constructions of such combiners, and prove their security.

iKEMs significantly expand the range of available KEMs that provide post-quantum security, by

constructing iKEMs from information theoretic and quantum theoretic secure key establishment

protocols. The combination of iKEM with computational KEMs give an elegant approach to

improving robustness of computational KEMs that rely on new and less scrutinized computational

assumptions. We discuss our results and directions for future work.
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C.1 Introduction

Public-key encryption (PKE) schemes were proposed in the seminal paper of Diffie and Hellman [40], and

are one of the essential cryptographic primitives for securing the Internet.

Security of encryption schemes in general is defined against chosen plaintext attack (CPA) and chosen

ciphertext attack (CCA), and is modelled as security against an adversary with access to two types of oracles,

encryption oracle that allows the adversary to query messages of their choice and receive the corresponding

ciphetexts, and decryption oracle that allows the adversary to sample and query points in the ciphertext

space, and see the corresponding message, or receive an error symbol if the sampled point does not correspond

to a valid ciphertext. The security goal is commonly formulated as the probability of distinguishing the

ciphertext of two messages that are chosen by the adversary with access to one or both of the oracles

above, at the end of playing the indistinguishability game (See Figure C.1). In the case of PKE schemes,

the adversary has access to the public key and so can see the ciphertext of any message of its choice. A

widely accepted notion of security in this case is security against adaptive chosen ciphertext attack (CCA2

security) which gives the adversary access to the decryption oracle, before and after the challenge ciphertext

is presented to the adversary. An adaptive adversary chooses each query using their previous queries and

their corresponding responses. Chosen-ciphertext security is essential for providing security against active

adversaries in protocols for authentication [47, 49] and key exchange [125]. (In symmetric key encryption

schemes both types of queries are considered extra capability for the adversary.)

Hybrid encryption and KEM/DEM framework. A PKE scheme is defined for a restricted message

space that depends on the security parameter and the public key. In practice however, message sizes are

unrestricted and one needs to extend the domain of the encryption function while maintaining strong security.

One way of achieving this goal is by using a hybrid encryption scheme that, loosely speaking, uses a public

key component to establish a shared key between Alice and Bob, and then use the key to encrypt the message

using a symmetric key encryption system. These two parts are called key encapsulation mechanism (KEM),

and data encapsulation mechanism (DEM), respectively. Cramer and Shoup formalized security of a hybrid

encryption scheme [31]. They noted that the key encapsulation mechanism (KEM) is a public-key encryption

scheme, where the goal of the encryption algorithm is to generate the encryption of a random key k that

is decryptable by the receiver. The KEM outputs are a key k, that is stored locally (and is computable by

the receiver), and a ciphertext c that is sent to the receiver to allow them to recover k. Data Encapsulation

mechanism (DEM) is a highly efficient symmetric key algorithm that uses the established key to encrypt the

message.

Cramer et al. defined the required security notions for KEM and DEM and proved ([31, Theorem 5])
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that if KEM and DEM are secure against adaptive CCA attacks, then so will be the resulting hybrid PKE

(sufficient condition). DEM in practice is implemented using an efficient and secure block cipher such as AES.

The KEM/DEM paradigm provides a neat way of constructing efficient and practical public-key encryption

schemes for arbitrary length messages, and so has received significant attention in recent years. Because of

their simplicity and modular approach they have been incorporated into standards for encryption (see, e.g.,

[129], and numerous KEM schemes have been proposed in literature [22, 31, 38, 126, 127]).

KEM combiners. Cryptographic combiners have been used to combine multiple cryptographic primitives

(called ingredient or component primitives) that have the same functionality, into a single system that

provides the same functionality, with the property that the security of the combined scheme holds, if at least

one of the ingredient schemes is secure. The main motivation for using combiners is providing robustness

against possible insecurity of the ingredient primitive, and gives a prudent approach toward providing robust

security. Another strong motivation for using combiner stems from the challenging task of choosing among

multiple schemes that provide the same functionality, but use different computational assumptions and/or

ideal objects in their security proof. By using a combiner to combine the primitives, one will avoid the need

for making such a decision. The combiners however increase the cost of a protocol because of the redundancy

of running multiple protocols with the same functionality.

Combiners have been used for combining encryption systems and message authentication codes [3, 42, 70],

and more recently for combining KEMs [55], which is a very well motivated application of combiners because

KEM has been widely used for securing communication over the Internet but recent advances in quantum

technologies has rendered all the widely used encryption algorithms such as RSA, and the KEM constructions

that are based on them, insecure. Furthermore, existing proposals for quantum-safe KEM schemes rely on

new and less understood computational assumptions such as isogenies [36] and Ring Learning with Error

[104]. Using KEM combiners provides an elegant method of adding robustness to quantum-safe KEMs and

allowing security of the combined KEM to rely on more than one computational assumption. Giacon, Heuer

and Pottering [55] proposed efficient black-box constructions for KEM combiners that combine multiple

ingredient KEMs into a single KEM, such that the resulting KEM provides CCA security as long as at least

one of the ingredient KEMs is CCA secure.

Information Theoretic KEM. A KEM uses a pair of encapsulation and decapsulation algorithms to

establish a shared key between Alice and Bob: KEM.enc algorithm generates the pair (c, k), where k is the

shared key that will be held by Alice, and will be recovered by Bob by applying KEM.dec algorithm to c.

Security of the key is defined using an indistinguishability game where the adversary’s goal is to distinguish

the key k from a random string, against a polynomially bounded attacker with oracle access to KEM.dec
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algorithm. KEM is a public key primitive and so access to KEM.enc is free.

We ask, (i) if KEM functionality can be defined in information theoretic setting with security against a

computationally unbounded adversary, and (ii) in the case of affirmative answer to (i), if one can combine

an iKEM with traditional computational KEMs. We refer to an information theoretic KEM, as iKEM.

Our main insight in answering the first question is by connecting the KEM functionality to the well-studied

problem of two-party key establishment with security against a computationally unbounded adversary.

Information theoretic Secure Key Agreement (SKA). A KEM can be seen as a one message public

key establishment protocol: Alice uses public key of Bob to send a message to him that establishes a shared

key between the two parties. Information theoretic SKA has been widely studied in a number of settings

[2, 44, 92]. Maurer showed [92] that information theoretic key agreement is possible only if Alice and Bob

hold correlated variables X and Y , about which Eve may have partial information Z. This is also intuitive

as without any correlated variable, and in absence of any computation bound, Eve can always simulate

the view of Bob. The initial correlation is usually provided through a physical process, such as each party

having access to the output of a noisy channel. SKA protocols use message transmission over public channel

to convert this initial correlation into a shared secret key that is indistinguishable from a random value to

the adversary. The adversary can be passive, in which case the public channel is authenticated [2, 92], or

active [46, 79, 88] in which the adversary can tamper with the communication. A one message SKA has the

functionality of a KEM, staring with an initial setup where Alice and Bob (and Eve) has samples of correlated

variables, instead of KEM where Bob has a public and private key pair, and the public component is known

by Alice and Eve. The KEM.enc and KEM.dec are the explict computation of Alice and Bob in this one

message SKA. In this paper we generalize KEM definition to gKEM that includes iKEM and computational

KEM as special cases and allows us to treat both of them similarly, design an iKEM and prove its security,

and construct KEM combiners that combine an iKEM and a computational KEM.

Making a clean connection between KEM and information theoretic SKA significantly expands the range

of available KEMs with post-quantum security and allows iKEMs that are based on physical layer as-

sumptions (including SKA that use quantum theoretic assumption to generate the initial correlation) to be

considered in the combiner. It also elegantly addresses the following challenges.

1. The initial correlation in Information theoretic SKA is usually obtained through physical layer pro-

cesses. For example Maurer [92] considered a setting where a random sequence is broadcasted by a

satellite, and received by Alice, Bob and Eve, through their own respective noisy channels. A similar

setting has been used in a wireless local area network where a beacon transmits the sequence. The

correlation in these cases is modelled by a sequence of independent samples of a public probability
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distribution PXY Z . This modelling of physical process of correlation generation effectively assumes

that, in addition to Alice’s and Bob’s receptions, the Eve’s reception of the broadcasted signal can be

correctly estimated. Although Alice’s and Bob’s channels can be accurately modelled, correct estima-

tion of Eve’s channel could raise challenges. A secure combiner for iKEM and a computational KEM

guarantees that the final key will be at least protected by a computational assumption.

2. SKA with information theoretic security provides security against offline attack. An off-line attacker

can store all the communications and attempt to recover the message at a later time, either by applying

sufficient computation, or leaving it for a future time when such computation becomes available. A

computationally secure KEM/DEM will allow this attacker to find the key that is established by the

KEM and decrypt the message that is encrypted by DEM. Using iKEM, as long as the initial correlation

is correctly modelled, capturing transcript of the protocol will not allow such an offline attack. This

follows from the security definition of SKA that requires the protocol transcript to be (statistically)

independent from the final derived key. Using iKEM effectively forces Eve to break the symmetric key

part of DEM.

C.1.1 Contributions

We define gKEM (Generalized KEM) for a generalized initial setup defined by public and private keys

for Alice and Bob, and partial leakage of private keys to Eve, against a general adversary that can be

computationally unbounded or bounded. We allow the adversary to query a KEM.enc and/or a KEM.dec

oracle. Our general definition can be specialized to iKEM and computational KEM. We give the construction

of an iKEM that satisfies our security definition of gKEM when specialized to the information theoretic

setting. We define gKEM combiners and give two black-box combiners for gKEM, XOR combiner and

PRF-then-XOR combiner, and prove their security.

Defining gKEM. A gKEM gK = (gK.gen, gK.enc, gK.dec), consists of three algorithms, where gK.gen is

a randomized algorithm that takes a security parameter, and a second input Θ which is the description

of a process that will use the security parameter and outputs a triplet of “correlated” random strings

(rA, rB , rE) that will be privately given to Alice, Bob and Eve, respectively. We allow Alice and Bob to

publish (randomized) functions of their private inputs. If there is no initial leakage to Eve, we have rE = 0 .

In a traditional KEM, Θ is the description of the KEM.Gen(·) algorithm and uses the security parameter to

generate rA = pkB , rB = (skB , pkB), and rE = (sk′B), where (skB , pkB) are the public and private keys of

Bob, assuming the gK.enc will be used by Alice, and sk′b models possible initial leakage of Bob’s private key

to Eve which will be set to 0 if Bob’s private key is perfectly secret (this is what is assumed in computational
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KEM). Bob will publish pkB).

In information theoretic setting Θ will be the description of a family of mathematical models of prob-

abilistic physical processes that will depend on the iKEM. For the iKEM in Section C.3.2 the physical

process can be modelled by taking repeated independent samples of a public distribution PXY Z , where the

number of samples will depend on the security parameter. Another widely studied initial setup for SKA is

known as fuzzy extractors where the correlation is expressed as distance between vectors. The randomized

algorithm gK.enc and deterministic algorithm gK.dec are defined similar to the corresponding algorithms in

computational KEMs, using the private inputs of Alice and Bob, as well as the published values.

Security of gKEM is defined by an indistinguishability game where the attacker must distinguish between

a key that is the encoded key using gK.enc, and a random string of the same length, and is measured by

using the advantage of the adversary in the game. In the computational setting, the adversary algorithm is

computationally bounded (polynomially), while in information theoretic setting there is no computational

bound on the adversary’s computation. The adversary’s power is defined by their access to gK.enc and gK.dec

oracles. In information theoretic setting the two oracles hold Alice’s and Bob’s private inputs, respectively.

We refer to an attack with access to the encapsulation oracle by EnA and with access to the decapsulation

oracle by CCA in this setting. In computational setting however, gK.enc uses Bob’s public key and so access

to it will be free, and adversary’s oracle access will be to gK.dec.

A Secure iKEM. In Section C.3.2, we construct an iKEM where Θ describes a family of a public distributions

PXY Z , and gK.gen chooses an appropriate member for a given security parameter. This results in a setting

where Alice, Bob and Eve have private random variables X, Y and Z, respectively, correlated according to a

public distribution PXY Z . The iKEM uses two families of strongly universal hash functions H = {hs}s∈S and

H′ = {h′s′}s′∈S′ , with appropriate parameters. The gK.enc(x) algorithm selects a random string and assigns

it to the key k that is stored locally, and uniformly selects two seeds s and s′ for the hash functions, hs(·)

and h′s′(·), respectively. The ciphertext c, that will be sent to the receiver, is given by c = (s, s′, h′s′(k)). The

receiver will use gK.dec(c, y) to recover the key. Theorem C.1 proves the correctness, and Theorems C.2,C.3

and C.4 prove security against three types of adversaries distinguished by their oracle accesses: an adversary

that does not have any oracle access, an adversary that can query the encapsulation oracle qe times, and an

adversary that can query the decapsulation oracle qc times, respectively.

The proofs show that the achievable length of the secret key reduces as the number of queries grow and

approach zero after certain number of queries. This is expected as each query reveals part of the private

information of Alice and Bob to Eve.

For a key length `, Theorems C.3 and C.4 also show that if correctness error is smaller than 2−` the
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achievable secure key length for q encapsulation queries is the same as q decapsulation queries. This is also

intuitive because the key length uses the common entropy of Alice’s and Bob’s samples.

Combiners for gKEM. A gKEM combiner combines two gKEMs with the goal of guaranteeing that the

security for the combined gKEM will be at least the security of the ingredient KEMs. We define gKEM

combiners such that when all gKEMs are computational, it becomes identical to the definition of KEM

combiners in [55].

We give two black-box combiners for gKEMs: the XOR combiner that combines the output keys of the

ingredient gKEMs by XORing them together, and the PRF-then-XOR combiner that uses the established

key of each gKEM as the key to a PRF that is applied on the concatenation of ciphertexts of all gKEMS,

and XORs the results. These combiners were studied in Giacon et al. for a computational setting.

The combination of ν computational gKEMs follows the results of Giacon et al: the XOR combiner

retains the CPA security of the computational gKEM (this is when the adversary does not have access to

decryption oracle), and the PRF-then-XOR construction retains the CCA security of the computational

gKEM. (Giacon et al. also proposed an split-key construction that provides CCA security and can be used

here.)

If at least one of the ν gKEMs is information theoretic, the final security will depend on the security of

the iKEM. Theorem C.5 shows that if the iKEM is secure against qe-bounded encapsulation queries (EnA

secure), the XOR combiner will retain this security. If the qe-bounded EnA security does not hold, the

combined gKEM will have the CPA security of the computational gKEM [55, Lemma 1]. Theorem C.6

shows that If the iKEM is qc-bounded CCA secure, then the PRF-then-XOR combiner retains this security

as much as the PRF that is used in the construction allows. That is for the combined KEM K, the iKEM

iK, and the PRF F(·) is the construction of Theorem C.6.

Advkind-qc-cca
K,A ≤ Advkind-cca

iK,B +AdvPRFF,C

If the qc-bounded CCA security does not hold, then the CCA security of the computational gKEMs will be

retained [55, Theorem 3]

We leave tight bounds on security of the combined gKEM if more than one iKEM exists, for future

works.
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C.2 Preliminaries

Notations: We denote random variables (RVs) with upper-case letters, (e.g., X), and their realizations

with lower-case letters, (e.g., x). Calligraphic letters are to denote sets. If S is a set then |S| denotes its

size. UX denotes a random variable with uniform distribution over X and U` denotes a random variable

with uniform distribution over {0, 1}`.

Functions are denoted with sanserif fonts e.g., f(·). We use the symbol ‘←’, to assign a constant value

(on the right-hand side) to a variable (on the left-hand side). Similarly, we use, ‘
$←’, to assign to a variable

either a uniformly sampled value from a set or the output of a randomized algorithm. We denote by x
r← PX

the assignment of a fresh sample from PX to the variable x. We write AO1,O2,...(.) to denote an A that has

access to to oracles O1,O2, ..., and by u← AO1,O2,...(x, y, · · · ) denoting the algorithm taking inputs x, y, · · · ,

and generating output u.

We use n as the security parameter. A non-negative function f(n) is called negligible, if for any polynomial

p(·), there exists an integer N such that for all integers n > N we have f(n) < 1/p(n).

Probability notations and relations. The probability mass function (p.m.f) of an RV X is denoted by PX and

PX(x) = Pr(X = x). For two random variables X and Y , PXY denotes their joint distribution, and PX|Y

denotes their conditional distribution. The conditional probability of a random variable X given that Y takes

a value y with PY (y) > 0, is denoted by PX|Y (x|y) and is given by: PX|Y (x|y) = PXY (x,y)
PY (y) . The expected

value of a random variable X is denoted by E(X) and is given by E(X) =
∑

x∈X
xPr(X = x). Let X be a

non-negative random variable and suppose that E(X) exists. For any a > 0, the Markov’s inequality [110,

Proposition 2.1] holds, that is

Pr(X > a) ≤ E(X)

a
. (C.1)

Definition C.1. The statistical distance between two probability distributions PX and PY , or equivalently

between two corresponding RVs X and Y defined over a common alphabet T , is given by,

SD(X;Y ) = max
W⊂T

(Pr
t
r←PX

(t ∈ W)− Pr
t
r←PY

(t ∈ W))

C.2.1 A public-key Encryption

A public-key encryption scheme Π is given by a triple of algorithms, Π = (Π.Gen,Π.Enc,Π.Dec), where

• Π.Gen(1n), the key generation algorithm, is a probabilistic algorithm that takes a security parameter

n and outputs a pair (pk, sk) of matching public and secret keys, where pk ∈ PK and sk ∈ SK.
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• Π.Enc(pk,m), the encryption algorithm, is a probabilistic algorithm that takes a public key pk and a

message m from a message space, and produces a ciphertext c ∈ C.

• Π.Dec(sk, c) the decryption algorithm, is a deterministic algorithm which takes a secret key sk and

ciphertext c, and produces either a message m, or ⊥, where ⊥ indicates that the ciphertext was invalid.

We denote the decryption of ciphertext c under the secret key sk with Dec(sk, c).

Security of public-key encryption schemes. A secure encryption system provides confidentiality for

encrypted messages. This is formalized by an indistinguishability game between the attacker and a challenger

(See Figure C.1) who may have access to a decryption oracle. The goal of the adversary is to distinguish if the

challenge ciphertext c∗ is the encryption of one of the two messages mb, b ∈ {0, 1}. The game models different

types of attacks, distinguished by the access of the adversary to the decryption oracle. In chosen plaintext

attack (CPA) the adversary does not have access to decryption oracle; we refer to this as 0-query attack also.

The non-adaptive chosen-ciphertext attack (CCA1), and adaptive chosen-ciphertext attack (CCA2) allow the

adversary to have access to the decryption oracle before seeing the challenge ciphertext, and before and after

seeing the challenge ciphertext, respectively. We use the definitions in [10], and define the indistinguishability

game as follows.

Definition C.2. Let Π = (Π.Gen,Π.Enc,Π.Dec) be an encryption scheme and let A = (A1,A2) be an

adversary. For atk ∈ {cpa, cca1, cca2}

Advind-atk
Π,A (n) , |Pr[INDatk-0

Π,A (n) = 1]− Pr[INDatk-1
Π,A (n) = 1]|, (C.2)

where the distinguishing game INDatk-b
Π,A for b ∈ {0, 1} is defined in Figure C.1.

Game INDatk-b
Π,A (n) Oracles O1 and O2

1: (pk, sk)
$← Π.Gen(1n)

2: (st,m1,m0)
$← A

O1(·)
1 (pk)

3: c∗
$← Π.Enc(pk,mb)

4: b′
$← A

O2(·)
2 (c∗, st,m1,m0)

5: Return b′

atk O1(·) O2(·)
cpa ε ε
cca1 Π.Dec(sk, c) ε
cca2 Π.Dec(sk, c) Π.Dec(sk, c)

Figure C.1: Security game INDatk-0
Π,A , where b ∈ {0, 1} and atk ∈ {cpa, cca1, cca2} for defining indistinguisha-

bility of an encryption scheme. Here Oi = ε, where i ∈ {1, 2}, means Oi returns the empty string ε. In the
case of A2 we require that a decryption query c to satisfy c 6= c∗.

A public-key encryption scheme is said to be indistinguishable against a CPA (CCA1, CCA2) attack if

the advantage function in (C.2) is negligible for all adversaries A.
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C.2.2 Hybrid Encryption and KEM

A hybrid encryption system uses a special public-key encryption scheme, known as KEM, to establish a shared

key between Alice and Bob, and uses a symmetric key encryption schemes, known as DEM, to encrypt an

arbitrarily long message. Cramer et al [31, 127] formalised KEM/DEM paradigm for hybrid encryption

schemes, defined adaptive CCA security (CCA2) for KEM and DEM, and proved that if both KEM and

DEM are CCA2 secure, the resulting hybrid encryption will be CCA2 secure. The focus of this paper is on

KEM.

A key encapsulation mechanism K = (K.Gen,K.Enc,K.Dec) for a finite session key space K, private and

public key spaces SK and PK, respectively, and a ciphertext space C, is a triple of algorithms defined as

follows.

1. K.Gen(1n) is a randomized key generation algorithm that takes the security parameter n ∈ N returns

a public and secret-key pair (pk, sk), where pk ∈ PK and sk ∈ SK.

2. K.Enc(pk) takes a public key pk and outputs a ciphertext c ∈ C, and a key k ∈ K.

3. K.Dec(sk, c) is a deterministic decapsulation algorithm that takes a secret key sk and a ciphertext c,

and returns a key k ∈ K, or ⊥ that denotes failure.

A KEM K is ε(n)-correct if for all (sk, pk)← K.Gen(1n) and (c, k)← K.Enc(pk), it holds that Pr[K.Dec(sk, c) 6=

k] ≤ ε(n), where probability is over the choices of (sk, pk) and the randomness of K.Enc(·), and ε(n) is a

negligible function in n. We say the KEM is correct if ε(n) = 0. Correctness with ε(n) = 0 is called

consistency in [72].

CPA, CCA1 and CCA2 security of KEM are defined in [69] with CCA2 security matching the corre-

sponding definition in [31].

Definition C.3. Let K = (K.Gen,K.Enc,K.Dec) be a KEM and A = (A1,A2) denote an adversary. For

atk ∈ {cpa, , cca1, cca2}, the key indistinguishability (kind) advantage of K is defined as

Advkind-atk
K,A (n) , |Pr[KINDatk-0

K,A (n) = 1]− Pr[KINDatk-1
K,A (n) = 1]|, (C.3)

where the distinguishing game KINDatk-b
K,A for b ∈ {0, 1} is defined in Figure C.2.

A key encapsulation mechanism is said to be indistinguishable against CPA (CCA1 and CCA2) attack

if for all polynomial-time adversaries A that corresponds to atk = cpa (atk = cca1 and atk = cca2, respec-

tively), the advantage function in (C.3) is negligible (in n). In this paper, for an adversary who has access
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Game KINDatk-b
K,A (n) Oracles O1 and O2

1: (pk, sk)
$← K.Gen(1n)

2: st
$← A

O1(·)
1 (pk)

3: (k∗, c∗)
$← K.Enc(pk)

4: k0 ← k∗; k1
$← K

5: b′
$← A

O2(·)
2 (c∗, st, kb)

6: Return b′

atk O1(·) O2(·)
cpa ε ε
cca1 K.Dec(sk, c) ε
cca2 K.Dec(sk, c) K.Dec(sk, c)

Figure C.2: Security game KINDatk-b
K,A , where b ∈ {0, 1} and atk ∈ {cpa, cca1, cca2}, for defining indistin-

guishability of a KEM. The adversary A2 cannot ask O2 to decrypt c∗.

to decapsulation oracle we only consider CCA2 security, and refer to it as “CCA” security. We also consider

CPA security which corresponds to zero decapsulation query.

KEM Combiners [55].

Let K1, . . . ,Ki, . . . ,Kν be (ingredient) key-encapsulation mechanisms, where KEM Ki = (Ki.Gen,Ki.Enc,Ki.Dec)

has session-key space Ki, public-key space PKi, secret-key space SKi, and ciphertext space Ci. Let K∗ =

K1 × · · · × Ki × · · · × Kν and PK = PK1 × · · · × PI × · · · × ×PKν and SK = SK1 × · · · × SI × · · · × SKν
and C = C1 × · · · × Ci × · · · × Cν . Let K be an auxiliary finite session-key space. A core function is used to

derive a combined session key from a vector of session keys and a vector of ciphertexts: W : K∗ × C → K.

The KEM combination with respect to W is a KEM with session key space K, and consists of the algorithms

K.Gen,K.Enc,K.Dec specified in Figure C.3.

Algo K.Gen Algo K.Enc Algo K.Dec
For i← 1 to ν (pk1, . . . , pkν)← pk (sk1, . . . , skν)← sk

(pki, ski)
$← K.Geni(1

n) For i← 1 to ν (c1, . . . , cν)← c

pk← (pk1, . . . , pkν) (ci, ki)
$← K.Enci(pki) For i← 1 to ν

sk← (sk1, . . . , skν) c← (c1, ..., cν) ki ← K.Deci(ski, ci)
Return(pk, sk) k ←W(k1, . . . , kν , c) If ki =⊥: Return ⊥

Return(k, c) k ←W(k1, . . . , kν , c)
Return k

Figure C.3: KEM Combiner

C.2.3 Secret Key Agreement from Correlated Randomness

Maurer [93] and Ahlswede et al. [2] independently considered a model of secret key agreement where Alice

and Bob have samples of correlated random variables (RVs) X and Y , and Eve has side information Z. The

correlation between variables X,Y , and Z is specified by a public distribution PXY Z . Alice and Bob want
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to share a secret key by communicating over a public authenticated and error free channel that is visible to

Eve. This model is called a two-party secret key agreement (SKA) in source model.

Let F denote the set of messages that are communicated over the public channel. Eve sees F . A random

variable K over K is an(ε, σ)-Secret Key Agreement (in short (ε, σ)-SKA), if there exists a protocol with

public communication F , and two (possibly random) functions Kx(X,F ) and Ky(Y,F ) outputting Kx and

Ky respectively, satisfying the following reliability and security properties:

(reliability) Pr[Kx = Ky = K] ≥ 1− ε, (C.4)

(security) SD ((K,F , Z); (UK,F , Z)) ≤ σ, (C.5)

where ε and σ are small non-negative numbers.

To achieve these bounds for arbitrarily small values of ε and σ one needs to make additional assumptions

about the probability distribution. A commonly used assumption is that the experiment that generates

the distribution PXY Z is repeated independently N times. This assumption is well motivated when the

distribution is generated by independent discrete memoryless channels.

Randomness Extraction.

The min-entropy H∞(X) of random variable X ∈ X with distribution PX where PX(x) ∈ [0, 1], x ∈ X , is

defined by H∞(X) = − log(max
x

(PX(x))). The average conditional min-entropy [44] is commonly defined

as,

H̃∞(X|Y ) = − logEy∈Y max
x∈X

PX|Y (x|y).

Randomness extractors map a random variable with a guaranteed entropy, to a random variable from a

smaller set that is statistically close (in terms of the statistical distance) to a uniform random variable. See

[99] and references therein for more details. One of the well known constructions for randomness extractors

is by using (Strong)Universal Hash Families (UHF) via the so called Leftover Hash Lemma (LHL) [77].

Definition C.4 (Strong Universal Hash Family[142]). A family of functions {hs : X → Y}s∈S is a Strong

Universal Hash Family if for any x 6= x
′

and any a, b ∈ Y,

Pr{hS(x) = a ∧ hS(x
′
) = b} =

1

|Y|2 ,

where the probability is over the uniform choices over S.

We will use a variation of the LHL [77], called the generalized LHL [45, Lemma 2.4] later in this paper.
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Lemma C.1 (Generalized LHL). For two possibly dependant random variables A ∈ X and B ∈ Y, applying

a universal hash function (UHF) {hs : X → {0, 1}`}s∈S on A can extract a uniformly random variable whose

length ` will be bounded by the average min-entropy of A, given B, and the required closeness to the uniform

distribution. That is:

SD(B,S, (hS(A)); (B,S, U`)) ≤
1

2

√
2`−H̃∞(A|B),

where S is the randomly chosen seed of the hash function family, and the average conditional min-entropy

is defined above.

C.3 gKEM

To define iKEM our first step is to define gKEM as a generalization of KEM such that it can be specialized

to KEM and iKEM for computational and information theoretic security, respectively. We define a gKEM

where Alice and Bob both have private inputs, and may publish a randomized function of their input as their

public value. The adversary may have partial information about the private inputs of the parties, modelling

possible leakages of these values to the adversary.

Let Alice and Bob be the parties who use the encapsulation and the decapsulation functions of the gKEM,

respectively, and let Eve denote the adversary.

Definition C.5 (gKEM). A gKEM gK = (gK.Gen, gK.Enc, gK.Dec) is a triplet of polynomial-time algo-

rithms, where n ∈ N is the security parameter, and the algorithms are defined as below.

1. gK.Gen(1n,Θ), the generation algorithm, is a randomized algorithm that takes a security parameter n

and Θ which is the description of a probabilistic algorithm, and outputs a triplet of correlated random

strings (rA, rB , rE), that will be given privately to Alice, Bob and Eve, respectively. Bob may publish

a (randomized) function of their strings. Let pubB denote Bob’s published string.

2. gK.Enc(rA, pubB), the encapsulation algorithm, is a probabilistic algorithm that takes as input the

sender’s random string rA and Bob’s public string pubB , and outputs a key/ciphertext pair (c, k).

3. gK.Dec(rB , c), the decapsulation algorithm, is a deterministic algorithm that takes as input the re-

ceiver’s random string rB and the ciphertext c, and outputs a key k̂ or special symbol ⊥ (⊥ shows that

the ciphertext has been invalid).

Θ is the description of a probabilistic algorithm that takes the security parameter as an input. The

gK.Gen algorithm uses the security parameter and Θ to generate the private inputs of the parties.
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In computational setting, Θ is the description of the generation algorithm of a KEM: it receives the

security parameter of the gKEM and generates private and public keys of Bob. In information theoretic

setting, Θ specifies a probabilistic experiment that generates correlated samples of the parties. The gK.Gen

algorithm uses the security parameter and Θ, and selects the appropriate “index” of the experiment to

generate the private inputs of the parties. Here we use the term “index” in an informal sense, and make

it more precise for a particular probabilistic setting. A widely studied case of correlated inputs for SKA is

when the private inputs of Alice, Bob and Eve are related by a joint probability distribution PX,Y,Z that is

public, and its N independent runs of the underlying experiment [92]. Let the correlation be described by a

family of distributions PRARBRE = {P(n′)
RARBRE

|n′ ∈ N}. For a given security parameter n, the gK.Gen will

use an appropriate n′ (that achieves the required security) from PRARBRE to generate the private samples

of the parties.

A second widely studied case for Θ [44] is when RA and RB are samples of a random variable with

sufficient min-entropy, and satisfy certain “distance” condition. For example d(rA, rB) ≤ t where d(., .) is a

distance function. In practice such samples can be generated by multiple readings of a user biometric data.

The iKEM construction in Section ... is for the former

Correctness of gKEM. Let ε(n) denote a non-negative function ε : N→ [0, 1) A gKEM gK is ε(n)-correct

if for all n ∈ N and (c, k)
$← gK.Enc(rA), it holds that Pr[gK.Dec(rB , c) 6= k] ≤ ε(n), where the probability

is taken over all choices (rA, rB , rC)← gK.Gen(1n,Θ), and the coins of the encapsulation and decapsulation

algorithm. The gKEM is correct if ε(n) = 0.

Security of a gKEM. In gKEM, Alice and Bob both can have private inputs that will be used to establish

the shared key and the adversary may interact with each of the parties to learn their secret input and the

final shared key. We thus, consider three types of attacks, Chosen Plaintext Attack (CPA), Encapsulation

Attack (EnA) and Chosen Ciphertext Attack (CCA), modelled by the adversary’s access to two types of

oracles, gK.Enc(rA) and gK.Dec(rB), respectively. The CPA attack for gKEM (similar to the traditional

KEM) is just a technical term to refer to an attack without any oracle access for the adversary and it doesn’t

literally means “choosing a plaintext” since there is no plaintext in a gKEM (KEM) structure. A query to

gK.Enc(rA) does not have any input, and outputs a pair (c, k) where k and c are a key and the corresponding

ciphertext that is obtained by using the secret input of Alice and other system’s public information. is the

key and c is the ciphertext that is obtained A query to gK.Dec(rB) is a chosen ciphertext c, and will result

in gK.Dec(rB) to output either a key k, or ⊥, indicating that gK.Dec can/cannot generate a valid key for

the presented c.

Definition C.6. Let gK = (gK.Gen, gK.Enc, gK.Dec) be a gKEM and let A = (A1,A2) be an adversary. The
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Game gKINDatk-b
gK,A (n)

1: (rA, rB , rE)
$← gK.Gen(Θ)

2: st1
$← A1

O0,O1(·)(rE)

3: (k∗, c∗)
$← gK.Enc(rA)

4: k0 ← k∗; k1
$← K

5: b′
$← A2

O2(·)(c∗, st1, kb)
6: Return b′

Oracles O0, O1 and O2

atk O0 O1(·) O2(·)
cpa ε ε ε
ena gK.Enc(rA) ε ε
cca gK.Enc(rA) gK.Dec(rB , c) gK.Dec(rB , c)

Figure C.4: Key indistinguishability game: is defined by the security game gKINDatk-b
K,A , where b ∈ {0, 1} and

atk ∈ {cpa, ena, cca}. For computational KEM, atk ∈ {cpa, cca}, and for iKEM atk ∈ {cpa, ena, cca}. The
adversary A2 does not ask its oracle to decrypt c∗ in atk = cca.

gKEM’s key indistinguishability advantage (gkind) for atk ∈ {cpa, ena, cca} is defined as follows.

Advgkind-atk
gK,A (n) , |Pr[gKINDatk-0

gK,A (n) = 1]− Pr[gKINDatk-1
gK,A (n) = 1]|, (C.6)

where the distinguishing game gKINDatk-b
gK,A for b ∈ {0, 1} is defined in Figure C.4.

The adversary A may be, (i) computationally bounded, or (ii) computationally unbounded. The advan-

tage is bounded by σ(n), a function of n, that goes to zero as n increases. For a computational adversary,

this function must be negligible in n. For computationally unbounded adversary (iKEM), σ(n) is a “small

function” of n. That is for any small σ̂ > 0, there is a n̂ where for all n > n̂, we have σ(n) < σ̂. For the

security parameter n let σ(n) be such a function. Then the gKEM is σ(n)-indistinguishable against EnA (or

CCA) attacks when (C.6) is upper bounded by σ(n) for atk = ena (or atk = cca).

A traditional computational KEM is a gKEM with gK.Gen generating a pair (sk, pk) for Bob, and making

pk available to Alice, and key indistinguishability (See Definition C.3) is against a polynomially bounded

adversary. In this case rA is a public value and so access to gK.Enc(rA) is free for the adversary. This is

why EnA security is not applicable to the computatinal KEM. For iKEM rA is private and encapsulation

algorithm is a randomized algorithm and each query to gK.Enc(rA) will result in a different pairs of (k, c)

with overwhelming probability.
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C.3.1 iKEM

We define an iKEM iK = (iK.Gen, iK.Enc, iK.Dec) as a gKEM where (i) iK.Gen takes the security parameter

and a publicly known family of distributions in the form of PRARBRE or PRARB ), and provides private

inputs to Alice and Bob, and possibly Eve, and (ii) in the key indistinguishability game, the adversary A is

computationally unbounded (Definition C.6).

This models a setting that is known as the so called satellite setting [92], where a satellite (or a beacon)

broadcasts a sequence of uniformly random bits that will be received by Alice, Bob and Eve through three

distinct noisy channels. Alice and Bob use communication over a public authenticated channel to arrive at

a shared key k.

Expected correctness of iKEM.

iK.Enc(·) outputs a pair (c, k) of key and ciphertext. Let iK.Enc.key = k and iK.Enc.ctxt = c. Then the

correctness of iKEM for a given pair of samples (rA, rB) is defined as Pr[iK.Dec(rB , c) 6= iK.Enc(rA).key] ≤ εn
where the probability is over all the random coins of iK.Enc, iK.Dec and iK.Gen.

Note that the iK.Gen samples a probability distribution and so the above probability is the expected

correctness as defined below,

P̃e = E
rA,rB

r←P
(n′)
RARBRE

Pr[iK.Dec(rB , c) 6= iK.Enc.key]. (C.7)

An iKEM is εn-correct if (C.7) is bounded by ε(n), where ε : N→ [0, 1) is a small function in n.

Security of iKEM.

Security of an iKEM can be defined by bounding the distinguishing advantage of an adversary in gKINDatk-b
gK,A

games of Definition C.6 for atk ∈ {cpa, ena, cca} and b ∈ {0, 1}.

In computational setting the adversary may have access to polynomially bounded ciphertext queries.

Cramer et al. [32, Definition2] also defined q-bounded CCA security (IND-q-CCA security) where the

adversary can have access to constant (q) number of queries.

In information theoretic setting the established key will use the entropy of the correlated variables

(RA, RB , RE), which with every query reduces. We thus consider two query bounded attackers: an attacker

with access to qe encapsulation queries, and an attacker has access to qc ciphertext (decryption/decapsulation)

queries. The attackers model qe-bounded EnA and qc-bounded CCA (decapsulation) attack, and denote them

as qe-ena and qc-cca respectively.
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For atk ∈ {cpa, qe-ena, qc-cca}, an iKEM is σn-indistinguishable if for all adversaries we have

Advgkind-atk
iK,A (n) = |Pr[gKINDatk-0

iK,A (n) = 1]− Pr[gKINDatk-1
iK,A (n) = 1]| ≤ σn, (C.8)

where σ(n) is a small function of n.

The following lemmas show that the advantage in the indistinguishability game is bounded by the the

statistical distance of the adversary’s view of the game and its outcome. The proofs are given in Appendix

A.

Lemma C.2. Let vqe-enaA = (vena1 , · · · , venaqe ) for venai ∈ K×C denote the encapsulation oracle’s responses to

adversary A’s queries in the qe-bounded EnA attack. The iKEM is σn-indistinguishable against qe-bounded

EnA, if and only if for all adversaries A we have

SD
(
(RE , C

∗,K∗,vqe-enaA ); (RE , C
∗, UK,v

qe-ena
A )

)
≤ σn. (C.9)

where random variables RE, C∗ and K∗ correspond to rE, the initial correlated random string received by

the adversary an the challenge ciphertext and key pair in the game gKINDqe-ena-b
gK,A (n) respectively.

Lemma C.3. Let qrqc-ccaA = (qrcca1 , · · · , qrccaqe ) for qrccai ∈ K denote an adversary A’s queries to the de-

capsulation oracle in the CCA attack and vqc-ccaA = (vcca1 , · · · , vccaqe ) for vccai ∈ C ∪ {⊥} denote decapsulation

oracle to A’s queries in the CCA attack. An iKEM is σn-indistinguishable against qc-bounded CCA attack

if for all adversaries A we have

SD
(
(RE , C

∗,K∗,vqc-ccaA ,qrqc-ccaA ); (RE , C
∗, UK,v

qc-cca
A ,qrqc-ccaA )

)
≤ σn. (C.10)

where random variables RE, C∗ and K∗ correspond to rE, the initial correlated random string received by

the adversary an the challenge ciphertext and key pair in the game gKINDqc-cca-b
gK,A (n) respectively.

C.3.2 An iKEM with provable security

In the following, we introduce an iKEM that starts with a correlated randomness given by a joint distribution

PXY Z that is public, and uses a single message from Alice to Bob to establish a shared secret key between

them.

The iKEM iK. The iKEM iK = (iK.Gen, iK.Enc, iK.Dec) will have the following algorithms.

Initialization: Let {hs : X → {0, 1}t}s∈S and {h′s′ : X → {0, 1}`}s′∈S′ be two strong universal hash

families (UHFs). Also let C = {0, 1}t × S × S ′ and K = {0, 1}` denote the set of ciphertexts and keys.
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Theorem C.1 shows how to determine t and Theorems C.2 to C.4 show how to determine ` for the required

levels of correctness and security, respectively, knowing the correlation among the variables.

• iK.Gen(1n,PXY Z): The generation algorithm chooses an appropriate Pn
′
XY Z from PXY Z = {Pn′XY Z |n′ ∈

N} according to n, and samples the distribution to output the triplet x, y and z of correlated samples1,

and privately gives them to Alice, Bob and Eve, respectively. That is

(x, y, z)
$← iK.Gen(1n,PXY Z).

• iK.Enc(x): The encapsulation algorithm iK.Enc(·) samples s′
$← S ′ and s

$← S for the seed of the

strongly universal hash functions, and generates the key k = h′s′(x) and the ciphertext c = (hs(x), s′, s),

Thus

(c, k) =
(
(hs(x), s′, s), h′s′(x)

) $← iK.Enc(x).

• iK.Dec(y, c): The decapsulation mechanism iK.Dec(y, c) takes the private input of Bob, y, and the

ciphertext hs(x), s′, s as inputs, and outputs the key hs′(x) or ⊥. We have

k = (h′s′(x))← iK.Dec
(
y, (hs(x), s′, s)

)
.

The decapsulation algorithm works as follows:

1. Parses the received ciphertext to (g, s′, s), where g is a t-bit string.

2. Define the set,

T (X|y) , {x : − log Pn
′
X|Y (x|y) ≤ λ}, (C.11)

For each vector x ∈ T (X|y), check g
?
= hs(x).

3. Output x̂ if it is the unique value of x that satisfies g = hs(x̂); Else output ⊥.

The value of λ depends on the correlation of x and y: higher correlation corresponds to smaller λ, and

smaller set of candidates (see Theorem C.1 for the precise relationship).

If successful, the decapsulation algorithm outputs a key k = h′s′(x̂); otherwise it outputs ⊥.

The intuition behind the construction iK is as follows. Alice encapsulation algorithms extracts a key

from its private input x, and by sending sufficient information to Bob aims to enable Bob to recover x, and

1We use x, y and z instead of rA, rB and rE to stay consistent with the conventional information theoretic notations.
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extract the same key. The ciphertext to Bob thus includes the required information to recover x, and the

seeds of the hash functions that are used for key extraction and also generating the data for reconcilliation.

Eve has her own sample of side information z that leaks partial information about Alice’s and Bob’s samples,

and also sees the ciphertext. that leaks information about Alice’s samples. Alice and Bob will estimate

the total leaked information about their shared string, and remove it by the application of h′s′(·) on x (by

Alice) and its estimate x̂ (by Bob).

Correctness and Security of iK. In the following we prove for appropriate choices of the hash func-

tions and their parameters, iK can achieve ε(n)-correctness and σ(n)-indistinguishability against atk ∈

{cpa, qe-ena, qc-cca}. To satisfy security requirement of an iKEM, σ(n) should be a small function of n. In

other words, for every small σ̂ > 0, there exists an n̂ such that for all n > n̂, the expression (C.8) holds. In

the following, we show the error probability and distinguishing advantage can be bounded for the proposed

iK construction. We prove this for concrete values of ε, σ, and PXY Z , and omit the parametrization for

simplicity. Theorem C.1 shows that expected error probability of iK can be bounded by ε when sufficient

information for reconciliation is sent (according to (C.17)). In Theorem C.2 we prove σ-indistinguishablity

of iK against an adversary without access to encapsulation or decapsulation queries. Finally in Theorem C.3

and Theorem C.4 we prove qe-bounded EnA security and qc-bounded CCA security of iK.

We note that the security definition of gKEM allows the adversary to use both oracles. The above

theorems however consider each type of queries separately.

Theorem C.1. In the iKEM iK, to achieve average error probability at most ε, the output length of the hash

function hs(.) denoted by t must satisfy, t ≥ 2H̃∞(X|Y )/ε− log ε− 1.

Proof. The decapsulation algorithm in iK searches the set T (X|y) for x values such that hs(x) = g where

g is the received hash value. The algorithm fails in two cases: (i) x is not in the set, and (ii) there are more

than one vector in the set whose hash value is equal to g, and so the KEM’s expected probability of failure,

P̃e = Ex,yPr[iK.Dec(y, c) 6= iK.Enc(x).key], is upper bounded by the sum of the probabilities of the above

two events, where the probability is over the randomness of encapsulation, and the average is over all sample

pairs (x, y). The two events correspond to cases that Alice’s sample are in the sets below.

ξ1 = {x : − log PX|Y (x|y) > λ}

ξ2 = {x ∈ T (X|y) : ∃ x̂ ∈ T (X|y) s.t. hS(x̂) = hS(x)}.

We use Markov’s inequality (C.1) to bound the average probability of ξ1 (P̃r(ξ1)) as follows. Let g(X,Y ) =
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− log PX|Y (X|Y ). Then using the Markov inequality

Pr(g(X,Y ) ≥ λ) ≤ E(g(X,Y ))

λ
.

Let λ = 2H̃∞(X|Y )/ε. We have

Pr(− log PX|Y (X|Y ) ≥ 2H̃∞(X|Y )

ε
) ≤ Ex,y(− log PX|Y (x|y))

2H̃∞(X|Y )/ε
(C.12)

=
Ex,y(− log PX|Y (x|y))

(2/ε)
(
− logEy max

x
PX|Y (x|y)

) (C.13)

≤ − log(Ex,yPX|Y (x|y))

(2/ε)
(
− logEy max

x
PX|Y (x|y)

) (C.14)

≤
− log(Ey max

x
PX|Y (x|y))

(2/ε)
(
− logEy max

x
PX|Y (x|y)

) (C.15)

⇒ P̃r(ξ1) ≤ ε

2
. (C.16)

In above, (C.13) is by substituting the definition of conditional min-entropy, (C.14) is by using the Jensen’s

inequality 2, and finally (C.15) is by using maxx(·) instead of Ex(·).

To bound the average probability of ξ2, (P̃r(ξ2)) , we note that for any x′ ∈ T (X|y), the collision

probability with any x ∈ X , such that x′ 6= x, is bounded by Pr[hS(x̂) = hS(x)] ≤ 2−t (Definition C.2), and

so the total probability that some element in T (X|y) collides with an element in Xn is |T (X|y)| · 2−t. That

is

Pr(ξ2) ≤ |T (X|y)| · 2−t.

On the other hand, since the probability of each element of T is bounded by 2−λ, we have |T (X|y)|.2−λ ≤

Pr[T (X|y))] ≤ 1, and we have |T (X|y)| ≤ 2λ. By letting t ≥ λ− log ε
2 , we have

t ≥ 2H̃∞(X|Y )/ε− log ε− 1. (C.17)

Thus, Pr(ξ2) ≤ 2
ε which implies P̃r(ξ2) ≤ 2

ε . Finally, we have P̃e = P̃r(ξ1) + P̃r(ξ2) ≤ ε. �

Theorem C.1 relates the length of the ciphertext to the expected error probability of the protocol (ε)

and the correlation of random strings x and y that is measured by the average conditional min-entropy of

X given Y . Equation (C.17) clearly shows the relation between t and the average error probability: smaller

ε gives larger t. This is expected as larger t provides more information about X to Bob for decapsulation.

The following theorem gives the maximum number of key bits that can be established using iK when the

2If X is a random variable and f(·) is a convex function, then f
(
E(X)

)
≤ E

(
f(X)

)
.
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adversary is not allowed to make any queries (encapsulation or decapsulation oracles), in order to bound its

advantage by σ0 for any computatinally unbounded adversary. The upperbound on the key lenngth is given

by the correlation between the random strings x and z measured by H̃∞(X|Z), t the output length of the

hash function hs(·) and σ0.

Theorem C.2. Any established key using the iKEM iK, with the length of ` ≤ H̃∞(X|Z)− t+ 2 log σ0 + 2

is σ0-indistinguishable against an adversary that does not have access to any encapsulation or decapsulation

queries (σ0 CPA secure).

Proof. We show that in the key indistinguishability game of iKEM, the key that is generated by the

protocol satisfies (C.9). Note that here vqe-enaA = null. We use Lemma C.1 and noting that a strongly

universal hash function is also a UHF. Then for X and Z generated by iK.Gen, we have

SD

(((
S, hS(X), Z

)
, S′, h′S′(X)

)
;
((
S, hS(X), Z

)
, S′, U`

))
≤ 1

2

√
2`−H̃∞(X|Z),

In using [45, lemma 2.2(b)], since the range of hS(·) has at most 2t elements, we have

H̃∞(X|hS(X), Z) ≥ H̃∞(X|Z)− t.

Therefore, by applying the Lemma C.1 we have

SD
(
(Z, hS(X), S, S′, (h′S′(X));

(Z, hS(X), S, S′, U`)
)
≤ 1

2

√
2t+`−H̃∞(X|Z). (C.18)

Thus, for ` ≤ H̃∞(X|Z)− t+ 2 log σ0 + 2, we have

1

2

√
2t+`−H̃∞(X|Z) ≤ σ0, (C.19)

and finally,

SD((Z,C∗,K); (Z,C∗, UK)) ≤ σ0. � (C.20)

We next consider a stronger computationally unbounded adversary that has access to qe encapsulation

queries (EnA), and derive maximum achievable key length from iK to bound the adversary’s advantage in

the corresponding distinguishing game by σe.
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Theorem C.3. Any established key using the iKEM iK, with the length of ` ≤ 2+2 log σe+H̃∞(X|Z)
qe+1 − t is

σe-indistinguishable against an adversary with access to qe encapsulation queries (qe-bounded EnA).

Proof. Each query to the encapsulation oracle gives a pair of matching key and ciphertext (c, k) to the

adversary. The vector vqe-enaA = (vena1 , · · · , venaqe ) is the vector of adversary’s received responses to their EnA

queries, and reveal information about X to them. The remaining uncertainty about X that can be used for

key extraction is H∞(X|V enai = venai ), where venai = (ci, ki) and ci = (c0i, si, s
′
i). Let the values of S and S′

(in hS(X) and h′S′(X)) in the ith query’s response, ci = (c0i, si, s
′
i), be si and s′i.

H∞(X|V enai = venai ) = H∞(X|Ci = ci,Ki = ki) (C.21)

= − log max
x

Pr(X = x|, hsi(X) = c0i, h
′
s′i

(X) = ki) (C.22)

= − log max
x

Pr(X = x).Pr(hsi(x) = c0, h
′
s′i

(x) = k)

Pr(h′s′i(X) = ki, hsi(X) = c0i)
(C.23)

≥ − log
2−H∞(X)

Pr(hsi(X) = c0i, h′s′i(X) = ki)
(C.24)

≥ − log
2−H∞(X)

Pr(hsi(X) = c0i).Pr(h′s′i(X) = ki)
(C.25)

= − log
2−H∞(X)

2−t−`
= H∞(X)− t− ` (C.26)

In above, (C.23) follows from (C.21) since Pr(ĥs′i(x) = ki, hsi(x) = c0i) is either 1 (for those x that satisfy

the expression), or 0 (for those x that not satisfy the expression), so to maximize the probability, the value

of x must satisfy the expression and therefore, Pr
(
hsi(x) = c0i, h

′
s′i

(x) = ki
)

= 1; (C.24) is obtained from

(C.23) by replacing Pr(X = x) with 2−H∞(X), the maximum probability; (C.25) follows from (C.24) by

using the multiplicative inequality (Pr(AB) ≥ Pr(A).Pr(B)); and finally, (C.26) in obtained from (C.25)

by using the strong universality of the hashes. When Z is also given, using a similar argument we have,

H̃∞(X|Z,Ci = ci,Ki = ki) ≥ H̃∞(X|Z)− t− `.

This is adversary’s maximum uncertainty about X after making a query to the encapsulation oracle, and

so each query decreases the remaining min-entropy of X by at most by t+ `. Thus, after qe queries we have

H̃∞(X|Z,Vqe-ena
A = vqe-enaA ) ≥ H̃∞(X|Z)− qe(t+ `). Now from (C.18) we have

SD

((
Z, S, S′, hS(X), h′S′(X),vqe-enaA

)
;

(
Z, S, S′, hS(X), U`,v

qe-ena
A

))
≤ 1

2

√
2(qe+1)(t+`)−H̃∞(X|Z).
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Since ` ≤ 2+2 log σe+H̃∞(X|Z)
qe+1 − t, we have,

SD

((
Z, S, S′, hS(X), h′S′(X),vqe-enaA

)
;

(
Z, S, S′, hS(X), U`,v

qe-ena
A

))
≤ σe,

and finally for C∗ = (hS(X), S′, S), the inequality (C.9) is satisfied . That is we have σe-indistinguishability

against qe EnA. �

Theorem C.4. Any established key using the iKEM iK, with the length of ` ≤ min{ 2+2 log σc+H̃∞(X|Z)
qc+1 −

t, log 1
ε } is σc-indistinguishable against an adversary with access to qc decapsulation queries (qc-bounded

CCA).

Proof. Consider the adversary A = (A1,A2) in the distinguishing game. Let qrqc-ccaA1
= (qrcca1 , · · · , qrccaj )

and vqc-ccaA1
= (vcca1 , · · · , vccaj ) denote A1’s queries and the corresponding responses. Similarly, let qrqc-ccaA2

=

(qrccaj+1, · · · , qrccaqc ) and vqc-ccaA2
= (vccaj+1, · · · , vccaqc ) denote A2’s queries and responses, respectively.

For a decapsulation query qrccai = ci = (c0i, si, s
′
i), the decapsulation oracle answers vccai = ki, which a

key value, with probability 1 − ε, and vccai =⊥’ with probability ε. If the decapsulation oracle outputs ki,

from (C.25) we have

H∞(X|V ccai = vccai , QRccai = qrccai ) = H∞(X|Ci = ci,Ki = ki) ≥ H∞(X)− t− `

When the decapsulation oracle outputs ⊥, from (C.26) we have

H∞(X|Ci = ci,Ki =⊥) ≥ − log
2−H∞(X)

Pr(hsi(X) = c0i).Pr(K =⊥)
= H∞(X)− t+ log ε.

Thus, conditioned on Z, and after j queries by A1,

H̃∞
(
X|Z,vqc-ccaA1

,qrqc-ccaA1

)
≥ H̃∞(X|Z)− j.

(
t−min(`, log

1

ε
)
)
.

After j queries, the challenge ciphertext C∗ = c∗ is given. We have

H̃∞
(
X|Z, c∗,vqc-ccaA1

,qrqc-ccaA1

)
≥ H̃∞(X|Z, c∗)− j.

(
t−min(`, log

1

ε
)
)
,

and qc-j new queries are made by A2. They also reduce the uncertainty by (qc − j).
(
t−min(`, log 1

ε )
)
. We

207



Algo gK.Gen Algo gK.Enc Algo gK.Dec
For i← 1 to ν (rA1, . . . , rAν)← rA (rB1, . . . , rBν)← rB

(rAi, rBi, rEi)
$← gK.Geni(Θ) For i← 1 to ν (c1, . . . , cν)← c

rA ← (rA1, . . . , rAν) (ci, ki)
$← gK.Enci(rAi) For i← 1 to ν

rB ← (rB1, . . . , rBν) c← (c1, ..., cν) ki ← gK.Deci(rBi, ci)
rE ← (rE1, . . . , rEν) k ←W(k1, . . . , kν , c) If ki =⊥: Return ⊥
Return(rA, rB, rE) Return(k, c) k ←W(k1, . . . , kν , c)

Return k

Figure C.5: gKEM Combiner

have

H̃∞
(
X|Z, c∗,qrqc-ccaA ,vqc-ccaA

)
≥ H̃∞(X|Z, c∗)− qc.

(
t−min(`, log

1

ε
)
)
,

where qrqc-ccaA = (qrqc-ccaA1
,qrqc-ccaA2

) and vqc-ccaA = (vqc-ccaA1
,vqc-ccaA2

) and in using [45, lemma 2.2(b)] we have

H̃∞
(
X|Z,C∗,qrqc-ccaA ,vqc-ccaA

)
≥ H̃∞(X|Z)− qc.

(
t−min(`, log

1

ε
)
)
− t.

Finally, since ` ≤ min{ 2+2 log σc+H̃∞(X|Z)
qc+1 − t, log 1

ε } and by using (C.18) we have

SD

((
Z,qrqc-ccaA ,vqc-ccaA , S, S′, hS(X), h′S′(X)

)
;

(
Z,qrqc-ccaA ,vqc-ccaA , S, S′, hS(X), U`

))
≤ σc,

and for C∗ = (hS(X), S′, S), the inequality (C.9) is satisfied . That is we have σc-indistinguishability against

qc CCA. �

C.4 gKEM combiners

Let for i ∈ {1, 2, . . . , ν}, Ki = (gKi.Gen, gKi.Enc, gKi.Dec) be a gKEM that has the session-key space

Ki, the triple of correlated random string sets RAi,RBi and RE i, and the ciphertext space C. Suppose

(RAi, RBi, REi) is the triple of correlated random strings for each Ki, and each triple is independent of

all the other triples. Let K∗ = K1 × · · · × Ki × · · · × Kν , and RA = RA1 × · · · × RAi × · · · × RAν ,

RB = RB1 × · · · × RBi × · · · × RBν , RE = RE1 × · · · × RE i × · · · × REν and C = C1 × · · · × Ci × · · · × Cν .

Let further K be an auxiliary finite session-key space.

Using Giason et al.’s approach [55] we define a core function W : K∗×C → K for combining gKEMs: the

gKEM combination with respect to W is a gKEM with session key space K that consists of the algorithms

gK.Gen, gK.Enc, gK.Dec specified below.
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The combiner must be secure if at least one of its components is. The challenge of gKEM combiner

is that the ingredient gKEMs may be computational or iKEM, and the key indistinguishability in the two

cases is against two different types of adversaries: computational and information theoretic, respectively,

and one needs to consider this difference in the security of the resulting key. We consider the combination

of ingredient gKEMs in the following cases:

1. All gKEMs are computationally secure.

2. One gKEM is information theoretically secure.

Case 1 is addressed in the work of [55] as gKEM definition when specialized to computational security,

is identical to that of the KEM definition (Definition C.3). In the following we consider case 2. The case

that there are multiple ingredient iKEMs, can be studied as case 2 with one of the iKEMs. Tighter bounds

on the security of the combined gKEM will be our future work.

C.4.1 Combiners for iKEM and computational gKEMs

Consider a gKEM combiner for ν gKEMs, and without loss of generality, assume K1 = (iK1.Gen, iK1.Enc, iK1.Dec)

is an iKEM and Ki = (gKi.Gen, gKi.Enc, gKi.Dec) for 2 ≤ i ≤ ν are computational gKEMs. We assume the

iKEM and gKEMs produce the same length keys. Then the resulting key will have the following properties,

• If iKEM is secure (i.e. the initial correlation is correctly specified), then the combiner should result in

an information theoretic secure key establishment protocol.

• If iKEM is not secure, the resulting key will be computationally secure as long as at least one of gKEM

ingredients is computationally secure

The security of the final established key will depend on the security of the ingredient gKEMs, and in particular

the number of queries of the two types, EnA and CCA, for each.

We first introduce a combiner which maintains security of ingredient gKEMs, assuming their security are

against adversaries with access to decapsulation queries. That is the iKEM has security against a qe-bounded

EnA, and the computational gKEMs are CPA secure. The combiner will retain qe-bounded EnA security of

iKEM, and CPA security of the computational KEM, if the iKEM is not secure.
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The XOR combiner.

Assume K1 = · · · = Kν = {0, 1}κ are the corresponding key spaces for an iKEM K1 and gKEMs K2 to Kν .

The combiner with an XOR core function W, outputs the following key:

W(k1, . . . , kν) = ⊕νi=1ki, k1, . . . , kν ∈ {0, 1}κ

Theorem C.5. The XOR combiner that is used for combining an iKEM and a number of computational

gKEMs, retains the CPA security of the gKEMs and the qe-bounded EnA security of the iKEM.

Proof. The proof that the combiner retains the CPA security of the gKEMs follows from [55, Lemma 1].

To show that the combiner retains the qe-bounded EnA security of the iKEM, we use contradiction.

Suppose there is an adversary A = (A1,A2) who breaks the qe-bounded EnA security of the key k = ⊕νi=1ki.

Then we define an adversary B = (B1,B2) who uses A as a subroutine and breaks the qe-bounded security of

the iKEM. B1 receives rE1
and on its encapsulation queries receives vqe-enaB =

(
(c1,1, k1,1), . . . , (c1,qe , k1,qe)

)
.

Then, for 2 ≤ i ≤ ν, B1uses gK.Geni to generate (r′A2
, r′E2

) to (r′Aν , r
′
Eν

) (generating r′Bi is not necessary)

and uses gK.Enci on each r′Ai for qe times to generate v′qe-enai =
(
(c′i,1, k

′
i,1), . . . , (c′i,qe , k

′
i,qe

)
)

B1 then gives rE = (rE1
, r′E2

, . . . , r′Eν ) to A1 and on encapsulation queries of A1 returns

vqe-enaA =

(
(c1,1, . . . , c

′
i,1, . . . , c

′
ν,1, k1,1 ⊕νi=2 k

′
i,1), . . . , (c1,1, . . . , c

′
i,1, . . . , c

′
ν,qe , k1,qe ⊕νi=2 k

′
i,qe)

)
.

A1 outputs st1. Then B2 receives (c∗1, k
∗
1) and sends st1, c∗ = (c∗1, c

′∗
2, . . . , c

′∗
ν) and k∗ = k∗1 ⊕νi=2 k

′∗
i to A2,

where (c′∗i , . . . , c
′∗
ν , k
′∗
i ) for 2 ≤ i ≤ ν is obtained by the application of gK.Enci by B2. Finally, B2 outputs b′

equal to A2’s output. The advantage of A and B are equal because k∗ is a sample from uniform distribution

only if k∗1 be a sample from uniform distribution. Since we assumed A breaks the qe-bounded security of the

combined gKEM then B can breaks the qe-bounded security of the iKEM which is a contradiction. �

PRF-then-XOR combiner.

The XOR combiner cannot maintain CCA security of the ingredient gKEMs. Giacon et al. [55] gave

constructions of KEM combiners that retain CCA security of the ingredient KEMs. In the following we

show the “PRF-then-XOR combiner” can be used for combining an iKEM and computational gKEMs. The

resulting key will retain the CCA security of the computational gKEMs, and qc-bounded CCA security of

iKEM against a computational adversary. We first recall the definition of Pseudo-Random Functions (PRFs).

Pseudorandom functions. A function F : K×X → Y, for a finite key space K, an input space X , a finite

210



Game PRIbA Oracle Eval(r)

1: R ← 0
2: k

$← K
3: b′

$← A
Eval(r)
2

4: Return b′

1: If r ∈ R: Abort
2: R = R∪ {r}
3: y ← F(k, r)

4: y0 ← y; y1
$← Y

5: Return yb

Figure C.6: A PRF distinguishing game

output space Y, is a PRF if all practical adversaries A achieve a negligible advantage AdvPRF defined as

AdvPRFF,A , |Pr[PRI0
A = 1]− Pr[PRI1

A = 1]|,

where the games PRIb for b ∈ {0, 1} is defined in Figure C.6.

The PRF-then-XOR construction works as follows: for i ∈ {1, 2, . . . , ν}, let Ki be the ingredient gKEMs,

with the corresponding session key space Ki and ciphertext space Ci, and let Ci = C1×· · ·×Ci−1×Ci+1×· · ·×Cν
and Ki = K1×· · ·×Ki−1×Ki+1×· · ·×Kν . Further, assume Fi : Ki×Ci → K be a (pseudorandom) function

for all i. Then the core combiner function W is defined as follows

W(k1, . . . , kν , c1..cν) = ⊕ni=1Fi(ki, c1..ci−1ci+1..cν).

In the following we show that the above PRF-then-XOR combiner results in a CCA secure gKEM. The

combiner retains the CCA security of its ingredient gKEMs, and reduces the qc-bounded CCA security of

the iKEM to the security of the PRF that is used in the combiner.

Theorem C.6. Let Fi : Ci × Ki → {0, 1}r be PRFs, and the above PRF-then-XOR combiner is used for

combining the iKEM K1 and gKEMs Ki (for 2 ≤ i ≤ ν) to a single gKEM K. Then for adversaries A,B

and C, for the combiner (information theoretic), iKEM (information theoretic) and PRF (computational),

respectively, we have

Advkind-qc-ccaK,A ≤ 2
(
Advkind-ccaKi,B +AdvPRFFi,C

)
(C.27)

and

Advkind-qc-ccaK,A ≤ Advkind-qc-ccaK1,B
+AdvPRFF1,C (C.28)

Proof. We define four games to prove the security of the PRF-then-XOR construction, namely Game0,

Game1, Game2 and Game3. In these game Game0 is indeed gKEM’s distinguishing game when the challenge

key is generated from the combiner and Game3 is the distinguishing game when the challenge key is sampled
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uniformly. In our proof Game1 and Game2 are the intermediate games that enable us to bound the final

advantage of the adversary. Game1 is obtained by substituting the iKEM’s key with a uniformly random

key and Game2 is by replacing the output of the PRF function that takes the iKEM’s key as an input with

a uniformly random value.

The PRF-then-XOR construction for an iKEM K1 and gKEM Ki works as follows

k = F1(k1, c2..cν)⊕νi=2 Fi(ki, c1..ci−1ci+1..cν),

where k1 and c1 are corresponding key/ciphers from the iKEM K1 and ki and ci are corresponding key/ciphers

from the gKEM Ki.

From [55, Theorem 3], for i ≤ 2 we have

Advkind-cca
K,A ≤ 2

(
Advkind-cca

Ki,B +AdvPRFFi,C,

)

For security against qc-bounded CCA, we define the following sequence of games. Note that c1 = c2..cν

and ci = c1..ci−1ci+1..cν . In each game the total number of qc queries is allowed.

Claim C.1. Pr[gKINDqc-cca−0
A = 1] = Pr[Game0

A = 1].

This is straightforward from the definition of gKINDqc-cca−0.

Claim C.2. |Pr[Game0
A = 1]− Pr[Game1

A = 1]| ≤ Advkind-qc-ccaB,K1
.

The only difference between Game0 and Game1 is that line 8 in Game0 is replaced by lines 8 and

9 in Game1, where the k1 from iK.Enc is replaced by k1 sampled uniformly random. The advantage of

distinguishing between these two cases (while making q queries) is Advkind-qc-cca
B,K1

. Thuse, |Pr[Game0
A =

1]− Pr[Game1
A = 1]| ≤ Advkind-qc-cca

K1,B
.

Claim C.3. |Pr[Game1
A = 1]− Pr[Game2

A = 1]| ≤ AdvPRFF1,C
.

The difference between these two games is that F1(k1, c
1) (with k1 uniformly sampled) is replaced by f1

sampled from the uniform distribution. The advantage of distinguishing between F1(k1, c
1) and f1 is the

advantage of the PRF F1 that is AdvPRFC,F1
. So the distinguishing advantage of two games is upper-bounded

by AdvPRFC,F1
.

Claim C.4. Pr[Game2
A = 1] = Pr[Game3

A = 1].

The difference between two games is that k∗ in Game2 is f1⊕ni=2 Fi(ki, c
i) while k∗ is sampled uniformly

random in Game3. However, since f1 in Game2 is sampled uniformly random, then k∗ in Game2 is uniform

and two games become the same.
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Game0

1: (x, y, z)
$← iK.Gen1

2: For i← 2 to n (rAi, rBi, rEi)
$← gK.Geni

3: st0
$← AO0

0 (z)

4: st1
$← A1

O1(·)(st0, rE2 , . . . , rEν )

5: (k1, c1)
$← iK.Enc1(x)

6: For i← 2 to n (ci, ki)
$← gK.Enci(rAi)

7: c∗ ← (c1, . . . , cν)
8: k∗ ← F1(k1, c

1)⊕ni=2 Fi(ki, c
i)

9: b′
$← A

O2(·)
2 (c∗, st1, k∗)

10: Return b′

Game1

1: (x, y, z)
$← iK.Gen1

2: For i← 2 to ν (rAi, rBi, rEi)
$← gK.Geni

3: st0
$← AO0

0 (z)

4: st1
$← A1

O1(·)(st0, rE2
, . . . , rEν )

5: (k1, c1)
$← iK.Enc1(x)

6: For i← 2 to ν (ci, ki)
$← gK.Enci(rAi)

7: c∗ ← (c1, . . . , cν)

8: k1
$← UK1

9: k∗ ← F1(k1, c
1)⊕ni=2 Fi(ki, c

i)

10: b′
$← A

O2(·)
2 (c∗, st1, k∗)

11: Return b′

Game2

1: (x, y, z)
$← iK.Gen1

2: For i← 2 to ν (rAi, rBi, rEi)
$← gK.Geni

3: st0
$← AO0

0 (z)

4: st1
$← A1

O1(·)(st0, rE2
, . . . , rEν )

5: (k1, c1)
$← iK.Enc1(x)

6: For i← 2 to ν (ci, ki)
$← gK.Enci(rAi)

7: c∗ ← (c1, . . . , cν)

8: f1
$← Ur

9: k∗ ← f1 ⊕ni=2 Fi(ki, c
i)

10: b′
$← A

O2(·)
2 (c∗, st1, k∗)

11: Return b′

Game3

1: (x, y, z)
$← iK.Gen1

2: For i← 2 to ν (rAi, rBi, rEi)
$← gK.Geni

3: st0
$← AO0

0 (z)

4: st1
$← A1

O1(·)(st0, rE2
, . . . , rEν )

5: (k1, c1)
$← iK.Enc1(x)

6: For i← 2 to ν (ci, ki)
$← gK.Enci(rAi)

7: c∗ ← (c1, . . . , cν)

8: k∗
$← Ur

9: b′
$← A

O2(·)
2 (c∗, st1, k∗)

10: Return b′

Figure C.7: Four close games to prove the security of the PRF-then-XOR combiner

Claim C.5. Pr[gKINDqc-cca-1
A = 1] = Pr[Game3

A = 1].

This is straightforward from the definition of gKINDqc-cca-1.

Proof of the second part of Theorem C.6. From Claims 2 to 6 we have

|Pr[gKINDqc-cca-0
A = 1]− Pr[gKINDqc-cca-1

A = 1]| ≤ Advkind-qc-cca
K1,B

+AdvPRFF1,C ,

which proves (C.28). �

Remark C.1. From (C.28), we see that the security of the iKEM is reduced to the security of the PRF

which a computationally secure primitive. Thus the resulting gKEM will not retain the information theoretic

security of the iKEM.

Constructing a combiner that retain information theoretic security of an ingredient iKEM is an interesting
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open question.

C.5 Related works

KEM framework. KEM/DEM paradigm is widely used as a PKE for encrypting arbitrary length messages.

This approach was first formalized by Cramer and Shoup [31, 127], and the relation between different security

notions of KEM, DEM and the resulting hybrid encryption scheme is given in [69]. Generic constructions for

KEM from standard public-key encryption schemes are proposed by Dent [38]. Identity-based KEMs were

introduced by Bentahar et al. [16] and a generic construction was given. Other IB-KEMs were proposed in

[27, 53, 63]. CPA secure KEMs using post-quantom assumptions are given in [41] (LWE based) and [101]

(lattice based) and a post-quantum latice-based CCA secure KEM is proposed recently in [21].

Information theoretic key agreement in source model was first studied by Maurer [89, 92], and Ahlswede

and Csiszár [2] , and extended to general IID distributions by Maurer and Wolf [93]. Implementation of

key agreement protocols and engineering techniques for correlation generation between devices in wireless

setting, have been extensively studied (see the review paper [147] and the references therein). The extension

of the secret-key agreement to more than two parties was studied by Csiszár and Narayan [35]. Variants

of this problem have been studied in the “fuzzy Extractors” context [44], where the goal is to turn noisy

information (like two noisy readings of bio-metric information) into keys usable for cryptographic application.

The two main steps in information theoretic key agreement are reconciliation where the goal is to arrive at

a common random string by legitimate parties, and privacy amplification where the goal is to extract a

secret key from the shared string. Both these steps have been widely studied [13, 96, 108]. The feasibility

of a two party information theoretic key agreement protocol under active adversaries (who can perform the

(wo)man-in-the- middle attack), was first shown by Renner and Wolf [106]. A practical protocol was then

proposed by Dodis et al. [46] for the setting where correlated variables are “close” according to some distance

metric. An interactive protocol based on [46] was proposed for the more general setting with less entropy

loss by Kanukurthi and Reyzin [79].

Combining cryptographic primitives. Shannon studied the security implications of multiple encryption

for the first time. He suggested to use “weighted sum” or “product ciphers” to combine two different

secrecy systems resulting in a more secure system [115] . Combining encryption systems for the purpose

of security amplification was further explored in symmetric-key settings under the “cascade cipher” name

[51, 91]. Combining cryptographic primitives promise two benefits: (i) stronger security guarantees as noted

in [7] and [3] and also papers on cascade ciphers, and (ii) ensuring security as long as at least one of the

components remains secure. This approach is used in [42, 148], and [70], where Chosen ciphertext security
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of multiple encryption is considered. Harnik et al. [64] defined the term “robust combiner” to formalize such

combinations for different cryptographic premitives. A combiner for KEMs is studied in the recent work by

Giacon et al. [55] which proposed various KEM combiner constructions.

C.6 Concluding remarks

We initiated the study of information theoretic KEM, that we called iKEM, by proposing a generalization

of KEM to gKEM to provide a unifying framework for the study of iKEMs and traditional computational

KEMs. iKEMs require initial correlated inputs for the parties. We constructed an iKEM when this initial

correlation is modelled by a family of probability distributions and evaluated its security when Eve has a

bounded number of encapsulation, or decapsulation queries. We also defined and constructed combiners

for combining the two types of KEMs. iKEMs significantly increase the set of available gKEMs with post-

quantum security, and the combiners improve robustness of KEMs in practice. iKEMs have the unique

security property of being secure against offline attacks that is particularly important in long-term security.

There are numerous interesting open questions that arise from our work, including constructing iKEMs

for other initial settings such the one considered in fuzzy extractors, and designing combiners that retain

information theoretic security of an ingredient iKEM.

Appendix A

Proof of Lemma C.2. The proof has two parts:

(a) Suppose a given gKEM in σ(n)- indistinguishable, then (C.9) holds. Because if it doesn’t, for the

view vqe-enaA , there exist a set W ⊂ RE ×K × C for which

(Pr ([) (RE , , C
∗,K∗|vqe-enaA ) ∈ W]− Pr ([) (RE , C

∗, UK|vqe-enaA ) ∈ W]) > σ(n).

We useW and define an adversary algorithm A∗ with gKINDqe-ena-b
iK,A (n) > σ(n) that contradicts the assump-

tion.

(b) Suppose (C.9) holds then the corresponding gKEM is σ(n)-indistinguishable. To prove this let

FA : RE ×K× C → {0, 1} be an arbitrary function that takes A’s inputs (rE ,c∗, k∗ and vqe-enaA ) and output
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0 or 1. Then we have

Advgkind-atk
iK,A (n)

≤ max
FA

|Pr ([) FA(RE , C
∗,K∗,vqe-enaA ) = 1]− Pr ([) FA(RE , C

∗, UK,v
qe-ena
A ) = 1].

LetW ⊂ RE×K×C be the set for which (Pr ([) (RE , C
∗,K∗|vqe-enaA ) ∈ W]−Pr ([) (RE , C

∗, UK|vqe-enaA ) ∈ W])

is maximized, then define FA(·) to be 1 only if its input is inW. From the definition of the statistical distance

(Definition C.1), it is easy to see that

≤ max
FA

|Pr ([) FA(RE , C
∗,K∗,vqe-enaA ) = 1]− Pr ([) FA(RE , C

∗, UK,v
qe-ena
A ) = 1]

= SD
(
(RE , C

∗,K∗,vqe-enaA ); (RE , C
∗, UK,v

qe-ena
A )

)
,

and we have

Advgkind-atk
iK,A (n) ≤ SD

(
(RE , C

∗,K∗,vqe-enaA ); (RE , C
∗, UK,v

qe-ena
A )

)
≤ σ(n) �

Proof of Lemma 3. The proof is identical to the proof of Lemma C.2 except that the probability distri-

bution is conditioned on qrqc-ccaA , the vector of adversary’s queries. �
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