1 BACKGROUND

We are designing and specifying, verifying, and building a substantial design in silicon as
part of a project entitled ”Specification driven design”. The objectives of the project are:

1. to gain experience with the methodology;

2. to implement prototype CAD tools which will produce gate array and standard
cell chips from HOL specifications, and to design transformation algorithms from
specifications in HOL to standard VLSI tools (multi-level simulators, Mossim, floor-
planners, etc);

3. establish a chrestomathy of cell and sub-system specifications; and

4. produce a viable chip.

Our long term goals are aimed at a specification based CAD system which will work
mainly through specifications, support design iteration, and facilitate the construction of
a provenly consistent specification tree from which custom chips can be laid out automat-
ically. Our current work is a first step in this direction.

Initially we chose to work with Landin’s SECD architecture because it is well-described
and well-studied and reasonably attractive for eager functional languages. Our starting
points were the Lispkit compiler and SECD architecture documented in Henderson’s 1980
Prentice Hall text. Initial work was completed in 1985 by JJ, who first built the Lispkit
compiler and SECD interpreter described by Henderson, and then refined the interpreter
down to the bus access level. Then a microcode was specified, and model was further
refined to interpret microcode instructions. These software models not proven correct, but
gave consistent results when running a wide range of test programs, the largest of which
was the compilation of the Lispkit compiler which occupies page 340 of Henderson (the
last right parenthesis is missing!). Our prototype SECD machine has no I/O instructions.
Its intended mode of operation is to poll until there is a task to carry out. When the task
code has been placed in its memory by an outside agency, the machine will cease polling
and run the program. When the computation is over, the machine signals completion, and
returns to polling mode.

Several programs have been run on all the software versions of the SECD machine.
Instruction frequencies for a compilation of the Lispkit compiler are:

LD = 12839 [LDC = 7828 | LDF = 1080
AP = 2041 |RTN = 2298 |DUM = 257
RAP = 257 | SEL = 5456 | JOIN = 5456
CAR = 5011 |CDR = 1423 | ATOM = 502
CONS = 6771 | EQ = 4698 | ADD = 226
SUB = 0| MUL = 0 | DIV = 0
REM = 0 | LEQ = 0 | STO = 1

Declarations are introduced in Lispkit only via let and letrec instructions. In

let x1 =el,x2=¢2,...,xn =enin E

1

the several new quantities (the x’s) being defined are initialised to the values of their
associated e’s before E is evaluated. Letrec is similar except that the e expressions may
refer to the x’s being defined. In this case, Henderson constrains the e’s to be lambda
expressions. The evaluation of an e associates its closure with the corresponding x.

Each time a let or a letrec is executed, a new list of x definitions is created and added
to the environment. On exiting from the let or letrec, the definition list is discarded. x
definitions are referenced as a dotted pair (m.n) which is interpreted as "go back m levels
of list in the environment and access the nth definition in that list”. Compilation of the
Lispkit compiler turns out to be a fairly Lispkit typical program - it averages 0.21 for
m and 0.55 for n. Further 80% of all references are to the current let or letrec block,
and 8% of all references are to "main”. Thus the run-time look-up organisation matches
this program very well, but it may be worth while adding in a permanent pointer to the
environment list of main at which 8% of accesses are directed.

JJ completed informal specification work on SECD (the top level and the microcode)
before leaving to enter the PhD program at Cambridge. The informal hierarchical speci-
fication of SECD in Mossim is complete down to the transistor level. Its subsystems have
been checked out individually, and we have run a short but tricky Lispkit program (3
mutually recursive functions) through the complete Mossim description.

2 TOP-LEVEL DESCRIPTION

The SECD machine was devised by Landin in order to explicate the operational semantics
of programming languages. The machine may be characterised by four status registers,
Store, Environment, Control, and Dump.

1. A stack S hold the expression under evaluation. S is flushed each time a function is
called or exited.

2. E points to a stack of currently accessible definitions. E is reset on function entry
and exit.

3. The control register C references the next instruction to be executed (code is gen-
erated in the form of a list). C is usually incremented past the current SECD
instruction, but not in the case of function calls or IFs.

4. D saves the state of the machine (the current S, E, and C values) on function entry,
and the code ’rejoin’ point upon THEN or ELSE entry, and restores them on exit.

Henderson specifies the operation of the machine in terms of (S, E, C, D) transitions.
We explain a few of them adopting a notational device which highlights the current in-
struction and uses e.c in the control slot to represent the current instruction.

¢ LDC x pushes the in-line constant x on top of the stack.

seecd - xsecd

LD (m.n) examines offset n within environment m back and copies its current value
onto the stack.

seecd— (lookupmn)secd

Non-recursive function calls, e.g. (Axy.E)ab use LDF, AP, and RTN. First we place
the evaluated parameters (a and b) on top of S. Then the called environment e’ and
the function entry point ¢’ are placed on S by LDF ¢’ where

LDF ¢
seecd— (ce)secd

Finally the function is entered via a call on AP(ply) which constructs a closure from
the top-of-stack entries.

AP
(c’.e’ vis) e o.c d — nil (v.e’) ¢’ (s e c.d)

Notice that AP saves the calling state on D, flushes S, extends the environment of
the function by (in our case) copying initial values for x and y, and sets C to the

entry point. Function exit is effected by planting RTN which saves the state stored
on D.

RTN

xe ec(secd) — (xs)ecd
Recursive calls (letrec) are rather more tricky. The evaluation of the parameters
is delayed until space for all the recursive definitions has been allotted. This is

implemented using replcar to construct a circular lookup list. A special instruction
DUM is needed to ’get things going’ on entry.

DUM
seecd— s(nile)cd
RAP
(c’.¢’ v.s) (nil.e) o.c d — nil (replcar v e’) ¢’ (s e c.d)

The remaining transitions are obvious.

2.1 From spec to layout

One of the research lines we are following is to see how much of the architecture can be

inferred from the specification. Consider AP. Rearranging it line by line (as suggested by
Henderson), we get

Stack Before After

S (c’.e’) v.s nil
E: e v.e’
C: AP.c ¢’
D: d (secd)

A little pattern matching enables us to derive

D := cons(tltls, (conse, (constlc,d)));;
C := hdhds;

E := cons(hdtls,tlhds);

S = nily

subject to observing the precedence rules d < c, e < s to prevent overwriting. Thus a
high level SECD interpreter can be obtained merely by transforming the specifications.
Continuing on in this way, we observe that hd, tl, and cons are frequent operations and
will build-in special units to perform them. Assuming a single bus structure, we now move
down one level, and derive the following for the E and S assignments:

e := cons(hd tl s, tl hd s);
bus (x2 := s);
hd (x2);
tl (x2);
bus (x1 := s);
tl (x1);
hd (x1);
Consx1x2;
bus (e := mar);

s := nil;
bus (s := nil);

from which x1, x2, and nil suggest themselves as extra registers and at one level down, we
then derive mechanically

3

E:
s wx2 % bus(x2:=s)
rx2 wmar % hd (x2)
rcar wx2
rx2 wmar % tl (x2)
rmem wx2
rs wxl % bus(xl:=s)
rxl wmar % tl (x1);
rmem wxl
rx] wmar % hd (x1);
rcar wxl
call (Consx1x2,$)

rmar we % bus (e := mar);
S:
rnil ws % bus (s := nil)

THE FLOOR PLAN ELEMENTS

The SECD chip can be broken up into 4 functional units: the control unit, the shift
registers, the datapath, and the pad frame. We introduce them one at a time.

e The control unit interprets SECD machine instructions, breaking them up into a

stream of micro-instructions to be effected one at a time by the datapath unit. It is
conceived as a finite state machine whose state is held by a micro program counter
(MPC) register which always refers to the current micro-control step. Inputs to the
control unit include: asynchronous reset and interrupt button signals, status flags,
and a nine bit opcode (the code of the current machine instruction). Outputs include
read and write signals for registers within the datapath and also for memory.

The shift register block provides a (rudimentary) means of entering test vectors and
examining the state of the chip. In the absence of "designed testability”, this gives
us a passable ability to test the chip in operation, and furthermore, permits inde-
pendent testing of the datapath and control unit components. Most signals passing
between the control unit and datapath are routed through the shift registers. These
include read and write signals, alu signals, and test flags. For observability and con-
trollability, it also routes some signals which are functionally internal to the control
unit (specifically the 5 select signals from the PLA and the mpc register contents).
Thus all these signals may be read and/or altered. In normal operation, signals pass
through uninterrupted, with no added clock cycles required. To access or alter any
value, the system clock is halted, and the shift register controls configured for the
desired operation (shift in or out). Then, pulse the independent shift register clocks
while either reading the output or providing the desired test input. A similar dual
non overlapping clock strategy as is used for the system clock.

The datapath unit executes simple micro-operations one at a time when signalled by
the control unit. The datapath unit is built as an ensemble of devices - registers,
the arithmetic unit, and memory - communicating via a common bus. The opera-
tions performed by the datapath unit include: copying the value of a selected register

5

onto a bus, storing a value from the bus into a selected register, the list manipulating
functions cons, hd, tl, the arithmetic operations of addition, subtraction, decremen-
tation, and setting status flags. Each SECD machine instruction is implemented by
a number of micro read/write cycles each of which places a register value on the bus,
and stores it somewhere else. The control unit initiates the next desired operation by
setting the appropriate signal lines (one or more) high;; values to be placed onto the
bus are controlled by signals beginning with ’r’, signals beginning with *w’ control
where bus values are to be stored. Besides read and write lines and the arithmetic
operator select lines, the only other input control line is the clock (phiB). Outputs
include the select flags, the memory address register (for the off chip RAM).

o The chip is framed by a set of bidirectional I/0O pads which connect the chip to the
outside world. The bidirectionality constraint was imposed by the limited number
of pads allowed on the intended fabrication process.

3.1 TIMING AND STATE REGISTERS

A two-phase non-overlapping clocking scheme is used (PhiA, PhiB). All latches (ie. regis-
ters) are ’level triggered’, so the state changes as the clock signal rises, but the latched state
will be the value of the input when the clock signal falls. Static logic is used throughout
the chip.

The control unit uses two registers, MPC and NEXTMPC, with some combinational
logic in between. NEXTMPC loads on PhiB with the address of the next microcode
instruction. This address transfers to the MPC register during PhiA. Embedded in the
micro-code controlleris a 4 deep stack used to implement subroutine calls in the microcode.
This stack uses the same pattern of paired registers, with the next contents of each stack
register loading during PhiB and transferring to the stack register during PhiA.

The choice of two-phase clocking arises from the need to not only buffer the next
state from the present state (achieved by using paired registers), but also to prevent
random writes to the data path registers during state transition. The latter concern is
met by AND’ing all write signals in the datapath with a clock (PhiB) which does not
overlap the clock which controls the change of state (PhiA). The use of PhiB to clock
the buffering NEXTMPC register is possible since the inputs from the datapath (status
flags) which are determined by the contents of datapath registers written during PhiB, will
settle well before the end of PhiB. While this does restrict the maximum clock rate, the
strategy has been verified both by simulation and fabrication of a previously implemented
microprocessor.

3.2 DESIGN OF THE CONTROL UNIT

The control unit implementation is divided into seven functional blocks: a ROM, 3 de-
coders, a PLA, and a small datapath. The ROM contains a microcode program for the
control unit. The three decoders produce discrete read, write, and alu signals from the
encoded ROM output. The PLA determines which of four possible next addresses to select
for the micro pc. Finally, a micro pc datapath (mpc-dp) contains the registers (for both
MPC and NEXTMPC, as well as the stack registers) and logic to implement the selection
of the next microinstruction.

Microcode Design

The microcode is designed to implement the top level state transitions that define the
SECD machine. A sequence of register transfers, memory fetches and writes, and alu
operations were defined separately for each machine instruction. A jumptable indexed by
‘opcode’ is used to enter the microcode segment appropriate for each machine instruction.
The jump table is located at the microcode addresses that correspond to the numeri-
cal values of the machine instructions (1 through 23). At the end of each segment, an
unconditional jump returns control to a "ready” position, to begin the cycle for the next
machine instruction. A subroutine mechanism is used to permit sharing of common blocks
of code among several different machine instruction code segments. Microcoded garbage
collection also uses this subroutine mechanism. The maximum depth of subroutine calls
is four.

The microcode instructions required several distinct components, namely:

o test signal — to determine how to choose the next microinstruction.
e address field — the address to use when the next microinstruction is not sequential
e read signals — to determine which register contents are placed on the bus.

e write signals - to determine where to store the bus value. alu signals - to select the
appropriate alu operation.

In most of the microcode, the next instruction to be executed is usually located in the
following memory location. Thus the next microinstruction address is usually obtained by
incrementing the current micro pc. Additionally, there are 8 conditional jump instructions
(one for each of the 7 condition flags and the button input), an unconditional jump,
a subroutine call (just an unconditional jump concurrent with pushing the incremented
current micro pc on the stack as the return address), a return (pop the micro pc from the
top of the stack), and a jump opcode instruction, that implements the jump table for the
set of machine instructions.

In total, there are 13 possible means of determining the next micro pc. This information
is coded into 4 bits in the microinstruction. The address field requires 9 bits. The 12 alu
operations (excluding no-op) require 4 bits, and 23 read signals and 17 write signals (both
excluding no-op’s) require 5 bits each. Thus the total microinstruction word length is 27
bits. Various methods of optimized encoding were examined, but further encoding of the
microcode did not produce sufficient saving in space to warrant the added complexity.

Microcode ROM

In designing the ROM, several possible optimisations were considered in attempts to ex-
ploit microcode characteristics. The relative sparseness of the address and alu signal fields
(about one in four microinstructions use these fields) suggested a separate ROM for these
fields. (The random distribution of these microinstructions in the microcode produces a
structure conceptually closer to a PLA in organisation.) However significant savings in

area would accrue only by sharing the decode units, and a full 9 x 400 row decoder proved
too large in one dimension for reasonable operation and for the predicted chip dimensions.
This motivated a single interleaved ROM design with column decoding.

The required 9 x 400 x 27 ROM is implemented with a 7 x 100 row decoder and a 2-bit
column decode. This configuration results in a nearly square unit which accorded well
with other constraints. The decoder is a fully complementary CMOS design, but the ’OR’
plane is implemented in a pseudo NMOS style, using pullup transistors for each column,
and only ntran devices. The output of the ROM is actually inverted, and thus banks of
inverters serve to both get the logic level right and buffer the output.

The Micro PC Datapath (mpc-dp)

This small datapath loads the next microinstruction address into the MPC rgister. It
consists of the MPC and NEXTMPC registers, the stack mechanism implemented by the
use of 8 more registers and several transmission gates, an incrementation circuit and four
sets of transmission gates to gate each of the possible next instruction addresses into
NEXTMPC. The datapath is nine bits wide, and also contains a row of random logic, to
produce and buffer the required control signals.

The mpc-dp must to compute a new value for the NEXTMPC register prior to the
fall of PhiB, and similarly for each 'next’ register in the four deep stack. In the case of
the NEXTMPC, this is calculated by selecting one of four possible values: the ’A’ address
field output from the ROM, the current value of the MPC imcremented by 1, the opcode
signal supplied by the data path, or the value on top of the stack.

The new values for the 'next’ stack registers are also selected from one of several values,
including the lower and higher stack register contents, the current register contents, and
for the top of stack register, the current MPC increment by one (the return address from a
subroutine call at the current MPC address). To reduce the number of transmission gates
required, the 'next’ registers are clocked with a modified clock signal, so that they only
change state when the current instruction is a subroutine call or a return. Thus only two
possible inputs need be gated to each register. This raises a possible inconsistency with
the previously discussed clocking strategy, in that the inputs to select the next’ register
contents are not required to settle until some time during PhiB. However, the signals for
push and pop are not a function of the datapath status flags, and thus will settle BEFORE
PhiB. Therefore the clock signal for the stack 'next’ registers is PhiB A (PUSH v POP).

Decoders

All 3 signal decoders use the same design as the decode plane of the ROM. It is a full com-
plementary CMOS design, and in each case an encoded signal from the ROM is decoded
to the required number of discrete signals for use by the datapath. The number of signals
is required to be a multiple of 4 (in the automated decoder generator), hence there are
unused outputs in 2 of the 3 decoders. The read decoder produces 23 signals, the write
decoder produces 17, and the alu decoder 12.

Select PLA

The select PLA determines which of the 4 possible next address fields will be selected.
Inputs include the 4-bit test field output by the ROM, 7 condition flags and the interrupt
button. The output includes enable signals for the 4 transmission gates used to gate input
to the NEXTMPC register, namely selA, selOp, selNxt, and pop. These correspond to the
ROM address field, the opcode, the current MPC + 1, and the top of stack. Additionally,
a push signal is used for a subroutine call micro instruction, although the NEXTMPC is
loaded with the address field from the ROM, while the MPC + 1 address (return address)
is pushed. Four of the signals (all except seINxt) are produced as direct outputs of the
12 x 12 x 4 PLA. The remaining signal is the NOR of those 4. Additionally, this unit
contains the logic to AND the write memory signal with PhiB, for use by the datapath to
control the bidirectional I/0 pads.

Accessible Signals

The view presented of the control unit has ignored the interconnection between the control
unit and the shift registers. Several inputs, outputs and internal signals are in fact routed
through the bank of shift registers to permit examination and alteration of these values
for test purposes. For example:

e all read, write and alu signals originating in the control unit (with the exception of
wmem).

e the condition flags originating in the datapath.

o the contents of the MPC are routed through the shift registers in advance of reaching
the ROM input.

e the 5 signals from the PLA are routed through the shift registers before reaching the
mpc-dp.

3.3 DESIGN OF THE SHIFTERS

The shift register cell consists of a pair of latches and 2 MUX’s. The latches are similar in
operation to the control unit registers, with the first latching on sr-PhiA and the second
latching on sr-PhiB. The input signal from the chip and the contents of the previous cell
are MUX’ed by the shift control signal to the first latch input. The output of the second
latch and the input signal from the chip are MUX’ed by the test control signal as the cell
output. Thus the latches permit the following modes:

L. In normal chip operation, the test control signal is not asserted, so signals pass
unaltered through the shift registers.

2. When reading the present state of the machine, with the system clock stopped,
the shift and test control signals are asserted. Pulsing the shift register clock will
produce a stream of bit values on the shift register output pin.

9

3. When entering a test vector, again the system clock is stopped, the shift and test
control signals are asserted, and the test vector bit sequence is presented in sequence
to the shiftregister input pin, as the shift register clock is pulsed. Once the test
vector loading is complete, the system clock may again be operated, and the test
control signal deasserted after one cycle.

The sr-shiftcell used in the actual chip layout actually contains 2 of the shift register
cells described above. Additionally, there are 9 pass through lines located in a block within
the group of shift registers. These pass throughs are for the low 9 bits of the arg register
of the datapath, which form the opcode input to the control unit.

3.4 DESIGN OF THE DATAPATH UNIT.

The datapath is organised as a number of functional blocks communicating via a bidirec-
tional bus. The functions of the individual units and their interplay were fixed after ex-
tensive simulations at various architectural levels (instruction, datapath, and microcode).
Normally datapath operations are controlled through the read and write signals sent from
the control unit, but when the chip is operating in test-mode control signals are routed
via the shifters.

SECD words (and the bus) are 32 bits wide. Bits 31 and 30 are reserved for use by
the control unit during garbage collection and may only be set by the control unit. Bits
29 and 28 are tag bits used to identify the type of the word occupying bits 27 through
0 as a cons’ed symbol, or an atom (either a symbol or a numeric item). If the type is
cons, then the lower 28 bits are treated as two 14 bit HD and TL pointers. If the type is
atomic, then the lower order bits contain either a symbol identifier or an integer value. A
symbol is identified by a (unique) look-up index. An integer key is used, since the only
operation allowed on symbols is comparison for equality. Numbers are represented in 2’s
complement format.

The functional sub-units of the datapath are: alu, clearunit, consunit, flagsunit, regs-
14-hd, regs-14-misc, regs-14-y2, regs-32-arg, regs-32-bufs, which are not detailed. Arith-
metic operations affect only the bottom 28 bits. Pointer operations use 14 bits (either the
HD or the TL field) and map onto bus locations 0 to 13. Other operations affect even
smaller fields, perhaps only specific bits. The datapath unit was constructed using a bit
slice approach.

3.5 10 PADS

Between the datapath and the pads sits rmem — 32 busgates that allow the input values
fromn the bidirectional pads to be passed onto the bus when the rmem signal is high.
The bidirectional pads are write-enabled and default to act as inputs. Rmem prevents the
bidirectional io pads from always trying to write values onto the datapath bus.

SUMMARY

We have succeeded in getting a chip fabricated in custom CMOS. In parallel we have
developed a formal specification and verification of our design (from the gate level and

10

upwards). This work will be used as further develop a translator which takes a HOL proof
to a net list for input to gate array tools.

ACKNOWLEDGEMENTS

We gratefully acknowledge support for our research from the Natural Sciences and Engi-
neering Research Council of Canada and from the Canadian Microelectronics Corporation.
We are also grateful to MOSIS who built the chip for their speedy, efficient and courteous
service.

11

