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Abstract 

Over the last decade or so, the world has witnessed the rapid changes in the way people drive. 

How to ensure the navigation performance in challenging environments such as complex urban 

canyon environments or winter road environment with a relatively low-cost navigation system 

has become a popular research topic. Global Navigation Satellite System (GNSS) positioning is 

commonly used for land vehicle navigation. However, the accuracy of GNSS positioning is 

reduced in such challenging environments due to obstructions and multipath effects. Thus, the 

development of an alternative, accurate, inexpensive, and self-contained land vehicle navigation 

systems to bridge the GNSS gaps is significant for land vehicle navigation systems. Visual-

inertial odometry (VIO) is an accurate, inexpensive, and complementary approach for land 

vehicle navigation in GNSS signal-denied environments. VIO is subject to scale drift because it 

estimates forward direction translation using distant feature points that are generally located only 

in the forward direction. Wheel odometer measurements can be obtained from the CANBUS 

interface of most modern passenger vehicles and these provide reliable estimates of the forward 

wheel speed. In this thesis, an innovative approach to incorporate wheel odometry (WO) and 

non-holonomic constraints (NHC) together with tightly-coupled monocular visual-inertial 

odometry using the Multi-State Constraint Kalman Filter (MSCKF) is proposed and 

implemented. The algorithm is first validated using the public KITTI Dataset [1] with simulated 

wheel odometer data. Then, the KAIST Complex Urban Dataset [2] is used to test the 

performance of IMU+Vision+WO integration system in urban canyon environments. Winter 

driving data is collected in Calgary and used to evaluate the influence of winter road conditions 

on the proposed algorithm. The results demonstrate that WO and NHC are able to control the 

scale drift, and as a result are able to control both scale and orientation over longer periods than 
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IMU+Vision alone. IMU+Vision+WO achieved 1.814 m horizontal position error in a 1-minute 

drive in an urban canyon environment in the KAIST Complex Urban Dataset and 19.649 m and 

3.456 m horizontal position errors in two 1-minute drives in our Calgary winter urban 

environment. The results demonstrate that IMU+Vision+WO is a very promising method to 

bridge the GNSS outages and performs very well in some challenging environments. 

 

  



iv 

 

Acknowledgments 

Being able to study at PLAN group and Geomatics department of University of Calgary will 

always be an unforgettable and important experience of my life. First of all, I would like to 

express my deepest gratitude to my supervisor, Dr. Kyle O’Keefe for sharing his insights and 

knowledge, and always be so supportive for me. It has been a very rewarding journey to work 

with you. 

I would also like to thank all the professors for broadening my horizons to the most cutting-edge 

geomatics research: Dr. Kyle O’Keefe, Dr. Yang Gao, Dr. Naser El-Sheimy and Dr. Mozhdeh 

Shahbazi. Your amazing lectures really laid a solid foundation for my future research and career. 

In addition, I would like to extend my gratitude to Dr. Yang Gao, Dr. Naser El-Sheimy and Dr. 

Derek Lichti for agreeing to be on my defense committee. Also, I would like to thank Dr. Alex 

Bruton and Dr. Ivan Detchev for letting me to be your teaching assistant.  

Special thanks go to my friend Yang (River) Jiang. Thank you for your generosity for providing 

your insights and help during the data collection of my project. I would also like to thank all the 

PLAN Group members: Chandra, Asal, Paul V. G., Dongyu, Paul G., Rene, Andreas and Maliha 

for all the fun discussions we had. I would like to thank my friends, Tian Jin, Eric Wang and 

Changlin Yang for all the good time we spent together. 

My deepest thanks go to my parents and my beloved grandmother. Thank you for always being 

at my side no matter what.  

2020 was a very challenging year for me, and probably, for most people. Finally, I would like to 

express my sincere gratitude to all the health care workers around the globe. You are the true 

heroes. 

  



v 

 

Dedication 

 

 

 

 

 

 

 

 

To: 

my beloved mother Wenjie Zhang 

my father Keqing Huang 

and my grandmother Yuxiu Zhu. 

  



vi 

 

Table of Contents 

 
Abstract ........................................................................................................................................... ii 

Acknowledgments.......................................................................................................................... iv 

Dedication ....................................................................................................................................... v 

Table of Contents ........................................................................................................................... vi 

List of Tables .................................................................................................................................. x 

List of Figures and Illustrations ..................................................................................................... xi 

List of Symbols ............................................................................................................................. xv 

List of Abbreviations ................................................................................................................... xvi 

Chapter 1 INTRODUCTION ...................................................................................................... 1 

1.1 Land Vehicle Navigation ...................................................................................................... 1 

1.1.1 GNSS/RF-based positioning methods ........................................................................... 7 

1.1.2 Vehicle motion sensors ................................................................................................ 10 

1.1.3 Road maps .................................................................................................................... 13 

1.1.4 Visual sensors .............................................................................................................. 13 

1.1.5 Vehicle motion models ................................................................................................ 18 

1.2 Challenges of Navigating in Winter and Urban Environments .......................................... 20 

1.3 Motivations and Objectives ................................................................................................ 22 

1.4 Thesis Outline ..................................................................................................................... 24 



vii 

 

1.5 Publication .......................................................................................................................... 24 

Chapter 2 BACKGROUND ....................................................................................................... 25 

2.1 Visual Odometry and V-SLAM .......................................................................................... 25 

2.2 Sensor Fusion Frameworks ................................................................................................. 35 

2.3 Visual-Inertial Odometry .................................................................................................... 36 

Chapter 3 METHODOLOGY ................................................................................................... 42 

3.1 Coordinate System .............................................................................................................. 42 

3.1.1 Earth-Centered Inertial Frame (𝑖-frame) ...................................................................... 42 

3.1.2 Earth-Centered Earth Fixed (ECEF) Frame (𝑒-frame) ................................................ 42 

3.1.3 Local Level Frame (𝑙-frame) ....................................................................................... 43 

3.1.4 Navigation Frame (𝑛-frame) ........................................................................................ 43 

3.1.5 IMU Body Frame (𝑏-frame) ........................................................................................ 43 

3.1.6 Camera Frame (𝑐-frame) .............................................................................................. 44 

3.1.7 Vehicle Motion Frame (𝑚-frame) ............................................................................... 44 

3.2 Vehicle Motion ................................................................................................................... 45 

3.3 Feature-based Visual Odometry ......................................................................................... 49 

3.3.1 Pinhole Camera Model ................................................................................................ 50 

3.3.2 Camera Calibration ...................................................................................................... 52 

3.3.3 Feature Point Extraction and Matching ....................................................................... 54 

3.3.4 Epipolar Geometry (2D-2D) ........................................................................................ 56 



viii 

 

3.3.5 Triangulation and Depth Estimation ............................................................................ 60 

3.3.6 PnP (3D-2D) ................................................................................................................ 61 

3.3.7 Outlier Detection .......................................................................................................... 65 

3.4 Wheel Odometer Aided Multi-State Constrained Kalman Filter ....................................... 68 

3.4.1 System Model .............................................................................................................. 70 

3.4.2 Strapdown IMU Mechanization ................................................................................... 72 

3.4.3 Full System Model ....................................................................................................... 76 

3.4.4 Camera Measurement Model ....................................................................................... 77 

3.4.5 Wheel Odometer Measurement Model ........................................................................ 80 

Chapter 4 SYSTEM VERIFICATION AND EXPERIMENTAL SETUP ............................ 82 

4.1 Datasets Introduction .......................................................................................................... 82 

4.1.1 KITTI Dataset .............................................................................................................. 82 

4.1.2 KAIST Complex Urban Dataset .................................................................................. 84 

4.1.3 Calgary Winter Driving Dataset .................................................................................. 86 

4.2 Sensor Calibration ............................................................................................................... 89 

4.2.1 Camera Intrinsic Calibration ........................................................................................ 89 

4.2.2 IMU Intrinsic Calibration ............................................................................................ 93 

4.2.3 Wheel Odometer Calibration ....................................................................................... 95 

4.2.4 Camera-IMU Calibration ............................................................................................. 97 

4.3 Verifications Results with the KITTI Dataset .................................................................. 102 



ix 

 

Chapter 5 RESUTLS AND ANALYSES ................................................................................ 109 

5.1 Performances in Urban Canyon Environments................................................................. 109 

5.2 Performances in Winter Driving Environments ............................................................... 114 

Chapter 6 CONCLUSIONS AND FUTURE WORK ............................................................ 123 

6.1 Conclusions ....................................................................................................................... 123 

6.2 Recommendations for Future Works ................................................................................ 124 

References ................................................................................................................................... 126 

Appendix A: Copyright Materials .............................................................................................. 137 

Appendix B: Noise Parameters and Filter Initialization ............................................................. 138 

 

  



x 

 

List of Tables 

Table 1-1: Selected Sensors' Performances in Different Challenging Environments................... 21 

Table 4-1: Sensor Specifications of KITTI Dataset after [1] ........................................................ 83 

Table 4-2: Sensor Specifications of KAIST Complex Urban Dataset after [84] .......................... 85 

Table 4-3: Sensor Specifications of the Data Collection Platform ............................................... 89 

Table 4-4: Camera Intrinsic Parameters ....................................................................................... 92 

Table 4-5: IMU Noise Parameters of The SPAN-LCI IMU ......................................................... 95 

Table 4-6: Average Root Mean Square Error (ARMSE) of IMU Only, IMU+WO, IMU+Vision 

and IMU+WO+Vision on KITTI Dataset traverses 0095 and 0117 ........................................... 107 

Table 5-1: Average Root Mean Square Error (ARMSE) of IMU Only, IMU+WO, IMU+Vision 

and IMU+WO+Vision of KAIST Complex Urban Dataset (trajectory urban 39) ..................... 113 

Table 5-2: Average Root Mean Square Error (ARMSE) of IMU Only, IMU+WO, IMU+Vision 

and IMU+WO+Vision of Calgary Winter Driving Dataset (winter-1, summer-1 and winter-2) 122 

 

  



xi 

 

List of Figures and Illustrations 

Figure 1-1: General data sources and Man-machine interface for land vehicle navigation systems 

after [3]............................................................................................................................................ 3 

Figure 1-2: Expected specification of AV by the year 2020 from [5] ............................................ 5 

Figure 1-3: Concepts of Trilateration and Intersection ................................................................... 6 

Figure 1-4: Concept of DR ............................................................................................................. 7 

Figure 1-5: Inertial Navigation System working flow .................................................................. 13 

Figure 1-6: An example of feature matching ................................................................................ 17 

Figure 2-1: Classic V-SLAM Pipeline .......................................................................................... 28 

Figure 2-2: Feature-based VO pipeline......................................................................................... 32 

Figure 2-3: Comparison of traditional loosely coupled VIO and tightly coupled VIO ................ 37 

Figure 2-4: EKF-based VIO vs. MSCKF-based VIO ................................................................... 38 

Figure 3-1: Coordinate System Illustration................................................................................... 45 

Figure 3-2: Ackermann Steering Geometry .................................................................................. 46 

Figure 3-3: Any three-dimensional rotation can be described as a sequence of yaw, pitch, and roll 

rotations......................................................................................................................................... 48 

Figure 3-4: Pinhole Camera Model from [34] .............................................................................. 50 

Figure 3-5: Perspective Projection ................................................................................................ 51 

Figure 3-6: An example of detected SIFT feature using the KAIST Complex Urban Dataset 

(trajectory 39)................................................................................................................................ 55 

Figure 3-7: Epipolar Geometry ..................................................................................................... 57 

Figure 3-8: P3P ............................................................................................................................. 63 

Figure 3-9: Flowchart of RANSAC from [152] ........................................................................... 66 



xii 

 

Figure 3-10: RANSAC Family from [152] ................................................................................... 67 

Figure 3-11: The Workflow of Wheel Odometry aided MSCKF. ................................................ 71 

Figure 3-12: Strapdown INS Mechanization Workflow after [65] ............................................... 72 

Figure 4-1: Recording Platform of KITTI Dataset from [1] ......................................................... 83 

Figure 4-2: Sensor Setup of KITTI Dataset from [1] ................................................................... 83 

Figure 4-3: Recording Platform from [84].................................................................................... 84 

Figure 4-4: Sensor Setup of KAIST Complex Urban Dataset from [84] ..................................... 85 

Figure 4-5: Running trajectory of Calgary Winter Driving Dataset (2020-03-15) ....................... 87 

Figure 4-6: Recording Platform of the Calgary Winter Driving Dataset ...................................... 87 

Figure 4-7: Sensor Setup of the Calgary Winter Driving Dataset ................................................ 88 

Figure 4-8: A Close-up look of the sensors: PointGray Camera, XSENS MTi-600 IMU, Novatel 

SPAN-LCI IMU, Novatel 702-gg Antenna, Sparkfun CANBUS Shield ..................................... 88 

Figure 4-9: Camera Calibration Process ....................................................................................... 90 

Figure 4-10: Checkerboard Locations with respect to Camera for the Camera Calibration ........ 91 

Figure 4-11: Reprojection Error in Camera Calibration ............................................................... 92 

Figure 4-12: An Example of Calgary Winter Driving Dataset. Left: the original image. Right: 

after rectification ........................................................................................................................... 93 

Figure 4-13: CAN-BUS wheel speed vs. Ground truth forward speed from the Calgary Winter 

Driving Dataset ............................................................................................................................. 97 

Figure 4-14: Camera-IMU Calibration Experiment Setup ......................................................... 100 

Figure 4-15: Comparison of Predicted and Measured Angular Velocities (body frame) ........... 101 

Figure 4-16:Comparison of Predicted and measured Specific Force (IMU frame).................... 101 

Figure 4-17: Camera Reprojection Error of the Camera-IMU Calibration ................................ 102 



xiii 

 

Figure 4-18: Sample Image from KITTI Dataset 0095 .............................................................. 103 

Figure 4-19:Sample Image from KITTI Dataset 0117 ............................................................... 103 

Figure 4-20: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, 

IMU+Vision+WO on the KITTI 0095 ........................................................................................ 104 

Figure 4-21: The Rotational Errors (with 3 sigma error bound) of using IMU+WO, IMU+Vision, 

IMU+Vision+WO on the KITTI 0095 ........................................................................................ 104 

Figure 4-22: The Translational Errors (with 3 sigma error bound) of using IMU+WO, 

IMU+Vision, IMU+Vision+WO on the KITTI 0095 ................................................................. 105 

Figure 4-23: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, 

IMU+Vision+WO on the KITTI 0117 ........................................................................................ 105 

Figure 4-24: The Rotational Errors (with 3 sigma error bound) of using IMU+WO, IMU+Vision, 

IMU+Vision+WO on the KITTI 0117 ........................................................................................ 106 

Figure 4-25: The Translational Errors (with 3 sigma error bound) of using IMU+WO, 

IMU+Vision, IMU+Vision+WO on the KITTI 0117 ................................................................. 106 

Figure 5-1: Sample Images from the “trajectory urban 39” of the KAIST Complex Urban Dataset

..................................................................................................................................................... 109 

Figure 5-2: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, 

IMU+Vision+WO on KAIST Complex Urban Dataset (trajectory urban 39), respectively. ..... 110 

Figure 5-3: Orientation and Position State of the Filter Before the Turn in KAIST Complex 

Urban Dataset (trajectory urban 39) ........................................................................................... 111 

Figure 5-4: The Estimated feature-to-vehicle Distance .............................................................. 112 

Figure 5-5: Feature Tracking of a Moving Vehicle Before and During the Turn ...................... 113 



xiv 

 

Figure 5-6: Sample Images from Calgary Driving Dataset, winter-1 (a), summer-1 (b) and 

winter-2 (c).................................................................................................................................. 115 

Figure 5-7: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, 

IMU+Vision+WO on Calgary Winter Driving Dataset (winter-1) ............................................ 115 

Figure 5-8: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, 

IMU+Vision+WO on Calgary Winter Driving Dataset (summer-1) .......................................... 116 

Figure 5-9: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, 

IMU+Vision+WO on Calgary Winter Driving Dataset (winter-2) ............................................ 116 

Figure 5-10: Scenes from Calgary Winter Driving Dataset (winter-1, summer-1 and winter-2) 119 

Figure 5-11: Number of Salient Features Per Frame in winter-1, summer-1 and winter-2 ........ 119 

Figure 5-12: CAN-BUS Wheel Speed vs. Ground Truth Forward Speed .................................. 120 

Figure 5-13: Difference Between the Wheel Odometer Output and Ground Truth Forward 

Velocity ....................................................................................................................................... 121 

  



xv 

 

List of Symbols 

Abbreviations Definitions 

𝑏 bias 

𝑓 focal length 

𝐻 design matrix 

𝐽 Jacobian matrix 

𝐾 intrinsic calibration matrix 

𝑛 Process noise 

𝑃 projection matrix 

𝑝𝑏 𝑎 position of 𝑎 described in frame 𝑏 

𝑞𝑏
𝑎  quaternion vector that represents the rotation 

from frame 𝑏 to frame 𝑎 

𝑅 rotation matrix 

𝑋 3 × 1 coordinate vector 

𝑥 2 × 1 coordinate vector 

𝛼 yaw angle 

𝛽 pitch angle 

𝛾 roll angle 

𝜆 scale factor 

𝛿 error 

Φ transition matrix 

 

  



xvi 

 

List of Abbreviations 

Abbreviations Definitions 

ABS Antilock Breaking System 

ADAS Advanced Driver Assistance Systems 

AOA Angle of Arrival 

BA Bundle adjustment 

BLE Bluetooth Low Energy 

CNNs Convolutional Neural Networks  

CUPT Coordinate Updates 

DLT Direct Linear Transformation 

DoF Degree of Freedom 

DR Dead-Reckoning 

DSO Direct Sparse Odometry 

ECEF Earth-Centered Earth Fixed Frame 

ECI Earth-Centered Inertial Frame 

EKF Extended Kalman Filter 

EOP Extrinsic Orientation Parameters 

FLANN Fast approximate nearest neighbor 

FoV Field of View 

GNSS Global Navigation Satellite System 

ICP Iterative Closest Point 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 



xvii 

 

IOP Intrinsic Orientation Parameters 

KF Kalman Filter 

LLF Local Level-Frame 

MEMS Microelectromechanical system 

MSAC  M-estimator SAC 

MSCKF Multi-State Constrained Kalman Filter 

NFC  Near-Field Communication 

NHC Non-holonomic Constraints 

PDR Pedestrian Dead Reckoning 

PnP Perspective-n-Point 

PPP Precise Point Positioning 

PRN Pseudorandom Noise  

PTAM Parallel Tracking and Mapping 

RANSAC  Random sample consensus 

RFID Radio Frequency Identification 

RSSI Received Signal Strength Indicator 

RTK Real-Time Kinematic  

SFM Structure from motion 

SIFT Scale-Invariant Feature Transform 

SLAM Simultaneous Localization and Mapping 

SVO Semi-direct Visual Odometry 

SWF Sliding window filter  

TDOA Time Difference of Arrival 



xviii 

 

TOA Time of Arrival 

UKF Unscented Kalman Filter 

UWB Ultrawideband 

VIO Visual-Inertial Odometry 

VO Visual Odometry 

V-SLAM Visual simultaneous localization and mapping  

WLAN Wireless Local Area Network  

WLS Weighted least squares 

WO Wheel Odometry 

ZUPT Zero-velocity Updates 



1 

 

Chapter 1 INTRODUCTION 

Over the last decade or so, the world has witnessed rapid changes in the way people drive. 

Advanced Driver Assistance Systems (ADAS) as well as self-driving cars have received a 

tremendous amount of attention from both academia and industry due to some fundamental 

advancements in Simultaneous Localization and Mapping (SLAM), satellite navigation and 

sensor integration technology. With the help of all these sensors, cars are equipped with “eyes” 

to perceive the environment and become more intelligent like never before. Among all auxiliary 

sensors, due to the low cost and rich information, cameras have been the most promising and 

fundamental sensors for cognitive navigation. From a localization and navigation perspective, 

Visual Odometry (VO) or Visual SLAM is the answer to perform Dead-Reckoning (DR) in an 

unknown environment employing cameras. As for land vehicle motion sensors, Wheel Odometry 

(WO) and Inertial Measurement Units (IMU) are the most common ones mounted on cars. 

Ensuring land vehicle navigation systems function properly in challenging environments, such as 

urban canyon environments and winter road conditions, has become a very popular research 

topic in both academia and industry. This thesis investigates the integration of cameras and 

wheel odometry with inertial navigation in such challenging environments. 

This chapter provides an overview of the development of the land vehicle navigation 

methodologies and the limitations of the respective methods. The motivations, objectives, and 

contributions of this research are then presented.  

1.1 Land Vehicle Navigation 

In this section, the existing and most commonly used technologies for land vehicle navigation 

systems will be briefly reviewed.  
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For land vehicle navigation, Global Navigation Satellite Systems (GNSS) are always the first to 

be mentioned due to the advancements of the related satellite navigation technologies. However, 

GNSS receivers have many vulnerabilities and monitoring the integrity of their positioning 

solutions is both theoretically and practically difficult, thus, external support from additional 

information sources is required to obtain the desired accuracy, integrity, availability and 

continuity for land vehicle navigation systems [3]. Generally speaking, the most commonly used 

information sources for land vehicle navigation can be categorized as: (1) GNSS/RF-based 

Positioning; (2) Vehicle motion sensors; (3) Road maps; (4) Visual sensors and (5) Vehicle 

motion models [3].  

In addition, many land vehicles in professional services nowadays, such as ambulances, buses, 

fire trucks and etc., are equipped with navigation systems that not only show the current location 

but constantly communicate the vehicle location to a monitoring center as well [3]. Moreover, 

further development of intelligent transport system (ITS) applications, such as advanced driver 

assistance systems (ADAS), traffic control, automatic positioning of accidents, electronic toll 

collection, goods tracking, etc., requires not only navigation systems with higher accuracy but 

also better reliability and integrity [4], i.e., redundant information sources are needed.  

The ultimate goal of ITS is to endow land vehicles with intelligence to achieve autonomous 

driving. For the past ten years, autonomous vehicles (AVs) have drawn significant amount of 

attention in both academia and industry. AV technologies have promised to decrease 

transportation costs, increase safety, and some have suggested they might increase accessibility 

to low-income households and persons with mobility issues [5].  
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Figure 1-1: General data sources and Man-machine interface for land vehicle navigation systems after [3]. 

 

In addition to a large body of publicly available academic research and work going on privately 

in industry, there have been a number of research projects and competitions funded to expand the 

potential of AV. The concept dates back to as far as early 1920s [6]. The first modern AV 

competition was DARPA Grand Challenge [7]. In April 2017, Waymo (a subsidiary of Google) 

started a limited trial of a self-driving taxi service in Phoenix, Arizona. On December 5, 2018, 

the service launched a commercial self-driving car service called "Waymo One". Users in the 

Phoenix metropolitan area use an app to request a pick-up. In May 2020, Waymo announced its 

first outside funding round of $2.25 billion. On June 25, 2020, Waymo announced a partnership 

with Volvo to integrate Waymo’s self-driving technology into their vehicles [8].  

The automobile industry has defined five levels of automation for AVs [5] that are described as 

follows: 

• Level 0: At all times, the driver has complete and sole command and control of the 

vehicle with respect to steering, braking, throttle and motive power. 
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• Level 1: Some specific control function(s) such as electronic stability control or pre-

charged brakes is(are) automated.  

• Level 2: At least two main control functions such as adaptive cruise control in 

combination with lane centering are automated.  

• Level 3: Under certain traffic or environmental conditions, the driver cedes full control of 

all safety–critical functions and relies heavily on the vehicle to watch for any changes in 

conditions requiring transition to driver control. The driver will be required to resume 

control of the vehicle, but with sufficient transition time. 

• Level 4: The vehicle is intelligently designed to monitor roadway conditions and act solo, 

performing all safety–critical driving functions for an entire trip (a fully driverless level). 

Currently, all the available AVs in the market are at Level 2. In 2019, Audi released Audi A8 

and claimed it has reached Level 3. Even though academia and industry have invested significant 

effort to achieve full automation of AV, according to MIT Technology Review [9], due to the 

restrictions of technology and policy, there is a long way to go before level 3 or 4 vehicle are 

common. 
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Figure 1-2: Expected specification of AV by the year 2020 from [5] 

Before reviewing the various technologies, starting with GNSS/RF-based positioning 

technologies, a basic question must be addressed: what is navigation? According to The Concise 

Oxford Dictionary, navigation is “any of several methods of determining or planning a ship’s or 

aircraft’s position and course by geometry, astronomy, radio signals, etc.”. This concept can be 

interpreted in two ways. The first is to determine the position, velocity and attitude of a moving 

object with respect to a known reference. The second is the path planning of the object to 

navigate it from one location to another [10]. In modern navigation engineering, these tasks can 

be divided into two parts: perception and path planning. In this thesis, perception will be a major 

focus. 

Most of the current navigation techniques can be categorized as position fixing or dead 

reckoning (DR). Position fixing is accomplished by measuring range and/or bearing to known 

objects. Bearing and elevation measurements can be obtained via theodolite, magnetic compass, 

camera and etc. Ranging measurements can be obtained by using many sensors including radio 
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signals, lasers, radar, lidar or ultrasound. In geomatics applications, 3D position fixing can be 

achieved by trilateration (multilateration) and intersection methods.  

                                               

Figure 1-3: Concepts of Trilateration and Intersection 

 

Dead Reckoning either measures the change in position or measures velocity and attitude change 

and integrates these over time [10]. The speed or distance traveled is measured in the body 

coordinate frame. Thus, orientation of the object has to be measured to calculate the rotation 

matrix to the reference frame. For pedestrians,  distance and velocity measurements were 

traditionally obtained by counting paces. Nowadays, for pedestrian dead reckoning (PDR), 

accelerometers are used to determine step length. For land vehicle DR, an odometer can be used 

to count the rotation of a wheel to calculate the velocity and traveled distance. Contemporary 

velocity measurement methods include Doppler radar and integrating accelerometer 

measurements within an inertial navigation system. 
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Figure 1-4: Concept of DR 

1.1.1 GNSS/RF-based positioning methods 

The GNSS/RF-based positioning are the most widely-applied position fixing methods in the 

world nowadays. For land vehicle applications, the most common of modern in-car navigation 

systems match the position information from a GNSS receiver with digital map to estimate the 

vehicle position on the road. Generally speaking, there are three types of measurements in the 

RF-based positioning systems: Angle of Arrival (AOA), Time of Arrival (TOA), Time 

Difference of Arrival (TDOA). A fourth measurement, Received Signal Strength Indicator 

(RSSI), can be treated as another method of TOA.  

A satellite navigation system is a system that uses satellites to provide autonomous geo-spatial 

positioning and timing services [11]. The foundation of satellite navigation system was the US 

TRANSIT system. TRANSIT used Doppler positioning, which provided only one independent 

two-dimensional position fix per satellite pass [12]. To date, there are three fully operational 

Global Navigation Satellite Systems (GNSSs): the United States' Global Positioning System 

(GPS), Russia's Global Navigation Satellite System (GLONASS) and China's BeiDou 

Navigation Satellite System (BDS). The European Union's Galileo scheduled to be fully 
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operational by the end of 2020. Besides, there are two regional satellite navigation systems, 

Japan's Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite 

System (IRNSS), designed to enhance GPS’s accuracy. For improved error modelling in the 

navigation receiver, geostationary satellites as part of Satellite Based Augmentation Systems 

(SBASs) send local correction data. The importance and applications of GNSS technology is 

profound that many countries are putting it on a national strategic level. Over the last few 

decades, the Global Navigation Satellite Systems have made some exciting and profound 

advancements. The GNSS measurements are comprised of Pseudorandom Noise (PRN) codes 

and carrier wave for the GNSS signal. Measurements based on PRN modulation are 

unambiguous, the positioning accuracy of using PRN codes is from meters to sub-meter level. 

However, for some specific applications, such as surveying, earthquake monitoring, and vehicle 

navigation in challenging environments, higher positioning accuracy is required [13]. The carrier 

wave for the GNSS signal is a sine wave with a period of less than 1 meter (19 cm for L1), 

allowing for more precise measurements. Real-Time Kinematic (RTK) is a differential GNSS 

technique that uses carrier-based ranging to calculate position that is more precise than code-

based positioning. The common RTK GNSS positioning accuracy is up to 1 cm + 1 ppm. On the 

other hand, Precise Point Positioning (PPP) does not require base stations to remove atmospheric 

and clock errors, instead, it depends on GNSS satellite clock and orbit correction from a network 

of global reference stations (such as IGS). Generally speaking, the PPP GNSS positioning 

accuracy is up to 3 cm. A typical PPP solution requires a period of time to converge to decimeter 

accuracy in order to resolve any local biases such as the atmospheric conditions, multipath 

environment and satellite geometry. The actual accuracy achieved and the convergence time 
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required is dependent on the quality of the corrections and how they are applied in the receiver 

[14]. 

Despite the fact that the current GNSS technologies have already achieved very high accuracy 

positioning solutions in many scenarios, there are still challenges needed to be tackled. First of 

all, a GNSS receiver needs a clear line-of-sight to the satellites it is tracking. If the signal is 

blocked by objects like buildings or trees, the receiver cannot function normally, especially in 

urban canyon environments. Also, if the signal from a satellite arrives at the GNSS receiver via 

multiple paths due to reflection and diffraction, the nondirect-path signal will distort the signal 

and degrade the GNSS receiver performance. This effect is called multipath effect [15]. Second, 

due to the long distance (around 20200 km) between the GNSS satellites and the receiver on 

earth, the received GNSS signals are so weak that they can be easily squelched by natural or 

man-made interference [15].  

Other common RF-based positioning technologies include Wi-Fi, Bluetooth, ZigBee, Radio 

Frequency Identification (RFID) and Ultrawideband (UWB).  

Wireless Local Area Network (WLAN), also referred as Wi-Fi, transmits and receives data using 

electromagnetic waves, providing wireless connectivity within a coverage area [16]. For Wi-Fi 

positioning system, there are usually three ways to determine a user’s location: 1) the 

propagation model of a known antenna, 2) multiliteration method and 3) fingerprinting. For most 

commercially available Wi-Fi positioning systems employ some form of fingerprinting with an 

accuracy of tens of meters [16]. Bluetooth is a wireless communication technology that uses 

digitally embedded information on radio frequency signals. Bluetooth technology has been 

considered for indoor position systems as a competitor to Wi-Fi, in particular since the 

widespread adoption of Bluetooth Low Energy (BLE), due to its availability (it is supported by 
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most modern smartphones), low cost, and very low power consumption, which allows fixed 

emitters to run on batteries for several months or even years [17]. Apple proposed iBeacons to 

apply BLE for localization purposes. The accuracy is affected by signal attenuation and 

reflection due to obstacles, and range from sub-meter level to several meters. ZigBee is a 

wireless communication standard developed by the ZigBee Alliance [18]. Most of ZigBee 

positioning systems use RSSI values to estimate the position, just like Wi-Fi and Bluetooth. 

RFID is a technology that uses radio waves to make a specialized circuit produce a response 

containing a unique identifier. A famous application of RFID is NFC (Near-Field 

Communication), which has been applied on most modern smart phones for mobile payment 

purposes [16]. LANDMARC (Location Identification based on Dynamic Active RFID 

Calibration) is a pioneering RFID system, the authors claimed that the accuracy can reach 1 

meter [19]. UWB is based on the transmission of electromagnetic wave forms formed by a 

sequence of very short pulses using a very large bandwidth [19]. The advantage of using UWB 

for localization is the high precision of time-of-flight measurement and the multipath immunity. 

TOA and TDOA can be used in UWB positioning systems. The accuracy can reach centimeter 

level. It remains an open question if and which of these sensors and technologies will ultimately 

be included in autonomous vehicles and if and how each might be integrated with such a system. 

1.1.2 Vehicle motion sensors 

For land vehicle navigation, vehicle motion sensors are very useful to provide information about 

a vehicle’s state that can be used to estimate position, velocity and attitude. The commonly used 

vehicle motion sensors include: steering angle encoder, wheel odometer, wheel velocity encoder, 

electronic compass, accelerometer and gyroscope [3].  
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The steering encoders measure the angle of the steering wheel. By combining with the front 

wheel speed, the steering angle can be used to calculate the heading rate of the vehicle [3].  

Wheel odometer can measure the number of full and fractional rotations of the wheels to output 

the traveled distance of the vehicle. In the mean time, the wheel velocity encoder can observe the 

rotation rate of the wheels to provide measurements of vehicle’s velocity. If two separate 

encoders are mounted on the left and right wheels of either the front or rear wheel pair, the 

heading change of the vehicle can be estimated by calculating the difference between the wheel 

speeds [20]. Wheel encoder information is often available through the sensors of an Antilock 

Breaking System (ABS), which must compare each wheel’s speed to detect if and when wheels 

slip or lock, and can be accessed through CANBUS port from modern vehicles. However, the 

resolution using standard CANBUS messages is usually 1 km/h, which is too low for many 

applications. Therefore, additional wheel encoders, or custom CANBUS messages, might be 

necessary to provide reliable wheel speed information. The premise of using wheel rotation to 

estimate traveled distance, velocity and heading rate is that wheel revolutions can be directly 

translated into linear displacements relative to the ground [3]. However, in real-world driving 

scenarios, this assumption might not hold up. The reasons are as follows [21]: 

1. Wheel diameter change due to temperature, pressure and tire wear; 

2. Wheel slippage and skidding; 

3. Uneven road surface; 

4. Unequal wheel diameters; 

5. Limited resolution and sample rate of the wheel odometer. 

An electronic compass is constructed from magnetometers to provide heading information 

relative to the earth’s magnetic north by observing the directions of the earth local magnetic field 
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[22]. However, since the electronic compass is based on sensing the magnetic field, the power 

lines and metal structures alongside the road which affect the magnetic field will cause 

unpredictable errors. A method to account for magnetic declination is also required if absolute 

orientation is sought. 

An Inertial Navigation System (INS) is a complete three-dimensional DR navigation system 

comprised of a set of inertial sensors (accelerometers and gyroscopes, also known as Inertial 

Measurement Unit (IMU)) and a processor. The IMU usually consists of three orthogonal 

accelerometers and three gyroscopes to output 6D poses [10]. The accelerometer measures the 

acceleration caused by specific force (all forces except for gravity). The gyroscope measures the 

angular rotation rate of the object relative to the inertial frame of reference. By mounting an IMU 

on vehicle, the acceleration and angular rate measurements can be mapped into estimates of 

vehicle’s velocity, position and attitude [3]. IMU sensors have a wide range of types and 

applications. High-end IMU sensors are usually used in ships, aircraft, missiles and surveying. 

Nowadays, with the advancements in microelectromechanical system (MEMS) sensor 

technology, the low-cost MEMS IMUs have gained more and more attention. Unlike the vehicle 

motion sensors mentioned above, IMU sensors are fully self-contained and are able to output 6D 

pose information at a very high frequency. However they suffer from unbounded errors that drift 

rapidly as a function of time and making low-cost INS alone unsuitable as a DR technology, 

unless the errors can be properly modelled and corrected using other data sources. Generally 

speaking, the IMU sensor errors include: bias, scale factor, nonlinearity, scale factor sign 

asymmetry, dead zone, quantization error and cross coupling error [23]. As a result, IMUs must 

be calibrated and some errors states must be estimated with the navigation solution.  
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Figure 1-5: Inertial Navigation System working flow  

1.1.3 Road maps 

To achieve high-level autonomy of land vehicle navigation, an accurate digital map is necessary. 

Speaking from navigation standpoint, a digital map can be used to impose constraints on the 

navigation solution of a land vehicle navigation system. This technique is also referred as map 

matching [24]. The digital maps are built up as databases of topological (connectivity properties 

of features) and metrical (coordinates) information, together with attributes such as road class, 

street name, driving speed limit, and turn restriction. In addition, the road network is generally 

represented by a planar model on digital maps, where the street system is represented by a set of 

arcs [3]. Generally speaking, there are three steps of map matching process: 1. select a set of 

candidate arcs or segments, 2. calculate the likelihood of the selected arc or segments using the 

topological and geometric information as well as the coordinate relation between the vehicle 

trajectory and the candidate paths in the digital map, 3. determine the most likely road segments 

[3].  

1.1.4 Visual sensors 

Visual sensors, due to the rich information included in images, are believed to potentially cover 

all relevant information needed for driving [25]. With the fast development of machine vision 
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technology, some companies, for example Tesla, hold the strong belief that LiDAR is too 

expensive and bulky for daily driving, and cameras represent the future of autonomous vehicle 

perception technology [26]. To be more specific, visual sensors are able to provide information 

about: lane geometry, traffic signs and lights, objects in view, drivable road segments, vehicle 

poses and etc. With the fast advancements of artificial intelligence, visual sensors are also being 

deployed to understand diverse driving scenes. Compared with the range or velocity 

measurements from LiDAR, Radar and ultrasonic sensors, the measurements of visual sensors 

are the brightness intensity of images which requires extra computationally and algorithmically 

demanding processing procedures to extract information. In this section, some of the aspects of 

the applications of visual sensors in land vehicle navigation systems based on single-, dual-, and 

multi-image methods are briefly reviewed [25].  

(1) Single Frame 

For all the digital image processing algorithms, the first step will always be the camera intrinsic 

calibration. By using a well-measured target, such as a checkboard, an Aprilgrid or a Circlegrid 

[27], the camera’s principal points, focal distance, radial and tangential distortion coefficients 

can be estimated. This relates the image frame (2-D) with the world frame (3-D). For a single 

image in land vehicle navigation, the most common applications are traffic sign recognition and 

vanishing potin estimation [25]. The classic traffic sign detection is based on brightness and 

color gradients [28] [29] to classify circular or triangular edges. In some more advanced works, 

the neural networks are utilized to handle some real-world driving challenges, such as 

perspective distortion, lighting changes, partial occlusions and shadows [30], thus making the 

traffic sign detection process more robust. In addition, the intersection of straight lines in a single 

image can also be applied to estimate the vanishing point. When a camera is properly calibrated, 
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each vanishing point defines a direction vector originating from the focal point of the camera. In 

[31], the authors utilized this effect to constrain the visual odometry attitude error drift by fusing 

with the vanishing directions.  

(2) Dual Frame 

Observation of a scene either from different viewpoints (stereo vision) or from a moving camera 

(optical flow/VO) at different times yields images bearing significantly more information than 

single ones [25]. Both stereo vision and optical flow share the same objective: finding the 

matches between two overlapping images. According to how many pairs of corresponding pixel 

coordinates are being matched, the general image matching techniques can be divided into dense 

matching and sparse matching. For dense matching methods, the search for corresponding points 

is done at nearly all the pixels. However, for sparse matching methods, the search for 

corresponding points is done only at salient points (feature points) of the images [25].  

The sparse matching methods, similar to those used in photogrammetry, were developed first. 

The key of sparse image matching methods is the feature point detection. The features of an 

image contain the 2-D coordinates of the keypoints on the image and a descriptor that describes 

the keypoint’s shape, color, orientation, texture and etc. A keypoint should be different than its 

surrounding pixels, which means the image pattern around a keypoint distinguishes from its 

neighborhood. Good features should have the following properties [32]:  

• Repeatability: a good feature should be able to be detected in both images taken from 

different time/view. 

• Distinctiveness: the detected feature should be distinctive from its neighborhood. 

• Quantity: the number of detected features should be sufficient for two overlapping image 

to match. 
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• Accuracy: a good detected feature should be localized accurately. 

• Efficiency: for real-time applications, the feature extraction process should be conducted 

efficiently. 

• Robustness: a good feature detection algorithm should be robust against image noise, 

discretization effects, compression artifacts, blur, etc. 

In order to find the best match for given overlapping images, the common approach is to 

minimize the Hamming distance for binary descriptors [25]. Generally speaking, feature 

detection methods can be divided into three categories: edge detection, corner point detection, 

blob detection [33]. For localization and mapping purposes, corner point detection and blob 

detection are more important as their position in the image can be measured accurately [34]. A 

corner point is defined as a point at the intersection of two or more edges. A blob is an image 

pattern that distinguish from its immediate neighborhood in terms of intensity, color, and texture 

[34]. Corner detection methods include: (1) gradient based: Harris detector [35], KLT [36], Shi-

Tomasi detector [37]; (2) template based: FAST [38], FAST-ER [39]; (3) contour based: DoG-

curve [40], ACJ [41]. Blob detection methods include: (1) PDE based: SIFT [42], SURF [43], 

Rank-SIFT [44], KAZE [45], WADE [46]; (2) template based: ORB [47], BRISK [48], FREAK 

[49]; (3) segmentation based: MSER [50], FLOG [51, p.], BPLR [52]. To sum up, corner 

detectors are fast but less distinctive while blob detectors are more distinctive but take longer to 

compute. For VO/SLAM applications, ORB feature is usually deployed for some real-time 

scenarios [53] while SIFT and SURF are better with post processing for higher accuracy.  
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Figure 1-6: An example of feature matching 

A major advantage of using stereo vision over monocular vision is that the fixed baseline 

between the two cameras helps solving ambiguities [25]. Furthermore, two cameras means a 

larger FoV which makes some data-intensive dense matching methods feasible. According to the 

amount of pixels during the optimization process, the stereo matching methods can be divided 

into local methods and global methods. Local methods only optimize the dissimilarity of small 

image patches, thus susceptible to ambiguities [54]. Correspondingly, global methods optimize 

the energy term over the entire images [55], [56]. 

Apart from stereo vision, two images taken by the same camera at different time and location can 

also have overlapped patterns. Optical flow represents the velocity and direction of image 

motion. The motion of pixels can be caused either by the motion of camera or the motion of 

object, this leads to the two different fields of applications: environment change identification 

and camera motion estimation. In [57], the authors exploited optical flow for human-body 

motion analysis. In [58], the authors deployed optical flow for measuring fluid depth and 

velocity. By exploiting epipolar geometry, the camera’s ego-motion can also be estimated. More 

detailed review will be given in Chapter 2. 
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(3) Multi-Frame 

Multi-frame methods evaluate a quadruple of images from two cameras at two points in time. 

The application of which is scene flow estimation, a motion field representing the 3-D velocities 

of reconstructed 3-D points [25]. In [59], the authors proposed the concept of 6-D vision, which 

additionally estimates and compensates ego-motion to offer results with respect to a world 

coordinate frame rather than the cameras’, which is very useful for moving object detection and 

tracking. Sparse scene flow estimation can perform a more robust consistency check than 

described above by requiring a closed loop of pair-wise matches from current-left over current-

right, previous-right, previous-left back to current-left image [60]. Dense methods vary in the 

extent of coupling of the four images: Independently estimated initial disparities and flow 

vectors can be merged on the level of rigid moving objects [61]. 

1.1.5 Vehicle motion models 

Due to some intrinsic characteristics of land vehicles, certain vehicle models can be applied to 

constrain the navigation solution. Most common used methods include: Non-holonomic 

Constraints (NHC), Zero-velocity Updates (ZUPT), Coordinate Updates (CUPT) and height 

constraint.  

For the ideal ground vehicle navigation, the vehicle moves in a planar road condition with no 

wheel slippage and movement in the direction perpendicular to the road surface. Thus, in the 

vehicle body frame, the upward and sideway velocities should be zero. The most used vehicle 

models in land vehicle navigation is the Non-Holonomic Constraints (NHC), which constrain the 

lateral and vertical velocities to zero [62]. For ground vehicle applications, NHC is usually 

combined with the odometer output to form an auxiliary velocity update to constrain the 

navigation solution [63] [3]. In [64], the authors used wheel odometer velocity and NHC as 
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observations to integrate with MEMS IMU. The results showed significant improvements 

compared with pure INS integration results during GNSS outages. [65] developed an INS/Wheel 

Odometer/NHC DR algorithm which incorporates the calibration process of the IMU body frame 

and the vehicle frame. The author mathematically proved that the navigation accuracy is affected 

by the calibration accuracy, and the results showed that by incorporating the calibration process, 

the accumulated errors drops significantly. In [66], the authors exploited NHC to form motion 

hypotheses instead of the traditional RANSAC algorithm to improve the outlier reject in VO. 

The results showed that this proposed outlier rejection scheme can yield more inliers compared 

with the traditional 5-point RANSAC algorithm.  

Apart from NHC, other constraints that take advantage of the vehicle dynamics include: constant 

height constraint [67] [68] [69], constant LLH position [67] and constant slope [67]. Among 

which, the constant height constraint is the most commonly used. Normally, when a land vehicle 

travels in an urban environment, the vehicle height may be assumed to be constant for short time 

intervals [67]. For pedestrian and land vehicle navigation in urban environments, a constant 

height or the relative height by using differential barometry with respect to the initial height can 

be maintained for the navigation solution [68] [65].  

Another type of constraints is utilizing the fact that a vehicle can be stationary (ZUPT) and 

coordinate information can be available from other sources (CUPT). ZUPT is a commonly used 

technique to constrain the INS drifting errors for both vehicular and pedestrian navigation 

systems. The idea of applying ZUPT in INS navigation systems can date back to 1960s [70]. The 

key of applying ZUPT properly is to detect the stopping time interval [71]. The commonly used 

ZUPT methods include: curve fitting method, maximum likelihood estimation method and 

Kalman filtering method [72]. Nowadays, some more sophisticated and robust ZUPT methods 
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are developed. In [73], the authors proposed an adaptive threshold of the ZUPT detector in 

pedestrian inertial navigation systems, which enables the detector to adjust to gait patterns with 

different speeds. In [74], the authors proposed an machine learning model for ZUPT-aided foot-

mounted inertial navigation system. The results showed that by applying the machine learning 

algorithm, the positioning accuracy can achieve 55 cm over a 1.8 km indoor/outdoor path. In 

[75], the authors discussed the impact that ZUPT brought to the GPS/INS systems, The results 

showed that the implementation of ZUPTs increased the quality and reliability of the GPS/INS 

positioning, by lowering the rate of error growth during the GPS loss of lock. Similar to ZUPT, 

CUPT is also a very useful method for long-term navigation systems. In some applications the 

coordinate update can be provided continuously or at some CUPT stations depending on the 

availability of GPS coordinate update measurements. At each CUPT station, the coordinate 

update measurements provided by the aiding source (GPS) is compared to the INS position 

output to constrain the solution [76]. 

1.2 Challenges of Navigating in Winter and Urban Environments 

For driving at northern latitudes, such as Canada, it is difficult to stay safe on the road. 

According to [77], almost 30% of car accidents in Canada happen on snowy or icy roads. Five 

percent of those accidents happen during snowfall and more than 50,000 accidents that occur 

each year are due to precipitation. Canadian winter weather conditions play a huge factor in the 

number of accidents each year. In 2010, over 1,400 accidents cited weather conditions among 

factors. With the snowiest months between November and April in Canada, the average snowfall 

is around 6 cm. Extreme snow depths can reach 25 cm. Even though Canadians are not strangers 

to driving in the snow, the winter weather continues to play a chief factor in the amount of 
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collisions that happen each and every year. During 2010, over 30% of accidents’ major 

contributing factor was the environmental condition and almost five percent of all accidents 

resulting in death cited the weather. In more than 26% of 2010 accidents, packed snow or ice 

was present and during 1,500 accidents, heavy snowfall was occurring. Also, according to 

Waymo [78], there was 1.35 million deaths worldwide due to land vehicle crashes in 2016, and 

2.4 million injuries in 2015 due to vehicle crashes. How to increase the safety level of driving 

especially in urban areas is of vital importance for public safety.  

As has been introduced in the previous section, due to the different characteristics of land vehicle 

sensors, driving in winter road conditions and complex urban environments is very challenging if 

only one sensor is deployed. Each sensor has its own pros and cons with different characteristics. 

Thus, a sensor fusion framework is vital for land vehicle navigation systems in such challenging 

environments. In addition, due to the limitations of GNSS, the development of an alternative 

self-contained navigation system in winter urban environment is crucial for various application 

scenarios.  

Table 1-1: Selected Sensors' Performances in Different Challenging Environments 

 icy road snow/fog/mist urban canyon dynamic environment 

INS ✓ ✓ ✓ ✓ 

Camera ✓ × ✓ × 

Wheel 

Odometer 
× ✓ ✓ ✓ 

Digital Maps ✓ ✓ ✓ ✓ 

GNSS ✓ ✓ × ✓ 

 

To sum up: 

1. For land vehicle navigation systems, GNSS is the major data source for absolute 

positioning. However, the limited satellite visibility and the multipath effect will degrade 

the GNSS performance in the urban canyon environment. Also, the GNSS signal is easy 
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to spoof which makes it not reliable for some safety-critical applications (such as self-

driving car).  

2. The snowy and/or icy road condition magnify slippage of wheels, which reduces the 

accuracy of wheel odometer/encoder.  

3. The performance of visual sensor is challenged by the complexed scenarios in urban 

environments (illumination, dynamic environments, shadow and etc.). Also, in the snow-

covered environment during winter, the visual sensor suffers from the low-texture scenes 

of environment.  

 

In recent years, Visual-Inertial Odometry (VIO) has gained more and more attention from both 

academia and industry [79]. This technology is a self-contained, inexpensive and accurate way to 

bridge the GNSS outages, and has been successfully applied in land/aerial vehicle navigation, 

AR and etc. [80]. In addition, wheel odometer data is relatively easy to obtain for modern land 

vehicle systems. Combining VIO and wheel data is an inexpensive and complementary approach 

to bridge the GNSS gaps in challenging environments. In [81]–[83], the authors already 

discussed the feasibility of integrating wheel data with VIO. However, in these works, the 

potential of applying VIO+WO in winter urban environment has not been fully evaluated.  

1.3 Motivations and Objectives 

As discussed in the previous section, the motivation of this research can be summed up as: 

1. Driving in the winter road conditions and the complex urban environments is very 

challenging. The accuracy of GNSS positioning is reduced in such environments. The 

development of an alternative, accurate, inexpensive and self-contained land vehicle 
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navigation systems to bridge the GNSS gaps is a popular research topic from both 

academia and industry. 

2. VIO is an accurate and inexpensive approach for land vehicle navigation system with a 

lot of potential to explore. Meanwhile, wheel odometers are present on all modern land 

vehicles. Both camera and wheel odometer are affected by the winter urban environment. 

However, existing works do not investigate the performance of the integration system of 

VIO+WO+NHC. 

The main objective of this thesis is to design and implement a wheel odometry aided VIO 

algorithm for land vehicle navigation and test its performance in winter urban environments. The 

main objective is fulfilled with two sub-objectives: (1) investigating the influence of winter road 

conditions and urban environments on the camera and wheel odometer, and (2) exploring the 

feasibility of applying NHC + wheel speed as external constraints on the VIO velocity drift. In 

this thesis, an VIO framework named Multi-State Constraint Kalman Filter (MSCKF) will be 

deployed. The algorithm is first validated on the KITTI dataset [1], and then tested on the KAIST 

complex urban dataset [84] and a winter driving dataset collected in Calgary, Canada. 

The main contributions of this thesis are: 

1. Investigation and demonstration of integrating wheel odometer, NHC and VIO as a 

promising alternative to the tradition GNSS positioning. 

2. Evaluation of the influence of winter and urban environments on the camera and wheel 

odometer sensors. 

3. Publishing the Calgary Winter Driving Dataset which contains RGB images, an 

automotive-grade IMU data, wheel odometer data and GNSS/INS ground truth data. 
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1.4 Thesis Outline 

The remainder of the thesis is organized as follows: 

• Chapter 2 provides a comprehensive background and literature review on the cutting-

edge VO, VIO, motion constraint aided inertial navigation and sensor fusion techniques.  

• Chapter 3 presents the system design and the fundamentals of the WO aided MSCKF. 

• Chapter 4 focuses on the data collection platform setup and the algorithm verification. 

• Chapter 5 shows the results of the KAIST Complex Urban dataset and our Calgary winter 

driving dataset. The detailed analysis of the results is also presented. 

• Chapter 6 provides a summary of the results and recommendations for future work. 

1.5 Publication 

• Cheng Huang, Yang Jiang, and Kyle O’Keefe, " Wheel Odometry aided Visual-Inertial 

Odometry for Land Vehicle Navigation in Winter Urban Environments," Proceedings of 

the 33nd International Technical Meeting of the Satellite Division of The Institute of 

Navigation (ION GNSS+ 2020), September 2020. 
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Chapter 2 BACKGROUND 

This chapter provides the background and literature review on the fundamentals and recent 

developments of VO, VIO, motion constraint aided inertial navigation and sensor fusion 

frameworks. The chapter begins with the review of VO and V-SLAM from monocular, stereo, 

RGB-D and event camera point of view. Then, in Section 2.2, the general sensor fusion 

framework is reviewed. In Section 2.3, VIO algorithms are reviewed with emphasis on MSCKF. 

2.1 Visual Odometry and V-SLAM 

The term visual odometry (VO) was coined by Nister in his landmark paper about solving the 

five-point relative pose problem [85]. Similar to wheel odometry (WO), VO incrementally 

estimates the vehicle poses through examination of the changes that motion induces on the 

images of its onboard camera [34]. The reconstruction of camera poses and 3-D scene structure 

was first studied by the photogrammetry community and then redeveloped by the computer 

science community as structure from motion (SFM) [86], [87]. However, SFM focuses on 3-D 

reconstruction of both the scene structure and camera poses from sequential image sets, and the 

final structure and camera poses are usually offline optimized through bundle adjustment [34]. 

VO, on the other hand, only focuses on the online estimation of the 3-D motion of the camera. In 

this case, bundle adjustment can be used (optionally) to optimize the local trajectory. The first 

known real-time VO implementation is presented by Moraveck’s PhD thesis [88]. In Maraveck’s 

work, he proposed the first image motion-estimation pipeline as well as the earliest corner 

detector (Moraveck corner detector). He tested his work on a planetary rover equipped with a 

slide stereo camera: that is a single camera sliding on a rail. The planetary rover operated in a 

stop-and-go fashion. At each stop, the camera slid horizontally taking nine pictures and matched 
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these with the pictures taken at the next stop. The corner points were estimated by triangulation 

at two consecutive robot positions, and the motion was computed as the rigid body 

transformation to align the triangulated points. The system equations were solved via a weighted 

least squares (WLS) adjustment, and the weights were computed as inversely proportional to the 

distance from the triangulated points. Although Moraveck’s work only involved with a single 

camera, it still belongs to the stereo VO for using a triangulation method to determine the 3-D 

feature position. The main motivation of early VO research is to equip planetary rovers with the 

ability to measure 6 DoF motion in the presence of wheel slippage in uneven and rough terrain in 

which scenario that wheel odometer cannot function normally [34]. With modern developments 

in camera sensing technology, VO-based applications have been widely broadened such as 

land/aerial/oceanic vehicle navigation [89]–[91], AR/mixed reality applications [92], visual 

surveillance systems[93] , medicine [94] and etc. Generally speaking, VO is an inexpensive and 

alternative odometry technique that is more accurate than conventional techniques, with a 

relative positioning error ranging from 0.1 to 2% of distance travelled [34].  

The advantages of VO are manifold: 

1. Straightforward, accurate and inexpensive; 

2. Able to be used in GPS-denied environment, such as indoor, underwater and outer space 

environment; 

3. Lightweight; 

4. Do not emit any detectable energy into the environment, do not suffer from the 

interferences often  encountered when active ultrasonic/laser or RF-based sensors are 

used; 

5. Easy to integrate with other sensors. 
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Besides all the advantages, there are still some limitations when using imaging sensors especially 

in outdoor large-scale environments. The main challenges in VO systems are mainly related to 

computational cost (especially optimization methods), light conditions (direct sunlight, shadows 

and image blur) and dynamic environment [95]–[97]. In addition, in some low-texture 

environments, such as white walls or snow-covered environments, the feature-based VO 

methods will also suffer from insufficient feature points. For standalone monocular VO systems, 

there is the additional challenge of the scale uncertainty [98]. The absolute scale can be 

alternatively solved or estimated from other measurements, such as direct measurements 

(measuring the size of an element in the scene), motion constraints, IMU, air pressure, ranging 

sensors or a pre-determined camera baseline (stereo camera). Also, due to the fact that the 

distance of the camera above the road surface is nearly constant for land vehicles, [99] proposed 

a planar road model to solve the scale ambiguity. However, there are two assumptions to be 

made: (1) streets are assumed to be approximately planar in the vicinity of the vehicle; (2) the 

roll and pitch movement of the vehicle assumed to be negligible.  

Although this section mainly focuses on the review of VO, the relation between the visual 

simultaneous localization and mapping (V-SLAM) and VO still has to be mentioned. SLAM is a 

technique for obtaining the sensor motion and the environment map (3-D structure) in an 

unknown environment simultaneously. This technique was originally proposed for autonomous 

robotic control [100], and has gained more and more attentions over the years. V-SLAM means 

that the camera is the only exteroceptive sensor. The classic basic V-SLAM modules contain 

three parts: initialization, tracking and mapping [101]. Initialization is an essential step to define 

the global coordinate system and also provide or estimate the initial absolute coordinate for the 

map. After the initialization, tracking and mapping are performed simultaneously to continuously 
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estimate the camera motion. The tracking module can be interpreted as VO. In the mapping 

module, the map is expanded by computing the 3-D structure when the camera observes 

unknown areas where the mapping has not been performed before. Besides the basic modules, 

two additional advanced modules are also included in the V-SLAM algorithms for more accurate 

and robust localization purposes: relocalization and global map optimization. Relocalization is of 

vital importance for long-run V-SLAM operations when the tracking module fails due to fast 

camera motion or disturbances. In such scenarios, the camera pose needs to be re-initialized 

again with respect to the map. Global optimization is a very important module to reduce the 

accumulative errors. When a starting region is captured again and being recognized successfully, 

the reference information represents the accumulative error from the beginning to the present can 

be computed. In the meantime, a loop constraint can be used to reduce the error in the global 

optimization [102].  

 

Figure 2-1: Classic V-SLAM Pipeline 

For modern development of VO systems (Figure 2-1), more types of camera are being used, such 

as monocular camera, stereo camera, omnidirectional camera, RGB-D camera, event camera and 

etc. Due to the strong connection between VO and V-SLAM, the following VO introductions 

will also cover some the advancements from V-SLAM research. 

(1) Stereo VO 

Due to the scale factor uncertainty in monocular VO, most classic early-stage work focused on 

stereo VO. There are three main approaches to estimate the motion by leveraging stereo pair of 
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images. The first and most intuitive one is to triangulate every stereo pair to obtain the 3D points, 

and the relative motion is solved as a 3-D to 3-D point registration (alignment) problem. In 2003, 

[85] proposed the first real-time long-run implementation with a robust outlier rejection scheme. 

First, contrary to all previous works, they did not track features among frames but detected 

features (Harris corners) independently in all frames and only allowed matches between features. 

This has the benefit of avoiding feature drift during cross-correlation-based tracking. Second, 

they did not compute the relative motion as a 3-D to 3-D registration problem but as a 3-D to 2-

D camera pose estimation problem. Finally, they incorporated RANdom SAmple Consensus 

(RANSAC) outlier rejection into the motion estimation step. Finally, a motion estimation scheme 

was introduced by [103]. Instead of using 3-D to 3-D point registration or 3-D to 2-D camera 

pose estimation techniques, they relied on the quadrifocal tensor, which allows motion to be 

computed from 2-D to 2-D image matches without having to triangulate 3-D points in any of the 

stereo pairs. The benefit of using directly raw 2-D points in lieu of triangulated 3-D points lies in 

a more accurate motion computation [34].  

(2) Monocular VO 

The interest in monocular methods is due to the observation that stereo VO can degenerate to the 

monocular case when the distance to the scene is much larger than the stereo baseline (i.e., the 

distance between the two cameras). A monocular camera, by its nature, only measures the 

bearing information. Thus, the motion can only be recovered up to a scale factor. The main 

difference between stereo VO and monocular VO is that monocular VO has to compute both 

relative motion and 3-D structure from 2-D bearing data. Since the absolute scale is unknown, 

the distance between the first two camera poses is usually set to one. As new images arrive, the 
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relative scale and camera pose with respect to the first two frames are determined using either the 

knowledge of 3-D structure or the trifocal tensor [34].  

Related works on monocular VO can be divided into three categories: feature-based methods, 

direct methods, hybrid methods and deep learning methods.  

Feature-based methods are based on salient and repeatable features that are tracked over frames. 

There are two types of feature-based methods: filtering-based and BA-based. In this type, Nister 

et al. proposed the innovative five-point minimal solver to calculate the motion hypotheses in 

RANSAC [85]. His ground-breaking paper made five-point RANSAC very popular [104], [105]. 

Lhuillier and Mouragnon et al. presented an approach based on local windowed-bundle 

adjustment to recover both the motion and the 3-D map [105]. In Tardif et al. work [106], they 

decoupled the rotation and translation estimation. The rotation was estimated by using points at 

infinity and the translation from the recovered 3-D map. Erroneous correspondences were 

removed with five-point RANSAC. MonoSLAM is the first real-time monocular V-SLAM 

system, it also represents the filtering-based VO methods [107]. In MonoSLAM, the camera pose 

and 3-D environment structure are simultaneously estimated via EKF. Both 6 DoF camera 

motion and 3-D feature positions are included in the state vector of EKF. Depending on the 

camera motion, new feature points are added to the state vector. The initialization is done by 

observing a known object which global coordinate system is defined. However, there are several 

limitations of MonoSLAM. First, the computational cost increases in proportion to the size of 

feature points. For land vehicle applications, the large-scale environment will result in a large 

size of state vector, which means it is difficult to achieve real-time computation. Second, the 

sparse features in the map are easy to lose track. Parallel Tracking and Mapping (PTAM), on the 

other hand, is the first method which deploys BA rather than filtering in real-time V-SLAM 
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algorithms [108]. PTAM split the feature tracking and mapping into two parallel threads on 

CPU, which improves the computational efficiency. In addition, a keyframe mechanism is 

proposed in PTAM, that is, instead of carefully processing each image, several key images are 

stringed together to optimize its trajectory and map. The disadvantage of this method is that the 

scene is small and tracking is easy to lose. In [109], the authors compared the differences 

between EKF-based estimation in MonoSLAM and BA-based estimation in PTAM. The authors 

conducted a series of Monte Carlo experiments to investigate the accuracy and cost of V-SLAM. 

As a result, they proved that it is important to increase the number of feature points for higher 

accuracy. And from this point of view, the BA-based method is better at handling large number 

of feature points than the EKF-based methods. ORB-SLAM is considered to be the most 

complete feature-based V-SLAM method. ORB-SLAM [110] was first proposed in 2015, it 

deployed and calculated ORB features, including ORB dictionary for visual odometry and loop 

detection. ORB feature calculation efficiency is higher than SIFT (Scale-Invariant Feature 

Transform) or SURF (Speed-Up Robust Features), and it has good rotation and scaling 

invariance. ORB-SLAM innovatively uses three parallel threads to increase the computational 

efficiency. The three threads are: real-time feature tracking thread, local bundle adjustment 

thread and global pose graph optimization thread. The disadvantage of this method: it is very 

time-consuming to calculate the ORB feature once for each image, and the three-thread structure 

brings a heavy burden to the CPU. The sparse feature point map can only meet the positioning 

needs, and cannot provide navigation, obstacle avoidance and other functions. In 2017, the 

authors proposed ORB-SLAM2, which includes loop detection, re-localization and map reuse 

[53]. ORB-SLAM2 is the first open source SLAM system that supports monocular, stereo and 
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RGB-D cameras. In 2020, ORB-SLAM3 was released [111]. Compared with ORB-SLAM2, 

ORB-SLAM3 also includes visual-inertial odometry system. 

 

Figure 2-2: Feature-based VO pipeline 

Compared with feature-based methods (Figure 2-2), direct methods directly use pixel intensity of 

input image without computing feature descriptors and detectors. Thus, the direct methods are 

also called feature-less methods. In general, photometric consistency is used as an error 

measurement in direct methods whereas geometric consistency such as positions of feature 

points in an image is used in feature-based methods. Inspired by PTAM, DTAM is the first direct 

dense method V-SLAM system [112]. It calculates key frames to build a dense depth map by 

minimizing the global spatial norm energy function, while the camera pose is calculated by 

direct image matching. This method is robust to low-texture environment and motion blur. The 

disadvantage of this method is that the amount of calculation is very large, and GPU parallel 

computing is required. DTAM assumes a constant luminosity and is not robust enough for global 

illumination processing. LSD-SLAM is another representative direct V-SLAM methods. The 

idea of LSD-SLAM came from semi-dense VO [113], which the reconstruction targets are 

limited to areas which have intensity gradient compared to DTAM which reconstructs full areas. 

This means that it ignores textureless areas because it is difficult to estimate accurate depth 

information from images [101]. LSD-SLAM [114] built a large-scale direct monocular SLAM 

framework, and proposed an image matching algorithm to directly estimate the similarity 

transformation between key frames and scale perception, and realize the reconstruction of semi-

dense scenes on the CPU. The disadvantage of this method is that it is sensitive to the camera's 

internal parameters and exposure, and it is easy to lose when the camera moves quickly, and it 
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still needs feature points for loop detection. SVO [115] (Semi-direct Visual Odometry) is a semi-

direct visual odometer, which is a mixture of feature-based methods and direct methods: some 

corner points are tracked, and then like the direct method, based on the information around the 

key points to estimate camera movement and position. Since there is no need to calculate a large 

number of descriptors, the speed is extremely fast, reaching 300 frames per second on consumer 

laptops and 55 frames per second on drones. The shortcomings of this method are: abandoning 

the back-end optimization and loop detection, there is a cumulative error in the pose estimation, 

and it is difficult to relocate after loss. Direct Sparse Odometry (DSO) [116] is a visual odometry 

method based on highly accurate sparse direct structure and motion formula. Without 

considering the geometric prior information, the photometric error can be directly optimized. 

And considering the photometric calibration model, its optimization range is not all frames, but a 

sliding window formed by the latest frame and its previous frames, and this window has 7 key 

frames. In addition to perfecting the error model of direct method pose estimation, DSO also 

adds affine brightness transformation, photometric calibration, and depth optimization. There is 

no loopback detection in this method. 

Due to the limitations of the traditional feature-based and direct methods in environment 

adaptability, there has been recent research focusing on applying deep learning technology into 

the VO/V-SLAM field. CNN-SLAM [117] deployed Convolutional Neural Networks (CNNs) to 

predict depth maps for the goal of accurate and dense monocular reconstruction. The authors 

demonstrated in the paper that by fusing the predicted depth information with the depth 

measurement obtained from direct monocular SLAM, the absolute scale can be estimated more 

accurately. The PoseNet [118] trained a convolutional neural network to regress the 6-DoF 

camera pose from a single RGB image in an end-to-end manner with no need of additional 
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engineering or graph optimisation. The authors demonstrated that the PoseNet localizes from 

high level features and is robust to difficult lighting, motion blur and different camera intrinsics 

where point based SIFT registration fails. Furthermore we show how the pose feature that is 

produced generalizes to other scenes allowing us to regress pose with only a few dozen training 

examples. UnDeepVO [119] is able to estimate the 6-DoF pose of a monocular camera and the 

depth of its view by using deep neural networks. The features of UnDeepVo are twofold: one is 

the unsupervised deep learning scheme, and the other is the absolute scale recovery. 

(3) RGB-D VO 

In the past years, novel camera systems like the Microsoft Kinect or the Asus Xtion sensor that 

provide both color and dense depth images became readily available. The applications of such 

RGB-D cameras in VO/V-SLAM algorithms are gaining more and more attentions. By using 

RGB-D cameras, 3D structure of the environment with its texture information can be obtained 

directly. In addition, in contrast to monocular V-SLAM algorithms, the scale of the coordinate 

system is known because 3D structure can be acquired in the metric space. KinectFusion was 

proposed in 2011 [120]. The camera motion is estimated by the ICP algorithm using an estimated 

3-D structure and the input depth map. KinectFusion is implemented on GPU to achieve real-

time processing. SLAM++ uses RGB-D camera to register several 3-D objects in database in 

advance [121]. In this system, the real-time 3D object recognition and tracking provides 6DoF 

camera-object constraints are conducted which feed into an explicit graph of objects, continually 

refined by efficient pose-graph optimisation. 

(4) Event Camera VO 

Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of 

capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and 
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output a stream of events that encode the time, location and sign of the brightness changes. Event 

cameras offer attractive properties compared to traditional cameras: high temporal resolution, 

very high dynamic range, low power consumption, and high pixel bandwidth, resulting in 

reduced motion blur. Hence, event cameras have a large potential for robotics and computer 

vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high 

dynamic range. However, novel methods are required to process the unconventional output of 

these sensors in order to unlock their potential [122]. In [123], the authors proposed a novel and 

effective solution to 3D reconstruction using a pair of temporally-synchronized event cameras in 

stereo configuration. It outperforms state-of-the-art stereo methods using the same spatio-

temporal image representation of the event stream. However, even with the great potential of 

event camera, this field still needs a lot of explorations.  

2.2 Sensor Fusion Frameworks 

Sensor fusion can be distinguished into two categories: centralized and decentralized (or 

distributed) approaches [124]. The centralized sensor fusion framework usually offers a higher 

degree of accuracy as all information is available during the state estimation. In addition, 

centralized sensor fusion framework is under the consistent model assumptions that contains all 

relevant modeling knowledge. Furthermore, it does neither double count information nor is 

uncertain whether all available information has been processed [124]. The decentralized sensor 

fusion framework distribute the computational load over multiple hardware units which results in 

a higher computational efficiency. [125] proposed distributed sensor fusion with an EKF for 

navigation proposes. Particle filters have been used for sensor fusion applied to distributed 
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surveillance [126]. In this thesis, centralized sensor fusion framework will be employed because 

it requires fewer assumptions about the sensors to be made. 

Sensor fusion techniques are a trend, but it is also a compromise. Due to the fact that a single 

sensor cannot adapt to all scenarios, only by combining multiple sensors with complementary 

characteristics can we achieve the goal of an ideal localization and navigation system. 

2.3 Visual-Inertial Odometry 

Visual-Inertial Odometry (VIO) can be interpreted as the integration of VO and inertial 

measurements, and has been applied broadly in mobile robotics, AR, self-driving cars, UAV, 

underwater vehicles and etc. [80]. The reasons why VO and inertial sensors are complementary 

are threefold: 

1. VO is sensitive to motion blur induced by rapid motions. Due to the high frequency 

output, IMU result can be still be relied upon in high-speed scenarios; 

2. IMU measurements can drift away even the agent is still, VO can constrain the drifts; 

3. VO is not robust in low-texture environments (snow, mist, dark …) and dynamic 

environments (with moving objects). IMU measurements are not affected by those 

factors. 

There is a considerable amount of work covering a wide range of estimation techniques to do this 

integration. From the integration point of view, these techniques can be characterized as either 

loosely coupled or tightly coupled. The loosely coupled system simply fuses the pose estimation 

results from both IMU and camera, which means that VO here can be treated as a black box. The 

detected feature points will not be included in the state vector. Stephen Weiss proposed and 

implemented two outstanding open-source loose integration frameworks: SSF and MSF [125]. 
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Due to the fact that the IMU and the VO are two independent modules in the loosely coupled 

VIO systems, the update frequencies of the two modules are different and VO is simply used to 

correct the IMU drift errors. The advantages of loosely coupled VIO are its simplicity and lower 

computational cost. However, the disadvantages are in that the system cannot correct the drift 

intrinsic to VO. On the other hand, the tightly coupled method fuses the state of the camera and 

the IMU together into set of a motion and observation equations, and then perform the state 

estimation. In this case, the detected feature points will be included into the state vector. Since 

the IMU accumulated errors between image frames is relatively small, IMU data can be used to 

predict the inter-frame motion. The advantage of tightly coupled VIO systems is that the IMU 

scale metric information can be used to aid in the estimation of the VO scale, thus having a 

higher positioning accuracy. The disadvantages are high computational cost and the addition of 

3D feature points in the state that need special handling. Due to the correlations with the SLAM 

research, the tightly coupled VIO systems have evolved into many different and successful 

algorithms which can be generally divided into three types: filtering-based, optimization-based 

and deep-learning approaches [80].  
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Figure 2-3: Comparison of traditional loosely coupled VIO and tightly coupled VIO 

 

(1) Filtering-based VIO 

The filtering-based algorithms only infers and updates the most recent state, thus can perform 

efficient estimation. The early and traditional filtering-based VIO algorithms include: EKF-based 
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VIO [127]–[131], Unscented Kalman Filter (UKF) VIO [132], and batch or incremental 

smoother VIO [133]. Among these, MSCKF [128] stands out due to its simplicity and high 

efficiency. MSCKF was applied to the application of spacecraft descent and landing [130] and 

fast UAV autonomous flight [134] This approach uses the quaternion-based inertial dynamics for 

state propagation tightly coupled with an efficient EKF update. As is shown in Figure 2-4, rather 

than adding features detected and tracked over the camera images to the state vector, their visual 

bearing measurements are projected onto the null space of the feature Jacobian matrix, thereby 

retaining motion constraints that only relate to the stochastically cloned camera poses in the state 

vector [135]. While reducing the computational cost by removing the need to co-estimate 

potentially hundreds and thousands of point features, this operation prevents the relinearization 

of the features’ nonlinear measurements at later times, yielding approximations deteriorating its 

performance.  

 

Figure 2-4: EKF-based VIO vs. MSCKF-based VIO 

To sum up, the traditional EKF-based VIO includes the feature position estimates in the state 

vector, and only the most recent pose is estimated, old states are deserted. The algorithm 

complexity is cubic in number of features. The MSCKF incorporates the sliding window scheme 

and maintains a sliding window of camera poses in the state vector. Each feature position is used 

as a constraint of a series of poses. The filter updates only when feature is out of view or reach 

the maximum of tracking frame number. The algorithm complexity is linear in number of 
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features, thus having a better computational efficiency. In [136], the authors proved that the 

standard method of computing Jacobian matrixes in filters inevitably resulted in inconsistencies 

and a loss of accuracy through simulation tests, which showed that the yaw errors of the MSCKF 

lay outside the ±3𝜎 bounds indicating inconsistencies. Thus they proposed modifications to the 

MSCKF to ensure the correct observability properties without incurring additional computational 

costs. [137] compared MSCKF and the sliding window filter (SWF). Its results showed the SWF 

to be more accurate and less sensitive to tuning parameters than the MSCKF. However, the 

MSCKF is computationally cheaper, has good consistency properties, and improves in accuracy 

as more features are tracked. S-MSCKF [134] can be considered a stereo version of MSCKF. 

The software takes synchronized stereo images and IMU messages and generates a real-time 

6DOF camera pose estimation. It uses the FAST corner to increase the speed and tracked 

features with KLT optical flow. In addition, circular matching can be used to remove outliers 

generated during feature tracking and stereo matching.  

(2) Optimization-based VIO 

Theoretically, filtering-based VIO system suffer from one limitation: non-linear measurements 

must have a one-time linearization before processing, thus possibly introducing large 

linearization errors into the estimator and degrading performance. Batch optimization methods, 

by contrast, solve a nonlinear least-squares (bundle adjustment or BA [138]) problem over a set 

of measurements, allowing for the reduction of error through relinearization but with high 

computational cost. [139] introduced a keyframe-based optimization approach (i.e., OKVIS), 

where a set of non-sequential past camera poses and a series of recent inertial states, connected 

with inertial measurements, was used in nonlinear optimization for accurate trajectory 

estimation. OKVIS [139] is called Open Keyframe-based Visual-Inertial SLAM. This solution 
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uses a keyframe-based sliding window (that is, a fixed lag smoother). The cost function is based 

on the weighted reprojection error of the visual landmark It is combined with the weighted 

inertial navigation error term and uses Google Ceres Solver for nonlinear optimization. The front 

end uses multi-scale Harris corner detection to find feature points, and completes the data 

association between the two frames based on the BRISK descriptor. Older key frames in the 

sliding window will be deleted and will no longer be estimated. It should be noted that OKVIS is 

not optimized for monocular VIO. In [139] a solution with a binocular configuration is given, 

which shows certain superior performance. VINS-Mono [140] is a tightly coupled sliding 

window estimator based on nonlinear optimization, and the feature points are GFTT. VINS-

Mono introduces several new features for this category of estimation framework. First, the 

author proposes a loosely coupled sensor fusion initialization method, using SFM to estimate the 

pose and 3D point inverse depth of all frames in the sliding window purely, and finally align 

with IMU pre-integration to solve the initialization parameters. It performs pre-integration when 

obtaining new IMU measurement data, and after obtaining IMU constraints, and performs 

nonlinear optimization together with visual constraints and closed-loop constraints to solve 

attitude and offset. In addition, VINS-Mono performs loopback optimization based on the 4-

DOF pose graph. 

(3) Deep Learning VIO 

Recently, due to the huge advancements in deep learning research, researchers have already 

demonstrated that it is possible to train a deep neural network to regress the interframe pose 

between two images acquired from a moving robot directly from the original image pair [141] 

effectively replacing the standard geometry of visual odometry. Likewise, it is possible to 

localize the 6-DoF of a camera using a regression forest [66] and with deep convolutional neural 
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network [118], and to estimate the depth of a scene (in effect, the map) from a single view solely 

as a function of the input image [142]. 
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Chapter 3 METHODOLOGY 

In this chapter, the methodologies employed to develop visual inertial odometry and wheel 

odometry are provided. First, in Section 3.1 and 3.2, the notations and concepts of descripting 

rotation and coordinates in this thesis are introduced. Then, the pipeline of feature-based VO 

based on epipolar geometry and PnP are presented in detail. This chapter finishes by presenting 

the proposed wheel odometer aided MSCKF algorithm with details of implementation. 

3.1 Coordinate System 

The relevant coordinate system throughout this thesis are described in this section. All of them 

are defined as right handed coordinate systems. 

3.1.1 Earth-Centered Inertial Frame (𝑖-frame) 

An inertial coordinate frame is one that does not accelerate or rotate with respect to the rest of 

the universe. In navigation systems, a more specific inertial frame, known as Earth-Centered 

Inertial Frame (ECI), is centered at the Earth’s center of mass and oriented with the 𝑧-axis 

parallel to the Earth’s spin axis and the 𝑥-axis oriented to the vernal equinox. ECI is a 

sufficiently accurate approximation to an inertial frame for navigation purposes [10]. ECI is of 

vital importance because inertial sensors measure motion with respect to a generic inertial frame, 

which greatly simplifies the navigation equations.  

 

3.1.2 Earth-Centered Earth Fixed (ECEF) Frame (𝑒-frame)  

The Earth-Centered Earth Fixed (ECEF) Frame, is similar to ECI frame, except that all three 

axes are fixed with respect to the Earth. The origin of ECEF is at the center of the ellipsoid 
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model of the Earth surface. The 𝑧-axis points at the Earth’s axis of rotation from the center to the 

true North (North Pole). The 𝑥-axis points from the center to the intersection of the equator with 

the IERS reference meridian (IRM) or conventional zero meridian (CZM), which defines 0 

degree longitude. The y-axis completes the right-handed orthogonal set, pointing from the center 

to the intersection of the equator with the 90-degree east meridian [10].  

 

3.1.3 Local Level Frame (𝑙-frame) 

The Local Level Frame is important for navigation because the user needs to know their position 

relative to the east and north and up direction. The 𝑥 − 𝑦 plane of 𝑙-frame is locally horizontal. 

The origin of the 𝑙-frame changes as the user’s location changes. In this thesis, the ENU 

definition of 𝑙-frame is adopted. In the ENU frame, the 𝑥, 𝑦, and 𝑧 axes are pointing in the 

direction of east, north and up. 

 

3.1.4 Navigation Frame (𝑛-frame) 

Navigation frame can be assigned to be one of the frames defined above depending on the 

applications. Here we use local level frame as the navigation frame for near-Earth navigation in 

non-polar areas. Usually, position is expressed in curvilinear coordinates: geodetic latitude, 

longitude, and geodetic height. 

 

3.1.5 IMU Body Frame (𝑏-frame) 

The origin and axes are fixed with respect to the IMU body. Generally, body axes are aligned 

with the vehicle’s lateral, longitudinal, and vertical direction, for better describing the vehicle’s 
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orientation. In this thesis, the 𝑥-axis points forward, the 𝑦-axis points left and the 𝑧-axis points 

up. The origin is the measurement origin of the IMU. IMU sensors measure the motion of the 

IMU body frame with respect to the inertial frame. The commonly used attitude Euler angles, 

pitch, roll, and heading, are defined between 𝑏-frame and 𝑛-frame. 

 

3.1.6 Camera Frame (𝑐-frame) 

The origin of the Camera Frame is the perspective center of the camera. The 𝑧-axis aligns with 

optical axis, pointing towards the scene. The 𝑥-axis points to the right, and the 𝑦-axis points to 

downward. 

 

3.1.7 Vehicle Motion Frame (𝑚-frame) 

The Vehicle Motion Frame is where the wheel odometer and NHC are measured. The origin of 

the Vehicle Motion Frame is the ground projection of the center point of the vehicle’s rear wheel 

axle. The 𝑥-axis is pointing forward, the 𝑦-axis is pointing towards the left side of the vehicle 

and the 𝑧-axis is perpendicular pointing up. The Vehicle Motion Frame usually has a near-

constant displacement and orientation relationship with the IMU Body Frame, known as the 

lever-arm and misalignment between the two frames [65].  
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Figure 3-1: Coordinate System Illustration 

 

3.2 Vehicle Motion 

As has been reviewed in Chapters 1 & 2, due to the complementary characteristics of wheel 

odometer, camera and inertial sensors, the integration of WO/VO/INS is a sensible choice for 

land vehicle navigation in order to bridge GNSS gaps in winter urban environments. For a 

wheeled ground vehicle, the six DoF (three translations and three rotations about the x-axis, y-

axis and z-axis) can be simplified as a rigid body motion when suspension characteristics are not 

taken into account [143]. Nowadays, some land vehicles are four-wheel steered, however in 

general, most land vehicles are front-wheel steered. Ackermann steering geometry is used for the 

vehicular model in this thesis. The Ackermann steering geometry was first designed to minimize 

tire scrub during cornering, thus the wheels need to roll without tire-relative lateral sliding [143]. 
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This geometry is used in combination with the assumption for the choice of the vehicle 

coordinate system when NHC is applied. This vehicle model and assumption are only valid when 

there is no wheel slippage. In addition, the model is only applicable if the effects of the vehicle 

suspension can be neglected.  

 

Figure 3-2: Ackermann Steering Geometry 

 

For land vehicle navigation, rigid body motion is utilized to represent the vehicle’s pose. For 

rigid bodies, the distance between any two points remains unchanged during the course of 

motion of the body. As rigid bodies are viewed as collections of points, it is sufficient to describe 

the rigid body motion by the rotation and translation of one single point. Considering an arbitrary 

moving point 𝑎, the rigid body transformation can be written in homogeneous form as: 

[
𝑎′

1
] = [

𝑅 𝑡
𝑂𝑇 1

] [
𝑎
1
] ≜ 𝑇 [

𝑎
1
] (3.1) 

where 𝑅 and 𝑡 represent the rotation and translation, 𝑇 is the transformation matrix.  

The inverse of the motion is defined as: 
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𝑇−1 = [𝑅
𝑇 −𝑅𝑇𝑡
0 1

] (3.2) 

The body frame of the vehicle is defined as the z-axis point up, the x-axis forward, and the y-axis 

to the left completing a right handed system. The rotations in this thesis are represented as either 

Euler form or quaternion form. According to the Euler’s Theorem, a 3D body can be rotated 

about three orthogonal axes, as shown in Figure 3-2, these rotations are referred to as yaw, pitch, 

and roll. In this thesis, the following convention is used: 

• A yaw angle is a counter clockwise rotation of 𝛼 about the 𝑧-axis. The rotation matrix is 

given by: 

𝑅𝑧(𝛼) = [
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0
0 0 1

] (3.3) 

• A pitch angle is a counter clockwise rotation of 𝛽 about the 𝑦-axis. The rotation matrix is 

given by: 

𝑅𝑦(𝛽) = [
cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
] (3.4) 

• A roll angle is a counter clockwise rotation of 𝛾 about the 𝑥-axis. The rotation matrix is 

given by: 

𝑅𝑥(𝛾) = [
1 0 0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾 cos 𝛾

] (3.5) 

The yaw, pitch and roll rotations can represent a 3D body in any orientation. A single rotation 

matrix can be formed by multiplying the three individual rotation matrices:  

𝑅(𝛼, 𝛽, 𝛾) = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾)

= [

cos 𝛼 cos 𝛽 cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝑎 cos 𝛾 cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾
sin 𝛼 cos𝛽 sin 𝛼 sin 𝛽 sin 𝛾 + cos 𝛼 cos 𝛾 sin 𝛼 sin 𝛽 cos 𝛾 − cos 𝛼 sin 𝛾
− sin 𝛽 cos 𝛽 sin 𝛾 cos 𝛽 cos 𝛾

] (3.6)
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It should be noted that in this convention, the rigid body performs roll first, then the pitch, and 

finally the yaw.  

 

Figure 3-3: Any three-dimensional rotation can be described as a sequence of yaw, pitch, and roll rotations 

 

In order to avoid the gimbal lock problem and to improve the computational efficiency, the 

derivations of the inertial navigation and VO use quaternion parameters for the parameterization 

of the rotation matrix.  

Quaternions can be represented as hyper complex numbers with three imaginary parts: 

𝑞 = 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 + 𝑞4 (3.7) 

with constraints: 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (3.8) 

The vector representation of the quaternion can be written as: 
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𝑞 = [

𝑞1
𝑞2
𝑞3
𝑞4

] =

[
 
 
 
 
 
 
 (
𝛾

Θ
) sin

Θ

2

(
𝛽

Θ
) sin

Θ

2

(
𝛼

Θ
) sin

Θ

2

cos
Θ

2 ]
 
 
 
 
 
 
 

(3.9) 

where Θ = √𝛼2 + 𝛽2 + 𝛾2 is the rotation angle,  
𝛾

Θ
, 
𝛽

Θ
, 
𝛼

Θ
 are the three direction cosines of the 

rotation axis with respect to the original coordinate system.  

The rotation matrix can be recovered from the quaternion by:  

𝑅 = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] = [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 − 𝑞3𝑞4) 2(𝑞1𝑞3 + 𝑞2𝑞4)

2(𝑞1𝑞2 + 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 − 𝑞1𝑞4)

2(𝑞1𝑞3 − 𝑞2𝑞4) 2(𝑞2𝑞3 + 𝑞1𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞4

2

] (3.11) 

 

3.3 Feature-based Visual Odometry 

As has been reviewed in Chapter 2, VO is the process of estimating vehicle poses through 

examination of the changes that motion induces on the images of its onboard camera. Compared 

to the wheel odometry, VO can output more information. Based on the estimation technique 

employed, VO can be classified into feature-based methods, direct methods and deep learning 

methods. The EKF feature-based VO is a classic, efficient and accurate approach, but sensitive 

to the lighting conditions and dynamic objects. In this section, the pipeline of the EKF VO is 

presented in detail.  
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3.3.1 Pinhole Camera Model 

The pinhole camera model is the simplest model to describe the imaging process by a camera 

recognized by a flat image plane and perspective center. The premise of the pinhole camera 

model is that light travels in form of straight lines in homogenous materials and the optical path 

is reversible.  

 

Figure 3-4: Pinhole Camera Model from [34] 

A point 𝐴 = [𝑋𝐴 𝑌𝐴 𝑍𝐴] in the camera frame can be projected onto the image plane using the 

pinhole camera model. 

𝑝𝑎 = [
𝑥𝑎
𝑦𝑎
] =

𝑓

𝑍𝑎
[
𝑋𝐴
𝑌𝐴
] (3.12) 

To describe the parameters corresponding to the project, the Intrinsic Orientation Parameters 

(IOP) and lens distortions need to be considered. The image measurements are measured in the 

image frame. The IOP are the parameters that define the image coordinate system, which contain 

the offsets of principal point (𝑥𝑝, 𝑦𝑝) and the focal length 𝑓.  

The image measurement of point A can be described in the image frame as: 

𝑝𝑎 = [
𝑥𝑎
𝑦𝑎
0
] (3.13) 

And the center of the camera frame 𝑂 (principal point) can be described as:  
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𝑜 = [

𝑥𝑝
𝑦𝑝
𝑓
] (3.14) 

 

 

Figure 3-5: Perspective Projection 

Once the IOP are obtained, the geometric relation between the 3D object point and the image 

measurement 2D point can be built based on the perspective projection. The pinhole camera can 

be ideally modelled as the perspective projection. It means the object point is transformed by a 

perspective projection matrix to yield the image point. The basis of the perspective projection is 

the collinearity equations. Collinearity equations define the mathematical relation between the 

camera, image point and object point. From the collinearity condition, this relation in Figure 3-5 

can be expressed as: 

𝜆𝑖𝑗 [[

𝑥𝑖𝑗
𝑦𝑖𝑗
0
] − [

𝑥𝑝
𝑦𝑝
𝑓
]] = 𝑅𝑔

𝑖 (𝜔𝑗 , 𝜑𝑗 , 𝜅𝑗) [

𝑋𝑖 − 𝑋𝑂𝑗
𝑌𝑖 − 𝑌𝑂𝑗
𝑍𝑖 − 𝑍𝑂𝑗

] (3.15) 
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𝜆𝑖𝑗 [

1 0 −𝑥𝑝
0 1 −𝑦𝑝
0 0 −𝑓

] [

𝑥𝑖𝑗
𝑦𝑖𝑗
1
] = [𝑅𝑔

𝑖 −𝑅𝑔
𝑖 𝐶𝑗] [

𝑋𝑖
𝑌𝑖
𝑍𝑖
1

] , 𝑤ℎ𝑒𝑟𝑒 𝐶𝑗 = [

𝑋𝑂𝑗
𝑌𝑂𝑗
𝑍𝑂𝑗

] (3.16) 

When the coordinates are expressed in homogeneous form, the perspective project can be written 

as:  

𝜆𝑖𝑗�̃�𝑖𝑗 = 𝐾𝐷𝑗�̃�𝑖 = 𝑃𝑗�̃�𝑖 (3.17) 

where 𝐾 = [

1 0 −𝑥𝑝
0 1 −𝑦𝑝
0 0 −𝑓

]

−1

is the intrinsic calibration matrix that relates the image and camera 

observations and 𝑃𝑗 is called the projection matrix. Due to the fact that the depth of the object 

point 𝐴𝑖 is usually unknown, the positive scale factor 𝜆𝑖𝑗 is added to form the perspective 

projection equation.  

 

3.3.2 Camera Calibration 

The purpose of camera calibration is to determine the IOP, EOP and the lens distortion 

parameters. Specifically, camera calibration solves the intrinsic camera matrix 𝐾 and the 

extrinsic parameters 𝐷𝑗  from equation (3.6).  

First, the convention of the intrinsic calibration matrix need to be clarified. If the image 

observations (𝑥𝑖𝑗 , 𝑦𝑖𝑗) are in the principal image coordinate system with its units (e.g. mm), then 

the intrinsic camera matrix can be written as: 

𝐾 = [

1 0 −𝑥𝑝
0 1 −𝑦𝑝
0 0 −𝑓

]

−1

=

[
 
 
 
 
 
 1 0 −

𝑥𝑝

𝑓

0 1 −
𝑦𝑝

𝑓

0 0 −
1

𝑓 ]
 
 
 
 
 
 

(3.18) 
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If the image observations are measured in the sensor coordinate frame with its units (e.g. pixel), 

then the intrinsic camera matrix can be written as: 

𝐾 =

[
 
 
 
 𝑠 0 (−

𝑤𝑖𝑑𝑡ℎ

2
) 𝑠 − 𝑥𝑝

0 −𝑠 − (−
ℎ𝑒𝑖𝑔ℎ𝑡

2
) 𝑠 − 𝑦𝑝

0 0 −𝑓 ]
 
 
 
 
−1

=

[
 
 
 
 
 
 
1

𝑠
0

𝑐𝑥
𝑠𝑓

0 −
1

𝑠
−
𝑐𝑦

𝑠𝑓

0 0 −
1

𝑓 ]
 
 
 
 
 
 

=

[
 
 
 
 −
𝑓

𝑠
0 −

𝑐𝑥
𝑠

0
𝑓

𝑠

𝑐𝑦

𝑠𝑓
0 0 1 ]

 
 
 
 

(3.19) 

where 
𝑓

𝑠
 is the focal length in pixel units, 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 represent the image’s width and 

height in pixel units, 𝑐𝑥 = (−
𝑤𝑖𝑑𝑡ℎ

2
) 𝑠 − 𝑥𝑝, 𝑐𝑦 = −(−

ℎ𝑒𝑖𝑔ℎ𝑡

2
) 𝑠 − 𝑦𝑝. 

Due to the different types of distortions, such as lens distortions, image plane distortions, 

atmospheric refraction and Earth curvature, the theoretical straight line from the object point 

might not end up at the same position at the observed image point. In general applications, we 

only consider the calibration of lens distortions.  

In this thesis, the MATLAB camera calibration toolbox is used [144] [145]. There are two main 

lens distortions considered in this toolbox: the radial and the tangential distortions. The radial 

distortion coefficients can be specified either a two- or three-element vector. This type of 

distortion is caused by the shape of the lens. Given a camera pixel observations (𝑥𝑖𝑗 , 𝑦𝑖𝑗), the 

radial location of the corresponding point can be rescaled on the undistorted output image as: 

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥 × (1 + 𝑘1 × 𝑟
2 + 𝑘2 × 𝑟

4 + 𝑘3 × 𝑟
6) (3.20) 

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦 × (1 + 𝑘1 × 𝑟
2 + 𝑘2 × 𝑟

4 + 𝑘3 × 𝑟
6) 

where 𝑥, 𝑦 represent the undistorted pixel locations, 𝑘1, 𝑘2, 𝑘3 represent the radial distortion 

coefficients of the lens, and 𝑟2 = 𝑥2 + 𝑦2. Typically, two coefficients are sufficient. For severe 

distortion, 𝑘3 can be included. The undistorted pixel locations appear in normalized image 

coordinates, with the origin at the optical center. The coordinates are expressed in world units. 
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Tangential distortion coefficients are usually given as a two-element vector. This type of 

distortion occurs when the lens and the image plane are not parallel. Regarding the tangential 

distortion, the rectified image can be computed as: 

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥 + [2 × 𝑝1 × 𝑥 × 𝑦 + 𝑝2 × (𝑟
2 + 2 × 𝑥2)] (3.21) 

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦 + [𝑝1 × (𝑟
2 + 2 × 𝑦2) + 2 × 𝑝2 × 𝑥 × 𝑦] 

The general camera calibration process using the MATLAB camera calibration toolbox can be 

summarized as [144]: 

1. Prepare images, camera, and calibration pattern (usually checker board); 

2. Import images and select the corresponding camera model; 

3. Calibrate the camera; 

4. Evaluate the calibration accuracy; 

5. Adjust parameters to improve the accuracy; 

6. Export the calibrated matrices. 

The detailed camera calibration results will be shown in Chapter 4. 

 

3.3.3 Feature Point Extraction and Matching 

As was reviewed in Chapter 2, feature detection and matching are the second part of the feature-

based VO pipeline. There are a number of methods with pros and cons in extracting the feature 

positions. ORB feature detection is usually deployed for some real-time scenarios while SIFT 

and SURF are better with post processing for higher accuracy. In this section, the SIFT method 

will be introduced and deployed in the later experiments.  

The Scale-Invariant Feature Transform (SIFT) is a classic and accurate feature extraction method 

which is invariant to scale and rotation. This method is robust to affine distortions and linear 
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illumination changes, but correspondingly requires a larger amount of calculation [42]. The SIFT 

is comprised of two parts: extracting SIFT keypoints and calculating SIFT descriptors.  

The procedure of detecting SIFT keypoints can be briefly summarized as [42]: 

1. Creating image pyramid (octaves at the spatial domain) and Gaussian smoothing (scale 

domain). 

2. Differentiating Gaussians and finding extrema (initial keypoint) at all octaves. 

3. Precise localization of keypoints. 

4. Removing low-contrast keypoints. 

5. Removing edge response. 

After precisely detecting the location of keypoints, the corresponding descriptors are calculated 

as [42]: 

1. Assign an orientation to each keypoint. 

2. Computing the gradient orientation histograms for each keypoint. 

3. Stack the histograms together into a vector and normalize the vector. 

 

 

Figure 3-6: An example of detected SIFT feature using the KAIST Complex Urban Dataset (trajectory 39) 
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Feature matching in an essential step for VO. More specifically, feature matching solves the 

“data association” problem in VO, which is to determine the relations between the feature in 

current image and previous one. By accurately matching the descriptors between image and 

image, or between image and map, the pose estimation and optimization process can be 

proceeded. However, due to the local characteristics of image features, mismatching remains a 

problem and limits the long-term operations for VO system. The most straightforward feature 

matching method is the Brute-Force Matcher. Given keypoint 𝑖 from the first image, search for 

the keypoint 𝑗 from the second image whose feature vector has the shortest Euclidean distance 

from the feature vector of keypoint 𝑖: 

𝑎𝑟𝑔min
𝑗
(𝑠𝑖,𝑗 = ‖𝑑𝑖 = 𝑑𝑗‖) (3.22) 

For binary descriptors (such as BRIEF), Hamming distance is often used instead of Euclidean 

distance. However, when the number of feature points is large, the computational complexity of 

the brute force matching method will become too large, especially when we want to match a 

frame and a map. To improve the computational efficiency, the fast approximate nearest 

neighbor (FLANN)  algorithm (which is included in the OpenCV library) is more suitable for the 

situation with a large number of matching points [146]. 

 

3.3.4 Epipolar Geometry (2D-2D) 

After feature matching, the corresponding relations between features are obtained. Next step is to 

estimate the pose information by exploiting the geometry, which can summarized as: 

• Epipolar Geometry: 2D-2D geometry between two monocular images (For monocular 

VO initialization). 

• Perspective-n-Point Pose Problem (PnP): 3D-2D matching between image frame to map. 
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• Iterative Closest Point (ICP): 3D-3D matching between frame to map (point cloud). 

In this thesis, a monocular image stream is utilized, thus the Epipolar Geometry and PnP 

algorithm are presented in this chapter respectively.  

Considering two overlapped images 𝐼1 and 𝐼2 (Figure3-7), the projections of the 3D point 𝐴𝑖 on 

the two image planes are 𝑎𝑖,1 and 𝑎𝑖,2 respectively. The 𝐴𝑖𝑂1𝑂2 plane is called the Epipolar 

Plane. The intersection of the epipolar plane with the two image planes creates two lines 𝑎𝑖,1𝑒1 

and 𝑎𝑖,2𝑒2, these lines are known as the corresponding Epipolar Lines, and 𝑒1, 𝑒2 are called 

Epipoles. All the epipolar lines intersect at the epipoles. Epipolar Constraint means that given a 

point 𝑎𝑖,1 in the first image, its corresponding point in the second image is constrained to lie on 

the epipolar line. When in practice, 𝑎𝑖,1 and 𝑎𝑖,2 can be obtained by feature matching, 𝐴𝑖, 𝑒1 and 

𝑒2 are unknown. By utilizing epipolar geometry, the transformation matrix 𝑇12 can be obtained 

as a result.  

O2O1

Ai

ai,1

ai,2

e1 e2

 

Figure 3-7: Epipolar Geometry 

 

According to Section 3.3.1, the following perspective projection equations can be formed: 
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�̃�𝑖,1 = 𝐾1[𝑅𝑔
1 −𝑅𝑔

1𝐶1] [

𝑋𝑖
𝑌𝑖
𝑍𝑖
1

] = 𝐾1𝑅𝑔
1𝐺𝑖 − 𝐾1𝑅𝑔

1𝐶1 (3.23) 

�̃�𝑖,2 = 𝐾2[𝑅𝑔
2 −𝑅𝑔

2𝐶2] [

𝑋𝑖
𝑌𝑖
𝑍𝑖
1

] = 𝐾2𝑅𝑔
2𝐺𝑖 − 𝐾1𝑅𝑔

2𝐶2 

Combining the two above projection equations: 

(𝐾1𝑅𝑔
1)
−1
�̃�𝑖,1 + 𝐶1 = (𝐾2𝑅𝑔

2)
−1
�̃�𝑖,2 + 𝐶2 (3.24) 

And the relations between the 𝑎𝑖,1 and 𝑎𝑖,2 can be formulated as: 

𝑅1
𝑔(𝐾1)

−1�̃�𝑖,1 = (𝐶2 − 𝐶1) + 𝑅2
𝑔(𝐾2)

−1�̃�𝑖,2 (3.25) 

Applying cross product with (𝐶2 − 𝐶1) to both sides of (3.25): 

[𝐶2 − 𝐶1]×(𝑅1
𝑔(𝐾1)

−1�̃�𝑖,1) = [𝐶2 − 𝐶1]×𝑅2
𝑔(𝐾2)

−1�̃�𝑖,2 (3.26) 

(𝑅1
𝑔(𝐾1)

−1�̃�𝑖,1)
𝑇
[𝐶2 − 𝐶1]×(𝑅1

𝑔(𝐾1)
−1�̃�𝑖,1) = (𝑅1

𝑔(𝐾1)
−1�̃�𝑖,1)

𝑇
[𝐶2 − 𝐶1]×𝑅2

𝑔(𝐾2)
−1�̃�𝑖,2 

Finally, the Epipolar equation can be written as: 

0 = �̃�𝑖,1
𝑇 ((𝐾1

−𝑇)𝑅𝑔
1[𝐶2 − 𝐶1]×𝑅2

𝑔(𝐾2)
−1) �̃�𝑖,2 = �̃�𝑖,1

𝑇 ((𝐾1
−𝑇)[𝑇12]×𝑅2

1(𝐾2)
−1)�̃�𝑖,2

= �̃�𝑖,1
𝑇 𝐹�̃�𝑖,2 (3.27)

 

where 𝐹 = ((𝐾1
−𝑇)[𝑇12]×𝑅2

1(𝐾2)
−1) is called Fundamental Matrix. The DoF of the fundamental 

matrix is 7. 

If the image observations �̃�𝑖,1 and �̃�𝑖,2 are already calibrated, then the Epipolar equation can be 

simplified as: 

0 = (�̃�𝑖,1
𝑐 )

𝑇
([𝑇12]×𝑅2

1)�̃�𝑖,2
𝑐 = (�̃�𝑖,1

𝑐 )
𝑇
𝐸�̃�𝑖,2

𝑐 (3.28) 

where 𝐸 = ([𝑇12]×𝑅2
1) is called the Essential Matrix. The DoF of the essential matrix is 5. 
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Recall the fact that two images have total 12 EOPs, however, the essential matrix only has 5 

DoF, which means that there can only be 5 independent parameters to describe the relative 

orientation between two calibrated images.  

In order to determine the relative orientation parameters directly, there are several methods to 

achieve that [147]: 

• Limited 8-point method (for either 𝐸 or 𝐹) 

• Minimal 7-point method (for 𝐹) 

• Minimal 5-point method (for 𝐸) 

• Minimal 2-point method (for 𝐸 with known rotation) 

• Minimal 2-point method (for 𝐸 given an object symmetric with respect to a 3D plane)\ 

In this thesis, we apply the vision algorithm in large scale environment, which will usually have 

enough matched point pairs to conduct RO. Thus, the 8-point method is applied here. 

Simplifying the epipolar equation as follows: 

𝑥𝑖,1𝑥𝑖,2𝑓00 + 𝑥𝑖,1𝑦𝑖,2𝑓01 + 𝑥𝑖,1𝑓02 + 𝑥𝑖,2𝑦𝑖,1𝑓10 

+𝑦𝑖,1𝑦𝑖,2𝑓11 + 𝑦𝑖,1𝑓12 + 𝑥𝑖,2𝑓20 + 𝑦𝑖,2𝑓21 + 𝑓22 = 0 (3.29) 

𝐴𝑛×9𝑓9×1 = 0 (3.30) 

where 𝐴 = [𝑥𝑖,1𝑥𝑖,2 𝑥𝑖,1𝑦𝑖,2 𝑥𝑖,1 𝑥𝑖,2𝑦𝑖,1 𝑦𝑖,1𝑦𝑖,2 𝑦𝑖,1 𝑥𝑖,2 𝑦𝑖,2 1 ], and 𝑓 =

[𝑓00 𝑓01 𝑓02 𝑓10 𝑓11 𝑓12 𝑓20 𝑓21 𝑓22]
𝑇. 

Since the fundamental matrix 𝐹 is defined up to an arbitrary scale, by constraining ‖𝑓‖ = 1, the 

whole problem becomes: 𝐴𝑛×9𝑓9×1 = 0 subject to ‖𝑓‖ = 1. 

Step of solving 𝐴𝑛×9 can be summarized as [34]: 

1. Decompose 𝐴 as 𝐴 = 𝑈𝑆𝑉𝑇; 

2. Check the diagonal elements of 𝑆 are sorted non-increasingly; 
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3. Extract the last column of 𝑉 and reshape to the 3 × 3 fundamental matrix �̂�; 

4. Decompose �̂� as �̂� = 𝑈𝑆𝑉𝑇; 

5. Check the diagonal elements of 𝑆 are sorted non-increasingly; 

6. Impose the rank-2 constraint: 𝑆𝑛𝑒𝑤 =
1

√𝑠0,0
2 +𝑠1,1

2
𝑑𝑖𝑎𝑔([𝑠0,0 𝑠1,1 0]); 

7. Compute the new fundamental matrix with rank-2: �̂� = 𝑈𝑆𝑛𝑒𝑤𝑉
𝑇; 

8. Given the IOP, recover the essential matrix from the fundamental matrix: �̂� = (𝐾1)
𝑇�̂�𝐾2; 

9. Decompose �̂� as �̂� = 𝑈𝑆𝑉𝑇; 

10. Check the diagonal elements of 𝑆 are sorted non-increasingly; 

11. Impose the constraint: 𝑆𝑛𝑒𝑤 = 𝑑𝑖𝑎𝑔([1 1 0]); 

12. Compute the new essential matrix: �̂� = 𝑈𝑆𝑛𝑒𝑤𝑉
𝑇; 

13. Recover 𝑅 and 𝑡 from �̂�/�̂� (t does not include scale information). 

It should be noted that if the points lie on the same 3D plane or are very close to a 3D plane, the 

direct 8-point method is unusable/unstable. In addition, if the camera does not move or only 

rotates, the 8-point method cannot yield a solution. And if there are more than 8 points, least-

square method will usually be utilized rather than the direct method.  

 

3.3.5 Triangulation and Depth Estimation 

After the rotation and translation of the camera are determined, the scale, or the depth of the 

corresponding feature remains unknown. The common approach is to form a simple least squares 

to estimate the depth by triangulation.  

Considering two scale factors 𝑠1 and 𝑠2 relates to the unknown feature: 

𝑠1�̃�𝑖,1
𝑐 = 𝑠2𝑅�̃�𝑖,2

𝑐 + 𝑡 (3.31) 
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[−𝑅�̃�𝑖,2
𝑐 �̃�𝑖,1

𝑐 ] [
𝑠1
𝑠2
] = 𝑡 (3.32) 

𝐴𝑥 = 𝑏 (3.33) 

where, 𝐴 = [−𝑅�̃�𝑖,2
𝑐 �̃�𝑖,1

𝑐 ],  𝑥 = [
𝑠1
𝑠2
], 𝑡 = 𝑏. 

In this least squares problem: 

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 (3.34) 

The premise of triangulation is translation. If the camera does not move or only rotates, epipolar 

constraints will always be satisfied. Therefore, to improve the accuracy of triangulation, one way 

is to improve the accuracy of feature point detection. Another way is to increase the amount of 

translation. However, an increase in the amount of translation will cause obvious changes in the 

appearance of the image. The appearance changes can make feature extraction and matching 

difficult. 

 

3.3.6 PnP (3D-2D) 

Perspective-n-Point problem refers the process of estimating the transformation from 3D point to 

a 2D point. It describes how to estimate the pose of a camera when 𝑛 3D feature points and their 

perspective projections are known. As mentioned in Section 3.3.4, the 2D-2D epipolar geometry 

method requires eight or more point pairs (take the 8-point method as an example), and there are 

problems with the initialization, pure rotation, and scale. However, if the 3D position of one of 

the features in the two images is known, then at least point pairs (at least one additional point 

verification result is required) can be used to estimate the camera motion. The 3D feature 

position can be determined by triangulation or the depth map if using an RGB-D camera. 

Therefore, in stereo or RGB-D VO, PnP can be directly used to estimate camera motion. In the 
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monocular VO, the 3D feature position must be initialized before using PnP. The 3D-2D method 

does not require epipolar geometry constraints, and can obtain better motion estimation with 

fewer matching points.  

The PnP problem has many solutions, such as Direct Linear Transformation (DLT), P3P [148], 

EPnP [149], UPnP [150], and so on. Besides, PnP can also be solved by Bundle Adjustment 

(BA) methods. 

First and foremost, the DLT method is a straightforward algebraic solution. DLT of the 

perspective projection directly relates the inhomogeneous coordinates of the object points with 

the coordinate of image points of a straight line preserving perspective camera: 

𝑥𝑖𝑗 =
𝑝00𝑋𝑖 + 𝑝01𝑌𝑖 + 𝑝02𝑍𝑖 + 𝑝03
𝑝20𝑋𝑖 + 𝑝21𝑌𝑖 + 𝑝22𝑍𝑖 + 𝑝23

(3.35) 

𝑦𝑖𝑗 =
𝑝10𝑋𝑖 + 𝑝11𝑌𝑖 + 𝑝12𝑍𝑖 + 𝑝13
𝑝20𝑋𝑖 + 𝑝21𝑌𝑖 + 𝑝22𝑍𝑖 + 𝑝23

 

where: 𝑃𝑗 = 𝐾[𝑅𝑔
𝑗
−𝑅𝑔

𝑗
𝐶𝑗] = [

𝑝00 𝑝01 𝑝02 𝑝02
𝑝10 𝑝11 𝑝12 𝑝13
𝑝20 𝑝21 𝑝22 𝑝23

], with 𝑑. 𝑜. 𝑓 = 11. 

Given 𝑛 known 3D object points and their corresponding image observations, there will be 

2𝑛 × 12 linear constraints to the problem: 

𝐴2𝑛×12𝑃12×1 = 0 (3.36) 

where: 𝐴 = [
𝑋𝑖 𝑌𝑖 𝑍𝑖 1 −𝑥𝑖𝑗𝑋𝑖 −𝑥𝑖𝑗𝑌𝑖 −𝑥𝑖𝑗𝑍𝑖 𝑥𝑖𝑗
𝑋𝑖 𝑌𝑖 𝑍𝑖 1 −𝑦𝑖𝑗𝑋𝑖 𝑦𝑖𝑗𝑌𝑖 −𝑦𝑖𝑗𝑍𝑖 −𝑦𝑖𝑗

], and 𝑃 =

[𝑝00 𝑝10 𝑝20 𝑝01 𝑝11 𝑝21 𝑝02 𝑝12 𝑝22 𝑝03 𝑝13 𝑝23]𝑇. 

Since the perspective projection matrix is defined up to an arbitrary scale, we can impose an 

arbitrary constraint on the norm of P, and in particular we can set: ‖𝑃‖ = 1. Decompose 𝐴 as 

𝐴 = 𝑈𝑆𝑉𝑇, the solution �̂� will be the last column of 𝑉. 
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The DLT method treats 𝑅, 𝑡 as independent unkowns, and it requires at least 6 pairs of feature 

points, thus it is also been called P6P. In this thesis, a more efficient method P3P is utilized 

[148].  

Given three non-collinear points and their corresponding calibrated image coordinates (Figure 3-

8). 

x
z

y
O

x1

x2

x3

x1

x2 x3

d1

d2

d3

 

Figure 3-8: P3P 

The image observations can be written in the camera frame as: 

𝑥1
𝑐 = [

𝑥1 − 𝑥𝑝𝑝
𝑦1 − 𝑦𝑝𝑝
−𝑓

] (3.37) 

𝑥2
𝑐 = [

𝑥2 − 𝑥𝑝𝑝
𝑦2 − 𝑦𝑝𝑝
−𝑓

] 

𝑥3
𝑐 = [

𝑥3 − 𝑥𝑝𝑝
𝑦3 − 𝑦𝑝𝑝
−𝑓

] 

where (𝑥𝑝𝑝, 𝑦𝑝𝑝) represent the principle point. 
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From Figure-3, it can be noted that 𝑂 − 𝑋1𝑋2𝑋3 forms a triangular pyramid shape, thus: 

{
 
 
 

 
 
 𝜃3 = ∠(𝑥1

𝑐, 𝑂, 𝑥2
𝑐) = acos (

𝑥1
𝑐 ∙ 𝑥2

𝑐

|𝑥1
𝑐||𝑥2

𝑐|
)

𝜃2 = ∠(𝑥1
𝑐, 𝑂, 𝑥3

𝑐) = acos (
𝑥1
𝑐 ∙ 𝑥3

𝑐

|𝑥1
𝑐||𝑥3

𝑐|
)

𝜃1 = ∠(𝑥2
𝑐, 𝑂, 𝑥3

𝑐) = acos (
𝑥2
𝑐 ∙ 𝑥3

𝑐

|𝑥2
𝑐||𝑥3

𝑐|
)

(3.38) 

{

𝑑3 = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2

𝑑2 = √(𝑋3 − 𝑋1)
2 + (𝑌3 − 𝑌1)

2 + (𝑍3 − 𝑍1)
2

𝑑1 = √(𝑋2 − 𝑋3)2 + (𝑌2 − 𝑌3)2 + (𝑍2 − 𝑍3)2

(3.39) 

{

𝑟1 = √(𝑋𝑂 − 𝑋1)2 + (𝑌𝑂 − 𝑌1)2 + (𝑍𝑂 − 𝑍1)2

𝑟2 = √(𝑋𝑂 − 𝑋2)2 + (𝑌𝑂 − 𝑌2)2 + (𝑍𝑂 − 𝑍2)2

𝑟3 = √(𝑋𝑂 − 𝑋3)2 + (𝑌𝑂 − 𝑌3)2 + (𝑍𝑂 − 𝑍3)2

(3.40) 

According to the law of cosines for the triangles: 

{

𝑑1
2 = 𝑟2

2 + 𝑟3
2 − 2𝑟2𝑟3 cos 𝜃1

𝑑2
2 = 𝑟1

2 + 𝑟3
2 − 2𝑟1𝑟3 cos 𝜃2

𝑑3
2 = 𝑟2

2 + 𝑟1
2 − 2𝑟2𝑟1 cos 𝜃3

(3.41) 

Solving the equations for 𝑟1: 

𝑟1
2 =

𝑑1
2

𝑢2 + 𝑣2 − 2𝑢𝑣 cos 𝜃1  
=

𝑑2
2

1 + 𝑣2 − 2𝑣 cos 𝜃2  
=

𝑑3
2

1 + 𝑢2 − 2𝑢 cos 𝜃3  
(3.42) 

where: 𝑢 = 𝑟2/𝑟1, 𝑣 = 𝑟3/𝑟1. 

Substitute 𝑢 in terms of 𝑣: 

𝐴4𝑣
4 + 𝐴3𝑣

3 + 𝐴2𝑣
2 + 𝐴1𝑣

1 + 𝐴0 = 0 (3.43) 

The coefficients of the above equation depend on the known values of 𝑑1, 𝑑2, 𝑑3, 𝜃1, 𝜃2, 𝜃3. 

Solving the polynomial equation results up to 4 solutions for 𝑣, 𝑢, 𝑟1, 𝑟2 and 𝑟3. Therefore, a 4th 

point is needed to validate the EOP solution.  

Now from collinearity equations, for each point (𝑖 = 1,2,3): 
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𝑟𝑖𝑥𝑖
𝑐 = 𝑅(𝑋𝑖 − 𝐶) (3.45) 

Eventually, the 3D rigid body transformation with unknown EOP 𝑅, 𝐶 that transform 𝑋𝑖 to 𝑟𝑖𝑥𝑖
𝑐 

are obtained. The drawback of this method is that you always need another point to validate 

which of the four possible solution is correct. On the other hand, the advantage is that it requires 

less features to estimate the camera motion, which is very useful in some homogenously textured 

scenes (such as snow environment). In addition, for outlier detection algorithms like RANSAC, 

the least the number of points required for model estimation, the better. 

 

3.3.7 Outlier Detection 

Outlier detection is an very crucial part in order to improve the robustness of VO. More 

specifically, in VO systems, outlier detection algorithms are used to reject outliers caused by 

moving objects in dynamic environments or wrongly matched feature points. The classic 

approach of outlier detection is Random Sample Consensus (RANSAC). RANSAC was first 

proposed by Fisher and Bolles in 1981 [151] to interpret/smooth data containing a significant 

percentage of gross errors. There are basically two steps of RANSAC algorithm: (1) generating a 

hypothesis from random sample; (2) verifying the hypothesis to the data and finding inliers 

[151]. RANSAC is an iterative algorithm but not require complex optimization since the basic 

idea is random sampling. The workflow of the traditional RANSAC algorithm is shown in 

Figure 3-9. 
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Figure 3-9: Flowchart of RANSAC from [152]  

 

For VO systems, RANSAC is especially valuable in epipolar geometry estimation and camera 

motion estimation. In this section, RANSAC will be introduced with an example in 8-point 

algorithm outlier detection. 

The first step is to randomly choose a minimal number (subset) of 8 corresponding feature 

points, then estimate the fundamental/essential matrix from this chosen subset using the 8-point 
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algorithm. Then check the consistency of the estimated solution with other corresponding points. 

For any point 𝑖 that is not in the subset of 8 points, the residual can be calculated by: 

𝑣𝑖 = |(�̃�𝑖,1)
𝑇
�̂��̃�𝑖,2| (3.46) 

There is a threshold (in this case, 0.01) set to determine the number of points that are consistent 

with the estimated solution. The number of selecting subsets as the maximum number of 

attempts to find a consensus set is defined by [151]: 

𝑘 =
log(1 − 𝑧)

log(1 − (1 − 𝑏)𝑛)
(3.47) 

where: 𝑛 denotes the minimal number, 𝑧 represents the probability of the data which are outlier-

free, 𝑏 is the assumed inlier ratio. If the maximum iteration is met, then the procedure terminates. 

The tentative solution with the maximum support is the correct solution. The observations that 

support this solution are inlier. Otherwise, continue to randomly select points and do the 

consistency check. 

 

Figure 3-10: RANSAC Family from [152] 

To date, there are many variations or improved versions of RANSAC (Figure 3-10). The 

consistency check step in the traditional RANSAC deploys a loss function as: 



68 

 

𝐿𝑜𝑠𝑠(𝑒) = {
𝑜                 |𝑒| < 𝑐 
𝑐𝑜𝑛𝑠𝑡        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.48) 

where 𝑐 is the threshold. RANSAC has a constant loss at large error [152]. 

In this thesis, MSAC (M-estimator SAC) is employed. The only difference between MSAC and 

RANSAC is that MSAC adopts M-estimator to bound the loss function as: 

𝐿𝑜𝑠𝑠(𝑒) = {
𝑒2             |𝑒| < 𝑐 

𝑐2        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.49) 

 

3.4 Wheel Odometer Aided Multi-State Constrained Kalman Filter 

After introduced the workflow of VO algorithm, in this section, a novel approach that 

incorporates wheel odometry and NHC together with tightly-coupled monocular visual-inertial 

odometry using the MSCKF will be proposed and discussed in detail.  

As has been mentioned in Chapter 2, the usual approach to EKF-based VIO involves augmenting 

an inertial navigation filter with additional states for feature points tracked over multiple images 

As an alternative, the MSKCF developed by [128] augments an inertial navigation filter with 

additional states for the camera poses corresponding to a series of images that contain common 

features. Each feature in each frame then provides a constraint relating the camera pose states 

and the inertial navigation solution. 

The workflow of MSCKF can be summarized as [153]: 

1. Propagate the whole state and covariance matrix using IMU measurements. 

2. When a new image arrivals: 

a. State augmentation: augment the state vector and the covariance matrix with the 

current IMU state. 
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b. Feature detection and matching. 

c. For each feature which completes tracking, compute the residual term and design 

matrix. Run the outlier detection algorithm, use all the salient features to perform 

the EKF update. 

d. Remove the corresponding features from the state vector. 

The MSCKF has several advantages. First, it does not require accurate initial depth information 

and covariance to maintain a consistent solution since feature point positions are no longer 

included in the state vector. Second, by using each feature to constrain multiple states, the 

camera pose estimation is improved. Finally, the complexity of the algorithm is linear in the 

number of features, rather than quadratic as is the case in traditional EKF-based approaches. 

However, even with the help of inertial measurements, VIO is still subject to scale drift because 

it estimates forward direction translation using distant feature points that are generally located 

only in the forward direction. This leads to drift in the velocity solution which will then degrade 

the position estimate. 

The proposed algorithm augments the monocular MSCKF method with wheel odometry (WO) 

and non-holonomic constraints (NHC) to bound the cumulative velocity error. Wheel speed can 

be easily obtained from the CANBUS port on most modern vehicles. The forward vehicle speed 

can then be combined with NHC pseudo-measurements of zero across-track and vertical velocity 

components to update the MSCKF. However, both visual and wheel odometry techniques for 

ground vehicles can be particularly challenging in winter conditions since imaging sensors suffer 

from the low-texture environment and potential harsh weather (snow, fog, mist) while wheel 

slippage will be magnified in ice and snow. Providing a continuous and robust navigation 

solution in urban winter road environments remains an open problem. 
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In [137], the authors compare MSCKF with a sliding window filter using the KITTI Dataset [1]. 

To avoid the impact of the velocity drift, the authors removed the velocity from the state vector 

and fed the gravity-corrected linear ground truth velocity, as measurements, to the IMU 

mechanization. The simplified (12 + 6𝑁) state MSCKF was shown to perform well with the 

KITTI data, however the availability of high-precision velocity is not realistic in most land 

vehicle navigation scenarios. In this thesis, publicly available code from [137] to employ a (15 +

6𝑁) state MSCKF filter as proposed in [128]. In addition, the SIFT feature detection [42] 

method is added to replace the SURF method used in [137] has been augmented. Wheel 

odometer measurements and NHC are incorporated into the MSCKF as additional measurements 

updating the (15 + 6𝑁) states.  

 

3.4.1 System Model 

The MSCKF takes full advantage of the constraints that a set of environment feature points 

provide, however, a monocular camera identifying corresponding feature points mainly in the 

forward direction provides a poor constraint in terms of forward translation and speed. Thus, the 

system still suffers from the scale drift in forward velocity. By integrating wheel odometer 

measurements and NHC, the scale drift issue in monocular MSKCF system should be improved 

significantly.  

Figure 3-11 shows a general overview of the 15-state MSKCF augmented with WO and NHC. 

The state vector x is updated using the 6-DoF INS output 𝑢𝐼𝑁𝑆, wheel odometer measurements 

𝑧𝑜𝑑𝑜 and camera measurements 𝑧𝑐𝑎𝑚. 

According to the Bayes’ theorem, the problem can be stated as: 

𝑝(𝑥𝑘|𝑧𝑘, 𝑢𝑘) = 𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥1:𝑘−1, 𝑢𝑘) 
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                                                         = 𝑝(𝑧𝑜𝑑𝑜,𝑘|𝑥𝑘)𝑝(𝑧𝑐𝑎𝑚,𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥1:𝑘−1, 𝑢𝐼𝑁𝑆,𝑘) (3.50) 
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Figure 3-11: The Workflow of Wheel Odometry aided MSCKF. 

 

Thus, our system can be described as one dynamics model 𝑓(∙) that propagates the whole state 

using INS output and two measurement models, ℎ𝑜𝑑𝑜(∙), ℎ𝑐𝑎𝑚(∙) that can be linearized to design 

matrices that project the state vector into the two measurement spaces: 

𝑥𝑘 = 𝑓𝐼𝑁𝑆(𝑥𝑘−1, 𝑢𝐼𝑁𝑆,𝑘) + 𝑛𝐼𝑁𝑆 

�̂�𝑜𝑑𝑜,𝑘 = ℎ𝑜𝑑𝑜(𝑥𝑘) + 𝑛𝑜𝑑𝑜 

�̂�𝑐𝑎𝑚,𝑘 = ℎ𝑐𝑎𝑚(𝑥𝑘) + 𝑛𝑐𝑎𝑚 (3.51) 

where, 𝑛𝐼𝑁𝑆 is the process noise, 𝑛𝑜𝑑𝑜 and 𝑛𝑐𝑎𝑚 are the measurement noises. 
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3.4.2 Strapdown IMU Mechanization 

Strapdown inertial system means that the inertial sensors are rigidly mounted on the vehicle. 

Compared to the gimbaled systems, strapdown systems are more popular in many applications 

due to their low cost and smaller size. In this thesis, strapdown inertial navigation system is used, 

which means that INS represents strapdown INS.  

As has been mentioned in Chapter 2, an IMU usually includes 3 orthogonal accelerometers and 3 

orthogonal gyroscopes that measure the specific force and angular velocity. The INS 

mechanization is essentially a time integration process using the input information given the 

initial navigation state [63]. The mechanization process is showed in Figure 3-12. For the land 

vehicle navigation systems, the navigation frame is chosen as the local-level frame. 
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Figure 3-12: Strapdown INS Mechanization Workflow after [65] 

 

In order to incorporate the wheel odometer measurements into MSCKF, the INS state vector is 

defined as, 

𝑥𝐼𝑁𝑆 = ( 𝑞𝐺
𝐼 𝑇 𝑏𝑔

𝑇 𝑣𝐺 𝐼
𝑇 𝑏𝑎

𝑇 𝑝𝐺 𝐼
𝑇)
𝑇

(3.52) 
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where 𝑞𝐺
𝐼  is the 4 × 1 unit quaternion vector that represents the rotation from the Global frame 

{𝐺} to the IMU body frame {𝐼}. 𝑏𝑔, 𝑏𝑎 ∈ ℝ
3 are the biases of the measured gyroscope and 

accelerometer readings from the IMU, respectively. 𝑣𝐺 𝐼 ∈ ℝ
3  and 𝑝𝐺 𝐼 ∈ ℝ

3 describes the IMU 

velocity and position in the Global frame {𝐺}.  

Because this is an extended Kalman filter, the error state 𝛿𝑥𝐼𝑁𝑆 ∈ ℝ
15 given by: 

�̃�𝐼𝑁𝑆 = ( �̃�𝐺
𝐼 𝑇 �̃�𝑔

𝑇 �̃�𝐺 𝐼
𝑇 �̃�𝑎

𝑇 𝑝𝐺 𝐼
𝑇)
𝑇

(3.53) 

is used, where, �̃�𝐺
𝐼 ∈ ℝ3 represents the perturbation of the INS attitude in the body frame. In the 

quaternion form, the error is defined as: (⨂ denotes quaternion multiplication) 

𝛿𝑞 = 𝑞⨂�̂�−1 ≈ (
1

2
�̃�𝐺
𝐼 𝑇 1)

𝑇

(3.54) 

In this form, the attitude errors are reduced to its minimal representation which corresponds to 3 

DoF. 

The INS continuous-time kinematics model is given as: 

�̇̂�𝐺
𝐼 =

1

2
× �̂�𝐺

𝐼 ⨂�̂� =
1

2
× Ω(�̂�) × �̂�𝐺

𝐼  

�̇̂�𝑔 = 03×1 

�̇�𝐺 = 𝐶( �̂�𝐺
𝐼   )𝑇�̂� + 𝑔,𝐺  

�̇̂�𝑎 = 03×1  

�̇̂�𝐺 𝐼 = 𝑣𝐺   (3.55) 

where �̂� and �̂� are obtained subtracting the biases from the measurements. 

�̂� = 𝜔𝑚𝑒𝑎𝑠 − �̂�𝑔, �̂� = 𝑎𝑚𝑒𝑎𝑠 − �̂�𝑎. 
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Ω(�̂�) = (
−⌊�̂�×⌋ 𝜔

−𝜔𝑇 0
); ⌊�̂�×⌋ = [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] is the skew-symmetric matrix; and 𝐶(∙) 

denotes the function converting quaternion to the corresponding rotation matrix. 

The linearized continuous INS system model is given as: 

�̇̃�𝐼 = 𝐹�̃�𝐼 + 𝐺𝑛𝐼 (3.56) 

 

In which 𝑛𝐼 is the Gaussian noise 𝑛𝐼 = (𝑛𝑔
𝑇 𝑛𝑤𝑔

𝑇 𝑛𝑎
𝑇 𝑛𝑎𝑔

𝑇 )
𝑇
  , 𝑛𝑔

𝑇 and 𝑛𝑎
𝑇 represents the 

gyroscope and accelerometer noises, 𝑛𝑤𝑔
𝑇  and 𝑛𝑎𝑔

𝑇  represents the random walk rate of the 

gyroscope and accelerometer measurement biases.  

With Jacobian matrices 𝐹 and 𝐺 given as: 

 

𝐹 =

[
 
 
 
 

−⌊�̂�×⌋ −𝐼3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3

−𝐶( �̂�)𝐺
𝐼 𝑇⌊�̂�×⌋ 03×3 03×3 −𝐶( �̂�)𝐺

𝐼 𝑇 03×3
03×3 03×3 03×3 03×3 03×3
03×3 03×3  𝐼3 03×3 03×3]

 
 
 
 

15×15

(3.57) 

 

𝐺 =

[
 
 
 
 
−𝐼3 03×3 03×3 03×3
03×3 𝐼3 03×3 03×3
03×3 03×3 −𝐶( �̂�)𝐺

𝐼 𝑇 03×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 𝐼3 ]

 
 
 
 

15×12

(3.58) 

 

For the discrete-time implementation, the IMU error state transition matrix Φ𝑘 comes from 

integration equations Φ̇𝑘 = 𝐹(𝑡)Φ𝑘, where 𝐹(𝑡) is the Jacobian of the continuous-time system 

model for the IMU motion [154]. More specifically, in the GPS/INS community, one step 

approximation Φ = I + FΔt is commonly used to calculate the transition matrix. In [125], the 
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authors used a closed-form discretized propagation to calculate the transition matrix. In this 

thesis, a 4-th order Runge-Kutta numerical integration [155] of the IMU continuous-time 

kinematics model is applied to propagate the estimated INS state.  

The 4-th order Runge-Kutta (sometimes also referred as RK4) is a classic method to approximate 

the ordinary differential equations. As for INS integration, the general solving process for 

position, velocity and attitude can be given by [155]: 

�̇� = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0 (3.59) 

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) +
Δ𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (3.60) 

where: 

𝑘1 = 𝑓(𝑡, 𝑥) 

𝑘2 = 𝑓 (𝑡 +
Δ𝑡

2
, 𝑥 + 𝑘1 ∗

Δ𝑡

2
) 

𝑘3 = 𝑓(𝑡 +
Δ𝑡

2
, 𝑥 + 𝑘2 ∗

Δ𝑡

2
) 

𝑘4 = 𝑓(𝑡 + Δ𝑡, 𝑥 + Δt ∗ 𝑘3) 

 

To propagate the uncertainty of the state, the discrete time state transition matrix of the linearized 

continuous dynamic model for error IMU state and discrete time noise covariance matrix need to 

be computed first: 

Φ𝑘 = Φ(𝑡𝑘+1, 𝑡𝑘) = exp( 𝐹(𝜏)
𝑡𝑘+1

𝑡𝑘

𝑑𝜏) (3.61) 

𝑄𝑘 =  Φ(𝑡𝑘+1, 𝜏)
𝑡𝑘+1

𝑡𝑘

𝐺𝑄𝐺Φ(𝑡𝑘+1, 𝜏)
𝑇𝑑𝜏 (3.62) 
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When Δ𝑡 is small, the transition matrix can be expanded as: 

Φ𝑘 = Φ(𝑡𝑘+1, 𝑡𝑘) = exp ( 𝐹(𝜏)
𝑡𝑘+1

𝑡𝑘

𝑑𝜏) = exp(𝐹Δ𝑡) = 𝐼 + 𝐹Δ𝑡 +
1

2!
(𝐹Δ𝑡)2 +

1

3!
(𝐹Δ𝑡)3 +⋯(3.63) 

 

The propagated IMU covariance matrix is: 

𝑃𝐼𝐼𝑘+1|𝑘 = Φ𝑘𝑃𝐼𝐼𝑘|𝑘Φ𝑘
𝑇 + 𝑄𝑘 (3.64) 

 

3.4.3 Full System Model 

To include camera poses into state vector, MSCKF creates a sliding window of the 6𝑁 camera 

states and in total forms the (15 + 6𝑁) error states: 

�̃� = (�̃�𝐼𝑁𝑆
𝑇 �̃�𝐶1

𝑇 … �̃�𝐶𝑁
𝑇 )

𝑇
(3.65) 

where each camera error state is given as, 

�̃�𝐶𝑖 = ( �̃�𝐺
𝐶𝑖 𝑇 𝑝𝐺 𝐶𝑖

𝑇 )
𝑇
. (3.66) 

Meanwhile, the full covariance is formed as: 

𝑃𝑘|𝑘 = (
𝑃𝐼𝐼𝑘|𝑘 𝑃𝐼𝐶𝑘|𝑘

𝑃𝐼𝐶𝑘|𝑘
𝑇 𝑃𝐶𝐶𝑘|𝑘

) (3.67) 

where 𝑃𝐼𝐼 is the inertial state covariance matrix, 𝑃𝐶𝐶 is the camera state covariance matrix, 𝑃𝐼𝐶 is 

the correlation between the Initial state and camera state. The full noise propagation can be 

written as: 

𝑃𝑘+1|𝑘 = (
𝑃𝐼𝐼𝑘+1|𝑘 Φ𝑘𝑃𝐼𝐶𝑘|𝑘

𝑃𝐼𝐶𝑘|𝑘
𝑇 Φ𝑘

𝑇 𝑃𝐶𝐶𝑘|𝑘
) (3.68) 

 



77 

 

The filter is updated with two sources of information: vision and odometer measurements. When 

a new image arrives, six states are added to the filter for the image pose and are initialized to the 

current IMU pose: 

�̂� =𝐺
𝐶 �̂�𝐼

𝐶 ⨂ �̂�𝐺
𝐼  

�̂�𝐺 𝐶 = �̂�𝐺 𝐼 + 𝐶( �̂�𝐼
𝐺 )𝑇 �̂�𝐼 𝐶 (3.69) 

 

And the covariance matrix is augmented as: 

𝑃𝑘|𝑘 = (
𝐼15+6(𝑁+1)

𝐽
)𝑃𝑘|𝑘(𝐼15+6(𝑁+1) 𝐽𝑇) (3.70) 

 

With the Jacobian matrix 𝐽 derived as: 

𝐽 = [
𝐶( �̂�𝐼
𝐶 ) 03×9 03×3 03×6𝑁

−𝐶( �̂�𝐺
𝐼 )𝑇⌊ �̂�𝐼 𝐶 ×⌋ 03×9 𝐼3 03×6𝑁

] (3.71) 

 

3.4.4 Camera Measurement Model 

The development of the camera measurement model in [128] is reproduced in this section. The 

MSCKF proposes a novel approach to use 3D feature position to constrain all of the camera 

poses at which the measurements of that feature occurred. This is achieved without including the 

feature position in the filter state vector [128]. Considering a single feature 𝑓𝑖, that has been 

observed from a set of 𝑀𝑗 camera poses (𝑞𝐺
𝐶𝑖 , 𝑝𝐶𝑖

𝐺 ), 𝑖 ∈ 𝑆𝑗, each of the 𝑀𝑗 observations of the 

feature are described by the model [128]: 

𝑧𝑖
(𝑗)
=
1

𝑍𝑗
𝐶𝑖
[
𝑋𝑗
𝐶𝑖

𝑌𝑗
𝐶𝑖
] + 𝑛𝑖

(𝑗) (3.72) 



78 

 

where 𝑛𝑖
(𝑗)

 is the image noise vector, with covariance 𝑅𝑖
(𝑗)
= 𝜎𝑖𝑚

2 𝐼2. The feature position 

expressed in the camera frame is given by: 

𝑝𝑓𝑗
𝐶𝑖 =

[
 
 
 𝑋𝑗
𝐶𝑖

𝑌𝑗
𝐶𝑖

𝑍𝑗
𝐶𝑖
]
 
 
 

= 𝐶𝐺
𝐶𝑖(𝑝𝑓𝑖

𝐺 − 𝑝𝐶𝑖
𝐺 ) (3.73) 

where 𝑝𝑓𝑖
𝐺  is the 3D feature position in the global frame. If 𝐶𝑛 is the camera frame in which the 

feature was observed for the first time, then the feature coordinates with respect to the camera at 

the i-th time instant are:  

𝑝𝑓𝑗
𝐶𝑖 = 𝐶𝐶𝑛

𝐶𝑖𝑝𝑓𝑗
𝐶𝑛 + 𝑝𝐶𝑛

𝐶𝑖 (3.74) 

In the above equation, the 𝐶𝐶𝑛
𝐶𝑖  and 𝑝𝐶𝑛

𝐶𝑖  are the rotation and translation between the camera frames 

at time instant 𝑛 and 𝑖, respectively. The above equation can be rewritten as: 

𝑝𝑓𝑗
𝐶𝑖 = 𝑍𝑗

𝐶𝑛

(

 
 
 
 

𝐶𝐶𝑛
𝐶𝑖

[
 
 
 
 
 
 𝑋𝑗
𝐶𝑛

𝑍𝑗
𝐶𝑛

𝑌𝑗
𝐶𝑛

𝑍𝑗
𝐶𝑛

1 ]
 
 
 
 
 
 

+
1

𝑍𝑗
𝐶𝑛
𝑝𝐶𝑛
𝐶𝑖

)

 
 
 
 

= 𝑍𝑗
𝐶𝑛 (𝐶𝐶𝑛

𝐶𝑖 [

𝛼𝑗
𝛽𝑗
1

] + 𝜌𝑗𝑝𝐶𝑛
𝐶𝑖) = 𝑍𝑗

𝐶𝑛 [

ℎ𝑖1(𝛼𝑗 , 𝛽𝑗 , 𝜌𝑗)

ℎ𝑖2(𝛼𝑗 , 𝛽𝑗 , 𝜌𝑗)

ℎ𝑖3(𝛼𝑗 , 𝛽𝑗 , 𝜌𝑗)

] (3.75) 

with 𝛼𝑗 =
𝑋𝑗
𝐶𝑛

𝑍
𝑗
𝐶𝑛

, 𝛽𝑗 =
𝑌𝑗
𝐶𝑛

𝑍
𝑗
𝐶𝑛

 and 𝜌𝑗 =
1

𝑍
𝑗
𝐶𝑛

.  

Substituting the above equation into the measurement model gives: 

𝑧𝑖
(𝑗)
=

1

ℎ𝑖3(𝛼𝑗 , 𝛽𝑗, 𝜌𝑗)
[
ℎ𝑖1(𝛼𝑗 , 𝛽𝑗, 𝜌𝑗)

ℎ𝑖2(𝛼𝑗 , 𝛽𝑗, 𝜌𝑗)
] + 𝑛𝑖

(𝑗) (3.76) 

Then, the global feature position is computed by: 

�̂�𝑓𝑗
𝐺 =

1

�̂�𝑗   
𝐶𝐺
𝐶𝑛
𝑇
[

�̂�𝑗

�̂�𝑗
1

] + �̂�𝐶𝑛
𝐺 (3.77) 
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Once the estimate of the feature position is obtained, the measurement residual can be computed 

as: 

𝑟𝑖
(𝑗)
= 𝑧𝑖

(𝑗)
− �̂�𝑖

(𝑗) (3.78) 

where �̂�𝑖
(𝑗)
=

1

�̂�
𝑗

𝐶𝑖
[
�̂�𝑗
𝐶𝑖

�̂�𝑗
𝐶𝑖
], 

[
 
 
 �̂�𝑗
𝐶𝑖

�̂�𝑗
𝐶𝑖

�̂�𝑗
𝐶𝑖
]
 
 
 

= �̂�𝐺
𝐶𝑖(�̂�𝑓𝑖

𝐺 − �̂�𝐶𝑖
𝐺 ).  

Linearizing the above measurement equation, the residual can be approximated as:  

𝑟𝑖
(𝑗)
≅ 𝐻𝑋𝑖

(𝑗)
�̃� + 𝐻𝑓𝑖

(𝑗)
�̃�𝑓𝑖
𝐺 + 𝑛𝑖

(𝑗) (3.79) 

𝐻𝑋
(𝑗)

 and 𝐻𝑓𝑖
(𝑗)

 are the Jacobians of the measurements 𝑧𝑖
(𝑗)

 with respect to the state and the feature 

position, respectively. 𝑝𝑓𝑖
𝐺  is the error in the position estimate of 𝑓𝑖.  

By stacking the residuals of all 𝑀𝑗 measurements of this feature, the residual vector is given: 

𝑟(𝑗) ≅ 𝐻𝑋
(𝑗)
�̃� + 𝐻𝑓

(𝑗)
�̃�𝑓𝑖
𝐺 + 𝑛(𝑗) (3.80) 

where the covariance matrix of 𝑛(𝑗) is 𝑅(𝑗) = 𝜎𝑖𝑚
2 𝐼2𝑀𝑗 .  

Note that since the state estimate, 𝑋, is used to compute the feature position estimate, the error 

𝑝𝑓𝑖
𝐺  in is correlated with the errors �̃�. Thus, the residual 𝑟(𝑗) is not in the form of the above 

equation and cannot be directly applied for measurement updates in the EKF. To overcome this 

problem, [128] define a residual 𝑟0
(𝑗)

, by projecting 𝑟(𝑗) on the left null space of the matrix 𝐻𝑓
(𝑗)

. 

Specifically, if 𝐴 denotes the unitary matrix whose columns form the basis of the left null space 

of 𝐻𝑓, then:  

𝑟0
(𝑗)
= 𝐴𝑇(𝑧(𝑗) − �̂�(𝑗)) ≅ 𝐴𝑇𝐻𝑋

(𝑗)
�̃� + 𝐴𝑇𝑛(𝑗) = 𝐻0

(𝑗)
�̃� + 𝑛0

(𝑗) (3.81) 

Since the 2Mj  ×  3 matrix 𝐻𝑓
(𝑗)

 has full column rank, its left null space is of dimension 2M𝐣  −

 3. Therefore, 𝑟0
(𝑗)

 is a (2M𝐣  −  3)  ×  1 vector. This residual is independent of the errors in the 
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feature coordinates, and thus filter updates can be performed based on it. A linearized constraint 

between all the camera poses from which the feature 𝑓𝑗 was observed. This expresses all the 

available information that the measurements 𝑧𝑖
(𝑗)

 provide for the 𝑀𝑗  states, and thus the resulting 

EKF update is optimal, except for the inaccuracies caused by linearization.  

 

3.4.5 Wheel Odometer Measurement Model 

The wheel odometer observations and Non-Holonomic Constraints are defined in the vehicle 

motion frame {𝑀}. The origin of {𝑀} is at the ground projection of the center point of the 

vehicle’s rear wheel axle. The 𝑥 axis is pointing forward, the 𝑦 axis is pointing towards the left 

side of the vehicle and the 𝑧 axis is perpendicular pointing up. 

For wheel encoders, the forward speed can be calculated by: 

{
 

 𝑣𝑙 =
𝑐𝑙

𝑟𝑟𝑎𝑡𝑒 ∗ Δ𝑡
∗ 𝜋 ∗ 𝑑𝑙

𝑣𝑟 =
𝑐𝑟

𝑟𝑟𝑎𝑡𝑒 ∗ Δ𝑡
∗ 𝜋 ∗ 𝑑𝑟

 

(3.82) 

 

where, 𝑣𝑙 and 𝑣𝑟 are the velocities of left and right wheels, 𝑐𝑙 and 𝑐𝑟 are the left and right wheel 

encoder counts, 𝑟𝑟𝑎𝑡𝑒 is the encoder resolution, 𝑑𝑙 and 𝑑𝑟 are the diameters of the left and right 

wheels. The final forward velocity can be calculated as: 

𝑣 =
𝑣𝑙 + 𝑣𝑟
2

. (3.83) 

Combing the wheel odometer forward velocity with the NHC pseudo-measurements, a 3 × 1 

velocity measurement vector can be formed as: 
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𝑣𝑀 𝑣𝑒ℎ = 𝑣𝑀 𝑣𝑒ℎ + �̃�𝑀 𝑣𝑒ℎ = (
𝑣𝑀 𝑜𝑑𝑜

0
0

)  (3.84) 

The relationship between the IMU body frame velocity and vehicle motion frame velocity can be 

expressed as: 

𝑣𝐼 𝐼𝑁𝑆 = 𝐶𝑀
𝐼 𝑣𝑀 𝑣𝑒ℎ − [𝜔 ×]𝑟

𝐼 (3.85) 

 

where the 𝑟𝐼 is the lever-arm between the IMU body frame and vehicle motion frame, and 𝐶𝑀
𝐼  is 

the rotation matrix from the vehicle motion frame to the IMU body frame. We construct the 

misclosure vector: 

𝑟𝑜𝑑𝑜 = 𝑣𝑀 𝑣𝑒ℎ− 𝑣𝑀 𝑣𝑒ℎ = −𝐶𝐺
𝑀𝛿 𝑣𝐺 𝐼 + 𝐶𝐺

𝑀[ 𝑣𝐺 𝐼 ×] �̃�𝐺
𝐼 + 𝑛𝑜𝑑𝑜 (3.86) 

The design matrix is written as: 

𝐻𝑜𝑑𝑜 = [𝐶𝐺
𝑀[ 𝑣𝐺 𝐼 ×] 03×3 −𝐶𝐺

𝑀 03×3 03×3 03×3 03×3]. (3.87) 
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Chapter 4 SYSTEM VERIFICATION AND EXPERIMENTAL 

SETUP 

With the theories of the wheel odometer aided MSCKF being covered in Chapter 3, this chapter 

will cover the experiment setup and system verification with the classic KITTI dataset. First, in 

Section 4.1, the datasets used in this thesis will be introduced in detail. Then, in Section 4.2, the 

related sensor calibration results will be presented. At last, in Section 4.3, the verification results 

will be presented. 

4.1 Datasets Introduction 

In this thesis, there will be three datasets used to test the proposed 15-state MSCKF 

implementation augmented with WO and NHC. First, the classic KITTI dataset [1] with 

simulated wheel velocity will be used to examine the correctness of the implementation. Then, 

the algorithm will be evaluated using an urban canyon dataset (KAIST Complex Urban Dataset 

[84]) and winter driving data collected in Calgary.  

4.1.1 KITTI Dataset 

The KITTI Dataset is one of the most popular existing public autonomous driving datasets. The 

KITTI dataset was recorded from a moving platform mounted on car while driving in and around 

Karlsruhe, Germany [1]. The duration of each sequence varies from 10 seconds to several 

minutes, and the driving scenarios contain city, residential, road, campus [1].  

The sensor layout of the recording platform is shown in Figure 4-1. The platform includes 

camera images, laser scaners, high-precision GPS measurements and IMU measurements from 
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an integrated GPS/IMU system. The corresponding sensor specifications are listed in Table 4-1. 

The dataset can be downloaded from [156]. 

 

Figure 4-1: Recording Platform of KITTI Dataset from [1] 

 

  

Figure 4-2: Sensor Setup of KITTI Dataset from [1] 

 

Table 4-1: Sensor Specifications of KITTI Dataset after [1] 

 

Sensor Manufacturer Model Description Number Hz Accuracy Range

Stereo grayscale cameras PointGray FL2-14S3MC 1.4 Megapixels, 1/2” Sony ICX267 CCD, global shutter 2 10

Stereo RGB cameras PointGray FL2-14S3C-C 1.4 Megapixels, 1/2” Sony ICX267 CCD, global shutter 2 10

3D laser scanner Velodyne HDL-64E 64 beams, 0.09 degree angular resolution 1 10 2 cm 120 m

GPS/INS system OXTS RT3003 L1/L2 RTK 1 100 0.02 m + 0.1 degree



84 

 

4.1.2 KAIST Complex Urban Dataset 

The KAIST Complex Urban Dataset is a dataset focused on driving environment perception and 

localization in challenging complex urban environments [84]. The dataset was collected in Korea 

with a vehicle equipped with stereo camera pair, 2d SICK LiDARs, 3d Velodyne LiDAR, Xsens 

IMU, fiber optic gyro (FoG), wheel encoders, and RTK GPS. The recording platform and sensor 

setup are shown in Figure 4-3, and the related sensor specifications are shown in Table 4-2. The 

dataset can be downloaded from [156]. In order to access the data, in this thesis, a data parser 

was developed. Due to the fact that the KAIST Complex Urban Dataset was collected in highly 

dynamic environment, a very challenging open research question is being able to handle dynamic 

objects seen from the cameras. In this thesis, the MSAC (M-Estimator RANSAC) is utilized to 

remove the effect brought by moving objects. 

 

Figure 4-3: Recording Platform from [84] 
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Figure 4-4: Sensor Setup of KAIST Complex Urban Dataset from [84] 

 

Table 4-2: Sensor Specifications of KAIST Complex Urban Dataset after [84] 

 

 

Sensor Manufacturer Model Description Number Hz Accuracy Range

Stereo RGB cameras PointGray Flea3 1600x1200 color, 59 FPS 	 2 10

IMU Xsens MTi-300 Enhanced AHRS Gyro 1 100 10°/h

3-axis FOG KVH DSP-1760 Fiber Optics Gyro (3 axis) 1 1000 0.05°/h

Wheel Encoder RLS LM13 Magnetic rotary encoder 2 100 4096 (resolution)

GPS U-Blox EVK-7P Consumer level GPS 1 10 2.5 m

Altimeter Withrobot myPressure Altimeter 1 10

3D LiDAR Velodyne VLP-16 16 channel LiDAR, 360° FOV 2 10 100 m

2D LiDAR SICK LMS-511 1 channel LiDAR, 190° FOV 2 100 80 m
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4.1.3 Calgary Winter Driving Dataset 

To test the wheel odometer aided MSKCF’s performance in winter driving environment, a data 

collection platform was built to collect driving data in winter Calgary, Canada. The data 

collection platform consists of stereo cameras, an automotive grade IMU, a vehicle odometer 

data logger, and a high-end GNSS/IMU system.  

It should be noted that the wheel odometer data logger used in this system is not a wheel encoder 

as in KAIST Complex Urban Dataset. Most modern land vehicles are equipped with CAN-BUS, 

the resolution of the CAN-BUS output wheel speed is 1 km/h. Compared with the high-precision 

wheel encoder data in the KAIST Complex Urban dataset, the CAN-BUS wheel speed data is 

easier to access at the expense of a large quantization error.  

The vision system used was originally developed by Bernhard Aumayer [143] and is the same 

hardware used in [157]. The system consists of two RGB cameras and a u-blox 6 receiver. The 

PPS signal output from the GPS receiver is used to ensure the shutter synchronization between 

the two cameras and provide time-tagged images.  

A reference trajectory is obtained use a Novatel SPAN-LCI tightly-coupled RTK GNSS/INS 

solution generated by Inertial Explorer software. The base station for the RTK solution was set 

up at the rooftop of the Calgary Center for Innovation Technology (CCIT) building. The ground 

truth solution processing consists of a tightly-coupled RTK GNSS/INS forward and backward 

differential carrier phase post-processing. The overall accuracy is centimeter level in open-sky 

conditions and the several cm level during short travels in urban canyons. 

Winter driving data was collected on 15 March 2020 for just over one hour in a mix of urban and 

suburban areas near the University of Calgary, Canada after a significant snowfall. Most of the 

route is suburban but there are some segments on the University of Calgary campus with 
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significant urban canyon effects.  A second data set, in summer driving conditions, was collected 

on 18 August 2020. The running trajectory of the Calgary Winter Driving Dataset is shown in 

Figure 4-6. 

 

Figure 4-5: Running trajectory of Calgary Winter Driving Dataset (2020-03-15) 

 

Stereo Camera

GNSS Antenna

SPAN-LCI IMU

XSENS IMU

CANBUS Shield

SPAN-LCI Receiver

 

Figure 4-6: Recording Platform of the Calgary Winter Driving Dataset 
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Figure 4-7: Sensor Setup of the Calgary Winter Driving Dataset 

 

 

Figure 4-8: A Close-up look of the sensors: PointGray Camera, XSENS MTi-600 IMU, Novatel SPAN-LCI IMU, Novatel 702-

gg Antenna, Sparkfun CANBUS Shield 
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Table 4-3: Sensor Specifications of the Data Collection Platform 

 

 

After introducing the datasets used in this thesis, in the next section, relevant sensor and 

algorithm verifications are described. 

4.2 Sensor Calibration 

As has been described in the previous chapters, sensor calibration in of vital importance for the 

multi-sensor integration systems. In this section, the methodologies and results of the related 

camera intrinsic calibration, IMU calibration, wheel odometer scale factor calibration and 

camera-IMU calibration discussed in detail. 

4.2.1 Camera Intrinsic Calibration 

The first step of any vision-based navigation system is always to determine the camera intrinsic 

parameters. The Intrinsic Orientation Parameters (IOPs) will be used to rectify the image 

measurements. In this thesis, the camera calibration process was conducted using the “Camera 

Calibration” toolbox in MATLAB. The calibration was done in outdoor environment before the 

data collection. The checkerboard used for calibration is a 11 × 11 checkerboard with cell size 

of 50 mm. During the calibration, images containing the full body of the checkerboard were 

collected at different orientations and locations with respect to the camera (as shown in Figure 4-

11).  

Sensor Manufacturer Model Description Number Hz Accuracy

Stereo RGB cameras PointGray Blackfly-S GigE 1288 x 728 color, Global shutter	 2 10

IMU Xsens MTi-600 Enhanced AHRS Gyro 1 100 12°/h

GPS/INS Novatel SPAN-LCI FOG Gyros + MEMS Accelerometers 1 100 0.06m + <1°/h 

Wheel Odometer Sparkfun CAN-BUS Shield Vehicle wheel odometer data logger 1 10 1 km/h (resolution)
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The images used for calibration should: 

1. Does not have motion blur effect; 

2. Calibration board can be viewed in all areas of the image; 

3. Camera is in focus; 

4. Calibration board can be seen from different orientations, distances and locations. 

 

 

Figure 4-9: Camera Calibration Process 
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Figure 4-10: Checkerboard Locations with respect to Camera for the Camera Calibration 

 

In this case, 20 images were recorded, the final calibration results can be seen in Table 4-4, and 

the corresponding reprojection errors are shown in Figure 4-12. A reprojection error is the 

distance between a pattern keypoint detected in a calibration image, and a corresponding world 

point projected into the same image [158]. If the overall mean reprojection error is too high, 

consider excluding the images with the highest error and recalibrating. Generally speaking, the 

overall mean error should be less than pixel to be accepted.  
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Figure 4-11: Reprojection Error in Camera Calibration 

 

Table 4-4: Camera Intrinsic Parameters 

Camera Intrinsic Parameters Value (pixel) 

Focal Length (𝑓𝑥 𝑓𝑦) (543.0091 543.0796) 

Principal Point (𝑐𝑥 𝑐𝑦) (593.8106 369.3547) 

Image Size (728 1288) 

Radial Distortions (−0.2866 0.0915) 

Tangential Distortions (1.7771 ∗ 10−4 −5.1903 ∗ 10−4) 

 

Another very important step is to use the radial distortion parameters and tangential distortion 

parameters to undistort the image before feature extraction and matching.  
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Figure 4-12: An Example of Calgary Winter Driving Dataset. Left: the original image. Right: after rectification 

 

From Figure 4-13, the left image shows that the due to the distortions, the contours of the 

building seem to be “bended”. However, after the rectification, the contours of the buildings 

come back the “straight lines”. 

 

4.2.2 IMU Intrinsic Calibration 

As has been reviewed in Chapter 2 & 3, the IMU measurements from gyroscopes and 

accelerometers contain errors from instrument bias, scale factor, non-orthogonality 

(misalignment), and most importantly, sensor noise. The IMU intrinsic calibration can be defined 

as a process of comparing the output with the known reference information to determine these 

parameters. The common calibration methods include: Local Level-Frame (LLF) calibration, six-

position static test and angular rate test [159]. The LLF calibration and angular rate test require 

multi-axis turntable, thus, in this thesis, the six-position test is utilized to determine the initial 

bias for the Xsens MTi-600 IMU and SPAN-LCI IMU. For the record, the KITTI Dataset and 

the KAIST Complex Urban Dataset do not provide IMU intrinsic parameters, so a “trial and 

error” approach is used to determine the best-fit initial biases for the IMUs. 



94 

 

The basic idea of the six-position static test is to mount the IMU on a level table with each 

sensitive axis pointing alternately up and down (six positions). The advantage of this method is 

its simplicity, and the disadvantage is that non-orthogonality cannot be determined [159]. With 

each axis being pointing up and down, the corresponding biases can be calculated as (take 𝑧-axis 

for instance): 

{
𝑏𝑎,𝑧 =

𝑥𝑢𝑝 + 𝑥𝑑𝑜𝑤𝑛
2

  

𝑏𝑤,𝑧 =
𝜔𝑥(𝑢𝑝) + 𝜔𝑥(𝑑𝑜𝑤𝑛)

2

(4.1) 

The measurements taken for each position is 5 minutes. Due to the fact that the Xsens MTi-600 

IMU cannot be placed upside down horizontally, the six-position method’s result does not yield 

the correct bias. The SPAN-LCI IMU initial biases are determined as: 

{
𝑏𝑎,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [0.0083 0.0153 0.0119]𝑇  (

𝑚

𝑠2
)

𝑏𝑔,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [0.0012 −0.0016 −0.0010]𝑇 (
𝑑𝑒𝑔

𝑠
)

(4.2) 

Another very important aspect of IMU intrinsic calibration is to determine the measurement 

noise parameters. More specifically, to determine [𝜎𝑔 𝜎𝑎 𝜎𝑏𝑔 𝜎𝑏𝑎]. The values for 𝜎𝑏𝑔 and 

𝜎𝑏𝑎 are normally included in the IMU datasheet as either “angular random walk” or “velocity 

random walk”. In [160], the authors maintain an open source project which estimates IMU noise 

parameters by computing Allan variance from static IMU observations. Unfortunately, due to the 

time limit of this project, the calibration of IMU intrinsic parameters are not done properly, for 

the following results and comparison, the values from trial and error in Table 4-5 are used. 
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Table 4-5: IMU Noise Parameters of The SPAN-LCI IMU 

Noise Parameter Value (for SPAN-LCI IMU) Unit 

Gyroscope “white noise” 𝜎𝑔 
0.001 𝑟𝑎𝑑

𝑠

1

√𝐻𝑧
 

Accelerometer “white noise” 𝜎𝑎 
0.01 𝑚

𝑠2
 
1

√𝐻𝑧
 

Gyroscope “random walk” 𝜎𝑏𝑔  
0.001 𝑟𝑎𝑑

𝑠2
1

√𝐻𝑧
 

Accelerometer “random walk” 𝜎𝑏𝑎 
0.0005 𝑚

𝑠3
 
1

√𝐻𝑧
 

 

4.2.3 Wheel Odometer Calibration 

Similar to the IMU measurements, the wheel odometer measurement also contains: scale factor, 

bias, misalignment and measurement noise. For the simplicity of the overall measurement model, 

most research only consider the scale factor when utilizing the wheel odometer measurements 

[82]. In this thesis, for the KITTI Dataset, the simulated wheel odometer measurements are used 

to verify the implementation, so the calibration process is not considered. For the KAIST 

Complex Urban Dataset, the dataset provides calibrated wheel encoder parameters using high-

precision GPS and FOG sensors [2]. The wheel odometer parameters are given by: 

𝑤 = (𝑑𝑙 𝑑𝑟 𝑤𝑏) (4.3) 

where: 𝑑𝑙 and 𝑑𝑟 represent the left and right rear wheel diameters, and 𝑤𝑏 means the wheel base 

between the two rear wheels. To construct the relative measurement of the vehicle using the GPS 

and FOG, the 2D pose consisting location and orientation is given by [2]: 

𝒙 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏), 𝒙𝒊 = (𝑥𝑖 , 𝑦𝑖, 𝜃𝑖)) (4.4) 

The wheel encoder parameters are estimated through the forward motion kinematics: 
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𝑘𝑖(𝑤) = [

Δxi
Δ𝑦𝑖
Δ𝜃𝑖

] =

[
 
 
 
𝑙𝑎 cos(Δ𝜃𝑖)

𝑙𝑎 sin(Δ𝜃𝑖)

𝑙𝑑𝑖𝑓𝑓

𝑤𝑏 ]
 
 
 

(4.5) 

𝑙𝑎 =

𝑐𝑙
4096 𝜋𝑑𝑙 +

𝑐𝑟
4096 𝜋𝑑𝑟

2
(4.6) 

𝑙𝑑𝑖𝑓𝑓 =
𝑐𝑙
4096

𝜋𝑑𝑙 +
𝑐𝑟
4096

𝜋𝑑𝑟 (4.7) 

where: 𝑙𝑎 is the average distance, 𝑙𝑑𝑖𝑓𝑓 is the difference distance between the left and right rear 

wheels, 4096 is the wheel encoder resolution, 𝑐𝑙 and 𝑐𝑟 are the wheel encoder counts for each 

wheel. 

And the objective function of this optimization problem is described as [2]: 

𝑤∗ = arg min
𝑤

∑‖𝑧𝑖⊖𝑘𝑖(𝑤)‖Ωi
𝑖

(4.8) 

where ⊖ stands for the inverse motion operator, Ωi represents the uncertainty of the GPS and 

FOG. 

For our Calgary Winter Driving Dataset, the wheel odometer speed with the SPAN-LCI output 

forward speed are plotted in Figure 4-14. From Figure 4-14, it can be noted that the CAN-BUS 

wheel speed aligns with the ground truth speed. This will also be discussed in Chapter 5. Thus, 

for the simplicity of our estimator, the scale factor of the wheel speed is not taken into 

consideration.  
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Figure 4-13: CAN-BUS wheel speed vs. Ground truth forward speed from the Calgary Winter Driving Dataset 

 

In addition, due to the fact that wheel odometer and NHC measurement are both recorded in the 

vehicle frame, the lever-arm offset and misalignment between the vehicle frame and the IMU 

body frame might also degenerate the overall accuracy of the integration system. In [65], the 

author first proved that the lever-arm offset and misalignment errors will degenerate the 

performance of INS/WO/NHC integration results. The author proposed an online calibration 

method which include an additional 6 × 1 lever-arm offset (3), boresight errors (2), and scale 

factor into the state vector to constrain the corresponding errors. In this thesis, due to the time 

limit of the project, the main objective is to prove the feasibility of integrating INS, VO and WO, 

thus this calibration method is not implemented. However, this is very important for the optimal 

performance, which is why it is included in Chapter 6 future works recommendations.  

4.2.4 Camera-IMU Calibration 

One of the biggest challenges of utilizing visual-inertial sensing system is how to accurately 

calibrate the transform between IMU and camera. Both the KITTI Dataset and the KAIST 
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Complex Urban Dataset use highly accurate 3D LiDAR systems as the medium to bridge the 

IMU and the camera. More specifically, the KITTI Dataset register the 3D LiDAR with respect 

to the reference camera coordinate system (the left camera of the stereo camera) by initializing 

the rigid body transformation [1]. Then, the error function calculated from the Euclidean distance 

of 50 manually selected correspondence is built for optimization [1]. As for the KAIST Complex 

Urban Dataset, the extrinsic parameters are calculated by projecting the global point clouds that 

were reconstructed through the vehicle path onto each image. Similar to the approach of the 

KITTI Dataset, the extrinsic parameters are also estimated by minimize a optimization problem 

[2]. 

For our Calgary Winter Driving Dataset, due to the absence of the accurate 3D LiDAR data, the 

transformation between the IMU and camera has to be directly estimated.  

A simple and intuitive calibration method was first conducted for camera-IMU calibration: 

• The car is parked at a fixed point with a fixed orientation, and the checkerboard is placed 

at multiple fixed known positions. 

• Use the images focusing on the checkerboards to calibrate the intrinsic parameters of the 

camera. 

• Since the relative position of the board to the vehicle body is known, the position of the 

camera to the vehicle body can be inferred. 

• At the same time, the transformation between the vehicle and the IMU can be obtained 

during the installation of the IMU, so the position of the camera to the IMU can also be 

obtained. 
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The disadvantage of this method is that the transformation between the vehicle body frame to the 

IMU body frame still needs to be tape-measured. Thus, the overall calibration accuracy 

degenerates.  

To improve the camera-IMU calibration accuracy, the Kalibr calibration toolbox is utilized here. 

The Kalibr calibration toolbox [161] is an open source project that aims to solve the following 

calibration problems: 

• Multiple camera calibration: intrinsic and extrinsic calibration of a camera-systems with 

non-globally shared overlapping fields of view. 

• Camera-IMU calibration: spatial and temporal calibration of an IMU w.r.t a camera-

system. 

This toolbox must be used under ubuntu system with support of ROS (Robot Operating System). 

In this thesis, Kalibr calibration toolbox is used to calibrate the camera-IMU transformation 

matrix. To use this toolbox, it is important to minimize the motion blur in the camera while also 

ensuring that you excite all axes of the IMU. One needs to have at least one translational motion 

along with two degrees of orientation change for these calibration parameters to be observable 

[161].  

The calibration data was collected in an indoor lab environment (Figure 4-15). According to the 

recommendation of the project page, the calibration board was an Aprilgrid 6x6 0.8x0.8 m (A0 

page). In total, 2855 images and about 4 minutes 44 seconds IMU data were collected. It should 

be noted that in order to use the Kalibr calibration toolbox, the data that to be converted to the 

ROS bag format. The timestamp in the ROS bag format is the 19-digits nanosecond [161]. After 

collected the data, the ROS bag can be created with the Kalibr function by running the 

command:“kalibr_bagcreater --folder dataset-dir --output-bag x.bag”. 
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Figure 4-14: Camera-IMU Calibration Experiment Setup 

 

After collected the calibration data, the calibration can be executed by: 

• Use the function “kalibr_calibrate_imu_camera”; 

• Input the static calibration file which will have the camera topics in it; 

• Make an “imu.yaml” file with the corresponding noise parameters; 

• Execute the calibration. 

The final results are stored in the “camchain-imucam.yaml” file: 

1. cam0:   
2.   T_cam_imu:   
3.   - [-0.12877581419264783, -0.968321101668008, -

0.2139416596726299, 0.17908882006069335]   
4.   - [-0.5182924714776103, 0.24964659780319412, -0.8179544548536455, -

0.6218344539905737]   
5.   - [0.8454523663037764, 0.005551600647467514, -0.534021980859964, -

3.468015324857509]   
6.   - [0.0, 0.0, 0.0, 1.0]   
7.   cam_overlaps: []   
8.   camera_model: pinhole   
9.   distortion_coeffs: [-0.3506651907097312, 0.111827012633611, -0.00393521731047083,   
10.     0.03103925759556292]   
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11.   distortion_model: radtan   
12.   intrinsics: [578.7038030040761, 581.3393979849152, 511.73540354347483, 407.3376293147

8185]   
13.   resolution: [1288, 728]   
14.   rostopic: /cam0/image_raw   

 

Together with the transformation matrix 𝑇𝑖𝑚𝑢
𝑐𝑎𝑚 being estimated, a report containing the relevant 

statistics are also generated. 

 

Figure 4-15: Comparison of Predicted and Measured Angular Velocities (body frame) 

 

Figure 4-16:Comparison of Predicted and measured Specific Force (IMU frame) 
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Figure 4-17: Camera Reprojection Error of the Camera-IMU Calibration 

 

From Figure 4-16 and Figure 4-17, it can noted that the predicted acceleration and angular 

velocities fit the IMU measurements pretty well. However, from Figure 4-18, the camera 

reprojection error seems to be too large (> 5 pixels). The reasons behind this could be: (1) 

Inaccurate IMU noise parameters; (2) The board with all the equipment mounted is very heavy, 

which makes it very hard to control to make slow and smooth movement to excite all axes of the 

IMU.  

In addition, the transformation between camera and IMU can also be included in the state vector 

to be estimated online. The relevant work can be found at [153]. 

4.3 Verifications Results with the KITTI Dataset 

After calibrating the sensors, the popular KITTI Dataset is used to numerically examine the 

correctness of the implementation. Due to the fact that the KITTI Dataset does not provide wheel 

odometer measurements, we use IMU body frame velocity from the OXTS output as wheel 

odometer measurements. In order to imitate the real-world driving velocity, we assign large 
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measurement noise to the derived IMU body frame velocity. In this, and each subsequent test, 

the filter is initialized with the position, velocity, and orientation of the corresponding reference 

trajectory to simulate a transition from complete GNSS availability to complete outage. 

In this section, the KITTI Dataset sequence 0095 (city scene, 27 seconds) and sequence 0117 

(city scene, 66 seconds) are used.  

 

Figure 4-18: Sample Image from KITTI Dataset 0095 

 

Figure 4-19:Sample Image from KITTI Dataset 0117 
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Figure 4-20: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, IMU+Vision+WO on the KITTI 0095 

 

 

Figure 4-21: The Rotational Errors (with 3 sigma error bound) of using IMU+WO, IMU+Vision, IMU+Vision+WO on the 

KITTI 0095 



105 

 

 

Figure 4-22: The Translational Errors (with 3 sigma error bound) of using IMU+WO, IMU+Vision, IMU+Vision+WO on the 

KITTI 0095 

 

Figure 4-23: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, IMU+Vision+WO on the KITTI 0117 
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Figure 4-24: The Rotational Errors (with 3 sigma error bound) of using IMU+WO, IMU+Vision, IMU+Vision+WO on the 

KITTI 0117 

 

Figure 4-25: The Translational Errors (with 3 sigma error bound) of using IMU+WO, IMU+Vision, IMU+Vision+WO on the 

KITTI 0117 
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Figure 4-21 and Figure 4-24 plot the trajectories obtained for the KITTI 0095 and 0017, 

respectively. Figure 2-22 and 2-23 show the rotational and translational errors with 3𝜎 error 

bound for the results of the KITTI 0095, respectively. Figure 2-25 and 2-26 show the rotational 

and translational errors with 3𝜎 error bound for the results of the KITTI 0117, respectively. 

From the results from KITTI 0095 and 0117, it is clearly shown that when there is no source of 

update, the IMU integration results quickly diverge. However, when the wheel odometer 

measurement and NHC are integrated into the system, the velocity and orientation drifts are 

controlled. When IMU is combined with monocular vision, we can see from the second 

trajectory (Figure 4-24) that the heading angle and position drift are controlled before the first 

turn. However, when the IMU position drift becomes too large, the monocular vision cannot 

provide enough constraints to contain the drift. This is due to the fact that a single camera does 

not observe the absolute scale, and the filter must rely on the IMU for scale information. When 

the drift of IMU integration results becomes too large to ignore, the bearing correction provided 

by the monocular vision cannot control the forward motion degeneracy. When IMU, wheel 

odometer and monocular vision are integrated together, the wheel odometer can provide the 

correct scale information and monocular vision can control the orientation. The detailed RMSE 

results for all data sets are listed in the Table 4-6. 

Table 4-6: Average Root Mean Square Error (ARMSE) of IMU Only, IMU+WO, IMU+Vision and IMU+WO+Vision on KITTI 

Dataset traverses 0095 and 0117 

Dataset  KITTI 0095 KITTI 0117 

Duration  27 (s) 66 (s) 

IMU Only 

Horizontal ARMSE (m) 13.475 158.784 

Rot. ARMSE (deg) 0.417 2.319 

Final Horizontal Pos Error (m) 47.392 731.258 

IMU+WO 

Horizontal ARMSE (m) 3.194 6.491 

Rot. ARMSE (deg) 0.417 2.321 

Final Horizontal Pos Error (m) 5.468 11.507 

IMU+Vision Horizontal ARMSE (m) 11.401 50.892 
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Rot. ARMSE (deg) 0.669 2.042 

Final Horizontal Pos Error (m) 48.854 518.086 

IMU+WO+Vision 

Horizontal ARMSE (m) 0.844 1.868 

Rot. ARMSE (deg) 0.970 2.084 

Final Horizontal Pos Error (m) 2.476 4.195 

 

From the above discussion, the numerical correctness of the implementation is verified by the 

KITTI Dataset with simulated wheel odometer data. In the following chapter, the algorithm is 

going to be tested on the complex urban environments and winter driving environments. 
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Chapter 5 RESUTLS AND ANALYSES 

After validating the implementation using the KITTI Dataset, in Section 5.1, the performances of 

the wheel odometer aided VIO will be first evaluated in urban canyon environments (Seoul City) 

using the KAIST Complex Urban Dataset. In Section 5.2, the performances of the algorithm will 

be tested on the Calgary Winter Driving Dataset to reveal the effect of winter driving 

environment on different sensors. For the results, “WO” represents “WO+NHC”. 

5.1 Performances in Urban Canyon Environments 

As has been reviewed in Chapter 2, performing localization and navigation tasks in the urban 

canyon environment can be very challenging. On the one hand, the limited satellite visibility and 

the multipath effect will degrade the GNSS performance in the urban canyon environment. On 

the other hand, due to the complex and dynamic scenes (moving objects) in the urban 

environment, the feature extraction and tracking process can be challenging. In this section, 

“trajectory urban 39” of the KAIST Complex Urban Dataset is utilized to evaluate the 

performance of the proposed system and whether it can serve as an alternative information 

source for land vehicle navigation in complex urban canyon environment.  

This section of the data is a very good representation of the daily driving environment in urban 

canyons, as shown in Figure 5-1, these scenes include moving vehicles and moving pedestrians. 

 

Figure 5-1: Sample Images from the “trajectory urban 39” of the KAIST Complex Urban Dataset 
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The trajectory is shown in Figure 5-2. The detailed RMSE results are listed in Table 5-1. 

Similarly, the IMU integration results start to drift away first, the monocular vision helps control 

the heading angle, but due to the lack of correct scale information, the trajectory still has a large 

drift after the turn. By incorporating the wheel encoder measurements, both IMU+WO and 

IMU+WO+Vision keep the correct scale. In addition, due to the fact that the wheel speed data 

comes from the high-resolution wheel encoders in the KAIST Complex Urban Dataset, the 

IMU+WO outperforms the IMU+Vision solution. This proves wheel odometer can be a very 

reliable information source in the normal driving environments for land vehicle navigation.  

 

Figure 5-2: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, IMU+Vision+WO on KAIST Complex Urban 

Dataset (trajectory urban 39), respectively. 

 

However, compared to the KITTI 0117 results, the IMU+Vision results do not maintain the 

along-track accuracy and starts to drift before the turn. By plotting the orientation and position 
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estimate, we can see that before the turn happens, there is a wrong update from the monocular 

vision that makes the orientation estimate jump from the correct value to a clearly incorrect value 

(shown in Figure 5-3).  

 

Figure 5-3: Orientation and Position State of the Filter Before the Turn in KAIST Complex Urban Dataset (trajectory urban 39) 

 

To make sense of the reason behind this wrong update, all the estimated feature-to-vehicle 

distances are plotted in Figure 5-4, where we can clearly see that some of the estimated feature 

distances are larger than 1000 meters. Generally speaking, the camera perception range is around 

200~300 meters. Some of the detected features are also obviously points on other moving 

vehicles. Feature-based VO algorithms are based on the premise that the observed environment 

is static. For the implementation of feature tracking in this thesis, the outliers are excluded by the 

MSAC algorithm, which can be considered as an robust version of the regular RANSAC 

algorithm. During the feature tracking results of this section of trajectory, it can be observed that 

most of the features located on the moving objects are excluded by the MSAC algorithm. 

However, it is shown in the Figure 5-5 that by only relying on RANSAC-like algorithms are not 

enough to cope with the high dynamic scenes in urban environments. When a feature is moving 

while also being tracked in view, the relative motion might be constant or even increasing which 
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is not accounted for in the model. That is a main reason why navigating using vision in highly 

dynamic environments still remains a extremly challenging problem for land vechicle navigation. 

The possible and promising solution to this problem is to make the algorithm understand the 

surrondings to fully eliminate the influence brought by dynamic objects. Currently, relevant 

research on how to leverage the semantic segmentation techniques to improve the performances 

of visual localization systems has become a very popular research topic [162]. 

 

 

Figure 5-4: The Estimated feature-to-vehicle Distance 
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Figure 5-5: Feature Tracking of a Moving Vehicle Before and During the Turn 

 

Table 5-1: Average Root Mean Square Error (ARMSE) of IMU Only, IMU+WO, IMU+Vision and IMU+WO+Vision of KAIST 

Complex Urban Dataset (trajectory urban 39) 

Dataset  KAIST urban 39 

Duration  55 (s) 

IMU Only 

Horizontal ARMSE (m) 46.577 

Rot. ARMSE (deg) 3.253 

Final Horizontal Pos Error (m) 198.047 

IMU+WO 

Horizontal ARMSE (m) 1.809 

Rot. ARMSE (deg) 3.253 

Final Horizontal Pos Error (m) 2.054 

IMU+Vision 

Horizontal ARMSE (m) 28.024 

Rot. ARMSE (deg) 4.565 

Final Horizontal Pos Error (m) 150.672 

IMU+WO+Vision 

Horizontal ARMSE (m) 0.845 

Rot. ARMSE (deg) 3.752 

Final Horizontal Pos Error (m) 1.814 
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5.2 Performances in Winter Driving Environments 

After investigating the proposed IMU+WO+Vision algorithm’s performance in complex urban 

canyon environment, the important question to be asked is how will winter driving conditions 

affect the accuracy of the solution. To evaluate the proposed algorithm’s performance in winter 

driving environment, two segments of the Calgary Winter Driving Dataset are chosen for 

comparison. The first winter-1 (66 s) consists of driving data collected in mixed suburban and 

urban areas where the roads was half covered by snow. The second winter-2 (62 s) involves 

driving data collected in urban areas where roads was fully covered by snow. In addition, 

summer-1 (149 s) represents the driving data collected in clean road condition with the similar 

running trajectory to winter-1 in order to compare winter and summer conditions. Sample images 

of the driving data are shown in Figure 5-6. 

Due to the fact that the camera-IMU extrinsic calibration was not conducted with high accuracy 

in this thesis, the SPAN-LCI IMU will be used to evaluate the proposed algorithm’s performance 

in Section 5.2.1 in order to verify whether camera and wheel odometer can be served as reliable 

information source in winter urban environments. 

The trajectories of winter-1, summer-1 and winter-2 are shown in Figure 5-7, Figure 5-8 and 

Figure 5-9. The detailed RMSE results are listed in Table 5-2. Sample images from winter-1, 

winter-2 and summer-1 are listed in Figure 5-1, it can be noted that Figure 5-1 (a) and (b) 

captured the same scene in winter and summer.  



115 

 

 

                                    (a)                                                                        (b) 

 

(c) 

Figure 5-6: Sample Images from Calgary Driving Dataset, winter-1 (a), summer-1 (b) and winter-2 (c) 

 

Figure 5-7: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, IMU+Vision+WO on Calgary Winter Driving 

Dataset (winter-1) 
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Figure 5-8: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, IMU+Vision+WO on Calgary Winter Driving 

Dataset (summer-1) 

 

Figure 5-9: Trajectories of using IMU propagation only, IMU+WO, IMU+Vision, IMU+Vision+WO on Calgary Winter Driving 

Dataset (winter-2) 
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From Figure 5-7, Figure 5-8 and Figure 5-9, it can be noted that the high-end IMU reduces the 

scale drift significantly. However, due to the fact that the accurate extrinsic parameters between 

IMU body frame and camera frame is absent, thus, the rotational error of IMU+Vision and 

IMU+Vision+WO accumulate faster than expected. From the results from winter-1, we can see 

that by incorporating the vision information, the IMU+Vision and IMU+Vision+WO results 

align with the ground truth trajectory closely. However, after the turn, the IMU+Vision result 

starts to diverge. Including the CANBUS wheel speed information controls the scale very well. 

Compared with the IMU results, the horizontal accuracy improved 74.78% and 89.90% for 

IMU+WO and IMU+Vision+WO, respectively. IMU+Vision+WO achieved 19.649 m and 3.456 

m horizontal position errors in two 1-minute drives in our Calgary winter urban environment. 

The results demonstrates that by incorporating WO, NHC and VO, the wheel odometer aided 

VIO is a complementary dead-reckoning approach that is able to function in winter driving 

environment. 

We expected the winter driving conditions to result in a lack of salient features for the vision 

system and increased slippage and skidding of vehicle affecting the wheel speed. Given these 

two concerns, the camera and wheel odometer performances will be discussed in detail. 

(1) Camera 

In Figure 5-11, multiple scenes from winter-1. summer-1 and winter-2 are compared side by 

side, the red circles represent the SIFT features that are extracted and being tracked in the 

corresponding frames. Generally, the imaging sensor performance can be affected by moving 

objects, lighting condition, shadow and the texture of the environment [79]. In the snow-covered 

environment, the feature extraction might be affected by the low-texture environment. In Figure 

5-11 (a1), it can be noted that most of the features are located on buildings, trees and road marks. 
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However, in Figure 5-11 (b1), there are no features on the snow-covered road. Also, the shadows 

in Figure 5-11 (b1) obscure many potential features. This shows that by using camera as the only 

navigation sensor in winter environment might not be a feasible solution. In Figure 5-11 (a2-4 

,b2-4), the corresponding scenes from winter-1 and summer-1 are compared side by side. From 

these comparisons, it shows that in most cases, there are more salient feature points in summer 

than in winter. However, an environment half-covered by snow will not lead to a sharp decrease 

in the number of feature points. 

 

 

                       (a1) winter-1 frame 120                                       (b1) winter-2 frame 233 

 

                      (a2) winter-1 frame 210                                      (b2) summer-1 frame 453 
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                      (a3) winter-1 frame 419                                    (b3) summer-1 frame 896 

 

                      (a4) winter-1 frame 710                                   (b4) summer-1 frame 1491 

Figure 5-10: Scenes from Calgary Winter Driving Dataset (winter-1, summer-1 and winter-2) 

 

Figure 5-11: Number of Salient Features Per Frame in winter-1, summer-1 and winter-2 
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In Figure 5-10, the number of tracked salient features per frame for each dataset are plotted.  

From this figure, considering winter-1 and summer-1 have similar running trajectories in winter 

and summer road conditions, the number of detected features do not show a significant increase. 

In addition, note that both test segments (winter-1 and winter-2) have sufficient of features (> 50) 

for VIO purposes and these two cases demonstrate the feasibility of using a camera as a 

navigation sensor in a winter urban and suburban environments. 

 

(2) Wheel odometer 

To evaluate the impact of snowy road condition on the wheel odometer performance, we 

compare the wheel odometer speed with the SPAN-LCI output forward speed. The differences 

between the two velocities are calculated. 

𝛥𝑣 = 𝑎𝑏𝑠(𝑣𝑤𝑜 − 𝑣𝑓𝑜𝑟𝑤𝑎𝑟𝑑) (5.1)  

 

 

Figure 5-12: CAN-BUS Wheel Speed vs. Ground Truth Forward Speed 
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Figure 5-13: Difference Between the Wheel Odometer Output and Ground Truth Forward Velocity 

 

The resolution of CAN-BUS wheel speed is 1 km/h (≈ 0.28 m/s), considering the measurement 

noise of the sensor, we choose 1 m/s as the threshold to filter out the possible slippages. The total 

count of possible slippage time is 54 times (out of ~1h driving). Considering the vehicle used for 

Calgary Winter Driving Dataset was equipped with winter tires, the error brought by the wheel 

slippage can be neglected. From Table 5-2, it can be noted that all the IMU+WO solutions result 

in the second best accuracy. This demonstrates that wheel odometer or wheel encoder sensors 

can be a great alternative and reliable sensor to provide motion constraints for land vehicle 

navigation in winter time. 

Comparing Figure 5-7 (winter-1) and Figure 5-8 (summer-1), the clear road conditions do not 

show a significant improvement in results as expected. The reasons behind this might be 

concluded as: 

• Given the duration of the dataset, summer-1 is 149 (s) and winter-1 is 66 (s). Both 

monocular vision and IMU will result in larger drifts as time increase without using 

absolute information (such as GNSS) to contain the accumulated errors.  

• VO and wheel odometers can function normally and be trusted in the conventional winter 

urban environments. 
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Table 5-2: Average Root Mean Square Error (ARMSE) of IMU Only, IMU+WO, IMU+Vision and IMU+WO+Vision of Calgary 

Winter Driving Dataset (winter-1, summer-1 and winter-2) 

Dataset  Calgary winter-

1 (snow) 

Calgary summer-1 

(summer) 

Calgary winter-

2 (snow) 

Duration  66 (s) 149 (s) 62 (s) 

IMU Only 

Horizontal ARMSE (m) 19.724 43.782 14.066 

Rot. ARMSE (deg) 2.023 5.691 1.758 

Final Horizontal Pos Error (m) 60.086 212.201 59.409 

IMU+WO 

Horizontal ARMSE (m) 6.049 18.538 2.164 

Rot. ARMSE (deg) 2.137 5.654 1.758 

Final Horizontal Pos Error (m) 15.152 54.015 6.002 

IMU+Vision 

Horizontal ARMSE (m) 12.491 49.891 15.753 

Rot. ARMSE (deg) 5.891 8.881 7.818 

Final Horizontal Pos Error (m) 48.092 251.081 41.088 

IMU+WO+Vision 

Horizontal ARMSE (m) 7.083 12.084 4.455 

Rot. ARMSE (deg) 3.366 7.054 2.754 

Final Horizontal Pos Error (m) 19.649 39.042 3.456 
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, a new method to tightly integrate IMU+Vision+WO+NHC based on modification 

of the MSCKF algorithm proposed by [128] is introduced. The primary objective of this thesis is 

to investigate and evaluate the proposed algorithm’s performances in winter urban environments 

in order to constrain the navigation errors during the short-term GNSS outages. The 

implementation of the proposed algorithm is first validated using the KITTI Dataset sequence 

0095 and 0117 with the simulated wheel odometer data. Then, in Chapter 5, it is tested with the 

KAIST Complex Urban Dataset (trajectory 39) and the Calgary Winter Driving Dataset (winter-

1. summer-1 and winter-2).  

The conclusions and contributions of this thesis are summarized as follows. 

1. WO and NHC were able to control the scale drift brought by monocular vision and IMU, 

and as a result were able to control both scale and orientation over longer periods than 

IMU+Vision alone. 

2. Dynamic scenes in complex urban canyon environments would severely degrade VO’s 

performance. More specially, dynamic objects results in wrong estimates of the feature 

depth information, which will cause the motion degeneration. The conventional 

RANSAC or the MSAC outlier rejection algorithms cannot remove all the features 

tracked on dynamic objects in complex real-world scenarios. By testing on real-world 

driving data in urban canyon environment, the proposed IMU+Vision+WO algorithm 

achieved 1.814 m horizontal position error in a 1-minute drive in an urban canyon 

environment in the KAIST Complex Urban Dataset. This proves that by integrating with 
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IMU, WO together with NHC, the motion drift brought by dynamic objects can be 

potentially controlled. The proposed IMU+Vision+WO system could serve as an 

alternative solution to bridge the GNSS gaps in the challenging urban canyon 

environments over short periods. However, how to bring out the full potential of VO and 

provide a robust navigation solution in complex urban scenes still remains a challenging 

question. 

3. In this thesis, a new real-world driving dataset “Calgary Winter Dataset” containing 

images, IMU, wheel odometer and ground truth were created and soon published online.  

4. The proposed IMU+Vision+WO algorithm achieved 19.649 m and 3.456 m horizontal 

position errors in two 1-minute drives in our Calgary winter urban environment. 

Compared with the IMU results, the horizontal accuracy improved 74.78% and 89.90% 

for IMU+WO and IMU+Vision+WO, respectively. 

5. It was proven in this thesis that in normal winter urban environments, the salient features 

per frame in winter driving scenes were above 50, and when winter tires were equipped, 

the influence of wheel slippage on the sensor integration system was not obvious.  

 

6.2 Recommendations for Future Works 

The recommendations for future works are listed as follows. 

1. How to properly calibrate the sensors is the key to bring out the best performance of 

multi-sensor integration systems. In this thesis, the extrinsic parameters between the IMU 

body frame to the camera frame, as well as the IMU body frame to the vehicle frame are 

not calibrated with high precision. For the camera-IMU extrinsic calibration, the best way 
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is still by utilizing 3D LiDAR as medium to calibrate the transformation matrix. 

However, the Kalibr Toolbox is also very useful tool for this matter. To properly use the 

Kalibr toolbox, the IMU intrinsic parameters need to be determined accurately 

beforehand. Also, the platform motion during the calibration should be slow and steady 

to fully excite all the three axes of the IMU and camera coordinate systems. As for the 

vehicle-IMU extrinsic parameters calibration, apart from measuring the vehicle lengths 

accurately, online calibration method can also be given a try. 

2. Due the fact that the main objective of this thesis is mainly to investigate the feasibility of 

using IMU, WO and camera as alternative information sources to bridge the GNSS 

outages, the VO implementation part is far from optimal. For better accuracies, the BA-

based methods together with the loop-closure detection algorithm can enhance the VO 

performance significantly. 

3. Issues such as moving-objects and wheel slippages have their patterns. Deep learning 

based algorithm should be of great help when dealing with such problems for land 

vehicle navigation systems. 
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Appendix A: Copyright Materials 

(1) Figure 1-2 

https://s100.copyright.com/AppDispatchServlet?title=Autonomous%20vehicles%3A%20challen

ges%2C%20opportunities%2C%20and%20future%20implications%20for%20transportation%20

policies&author=Saeed%20Asadi%20Bagloee%20et%20al&contentID=10.1007%2Fs40534-

016-0117-3&copyright=The%20Author%28s%29&publication=2095-

087X&publicationDate=2016-08-

29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY 

 

(2) Figure 3-4 

https://s100.copyright.com/AppDispatchServlet#formTop 

 

(3) Figure 3-9 and Figure 3-10 

https://dblp.org/db/about/copyright.html 

 

(4) Figure 4-1 and Figure 4-2 

https://s100.copyright.com/AppDispatchServlet#formTop 

 

(5) Figure 4-3 and Figure 4-4 

https://s100.copyright.com/AppDispatchServlet#formTop 

  

https://s100.copyright.com/AppDispatchServlet?title=Autonomous%20vehicles%3A%20challenges%2C%20opportunities%2C%20and%20future%20implications%20for%20transportation%20policies&author=Saeed%20Asadi%20Bagloee%20et%20al&contentID=10.1007%2Fs40534-016-0117-3&copyright=The%20Author%28s%29&publication=2095-087X&publicationDate=2016-08-29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://s100.copyright.com/AppDispatchServlet?title=Autonomous%20vehicles%3A%20challenges%2C%20opportunities%2C%20and%20future%20implications%20for%20transportation%20policies&author=Saeed%20Asadi%20Bagloee%20et%20al&contentID=10.1007%2Fs40534-016-0117-3&copyright=The%20Author%28s%29&publication=2095-087X&publicationDate=2016-08-29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://s100.copyright.com/AppDispatchServlet?title=Autonomous%20vehicles%3A%20challenges%2C%20opportunities%2C%20and%20future%20implications%20for%20transportation%20policies&author=Saeed%20Asadi%20Bagloee%20et%20al&contentID=10.1007%2Fs40534-016-0117-3&copyright=The%20Author%28s%29&publication=2095-087X&publicationDate=2016-08-29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://s100.copyright.com/AppDispatchServlet?title=Autonomous%20vehicles%3A%20challenges%2C%20opportunities%2C%20and%20future%20implications%20for%20transportation%20policies&author=Saeed%20Asadi%20Bagloee%20et%20al&contentID=10.1007%2Fs40534-016-0117-3&copyright=The%20Author%28s%29&publication=2095-087X&publicationDate=2016-08-29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://s100.copyright.com/AppDispatchServlet?title=Autonomous%20vehicles%3A%20challenges%2C%20opportunities%2C%20and%20future%20implications%20for%20transportation%20policies&author=Saeed%20Asadi%20Bagloee%20et%20al&contentID=10.1007%2Fs40534-016-0117-3&copyright=The%20Author%28s%29&publication=2095-087X&publicationDate=2016-08-29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://s100.copyright.com/AppDispatchServlet?title=Autonomous%20vehicles%3A%20challenges%2C%20opportunities%2C%20and%20future%20implications%20for%20transportation%20policies&author=Saeed%20Asadi%20Bagloee%20et%20al&contentID=10.1007%2Fs40534-016-0117-3&copyright=The%20Author%28s%29&publication=2095-087X&publicationDate=2016-08-29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://s100.copyright.com/AppDispatchServlet#formTop
https://dblp.org/db/about/copyright.html
https://s100.copyright.com/AppDispatchServlet#formTop
https://s100.copyright.com/AppDispatchServlet#formTop
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Appendix B: Noise Parameters and Filter Initialization 

(1) KITTI Dataset 

• IMU noise parameters 

Noise Parameter Value (for SPAN-LCI IMU) Unit 

Gyroscope “white noise” 𝜎𝑔 
0.001 𝑟𝑎𝑑

𝑠

1

√𝐻𝑧
 

Accelerometer “white noise” 𝜎𝑎 
0.01 𝑚

𝑠2
 
1

√𝐻𝑧
 

Gyroscope “random walk” 𝜎𝑏𝑔  
0.001 𝑟𝑎𝑑

𝑠2
1

√𝐻𝑧
 

Accelerometer “random walk” 𝜎𝑏𝑎 
0.0005 𝑚

𝑠3
 
1

√𝐻𝑧
 

 

• Image pixel measurement noise parameters 

Noise Parameter Value 

Pixel coordinate variance in 𝑢 direction  2.3242e-04 

Pixel coordinate variance in 𝑣 direction 2.3242e-04 

 

• Wheel odometer measurement noise parameters 

Noise Parameter Value Unit 

Wheel odometer measurement noise  0.5 𝑚/𝑠 

 

• Initial covariance value 
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Noise Parameter Initial Value 

Orientation 𝑞𝑣𝑎𝑟_𝑖𝑛𝑡𝑖𝑎𝑙 1e-6 * ones(1,3) 

Position 𝑝𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1e-6 * ones(1,3) 

Velocity 𝑣𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.5 * ones(1,3) 

Gyro bias 𝑏𝑔𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
1e-4 * ones(1,3) 

Accelerometer bias 𝑏𝑎𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1e-1 * ones(1,3) 

 

(2) KAIST Complex Urban Dataset 

• IMU noise parameters 

Noise Parameter Value (for SPAN-LCI IMU) Unit 

Gyroscope “white noise” 𝜎𝑔 
0.01 𝑟𝑎𝑑

𝑠

1

√𝐻𝑧
 

Accelerometer “white noise” 𝜎𝑎 
0.02 𝑚

𝑠2
 
1

√𝐻𝑧
 

Gyroscope “random walk” 𝜎𝑏𝑔  
0.01 𝑟𝑎𝑑

𝑠2
1

√𝐻𝑧
 

Accelerometer “random walk” 𝜎𝑏𝑎 
0.005 𝑚

𝑠3
 
1

√𝐻𝑧
 

 

• Image pixel measurement noise parameters 

Noise Parameter Value 

Pixel coordinate variance in 𝑢 direction  1.8154e-04 

Pixel coordinate variance in 𝑣 direction 1.8111e-04 
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• Wheel odometer measurement noise parameters 

Noise Parameter Value Unit 

Wheel odometer measurement noise  0.1 𝑚/𝑠 

 

• Initial covariance value 

Noise Parameter Initial Value 

Orientation 𝑞𝑣𝑎𝑟_𝑖𝑛𝑡𝑖𝑎𝑙 0 * ones(1,3) 

Position 𝑝𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0 * ones(1,3) 

Velocity 𝑣𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.7 * ones(1,3) 

Gyro bias 𝑏𝑔𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
1e-2 * ones(1,3) 

Accelerometer bias 𝑏𝑎𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1e-1 * ones(1,3) 

 

(3) Calgary Winter Driving Dataset 

• IMU noise parameters 

Noise Parameter Value (for SPAN-LCI IMU) Unit 

Gyroscope “white noise” 𝜎𝑔 
0.01 𝑟𝑎𝑑

𝑠

1

√𝐻𝑧
 

Accelerometer “white noise” 𝜎𝑎 
0.02 𝑚

𝑠2
 
1

√𝐻𝑧
 

Gyroscope “random walk” 𝜎𝑏𝑔  
0.01 𝑟𝑎𝑑

𝑠2
1

√𝐻𝑧
 

Accelerometer “random walk” 𝜎𝑏𝑎 
0.005 𝑚

𝑠3
 
1

√𝐻𝑧
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• Image pixel measurement noise parameters 

Noise Parameter Value 

Pixel coordinate variance in 𝑢 direction  1.0000e-03 

Pixel coordinate variance in 𝑣 direction 1.0000e-03 

 

• Wheel odometer measurement noise parameters 

Noise Parameter Value Unit 

Wheel odometer measurement noise  0.3 𝑚/𝑠 

 

• Initial covariance value 

Noise Parameter Initial Value 

Orientation 𝑞𝑣𝑎𝑟_𝑖𝑛𝑡𝑖𝑎𝑙 0 * ones(1,3) 

Position 𝑝𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0 * ones(1,3) 

Velocity 𝑣𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.7 * ones(1,3) 

Gyro bias 𝑏𝑔𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
1e-2 * ones(1,3) 

Accelerometer bias 𝑏𝑎𝑣𝑎𝑟_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1e-1 * ones(1,3) 

 


