Introduction

A considerable amount of work has been done on data bases for
molecular structure data [1, 3, 7, 8, 9, 12, 15, 18, 20], although
most of this work provided for only limited molecular structures.
However, in an earlier paper [7], a comprehensive relational data
base structure, based on a two-path approach, was proposed for
holding chemical structure data. The proposed data base structure
allowed retrieval of chemical structures that contained correct
IUPAC carbon atom occurrence numbers, and for retrieval of chemical
substructures, recursively, down to the final atomic level. The
two-path relational structure can be used with all chemical com-
pounds, regardless of size and complexity.

A data base structure capabable of holding the substructure
of every conceivable type of molecule is clearly useful, but new
chemical structures result from chemical reactions and processes,
so that a molecular structure data base is not complete without an
associated data base for chemical reactions and processes. Alhough
a comprehensive molecular structure data base would be large, given
the large number of known molecules, a chemical process data base
would be even larger, since any one compound can participate in a
large number of reactions and processes. Nevertheless, it is clear
that a complete chemical (as opposed to physical chemical) knowl-
edge base would consist of a comprehensive molecular structure data
base together with a comprehensive chemical reaction/process data

base. Although some constructive work has been done on chemical



process data bases, particularly in chemical engineering [2, 4,
16], there appear to be no reports in the literature on how to
structure a comprehensive chemical process data base.

In this paper a proposal for the structure of a relational
data base for chemical reaction and chemical process data is pre-
sented. For the purposes of the paper a reaction is merely a chemi-
cal process that cannot be broken down into subprocesses; and a
process is a chemical process, involving one or more reactions, and
not a physical process, such as a diffusion process for separation
of compounds. Thus some processes are reactions and do not break
down, whereas other processes are not single reactions and break
down into either a set of processes or set of reactions, or any
combination of the two.

Two problems had to be solved in the development of a com-
prehensive relational data base structure. The first problem was
how to have a relation for chemical process data when the number of
input compounds (reactants) and output compounds (products) varies
from one chemical process to another, given that the major feature
of a relation is that the number of fields or tuples is fixed [5,
14]. There are only two possible solutions and both are presented.

The second problem is the need for a universal data base
structure to handle the subdivision of processes into subproceses,
subsubprocesses, and so on, with many levels of substructure, down
to reactions, when any given level of the breakdown can have a sub-
structure that can be a process sequence, process cycle (such as
the Krebs cycle), process fan, process funnel, for example, or an

arbitrarily complex structure. Many solutions are possible, mostly



of great complexity, where it is difficult to be sure that every
process substructure can be handled. The solution presented in this
paper is relatively simple (although somewhat counter-intuitive),
and is guaranteed to handle every conceivable process breakdown.

A relational data base was chosen for the project since it
is widely agreed that relational data bases are are superior to

every other kind of data base [5, 13, 14]. There are major ad-

vantages to using relational data bases to hold both chemical
structure data and chemical process data. Conceptual files are con-
strained to be relations, so that mathematical set theory and
predicate calculus can be applied to them. The outstanding ad-
vantage is that even with complex ad hoc searches of the data base,
it is usually unnecessary to write a program in a procedural lan-
guage, as is the case with ordinary computer files and earlier data
base approaches [5]. It is necessary only to specify what kind of
data is to be retrieved using a non procedural relational data base
manipulation language, of which the most common is SQL [5, 14].
Without the constraint that conceptual files be relations, SQL
would be impossible.

SQL can be used with the data base proposed in this paper,
and examples of its use are included. SQL is the standard data base
manipulation and retrieval language with such common relational

data bases systems as DATABASE2 [10], ORACLE [11], and INGRES [17].

Basic chemical reactions data base

The proposed data base structure is best understood by considering

the data base in two steps. The first step simply involves a data



®r
2 @ /
\ Process '__——_____) 0@ 3¢
'//////;’ P001
43 @ \\\\\\\‘ﬁidb K

FIGURE 1

PROC-ID CAT-ID CAT-NAME STATE . .

CATALYST
l:n

PROC-ID MEDIUM RATE . . .

l\\\\ PROCESS
1;9 - 1l:n

PROC-ID IN-COMP INQTY PROC-ID OUT-COMP OUTQTY

REACTANT PRODUCT

FIGURE 2a



PROC-ID CAT-ID CAT-NAME STATE .

L CATALYST
l:n
PROC-ID MEDIUM RATE . . .
PROCESS
1:n
IN-COMP PROC-1ID OUT-COMP INQTY OUTQTY
RP

FIGURE 2b




7

base about reactions and processes, with no consideration of how a
process can subdivide into subprocesses, and so on. Thus no dis-
tinction can be made initially between a reaction and a process,
since the data base has no information on any further breakdown.
Both have reactants and products, and physical properties, such a
reaction rate data, and so on.

Because the number of reactants and processes varies from

one reaction to another, a single relation for reaction/process
data is not possible, since a relation, by definition, must have a
fixed number of fields or attributes. In fact, using relational
data base terminology, the dependency between a process (or reac-
tion) and its reactants and products is multivalued [5, 14], since
for one process there is a set of reactants and a set of products
(Figure 1). Because of this multivalued dependency there are only
two ways to place the reactant and product data in relations, as
illustrated in Figures 2a and 2b.

In Figure 2a there are four relations, where primary keys
(unique record identifiers) are underscored. One of these , PRO-
CESS(PROC-ID, MEDIUM, RATE, EQUILIB, ...) is straight forward. Each
record or tuple describes a process (or reaction) in terms of an
identifier (PROC-ID) and in terms of physical properties (such a
gaseous or aqueous (MEDIUM), reaction rate rate (RATE), equilibrium
constant (EQUILIB), and so on, depending on user needs). A process
identifier (PROC-ID) is necessary. This would have to be a numeric,
alphabetic or alphanumeric code capable of serving the number of
processes anticipated for the data base. (However, an international

agreement, by which every known chemical process is assigned an



agreed code, is preferable). For purposes of this paper a 4 charac-
ter code with process identifiers from P00l to P999 will be used.

The second relation is CATALYST (PROC-ID, CAT-ID, CAT-NAME,

STATE, ...), each record of which holds data about a catalyst for
the reaction or process. CAT-ID gives the identifier for the
catalyst, PROC-ID gives the process identifier for the process in
which the catalyst is used, CAT-NAME gives the common name of the
catalyst, and the other fields give descriptive data about the
catalyst, such as STATE (solid, liquid, powder, hot wire, ...), and
so on. This relation is needed because some reactions, and many
processes, require more than one catalyst. Thus catalyst data simp-
ly cannot be placed in the the PROCESS record for a specific pro-
cess or reaction.

The other two relations in Figure 2a are

REACTANT (PROC-ID, IN-COMP, INQTY) and PRODUCT (PROC-ID, OUT-COMP,

OUTQTY). A record in REACTANT identifies a process with PROC-ID,
gives an input compound (IN-COMP) or reactant molecule of the pro-
cess, and gives the quantity of the reactant moleculue (INQTY) re-
quired to balance the reaction equation for the process. Similarly,
a record in PRODUCT identifies a process (PROC-ID), and gives an
output compound (OUT-COMP) or product molecule, and gives the
quantity of the product molecule (OUTQTY) required to balance the
reaction equation. Thus, with the data base in Figure 2a, the data

for the reactions:

POO1: 2A + 4B = F + 3G + K

P002: 4P + A = 35 + 4F



would be in the relations REACTANT and PRODUCT as follows:

PROC-ID IN-COMP INQTY PROC-ID OUT-COMP OUTQTY
POO1 A 2 POO1 F 1
POO1 B 4 POO1 G 3
P002 P 4 P0OO1 K 1
P002 A 1 P002 S 3
P002 F 4
REACTANT PRODUCT

For the purposes of the paper we use upper case letters to identify
chemical compounds. In practice, the identifiers used in a
molecular structure data base, typically IUPAC names, would be
used.

It should be understood that REACTANT essentially lists the
input compounds to processes, with a single record for each input
compound to a specific process. The primary key is a therefore a
composite of PROC-ID and IN-COMP. Similarly, PRODUCT lists the out-
put compounds from a process, with a single record for each output
compound from a specific process, with PROC-ID OUT-COMP as a com-
posite primary key. This may seem counter-intuitive. A structure
where each record listed all the input compounds, or all the output
compounds, to a process is more appealing. But because such records
would have varying numbers of fields, and are therefore not rela-

tions, they cannot be used.



10

Note the relationships in Figure 2a. There is a one-to-many
(1:n) relationship [5] between PROCESS and REACTANT, faciliated by
the field PROC-ID, since for one process there can be many reac-
tants. There is also a 1:n relationship between PROCESS and PRO-
DUCT, also based on PROC-ID, since for on process there can be many
products. Finally, there is a 1:n relationship between PROCESS and

CATALYST, also based on the field PROC-ID.
(Actually, the rélatiénship between catalysts and processes

is many-to-many, since a catalyst can be used in many processes and

vice versa. However, the proposed design use of the 1l:n rela-
tionship instead is simpler, at the usual expense of an increase
(very slight in this case) in data redundancy, since a record of
CATALYST describes a catalyst used in a process, and not merely a
catalyst. As a consequence the primary key is the composite PROC-ID
CAT-ID. Note that, in the proposed data base, if a given type of
catalyst X is used in two separate processes, perhaps in different
states, two separate CATALYST records will be needed. Furthermore,
if a parent ©process breaks down into subprocesses, two or more of
which used the same catalyst X, perhaps in different forms or
states (such hot wire in one subprocess, and particulates in an-
other subprocess), the CATALYST record for that parent process
would need to use a STATE value such as MULTIPLE; this would indi-
cate that the detailed data for the X catalyst with each of the
subprocesses is in the group of GATALYST records for those sub-
processes. See the discussion later on subprocesses.)

The alternative data base in Figure 2b can be derived from

the data base in Figure 2a. The relations PROCESS and CATALYST are



11

the same. However the relation RP (IN-COMP, PROC-ID, OUT-COMP, IN-

QTY, OUTQTY) is a natural join [5, 14] of the relations REACTANT
and PRODUCT with join field PROC-ID. A record of RP is even less
intuitively appealing than the records of REACTANT and PRODUCT. A
record of RP essentially lists one of the input compounds to a pro-
cess and one of the output compounds. For any process there will be
a record for each combination of reactant and product. Thus if
there are 3 reactants and 4 products, it will take 12 RP records to
describe the process. This is a consequence of the fact that RP
contains a multivalued dependency [5, 14]. It is also means that
there is a gread deal of date redundancy in RP, which is removed by
replacing it with REACTANT and PRODUCT. The relation RP equivalent

to the relations REACTANT and PRODUCT above is:



12
IN-COMP PROC-ID OUT-COMP INQTY OUTQTY

A POO1 F 2 1
A P0OO1 G 2 3
A POO1 K 2 1
B P0OO1 F 4 1
B POO1 G 4 3
B POO1 K 4 1
P P002 S 4 3
P P002 F 4 4
A P002 S 1 3
A P002 F 1 4

RP

Note the 1:n relationship between PROCESS and RP in Figure
2b, facilitated by the field PROC-ID. It is not very obvious but is
based on the existence of many pairs of reactant and product for a
given process.

RP is equivalent to the pair of relations REACTANT and PRO-
DUCT, since RP is obtained from a join of the pair, and, further-
more, both REACTANT and PRODUCT can be regenerated from projections
[5, 14] on RP. In normal data base practice RP would be replaced
with REACTANT and PRODUCT, primarily since a relation with a multi-
valued dependency gives rise to updating difficulties, and
secondarily because of the associated reduncdancy. However, since

the reactants and products for a particular process are fixed, and



13

need never be subject to updating, either RP or the equivalent
REACTANT and PRODUCT may be used. However, the author recommends
use of REACTANT and PRODUCT, and not RP, mainly on grounds of ease
of use.

These data base structures may give rise to some initial
difficulties for unskilled users applying SQL to retrieve data from
the data base. However, these difficulties are easily overcome if

the user is proficient in SQL, as the following examples show

Example 1. Find the products of each process that involves reac-

tants A and B in aqueous solution.

(a) Using the data base in Figure 2a:

SELECT PROC-ID, OUT-COMP FROM PRODUCT

WHERE PROC-ID IN

(SELECT PROC-ID FROM PROCESS

WHERE MEDIUM = 'AQUEOUS'

AND PROC-ID IN (SELECT PROC-ID FROM REACTANT
WHERE IN-COMP = 'A')

AND PROC-ID IN (SELECT PROC-ID FROM REACTANT

WHERE IN-COMP = 'B'));



14

(b) Using the data base in Figure 2b:

SELECT PROC-ID, OUT-COMP FROM RP

WHERE PROC-ID IN

(SELECT PROC-ID FROM PROCESS

WHERE MEDIUM = 'AQUEOUS'

AND PROC-ID IN (SELECT PROC-ID FROM RP
WHERE IN-COMP = 'A')

AND PROC-ID IN (SELECT PROC-ID FROM RP

WHERE IN-COMP = 'B'));

It should therefore be clear that despite the unintuitive design,
necessitated by the need to use only relations, the data base
structures in Figures 2a and 2b are quite practical, and could
store the essential reactant/product/environment data for every
conceivable chemical process. (But in order to store information on
how a process relates to its subprocesses, and how each of these
subprocesses further relates to its subprocesses, a recursive ex-

tension to the data bases is needed). As a final example:



15

Example 2. What catalysts are used with gaseous processes in which

compound K is a reactant?

SELECT *
FROM CATALYST WHERE PROC-ID IN
(SELECT PROC-ID FROM PROCESS
WHERE MEDIUM = 'GASEOUS' AND PROC-ID IN
(SELECT PROC-ID FROM REACTANT

WHERE IN-COMP = 'K'));

Data base extension for subprocesses

The way in which a process can break down into sub-
processes, and each subprocess into further subprocesses, can be
infinitely varied [2]. Readers familiar with biochemical processes,
in particular, can testify to that [19]. For a given process, some

common breakdowns are:

1. Straight sequence. A processes breaks down into a straight
sequence of subprocesses, in which at least some of the output
molecules from one process serves as input molecules to the

next process in sequence.

2. Cycle. The simplest cycle will have one process feeding
molecules into the cycle and one being fed molecules by the
cycle. Within the processes in the cycle, at least some of the

output molecules from one process will be fed as input



16

molecules to the next process in the cycle. With more complex
cycles there can be more than one process feeding into the

cycle and more than one being fed by the cycle.

3. Fan-out. A single process feeds output molecules into more

than one sequence of processes.

4. Funnel. More than one process feeds output molecules into a

single process.

The above breakdowns listed are not exhaustive. Many other
breakdown structures, probably uncommon, are possible. Furthermore,
there can be many levels of breakdown. Any of the processes in a
breakdown can be a process that breaks down further, in any of the
ways listed, and other ways besides.

The problem is how to devise a data base structure that
will handle any of the wide variety of possible process breakdowns
that can occur. There appears to be two general approaches to the
problem. One approach is to devise individual data base structures
(and thus relations) that will match the individual process sub-
structures, such as those listed above. This approach was ex-
tensively reseached and proved futile, mainly because no matter
how many additional structures were used, it was apparently always
possible to show that there was a possible process breakdown that
would not fit any of the proposed structures; thus it was not pos-
sible to prove that any of the structures were universally ap-

plicable



I

17

[

FIGURE 3

!

I




18

PROC-1ID CAT-ID CAT-NAME STATE . . .
CATALYST
l:n
BBQC—ID TYPE MEDIUM ... .
///"J PROCESS

PROC-1ID

IN-COMP

INQTY

REACTANT

PROC-1ID

OUT-COMP INQTY

PRODUCT

PARENT-PROC-ID

IN-PROC-ID OUT-PROC-ID

FIGURE &

SUBPROCESS-LINK



19

The alternative is to ignore the structure of the break-
downs and simply devise a data base structure that links any pro-
cess with (a) those processes that feed molecules to it, and (b)
those processes that are fed molecules by it. In the simplest im-
plementation there is a record for each link. Because every process
substructure, no matter how complex, consists of links between pro-
cesses, it follows that such a data base structure must be able to
handle every conceivable subprocess structure.

This way of looking at any process in a process substruc-
ture can be visualized as shown in Figure 3. Notice that the struc-
ture is similar in structure to Figure 1. Because for any process,
thare can be many processes feeding that process, and many process
fed by that process, it follows that a process multidetermines its
input processes and its output processes, that is, there is an in-
trinsic multivalued dependency [5, 14] between a process and its
input and output processes.

An extension to the data base in Figure 2, that allows for
this new structure is shown in Figure 4. The PROCESS, CATALYST,
REACTANT and PRODUCT relations are the same as before, except for
the additional field TYPE in the PROCESS relation. A record in PRO-
CESS describes a process (or reaction) and TYPE simply gives a des-
criptor for the nature of any immediate breakdown of that process.
For example, TYPE could have the value "CYCLE" s 1f the process
breaks down into a cycle, or "SEQUENCE", if it breaks down into a
straight sequence, or "UNCLASSIFIABLE", if it breaks down in some
difficult manner, or "NONE" if it does not break down, and so on.
The field TYPE is not necessary but is useful for simple retrievals

involving the breakdown type of a process.



20
The additional relation is SUBPROCESS-LINK (PARENT-PROC-ID,

IN-PROC-ID, OUT-PROC-ID). A record of SUBPROCESS-LINK simply iden-

tifies a pair of processes, such that one process (IN-PROC-ID)
feeds molecules to another process (OUT-PROC-ID), where both these
processes are subprocesses in a parent process (PARENT-PROC-ID). If
a subprocess of the breakdown has no input subprocess feeding it
within the group of brealdown subprocesses, IN-PROC-ID will be set
to NULL or equivalent; similarly, if a subprocess does not feed any
subprocess within the group of breakdown subprocesses, OUT-PROC-ID
will be set to NULL or equivalent. Thus if parent process P999
breaks down into subprocesses P100, P200, P300, and P008, where
P100 feeds P200, and P200 feeds P300, and, in a second sequence,
P100 feeds P008, which feeds P300, then the records of SUBPROCESS-

LINK would be:

PARENT-PROC-ID IN-PROC-ID OUT-PROC-ID

P999 NULL P100
P999 P100 P200
P999 P200 P300
P999 P100 P008
P399 P0O8 P300
P999 P300 NULL

SUBPROCESS-LINK

From SUBPROCESS-LINK the fundamental relation that con-

tains the multivalued dependency, intrinsic to the situation where



21

a process is fed by many input processes and feeds many output pro-
cesses (Figure 3), can be generated by a join of SUBPROCESS-LINK to
itself (a join of copy X of SUBPROCESS-LINK with copy Y of

SUBPROCESS-LINK):

SELECT X.PARENT-PROC-ID, X.0UT-PROC-ID, X.IN-PROC-ID, Y.OUTPROC-ID
FROM SUBPROCESS-LINK X, SUBPROCESS-LINK Y

WHERE X.OUT-PROC-ID = Y.IN-PROC-ID

The relation generated by the above join-performing SQL expression
is more easily understood if renamed as the relation LINK-

LINK(PARENT-PROC-ID, PROC-ID, IN-PROC-ID, OUT-PROC-ID), where PROC-

ID identifies any subprocess of the process PARENT-PROC-ID, IN-
PROC-ID identifies a subprocess that feeds that subprocess PROC-ID,
and OUT-PROC-ID identifies a subprocess fed by subprocess PROC-ID.
LINK-LINK thus links a subprocess both to a subprocess that feeds
it and to a subprocess that is fed by it. The instance of LINK-LINK

generated from the instance of SUBPROCESS-LINK above would be:



27

PARENT PROC-T1D PROC-1D TN-PROC -1D ou'r - rroc 1n

Po99 P10O0O NULL P200

Po9q P100O NULL POOS

PoYgy P200 PLOO P300

1999 POOS P1OO P300

Pu9g P300 POO8 NUILI,

Pagy P3I00 P200 NULIL,
LINK-1,INK

ILINK LINK and SUBPROCKESS-1.INK are thus equivaloent, wo 1t hat
LINK LINK contalns a multivalued dependency, in which the componite
fteld PARENT PROC-ID PROC-1ID multidetermines TN-PROC-1D and our
PROC 1D, The multivalued dependency can be eliminated by replacing
ILLINK LINK with SUBPROCESS-LINK. SUBPROCESS-LINK is also more ¢on
clae, mo that It is better to use it in the data base in Flpure /4
than LINK 1 INK ’nlrhough there 1a nothing wrong with using L, )NK
LINK Inntewd. |[Note that with SUBPROCESS-LINK it is remotely pon
Rible thnt a plven sequential pair of processes could oceur more
than onece In two separate parts of a breakdown, In which cane nn
additlonnl tield OCCOURRENCE-NUMBER, with integer valuen, will he
needed to dturingaish the two occurrences. Since the chance ol thin
happenionpg s remote, it ig otherwise ignored in this poaper, al
thoupgh (1 can he handled easily. |

The relation SUBPROCESS-LTINK does not just handle the |14 ut

level bhroankdown of a process into its immediate subprocensses. 1)




23
will also handle the breakdown of immediate subprocesses into their

subprocesses, that is, subsubprocesses, and so on, to any level of
breakdown. This is so because the relationship between the relation
PROCESS and the relation SUBPROCESS-LINK in Figure 4 is a recursive
many-to-many relationship [5, 6, 7, 14]. Recursive relationships
can handle multiple-level containments.

Although in principle all many-to-many recursive
realtionships are the same, since they all deal with multiple-
levels of containment, in practice there are many unique variations
on the theme. The relationship between PROCESS and SUBPROCESS-LINK
is a unique kind of recursive relationship since it can be used to
generate a relation (LINK-LINK) with a multivalued dependency em-
bedded in it. For example, it is quite different from the many-to-
many relationship required to handle substructure of molecules [7].

Some SQL retrieval expressions illustrate how the data base

might be used:

Example 3. What immediate subprocesses of P489 break down further?

SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID = 'P489'
AND IN-PROC-ID IN (SELECT PARENT-PROC-ID

FROM SUBPROCESS-LINK);



24

Example 4. Retrieve a full description of each process that has at

least two levels of breakdown?

SELECT * FROM PROCESS
WHERE PROC-ID IN (SELECT PARENT-PROC-ID
FROM SUBPROCESS-LINK WHERE PARENT-PROC-ID IN

(SELECT IN-PROC-ID FROM SUBPROCESS-LINK));

Example 5. For each level-2 subprocess (i.e. for each subsub-
process) of process P479, determine the subprocess identifier and

the catalysts needed with that subprocess.

SELECT PROC-ID, CAT-ID, CAT-NAME

FROM CATALYST

WHERE PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN
(SELECT IN-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROC-ID = 'P479'));



25

Example 6 If process P456 has a cyclic level-1 substructure, get
the level-1 substructure of that process, complete with reactants

and products for each subprocess.

SELECT IN-COMP, IN-PROC-ID, OUT-COMP, OUT-PROC-ID
FROM REACTANT, SUBPROCESS-LINK . PRODUCT
WHERE REACTANT.PROC-ID = SUBPROCESS-LINK.IN-PROC-ID
AND PRODUCT.PROC-ID = SUBPROCESS-LINK.IN-PROC-ID
AND PARENT-PROC-ID = 'P456'
AND PARENT-PROC-ID IN (SELECT PROC-ID FROM PROCESS

WHERE TYPE = 'CYCLE');

(Note that it is strictly not necessary to include retrieval of
OUT-PROC-ID in Retrieval 6, but it helps to identify how a sub-

process retrieved fits into the overall process breakdown.)

Lack of a recursive version of SQL

A disadvantage of current releases of SQL is that the language

does not have a facility for handling recursion to an unknown num-
ber of levels. For example, referring to the data base in Figure 4
again, suppose one wants the lowest level subprocesses of a given
process, where it is not known in advance how many recursion levels
down the lowest breakdown level lies. There is no SQL expression
that can express the retrieval request. This is not a drawback of
the data base design, but of SQL. Eventually, a recursive version

of SQL will likely become commercially available, enabling



26

retrievals involving unknown numbers of recursion levels to be ex-

pressed. Currently there are two possible ways of dealing with this
SQL defect in the case of the chemical process data base in Figure

4,

One approach is to use a distinct SQL expression for each
subprocess level. Suppose the lowest level subprocesses of process
P567 were needed. A single SQL expression for this is not possible
if the number of levels down is not known in advance. However, an
SQL expression could first be constructed to retrieve the sub-
processes (and process structure if desired) of P567. Then similar
SQL expressions could be used to retrieve the subprocesses of each
of the retrieved subprocesses, and then similar SQL expressions for
the subprocesses of these subprocesses, until finally no sub-
proceses are retrieved and the bottom of the breakdown is reached.
To be more specific, for the first level breakdown, the following

could be used.

SELECT IN-PROC-ID, PARENT-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROC-ID IN ('P567');

If this retrieves subprocesses, P432, P567 and P598, their sub-

processes, if there are any, can be retrieved by:

SELECT IN-PROC-ID, PARENT-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROC-ID IN ('P432', 'P567', 'P598');

A similar expression can be used to retrieve the subprocesses of

these subprocesses, and so on.



27

The alternative is to guess how many levels there are, and
then construct an SQL expression to retrieve the subprocesses at
the guessed level. If no processes are retrieved, then the number
of levels guessed was too large. The number of levels in the ex-
pression can then be reduced by one and the expression tried again,
If this fails reduce by one and try again, repeating until some
processes are retrieved. These are the lowest level processes. If
the first expression did not fail, then increase the number of
levels in the expression by one, and repeat until a failure occurs.
For example, in attempting to retrieve the bottom level sub-
processes of process P567, if the guess is that the bottom is four
levels down from the process level, the following expression could

be tried:

SELECT IN-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROCESS = 'P567')));

If this retrieves nothing try:

SELECT IN-PROC~ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROCESS = 'P567'));



28

otherwise try:

SELECT IN-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK
WHERE PARENT-PROC-ID IN (SELECT IN-PROC-ID FROM SUBPROCESS-LINK

WHERE PARENT-PROCESS = 'P567'))));

Using techniques of this nature the lack of a recursive feature in
SQL is no great handicap, and the user can quickly determine the

nature of the breakdown of any process.

Graphics display of process and molecular structures

A data base with the structure in Figure 4 could be used to genera-
te data on process substructure that could be displayed by a
graphics display system. Displays could be similar to those shown
in Figure 3. At the same time, if a comprehensive molecular struc-
ture data base [7] were available, the chemical structure of the
reactants and products for each process could also be displayed.
This would be especially valuable when the process (and breakdown
subprocesses) involved changes to a giant molecule, such as an en-
zyme, protein or DNA molecule [8, 12]. If the giant molecule were
involved in a complex series of changes, the processes for which
were in the process data base, then the sequence of molecular

structure changes could easily be displayed.



29

Summary

A relational data base for data about chemical processes is
proposed. The data base can hold data about the physical attributes
of chemical processes and about their reactants and products. It
includes a relation about subprocesses, embodying a recursive many-
to-many relationship. This recursive relationship holds data about
the breakdown of any process into its subprocesses, and the break-
down of these subprocesses into their subprocesses and so on, to
any desired breakdown level, and regardless of the complexity of
the subprocess substructure (sequence, cycle, funnel, fan or other
arbitrary structure).

The relational data base language SQL, commonly available
commercially, can be used with the data base. Data about processes,
in terms of physical properties, reactants and products, and break-
down into subprocesses, can be retrieved easily, normally by means
of one or two SQL expressions. Because current releases of SQL do
not have facilities for recursive expressions, SQL retrieval ex-
pressions involving descent to unpredictable subprocess breakdown
levels cannot be constructed, unfortunately. However, it was shown
that this difficulty can be circumvented by systematic use of mul-
tiple SQL expressions.

The chemical process data base structure presented in this
contains no facilities for data about the structure (and substruc-
ture) of the molecules involved in the processes. However, in an

earlier paper a relational data base structure was presented for



30

structure and substructure, down to the atomic level, of chemical
compounds [7]. Where molecular substructure data is needed in addi-
tion to chemical process data, then both the chemical process data
base and the molecular structure data base could be used. These
data bases together would be especially useful with a graphics
system, for displaying the effect of a sequence of chemical pro-
cesses on molecular structure, particularly when giant molecules

are involved.

References

1. Allen F.H., Kennard, 0., 1983. The Cambridge Data Base of

molecular structures, Perspect. Computing, 3(3), 28-43.

2. Attias, R., Dubois, J. E., 1990. Substructure systems, concepts

and classification, J. Chem. Inf. Comput. Sci., 30(1), 2-7.

3. Bernstein, F.C., et al, 1977. The protein databank: A computer-
based archival file for macromolecular structures, Journal of

Molecular Biology, Vol. 112, 535-542,

4. Berzins, V., Jones, K., 1989, Maximizing the potential of pro-
cess engineering databases, Comput. Integr. Process Eng., 114, 225-

41.

5. Bradley, 1982. File & Database Techniques, Holt, Rinehart &

Winston, New York.



31

6. Bradley, J., Recursive relationships and natural quantifier set

theoretic expression techniques, Computer Journal, in press.

7. Bradley, J., 1990. A two-path recursive relational database
structure for molecular information systems, J. Mol. Graphics, Vol.

8, 2-10.

8. Bryant, S.H., Sternberg, M.J.E.,1987. Comparison of protein
structural profiles by interactive computer graphics, Journal of

Molecular Graphics, 5(1), 4-7.

9. Fletterick, R.J., Schroer, T., and Matela, R.J., 1985. Molecular
structure: Macromolecules in Three-Dimensions, Blackwell Scientific

Publications.

10. IBM Corp., 1984, IBM DATABASE2 General Information, Form GC26-

4073, IBM Corp., Endicott, New York.

11. ORACLE Corp., 1984, ORACLE SQL/UFI Reference Guide, Menlo Park,

California.

12. Jakes, S.E., Willet, P., 1986. Pharmacophoric pattern matching
in files of 3-dimensional chemical structures: Selection of inter-
atomic distance screens, Journal of Molecular Graphics, 4(1), 12-

20.



32

13. Xim, Won, 1979. Relational database systems, ACM Computing Sur-

veys, 11, pages 185-211.

14. Maier, D. 1983. Theory of Relational Databases, Computer

Science Press, Potomac, Maryland.

15. Morfew, A.T., Todd, §.J.P, Snelgrove, M.J., 1983. The use of a
relational data base for holding molecule data in a molecular

graphics system, Computers & Chemistry, 7(1), 9-16.

16. Motard, R. L., 1989. Integrated computer-aided process

engineering, Comput. Chem. Eng., 13(11-12), 1199-206.

17. Relational Technology Inc., 1984. INGRES Reference Manual,

Berkeley, Calif.

18. Ricketts, D., 1987. Perq: interactive molecular modelling sys-

tems, Journal of Molecular Graphics, 5(2), 63-70.

19. Stryer, L., 1988, Biochemistry, W.H. Freeman & Co., New York.

20. Taylor, R, 1986. The Cambridge Structural Database in molecular

graphics: Techniques for the rapid identification of conformal min-

ima, Journal of Molecular Graphics, 4(2), 123-131.



