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Abstract 

Let K be a convex, compact set in Ed, and B° be the unit ball centered at the 

origin. We define the ith intrinsic volume V2(K) via the formula of Steiner; that is, 

for ) > 0, 
d 

V(K + AB d) =  . Vi (K). 

Note that V(K) is proportional to the mean i-dimentional content of the projections 

of K onto the i-dimentional linear subspaces. 

A finite set {x1 + Bd,. . . , x + BcL} of unit balls is a packing if the interiors of 

any two balls are disjoint. The dissertation investigates the minimum properties of 

the convex hull of the balls with respect to the ith intrinsic volume for i = 1, . . . , ci, 

and the shape of C, = conv{xi,. . . , x,} when VZ(CV. + B') is minimal. In this case 

C, is called a minimal body. 

The shapes of minimal bodies depend on how large i and n are compared to d. If 

i = 1, . . . , d - 1. and n is large compared to ci then a minimal body is basically ball. 

Assume that n ≤ ci + 1. For small i the minimal body is probably a regular simplex, 

and if i is close to d then the minimal arrangement is probably the sausage-like 

one; that is, Cn is a segment. Finally we consider the case of the volume (if i=d). 

According to L. Fejes Tóth's celebrated Sausage Conjecture, for d ≥ 5, the sausage 

arrangement is optimal for any n. We prove that a minimal body can not be far 

from being a segment. 
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Chapter 1 

Introduction 

We present all the notions and theorems which we will require. In every section we 

quote the references containing the proofs. 

We assume that the reader is familiar with the concepts of elementary set theory. 

Concerning the real number system R, we use the arithmetic properties of the real 

numbers, and the existence of functions like sin t, cost, the logarithmic and the 

exponential functions. The references will be quoted at the point where they are 

applicable. 

1.1 Linear algebra 

In this section we consider some properties of Rd for d ≥ 1. The proofs can be found 

in [13]. 

The letters p, q, r, .s and t, together with the Greek letters c, /3, e, A, y and 

p denote real numbers, and d, i, j, k, m and n denote non-negative integers. The 

elements of Rd are denoted by u, v, w, x, y and z, and the zero-vector is denoted by 

0. 

Let A E R and x = (x',. . . , xd) and y = (y1,. . . , d) be points of Rd. Define 

addition and scalar multiplication on Rd as 

and 

We extend the definition of addition and scalar multiplication to subsets of Rd. For 
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A,B C R° and ,\ ER, 

A+B={a+bIaEA and bEB} and AA={AaIaEA}. 

A subset L C Rd is a linear subspace of Rd if x + y € L and A x E L for any x, y € L 

and A E R.. 

Let x1,. . . , x,,, E Rd. A linear combination of x1,. . . , Xn is the expression A1 x1 + 

+ An Xn for some A1,. . . , A, E R. The vectors z1,. . . , xn are independent if 

implies that A1 = ... = An = 0. Otherwise, the vectors are dependent. Let .L be a 

subspace of R°, L 0 {0}. The maximal cardinality n of an independent subset of L is 

called the dimension of L, in notation, n =dimL. An independent set {x1,...,x} is 

a basis of L; that is, any y € L can be written in a unique way as a linear combination 

of XI) ... , cc,. Note that L can be identified with R, and hence dimL ≤ d, with 

equality if and only if L = Rd. We let dim{0} = 0. 

A map T : Rd Rd is a linear map if for any a, v E R' and A,1 E 

T(Au+v)= AT(u)+T(v). 

If there is a map S: Rd - Rd such that S o T = T o S = idRd then T is an invertible 

map, and S = T' is the inverse of T. Here So T denotes the composition of S and 

T, and idx is the identity map of X. 

The standard basis of R' is lei, . . . , ed}, where for i = 1,. . . , d, the ith coordinate 

of ei is 1, and all the other coordinates are 0. We always use this basis for R'. To 
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every linear map T: ft'1 • R" --+ , we assign the matrix 

[ul,...,ud] = 

where T(e) = ui = (ui,. . . , ui). The matrix and the map are called integral if all 

the entries of the matrix are integers. 

Let Ild be the group of permutations on the set { l,. . . , d}, and sgnt be the 

function satisfying sgnt = 1 if t> 0 and sgnt = —lift < 0. For ir e lid, define 

6(71-) = II sgn(7r(j) - ir(i)). 
1i<j≤d 

The determinant of the matrix [ui, . . . , ui] is 

det[ui,. . . , U] = e(7r)u 1) . Ud 
cL) 

lrElld 

The determinant of a linear map is the determinant of the corresponding matrix. 

Then det(S o T) =detT.detS, and T is invertible if and only if detT 0 0. Assume 

that T is invertible. Then T is an orientation-preserving map if detT > 0, and an 

orientation-reversing map otherwise. 

Since we are interested in metrical properties, we put some additional structure 

on Rd. The quadratic form 

<x ,y>=x1 .y1 +...+x.y'1 for x,yE R'1, 

is linear in both variables, and for any x E R'1, < x, x> ≥ 0, with equality if and 

only if x = 0. This form is called scalar product. With the help of this we define the 

norm, or length, of a vector x as 

llxll = /< x,x>. 
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The norm satisfies the usual axioms; that is, for any x, y E Rd and ). E R, 

i) il..\ • xJJ = P'l lixil, 

ii) JJxJJ ≥ 0, with equality if and only if x = 0, 

iii) lix + Y11 ≤ lixil + iiyll. 

The Cauchy-Schwarz inequality states that 

I < i> I ≤ IIli llvii 

for any x, y E Rd. Hence for non-zero x and y, we may define a =ang(x, 0, y) by the 

properties 0 ≤ a < ir and 

cos a=   
lixil. iiIl 

In addition, for distinct x, y, z E Rd, let ang(x, y, z) =ang(x - y, 0, z - y). 

We note that, by means of Hadamard's inequality, 

det{ui,. . . Ud] ≤ iluill . . . IkLdll 

for any u1, . . . , Ud E Rd. 

Two subspaces V and W of R' are orthogonal (or perpendicular) if < v, w >= 0 

for any v E V and w E W. This yields that dimV+dimW < d, with equality if and 

only if V + W = R'. In the case of equality, any u E Rd can be uniquely written in 

the form u = v + w for v E V and  E W. 

Finally, a linear map T : Rd , Rd is orthogonal if < T(x), T(y) >=< x, y> for 

any x, y E Rd. Note that then detT = ±1, and that the composition of orthogonal 

maps is also orthogonal. 

As an example, let T be an orientation-preserving orthogonal transformation of 
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R2. Then the matrix of T is 

cos  — sina 

sin  cos  

for some —ir < a < 7r, and T is called the rotation with angle a around 0. We remark 

that ang(x,O,T(x)) = I a I for any x 0. 

1.2 Metric spaces 

We rely mainly on [20]. The book [6] is easier to read and contains most of the 

material except the notion of sequential compactness. 

Let X be a non-empty set. A function d : X x X - R is a metric on X if it 

satisfies 

i) d(x, y) ≥ 0, with equality if and only if x = 

ii) d(x,y) = d(y,x), 

iii) d(x,z) ≤ d(x,y)+d(y,z). 

The last property iii) is known as the triangle inequality. Observe that a non-empty 

subset of metric space is also a metric space with the inherited metric. For x E X 

and non-empty A C X, let 

d(x,A) = inf{d(x,y)y E A}. 

Define the open ball B(x, r), with center x E X and radius r> 0, as 

B(x, r) = {y E XId(x,y) < r}. 

Observe that .x E B(x, r). A non-empty subset E C X is discrete if for each x E E, 

there is an r > 0 such that B(x, r) contains no point of E besides x. A subset 
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A C X is called open if for any x € A there exists an r > 0 such that B(x,r) C A. 

Note that union and finite intersection of open sets is open. A is closed provided its 

complement X\A is open. 

Let A C X and x E X. Then A is a neighbourhood of x if there exists an r > 0 

with B(x, r) C A. The interior of A, denoted by mt A, is the union of all the open 

sets C with C C A. The boundary of A, denoted by bdA, is the set of all points 

X E X such that every neighbourhood of x contains some point of A and some point 

of X\A. Note that A is open if and only if A =intA and A is closed if and only if 

A =intAUbdA. 

Let {x} be a sequence of points of X. The sequence converges to an x E X 

({x} -* x or = x) if for any r> 0 there is a N> 0 such that x E B(x, r) 

for n > N. The sequence { x}00 is convergent if there is an x E X with {x} -* x. 

Let (X, d) and (Y, d) be metric spaces. A function f : X - Y is continuous if 

{x} - x implies that {f(x)} -* f(x) in Y for x, x, E X. Note that in this case, 

f-1(B) is open for any open B C Y. The function f is an isometry if f is a bijection 

and d'(f(x),f(y)) = d(x, y) for any x,y E X. 

As an example, consider Rd for d ≥ 1. Then the function d(x, y) = - I for 

x, y E Rd, is a metric. Let GL(d) be the set of invertible d x d matrices. Since CL(d) 

can be considered as a subset of Rd2, it is a metric space with the inherited metric. 

Then the determinant, as a function GL(d) - R, is continuous. 

Now we consider some possible properties of a metric space X. It is called bounded 

if there is an M> 0 such that d(x, y) < M for any x, y E X. X is compact if any 

open cover of X has a finite subcover. Note that a compact metric space is bounded, 

and a closed subset of a compact metric space is also compact. Another family of 
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metric spaces is the sequentially compact spaces, which have the property that any 

infinite sequence of elements of X has a convergent subsequence. Actually, these two 

different notions are equivalent; that is, X is compact if and only if it is sequentially 

compact. Let f : X - R be continuous and X be compact. Then there is an x E X 

such that 

f(x) = inf{f(y)J y E X}. 

A subset C C Rd is compact if and only if C is closed and bounded. The 

statement that closed and bounded subsets of R" are sequentially compact is known 

as the Bolzano-Weierstrass theorem. 

1.3 The Euclidean space 

There are many books which give introduction to the Euclidean space. The classical 

survey is [4]. More recent ones are [1], [17] and [21]. 

Let d ≥ 1, 0 ≤ n ≤ d, x E Rd and L be a linear subspace of Rd with dimE = n. 

Then A = x + L is called an n-dimensional affine subspace. The points of R° are the 

0-dimensional affine subspaces. The 0 vector, as a point of Rd, is frequently called the 

origin. The one-dimensional affine subspaces are called lines, the two-dimensional 

affine subspaces are called planes, and the d —1 dimensional ones are the hyperplanes 

of R'. 

Remark: From a geometrical point of view, it makes no difference whether an affine 

subspace contains the origin. This fact is emphasised in [1]. The reason to start 

with linear subspaces is that this way we can use the powerful tools of algebra and 

analysis. 
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Observe that a non-empty intersection of affine subspaces is an affine subspace. 

For a non-empty C C R" we define affC, the affine hull of C, as the intersection of 

all the affine subspaces of R° containing C, and set dimC =dim affC. We also say 

that C spans aff C. 

Let B1 and B2 be affine subspaces with B1 flB2 0 0 where 0 denotes the emptyset. 

Then 

dim aff(Bj U B2) + dim(Bi fl B2) = dimBj + dimB2. 

A set C C Rd is convex if it is non-empty and Ax + (1— A)y E C for any x, y E C 

and 0 < A < 1. Since a non-empty intersection of convex sets is also convex, we 

define the convex hull of a non-empty B C R' as the intersection of all the convex 

sets containing B. The convex hull of B is denoted by convB. 

Let d ≥ 2, m ≥ 3 and I E I = rn. The points of the set E are in general position 

if for any 1 ≤ n ≤ d - 1, each n-dimensional affine subspace contains at most n + 1 

elements of E. If m ≥ d + 1 then the points of E are in general position if each 

hyperplane contains at most d + 1 elements of E. 

If R' is considered as an affine space with the scalar product then we call it a 

d-dimensional Euclidean space, and denote it by Ed. By E° we mean a one-point set. 

Let A be an affine subspace of Er'. Then A can be endowed with the structure of an 

n-dimensional Euclidean space, so that the metric on A is induced by the metric on 

E', and the affine subspaces of A are the affine subspaces of Ed which are contained 

in A. 

Let C be a non-empty subset of E'. Then the interior and the boundary of C in 

affC is denoted, respectively, by relintC and relbdC. 

Recall that ei is the it/i standard basis vector of E'. The line aff{0, e} is called 
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the ith coordinate axis. Let 1 ≤ n < d. If we work in E' then we refer to the affine 

hull of the first n coordinate axes as E. 

Let Li be a linear subspace of E'1 with positive dimension, xi E E' and A = 

x + Li for i = 0, 1. We say that A0 and A1 are parallel if L0 C Li or L1 C L0. The 

affine subspaces A0 and A1 are orthogonal to each other if L0 and L1 are orthogonal. 

A non-zero vector v is said to be orthogonal (or parallel) to an affine subspace A 

with positive dimension if the line aff{0, v} is orthogonal (or parallel) to A. As a 

convention, the 0 vector is parallel and orthogonal to each affine subspace. 

Let A be an affine subspace of E° with n = dimA and x E Ed. There exists a 

unique affine subspace B which is orthogonal to A, contains x and has dimension 

d - n. Note that A and B have exactly one common point. In addition, if x 0 A 

then there is a unique line 1 which passes through x, intersects A and is orthogonal 

to A. The point 1 fl A is called the orthogonal projection of x onto A. 

The hyperplanes of E' have an important role in the geometry of E'. Let H be a 

hyperplane and ii be a non-zero vector perpendicular to H. Then there is an a E R 

such that 

H={xEE"I < x,u>=a}. 

The sets 

H+={xEEdI < x,u>≥a} and H={xEE"I < x,u>≤a} 

are called the halfspaces of E' determined by H. Observe that H and H are 

convex, E' = H U H- and bdH = bdH = H. Let B and C be non-empty 

subsets of E'. We say that the hyperplane H separates B and C if B is contained 

in one of the halfspaces determined by H while C is contained in the other. If in 
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addition, B fl H = C fl H = 0 then H strictly separates B and C. 

Let u and v be distinct points and w = Ru + v). The hyperplane passing through 

w and perpendicular to u - v is called the hyperplane perpendicularly bisecting the 

segment conv{u,v}. Note that 

H = {x E Edld(x,u) = d(x, v)}. 

Let H be the halfspace determined by H and containing u. Then x E H if and 

only if d(x, u) d(x, v). 

Finally we turn to the transformations of Ed. A map y(x) = T(x) + y is called an 

affine map if T is an invertible linear map and y E Ed. The affine transformations 

are the bijections of E' which map any affine subspace onto an affine subspace of the 

same dimension, while preserving incidence. The composition of affine maps is again 

an affine map. The isometries of E" are the affine transformations (x) = T(x) + y 

where T is an orthogonal map. An isometry ç(x) = T(x) + y is called orientation-

preserving if T is orientation-preserving; that is, detT = 1. 

Note that if the points of both of the sets {x0,. .. , Xd} and {yo,. . . , y} are in 

general position then there is a unique affine map (x) such that W(xi) = yi for 

i = 0,. . . , d. If in addition d(x, x3) = d(y, yj) for 0 ≤ i < j ≤ d then (x) is an 

isometry. If for non-empty C, D C Ed there is an isometry y(x) so that (C) = D 

then C and D are congruent. 

Let us list some isometries of E" which occur later in the text. Let y E E'. The 

map = x + y is called translation by y. The reflection through y is defined by 

Vi(x) = —x + 2y. Note that y = -(x + p1(x)) for any x E E'. 

Let H be a hyperplane and for x E X, let 7H(x) be the projection onto H. We 
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define p2(x) as the unique point satisfying 7H(X) = (x + p2(x)). The map ç2(x) is 

an isometry, and it is called reflection through H. 

For d ≥ 2, let g be a (d - 2)-dimensional affine subspace and r(x) be the 

projection onto g. An orientation-preserving isometry 23(x), which fixes g pointwise, 

is called rotation around g. Let H be a plane orthogonal tog and llflg = {y}. Recall 

that in Section 1.1 we have defined the rotation of .E2 around the origin. Note that 

p3(x) maps II onto H, and p3(x) restricted to H is a rotation around y. It follows 

that for x g, the ang(x, n-9(x), 1p3(x)) is independent of x, and it is called the angle 

of the rotation. 

1.4 Compact, convex sets 

We start with a simple theorem which connects the notions of convexity and dimen-

sion. 

THEOREM 1.4.1 (Radon) Let d ≥ 1 and m ≥ d + 2, and x1,. . . , x,,,, are points 

in Ed. Then the points can be partitioned into two non-empty sets, say xi,... 

and Xfl+1, ... ,Xm, 2 n ≤ rn—i, such that 

coriv{xi,. . . , x} fl conv{x+i,. . . , x} 0. 

Let d ≥ 1 and Kd be the family of compact, convex sets of Ed. A K E IC  is 

called a convex body if dimK = d, or equivalently, if intK 0 0. 

The isometries of E° induce an equivalence relation on K; namely, two elements 

of JC° are equivalent if they are congruent. Let Co, Ci E lCd We write Co C1 if Co 

and C1 are congruent. 
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Let K E K. A hyperplane H is a supporting hyperplane of K if H fl K 0 and 

one of the halfspaces determined by H contains K. For any x E bd K, there is a 

supporting hyperplane containing x. 

Now we collect some properties of the linear combinations of compact, convex 

sets. For Ao, Al E R, we have )¼0 Co + ) Cl E K. If Ci = convEj for some non-empty 

Ei E Ed, i = 0, 1, then A0 C0+A1 C1 = conv 0 Eo+Ai E1). If Co is strictly contained 

in C, then Co + K is also strictly contained in C1 + K. 

The first statement of the following lemma actually characterizes the elements of 

lcd among the compact sets of E'. 

LEMMA 1.4.2 For any K E lcd and cc 0 K there exists a unique y E K such that 

d(x,y) = min{d(x,z)Iz E K}. If  ≤ dirnK ≤ d —1 and y  relintK then cc - y is 

perpendicular to affK. 

For C, K E lcd, define 

S(C,K)=inf{pIC C K+pBd and K C C+pBd}. 

This function is a metric on lCd, and it is called the Hausdorff distance. Endowed 

with this, jCd becomes a metric space. 

A non-empty family -1:7 C lCd is bounded with respect to the Hausdorif metric if 

and only if there is a p > 0 so that K C pB' for any K E F. 

THEOREM 1.4.3 (Blaschke) Each bounded, infinite sequence of compact convex 

sets has a convergent subsequence. 

In other words, the compact subspaces of lCd are the closed, bounded subsets. 
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An x E K is an extreme point of K E lCd if x = Ay + (1 - À)z for y,z E K 

and 0 < A < 1, implies that x = y = z. Denote the set of extreme points of K by 

extK. Then K = cony extK, and extK is the smallest set B with the property that 

K = convB. 

A polytope P is the convex hull of finitely many points, and hence P E K. A 

F C bdP is called a face of P if there is a supporting hyperplane H of P with 

H fl P = F. It is frequently convenient to consider P itself as a d-dimensional 

face. The faces of a polytope are polytopes themselves. The 0-dimensional faces of a 

polytope are called vertices, the one dimensional faces are called edges, the (d - 1)-

dimensional faces are called facets. If d = 2 then the edges are also called sides, and 

if d = 3 then the facets are simply called faces. 

The vertices of P constitute extP. Let dirnP ≥ 1 and 0 <m ≤ n ≤ dirnP - 1. 

Then each rn-dimensional face of P is contained in some n-dimensional face of F, 

and hence if P is a polytope then bdP is the union of the facets of P. In addition, 

if F is a face of F, and F is a face of F then F is a face of P. 

Let d ≥ 1, C E kd with dimC = d - 1 and x be a point outside of affC. The 

set conv({x} U C) is called a cone with base C and d(x, affC) is the height of the 

cone. If xo, . . . , Xd are points in general position then S = conv{xo,. . . , xd} is called 

a d-si'mplex. Observe that every d-simplex is a cone, and each facet of S is a (d - 1)-

dimensional simplex which is a base of S. If all the edges have equal length then 

S is a regular d-simplex. As a convention, we consider the points as 0-dimensional 

regular simplices. 
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A polytope P is called a paralleletope if there are independent vectors x1, . . . ,Xd 

so that P is congruent to the set 

{)lxl+...+AdxdIO≤ Ai ≤ 1 for i=1 .... d}. 

If all the xi's have the same length and <xi, xj >= 0 for i 54 j then P is a cube. 

1.5 Simplices, ellipsoids and radii 

Let d≥ 1, y E Ed and r> 0, and define 

B' = {x E E'9 lxii ≤ 1}. 

We call y + r Bd the d-dimensional ball with center y and radius r, and y + Bd is a 

unit ball. The boundary of B' is the unit sphere Sd_i. Note that Sd_i is compact 

and 

8d—i _{xEEdiIixll = 1}. 

Let K E Kd and 1 < m ≤ d. Then the rn-dimensional inner radius of K, 

rm (K), is the radius of the largest rn-dimensional ball contained in K. The m-

dimensional outer radius of K, Rm (K), is the minimum of Rm ≥ 0 such that there 

exists an (in - 1)-dimensional affine subspace g with K C g + RmBd. We remark 

that dimK < m, rm (K) = 0 and Rm (K) = 0 are equivalent statements. 

We define the inradius of K as r(K) = rd(K), the circumradius of K as R(K) = 

Ro(K). There is a unique ball which contains K and has radius R(K). This ball is 

called the circumscribed ball of K. In addition, D(K) = 2r1(K) is the diameter of 

K, which is the maximal distance d(x, y) for x, y E K. 
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Let u be a unit vector. The width of K in the direction of u is defined as 

L(K,u)=max{<x,u>JxEK}—min{<x,u>lxEK}, 

and the width of K is defined as 

L\(K) = min{L.(K,u)Ju E 

15 

Note that A(K) = 2Rd(K). If dimK = m then the relative width of K is L(K) = 

M m (K) which is the width of K in afEK. 

The functions D(K), R(K) and r(K) are continuous with respect to the Hausdorif 

distance (but for example, rm (K) is not continuous for 1 <rn < d). 

Observe that if K is a ball of any dimension then rm(K) = Rm(K) for 1 ≤ m ≤ d. 

According to [23], 

THEOREM 1.5.1 Let 1 ≤ m ≤ d and K E Jd Then, 

rm (K) < Rm (K) ≤ (m + 1)rm(K). 

The upper bound is not precise. If rn = 0 or m = d then best estimates are 

known. Concerning the circumradius and the diameter, this is Jung's theorem: 

THEOREM 1.5.2 Let d > 1 and K E 1Q1. Then 

2R(K) ≥ D(K) ≥ \/2(d+ 1R(K). 

In the case m = d, we have 

THEOREM 1.5.3 Let d ≥ 1 and Jij' E lCd Then 

2(d+1) r(K 
2r(K) :5 J<) < /d+2 ' 

I 2s,/ir(K) 
if d is even 

if d is odd 
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Remark: If K is a regular d-simplex then equality holds in both theorems. 

The affine images of B" are called ellipsoids. Let M be an d-dimensional ellipsoid. 

There exists an isometry ço of E° so that the equation of (M) is 

(x 1)2 ++ (xd)2 

a1 ad 

for some positive a1,. . . , ad. The numbers a1,. . . , ad are called the axes of M. 

Actually, the shape of a convex body can not be too far from the shape of some 

ellipsoid ([24]): 

THEOREM 1.5.4 (John) Let K be a convex body in E". Then there exists a point 

x and an ellipsoid M such that 

x+MCKCx+dM, 

and if in addition K is centrally symmetric with center y then there exists an ellipsoid 

M with 

y+MCKCy+\/iM. 

The rest of the section is concerned with simplices. 

LEMMA 1.5.5 For d ≥ 1, let S = conv{xo,. . . , xd} be a d-simplex and y E S 

different from the vertices. Then 

i) d(y,xo) < max_l,...,d{d(XO, xi) }, and 

ii) there is a 0 ≤ i ≤ d such that d(y, x) ≤ R(S). 

If d = 2 then the d-simplices are called triangles. By a side of a triangle we 

frequently mean not only the actual side but also its length. Let C = conv{xo, x1, x2} 
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be a triangle and {i, j, k} = {0, 1, 2}. Then ai = jxj -  Xk is a side of C, and 

ang(xj, x, xk) is called an angle of C. The sides and angles of C obey the Law 

of cosines: 

a = a + a - 2a1a2 cos a0. 

The next lemma follows from the Law of cosines. 

LEMMA 1.5.6 Let Ci be a triangle with sides a, bi and c, and let '' be the angle 

of Ci opposite to c, i = 0, 1. If a0 = a1, b0 = b1 and yo <'yi then c0 < ci. 

Let d ≥ 0. The regular d-simplex with edge length 2 is denoted by T'. If 

T' = conv{xo ,..., xd} then the point 1 j(xo + ... + xd)is called the center of Td. 

This point is the center of the circumscribed ball and the inscribed ball of T'. The 

radius of the circumscribed ball is R(Td) = and the radius of the inscribed 

ball is r(Td) V'd(d+lY The height hd of Td is the distance of any vertex of T' from 

the opposite facet. Note that for d ≥ 1, 

hd = V4 - R(Td) = 

1.6 Some notions of calculus 

2(d+1)  

d 

An r E R is called algebraic if there exists a polynomial p(t) with integer coefficients 

such that p(r) = 0. The sum and product of algebraic numbers is also algebraic. If 

r E R is not algebraic then it is transcendental. The sum or product of an algebraic 

and a transcendental number is transcendental. 

Let n and i be non-negative integers, and define i factorial as i! = 1 ... i if 
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i > 0 and 0! = 1. In addition, let 

(n) = n (n — i +1)  

i! 

Note that (') is the number of i element subsets of a set of cardinality m. 

We frequently approximate given real numbers. All the calculated values are 

cited up to four or five decimal digits, and they are not rounded. If a value is used 

later, we use a more accurate approximation with at least ten digits and not the 

cited one. 

The Landau symbols make it easier to read asymptotic formulae. Let d ≥ 1 and 

f(x) and g(x) be functions from a subset of E' into R. Then we write f(x) = O(g(x)) 

if there exists a c > 0 such that IIf(x)II <cllg(x)Il. Observe that f(x) = 0(1) means 

that f(x) is bounded. Let d = 1. We write f(t) = o(g(t)) if limj... = 0, and 

f(t) "-' g(t) if lim .L1 = 1. 

We assume that the reader is familiar with the notions of limit and derivative of 

a function f : R - R (see [28]). We quote only the results which we explicitly need. 

Fix an open interval (a, b), where we allow a to be —oo and b to be co. Let 

f, g: (a, b) —f 1? be differentiable functions, and r, s E (a, b) with r < s. The mean 

value theorem states that there is a t for which r < t < a such that 

f(s) - f(r) = f'(t)(s - r). 

Suppose g(t) 57 0 in a neighbourhood of b and 

lim fl(t) =a 
t— b g'(t) 
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for some a E R. In addition, assume that as t - b either g(t) -* oc, or f(t) - 0 

and g(t) -+ 0. By means of L'Hospital's rule, we conclude that 

lim—=a. 
t- b- g(t) 

Note that a similar statement holds if t -* at 

Let f : (a, b) - R be a function. Then f is convex if for any r, .s E (a, b) with 

r < s and 0 < A < 1, 

f(Ar + (1— A)s) )¼ f(r) + (1— A)f(s). 

If strict inequality holds for any suitable choice of r, s and A then f is strictly convex. 

The function f(t) is concave if —f(t) is convex. 

Let f be continuous. Then f is convex if and only if 

f(.(r + s)) ≤ 1. (f 00 + f(s)) 

for any r, s E (a, b). Assume that f is twice differentiable. Then f is convex if and 

only if f"(t) ≥ 0 for any t E (a) b), and if f"(t) > 0 for any t E (a, b) then f is strictly 

convex. 

So let f be a convex function on (a, b), and r, s E (a, b) with r < s. Note that for 

r ≤ ≤ 

f(t) ≤ f(s) -  f(r)  (t — r). s — r 

Let t E (r, s). It follows that f(t) < max{f(r), f(s)}, and if f is strictly convex then 

f(t) < max {f(r),f(s)}. 

If f is concave then the dual statements hold. 
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1.7 Integration, volume and the Gamma function 

Let d ≥ 1, C be a convex subset of E' and f: C - R be a continuous function. We 

denote the Riemann integral of f on C (see [27]) by 

provided the integral exists. If d = 1 and C is the interval (a, b), — 00 < a < b ≤ 00, 

then we use the notation 

JC 
b 

f(t)dt=j f(t)dt. 

Assume that f(t) = F(t) for some F : (a, b) - R. The Fundamental Theorem of 

Calculus states that 

jb f (t) dt = F(b) — F(a). 
We return to the case d ≥ 1. Let T be an invertible linear map, y E Ed and 

(x) = T(x) + y. Then the Jacobian determinant of y(x) equals detT and the 

standard change of variables formula may be written as 

10 '(x) dx = Idet TI . J 1(x) dx. 
Let C E lCd The volume of C is defined as 

V(C)= Ic I dx. 

If d = 2 then the volume is called area. It follows by 1.1 that the volume is isometry 

invariant. Let T be an invertible linear map and A > 0. Then V(T(C)) = Idet TI . 

V(C), and hence V,(A C) = Adv(c). We denote V(B') by 'd• 

For 1 ≤ m < d, denote the convex hull of the last n coordinate axes by E. 
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THEOREM 1.7.1 (Fubini) If  is an integrable function on Ed and 1 < ,m < d 

then 

jEd f(x)dx = JE. f2d—m f(u) v) dv du, 

where x=(u,v) with u E Em and V E Ed_rn. 

With the help of the Fundamental Theorem of Calculus it is not hard to prove 

THEOREM 1.7.2 Let d ≥ 1 and assume that the integrable function f : pBd - R, 

0 <p oo, satisfies f(s) = g(x) for some g: R —+ R. Then 

JPBd f (x)dx = dIcdf9(r)r'dr. 
(1.2) 

In the rest of the section we work with the Gamma function, which is defined for 

O<t<ooas 

r(t) = 1000 st_i 

The integral is well-defined for these t. All we need to know about r(t) can be found 

in [28]. First we list some basic properties: 

i) r(t+1)=tr(t) fort>0, 

ii) F(n + 1) = n! for n=0,1,2,..., 

iii) in r(t) is convex for t > 0. 

Note that F(.) = V r7F. Let t and s be positive. Then iii) yields that 

(r(t3))2 ≤r(t).r(s). 

The function r(t) can be used to evaluate the integral 

T11(1T)31 dT = F(t) F(s)  
F(t+s) 

(1.3) 

(1.4) 
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If t tends to infinity then Stirling's formula states that 

lnr(t+l) = tlni+lnt—+1n+o(1) 

= t1nt+lnt—t+O(1). 

1.8 The intrinsic volumes 

(1.5) 

Let d ≥ 1 and K E V . According to Steiner's theorem, there are scalars V(K), 

0, ... ,d, such that 

V(K + A Bd) = E r-d—iA V(K) 
j=O 

for any A > 0. The scalar V1(K) is called the ith intrinsic volume. They were intro-

duced in this form in [22]. The existence of these scalars and their main properties 

are discussed in all the cited works about convexity (the approach in [ 1] is probably 

the simplest). 

Note that T/o(K) = 1 and if dimK < i then V2(K) is the i-dimensional volume 

of K. We define 2 Vd_1 (K) to be the hypersurface area of K, denoted by 8(K) (we 

shall justify this definition later). If d = 2 then the hypersurface area is called the 

perimeter. 

Let 1 ≤ i < d and C, K E J(d The function 1/2(K) is non-negative, continuous 

and monotonic; that is, C C K yields that V(C) ≤ V2(K). If dimC ≥ i, C C K 

and C K then V(C) < V1(K). The reason to choose the intrinsic volumes and 

not another normalization (for example the Quermassintegrals in [17]), is that the 

intrinsic volumes are dimension-invariant. Assume that K C E for i < m < d and 

denote by V'(K) the ith intrinsic volume of K in Em. Then V7(K) = V2(K). 
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The first intrinsic volume is linear; namely, for A, it > 0, 

Vi(AK+C)=AVi(K)+pVi(C). 

We give an equivalent definition for the intrinsic volumes of polytopes with non-

empty interior. Let d ≥ n ≥ 1, C be a closed, convex set in K1 with dimC = 

and x E C. Then C is called an unbounded cone with apex x if for any A > 0 and 

yEC\{x},we have x+A(y—x)EC. We define 

c(C) = V(Cfl(x+B0!))Xn 

Note that a(Ed) = 1. 

By Lemma 1.4.2, for any x intP there is a unique point ç(x) E bdP which is 

the closest to x among the points of P. Hence for z E bdP, we define C(z) to be the 

set of the points x 0 intP with 4(x) = z. Observe that C(z) is an unbounded cone 

with apex z. Let F be an at most (d - 1)-dimensional face of P and z E relintF. 

Then a(C(z)) is independent of the choice of z, and it is called the external angle 

y(F,P). We define 7(P, P) = 1. 

Let i = 0,... , d, P be a polytope with non-empty interior and Fi be the set of 

i-dimensional faces of P. Then 

V(F).y(F,P). 
FE 

We note that 

S(P) = 2Vd.1(P) = E . V 1(F), 
FE.F_j 

as one would expect. 

If CUK E then CflK 54 O and 

VZ(C U K) = V(C) + V2(K) - V(C n K). 
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Functions satisfying this property are called valuations. The definition of the intrinsic 

volumes yields 

LEMMA 1.8.1 Let d ≥ 1 and K E lcd. Then 

V(K + Bd) = ( ) ic_Vj(K) 
for i=1,...,d. 

Let K E K", H be a hyperplane and K' be the image of K by the reflection 

through H. In addition, denote the set of lines perpendicular to H by £(H). For 

A > 0, we define 

SII,A(K) = U{(1 - A) . (in K) + A. (1 fl K')Il EC(H) and 1 fl K 54 O}. 

Then SH,,..(K) is a compact and convex set. If A = then SH,x(K) is the Steiner 

symmetrization of K with respect to H. 

This symmetrization process has many useful properties. If u is one of the unit 

vectors perpendicular to H then 

I≥(SH,A(K),u) ≤ z(K,u). 

The next property can be found in [17] and [21]. 

THEOREM 1.8.2 

i) Let d ≥ 1, K E lc'1, H be a hyperplane and K' = SH,,\(K) for 0 < A < 1. Then 

V1(K') ≤ V(K) 

for any i=1,...,d. 

ii) Assume dimK = d. If i = d then we have equality above. If i < d then equality 

holds if and only if K is symmetric with respect to a hyperplane parallel to H. 
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COROLLARY 1.8.3 (Alexandrov-Fenchel) Let d ≥ 1, p > 0 and K E K. 

Then for i=1,...,d, 

i) if V(K) = V(pBd) then V2(K) ≥ V(pB'1), 
V(K)/d V(B0)u/d 
Vi (K) V(Bd) for dimK ≥ i. 

If dimK = d then equality holds if and only if K is a ball. 

We refer to this corollary as the Alexandrov-Fenchel inequality (this is a very 

special case of the original Alexandrov-Fenchel inequality). 

1.9 Intrinsic volumes of some specific convex bodies 

We have denoted V(B') by 'd It is well known (see [10], p.130 for an elegant proof) 

that 
d/2 

Md r(+iy 

With the help of F() = \/, (1) = 1 and (t + 1) = tr(t), one can actually 

calculate 1d for any d ≥ 0. In Chapter 4 we shall also need the recursive formula 

1 d+1 d Kd..1  

kd d+1 lCd2 

In [3], for d ≥ 1 the authors establish the estimate 

2ir rd-1 lcd /2ir 
d+1 << V7• 

It is easy to prove by the definition of the intrinsic voluthes that for i = 0,.. . , 

V1(Bd) = (d lcd  

\zJ lcd..j 

(1.6) 

(1.7) 

Recall that ellipsoids are affine images of .B°. This fact allows one to calculate 

(for i = d) or estimate (for 1 ≤ j < d) the iih intrinsic volume of an ellipsoid. 
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LEMMA 1.9.1 Let d ≥ 2, i = 1,. .. , d— 1 and M be a d-dimensional ellipsoid with 

half-axes a1 ≥ ... ≥ ad > 0. Then, 

i) V(M) = a1 •... ad Id, 

ii) a_j a• V(B) ≤ V(M) < a1 ... a V(Bd). 

Let d ≥ 2 and K be a cone with base C and height h. Fubini's theorem yields 

that 

V(K) = . Ii. Vd_l(C). 

Now we collect some information about simplices. Let C be a triangle with sides 

a, b and c, and a be the angle opposite to a. Then 

A(C) = 1 bc sin a. 

For d ≥ 2, we are interested only in the value of V(T"), i = 1,. .. , d. As the 

height of T" is hd = /2(d+1) one can establish by induction that 

V(Td) - i + 1 2i/2• 
it 

Note that jg° e 2 dt = . Hence we can define the function h : (-, ) —* R 

with the equation 
h(s) 

Jo C 2 dt S. 

In [18], H. Hadwiger was able to give a formula for V(T0), i = 1,. , d; namely, 

/d+1\ i+1 
V(T') = + i) i! 2i/2 . 

where (d, s) is defined for .s > 0 as 

(d, s) = J 1e_5 /F(112_i))J2 td_5 dt. 

(1.8) 

(1.9) 
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We note that the function f(t) = e_111(h/2_t))]2, 0 ≤ t ≤ 1, is concave and 1(t) = 

f(1 - t). In addition, f(0),= f(1) = 0 and f() = 1. 

Let C = 1/(1 + 2V7—re) = 0.09401 and 1 < s < Cd. According to [18], we have the 

upper bound 

___ ____ - 1 d— s\8 (ln2,_ d .9/2 

) ) 
With the help of these formulae, we can give bounds for V(Td). 

Finally we note that if 

P={Aluj+...+)dudI0≤)≤1 for i=1 .... d} 

for some independent u1,.. . , Ud then V(P) = Idet[ui,. . . 

1.10 Lattices 

(1.10) 

Let d ≥ 1. A discrete subset A of E' is called lattice if dimA = d and u ± v E A 

for any u, v E A. The letter A will always denote a lattice. In particular, Zd is the 

integer lattice. Considering references, [16] is a handbook on this topic, and [7] is a 

more accessible introduction which browses through the most important facts. 

The independent vectors u1,. . . , ud E A form a basis of A if each w E A can 

be written as a linear combination of U1,. . . , ud with integer coefficients. The ma-

trix {u1,. . . , ud] is called a basis matrix of A. Every lattice has some basis and let 

U1,. . . , Ud be a basis of A. For a linear transformation T, the vectors T(ui),. . . , T(ud) 

form a basis of A if and only if T is integral and det T = ±1. In particular, the de-

terminant of any two basis matrices of A may differ only in the sign, and we define 

detA = det[ui,. . . ,Ud]J. 
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The parallelotope 

is called a fundamental parallelotope of A. Observe that V(P) = detA. The next 

lemma follows via Hadamard's inequality. 

LEMMA 1.10.1 If v1,.. ., vd are independent vectors of the lattice A in Ed then 

detA < Ilvill '•. IIvdII. 

To each lattice A in E' assign a basis matrix A(A) of A. Let {A} 0 be a 

sequence of lattices. We say that {A} 0 converges to the lattice A, if there is a 

basis matrix Bn of each An so that {B} - A(A) in GL(d), which in turn yields that 

{detA} —+ detA. If there exists such a A then the sequence {A} 0 is convergent. 

The lattice A is (e, D)-bounded for some e, D > 0, if detA ≤ D and I u  ≥ e for 

any non-zero u € A. The sequence {A} 0 is bounded if there exist e, D > 0 so that 

each A is (s, D)-bounded. 

THEOREM 1.10.2 (Mahler) If { Aa } is a bounded infinite family of lattices then 

the family contains a convergent sequence of pairwise different lattices. 

A lattice A is' called packing lattice if Jul ≥ 2 for any non-zero u E A. The 

following theorem is due to H. Minkowski. 

THEOREM 1.10.3 (Minkowski) There exists a packing lattice A in E', d ≥ 1, 

with detA < 2d 
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Actually, the Minkowski theorem is somewhat stronger, but this form is more 

convenient for us. Finally, we quote a simple result which belongs also to the realm 

of integral geometry. 

LEMMA 1.10.4 Let d ≥ 1, K E lCd and A be a lattice. Then there exists a point 

x such that 

IKfl(x+A)I≥ V(K)detA 

For a lattice A and x E Ed, the set I' = x + A is called a grid. 

1.11 Packings 

Let d ≥ 1. A set {K} of convex bodies of Ed is a packing if intK1 fl intK = 0 for 

i 54 j. The packing is called a tiling if U{K} = Ed. Besides the works quoted in the 

previous section, we refer to [5] and [26]. The book [10] is a beautiful introduction into 

the two- and three-dimensional case but we concentrate rather on high-dimensional 

spaces. 

A discrete set E is a packing set if E + Bd is a packing. In other words, E is the 

set of the centers in a packing of unit balls. Observe that every packing lattice A is 

a packing set, and we call the set x + A a packing grid. 

Let E be a packing set and for ,\ > 0, define 

EA ={x E EIx+BdC WA}, 

where WA is the cube [_), )] d. Note that V(WA) = 2dd The upper density 

and the lower density L(E) of the bail packing E + B' are defined as 

8+(E) = 11m sup  and L(E) = liminf 
A-400 2\d 

IEAI 

6+(E) 
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If 6i(E) = 6_(E) then the common value is the density of the packing (in notation 

6(E)). 

A packing set E is called a periodic packing set if there is a finite set {x1,. . . , x} 

and a ). > 0 so that E = {x1,. . . , x} + 2A Zd .  Then W), is a fundamental cube of the 

periodic packing and we may assume that xi E W. 

LEMMA 1.11.1 Let E0 be a finite subset of W with the property that E = E0 + 

2AZ'1 is a periodic packing set. Then 

lEol  
8(E) = 2dAd 

Note that for any packing set E and s > 0, there is a periodic packing set E' such 

that 6(E) < 8(E') + E. The packing density is defined as 

= sup{8+(E) I E is a packing set}. 

It follows that 

= sup{8(E) I E is a periodic packing set}. (1.11) 

If A is a packing lattice then 6(A) = detA By Mahler's selection theorem, there 

is a packing lattice A0 such that 

6(Ao) = max{S(A)IA is a packing lattice}. 

We call 8d = 8(A0) the density of the densest lattice. Readily, we have 8d ≤ 6d 

If d = 2 then 82 = 62 = = 0.90689. This density is attained by the 

hexagonal lattice packing. This lattice has basis vectors u and v so that conv{u, v, 0} 

is congruent to T2. - 
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For d ≥ 3, let Dd be the sublattice of Zd defined by 

Dd = {(x1,... Ix d)  E ZdI ... + is even}. 

31 

If d E 13,4} then the lattice i../Dd determines the densest lattice packing of unit 

balls in Ed (\/ D3 is known as the face-centered cubic lattice). It follows that 

83 ≥ 33 = 8(\/D3) = 0.74048 and 84 ≥ 84 = 8(v'D4) = 0.61685. 

If d is large then 

2 ≤ '5d ≤ Sd < 2_O.599d+o(d) 

Minkowski's theorem yields the lower bound, and the upper bound was proved in 

[19]. 

1.12 Summary of the results 

Let 9,d, be the set of all C E JC' in Ed such that there is a packing of n unit balls for 

which the center of the balls contained in C,. In the dissertation we also consider 

the subfamily Wd .f all C € for which the corresponding packing can be chosen 

to be a grid packing. Here we do not quote the results about Wd since most of them 

are analogous to the results about . 

We denote by P the minimal body in 9nd with respect to the ith intrinsic volume, 

i = 1,.. ., d; that is, 

VZ(7' + Be!) = min{V(C + Bd)I C E 

We call a packing of n ≥ 2 unit balls a sausage arrangement if the convex hull of the 

balls is a segment with length 2(n - 1). 
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The main results of Chapter 2 are Theorem 2.5.1 and its corollary. The Theorem 

states that if i = 1,. .. , d - 1 and n approach infinity then 

V2(7' 7, + Bd) T/(Bd) i/d 

This yields (see Corollary 2.5.2) that for i < d - 1, 

lim r(Pd) 

i R(7'f,1) = 1. 

Some of the lemmas leading to the proof of the Theorem may have independent 

interest. For example, Lemma 2.1.1 shows that not only cubes can be used in the 

definition of the density of a packing. 

Chapter 3 and Chapter 4 deal with packings of n ≤ d+ 1 of balls. With respect to 

the first intrinsic volume, the minimal bodies seem to be regular simplices. According 

to Theorem 3.3.7, dim7' ≥ 2 for n. = 3,. . . , d + 1; moreover, dim7', ≥ ! In n if 

n is large. On the other hand, if dimP ≥ n - 2 then T' 1. Our probably 

most interesting tool is Lemma 3.3.2 which says that 'closing' a simplex decreases 

the first intrinsic volume. 

In Section 4.1, we prove (Theorem 4.1.1) that 24 T3. The considerations in 

Section 4.2 indicate that for small n, is probably either a segment or a regular 

simplex. We compare these two arrangements for n = d+ 1 in Section 4.3. According 

to Theorem 4.3.1, the regular simplex arrangment of d+ 1 unit balls is more optimal 

than the sausage arrangement for i < d°.,'+0('), and the sausage arrangement is more 

optimal for i > d° 5 °('). 

Probably, the questions raised in Chapters 2-4 have not been studied so far. As 

a contrast, the Sausage Conjecture of L. Fejes Tóth, which is the topic of Chapter 5, 
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has received much attention in the past 10 years. It states that P is a segment 

for d ≥ 5 and for any n; or in other words, the sausage arrangment is the densest 

arrangment of n unit balls for d ≥ 5. 

Let d ≥ 5 and C, be the convex hull of n unit balls which form a packing. It 

has been proved previously that if either dimC < W(d) for a certain W(d) or 

is almost a ball (see p.l'13) then the packing has lower density than the sausage 

arrangement. Note that (d) d. We narrowed the gap between the two type of 
12 

results in Theorem 5.3.2 and in Theorem 5.3.4. Namely, the sausage arrangment is 

more optimal than the packing corresponding to Cn if either TcD(d)(Cn) > O(ln did) 

or R,(d)(Cn) > O(lnd). 



Chapter 2 

The ith intrinsic volume, 1 < i ≤ d - 1 

In this chapter, we assume d ≥ 2 and 1 < i < d - 1 (several results also hold for 

i = d, and this is mentioned where needed). 

This chapter focuses on packings of large number of balls and serves as a prelude 

for the third and the fourth chapters. Let C be the convex hull of the centers of n 

unit balls in a packing, ii large. We show that if the ith intrinsic volume Vi (C"+ Bd) 

is minimal then Cn is ball-like, i = 1,. . . , d - 1. 

We recall from Chapter 1 that a packing set E is the set of centers of unit balls 

in some packing. If in addition, E is a lattice or a grid then it is called a packing 

lattice or a packing gid, respectively. The theme of Chapters 2, 3 and 4 originates 

from the following problem: 

Let E be a packing set. Find non-negative numbers Aj, i = 0,. . . , d, such that 

for any K E jCd and E, 
d 

V1(K) ≥ IEnKl. 

The required property of the numbers Xj can be stated in a slightly different way: 

Let n ≥ 1 and gd be the set of all Cn E lCd such that there is a E with I En cn ≥ n. 

Then 
d 

inf > AVi(C)≥n. 
CThE 

Frequently one puts some restrictions on E; for example, it is a packing lattice 

or E = 2Z!. This problem has been investigated since the late sixties mostly by H. 

34 
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Hadwiger, J. Wills, P. Gritzmann, and others. In spite of the effort that has been put 

into these investigations, no satisfactory coefficients are known for any reasonable 

E. That inspired us to work with the minimum properties of the individual intrinsic 

volumes, and the second version of the original problem. Notice that if C,, is the 

segment of length 2(n - 1) then Cn E 9nd and V2(C) = 0, i = 2,.. . , d. Hence we 

minimize VZ(C + Bd) instead of V(C), for Cn E gd and given 1 ≤ i < d. 

2.1 Packing sets contained in a compact, convex set 

Fix a K E V. If a packing set E is contained in K then F, + Bd C K + B'1 and this 

yields that 

II ≤ V(K+B'1)  
Nd 

Thus we define v(K) as the maximum cardinality of the packing sets contained in 

K. In addition, v(K) is the maximum value of n such that there exists a packing 

grid r satisfying jr fl KI = n. Readily, P(K) < zi(K). 

As an example, consider the ball rB'1. Minkowski's theorem states that there is 

a packing lattice A with detA < 2"i. Applying Lemma 1.10.4 for A yields that 

P(rB'1) > ! L r' 
- 2'1Fc = 

(2.1) 

The following lemma is a generalization of the definition of the packing density. 

Assume that the inradius of K E /'1 is large and consider a packing of maximal 

number of unit balls in K + B'. The lemma yields that independently of the shape 

of K, the density of this packing is close to 8. Remember that in the definition of 

the density of a packing, we used only cubes. 
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Figure 2.1 

A periodic packing by a tiling 
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LEMMA 2.1.1 Let {Km} be 

V(Km)Fid  - 

V(Km +B') - 

i7(Km)hd  

V(Km +Bd) 

i) 

ii) 

a sequence of convex bodies with r(Km) - oo. Then 

Sd. 

Remark: The second statement was proved, for example, in [16]. 

Proof: We prove i) and observe that ii) can be proved similarly by replacing 

with 3d, and any packing set with a suitable subset of a packing grid. Recall from 

Chapter 1 that WA is the cube [—A, )] d and has volume 2d 

In the proof, our main tool is to consider the tiling of the space with copies of 

WA, A large, and also periodic packings determined by the tiling (see Figure 2.1). Let 

K E ICd such that r(K) is large even compared to A, and pack some unit balls into 

K + B  with density 5. There is a copy of WA, say exactly WA with the property 

that the subpacking of the balls whose center is in WA has density almost S in WA+1 

(see Figure 2.2). This finite packing yields a periodic packing having W 1 as a 

fundamental cube, and consequently has density close to S. 

We will frequently make use of the following (see Figure 2.3). 

Let E C 2AZ°, A > 0, and 

CQCE+WAcCl 

for CO, C1 E V. Then V(C0) ≤ II V(W,) ≤ V(C1) and hence 

V(Co) <lEt ≤ V(C1)  
2dAd 2dA 1 

(2.2) 

Let 0> 8d. We prove that there is a g > 0 such that if r(K) > e for a K E ACd 

then 

v(K) K  

V(K+Bd) < 
(2.3) 
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Subpacking with high density 
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Tiles which are contained in C1 and cover Co 
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which in turn yields by the arbitrariness of 0> Sd that 

urn sup 
V(Km)  

≤Sd. 
m- V(Km + Bd) 

Choose 01 and 02 so that 

0> 01 > 02 > 8d, 

positive e and A with the property that 

A  02 

(A + i)d> 

and finally a e satisfying 

and 
1  01 

(l+e)d > O 

D(WA) < U 

Let K € JC' and assume that r(K) > o. Then 

D(WA) < s . 

(2.4) 

(2.5) 

and hence K is 'much larger' than WA and has the property that there is a packing 

of unit balls in K + Bd with high density. 

We prove that K satisfies 2.3. Assume to the contrary that 

  >0 26 
V(K+Bd)  

We construct a periodic packing of unit balls having density greater than Sd, which 

contradicts the definition of the packing density. Translate K so that 

r(K) B' C K. 

Let us consider the cubes in the tiling determined by WA which intersects K (see 

Figure 2.4). The union of those cubes covers K. Denote the set of midpoints of 
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Figure 2.4 

The tiles intersecting K 
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these tiles by III and let y E (x + WA) fl K for some x E H. It follows by 2.5 (see 

Figure 2.5) that 

x+WA c y+D(WA)BdCK+e. r(K)Bd 

C K+e.KC(1+6)(K+Bd). 

We have shown that if (x + WA) fl K 0 0 then x + WA C (1 + e)(K + Bd). Hence, 

H1 + WA = UXErJl{x + WA} C (1' + 6)(K + B°), and by 2.2, the number of tiles 

intersecting K is 

liii < (1 + e)dV(K + Bd) 
- 2dA 

(2.7) 

By definition, there exists a packing set E1 contained in K with I Ej I = zi(K). Those 

v(K) points are contained in the III,I cubes of ll + W), (see Figure 2.4) and hence, 

one of those cubes contains at least jrjj I points of E. We may assume that WA is 

that particular cube, and denote by E2 the subset of Ei contained in WA. By 2.7, 

dd 

IF12 11111 - (1 + 6)dV(K + B'1) 

The definition of r12 yields that 

E2+BdC WA+BdC WA+1. 

Thus, with the help of the tiling of copies of WA+1, we form the peribdic packing set 

E3 = {x + E2tx E 2(A + 1)Z'1}. 

By 2.8 and Lemma 1.11.1, the density of E3 is 

8(E3) 
- IE2I.i d  
- 2'1(A + i)d 

>  v(K) . Id  

- (l+e)dV(K+Bd) 2(X+l)d 

>oO; 02 
O2>Sd. 
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Figure 2.5 

Any tile which intersects K is in (1+e)K 
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This contradiction proves 2.4. 

On the other hand, we prove that 

h• z'(Km ).!cd 
minf > o- (2.9) 
m-*oo V(Km+B) 

for any fixed 0 < U < Sd. Combining with 2.4, this yields the lemma. In the course 

of the proof of 2.9, we redefine the quantities K, and A. We construct a packing 

set of high cardinality contained in Km, m large, using a periodic packing of high 

density. 

Choose a c1 satisfying c < cr1 < Sd and a 0 < s < 1 with 

(l_6)d+1> a 

O.i 

By 1.11, there is a periodic packing with density greater then o-. Let WA, ). > 0, be 

a fundamental cube of it and denote by E4 the centers of the balls contained in WA. 

According to Lemma 1.11.1, 

E41 I%d  
2dAd >cr1. 

Let M be an index such that if in > M then 

and 

D(WA) < e • 

V(Km)  
V( d) >' 

(2.10) 

The conditions can be fulfilled because r(Km) 0° and r(Krn+BcZ) is less than 1 and 

tends to 1. We use the condition on D(WA) to ensure that if a cube, congruent to 

WA, intersects (1 - e)K then that cube is contained in K. Let K = I for some 

rn> M and r = r(K). We translate K so that 

r(K)Bd c K. 
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Suppose that a cube in the form of x + W, intersects (1 - 6)I and y is a point of 

the intersection. Then by 2.11 (see Figure 2.5), 

x+W, C y+D(WA)BdC(1_e)K+e.rBdl 

C (1—e)K+eK--K. (2.13) 

In the tiling of W, keeping E4 inside, consider those tiles which intersect (1 - e)K 

(the situation is similar to that in Figure 2.4, only one replaces K by (1 6)K and 

(1 + &)K by K). They cover (1 - e)K and hence by 2.2, there is at least v((i)ri) of 

2dAthem. On the other hand, they determine the packing set 

Es={x+E4lxE2AZd and (x+W)fl(1-6)KLO} 

which is contained in K by 2.13. It follows that 

u(K) ≥ E51 ≥ IE4I (1 _6)dV(K) 
2dA 

Combining this inequality with 2.10 and 2.12 yields that 

v(K)  IE4I(1 - e)dv(I)  Xd  

V(K + Bd) ≥ 2d\d V(K + Bd) 

≥ o(1e) V(K) V(K +BO!) 

≥ 7(le)d(l_e) 

Thus by the choice of e, 

v(K) Id  
>cr 

V(K +Bd)_ 

which proves 2.9 and the lemma. 

0 

In Chapter 5, we use the inequality 2.3 in the following form: 
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COROLLARY 2.1.2 For any a < Pcd/Sd there is a ê(a) so that if r(K) > (a) 

them 

V(K + Bd) > a - zi(K). 

2.2 General and grid packings 

We have seen in Section 2.1 that 17(K) ≤ v(K) for any K E /( d• We give a K E kd , 

at least for odd d ≥ 3, with the property that dimK = d and 17(K) < zi(K). Up 

to the point where we need the restriction that d is odd, the only restriction on d is 

that d ≥ 2. 

Let T be a copy of Td such that the origin is a vertex of T, and denote the other 

vertices by u1,.. . ,u. It follows that lud = 2 and < u,uq >= 2•2 cos(ir/3) = 2 

for 1 ≤ j < j < d. Let v = 2 ui and define U° = conv{O, U1,.. . , ud, v}. As 

ui is the center of conv{u1,. . . , u} Td-1, Ud is congruent to the union of 

two copies of T' whose intersection is a common face. 

By symmetry, d(O, v) is twice the height of Td, and hence d(O, v) = 2 /2(d+1) > 2. 

Consequently the vertices of U' form a packing set, and z.'(U') ≥ d + 2. 

If x is a point of T, different from all its vertices, then d(x, 0) and d(x, u) are 

less then 2 by Lemma 1.5.5, and hence d(x, y) <2 for any y E T. This observation 

yields that the only way to have a packing set of cardinality at least 3 in Ud is if all 

the points are vertices. 

It follows that u(Ud) = d+ 2 and if p(U0!) = d + 2 then there is a packing lattice 

A with u1,.. . , ud, v E A. Assume now that d is odd. Then (d - 1)/2 is an integer, 
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and 

d - d— 1 = = d Eui - d— 1 d 1d 

d Eui 

is a point of A, different from the origin. As Iwl is just the height of Td, we have 

Iwl = \/2(d+1) < < 2. This contradicts the assumption that A is a packing 

lattice, and hence i(U'1) < d + 2. 

Actually 1(Ud) = 17(Td) = d+ 1. We prove it by showing that the lattice A0 with 

base u1,. . . , ud is a packing lattice. Let m1,... , Md be integers, not all of them 0. 

Then for x = E41,miui E A0, 

d d 

x12 = E mu +2 mm1 < ui, uj >= 4( m + mm). 
i=1 L<i<j<d i=1 1<i<j<d 

Since' x2 is a non-zero integer, divisible by 4, we have lxi ≥ 2. Then I - zl = 

d(y - z, 0) = d(y, z) yields that A0 is a packing lattice. 

How much smaller can (K) be than u(K)? We claim that there is a positive 

constant c(d), depending only on d, such that c(d) . v(K) V(K). The constant we 

give is probably much worse than the best possible one but we are interested only 

in the existence of c(d). 

Let K E )CI and U(K) be the ith inner Quermassintegral of K; that is, 

U(K) = max{V(K fl E)E is a i-dimensional affine subspace}. 

We may write 'max' because of Blaschke's selection theorem. U(K) is readily mono-

tonic in K, and if A > 0 then U(AK) = AU(K). Also, by the monotonicity of the 

intrinsic volumes, U(K) ≤ V2(K). 

We want to have some upper bounds for the ratio of V(K) over U1(K). Here we 

consider the case where K is an ellipsoid. 
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LEMMA 2.2.1 Let 1 ≤ i < m and M be a rn-dimensional ellipsoid. Then 

(M) m   (i) i U(M). 
i 'tm-i \ 

Proof: Let M be the ellipsiod in Em with the equation 

(x 1)2 (X m)2 

a2 am m 

The i-dimensional coordinate subspace = ... = Sm = 0 intersects M in the 

i-dimensional ellipsoid N with axes a1,. . . , a, and hence, by Lemma 1.9.1, 

U(M) ≥ V1(N) = ri • a1 ... a. (2.14) 

On the other hand, Lemma 1.9.1 yields that 

rn 
1/1(M) ≤ V(Bm). a1 •... a = m ( i) a, ... a. 

Combining this with 2.14 yields the lemma. 

0 

THEOREM 2.2.2 Let d ≥ 2. There is a positive constant c(d), depending only on 

d, such that c(d) . v(K) ≤ v(K) for any K E lCd. 

Proof: Note that v(K) ≥ 1 for any K E lCd. Hence let n = v(K) ≥ 2, rn = 

dimK < d and assume that K is contained in Em. By the definition of u(K), we 

have 
m 

T, icm jVz(K) = Vm (K + Btm) ≥ n - 
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Then V0 (K) = 1 yields ET, im_iVz(K) ≥ ( 1) m, and hence there is a 1 ≤ i < m 

with the property that 

ii m_iVz(K) 

Finally, n - 1 ≥ n yields that 

Vi (K)≥ 

(n - 1)/em. 

/im fl_i>  'm  
'cm—i m - 2m1cm _j 

(2.15) 

By Theorem 1.5.4, there is a rn-dimensional ellipsoid M such that after a suitable 

translation, 

MCKCmM. 

It follows that 

Vi (K) < V(m• M) = rnV(M) 

'm  (m) U(M) rn ' m  (m) U(K). 
i 'em-i rvi 'sm—i 

Let 

(2.16) 

/ rn \ \-1 gm Ic f / rn -1   .J   =  . I. 
\ m. I 'mi f \ 2 J 2mlcm_j 2 mz+l \ j 

Combining 2.15 and 2.16 shows that there is a i-dimensional section C of K with 

and hence 

tCm _i  2 

Ic7n  
Vi (C)≥ 12, 

Vi (C) ≥ (m,i).n. 

Translate K again, now in order to have the origin contained in C. According 

to Minkowski's theorem, there is a i-dimensional packing lattice A in affC with 

detA ≤ Hence, by Theorem 1.10.4, 

v(C) ≥ vi (C) > (rn,i) n. 
2j, - 21i 
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At the moment our constant depends on m and i. Let c(d) = Mini <j<m<d{c}. 

Then c(d) is positive and as 17(K) ≥ v(C), it follows that 17(K) ≥ (d) . n. 

0 

Our, estimates are very rough. For example, we essentially used the inequality 

i: IcmzV(K) ≥ v(K) 

for K E Ktm. A conjecture (see [14]), which may not befar from the truth, suggests 

that 

E V(K) ≥ v(K) 
i=O Ki 

for any K E Km. Here o'j is Rogers' constant (see [26]), and ai 2—i/2 for large i. 

2.3 Radii and the intrinsic volumes 

Let K € V. In this section, we investigate how the relation between V(K) and 

17,(K), i = 1,...,d-1, affects the shape ofK. 

Assume dimK = d. Let u be a unit vector such that the width A (K) of K is in 

the direction of u. Consider a hyperplane H orthogonal to u and denote by K* the, 

Steiner-symmetrization of K with respect to H (see Figure 2.6). There exists a right 

cylinder containing K' and having a base which is a translation of C = K" fl H and 

height at most A(K). It follows that 

V(K*) Vd_l(C) L(K). (2.17) 

Let 1 ≤ i ≤ d - 1. The Alexandrov-Fenchel inequality can be formulated as 

Vd..l(C) ≤ C1 - 
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A(K) 

Figure 2.6 

Steiner symmetrization 
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where c1 is a constant depending only on d and i. Substituting this inequality into 

2.17 yields that 

V(K*) ≤ c 

≤ c V(K*)iL (K) 

According to Theorem 1.8.2, we have V(K*) = V(K) and V1(K*) ≤ V1(K). It follows 

that 

V(K) ≤ c Vi(K)i(K). (2.18) 

By Theorem 1.5.3, there exists a constant c2 with the property that 

L(K) ≤ c2 r(K). 

Combining this inequality with 2.18 yields 

LEMMA 2.3.1 Let d ≥ 2 and 1 ≤ i ≤ d - 1. Then there exists a constant c such 

that 

V(K) ≤ c• V(K)r(K) 

for any K E Jd 

Notice that if dimK < d —1 then V(K) = 0 and any positive constant c satisfies the 

Lemma. 

Let K E jd and 1 ≤ i < d - 1. The Alexandrov-Fenchel inequality yields 

an upper bound for V(K) if V(K) is known. The previous lemma refines it by 

taking also the inradius into the picture. Now we consider another extension of the 

Alexandrov-Fenchel inequality, giving an upper bound for VI7  in terms of the 

ratio of the inradius and the circumradius of K instead of the constant V(Bd)tRv1(Ed) 

This result is an improvement if the inradius is much smaller than the circumradius. 
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LEMMA 2.3.2 Let 1 < i < d— 1. Then there exists a positive constant such that 

r(K)  11(K) V(K) (V(K)ild)d V(K) 
V2(K)d 

for any K E lcd with dimK ≥ i. 

The inequality is readily true if dimK < d, and hence assume dimK = d. In 

addition, we assume that r(K) B° C K and also 11(K) = 1 (since taking .AK instead 

of K with a positive ). does not change the inequality). By Theorem 1.5.2, there are 

x,y E K (see Figure 2.7) with I y < I x I and 

d(x)y) ≥ 2(d+ 1 11(K)> . 

Hence lxi ≥ //2 because of the triangle inequality. 

Consider now some (i-1)-dimensional subspace through the origin, perpendicular 

to x. The intersection of the subspace and r(K)B'1 determines a i-dimensional cone 

C having height lxi ≥ '/2 and base congruent to r(K) B 1 (see Figure 2.7). That 

cone yields that 

(K) ≥ V(C) ≥ 1 Tz1 r(K)' = (K) 

for the obvious c3. According to Lemma 2.3.1, 

V(K) < c. Vi(K) 1 . r(K) 

for a suitable c. Taking the ith power of this inequality and using 2.19 yield that 

V(K) < c Vj(K)'r(K) = c Vj(K)'r(K) . 

< ci. V(K) 1r(K) Vi (K) = -. V2(K)dr(K). 
C3 C3 

(2.19) 
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Figure 2.7 

An i-dimensional cone contained in K 
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Since R(K) = 1, the lemma follows. 

0 

With the help of the previous lemma, we strengthen the equality case in the 

Alexandrov-Fenchel inequality. 

LEMMA 2.3.3 A sequence {Km} of convex bodies has the property 

V(Km )1d V(B1d . and only . if 1. r(K,,) _ 

Vi(Km) V1(B) if R(Km)  

Proof: Let Cm = R(K7n) Km and assume that it contains the origin. Then r(Cm ) ≤ 

R(Cm) = 1 and we need to show that 

V(C )i/d V(B1d 
Vi (C.) vi(Bd) if and only if r(Cm) 1. (2.20) 

First we establish the necessary part. Let p = liminfm.+ r(C,,,). By Blaschke's 

selection theorem and the continuity of the inradius, we may assume that Cm .) C 

for some C E /C'1 with r(C) = p. We note that the circumradius is also continuous 

and consequently R(C) = 1. 

2.20 and Lemma 2.3.2 yield that 

r(C) = lim r(Cm) ≥ lim 
m-400 m-oo 

(V(Cm)1'1'\ '1 

V(Cm)) 

- - (V(B d)i/d ) d V2(B'1)  
Hence r(C) > 0, which in turn ensures that V(C) > 0. Thus by 2.20; the continuity 

of the intrinsic volumes and Cm - C yield that 

V(C)uI V(Cm)1° — V(B')/°  
== lim V(C) -- i(C)  Vi (B 
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Now by the equality case in the Alexandrov-Fenchel inequality, C is a ball. Hence 

p = 1 and r(Cm) tends to 1. 

In order to prove the sufficient part, first observe that for any convex body K, 

denoting r(K) by r and R(K) by R, 

V(rBtd :≤ V(K)u/d ≤ V(RB 1° and V(rB') <V(K) < V(RB"). 

These inequalities, with Cm = K, yield that 

V(B1d < V(Cm )1d < R(Cm) V(B 1°  

R(Cm) . Vs(Bd) -  V, (CM)(Cm) . V(Bd) 

Since   = r(Cm) tends to 1 V(Cm)/d is forced to tend to   
vi(cm) V1(B') 

0 

2.4 Minimal bodies 

Let m ≥ 1 and he the family of all K E /Cd with the property that K contains 

the centers of n balls, which then form a packing in K + Bd. In other words, 

gd = {K E /Cdly(K) ≥ n}. 

Considering n-ball packings which are part of a grid packing, define 

= {K E /Cdj(K) ≥ n}. 

Notice that 'Hd C . The considerations of this section also apply for the case 

i = d. Hence, let 1 ≤ i ≤ d and ?9.4n be the infinum of the ith intrinsic volume of 
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the convex hull of n-ball packings, and denote by the corresponding infimum for 

grid packings. In other words, 

idq = inf{V2(C, + Bd)ICn € } 

i,nand & = inf{V(C + Bd)ICn E 7I}. 

i,nReadily i9 ≤ 

Actually, one may write 'mm' instead of 'inf' in the definitions. We argue this 

for the case of gridpackings, and indicate the argument for general packings. 

If n = 1 then C, may be a point and gzq,n = V6(Bd). Hence assume n > 2. 

Consider a sequence {K} of elements in 'Hd,, satisfying 

We may assume that the origin is contained in each of the K1's and that there is a 

packing-lattice A1 with I A1 fl K1 I ≥ n for every j. 

Our goal, using Blaschke's and Mahler's selection theorems, is to find K E 7 

with the property that = V(K). In order to use the theorems, both {K1} and 

{A1} have to be bounded. If D(K3) approaches infinity then V(K1 + Bd) also tends 

to infinity, and, by the Alexandrov-Fenchel inequality, V2(K1 + B") becomes large 

and does not approach Thus the sequence {D(K1)} is bounded, and we may 

apply Blaschke's selection theorem. 

Turning to {A1}, we do some preparations. Since the intrinsic volumes are mono-

tonic, we assume that 

K1 = conv(A1 fl K1), 

and, taking a suitable subsequence if necessary, that dimKj = m for some 1 ≤ m < d. 

Finally, we rotate the K1 's so that they are all contained in some Euclidean subspace 
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Em. We note that 

A,=A3nEtm 

is a packing lattice in Em. 

If rn < d then those vectors of Aj which are not in Em may be arbitrarily long. 

Hence {A} is not necessarily bounded. On the other hand, for an index j, let 

Vj. .. , Vm E A fl 1fj be independent. Then by Lemma 1.10.1, 

detA < lvii ... v,, < D(K1)m. 

Since A is a packing lattice and detA is bounded by the boundedness of D(K1), 

also the sequence {A} is bounded (in Em). Combining Blaschke's and the Mahier's 

selection theorems yields that, taking a suitable subsequence if necessary, K —+ K 

and A — A' (see Figure 2.8), where K E ICtm and A' is a rn-dimensional packing 

lattice. We also have iKflA'I ≥ ii. Notice that A' can be extended to a d-dimensional 

packing lattice A with A fl Btm = A'. Let Q = K. Then Q E fl, and by the 

continuity of the intrinsic volumes, 

V2(Q + B") 

If the sequence {K } is chosen from gd with 

V(K + B") ,. 

then again D(K) is bounded. Combining Blaschke's and the Bolzano-Weierstrass 

theorems yields a subsequence converging to a P,", E ; that is, an element of Gn 

satisfying 

V1(P + B") = 
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Convergent sequence of packing lattices 



CHAPTER 2. THE ITH INTRINSIC VOLUME, 1 ≤ I ≤ D —1 60 

Notice that there may be more minimal bodies in gd or in 'Hnd for a given i but we 

choose only one of them. 

We now collect some basic properties of /' and Q. Let n ≥ 1 and note that 

i,nthere exists a packing set E C P with 

El = "(7') ≥ n. 

Then convE E gdand convE + B° C 7' + Bd. Since the intrinsic volumes are 

strictly monotonic on the space of convex bodies, the minimality property of P 

yields that P + B' = convE + Bd and consequently that 

= convE. 

If I El is greater than n then remove an extremal point of 2, and denote the resulting 

set by E' (see Figure 2.9). Then for C = convE', v(C) ≥ IE'I > n and C is strictly 

contained in 7) . This implies that VZ(C + B") < V(2 + B"), which contradicts 

i,nthe minimality of V2(7' + B"). Therefore, 

= IEI 

Assume that E ={X 0,.. . , x.i} and x0 is an extreme point of 7'. If d(xo, x) > 

2 for any i = 1,. . . , n - 1 then move x0 into relint 'P to a position x so that still 

z,nd(x, x) > 2. The convex hull C' of the points x, x1,. .. . xi is strictly contained 

in because x0, being an extreme point of is not in C'. This yields the 

i,ninequality V2(C' + B") < V(P + B") which can not hold bi,n y the definition of P. 

Therefore, for every x E extPi,n' there is a y E E with d(x, y) = 2. 

Similar considerations can be applied to Q. They yield a packing grid r such 
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Figure 2.9 

A minimal body and the corresponding packing 
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that E0 = F fl Q satisfies v(Qf) = IE0I = n and Q = convE0 (the assertion 

about the extreme points of pid may not have an equivalent for Q). 

Next, we give some bounds for 79%q,n and . As a reference, we mention that 

V2(Bd) = (d'\rt, d  

I nd—i Gd 
THEOREM 2.4.1 Let 1 <i < d and n ≥ 1. Then 

V(Bd) i/d < çl < 3t . V(Bd) i/d 

Proof: Any C E has the property that 

V(C + B') ≥ n V(B') = V(rih/dBd). 

Hence the Alexandrov-Fenchel inequality yields that 

V2(CTh + Bd) ≥ V(nh/dBd) = v(B'1) 

Turning to the upper bound, define r = 2n ≥ 2. According to 2.1, 

17(rBd) ≥ = 

which yields that rBd E '7-. It follows, by the definition of r, thatild 

i < V(rB'1 + B') = V(Bd) . (r + l)i 
,n - 

= Vj(Bd).(r+1)   

In the final expression, r ≥ 2 yields that 

(r+ 1)' = (2+ ≤ 3, (2.21) 
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and the upper bound is established as well. 

El 

One can easily improve the bounds for large n. For example, since r = 2n 1/d 

tends to infinity, 2.21 also yields that 

d,n < (2 + E (n))i . V2(Bd) 
i -  

where 6(n) —+ 0. But in the next section, at least in the cases i = 1,.. . , d — 1, we 

give even the exact asymptotic behavior of and i. 

2.5 Packings of large numbers of balls 

In this section we exclude again the case i = d. We mention later why the consider-

ations do not apply for this case. 

Let 1 < i < d - 1 and r(n)B'1 be the smallest ball contained in gd . We prove 

that for r = r(n), the density of the n-ball packings contained in rB' + Bd tends to 

8d. In other words, 

n V(B°)  
V(rBd+Bd) 

Taking the (i/d)th power yields, after some rearrangement, that 

V(rB' + 11/d 

V(]3d1)u/d 

Observe that for p> 0, 
V(pB/° — Vj(pBd) — - 

V(B/d — P  V(Bd) 

Substituting this into 2.22, with p = r + 1, results in 

V(rB° + Be!) n i/d V2(B'1) 

(2.22) 



CHAPTER 2. THE ITH INTRINSIC VOLUME, 1 ≤ I ≤ D —1 64 

We prove, with the help of the Alexandrov-Fenchel inequality, that r(n)B' is a good 

approximation for P (or for Q); that is, 

THEOREM 2.5.1 Let d ≥ 2, 1 ≤ I < d - 1 and n approach infinity. Then 

i) V(B) . 

v(13d) i/d 

Proof: We present the proof only for 1). It can be done similarly for ii), with the 

natural change of notions. The definition of r(n) is equivalent to 

r(n) = min{rIv(rB') ≥ n}. 

Readily r(n) tends to infinity, and we may assume that n is large enough to ensure 

r = r(n) > 3. Observe that u(rB'1) may be greater than n. Yet, as we prove it 

soon, v(r(n)B'1) 

There exists a packing set E, contained in r(m)Bd, with the property that InI = 

zi(rB") ≥ n. Denote by E the set of those points in E which are not in (r - 1)Bd 

(see Figure 2.10). Then 

E + B d  C (r + 1)B '\(r - 2)Bd, and 

< V((r + 1)B d) -  V((r - 2)Bd) = (r + i)d - (r - 2)d. 

Kd 

Since IE fl (r - 1)B'I < n by the definition of r(n), we have 

u(rBd) <n +(r+1)d(r _2)d, 

which in turn yields 

zi(rB'1) - (r + 1)d + (r - 2)d <n < u(rBd). (2.23) 
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Figure 2.10 

The points of En in r(n)Bd 
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Observe that 

urn (r+l)d_(r_2)d 
  =0. 

(r+l)d 

It is time to recall Lemma 2.1.1. It follows that 

which is equivalent to 

urn  zi(rBd) 
V(rBd + Bd) = 

v(rBd) 
lim  = 

Combining this fact with 2.23 and 2.24 yields that 

Ti  
urn = 
n_too (r+1)' 

(2.24) 

(2.25) 

Thus, by 2.24, we have proved that zi(rB'1) n. It also follows that we may replace 

v(rB'1) by n in 2.25; that is, 

rt .V(Bd) 

nl V(rBd + Bd) - 

(2.26) 

We note that 2.25 refers to the density of n-ball packings in r(n)Bd + Bd 

Now let us consider 7' and denote 1' + B° by D. Observe that V2(D) ≤ 

• V(Bd) . i/d by Theorem 2.4.1 and V(D) ≥ nic. Substitute these inequalities 

into 

V(D) ≤ c Vj(D)TL r(D) 

of Lemma 2.3.1. This results in 

Th ! d nr(D), 

with co = c 3d-1 Vi B"). Thus, 

r(D) ≥ • 

CO 
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Since r(D) = r('P,c1) + 1, the previous inequality yields that 1im_+ r(1•) = 00. 

This enables us to use Lemma 2.1.1 with If,, = 'Pt,,.. It follows, by v(7',.,,.) = n, that 

n.V(Bd) 
hm = 8d• (2.27) 
—°° V(D) 

Here we pause for a moment, in order to indicate why our proof breaks down in 

the case i = d. The reason is that for C,,. E < , the condition V(CTh + B°) c1 ii 

where c1 is a constant independent of ri, does not force r(C) to tend to infinity. 

For example, if Cn is the segment Sn with length 2(n - 1), then r(n) = 0 and (see 

Figure 2.11) 

V(C+B") < lcdi.2 . n. 

(Actually, according to the Sausage Conjecture which is discussed in Chapter 5, 

possibly 7',,. S,., for d ≥ 5 and any n ≥ 1.) Hence we can not use Lemma 2.1.1 

which is the tool to relate to the packing density. 

After these remarks, let us continue our argument. We combine the information 

about Dn and rBd + Bd. 

Observe that v(,.Bd+Bd) is V(rB1+B1) divided by n) . Thus 2.26 and 2.27 yield 

V(D)  
lim = 1. (2.28) 
n-- V(rB' + B') 

Take the (i/d)th power in 2.28. By definition, Vi(D) ≤ V,.(rB'1 + B'), and hence 

liminf  V(D)u1d V1(rBd + Bd) 
V(rBd + Bd)u/d  V(D)≥ 1, 

which in turn, simplifying by (r + l)i, can be written in the form 

V(D)/'1 V(Bd)u10 
hminf >   
n—oo V,.(D) - Vi (B) 

(2.29) 



CHAPTER 2. THE ITH INTRINSIC VOLUME, 1 ≤ I ≤ D —1 68 

S+Bd 

Figure 2.11 

The cylinder containing the sausage S+Bd 
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On the other hand, according to the Alexandrov-Fenchel inequality, 

V(D)/'1 < V(B)u1 

V1(D) - 

It follows that 

lim V(D,)id - V(B')/'1  
n V2 (D) - 

We mention that the analogous statement 

1' V(Q + B1° - V(Bd)u/d 

V(Q+B°) - V(BI) 

can be proved similarly. 

We now work backwards from 2.30 and obtain, instead of 2.29, that 

Hence, by 2.28, 

lim V(D)/'1  V(rB'1 + B')  
V(rB" + Bd)i/d V(D) 

h• m V(rB'+B'1)  =1. 
n—oo V2(D) 

(2.30) 

(2.31) 

As we have already noted in the beginning of this section, 2.26 can be written as 

n,.V(Bd) 

V(rB° + B°) d, 

which in turn yields that 

Vj(rB0 + Bd) rj V2(B") 8du/dn i/d 

Since V(rBd + B d ) and V(D) have the same asymptotic behavior, the theorem 

follows. 

0 
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With regard to Theorem 2.5.1, we note that V(Bd) = () - and 

20.599$(1+(d1)) < 81d ≤ ≤ 2, 

where e(d) -* 0. 

COROLLARY 2.5.2 Let d ≥ 2 and 1 ≤ i <d —1. Then 

70 

r(Q)  

urn R(1 i•n) = R(Q) = 1 nn- - . 

Proof: It follows by 2.30 and Lemma 2.3.3 that limn-,,, Rr((DDn)) = 1 for Dn = 1' ± 

Bd. Since R(D) = R(Pd) + 1 and r(D) = r(1') + 1, we have 

urn r(P) + 1  =1. 
R(1') + 1 

Notice that n /d ≤ V(.D) ≤ R(D)'1 V(Bd). Hence R(D), and consequently also 

R(Pc) = R(D) - 1, tends to infinity, which in turn yields 

r(P)  
lim = 1. 

R(2) 

One uses a similar argument for Q, only in this case it is based on 2.31. 

0 

2.6 Some remarks about the case of few balls 

The considerations of this chapter show that if n is large then in order to optimize 

the ith intrinsic volume of the convex hull of an n-ball packing, the balls should be 

packed as clusters, i = 1,. . . , d - 1. What is the shape of when n is small, say, 
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ii = d+ 1? Does d+1 equal the regular simplex Td with edge length 2, or maybe the 

segment Sd+1, i = 1,. . . , d - 1? The upcoming two chapters are mostly concerned 

with these questions. 



Chapter 3 

The first intrinsic volume 

Recall that the first intrinsic volume is linear. This property helps us to gain some 

more specific information about the the minimal properties of finite packings with 

respect to the first intrinsic volume. 

3.1 General properties 

In Section 2.4 we defined 9,d, as the family of all C, E 1C' which contains the centers 

of some n-ball packing. The minimum of the ith intrinsic volume of the convex 

hull of the balls is denoted by t9 for i = 1,. . . , d. If the packing is part of a 

gridpacking then C E ?-, and the corresponding minimum for 7 is denoted by 

We chose some minimal bodies 7' t,n and Q, which have the properties that 

V(2 + Bd) = '9 and V(Q + Bd) = 

By the linearity of the first intrinsic volume, V, (K + Bd) = V1(K) + V1(Bd) for 

K E K, and it follows that 

V1(7',) = min{ V1(C)IC E } and V1(Q) = min{ Vi(Cn)ICn E Hd 

We also saw in Section 2.4 that = conv{xi,. . . , x} for some packing set 

{x1,.. . ,xj, and hence 

= min{V(conv{xi,.. ., x})J{x1,. . ., x} is a packing set}. 

Let n = 3,. . . , d + 1. Observe that dimC n - 1 for Cn = conv{xi,. . . , x}, and 

72 
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so we may assume that P = 7''. As a consequence, it is sufficient to examine 

'r,d 
/ 1,d+1 

Recall from Chapter 2 that is very much ball-like if m is large compared to 

d. The shape of 22d+1 seems to depend on i. In Section 4.3 we will prove that the 

sausage arrangement becomes more optimal against the regular simplex arrangement 

as i increases; that is, 

V(Td + Bd) < V(Sd+1 + Bd) 

V(T' + Bd) > V(Sd+1 + Bd) 

if i < B(d), 

if i>B(d), 

where Sd+1 E is the seqment of length 2d and logs B(d) -' l°g v'i. We be-

lieve that 771,d+1 Td, and the main goal of this chapter is to prove some results 

supporting the conjecture. 

But first we have a look at V1 (pd ) for general n. Theorem 2.5.1 and = 

V1(P,) + V, (B) yield that, as n tends to infinity, 

and similarly 

V1(P 1 1,n . V  Id (.Bd,) -i/d ) 

V1(Q,) - -1/d d ild 
1,n '' . V1(B) 

If m = 1 then and Q are just a point.If n. ≥ 2 then 'P contains  a segment of 

length 2, and readily 

2 <_ V1(1') ≤ V1(Q,). 

LEMMA 3.1.1 Let d ≥ 2 and n ≥ 2. Then, 

V1(1) ≤ V1(Q,) ≤ 2• V1(Bd) 
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Proof: Let r = 2 _ 1/d Then 2.1 yields i(rBd) ≥ = n, and consequently that 

rB" (E 7-t. It follows that 

V1(Q,) :5Vi(rB°) = 2 - n-1/d V, (B 

0 

The upper bound is probably close to being accurate when ri is large. We note 

that some prominent geometers (see [7]) believe that the order of 1092611is —d. 

Assume that this is true, and let d be large. Then is approximately 2, and 

Ild hence V1 (Q,) is approximately 2• V1(B'1) -

n-In the rest of the chapter we consider ? when n is small; namely, 3 n ≤ d+ 1. 

Let C, E g. Our impression about the behavior of the first intrinsic volume, roughly 

speaking, is that the smaller the diameter of C,., the less the first intrinsic volume 

of C,.,. Hence we prove in Section 3.3 that V1(C) > V1(T' 1) if dimCn is small 

compared to n; namely, either dimCn = 1 or n is large and dimC in n. We 

note that there is some C,, such that dimC,, is approximately In n and V1 ( C,,) is 

close to V1(T 1). With these results we turn to the case dimC,, n - 2. We prove 

that if V1 ( C,,) is a local minimum on Gnd then C T' 1. Finally, we establish that 

T" 1 for n = 3,4,5 and d ≥ 71-1. 

First we prove that, as d tends to infinity, 

V1(Td) = (2/+ o(1))V'lnd. 

As V1('P,,) ≤ V1(T"'), it follows that, for d ≥ n - 1, 

V1(P,,) ≤ (2/+e(n))v'I, 

(3.1) 
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where e(n) tends to zero when n tends to infinity. 

3.2 The value of V1(Td) 

By the Landau symbol o(1), we denote functions which tends to 0 as d tends to 

infinity. 

Recall from Chapter 1 the function h(s), - <s < 1 is defined by the property 

that fh(S) e t2 dt = .s. Let g(t) = h('7-r(1/2 - t)), 0 < t < 1, which then satisfies 

jo 2 jh(/(.-t)) e d.s= ..$2 d.s = - t) --2 
0 

Note that g(t) = —g(1 - t) by h(s) = —h(—s). By means of 1.8, we have 

V, (T d)= d+1) - 2 - A/2 - (1) (d, 1) = N•2d(d + 1) - -P (d, 1), 
( 2 

where (d, 1) = j'01 6_g2(t)_1 dt. We prove that 

d2 

which in turn yields the required formula 

,\/Ind  
V, (Td) = \/ d(d+1) . (2sJ+o(1)) d2 = (2v+o(1))/i. 

(3.2) 

Before focusing on 3.2, we derive a simple upper bound for V, (Td), which we also 

need in the following section. Observe that 

(d, 1) = I e92(t)td 1 cit < f =td1 dt 1' 
JO  

which in turn yields that 

Vl(Td)<d(d+1).= \/(d+1). (3.3) 
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We start with some basic formulae. Let c1 and c2 be real constants, c1 > 0 and 

.s tend to infinity. We note that by L'Hospital's Rule: 

1) lim tint = 0 iv) (i -  In s 

Ins 
ii) urn --= 0 v) /ins+c2lnlns=(1+o(1))v'i 

S.-*oo ,9C1 

1 1 11\ / 
iii) vi) 11 

(s+c2)(s+c3) s2 \ sins! 

Let 0 < t < 1. Since (d, 1) = f dt, first we give an approximation 

for _ 92(t) if t is close to 0. Since g(t) = —g(1 - t), this yields an approximation for 

e_92(t) also if t is close to 1. 

3.2,1 Approximating e_92(t) 

Let 0 < t < (3 First we define two functions a(t) and /3(t) which satisfy 

/3(t) < g(t) < a(t). Since the function e 2 is strictly decreasing, there is a unique 

.s > 1 with the property that e 2 = Vf7r t for 0 < t < (3 e,/F)'. Hence we 

define c(t) > 1 with 

The identity 

yields that 

It follows that 

—a2(i)  V17F t' 
2a(t) = 

d /_6_s2\ 
2s ) = + _ 32 

ds 
00 2 100 d (_e \ _ 2 

e3 ds< - 2a )ds_—_. 
T s 2s 

Ce 00 00  VIT  
00 a 2  

2 e ds = I e ds— / s2 ds = -- L -S2 ds > ≥ — v'F 1 jo 2  2 2c 2 
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Recall that g(t) is defined by 

0g(t) e-52 ds = - 

We conclude for g(t) that 

10 g(t) e 2 ds = 

and hence g(t) < a(t). 

t< I ds, 
2 Jo 

77 

If s > 1. then the function  p-- S2 — - e 1 — 2 is also strictly increasing. By 
282+1  Tr 

0 <, t < (3 e/) 1, there is a unique s> 1 with 2S2+1 = /Ft. Hence we define 

/9(t)> 1 as 

/9(t) 1 
2/92(t) + 1e2 = \/ t, 0< t < 3[• 

We note that /9(t) tends to infinity as t —+ 0. If s > /9 then 

282+1 2+ 1<2+ 12/92+1 
/92 

It follows that 

(  _/92 e_82 

Ts 2/92+1 S 

and we deduce that 

\ /92  (2c_52 + _52 

= 2/92+1  82 

/92 2s' + 1 _ 2 

2/92+1 82 

00 2 00 d (   _/92 _ 32\\ /92 _p2 
I e ds> Jp 1p 2/92+1 ds=2/92l2fl2+le 13  

This inequality yields that 

I & 2 ds 
Jo 

00 1/;E oo 2=  e ds — / e 2 ds — I e8 ds 
J13 2Jp 

< 
—  /9 — 

2 2/92+1 — 2 
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Consequently, 

J6g(t) 2 2 sds___ \/Ft > f e_sds, 
2 Jo 

and hence g(t) > /3(t). In summary, 

/3(t) <g(t) < a(t) for 0< t < 1  

The defining equalities of a(t) and 9(i) can be written in the form 

2\/t a(t) 
=1 and 

e2 (t) 

2t/3(t) = 1+2P2 (t) (3.4) 

for 0 < t < (3 e\/F')'. Since' ..Le82 is a strictly decreaing function and ,8(t) < 

g(t) < a(t), 3.4 yields that 

e 2 (i) 

1 < ty(i) < 1 +  2 2/32(t)' 

and hence by lim 0+ 3(t) = co, 

g2 () 
lim   = 1. 
t-+o+ 2/Ftg(t) 

The formula 3.5 is equivalent to 

urn (—g2(t) - ln(2/) - In  - In g(t)) = 0. 

(3.5) 

Observe that - in t tends to infinity as t —* 0, and s,o g(t) also tends to infinity as 

t — 0. It follows that 

lim (- — ln(2/) —lnt lng(t)' 
t 0+ g2 (t) + g2(t) 92(t)) 0, 

which in turn yields that 

urn (_ lnt = 0. 
g2(t) ) 
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Hence 1im..0+  g(t) = 1, and combining this with 3.5 results in 

urn —1 
i-*o+ 2/  - t/— in I 

Now let 1 - (3 e/ -r) 1 < I < 1. Since g(t) = —g(1 - I), we deduce that 

urn , _92 (t) 
  —1, 

t-1 2J  - (1 - t)J_ ln(1 - I) 

which in turn yields that 

_2(t) = (2 + e(t))(1 - t)V- ln(1 - 1), (3.6). 

where lirnt--,i- 6(1) = 0. Actually, we may assume that 6(1) is defined for, any 0 < 

1<1. 

3.2.2 Some observations on (d, 1) 

Recall that we wish to prove 

(d,1) = fo —g2 (i)1d—i dl = (2iJ+ o(1)) d2 

The dominant part of the integral is between 1 - and 1 since 1 and by 

iv), 
i—i i—i f  e_92(t)t1dt j di = 1 ( -  nd ld)d = () 

1_Ind 

that is, f0 d e_92(t)tdl_1 di is small. The formula 3.6 yields that 

(d,1) 
i 

e—g2()td_1 di + I' d  6-02(t)1d—i di 
Ind 0 

= f1 (\ (2\/F + 6(t))(1 - t)/— ln(1 — 1) t' di + 0 Ind 1 

1 

= 2A(d) + fl- ( t)(1 - t)— ln(1 — 1) t 1 di +0 (i)Ind 
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where 

A(d) = (1— t)V—ln(1 )td_ldt. 
d 

Defining /L(d) = SUPj_i!L<t<l I()I we have 

1 6(t)(1—t)/—ln(1 _ t) td- ldt 
1 

< u(d) 1. d f (1 - t)/— ln(1 - t) t'' dt. 
1— 

Since  lim 1- e(t) = 0 yields that lim p(d) = 0, we deduce that 

(d, 1) = (2/F + o(l))A(d) + 0 (i). (3.7) 

Before estimating A(d), we evaluate a frequently used integral. Let 0 ≤ a < b < 1 

and rn > 0. Then 

I1 1—a1—a 1—a 
—b (l — t)tmd = j tmdt — I t 1 dt 

b J1—b il 

= (1 - a)m+l (1 - b)m+l (1 - a)m+2 (1 - 

m+1 m+1 m+2 + m+2 

(rn+l 1  1—aa)m+l  m+2) 

/ 1  1—b" 
(1b)m+l 

We use this in the form 

j
I 1—a  (1 - t)t dt a(m+1)  (1 - a)m+l (rn+ 1)(m +2) 

m+l  1+b(m+1)  
—b —(1—b) (m+1)(m+2) 

First we give a lower bound for A(d). If 1 - ≤ t < 1 then 

ln d 
/—ln(1—t) ≥  J—ln -  -  - = /1nd—lnlnd=(1+o(1))V'. 

(3.8) 
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It follows by 3.8 that 

1 

A(d) ≥ (1+o(1))v'iij(1_t)t'dt 

d l 

= (1+o(1))(d(dl) (i_ In d  ) d(+l d\ 
d+1)) 

Observe that by iii), 

1  1 

d(d+1) =°() 

and by iv) and ii), 

(In d)Ind) " 1+ind  
d(d + 1) = ° () . o  72 d3 

(Ind) 0 

Thus 

A(d) ≥ (1 + o(1))\/I (T2 + o ()) = (1+ o(1)) d2 (3.9) 

Finally we determine an upper bound for A(d) which is of the same order as the 

lower bound. 

3.2.3 Upper bound for A(d) 

We write A(d) as A(d) = A1(d) + A2(d) where 

1 

A, (d) = L._1 (1— t)/- 1n(1 d_ldt 

dlnd 

1- 1 

and A2(d)= I 
J1- 

First  we estimate A1(d). If f(t) = (1 - t) V- ln(1 - t) and 1 - i < 1 then 

= ——in(1—t)+(1—t) — ln(1—t) (1—t) 

= —V—ln(1 - t) 1+ 21n(1 - t)) < 0. 
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Hence f(t) is maximal for t = 1 - which in turn yields that 

1 1  1nd+1n1nd<1 
(1—t)—ln(i—t)≤ d1nd " = dlnd dlnd d 

for 1 - < t < 1. It follows that 

A, (d) = 
1 1 td-1 dt 

ding  
dJith 

1 if = (,_Ind)') I 
(3.10) 

Turning to A2(d), first observe that as t - 1, the function y'- ln(1 - t) is 

increasing, and hence for i -  ldd ≤ t ≤ 1 - 

It follows that 

where 

J—ln(1—t) ≤ 

1 
dlnd' 

In 1 d1nd = v'lnd+lnInd. 

A2(d) = (1—t)J-1n(1—t)t''dt 

  1— 
≤ '1nd+1n1ndJ dlnd(lt)td_ldt 

Ind 

= ijlnd+lnlnd.A3(d), 

A3(d) = (1 - t) td-1 cit. 

By 3.8 and the asymptotic formulae iv) and vi), 

1 1n d' i+Ind  
A3(d) = Ind  (1— dInd) dl+ d(d+1) (,  ci) d(d+i) 

= (1+(i))i+ 1 (1\ 1+lnd  
md) d(d+1) ° d) d(d+i) 
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Note that 

1  1 
d(d+1) d2 (T2 =°) 

and hence by ii), 

A3 (d) = 

and 
1 + in d  
d(d+1) _o() 

+0(1) 0 find'\ = + o + 0 1 ( 1\ (Ind) 
.  

+() =(1+o(1))j. 

As /1n d + in in d = (1 + o(1))v'I by v), for A2(d) we have the estimate 

A2(d)≤(1+o(1)) d2 

Recall that according to 3.10, A1(d) < . Thus 

A(d)=Ai(d)+A2(d)≤(1+o(1)) d2 

which in turn yields by 3.9, that 

A(d) = (1 + o(l)) d2 

Finally, by 3.7, 

(d, 1) = (2 + o(1))A(d) + 0 () = (2 + o(1)) d2 

and hence 3.2 yields that 

V1(T'1) = /4(d+ 1). (2/E+ o(1)) d2 = (2\/+ o(1))Vi. 

0 
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3.3 Minimal simplices 

First we prove that dim7' can not be very small compared to n. We have seen 

in Section 3.1 that in order to gain information about 2, n = 3,.. . , d + 1, it is 

sufficent to consider Pd+l. 

LEMMA 3.3.1 Let d ≥ 2. Then dim7',d+l ≥ 2, and if d is large then dimP d+l > 

ln(d+ 1). 

Proof: Let C E We prove that if dimC = 1 or if d is large and dimC ≤ 

ln(d + 1) then Vi(C)> V1(T'1). Since Vi(T0) ≥ V1(P,d+1) by definition, it follows 

that C 0 Pi,d+l' 

Let dimC = 1, and so V1(C) ≥ 2d. Note that 

V1(T2)=3<Vi(C) 

for d=2. Ifd≥3 then v'(d+1)<2d. AsVi(T')<V'(d+1)by3.3,Wehave 

V1(Td) <' T(d+ 1) < 2d < V, (C) 

In summary, 

V1(T') < V1(C) (3.11) 

if d> 2 and dimC = 1, and hence C 

Now let 2 ≤ rn < 1 ln(d + 1) and C E Then Vm (C + Btm) ≥ Vm (Btm) 

(d + 1) because one may pack d + 1 rn-dimensional unit balls into C + Btm, and the 

Alexandrov.-Fenchel inequality in Em yields that V, (C + Btm) ≥ V1(B- ) (d+ 1)1/rn. 

We deduce from the linearity of the first intrinsic volume that 

V, (C) = V, (C + Btm) - V1(Bm) > V(Btm)((d + 1)1/rn - 1). 
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By 1.7, we have the estimate 

•M+27r1 rn-i l 
M 

m+l 

Note that ≥ because m ≥ 2. Thus 

. ((d+ 1)1/rn_i). 

85 

The function t1/2((d + l)1t - 1) decreases on the interval (2, 1 ln(d + 1)), since 

its derivative is 

I i 
t' 12((d + i)'/ - 1) lt-'/2((d + 1)1' /t - 1) + l/2 _) ln(d + 1) . (d + l) 11t 

dt 2 

< 16 t-1/2 (d + l)1/t - t-3/2 ln(d + 1) . (d + l)1/t 

= lt-'/2(d+ 1)1/t i 21n(d+ 1)) ≤ o 
2 

by In(d+1) ≥ 2. It follows that 

2_   2 27r_  _ 

V1 (C) > V/i ln(d + 1) ((d + 1)lnd+1 - 1)> ( 1fl(d+l) In(+1) - 

= e2 1 3/  - 

On the other hand, V1(Td) 2vr27rVInd by 3.1. Observe that V1(T') <V1(C) 

if d is large, and hence C 

D 

Remark: Actually, using bounds of the type V1('Pd+l) ≥ V, (B') (d + 1)1/rn, 

one can not gain much more information about the dimension of Pd+1. Let d be 

large and m = [21nd]; that is, the integer part of 2lud. Note that 

urn (d + 1) 1/rn urn dr = 
d—+oo d-+oo 
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It follows by 1.7, that as d tends to infinity, 

V1(Bm)=m 
in 

Let r = 2(d + 1)1/rn. According to 2.1, p(rBm) ≥ = d + 1, and hence 

Vl(ld+l) :5V1(TBrn) = 2(d + 1)l/mVi(rBm) 2/  - 2//i. 

As Ve = 2.33164 and V, (T \/. 2v'/IJ, it follows that Vl(1'd+l) <3 V1(Td) 

if d is large enough, or in other words, V1(?d+1) is close to V1(Td). 

Now we turn to the case when dimC ≥ n —2. As we mentioned earlier, probably 

T' 1, m = 3,. .. , d+1. With the help of some lemmas, we prove that V1(T" 1) 

is a local minimum, and if dimP, ≥ n - 2 then 2j T' for d ≥ n - 1. We 

conclude the section showing that 2 T' 1 for ii = 3,4,5 and d ≥ n - 1. 

Let d ≥ 2, K = conv{xo,.. . , xi} have dimension at least d - 1 and denote 

aff{x2,. . . , xd} by g. We say that g is an axis of K if either dimK = d or dimK = 

d - 1, dim  = d - 2 and g strictly separates x0 and x1 in affK Assume that g is 

an axis of K, and let H = aff{xi,. . . , Xd}. Observe that H is a hyperplane in E'1 as 

' g, and denote by H the halfspace of Ed determined by H and containing x0. 

By rotating x1 towards x0 around g we mean a rotation of x1 around g into intH+. 

Note that this rotation brings x1 closer to x0. Let H be the plane through x1 

perpendicular to g, and y be the orthogonal projection of x0 onto H (see Figure 3.1). 

Then d(xo, x1)2 = d(xo, y)2 + d(xi, y)2 and x1 stays in II throughout the rotation. 

As the rotation decreases d(xi,y) in H, it also decreases d(xo, xi). 

The following lemma has a key role in the future considerations. 
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Figure 3.1 

Rotating around an affine (d-2)-space 
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LEMMA 3.3.2 (Bending) Let d ≥ 2, K = conv{xo,. . . , xd} with dimK ≥ d - 

1, and g = aff{x2,. .. , Xd} be an axis of K. Then rotating x1 towards x0 strictly 

decreases V1(K). 

Proof: Denote by yi the new position of x1, by H the hyperplane perpendicularly 

bisecting the segment conv{xi, yi}, and let H+ be the halfspace containing yi (see 

Figure 3.2). Observe that g C H, and that xo E intH by d(yi, x0) < d(xi, x0). 

For any x E Ed, let (x) be the image of x by the reflection through H and let 

Yo = y(xo). The sets 

K' = conv{yo,yl,x2,. .. M = conv{xo, Yi, X2,. .. , X} 

and M'=conv{ yo, xi, x2,...,xd} 

satisfy K' = W(K) and M' = ço(M), and the lemma states that V, (M) < V1(K). 

By the linearity of the intrinsic volumes, V1 (M) = Vi (Mo) and V1 (K) = Vi (K0) 

for M0 = (M + M') and K0 = (K + K'). We prove that M0 is strictly contained 

in K0, which in turn yields that V, (M) < V1(K). 

The points uo = (x0 + yl), vo = (yo + x1), Ui = (x0 + x1) and v1 = (yo + yi) 

satisfy vi = ço(uj), i = 0, 1. These points occur in the sets 

UK = ({xo, x, x2 ) . . . , X} + {yo, Yi, x2,. .. , xd}) 

and 0M = ({x0) y1,x2,. . ., Xd} + {yo,x1,x2,.. . Xd}). 

We note that K0 = cony t7K and M0 = cony orvi, and that I7KVJM = {uo, vo} and 

crM\oK = {ui,vi}. 

As yj = p(xj), we may consider the trapezoid conv{xo, yo, xi, yi}, and the line 1 

which is parallel to aff{x, y} in the plane aff{xo,yo, xi, yi}, i = 0, 1, and have the 
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The Bending of a simplex 
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same distance from aff{xo, yo} and aff{xi, yi}. Then 1 passes through ui and v, 

i = 0, 1, and the points u0 and vo lie on the boundary of the trapezoid. We deduce 

that u1, v1 E conv{uo, vo}, and since u1 and v1 are the only points in fYM\UK, we 

have M0 C K0. 

In order to establish the strict inclusion, assume that H contains the origin and 

let w be the unit normal vector to H pointing into H. Define p as 

p = max{< W, X0 >,< w,yi >} = max{< w,z> 1Z E M}. 

Any z0 E M0 can be written in the form z0 = .(z + z') for some z E M and 

Z' EM'. Thus <w,z' > 0 and <w,z > < p yield that 

<W,Zo>=<W,Z>+<W,Z' >≤1i. 

On the other hand, as <w, xo> and <w, Yi > are positive and one of them is it, 

<w,vo>=.<w,xo>+<w,Yi> > 

which in turn yields that uo E K0 but u0 M0. Therefore M0 is strictly contained 

in Ko, and so V, (K) < Vi(M). 

0 

As the first application of the Bending Lemma, we prove that 

THEOREM 3.3.3 Let d ≥ 2 and n = 3,... ,d + 1. Then V1(T 1) is a local 

minimum on gd 

Proof: Let K = conv{xi,. . . , x}. If d(x, x) tends to 2 for any 1 ≤ n then 

K tends T''. Thus we may set a e> 0 with the property that if 2 ≤ d(x, x) ≤ 2+6 

for any 1 < i<j≤n then dimKn-1. 
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Let U be the family of all C E 91 with D(C) ≤ 2 + . Then U is a closed 

neighbourhood of T' in gd , and there exists a Co E U with 

V, (CO) = min{Vi(C)IC E U} 

by Blaschke's selection theorem. There is a packing set {x1,. . . , x,} C Co. The 

points satisfy 2 ≤ d(x, x) < 2 + for 1 < i < j ≤ n, and hence dimK = n - 1 for 

K = conv{xi,.. . ,x,}. The minimality of V, (Co) and K C Co yield that K = Co, 

and hence we may assume that K C En '. 

Assume that, say, d(xi, x2) > 2. In E'', rotate x1 around aff{x3,... , x} 

towards x2 so that still d(x, x2) ≥ 2 for the new position x, and let K' = 

{x, x2, . . . , x,}. Then V, (K') < V1(K) by the Bending Lemma. Since K' E U, we 

have contradicted the minimality of V, (Co), and hence d(x, x) = 2 for 1 ≤ i < n 

and Co = T'. 

0 

Let n = 3,. . . , d+ 1. In order to prove that V, (T'-') is the unique local minimum 

of T' (C), C E , with the property that dimC ≥ n - 2, we need the following two 

lemmas. Recall from Section 1.5 that 

hd = I2(d+ 1) - R(T')2 = V d > 

where hd is the height of Td, and that R(Td) = 

LEMMA 3.3.4 Let d ≥ n ≥ 1, K = conv{x1,. .. ,x} be congruent to Ta', x0 

Ed and d(xo,x) ≥ 2 for  = 1,...,n. Then d(xo,y)> /  for Any y E K. 
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Proof: We proceed by induction on n. If n = 1 then K = {x1} and d(xo, x1) ≥ 

2>\/. 

Let n ≥ 2 and assume that for. any smaller value of n the statement of the 

lemma holds. Let y be the closest point of K to XO. It is sufficient to prove that 

d(xo,y) > 

If y E relbdK then we may assume that y E conv{xi,. . . , x,,}, 1 < m ≤ n. 

As conv{xi,. .. , x,,} is congruent to T" 1, the induction hypothesis yields that 

d(xo,y)> \/. 

If y E relint K then Lemma 1.5.5 yields that there is a vertex of K, say xi, with 

d(y,xi) < R(T 1). By Lemma 1.4.2, the line aff{y,xo} is perpendicular to affK, 

and hence 

d(y, x0) = /d(xi, xo)2 - d(xi, y)2 ≥ V4 - R(Tl)2 = h > v'. 

0 

Actually the same proof shows that the conditions of Lemma 3.3.4 yield d(y, xc,) ≥ 

h - /2(n+i) 
n — v 

LEMMA 3.3.5 Let d ≥ 1 and {xc,,. . . , Xd+1} be a packing set which spans E. 

Then the set has two points, say, xc, and x1, such that d(xo, xi) > 2 and H = 

aff{x2,. . . , xc1i} is a hyperplane which strictly separates xc, and x1. 

Proof: We proceed by induction on d. If d = 1 then we may assume that x2 

separates x0 and x1, and readily d(xo, x1) > 2. 

Assume that d ≥ 2 and the statement of the lemma holds if the dimension is less 

than d. If the points are not in general position then d+ 1 of them, say xc,,. . . , xd, are 
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contained in a hyperplane H0. The points xo,. . . , xj span H0 because Xo,. . . , 

span Ed. By the induction hypothesis, we may assume that d(xo, x1) > 2, and that 

g = aff{x2,. . . , xi} has dimension d— 2 and strictly separates x0 and X] in H0 Since 

xd+1 0 Ho, H = aff{x2,. . . , xd1} is a hyperplane separating xo and xi. 

Hence assume that the points x0,. . . , x are in general position. By Radon's 

theorem, we can reorder the points so that there is a y E if, fl K2 for K1 = 

conv{xo, ... , Xm} and 1(2 = conv{x,,+i,. . . , xji}, 0 < m < d. As x0,.. . , 

are in general position, 

dimKi + dimK2 = m + (d - m) = d, 

and hence affif, fl affK2 = {y}. It also follows that y is in the relative interior of 

both If, and K2. 

If 1(2 Td_m then by Lemma 1.5.5, we may assume that d(y, xd+1) ≤ 

Assume in addition, that If, is congruent to Tm. Then Lemma 3.3.4 yields, as 

y e If,, that d(xd+1, y) > This contradiction proves that one of If, and 1(2, 

say If,, is not a regular simplex with edge length 2, and hence we may assume that 

m ≥ 1 and d(xo,xi) > 2. 

Let g be {y} if m = 1 and g {y, X2) ... , XM} if in ≥ 2. In affK1, g strictly 

separates x0 and x1 because y E relintK1. Since affK1 flaffK2 = {y}, the hyperplane 

H = aff{x2,. . . ,xd+1} also separates x0 and x1. 

0 

Now we prove the statement about the partial uniqueness of V1(T') as a local 

minimum on gd 
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LEMMA 33.6 Let d≥ 2, n=3, ... ,d+1 and  E with dimK ≥ n-2. If 

V1(K) is a local minimum on Gn then K T'. 

Proof: Note that V1(T 1) is a local minimum according to Theorem 3.3.3. 

Let V1(K) be a local minimum on G d and dimK ≥ n - 2. There is a packing set 

{x0,. . . ,x_} C K, and denote conv{xo,. . by If,. For 0 ≤ A < 1, define 

K,, =(1—A).K+AK1. 

Then K = K0 and If, C K,, C K. Observe that K,, E Q as K1 C K,,, and K,, tends 

to K as A - 0. 

If If, K then also K,, 0 K for 0 < A < 1, which in turn yields that V1(K,,) < 

111(K) for 0 < A < 1 by the strict monotonicity of the first intrinsic volume. This 

contradicts the local minimaJity of V, (K), and hence K = conv{xo,. . . , x,_i}. 

Assume that K C E'' and let g = aff{x2,. . . , xfl.1}. By Lemma 3.3.5, if 

dimK = n - 2 then we may assume that d(xo, x1) > 2 and g is an axis of K in 

E 1. If dimK = n - 1 and K # T' then again g is an axis of K in E 1, and 

we may assume that d(xo, x1) > 2. By means of the Bending Lemma, in both cases 

K can be deformed a little, by a rotation through g in En', into a K' € ' C gd 

with V1(K) < V1(K). Therefore, if K € , dimK > n - 2 and V1(K) is a local 

minimum on gdthen K T 1. 

D 

= pn-1 for n = 3,. . . , d + 1, Lemma 3.3.1 and Lemma 3.3.6 In summary, as  

yield 
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THEOREM 3.3.7 Let d ≥ 2 and n = 3,. . . , d + 1. Then dim7' ≥ 2; moreover, 

dimP, ≥ inn if n is large. If dimP ≥ n - 2 then T'. 

Theorem 3.3.7 yields that if d ≥ n. - 1 then 7) T"'' for n = 3,4. Denote by 

e be the set of edges of T3, and by 'y(e) T3) the external angle at e for e E E. Let e0 

be an edge of T3. Simple calculations show that 'y(eo,T3) = (27r)'arccos(—), and 

hence 

= V(T3) = Vi(e) . 'y(e, T3) = 6 . 2 . y(e, T3) = 3.64904. 
eE5 

Turning to the case n = 5, recall that U3 is the union of two copies of T3 glued 

together by a common face. It follows that 

V1 (U3) = V1(T3) + V, (T3) - V1(T2) = 4.29808. 

We remark that with the help of some laborious considerations, one can prove 

that the unique choice for p,3,5 is U3. If dim7',5 ≤ 3 then V1(2,5) = V1(7'), and so 

Theorem 3.3.7 yields that 2 T4. But we choose a much shorter path to prove 

T", and hence 'P T4, d ≥ 4. 

LEMMA 3.3.8 Let {x0,x1,x2,x3} be a packing set in E2 such that x0 € K for 

K = conv{xl,x2,x3} (see Figure 3.3). Then V, (K) > V1(U3). 

Proof: We frequently make use of the value V1 (U3) = 4.29808. We may assume 

that dimK = 2 since if dimK = 1 then V1(K) ≥ 6 > V1(U3). 

Let aj = ang(xj,xo,xk) where {i,j,lc} = {1,2,3}, and /3 = 7r - a1. Assume that 

a1 ≤ a2 ≤ a3. Since x0 € K, we have a3 ≤ ir and a1 + a2 + a3 = 2 ir, and 



CHAPTER 3. THE FIRST INTRINSIC VOLUME 96 

2 

Figure 3.3 

The perimeter of cony [ x0,x1 ,x2,x3 } 

3 
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hence a1 and a2 ≥ . Note that ir+/3 = 2r— a1 = a2+ a,3. In addition, 

a1 + a2> 7r ≥ a3 yields that 7r - /3 = a1 ≥ a3 - a2, and hence 

a3 a2 a3+a2 a3—a2 t+/3 Cos  ir—/3 
sin + sin -- = 2 sin 2 cos  2 ≥ 2 sin 2 2 

= sin + sin -= 1+ sin -. (3.12) 

Let yi be the point ofconv{xo,x} with d(x0,x) = 2, i = 1,2,3. Observe that 

if a then conv{x, xk} is the diameter of conv{x, X, xk}, and so d(x, xk) ≥ 

d(y,yk) 45j11L 

Since ≤ a2 :5a3, it follows by 3.12 that 

d(xi,x2)+d(xi,x3) ≥ 4sin a3-- + 4sin a2 ≥ 4+4sin. 

If a1 ≥ . then d(x2,x3) ≥ 45i11 - ≥ 4sin = Since /3 = - a1 ≥ , we 

2 2have 4sin . ≥ 4sin = 2, and hence 

V, (K) = (d(xi, x2) + d(xi, x3) + d(x2, x3)) ≥ (4 + 2 + 2v') = 4.41421 > V1 (U3). 

If a1 then /3 ≥ and 4sin ≥ 4sin = 2\/. We deduce by d(x2,x3) ≥ 2, 
2 2 

that 

V1(K) = (d(xi,x2)+d(xi,x3)+d(x2,x3)) ≥ (4+2v'+2) > V1(U3). 

0 

THEOREM 3.3.9 Let n = 3,4,5 and d ≥ n - 1. Then the unique choice for 7'j 

1 is T. 
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Proof: The cases n = 3,4 readily follow from Theorem 3.3.7. Let n = 5 and 

{ x0,. . . , x,} be a packing set such that dirnK = 2 for K = conv{xo,. . . , xi}. We 

claim that V, (K) > V, (U'). If K is a pentagon then 

V, (K) = 1 P(K) ≥ 5> V, (W). 

If K is the quadrilateral conv{xi, x2, x3, x4} then the diagonal conv{xi, x3} di-

vides K into two triangles, one of which contains x0. It follows that if K is a 

quadrilateral or a triangle then we may assume that XO E conv{x1, x2, x3}, and 

hence V, (K) > V, (U3) by Lemma 3.3.8. 

As V1(2 5) V1(U3), we conclude that dim2 5 2. By Theorem 3.3.7, P1 is 

congruent to T4. 

11 

Since T 1 E Hd for d> n - 1, it follows that 

COROLLARY 3.3.10 Let n = 3,4,5 and d ≥ n — i. Them the unique choice for 

Qd is T''. 



Chapter 4 

Packings of small numbers of balls 

After considering the minimal properties of finite packings with respect to the first 

intrinsic volume, we consider the minimal properties of finite packings with respect 

to the ith intrinsic volume, i = 1,. .. , d. In Sections 4.2 and 4.3 we concentrate on 

the relation between i and the shape of a minimal body. 

4.1 The surface of four-ball packings in E3 

We prove that if for a four-ball packing in E3, the surface of the convex hull of 

the balls is minimal then the centers are vertices of a regular tetrahedron. In other 

words, 

THEOREM 4.1.1 Let K E with V2(K + B3) Then K T3, and hence 

24 2's. 

In Section 2.2 we have seen that T3 E V. It yields 

COROLLARY 4.1.2 If V(K + B3) = 1 ,4 

particular, Q T3. 

for aKE11 then KT3. In 

If K is a minimal body in ; that is, V2(K + B3) = i9 2,4 , then K = 

conv{xo, x1, x2, x3} with d(x, xj) ≥ 2 for i j (see Section 2.4, p.60). 

Let K E K. Since r., = 2, i2 = it and T/0(K) = 1, it follows from Lemma 1.8.1 

that 

99 
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V2(K + B3) = 1 (3ic3Vo(K) + 2tc2Vi(K) + i1V2(K)) 

= .(3 'c3 + 2irVi(K) + 2 V2(K)) 

= I3 + 7V1(K) + V2(K) = 3 K3 + O(K), 

where q5(K) = irVi(K)+V2(K). The theorem is equivalent to the following statement: 

(*) Let K = conv{x0,. . . ,x3} with d(x,x) ≥ 2 for i 0 j. Then 

O(K) ≥ çb(T3), with equality if and only if  T3. 

We prove (*) in Subsection 4.1.1 for the case dimK ≤ 2, and in Subsection 4.1.2 if 

dim K = 3. But before that let us have some useful definitions and observations. 

Let {i,j,k,l} = {0, 1,2,3} and M1= conv{x,x1,xk}. 

In the course of the proof we frequently estimate the area or a side (edge) of a 

triangle. Let a, b and e be the edges of the triangle M, and a be the angle opposite 

to a. In addition, let ir/2 ≤ 0 < ir. If b ≥ b0, c ≥ c0 and a ≥ 0 then cos a is 

non-positive, and by the Law of cosines, 

a2 = b2 + c2 - 2 be cos a ≥ b 2 + c - 2 b0c0 cos 8. ( L ) 

Ifir-0<a≤0 then the area ofMis 

A(M) = Ibc sin a ≥ b0c0 sin 8. ( A(0) ) 

We note that if a is the largest angle of M and ≤ 0 <ir then a > 1 > 'ir - 0. 

Let us recall some properties of the first and the second intrinsic volumes of a 

polytope Q. Both V1(Q) and 1/2(Q) are monotonic. If Q is planar then V1(Q) = 

.P(Q), where P(Q) is the perimeter, and V2(Q) = A(Q). If Q is 3-dimensional then 

1/2(Q) = .S(Q), where S(Q) is the surface of Q. Let F be a face of Q. We denote 
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the area of F by V2(F), if we want to use that V2(F) < V2(Q), and by A(F), if we 

consider F as part of the surface of Q. 

Lastly, we note that q(T3) = 14.92790. We calculated it with the help of V2(T3) = 

S(T3) = 2A(T2) and the value of V(T3) from Chapter 3. 

4.1.1 dimK is at most 2 

We prove that in this case (K) > q(T3). We may write q(K) as q(K) = irVi(K) + 

A(K), and we usually evaluate V1(K) as V1(K) = P(K). 

If K is a segment then V1(K) ≥ 6 and A(K) = 0, and hence 

O(K) = 7rV1(K) + A(K) = irVi(K) ≥ 18.84955 > 

Assume that K is planar, and say K = conv{xi, x2, x3} (see Figure 4.1). Denote 

ang(xj, xo, x) by ajj, 1 ≤ i < j ≤ 3, and assume that a12 ≤ a13 ≤ a23. Since 

Xo E K, we have a12 + a13 > 7r and a12 + a13 + a23 = 2ir, and consequently also 

a12< --. 

Assume that in addition a12 ≥ This condition forces A(M3) to be large. As 

for = 7r - we have ir - a12 < < 3 18 , (A()) yields that 
18 18 is —1 18 

l3ir . 13ir 
A(M3)≥.2.2.srn -jj-= 2s1n--jj-. 

By Lemma 3.3.8, irVi(K) > irV1(U3) = 13.50282. It follows that 

If a12 < 

O(K) = 'irV1(K) + A(K) > 'irVi(U3) + A(M3) 

≥ irVi(U3) + 2sin = 15.03490 > 4(T3). 
18 

then the lengths of 
18 

the edges of K force T/1(K) to be large. By 

a12 + a13 ≥ ir, we have a13 ≥ IV - a12> . This implies that the edge conv{x1, x3} 
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X3 

Figure 4.1 

X2 

K=conv(x0,x1,x2,x3) - is a triangle 
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is long because for M2, (L) yields that 

d(xi, 53) ≥ J22 + 22 —2•2• 2 cos = 3.62523. 
18 

Since a13 + a23 = 2ir - a12> 18 and a23 ≥ a13, we have a23 ≥ (2ir - a12) 

Now for M1, (L) yields that 

d(x2,x3) >- 22+22_2.2.2.cos 3lir = 3.90518. 
36 

With these lower bounds and d(xi, 5 2) ≥ 2, 

= irVi(K) + A(K) > irVi(K) = irP(K) 

r (d(xi, x2) + d(xi, 53) + d(x2, 53)) ≥ 14.97034 > çb(T3). 

Henceforth, assume that K is the quadrilateral conv{xo, s1, X2, 53} (see Figure 4.2). 

Note that if the length of at least one of the edges of K is at least 2/2 + v' 

then V1(K) itself is large enough and 

O(K) = irV1(K) + A(K) > irV1(K) ir P(K) 

ir (2 + 2+2+ 2\/2 + \/) = 15.22968 > q(T3). 

The value 2/2 + v/2- comes from the fact that a triangle, with edgelengths at least 

two, and an angle of at least 21, has an edge of length at least 2V2 + by (L), 

since 

2V2+=22+22_2.2.2 . cos . 

Assume that K has two neighbouring angles which are at least 3,r 
4 , 

say, 

ang(x3, xo, x) and ang(xo, XI, X2). This implies that V, (K) is large. Observe that 
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xl 

X3 

Figure 4.2 

K=conv(x0,x1,x2,x3) is a quadrilateral 
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d(xi,xs) ≥ 2/2+v'. In M2, ang(xo,xi,53) < 1 since ang(53,xo,xi) ≥ ?, and 

hence 

3rr ir 
ang(x3, x1, x2) = ang(xo, Si, x2) - ang(xo, Si, x3) > T - 4 - 

The edge conv{x2, 53} is the longest one of M0 because the opposite angle is obtuse, 

and hence d(x2,x3) > d(xi,xs) > 2/2 + As conv{52,53} is an edge of K, it 

follows that O(K) > q(T3) by the previous observation. 

The only case which is open is if K is a quadrilateral such that for any two 

neighbouring angles of K, one of them is at most . Then there is a pair of opposite 

angles of K, say, at xo and X2 such that each of them is at most . 

If ang(xo, xi, x3) is at least then d(xo, x3) ≥ 2iJ2 + v'• Thus K has an edge 

of length at least 2\/2 + and O(K) > q(T3). 

Assume that each of the angles of both M0 and M2 is at most 21. This forces 

A(K) to be large by (A()). Observe that the area of both M0 and M2 is at least 

..2.2. sin L,/.AsVi(K)_- 2jP(K)≥4,wehave 

O(K) = 'irVi(K) + A(K) > ir 4 + 2V' = 15.39479 > q(T3). 

Therefore q(K) > q(T3) for any choice of K with dim K ≤ 2. It follows that if 

(K) = q5(7.') (or equivalently, K is a minimal body) then dim  = 3. 

4.1.2 K=conv{xo, Xi, x2, 53} is a non-degenerate 3-simplex 

The verification of (*) requires some preliminary results concerning edgelengths. We 

assume for the rest of the section that conv{xo, xi } is the longest edge of K. We list 

some possible properties of K: 

i) For any x, there is an xj with d(x, x) = 2. 
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ii) If ang(xj, Xk, x) and ang(xj, xi, x) are at most ir/2 then d(x, x) = 2 

(see Figure 4.3). 

iii) If d(x, x3) > 2 then d(xo, x) = d(xj, xi), i = 2, 3 (see Figure 4.4). 

iv) If d(x,xk) = d(x,xk) = 2 and d(x,x) 2v/'2-then d(x,x) = 2. 

Note that iv) follows from ii). We assume ii), d(x, Xk) = d(x, xk) = 2 and 

d(x, x) 2i/. Then d(x, x)2 ≤ 8 = d(x, Xk + d(x, xk)2 and (L) imply that 

ang(xj, Xk, x) < ir/2. Since d(x, x)2 ≤ 8 = d(x, xi)2 + d(x, xi) 2, we also have that 

ang(xj, xl, x) ≤ ir/2. Consequently, d(x, x) = 2 by ii). 

We need another property of the triangles. Let a, b and c be edges of the triangle 

M, and a be the angle opposite to a. Let a . Since A(M) = bc sin a, the area 

of M decreases if a decreases. 

LEMMA 4.1.3 Assume O(K) = q(P3,1); that is, K is a minimal body. Then the 

properties i), ii), and iii) hold. 

Proof: i) was proved in Section 2.4, p.60. With respect to ii) and iii), we prove 

that if they do not hold then the points x0 ,..., x3 can be moved a little so that they 

are still at least distance 2 apart but the first and the second intrinsic volumes of 

their convex hull decrease.This contradicts the minimality of q(K). 

In order to prove ii), suppose that both ang(xj, Xk, x) and ang(xj, xi, x) are at 

most the right angle and d(x, x) > 2. Rotate xi towards x3 around aff{xi, Xk} so 

that d(x, x) is still at least 2. Then V, (K) decreases by the Bending Lemma. 

Since d(x, x) decreases, both ang(xi, xk, x) and ang(xj, xi, x) decreases. These 

angles were at most ir/2 at beginning of the process, which yields that the areas of 

both Mk and M1 have been decreased. Notice that the other two faces remained 
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Xi 

xl 

edgelength 2 

Figure 4.3 

A simplex K with property ii) 
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Y2 

.-

xo 

xl. 

H 

Figure 4.4 

A simplex K with property iii) 
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unchanged. It follows that V2(K) (which is half of the surface), and consequently 

also O(K), has been decreased. 

For iii), we use the Steiner symmetrization. So assume that d(x2, x3) > 2 and 

d(xo, x2) < d(xi, x2). Let H be the plane perpendicularly bisecting the segment 

conv{xo,xi}, and yj be the image of xi by the reflection through H, i = 2,3 (see 

Figure 4.4). Let 0 < e < 1 with the property that d(x, x) ≥ 2 for x = (1 - )x + 

2 2e y, i = 2, 3. Then x is in the same open halfspace of H as Xi. 

Recall that coflv{xo, x1} is the longest edge of K. It follows that ang(xo, x2, x) > 

ir/2, and hence d(xo, 4) > d(xo, x2) ≥ 2. Since x is in the same open halfspace of 

H as x2, d(xi, x) > d(xo, x) > 2. Similar cosiderations show that d(xi, x) ≥ 2, i = 

0,1 (equality occurs ifx3 € II and d(xi, x3) = 2). Hence for K' = conv{xo, xi, x,x}, 

all the edges of K' are at least 2. 

The condition d(xo, x2) < d(xi, x2) yields that K is not symmetric in H, and 

in any plane parallel to H. It follows that V(SH,(K)) < V1(K) for i = 1,2 by 

Theorem 1.8.2. All the points x0, xi, x,x are contained in SH,(K) by definition. 

Thus K' C SH,€(K), which in turn yields V2(K') < V(K), i = 1,2, and hence 

4(K') < 4(K). 

0 

The graph of the edges with length 2 

Let G be the graph on {x0, x1, x2, x3} such that a pair {x, x} is an edge if and only 

if d(xi, x) = 2. 
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We assume that K is minimal, and hence it has the properties i) to iv). We show 

that if d(xo, x1) > 2 then C has at least three edges and O(K) > q(T3); that is, K 

is not minimal. Hence it follows that d(xo, x1) = 2 and K T3. 

By i), C has no isolated points. Hence C has at least three edges unless it has 

exactly two which have no common vertex. Since d(xo, x1) > 2, we may assume that 

d(xo,x2) = d(xi,x3) = 2. By iii), either d(x2,x3) = 2 or d(xi,x2) = d(xo,x2)(= 2) 

and d(xo, x3) = d(x, x3)(= 2). Therefore C has at least three edges in any case. 

G has exactly three edges 

Observe that two of the edges of C definitely have a common vertex. Since C has 

no isolated points, it is either a path, say d(xo, x2) = d(x2, x3) = d(x3, x1) = 2 (see 

Figure 4.5 and Lemma 4.1.4) or a star, say d(x3, x) = 2, i = 0, 1,2 (see Figure 4.6 

and Lemma 4.1.5). 

LEMMA 4.1.4 If d(xo, X2) = d(x2,x3) = d(x3,xi) = 2 and the other edges of K 

are greater than 2 then q(K) > 

Proof: If d(xo, x3) ≤ 2v"2- then d(xo, x2) = d(x2, x3) = 2 yields d(xo, x3) = 2 by 

iv). Hence d(xo, x3) > 2iJ, and similarly d(xi, x2) > Let ang(xo, x2, x1) ≥ 

ang(xo, X3, XI). Then ii) and d(xo, xi) > 2 yield that ang(xo,x2,XI) > ir/2. 

These observations and (L) yield for M3 that 

d(xo, x1) > v'd(xo, x2)2 + d(xi, x2)2> I22 + (2v' )2 = 2v', 
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x3 

edgelength 2 

Figure 4.5 

G is a path 
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and consequently 

1/1(M3) = ir 1 (d(xo,xi) + d(xi,x2) + d(x2,xo)) > W(2\/+ 2v"+ 2) = 13.02587. 

If ang(xo, x2, x1) ≤ then A(M3) is also large; namely, (A()) yields that 

V2(M3) ≥ . 2 . sin = = 2.44948. 

Combining this with the lower bound for V1(M3) results in 

O(K) > q(M3) = irVi(M3) + 1/2(M3) > 15.47536 > cb(T3). 

Hence assume that ang(xo, x2, x1) > j, and we increase the lower bound for 

V, (M3). As d(xo,x2) = 2 and d(x,x2) > 2v', (L) yields that 

d(xo, x1)> 22 + (2)2 —2•2 2• cos = 23 + 

which in turn yields that 

1/1(M3) = ir-(d(xo,xi)+d(xi,x2)+d(x2,xo)) > ir(2\I3+V'+2V'+2) = 14.18497. 

If in addition, ang(xi, x3, x2) < a-' then T/2(Mo) is large. Observe that 

ang(xi, x3, x2) is the greatest angle of M0, and hence by (A()), 

A(Mo)=V2(Mo)≥.2.2.sin 3r --=\/i 

Therefore we have the lower bound 

O(K) = 7rVi(K) + V2(K) > 'rVi(M3) + V2(Mo) > 15.59918 > q(T3). 

The only possibility left is if ang(xj, x3, x2) > -, in which case V1(M3) itself 

forces q(K) to be large. Observe that by (L), ang(x1, x3, x2) > 2z implies for M0 

that 

d(x1,x2)> 
3ir / 

22+22-222•cos--=2\f2+'2. 
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x3 

edgelength 2 

Figure 4.6 

G is a star 
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Hence ang(xo,x2,XI) > ii-/2 and (L) yield for M3 that 

d(xo, xi)> V 22 + (W2 +,/2-)2 = 23 + 

which in turn yields that 

O(K) = irV1(K) + V2(K) > irVi(M3) = ir P(M3) 

> 7r (2 + 2\/2 + +2V'3 + = 15.54699 > q(T3). 

0 

LEMMA 4.1.5 If d(x3,x) = 2, i = 0,1,2, and all the other edges of K are greater 

than 2 then c(K) > q5(T3). 

Proof: iv) yields that each edge of M3 is greater than 2VI2. By the triangle in-

equality applied for M, i = 0, 1, 2, the edges of M3 are at most 4. 

Note that 

d(xo, x1) 2 ≤ 16 = (2\/)2 + (2')2 < d(xo, x2)2 + d(xi, x2)2, 

and hence all the angles of M3 are acute by (L). As a consequence, 

q(K) irVi(K) + V2(K) > irVi(M3) + V2(M3) 

≥ = 16.79275> q(T3). 

0 
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G has at least four edges 

If G contains a cycle then, as d(xo, x1) > 2, we have 

d(xo, X2) = d(x2,XI) = d(xi,x3) = d(x3,xo) = 2 

(see Figure 4.7 and Lemma 4.1.6). Otherwise, observe that there is a vertex which 

is contained in 3 edges of C but G can not have 5 or 6 edges. Therefore C contains 

a star and an additional edge, say, d(x3, x) = 2, i = 0,1,2, and d(xo, x2) = 2 (see 

Figure 4.9 and Lemma 4.1.8). 

LEMMA 4.1.6 If d(xo,c2) = d(x2,xi) = d(xi,x3) = d(xs,xo) = 2 and d(xo, xi) > 

2 then q(K) > q(T3). 

Proof: Rotate x1 around aff{x2, x3} towards x0. Since the edgelengths of the tri-

angles M0 and M1 are the same, the triangles are congruent, and there is a posi-

tion xc for x1 where d(xo, xc) = 2. Now rotate x2 towards x3 around aff{xo, xc} if 

d(x2, x3) > 2. Similarly as above, there is a position x with d(x, x3) = 2, and hence 

the resulted simplex is congruent to T3. Since the first rotation certainly strictly de-

creased the first intrinsic volume by the Bending Lemma, T/1(K) > V1(T3). 

Let y be the midpoint of the edge conv{x2, x3} (see Figure 4.7). Then the segment 

conv{y, x1} is the height of the triangle M0. Since d(x2, x3) ≥ 2, it follows that 

d(y, x1) is at most the height of T2, and hence d(y, x1) \/. Similarly, d(y, x0) ≤ 

\/, and consequently 

d(xo, xi) < d(y,xo)+ d(y, xi) ≤ 2v". 
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x3 

x2 

edgelength 2 

Figure 4.7 

G is a cycle 
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Let a be the greatest angle of the isosceles triangle M3. Since 

22+22 .-d(xo,xi)2 8-12  
Cosa = > 

222 8 2' 

a is at most . Thus the area of M3 is at least A(T2) by (A()). 

Similar considerations show that that the area of each faces of.K is at least A(T2), 

and consequently V2(K) ≥ V2(T3). Combining this fact with V, (K) > V1(T3) yields 

that q(K) = iv V1 (K) + V2(K) > (T3). 

0 

Before we consider the last possibility for G, we prove an auxiliary statement. 

LEMMA 4.1.7 Denote the triangle conv{yo, yl, Y2} by M, and assume that d(yo, yi) 

= 2 and 2\/2- :5 d(yo, Y2) :5 d(yi, y) ≤ 4 (see Figure 4.8). Then A(M) ≥ \/;7 

Proof: Denote by v the midpoint of conv{yo, y} and by w the projection of Y2 

onto the line aff{yo, yi}. The point v separates Yi and w (possibly v = w) because 

d(yo, Y2) ≤ d(yi,y2). 

Let h = d(y2,w) and p = d(v,w), then d(yi,w) = l+p and d(yo, w) = Il - ri. It 

follows that 

8 ≤ d(yo,y2)2=(l—p)2+h2 

and 16 ≥ d(yi,y2)2=(1+p)2+h2, 

which in turn implies that 

4p+8≤4p+(1—p)2+h2=(1+p)2+h2≤16. 
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2 

yl 
p 

Figure 4.8 

Determining the area of M=conv[y0,y1,y2) 

Yo 
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Thus p ≤ 2, and consequently h = V8 — (1 - p)2 ≥ \/T. Since h is the height of M, 

the area of M is at least s/i. 

11 

LEMMA 4.1.8 If d(x3,xo) = d(x3,xi) = d(x3,x2) = d(xo,x2) = 2 and the other 

two edges of K are longer than 2 then 4(K) > q(T3) (see Figure 4.9). 

Proof: Since d(x3, x1) = d(x3, x2) = 2 and d(xi, x2) > 2, iv) yields that d(xi, x2) > 

Similarly, d(xi, xo) > and hence A(M3) = V2(M3) ≥ /7 by Lemma 4.1.7. 

If both d(xo, x1) and d(xi, x2) are greater than 2V3- then V, (M,3) > (2 + 2V + 

2\/) = 1 + 2V3- and 

q5(K) = 'ir Vi (K) + V2 (K) > irT4(M3) + V2 (M3) 

> ir• ( 1 + 2v') + VT = 16.67014> cb(T3). 

Assume that, say, d(xi, x2) ≤ or equivalently, that ang(xi, x3, x2) 

Observe that A(Mo) ≥ A(T2) = V3-by (A()). Since A(M1) = A(T2) = V3 and 

d(x1,x) > 2v', i = 0, 2, it follows that 

= irVi(K) + V2(K) > irVi(M3) + (A(Mo) + A(M1) + A(M3)) 

> ir(2+2'+2V')+ 1 (v'+ v1 + \/) = 15.08228> cb(T3). 

D 

Remark: So far we have seen that in E3, T3 is the unique minimal body which 

can be chosen either for p1  or for 'P24. Turning to the volume, note that 

V(T3 + B3) = i: ic3_V(T3) = 23.52360. 
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x3 

edgelength 2 

Figure 4.9 

0 is not a cycle and has four edges 
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On the other hand, the segment S4 with length 6 is an element of and 

V(54 + B3) = 6• 2 + l3 = 23.03834 <V(T3 + B3). 

Therefore T3 is not a minimal body with respect to V(K + B3), K E G43. 

4.2 Three-ball packings 

Let d ≥ 2 and 1 < i < d. By the monotonicity of the intrinsic volumes, P is a 

point and 'Z2 is a segment of length 2. Having three balls, it is not too complicated 

to determine 17, but the shape of it depends on i. We consider this case so as to 

illustrate the relation between i and the shape of a minimal body. 

So let M E gd with the property that (M+Bd) = ?91. By the considerations in 

Section 2.4, p.60, M = conv{xo, xi., x2} with d(x, x) ≥ 2 for i 0 j. Let conv{xi, x2} 

be one of the longest sides of M. If d(xi, x2) = 2 then all the sides have length 2. 

Otherwise, again by the considerations in Section 2.4, p.60, we have d(xo, x1) = 

d(xo,x2) = 2 (see Figure 4,10). Denote ang(xo,xi,x2) by 'y. Then 0 

d(xi,x2) = 4 cos 'y and ang(xi,xo,x2) = 7r - 2'y. It follows that 

V1(M) = (2 + 2 + 4 cos -y) = 2 + 2 cos 'y, 

and V2(M) = •2•2 sin(ir - 2'y) = 25in27. 

According to Lemma 1.8.1, 

diVi(M + Bd) = i) j=O ( —dj d M  

Since V(M) = 0 for j ≥ 3, combining the last three formulae yield that 

d - 2 "\ 
,d_iT(M+B0) = I .)'+ d-1 lcd i(2+2cos'y)-I- ( . 'c_ •2 sin 2'y. 

(d—i) - \ Id—ZJ 



xo 
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2 

Figure 4.10 

Convex hull of the centers in a three-ball packing 
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(Recall that if i = 1 then () = 0). 

We conclude that M is a minimal body if and only if 

= ) d_1 COS t + ( I)1_2 sin2t 

is minimal on [0, ir/3] for 1 = -y. Since 

(d— i\ 
= d— ) Kd_1 cos  d 2 4(d_ ) d_2 sin 2t < 0, 

the function b(t) is strictly concave on [0, ir/3], and hence it takes its minimum 

value either for t = 0 or for t = x13-

Note that 

(d_2 - (d- 2).....(i-1) i_i(d_i ). 

(d—i)! d-1d—i 

It follows that 

ifd— i" 
= ( . 2 d—zj )Kd.2 2d— z,  

= (d— i)'d-1 \/(i2d—z d_2 d-1 . 

By 1.6 '-- - —fl-- '-- for in> 2. As 'ci/'co = 2 and r-2/X1 = 7/2, the quotient 
- ,m+1 Km2 - 

1 m-1/'cm-2 is rational if m is even and transcendental if rn is odd. Since is 

algebraic, it follows that i&(0) 54 &( r/3) for i = 1,... , d. Therefore, M = T2 (or 

equivalently, (7r/3) <?&(0)) if and only if 

d — i KcL_1  

. d-2 
and M = S3 otherwise. 
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Let C(d) - d-1 + 1. The inequalities < < of 1.7 yield that 
V-  ' 

'2ir d-1 A 
r d-1i,,+1<C(d)< V1d1 

and so C(d) as d tends to infinity. 

We conclude that in case of three-ball packings, there is a unique minimal body 

with respect to the ith intrinsic volume, i = I,— , . , d. This is T2 if i < C(d) and S3 

if i> C(d), where C(d) has order of \/i. 

4.3 (d+1)-ball packings in Ed for large d 

In this section we do not attempt to find any minimal bodies. We compare the 

sausage arrangment of d+ 1 unit balls with the arrangement determined by Td. They 

are two possible candidates, for a given 1 ≤ i ≤ d, for the minimal arrangement with 

respect to the ith intrinsic volume of the convex hull of the balls. The situation is 

similar to the one in the previous section; that is, 

THEOREM 4.3.1 Let d ≥ 2 and i = 1,... , d. There exists a function B(d) with 

the property that 

and 

V2(Td + Bd) <V(Sd 1 + Bd) if i < B(d), 

Vi (Td + B°) > V(Sd+1 + B°) if i > B(d). 

For large d, lnB(d)'-...lnv'i=lnd. 

We establish the existence of B(d) in Subsection 4.3.1, and determine its asymp-

totic behavior in Subsection 4.3.5. First we reformulate the problem. Let h(s) be 
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the function with the property that f 8 l e_t2 dt = s. Recall Hadwiger's expression 

1.8, which states that 

/d 
Vj(Td) = +l\j +1 + j! 2 (d, j) 

for 1 < j ≤ d, where 

4 (d,j) [ _j[h(1/2 ))]2td_3 dt. Jo 1 

Let 1 < j < i < d. In the course of the proof we need the rather complicated 

expression 

- 2j/2 d+1 r(i+i) 1 

- 2 73/2 j r(i—j+1) T(j+1)2 T(j+1) 

In addition, we define 

A(d,i,j) = (d,i,j) .(d,j) and f(d,i) = A(d,i,j). 

LEMMA 4.3.2 Let d> 2 and i = 1,. . . , d. Then 

and 

VZ(Td + Bd) < V(Sd+l + B') if f(d, i) < 1, 

VZ(Td + B°) > V2(Sd+l + B") if f(d,i) > 1. 

Proof: Lemma 1.8.1 and Vo(T") = 1 yield that 

1d_Vi(T" + Bd) 
=0 ( 

= 
d " () d_ (d+1)j+ 1 (d,j). 
I 1d—i 'd_ij+l) j! 2/2  

On the other hand, V(S +1) = 2d and Vj(S+i) = 0 for j = 2,.. . , d yield that 
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\ d_1\ 
1cd_V2(Sd+1 + Bd) = ( d iJ ( I d + d • 2d. 

/ \d— _ . j,, 

Hence Vi (T' + Bd) < V(Sd+1 + B') if and only if 

(dj) (d+1)i+12j,2(dj) < 
ji d_j)d_12d 

which is equivalent to 1Ao(d,i,j) < 1 for Ao(d,i,j) l] o(d,i,j) . (d,j), where 

Id— j\ (d--1) j+1 2312. 1 Id— i1-' 
j! d-1 2dd—ij 

We prove I'o(d,i,j) = IJ(d,i,j) in two phases. First consider 

( d — j\ (d+1\ j+1 1 (d— I -' 
d—i)j+1) j! 2dd_i) 

= (d—j)! (d+1)!  j+1 1 (d—i)!(i-1)!  

(i — j)!(d — i)! (d—j)!(j+l)! j! 2d (d-1)! 
(d+1)! (1_ 1)! j+1 d+1  r(i+1)  

- 2d(d-1)! (i—i)! (j+1)!j! - 2i r(i—j+i) T(j+i)2 

We used the fact that r(n +1) = n! for any natural number n. The remaining terms 

in To(d,i,j) are 

r(.i + 1) - 22/2 /F r(.i + 1)  
22/2 . 1d- j = 2j/2   

r(L+i) (d-1)/2 - j/2 r(+1)' 

and hence Wo(d,i,j) = W(d,i,j). 

11 

4.3.1 The existence of B(d) 

LEMMA 4.3.3 Let d ≥ 2. Then f(d, i) = A(d, i, j) is strictly increasing in i, 

i=1,...,d. 
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Proof: Define A(d, i, j) = 0 if i <j. Hence we may write 

i d 

A(d,i,j) = > A(d,i,j). 
j=1 j=1 

If i ≥ j then (for fixed d and j) the value of A(d,i,j) = IIJ(d,i,j) (d, j) depends 

on 

F(i+1) (i—i)!  

iF(i -j + 1) - i . (i—i + 1)! - (i—i + 1)r 

This is (j—i)! for  =j and (i-1).....(i—j+1)for  >j. Thus A(d,i,j) is 

increasing for i = I,— , d. If  = 2 then A(d,i,j) = 0 for i = 1, and = i—i for 

i ≥ 2. Observe that A(d, i, 2) is strictly increasing in i. It follows that in the sum 

EL1 A(d, i, j) each term inreases as i increases, and one of them strictly increases. 

Therefore E...1 A(d, i, j) = Z34=1 A(d, i, j) is also strictly increasing in i. 

0 

Now we define a function B(d) satisfying the requirements of Theorem 4.3.1. Let 

f(d, 0) = 1, and consider 

io=max{ili=O,...,d and f(d,i)≤1}. 

Set B(d) = io if f(d,io) = 1, and B(d) = io + I if f(d,io) < 1. By Lemma 4.3.3 

and Lemma 4.3.2, if i < B(d) then f(d,i) < 1, and hence V(T'1) < T,/j(sd+l); and if 

i > B(d) then f(d, i)> 1, and hence V(T'1) > V2(Sd+l), i = 1,. . . , d. 

Note that V1(T'1+B') < Vl(Sd+l +B°) by 3.11, and that V(T°+B°) > V(Sd+l + 

B°), as it was proved in [8], which yield 1 <B(d) < d. In the rest of the section we 

improve these bounds for d large. 
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By definition, if i ≤ jo then 

=>2A(d,i,j) = f(d)i) ≤ I. 

Our task is to determine, for what i is the inequality satisfied when d is large. 

4.3.2 1nI'(d,i,j) for large d 

First we make some general observations. Recall that g(t) = 0(1) means that the 

function g(t) is bounded, and that 1.5 states that 

lnP(t+1) = tlnt — t+ 1nt+O(1) 

fort ≥ 1. If —1 ≤ t them 1n ≤ ln(1+t) ≤ 1n, and since ln(1+t) = 

11(1 + t), even I ln(1 + t)I ≤ 21t1 by the mean value theorem. 

Let 1 ≤ p ≤ q. By the observation on ln(1 + t), 

(q—p)ln.(1—) = (q—p)O() = 0(p). (4.1) 

We frequently meet the expression 

lflr(q_P+1) _ lnr(q+1)_lnr(q—p+1)—lnr(p+1). 

By 1.5, we may write 

lnl'(q+1)—lnF(p+1) = q1nq_q+lnq—pinp+p—lnp+O(1) 

= q11nq—q+jlnq—pinp+O(p). 

By q - p = q(1 - ), the remaining term is 

-r(q-p+ 1) = —(q—p)ln(q—p)+q---p— ln(q—p)+ 0(1) 

= (p_q)[lnq+1n(1_)]+q—p---[lnq+ln(1—)]+O(1). 
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Having this, 4.1 yields that 

_r(q_p+1)=pinq—q1nq+q-1nq+0(p). 

Therefore, we may deduce that 

F(q+1)  
in =pinq—pinp+O(p). 

F(q — p+ l)F(p+ 1) 

129 

(4.2) 

Let a = a(d, i) = 109d i and ff3 = /3(d,j) = logj. We assume that a> 1/3 (and 

hence i tends to infinity as d does) and that 1 ≤ d. It is convenient to write 

for 

Vir 2j/2 d+1 -  r(i+1)  1  

1— 2 .j/2 j  r(i -j + 1)r(j + 1) r(j + 1) 

and XF3 
_r(+1) 

T(jL+1) 

Let us start with IF,. Using d+ 1 = d(1 + ), j ≥ 1 and mi = Ind' = aind, 

Note that 0(j) + 0(1) = 0(j) because j ≥ 1. 

Turning to assume that 1 ≤ m < ld and consider 

d — m, d— m d— m d— m 1 d— m  
lnl'( 2 + 1)= 2 in 2 2 + 21n 2 +0(1). 

Since in/d ≤ 1/2, the formula 4.1 yields that 

d— m d— m 
2 in 2 

d— m 
=  2(in d + in (i - - in 2In 2 d)  

= .dlnd_1jmind_d+O(m). 
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We also have 

d— m 1 d— d m 1 
- 2 + 21n 2rn = _+--+(1nd+ln(1_-)_ln2)+O(l) 

= — d+ !Ind +O(m), 

which in turn yields that 

 + 1) = I d1nd— 1 mind— (ln2+ 1)d+ lnd+ 0(m). 

Substituting in = 1 and m = j into the formula above results in 

mW3 = .dlnd-1nd- 1  

—dlnd+ j1nd+ (1n2+ 1)d— 1nd+ 0(j) 

= j1nd-1nd+O(j). 

In order to evaluate W2, we consider two cases. First let j ≥ i/2. Observe that 

r(i—j+1)r(j+1) by 1.3, and hence 

<  r(+i) 1  

2 r(+1)2 I'(j+1) 

Then by 4.2 and 1.5, we have 

The condition j < i ≤ 2j yields that 

1ni_ln=(i1ni—ilni+iln2)0(i)0(j), 

and also that in i and lnj are 0(j). Note that lnj = Ind In dP = /31n d. Hence if 

i/2≤j <i then 

mW2 ≤ —jlnj + 0(j) = —f3jind+ 0(j). 
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Now let 1 ≤ j ≤ i/2. Then 4.2 and 1.5 yield that 

ln 2 = jlni_jlnj+O(j)—jinj+j—lnj+0(l) 

= jlni-2jllnj+0(j)=(a-2/3)jind+O(j). 

In order to make it easier to summerize the results, we repeat that 

ln W = (1 - a)in d + 0(j) and ln = in d - in d + 0(j). 

Adding the fomulae for in Wk, k = 1,2,3, yields In T . Recall that a > 1/3 and 

j ≤ d. If 1 <j <i/2then 

1n1(d,i,j) = ( + a - 2/3)j Ind + (1 _ a) Ind + 0(j), (4.3) 

or if i/2 _< j ≤ i then 

ln(d,i,j) ≤ (1—/3)jlnd+(—a)lnd+O(j) 

≤ (+ a-2/3)jlnd+0(j). (4.4) 

For the last step we used that /3 ≤ a and also that in d = 0(j) since j ≥ i ≥ c1'1. 

4.3.3 Upper bound for B(d) 

First we prove a lower bound for (d,j). 

LEMMA 4.3.4 Let d ≥ 2 and 1 <j < 1d. Then 

I'(j + 1)P(d - j + 1)  
(d+1)F(d+1) 

Proof: Recall 1.9, which states that 

1 
'I(d,j) = 10   e_j[h'h12ij2td1i dt, 
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and that g(t) = 6_[(j(h/2_t))]2 is a concave function on [0, 1] with g() = 1 and 

g(1) = 0. It follows that g(t) ≥ 2(1 - ) for < i ≤ 1, and hence 

(d, j) ≥ / 1 2-1 (1  - ) td1 dt. 
J 

Observe that (1 - t)itd_i / j d-2j 
ti(1_t)d_i = ≥i for t≥  and j≤ d. Thus 

1 

J 2 
(1 - )itc dt = Ji t(1 - j)d_i d ≤ J(1 - j)itd_3 dt, 

which in: turn yields that 

1 '(1 _ t)itd_idt ≤ 2. [ 1 (1—t)tdt. 
J. 

By 1.4, we deduce the lower bound 

(d, j) ≥ 2i. f '(1  _ t)itd_ dt - 125 r(j + 1)r(d— j + 1)  
r(d+2) 

Having this, F(d + 2) = (d + 1)(d + 1) yields the lemma. 

0 

Let . < p < 1 be arbitrary and < -y < p have the property that y + e < p 

for 6 = - ). If d is large enough then both of the intervals (d, d6) and 

(d8, d3) contain some integers. So assume that y - 6 <loge i = a(d, i) < y + & and 

6 <logj = ,8(d,j) < 36. Note that j > d, and we may assume that j < i. 

Since ln(d + 1) = o(de) = 0(j) and j = d', 4.2 and Lemma 4.3.4 yield that 

ln(d,j)≥ln+jln2_ln(d+1)_jlnd+jlnj+O(j)(/3-1)jlnd+O(j), 



CHAPTER 4. PACKINGS OF SMALL NUMBERS OF BALLS 133 

It follows by 4.3, that 

lnA(d,i,j) = ln'J(d,i,j)+1n(d,j) ≥(c—--9)jlnd+O(j) 

≥ (y— c— - 3&)j in d + 0(j) = (2e + j in d. 
In d 

Therefore, if d is large enough then 1nA(d,i,j) ≥ ejlnd> 0, and hence 

A(d,i,j) > 1. Note that consequently A(d,i,m)> 1. Now Lemma 4.3.2 and 

Lemma 4.3.3 yield that B(d) d" for d large. By the arbitrariness of < p < 1, 

lnB(d) 1 
hmsup -. (4.5) 
d-+oo In  2 

A lower bound for (d,j) yielded an upper bound for B(d), hence now we search 

for an upper bound for (d,j). 

4.3.4 Upper bound for in(d,$) 

In this and the next section we use the symbol o(1) for functions which depend solely 

on d. 

Let =   = 0.09401 and 1 ≤ s ≤ (d be real number. The upper bound 

1.10 yields that 

/ 1 d— s\ 8 / 1 d— s'\'2 /1 d— s\ 8 
(d, s) < ) ln [ ) < 2/ ) (In d)'. 

Note that - ln(1 - ) ≤ - ln(1 - () <1n2 and let ,6 = loge s. Hence, writing d - S 

as d(1 - ), we deduce that 

ln(d,i,$) ≤ —s(ln 2,,_+lnd+ln(1— )— lns)+s1n1nd 

≤ s1ns—slnd+s(ln2v'+ln2)+slnlnd 

(16_ l+ mn2 + mn2 + lnhlrdl)Slfld 
Ind 

(/3-1+o(1))slnd. (4.6) 
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This upper bound is not sufficient for us if s is small. In order to improve it we need 

some additional properties of (d, s). 

Consider the functions 

a(t) = ep[(\/(h/2_t))]2 1-(d—p) 

and 1.(d—q) 

where p and q are positive numbers. According to Holder's inequality, 

(f a(t) /3(t) dt)2 ≤ fo a(t)2 di j' /3(1)2 dt. Substituting the definition of a(t) and 

/3(t) results in 

11 _(+q) [h(./(1/2_t))]2 1d_.(p+q) cit)2 
.10 

≤ j1 e [h('y(1/2))]2 t1 di 6—q[h(v'(1/2t))]2 1- di. 

In terms of (d, s), this yields that 

ln(d,(p+q)) :5 (In (d,p) + 1n(d,q)). 

Since in (d, .$) is certainly continuous, it is also convex. 

Let 1 ≤ .s ≤ In d. Recall 3.2, which says that (d, 1)   as d tends to 

infinity. Thus if d is large enough then (d, 1) < and 

ln(d,1)<lulnd_2lnd=(11  2)1nd[_2+o(1)]ind. 
Ind 

Note that /3(d, in d) = = o(1), and hence 4.6 yields that 
Ind 

1n(d,1nd)≤[-1+o(1)]1ndind. 

Define 0 ≤ A(d,$) ≤ 1 with the relation .s = (1 — A) . 1 + A. Ind. Note that 

= 1 + A(lnd — 1). Since 1n(d,$) is convex in .s, we have 

in(d,.$) ≤ (1—A)(d,1)+A(d,lnd) = (1—A)[-2+o(1)]ind+A{-1+o(1)}(ind)2. 
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Hence we deduce for 1 ≤ s ≤ Ind that 

1n(d,$)  
Id ≤ (l—A)[-2+o(l)]+)[—l+o(l)]lnd 

= —2+o(1)+)42+o(1)+(-1+o(1))lndj 

= —2 + o(1) + )[-1 + o(1)] In d (4.7) 

by 2+o(1) = o(l)lnd. 

4.3.5 Proof of the asymptotic behavior of B(d) 

Let 1/3 < p < 1/2. We prove that B(d) ≥ d,0 if d is large. Set 'y = (p + ) and 

= - y). Note that p <'y - e and 'y + e < 1/2. If d is large enough then there 

exists an integer i with 'y— e < a = loge i <'y+e. Observe that 1 in d > in i > pin d. 

LEMMA 4.3.5 Let i be as above and 1 ≤ j ≤ i. Then lnA(d,i,j) < —  lnd ford 

sufficiently large. 

Proof: First assume j > Ind. Hence 4.3 and 4.4 yield the existence of a constant 

c> 0 so that 

1nI'(d,i,j) ≤ 

= (+ a-2/3+o(1))jlnd. 

Taking 4.6 also into account yields 

lnA(d,i,j) =In (d,j)+1n'J!(d,i,j)≤ [a-13—+o(1)]jlnd. 

If d is large enough then a - # -   + o(1) < a - + e <'y + 6 - + e = —e. Thus 

2 2by j ≥ In d, we have InA(d,i,j) ≤ —(elnd) . In d. We may assume that d is large 

enough to ensure 1nd> 2/3, which in turn yields that lnA(d, i,j) <— lnd. 
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Now assume that 1 < j In d. By /3 ≥ 0, 4.3 yields a constant c'> 0 so that 

ln(d,i,j) (+ a)jlnd+(—a)1nd+c'.j 

/1 c'. 

= [+ a+o(1)]jlnd+(—a)lnd. 

Recall that j = 1 + )¼(d,j) (In d - 1). It follows that 

ln IQ (d,i,j) [+ a+o(1)][1+(lnd-1)]+—a 

= 1+o(1)+)[+a+o(1)](1nd-1) 

≤ 1+o(1)+ )[+a+o(1)]lnd. 

Combining this with 4.7 yields that 

A(c1j) = + <-1+o(1) +[a — 1 +o(1)]Ind. 

If d is large enough then —1+o(l) < —2/3 and a - + o(1) < -y + - + € = —e < 0, 

and hence again lnA(d,i,j) < 2 In d. 

0 

Lemma 4.3.5 yields that A(d,i,j) < d 213. As i < we deduce that 

A(d, i, j) <d"2 d 13 = d 116 < 1 
j=1 

for d large, and hence B(d) ≥ i > d. At the end, the arbitrariness of 1/3 < p < 1/2 

and 4.5 yield the theorem. 

0 
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Let d ≥ 3 and 1 < i ≤ d, and consider n-ball packings with n < d + 1. In 

this and in the previous chapter we have investigated, for various i, the minimum 

properties of the ith intrinsic volume of the convex hull of the balls. The results 

indicate that, as i increases, the sausage arrangement becomes more optimal than 

the one determined by a regular simplex. We have not considered the case 3 < n < 

d + 1. The only known information about this is the result of [8], which states that 

V(STh + Bd) <V(T 1 + B'). 



Chapter 5 

About the sausage conjecture 

After the intrinsic volumes of lower index, we consider the d-dimensional volume 

of the convex hull of n-ballpackings, mostly for d ≥ 5. As a sharp contrast to the 

previous results for large n, most probably the minimal volume occurs if the centers 

are collinear; that is, the convex hull resembles a sausage, and this holds without 

any restriction on n. We prove that a minimal arrangement is not too far from the 

sausage-like one. 

5.1 The story of the conjecture 

We assume d ≥ 2 for the whole chapter. Let .7 be the family of the convex hulls of 

the centers in n-ball packings, which is contained in the gdof Chapter 2. 

Let .F = {C, S,,. . .}. Let C, € Fnd. We define the density of the Cn-

bailpackings (see Figure 5.1) as 

- fllsd 

- V(CTh + Bd) 

C, is reduced if there is no packing of n + 1 balls such that the centers are contained 

in C (hence i'(Cn) = n, with the notation from Chapter 2). Next, Cn is fat if 

r(Cn) > 11/d 

Recall from Section 2.4, p.60 that Pldn E Fnd and Pld n is reduced. 

138 
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Figure 5.1 

A C-ba11packing 
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Since Pi,,, + B° is contained in a ball of radius R(1',) + 1, Theorem 2.4.1 yields 

that 

V1(Bd) . i/d v1(1', + Bd) ≤ (R(7',) + 1)V1(Bd). 

Thus R(17 ,) + 1 ≥ h1d, and if n is large enough then, by Corollary 2.5.2, 

r(1' ,) 

Hence Pd,,, is also fat and there exists a sequence {C}{ >N} of reduced, fat bodies. 

By Lemma 2.1.1, 

urn 8(C) = 
n—boo 

(5.1) 

where 8d is the packing density. 

As a counterpart, the segment Sn E Fnd, with length 2(n - 1), is 'thin' and 

reduced. The density of the S-ballpacking (see Figure 5.2) is 

5(S) - 72ld ld  

- 2(n-1)Icd_1+Id 2icd.1 

Here we use the fact that by 1.7, 

d < F Ld1Cd_1 < 2/d-1 

which in turn yields that 

for d ≥ 2, 

V(S + Bd) = 2(m - 1)r-d_1 + Xd 

< 2(ri - 1)Kd_j + 2 r-d-1 = 2?ilcd_i. 

(5.2) 

(5.3) 

In 1975, L. Fejes Toth baptised as a 'sausage', the convex hull S + Bd, cf. [11]. 

With regard to finite packings, L. Fejes Tóth proved in 1949 that in E2 a finite 

packing of unit balls cannot be denser than the densest infinite packing. 
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S+Bd 

Figure 5.2 

The sausage S+Bd 
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As a point of interest, H. Groemer (cf. [15]) and G. Wegner (cf. [29]) showed that 

for C,- € F., the area V(CV. + B2) is minimal when the shape of C is hexagonal. 

In dimensions three and four, the optimal arrangement is 'sausage' for n small, 

and probably 'fat' for n large (cf. [8] and [12]). To illustrate the latter statement, 

let n be large. Then S(S) and. therefore 

3ir 
8(S) = 0.6666 and 8n 16 (S) = 0.5890. 

On the other hand, we note that the existence of dense C-ballpackings (see 5.1) for 

reduced, fat C E ., d E {3, 4}, yields that 

8(C) > 0.7 and 5(C) > 0.6. 

Here we used the fact that 83 ≥ 0.74080 and 84> 0.61685. 

For large d, the 'sausage' arrangement is better than the fat one. Since Sd 

2_0.5991(1+0(1)) (cf. [19]), fixing d and letting n be large compared to d, 

8(C) < 2— id 

for reduced, fat C E Fnd. Meanwhile for S,we have the lower bound 

 > 2(d+ 1) > 212. 

This inequality uses 1.7 again. 

In summary, as the dimension of the space increases, the density of the sausage 

arrangement becomes very large compared to the density of fat arrangements. These 

and other considerations convinced L. Fejes T6th to postulate in 1975 (cf. [11]) his 

famous 
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CONJECTURE 5.1.1 (Sausage conjecture) For d ≥ 5 and C, E , 

S(C) ≤ 6(S,) 

with equality if and only if C, = S. 

The inequality above is equivalent to the 'Sausage Inequality' 

V(C+B')≥ V(S+Bd). 

143 

(5.4) 

There are a series of results supporting the conjecture, but it has not been proved 

yet in any dimension. We list some of those results under the assumption that 

Cn E ..'F,, and d ≥ 5; and note that 5.4 has been verified in cases ii) to v). 

i) V(CV. + B") ≥ (2 - \/) V(S + Bd) [9], 

ii) dimC ≤ 17 (d - 1) [3], 

iii) dimC 9 and d ≥ dimC + 1 [2], 

iv) + v'- 1 ≤ r(Cn) for large d [8], 

v) C, is a regular simplex [8]. 

Assume that 8d < ic/2'c i for a certain d ≥ 2. By means of 2.3 and 5.2, there 

is a o > 0 so that if r(C) > e then 

8(C) < 6(S). 

This observation is the starting point of our investigation. 

Let 1 < in ≤ d. Recall from Section 1.5 that the rn-dimensional inner radius of 

C, rm (Cn) is the radius of the largest rn-dimensional ball contained in C,. The 
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rn-dimensional outer radius of Cn, Rm(Cn) is the minimum of 11m ≥ 0 such that 

there exists a (in - 1)-dimensional affine subspace g with C C g + RTThBd. Then 

dimK < m, rm(K) = 0 and Rm(K) = 0 are equivalent statements. 

Define {  b(d) = min{d,1O} 

.7 r.(_ 1)] + 1 
112 \ 

if5≤d≤ 18 

ifd≥ 19, 

where [b] is the largest integer not greater than b. If dimC < &(d) then it is easy 

to verify that C satisfies the Sausage Inequality 5.4 by ii) and iii). On the other 

hand, by iv) the same conclusion holds if C is a very fat convex body. Our aim is 

to narrow the gap between the two types of results. We prove that for in = dimC 

or in = (d), C satisfies the Sausage Inequality if the rn-dimensional inner radius 

of C, is not very small (and hence similar conclusion holds for Rm(Cn)). 

All the considerations in this chapter are based on a method of Blichfeldt, which 

is reviewed in the second section. Let dimC = in ≥ ,(d). We show that C, 

satisfies the Sausage Inequality if (Section 5.3) R.(d)(C) has order of at least ln d, 

or if (Section 5.5) Lm (Cn) has order of at least 

We determine lower bounds for r(d)(C) and r,,, (C,,), which in turn yield lower 

bounds for R(d) and  

5.2 The, method of Blichfeldt 

Let us consider a packing {x1 + Bd,. . . 'X" + Bd} with C = conv{xi,.. . , x}. We 

know that V(CTh + Bd) is greater than n9d , the integral over E' of the sum of the 

characteristic functions of the unit balls. As that sum is zero on a large part of 

the convex hull of the balls (on the space among the balls), the resulting integral is 
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a very bad estimation for V(C + Bd). Blichfeldt found a function p(x) such that 

translating it to the center of each ball, the sum of the resulting functions would fill 

much more evenly the space among the unit balls. 

Define 

P(X) 
2_1x12 if lxi ≤v 

= 

0 otherwise, 

and let 

d = fEd p(x)dx= JV2-B 2—Ixl2dx. 
f 

Since the balls x + B', i = 1,. .. , n, form a. packing, the function p satisfies the 

inequality 

(x) = p(x - x) ≤ 2 

for any x in E'. This property yields a lower bound for V(CTh + ./ B') because 

fed p(x)dx = J,2,d p(x)dx = p(x - x)dx 

for i = 1,. . . , n by the definition of p, and 

n jEd  .j p(x)dx=f d p(x—x)dx 

= fCn+N/-2-Bd p(x)dx< 2V(C, + 

(5.5) 

(5.6) 

We denote < u, u > by u2 for u E En!. In order to prove 5.5, we may assume that 

x = 0. Since p(xi) = 0 for lxii ≥ it may be also assumed that 1xil v/'2-for any 

i=11... ,n. The centers of the balls satisfy 

(xi — x)2≥4, 1≤i<j≤n 
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because the unit balls form a packing. In the family of the () = n(n1) inequalities 
above, writing them in the form 

x + x - 2xx5 ≥ 4, 

the term x appears n. - 1 times for any k. Hence summing these inequalities results 

in 
n 

(n- 1)x — 2 E xx≥2n(n—l). 
i=1 1≤i<j≤n 

Adding and substracting x from the left hand side yields 

n - ( x)2 ≥ n- 2n - 2n, 

which is equivalent to 

2m>n(2—x) +( x)2. 

Since x = 0 and p(xi) = p(—xi), dividing the last inequality by n establishes 5.5. 

By means of 1.2, 

dKd IN/2(2 — r2)r1dr=dKdjo 2r_l_r0ldr 

d1d 2-

d \/ d\ - dlcd .2 (d+2)/2  2  
d d+2) d(d+2) 

4k  2d1/2. 
d+2 

Finally, 5.6 yields Blichfeldt's estimate 

LEMMA 5.2.1 Let d ≥ 2, n ≥ 1 and C, E .7. Then 

V(CTh + v/iBd) 21 d  2d/2 

(5.7) 

(5.8) 
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Rankin [25] modified Blichfeldt's function. Since Raukin's method is much more 

complicated than that of Blichfeldt, and the improvement is significant only for 

small dimensions, we prefer Blichfeldt's approach. The only exeption is if d = 6. In 

this case Blichfeldt's estimate does not provide any information with respect to the 

Sausage Conjecture as opposed to Rankin's slightly better estimate. 

So let d = 6, {xi+B6,. . . , x+B6} be a packing in E6, and C, = conv{ xi, . . . , 

Rankin defined a function a : E6 —+ R so that u(x) = 0 for x ç?' \/ B6 and 

EcT(x —  xj) ≤1 

for any x E B6. Hence for 

lIJ° JZ6  u(x)dx, 

one can derive the analog of 5.6; that is, 

n. ,6 <v(cfl +\/BG). 

We note that Xp6 = 10.54305 by the formula given in [25]. 

5.3 About the fatness of a packing 

For d ≥ 5, define 

min{ d, 10} 

W(d)=  

[12 (d_1)] +1 

if5≤d≤ 17 

if d= 18 

if d≥ 19. 

(5.9) 

We remark that (d) = (d) if d 0 18 and also (d) > - 12 12 

It follows from ii) and iii) of the previous section that if d ≥ 5, d 0 18 and 

r,(d) (Ca) = 0 for C,, E F.d, then C satisfies the Sausage Inequality 5.4. Hence 5.4 
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holds if C,-, is not 'too far' from S,. Our approach is from the other direction; that is, 

how far can C,, be from being a d-dimensional ball (which was considered basically 

in iv) ) and still satisfy the Sausage Inequality. It turns out that for large d, even a 

quite small value of is sufficient but unfortunately r,(d) can not be arbitrarily 

small. Note that Blichfeldt's method gives the estimate for V(C + \/ B'1), 

independent of the shape of C,. If r,(d)(Cn) is large then the ratio V(C + B') over 

V(C + / B'1) is large enough to yield 

v(c + Bd) ≥ V(c+/Bd) V(Sn + Bd), 

where the first inequality follows by 5.6. In other words, the fact that similar esti-

mates hold for V(CTh + B d ) and V(C + ./JBd) can correct the error coming from 

Blichfeldt's method. If r(d) (Ca) is arbitrarily small then V(C + Bd) is much smaller 

than V(C + ss./iB") and the second inequality above does not hold any more. 

In order to prove our main theorem, we need the following lemma. For a fixed 

r> 0 and 1 < m < d, let T0 be the linear transfornation with the diagonal matrix 

m{ 

dm{ 

1 
r+1 

0 

1 

0 

1 

Denote by E7n the Euclidean space spanned by the first m coordinate axes, and 

by Btm, the unit ball in Em centered at the origin. 
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LEMMA 5.3.1 For K E IC d , 1 < m ≤ d and r = rm (K), 

V(K+B')≥ 

/ 

(  r+1  
r + v'2-) 

2(m-d)/2 V(K + \/ Bd). (5.10) 

Proof: Notice that any x E B' can be written as x=y+z with y E Btm, (y, z) = 0 

and IyI2 + IzI2 < 1. Then 

T11x = T'y+T1z=(r+1)y+z 

= ry+x E rBm+Bdl. 

This yields that T'(B') C rBtm + Bd, or 

B' C To(rBtm + Bd). 

For simplicity, we assume that r.Bm C K. Then B' C To (K + Bd), and it follows 

that 

= 

C K+Bd+(\/_1)To(K+Bd) 

= (I + (\/ - 1)To)(K + Bd). 

Denote the linear transformation I + (/ - 1)To by U. Note the relation 

which in turn yields that 

1+(_1) 1 +i - r+Vr+1 

(r+ -/'\ 
det(U)= r+1 ) 

In summary, we deduce that 
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V(K + / B'1) < V(U(K + B°)) = det(U) V(K + Bd) 

= r+ 1  ) • 2(0_m)/2V(K + B'). 

D 

THEOREM 5.3.2 Let d ≥ 5. 

a) There exists a function c(d) such that if rço(d)(Cn) ≥ c(d)lnd/d for Cn E F,, 

then V(CTh + B°) ≥ V(S + Bd). 

c(d) (2 + \/) 18 (i + 0 (In d)) = 8.7794(1+0 (vInd)). 
Proof: First let d = 5, and hence (d) = 5, and let Cn E for some n ≥ 1. 

Note that according to the table in [5], p.15 ., 

65 ≤ 0.09987, 1,5 

which in turn yields that ic/65 > 10. By means of Corollary 2.1.2, there exist a 

> 0 so that if r(c) ≥ p then 

V(C+B5)> 10 - 

On the other hand, by 5.3, 

V(S + B5) <2 Is;4 n = 9.86960 

and hence r(C) ≥ e yields the Sausage Inequality 5.4. Therefore we may set 

c(5) = 5,o/ In 5. Unfortunately, we have no estimate for e• 
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We consider the case d = 6 later, so let d ≥ 7. By 5.3, the volume of the 'sausage' 

is 

V(STh + Bd) < 2 d-1 - 

For a C E Fnd, combining Lemma 5.2.1 with Lemma 5.3.1 results in 

V(CTh + Bd) ≥ V(CTh + v1Bd) (r+1) • 

2rd 2d/2n. (  r+1  '\ 
- d+2 

= (  r+1 21d 2/2.n 

r+/) d+2 

where = ço(d), Cn E Fnd and r = r(C). The Sausage Inequality 5.4 holds if 

I  r+1 \' "2  

i •2'°' fl>2Id_1fl, 
d+2 - 

which is equivalent to 
I 
(V2rI +v2\ 1 d-1 

Define the function h(r) for non-negative r by 

r+\/ 

(5.11) 

(5.12) 

This function is monotonically increasing and satisfies h(0) = 1 and lim,. 4 h(r) = 

\/. Since by 1.7, 

Fd1(d+2)> \/(d+2) >1 

for d ≥ 7, 5.12 can be extended to 

(r+\> (d+2)> 1. 
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It follows right away that r must be positive. On the other hand, the existence 

of a positive r satisfying 5.13 is dependent on whether 

<(\r. (5.14) 

This inequality does not hold if (d, ) = (5,5), (6,6) or (18, 10). If (d, ) = (6,6) 

then using 5.9 instead of 5.6 yields the corresponding version of 5.11; that is, the 

Sausage Inequality follows from 

( r+1  )6.6.fl>25.fl 

which inequality is equivalent to 

We note that 

/ 

(  r+1  \ 2i 

r+\/) -W' 

2 i 
= 0.99853 < 1, 

and hence there is a r(6) E R so that the Sausage Inequality holds if r(C) ≥ r(6). 

In the cases (d, ) = (5,5) or (18, 10) even Rankin's improved estimate is unable to 

provide a suitable lower bound for r(C). 

Define r(d) as the value of r satisfying the equality in 5.15 if d = 6, or in 5.12 

if d = 7,. . . ,48, and let c(d) = for d = 6,.. . ,48. Since h(r) is monotonically 
Ind 

increasing, in order to prove that any r ≥ r(d) satisfies 5.15 if d = 6, or 5.13 if 

d = 7, . . . 1 48, it is sufficient to consider the case r = r(d). We did this with the help 

of a computer, and the resulting values are contained in Table 5.1. 

(5.15) 
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b=q(d) ro 

lower bound for 

C 

6 6 1690.3813 5660.5187 4183.4804 

7 7 19.6265 70.6022 51.9268 

8 8 9.2130 35.4443 26.2208 

9 9 6.0494 24.7789 18.1483 

10 10 4.5203 19.6318 14.3541 

11 10 5.7206 26.2427 62.9273 

12 10 7.3818 35.6482 81.2007 

13 10 9.8417 49.8810 108.2589 

14 10 13.8717 73.5887 152.5895 

15 10 21.7058 120.2297 238.7647 

16 10 43.6246 251.7484 479.8715 

17 10 462.5658 2775.5124 5088.2239 

18 11 15.2755 95.1293 183.3061 

19 11 21.4220 138.2330 . 257.0645 

20 12 9.2274 61.6040 119.9569 

21 12 10.9718 75.6799 142.6342 

22 13 6.6048 47.0089 92.4679 

23 13 7.3840 54.1643 103.3760 

24 14 5.1437 38.8443 77.1558 

25 15 3.9635 30.7836 63.4168 

26 15 4.2139 33.6280 67.4236 

27 16 3.3995 27.8492 57.7916 

28 16 3.5710 30.0070 60.7080 

29 17 2.9767 25.6362 53.5810 

30 17 3.1003 27.3462 55.8059 

31 18 2.6483 23.9078 50.3188 

32 19 2.3154 21.3787 46.3081 

33 19 2.3861 22.5204 47.7229 

34 20 2.1157 20.3992 44.4305-

35 20 2.1720 21.3820 45.6124 

36 21 1.9482 19.5722 42.8617 

37 22 1.7681 18.1177 40.6676 

38 22 1.8058 18.8645 41.5339 

39 23 1.6516 17.5825 39.6399 

40 23 1.6832 18.2520 40.3977 

41 24 1.5498 17.1113 38.7465 

42 24 1.5766 17.7167 39.4162 

43 25 1.4601 16.6933 37.9642 

44 26 1.3605 15.8196 36.7349 

45 26 1.3805 16.3199 37.2747 

46 27 1.2919 15.5224 36.1748 

47 27 1.3094 15.9844 36.6635 

48 28 1.2301 15.2526 35.6737 

Table 5.1 
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The lower bound for R is defined as 

if d-7,9 

Rço.= ifd=6,8,10 

(ço+1)r ifd≥11, 

where r is taken from the third column. The actual use of R. will be apparent later 

in this section. 

We observe that the minimum value of r = r(d) is considerably larger for d = 6 

and d = 17 than for other values of d. If d = 6 then the reason is that the lower 

bound provided by Rankin's method for V(CTh +B6), C, E :F6, is just slightly greater 

then V(S + B6) for n large. With respect to the other anomaly, we note that as 

d < 17 approaches 17, (d) = 10 by definition and !f ; 1 (d + 2) approaches v' °. 

Thus (.)b0 is necessarily close to \/ 0, and this forces r to be large. This 

forcing is not present for 10 ≤ d < 17 because cp is still 10, and for d> 17 because p 

now increases as well, and the ratio of ço over d is more or less constant, around 712  

(V-1)r  
Now we turn to the case d> 48. Let r = . Then 

and r is non-negative if and only if 0 ≤ T < \/— 1. Let 0 ≤ r < v'- 1. Then 

1  

Since < J4.i by 1.7, the inequality 5.13 follows if. 

(\/> (1+r) ≥ 

(5.16) 

(5.17) 

We solve 5.17 and determine r by 5.16, instead of solving 5.13 directly, because 

d (d + 2) is difficult to express as a simple function of d. 
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Recall that 1 + T <v', and ço(d)> d - Hence 12 12 

(1+ iY'> (1+ T)12d 12 > (1 + T)1d\/2) 

and 5.17 follows if 

(1+r) >  (d+2) = O.4883d+ 1(d+2). 
v27r 

For d> 48, we choose 

(1 + = d > O.4883v'd + 1(d + 2), 

which then has the solution 

1-8 In d1d l8lnd ((l8lnd\\\ 
r(d) e1= (i+ 7d +O 7d )2)) —1 

18 lad / (hid 
= TT 1+ 0 T)) . 

Notice that in d/d, and also r are decreasing functions of d. Hence for d > 48, 

181n 48 

r(d) < 1.48 —1=0.23045 < v'1 

and r yields a solution for 5.13. 

It follows by 

1 
= 1 + O(i-(d)), 

1— (v'+ 1)r(d) 

and by 5.16 that 

r(d) = (2+v') l8lnd find" 7d / 

l8lnd / (Ind)) / /lnd"\ 
(2+ v') 7d + + 

(Ind))= 8.7794 Ind (1+O. 
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Thus c(d) = 8.7794 (i + 0 (iv)). 

0 

In simple terms, Theorem 5.3.2 states that C E satisfies the sausage con-

jecture if it has a certain interior property. Next, we wish to show that C E .7 rd 

satisfies the sausage conjecture if it has a certain exterior property. 

The following lemma is a variant of Theorem 1.5.1 for centrally symmetric convex, 

compact sets. We denote by E' the k-dimensional subspace spanned by the last k 

coordinate axes, and let f3l = Pk fl Bd. 

LEMMA 5.3.3 Let K E )Cd be centrally symmetric, and 1 ≤ m ≤ d. Then 

Rm (K) ≤ v'rm(K). 

Proof: We may assume dimK = k ≥ in, otherwise the inequalities readily hold. 

Consider first the special case of the Ic-dimensional ellipsoid M with the equation 

a1 ak 

Then amBtm C M and rm(M) ≥ am. On the other hand, 

x1= ... = xd=O, al≥ ... ≥ ak>O. 

Mc ( m )2 + +(xd)2 <a2} = Em_l+am B_m+l 

which in turn yields Rm(M) am, and hence rm (M) = Rm(M) by Rm (M) ≥ 

rm(M) ≥ am. 

We recall that by Theorem 1.5.4, there is a point x and a k-dimensional ellipsoid 

M such that 

x+MCKCx+/M. 
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It follows that 

rm (K) ≥ rm(x+ M) = r,,,, (M), 

Rm (K) ≤ R,,, (x + Vi  M) = Rm (V'iM) C Rm(/2M), 

which in turn yield that 

R,  (K) ≤ V'Rm(M) = / m(M) ≤ / 1rm (K). 

0 

Remark: M. Henk proved recently that if a K C ,'C'1 is centrally symmetric then 

R,,, (K)min{ m, d + 1 - m} r,,, (K). 

His bound is better than ours if either in or d + 1 - ,m is small. If rn/d is bounded 

from 0 and 1, which is our case, then our estimate is better. 

Since by Lemma 5.3.3, a lower bound for R(d) forces a lower bound for r(d), Theo-

rem 1.5.1 and Theorem 5.3.2 yield 

THEOREM 5.3.4 Let d ≥ 5 and c(d) be the function in Theorem 5.3.2. Then 

there exist a bounded function co(d) so that if Cn C J and either 

a) R(d)(Cfl) ≥ co(d) Ind, or 

b) C,- is centrally symmetric and R,0(d) (Ca) ≥ c(d) In d/'s./, then 

V(C+B'1)≥ V(S+B'1). 

By Theorem 1.5.1, we may define co(d) =  c(d) for d ≥ 11. Then b) of 

Theorem 5.3.2 and (d) ' d yield that 
12 

3(2+') (1+0 (v)) = 5.1213(1+0 (Ind)). 
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Notice that the lower bound in b) approaches 0 when d - oo. In Table 5.1, we 

considered the case of general C. In order to calculate R,, we used the maximum 

value of Ad by Theorem 1.5.3 and 2Rd(K) = Ad(K) for d = 6,.. . , 10, and Theo-

rem 1.5.1 for d = 11,... , 48. The anomalies around d = 6 and d = 17 are caused by 

the behavior of T(d). 

5.4 Modifying Blichfeldt's function p(x) 

The notions and the results below will be needed in the fifth section. 

Denote by D, for m = 1,. . . , d, the ellipsoid with equation 

( 1\2 I m\2 
X) + + + ( m+1)2 + . .. + ()2 <1 

and we define the function 

2-

0 

In addition, set 

if x ED, 

otherwise. 

= J-1d p(x)dx = ID d p(x)dx. 

If d = m, then D, p and are j/Bd, p and , respectively. Fix a 1 ≤ rn ≤ d 

and a packing {x1 + Bd,. . . , x, + B"} with C,. = conv{xj,. . . , 

Since p(y) p(y) for any y, 5.5 yields that 

p(x — xj) ≤2 
i=1 

for any x. Using this inequality in the same way as 5.5 was used in 5.6 and replacing 

./B 1 with D, results in 

n .$:Idm ≤ 2V(C+1). (5.18) 
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LEMMA 5.4.1 For rn—i,. . . ,d, 

d d—m+42m12 
rn d+2 nd  

Proof: For m = d, the statement is the same as 5.7, and hence assume 1 ≤ m < d. 

Then every x E Dd can be written as x = (u, v), with u E Em and v E td-m. In 

terms of u and v, the equation of D is 

u2+2v2 ≤2, 

with u E\/Bm and vE * V12_U2Bd_m. Defining p= v12_ u2 for auEvBm 

and using 1.2, 

p(x) dx = J.pp d_rn ' - v2 dv 
fu+2d-m  

- 1 (d in) d-m / U) fVi2 -  2 = ) 3d_m_1 ds. 
Jo 

The Fundamental Theorem of Calculus yields that 

f,+B d-vn  p(x)dx = (d—m)Fd_m 

= (d—m)Id_ 

2 d-m d-m+2\ 
1 ( p\ 

(d— m () - d— m+2 ) 
p (d- m 
dm+2 2 1,d-m+2  d— m+2 

d-m.4-2 m-d-2 
= rd-m (2 - u2) 2 2 2 

d— m+4  

d— m+2 

We recall that by Fubini's theorem, for any integrable f: E° ' 

If(x) dx = JE-  Ed-rn j f(u)v)dvdu. 
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It follows by 1.2, that 

aid 
M 

— u Id ,m(2 2 ) 2 2 d—m+2 • m 2—d-2  

fV2-B M 

d— m+4  
du 

d— m+2 

- d—m+4  2 d—m+2 
- d_ m +2_m2 2 •micm I (2s ) 2 Jo 

d—m+2 - d— m+4 1 

- d - m + 2_m 2T m i 1 (2 - 2t) 2 (2t) dt Jo 
_____ m 

- m(d —m+4) 
Kd_mIm 2_1 DI - 2 2 'cit. 

- d— m+2 

We used the substitution s 2 = 2t, which satisfies sds = cit. Both the volume of the 

unit ball and the integral in t in the last line can be expressed with the help of the 

r function (see 1.4). With the basic identity tr(t) = T(t + 1), 

m(d - m + 4) (d—m)/2 7r 7n 2 2 m/2  2_1 r(d_+2 + 1)r(.)  

d — m + 2 F(+1) r('.--i) F(+2) 

m(d - m + 4)  d/2 r(m) p(d_rn+2 + 1) 2_1 

ci - m +2 ( + 1)F( + 1) F( + 1) ji(d_rn+2) 

m(d—m+4) 2ld 2 d— m+2 2' 

d — m + 2 d+2 m 2 
d— m+4  
d+2 1cd22. 

aid 
M 

0 

Combining the previous lemma with 5.18 yields the following version of Blich-

feldt's result: 

LEMMA 5.4.2 For m—.L,. . . ,d and an E 

d— m-f-4 Id 2m/2 V(C+D) > n Ic 
- 2(d+2) 

(5.19) 
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5.5 The relative width of C 

Let C E J. In Theorem 5.3.4, to ensure that C satisfy the Sausage Inequality 

5.4, we had to assume that R(d)(C) has order of at least in d. Unfortunately, in d 

is large for large d. So we verify 5.4 by considering instead the relative width of C 

for which we give a much smaller lower bound. In other words, if C would serve as 

a counterexample for the Sausage Conjecture then it must be very fiat in its affine 

hull. The method of Blichfeldt has again the central role, only with p' (x). The 

modification has no effect on the order of the lower bound. For m .-' ç0(d) and large 

d, our estimate is about the half of the lower bound which we would obtain from 

p(x). 

For 1 < m < d, let T1 be the linear transformation with diagonal matrix 

1 

dm{ 0 

1 

0 

LEMMA 5.5.1 Let 1 <m< d and K E )C' with K C Em and r = rm (K). Then 

V(K + Bd) ≥ Gr i1 )m V(K + Di). (5.20) 

Proof: Notice that T1(K) = K and D d = T1(/B') imply 

K + D = T1(K) + Tl(\/Bd) = T, (K + 
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Then Lemma 5.3.1 yields that 

V(K + D) detT1 V(K + '/ B°) 

( d-m i \ d-m 

72 r+1 ) 2() 
r+1 ) M V(K +Bd). 

0 

The last lemma we need is a rather technical one. 

LEMMA 5.5.2 If in ≥ 10 and in <d < 2m - 1, then 

/ 1 d-1  4(d + 2) 

x  - i d— m+4 * 

162 

Proof: If m = d then the assertion is true and hence assume that m + 1 ≤ d. By 

means of 1.7, it sufficient to prove that 

which is equivalent to 

(m+2)>11  4(d+2)  
2ir V 2ir d— m+4' 

d_m+4> V/d+1 d+2  

4  rn+2 

Defining k = d - the last inequality may be written as 

4 M m 2) 1+ > •1 + 1+1 ( k 

where 1 ≤ k≤m-1 andm≥10. If  ≤ k≤7,thenas 

1+t < 1+ 
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for positive 1, we have that 

/ km+1 (1+ m+2 k ) 1 m 2k + (1+ m2)<(1+i)(1+i) 
- 

1 < 

k k 7 k 29 

10 12 10 12 120 

< 1+. 

If k ≥ 8 then 

k+1 (,+ r+2) • 2=2.8284< 1+. 

0 

Recall that for d ≥ 5, 

I min{d,1O} 

(d)=t 7 {12 (d_i)] +1 

if 5 ≤d≤ 18 

if d≥ 19, 

and that ii) and iii) from the first section state that if r(d) (Ca) = 0 for Cn E 

then C satisfies the Sausage Inequality. The preparations above enable us to prove 

THEOREM 5.5.3 Let m ≥ 5, d > 5 and ,0(d) ≤ rn ≤ d. 

a) There exists a function ë(m) such that for Ci,, E .Fnd with rn dimC, if 

rm(Cn) ≥ Z(m) In rn/rn then V(CTh + Bd) ≥ V(STh + Bd). 

b)Z(m) = (3+ 1.5/) (i + 0 (In7n)) = 5.1213 (i + ()). 
Remark: The very same reason, as quoted before Theorem 5.3.2 does not allow 

us to fill the gap between this Theorem and the conditions ii) and iii). Now the ratio 

V(C + Be!) over V(CTh + D) becomes too small if rm (Cn) is arbitrarily small. 



CHAPTER 5. ABOUT THE SAUSAGE CONJECTURE 164 

Proof: If d = 5,. . . , 10, and hence m = d, then we may choose (m) = 

where c(m) is the function of Theorem 5.3.2. So we assume d ≥ 11. It follows from 

Lemma 5.4.2 and Lemma 5.5.1 that for r = rm (Cn), 

V(C+Bd) ≥ G r++ )rnV+ DM 

I  r+i  )md—m+4 lcd2m/2 r+'./ 2(d+2) 

(\/r+\/\m d— m+4 
= I I fl. 

\. r+/ ) 2(d+2) Id 

Since V(SV, + Bd) < 2lcd_ifl, the inequality 

(\/r+ -J\ m d—m+4  

r -f -/ ) 2(d+2) 
yields V(CTh + Bd) ≥ V(S + B'). The inequality is equivalent to 

(/r+/\ m > Q-1  4(d+2)  

k.. r -i -/ ) - Xd d— m+4 

If d≥ 19 then 

We note that 

(d)= [(d_i)]+1= [ d+12 12 72-]. 

2[d+]_1 ≥12 12 2( d+) '3 1-2 72 6 6 

(5.21) 

d 13 
= 

and so (d) m ≤ d yields that d < 2&(d)-1≤ 2m—1 for d ≥ 19. Since 

10 = (d) ≤ m for d = 11,...,18, we have m ≤ d ≤ 2m — 1 for d ≥ 11. By 

Lemma 5.5.2, for d ≥ lithe inequality 5.21 follows from 

) (m + 2); (5.22) r +  
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that is, from an inequality which contains only m as a parameter. 

Recall the function 

from the proof of Theorem 5.3.2. It is monotonic for non-negative r and h(0) = 1, 

1im h(r) = In addition, 1.7 and m ≥ 7 yield 

(m+)> 
nm 2r 

Hence the existence of a non-negative r satisfying 5.22 is equivalent to the in-

equality 

(\/)m> Kmj (m + 2). (5.23) 
KM 

Let (rn) = r(rn)j. For m = 10,.. . ,48, we check the condition above by 
nm 

computer, search for the minimal r satisfying 5.22 and calculate 6. The results are 

contained in Table 5.2 (we refer later to the value z which is the maximum allowed 

by Theorem 1.5.3 for given rm). If m = 6,... , 10 then we used the corresponding 

values from Table 5.1. 

Assume now m > 48 and define 

3 In m 
T(M) = e 

This function satisfies 

Inrn 
- 

2 m ( m)j 
1 1+01—I). 

I 
(1+ r)m= m 3/2>/m+1  (rn+2)> (rn+2) 

V2r 

by n-i > 48 and 1.7. On the other hand, since in rn/rn is monotonically decreasing, 

3 in 48 

1+r(m) < e 2.48 = 1.12859 
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lower bound for 
rn rm C 

6 1690.3813 5660.5187 8366.9608 

7 19.6265 70.6022 103.8537 

8 9.2130 35.4443 52.4416 

9 6.0494 24.7789 36.2966 

10 4.5203 19.6318 28.7083 

11 3.6191 16.6023 24.0067 

12 3.0247 14.6069 21.0182 

13 2.6030 13.1931 18.7709 

14 2.2882 12.1388 17.1617 

15 2.0440 11.3222 15.8333 

16 1.8491 10.6707 14.8185 

17 1.6897 10.1388 13.9339 

18 1.5569 9.6962 13.2297 

19 1.4446 9.3219 12.5940 

20 1.3482 9.0013 12.0731 

21 1.2647 8.7235 11.5913 

22 1.1915 8.4804 11.1879 

23 1.1268 8.2658 10.8083 

24 1.0692 8.0750 10.4851 

25 1.0176 7.9041 10.1769 

26 0.9711 7.7502 9.9111 

27 0.9290 7.6109 9.6549 

28 0.8906 7.4841 9.4315 

29 0.8555 7.3682 9.2146 

30 0.8233 7.2619 9.0236 

31 0.7935 7.1640 8.8370 

32 0.7660 7.0735 8.6713 

33 0.7405 6.9896 8.5087 

34 0.7168 6.9117 8.3633 

35 0.6947 6.8390 8.2200 

36 0.6740 6.7711 8.0910 

37 0.6546 6.7075 7.9635 

38 0.6363 6.6478 7.8482 

39 0.6192 6.5916 7.7338 

40 0.6030 6.5387 7.6298 

41 0.5877 6.4888 7.5265 

42 0.5732 6.4415 7.4321 

43 0.5595 6.3968 7.3382 

44 0.5465 6.3544 7.2520 

45 0.5341 6.3141 7.1661 

46 0.5223 6.2758 7.0870 

47 0.5111 6.2393 7.0080 

48 0.5003 6.2045 6.9351 

Table 5.2 
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Thus the properties of h(r) yield r(m) with 

- 1)r(m) 

and if r ≥ r(m) for a fixed in, then it satisfies 5.22. With the help of 5.16, one can 

write 

"\ 
r(m) = (2+\/) 31nm (i+0(/l—nmjj) )(1+O(T)) 

/ 2m \ m 

(3+ 1 m in m in jj 
m(1+0 ( m))( i+O( \ in = ) m — J) 

/ inm" lnm 
= 5.1213(1+O(— H 

\fl2JJrn' 

and thus Z = 5.1213 (i + 0 (i!.z.)) 

0 

COROLLARY 5.5.4 Let d ≥ 5, 0(d):5 in ≤ d and C E .F, with 

dimC = m, and (m) as the function of the previous theorem. If On satisfies 

L.m(Cn) > 2.1(m) then V(CV, + B°) ≥ V(S + Bd). 
If-

Proof: According to Theorem 1.5.3, 

For even m ≥ 6, 

/m+2 (C) 
m(Cn) ≥ { 2(m+1) fl fl 

L.m (Cn) 

if m is even, 

ifmis odd. Inm 

\/m+2 2.1 2J /  m2+2m  1mm 
2(m+1)  - - 2Vm2+2m+1 m 

2.1 /  62+2.6  1mm 
- TVG2+2.6+1 in 

mm 
>—. 
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Thus if Lm (Cn) ≥ 2.1(m) then rm (Cn) ≥ c(m) 2, and the corollary follows 

from the Theorem above. 

0 

5.6 Conclusion 

Assume that C E provides a counterexample for the Sausage Conjecture. It was 

known, according to ii) and iii) of the first section, that the dimension of C can 

not be too small with respect to d; that is, it is at least b(d) for d ≥ 5. We have 

strengthened the counterpart in iv) in the following manner: The relative width of 

C should be at most O(lnm/m) for d ≥ 5, where rn = dimC. In addition if d 0 18, 

then RL1(d) < O(ln d), which means that the shape of C, is not very far from being 

at most (d) - 1 dimensional for large n. 

Probably the method used in this Chapter can not be streched much further. The 

case where we do not succeed is if C is 'very thin'. In this case, the quotient of the 

volume of C, + Bd over the volume of C, + \./Bd (or C + is so small that it 

can not overcome the otherwise not very significant error of Blichfeldt's estimate (see 

also the explanation at the beginning of the third section). The improvements on the 

function of Blichfeldt are not significant enough to improve even on the asymptotic 

behavior of our estimates. Recently, with the help of code theory, a breakthrough 

took place with respect to infinite packings. Unfortunately, those considerations do 

not seem to yield any information on 'non-fat' finite packings. 
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