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ABSTRACT 

Precise results are obtained on the existence and uniqueness 

problems for finite dimensional presymplectic systems. The second 

order problem for degenerate lagrangian dynamics is shown to be 

physically insignificant for a large class of lagrangians. This 

observation permits a proof of the equivalence of a degenerate 

lagrangian system and its canonical formulation. Hypotheses are 

provided which are sufficient to imply that the set of points of the 

canonical phase space which admit evolution is the zero level of a 

momentum mapping of the gauge group. The canonical evolution is 

displayed as a set of constrained hainiltonian evolutions. An example 

originating in the theory of Yang-Mills fields is discussed. 
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INTRODUCTION 

Let M be a Banach manifold. A presymplectic form on M is a 

closed, possibly degenerate, two form w on M. A presymplectic system 

is a triple (M,i,H), where i is a presymplectic form and H is a smooth 

function on M. Any presymplectic system defines an evolution on M: 

points of M evolve along smooth curves c such that 

1 

Typically, the set of points Me of M through which there exists such a 

curve is proper; that is, not every point of M admits evolution. The 

determination of Me is the existence problem for the evolution defined 

by equation ( 1). In several important examples, Me is not a 

submanifold of M. If m E Me there may be many essentially different 

solutions to equation ( 1) through m. Points of M that evolve 

concurrently from the same point may be considered physically 

equivalent. The smallest equivalence relation on Me generated by this 

notion is called the gauge equivalence relation, and is denoted by 

The determination of R  is the uniqueness question for the evolution 

defined by equation ( 1). 
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Dirac [ 1950] and Gotay-Nester-Hinds [ 1978] address the existence 

problem by defining an algorithm - the constraint algorithm - that 

proceeds under the assumption that certain intermediate constructs are 

imbedded submanifolds of M. If this algorithm may be applied, and if 

it terminates, then it constructs the subset M e e , and M is an 

imbedded submanifold of M by hypothesis. They do not directly attend 

to the case where Me is not a submanifold of M. In Gotay-Nester 

[1979a] one finds an algorithm - the gauge vector field algorithm - 

which accepts certain vector fields whose flows respect the gauge 

relation R  and purports to generate other vector fields with this 

same property. Absent from the literature is any result that might 

aid one in precisely determining the gauge relation of the evolution. 

The primary goal of the first five chapters of this thesis is the 

construction of a formalism that can accomodate the singular nature of 

the subset M. The formalism identifies certain natural hypotheses 

that are sufficient to effect a resolution of the existence problem 

for the evolution. Attention is restricted to the consideration of 

systems that are first class in the sense of Dirac [ 1950], but this 

notion by itself is too weak to be of utility Included are 

sufficient conditions under which the gauge vector field algorithm may 

be used to determine the gauge relation of the evolution. This latter 

analysis presumes that Me is a submanifold of M, but chapter ( 7) shows 

one way to proceed when this is not the case. Except for preliminary 

material, the results apply only to finite dimensional systems. 
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To a large degree, classical physics is the study of lagrangian 

dynamics. In the language of modern differential geometry, lagrangian 

dynamics has the following form. The configuration space of the 

system is a smooth manifold Q, and the lagrangian is a smooth function 

L on TQ. The Legendre transformation is the map FL : TQ -, T * Q defined 

by 

FL(v)w L L(v + tw). 
q q dt I q q 

The energy function E is defined by 

E(vq) = FL(Vq )Vq L(Vq) 

The pull back by FL of the canonical symplectic form Wf3 on T * Q is the 

Lagrange two form w L• Points of TQ evolve along smooth curves c which 

satisfy 

dc 
t 

The lagrangian L is called regular if FL is a local 

diffeomorphism. In finite dimensions, this is equivalent to the 

2 

,2L  
condition that the matrix . .• , computed in any natural chart. 

Oq qJ 

of TQ, is nondengenerate. Ignoring technical difficulties which might 

arise when considering infinite dimensional systems, if L is regular, 

then equation ( 2) implies a smooth, unique, well defined evolution on 

all of TQ. A curve in TO is called second order if it is the 

derivative of its projection onto Q. Regularity of L is sufficient to 
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imply that any curve in TQ which satisfies equation ( 2) is second 

order. L is called hyperregular if FL is a diffeomorphism. If L is 

hyperregular, one may construct the canonical formulation of the 

lagrangian system as follows. The hamiltonian is the function 

H : T*Q -. R defined by H = E 0 FL.'. Points of T*Q evolve along 

smooth curves c which satisfy 

dc 
J wo = dH ° C 3 

The lagrangian system and its canonical formulation are equivalent in 

the sense that they are in bijective correspondence via the 

diffeomorphism FL. 

The lagrangian formulation of certain field theories necessitates 

the consideration of lagrangians which are not regular. A weaker 

condition worthy of study is that of semiregularity: L is called 

semiregular if -FL is a subiimnersion and if the level sets of FL are 

connected. In finite dimensions, L is semiregular if the matrix 

à2L  has constant rank on connected components of TQ, and the 
• :L J 

àq àq 

level sets of FL are connected. Semiregularity is sufficient to imply 

that the triple (TQ,WL)E) is a presymplectic system. Under the 

assumption that FL is an open or closed map onto its image, the 

canonical formulation of the lagrangian system is the presymplectic 

* (00,H), i 
- * 

system (Mo,i o,H), where M0 = Image(FL),  : M0 -, T Q is the 

inclusion map and H : M0 -, IR is the unique smooth function on M0 such 

that E = H 0 FL. 
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Gotay-Nester [ 1979b} deal with the issue of the equivalence of a 

lagrangian system and its canonical formulation in the following way. 

The constraint algorithm is applied to each presymplectic system and 

is assumed to generate imbedded submanifolds Me c TQ and M' C T*Q. 

Then FLIM is a submersion from M to M'. It is shown that if X and Y 

are vector fields on TQ and T * Q respectively, and if X and Y are FL 

related, then X satisfies the equation X - dE if and only if Y 

satisfies the equation Y J iw0 = dl!. In a companion paper 

(Gotay-Nester ( l98O)), they note that when L is not regular, there may 

exist solutions to equation ( 2) that are not second order. This 

observation gives rise to the second order problem; that is, the 

identification of those points of TQ which admit second order 

evolution. They proceed to give conditions that are sufficient to 

imply the existence of a submanifold of points that admit second order 

evolution. 

When L is not regular, the Legendre transformation is not 

injective, and the question arises as to whether or not one is losing 

physically important information in passing to the canonical 

formulation. The first result of chapter ( 6) shows that this is not 

so when L is semiregular: points of TQ which admit evolution and lie 

in the same level set of FL are gauge equivalent. This gauge freedom 

is used to settle the second order problem by showing that any 

evolution curve is gauge equivalent to a second order evolution curve. 

Chapter ( 6) concludes with a proof of the exact equivalence of a 

lagrangian system and its canonical formulation: every curve in TQ 
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which satisfies equation ( 2) is mapped by FL to a curve in T * Q which 

satisfies equation ( 3), and every curve in T * Q which satisfies 

equation ( 3) is the image by FL of some curve in TQ which satisfies 

equation ( 2). 

The final chapter of this thesis is an analysis of the canonical 

formulation of lagrangian systems. The existence of a primary gauge 

group and a function H on T * Q such that HIM0 = H allows an extension 

of the canonical evolution to an evolution on all of T *Q. This 

extension is discussed in the context of quadratic lagrangians. The 

methods of chapter (5) may be used to compute the gauge relation of 

the extended evolution. When the set of points Me of T * Q which admit 

canonical evolution is strongly first class, the gauge relation of the 

extended evolution and that of the canonical evolution coincide on M e 

The gauge vector field algorithm is used to give a definition of the 

gauge group. Under mild nondegeneràcy assumptions, Me is shown to be 

the zero level of a momentum mapping of the gauge group. In a step 

which may be important for quantization, the canonical evolution is 

displayed as a set of hamiltonian evolutions. The chapter is 

concluded with an example that originates in the theory of Yang-Mills 

fields. 
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CHAPTER 1 

Symplectic Geometry and Hamiltonian Dynamics 

i Symplectic geometry, and its presymplectic generalization, 

provides a context within which elements of the structure of many 

physical systems may be defined and discussed. The purpose of this 

chapter is to provide some of the basic definitions of symplectic 

geometry and hamiltonian dynamics. With few exceptions, the notation 

follows that of Abraham-Marsden [ 1978]., 

2 Let E be a Banach space, and B : E x E - be bilinear. Define 

the linear map B4 : E - fE by B$(é)f = B(e,f). Call B weakly 

nondegenerate if B$ is an injection, and nondegenerate if B4 is a 

bijection. If B is nondegenerate, then the inverse of B4 is denoted 

by B*. B is called topologically closed if B$ is a closed map. If B 

is weakly nondegenerate, 'E is reflexive and B is topologically closed, 

then an application of the Hahn-Banach theorem shows that B is 

nondegenerate. 

3 Let B be antisymmetric. If S C E, define the subspace 

= {e E E ; B(e,$) = 0 for all s e S}. 

Let E be reflexive and IF be a closed subspace of E. Then, if B is 

topologically closed, 
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B4(F) = cl(B 4(F)) 

= {cx E IE* ; af = 0 for all f such that B4(F)f = O} 

= (a E E af = 0 for all f such that B(F,f) = O} 

= (a € E*. ; af = 0 for all f E FBI} 

= {a E (FBI) = 0}. 

A (weak) symplectic vector space is a pair. (E,w), where IE is a 

Banach space and w : IE x E -, IR is bilinear, (weakly) nondegenerate and 

antisymmetric. If F is a closed subspace of E one says that: 

i i wi. 1. F is isotropic f F F 

i i i. 2. IF s coisotropic f Fw  c F 

3. F is symplectic if F fl IF = 0. 

If F is symplectic, then w restricted to F x F is weakly symplectic. 

S Let (E,) be a finite dimensional symplectic vector space. Let 

S,T E. The proof of the following facts may be found in Abraham-

Marsden [ 1978: 403]. 

1. S C T implies T W1 C s. 

2. S fl iol = (S + T)"1 = (span(S U 
w 

3. (span(S) fl span(T))wi S i. + Twi 

)i )i 
4. (S ) = span(S). 

5. dim(E) dim(span(S)) + dim (SWi). 

6 Let P be a Banach manifold. A (weak) symplectic form on P is a 

closed two form w such that w(p) is (weakly) nondegenerate for all 

p E P. A (weak) symplectic manifold is a pair (P,w), where P is a 

Banach manifold and w is a (weak) symplectic form. If (P,w) is a 
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(weak) symplectic manifold, denote by 0 the vector bundle 

inonomorphism defined by 4(v) = (ø())$v. If w is a symplectic 

form, then 0 is a vector bundle isomorphism, and its inverse is 

denoted by w 

7 If Mw) and (P',w') are two (weak) symplectic manifolds, then a 

smooth map f : P - P' is called a symplectomorphism if fw' = W. If P 

is finite dimensional, with dimension 2n, then ,? = w A w A ... A w (n 

times) is a volume form on P, so that any finite dimensional 

symplectic manifold is orientable. In finite dimensions, then, any 

symplectomorphism is a local diff'eomorphism, since it will send a 

volume form to a volume form. 

a Let Q be a Banach manifold modelled on a Banach space E. An 

important example of a weak symplectic manifold is the cotangent 

bundle of Q. Define the canonical one form Oo on T * Q by 

90(a ) v = a I Tr*( v )1 
q a  Q aJ 

where 

that in a 

T * Q -, Q is the canonical projection. It is easy to see 

natural chart of T * Q with range U x 

90(u,a)(u,a,e,/3) = a(e) 

Define the canonical two form wo on T * Q by wo = -d80. 

computation shows that 

A simple 

wo(u,a){(u,a,el,/31),(u,a,e2,482)] = 482(e1) - 481(e2) 

and it follows that w0 is weakly symplectic. 
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9 If IE is reflexive then w0 is symplectic, since the expression 

= (u,a,-18,e) E U x x x 

shows that w04 is a surjection if E is reflexive. If Q is finite 

dimensional with dimension n, then 

80 = p.dq1 

wo = dq1 A dpi 

in natural coordinates on T*Q. 

io If ( P,w) is a (weakly) symplectic manifold, and i Q -, Pis an 

immersion, then one says that Q is an isotropic (coisotropic, 

symplectic) immersed submanifold if TI(TqQ) is an isotropic 

(coisotropic,symplectic) subspace of (T (q)Pw(i())) for all q E Q. 

The same terminology is used for imbedded submanifolds of P and vector 

bundles over submanifolcis of P. If Q is symplectic, then (Q,i*w) 

provides another example of a weakly symplectic manifold. 

ii In a natural chart of T*Q, the canonical symplectic form wo is 

constant. The theorem of Darboux shows that, for any symplectic 

manifold, there are charts about any point with this property. The 

proof is included here because a refinement of this result is needed 

in chapter ( 3). 

12 Theorem (Darboux). Let (P,w) be a symplectic manifold and 

let p E P. Then there is a chart about p in which the local 

representative of w is constant. 
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Proof 

13 Let U C IE be an open set containing 0, and let w0 and wj be two 

symplectic forms such that wo(0) = w1(0). It suffices to shOw that 

there is a smooth diffeomorphism F : B C U -, fE, defined on an open 

ball B containing 0, such that F(0) = 0 and woJB = F*WI 

...ii Let wt = wo + t(wi - w0). Since w is nondegenerate at t = 0, 

there is an open ball B about 0 on which w is nondegenerate for all 

t E (0,1]. By the Poincaré lemma, w1 

B, and one can assume that a(0) = 0. 

-  wo  = da for some one form a on 

...is Define a smooth, time dependant vector field X on B by X -' 

= -a. Since X(0) = 0, one may restrict the ball B so that the.f low 

Ft of X is defined on B for time at least one. Then 

dI*wt) d *dj*(Ft I  (Fto t Wt) + 
to 

= F(w1 - ()o) + F* L (0 
to to X 0 to 

- = F(w1 — WO) + F (d(X J W ) + X .1 dt. ) 
to to to to to to 

= F(w1 - Wo) + F* () 
to to 

=0. 

Therefore F 1 = Fw0 = WO, so F1 satisfies the conditions of 

paragraph ( 13). 

16 If P is finite dimensional, of dimension 2n, then a symplectic 

chart of P is a chart with coordinates q1•••1qhlp1• .., p in which 

= dq1 A dpi. After a linear transformation, the Darboux theorem 

shows that any point of P is contained in a symplectic chart. 

I 
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17 If f : P -, R is a smooth function, then the hainiltonian vector 

field of f is the smooth vector field on P defined by 

hmlt_vf(f)(p) = hmltvf(f,p) 

= Xf(P) 

= W* (df(p)) 

Thus, X  is uniquely defined by the equation X  - = df. Note that 

if P is connected, and f and g are smooth functions on F, then X  = x  

if and only if f and g differ by a constant. Indeed, if X  = X  then 

df = X f J w = X 9 J w = dg 

so f and g differ by a constant. On the other hand, if f and g 'differ 

by a constant, then df = dg, so X  = 

'a If H : P -+ R is smooth, then X defines a smooth flow on the 

phase space P. Points of P evolve along smooth curves c such that 

dc 
= dli 0 

rt 

If P is finite dimensional, then in the symplectic chart of paragraph 

(16), 

XH 2 , 

so that c will satisfy Hamilton's equations: 

(q1 ° c(t)) = OH 
TT L9pi 

(p1 ° c(t)) = - 

OH 
- 

1 

C(t) 

0 c(t) 
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H is conserved along c, since 

dc d Ut 'H 0 c(t)) = dH( c(t)) (t) 

= dH(c(t)) XH(c(t)) 

= 

=0. 

One calls the triple (P,w,H) a hamiltonian system. 

19 If f and g are smooth functions on P, the Poisson bracket of f 

and g is defined by 

{f,g} = W(Xf Xg) = df(Xg) = -dg(Xf) 

The Poisson bracket isbilinear, antisyinmetric and a derivation in 

each argument. In the symplectic chart of paragraph ( 16), 

{f,g} = df(X) = L q1 + dp. - .L - - 1- 
Op1 1 0 1 0q1 0q1 Op1 

Of Og Og Of 

Oq I Opi  Oq 

20 The Poisson bracket satisfies two important identities. 

first, note that if f and g are smooth functions on P, then 

(Xf Xg] w = Lx(Xg - w) - X  -J (Lx  w) 

= L Xf g f (f dg) - X J (d(X -' w) + X J 

= Lx ( dg) - X g -I (d(df)) 

= d(Lx g) 
f 

= d(-{f,g}) 

For the 
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so that, 

[hmlt_vf(f) , hmltvf(g)] = -hinit_vf({f,g}) 

2L For the second identity, if h is another smooth function on F, 

then 

o = dt)(XfXg Xh) 

= Lx (W(Xg Xh)) - LXg (J)(XfXh)) + Lx(W(XfXg)) 

- W([Xf Xg]Xh) + W([XfXh]IXg) - (P)({Xg Xh]Xf) 

= {{g,h},f} - {{f,h},g} + {{ f,g},h} + w(hmltvf(Cf})X) 

- W(hB1lt_Vf({fh})Xg) + w(hmlt_vf({g,h}),Xf) 

= 2{{g,h},f} + 2({f,g},h} + 2{{h,f},g} 

so that, 

{f,{g,h}} + {h,{f,g}) + {g,{h,f}} = 0 

22 Let the flow of the hainiltonian vector field of f be Ft D  

is an open subset of P, and hence inherits a natural symplectic 

structure, ofDt. Then Ft is a symplectomorphism. Indeed, 

d 1 I F9(p)}dF*w(v w ds 1 ITF p s=t_i (v)TF(w) =r pp 
S=t 

i. 

* 
= F L 'w(V ,w ) 

t   p p 

= F(d(Xf + Xf J dw)(v ,w ) 
pp 

so that 

Fw(vw) = w(v,w) 
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CHAPTER 2 

Lie Groups and Momentum Mappings 

i With the exception of chapters ( 5) and ( 6), all manifolds 

considered in the remainder of this thesis will be finite dimensional, 

Hausdorff and second countable. LetG be a Lie group; that is, a 

manifold which is a group such that the operation of group 

multiplication is a smooth map from G x U to G. Denote by e the 

identity element of G, and by L  and R the smooth diffeomorphisms of 

G which are the operations of left and right multiplication by g E G, 

respectively. 

2 A vector field X on G is left invariant if LX = X for all g E G; 

that is, for all g,h eG, X(gh) = TLgX(h) Denote by L(G) the tangent 

space to G at the identity. If E L(G), the left invariant vector 

field generated by g is defined by 

lin_vf(,g) = lin_vf()(g) 

This correspondence between elements of L(G) and vector fields on G 

allows one to define a Lie bracket on L(G) by 

= adz 

= [linvf(),linvf(q)](e) 

if 9,q € L(G). 
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3 Left invariance shows that the flow of linvf(), F, is 

complete, and linearity of lin_vf in its first argument shows that 

F= Ft for all s,t E R. Define the exponential mapping, exp 

L(G) -, G by exp() = Flie). The fundamental existence theorem of 

flows shows that exp is smooth. Clearly, TeXp : L(G) -. L(G) is the 

identity, so exp is a local diffeomorphism at the identity, and in 

particular, the image of exp contains an open neighbourhood of the 

identity. Examples (Abraham-Marsden [ 1978: 257]) show that, in 

general, exp is not onto the connected component of G which contains 

the identity. The flow of linvf() is 

F(g) = gexp(t) 

= exp(t) 

4. Reference will be made later to the following standard result. 

For the proof, see Abraham-Marsden [ 1978: 259]. 

s Theorem. Let H be a subgroup of G which is a closed subset of 

C. Then H is an imbedded submanifold of C, and in particular, H is a 

Lie group. 

6 Let M be a manifold. A smooth left action of C on M is a smooth 

map : C x M - M such that 4(e,m) = m for all m E M and (g,4(h,m)) 

= (gh,m) for all g,h E C and in E M. One often denotes 4(g,m) by, gin, 

so em = m and g(hm) = (gh)m. The action is called free if for any 

m E M, gin = in only if g = e. A subset S of M is called 4' invariant if 

gs ES for all g  C and s ES. 
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7 The fundamental vector field on M generated by E L(G) is 

defined by 

fund_vf(4)(m) = fund_vf(4,m) 

fund vf(,m) 

fund vf()(m) 

= (m) 

_d I 
- aEI =0 4(expt,m) 

= T4 

Clearly then, the flow of fund vf(4) is (m,t) -, 4(expt,m). The 

action is called infinitesimally free if, for any in e 

fund_vf(4,,m) is zero only if 9 = 0. 

a The map - fund_vf(4) is a Lie algebra antihomoinorphism: 

fundvf([,q],m) = T4 [ l±n_vf(),lin_vf(z)J(e) 
m 

= T4 aE I....0 [Rexp(t lin_vf(17)](e) 

_dd T4 TR linvf(,exp(t)) 
-, m exp(-t) 

dI t=o exp(-t)m TLexp(t) q 

dl 

= 1t= exp(Q) 
T4( t ) "1 

d It=0 T4c t fund vf(,z,exp(-tg)m) 
Ut-

dl * 
= Ut- I1=0 exp(-t) fund_vf(c,r,m) 

= - [fund vf(4),fund vf(4,z)](m) 
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9 If g E G, define the homomorphism 1 : G -, G by Ig (h) = ghg'. 

The adjoint action of G on L(G) is defined by 

Ad 9 = Ad(g,) = TI  

The fundamental vector fields of the Ad action are easy to compute: 

fund_vf(Ad, Ad(exp(t) , q) 

TR(t) TL (t) 11 

TR(t) un Vf(17,R (t) e) 

[R* p(t linvf(17)] ( e) 

= [linvf() , lin_vf(q)] (e) 

io The fundamental vector fields of the action satisfy the identity 

Indeed, 

fUfl&Vf(4Adg ) = 4*_i fund_vf(4) 

fund_vf(Adgm) = Tm Ad  

m TRgi TL  

= Td) T4 
gm 

= T g fund_vf(4,g'm) 

= [:-I fund_vf(4)](m) 
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11 The dual of the adjoint action of G on L(G), called the 

co-adjoint action of G on L(G)* is defined by 

Ad*(g,p) = p 0 Ad 
g 

Its fundamental vector fields are also easily computed: 

fund_vf(Ad* = ±_1 Ad*(exP(t)P)] '7 
[dt to 
dl 

= EItO "[Ad(t) '7] 
= 

= -p ° ad t 

so, 

fund_vf(Ad* = - 0 ad 

12 Let 4) G x M - M x M be the map 4)(g,m) = (m,gm). The action 4) 

is called proper if 4) is a proper map; that is, if the inverse image 

by 4) of a compact subset of M x M is a compact subset of G x M. If 

m EM, then the isotropy group of in is the subgroup Im = {g € G 

gin = m}. The isotropy group of in is a Lie subgroup of G, since it 

follows from 

Im = {g ; ( g,m) € (m, ED 

that I m m is closed. The Lie algebra of I is 

L(I) = E L(G) ; fund vf(4),,m) = 0) 

The orbit of in is the subset G'm = {gm ; g E G}. The proof of the 

following theorem may be found in Abraham-Marsden [ 1978: 265]. 
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13 Theorem. Let c1 be a smooth, proper left action of a Lie group 

G on M. If m E M, then Gm is a closed, imbedded submanifold of M 

such that the map C - Gm by g -+ gin is a submersion. If inl E Gm, 

then 

T 1(Gm) = {fund_vf(4,m') ; 9 E L(G)} 

= fund_vf(c,L(G),m') 

14 Let (P,w) be a connected symplectic manifold. Let 4s be the 

symplectic left action of a Lie group G on P; that is, for all g € C, 

* i * 
= t. A momentum mapping for the action 4 s a map J : P -. L(G) 

such that 

fund vf(,) -I w = dJ() = dJ 

The quadruple (P,, 4,J) is called a hamiltonian C-space. J is called 

* 
Ad equivariant if, for all g E C, 

J(gp) = AdJ(p) 

is For example, let Q be a manifold and let 4i be an action of G on 

Q. Then C also acts on TQ and T *Q by 

T(gv) T4 g Vq 

* 
T(ga )= a O 

q q g 

* 
respectively. The action T is symplectic on (T*Q,t,o); indeed, this 

action preserves the canonical one form Oo: 
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[T*]* 90 (W a  ) 1 
q I g agj 

= (a q) I TTQ* T4:.....1 Wag] 

aq[Tg[T[r Q g j* l 
q 

= aq [TI g T4g_i Tr* 1 
Qaqj 

= 80(w ) 
q 

*T * 
16 An Ad equivariant momentum mapping for the action of on T*Q 

* 
is given by J = fund_vf(4T .1 80. Thus, 

3 (a ) = eo [fund_vf[T*,,aq)] 

= cI4TT fUnd_vf{l T ,,aq) 

= a [Tr* T4T 
q Q q 

a IT 1r* 0 •I*Jtl 
q 

= aq (T4 q ) 

= aq(fund_vf(4,q)) 

That 3 is a momentum mapping can be seen by noting that L9 0 = 0 since 

* 
80 is T invariant, so 
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dJ = d(9 - 9) = L90 - -I d80 

= 

J is Ad* equivariant since 

a q ) = a IT4) - fund_vf(4), g , gq) 
g 

q [[4 fund_vf(4))J()] 

= aq[fud_vf[4),Ad*_j,q] 

= (Adi* (q)} 

17 If (P,w,4),J) is a hamiltonian G-space, then, for each g EG, 

* 
Ad.J ° is another momentum mapping for 4): 

o g 

o 4) 11 = S 

Therefore, the function 

is. independent of p. 

dJAd 

S 

= 4)* (fund vf(4),Ad -' 

S 5. 

= 4)* fund vf(4),Ad J 

g g g 

= fund_vf(4),) -I ,, 

(g,p) -, Ad J(g'p) - J(p) 

w 
1 
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is This observation has an important consequence: suppose that, for 

some po € F, 3 is constant along the orbit Gp0. Let go J(po). 

Then (P,w,#,J - go) is another hamiltonian C-space, and J - go is Ad* 

equivariant. Clearly, 3 -  go  is a momentum mapping, and 

(J - Mo)(P) = J(gp) - go 

= Ad .J(p) - [Ad J(p) - J(gp)] - 

= Ad 3(p) - + d J(g'(gp)) - J(gp)} - go 

Ad 3(p) - [Ad J(g'p0) - J(o)J - go 

= Ad 3(p) - [Ad go - - go 

= Ad(J(p) - /1o) 

is If 3 is Ad* equivariant, then, for any 9,q C 

{3,J,7} = 

By hypothesis, 

J(exp(tq)p) = Ad*(exp(t,7),J(p)) 

The derivative of the left side at t = 0 is 

aEI.0 J(exp(tz)p) = Udtj exP(tzl)PJ 

= dJ(fundvf(,z,p)) 

= dJ(hm1t...vf(Jq P)) 

= {JJ,1}() , 

and the derivative of the right side is 
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Ad*( exp (tr1),J (p)) = fund vf(Ad*,7J(p))() 

= -J(p) ° ad () 
'1 

= J(p)[,ti] 

= J{,J (p) 

20 The final result of this chapter is the following conservation 

law: if H is a smooth, 4s invariant function on F, then J is a 

conserved quantity of the flow of X11. Indeed, if c(t) is an integral 

curve of then 

=0. 



19 

CHAPTER 3 

Singular Momentum Mappings 

Let (P,w,,J) be a hamiltonian C-space. This section is an 

analysis of the set J'(0) in the absence of the hypothesis that 0 is 

a regular value for J, using the methods of Arms-Marsden-Moncrief 

[1981]. If p e P, an infinitesimal symmetry at p is a vector 9 € L(G) 

such that fund_vf(4,,p) = 0. Thus, the set of infinitesimal 

symmetries at p is exactly L(I). The first step in the analysis of 

f'(0) is the following basic link between the analytic notion of a 

regular point of J and the geometric notion of an infinitesimal 

symmetry of the action. 

2 Theorem. Let be a hamiltonian C-space. Then p € P 

is a regular point of J if and only if there are no infinitesimal 

symmetries at p. In fact, 

Image(dJ(p)) = ann(L(I)) 

Proof 

3 It is sufficient to show the second statement. If p = dJ(p)v for 

some v E TP then, for any 9 € 
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= (dJ(p)v)() 

= fund_vf(,p) J w(v) 

=0, 

so p E ann(L(I)). 

...i Let u E ann(L(I)). Since L(I) is the kernel of the linear map 

- fund vf(,p), there is an a E (TF)* such that p() 

= a(funcI_vf(,p)) for all 9 E L(G). Let v € TP. Then 

(dJ(p)v)() = ( fund_vf(,p)-' w)(v) 

= -w(v,fund_vf(,p)) 

= a(fund_vf(,p)) 

, 

so that d.J(p)v = p, and hence p E Image(dj(p)). U 

5 The next result uses some slightly nonstandard definitions. Let 

M be a manifold and S be a subset of M. Given m E S, v E T m M is 

tangent to S at in if there exists a smooth curve i : [ 0,11 -, Msuch 

that 7([0,1]) c 5, in = 1(0) and 

d 
Vir 1. 

t=0 

Denote by TS the set of all tangent vectors of S at m, and by TS the 

set of all tangent vectors of S. If S is a imbedded submanifold of M, 

then TS is the usual tangent bundle of S. In general, for each in € S, 

T m in S is a cone in T P, in the sense that, for each v E in T S and a ≥ 0, 

av E T S. 
in 
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6 The set S is said to be locally diffeomorphic to its tangent 

bundle at in E S if there is a smooth diffeoinorphism 'F from some open 

neighbourhood of in to some open neighbourhood of zero in TM such that 

?(m) = 0, T? TM -, TM is the identity, and 'F(S) = Image(?) fl TS. 

S is locally diffeomorphic to its tangent bundle if S is locally 

diffeomorphic to its tangent bundle at in for each in e S. If S is a 

submanifold of M, then S is locally diffeomorphic to its tangent 

bundle. Figure ( 7) shows a set which is not locally diffeomorphic to 

its tangent bundle. 

7 

Figure 7: A subset of IR2 which is not locally 
diffeomorphic to its tangent bundle at in. 
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8 Let X be a vector field on M, and suppose m E M is such that 

X(m) = 0. The linearization of X at M is the linear vector field 

dX(m) T mM -, T in M defined by 

dX(m)v = d T Ftv = -L1V(m) 
in 

where Ft is the flow of X, and V is any vector field such that 

V(m) = v. If M is modelled on a vector space E, then in a chart with 

domain U S E, X : U -, E and dX(u) = DX(u). 

g Let f be a smooth function on M, and suppose in E M is such that 

df(m) = 0. If v1,v2 E TM, define 

d2f(m)(v 1,v2) d(V1 J df)V2(m) 

where V1 and V2 are any two vector fields on M such that VI(m) = vi 

and V2(m) = v2. This expression is obviously independent of the 

vector field V2, and 

d(V2 -' df)V 1(m) = [V1 -I d(L V2 f)1(m) 

= [V1 J L V2 df](m) 

EL (V1 J df) + [V2,V1] -I df](m) 
V2 

= d(V2 J df')V1(m) 

so the expression is independent of the choice of V1 as well, and is 

symmetric in v1 and v2. In the chart of paragraph ( 8), d2f(u)(vj,v2) 

= D2f(u)(v1,v1). 

io The next theorem determines the local structrue of the set 3 1 (0) 

near a fixed point of the action. 
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ii Theorem. Let (P,w,4),J) be a hamiltonian G-space, (P,<,>) be a 

reiivannian manifold and suppose 4) is an isometric action on P. 

Suppose that J(p) = 0 and that p is a fixed point of 4). Then 

paragraph ( 2.18) shows that J is Ad* equivariant, and 

1. T,J'(0) = {v e TP ; d2J(p)(v,v) = 0), 

2. f 1(0) is locally diffeomorphic to its tangent bundle at p. 

3. Furthermore, let F be the set of fixed points of 4). Then 

F fl f(0) is the union of connected components of F, 

F fl J'(0) is a closed, symplectic submanifold of P, and 

T (F fl J(0)) = fl ker(d(p)) 
p EL(G) 

= ker(d2J(p)) 

= {vE TP ; d2J(p)(v,w) = 0 V w E TP} 

T (F fl fi (0))Wl = U Image(d(p)) 

p EL(G) 

Proof 

12 Since pisa fixed point of 4), one can define the linearized 

action T4) of G on T  by T4)(g,v) = TIP v. The pair (TPw(P)) is a 

linear symplectic space, and T4) acts syinpiectically: if v,w E TP 

then 
\ 

(P)(T4)gh1T4)g'1) = (gP)(T4)gV,T4)gW) 

= c(p)(v,w) 
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Also, 

l 
fund_vf(T4,,v) d ri10 (T4( t ) v) 

d(fundvf(4))(p)v 

d(p)v 

...13 Let v,w E TP and choose vector fields V and W such that V(p) = v 

and W(p) = w. Then, if 9 E 

d2J(v,w) = d(V J dJ)W(p) 

= d(- (V - w))W(p) 

= Lw( 4 (V 

= (-[W,] 1 (V J to) - 1 Lw(V 

= -to(v,[W,](p)) - Lw(V to)(p) 

to(-LW(p),v) 

w(p)(d(p)w,v) 

to(p)(fund_vf(T4,w),v) 

Therefore, v -+ d23(p)(v,v) is a momentum mapping for the linear action 

T of G on TP; that is ( TP,to(p) ,T4,d2J(p)) is a linear hamiltonian 

G-space. 

...14 Let exp be the exponential mapping of the reimannian manifold 

(P,<,>) at p. Then exP is a diffeomorphism from some ball B about 

the origin to some open neighbourhood U of p. Since is an isometric 

action, for any g E G and v E TP 4g ° exP(vt) is a geodesic which 

starts at p. Therefore, 49 ° exP(vt) = exPp (T4 g (vt)) since 

at-
It=0 1'g 0 exP(vt) = TlgV 
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Thus, exp is an equivariant diffeomorphism: ° exp = T4g ° exP 

for all g E G. A similar argument to paragraph ( 12) shows that T is 

an isometric action on the linear metric spate (T P,<,>), so that B is 

T4 invariant. 

...is Refer to the proof of the Darboux theorem as applied to the two 

symplectic forms w0 = o(p) and w, = exp* on B. By the Poincaré lemma 

(Abraham-Marsden [ 1978: 118]), if 

.1 

a(v)w = o t(w - wo)(tv)(v,w)dt J 

then dcx = wl - This particular cxis T4 invariant, since T4 is a 

linear action and acts syinpiectically on both symplectic spaces 

(TPexPw) and (TP(P)): if g E G, then 

a(T(gV)(T(T4g)W) = fa t(Wj - Wo)(tTlgV)(T4gVT4gW)dt 

= f,t(WI  - wo)(T tv)(T v,T w)dt 
0 S S "S 

f'tT4*(Wi - wo)(tv)(v,w)dt o g 

- o)(tv)(v,w)dt 
Jo 

a(v)w 

...16 By further restriction of B, the T invariant forms w = WO + 

t(w1 w0) and a define a T4 invariant time dependent vector fleldXt 

by Xt - wt  = -a, and the time one flow F1 of X exists on B and 

satisfies F1(0) = 0 and wofB = To invariance of X serves to 

show that F1 is T4 equivariant: T45 0 F1 = F1 ° T4 5 for all g E G. 

The linear map T0F1 : TP -, TP is also T4  equivariant, since T4 is a 

linear action. Also, since w1(0) = w2(0) = W(P), wojB = Fw1 shows 
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that ToFw(p) = w(p). Let V = T0F11(B), and define ? : V C TP -. 

U c P by 'F = exp ° F1 ° T0F11. Then 'F is a symplectomorphism from 

(V , w ( p)) to (U, I U) such that 'F ° T4 g = 1g ° 'F for all g € G, and T'F 

is the identity. 

...17 These considerations suffice to show that 'F*j is a momentum 

mapping for the action T4 of G on V. But v -, d2J(v,v) is also a 

momentum mapping on V for T4, so these functions differ by a constant 

on V. Since both have value zero at the origin, 'F*J(v) = d2J(v,v) for 

all v E V. Therefore, 1' maps u fl J'(0) to {v E V ; d2J(p)(v,v) 

O}, and the proof of statements ( 11.1) and ( 11.2) will be complete 

if 

T p {p v E V ; d2J(p)(v,v) = O} = {v E P P ; d23(p)(v,v) = O} 

since T'F 1 is the identity. 

...ie In fact, if v e V is such that d2J(p)(v,v) = 0, then i(t) = vt is 

a curve contained in V for small t such that d2J(p)(i(t),i(t)) = 0 and 

v= d 1, 

dt t=0 

so that v E T{v E V ; d2J(p)(v,v) = 0}. On the other hand, let i(t) 

be a curve such that d2J(p)(i(t),i(t))= 0 and i(0) = 0. Then 

0 = d (d2J(p)(i(t),i(t)) 
dt 

= 2d2J(p){1(t), di (t) dt  

so that, 
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l 
° = d aEl0 d2J.(p)[1 (t),(t)dt } 

d2i fdi di 1 
= d2J(P)t(0),a(0)j + d2J[(0),_(0) Jdt 

fdi di 
= d2J(P)l(0)a(0)di J 

and 

i(t) E V E T P ; d2J(p)(v,v) = 0) 
TT t=0 p 

...19 Let F' be the set of fixed points of the action T4i of G on TP. 

Then the inclusion 

F' q {v E TP ; fund_vf(T,,v) = 0 V 9 E L(G)) 

is obvious. The reverse inclusion is also true: let v E T p P be such 

that fund_vf(T4,,v) = 0 for all 9 E L(G). Then T4(expt,v) = v for 

all t, so the isotropy group of v, contains an open neighbourhood 

of the identity. By left translation, I,, is open, and since I is 

closed as well, connectivity of G implies that I v = G, that is, 

v e P. By paragraph ( 13), then, 

F' = (v E TP ; fund_vf(T4,v) = 0 V E L(G)} 

= n ker(d(p)) 
€L(G) 

= {v ; d23(v,w) = 0 V w e TP}. 

...20 In particular, v -* d2J(p)(v,v) vanishes on F', so equivariance of 

'F shows that 
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fl J'(0)) = f'(F) fl f(J'(0)) 

= (F' 11 V) fl [v E V ; d2J(p)(v,v) O} 

= F' (1 V 

= V 11 fl ker(d(p)) 
tr=L(G) 

Thus, ? serves as ,a submanifold chart for F fl f'(0) near p, and 

T (F fl f 1 (0)) fl ker(d(p)) 
p EL(G) 

...2X The equality ?'(F fl J'(0)) = F' fl v shows that F fl J 1(0) fl U 

F fl u, so F fl J(0) contains an open neighbourhood of 'p in the 

relative topology of F. Since p is arbitrary, F fl j-  open in 

F, and is clearly closed in F. Therefore, F fl J'(0) is the union of 

connected components of F. Since 

G x F = (4'((q,q) ; q E P) 

F is a closed subset of M, so 31(0) fl F is a closed submanifold of P. 

...22 Since T4 is symplectic, the linear maps d(p) are infinitesimally 

symplectic; that is, for v,w E TP, 

to(p)(d(p)v,w) = -(p)(v,d(p)w) 

Thus, Image(d(p)) = ker(d(p)) °1 for all 9 E L(G.), so 

T (F fl f(0))Wi = 1 n ker(d(P))J 
p [ EL(G) 

= z Image(d(p)) 
EL(G) 



29 

= U Image(d(p)) 
EL(G) 

Similarly, since T acts isometrically, the linear maps d(p) are skew 

symmetric: for v,w E TP 

<d(p)v,w) -<v,d(p)w> 

The same computation shows that 

T (Fn J- 1 (o)) ' U Image(d(p)) 
p EL(G) 

= T(Fn 

Therefore, T(F fl J t(Ø))w1 fl T(F fl J(0)) = CO}, so F fl j-1 (0)is a 

symplectic submanifold of P. I 

23 The restriction that p is a fixed point of the action places a 

severe limitation on the utility of theorem ( 11). This theorem may be 

applied to obtain more useful resuts, however, essentially by moding 

out by the nontrivial part of the action at the point in question, as 

the proof of the following theorem shows. 

24 Theorem. Let (P,w,,J) be a hainiltonian G-space, (P,<,>) be a 

reimannian manifold and suppose that 4i is a proper, isometric action 

on G. Let L(G) admit an Ad invariant metric and let J be Ad* 

equivariant. If p E P, define D p = T(G.P)' fl T(G.p)Wi. If 

J(p) = 0, then D is symplectic, and 

1. TJ(0) = T(Gp) (v E -) d2J(p)(v,v) = 0}, 

2. J 1(0) is locally diffeomorphic to its tangent bundle at p. 

3. Furthermore, let G be the identity component of the 
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isotropy group of p and N be the set of points in P with 

the same continuous symmetry type as p; that is, q E N if 

and only if G is conjugate to G. Then N (1 .11(0) is an 

imbedded submanifold of P, and 

T p p (p N fl J(0)) = T (Gp) {p v e D ; d(p)v = 0 Vt € L(G)} 

T(G.P) iB fl fl ker(d(p)) 
EL(G) 

= T p (Gp) {p v E D ; d23(p)(v,w) = 0 V p € L(G ) 

and w € D } 
p 

T p p 
(N fl J_1(0))Wi = T(G.P) @ U d(p)D, 

6L(G) 

T (N nf 1(0)) + T (N 11 J_(0))Wl = T (Gp) D 
Pp pp p p 

T p (p N fl .5 1(0)) fl T p p (N fl J(0))Wl = T(G.P) 

Proof 

25 There is a submanifold S, containing p, called a slice at p, and 

a map Y, from a neighbourhood U of p in Gp to G such that: 

1. gp = p implies that gSp = S. 

2. IfgSflS*4 then gp=p. 

3. (p) = e, ,(u)p = u for all u E U, and the map 1'i : U X 

-, P by ?1(u,p) = (u)p is a diffeomorphism from U X S, to 

some open neighbourhood of r such that T() (vw) = v + w 

for all v€T (G.p) and w€TS 
p. pp 
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...26 Let B' be a ball in T P P such that expp is a diffeomorphism from 
- 

B' to some open neighbourhood of p. Define 

p p p = exp (B' fl T (Gp)1) 

Then S' is I invariant, since G acts isometrically, B' is a ball, and 

T(G.P)' is TI)g invariant if g E I : if E L(G) and v E T(Gp)1 

then 

<T4 gV i (P)> = - <v,T .... 

g 

= - 

=0. 

...27 The assumption that 4' is proper implies that Gp is an imbedded 

subinanifold of P and the canonical map 'c : G - G•p by ,c(g) = gp is a 

submersion. Since ,c(e) = p, the implicit function theorem may be used 

to obtain a local left inverse N: U c Gp -, G of , such that 

,ç(p) = e. Compute the derivative of the map ? U x S -, P by 

if v e T (G•p) and w E T SI, then 
p pp 

TY'1(v,w) T(u -, F1(u,p))v + T(q -. 

= T(u -, ,c(u)p)v + T(q -. 

= T(u -, ic 0 ,ç(u))v + T(q - eq)w 

=v+w 

Obviously, T'1 is a bijection, so V is a diffeomorphism from some 

neighbourhood of (p,p) in U x 8' to some neighbourhood of p in P. By 

further restricting B' and U, one may assume that VII is a 

diffeomorphism on U x S. 
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...28 The set K = 4g E G ; gS ) fl Stm * 4) g E I} contains an open 

neighbourhood of I in fact, 

I = ic'(p) cic'(U) C K 

Let g € c'(U) and suppose gq = q' for q,q' ES'. Then, K(g) € U, so 

K(g) = gp = u = x(u)p for some u E U. Thus, r(u) 1g e I, so 

(u)'gq E S. But 

= x(u))((u)'gq 

= gq 

= 

= 

and since 'Fj is a diffeomorphism, p = u. Therefore, gp = p, so 

g € I. 

...29 Consider the following subset A of G: 

A = {g € G ; gc1(S'p) fl 5' p # #} 

{g € G ; 3 q e cl(S') such that 4)(g,q) E cl(S') x cl(S')} 

The since 4) is proper, A is compact, so B = A fl (P - i'(U)) is also 

compact. If g E B, then g ec 1(U), so gp E U, and, in particular, 

gp * p. Continuity of 4) implies that there are open neighbourhoods A  

of g, U  of p and Vg of gp such that 4)(Ag Ug) c Vg and u  fl Vg = 0. 

Since B is compact, finitely many of the sets A  cover B, say 

A 91 ,..., A g g1 . Let U0 = fl U ; Uo has the property that if g E B, then 

gU0 fl Uo = #. Indeed, if 9 E B, then g E A for some i, so 
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gUQ CgU c4(A ,TJ ) cV 
gi g1 g1 

and V gi fl U0 = 4 for all i. 

...30 Let S be the image of B fl T(Gp)1 under exP where B is a 

restriction of B' such that exP(B) C U0. Then S, clearly has 

property (25.1). It also has property (25.2): if gS 1] S * 4, then 

g e A. Since S c U0, gU0 I] U0 * 4, so g t B. Thus, g t P 

so g e ac(U), and paragraph ( 28) shows that g E I• Since property 

(25.3) holds for and 5', and S c S', one may ensure that S and 

have the property (25.3) by restricting the domain of ,. 

...31 Let JP : L(G)* -, Image(dJ(p)) be the orthogonal projection arising 

from the Ad invariant metric on L(G). Then Ad ° fP = P ° Ad for any 

g E G. Clearly, J(q) = 0 if and only if PJ(q) = 0 and 

J(q) E Image(dJ(q)) = ann(L(I)) = ann(L(G)) 

Denoting by ± : L(G) -, L(G) the canonical inclusion, it follows that 

J(q) = 0 if and only if FJ(q) = 0 and i*J(q) = 0. 

...32 Clearly, FT is a submersion at p, so that (PJ)'(0) is a 

submanifold near p, with tangent bundle 

Tp((PJ)'(0)) = {v E TP ; FdJ(p)v = O} 

(v E TP ; dJ(p)v 0) 

= {v E TP ; t(p)((p),v) = 0 V 9 E L(G)} 

= T(G.p)Wi 
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Ad* equivariance of J shows that J(exp(t)p) = 0 for all 9 E L(G), and 
so 

0 = J(exp(t)p) dt I t=O 
= W(p) g(p) 

herefore, T(GP) C ker(dJ(p)) = T((IPJ)'(0)). Since 

TS = T(Gp)1 , ( J)'(0) and S are transversal at p. By choosing 

S small enough, then, (IIDJ)'(0) fl s is a submanifold of P, with 

tangent bundle 

fl Si,) = T((PJ)—(0)) fl 

= T(G.)" fl 

=0 
p 

...33 I claim that 

T(Gp) = T(Gp) °1 fl {T(G.p) + (T(G.P)1) 1] 

= T(G.P)' fl 

Once this fact is established, it is easy to see that D is 

symplectic: 

D fl 0 (T (G.p)Wi fl T (Gp)) fl D 
p p p p p 

= T(G.P) Ii T(G.P) = 0 

Let v = V1 + v2 be such that v € T(Gp)"1, v1 E T(G.P) and 

I W1 
V2 E (T(Gp)). Then v2 = v - v1 E T(G•p) °1, since T(G•p) 

1 
T(G•P). Thus 
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V2 E (T(GP) 1) Ii T,(G.p) wi. 

= (T (Gp)1 + T (Gp)) 
wi. 

P p 

=0. 

Thus, v = v1, so v E T(G•p), so T(G)' 1 fl D p W1 c T(GP). For the 

reverse inclusion, 

T(G.P) = (T(G.P)'')" 

= (T(G.p)0! + n)t.)i. 

C (T(Gp) + 

= T(G.P)' fl 

It follows that one may choose S small enough so that (pi) -'(o) n s 

is a symplectic submanifold of P. 

...3i If g e then maps the symplectic manifold (P.J) 1(0) fl S 

into itself: 4)g sends S to itself by property (25.1) and the fact 

that G and sends (IPJ)-'(0) to itself by Ad* equivariance of 

J and the fact that P commutes with Ad. Let 4)' be the action of G 

on (fPJ)'(0) fl s and let j : (pi) - '( o) fl S -, P be the canonical 

inclusion. Then 4' is a symplectic action on ((nJ)'(0) (1 S,jw), 

and (( J)'(0) fl S , j * w , 4)1 , (i * J) ° j) is a hamiltonian G-space. Let 

1'2 be the diffeomorphism from some open neighbourhood of p in 

IPJ'(0) 11 S to some open neighbourhood of 0 in D constructed in the 

proof of theorem ( 11). Using a submanifold chart of j- '( o) ii s at p 

in Si,, and by further restriction of S, one may extend ?2 to a 

diffeomorphism IP3 of some neighbourhood of p in S to TS = T(G.P) 
I 
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such that TI'3 is the identity. A restriction of the set U of 

paragraph ( 25) will permit the construction of a diffeomorphism ? 

from U to some neighbourhood of 0 in T(G.P) such that TI'4 is the 

identity. Let I'5 be defined by the following compositions: 

171 1 ?4x173 + 

domain(I'1 1) c P U x S p T p (Gp) x T p (Gp) 1 -+ T P P 

...35 By the definition of 1', 

3 ° I'1(u,q) = J(x(u)q) 

= Ad*x(u) 3(q) 

so that 3 ° ?1(u,q) = 0 if and only if 3(q) = 0. Therefore, 

171 13 1(0) = U x .J(0) 11 S 

= U x (( i*J)_1(0) fl s ) fl ((PJ)'(0) fl S) 

= U x (( i*J) 0 
i) 1() 

and since 173 agrees with I'2 on (F'J)'(0) fl s PI 

(174 x I'3)(I'1 1J 1(0)) = Image(1'4) x Cv E Image(P2) ; d23(p)(v,v) 0). 

Therefore, 

1'5(J'(0)) = Image(V'4) S {v E Iniage(173) fl D , d2J(p)(v,v) = 0} 

...36 Clearly, 
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T(?5J'(0)) = T (Image(1 4)) $ T{v E Image(Y'3) fl D 

d2J(p)(v,v) = O} 

= T(G.P) {v E D ; d2J(p)(v,v) = O} 

and rs maps J(0) to a neighbourhood of zero of this set. Since 

T3P : T(Gp) x T (Gp) 1 -. TP is simply addition, T'1 ' TP -, 

T(Gp) x T (Gp) 1 is orthogonal decomposition. The fact that T'4 

and T'3 are both the identity then implies that T'5 is the identity. 

This completes the proof of statements (24.1) and (24.2). 

...37 Let q E S. Then, for any u E U, 

G,çu)q = identity component of (h E G ; hx(u)q = ,c(u)q} 

= identity component of (h E G ; = q} 

= identity component of ,((u){h E G,hq = q} (( u) 1 

= X(U)Gq ((U) ' 

so that x(u)q E Nq for all q E S. Therefore, 

? 1(N ) = p p U X (N 1) S p) 

But if q E N fl Gq is a subgroup of I, by property (25.2), so G 

is a subgroup of the isotropy group of p which is conjugate to G. 

Connectivity of G p q implies that G p G , and it follows that 

'11(N nf'(0)) = ?i'(N) Ii 

= U x {q E (PJ)' ( 0) fl S ; q is fixed under 

the action of G}. 

Therefore, 
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'5(N fl J'(0)) = Image(Y14) Image(P3) fl fl D fl ker(d(p)) 
p 'EL(G) 

so serves as a submanifold chart for N 11 j-1 (0) at p. 

...38 The identification of T(N ii J'(0)) is a trivial consequence of 

the fact that T1s is the identity. The symplectic complement of 

T(N fi f '(0)) is easily computed: 

T (N fl f 1(0)) = T (G,p)Wi fl U d(p) %  
pp p I EL(G) 

= T(G.p)Wi nD wJL ED U d(p)D 

gEL(G) 

since U d(p)D C D c T (Gp) ° . But paragraph ( 33) implies 
EL(G) p p p 

that T(Gp) fl DWI = T(G.P) so 

T p (p N fl f p 1(0)) = T (GP) W U d(P)D 
6L(G) 

...39 Finally, since the two spaces 

U d(P)D , fl ker(d(p)) fl D 
EL(G) eL(G) p 

are symplectic in D, and symplectic complements of each other in B, 
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T p (p N fl p p + T (N fl 

= (T(G.P) ED n D fl ker(d(p))) 
EL(G) 

+ (T(G•p) W U d(p)D) 
L(G) 

= T(G-P) 

and, 

T(N fl f'(0)) fl T(N (1 

= (T p p f W p p (11 N fl '(0)) T (N  

= T(G.p)Wi n 

= T(G.P) I 
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CHAPTER 4 

The Dirac Theory. of Constraints 

i In Chapter ( 6) it will be shown that the following situation is 

common: (P,w) is a symplectic manifold; the points of P represent the 

classical states of the system under consideration. The classical 

states that admit evolution form a subset M of P. The space P is 

called the extended phase space of the system, and [sf is called the 

constraint set. The analysis of M is the subject of the Dirac theory 

of constraints. This chapter develops the aspects of this theory 

which are relevant to this thesis, closely following Sniatycki [ 1981], 

with special attention to the case where M is the zero level of a 

momentum mapping on P. 

2 A smooth function f on P is called a constraint if .f vanishes on 

M. The set of all constraints is an ideal of the associative algebra 

of smooth functions on P. The development of the theory will 

presuppose that M is a closed subset of P. Then, by the smooth 

version of Urysohn's lemma, M is completely determined by the 

constraints; that is, p E M if and only if f(p) = 0 for all 

constraints f. 
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3 A constraint f is first class if, for each constraint f', the 

Poisson bracket {f,f'} is a constraint. The constraints that are not 

first class are called second class constraints. The set of first 

class constraints forms an ideal of the associative algebra and a Lie 

subalgebra of the Poisson algebra of smooth functions on P. Moreover, 

if f is any constraint, then f2 is a first class constraint, so the 

constraint set is determined by the first class constraints: p € M if 

and only if f(p) = 0 for all first class constraints f. The set M 

itself is called first class if each constraint is first class. An 

observable is a smooth function g on P such that, for each first class 

constraint f, the Poisson bracket {g,f} is a constraint. 

i Unfortunately, at this level of generality, the terminology above 

is somewhat deficient. For example, one would like the hamiltonian 

vector field X  of an observable g to be tangent to M; that is, 

Xg(M) TM. A typical argument proceeds as follows: for each m € M 

and constraint f, 

df(m)Xg(m) = -{g,f}(m) = 0 

and therefore, the integral curve of X  starting at some point in M is 

contained in the zero level set of f. Of course, the difficulty here 

is that, while X  . df = 0 on some open neighbourhood of M would imply 

the desired conclusion, X J df = 0 on M does not. 
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S I have in mind the following example: P = IR4 with coordinates 

(q1 ,q2 ,PI,P2) and symplectic form 1 o = dq A dp.. Let M be the subset 

of the p = P2 = 0 plane depicted in Figure ( 6). It is apparent from 

the figure that, at any point m E M, 

span(TmM) = span l-(m) , 

lCq' Cq2 1 J 

If f and f' are any two constraints, then 

df(span(TM)) = df'(span(TmM)) = 0 

so, 

Cf Of Of' Of' 
—(m) —(m) = —(m) = —(m) = 0 
Cq' 0q2 OqL 0q2 

and paragraph (1.19) shows that {f,f'}(m) = 0. Therefore, M is first 

class. So P1 + P2 is a first class constraint, and hence an 

observable, but 

hmlt_vf(pj + P2) = + 

Oq' 0q2 

which is not tangent to M at the origin, and the upper boundary points 

of M. 
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6 

Figure 6: A first class subset of R4 which admits an 
observable whose hamiltonian vector field 
is not tangent to the subset everywhere. 

7 Owing to these pathologies, call a subset M of P strongly first 

class if M is first class and the hamiltonian vector field of each 

observable of M is tangent to M. If M is strongly first class and g 

• is an observable, then M is an invariant set for the flow of Xg; that 

is, integral curves c of X  such that c(0) E M have the property that 

c(t) E M for all t e domain(c). According to Abraham-Marsden 

[1978: 97], one need only verify that 

d(m ± hxg(m)M) 
urn   - 0, 

h 
1 
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where d is the distance function implied by the norm provided by some 

chart containing m. 

8 Let i : [ 0,1] -. P be any smooth curve such that 1(0) = 

'v((O,lJ) C M and 

Then, 

d(m + hXg(1fl)M) urn + hXg(m) - i(h)11 
urn   urn 

h h-.O h 

lirn II -  i(rn) + hXg(rn)j 
=  

h 

=0. 

Since —g is an observable if g is, and X g = Xg it is also true that 

lirn urn - hXg(m)MIl 

h- O h 

so equation (7.1) is verified. 

a As in the submanifold case, denote by IN the union of the 

vector spaces TM"1 over rn E M, and call M coisotropic if TWI C TM. 

io Proposition. 

1. If M is strongly first class and locally diffeornorphic to 

its tangent bundle, then M is coisotropic. 

2. If M is coisotropic, then M is first class. 
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Proof 

11 For the first statement, let v E TM, and let a = v J w(zn). 

One may use the local diffeomorphism guaranteed by hypothesis, and a 

bump function, to construct a constraint f such that df(m) = a. Then 

is tangent to M and v = Xf (m), so v E TmM• Therefore, M is 

coisotropic. 

..J2 For the second statement, let f and f' be any two constraints. 

Then Xf , I is tangent to M, since for any v E TM,. 

w(XfI (m)v) = df'(m)v 0 

so X (m) E T m M'° C T m M. Therefore, 
-  

{f,f'}(m) = df(m)Xf ,(m) = 0 

so that M is first class. I 

13 The null set of 14 is defined by 

null(M) = TM (1 TM 

The next proposition illustrates the importance of the null set in the 

analysis of constraints. 

14 Proposition. Let 14 be coisotropic and locally diffeomorphic 

to its tangent bundle. Then: 

1. The null set of M is spanned by the Hamiltonian vector 

fields of the constraints. 
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2. A smooth function g on P is an observable if and only if 

dg(null(M)) = 0. 

Proof 

is For any constraint f and v € TM, 

(Xf(m)v) = df(m)v 

so X  takes values in T' = null(M). Conversely, if v E T 1, then 

let a = v w(m). Then a vanishes on TM, so there is a constraint f 

such that df(m) = a. Therefore, v = Xf(m), and the proof of statement 

(14.1) is complete. Statement ( 14.2) is an immediate consequence of 

statement ( 14.1) and the identity dg(m)Xf(m) = {g,f}(m) for smooth 

functions f and g on P. U 

16 The next proposition shows that the pathologies of paragraph (5) 

do not arise when M is an imbedded submanifold of P. 

'7 Px'oposition. Let (P,w) be a syinplectic manifold and .let H be 

an imbedded submanifold of P. Then the following are equivalent: 

1. M is strongly first class. 

2. M is coisotropic. 

3. M is first class. 

In the case that these statements hold, a smooth function g on P is an 

observable if and only if the hamiltonian vector field of g is tangent 

to M. 
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Proof 

18 The implications ( 17.1) =s ( 17.2) and ( 17.2) ( 17.3) have' 

already been shown. Let M be first class and let g be an observable. 

Let m 6 M and suppose a e (TP)* is such that a(TM) = 0. Choose a 

constraint f such that df(m) = a, possible since M is -an imbedded 

submanifold of P. Then, if g is an observable, 

aXg(m) = df(m)Xg(m) = {f,g}(m) = 0. 

Since T m m g m M is a closed subspace of T F, this shows that X (m) E T M. 

Therefore, the hamiltonian vector field of any observable is tangent 

to M, so M is strongly first class. For the last statement, note that 

if g is a smooth function on P such that X  is tangent, to M, then for 

any constraint f, 

{f,g} = -i df = 0 

so that g is an observable. I 

19 Let (P,w,J,4) be a hamiltonian G-space. In chapter ( 7) it will 

- 1 i * be shown that the constraint set J (0) is of interest. If J s Ad 

equivariant, then paragraph (2.19) shows that the functions J form a 

Lie subalgebra of the Poisson algebra of smooth functions on F, so one 

might suspect that f'(0) is first class. That this is true when 0 is 

a regular value of J is part of the content of the next theorem. 

20 Theorem. Let (P,w,J,4) be a hamiltonian G-space. Let J be 

Ad* equivariant and let 0 be a regular value of J. Then: 

1. J'(0) is a coisotropic, imbedded submanifold of P. 

2. null(,J'(0)) = fund_vf(L(G),J'(0)). 
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3. A smooth function f on P is an observable if and only if f 

is invariant under the action of the connected component of 

the identity of G on P. 

Proof 

21 Obviously, J 1(0) is an imbedded submanifold of P by hypothesis, 

and if J(p) = 0, then 

Tf 1(0) = Cv E TP ; dJ(p)v = 0} 

{v E T  ; dJ(p)v = 0 V E L(G)} 

= {v G TP ; (p)((p),v) = 0 V 9 € L(G)} 

fund_vf(L(G),p)'1 

Since J is Ad*, equivariant, T(G.P) S T(G.p)ti, so 

T p J'(0) 1 = fund_vf(L(G),p) 

T (Gp) C T (G•p) 
wi. 

p 

= T p J'(0) 

so J is coisotropic. This also shows that 

null(f1(0)) = 

= fund_vf(L(G),f 1(0)) 

...22 If follows from proposition ( 14) that a smooth function f on P is 

an observable if and only if 

df(fundvf(L(G),.f 1(0))) = 0 . 1 

If f is invariant under the action of the connected component of the 
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identity on G, then f((exp(t))p) = f(p) for all t E R , so f will 

satisfy equation ( 22.1), so that f is an observable. Conversely, if f 

satisfies equation ( 22.1), define 

A = {g € G ; f(gp) = 1(p) V p € J 1(0)} 

Then, 

A x f ' (o) = (4'{(p,q) ; p,q € f 1(0) and f(p) = 1(q)) 

= (4)_1[J_1(0) x f 1(0) fl (f x f) 1{(t,t) ; t € 

so A x J'(0) is closed, which imples that A is closed. But A 

contains the image of the exponential map, since f satisfies equation 

(22.1). Therefore, A contains an open neighbourhood of the identity, 

so A is open by left translation. If follows that A contains the 

connected component of the identity, so f is invariant under the 

action of the connected component of the identity. I 

23 If 0 is not a regular value for J, then the conclusions of 

theorem ( 20) are false without further hypothesis. Consider p = 

with coordinates (q1 ,q2 1 ,PI,P2), w = dq A dpi, 4' the action of the 

circle S1 by rotations in the ql,pl variables, and J = (q') 2 + (p1)2. 

Then J'(0) is an imbedded submanifold of F, but it is symplectic, not 

coisotropic. This pathology arises from the fact that, if J(p) = 0, 

then there are directions of the action arbitrarily close to p which 

do not arise from the action within f 1(Q) (see figure ( 24)); indeed, 

in this example, the action of S' on J'(0) is trivial. The next 

theorem shows that when this behaviour is eliminated by hypothesis, 
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the analysis of the zero level of J of chapter ( 3) may be used to 

obtain results similar to those of theorem ( 20). 

24 

Figure 24: Directions of the action which _cjto not 
arise from the action within J (0). 

25 Theorem. Let the hypothesis of theorem (3.24) hold. Then the 

following are equivalent: 

1. D C span(TJ'(0)). 

2. U  d9(p)D = U d(p)(span(T J'(0) fl D )). 
EL(G) EL(G) p p 
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3. U d(p)D C span(TJ 1(0)). 
EL(G) 

If these conditions hold for all p E J-1 (0), the call 0 a 

quasi-regular value of J. If 0 is a quasi-regular value of J then: 

4. f 1(0) is strongly first class. 

5. null(J 1(0)) = fund vf(L(G),.J'(0)). 

6. A smooth function f on P is an observable if and only if f 

is invariant under the action of the connected component of 

G on J_ (0). 

7. A smooth function f on P is an observable if and only if 

is tangent to N fl J(0) for all p e f'(0). 

Proof 

26 Obviously, statement ( 25.1) implies statement ( 25.2). Suppose 

statement ( 25.2) holds, and let 

v E U d(P)D 
EL(G) 

Then there are vectors u. E T J 1(0) fl D such that 
1 p p 

v = d(p) Z u. 
1 

i 

I claim that, for each ui, d(p)u1 e span(TJ'(0)). This suffices to 

show that v e span (TJ'(0)) and completes the proof of the 

implication (21.2) (21.3). 

...27 Indeed, since the flow of g is in .s (exp(t))m, 
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., d 
d(p)u. - T4 U dt (t) . 

= urn T4 (h) UI - UI 

h-.O h 

If s -, i(s) is a curve in f 1(0) with i(0) = p and 

dl 
i(t) = 

1 

then s -, (exp(t))i(s) is another curve in J(0), since J is Ad* 

equivariant. The derivative of this curve at s 0 is T4' 
i. exp(t) 

so that T4  (t) U. E TJ'(0). It follows that d(p)u. is the limit 

of vectors in span(TJ 1(0)), which shows that d(p)u. E 

span(Tf'(0)). 

...28 For the implication (21.3) = (21.1), note that if ( 21.3) holds, 

then 

T p (p N fl J1(0)))i = T(G.P) $ U d(p)D c span (Tf'(0)) 
EL(G) 

T(G.P) 6D 0 = Li j-'(0))' + T(N Li 

C span(TJ'(0)). 

Therefore, D c span(TJ'(0)). 

...29 If 0 is a quasi-regular value for J, then 

span(TJ 1(0)) = T (Gp) T D 
P 

= T(G.p)Wl 

by paragraph ( 3.33). Therefore, 
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TJ1(0)t0i = (span(TJ'(0))) 

= T(Gp) S TJ'(0) 

and hence J 1(0) is coisotropic. Obviously 

nul1(J(0)) = T(J z(0))wi. = fund_vf(L(G),f'(0)) 

and this, along With the argument of paragraph ( 22), the fact that 

f 1(0) is locally diffeomorphic to its tangent bundle, and proposition 

(14), proves statement (25.6). 

...aa Let f be a smooth function on P which is invariant under the 

action of the connected component of the identity on f'(0). Let 

U E Tf(0) i be a curve within f '(0) such that i(0) = p, and 

dtl = u 
t=o 

Then, for any t € L(G) and s,t E IR, 

f((exp(s))i(t)) = 0 

Therefore, 

a' 
f ° (( exp(s))i(t)) = df(P)T () U 0 

so, 

as df(p) T4 () U = df(p)(d(p)u) = 0 
s0 
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It follows that 

df(p) IT p (N 

= df(p) fT (Gap) EL(G ) U d( 

p 

= df(P)fTp(G.P) w U d(p) [D f fl sPan(T'(0))} 

=0, 

and hence Xf(P) is tangent to N fl f'(0) at p. If Xf is tangent to 

fl f'(o), this same computation shows that 

df(p)(T(G.p)) = 0 

so that f is an observable by the proof of statement (25.6). 

Statement ( 25.7) implies that any observable is tangent to J'(0), so 

that J-1 (0) is strongly first class. This completes the proof of 

theorem ( 25). 
I 

31 The last result of this chapter is a verification of the 

hypotheses of the previous theorem for the case of the total angular 

momentum of n particles in 1R3. Let Q = ( 3)h1 and be the natural 

action of SO(3) on Q. Then L(SO(3)) is IR3 with the cross product as 

Lie bracket, and the standard metric on IR3 is Ad invariant. The 

action 4' provides the hamiltonjan C-space ( T*Q,w0,T *, J), as defined 

in paragraph (2.15). Identifying IR3 with its dual using the standard 

metric, one easily computes that 
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T*Q = ( 3)fl x (IR)'' 

n 
= Z ( f! -e. - f. -e!) 

i=l 
1'1 1 1 

* 
ftnd_vf(4 T (q O i ' p)) = ( x q1, x p1) 

n 
J(q' )p.) = Z x p. 

1 1=1 

* 
Since SO(3) is compact, 4T is a proper action. 

32 The points of J 1(0) with nontrivial isotropy group have the form 

p = (an,...,ann,b1n,...,bnn) = (a1n,b 1n) 

for some n E tR3. The first step in the verification is the following 

computation of D 
p 

T(G.P) = fund_vf(L(SO(3)),p) 

= x n,b. x n) ; E fR3} 

= {(ae ,b±e) ; e e span{n}1} 

Since, 

n 
(e1,f.)(a. 1 1 e,b.e) = e Z (a 1 .e. + b.f.) 

• 1 11 
i=l 

n 

1 1 = e 1 1 Z (b.e. 1 - a.f. 1 ) 
i=l 

it follows that 
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D p T p (G.p)1flT p (G p) 

= { i (e1,f1) , 2 a e + b f = c1n and 
1=1 i 

n 
2 b 1 .e 1 . 1 - a.f. = c2n, for some c1,c2 E 

1 
i=l 

33 If p = 0, then L(G) = , while if some of the a1 or b. are 

nonzero, L(G) = (en ; c E IRJ. In the first case, D = (R 3)n x (IR), 

so that 

U d(p)D , = U xD = (IRa)" x (IR3)n 
EL(G) p 

while in the second, 

n 
2 a.e. + b. 1 f. = 0 U d(P)D = 

11 1 
EL(G) i=l 

n 

2 b 1 .e. - a 1 .f. = 0 , where e1 f e span{n} °1} 
1 ]. 

Let this vector space be A. Then the hypothesis of theorem (25) will 

be verified if it is shown that A c span(T3 1(0)). 

34 Consider the curve t -* (a. 1 3. n,b.n) + t(•1 1 e.,f. i i ) for (e,f) E A 

Then 
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.J(a.n + te.,b.n + tf) = Z (a1n + te1) x (bin + tf1) 

n 
= X (ta. 1 n x f. - tb 3. .n x e 1 . + t2   1 . x f.) 

1 1 
i=l 

n n 
= -tn x Z (b. 1 e. - a. 1 f.) + t2 '! C . X f. 

1 1  i=l i=1 

n 
= t2 Z e. x f. 

1 i=l 1 

Therefore, this curve will lie within f'(0) whenever 

n 
Z e. x f. = 0 

1 3. 
1=1 

35 If I = l,2,...,n , denote by e1 the vector ( 0,...,0,e,O...,0) in 

(IR)' with e in the 1th position. Theprevious paragraph shows that, 

in order to prove that A c sPan(TJ'(0)) it suffices to prove that 

A is spanned by vectors in D which satisfy equation (34.1). If 

p = 0, this is a triviality, since vectors of the form (e',O) and 

(O,f') are contained in D and satisfy equation (34.1). By relabeling 

the particles, one may assume, then, that one of either al or b1 is 

nonzero. 

36 Elementary operations on the equations 

n 
a1e1 + b1f1 + Z (a.e. + b. 1 f.) = 0 

11 1 
i=2 

n 
b1e1 - a1f1 + Z (b. 1 e. - a. 1 f.) = 0 

. 1 1 
1L 

show that 
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e1 = 

n 
-  -1  z [ 1 (a1a. + bib ) e + (a1b. - b1a ) f 1 
a12+b 12 r L i 

= L(O,f2,...,f,O,-e2, ... ,e) 

n 
=  -1 2 I2 iia. - a1b.)e. + (b1b. - aia.)f.] 
a1 -I-b1  1=2 

ThenA is spanned by the vectors 

L((e',O))' + L((O,-e1))' + (e',O) 1 = 2,...,n 1 

L((O,e')) + L((e',O)) + (O,e') I = 2,...,n , 2 

where e e span{n}1. But it is clear that each of these vectors 

satisfies equation ( 34.1). Indeed, ( 34.1) evaluated on the vectors of 

the form ( 36.1) yields 

L(e1) xL(-e 1 j+fl. + e i x 0 = (a1a.+ bib .) e x (alb . - b1a.)e 

=0, 

and similarly with the vectors of the form ( 36.2). 
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CHAPTER 5 

Presymplectic Dynamics 

i For some physical systems, notably field theories and certain 

finite dimensional lagrangian systems derived from them, the 

symplectic formalism of chapter ( 1) is too restrictive. These systems 

can be accomodated by relaxing the restriction that the syinpiectic 

form be nondegenerate, which brings the system into a presymplectic 

context. This chapter defines presyiñplectic systems, and analyzes the 

existence and uniqueness questions for the evolution that they define. 

2 A presymplectic manifold is a pair (M,), where M is a Banach 

manifold, and w is a closed two form on M. A presymplectic system is 

a triple (M,,H), where H : M -, I is a smooth function. Any such 

presymplectic system defines an evolution on M by decreeing that 

points of M evolve along smooth curves c such that 

UT i i= d° c 

3 In contrast to the hamiltonian systems of chapter ( 1), some 

points of M may not admit evolution, and for those that do, this 

evolution may not be unique. For example, if m 6 M is such that 

1 
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dH(in) E 4(TM), then equation (2.1) is inconsistent at in, so in cannot 

admit evolution. Furthermore, if dH(m) E 4(TJ 4), the solutions to 

the equation 

V - dH(m) 

are undetermined up to vectors in ker((m)), which allows the 

possibility of a nonunique evolution. 

i Denote by Me the set of points of M that admit evolution. The 

condition that is degenerate implies symmetries of the phase space, 

in the sense that points of Me which evolve concurrently from the same 

point may be considered physically equivalent. Specifically, if 

E Me are such that there are curves c1 and c2 which satisfy 

equation (2.1) and such that c1(0) = c2(0), c1(t) = mj, c2(t) = in2 for 

some t, then write m1Rm2. Let R be the smallest equivalence 

relation on Me containing R, and call in1 and m2 gauge equivalent if 

mzRji2. The gauge equivalence relation measures the extent to which 

the evolution defined by equation (2.1) fails to be unique. 

S It can happen that there are curves c1 and c2 with common domain 

such that cz(t)Rgcz(t) for all t but such that c1 satisfies equation 

(2.1) and c2 does not. In this case, the evolution defined by 

equation (2.1) is regarded as inadequate to represent the evolution of 

the system, and the evolution of the system is augmented by all such 

curves c2. 
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6 If S C M, define the statement F(S) by 

F(S): for all in G S, there is a vector v e TS such that 

V -I (m) = dH(n). 

Obviously, if Sj,S c M and F(S 1), F(S2) are true, then P(S 1 U S2) is 

true. It follows that 

Mf = U {S c M ; F(S)} 

is the unique maximal element of (S ; F(S)). The set Mf is called the 

final constraint set. Clearly, P(Me) is true, so that Me Mf. It is 

often the case that Me = Mf ll but a proof is unavailable at this level 

of generality. The existence question for the evolution defined by 

equation ( 2.1) is approached by finding M  and showing, by example 

specific methods, that Me = Mf. For instance, one might attempt to 

find a smooth vector field X on M such that X . = dH on M and such 

that M  is an invariant set for the flow of X. 

7 In many cases, one can compute M  by a finite number of 

iterations of the Dirac algorithm, in a formulation due to Gotay-

Nester-Hinds [ 1978]. The algorithm generates a sequence of subsets M. 

of M defined as follows: 

M0 = M 

M 1.+1. = {m E 1 M. ; v m € T M i.  such that v - W_(k) = dH(m)}. 

The algorithm terminates if M fl fl+j = M for some n, in which case it is' 

obvious that M = M f . The intermediate construct M. is called the .th 
n 1 
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secondary constraint set. When M is reflexive, is topologically 

closed, and M is an imbedded submanifold of M, then paragraph ( 1.3) 

shows that 

M. = {m E M. ; dH(m)(T M. )01.  = 0}. 
1+1 1 m 

e In chapter ( 7), the following situation will be of interest: M 

is a coisotropic, imbedded submanifold of a finite dimensional 

symplectic manifold (P,w), W = i w where i : M -+ P is the inclusion 

map and there is a function H on P such that HM = H. Gotay [ 1980] 

implies that many presymplectic systems may be so realized. Suppose 

that Mf is a strongly first class subset of (P,w). If m E Mf then 

T# = (v E T f ; ( v,TM) = 0) 

= {v E TMf ; w(v,TmMf) = 0} 

= T M fl T 
M  m  

Since Mf is strongly first class, Mf is coisotrôpic, so that 

null(Mf) = TM = T MWI 
f inf 

By the definition of Mf if m € Mf then there is a v E TMM f such that 

V J (m) = dH(m), and it follows that 

dH(null(Mf)) = dH{TM 1J = 0 . 

Therefore, H is an observable, so XH is tangent to Mf. Hence, each 

point of Mf admits evolution, and Me = Mf. 
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9 With the same context as the previous paragraph, suppose that M  

is an imbedded submanifold of (P,). Suppose that TMWIIMI is 

generated by a set of vector fields Go, and write T1IMf = dstb(G0). 

Consider the following gauge vector field algorithm (Gotay-Nester 

[1979aJ): 

C. 1+1 = G 1 . 1 1 U [G.,G.] U [XH,GiI 

The algorithm terminates if C n n+i = G , the common value of which is 

denoted by Cf. The span of G  is the smallest Lie subalgebra of 

vector fields on M  which contains C0 and is mapped to itself under 

the action of L % . The next part of this chapter is devoted to 

proving the following fact: if G  is a finite set, the connected 

components of the equivalence classes of the gauge relation are 

exactly the maximal integral submanifolds of dstb(Gf). 

io Note first that any piecewise smooth curve c which satisfies 

equation (2.1) is locally an integral curve of a time dependent vector 

field of the form X H  + f 1 .Y1, where the f 1 . are smooth functions on 

M  X R and the Y1 are vector fields in C0. Thus, any evolution curve 

may be constructed by concatenating the integral curves of such vector 

fields. 1 Indeed, if to e  choose Y E C0 such that the 

vectors Y'(c(to)) form a basis of T c(to) M. As TN?-' IM f is a 

subbundle of there is an e. > 0 such that Y1(c(t)) forms a basis 

of T c(t) MW1, and therefore, there are smooth functions f. defined on a 

neighbourhood of c(to) x (t0 - e.,to + e.) such that 
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dc 

- X}(C(t)) = f(c(t),t)Y1 

since the left hand side takes values in Th?' 1 IMf 

[,dc(t) XH(C(t))V} = dH(c(t))v - dH(c(t))v = 0, 

for all v E TM. Choosing some e l < e., one may extend the functions 

f. to all of Mf x R in such a manner that equation ( 10.1) holds on 

(t0 - €. 1,t0 + e'). 

ii Denote by D1,D2 the vector fields on Mf X R of the following 

form: 

Di : (m,$) -, (XH(m) + Y(m,$),z,1) where Y is a smooth, time 

dependent vector field on Mf X IR which takes values in 

D2 : (m,$) -+ (G(m),s,0), where G E Gf , and (m,$) -a. (XH(m),s,1). 

Let 03 = DI U D2-

12 Define the 0. reachability relation as follows: x1D1x2 if there 

are vector fields X1,...,X n € i 0 and real numbers t1,...,t such that 
n 

XI  
t1 t t k ow o k 

x x 
0 F (x2), where F k denotes the flow X . The D. 

1 n  

reachability relation is an equivalence relation, and the D. 

reachability equivalence class of x E Mf x IR is denoted by [x]0 . 

13 The set of vector fields D3 is locally of finite type; that is, 

if x € M x R, then there are vector fields X',...,x' on M x R such 

that: 

1 
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1. X'(x),...,X'(x) span dstb(D3) 

2. If X e D3, then there is some open neighbourhood U of x and 

smooth functions f on U such that 
J 

[X,X'](U = Z f(X1u) 
J 

One simply takes X' to be the vector fields in D2 and verifies the 

following: for G E Gf1 Y1 E G0, and f. smooth functions on M  X IR, 

[(m's) -. + (f1(m,$)Y'(m),s,l),(m,$) -, (G(m),s,O)] 

(m's) -+ ([ XH,G](m),s,O) + H LG fTj(m)yi(m),S,oj 

+ (f(m,$)(Y1,G](m),s,O) 

where f,,i M - Rby f(m) f1(m,$), and, 

(m's) -. X11(m) + (f1(m,$)Y'(m),s,l),(in,•s) -, (XH(m) ,sl)} 

- (m,$) - Lx fSl (m, s) i j Y 1 (m)sOJ I. 1 

+ [f.(ni,$)[yi,XH](m),s,O} 

14 Let .x E M f x R. The results of Sussman [ 1973] imply that [xl 

is an immersed submanifold and maximal integral submanifold of 

dstb(D 3). The same reference shows that [ x] is an immersed 

submanifold and maximal integral submanifold of some distribution, say 

E. Obviously, [x] c [xlD3 , so E C dztb(D3). Taking Lie brackets of 
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vector fields in D1 and considering the form of G  and the fact that E 

is involutive, it is apparent that dstb(D3) C E, so dstb(D3) = E. 

Thus, fx] = [xl , by the uniqueness of maximal integral 

submanifolds. 

is Let p1 : M  X R -. M  be the projection onto the first factor. It 

is obvious that the gauge equivalence class [m] g of m E M is 

[mi g = pi[[m,O] 0 flM x (0)) 

That is, [m]g is the set of points reachable from m in total time 

zero. If m' E Mf2 then 

T(m IO)[(mO)]D i = dStb(D3)(m IO) 

contains the vector (X H (D1 m'),O,l). Therefore, [(m,0)] is transversal 

to M x (0), so that [m] g is an immersed subinanifold of M. 

16 If M, E [mi g then 

Tm i[ml g = TPI[T(mIO)[(m,0)]D1 (m , 0) fl T M x (0)) 

= TPI{dstb(D3)(ml, 0) n T (m',O) M x {o}} 

= Tpj[span(X(m 1 O) ; X E D2) (1 T (rn x (0)) 

by property ( 13.1) of the set of vector fields D3. Thus, 
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Tms[m]g = TP1 [(Z a1G1(m') + (bXH(m) ,s,b) ; G. E Gf a.b E 

fl T 0)M x {O}} 

= TP1 [(Z a.G1(m'),s,O) ; G. Gf,a. € 

= dstb(Gf)I 

so that [m] g is an integral submanifold of dstb(Gf). 

17 The set of vector fields G  is clearly of locally finite type. 

Thus, if m E M, the G. reachability class of m, [m]G 
f 

is a maximal 

integral submanifold of dstb(Gf ). Since the vector fields 

(m's) -, (G(m),s,O) 

where G € G., are contained in D3 ,. 

[mIG f x {0} S [(m,O)]D3 fl m x {O} = [ml g x {O} 

so that [m]G c [m] 9' 

g 
Therefore, the connected components of [ml are 

the maximal integral submanifolds of dstb(Gf). 

18 It is useful to note the following fact: the gauge relation' 

defined by the evolution generated by the time dependent vector fields 

of paragraph ( 10) and by the gauge relation generated by the time 

independant vector fields X  + Y, Y E G0 are identical. For the 

proof, let D4 be the set of vector fields on M  X R of the form 

(m's) -, (X(m) + Y(m),s,l) 
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where Y E C0. Then D4 U D2 is locally of finite type for the same 

reason that D3 is, and the same argument as paragraph ( 14) shows that, 

if x 6 M f x IR, [x] = [x] D4UD2 . Since dstb(D q U D2) = dstb(D3), the 

uniqueness of maximal integral submanifolds shows that [xl = [xl = 
D4 D3 

[xl , which implies that the two gauge relations are the same. 

19 This fact may be used to show that if the vector fields X  + 

Y E C0 are complete on M  then the gauge equivalence classes of the 

evolution defined by equation (2.1) are connected, and hence are 

exactly the maximal integral submanifolds of dstb(Gf). Indeed, if 

mxRgm2 then there are vector fields Y1 E C0 and real numbers t such 

that Z t. = 0 and 
1 

XHY1 XH+Y 
MI  Ft 0 ••• 0 Ft (1112) 

n 

But completeness of the vector fields implies that the curve 

s -iF XH+Y' 0 °F (m2) 
st1 st 

n 

is well defined, and i(l) = m1,i(0) = m. Thus, any two points of a 

gauge equivalence class may be connected by a smooth curve. 
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CHAPTER 6 

Lagrangian Systems 

i Many physical systems have a natural lagrangian formulation: 

there is given a Banach manifold Q, called the configuration space, 

and a smooth function L : TQ -, IR called the lagrangian. The Legendre 

transformation is the smooth, fiber preserving map FL : TQ -* T *Q 

defined by taking the fiberwise derivative of L: 

FL(v q q q q )w = D(LIT Q)(v )w q 

=UE It=OL q + twq> 

Define the Lagrange one and two forms, and the energy function, by 

= FL 80 

= FL wo 

E(v ) q q FL (v )v q - L(v q) 

Points of TQ evolve along smooth curves c such that 

dc 
J wLdE ° c z -t 

2 Define the smooth, fiber preserving map F 2 L : Q - TQ by 

1 

F2L(V)(WW i) = D2(LIT Q)(v )(w , w') 
q q q q q qq 
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F2  has image in the symmetric elements of TQ. The Lagrangian L is 

called (weakly) regular if F2L has image in the (weakly) nondegenerate 

elements of TQ. In a natural chart of TQ with range U x JE, FL(u,e) = 

(u,D2L(u,e)), so 

TFL(u,e,ej,e2) = ( u,D2L(u,e),ej,D 1D2L(u,e)e1 + D2D2L(u,e)e2) 

and also, 

1 

F2L(u,e)(e1,e2) = DL(u,e)(e1,e2) . 2 

An examination of these equations shows that L is (weakly) regular if 

and only if FL is an ( immersion) local diffeomorphism. If FL is a 

diffeomorphism, then L is called hyperregular. If L is regular, and Q 

is reflexive, then w  is symplectic, and the evolution defined by 

equation ( 1.1) is given by the flow of the hamiltonian vector f1e1dof 

E. 

3 The following theorem gives an important property of curves which 

satisfy equation ( 1.1), and displays the connection between such 

curves and the classical Euler-Lagrange equations. A curve c in TQ is 

called second order if it is the derivative of its projection to Q; 

that is, if 

(TQ ° c) = c 

i Theorem. Let Q be a Banach manifold and L be a smooth 

function on TQ. 

1. If a smooth curve c in TQ satisfies equation ( 1.1), then it 



71 

also satisfies 

F2L( c(t)){c (t) - ° c)(t),w] 0 

for all w E T Ir o(t)• Thus, if L is weakly regular, any 
Q 

curve satisfying equation ( 1.1) is second order. 

2. In a natural chart of TQ with range U x E, a second order 

curve 

= } C(t)  

satisfies equation ( 1.1) if and only if it satisfies 

Lagrange's equations in this chart: 

Ut-(D2L(c(t))f) = D1L(c(t))f 

for all ,f E IL In finite dimensions, these are equivalent 

to the classical Euler-Lagrange equations 

d ['9L (qi(t), 41 (t))] - OL (q1(t), 1(t)) 

Oq 

using coordinates q ,.... q n,,41, . . . , q on TQ. 

Proof 

s Paragraph ( 1.8) and equation (2.1) show that 

( (u,e,e1,e) ) (u,e )ej , e2 ) ) 

= wo(FL(u, e)) ( TFL(u,e,ej , e2) , TFL(u,e, e1 ', e2')) 

= D1D2L(u,e)(e 1 ,e 1) - 01D2L(u,e)(e 1,ej') 

+ D2D2L(u,e)(e21,e) - D2D2L(u,e)(e2,e11) 
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Also, E(u,e) = D2L(u,e)e - L(u,e), so 

dE(u,e)(u,e,e11,e21) = D1D2L(u,e)(ej',e) + D202L(u,e)(e2',e) 

+ D2L(u,e)e2' - D1L(u,e)e1' - D2L(u,e)e2' 

= DiD2L(u,e)(e',e) + D2D2L(u,e)(e2',e) 

- D1L(u,e)ejs 

Collecting terms, a vector (u,e,e1,e2) will satisfy 

(u)e,e1,e2) = dE(u,e) 

if and only if 

D2D2L(u,e)(e2',e - e1) 

+ DiDzL(u,e)(e1',e1 - e) 

+ DiD2L(u,e)(ej,ei') + D2D2L(u,e)(e2,e1') - D1L(u,e)e1' = 0 

for all ei,e2' 6 E. Letting e1' = 0 and e2' = 0 separately, these 

equations are equivalent to the following two equations: 

DL(u,e)(f,e - el) = 0 1 

D(D2L(u,e)f)(e1,e2) - D1L(u,e)f = -D1D2L(u,e)(e1 - e) . 2 

If c(t) = (u(t),e(t)) satisfies equation ( 1.1), then substituting 

{u(t), e(t) du d 
(t), 

dt2 

for (u,e,e1,e2) in equation (6.1) and observing equation (2.2) yields 

the first statement of the theorem. Substituting 
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- [u(t), ( t), L (t), d 
dt2 

for ( u,e,ej,e2), it is apparent that equation ( 6.1) is statisfied 

identically, and that equation ( 6.2) yields Lagrange's equations in 

the chart. U 

8 If L is hyperregular, one may define a smooth function H on T * Q 

by .H = E 0 FL'. The hamiltonian systems (TQ,WL,E) and (T*Q,wo , H) are 

in bijective correspondence via the symplectomorphism FL. One calls 

the system (T*Q,o,H) the canonical formulation of the lagrangian 

system. It is possible to construct a lagrangian system from a 

hamiltonian system on T*Q, under conditions similar to hyperregularity 

(Abraham-Marsden [ 1978: 221]). 

A lagrangian L : TQ - is called semiregular if FL is a 

subiiumersion (Abraham-Marsden-Ratiu [ 1983: 171]) and the level sets of 

FL are connected. 

io Theorem. Let Q be a Banach manifold and L : T q Q -, I be 

semiregular. Let v  E T q Q admit evolution; that is, there is a smooth 

curve c in TQ that satisfies equation ( 1.1) and c(0) = Vq • If 

v' E T Q is such that FL(v ) = FL(v'), then there is a smooth curve c' 
q q q q 

in TQ that satisfies equation ( 1.1), c'(0) = v', and FL 0 cl is a 

restriction of FL 0 c. Furthermore, Vq and v1 are gauge equivalent. 

Proof 

11 Let i : [ 0,1] - TQ be a smooth curve such that FL 0 i is a 

constant, say a q q . Then i lies within the fiber T Q of TQ, since FL is 
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fiber preserving. E is constant along i: 

d 
° i(t)) = (FL(7(t))7(t) - L ° 1(t)] 

= (aq(7(t)) -  L ° 1(t)] 

di di 
= a  TT(t) - FL(i(t)) at-( t) 

=0. 

As FL is a subimmersion, FL- 1(aq) is an imbedded submanifold of TQ, so 

FL (a q)is smoothly pathwise connected. Thus, E is constant on the 

level sets of FL. 

...12 Let U and V be open subsets of TQ and a : U - V be a 

diffeomorphism such that FL ° a = FL. If c is a curve in U satisfying 

equation ( 1.1), then a ° c also satisfies equation ( 1.1): 

[Td_ Udt (a ° C) (t) -' 0 L} (w) = WL(a ° CM)( (cc ° c)(t),w} 

= wo(FL ° a ° c(t)){TFL{Ut (a ° c)(t)],TFLw] 

= wo(FL ° c(t))[TFL[(t)}TFL(TaTa'w)] 

= w0(FL ° c(t)){TFL[dc (t)JTFL(Ta'w)} 

dc 
= Ft (t) J J)L(Ta'w) 

= dE(TaZw) 

= d(E ° a1)w 

= dE(w) 

since E is constant along the level sets of FL. 
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...13 Let w0 E TQ. Since FL is a subinunersion, there is a 

neighbourhood U of w , a convex neighbourhood V of 0 in ker(TFL), and 

a smooth map p : U - V such that p(wo) = 0, FL(U) is an imbedded 

submanifo1d of T*Q, and the map ? : U -, FL(U) x V by ?'(w) = 

(FL(w),p(w)) is.a diffeomorphism. I claim that the theorem is true 

when restricted to points and curves in U. 

...14 Let c be a smooth curve in U which satisfies equation ( 1.1) and 

let c(0) Vq • Suppose vI E U is such that FL(Vq) FL(Vc )• The 

translation r1 : (x,y) - (x,y + p(v4) - P ('7q)) maps an open 

neigbourhood W1 C FL(U) x V of ?(Vq ) to an open neighbourhood 

W2 C FL(U) x V of '(v), since 

Ti( F(Vq )) = ri(FL(vq)P(vq)) 

= (FL(vq)P(v)) 

= (FL(v'),p(v')) 

Thus, r2 ''(W1) .. ? 1(W2) by T2 = ° T, ° 'F is a diffeomorphism 

such that T2(Vq ) = Vqi and FL ° = r2. For some a1 > 0, c((-a1,a1)) 

c Y, -1 so c' = T2 ° cl(-ai,ai) is a curve which satisfies equation 

(1.1), by paragraph ( 12), c'(0) = v' and FL 0 c' agrees with FL 0 c on 

(-a1 , a1 ) 

...xs Suppose that FL 0 c(t) * 0. Then FL 0 c admits a local left 

inverse at t = 0; that is, a map /3 A c FL(U) -* (-a2,a2) where A is 

an open set containing c((-a2,a2)), /3(Vq ) = 0 and /3 satisfies 

/3 0 FL 0 c(t) = t for all t 6 (-a2,a2). One may assume that a2 < a1. 
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Let f IR -* [0,1] be a smooth function which is 0 on (-co,a2/2] and is 

1 on [ 0,°°). Define the map r3 : A X V -i A x ker(TFL) by 

r3(x,y) = (x,y + (f 0 /3(x)) (p 0 c' 0 /3(x) - p ° C 0 /3(x)) 

If t E (-a2,a2), then 

° c(t)) = (FL(c(t)), p ° c(t) + f(t) 

(p ° c' (t) - p 0 c(t))) 

so r3 maps IP ° c((-a2,a2)) into A X V, since V is convex. It follows 

that r3 is a diffeomorphism from some open neighbourhood W3 S FL(U) 

X V of ? ° c((-a2,a2)) to some open set W4 C FL(U) x V. Define the 

- 1 
diffeomorphism r4 : 'F (W3) - 'F-1 (W4) by r4 = I" T3 0 'P-& . Then 

c((-a2,a2)) c W3 and r4 satisfies FL 0 FL, so that c" = 

0 (Cl(-a2,a2)) is a curve that satisfies equation ( 1.1). But 

C"(-a2/2) = c(-a2/2), c(0) = v and c"(0) = v', so v R v'. 
q q q g q 

...1 6 If f FL 0 c(t) = 0, then it is clear that dE(Vq) = 0, since c 

satisfies equation ( 1.1) and w = FL*o. If w E U is such that 

FL(w) = FL(Vq) the argument of paragraph ( 14) yields a diffeomorphism 

r5 from some open neighbourhood of v  to some open neighbourhood of w 

such that rs(vq) = w and FL 0 TS = FL. Then E 0 TS = E, so 

dE(Vq) = dE(rs(w)) 

= dE(r6(w))T r5 0 T(r51) 

= (rs *dE) 0 T(r') 

= dE 0 T(r51) 

=0. 
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Therefore, dE is zero on PL- '(FL(Vq)) fl U. The following two curves 

are contained in FL- '( FL(Vq)) fl u for some open interval I of IR 

containing 0 and 1: 

k1(t) = 1P'{FL(vq)(vq + v) + (Vq - V•)) 

k2(t) = f1[FL(vq)(vq + vc) - (vq - v)] 

Since k(I) is contained in a level set of FL, I = 1,2, 

dk 

W L = 0dE°k.(t) 

on I. But k1(0) = k2(0), k(1) = v  and k2(l) = v, so VqRgVj• This 

completes the proof that the theorem is true when restricted to points 

and curves in U. 

... 17 Let Vq E TqQ FL(Vq) = a and suppose that there is a smooth 

curve c in TQ that satisfies equation ( 1.1) and c(0) = V. Consider 

the set 

S = {w E FL'(aq ); there is a smooth curve c' in TQ which 

satisfies equation ( 1.1), c'(0) = w and FL 0 c' is a 

restriction of FL 0 c). 

If w E S, then there is an open neighbourhood U of w such that the 

theorem is true when restricted to points and curves in U. Therefore 

U (1 FL 1(aq) S S. This shows that S is an open subset of FL- 1(aq). 

An identical argument shows that the complement of S in FL 1(aq) is 

open. Since FL- '(aq) is connected, S = FL- '(cxq). A similar argument 

shows that the gauge equivalence class of v  contains FL'(aq ). 0 



78 

18 Finding the points of TQ which admit evolution curves that are 

second order is the second order problem for lagrangian systems 

(Gotay-Nester [19801). The next theorem casts doubt on the physical 

significance of the second order problem by showing that, in the 

semiregular case, every evolution curve is gauge equivalent to a 

second order evolution curve. 

19 Theorem. Let Q be a Banach manifold and L : TQ - IR be 

semiregular. Let c be a smooth curve in TQ that satisfies equation 

(1.1). 

1. If c' is any other smooth curve in TQ such that FL ° c = 

FL ° c', then c also satisfies equation ( 1.1) 

2. FL  

Proof 

20 Let c be a smooth curve in TQ that satisfies equation ( 1.1) and 

= FL 0 d (T 0 c) 

suppose that c is another smooth curve in TQ such that FL S c = 

FL 0 c'. Let to e domain(c) = domain(c'). After some translations of 

IR, theorem ( 10) implies that there is a smooth curve c" in TQ that 

satisfies equation ( 1.1), c"(to) = c'(to) and FL 0 c" is a restriction 

of FL 0 c = FL 0 c'. Therefore, 

TFL[&I  CI(t) - 

d I Cft(t)] 

to dt to 

d I 
- FL 0 C. (t) - FL 0 c" (t) 

dt to to 

=0, 
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so that, 

dl d 
c'(t)J to = c"(t) .1OL = dE(c"(to)) 

to to 

= dE(c'(to)) 

As to is arbitrary, this shows that c' satisfies equation ( 1.1). 

...21 For the second statement, let to E domain(c), a q.=FL(c(to)) and 

a  = dl (TQ ° c(t)) TE 

Let X be the vector field on TqQ defined by X(Vq) = a - Vq • If 

Vq € FL- '(aq) then there is a curve c' in TQ which satisfies equation 

(1.1) C'(0) = v  and FL 0 c' is a restriction of FL 0 c. By 

statement (4.1), 

D(FLIT q q Q)(v )((v q q - a,v') F2L(v q )( v q q - a,v') 

= F2L(v q) C'( 0 ) - 

= F2L(v q)[cl(0) - 

=0, 

d 

TE to 

d 
dt 

to 

for any v' E TQ. Therefore, X is tangent to the closed, imbedded 

submanifold FL- '(aq ). The curve 

it) = a + ( c(t0) - a)e_t 

is an integral curve of X with initial condition 1(0) = c(to) E 

FL- 1(aq) so 7 is a curve in FL- 1(aq). Then 
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FL(a) = FL urn i(t) 
It-+-

lim FL(i(t)) 
t-+°° 

q 

= c(t o) 

As to was arbitrary, this completes the proof of statement ( 19.2). I 

22 Suppose that L is semiregular, and an open or closed map onto its 

image. Then M0 = Image(FL) is an imbedded subnianifold of T*Q. Since 

E is constant along the level sets of FL and FL is a submersion onto 

M0, there is a smooth function H on M0 such that E = H ° FL. Let 

i M0 -. T*Q be the inclusion. The presymplectic system (Mo,i*wo)H) 

is called the canonical formulation of the lagrangian system. 

23 The evolution on M0 defined by the presymplectic system 

(Mo,i*wo,H) is the image under FL of the lagrangian evolution on TQ. 

Indeed, a straightforward computation shows that if c' is any smooth 

curve in TQ that satisfies equation ( 1.1), and c = FL ° c', then 

dc * - 

- i Wo = dli ° c 

On the other hand, let c be a curve in 'T * Q that satisfies this 

equation, and let to e domain(c). Choose w0 E TQ such that 

FL(w0) = c(t o). Using a neighbourhood U of w0 as in paragraph ( 13), 

one may find a curve c' (t0 - a,t0 + e.) - U such that FL 0 c' = 

cl(to - s,t 0 + €). A straightforward computation shows that c' 

satisfies equation ( 1.1). Therefore 
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d [T* o c(to - a,t0 + a)] = dt ° c'j(to - 6, to + a)) 

also satisfies equation ( 1.1), and 

FL 0 0 c(t - a,to + a)] = FL  c'I(to - a,t0 + a) 

cl(to - e.,t0 + a) 

As to is arbitrary, this shows that the curve 

t d I* 0 c)(t) 
- dtl Q 

satisfies equation ( 1.1) and is mapped by FL to c. Thus, c is the 

image of a lagrangian evolution curve. 
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CHAPTER 7 

The Extended Canonical Formalism and the Gauge Group 

i Further analysis of the lagrangian evolution of chapter ( 6) might 

proceed by a study of the presymplectic system (Mo,i*w,H). This 

presymplectic approach has the advantage of requiring no additional 

data for its implementation, but has some drawbacks. The familiar 

notions of Poisson bracket and momentum mapping, for example, are 

difficult or impossible to define in a presymplectic context. The 

problem of quantization motivates the attempt to realize the evolution 

on M0 as a set of constrained hamiltonian evolutions, providing a 

cogent reason for retaining the symplectic structure of T *Q from the 

outset. 

2 For this program, one needs additional structure on the phase 

space T*Q. Namely, assume the following: 

1. There is a smooth function H on T*Q such that H = HIM0. 

2. (T*Q,wo,40,J0) is a hamiltonian G° space such that the 

action 4° is infinitesimally free and M0 = (J0) 1 (Q) • 

G° is called the primary gauge group. This structure serves to extend 

the evolution on M0 to an evolution on all of T*Q: one decrees that 

* * 
points of T Q evolve along smooth curves c in T Q such that 
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I dc 
.' wo = dH ° c] fuid_vf0,L(G0)0i • 

That is, 

fdc 
- = dH(c(t))v 

for all v e fund_vf(4,L(G),c(t))W01. 

3 Consider the lagrangian L TQ - R by 

L(Vq) = 1/2 B(q)(vq,vq) + /3(q)vq - V(q) 

where B is a smooth section of TQ of constant rank and image in the 

symmetric elements of TQ, /3 is a smooth one form on Q, and V is a 

smooth function on Q. One easily shows that 

FL(v )w = B(q)(v ,w ) + /3(q)w 
q q q q q 

E(Vq) = 1/2 B(v q q ,v ) + V(q) 

F2L(Vq)= B(q) 

Thus,.F2L is of constant rank, so FL is a subimmersion. Also, if 

a  E Image(FL), then FL- '(aq) is a translation of a subspace of T q Q, 

and hence is connected, so L is semiregular. Since B4 is a vector 

bundle morphism of constant rank, it is an open mapping onto its 

image. As FL is B4 followed by the diffeomorphism of TQ which is 

addition by /3, FL is also an open mapping onto its image. 

Suppose that the distribution ker(B) on TQ is spanned by the 

fundamental vector fields of an infinitesimally free action 4' of a Lie 

group G°. Assume that the map 
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q - /3(q)(fundvf(,,q)) 

has constant value Po on Q. The action 4' provides the hamiltonian G° 
* 

space ( T*Q,(0o,4T , J°), as defined in paragraph (2.15). 

S The expression FL = B4 + /3 ° T  shows that 

Mo = Image(FL) 

= ann(ker(B)) + /3 

Also, 

(q E (JO)1(14) 

J(Uq) - /1o() = 0 for all 6 L(G) 

(aq - 8(q))(fund_vf(cj,,q)) = 0 for all E L(G) 

- /3(q) E ann(ker(B)) 

c(q E ann(ker(B)) + /3 

01  so (J ) () M0. If go is fixed under the Ad* action of G on 

L(G0)*, then M0 is coisotropic, and M0 is the zero level of the Ad* 

* 
equivariant momentum mapping J° - o for the ,T action of G° on T*Q. 

This is obviously the case when G° is commutative. Another sufficient 

condition is that /3 is a G° invariant one form on Q, since in this 

case, 



85 

Adpo() = 01Ad 
I g' 

= B(q) [fund-vf Adg_ 1•1q]) 

= fund_vf(4,)(q)) 

= 4/3 (q)(fund_vf(c,q)) 
g 

= 

6 Regardless of whether juo is a fixed point of the Ad* action or 

not, one may extend H by choosing a complement E to ker(B). If Q is a 

riemannjan manifold, then one may take E to be the orthogonal 

complement of ker(B), so the entire extension process depends only on 

the choice of action 4. The splitting TQ = E $ ker(B) gives rise to 

the splitting T * Q = ann(E) W ann(ker(B)) and the projections p1 : TQ -, 

* E and Pi : TQ -. ann(ker(B)). The map 7t : T Q - M0 by 

lr(aq ) = P(aq - 48(q)) + /3(q) 

is a projection of T*Q onto M0 if a 6 ann(ker(B)) then 

+ "/3(q)) P(CXq ) + 16(q) 

=CA + /3(q) 

Thus, one may define H = H ° it. If M0 is zero, then /3 E ann(ker(B)) 

and M0 = ann(ker(B)). In this case, H(c' + a) = H(a2), where 
"1 

a1 e ann(E) and a2 E ann(ker(B)). 



86 

- 1 
7 Let p e L(GO) *  and consider the evolution on (J')- (p) defined by 

equation ( 2.1). It is of interest to determine if this evolution 

arises from some lagrangian evolution. Of course, if M = M0, this 

evolution is the image under FL of the lagrangian evolution implied by 

L, as shown in paragraph ( 6.23). Denote by M the unique, smooth one 

form on Q that satisfies the conditions 

(q)(fund_vf(4,q)) = - Po(), and 

(q)(vq) = 0 if Vq E E. 

The evolution defined by equation (2,1) on (J0)l(p) corresponds to 

the lagrangian evolution defined by the lagrangian L = L + . All 

that needs to be verified is that Im(FL) = (J0)l() and that 

H 0 FL = E, where E is the energy function of L. As L satisfies all 

the conditions of the previous analysis on L, and 

(/3(q) + )(fund_vf(,q)) = Po() + P() - 

= p) 

for all g E L(G°), Im(FL) = (J ) 1(p). Since E is independant of /3 

anyway, E = E is clear. But then 

II ° FL(Vq) = H(FL(Vq) + 

= (q) - 18(q)) + /3(q)) H(P(FL(Vq ) +  

= H(P(FL(Vq) - /3(q)) + /3(q)) 

=HOFL(Vq) 
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8 I return now to the more general context of paragraph ( 2). The 

following algorithm generates a sequence of subsets of vector fields 

* 
on T Q: 

E0 = fund_vf(4,L(G°)) 

E. 1+1 = E. 1. U [XH,Ei] U [E ,E] 

As in chapter (5), if this algorithm terminates at a finite subset Efs 

then the connected components of the gauge relation defined by the 

extended evolution on T * Q are the maximal integral submanifolds of 

dstb(Ef). In what follows, suppose that the gauge equivalence classes 

of the extended evolution are connected, and postulate the existence 

of a gauge group: a connected Lie group G with syinpiectic action 4' on 

T * Q such that: 

1. G° is a closed subgroup of G. 

2. If g E G°, then 4(g,m) = 4°(g,m). 

3. fund_vf(4,L(G)) = SPan(Ef). 

It follows that the orbits of G are exactly the gauge eqiuvalence 

classes of the extended evolution. One may assume that JJO for 

all 9 € L(G°). 

9 Suppose that the final constraint set Mf S; M0 is strongly first 

class. Then H is an observable, and each point of M admits 

evolution. I claim that J is constant on Mf. The proof is by 
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induction on the following statement: 

P(i): If g E L(G) is such that fund vf(,) E E., then J is 

constant on Mf. 

P(0) is true: if E L(G) is such that fund vf(,) = fund_.vf(4') 

for some ' E L(G°), then J and JV  differ by a constant on T*Q. By 

hypothesis, JV  is zero on M0, and since M  S M0, this shows that 

is constant on Mf. 

9 Suppose i 0 is some integer for which P(i) is true. Let 

E L(G) be such that fund_vf(4) € E. 1. Then one of the following 

three statements is true. 

1. fund_vf(4,) € E1. 

2. fund vf(4) = [fund_vf(c,),fund_vf(M2)] for some 

. E L(G) such that fund_vf() E E.., j = 1,2. 

3. fund_vf(,) = [XH,fund_vf(MI)] for some ' E L(G) such 

that fund_vf(4,') € E.. 

In the first case, J is constant on M  by the induction hypothesis 

directly. For the second and third cases, it suffices to find a 

function f such that X  = fund vf(4) and f is constant on Mf. If 

the second statement is true, then one may take f = {J I 2 ,J }, by 

paragraph ( 1.20). Suppose the third statement is true, and let the 

constant value of JV  on M  be c. Then J - c is a constraint, so 

{H,J 1} = {H,J 1 - c} is also a constraint, and one may take 

f = {H,J,}. 
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10 These hypotheses are sufficient to show that Mf is G invariant: 

Let t e L(G) and suppose J has value p on Mf. Since Mf is strongly 

first class, J - p() is a constraint on Mf and 

hmlt_vf(J - p()) = hmlt_vf(J) 

fund_vf(4,) 

Mf is invariant under the flow of fund_vf(4). Let S C G be defined 

by 

S = {g E G ; gm E Mf for all m E Mf}. 

Then S contains the image of the exponential mapping, and so contains 

an open neighbourhood of the identity. By right translation, S is 

open. Since A X Mf = *`(Mf X Mi.), A is closed as well. As G is 

connected, A = G, so Mf is G invariant. By paragraph (2.18), one may 

assume that M is contained in the zero level set of J, S is Ad* 

equivariant and the conditions of paragraph ( 8) continue .to hold. 

Li Let Q be a riemannian manifold, let the hypotheses of 

theorem (3.24) hold and suppose 0 is a quasiregular value of S. Then 

I claim that Mf = f '(o). Since Mf C f '(o), it suffices to show that 

each point of J- (0) admits evolution. By theorem (4.25), this will 

be true if {H,J} vanishes on J'(0) for all 9 € L(G). If 9 E L(G), 

then 

[XH,fundvf(4)] = fund_vf(4') 

for some ' E L(G). Therefore, {H,J} and JV  differ by  constant, 

so {I-I,J} is constant on f 1(0). But {H,J} vanishes on Mf c 
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so {H,J} vanishes on J'(0). In rough terms, then, the following 

statement is true: 

If a gauge group for the evolution exists and 

admits a sufficiently regular momentum mapping, 

and if the final constraint set is strongly first 

class, then the final constraint set is the zero 

level of a momentum mapping of the gauge group. 

12 The most general evolution on M0 is given piecewise by smooth 

curves of the form gc(t) = g(t)c(t), where c is an integral curve of 

XH and g is a smooth curve in G. The final theoretical result of this 

chapter is a proof that gc is the integral curve of the (time 

dependent) hamiltonian vector field of H + (t) for some piecewise 

smooth curve 9 in L(G). Thus, the evolution on M0 is displayed as a 

set of hamiltonian evolutions. 

13 The derivative of the curve gc(t) is 

(gc(t)) = (4(g(t),c(t)) 
dt 

- c 
- g(t)a d (t ' c(t)at-

= Tl g(t )XH(C(t)) + T4c(t)UT  . 

Let v E Tg(t)c(t)J'(0) so that 

d 
v— i(s) 

s0 

for some curve i in .J'(0). Then 
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Wo(T g() Xijj(C(t))V) = o[c(t))T vi 
g(t)' .1 

= dH(c(t))Tc v 

11 =IH°4 Oi(5) 

S O 

= IS=OH ° i(s) 

= dH(g(t)c(t))v 

since H is G invariant on f 1 (0). Therefore, 

wo [T4 g(t)j (c(t)) - X(g(t)c(t)),vJ 

= dll(g(t)c(t))v - dll(g(t)c(t))v 

=0, 

for all v 6 Tg(t)c(t)J(0)• Thus, the curve 

t -, T4 g(t)XH(C(t)) - X((t)c(t)) 

takes values in fund_vf(4,L(G),g(t)c(t)). Let to 6 domain(c) and 

ma = c(to). The curve c(t) lies in the manifold N MO (1 1-1 (0) for some 

open interval of IR about to, since is tangent to this manifold. 

Therefore, the curve g(t)c(t) lies in the manifold N M. fl J'(0) for 

some open interval of R about to. But 

fund_vf(4,Nmo ii J-1 (0)) 

is a smooth distribution of constant rank on N MO fl 1-1 (0). Therefore, 

this is a smooth curve 91 in L(G), with domain an open interval in fl, 
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such that 

T g(t)XH(C(t)) - X((t)c(t)) = ftmdvf(4 j(t),g(t)c(t)) 

for all t E domain 

equation ( 13.1), 

Let 

Looking at the second summand of 

TR Tc(t) ( t) = T c(t)TRg (t) (t) 
g(t) 1 

= T4 g(t)c(t)TR (t) 
g(t)' 

= fund vf14,TR I dt g(t)' 

(t) = 1(t) + TR dg(t) 

defined on domain (fl). Then, 

(g(t)c(t)) = X(g(t)c(t)) + fund vf(4, 1(t),g(t)c(t)) 

+ fund vf 4,TR - (t),g(t)c(t) _ 
g(t) ' TE 

= XH(g(t)c(t)) + fund_vf(c,(t),gc(t)) 

= hmlt_vf(H,gc(t)) + hmlt_vf(J () c(t)) 

= bmlt_vf(H + 

for t E domain (90-

.14 This chapter is concluded with an example which has its origins 

in the theory of Yang-Mills fields (Harnad-Shnider-Vinet { 1979]). 
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Specifically, Q = IR3 X R1 with coordinates y and x, and the 

lagrangian is given by 

a a b  
F.. i -a jk x + s xxjij k abcij 

F a •a bc 
ok - Xk + abc' Xk 

L= '/2 Fa Fa 1 
okok 

1 

15 One may organize this lagrangian in a more transparent form by 

writing R9 = x R3 x 1R3; that is, by considering x7 as the three 

tuplet (x,x,x) of vectors in fi. Then 

F. a -e. (x) + i a (xxx.)a .. U . 
1J k k j 

a / F =¼X) a +(yxxk)a . 
ok k 

The last term of equation ( 14.1) becomes 

F .F. 
13 1J 

so that 

lix. 1 3 X x. - ai .jk xk 11 2 

IIxj X X2 - x311 2 + IIx1 X X + X211 2 + Hx2 X x1 + X3 112 

+ Ox2 X X3 x111 2 + 11x3 x x1 + x211 2 + Ox3 X x2 + xili 2 

2(11x1 x x2 - X3 112 + fix3 x x - x211 2 + fix2 x x3 - x111 2) 

L = Z lIx + y X xkii - 101XI X x2 - x311 2 + IIx3 x x1 - x211 2 

+ 11X2 X x3 - x111 2) -. 

Note that F ii F ii has the peculiar property of being zero if and only 

if either all of the vectors x1,x2 and x3 are zero or if the vectors 

Xj,X2,X3 form a right handed orthonormal set. 
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is This lagrangian is of the form of paragraph ( 3), with 

a * a 
B(y,x1) a • y —+ X!-- 

ày ax ày ax. 

(Y' xi) - + i -4-. = Z (y x x.) 
ày 

/3(y,x1) (y x x.) • dx. 

V(y,x1) = I0IXL x x2 - x311 2 + fix3 x x1 - x211 2 

+ IIx2 x x3 - x111 2 - Z fly x x1 11 2) 
1 

Clearly, B is of constant rank; in fact, 

ker(B) = { r ; ; r 3} 

This observation provides a natural choice of the primary gauge group: 

G0 = R3 with action 4O on Q R3 x ( R3)3 by addition in the y 

variables: 

4°(t,(y,x.1)) = (y + t,x.) 

The action 4O is free (and hence infinitesimally free), L(GO) = IR3 and 

if 9 e 

fund a , _vf(4 ,,(y,x)) = 
(,x) 

so ker(B) is spanned by the fundamental vector fields of 4°. 

Obviously, 
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= Z (y x x.) 0 

=0, 

so go = 0. Identifying T * Q with (JR3 X (FR3)3)2, and using coordinates 

(y,x.,p,p1), one computes 

J(y,x.)p,pii i ) = (pdy + pdx)[fund_vf(4 °,, (y,x))] 

= 

and so paragraph (5) implies that 

M0 = Image(FL) 

= (JO)&() 

= {( y,x1,p,p1) ; p = 0} 

The function H is easily computed: 

E(y,xipilx 2IIx 1)J 2 + V(y,x1) 
i 

so, 

H(y,x1 ,O,p) = ZlIp - y x x.H2 + V(y,x.) 
i 

The configuration space Q is naturally a rieinannian manifold, and 

1. 
ker(B)1 = dx. ; JR3 

1 
I. 1 

* * i Then Pi : T Q -+ ann(ker(B)) s given by 
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* 
p1(y,x.,p )p.) = (y,x.,O,p.) 

so that 

* 
= p1((y,x. )p,p. - y x x.)) + (y,x.,O,y x x.) 

1 

= (y,x,O,p) , 

H(Y,X ,P,PI) = ° ir(y,x.,p,p1) 

= H(Y,x.,O,p) 

= Up - y X x.Ii2 + V(y,x) 

= Z IIp ,Il 2 - Z y (xl x p.) 

XX2 - x311 2 + IIx3 x x1 

+ IIX2 X X3 

X2 112 

X1112) 

This completes the construct of the extended canonical formalism. 

17 The gauge vector field algorithm proceeds as follows: 

_ a • E0 - f g E R31 

Any two vector fields in H0 commute, and 

IX 0 
C 

CY] 
= hmlt_vt(-{H,J}) 

= hmltvf[_dll[  

= hmltvf[_.' OH] 

= hmlt_vf[ (x. X Pi)] 
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Thus, if one considers the natural action ' of SO(3) on the x. 

variables as in paragraph (4.31), then 

E2 = fund_vf( °,L(G°)) U fund vf(4',L(SO(3))) 

Obviously, the Lie bracket of any two vector fields in E2 is again in 

E2. Although a direct computation will show that, if 9 E L(SO(3)), 

[XH,fundvf(4',)] = 0 

this equality is a trivial consequence of the fact that H is invariant 

under the action of SO(3) on T*Q. Therefore, the gauge vector field 

algorithm terminates at E2, and one can take g = IR3 x SO(3) as the 

gauge group, with product action 

4((t,A),(y,x1,p,p1)) = (y + t,Ax ,p,Ap±) 

ie I claim that the evolution vector fields hmlt_vf(H + J) are 

complete. It suffices to show that if c(t) is an integral curve of 

the vector field hmlt_vf(H + J ), and (t1,t2) c domain(c), then 

c((tj,t2)) is contained in a compact set of T*Q. From the hamiltonian 

directly, 

(p ° c(t)) = I x. 1 x p. 
3. 

As H + J is invariant under the action of SO(3) on T*Q, I x1 x Pi is 

a conserved quantity of the flow of hmlt_vf(H + J). Let its value on 

the curve c be a. Then, for some b 

p 0 c(t) = at + b 
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Another converved quantity is H + J, so that 

(H + J) ° c(t) = H ° c(t) + (at + b) = 

for some constant k1. Let (at + b) have minimum value k2 on 

[t 1,t2}. The H 0 c(t) C kL - k2. An observation of H shows that the 

set 

{(y,x. )p,p1) ; H(y)x,O,p) - k2} 

is compact. Since the image of [t1,t23 under p 0 c is also compact, 

c(t 1,t2) is contained in the product of two compact sets. It follows 

from paragraph (5.19) that the gauge equivalence classes of the 

extended evolution are the orbits of the action of C on T*Q. 

19 Finally, M = f '(0): it is clear that f 1 (0) c M., since 0 is a 

quaziregular value of J, f 1(0) c M , and H is C invariant on f'(0). 

But also, Mf c f'(0), since the first secondary constraint set is 

= la q ; H(q)(TaMO)°1 = 01 

= (a q q ; dH(cx )( fund_vf(4 ° L(G°)aq)) = 0) 

= ; x p.) = o} 

= J'(0) 



99 

BIBLIOGRAPHY 

Abraham, R. and J. Marsden. 1978. Foundations of Mechanics. 2nd ed. 
Addison-Wesley, Reading, Mass. 

Abraham R., J. Marsden and T. Ratiu. 1983. Manifolds, Tensor  
Analysis, and Applications. Addison-Wesley, Reading, Mass. 

Arms, 3., J. Marsden and V. Moncrief. 1981. Bifurcations of 
Momentum Mappings. Comm. Math. Phys., vol. 78, pp. 455-478. 

Dirac, P.A.M. 1950. Generalized Hamiltonian Systems. Can. J. Math., 
vol. 12, pp. 129-148. 

Gotay, M. 1980. On Coisotropic linbeddings of Presymplectic 
Manifolds. Proc. A.M.S., vol. 84, pp. 111-114. 

Gotay, N. and J. Nester. 1979a. Presymplectic Hamilton and Lagrange 
Systems, Gauge Transformations, and the Dirac Theory of 
Constraints. Lecture Notes in Physics, vol. 94, pp. 272-279. 

Gotay, N. and J. Nester. 1979b. Presymplectic Lagrangian Systems I:  
the constraint algorithm and the equivalence theorem. Ann. Inst. 
Henri Poincaré, vol. 30, pp. 129-142. 

Gotay, N. and J. Nester. 1980. Presymplectic Lagrangian Systems II:  
the second-order equation problem. Ann. Inst. Henri Poincaré, 
vol. 32, pp. 1-13. 

Gotay, M., S. Nester and G. Hinds. 1978. Presymplectic manifolds and 
the Dirac-Bergmann theory of constraints. J. Math. Phys., 
vol. 19, pp. 2388-2399. 

Hamad 5., S. Shnider and L. Vinet. 1979. The Yang-Mills system in  
compactified Minkowski space: Invariance conditions and SUM  
invariant solutions. J. Math. Phys., vol. 20, pp. 931-952. 

Sniatycki, J. 1981. Constraints and Quantization. Lecture Notes in 
Mathematics, vol. 1037, pp. 301-334. 

Sussman, H. 1973. Orbits of Families of Vector Fields and 
Integrability of Distributions. Tran. A.M.S., vol. 180, 
pp. 171-188. 


