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Abstract 

This thesis presents an investigation of large deflection and dynamic behaviour 

of a pneumatic, non-shallow spherical membrane, subjected to axisymmetric loading. 

The membrane is assumed to be inextensible and without mass. The round rigid plate 

built in at the top of the membrane is the only part of the structure that has mass and 

weight. The exact geometry of deformations is the starting point of the mathematic 

formulation. Numerical computational approaches are applied to establish the load and 

deflection relationship of the membrane structures. The relationship between the plate 

displacement and the applied load shows a peculiar discontinuity across the initial no-load 

position. Furthermore, across the no-load position, there is a significant difference in 

stiffness in the inward and outward displacement directions. 

The dynamic behaviour of membrane structures is studied based on the structural 

stiffness results obtained from the static analysis. Free vibration frequencies are 

dependent not only on mass of the plate and stiffness of the membrane shell, but also on 

the oscillation amplitude. Nonlinear, chaotic vibration responses to periodic load inputs 

have been observed and analyzed. 

The bisection method is used in the root finding process. Trapezoidal and 

Simpson's schemes are applied in numerical integration of wrinkled membrane length and 

its enclosed volume. Runge-Kutta approach has been employed to determine the dynamic 

behaviour of the structures. 
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Chapter 1 Introduction 

1.1 General Background 

Inflatable membrane structures have come into practical use since the Second 

World War as one form of tension structures. These pneumatic structures are well suited 

to support broadly distributed loads and live load. They are lightweight, low-cost and 

collapsible when deflated and therefore easy to transport and erect. With the appearance 

of translucent, high-strength, polyvinyl-chloride plastic sheets on the market inflatables, 

such as bubble structures, have become common in the last two decades. They are 

regularly used for temporary or semi-permanent enclosures. Land based applications 

include temporary shelters and warehouse tents. Sea based applications are such as 

moored vessels and buoys, floating hospitals and other logistical support facilities. Fig.' 

1 shows various shapes of prestressed membrane structures in practical applications. The 

history of early applications of inflatables as architectural forms and as engineering 

systems is described and summarized in ref2 [1] to [8]. 

These inflated structures have characteristics that the load-carrying members 

transmit applied loads to either the foundation or other supporting structures by direct 

tensile stress without flexure and compression. Their cross sectional dimensions and 

'For simplicity the word "Figure" is abbreviated as "Fig." in this thesis. 

2Similar as "Figure", Reference is shortened as "ref". 

3Numbers in square brackets refer to articles listed under References. 
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Figure 1 Prestressed membranes 
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methods of fabrication are such that their shear and flexural rigidities, as well as their 

buckling resistance, are negligible. Because of their reduced stiffness characteristics, 

these membrane structures are susceptible to large motions due to external loads and 

dynamic effects. They respond in a non-linear fashion to both prestressing forces such 

as internal pressure and in service loads, regardless of linearity of materials or loads. 

Spherical pneumatics are now used for enclosing large unobstructed areas for 

recreational facilities such as tennis courts, swimming pools, skating rinks, etc. and for 

creation of large-scale temporary or semi-permanent enclosures in connection with 

exploration and work sites in the far north of Canada and the United States. The 

application of such structures is also seen in agricultural areas where bubble-form green 

houses are constructed using translucent plastic sheets, which possess relatively high 

tensile and tear strength and good transmissivity as well. 

Over the past two decades there has been a considerable development of analysis 

techniques and computer codes for membrane structures. Free vibration modes and 

corresponding frequencies of inextensible, air-inflated, cylindrical membranes have been 

determined [9]. In this thesis it is attempted to uncover and understand the large 

deflection dynamic behaviour of inextensible, air-inflated spherical membrane shells 

subjected to axisymmetric loads. Although similar studies in areas such as collapse of 

spherical air supported membranes by static loads and instability of spherical membranes 

have been carried out and reported in ref. [11] to [18], investigation of the response of 



4 

spherical inflatable membranes to the dynamic load at the apex has not been reported in 

previous works. 

In the present study the problem of the large deflection and dynamic behaviour 

of an air-inflated spherical dome with a round rigid plate built in at the top is 

investigated. Deflections are allowed to become large compared to the initial 

configurations of the inflatables. The study is based on an exact geometrically non-linear 

analysis, admitting deflections to the order of the initial height of the structure. Because 

of the inextensible nature of the pneumatic shells, wrinkles are always developed in the 

deformed region where circumferential stress (or "hoop" stress) vanishes. Both cases 

where the internal pressure obeys Boyle's Law and remains constant are studied and 

significant differences are observed in large deformation behaviour. The problem is 

defined by a set of integral-differential equations which are derived based on the 

membrane theory and combined with Gauss-Codazzi condition. The governing 

differential equation to describe the wrinkled region is solved in a closed form. The 

constant of integration is determined by numerical approaches for given boundary 

conditions together with the compatibility equation. The obtained results are verified by 

comparing to the available published values; a close agreement is observed. Based on 

the static load-displacement relationship of the structure, the structural response to the 

dynamic loads is analyzed. The mass of the membrane is neglected and the interaction 

between the fluid and the structure is not included. 
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1.2 Literature Review. 

1.2.1 Review on the analysis of air-supported structures 

The development of pneumatic structures started out shortly after the Second 

World War. One of the first air structures was a radome -- a semi-spherical dome 

housing radar devices, which was conceived and developed to meet the needs of the 

British Royal Air Force for a thin, non-metallic protective covering for the large ground 

radar instillations. As a result, a study program was carried out which included analytical 

design studies, model construction and testing. 

Since then many research projects in air-inflatables have been undertaken over the 

years. Based on the membrane theory of small deformations, many problems such as 

stability of the membrane structures have been solved. The best overview of these is 

presented by Frei Otto in ref. [5]. 

Although air-supported structures are designed not to deform to the point where 

membrane wrinkling is caused under normal working conditions, they are sometimes 

subjected to excessive loading due to ice, snow or water accumulation. The aspect of 

collapse by ponding of air-supported structures has gained a considerable interest from 

researchers. D.J. Malcolm investigated the possibility of collapse through an 

accumulation of rain. His studies were limited to symmetric problems including the 

collapse of axisymmetric membranes[17] subjected to a static axisymmetric load in the 

presence of a ponding medium. 
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S. Lukasiewicz and P. G. Glockner [11,12,13] extended the analysis to the non-

symmetrically loaded cylindrical and spherical membranes and admitted the extensibility 

of the inflatable structure. Simple analysis was presented to investigate the behaviour of 

a spherical membrane subjected to an increasing concentrated force applied non-

symmetrically to the structure. The dead weight of the structure was also included in the 

analysis. They concluded that applying the concentrated line load non-symmetrically 

would decreased the value of the critical load. They also found that the effect of the 

elasticity of the membrane material is to decrease the value of the critical load. They 

approached the membrane stability problem using Lagrangian variational principle, ie. 

the variation of the total potential energy of the system is zero. Investigation was alsO 

conducted in the ponding instability of air-supported spherical membranes with initial 

imperfections. Simple formulae for the critical load were obtained. It was found that, in 

the symmetrically loaded cases, the effect of the ponding fluid accumulating in the initial 

depression reduces the value of the critical load significantly. Their results also indicated 

that, if the ponding takes place non-symmetrically, the eccentricity causes a significant 

increase in the value of the critical load thereby making the axisymmetric loading the 

governing configuration. 

P. G. Glockner and W. Szyszkowski[18, 19,20,2 1] analyzed spherical membranes 

as shown in Fig. 2 undergoing very large axisymmetric deformations and wrinkling 

under the action of concentrated loads applied at the apex using equations of equilibrium 

and the Gauss-Coda.zzi relations. The deflections of the membrane were allowed to grow 

larger than the initial height of the structure, and even larger than the initial radius of 
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a) 'Stovepipe' Support 

N;. 

tAzRig;d Body Settlement 

Load Wrinkling Zone 

Support Wrinkling Zone 

Load Wrinkling Zone 

/ 

/ 

t6 - Rigid Body Settlement 

/I — Zone of Spherical Shape 

Support Wrinkling Zone 

I, 

b) Support with adjacent horizontal surface 

Fig. 2 Two types of support of a spherical membrane 
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curvature R0. The analysis established certain height to span ratios above which there 

existed critical loads beyond which the structure would 'snap-through' and collapse. They 

concluded that for central half angle cbo less than 90° the equilibrium was always stable 

under concentrated load at the apex. If, in addition to a concentrated load, an 

accumulating medium was also present, filling the depression completely, the instability 

may have occurred even for central angles less than 900. 

A complete analysis of the nonlinear load-deflection and stability behaviour of 

cylindrical membranes without end 'shear walls' subjected to longitudinal symmetric line 

loads is presented in [18] by W. Szyszkowski and P.G. Glockner. The analysis includes 

low and high profile structures as well as lateral stability behaviour. The analyses were 

carried out for two different support characteristics with the cross-sectional shapes same 

as in Fig. 2: 

• a support which is raised above the exterior ground surface adjacent to the 

structure and above the interior floor surface so as to allow arbitrary 

deflections and rotations of the membrane at the support as well as to permit 

vertical deflections under the line load which are equal to or larger than the 

initial rise of the structure, Fig. 3a. 

• a support where a horizontal ground surface exists next to and at the 

elevation of the support thereby restricting the rotation and deflection of the 

membrane at the support to 4 > 0°, shown in Fig. 3a,b. 



(b.) 

(c.) 

Figure 3 Three modes of symmetric deformation of cylindrical inflatables 

9 
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The analysis indicates that the behaviour of such structures falls into one of 

three modes of deformation, Fig. 3: 

• the ' first mode', during which there may exist large deflections and 

rotations in the structure but the membrane is not in contact with the ground 

nor are portions of the membrane in contact with one another, 

• the 'second mode', during which portions of the membrane to either side 

of the line load are in contact, forming the so-called vertical contact zone of 

length L, 

• the 'third mode', during which the membrane is in contact with the 

horizontal ground surface adjacent to the support, forming the so-called 

horizontal contact zone of length a. 

A similar analysis was presented by S. Lukasiewicz and P.O. Glockner [13] for 

the non-symmetrically loaded spherical membrane. This analysis clearly indicates a 

vertical and lateral instability at certain load levels, and the governing mode of failure 

are very much influenced by the initial geometry. The results also indicate that the onset 

of lateral instability is not identical to the configuration when the contact between the 

membrane and the horizontal surface is first established. Nor does the onset of vertical 

instability signify the existence or beginning of vertical contact. The extensive 

experimental data obtained from tests on a small-scale cylindrical inflatable model are 

presented and compared with analytical predictions in their investigation. They observed 

excellent agreement between the numerical and experimental results which confirm the 

validity of the theory and the assumptions used in its derivations. 
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A study of the free vibration of inextensible, air-inflated, cylindrical membrane 

structure was carried out by R.H. Plaut and T.D. Fagan [9]. In their work the weight 

of the membrane was included in the analysis. First, the equilibrium shape of the cross 

section was determined, and the small vibrations about this configuration were studied 

using linear approach. Free vibration frequencies and mode shapes were determined. 

1.2.2 Review on the study of the large deflection behaviour of spherical inflatables 

The theoretical solution of problems of stability and large deformations of air 

inflated structures is difficult due to the strong non-linearity of the problem. Despite 

substantial theoretical achievements in the area of air supported structures the progress 

in developing a theory which will describe the behaviour of inflated spherical domes is 

slow and still limited to calculating the static deformations and wrinkling loads on the 

basis of classical methods of analysis. 

A numerical analysis of the nonlinear behaviour of pneumatic structures was first 

presented by J.T. Oden and W.K. Kubitza [24]. They used the finite element 

representation of flexible pneumatic structures to describe the general kinematic 

properties of thin membranes. Using the first law of thermodynamics, a general 

relationship between the kinematic and kinetic variable associated with the behaviour of 

the finite elements of arbitrary pneumatic structures was obtained. This led to the 

general equation of the motion of the finite elements of thin membranes, and included 

such properties as anisotropy, nonlinear viscoelasticity, thermoviscoelasticity, 
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inhomogeneity, and plasticity, with no restrictions on the magnitudes of the deformations. 

Finally, the general formulation was modified and applied to a number of special cases, 

i.e. the stretching of square and circular rubber membranes. 

Following the remarkable progress in the numerical computations, numerical 

methods, for instance, the finite element method [25] was also applied to the analysis of 

membrane structure. In membrane structures, wrinkled deformations are statically 

developed owing to their forms or kinds of loadings. Some investigations are reported 

on the analysis of wrinkled membranes. Tension field theory [26], which does not attach 

great importance to the normal deflection is not suitable to analyze the large deflection 

or the wrinkled deformations of membranes. Analytical investigation of the deformation 

due to wrinkles was published by M. Stein and J.M. Hedgepeth [27]. In their study, the 

basic idea was to assume an imaginary mean surface in the wrinkled region of the 

membrane and denote that the smaller principal stress vanishes in this region. This 

method assumes that the strains and deflections are small, and therefore were not 

applicable to the problems of large deflection. 

An analytical study of large deflections of pneumatic membranes in the form of 

surface of revolution under symmetric loading was carried out by Y. Yoko et al. [10]. 

Large deflection of membrane inflatables are obtained in the close form using the 

nonlinear membrane shell theory. In their formulation, the wrinkled region of the 

membrane is considered in an Eulerian description satisfying the equation of equilibrium 

and the Gauss-Codazzi relation. The deformed shape of the inflatables at equilibrium is 
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defined by the boundary conditions and compatibility equation. The membrane 

extensibility is considered by solving the problems in specific models. Among them a 

hemispheric inflatable with a rigid plate at the top was studied in detail. 

1.3 Objectives 

The purpose of this thesis is to examine the large deformation and dynamic 

behaviour of air-inflated spherical domes with a vibrating mass at their apex. An attempt 

has been made to use available ANSYS software to study the pneumatic structures. It 

shows that ANSYS does not possess the capability to carry out both static and dynamic 

analysis of such structures. In order to study the forced vibration of the dome, static 

analysis of the membrane is first carried out to establish relationships between the load, 

the displacement and other parameters that describe the deformed membrane geometry. 

Based on these results, a dynamic equation of the plate is derived and solved with 

numerical methods. 

A high profile spherical inflatable is defined is defined as a spherical with its half 

central angle greater than 900, Fig. 5a. A low profile spherical has the angle less than 

or equal to 9Ø0• Both low and high profile spherical membranes are chosen to study as 

they are commonly used in practice. In view of the limited experience with and the 

relatively scarcity of information available concerning the dynamic behaviour of the 

spherical inflatables, designers of this type of structures face quite a challenge to design 

a safe spherical membrane. When the structure is subjected to load at the plate, very 
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large deflections and wrinkling occur in the vicinity of the loading point and also possibly 

near the support base in a high profile membrane as well. This type of membranes has 

a non-linear load-deflection relation. In particular configurations, it has a discontinuity 

in the load-deflection curve. Therefore, it is interesting to determine its large deformation 

dynamic behaviour over a range of profiles and configurations. 

1.4 Assumptions 

Throughout the formulation and evaluation process, it is assumed that: 

(1) A membrane with a small uniform thickness can resist only a tensile force, but 

not bending moments or compressive forces. 

(2) A wrinkled region is replaced by an imaginary, smooth, mean surface which is 

characterized by the circumferential force No = 0, and the meridional force N 

greater than zero. 

(3) A membrane is inextensible and weightless. Effect of the air or fluid inertia of 

the surrounding medium is neglected. 

(4) There is a horizontal surface next to and at the level of the support. The 

membrane near the support may come in contact with surface under a certain load 

at the plate. The membrane in contact with the surface deforms and lies flat on 

that surface. 

(5) The top of the inflatable can not deform below its support plane. 



15 

Chapter 2 Formulation of the Theoretical Model 

2.1 The differential geometry of revolutes 

Axisymmetric inflatables are one common form of prestressed membranes. The 

membrane surfaces are generated by revolving an arc about a central axis in its plane, 

Fig. 4a. The surface of the deformed spherical dome under an axisymmetric load is also 

symmetrically formed by rotating a curve about the sphere axis. Such curve is to be 

determined by the force equilibrium and boundary conditions. The geometry of a surface 

of revolution is shown in Fig. 4a. The generating curve is called a meridian and lies ii 

the so-called meridional plane. The cross sectional curve cut by a plane perpendicular to 

the axis of revolution is a circle of radius r. Two surface coordinates are selected: the 

azimuth angle 0 that the meridional plane makes with a reference plane, and the angle 

4' between the principal normal to the meridian and the axis of revolution. 

Consider a differential element taken from the deformed region subjected to stress 

resultants and surface loads as shown in Fig, (4b). In the deformed region, the 

equations of motion are derived as follows: 

a (N,0R2) a (N0R1) a+N90 0R2 OR, 
ap + 292 2Q tT 

a ( N,R2) + a (N 0R1) R1 R2 
a  +N,0—Ole---N0 —+R1R2q1=R1R2Qtü (lb) 
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A1 

Reference meridian 

/ 
Meridian 

Azimuth angle 0 

Figure 4a Geometry of membrane of revolution 

w 

Figure 4b Stress resultants and surface load on a differential element 
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- + -NO  + qn = Qt1 
R1 R2 

For a detailed derivation, see ref. [38]. 

Noting the symmetry of load and deformation, it is obvious that N 0=0, q2=0, 
and all the derivatives with respect to angle 0 are zero. 

And since the mass of the membrane is neglected, Q =0. Therefore, the equations are 

simplified to: 

a(N,R2) -No4+RiR2qi=O 
a(P 

I + IVO = IV  
R1 R2  

(2a): 

(2b) 

Notice that in the above equations (2b), q1, is replaced by -P1 due to the sign 

convention. Eq. (2a) is the force equilibrium in the vertical direction. Under the 

symmetrical loading and deformation conditions, the equation of equilibrium can be 

expressed as: 

2icNR2sin (p =Q 

where Q is the resultant force in vertical direction. 

(3) 
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The specific model under consideration in this thesis is a spherical dome with a 

built-in circular rigid plate at its top. The membrane is fastened along its base 

circumference. The un-deformed geometry of this model is depicted in two dimensions 

using the meridian curve as shown in Fig. 5a. Fig. 5b is the three dimensional picture 

of a spherical inflatable formed by revolving the meridian curve 36O. It is defined by 

a central half angle , spherical radius R, and radius r0 of the plate at the apex. The 

whole structure is under internal pressure P1. 

Due to the inextensible nature of the membrane, deformation can not occur as 

long as the membrane remains fully stretched by the internal pressure. In the another 

word, the membrane surface remains spherical as long as the two principal resultant 

forces, N1 and N2, stay positive. Because deformation does not occur in the unwrinkled 

region, attention is focused only on the wrinkled region. Because the circumferential 

membrane force in the deformed region vanishes and the wrinkled surface is replaced by 

a smooth surface, the problem in defining the deformed configuration hinges on 

determining the meridian curve which revolves to form the wrinkled surface. 

Another point to note in the dynamic analysis of this type of inflatables is the 

separation of static and dynamic formulation. Static formulation is required only for the 

no-mass membrane shell to establish the relations between the load and the deformed 

configuration parameters. The dynamic analysis is restricted to the plate at the apex. The 

membrane force around the plate edge and the internal pressure force can be derived 

from the relations determined in the static analysis. 
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Figure 5a Initial cross-section of a spherical inflatable 

Figure Sb Spherical inflatable in 3-dimensional view 
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2.2 Static Analysis 

Geometric relations of the axisymmetric membrane in Fig. 6 show: 

= R1cosp (4) 

r = R2sinp (5) 

From Eq. (3) and Eq. (2b), the equilibrium equations in normal and vertical 

direction are respectively expressed as: 

N N 
i + - = P 
R1 R2 

27trNsinp = Q 

where Q is the total vertical force exerting on the section, 

P1 is the internal pressure(absolute) of the deformed structure, 

P2 is the external pressure applied at the rigid plate, 

No is the zero in wrinkled region. 

Thus the force Q in this specific case can be written as: 

Q = ir r(P1-P2) + 2irrP1ds cosço 

(6a) 

(6b) 

(7) 



Figure 6 A membrane segment in its meridian plane 

(TI) 

21 
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where ds is the differential length on the meridian curve. With the geometric relations 

of Eq. (4) and (5), the length is expressed as: 

ds = R1dço 

1 d 
=  — dço 

cow dcc 

1  
=dr 

COSçc 

Meanwhile Eq. (7) can be rewritten as: 

Q = ir r(P1-P2) + J 2irrP1 [ dr ] cosçc cosv 
= ir r(P1 -F2) + J 2irP1rdr 

=irr2P1-ir r.2 P2 

(8) 

(9) 

With the circumferential force vanishing in the wrinkled region, Eq. (6a) becomes: 

N = P1R1 (10) 

Substituting expression (9) into (6b) gives: 

irr2P — ir rP N =  1 2 

2wrsincc 
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Therefore, 

N = r2P1- rP2 
Ip 2rsinç 

Recall Eq. (4): 

R1= 1 dr 
COSço dço 

Substitute the above R1 into Eq. (10) yields: 

N = P 1 dr 
'COSço 

Eliminating N in Eq. (11) and (13) arrives at: 

P 1 dr = r2P1- rP2 

'cosç' dço 2rsinp 

The above equation can be rearranged as: 

dr = 1 r02P2 

2tanca rP1 

(12) 

(13) 

(14) 

(15) 

Equation (15) is referred to as the fundamental differential equation in wrinkled regions 

and is integrable to yield a closed form as 
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2 
r= P rTI 0 + Csing 

(16) 

where C is an integration constant to be determined by boundary conditions which, 

according to geometrical continuity over boundaries, are defined by the following 

boundary conditions. Two modes of wrinkled membranes are necessary to be described 

before writing the boundary conditions. By examining the deformed geometries of a 

meridian curve, one may there are two possible wrinkling formation. The first mode 

is partial wrinkling. The wrinkled region appears only around the plate; away from the 

plate membrane remains unchanged. The second mode is fully wrinkling where the 

entire membrane surface is covered by wrinkles. Fig. 11 illustrates the two wrinkling 

modes. 

for a partially wrinkled case: 

r(ço=ç61) = r0 

r((p=q) = Rsin4 2 

where 42 is the angle dividing the wrinkled and unwrinkled regions. 

for a fully wrinkled case: 
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r((p=4 1) = 

r((p =qS) = Rsin40 

where 00 is the half central angle in the undeformed configuration. 

The compatibility equation is derived in the following way. A curve length before 

deformation in meridional direction is: 

dS = Rda (17) 

where a is an angle in the meridian plane of the undeformed reference frame. After 

deformation, in the new frame, the arc length is: 

ds = R1dço (18) 

Because the membrane is inextensible, to enforce inextensibility of the membrane, 

the curve length in meridian plane must remain unchanged before and after deformation: 

ds=dS (19) 

where the lower case letter s stands for length in the deformed system and the upper case 

letter S stands for the length in the initial state where no deformation has occurred yet. 

From Eq. (12), (16), (17), (18) and (19), one arrives at an equation: 
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C  dçoRdc 

2J r+Csinçt 
T I 

(20) 

Therefore' an integral form of compatibility equation for the partially wrinkled membrane 

shell is: 

02 

C  
  dço  = R ( 2°) 

2J.P 2 r-i-Csinçc 

(21a) 

For the fully wrinkled membrane the integral form of the compatibility equation is: 

C  dçô = R( (21b) 

2J P 2 r+Csinç 

To have a physical interpretation of the above two equations one may perceive 

the left-hand-side of the equations as the meridian curve length of the wrinkled region, 

and the right hand side as the original length. 

For a dome sealed at its base without any air leakage, the internal pressure obeys 

the isothermal law, ie. the pressure P1 is inversely proportional to the total deformed 

volume. The total volume after deformation is: 
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(22) 

where V, is the volume enclosed by the wrinkled membrane, and V, is the volume 

enclosed by the unwrinkled membrane. In the case of a fully wrinkled membrane, V, 

=0. 

02 

vw = r2R,,dcsinco 

4'2 

= Ir J I C I2 r+Csinço dçPI 

ID 

V. = irJR2sin2 (Rsincodco) 

= irR(cosço—..cos) I 
3 02 

Then the internal pressure after deformation is determined by 

P  
00 

V 

(23) 

(24) 

(25) 
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where P0 is the initial internal pressure and V0 is the volume of the dome without 

deformation. 

In summary, if the dome is partially deformed and wrinkled either by pushing 

down or pulling up, the deformed configuration can be defined by solving a set of 

equations: 

'P22 j ro +Csifl 1 = T0 

+ Csin = Rsin 2 

0 2 

f, C 

2j.P 2 r+Csinça 

dcc = 

P 1 P v =  

(26a) 

(26b) 

(26c) 

(26d) 
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v= 'rfsin•oC P2 r+Csinço dcc • rR(coscc-cosco) I3 01 

If the dome is fully wrinkled, the above set of equations becomes: 

[P 2 JT15 r0+Csin41 = To 

r+Csin 2 = R sin 

P1= Pov, 

07, 

I  dçc=R( 

2 
21 P"r0+Csinço 

V 

(26e) 

(27a) 

(27b) 

(27c) 

(27d) 

In the case that P stays constant at P0, Eq.(26d), (26e), (27c), and (27d) can be 

removed from the above two sets of equations. 

Calculation results indicate that although P1 does not change over a great range, 

it considerably influences the results when large volume change is involved. In order to 

study the role of influence of the changing internal pressure, two cases are studied. In 

one case P1 stays constant and in the other P1 varies according to the isothermal gas law. 

The results are presented and compared in the Numerical Results and Analysis chapter. 
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After solving for C, 01 , 02 and P1, the deformed configurations of the membrane 

are determined from the following equations: 

i.e. 

P 2 
r = _. r0+Csinçc 

02 

h = f RIsin ço dço 
SO 

02 

h = J Ccosp sin  dço 

2 r+Csin 

(28) 

(29) 

Each set of (r, h) values defines a point on a deformed meridian curve as shown 

in Fig. 7. The complete deformed curve is determined by connecting the finite number 

of points as angle 4' sweeps from 42 to . 
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Figure 7 A point on a deformed membrane surface 

31 
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2.3 Dynamic Response of the Plate 

Apply Newton's Second Law to the plate shown in the free body diagram of 
Fig. 8: 

-m9 - 2'zrrN sin4 + rrP1 -F-mg =0 (30) 
° 1  

Eq. (13) states: 

PJC 

Substitution of this expression into Eq. (30) gives: 

my + irP1csin4 1 - irrP1 + F + mg = 0 

Acceleration is then determined from: 

9 = - m - g + m! J(r-Gsincb1) 

where P1, 01 and C are functions of y. To be explicit, the above equation is written as: 

= _F(t) - g + rPl(Y)[ r-C(y)sin 1(y) I 
M m 

(31) 
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y 

I, 

Figure 8 Free body diagram of the plate in vibration 
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Eq. (3 1) is the governing dynamic equation to be solved for the displacement-time 

relationship of the plate. This is a nonlinear equation which can not be solved in a closed 

form. P1, 01 and C are discontinuous functions of the displacement y. Numerical 

approach must be applied to define the time history of the vibrating plate. Runge-Kutta 

method is used in the solution process with prescribed initial velocity and deflection of 

the plate. 

The main task becomes to find piece wise functions of P1, 01 and C and 

incorporate them into the governing equation. It is accomplished in the following way. 

From the previous static analysis of the spherical inflatables, parameters P1, çb 

and C for a given initial configuration are defined at each applied external load P2, so 

is the corresponding plate deflection. As an example, Table 1 is a list of relevant data 

to define a deformed membrane. It is possible to express P1, 01 and C as functions of 

the deflection instead of P2. When the plate moves between the lowest and the highest 

possible position the structure undergoes more than one abrupt change in the deformation 

configurations. These changes make it necessary to describe the parameters P1, 01 and 

C with sections of continuous function. Polynomial regression is applied to process the 

calculated results to find the functions in polynomial forms. The order of polynomial is 

affected by the shape of the data curve. Fig. 9 illustrates the functions obtained from the 

processing, which models the relationship between angle 4 1 and the plate deflection with 

initial shape shown. This step is required for each given initial shape. 
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Table 1 Parameters to define a deformed configuration of semi-spherical dome 

P2 4 (degree) 02 (degree) C P1 h 

-700 46.975 67.028 494.369 12.318 10.7168 

-250 36.958 79.646 245.102 11.073 10.422 

-180 32.76 84.44 206.42 10.669 10.232 

-100 25.058 73.893 160.184 10.147 9.844 
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Chapter 3 Numerical Solutions and Techniques 

3.1 Static Analysis 

When the membrane inflatables are subjected to an uniform load at the apex, very 

large deflections and wrinkling can occur and change the initial geometry of the structure 

significantly, at least in the vicinity of the load application zone. Such large deflections 

and highly nonlinear behaviour require a geometrically nonlinear analysis. The governing 

equation that describes the deformed membrane contain multi-valued functions leading 

to multiple solutions with accompanying convergence problems and difficulties in the 

physical interpretation of the results. One must solve two sets of equations: (26a, 26b, 

26c, 26d, 26e) and (27a, 27b, 27c, 27d) in order to analyze the full range of possible 

deformed membrane shapes from a partially to a fully wrinkled configuration. Certain 

difficulties must be overcome in the solution process. Although a closed form solution 

is obtained for differential equation (15), and only one constant of integration C is to be 

determined, other unknowns 01, 02 and P1 are involved and must be found 

simultaneously so that deformed part of a spherical membrane under external pressure 

P2 can be defined. These unknowns appear in the two sets of equations as variables of 

trigonometric functions and also in integral forms. Closed forms for any one of these 

unknowns are not possible. Numerical methods must be applied to determine these. 

parameters. 
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By assuming the internal pressure P1 to remain constant, the numerical analysis 

can be greatly simplified. Much of the previously published research work in this area 

used this assumption, see ref. [9], and [11] through [23]. As large membrane deformation 

is induced by the load, such assumption is no longer valid. In this study the differences 

in the behaviour of the two inflatables of the same geometry is compared. One of them 

has constant internal pressure and the other has its internal pressure obey the isothermal 

gas law. 

The solution technique is complicated by the fact that there are domains of 

integration with upper and lower bounds as functions of unknown deflection. A further 

complication arises when large deflection internal pressure of a sealed dome is a function 

of an unknown deformed shape. Moreover the functions in the two sets of equations must 

be evaluated using numerical techniques and an iteration approach because no closed 

form solution is possible. 

When one attempts to solve the two sets of equations using a numerical approach, 

it is very important to understand thoroughly the varying range of the unknowns, their 

physical meanings in the deformed configuration and the mutual relations between the 

unknown parameters. As iteration is employed in the solution process, one corrupted 

and/or divergent step in evaluating the singular equations may result in a complete failure 

in the process. 

After numerous trials and careful result analysis, 02 is chosen as the single 

dependent variable in the solution process. All other parameters such as 4 and C could 
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be used in the trial process. But they do not provide good control in step by step iteration 

process because of the forms they appear in the equations. For example, 01 and C are 

associated with square root functions. Whether to take the positive or negative part is not 

clear until the whole calculation process is finished for that iteration. And a failed 

calculation, such as taking a square root of a negative value, or the variable of an anti-

sinusoidal function turns out to be greater than 1, will terminate the next iteration. 

Unfortunately, all these irregularities are unavoidable if choosing 4 or C as the 

independent variables. 

Unless otherwise specified, it is assumed in the following numerical analysis that 

the initial internal pressure in all spherical inflatables is 10 Pa., the radius of the rigid 

plate at the top of the dome is 2.5 m., and the radius of the spherical membrane is 10 

m. For the purposes of comparison and data analysis of the membranes of different 

profiles and internal pressure configuration, the behaviour of three typical spherical 

inflatables are thoroughly investigated. These inflatables are: a semi-spherical with 

constant internal pressure, a semi-spherical with its internal pressure obeying gas law 

P1 =P0V0/V, and a high profiled spherical dome with its half central angle as 150°. 

In the case when the membrane is partially wrinkled, 42 is incremented from 4 

to °. According to Eq. (26b), C is evaluated at each given 02 from 

C = R2sin4 - P2 (32a) 
2 P1sinq2 

where P1 assumes a marginally greater than initial internal pressure P0. This value will 

be verified and updated in later trials. 



40 

Angle 01 is then calculated from Eq. (26a) 

r(l 2 -) 
sin 1 = 

C 

and from Eq. (26e). Total volume is evaluated with: 

(32b) 

V = csin4Pj . r+Csinçô dça + [rR3(cosco -  cos34P)] : (32c) 

Next, P1 can be verified using Eq. (26d): 

P1 P v =  (32d) 

If this P1 value differs from the assumed value in evaluating C in Eq. (32a) over 

a prescribed tolerance, P1 is updated by the new value and the process has to be restarted 

with Eq. (32a). If P1 falls within the tolerance, evaluation proceeds to the next step to 

calculate the wrinkled meridian curve length to check if the compatibility equation Eq. 

(26c), is satisfied. It is accomplished by checking if a specially introduced function Y is 

near zero. This function is the difference between the exact meridian curve length before 

deformation and the numerically integrated curve length after deformation. A perfect 

satisfaction of the compatibility is indicated by Y=0. 

As 02 is incremented from q5° to with a fixed step, a root bound is found when 

function Y changes its sign. Within the root bound, the root is found with the prescribed 
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accuracy by applying Newton-Raphson's method or the bisection method. Simpson's rule 

is employed to achieve a satisfactory accuracy in evaluating the enclosed volume by the 

deformed membrane and the deformed meridian curve length. Each time when 02 is 

incremented, P1 is first assumed to be the value from previous trial before 02 is 

incremented. If this first assumed P1 value differs from the later calculated value beyond 

the prescribed tolerance, the later calculated P1 value replaces the assumed value and the 

process from (32a) to (32d) will be repeated until the difference in value P1 falls within 

the prescribed range. 

Fortran computer programs of more than 1300 lines were written to perform the 

iteration process with the bisection scheme used in the root finding routine. Fig. 12 is 

the simplified flow chart of the program. 

Relations of 4, C, and 02 to the applied pressure were established by adding the 

exerted pressure P2 step by step over an allowable range. The lower bound of P2 is 

negative infinity where the inflatable is pulled straight to form a truncated cone surface. 

The maximum P2 is the pressure applied at the plate to push it down to touch the bottom 

of the dome. Each P2 yields one set of the values of P1, C, 01 and 42. Thus one can 

determine the height of the displaced plate measured from the supporting base of the 

dome. It should be pointed out that all these relations are bounded since the lower and 

upper limits of plate displacement are known. The bottom plane of the undeformed 

inflatable is the lowest position that the plate can descend. The highest position the plate 

would reach is the point where the ratio of external load P2 to the internal pressure 



42 

approaches an infinity in the outward direction, causing the membrane to be pulled 

straight to form a truncated cone shpwn in Fig. 13. The parameters describing the 

deformed configuration parameters are listed in the following table. 

Table 2 Parameters At P2 Approaches Negative Infinity 

2 01 42 C H. 

- 00 

-r0 
sin -' R( 0-) 

sin -1 Rsin40 -r0 
00 

VR(.pO-0.)2 -(Rsin 2 
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Figure 10 Parameters defining a deformed spherical inflatable 
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Figure 12 Flow Chart of Root Finding Routine 
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Original shape 

Deformed shape 

Figure 13 Deformed membrane by infinite suction at the plate 
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3.2 Dynamic Analysis 

The time-displacement relationship of the plate at the top can be found by solving 

Eq. (32) with Runge-Kutta Scheme. Fourth order integration scheme is employed. To 

apply this scheme, the equation is modified into two first order simultaneous differential 

equations: 

y = V 

, dV 

it-

F(t) = - - g + 1rPl(Y)( r-C(y)sinqS1(y)) 
in m 

(33a) 

(33b) 

where P1(y), C(y) and 1(y) are non-linear functions in sectioned, polynomial forms with 

deflection y as the variable. One set of the initial conditions states that 

y(t=t) = (34a) 

dy (t=t) = 
Tt 

Positive velocity means that the velocity direction points upward. 
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Both free and forced vibrations of the structure are analyzed. In free vibrations, 

ie., F =0, the vibration frequency also varies with its oscillation amplitude. Thus it also 

is valid to state that the free vibration frequency is dependent not only on its initial 

conditions, but also on its geometric configuration. Spherical inflatables with a sealed 

interior have a higher stiffness and thus higher free vibration frequency as compared to 

the domes of the same geometric configuration but constant internal pressure. The inward 

vibration magnitude is larger than the outward value because inflatables have lower 

stiffness in responding to inward loads. 

The resonance occurs when the forcing frequency is close to that of free vibration 

with the same initial condition. These inflated structures show non-periodic and chaotic 

response to all harmonic excitations because of the variable and discontinuous structural 

stiffness. 

Phase planes are plotted to display how vibrating velocity and displacement relates 

to each other. In free vibrations, the phase planes are like egg shells as in Fig. 14. The 

rough and superimposed lines are due to numerical computation error. The symmetrical 

image of the phase plane with respect to its central horizontal axis (V=0) indicates that 

free vibrations are periodical. The maximum velocity points are the lowest and the 

highest points on the plot. If one draws a line between the two points the phase plane 

are divided into 2 parts by the maximum width line. The intersection of this vertical line 

and the horizontal axis give the static equilibrium position of the plate because V. 

corresponds to zero acceleration, which is the point where the resultant force becomes 
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zero. Coming back to the two divided parts of the maps, one may see that the velocity 

changes much more rapidly in the upward motion than it does in the downward motion. 

This can be well explained by the fact that the structure is much stiffer when being 

pulled outward than it is pushed inward. The same reason makes the phase planes of 

forced vibration have a flattened right half side portion and an elongated left half portion 

as shown in Fig. 15. Velocity and displacement relationship does not show any bound 

at a resonant state. As time goes by, the curve becomes divergent (see Fig. 16 and Fig. 

17) until the plate touches the dome bottom. 

Spectrum analysis is carried out to examine the structural dynamic response to 

periodic loads of various frequency. This is accomplished by monitoring the magnitude 

of the system response while varying the forcing frequency of a low magnitude force step 

by step over a range. Even though the system response to periodic load is chaotic, away 

from the resonance zone, a maximum plate displacement is always possible to be 

recorded over a sufficiently long span of time. The time history of meridian force 

around the plate is calculajed using Eq. 11. The results are presented and analyzed in 

detail in the next chapter. 
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Chapter 4 Numerical Results and Analysis 

4.1 Static Loading and Deformation 

Fig. 18 and Fig. 19 illustrate the difference in load-deformation of the plate on 

top of a spherical inflatable with two types of internal pressure patterns. One of the 

membranes has its internal pressure regulated so that it stays at the initial internal 

pressure value. The other is a sealed inflated structure with its internal pressure obeys 

the isothermal gas law, ie. the pressure is inversely proportional to the total volume of 

a deformed dome. The calculation results indicate that the constant inner pressure dome 

is softer than the sealed dome, especially under the push-down load. In a sealed spherical 

dome, large volume reduction can be induced by the inward load so that the compressed 

air inside the dome may significantly stiffens the membrane in turn to support the applied 

loads. This is why in Fig. 18 the slope of the load versus displacement curve of the 

sealed membrane increases much faster than the other two structures as the increasing 

inward load causes significant air compression inside the sealed dome. It is thus 

inaccurate to assume that the internal pressure remains the same if large volume 

reduction is induced by the inward load. However, such assumption is valid in the case 

when the dome is subjected the suction load because the volume reduction by the load 

is insignificant comparing to the original volume. Fig. 19 shows that the sealed and 

regulated low profile domes have almost the same load-displacement relation under 

suction load. The following table lists the significant difference in large deformation 
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behaviour; and Fig. 20 presents the significant differences in the deformed geometric 

shapes of a low profile dome in large deformation under the same external load but 

with two types of inner pressure regulation as listed in Table 3. 

Table 3 The effect of inner pressure on the membrane deformation 

Applied Pressure P2 and 
Inner Pressure 

Assumption 

Plate Displacement 

(meter) 
% of Total 

Vol./Original Vol. 
Inner Pressure (Pa) % of Wrinkled 

P2=70, Const. P1 7.2853 69.29 10.0 64.65 

P2=70, P1=V0P0/V 5.1170 82.43 12.123 50.837 

Fig. 21 is the load-displacement curve of a high profile spherical inflatable. 

Several distinctive stages of deflection development are presented in this graph. Five 

deformed shapes of the pneumatic structure are schematically shown in Fig. 22a and 

Fig. 22b, with all corresponding loading states labelled in Fig. 21. Looking closely at 

the load-deflection curve in Fig. 27, one notices big slope variation in two curve 

sections, an inflection point E which separates full wrinkle and partial wrinkle of the 

membrane by a suction force. The discussion of the four regions is as follows. 

Region C-D in Fig. 21 is an area where no deflection is induced by applied 

pressure even though its magnitude increases from zero to the inflation pressure. 

Applying pressure at the plate does not result in immediate deflection as long as the 

circumferential stress in the membrane stays positive. Because the wrinkle starts first in 
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this vicinity to understand how deflection is induced by the external pressure P2. Before 

any wrinkle appears around the plate edge, the two principle forces N. and No around 

the plate edge are expressed as follows: 

N =  2rsi(P1r2 - P2 r) 
n;t:' 

No = P1R -  1  (P1r2 - P2 r) 
2rsinço 

=(PI +P) 

(35a) 

(35b) 

In Eq. (35a), one can notice that as P2 increases from 0 to P1, the meridional 

force No decreases from the value of P1R/2 to zero, while the circumferential force No 

is increased by the applied pressure. When the force in meridional direction approaches 

zero from positive values, the membrane in this region is at a critical point to buckle in 

that direction. At a larger load P2, part of the membrane next to the plate buckles first, 

allowing the plate to move inward to an equilibrium position. The formation of 

circumferential wrinkles caused by the inward deflection in the deformed region around 

the plate is illustrated in Fig. 23a. The plate comes to an equilibrium position in the 

deformed configuration where load is balanced by internal pressure and meridional force 

around the plate edge. 



0 

Figure 23a Formation of wrinkles near the plate 

/ 7 

/7 

'I 

/ I 0. 

1, j 
I _-Zone of Spherical Shape 

Support Wrinkling Zone 

Load Wrinkling Zone 
/ 1 

A. Rigid Body Settlement 

11 / 

Figure 23b Formation of wrinkles near the support 



64 

In the case that suction force is applied at the top plate, value of P2 is negative. 

As P2 decreases from zero to negative P1, the state of two principal membrane forces 

around the plate undergoes a different changing process. The initially stretched 

membrane will not be buckled in the meridian direction. Instead, it is the circumferential 

force to be reduced from P1R/2 to zero under this loading condition, with the meridian 

force steadily increased by the applied load P2. 

Another point which should be emphasized is the continuity of the two principal 

membrane forces at the boundary between the wrinkled and unwrinkled region. In the 

partial wrinkled membrane case, the meridional principal force is continuous across the 

boundary (0 =02) while the circumferential force is not. The boundary separating the 

wrinkled and unwrinkled membrane can not be determined using the spherical membrane 

shell theory simply by setting No to zero because this force undergoes a sudden jump 

across the boundary. 

In region A-C of Fig. 21, as the applied pressure rises from P to P2 (maximum), 

the plate is pushed inward until it touches the dome bottom, see Fig. 23b. 

Region D-E in Fig. 21 shows the outward displacement induced by the upward 

load (suction) applied at the plate when the load magnitude is greater than internal 

pressure. In this region membrane is partially wrinkled in the meridian direction. Since 

the load straightens the inextensible membrane of small curvature, the applied suction 

does not yield large displacement in this case. The structure becomes very stiff to the 

upward load. Most part of the deflection in this region results from straightening the 
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meridian curve in neighbouring area of the plate. At a critical load, in the case of low 

profile domes, wrinkles extend down to the support. Such a state is indicated by the 

boundary conditions: 

= ro 

r(ç =42) = R sin 0 

The partial wrinkling of the membrane in the high profile inflatables is a different 

sequence. For the practical housing application purposes the diameter of the bottom edge 

circle is usually designed to be larger than that of the rigid plate at the top. Because of 

this configuration, membrane wrinkle first occurs in the vicinity of the plate. As the 

suction P2 increases, at one point, the circumferential force No vanishes at the bottom 

region. A secondary wrinkle region starts to grow from the support toward the equator 

with the increase in the suction. At the critical load, both wrinkle regions meet at the 

equator. The critical state of the high profile dome is calculated with the following 

boundary conditions: 

r(cc=4 2) = R 

Further increase in suction will deform the inflatable into a fully wrinkled 

membrane in region EF of Fig. 21. This region covers the area where membrane is 

totally wrinkled. Further increase in load tends to straighten the meridian curve more. 
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This explains why structures have the highest stiffness in this full wrinkle region. And 

if suction becomes infinitively large, the dome surface will be pulled straight to form a 

truncated cone. 

Fig. 24 presents results obtained by Yoshitsura Yoko [10] for the case with the 

following conditions: 

P1 = 980 Pa, R = 10 m, r0 = 1.736 m, t = 1 mm 

As a comparison, results calculated in this study are also plotted in the published 

graphs. The results obtained in this study, represented by the dots and stars, show a' 

good agreement with those previously published in ref.[10]. 



-- .+pv= CONS T. 

P=CONST. 

100 

50 

40 

30 

from Ref. [10] 

100 

50 

40 

30 

20 20 

10 10 
0 2 4 6(m) 0 

Wrinkled arc length (m) 

xX' P=CONST 

•PV= CONS T. 

,1 

/ 
I 

/ 
/ 

results from 
present analysis 

2 4 6(m) A h 

Plate displacement (m) 

Figure 24 Comparison of the results to the earlier data curves from ref. [ 10] 

67 



68 

4.2 Dynamic Behaviour 

When the plate is in free or forced vibration, it is legitimate to observe the plate 

making larger downward motion than outward since the structure is stiffer in the outward 

direction. Because the structure is stiffer in outward motion and there exists a 

discontinuity in stiffness between P2/P0 = -1 and P2/P0 = 1, an interesting vibration 

pattern appears in all small amplitude oscillations around the neutral position by choosing 

proper parameters. 

In a free vibration system without gravity, the no load position is the plate's 

equilibrium point in oscillation. In order to start the oscillation, a sufficiently large 

external force must be applied to move the plate out of the equilibrium position. Such 

external force must have the magnitude greater than that applied by the internal pressure. 

The plate will not start to vibrate if the external force magnitude is lower than that of the 

internal force. 

Once free vibration is initiated, such stiffness discontinuity does not affect the 

motion since the plate always carries sufficient momentum force to move the plate across 

the no-load point. Fig. 25 depicts the large and small amplitude free vibration patterns 

induced by different initial conditions. The system in small oscillations without gravity 

effect can be an analogy to a spring-mass system as in Fig. 26. The stiffness of the two 

springs is the linearized value of the membrane stiffness in the vicinity of no load 

position. The spring stiffness values are calculated using energy conservation law and are 

based on the vibration magnitude and the maximum velocity of the plate. 
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A numerical solution of the time-displacement relation of this mass-spring system 

is graphically shown below; a graphic expression of the time-displacement relation is 

displayed in Fig. 27. Similarities between the two systems are obvious when comparing 

Fig. 27 to free oscillation patterns in Fig. 30, and keeping in mind that Fig. 27 

represents a constant spring stiffness system with the stiffness values linearized in the 

vicinity of the neutral position of the plate. The linearized model gives an very close 

oscillation period of 0.22 sec., comparing to the value of the nonlinear model as 0.24 

second. 

Unlike the cases of a linear system where free vibration frequency is independent 

of oscillation magnitude, the free oscillation frequency of inflatables are related to the 

magnitude. The configuration of this type of spherical dome makes the structural stiffness 

resemble a very special spring. Its stiffness is lower in the downward motion than in the 

upward motion. Moreover, the stiffness diminishes with the inward displacement while 

the stiffness increases to infinity as the outward displacement reaches the maximum 

value. In all free vibrations the downward motion dominates. Therefore, the overall 

system stiffness decreases as the vibration magnitude is set bigger and bigger, causing 

the free oscillation period to become longer as shown in Fig. 25. However, as the 

upward motion amplitude approaches the maximum height, the increasing stiffness in this 

direction becomes dominant, meaning the overall structural stiffness increases and the 

free vibration period becomes shorter. An inflection point in relation between oscillation 

frequency and amplitude is visible in Fig. 28. Table 3 shows the change in frequency as 

the mass is doubled and quadrupled. It is once again that because of the high nonlinearity 
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in stiffness so that no simple relationship exists between the plate mass and its oscillating 

frequency. 

Table 4 Oscillation Frequency Affected By The Plate Mass 

Mass(kg) 5 10 20 

Frequency (Hz) 4.85 3.16 1.08 
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Figure 26 An approximated spring-mass model of the dome 

72 



—0.1 

73 

—0.2-

-0.3 

Vibration period: 0.22(s) 

—0.4  

0.0 0.5 1.0 Time(s) 

k = 

XO = -.32(m) v0=1.O (m/s) g=0 m=5 kg. 

= 26810 N/rn x >0 

k2 =855.4N/rn x<0 

'f'= 196.N x>0 

=-196.N x<0 

Figure 27 Time - displacement curve from the approx. mass-spring model 



5.0 

4.0 
Amplitude 

I 
3.0 

2.0 

1.0 
0.0 0.5 1.0 1.5 

Upward motion amplitude(m) 

/ 
/ 

Mm. frequency 

/ 

I I 

Figure 28 Free vibration frequency as function of vibration amplitude 

74 



75 

The resonance occurs when the forcing frequencies are close to the free oscillating 

frequencies as shown in Fig. 17 in page 54. In the phase plane of Fig. 16 the curve 

initiates at the zero velocity and near the no-load position point, and then expands until - 

the plate touches the bottom of the dome. Away from the resonance zone, the inflatable 

system responds to all periodic excitations in a bounded, chaotic, and non-periodic way 

as shown in Fig. 15. Both Fig. 29 and Fig. 33 show the random behaviour resulting from 

system's nonlinearity in load-displacement relationship. The investigation in forced 

vibration indicates that conventional methods such as perturbation scheme and averaging 

technique to find the steady state solution to the non-linear differential equation must be 

abandoned or modified since they assume periodic output solutions. Fig. 30 displays that 

a totally sealed dome has higher free oscillation frequency because it has higher over all 

stiffness when comparing to a dome with the same geometry but of constant inner 

pressure. 

Fig. 31 and Fig. 32 are the results of a spectrum analysis of a high profile dome. 

The frequency of the excitation force with the low amplitude is sweeping from 5(Radls.) 

to 200. (Rad/s.). The maximum vibration amplitude is recorded at each forcing frequency 

as shown in Fig. 33. By plotting the maximum magnitude of vibration response against 

the excitation frequency, ie. a spectrum chart, one can locate the membrane structural 

resonance frequency at the peak maximum response. In Fig. 31, resonance is indicated 

to occur when forcing frequency is approximately 18 (Rad/s). Unlike a single-degree 

freedom linear vibration system where a natural frequency is a constant value and is 

determined by the system's stiffness and the vibrating mass, the membrane structures 
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analyzed in the present study do not have such fixed valued free vibration frequency. As 

is just analyzed and shown in Fig. 25 and Fig. 28, the free vibration frequency strongly 

depends on the oscillation magnitude because of the discontinuous structural stiffness. 

Thus the term 'natural frequency' in a linear system does not apply in this type of 

membranes. Therefore, there does not exist a frequency ratio between the forced 

vibration and the free vibration states. This analysis also shows that, unless the spectrum 

analysis has been carried out, it is uncertain that at what forcing frequency the resonance 

would occur because the membrane structure has no fixed valued natural frequency that 

can be equated to the forcing frequency to estimate the resonance zone. 

The time history of the meridian force around the plate edge is shown in Fig. 34 

and Fig. 35. Fig. 34 is a zoom-in picture of the meridian force around the plate which 

is in free vibration. The two lower humps are the changing meridian force in inward 

motion. And the three big spikes are the force in outward motion. The sudden change 

in the three spikes is explained by the transition states between a fully wrinkled and 

partially wrinkled membrane. The minimum value of this force is zero. It occurs when 

the equivalent external force at the plate is just balanced by the internal pressure force. 

Such equivalent force is the vector sum of the inertia force, gravity force and an 

externally applied force. 
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Chapter 5 Concluding Remarks and Summary 

5.1 Summary and Limitations 

This thesis has presented a non-linear analysis of the large deflection dynamic behaviour 

of inflated spherical membrane structures with a heavy rigid plate at the top. The effect 

of the interaction between the structure and the surrounding medium is neglected. Focus 

is on weightless and inextensible membranes. A significant change in the initial geometry 

of the structure is caused by large deflections and wrinkling under loading. Such large 

deflections and highly nonlinear behaviour require a geometrically non-linear analysis of 

the equations in defining the deformed configurations. These equations may be relatively 

simple in appearance and can be reduced to one first order differential equation as the 

governing differential equation. However, they contain multi-valued functions leading to 

multiple solutions with accompanying convergence problems in the numerical solutions. 

The solutions of the equations are also difficult to interpret. A simple closed form 

solution which describes the deformed and wrinkled membrane is obtained from the 

governing differential equation. However, the determination of the constant of integration 

satisfying both the boundary conditions and the compatibility equation is a very complex 

and challenging task. This task must be carried out in numerical approaches. Singularity 

and divergence problems must be overcome in numerical analysis to define the deformed 

configurations over a range of loading cases. More than 2000 lines of computer programs 

have been written in Fortran language to carry out the static and dynamic analysis and 
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to process output results. The dynamic behaviour of the structure was thoroughly studied 

based on the static analysis results. 

In the high profile spherical inflatables, where the half central angle is greater 

than 90°, wrinkles not only exist around the loading point, but also possibly near the 

support region. Under push-in load at the high profile inflatables, wrinkling in the 

support region is the result of vanishing meridional tension, ie., N=0. In the case of 

pull-out loads, the wrinkling in the same support area is caused by vanishing of the 

circumferential tension. In both loading cases, the wrinkling near the support region 

results in a vertical overall rigid body motions, thereby producing a discontinuity in the 

load-displacement relation curve. Such unique discontinuity does not occur in the low 

profile spherical pneumatics. 

If the reduction in the spherical membrane is not large, the internal pressure has 

negligible influence on the deformed configuration. As the volume reduction exceeds 

20% of the initial volume, the increasing internal pressure due to compression 

significantly stiffens the inflatable. Comparing to a spherical dome of the same geometry 

but with a constant internal pressure, a sealed dome is much stronger when deflection is 

in the order of the initial height or the radius of the inflatable. 

No analytical form of expression can be obtained to define the relations between 

parameters that define the deformed configurations and the load. Numerical analysis is 

necessary to determine the relations. 
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It is found that the behaviour of the plate in free vibration is non-symmetric about 

its equilibrium position. The amplitude of inward motion is larger than that of the 

outward motion. Free vibration frequency is also affected by the vibration magnitudes. 

Because of the increasing structural stiffness with the plate displacement, the free 

oscillation frequency of the plate diminishes as the vibration amplitude becomes higher. 

Another interesting feature of the vibrating system is that the free oscillation frequency 

has a minimum value as the magnitude becomes large. At the maximum height, the 

inflatable is deformed to a truncated cone with infinitively large structural stiffness. 

In the case when a periodic external force is applied to the plate, it responds in 

a bounded chaotic pattern. The maximum height position of the plate is fixed by the 

condition when the inextensible membrane is stretched straight, while the lowest point 

of the plate is at the bottom of the inflatable. Resonance occurs when the forcing 

frequency is close to the free vibration of the same initial conditions. 

It was assumed that the membrane is inextensible. When a large deformation is 

produced by a heavy inward load, this assumption may lead to a stiffer inflatable. The 

calculated deflection would be less than the actual deflection because in reality great 

reduction in volume raises inflation pressure and causes the unwrinkled membrane to be 

expanded and stretched thinner, thus reducing the total structural stiffness. In the case 

when the membrane is stretched longer, there is also wrinkling near the support due the 

material extensibility. The overall effect is a reduction in the structural stiffness in large 

deflection. 
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In the dynamic analysis, the self-weight of the membrane must be considered 

when the surface density of the membrane is comparable to the that of the vibrating 

plate. If the magnitude of the membrane inertia force is high and the inflation pressure 

of the dome is low, the effect of the inertia force from the vibrating membrane may not 

be neglected. Large internal pressure can create high tension membrane since the two 

principal forces N and No are proportional to the internal pressure of the dome. And 

high tension and internal pressure can act together to weaken the influence of dynamic 

inertia force of the membrane. 

As it was assumed that the wrinkled surface is replaced by a smooth imaginary 

mean surface, care must be taken when using this assumption in the large deflection 

analysis. In reality it may not be true if the wrinkled surface becomes rough and 

unevenly divided by deep grooves, formed by the membranes where the extremely low 

bending resistance and compressive stiffness of the material becomes significant within 

the wrinkle region. These rough surfaces are dominated by a few large wrinkles, which 

were observed by W. Szyszkowski and P. G. Glockner[20] in their laboratory experiment. 
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5.2 Concluding Remarks 

This thesis has presented a thorough numerical analysis of large deflection 

dynamic behaviour of spherical membranes with a heavy rigid plate at its top. Attention 

is focused on the weightless and inextensible membrane. It is shown that the behaviour 

of such structure is nonlinear and its response to the applied dynamic force is random 

and chaotic. 

The work presented in this thesis is an initial part of a study on the dynamic 

behaviour of spherical inflatables. It is the author's hope that this work will pave the 

ground for later study where the effects of membrane weight on both the static 

equilibrium and vibration frequency are considered. It is also hoped that, by applying the 

principle of Lagrange minimum total potential energy, the experimentally found uneven 

wrinkled surface in the deformed region can be treated. Such wrinkles resulting from the 

finite bending stiffness and compression rigidity of the membrane become significant in 

a very large deflection mode. It is anticipated to establish the natural frequency and the 

associated modes of the membrane in the future, taking into account the weight and the 

extensibility of the material and the interaction between the dynamic structure and the 

surrounding medium. 
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Appendix 

Computer Programs 

1. Determination of Parameters to Describe Deformed Configurations Under Static 

Load 

2. Calculation of Time History of Deflection and Velocity of the Vibrating Plate, 

Spectrum Analysis of the Spherical Membrane for Forcing Frequency at 

Resonance 

3. Sample Output of Static Deformation Results 
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* 

* This program determines the geometric parameters to define 
* the deformed spherical membrane infiatables under static load 
* Trapsoidal rule and bisection method are employed 
* in the numerical calculation process 
* 

C 

Parameter (IP2max=40) 
c For double precision, Active the Following: 

Implicit real*8(A_H2O_Z) 

Real PP2(lP2max) 
c 

common /Pres2/PP2(IP2max) 

common /Const/Pi,Cov,Ra,ro,Phil,AngO,N1,N2,VI,PO1,Angm 
common /VarIPl,P2,Angl,Ang2,Sl,Sv1,Vd1,Vd2,Pbcrt,Phi,ht 
common /Crt/P2ctt,Plcrt,C2crt,hcrt,Vcrt,Anlcrt,Vmax 
common /Crtb/Pb2crt,Clcrt,hbcrt,Vbcrt,Ablcrt,Ab2crt 
common /Crt9/P2crt9,PIcrt9,C2cst9,hcrt9,Vcrt9,An2crt9 
common ITapeINT2O,NT3O 
common /IconP1/ICP1,Itact 
common /Prevs/Ang2Ls,AnglLs,Sv1Ls,ItowrklLs,P2Ls,C2Ls 
common /Prevbs/Anb2Ls,AnblLs,Pb2Ls,C1Ls 
common /paramb/Anb2,Anbl,Slb,Pb2,rb,Svb,hb 

c 
NT2O=20 
NT3O=30 

C 

open(unit=NT2O,file= 'modison2.ia') 
open(unit= NT3O,file = 'modison2.out') 

c File NT4O is specified for Graftool software 
open(unit=NT4O,file= 'modison2.grt') 

C 

write(NT4O,*) '/Height,P2,Angl,Ang2,C2,Pl,(hO-ht), % wrinkle' 
write(NT4O,*) '/Delete Zero Height Row' 
write(NT4O,*) '/Re-arrange Data Sequience according so that' 
write(NT4O,*) '/P2 is in ascending order' 
write(NT4O,*)  

Pi=3.14159 
C 

c NT— Total no. of externally applied pressure to exam 
c E - Young's modulas 
c t - Shell thickness 

read(NT2O,*) NT 

If(NT .gt. IP2max) then 
write(6,*) 'Increase Array size PP2' 

write(NT3O,*) 'Increase Array size PP2!' 
go to 1111 

End if 
read(NT2O,*) Ra,rO,Phil,PO1 
read(N1'20,*) ICPl,Itact 

c ICPl eq. 1 means const. internal pressure 

If(Phil .gt. .5'Pi .and. ICPl .eq. 0) then 
write(6,*) 'High Profile Dome Must Have Const. Int. Pres.' 
go to 1111 

End if 
C 

c There are NT+2 rows by 8 columns of data, additional 2 comes from 
c two critical cases. 

write(NT4O,*) NT+2,8 
read(NT2O,*) (PP2(l),l= l,NT) 
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write(NT3O,*)'' 

write(NT3O,*)  

write(NT3O,*)' 

write(NT3O,*) 'No. of Pressure Trials :',NT 
write(NT3O,*)'' 

write(NT3O,*) 'Applied Pressure as factors of Initial Internal' 
write(NT3O,*) 'Pressure:' 
write(NT3O,*) 0),l= 1,N'l) 
write(NT3O,*)' 
write(N'I'30,*) '********************' 

C 

c PP2(t) in input file are factors of P01 
Do2l=1,NT 

PP2(l)=PP2(l)*P01 
If(l .gt. 2 .and. I It. NT)then 

If(PP2(l)-PP2(l-1) It. 0.)then 
write(6,*) 

& 'Input Pressue Must Be in Ascending Order' 
write(NT3O,*) 

& 'Input Pressue Must Be in Ascending Order' 
stop 

End if 
End if 

2 Continue 
C 

Cov= 180./Pi 
read(NT2O,*) N1,N2 

read(NT2O,+) Xacc,Facc 
write(NT3O,*) 'Radius of sphere :',Ra 
write(NT3O,*) 'Radius of rigid plate :',rO 

writc(NT3O,*) 'Meridional Angle at the root(deg.) :',CovPhi1 
write(NT3O,*) 'Initial internal pressure :',POI 
write(NT3O,*) 'Curve divisions In The Wrinkled' 
write(NT3O,*) 'Region for Numerical Integration :',Nl 

write(NT3O,*) 'Max allowable # of trials :',NZ 
write(NT3O,*) 'Tolerance of C2 (root) :',Xaco 
write(NT3O,*) 'Tolerance of Length Summation :',Face 

C 

c Critical load to cause membrane to wrinkle at its base: 
Pbcrt=(Ra*sin(Phil)/ro)**2*P01 
Ang0asin(rolRa) 
Da= (Phi1-Ang0)/N1 
ho=0. 
Do 1000 i'l,Nl 

Ang=Ang0+Da(i-l)/N1 
ho=ho+Ra*Da*sin(Ang) 

1000 Continue 

hO! rRa*(cos(Ang0)cos(Phi1)) 
c Original volume before deformation: 

V1=Ra**3*Pi*(cos(Phil)*(cos(Phil)**2/3 .- 1 .) cos(AngO)* 
& (cos(Ang0)2/3.-1.)) 

C 
c Calculate the most upward position: 

Hmax=((Ra*(Phi1_Ang0))**2_(Ra*(sin(Phj1))rO)**2)**.5 
Ht=r0*Hmaxl(Ra*sin(Phil) +r0) 
Vmax= ((Ra*sin(Phi1))**2*(Hmax+Ht)r0**2*Ht)*Pi/3. 

c 

c Angle to which both Angi and Ang2 approach as P2 goes to negative 
c infinity 

Angmacos((Ra*sin(Phi1)r0)/(Ra*(Phi1_AngO))) 
C 

write(NT3O,*)' 
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write(NT3O,*) 'Original Enclosed Volume 

write(NT3O,*) 'Origional Height Of The Plate :',HOl 
write(NTSO,) 'Maximun Height Of The Plate :',Hmax 

write(NTSO,*) 'Volume at the Maximun Height :',Vmax 

write(NTSO,*) 'Ang(l) and Ang(2) at This Max. Height :' , 

& Angm*Cov 

C 

read(NT2O,*) NY 

If(NY .eq. 1)then 
write(NT3O,*) 'Input critical pressure values from file' 

read(NT2O,*) P2crt,Plcrt,C2crt,hcrt,Antcrt,Vcrt 
Anlcrt=Anlcrt/Cov 
read(NT2O,*) P2crt9,Plcrt9,C2crt9,hcrt9,An2crt9,Vcrt9 
An2crt9=An2crt9ICov 

else 

c Call subroutine to determine cititical pressure value: 
call crtP2(Xacc,Facc,Ierror) 

End if 
c 

write(NT3O,*)'' 
write(NT3O,*)  

write(NT3O,*) 'Critical Values to Cause Structure Wrinkle' 
write(NT3O,*) 'at Its Root Under Inward Load' 
write(NT3O,*) 'P2 (Cit.) :',Pbcrt 
write(NT3O,*)' 
write(NT3O,*) 'Critical Values When Menbrane Becomes' 
write(NT3O,*) 'Fully Wrinkled Due to Suction At Top 
write(NT3O,*) 'P2 (Cit.) :',P2crt 
write(NT3O,*) 'P1 (Cit.) :',Plcrt 

If(Phil .gt. 5*Pj) then 
write(N'F30,*) 'Total Height :',hbcrt+hcrt+ 

& P*cos(Ab2cit) 

write(NT3O,') 'Total Vol. :',Vcrt+Vbcrt+ 
& **3*pj*cos(Ab2oit)*(l..cos(Ab2cit)**2/3) 

Ang2crt=90.00 
Else 

write(NT3O,*) 'Total Height :',hart 
write(NT3O,*) 'Total Vol. :',Vert 
Ang2crtPhi1*Cov 

End if 
If(Phil .gt. 5*Pi)then 

write(NT3O,*) '******* Break Down Summary  

write(NT3O,*)'  
write(NT3O,*) Bottom Section 

write(NT3O,*) 'Cl (Crt.) :',Clort 

write(NT3O,*) 'H (Crt.) :',hbcrt 
write(NT3O,*) 'Ang(l) (Cit.) :',18OCov*Ab1crt 
write(NT3O,*) 'Ang(2) (Cit.) :',l8OCov*Ab2crt 

write(NT3O,*) 'Volume (Cit.) :',Vbcrt 

hcithcrt+hbcrt+Ra*cos(PiAb2crt) 
write(NT3O,*)'' 

write(NT3O,*)' Top Section 
End if 
write(NT3O,*) 'Ang(l) (Cit.) :',Cov*Anlcrt 
write(NT3O,*) 'Ang(Z) (Cit.) :',Ang2ert 
write(NT3O,*) 'C2 (Cit.) :',C2cxt 
write(NT3O,) 'H (Cit.) :',hcrt 
write(NT3O,*) 'Volume (Cit.) :',Vert 

write(N'1'40,21 11) hCrt,P2crt,Anlcrt*Cov,Ang2cxt,C2crt,P1crt, 
& (hO-htcrt),lOO.00 

2111 format(8(111.4,lx)) 
write(NT3O,*)' 
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write(NT30,*)  

write(NF3O,*) 'Critical Values When Menbrane Becomes' 
write(NT3O,*) 'Orthogonal to the Plate Under Pressure P2 

write(NT3O,*) 'P2 (Cit.) :',P2crt9 
write(NT3O,*) 'P1 (Cit.) :',PIcrt9 
write(NT3O,*) 'C2 (Cit.) :',C2crt9 
write(NT30,) 'H (Cit.) :',hcrt9 
write(NT3O,*) 'Ang(2) (Cit.) :',Cov*An2crt9 

write(NT3O,*) 'Volume (Cit.) :',Vcit9 

write(NT4O,2111) hcrt9,P2crt9,9O.0O,An2crt9*Cov,C2crt9,P1crt9, 
& (110-hcrt9),100.00 

Rat=P2crt9/Pbcrt 
If(Phil .gt. .54Pi .and. Rat .gt. 1.)then 

PhiPiasin(Rat**.5*sin(Phi1)) 
write(NT3O,*) 'Rigid Body Settlement  

& Ra*(cos(Phi)cos(Phi1)) 

End if 
write(NT30,)'' 
write(NT3O,*)  

C 

write(6,*) 'No. of Pressure Trials ', NT 
write(6,*) 'Pressures to apply:' 
write(6,*) (PP2®,l= 1,N1) 

C 

o Icaib keeps track of # of base-wrinkle routine call 
Icaib =0 
Do 42 ni=1,NT 
P2=PP2(ni) 

o Check If Membrane Is Fully Wrinkled First: 

If(P2 It. P2ort .and. P2 It. 0.)then 
Itowrkl= 1 

Else 
Itowrkl=0 

End if 
C 

Ifail=0 
Ibaswr0 

If(P2 .gt. 0.)then 
Ral"P2/Pbcrt 

If(kal .gt. 1.) Phi=Pi_asinRal**.5*sin(Phi1)) 
If(1al .le, 1.) Phi=Phil 

Else 
Phi=Phul 

End if 
If(abs(P2) It. POI)then 

write(NT3O,*) 'Insufficient Pressure Force P2' 

write(6,*) 'Insufficient Pressure Force P2' 

write(6,*) '(P2 = ',P2,')' 
write(NT3O,*)  

write(NT3O,*)' 

write(6,*) 'Discard Test Pressure ',P2 
If(ni It. NT) write(6,*) 

& 'Pick up Next Pressure Value 

go to 42 
Else 

call rootbnd(Xaco,Facc,Ierror,Itowrkl,Iroot,ni,C2) 
If(P2 It. 0. .and. Itowrkl .eq. 0. .and. 

& Phil .gt. .5*Pi) then 
Thaswr= 1 

Icalb=Icalb+ I 
call baswrk((aco,Facc,P2,Ierrob,hoot,Icalb,C1) 

End if 
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If(Ierror .eq. 1) then 
Goto 42 

End if 
End if 
If(Lroot .eq. 0) goto 333 

C 

222 write(NT3O,*) 'External Pressure At :',P2 
C 

Th=0 
If(Ibaswr .eq. 1) then 

c Saving the parameters for next trial: 

Anb2LsAnb2 
AnblLs=Anbl 
Pb2Ls=Pb2 
C1Ls=C1 

End if 
If(!towrkl .eq. I) then 
Hdpht 
Xlbd=Ra*(Phi1Ang0) 

Else 
If(P2 .gt. O.)then 
Swklb Ra(Phi1-Phi) 
Hdpht+Ra*(cos(Ang2).cos(Phi)) 
X1bd=Ra*(Phi1Ang0Phi+Ang2) 

Else 

If(Ibaswr .eq. 1)then 
Hdp=ht+hb+Racos(Ang2) 

XlbdtRa*(Ang2_AngO) 
XlbdbRa*(Anb2(PiPhi1)) 

Else 

Hdp=ht+Ra*(cos(Ang2)cos(Phi1)) 
Xlbd=Ra*(Ang2.AngO) 
End if 

End if 
End if 
If(Ibaswr .ne. 1)then 
Rwrkl= 10O.*Xlbd/(Ra*(Phi1Ang0)) 

Else 

Rwrklt 100.*Xlbdti(a*(.5IPiAng0)) 
Rwrldb= 100.*Xlbdb/(Ra*(Phil_.5*Pi)) 

End if 

c Saving the following data for next load case calculation 
Ang2LaAng2 

Ang1LsAng1 
Sv1Ls=Sv1 
ItowrklLsItowrkl 
P2LsP2 
C2Ls=C2 

a 

write(NT3O,*) 'Final Internal pressure 
write(NT3O,*) 'Enclosed Volume After Deformation  

& Sv1 

write(NT3O,*) 'Height Of The Displaced Plate :',Hdp 
If(Ibaswr .ne. l)then 

write(NT3O,*) 'Find C2 as :',C2 

write(6,) 'Find C2 as :',C2,' At P2 =',P2 
write(NT3O,*) 'Length Before deformation :',xlbd 

write(NT3O,*) 'Wrinkled Meridional Length :',Sl 
write(NT3O,*) '% wrinkled membrane :',Rwrkl 

write(NT3O,*) 'Angle Phi(l) (deg.) 
& Angl*Cov 

write(N1'30,*) 'Angle Phi(2) (deg.) :', 
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& Ang2Cov 

If(P2 .gt. 0. .and. Phil .gt. .5*Pi .and. P2/Pbcrt .gt. 1.) 
& write(NT3O,*) 'Rigid Body Settlement 
& Ra*(cos(Phi)_cos(Phil)) 

write(NT3O,*)'' 

Else 
write(NT3O,*)  Upper Section 
write(NT3O,*) 'Find C2 as :',C2 
write(6,*) 'Find C2 as :',C2,' At P2 =',P2 

write(NT3O,*) 'Length Before deformation (Upper):',xlbdt 
write(NT3O,*) 'Wrinkled Meridional Length (Upper):',Sl 
write(NT3O,*) '% wrinkled membrane (Upper):',Rwrklt 
write(NT3O,*) 'Angle Phi(l) (deg.) (Upper):', 

& Angl*Cov 

write(NT3O,*) 'Angle Phi(2) (deg.) (Upper):', 
& Ang2*Cov 

write(NT3O,*) 'Vertical Stretch in Upper Section :',ht 
& Ra*(cos(Ang0)cos(Ang2)) 

write(NT3O,*) '********* Lower Section  

write(NT3O,*) 'Find Cl as 
write(6,*) 'Find Cl as :',Cl,' At P2 ',P2 

write(NT3O,*) 'Length Before deformation (Lower):',xlbdb 
write(NT3O,*) 'Wrinkled Meridional Length (Lower):',Slb 
write(NT3O,*) '% wrinkled membrane (Lower):',Rwrklb 
write(NT3O,*) 'Angle Phi(1) (deg.) (Lower):', 

& (PiAnbl)*Cov 
write(NT3O,*) 'Angle Phi(2) (deg.) (Lower):', 

& (PiAnb2)*Cov 
write(NT3O,*) 'Vertical Stretch in Lower Section :',hb-

& Ra*(cos(Anb2).cos(Phil)) 
End if 

write(NT4O,2111) Hdp,P2,Angl*Cov,Ang2*Cov,C2,P1,(h0ht),Rwrkl 
write(NT3O,*)  

write(NT3O,*)' 
write(NT3O,*)' 

If(IIdp .It. 0.)then 
write(NTSO,*) 'Calculation Terminated As Plate Decents' 
write(NT3O,*) 'Under Its Base Plane' 
go to 1111 

End if 
c 

333 If(Iroot .eq. 0)then 
write(NT3O,*) 'Fail to find C2 at ?2',P2 
write(6,*) 'Fail to find C2 at P2',P2 
write(NT3O,*)  

End if 
42 continue 
223 format(5(e14.5,2x)) 
1111 stop 

end 

subroutine rootbnd(Xacc,Facc,Ierror,Itowrkl,Iroot,Icall,root) 

c Subroutine to search for a root bound between C21 and C22 
c The found root bound is stored as (Xl,X2) 

parameter (max' 400,IP2max=40) 
Implicit real*8(A_H2O_Z) 

real C2(max),Y(max),V(max),Pli(max),Anl(max),An2(max) 
real YY(3),PP2(lP2max) 
integer IGl(max) 

c 
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common /Pres2IPP2(IP2max) 
common /ConstlPi,Cov,Ra,cO,Phil,AngO,N1,N2,V1,POI,Angm 
common iVar/P1,P2,Angl,Ang2,Sl,Sv1,Vd1,Vd2,Pbcrt,Phi,ht 

common /Ci2crt,Plcrt,C2crt,hcrt,Vcct,Anlcrt,Vmax 
common /Crt9/Pct9,Plct9,C2crt9,hcrt9,Vcrt9,An2crt9 

common ITape/NT2O,NTSO 
common /IconP1/ICP1,Itact 

common /Prevs/Ang2Ls,AnglLs,Sv1Ls,ItowrklLs,P2Ls,C2Ls 

open(unit=911,file= 'modison.scrh') 
If(N2 .gt. max) then 

write(6,*) tttItUUIIIIttttttttIIIU' 

write(6,*) 'Array Size Limit Exceeded!' 
write(6,*)' 
write(6,*) lIUhIIIIIttttttttIttIIIlI' 

End if 
Ierror= 0 
Iroot0 
Isolu=0 
FI=0. 
Svs Vi 
write(911,) 
write(911,) 
write(911,*)  

write(911,*) 'P2 ==',P2 

19 If(Itact .eq. i)then 
write(6,) 

& 'Input assumed Ratio of Deformed vol./Original vol.  

write(6,*) 'Under P2 = = ',P2 
write(6,*)  

write(6,*) 'Previous ratio :',SvlLs/Vl 
write(6,) 'Under P2 =',P2 
read(5,')Rsv1 
Sv1=Rsvl*V1 

Else 
Sv1=V1 

Rsvi=1. 
End if 
IterO 

If(P2 .gt. 0.) Angstasin(ro*(P2IP1)**.5/Ra) 
21 lDo20i2=1,N2+1 

C2(i2)=O. 
Y(i2) O. 
V(i2)=O. 
IGi(i2)=0 

20 continue 
22 Dol0i=1,N1 
30 If(IsoIu .eq. 1)then 

Ang2=An2b1Y2*(An2b i-An2b2)/(Y2-Y1) 
Else 

If(Icall .eq. 1 .and. Itowrkl .eq. i)then 
Ang2Phi1(Phi1Angm)*i/N1 

Else 

If(Itowrk1Ls .eq. Itowrk1 .and. P2LS*P2 .gt. 0. 
& .and. Itact .eq. 0)then 

If(i .eq. 1) then 
If(P2 .gt. 0.)then 

Sv1=Sv1Ls+(P2P2Ls)*(Sv1Ls.V1)/P2 
Else 
Sv1=Sv1Ls 
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End if 

End if 
If(P2 It. 0.) then 

If(liowrkl .eq. 0) then 
Ang2=Ang2Ls(Ang2LsAng0)*(i1.)/N1 

Else 
Ang2=Ang2Ls+ (Phi 1Ang2Ls)*1 .)/N1 

End if 
Else 

If(P2 .gt. 5*Pi)then 

Ang2Ang2Ls+(.5*PiAng2Ls)*(i1.)/N1 
Else 
Ang2=Ang2Ls+ (Phi1-Ang2Ls)(i-1.)/N1 

End if 
End if 

Else 
If(ltowrkl .eq. 0)then 

If(P2 .gt. 0.)then 
IfPhi1 .le. .5P1)then 

Ang2=Angst+ (Phi1Angst)*(i1.)/N1 
Else 

Ang2Angst+(.5*PiAngst)*(i1.)/N1 
End if 

Else 
If(Phi1 .le. .5'Pi)then 

Ang2=Phi1-(Phil-Ang0)i/N1 
Else 

Ang2= .5*Pi(.5*PiAngO)*(11.)/N1 
End if 

End if 
Else 

Ang2=Phi1(Phi1Angm)*(i.1.)/N1 
End if 

End if 
End if 

End if 
An2(i) = Ang2 
1oop10 

23 If(1CP1 .eq. 1) then 
P1=P01 

Else 
P1=POI*V1/Svl 

End if 

F1=F2 

If(Itowrkl .eq. 0)then 

C2(i)Ra**2*sin(Ang2)P2*rO**2I(P1*sin(Ang2)) 
Else 

C2(t) = ((sin(Phi1)*Ra)**2P2*xO**2/P1)/sin(Ang2) 

End if 

Gi =**2*(l.P2/P1)IC2çi) 

P1i(i)=PI 
V(i) =Sv1 

If(Isolu .eq. 0) then 
write(911,*) 'i,Asin(Angl),P1,C2,Ang2 in root-bound scanning' 

write(911,) i,G1,P1,C2(i),Cov*Ang2 
Else 

write(911,*) 'i,Asin(Angl),P1,C2,Ang2 in root refining' 
write(911,*) i,GI,P1,C2C1),Cov*Ang2 

End if 
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If(abs(G1) .gt. 1.)then 
IG1(i)= I 
If(P2Ls*P2 .gt. 0. .and. ICP1 .eq. 1)then 

c Ensure subsequent parameters on the same trend as the previous 
If(P2 .gt. 0. .and. C2(i) .lt. C2Ls) goto 10 
lf(P2 It. 0. .and. C2(i) .gt. C2Ls) goto 10 

Else 

If(P2 .gt. 0.) then 
G1=-.911 

Else 
G1=.911 

End if 
End if 

If(ICP1 .eq. 1)C2(1)=rO**2*(1._P2/P1)IG1 
End if 
If(abs(G1) .gt. 1. .or. C2(i) It. 0.)then 

If(i .eq. I .and. Itact .eq. 1) then 
write(6,*) 'C2, Asin(Angl) :',C2(i),G1 
write(6,*) 'Retry gested initial vol. ratio (0/1)?' 

read(5,*) NY 

If(NY .eq. 1)then 
goto 19 

Else 

goto 10 
End if 

Else 
goto 10 

End if 

End if 
C 

Ang1asin(Gl) 
C 

e When shell is pulled up Angi is always greater than AngO 

If(P2 At. 0. .and. Angi It. AngO) goto 10 
C 

An1(t) = Angl 
Da(Ang2-Angl)/NI 

C 

Sv2=0. 
sl=0. 
Negdr=0 
ht=0. 
Do 50j=1,N1 
Ang Ang2(2. 1.)*Da/2. 

r (P2*ro**2/P1+C2(i)*sin(ang))**.5 
Sv2=Sv2+ ,5*Da*C2(i)*r*sin(Ang) 
ht=ht+ .5*Da*C2(t)*sin(A11g)/r 

50 Continue 
c Using Simpson's Rule To Evaluate Meridian Curve Length: 

An=Angl 
Do 51j=1,N1/2 
Do 52 ii= 1,3 

Ang=An+Da*çii1) 

r=(P2*ro**21P1+C2(i)*sin(ang))**.S 
YY(il)= .5*C2()/r 

52 Continue 
AnAng 
Sl=SI+YY(1) + 4.*YY(2) +YY(3) 

51 Continue 
Sl=SlDaI3. 

C 

If(ltowrkl .eq. 1) then 
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Sv2=Sv2*Pi 

Else 
If(Phil .gt. •5*j .and. P2 At. 0.)then 

VuwRa**3*cos(Ang2)*(1...cos(Ang2)**2/3.) 

Else' 
VuwRa**3*(cos(Phi)*(cos(Phi)**2/3 .-1 .)-cos(Ang2)' 

& (cos(Ang2)**2/3 .-1.)) 
End if 
Sv2Pi*(Sv2+Vuw) 

End if 
C 

If(Itowrkl .eq. 0)then 
Y(i)=Ra*(Ang2Ang0)Sl 

Else 
Yçi) =Ra(Phi1-Ang0)-Sl 

End if 
F2=Y(i) 

0 

write(911,*) 'Y(i),Sl,P1,Angl*Cov,Ang2*Cov,Iter' 
write(911,*) Y(i),Sl,P1,Angl*Cov,Ang2*Cov,Iter 

o If the total volume after deformation is inacurate, re-evaluate. 
write(911,*) 'Sv2,Sv1',Sv2,Sv1 
write(911,*) 

tolv= (Abs(Sv2.Sv1)/Svj+abs(Sv2Sv1)/Sv2)*.5 
If(abs(Gl) It. 1.) then 

If(tolv .gt. .01) then 
Sv1=(Sv1+Sv2).5 

go to 23 
End if 
Sv1=Sv2 

End if 

If(IsoIu .eq. I .and. ICP1 .eq. 0)then 
If((Sv2VdI)*(Sv2Vd2) .gt. 0.)then 

If((Y(i)Y1)*(Yci)Y2) It. 0.)then 

Sv1=Vd1+(Y(i)-Y1)(Vd1-Vd2)/(Y1-Y2) 
Else 

Sv1=Vd1Y1*(Vd1Vd2)/(Y1Y2) 
End if 

End if 
End if 

C 

write(911,*)  

C 

100 format(i2,4(e14.4,2x)) 
If(abs(Y(i)) It. Face) then 

Iroot=1 
Isolu=I 
rootC2(i) 
goto 11 

End if 
If(lsolu .eq. O)then 

If(Y(i)*Y(i_1) It. 0. .and. IG1(i-I) .ne. 1)thea 
C 

o Once determine root bound, change from root bound searching to 

o root refining within the bound 
0 

write(911,*) 'An1b1,An1b2',An1ci1)*Cov,An1(i)*Cov 
!rootl 
Isolu1 
XI=C2(i-1) 
X2C2(i) 

Y1=Y(i-1) 
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Y2=Y(i) 
Vd1=V(i-1) 
Vd2=V(i) 

Pil =Pli(i-1) 
P12=PIi(i) 
Anlbl=Anl(i-1) 
An2b1=An2(i-l) 
An2b2=An2(i) 
Anlb2=An1(i) 

End if 
c When P2 exceeds P2 cit and no root is found in the (lilly wrinkled 
c region, skip to the next applied pressure: 

Ifc1 .eq. Ni .and. Itowrkl .eq. 1 
& .and. P2 It. P2crt)then 

write(NT3O,*) 'Fail to find a rootbound in filly' 
write(NT3O,*) 'wrinkled domain 
write(NT3O,*) 'At P2 = ',P2 
write(NT3O,*)' 
write(NT3O,*)  

Ierror= 1 
Goto 11 

End if 
If(t .eq. NI .and. Itowrkl .eq. 0 

& .and. P2 .gt. P2crt)then 
write(NT3O,*) 'Fail to find a rootbound in partially' 

write(NT3O,*) 'wrinkled domain 
write4T30,*) 'At P2 = ',P2 
write(NT3O,*)' 
write(NT3O,*)  

Terror= 1 
Goto 11 

End if 
C 

Else 
If(abs(FI-F2) It. Faco**2)then 

write(NT3O,*) 
& 'Assuming Root Found at No Function value changes' 

write(NT3O,) 'Function stagnant at ',Y® 
write(NT3O,*) 'Assuming (line. Tolerance be (Facc**2)' 

& ,Facc2 
root=C2(i) 

Swkl=Sl 
goto ii 

End if 
If(abs(Y(i)) A. Face) then 

root=C2(i) 
Swkl=Sl 

go to 11 
Else 

c 

C 

If(Y(i)Y1 A. 0.)then 
Y2=Y(i) 
An2b2=Ang2 
Vd2=Sv1 

Else 
Yi=YCi) 
An2b1Ang2 
Vd1Sv1 

End if 
Iter=Iter+ 1 

If(lter .gt. N2)then 
Terror= 1 
write(NT3O,*) 'Iteration fails in root finding 
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& process' 
write(NT3O,*) 'At P2 ",P2 

write(NT30,)' 

Ierror= 1 
go to 11 

End if 
go to 30 

End if 
End if 

10 Continue 
11 If(ltact .eq. 1 .and. terror .eq. 1)then 

write(6,*) 'Give Another Try (0/1)?' 
read (5 ,*) NY 

If(NY .eq. 1)go to 19 
End if 
return 
End 

subroutine crtP2(Xacc,Facc,Ierror) 

c Subroutine to search for critical suction pressure P2 that causes 
c fully wrinkled membrane and critical downward load when the plate 
c is orthogonal to the membrane. 
c 

C 

C 

Parameter (max= 400) 
Implicit real*8(A_H2O_Z) 

real C2(max),Y(max),V(max),P1i(max),An2(max),An1(max) 
real drr(max) 

common /Const/Pi,Cov,Ra,r0,Phil,Ang0,N1,N2,V1,P01,Angm 
common /paramb/Anb2,Anbl,SIb,Pb2,rb,Svb,hb 
common /VarIP1,P2,Angl,Ang2,Sl,Sv1,Vd1,Vd2,Pbcrt,Phi,ht 
common /Crt/P2crt,Plcrt,C2crt,hort,Vcrt,Anlcrt,Vmax 
common /Crtb/Pb2crt,Clcrt,hbcrt,Vbcrt,Ablcrt,Ab2crt 
common /Crt9/P2crt9,P1crt9,C2crt9,hcrt9,Vcrt9,An2cii9 
common /TapeINT20,NT3O 
common /IconP1/ICP1jtact 

open(unit=922,file= 'modison.ert') 
If(N2 .gt. max) then 

write(6,*) 'I!IIIIIItItttIIIUIIIIIItt' 

write(6,*) 'Array Size Limit Exceeded!' 
write(6,*)' 
write(6,*) ' IItItItItttIIIIIIIllttttI' 

End if 
Phi=Phil 
Do  Icct=1,2 

Ierror=0 
Iroot=0 
Isolu'=O 
Iter=1 

Ip1=0 
If(Icxt .eq. 1) Sv1=.5*(V1+Vmax) 
If(Icrt .eq. 2) Sv1=.5*V1 

C 

c In Do loop 5, trial 1 calculates upward critical values 
c trial 2 calculates downward critical values 
c 
21 Do 20 i2= 1,N2+1 

C2(i2) =0. 
Yçm2)=0. 
V(i2) =0. 
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20 continue 
22 Do10i=l,Nl 

HOOP l=O 

30 If(Itact .eq. I .and. floopl .go. 2)then 
write(6,*) 'Calculated Value Svl , P1 & Y  

& Svl,Pl,Y(I) 

If(floopl .gt. 4)then 
write(6,) 'Input New Vol. :' 

read(5,*) Svl 

HOOP l=0 
End if 

End if 
If(Icit .eq. 1)then 

If(Isolu .eq. l)then 
Ang1=AnlblY2*(An1b1Anlb2)/(Y2_Yl) 

Else 
Mgl=Mgm(AngmAng0)*i/N1 

End if 
If(Phil .gt. .S*Pi) then 

Ang2=Pi*.5 

Else 
Ang2 = Phil 

End if 
Anlçi)=Angl 

C 

23 

C 

P2P1*(**2_Ra**2*sin(Ang2)*sin(Ang1))/ 
& (ro**2*(I._sin(Angl)/sin(Ang2))) 

C2(i)=((sin(Ang2)*Ra)**2P2*rO**2/P1)/sin(Ang2) 
C 

Else 

S If(Isolu .eq. l)then 
Ang2=An2blY2*(An2blAn2b2)/(Y2Y1) 

else 
Ang2=Phi(PhiAng0)*i/N1 

End if 
Angi = Pi.5 

An2Ang2 
If(ICPI .eq. l)Pl=P01 
If(ICP1 .eq. 0)P1P01*Vl/Sv1 
P2Pl*Ra**2*sin(Ang2) + ro**2)*sin(Ang2)/ 

& (()**2*(1 + sin(Ang2))) 
C2(i)=r0**2*(P2IPll.) 

RalP2/Pbcrt 
If(Ral .gt. l.)then 

PhiPi_asin(Ral**.5*sin(Phil)) 
P2P1*(Ra**2*sin(Ang2) +ro**2)*sin(Ang2)/ 

& (r0**2(1. + sin(Ang2))) 

C2(j) = t02(P2/Pl-l.) 
End if 
If(C2(i) It. 0.) then 

write(922,*) 'Skip due to C2<0.' 

go to 10 

End if 
End if 

Da=(Ang2-Angl)IN1 
c 

If(ICPl .eq. 1) P1=PO1 
If(ICP1 .eq. 0) P1=PO1*V1/Svl 

h=0. 
Sv2=0. 

Sl=0. 
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Negdr=0 
Do 50j=1,N1 
Ang=Ang2(2. 1.)*Da/2. 

r (P2*rO**2/PI+C2(i)*sin(ang))**.5 
Sl=Sl+ 5**c)/. 

h=h+ .5*sin(Ang)*Da*C2®/r 
Sv2=Sv2+ .5*Da*C2®*r*sin(Ang) 

SO Continue 
C 

If(P2 .gt. O.)then 
RalP2/Pbcrt 

If(Ral .gt. 1.) PhiPi_asin(Ral**.5*sin(Phil)) 
IfRal It. 1.) Phi=Phil 

h=h+Ra(cos(Ang2)-cos(Phi)) 
End if 

c Vuw is related to the unwrinkled membrane enclosed volume. 
If(Icrt .eq.2)then 

Vuw=Ra**3*(cos(Phi)*(cos(Phi)**2/3 .-1 .) cos(Ang2)* 
& (cos(Ang2)**2/3 .4.)) 

Sv2=Pi*(Sv2+Vuw) 

Else 
Sv2=Sv2*Pi 

End if 
Y(i) Ra*(Ang2Ang0)Sl 
write(922,*) 'i,C2,Y(i),Ang2,Angl,Sl,P1,P2' 

write(922,*) i,C2(i),Y(i),Ang2*Cov,Angl*Cov,Sl,P1,P2 
C 

c If the total volume after deformation is inacurate, re-evaluate. 
write(922,*) 'Svl,Sv2',Svl,Sv2 

tolv= (Abs(Sv2-Svl)/SvI +abs(Sv2-Sv1)ISv2)".5 
SvI=Sv2 
If(tolv .gt. .01)then 

lloopl=lloopl-I-1 
goto 30 

End if 
write(922,') 

C 

V(i)=Sv1 
P1i(,)=P1 
If(Isolu .eq. 0)then 

If(Y(i)*Y('il) It. 0.)then 

C 

o Once determine root bound, change from root bound searching to 
c root searching within the bound 
a 

IrootI 
Isolu=1 
X1=C2ci-1) 
X2=C2(i) 

Y1=Yci-1) 
Y2=Y(i) 
Vd1=V(t-1) 
Vd2=V(i) 
Pil=P1i(I-1) 
Pi2=Plici) 

If(Icrt .eq. 1)then 
Anibi An1(i-I) 
Anlb2An1(i) 

Else 
An2bl An2(i-1) 
An2b2=An2(i) 

End if 
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End if 
C 

Else 
If(abs(Y(i)) It. Face) then 

Iflcrt .eq. 1) then 
C2crt=C2(t) 
P2cztrP2 

Plcrt=P1 
hcrt=h 
VcrtSv2 
AnlcrtAnl(t) 

If(Phil .gt. 5*Pi)then 

call baswrk(Xacc,Facc,P2crt,Ierrobjroot, 1,C1) 
If(Ierrob .eq. 1)then 
C1ciO. 
Hbcrt_Ra*cos(Phil) 

Ablcxt=Phil 
Ab2crt=Phil 

VbcrtRa**3*Pi*cos(Phi1)*(cos(Phi1)**2/3._1.) 
Vs=O. 

Else 
Clcrt=CI 
hbcrt=hb 

Ablcrt=Anbl 
Ab2crt=Anb2 
Vbcrt=Svb 

End if 

End if 
go to 5 

Else 
C2crt9=C2(i) 
P2crt9=P2 
Plcrt9=P1 
hcrt9=h 
Vcrt9=Sv2 
An2crt9An2(i) 
go to 5 

End if 
Else 

If(Y(i)*Y1 It, O.)then 
Y2=Y(,) 
If(Lczt .eq. 1)An1b2=Angl 
If(lcxt .eq. 2)An2b2Ang2 

Else 

Y1=Y(I) 
If(Iczt .eq. 1)AnlblAngl 
If(Iczt .eq. 2)An2b1Ang2 

End if 
IterIter+ I 

If(Iter .gt. N2)then 
Ierror= 1 
write(NT3O,) 'Iteration fails in root finding' 

write(NT3O,*) 'process for critical case' 
write(NT3O,*) 'At P2 =',P2 

go to 11 
End if 
go to 30 

End if 
End if 

10 Continue 
If(Iroot .eq. O)then 

Ierror= 1 
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write(6,*) 'Root not bounded in critical P2' 
write(NT3O,*) 'Root not bounded in critical P2' 

write(NT3O,*)  

write(NT3O,*)'' 

End if 
5 Continue 

11 return 
End 

subroutine baswrk(Xacc,Facc,P2,Ierrob,Iroot,Icall,rootl) 

c Subroutine to search for a root bound between CI  and C12 
c to determine the wrinkled form in the vicinity of support 
c near the membrane base. The found root bound is stored as (Xl,X2) 

parameter (max=400,IP2max=40) 
Implicit real*8(A_H2O_Z) 
real C1(max),Y(max),Ab1(max),Ab2(max) 

real YY(3),PP2(1P2max) 
integer IGl(max) 

c 
common /Pres2IPP2(IP'2max) 
common /Const/Pi,Cov,Ra,r0,Phii,Ang0,N1,N2,V1,PO1,Angin 
common trape/NT2O,NT3O 
common /Prevbs/Anb2Ls,AnblLs,Pb2Ls,C1Ls 
common /paramb/Anb2,Anbi,Slb,Pb2,rb,Svb,hb 

a 

open(unit=912,file= 'modison.scrb') 
If(N2 .gt. max) then 

write(6,*) 'II!IIIttttttIflhIIIIIIItt' 

write(6,*) 'Array Size Limit Exceeded!' 
write(6,*) ' 
write(6,*) III?IIIItttttIIIIU?lfl' 

End if 
lerrob =0 
Iroot=0 
Isolu=0 
F1=0. 
rb=Ra*sin(Phil) 
Pb2P2(rO/rb)**2 

Aan=Pi-Phil 
Pi=P0i 
write(912,*)' 
write(912,*)' 
write(912,*) 

write(912,*) 'P2 = = ',P2 

c 
Iter0 

c 
21 Do20i2=1,NZ+i 

C1(12)=0. 
Y(i2)=0. 
IGiçi2)=o 

20 continue 

22 Do 10 i=1,N1 
30 If(Isolu .eq. 1)then 

Anb2Ab2b1Y2*(Ab2b1Ab2b2)/(Y2Y1) 
Else 

If(1call .eq. i)then 
Anb2= .5*Pi(.5*Pi_Aan)*(i_1.)/N1 

Else 
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nb2=Anb2Ls(Anb2LsAan)*Ci 1.)/N1 

End if 
End if 

a 

Ab2(i) Anb2 
loop'=o 
F1=F2 

C1(i)=Ra**2*sin(Anb2)Pb2*rb**2I(P1*sin(Anb2)) 

G1rb**2*(l.Pb2/P1)/Cl(i) 

lf(Isolu .eq. 0) then 
write(912,*) 'i,Asin(Anbl),C1,Anb2 in root-bound scanning' 

write(912,*) i,G1,C1(i),CovAnb2 
Else 

write(912,*) 'i,Asin(Anbl),Cl,Anb2 in root refining' 
write(912,*) i,Gl,C1CI),Cov*Anb2 

End if 
If(abs(Gl) .gt. 1.)then 

IGl(i)=1 
If(C1(i) .gt. ClLs) then 

goto 10 
Else 

G1=.911 

End if 
Cl(t)=rb**2*(l.Pb2/P1)IGl 

End if 
C 

Anbl=asin(G1) 
0 

o When shell base is pulled out Anbi is always less than Phil 
If(Anbl .gt. Phil) goto 10 

C 

Abl(i)Anb1 
Da=(Anb2-Anbl)/Nl 

C 

Svb0. 
Slb=0. 

hb=0. 
Negdr=0 

c Using Simpson's Rule To Evaluate Intergrals: 
Do 33 Isum'1,3 

An=Anbl 

Do Si j= 1,N1/2 
Do 52 iil,3 

AngAn+Da*(ii1) 

r=(Pb2*r?o**21P1+Cl(i)*sin(Ang))**.5 
If(Isum .eq. 1)YY(ii) 5*Cl(j)/r 

If(Isum .eq. 2)YY(ii)=.5*C1(i)*r*sin(Ang) 
If(lsum .eq. 3)YY(ii) - .5*sin(Mg)*Ci(j)/r 

52 Continue 
AnAng 
If(isum .eq. 1)SlbSlb+YY(1)+4.YY(2)+YY(3) 
If(Isum .eq. 2)Svb=Svb +YY(1) +4.*YY(2) +YY(3) 
If(Isum .eq. 3)hbhb +YY(l) + 4.*YY(2) +YY(3) 

51 Continue 
33 Continue 

Slb=Slb*Da/3. 

Svb=Svb*Da/3. 

hbhb*Da/3. 
C 
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o Vuw is related to the unwrinkled membrane enclosed volume. 
VuwRa**3*cos(Anb2)*(cos(Anb2)**2/3 .-1.) 

Svb=Pi*(Svb+Vuw) 
hb =hb+Ra*cos(Anb2) 

Y(i) =Ra(Anb2-Aan)-Slb 

F2=Yçi) 
0 

write(912,*) 'Yci),Sl,Angl*cov,Ang2*cov,Iter' 
write(912,*) Y(i),Sl,Anbl*Cov,Anb2*Cov,Iter 

write(912,*) 
c 

write(912,*)  

o 
100 format(12,4(e14.4,2x)) 

If(abs(Y(i)) It. Face) then 
Iroot=1 
Isolu= 1 
rooti=CI(i) 
goto 11 

End if 
If(Isolu .eq. 0)then 
If(Y®*Y(i1) It. 0. .and. i .gt. 1)then 

0 

o Once determine root bound, change from root bound searching to 
c root refining within the bound 

0 

write(912,*) 'An1b1,Anib2',Ab1(t1)*Cov,Abiçi)*Cov 

Iroot= 1 
Isolu= 1 
X1=C1(,-1) 
X2=C1(i) 

Y1=YCI-1) 
Y2=Y(t) 
Ablbl=Ab1(i-1) 
Ab2b1=Ab2(i-1) 
Ab2b2=Ab2(i) 
Ab1b2=Ab1(i) 

End if 
C 

If(i .eq. Ni) then 
write(NT3O,*) 'Fail to find a rootbound in partially' 

write(NT3O,t) 'wrinkled domain 
write(NT3O,*) 'At P2 = ',P2 

write(NT3O,)' 
write(NT3O,*)  

Ierrob = 1 
Goto 11 

End if 
C 

Else 
If(abs(F1-F2) It. Facc**2)then 

write(NT30,) 
& 'Assuming Root Found at No Function value changes' 

write(NT3O,*) 'Function stagnant at ',Y(i) 

write(NT3O,*) 'Assuming fine. Tolerance be (Facc**2)' 
& ,Facc*2 

rootl=Ci(i) 
goto 11 

End if 
If(abs(Y(i)) It. Face) then 

root1'C1(i) 
goto 11 



114 

Else 
If(Y(i)*Y1 It. 0.)then 

Y2=Y(i) 
Ab2b2Anb2 

Else 

Y1=Y(1) 
Ab2b1Anb2 

End if 
Iter=lter+ 1 
If(Iter .gt. N2)then 

lerrob = 1 
write(NT3O,*) 'Iteration fails in root finding 

& process' 
write(NT3O,*) 'At P2 ',P2 
write(NT3O,*)' 

lerrob = 1 
go to 11 

End if 
go to 30 

End if 
End if 

10 Continue 
11 return 

End 
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'I. 

* THIS PROGRAM SOLVES A DIFFERENTIAL EQUATION IN MEMBRANE VIBRATION ANALYSIS 
* THESIS PROPLEM 

' DUMB AS IT HAS NO ADAPTIVE STEP-SIZE DETERMINATION, AND NO CODE 
* TO ESTIMATE ERROR, TOTAL # OF INTEGRATION IS DETERMINED BY STEP SIZE 

PROGRAM D15R2 
C driver for routine rkdum 

parameter(nvar=2) 

c 

character*9 filnm(5) 
charaeter*5 prefx 

dimension vstart(avar) 
common /TapeINT2O,NT3O,NT4O,NT5O,NT6O 
common /const/Pi,Cov,Ra,rO,hO,fllO,Xm,PO1,g,f,wfreq,eqh,ICP1 
common /Extrm/htmin,htmax 
common /Idiverg/Istop 
common /hr/Ierr 
common /Icount/Itrial,Ipol 
external derivs 

C 

0 

C 

read(NT3O,*) dx 
read(NT3O,*) xl,x2 
read(NT3O,*) (vstait(i),i= 1,nvar) 

read(NT3O,*) Xm,g,f,wfreq 
read(NT3O,*) Ra,filO,hO,PO1,htmax,htmin 

c If ICP1 is O,internal pressure obeys P1=PIO*VOIV1 
c If ICP1 is 1, internal pressure is kept constant. 

Pi=3. 1415926 
Cov=Pi/180. 
Istop=O 

C 

filOfllOCov 
rORa*sin(filO) 

c hORa*oos(filO) 

write(NT2O,*) 'Spherical Dome Radius 
write(NT2O,*) 'Initial Internal Pressure :',POI 

write(NT2O,) 'Mass of rigid plate :',Xm 
write(NT2O,*) 'Gravity Constant :',g 

write(NT2O,*) 'Radius of rigid plate :',rO 
write(N'F20,*) 'No-load Height of rigid plate :',hO 

data filnm/ 'pretc.out','prefr.in','prefx.plt','prefx,php' 
8c ,'prefx.spm'/ 

write(6,'(II,a,$)') 'Enter file preflx(5 Characters):' 
read(5,600) prefx 
do  i=1,5 

filnm(i)(1:5) =prefx 
5 continue 

NT2O=20 
NT3O=30 
NT4O=40 
NTSO=50 
NT6O=60 
open(unit'NT2O,flle=filnm(I)) 
open(unitNT3O,fllefilnm(2)) 
open(unitNT4O,fllefiInm3)) 

open(unit=NTSO,flle=filnm(4)) 
open(unit=NT6O,file=filnm(5)) 
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write(NT2O,*) 'Integration Step Size :',dx 

write(NT20,) 'Integration Time inteval :',xl,x2 
write(NT20,*) 'Initial Height, Velocity :', 

& (vstart(i),i r i,nvar) 
write(NT2O,*) 'Load force Amptitude 
write(NT2O,*) 'Load force frequency (Radls.) :',wfreq 

C 

c ipoi assures to calculate static parameters once only 
Ipol=O 
write(NT2O,*)' Time, Deflection, Velocity 
call rkdumb(vstart,nvar,xl,x2,dx) 
if(lstop .ne. 0) 
& nstep=Istop 

c Plot the equilibrium position: 
write(NT4O,*) '&' 

write(NT4O,*) xl,eqh 
write(NT4O,*) x2,eqh 

600 format(AS) 
stop 
end 

subroutine derivs(x,y,dydx) 
parameter(nnlax= 100) 
dimension y(nmax),dydx(nmax) 
common /const/Pi,Cov,Ra,r0,h0,fil0,Xm,POi,g,f,wfreq,eqh,ICP1 
common ITapeINT20,NT3O,NT4O,NTSO,NT6O 
common /Icount/Itrial,Ipol 

c 
hi =y(l) 

If(y(1) It. htmin)then 
write(6,*) 'Plate descends to dome bottom' 

write(6,*) 'Calculation Stop' 
write(NT2O,*) 'Plate descends to dome bottom' 

write(N'1'20,*) 'Calculation Stop' 
Ierr=i 
go to 5 

End if 

call intepol(i1,Pi,C2,fil) 
flu =fil*Cov 

dydx(1)=y(2) 
dydx(2)=g+(f*cos(wfreq*x)+P1*Pi*(r0**2C2*sin(fl1)))IXm 

5 return 
end 

subroutine rkdumb(vstart,nvar,,cl,x2,xh) 
parameter(nmax= 100) 
dimension vstart(nvar),v(nmax),dv(nmax) 
common ITapeINT20,NT3O,NT4O,NTSO,NT6O 
common /IdivergIIstop 
common IIcountJItrialjpol 
do 11 i=i,nvar 

v(i) = vstart(i) 
ii continue 

If(Ipol .eq. 1) 

& write(6,*) 'Initial Values :',(v®,i=i,nvar) 
x=xl 

nstep = (x2-xl)/xh 
c 

Velol =vstart(2) 
write(NT4O,200) x,v(1) 

write(NT2O,200) x,v(i),v(2) 
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do 14k1,nstep 
Itrial=k 
call derivs(x,v,dv) 

call rk4(v,dv,nvar,x,xh,v,k) 
Velo2=v(2) 
x=xl+k*xh 

c If velocity changes sign, there is a local maximum amplitude: 
If(Velo1Velo2 .le. 0.)then 

write(NT6O,*) x,v(1) 

End if 
c 

write(NT2O,200) x,v(1),v(2) 
write(NT4O,200) x,v(1) 
write(NTSO,200) v(1),v(2) 
if(Istop .ne. 0) goto 100 

c if(x+xh ,eq. x)pause 'Stepsize not significant in rkdumb' 
Velol = Velo2 

14 continue 
200 format(' ',3(e12.5,2x)) 
100 return 

end 

subroutine rk4(y,dydx,n,x,h,yout,Itrial) 
common /Idiverg/Istop 
parameter (nmax= 100) 
dimension y(n),dydx(n),yout(nmax),yt(nmax),dyt(nmax),dym(nmax) 
hh=h*.5 
h6=h16. 
xh=x+hh 
do 11 i=1,n 

yt(t) =yi) +hh*dydx(i) 

11 continue 
call derivs(xh,yt,dyt) 

do 12i1,n 
yt(i)=y(i)+hhdyt(i) 

12 continue 
call derivs(xh,yt,dym) 

do 14i1,n 
yt(i)=y(i)+hdyrn(i) 

dym(i) = dyt(i) + dym(i) 
14 continue 

call derivs(x+h,yt,dyt) 
do 15 i=1,n 
yout )=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i)) 

15 continue 
return 
end 

subroutine intepol(ln,P1,C2,fil) 
PARAMETER (Npoint=200,Nfunc=4) 

c 
c Npower = = Highest Power of Linear Regression 

c Nfunc = = # of function to use to data modeling 
c Nsec = = # of Section of broken-down function 

real xx(Npoint),x(Npoint),y(Nfiinc,NpoinQ,yy(Npoint) 
common ITape/NT2O,NT3O,NT4O,NTSO,NT6O 

common /constlpi,Cov,Ra,ro,h0,filO,Xm,P01,g,f,wfreq,eqh,IcP1 
common /Extrmlhtmin,htmax 
common /IrrIIerr 
common IIcount/Itrial,Ipol 
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C 

C Ipol assures to calculate static parameters once only 

Ipol=lpol+ 1 
If(Ipol .eq. 1) then 

C 

read(NT3O,*) Ndat 

If(Npoint It. Ndat)then 
write(6,*) 'Not Enough Space in Data Array X,Y' 
write(NT2O,*) 'Not Enough Space in Data Array X,Y' 
stop 

End if 
Do 15 11,Ndat 

read(NT3O,*) x(i),(y(k,i),k= 1,Nfuno) 
15 Continue 
c Searching for height of static equilibrium: 

If(wfreq .ne. 0.)then 
TotforXm*g 

Else 
Totfor=Xmg+f 

End if 
EqP2=Totforl(Pi*POI*Ra**2) 
If(EqP2 .eq. O.)then 
eqh=ho 

Else 
Do lOi=1,Ndat 
xx(i) =y(4,Ndat-i+ 1) 
yy(i)x(Ndat-i+ 1) 

10 Continue 
call locate(xx,Ndat,EqP2,loca) 

call value(xx(loca),xx(loca+ 1),yy(loca), 
& yy(loca+ 1),EqP2,eqh) 
End if 
writc(6,*) 'EqP2,eqh',EqP2,eqh 

End if 
c 
o There are 3 functions to interpolate: 

if(ht .eq. h0)then 

P1=p01 
C2=0. 

fil=fiol 
go to 26 

End if 
call locate(x,Ndat,ht,loca) 
call value(x(loca),x(loca+ 1),y(1,loca), 

& y(1,loca+ 1),ht,P1) 
call value(x(loca),x(loca+ 1),y(2,loca), 

& y(2,loca+ 1),ht,C2) 
call value(x(loca),x(loca+ 1),y(3,loca), 

& y(3,loca+ l),ht,fil) 
26 Return 

End 

C 

o Subroutine to carry out interpolation or exterpolation: 
subroutine value(xl,x2,yl,y2,x,y) 

real x,y 
y=y1+(xx1)*(y2y1)I(x2x1) 
Return 
End 

o subroutine for interpolation location 

subroutine locate(x,Ndat,ht,loca) 
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Parameter (Npoint=200) 

real x(Npoint) 

C 

Do 10 i1,Ndat 

If(lit .gt. x(i) .and. ht It. x(i+1))then 

loca=i 

go to 5 

end if 

If(ht .It. x(1))then 

loca=I 

go to 5 

End if 

If(ht .gt. x(Ndat))then 

loca=Ndat-1 

go to 5 

End if 

10 continue 

5 return 

end 
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No. of Pressure Trials : 3 

Applied Pressure as factors of Initial Internal 
Pressure: 
-80.0000 -8.00000 5.00000 

Radius of sphere 10.0000000000000 
Radius of rigid plate 2.5000000000000 

Meridional Angle at the root(deg.) 150.00013369027 
Initial internal pressure 10.0000000000000 
Curve divisions In The Wrinkled 
Region for Numerical Integration 300 
Max allowable # of trials 100 
Tolerance of C2 (root) 1.0000000000000D-03 
Tolerance of Length Summation 1.0000000000000D-02 

Original Enclosed Volume 
Origional Height Of The Plate(Exact) 
Maximun Height Of The Plate 
Volume at the Maximun Height 
Ang(1) and Ang(2) at This Max. Height 

Critical Values to Cause Structure Wrinkle 
at Its Root Under Inward Load 

P2 (Crt.) 

Critical Values When Mcnbrane Becomes 
Fully Wrinkled Due to Suction At Top 
P2 (Cit.) 
P1 (Cit.) 
Total Height 
Total Vol. 
******* Break Down Summary 

413 1.7817225053 
18.342713013405 

23.520648724993 
769.71045413967 
83.932908249594 

39.999983094007 

-120.94499866947 
10.0000000000000 
20.548589116226 
3496.1953708082 

Bottom Section 

Cl (Cit.) 175.19647216797 
H (Cit.) 8.7057978156419 
Ang(1) (Cit.) 144.95921975345 
Ang(2) (Cit.) 100.600023618614 

Volume (Cit.) 884.87069285982 

Top Section 
Ang(1) (Cit.) 27.780660197282 

Ang(2) (Cit.) 90.000000000000 
C2 (Cit.) 175 .59062194824 
H (Cit.) 16.869557072225 
Volume (Cit.) 2039.9385750238 

Critical Values When Menbrane Becomes 
Orthogonal to the Plate Under Pressure P2 
P2. (Cit.) 
P1 (Cit.) 
CZ (Cit.) 
H (Cit.) 
Ang(2) (Cit.) 
Volume (Cit.) 

Rigid Body Settlement 

84 .996223069054 
10.0000000000000 
46.872638702393 
2.7486436472271 

89.550146262865 
2246.9102627314 

1.8135696295069 
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External Pressure At 
Final Internal pressure 
Enclosed Volume After Deformation 
Height Of The Displaced Plate 
Find C2 as 
Length Before deformation 

Wrinkled Meridional Length 
% wrinkled membrane 
Angle Phi(I) (deg.) 
Angle Phi(2) (deg.) 

External Pressure At 
Final Internal pressure 
Enclosed Volume After Deformation 

Height Of The Displaced Plate 
********* Upper Section ********* 

Find C2 as 
Length Before deformation (Upper) 
Wrinkled Meridional Length (Upper) 
% wrinkled membrane (Upper) 
Angle Phi(1) (deg.) (Upper) 
Angle Phi(2) (deg.) (Upper) 
Vertical Stretch in Upper Section 
********* Lower Section 

Find Cl as 
Length Before deformation (Lower) 
Wrinkled Meridional Length (Lower) 
% wrinkled membrane (Lower) 
Angle Phi(1) (deg.) (Lower) 
Angle Phi(2) (deg.) (Lower) 
Vertical Stretch in Lower Section 

External Pressure At 
Final Internal pressure 
Enclosed Volume After Deformation 
Height Of The Displaced Plate 
Find C2 as 

Length Before deformation 
Wrinkled Meridional Length 
% wrinkled membrane 
Angle Phi(1) (deg.) 

Angle Phi(2) (deg.) 
Rigid Body Settlement 

-800.00000000000 
10.0000000000000 
1616.1442995233 
23 .488413357893 
528.82043457031 
23.653137448579 
23.804277564882 
100.000000000000 
73.200019579945 
96.891390143860 

-80.000000000000 
10.0000000000000 
2077.0096831986 
18.436621998908 

145.08784484863 
8.3919972089288 
8.3853436445392 
63.666666666667 
22.81124263 1728 
62.560167203961 
1.0147145322301D-01 

142.85282897949 
4.2935159000000 
4.2843092592311 
41.000000000000 
148.33066768779 
125.40007887726 
5.7852670384301 

50.000000000000 
10.0000000000000 
3847.1636859640 
13.946116818493 
30.514400482178 
6.3822884938893 
5.6816883436820 

26.982841104120 
-55.013360683167 
47.057368755518 
0.36870750604545 


