
Investigating Multi-surface Environments for
Oil and Gas Exploration

By Teddy Seyed, Chris Burns
and Abraam Mikhail

Skyhunter is a Calgary based oil
exploration firm that has developed an
innovative new technique for finding oil
and gas reservoirs. Using a low flying
aircraft and specialized detection
equipment, Skyhunter’s technology is
able to capture microseeps.
Microseeps are trace amounts of
hydrocarbons that have escaped from
oil and gas reservoirs and reached the
surface. Flying close to the ground and
in a tight grid, Skyhunter gathers data
for an entire surveyed area. This data
is processed and interpolated to
produce a microseep map, which
indicates where the potential for finding
oil and gas is highest.

Currently this information is then
visualized using a paper based
approach that is expensive, costly and
not scalable. The ASE Lab in
collaboration with the Scalable
Reservoir Visualization Group, is
working to modernize this visualization
and combine it with other forms of data
that will be helpful to geologists,
geophysicists and other professionals.

Our current approach in visualizing
SkyHunter’s data replaces the paper

based maps with multi-touch tabletops.
This allows a user to pan and zoom
through the microseep data and make
choices about what types of data to
visualize. In addition, we employ a
consumer tablet to visualize seismic
data in a manner such that the vertical
orientation of the data is preserved.
When a user places the tablet down on

the table, the appropriate seismic
cross-slice information that
corresponds to the area where the
tablet was placed is displayed.

In the future, we plan to create a
more complete multi-surface
environment, including utilizing the
Microsoft Kinect to create an innovative
visualization environment.

March/April 2011

SurfNet-----Technology of the Future-----Today!	 	 	 	 	 Vol 2, Issue 2

• Investigating Multi-surface Environments for Oil and Gas
Exploration

• Agile Software Design Exploration with Aspect-Oriented
Models

• Research In Review: New Special Projects

In This Issue For SurfNet contact
information go to:

http://
www.nsercsurfnet.ca/

pmwiki.php?
n=SurfNet.Contact

http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact
http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact
http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact
http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact
http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact
http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact
http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact
http://www.nsercsurfnet.ca/pmwiki.php?n=SurfNet.Contact

By Jörg Kienzle and
Omar Alam

Software design is a creative
activity. Like designers in other fields,
software designers discuss design
alternatives with their advantages and
disadvantages among team members
and explore different ways of achieving
desired system functionality. To assist
the designers in their work, we propose
a modeling tool that allows to design a
system at a higher level of abstraction
than source code. As a result, the tool
can convey essential information about
the structural and behavioural
properties of a specific design in a
concise way.

Unfortunately, design models of
real-world software systems tend to be
of substantial size, and building them
using a mouse-based interface and
conventional modeling techniques
requires considerable time. Attempting
to modify existing models in such tools
to experiment with different design
alternatives is even more tiresome.
Therefore, in this project, we are
exploiting the advanced modularization
capabilities of aspect-oriented modeling
(AOM) combined with an intuitive multi-
touch user interface to build a software
design tool that makes agile software
design exploration possible.

Using AOM, a developer can
describe the design of software using
many aspect models. Each individual
aspect model is small in size and
focuses on one particular design
concern. An example of a simple
aspect model is shown in Figure 1. We
plan to build an extensive aspect model
library of commonly occurring designs
concerns (e.g. design patterns, support
for concurrency and distribution,
database and framework integration).

To build larger systems, aspect
models are composed with each other.
Using gestures on the touch screen, a
developer specifies mappings between
model elements (classes, methods,
attributes, and states) as shown in red
in Figure 2. Our tool then uses a model
weaver to combine the selected models
(shown in blue in Figure 3). The weaver

is efficient enough to present the
developer with immediate feedback on
the consequences of applying a
particular design solution to his models.
Applying an alternative solution is as
simple as specifying a new mapping
and running the weaver again.

Research In Review
On February 22nd, the SurfNet Advisory Board chose the following five projects for Special
Project Funding. Thank you to all students who submitted project proposals.
• Victor Cheung, University of Waterloo

 “Exploring Extremely Usable Interfaces for Interactive Surfaces”

• Aaron Genest, University of Saskatchewan
“Characterizing and Representing Gesture Height Over Digital Surfaces”

• Sean Lynch, University of Calgary and Gerry Straathoff, Alberta College of Art and Design
“Attention and Comprehension in Very Large Screen Displays”

• Shaun Phillips, University of Calgary
“PULSE: Visual Decision Support for Release Management”

• Xing-Dong Yang, University of Manitoba
“Tangibles for 3D Interaction on Tabletop Surfaces”

SurfNet-----Technology of the Future-----Today! March/April 2011

Agile Software Design Exploration with
Aspect-Oriented Models

www.nsercsurfnet.ca

base Library

structural view

+ create()
+ addBook(Book b)
~ display(Book b)
~ startObserving(|Subject)
~ stopObserving(|Subject)

 - Book book
BookView

+ create(String ISBN, String title, String author, Real price)
+ setPrice(Real price)
~ add(BookView a)
~ remove(BookView a)
~ notify()
~ Set<BookView> getObservers()

- String ISBN
- String title
- String author
- float price

Book

: Library
 newBook := create(1234, "The Stranger", "Albert Camus", 20.0)

message view Main

setPrice(15.99)

view: BookView
 view := create()

addBook(newBook)
 startObserving(newBook)

+ main()

Library

0..*

~ Set create()
~ add(BookView)
~ remove(BookView)
~ delete()

int size
Set BookView

1
mySet

add(view)
mySet:

Set<BookView>
add(view)

 observers := getObservers()

 notify()

o: BookView
display(newBook)

loop [o within observers]

newBook: Book

aspect Observer

structural view
|Subject, |Observer

|modify, |update

~ add(|Observer a)
~ remove(|Observer a)
~ notify()
+ Set<|Observer> getObservers()
+ |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving(|Subject)
~ |update(|Subject)

|Observer

caller: Caller target: |Subject
|modify(..)

Pointcut

Advice

caller: Caller
|modify(..)

message view notification affected by getObservers, |update

target: |Subject

o: |Observer
|update(target)

 observers := getObservers()

 notify()

Default Instantiation
caller → *, Caller → *, target → *

|modify → *

message view |modify affected by notification

loop [o within observers]

* *

1
mySet 0..*

~ Set create()
~ add(|Observer)
~ remove(|Observer)
~ delete()

int size
Set |Observer

state views and other message views omitted for space reason

caller: Caller target: |Observer
startObserving(s)

Pointcut

Advicemessage view startObserving

caller: Caller target: |Observer
startObserving(s)

s: |Subject

add(target)

Default Instantiation
caller → *, Caller → *, target → *

mySet:
Set<|Observer>

add(target)

base Library depends on Observer

structural view

+ create()
+ addBook(Book b)
~ display(Book b)
...

 - Book book
BookView

+ create(String ISBN, String title, String author, Real price)
+ setPrice(Real price)
...

- String ISBN
- String title
- String author
- float price

Book

: Library

newBook: Book
 newBook := create(1234, "The Stranger", "Albert Camus", 20.0)

message view Main

setPrice(Real p)

view: BookView
 view := create()

addBook(newBook)
 startObserving(newBook)

+ main()

Library

state views omitted for space reason

Figure 1: Aspect Model of the Observer Design PatternFigure 2: Partial Design Model of a Library System

Figure 3: Design Model of the Library After Weaving
of the Observer Design Pattern

http://www.nsercsurfnet.ca
http://www.nsercsurfnet.ca

