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ABSTRACT

Precise results are obtained on the existence and uniqueness
problems for finite dimensienal presympléctic systems.. The second
order problem for degenerate lagrangian dynamics is shown to be
physically insignificant for a large class of lagrangians. This
observation permits a proof of the equivalence of a degenerate
lagrangian system and its canonical forpulation. Hypotheses are
provided which are sufficient to imply that the set of points of the
canonical phase space which admit evolution is the zero level of a
momentum mapping of the gauge group. "The canonical evolution is
displayed as a set of constrained hamiltonian evolutions. An example

originating in the theory of Yang-Mills fields is discussed.
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INTRODUCTION

Let M be a Banach manifold. A presymplectic form on M is a

closed, possibly degenerate, two form w on M. A presymplectic system

is a triple (M,w,H), where & is a presymplectic form and H is a smooth
function on M. Any presymplectic system defines an evolution on M:

points of M evolve along smooth curves c such that

Typically, the set of points Me of M through which there exists such a
curve is proper; that is, not every point of M admits evolution. The
determination of Me is the existence problem for the evolution défined
by equation (1). In several important examples, Me is not a
submanifold of M. If m € Me , there may be many essentially different
solutions to equation (1) through m. Points of M that evolve
concurrently from the same point may be considered physically
equivalent. The smallest equivalence relation on Me generated by this
notion is called the gauge equivalence relation, and is denoted by Rg'

‘The determination of Rg is the uniqueness question for the evolution

defined by equation (1).
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Dirac [1950] and Gotay-Nester—-Hinds [1978] address the existence
problem by defining an algorithm — the constraint algorithm ~ that
proceeds under the assumption that certain intermediate constructs are
imbedded submanifolds of M. If this algorithm may be applied, and if
it terminates, then it constructs the subset Me , and Me is an
imbedded submanifold of M by hypothesis. They do not directly atténd
to the case where Me is not a submanifold of M. 1In Gotay-Nester
[1979a] one finds an algorithm - the gauge vector field algorithm -
which accepts certain vector fields whose flows respect the gauge
relafion Rg and purporfs to generate other vector fields with this
same property. Absent from the literature is any result that might

aid one in precisely determining the gauge relation of the evolution.

The primary goal of the first five chapters of this thesis is the
construction of a formalism that can accomodate the singular nature of
the subset Me' The formalism identifies certain patural hypotheses
that are sufficient to effect a resolution of the existence problem
for the evolution. Attention is restricted to the consideration of
systems that are first class in the sense of Dirac [1950], but this
notion by itself is too weak to be of.utility. Included are
suffiéient conditions under which the gauge vector field algorithm may
be used to determine the gauge relation of the evolution. This latter
analysis presumes that Me is a submanifold of M, but chapter (7) shows
one way to proceed when this is no£ the case. Except for preliminary

material, the results apply only to finite dimensional systems.
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To a large degree, classical physics is the study of lagrangian
dynamics. In the language of modern differential geometry, lagrangian
dynamics has the following form. The configuration space of the
gsystem is a smooth manifold Q, and the.lagrangian is a smooth function
L on TQ. The Legendre transformation is the map FL : TQ = T*Q defined

by

o

FL = L +t .
(vq)wq (vq wq)

=g

The energy function E is defined by

E(vq) = FL(vq)vq - L(vq) .

The pull back by FL of the canonical symplectic form we on T*Q is the

Lagrange two form w Points of TQ evolve along smooth curves c which

L
satisfy

dc
4 =
aft- QL dE °¢ ¢ . 2

The lagrangian L is called regular if FL is a local

diffeomorphism. In finite dimensions, this is equivalent to the

2
condition that the matrix { O.L - ] , computed in any natural chart.

8q'aq’

of TQ, is nondengenerate. Ignoring technical difficulties which might
arise when considering infinite dimensional systems, if L is regular,

then equation (2) implies a smooth, unique, well defined evolution on

all of TQ. A curve in'TQ is called second order if it is the

derivative of its projection onto Q. Regularity of L is sufficient to

viii



imply that any curve‘in TQ which satisfies equation (2) is second
order. L is called hyperregular if FL is a diffeomorphism. If L is
hyperregular, one may construct the canonical formulation of the
1aérangian system as follows. The hamiltonian is the function

H :'T*Q -+ R defined by H = E ° FL !. Points of T*Q evolve along

smooth curves ¢ which satisfy

d
-&%on=dH°c. 3

The lagrangian system and its canonical formulation are equivalent in

the sense that they are in bijective correspondence via the

diffeomorphism FL.

The lagrangian formulation of certain field theoriesrnecessitates
the consideration of lagrangians which are not regular. A weaker
condition worthy of study is that of se@iregularity: L is called
semiregular if-FL is a subimmersion and if the levél sets of FL are

connected. In finite dimensions, L is semiregular if the matrix

2

[ ?iL.. ] has constant rank on connected components of TQ, and the
8q aq”

level sets of FL are connected. Semiregularity is sufficient to imply

that the triple (TQ,w,,E) is a presymplectic system. Under the

L,

assumption that FL is an open or closed map onto its image, the

canonical formulation of the lagrangian system is the presymplectic

X = . X . .
system (Mg,1i wg,H), where Mg = Image(FL), i : Mg » T Q is the
inclusion map and H: Mg » R is the unique smooth function on Mg such

that E = H © FL.
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Gotay—-Nester [1979b] deal with the issue of the equivalence of a
lagrangian system and its canonical formulation in the following way.
The constraint algorithm is applied to each presymplectic system and
is assumed to generate imbedded submanifolds Me c TQ and Mé c T*Q.
Then FLIMe is a submersion from Me to Mé. It is shown that if X and Y
are vector fields on TQ and T*Q respectively, and if X and Y are FL

related, then X satisfies the equation X 4 w. = dE if and only if Y

L
satigfies the equation Y 4 i*wo =di. Ina companion paper
(Gotéy—Nestér {1980]), they note that when L is not regular, there may
exist solutions to equation (2) that are not second order. This
observation gives rise to the second order problem; that is, the
identification of those points of TQ which admit second order
evolution. They proceed to give conditions that are sufficient to

imply the existence of a submanifold of points that admif second order

evolution.

When L is not regular, the Legendre transformation is not
injective; and the question arises as to whether or not one is losing
physically important information in passing to the canonical
formulation. The first result of cﬁapter (6) shows that this is not
'so when L is semiregular: points of TQ which admit evolution and lie
in the same level set of FL are gauge equivalent. This gauge freedom
is used to settle the second order problem by showingrthat any
evolution curve is gauge equivalent to a second order evolution curve.
Chapter (6) concludes with a proof of the exact equivalence of a

lagrangian system and its canonical formulation: every curve in TQ



which satisfies equation (2) is mapped by FL to a curve in T*Q which
satisfies equation (3), and every curve in T*Q which satisfies
equation (3) is the image by FL of some curve in TQ which satisfies

equation (2).

The final chapter of this thesis is an analysis of the canonical

formulation of lagrangian systems. The existence of a primary gauge

group and a function H on T*Q such that H{Mg = H allows an extension
of the canonical evolution to an evolution on all of T*Q. This
extension is discussed in the context of quadratic lagrangians. The

methods of chapter (5) may be used to compute the gauge relation of

the extended evolution. When the set of points Me of T*Q which admit

canonical evolution is strongly first class, the gauge relation of the

extended evolution and that of the canonical evolution coincide on Me'

The gauge vector field algorithm is used to give a definition of the

gauge group. Under mild nondegeneracy assumptions, Me is shown to be
the zero level of a momentum mapping of the gauge group. In a step
which may be important for quantization, fhe canonical eyolution‘is
displayed as a set of hamiltonian evolutions. The chapter is
concluded with an example that originates in the theory of Yang—Mills_

J

fields.
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CHAPTER 1

Symplectic Geometry and Hamiltonian Dynamics

1 Symplectic geometry, and its presymplectic generalization,
provides a context within which elements of the structure of many
physical systems may be defined.and diﬁéussed. The purﬁose of this
chapter is to provide some of the basic definitions of symplectic
geometry and hamiltonian dynamics. With few exceptions, the notation

follows that of Abraham—Marsden [1978].

2 Let E be a Banach space, and B : E X [E » R be bilinear. Define
the linear map B¢ : E - E* by B¢(e)f = B(e,f). Call B weakly
nondegenerate if B¢ is an injection, and nondegenerate if B¢ is a
bijection. If B is nondegenerate, then the inverse of B¢ is deﬁoted
by B#. B is called topologically closed if B¢ is a closed map. If B
is weakly nondegenerate, E is reflexive and B is topologically closed,

then an application of the Hahn-Banach theorem shows that B is

nondegenerate.

3 Let B be antisymmetric. If S CE, define the subspace

sBl - (e e E; B(e,s) = 0 for all s € S}.

Let E be reflexive and F be a closed subspace of E. Then, if B is

topologically closed,



B¢(F) = cl(B¢(F))
= {a € E* s af = 0 for all f such that B¢(F)f = 0}
= {a € E¥ ; af = 0 for all f such that B(F,f) = 0}
= {a e EX; of = 0 for all f € FP)
= {a € IE}k 3 a(l‘FB'L) = 0}.
4 A (weak) symplectic vector space is a pair. (E,w), where E is a

Banach space and w ¢ E X E + R is bilinear, (weakly) nondegenerate and

antisymmetric. If F is a closed subspace of E one says that:

1. F is isotropic if F ¢ ol ; i
2. F is coisotropic if le cfF

L

3. F is symplectic if F N F*" = 0.

If F is symplectic, then w restricted to F X F is weakly symplectic.

5 Let (E,w) be a finite dimensional symplectic vector space. Let
S,T ¢ E. The proof of the following facts may be found in Abraham-

Marsden [1978: 403].

1. S ¢ T implies Twl c Swl.

2. sl s+ = (span(s U TP,

i

3. (span(8) N span(T))™ = ¢ + ¢,
4. (s*H® = gpan(s).
5. dim(E) = dim(span(S)) + dim(Swl).

6 Let P be a Banach manifold. A (weak) symplectic form on P is a
closed two form w such that w(p) is (weakly) nondegenerate fdr all
p € P. A (weak) symplectic manifold is a pair (P,w), where P is a

Banach manifold and w is a (weak) symplectic form. If (P,w) is a



(weak) symplectic manifold, denote by w* the vector bundle
monomorphism defined by w*(vp) = (w(p))‘vp. If w is a symplectic
form, then w¢ is a vector bundle isomorphism, and its inverse is

denoted by w#.

7 If (P,w) and (P',w') are two (weak) symplegtic manifolds, then a
smooth map f : P + P' is called a symplectomorphism if f*w' =@, IfP
is finité dimensional, with dimension Zn, then W EOAWA ... AW (n
times) is a volume form on P, so that any finite dimensional
symplectic manifold is orientable. In finite dimensions, then, any
symplectomorphism is a local diffeomorphism, since it will send a

volume form to a volume form.

8 Let Q be a Banach manifold modelled on a Banach space E. An
important example of a weak symplectic manifold is the cotangent

bundle.of Q. Define the canonical one form 84 on T*Q by

X
8ol )v_ = [Tr (v )] ;
q aq ql ™ Q aq

. where 13 : T*Q -+ Q is the canonical projection. It is easy to see

that in a natural chart of T*Q with range U X E*,
Go(uad)(usa,e,ﬁ) = a(e) .

Define the canonical two form wg on T*Q by wo = —d8g. A simple

computation shows that
wo (u,a) [(u,a,e1,81), (n,a,e2,82)] = B2(er) — Bi(ez) ,

and it follows that wo is weakly symplectic.



9 If E is reflexive then wg is symplectic, since the expression
wo‘(u,d) (ﬁ,a,e,ﬁ) = (u,a,—ﬁ,e) € Ux E* X E* x E**

shows that we¢ is a surjection if E is reflexive. If Q is finite

dimensional with dimension n, then

i
8o = p;dq

wo = dg" A dp; ,

in natural coordinates (q’,...,qn,px,...,pn) on T*Q.

1o If (P,w) is a (weakly) symplectic manifold, and i : Q - P.is an
immersion, then one says that Q is an isotropic (coisotropic,
symplectic) immersed submanifold if TikTqQ) is an isotropic
(coisotropic,symplectic) subspace of (Ti(q)P,w(i(q))) for all q € Q.
The same terminology is used for imbedded submanifolds of P and vector

bundles over submanifolds of P. If Q is symplectic, then (Q,i*w)

provides another example of a weakly symplectic manifold.

11 In a natural chart of T*Q, the canonical symplectic form wg is
constant. The theorem of Darboux shows that, for any symplectic
manifoid, there are charts about any point with this property. The
proof is included here because a refinement of this result is needed

in chapter (3).

1z Theorem (Darboux). Let (P,w) be a symplectic manifold and
let p € P. Then there is a chart about p in which the local

representative of w is constant.



Proof

13 Let U ¢ E be an open set containing 0, and let wy and w; be two
symplectic forms such that we(0) = w;(0). It suffices to show that
there is a smooth diffeomorphism F : B € U + £, defined on an open

ball B containing 0, such that F(0) = 0 and wg|B = F*w1 .

14 Let W, = Wo + t{w; - Wwg). Since w, is nondegenerate at t = 0,

there is an open ball B about 0 on which w, is nondegenerate for all

t € [0,1]. By the Poincaré lemma, w; — wg = da for some one form « on

B, and' one can assume that «(0) = 0.

..1s Define a smooth, time dependant vector field Xt on B by Xt 4 Wy
= -«. Since Xt(O) = 0, one may restrict the ball B so that the. flow

Ft of Xt is defined on B for time at least one. Then

d X d X d "
Tl Feo) = g@|. e %) + 3|, T,
to to to

F: (wy — wg) + F* L, ®
0

to Xto to

X b 4
Flo(w1 - wg) + Flo(d(X|°J wlo) + X‘oJ dwlo)

H

X X
Fto(w1 ~ wg) + Fto(—da)
=0 .

Therefore Ffwl = Ftwo = Wwg, so F, satisfies the conditions of

paragraph (13). - [ |

16 If P is finite dimensional, of dimension 2n, then a symplectic
chart of P is a chart with coordinates q‘,?..,qn,pl,...,pn in which
w = dq1 A dpi. After a linear transformation, the Darboux theorem

shows that any point of P is contained in a symplectic chart.



17 If f: P+ R is a smooth function, then the hamiltonian vector

field of f is the smooth vector field on P defined by

hmlt_vf(f) (p) hmlt_vf(f,p)

1]

Xf(p)
oF (df(p)) .

Thus, X, is uniquely defined by the equation Xf 4 @ = df. Note that

f

if P is cénnected, and f and g are smooth functions on P, then Xf = Xg

- if and only if f and g differ by a constant. Indeed, if Xf = Xg then

df Xf w Xg w = d¢g ,

so f and g differ by a constant. On the other hand, if f and g differ

by a constant, then df = dg, so Xf = Xg'

18 If H: P+ R is smooth, then XH defines a smooth flow on the

phase space P. Points of P evolve along smooth curves c such that

g% Jw=dH °c.

If P is finite dimensional, then in the symplectic chart of paragraph

(16),

_0H o _¢6H &

X -
i i
0pi dq dq dpi

H

so that c will satisfy Hamilton’s equations:

d i _ OH

rey (@0 ° c(t)) = 55; ° c(t) ,
—-"il o o(t) .
dq

& By © (b))



H is conserved along ¢, since

dH(c(£))GE(t)
dH(c(t)) Xg(e(t))
w(Xg(c(t)), X (e(t)))
=0.

L e o(t))

One calls the triple (P,w,H) a hamiltonian system.

19 If f and g are smooth functions on P, the Poisson bracket of f

and g is defined by
{f’g} = w(xf’xg) = df(xg) = _dg(xf) .

The Poisson bracket is bilinear, antisymmetric and a derivation in

each argument. In the symplectic chart of paragraph (16),

(f,g} = df(xg) [‘_’;f_'i dqi + 9f dpi] {og 8 - dg @ }

dq op, op; aqt  aqt dp,
_a8f g _6g Of

- .

i o 1
aq dpi dg dpi

20 The Poisson bracket satisfies two important identities. For the

first, note that if f and g are smooth functions on P, then

4 = Jd - J
[xf,xg] w LX (Xg W) Xg (LX w)
f f
= - d Jd
fo(dg) Xg (d(Xf 4 w) + Xf dw)

fo(dg) - X, 4 (d@D)

" 01y 0

d(—{f, g}) 3

1



so that,

(bmlt_vf(f) , hmlt_vf(g)] = -hmlt_vf({f,g}) .

21 For the second identity, if h is another smooth function on P,
then

0= dw(Xf,Xg,Xh)

= Iy Wl H) - Iy @OpX)) + By (00K X))

g
- W([Xf’xg] ’Xh) + Q([xfsxh}sxg> - w([xgs Xh] ’Xf)

= {{g,h},f} - {{f,h},g} + {{f,g},h} + w(bmlt vf({f,g}),X )
- w(hmlt_vf({f,h}),xg) + w(hmlt_vf({g,h}),Xf)

= 2{{g,h},f} + 2{{f,g},h} + 2{{h,f},g} ,
so that,

{f,{g,h}} + {b,{f,g}} + {g,{h,f}} =0 .
22 Let the flow of the hamiltonian vector field of f be Ft : Dt -+ P.

Dt is an open subset of P, and hence inherits a naturgl symplectic

structure, wlDt. Then Ft is a symplectomorphism. Indeed,

g§|s=t L»[FS(P)][TFS(VP),TFS(WP)]} - & i Fa(v W)
_ X
= Fthfw(vP,wp)

X
4 Jd
Ft(d(xf w) + Xf dw)(vp,wp)
:O',
so that

X
Ftw(vp,wp) = w(vp,wp) .



CHAPTER 2

Lie Groups and Momentum Mappings

1 With the exception of chapters (5) and (6), all manifdlds
considered in the remainder of this thesis will be finite dimensional,
Hausdorff and second countable. Let G be a Lie group; that is, a
manifold which is a group such that the operation of group
multiplication is a smooth map from G X G to G. Denoté by e the
identity element of G, and by Lg and Rg the smooth diffeomorphisms of
G which are the operations of left and right multiplication by g € G,

respectively.

2 A vector field X on G is left invariant if L;X = X for all g € G;
that is, for all g,h € G, X(gh) = TLgX(h). Denote by L(G) the tangent
space to G at the identity. If ¢ € L(G), the left invariant vector

field generated by ¢ is defined by

lin_vf($,8) = lin_vf($)(g)

TL & .
,gg

This correspondence between elements of L(G) and vector fields on G

allows one to define a Lie bracket on L(G) by

[¢,n] adgn

[1in_vf(¢),1lin_vE(n)](e) ,

L]

if §,n € L(G).



10
3 Left invariance shows that the flow of lin_vf(%), FE, is
complete, and linearity of lin_vf in its first argument shows that
Fi€'= Fit for all s,t € R. Define the exponential mapping, exp :
L(G) -+ G by exp(¢) = Fg(e). The fundaméntal existence theorem of
flowé shows that exp is smooth. Clearly, Teexp : L(G) -» L(G) is the
identity, so exp is a local diffeomorphism at the identity, and in
particular, the image of exp contains an open neighbourhood of the
identity. Examples (Abraham-Marsden [1978: 257]) show that, in

general, exp is not onto the connected component of G which contains

the identity. The flow of 1lin_vf(%) is

F$(g) = g-exp(te)
= Rexp(tg)<g) .
a Reference will be made later to the following standard result.

For the proof, see Abraham-Marsden [1978: 259].

5 Theorem. Let H be a subgroup of G which is a élosed subset of
G. Then H is an imbedded submanifold of G, and in particular, H is a

Lie group.

5 Let M be a manifold. A smooth left action of G on M is a smooth
map ® : G X M - M such that ¢(e,m) = m for all m € M and $(g,¢(h,m))

= ¢(gh,m) for all g,h € G and m € M. One often denotes ¢(g,m) by gnm,
so em = m and g(hm) = (gh)m. The gqtion is called free if for any
meM, gn=monly if ¢ = e. A subset S of M is called ¢ invariant if

gs € S for all g€ G and s € S.



7 The fundamental vector field on M generated by £ € L(G) is

defined by

fund_vf($,£¢) (m) fund_vf(d,¢,m)

fund_vf(§,m)

fund_vf{¢) (m)

§(m) 7
%g ¢(expté,m)
t=0

¢ -

Clearly then, the flow of fund_vf(¢,%) is (m,t) -+ ¢(expt§,m). The
action ¢ is called infinitesimally free if, for any m € M,

fund_vf(éd,8,m) is zero only if ¢ = 0.
8  The map £ -» fund_vf(¢,¢) is a Lie algebra antihomomorphism:

fund_vf([¢,n],m)

T [lin_vf(g),lin_vf(q)](e)‘

i

" e o
9 a€|t=0 [Rexp(tg) 11n_vf(n)](e)

Er-lﬁ-

t=0 T¢m TRexp(—tg) lin vf{(n,exp(tt))

T¢exp(—t§)m TLeXP(ti) d

aln

t=0

]

g_-lﬂ-

£=0 Mexp(te) Pexp(~te)m 7

fund_vi($,z,exp(~t{)m)

&»IQ-

£=0 T¢exp(t€)

b 4
¢exp(—t€)

fund_vf($,n,m)

I
(9'_-'0-

t=0

- [fund_vf($,8),fund_vf(d,7)](m) .

11



12

9 If g € G, define the homomorphism Ig : G-+ G by Ig(h) = ghg_l.

The adjoint action of G on L(G) is defined by

The fundamental vector

Adgg

ﬁt—‘h

fund_vf(Ad,¢,n)

%n.

%Q‘

= Ad(g,8) = TIg€ .

fields of the Ad action are easy to compute:

Ad(exp(t§),n)
t=0

pmo exp(-t8) TCexp(ts) 7
T

£=0 Rexp(—t€) lln—Vf("’Rexp(tﬁ) e)

X

ﬁﬂ-

[H

(¢,

<0 [Rexp(tg) 1in_vf(n)](e)

[1in_vf(§),1in_vf(n)j(e)

nl] .

10 The fundamental vector fields of the action satisfy the identity

Indeed,

fund_ve($,Ad£) = ¢*_, fund_vE(e,¢) .
g

fund_vf(Adgﬁ,m)

T¢m Adg§

il

0 TRg_1 TL ¢

¢ TO ¢
g g lm

T¢g fund_vf(¢,€,g~lm)

{4»*_1 fund_vE(9, a)] (m) .
g



13
i1 The dual of the adjoint action of G on L(G), called the
co-adjoint action of G on L(G)* is defined by

Ad¥(g,u) = w © Ad _

g 1

Its fundamental vector fields are also easily computed:

d

fund_vf(Ad*,ﬁ,n)n [Efl 0 Ad*(exp(ti),#)} n
t=

| =0 M[Meg-er 7]

#(—[ﬁ,n])

“u°ad, 0,
so,

fund_ve(Ad",¢,) = -u © ad, .
12 - Let 5 : GXM~>MxMbe the map $(g,m) = (m,gm). The action ¢
is called proper if 5 is a proper map; that is, if the inverse image

by'$ of a compact subset of M x M is a compact subset of G x M. If
m € M, then the isotropy group of m is thé subgroup Im = {g € G ;
gm = m}. The isotropy group of m is a Lie subgroup of G, since it

follows from

I ={g; (&m) e @ @0}

that Im is closed. The Lie algebra of Im is
L(I) = {§ € L(G) ; fund vf($,§,m) = 0} .

The orbit of m is_the subset G'm = {gm ; g € G}. The proof of the

following theorem may be found in Abraham-Marsden [1978: 265].
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13 Theorem. Let ¢ be a smooth, proper left action of a Lie group
Gon M. IfmeM, then G'm is a closed, imbedded submanifold of M
such that the map G » G'm by g + gm is a submersion. If m' € G'm,

then

{fund_vf(d,¢,m') ; § € L(G)}

T . (G'm)

fund_vf($,L(G),m') .

14 Let (P,w) be a connected symplectic manifold. Let ¢ be the
symplectic left action of a Lie group G on P; that is, for all g € G,
¢§w = w. A momentum mapping for the action ¢ is amap J : P = L(G)*

such that

fund_vf(9,8) 4 w = dJ(§) = ng .

The quadruple (P,w,$,J) is called a hamiltonian G-space. J is called

Ad® equivariant if, for all g € G,
X
J(gp) = AdJ(p) .

15 For example, let Q be a manifold and let ¢ be an action of G on

Q. Then G also acts on TQ and T*Q by

¢

il

T
¢ (g,vq) ¢ Yq

X
T
o (g2

a ©° T
9 g L

X
respectively. The action ¢T is symplectic on (T*Q,wo); indeed, this

action preserves the canonical one form 6g:
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is given by J

That J is a momentum mapping can be seen by noting that L

X

3

A

0

%

X
] Bo(wa ) ;

X
90[T¢T_1 Wy }
g g
X [ X
=4 (a)|trg W W
g L g
_ r .
X T
aq T¢g TLTQ ° o _1]wa
g
« |Td . TP TT* W
ql g —1 Q '«
L g
Go(wa ) .
q

= fund_vE($" ,&) 4 8,. Thus,

Jglay)

. T . .
8¢ is ¢ invariant, so

8o

x T
TTQ T¢a

T[rg

—fund_vf [¢

X
TTQ

X
g
q

oq)T

«

aq(Td)q £)

fund_vf[¢T

*

T ,€’<xq]]
*’g’aq]}

]

o

o
§

q)

aq(fund_vf(¢, £,a)) .

An Ad* equivariant momentum mapping for the action of ¢T

§

15

%
on T*Q

8¢ = 0 since
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aJ, = d(§ 4 80)

¢ L,8g — & 4 dg

§on.

J is Ad* equivariant since

T
T8y o) = g™ fund_vf<¢,g,gq>}

-« -[q;: fund_vf(¢,§)](Q)]

- « fund_vfl¢,Ad*_1§,q]
| g

[Ad;J(q)] ¢ .

12 If (P,w,9,J) is a hamiltonian G-space, then, for each g € G,

Ad:J ° ¢'_l is another momentum mapping for ¢:

g
X X
d[Ang ° ¢ _l}g =o' Wy
g g g !
= ¢*_ (fund_v($,Ad _£) 4 ©)
T g
* *
= ¢ - fund_vf (¢}, Ad *1€) 4 ¢ _°
g g g

fund_vf($,8) 4 v .
Therefore, the function
X o
(g,p) - Ad, J(g 'p) - J(p)

is independent of p.
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18 This observation has an important consequence: suppose that, for
some pg € P, J is constant along the orbit G.pg. Let uo = J(po).
Then (P,w,ézJ — Mo) is another hamiltonian G-space, and J - o is Ad*

equivariant. Clearly, J ~ u¢ is a momentum mapping, and

J(gp) - ue

(3 - uo)(gp) = |
=A%J@>—::Jw>—u@ﬂ—uo
= ad} 3(p) - [ad} 3¢ 7M@) - 3ew)] - mo
= adk 3(p) - [Ad} 3(&pa) - I(Ro)] - ko
= ; J(p) - Ad: - #o] ~ Mo
= AdZ(I(®) - mo)

19 If J is Ad* equivariant, then, for any ¢,n € L(G),
J.,J =J .
e n} (¢,n]

By hypothesis,

T (exp(tmp) = Ad" (exp(tn), 3, (p))

The derivative of the left side at t = 0 is

d
J, (exp(tn)p)
dtlp ¢

d
dJ exp(tn)p
. g[&f'tzo ]

ng (fund_vf($,n,p))

ng(hmlt_vf(Jn,p))

I HE)

it

and the derivative of the right side is
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d
dt

ad¥ (exp(tm), 3, (p)) = fund vE(Ad®,m,3(2)) (8)

t=0

-J(p) ° adn(§)
J(p)(§,n]

= Ig,m® -

20 The final result of this chapter is the following conservation
law: if H is a smooth, ¢ invariant function on P, then J is a
conserved quantity of the flow of XH' Indeed, if c(t) is an integral

curve of Xy» then

[ ]
= ng[XH(c(t))]

= ¢ 4 ufXyet)]
R HEON

$00, © ot

= - X

=

£(e(t))]

al® &

H(exp(sg)c(t))
s=0

H(c(t))
=0

Q1Q
u
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CHAPTER 3

Singular Momentum Mappings

1 Let (P,w,$,J) be a hamiltonian G-space. This section is an
analysis of the set J—I(O) in the absence of the hypothésis that 0 is
a regular value for J, using the methods of Arms—Marsden-Moncrief
[1981]. If p € P, an infinitesimal symmetry at p is a vectér ¢ € L(G)
such that fund vf($,,p) = 0. Thus, the set of infinitesimal
symnetries at p is exactly L(Ip). The first step in the analysis of
J~1(0) is the following basic link between the analytic notion of a
regular point of J and the geometric notion of an infinitesimal

symmetry of the action.

2 Theorem. Let (P,w,9,J) be a hamiltonian G-space. Then p € P
is a regular point of J if and only if there are no infinitesimal

symmetries at p. In fact,
Image(dJ(p)) = ann(L(Ip)) .
Proof

3 It is sufficient to show the second statement. If u = dJ(p)v for

some v € TPP then, for any % € L(IP),
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(dJ(p)v) (%)

fund_vf(§,p) 4 w(v)

u(s)

=0,
SO K € ann(L(Ip)).

4 lLet u e ann(L(Ip)). Since L(Ip) is the kernel of the linear map
¢ - fund_vf(¢,p), there is an « € (TPP)* such that u(¢)

= a(fund_vf(¢,p)) for all § € L(G). Let v = —w#(a) € TPP. Then

(dJ(p)v) (%) = (fund_vf(§,p) 4 w)(v)
= —w(v,fund_vf({,p))
= a(fund_vf($,p))
= u($) ,
so that dJ(p)v = u, and hence u € Image(dJ(p)). . ]
5 The next result uses some slightl& nonstandard definitions. Let

M be a manifold and S be a subset of M. Givenm € S, v € TmM is
tangent to S at m if there exists a smooth curve v : [0,1] - M such
that v({0,1]1) ¢ S, m = v(0) and

V=35 =0 v .
Denote by TmS the set of all tangent vectors of S at m, and by TS the
set of all tangent vectors of S. 1If S is a imbedded submanifold of M,
then TS is the usual tangent bundle of S. In general, for each m € S,
TmS is a cone in TmP, in the sense that, for‘each v € TmS and a 2 0,

av € T S.
m
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3 The set S is said to be locally diffeomorphic to its tangent
bundle at m € S if there is a smooth diffeomorphism ¥ from some open

neighbourhood of m to some open neighbourhood of zero in TmM such that

v(m) = 0, Tm? : TmM - TmM is the identity, and ¥(S) Image(?) N TmS.
S is locally diffeomorphic to its tanéent bundle if S is locally
diffeomorphic to its tangent bundle at m for eachm € S. If S is a
submanifold of M, then S is locally diffeomorphic to its tangent
bundle. TFigure (7) shows a set which is not locally diffeomorphip to

its tangent bundle.

~s

Figure 7: A subset of R? which is not locally
diffeomorphic to its tangent bundle at m.
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8 Let X be a vector field on M, and suppose m € M is such that
X(m) = 0. The linearization of X at M is the linear vector field

dX(m) : TmM - TmM defined by

- d -
dX(m)v = Il TmFtv = LXV(m) s
t=0
where Ft is the flow of X, and V is any vector field such that
V(m) = v. If M is modelled on a vector space E, then in a chart with

domain UCE, X : U = E and dX(u) = DX(u).

9 Let f be a smooth function on M, and suppose m € M is such that

df(m) = 0. If vy,vy € T&M, define
dzf(m)(VIaVZ) = d(vl 4 df)VZ(m) ’

where V; and V, are any two vector fields on M such that V;(m) = v,
and V,(m) = v,. This expression is obviously independent of the

- vector field V,, and

d(Vz 4 df)Vi(m) = [Va 4 d(Ly £)](m)

V1 4 Ly df](m)

1]

[LVz(VI 4 df) + [V2,V,] 4 df](m?

i

d(Vz 4 df)Vi(m) ,

so the expression is independent of the choice of V, as well, and is
symmetric in v, and v2. In the chart of paragraph (8), d?f(u) (vy,v2)

= D*f(u)(vy,v1). -

to The next theorem determinesrthe local structrue of the set‘J—l(O)

near a fixed point of the action.
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1t Theorem. Let (P,w,9,J) be a hamiltonian G-space, (P,<,>) be a
reimannian manifold'and'suppose ¢ is an.isometric action on P.
Suppose that J(p) = 0 and that p is a fixed point of ¢. Then

paragraph (2.18) shows that J is Ad* equivariant, and
1. TPJ“(O) ={veTpP; d2J(p)(v,v) = 0},
2. J—l(O) is locally diffeomorphic to its tangent bundle at p.

3. Furthermore, let F be the set of fixed points of $. Then
FN J—l(O) is the union of connected components of F,

FnN J_I(O) is a closed, symplectic submanifold of P, and

TP<FnJ“<0>> N ker(d$(p))

tel(G)

ker(d?J(p))

{ve TPP s d2J(p)(v,W) =0V we TPP}',

TEAITHON® = U Image(de(p)) .
P £eL(G)

Proof

12 Since p is a fixed point of ¢, one can define the linearized
action T¢ of G on TpP by T¢(g,v) = T¢gv. The pair (TPP,w(p)) is a
- linear symplectic space, and T¢ acts symplectically: if v,w € TPP’

then

\

o(gp) (T9,¥, T W)
<¢’;w) (p) (v,w)

w(p) (v,w) .

w(p)(T¢gv,T¢gW)
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Also,

d

fund_vf(T¢,§,v) = 5 £=0 (Tq’exp(ti)

v)

d(fund_vf(¢,£))(p)v
d¢(p)v .

.13 let v,w e TPP and choose vector fields V and W such that V(p) = v

and W(p) = w. Then, if & € L(G),

d?J,(v,w) = d(V 4 dT)¥W(p)

= d(-§ 4 (V4 »))W(p)

= -Ly(s 4 (V4 0))(p)

= (~[W,8] 1 (V4 w) - ¢ L (VI w)(p)
= (v, (W,81(p)) - Ly(V 4 @)¢(p)

= w(-L,W(p),v)

= w(p) (d§(p)w,v)

=" w(p) (fund_vf(Td,¢,w),v) .

" Therefore, v + d?J(p)(v,v) is a momentum mapping for the linear action
Td of G on TPP; that is (TpP,w(p),T¢,d2J(p)) is a linear hamiltonian

G—-space.

14 Let expP be the exponential mapping of the reimannian manifold
(P,<,>) at p. Then expp is a diffeomorphism from some ball B about
the origin to some open neighbourhood U of p. Since ¢ is .an isometric
action, for any g € G and Q € TPP, ¢

g
° expp(vt) = expp(T¢g(vt)), since

° expp(vt) is a geodesic which

starts at p. Therefore, ¢g

d _
r =0 ¢g ° expp(vt) = T¢gv .
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Thus, expP is an equivariant diffeomorphism: ¢g ° expp = T¢g ° expP
for all g € G. A similar argument to paragraph (12) shows that T is
an isométric action on the linear metric space (TpP,(,)), so that B is

T¢ invariant.

.15 Refer to fhe proof of the Darboux theorem as applied to the two
symplectic forms we = w(p) and w, = exp:G on B. By the Poincaré lemma

(Abraham-Marsden [1978: 118]), if , y

a(v)w = f:t(w; = wg) (tv) (v,w)dt ,

then dax = w; — wg. This particular « is T¢ invariant, since T¢ is a
linear action and acts symplectically on both symplectic spaces

(TpP,exp;w) and (TPP,u(p)): if g € G, then

(o) (T W) = [ t(or ~ wo) (£T9,v) (T v, T )t
. 1
= [ tor = 00) (Bt (10 9, T )t

- I:tTd);(wx ~ w9 (tv) (v,w)dt

f:t(w; — ) (£V) (v, w)dt

a(v)w .

.18 By fu;ther restriction of B, the T¢ invariant forms W, = W +
t{w; —lwo) and « define a T¢ invariant time dependent vector field,Xt
by Xt 4 w, = —a, and the time one flow F; of Xt exists on B and
satisfies F;(0) = 0 and wo|B = Ffwl. T¢ invariance of Xt éerves to
show that F; is T¢ equivariant: T¢g °F, =F ¢ T¢g for all g € G.
The linear map ToF, : TPP -+ TPP is also Td ‘equivariant, since TP is a

linear action. Also, since w;(0) = wz2(0) = w(p), wo|B = FT&I shows
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that ToFfw(p) = w(p). Let V = TOFIX(B), and define ¥ : V ¢ TPP -
U<CPbyv?Y = expp o Fy 0 ToF;l. Then ¥ is a symplectomorphism from
(V,w(p)) to (U,w]|U) such that ¥ © Tp = ¢g ° ¢ for all g € G, and Tp?

g
is the identity.

.17 These considerations suffice to show that Y*J is a momentum
mapping for the action T¢ of G on V. But v - d*J(v,v) is also a
momentum mapping on V for T¢, so these functions differ by a constant
on V. Since both have value zero at the origin, Y*J(v) = d3J(v,v) for
all v € V. Therefore, ! maps U N J—’(O) to {veV; dJ(p)(v,v)

= 0}, and the proof of statements (11.1) and (11.2) will be complete

if
T(vev; d®J(p)(v,v) = 0} = {v € TP d®3(p)(v,v) = 0} ,

since TPY_l is the identity.

.18 In fact, if v € V is such that d*J(p)(v,v) = 0, then »(t) = vt is
a curve contained in V for small t such that d%2J(p)(v(t),7(t)) = 0 and
v = d_ 4
T dt ’

t=0

so that v € Tp{v € V ; d2J(p)(v,v) = 0}. On the other hand, let ¥(t)

be a curve such that d2J(p)(v(t),v(t)) = 0 and ¥(0) = 0. Then

(=]
|

= S (d23(p) (1(t),(t))

2d23(p) [1(6), (0]

so that,



27
d

——

dt

o
l

d23(p) [+(t),L(t)
‘t=0 [

2
3(p) [0, (@] + @23[7(0), FT1O]

&3(p) [$10), FO]

"

9—’ v(t) e {veTP; d®J(p)(v,v) = 0} .
dati, _ p

t=0
..13 Let F' be the set of fixed points of the action T¢ of G on TpP.

Then the inclusion
F' < {v e TPP ; fund_vf(T,¢,v) = 0V ¢ € L(G)}

is obvious. The reverse inclusion is also true: le? v e TPP be such
that fund_vf(Td,$,v) = 0 for all § € L(G). Then T¢(expts,v) = v for
all t, so Iv, the isotropy group of v, contains an open neighbourhood
of the identity. By left translation, IV is open, and:since IV is
closed as well, connectivity of G implies that IV = G, that is,

v € F'. By paragraph (13), then,

[}

F! {v € TPP ; fund_vf(Td,¢,v) = 0 V £ € L(G)}

n ker(d¢(p))
tel(Q)

{v; d@I(v,w) =0 Vwe TPP}.

20 In pérticular, v + d2J(p)(v,v) vanishes on F', so equivariance of

¥ shows that
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v YFnIN0)) =¥ HF) n Y NI 0))

(Fr N V)N {veVv; d2I(p)(v,v) = 0}

Frnyv

vn n ker(d¢(p)) .
teL(G)

Thus, ¥ serves as a submanifold chart for F N J—l(O) near p, and

T(FNJIN0)) = N ker(de(p)) .
P teL(Q)

.21 The equality ?_1(F N J-I(O)) = F* N V shows that F N J_l(O) nu-=
FNU, soFN J_l(b) contains an open neighbourhood of p in the
relative topology of F. Since p is arbitrary, F N J—l(O) is open in
F, and is clearly closed in F. Therefore, F N J—I(O) is the union of

connected components of F. Since
GxF=($) "((a,9) ; a€P),
F is a closed subset of M, so J—I(O) N F is a closed submanifold of P.

.22 Since T is symplectic, the linear maps d§(p) are infinitesimally

symplectic; that is, for v,w € TPP’
w(p)(dt(ﬁ)v,W) = —w(p)(v,dé(p)w) .
Thus, Image(d§(p)) = ker(dé(p))™ for all ¢ € L(G), so

wl
n ker(d¢(p))
$€L(Q)

T (F N 70yt

z Image(d§(p))
€eL(G) ‘
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= U Image(ds(p)) .
8eL(@) |

Similarly, since T¢ acts isometrically, the linear maps d§(p) are skew

gsymmetric: for v,w € TPP,

~<Kv,dé(p)w> .

<d&(p)v,w)

The same computation shows that

u Image(dé(p))
$eL(G)

-1 1
TP(F nJs (0))

-1 wl
TP(F nJ (0)) .

Therefore, T (F N I ton®tn T (F N 3720)) = {0}, so F N JX0) is a

symplectic submanifold of P. . |

23 The restriction that p is a fixed point of the action places a
severe limitation on the utility of theorem (11). This theorem may be
applied to obtain more useful resuts; however, essentially by moding
out by the nontrivial part‘of the action at the point in question,‘as‘

the proof of the following theorem shows.

24  Theoremn. Let (P,w,$,J) be a hamiltonian G-space, (P,<,>) be a
reimannian manifold and suppose that ¢ is a proper, isometric action
on G. Let L(G) admit an Ad invariant metric and let J be Ad*
equivariant. If p € P, define D_ = TP(G-p)l n Tp(G-p)wl. If

- J(p) = 0, then Dp is symplectic, and

1. TPJ*‘(O) =T (Gp) ® {veDd, ; d2J(p)(v,v) = 0},
2. J—!(O) is locally diffeomorphic to its tangent bundle at p.

3. Furthermore, let Gp be the identity component of the
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isotropy group of p and NP be the set of points in P with
the same continuous symmetry type as p; that is, q € Np if

and only if Gq is conjugate to Gp. Then NP n J—l(O) is an

.imbedded submanifold of P, and

1]

Tp(G'p) ® {Y € Dp ; dé(p)v = 0 V§ « L(Gp)}

T (G'p) ® N - D_N ker(dt¢(p))
P geL(Gp) P

TP(G-p) ® {v e Dp i d2J(p)(v,w) =0V ¢ € L(GP)

and w € Dp} ,

) -1 wl _ .
TP(Np nJ(0))" = TP(G p) ® U . di(P)Dp )

geL(GP)
| -1 wl _ .
Tp(Np NI (0)) + Tp(Np nJ (0)) = TP(G p) ® Dp ,
~1 -1 wl _ . .
TP(Np nJs (o)) n TP(NP nJ  (0)) = TP(G p) .

Proof

25 There is a submanifold Sp, containing p, called a slice at p, and

a map X from a neighbourhood U of p in G:‘p to G such that:

S .
P

p.

gp = p implies that gSp

If

gSP n SP # ¢ then gp

x(p) = e, x(u)p = u for all u € U, and the map ¥; : U x SP

-+ P by ?;(u,p) = x(u)p is a diffeomorphism from U X SP to

some open neighbourhood of p such that T(P P)(v,w) = v +w
?

for all ve T (G'p) and we T S_.
P PP
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.26 Let B! be a ball in TpP such that expp is a diffeomorphism from

B* to some open néighbourhood of p. Define
St =.exp (B*NT (G'p)l) .
p P P

Then Sé is IP invariant, since G acts isometrically, B' is a ball, and
TP(G'p)l is 19, inveriant if g€ I : if ¢ € L(G) and v Tp(c-p)l

then

<T¢gv,§(p)> - <v, 1% 8(p)>

g
- <v, fund_vf(q)’ Adgg »P)>

=0.

..27 The assumption that ¢ is proper implies that G:p is an imbedded
submanifold of b and the canonical map &« : G »+ G'p by k(g) = gp is a
submersion. Since &(e) = p, the implicit function theorem may be used
to obtain a local left inverse x : U c G'p » G of x such that

x(p) = e. Compute the de;ivative of the map ¥; : U X Sé -+ P by

?1(u,q) = x(u)q : if v € TP(G'p) and w € TPSQ, then

i}

9, (v,w) = T(u - ¥;(u,p))v + T(q » ¥1(p,q))w

T(u » x(u)p)v + T(q =+ x(p))w

"

T(u » & © x(uw)v + T(q » eq)w

v+tw.

Obviously, Tp?l is a bijection, so ¥; is a diffeomorphism from some
neighbourhood of (p,p) in U x Sé to some neighbourhood of p in P. By
further restricting B' and U, one may assume that ¥; is a

diffeomorphism on U X Sé.
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.28 The set K = {g € G ; gSé n Sé tP=ge€ Ip} contains an open

neighbourhood of Ip; in fact,

I, =« '(p) ck NU) cK .

Let g € x—l(U) and suppose gq = q' for q,q' G'Sé. Then, k(g) € U, so
«(g) = gp = u = x(u)p for some u € U. Thus, x(u)_lg € Ip, so

x(u) 'gq € si. But

x(wWx(w g

#; (u,x(w) " gq)

g€q

ql

?1(p,a') ,

and since ¥; is a diffeomorphism, p = u. Therefore, gp = p, so

€TI.
g P

.29 Consider the following subset A of G:

>
it

. . Sl [ 3
{g € G; g-clf P) n Sp ¢ ¢}

{geG; 3 qe cl(Sé) such that $(g,q) € cl(Sé) x cl(Sé)} .

The since $ is proper, A is compact, so B = AN (P - x—l(U)) is also
compact. If g € B, then g € & *(U), so gp ¢ U, and, in particular,
gp # p. Continuity of ¢ implies that there are open neighbourhoods Ag

of g, U_of p and V_ of gp such that ¢(Ag,Ug) cV and U NV_= &,

g g g g g
Since B is compact, finitely many of the sets Ag cover B, say

A

gl,...,Ag . Let Ug =NU o Ug has the property that if g € B, then

n gl

gU§ N Uy =¢. Indeed, if g € B, then g € Ag for some i, so
i
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gUOSgU S¢’(A ’U )SV ’
g g’ & g

and V. N1 Uy = & for all i.
&

.30 Let SP be the image of B N TP(G’p)l under expp, where B is a
restriction of B' such that expp(B) < Up. Then SP clearly has
property (25.1). It also has property (25.2): if gSp n SP # ¢, then
geA SinceS cUp, gloNUs #9, sogeB. Thus, g¢P - & *(U),
so.g € x_l(U), and paragraph (28) shows that g € Ip. Since property
(25.3) holdslfor X and Sé, and Sp c Sé, one may ensure that Sp and X

have the property (25.3) by restricting the domain of x:

.31 Let P : L(G)* - Image(dJ(p)) be the orthogonal projection arising
from the Ad invariant metric on L(G). Then Ad: op=P° Ad: for any
g € G. Clearly, J(q) = 0 if and only if PJ(q) = 0 and

J(q) € Image(di(q)) = ann(L(Ip)> = ann(L(Gp)) .

Denoting by i : L(GP) -+ L(G) the canonical inclusion, it follows that

J(q) = 0 if and only if PJ(q) = 0 end i*5¢9) = 0.

.32 Clearly, PJ is a submersion at p, so that (PJ)—I(O) is a

submanifold near p, with tangent bundle

Tp((P3)"'(0)) = {v & TP ; PdI(p)v = 0}

i

{v € TpP ; dJ(p)v = 0}

{ve TpP ; w(p)(8(p),v) =0V § € L(G)}

wl
T (G .
P( P)
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Ad* equivariance of J shows that J(exp(t{)p) = 0 for all ¢ € L(G), and

SO

0=%| Jexp(te)p)

t=0

= dJ(p)¢(p) .

Therefore, Tp(G~p) < ker(dJi(p)) = Tp((PJ)~1(0)). Since
Tpsp = Tp(G~p)l, (PJ)—I(O) and SP are transversal at p. By choosing
S, small enough, then, (PI)"*(0) N S, is a submenifold of P, with

tangent bundle

]l

-1 -1
Tp((PJ) ) n SP) Tp((PJ) 0)) n TPSp

wl 1
T (G- nT (G
p( p) p( P)
=D .
P

«33 I claim that

1 wl]

wl'
T,(@p) = T (a-p)* n [TP<G~p> + (1 (ep)h)

§

wl wl
T (G nbD .
p( p) p

Once this fact is established, it is easy to see that Dp is
symplectic:

wl 1

=]

2

=]
!

Lyl Y W
= (Tp(G p) N TP(G p)) N DP

T (G-p) N TP<G-p)l =0 .

Let v = v + v, be such that v € TP(Gip)wl, vy € TP(G'p) and
va € (T (6-pyH*

c Tp(e~p)“l.' Thus

. Then v, = v — v, € Tp(G'p)wl, since TP(G'p)
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(@ phH®n T (6 p)°

m

V2

(TP(G-p)l:+ Tp«;-p))"’l
=0 .

wl

Thus, v = v;, S0 v € Tp(G~p), so Tp(G'p)wl n Dp = TP(G~p). For the

reverse- inclusion,

wl

. Wl
Tp(G p) (TP(G P) )

wl

- wl
(TP(G p)  + Dp)

in

. wl
(TP(G P) + D))

wl wl
T (G- nb .
P( P) b

It follows that one may choose Sp small enough so that (PJ)—l(O) n SP

is a symplectic submanifold of P.

.39 If g € Gp, then ¢g maps the Sy@plectic manifold (PJ)_I(O) n SP
into itself: ¢g sends Sp to itself by property (25.1) and thg fact
that Gp = Ip, and ¢g sends (PJ)—x(O) to itself by Ad* equivariance of
J and the fact that P commutes with Ad:.t Let ¢' be the action of Gp
on (PJ)"1(0) N s, and let j : ®3'0) n S, + P be the canonical
inclusion. Then ¢' is a symplectic action on ((PJ)_I(O) N Sp,j*w),
and ((PJ)—l(O) n Sp,j*w,¢',(i*J) ° jj is a hamiltonian Gp—space. Let
¥, be the diffeomorphism from some open neighbourhood of p in

PJ—I(O) N Sp to some open neighbourhood of 0 in Dp constructed in the
proof of theorem (11). Using a submanifold chért of FJ—I(O) n Sp at p
in SP’ and by further restriction of Sp, one may extend ?z to a

diffeomorphism ¥3; of some neighbourhéod of p in SP to Tpsp = TP(G'p)‘l~
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such that Tp?g is the identity. A restriction of the set U of
paragraph (25) will permit the construction of a diffeomorphism ¥4
from U to some neighbourhood of 0 in TP(G’p) such that Tp?q is the

identity. Let Ps be defined by the following‘compositions:

1

-1 ?1— Yax¥Py 1 +
¥s : domain(¥; ) € P ——m— U X Sp ) Tp(G°p) X Tp(G~p) — TPP .

.35 By the definition of ¥,;,

J ° ¥;(u,q) = J(x(u)aq)

ad*x(w) (@) ,

so that J © ¥;(u,q) = 0 if and only if J(q) = 0. Therefore,

v, '37H0) = ux JH0) N s

il

U x ((i*17%0) n 5,) N (®P3)"10) N 5,)

ux () 0 HTHO)

and since ¥3 agfees with ¥; on (PJ)_I(O) n Sp,

(%4 x ¥3) (21737 1(0)) = Image(?s) X {v € Image(¥z) ; d*J(p)(v,v) = 0}.
Therefore,

?5(J '(0)) = Image(?4) ® {v € Image(¥3) N D,,d*J(p)(v,¥) = 0} .

.36 Clearly,
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TP(Y5J~1(0)) T (Image(?4)) @ T {v € Image(?3) N D ;

. d%3(p) (v,v) = 0}

]

T,(G'p) B ved, ; d?J(p)(v,v) = 0} ,

and Y5 maps J—I(O) to a neighbourhood of zero of this set. Since

T#y : T,(G'P) X Tp(G-p)l + TP is simply addition, T#,”" : TP -
TP(G‘p) X Tp(G~p)l is orthogonal decomposition. The fact that Tp?q
and Tp?g are both the identity then implies that Tp?g is the identity.

This completes the proof of statements (24.1) and (24.2).

.37 Let q € SP. Then, for any u € U,

Gx(u)q = identity component of {h € G ; hx(u)q = x(u}q}

identity component of {h € G ; x(w) ‘hx(u)q = q}

identity component of x(u){h € G,hq = q} >((u)—1

x(u)qu(u)—1 ,

M

so that x(u)q Nq for all q € Sp. Therefore,

4 =Ux (N Ns) .
1 (V) (N, N 8)

But if q € Np n Sp, Gq is a subgroup of Ip, by property (25.2), so0 Gq
is a subgroup of the isotropy group of p which is conjugate to Gp.

Connectivity of Gp implies that Gq = Gp, and it follows that

-

PN, N ITH0)) = w(N) N (I0)

Ux {qge I 0) n s, d i$ fixed under

the action of GP}.

Therefore,
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Ps(N_N J *(0)) = Image(¥q) ® Image(¥3) N N D_ N ker(dt(p)) ,.
P gel(G) P

S0 ¥5 serves as a submanifold chart for Nb n J—l(O) at p.
.38 The identification of Tp(Np n J_I(O)) is a trivial consequence of

the fact that Tp?g is the identity. The symplectic complement of

TP(NP n J_I(O)) is easily computed:

TN ATYO) =T (@™t e U dpD
P D P P osen(q) | p
P
-1 @ nite U amn,

geL(GP)

‘since U d¢(p)b_ cD_<c T (G~p)wl. But paragraph (33) implies
p p p
geL(Gp)

wl

. L
that TP(G'p)“ N = 1.(6), so

—1 _ .
TP(Np nJ(0)) = TP(G p) 8 geL%Gp) dﬁ(P)Dp .

.33 Finally, since the two spaces

U de@D_, N ker(dé(p)) ND
geL(G ) P gel(e) P

are symplectic in DP, and symplectic complements of each other in QP,
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-1 ; -1 wl
TP(NP nJg (0)) + Tp(Np n J‘ (0))

= (TP(G.p) ® n D_ 0 ker(ds(p)))
geL(GP) P

+ (T (G'p) & u dé(p)D_)
P geL(Gp) p

= TP(G'P) ®D,,

-1 -1 wl
TP(Np nJg (0))n TP(Nf nJ (0)) |
_ -1 -1 wl wl
= (TP(Np nJ (0)) ® Tp(Np nJy 0)) )
_ Lyl wl
= Tp(G p) n Dp

= Tp(G°p) . 7 |
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CHAPTER 4

The Dirac Theory of Constraints

1 In Chapter (6) it will be shown that the following situation is
common: (P,w) is a symplectic manifold; the points of Pirepresent the
classical states of the system under consideration. The classical
states that admit evolution form a subset M of P. The space P is
called the extended phase space of the system, and M is called the
constraint set. The analysis of M is the subject of the Dirac theory
of constraints. This chapter develops the agpects of this theory
which are relevant to this thesis, closely following Sniatycki [1981],
with special attention to the case where M is the zero level of a

momentum mapping on P.

2 A smooth function f on P is called a constraint if f vanishes‘on
M. The set of all constraints is an ideal of the associative algebra
of smooth fiunctions on P. The development of the theory will
presuppose that M is a closed subset of P. Then, by the smooth
version of Urysohn’s lemma, M is completely determined by the
constraints; that is, p € M if and only if f(p) = 0 for all

constraints f.
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3 A constraint f is first class if, for each constraint f', the
~ Poisson bracket {f,f'} is a constraint. The constraints that are not
first class are called second class constraints. The set of first
class constréints forms an ideal of the associative algebra and a Lie
subalgebra of the Poisson algebra of smooth functions on P. Moreover,
if f is any constraint, then f? is a first class constraint, so the
cons£raint set is determined by the first class constraints: p € M if
and only if f(p) = 0 for all first class constraints f. The set M
itself is called first class if each constraint is first class. An
observable is a smooth funétion ¢ on P such that, for each first class

constraint f, the Poisson bracket {g,f} is a constraint.

4 'Unfortunately, at this level of generality, the terminology above
is somewhat deficient. TFor example, one would like the hamiltonian
vector field Xg of an observable g to be tangent to M; that is,

Xg(M) < ™. A typical argument proceeds as follows: for eachm € M

and constraint f,
df(m)xg(m) = -{g’f} (m) =0 2

and therefore, the integral curve of Xg starting at some point in M is
contained in the zero level set of f. Of course, the difficulty here
is that, while Xg 4 df = 0 on some open neighbourhood of M would imply

the desired conclusion, Xg J df = 0 on M does not.
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5 I have in mind the following example: P = R* with coordinates
(q‘,qz,pl,pzj and symplectic form » = dqi A dp;. Let M be the subset
of the p; = p;, = 0 plane depicted in Figure (6). It is apparent from

the figure that, at any point m € M,

- g g
span(TmM) = spanL;;T(m) s ;;;(m)] .

If £ and f* are any two constraints, then

df(span(TmM)) = df'(span(Tmy)) =0,
so,
Qﬁ-(m) :o_f:_.(m) :g.f;_( ) _gi'..(m) =0,
dq 0q? oq aq?

and paragraph (1.19) shows that {f,f'}(m) = 0. Therefore, M is first
class. So p; + pa is a first class constraint, and hence an

observable, but

hmit_vf(p; + p2) = - ;

dql aqz

which is not tangent to M at the origin, and the upper boundary points

of M.
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Figure 6: A first class subset of R* wﬁich admits an
observable whose hamiltonian vector field
is not tangent to the subset everywhere.
7 Owing to these pathoiogies, call a sﬁbset M of P strongly first
class if M is first class and the hamiltonian vector field of each
observable of M is tangent to M. If M is strongly first class and g
.is an observable, then M is an invariant set for the‘flqw of Xg; that
is, integral curves c of Xg such that c(0) € M have the property that
c(t) € M for all t € domain{c). According to Abraham-Marsden
[1978: 97], one need only verify that

d(m % th(m),M) X
.= =0, 1

lim

he0t h
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where d is the distance function implied by the norm provided by some

chart containing m.

8 Let v : [0,1] » P be any smooth curve such that +(0) = m,

7({0,1]) < M and

d
= 7(t) = X _(m) .
dt =0 g
Then,
d(m + hX (m),M) "m + hX (m) - 7(h)"
lim g < lim g
0" h a0t h
= lim “1(h) - v(m) + th(m)“
h0" h
: 0 »
Since —g is an observable if g is, and X_g = —Xg, it is also true that
m - hX (m),M
1in | CAa ,
ha0+ h

so equation (7.1) is verified.

9 As in the submanifold case, denote by TMPL the union of the

vector spaces Tmel over m € M, and call M coisotropic if TMwl < ™.

10 Proposition.

1. If M is strongly first class and locally diffeomorphic to
its tangent bundle, then'M is coisotropic.

2. If M is coisotropic, then M is first class.
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Proof

11 For the first statement, let v € Tmel, and let «a = v Jd wim).
One may use the local diffeomorphism guaranteed by hypothesis, and a
bump function, to construct a constraint f such that df(m) = «. Then

Xf is tangent to M and v = Xf(m), SO V € TmM. Therefore, M is

coisotropic.

«.12 For the second statement, let f and f' be any two constraints.

Then Xf, is tangent to M, since for any v € TmM,
w(Xf,(m),v) =df'*(m)v =90 ,
so Xf,(m) €T Mwl < T M. Therefore,
m m ‘

{f,£'}(m) = df(m)Xf,(m) =0,
so that M is first class. |
13 The null set of M is defined by
npull(M) = ™ N TM?l .

The next proposition illustrates the importance of the null set in the

analysis of constraints.

14 Proposition. Let M be coisotropic and locally diffeomorphic

to its tangent bundle. Then:

1. The null set of M is spanned by the Hamiltonian vector

fields of tﬁe constraints.
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2. A smooth function g on P is an observable if and only if

dg(null(M)) = 0.
Proof

15 For any constraint f and v € TmM’

w(Xf(m),v) = df(m)v = 0,

so Xf takes values in ﬂ@al = null{M). Conversely, if v € Tmﬁﬂl, then
let « = v 4 w(m). Then « vanishes on TmM, so there is a constraint f
such that df(m) = «. Therefore, v = Xf(m), and the proof of statement
{(14.1) is complete. Statement (14.2) is‘an immediate consequence of

statement (14.1) and the identity dg(m)Xf(m) = {g,f}(m) for smooth

functions f and g on P. |

16 The next proposition shows that the pathologies of paragraph (5)

do not arise when M is an imbedded submanifold of P.

17 Proposition. Let (P,w) be a symplectic manifold and let M be

an imbedded submanifold of P. Then the following are equivalent:

1. M is strongly first class.
2. M is coisotropic.

3. M is first class.

In the case that these statements hold, a smooth function g on P is an
observable if and only if the hamiltonian vector field of g is tapgent

to M.
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Proof

16 The implications (17.1) =» (17.2) and (17.2) = (17.3) have’
already been shown. Let M be first class and let g be an observable.
Let m € M and suppose « € (TmP)* is such that a(TmM) = 0. Choose a
constraint f such that df(m) = «, possible since M is an imbedded

. submanifold of P. Then, if g is an observable,

an(m) = df(m)Xg(m) = {f,g}(m) =0-.

Since TmM is a closed subspace of TmP, this shows that Xg(m) € TmM.
Therefore, the hamiltonian vector'field of any observable is tangent’
to M, so M is strongly first class. For the last statement, note that
if g“is a smooth function on P such that X,  is tangent to M, then for

g
any constraint f,

{fsg} = ""Xé-' df =0 )

so that g is an observable. (]

19 Let (P,w,J,¢j be a hamiltonian G-space. In chapter (7) it will
be shown thaf the constraint set J—I(O) is of interest. If J is Ad*
equivariant, then paragraph (2;19) shows that the functions Jg form a
Lie subalgebra of the Poisson algebra of smooth functions on P, so one
might suspect that J_I(O) is first clasé. That this is true when d is

a regular value of J is part of the content of the next theorem.

20 Theorem. Let (P,w,J,$) be a hamiltonian G-space. Let J be

Ad* equivariant and let 0 be a regular valﬁe of J. Then:

1. J_l(O) is a coisotropic, imbedded submanifold of P.

2. null(I"1(0)) = fund vf(L(G),J (0)).
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3. A smooth function f on P is an observable if and only if f
is invariant under the action of the connected component of

the identity of G on P.
Proof

21 Obviously, J_l(O) is an imbedded submanifold of P by hypothesis,

and if J(p) = 0, then

IIO) = (ve TP di(p)v = 0)

{ve TPP : ng(p)v =0V $ e L(@))}

{ve TpP ; w(p)(8(P),v) =0V ¢ € L(G)}

fund_vf(L(G), p)w'l' .

Since J is Ad*.equivariant, Tp(G~p) [ T(G-p)wl, so

T30 = fund_vE(L(6),p)

Tp(G'p) S.Tp(G°p)ml

~1,
TPJ (0) ,

so J is coisotropic. This also shows that

null(J1(0)) = T(3 '(0))**

It

fuhd_vf(L(G),J"‘(O)) .

w22 If follows from propbsition (14)‘that a smooth function f on P is

an observable if and only if
df (fund_vF(L(6),7 '(0))) = 0 . 1

If £ is invariant under the action of the connected component of the
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identity on G, then f((exp(t$))p) = f(p) for all t € R, so f will
satisfy equation (22.1), so that f is an observable. Conversely, if f

satisfies equation (22.1), define

4=mec;fwm=f@>vPefNM}.
Then,

(®) *{(p,a) ; pP,a € J '(0) and £(p) = £(q)}

A x J Y0

(5)_‘[J_‘(0) x I7H0) N (£ x BTH(E,E) ; te m}] ,

so A X J—I(O) is closed, which imples that A is closed. But A
contains the image of the exponential map, since f satisfies equation
k22.l). Therefore, A contains ;n open neighbourhood of the identity,
so A is open by ieft translation. If follows that A contains the
connected component of the identity, so f is invariant under the

action 6f the connected component of the identity. e

23 If 0 is not a regular value for J, then the conclusions of
theorem (20) are false without further hypothesis. Consider p = R*

' with coordinates (q‘,qz,pl,pz),.w = dqi A dpi, ¢ the action of the
circle 8! by rotations in £he q',p1 variables, and J = (q')? + (p1)2.
Thén J_l(O) is an imbedded submanifold of P, but it is symplectic, not
coisotropic. This pathology arises from the féct that, if J(p) = 0O,
then there are directions of the action arbitrarily c;ose to p which
do not arise from the action within J—l(O) (see figure (24)); indeed,
in this example, the action of S! on J '(0) is trivial. The next

theorem shows that when this behaviour is eliminated by hypothesis,
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the analysis of the zero level of J of chapter (3) may be used to

obtain results similar to those of theorem (20).

24
P A
1'
4
Figure 24: Directions of the action which do not
arise from the action within J " (0).
25  Theorem. Let the hypothesis of theorem (3.24) hold. Then the
following are equivalent:
1. npgspan(TpJ‘f(O)).
2. U dg(p)D, = U d&(p)(span(T, 7 '(0) N D).

3 p
geL(Gp) | geL(GP)
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3. U  d&(p)D_ < span(T_J (0)).
geL(GP) P P

If these conditions hold for all p € J_l(O), the call 0 a

quagsi-regular value of J. If 0 is a quasi-regular value of J then:

4. J_I(O) is strongly first class.

5.  null(J '(0)) = fund_vf(L(G),J '(0)).

8. A smooth function f on P is an observable if and only if f
is invariant under the action of the connected component of
G on J '(0).

7. A smooth function f on P is an observable if and only if Xf

is tangent to Np n J_I(O) for all p € J—I(O).

Proof

26 Obviously, statement (25.1) implies statement (25.2). Suppose

statement (25.2) holds, and let

v € U de(p)D_ .
8eL(G)) P

Then there are vectors u; € TPJ_I(O) n Dp such that

v = d§(p) Zu .
1

I claim that, for each u., dg(p)ui € span(TpJ~1(0)). This suffices to
show that v € span (TPJ—I(O)), and completes the proof of the

implication (21.2) = (21.3).

2?7 Indeed, since the flow of § is m -+ (exp(tf))m,
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d
g T .

- dt £=0 4)exp(tg) Yy

dﬁ(p)ui

Lin Texp(he) % ~ Y .

h-0 h

If s » v(s) is a curve in J—I(O) with v(0) = p and

d
— y(t) = u, ,
dt £=0 i

‘then s + (exp(t$))v(s) is another curve in J—l(O), since J is Ad*

equivariant. The derivative of this curve at s = 0 is T¢exp(t§) u.,

—-1 g 3 »
exp(tg) ui € TPJ (0). It follows that d§(p)ui is the limit

of vectors in span(TpJ_l(O)), which shows that dg(p)ui €

so that£T¢

span(TpJ—l(O)).

.28 For the implication (21.3) =» (21.1), note that if (21.3) holds,

then

PR wl _ . -1
TP(Np nJ = (0))" = Tp(G p) 8 §GL%GP) di(p)Dp < span(TpJ 0)) ,

~1 . . -1 wl
TP(G p) 8 Dp TP(Nf nJ 0))+ TP(NP nJ (0))

n

span(TpJ—l(O)).

Therefore, Dp (= span(TpJ-l(O)).

.29 If 0 is a quasi-regular value for J, then

-1
span(TpJ (0)) TP(G p) ® Tpr

1l
TP(G°9Y°‘,

by paragraph (3.33). Therefore,
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T 37 (0)% (span(T 37" (0)))t

-1
TP(G P) ¢ TPJ (0) ,

and hence J—l(b) is coisotropic. Obviously
null(37H(0)) = T(3 (0 = fund_vF(1(c),37(0)) ,

and this, along with the argument of paragraph (22), the fact that
J_l(O) is locally diffeomorphic to its tangent bundle, and proposition

(14), proves statement (25.86).

30 Let f be a smooth function on P which is invariant under the
action of the connected component of the identity on J-l(O). Let

u € TPJ_I(O), v be a curve within J-l(O) such that +(0) = p, and

“d

&' 'v(t)=u..

t=0

Then, for any ¢ € L(GP) and s,t € R,

f((exp(sg))v(t)) =0 .

Therefore,

é _ _ .
5g|t=0 £ 0 ((exp(s§))7(t)) = AP, sy u=0,

S| At T . u = dEe) (@) = 0 .

s=0
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It follows that

df (p) [TP(NP n J"‘(on‘*’l]

df (p) TP(G'p) @ U d$(p)D
geL(GQ ) P

L P
[
df(p)|T (G'p) ® U  di(p)|p n (T J7(0))
P)|T (G'p §€L(GP) (p [p span(T ( ]

and hence Xf(p) is tangent to Né n J—l(b) at p. If Xf is tangent to

Np n J—I(O), this same computation shows that
df(P)(Tp(G°p)) =0,

so that f is an observable by the proof of statement (25.8).
Statement (25.7) implies that any observable is tangent to J_I(O), so
that J_I(O) is strongly first class. This completes the proof of

theorem (25). a

31  The last result of this chapter is a verificatioﬁ of the
‘hypotheses of the previous theorem for the case of the total angular
momentum of n particles in R®. Let Q = (Ra)n and ¢ be the natural
action of SO(3) on Q. Then L(S0(3)) is R® with the cross product as

Lie bracket, and the standard metric on R? is Ad invariant. The

. X
action ¢ provides the hamiltonian G-space (T*Q,wo,¢T »J), as Qefined

in paragraph (2.15). Identifying R® with its dual using the standard

metric, one easily computes that
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0 = R3)® x (R%)D

n
w((ei,fi),(ei,fi)) = iil (fi'?i - fi°ei)
¥ i i
fqnd_Vf(¢ )gv(q ’pi)) = (€ X g ,§ X Pi)

i
X p. .
q X p;

M3
-

J(ql,pi) = .
1

¥*

Since S0(3) is compact, ¢T is a proper action.

32 The points of J—l(O) with nontrivial isotropy group have the form

~N

p = (aln,...,ann,bln,...,bnn) = (ain,bin) .

~ ~ ~

for some n € R®. The first step in the verification is the following

computation of Dp:

fund_vE(L(S0(3)),p)

Tp(G'p)

N "~ . 3
{(a;¢ x n,bi€ X n) ; & € R%}

1{(aie,bie) ; e € span{;}l} .

Since,

n
(ei,fi)-(aie,bie) = e iil (aiei + bifi) ,

n : N
w((ei,fi),(aie,bie)) = e i§1 (biei - aifi) R

it follows that
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1 wl
D =T (G- nT (G
D, =T (€R) N T (GP)
n ~
= I(e f.) Z a.,e, +b,f., = ¢yn and
1'% 0 20 858 iti t
i=1
n ~ \
z biei - aifi = cpn, for some c;,cp € RI .
i=1

33 If p = 0, then L(Gp) = R3, while if some of the a, or bi are
nonzero, L(GP) = {cn ; c € R}. In the first case, Dp = (IRB)n X (Ra)n,
so that

U e, = U e xD = @)% x ®)",

3
€€L(Gp) ger

while in the second,
I n
€e%(G ) Wby = qleppfy) 5 2 20y T hyT =0
P

l

wl
0, whe?e ei’fi € span{n} { -

™M
o
(0]
|
]
e
il

Let this vector space be Ap. Then the hypothesis of theorem (25) will

be verified if it is shown that A, < span(TpJ"‘(O)).

34 Consider the curve t -+ (a.n,b.n) + t(e,,f.) for (e.,f.) € A_.
i’ N Rt 1 i’7i )

Then
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n

+ .) = . . . .
J(ain + tei,bin tfl) iil (aln + tel) X (bln + tfl)
n A " PaS
= 2 (tanx f, - tb.nxe, +t%e, x f.)
- i i i i i i
i=1
A n n
=—-tnx 3 (b.,e, —a.f.) +t%? '3 c, xfT,
. i’i i“i . i i
i=1 i=1
n
=t2 3 e, xf, .
. i i
i=1

Therefore, this curve 'will lie within J-l(O) whenever

35 ifi=1,2,...,n, den;té by ei the vector (0,...,0,e,0,...,0) in
(IR3)n with e in theﬁith position. The previous paragraph shows that,
in order to prove that Ap < span(TpJ_l(O)), it suffices to prove that
Ap is spanned by vectors in Dp which satisfy equation (34:1). If

p = 0, this is a triviality, since vectors of the form (ei,O) and
(O,fi) are contained in Dp and satisfy equation (34.1). By relabeling
the particles, one may assume, then, that one of either a; or b; is

nonzero.

3¢ Elementary operations on the equations

n
aje; + byf; + .Z (aie'i + bifi) =0
i=2
n
bje; — a3f; + iiz (biei - aifi) =0,

show that
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ey = L(O,ez,...,en,O,fz,...,fn)
-1 n
Z= — . + bib.)e. + .- f,
a12+b12 oo [(alal 1 1)61 (a1b1 blal)fl]
fj_ = L(O,fz,...,fn,O,-ez,...,en)

-1 n [
L s [(bia. ~ asb.)e. + (bib, - ala.)f.]
a12+b12 i=2 1 1 1 A 1 1 1

Then AP is spanned by the vectors

L((el,00)t + 1((0,-e¥))? + e1,00 i=2,...,n 1

L((0,eh))* + L((et,00)® + (0,e}) i

2,...50 , 2

where e € span{n}l. But it is clear that each of these vectors
satisfies equation (34.1). Indeed, (34.1) evaluated on the vectors of

the form (36.1) yields

i

L(e') x L(—e1+n) +e x0

(alai + b;bi)e X (albi - b;ai)e'

0,

and similarly with the.vectors of the form (36;2).
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CHAPTER 5

Presymplectic Dynamics

1 . For some physical systems, notabiy field theories and certain
finite dimensional lagrangian systems derived from them, the
symplectic formalism of chapter (1) is too restrictive. These systems
can be accomodated by relaxing the restriction that the symplectic
form be nondegenerate, %hich brings the system into a presymplectic
context. This chapter defines presymplectic systems, and analyzes the

existence and uniqueness questions for the evolution that they define.

2 A presymplectic manifold is a pair (M,w), where M is a Banach

manifold, and w is a closed two form on M. A presymplectic system is

a triple (M,;,ﬁ), where H : M » R is a smooth function. Any such
presymplectic system defines an evolution on M by decreeing that

points of M evolve aléng smooth curves c¢ such that

dc | — =

—_—d = o

) diH ¢ c . 1
3 In contrast to the hamiltonian systems of chapter (1), some

points of M may not admit evolution, and for those that do, this

evolution may not be unique. For example, if m € M is such that



60
dﬁ(m) € 54(TmM), then equation (2.1) is inconsistent at m, so m cannot

admit evolution. Furthermore, if dH(m) € 5¢(TmM), the solutions to

the equation

v 4 w(m) = dH(m)

are undetermined up to vectors in ker(w(m)), which allows the

possibility of a nonunique evolution. .

4 Denote by Me the set of points of M that admit evolution. The
condition that w is degenerate implies symmetries of the phase space,
in the sense that points of Me which evolve concurrently from the same
point may be considered physically equivalent. Specifically, if

my,mp € Me are such that there are curves c¢; and c; which satisfy
equation (2.1) and such that c;(0) = csz), cy(t) = my, ca(t) = mpy for
some t, then write mlR;mg. Let R be the smallest equivalence

g
. [}
relation on Me containing Rg’ and call m; and mp; gauge equivalent if

-

m;Rgmz. The gauge equivalence relation measures the extent to which

the evolution defined by equation (2.1) fails to be unique.

5 It can happen that there are curves é; and c; with common domain
such that c;(t)Rgcz(t) for all t but such that c¢; satisfies equation
(2.1) and c; does not. In this case, the evolution defined by
equation (2.1) is regarded as inadequate to represent the evolution of
the system, and the evolution of the system is augmented by all such

curves Cz.
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3 If S ¢ M, define the statement P(S) by

P(8): for all m € S, there is a vector v € TmS such that

v 4 w(m) = di(m).

Obviously, if S;,S2 € M and P(8;), P(8S2) are true, then P(S; U 8,) is

true. It follows that

M, =U {ScM; P(S)}

f

is the unique maximal element of {S ; P(S)}. The set‘Mf is called the
final constraint set. Cleariy, P(Me) is true, so that Me‘g Mf. It is
often the case that Me = Mf, but a proof is unavailable at this level
of generality. The existence:questioﬁ for the evolution defined by“
equation (2.1) is approached by finding Mf and showing, by example

specific méthods, that Me = Mf. For instance, one might attempt to

find a smooth vector field X on M such that X 4 w = dH on M and such

that M_, is an invariant set for the flow of X.

f

7 In many cases, one can compute Mf by a finite number of
iterations of the Dirac algorithm, in a formulation due to Gotay-
Nester-Hinds [1978]. The algorithm generates a sequence of subsets Mi

of M defined as follows:

Mo '—"M
= 13 P J"'a - oyt
Mi+1: {m e Mi ; 3 v e TmMi such that v 4 w(m) dH(m)}.
The algorithm terminates if Mn =M, for some n, in which case it is’
th

obvious that Mn = Mf. The intermediate construct Mi is called the i
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secondary constraint set. When M is reflexive, w is topologically
closed, and Mi is an‘imbedded submanifold of M, then paragraph (1.3)
shows that

— wl
M, =meM, ; dH(m)(TmMi)“’ = 0}.

8 In chapter (7), the following situation will be of interest: M
is a coisotropic, -imbedded submanifold of a finite dimensional

symplectic manifold (P,w), & = i*w where 1 : M + P is the inclusion

map and there is a function H on P such that H|M = H. Gotay [1980]
implies that many presymplectic systems may be so realized. Suppose

that Mf is a strongly first class subset of (P,w). If m € Mf, then

wl . = _
TmM;i = {veTM ; (v, M) =0}
= {veTM ; o(v,T] _f) = 0}
_ L
=T M. N TmM‘; )

Since M\f is strongly first cless, Mf is coisotropic, so that

) wl
null(Mf) = ﬂMf = Tme .

By the definition of Mf, ifme Mf then there is a v € Tme such that
v 4 wm) = dﬁ(m), and it follows that

dH(null(M,)) = dﬁ[TmM;’;l] =0 .

Therefore, H is an observable, so XH is tangent to Mf. Hence, each

point of Mf admits evolution, and Me = Mf.
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3 With the same context as the previous paragraph, suppose that Mf

is an imbedded submanifold of (P,w). Suppose that TMwlle is
generated by a set of vector fields Gg, and write TMwlle = dstb(Gg).
Consider the following gauge vector field algorithm (Gotay-Nester

[1979a]):

Gi+1 = Gi U [Gi,Gi] U [XH,Gi] .

The algorithm terminates if Gn = @q the common value of which is

n+i1’

denoted by G The span of Gf is the smallest Lie subalgebra of

fo

vector fields on M_ which contains Gg and is mapped to itself under

f
the action of L, . The next part of this chapter is devoted to

Xy

proving the following fact: if Gf is a finite set, the connected
components of the equivalence classes of the gauge relation are

exactly the maximal integral submanifolds of dstb(Gf).

10 Note first that any piecewise smooth curve ¢ which satisfies
eqﬁation (2.1) is locally an integral curve of a time dependent vector

field of the form X, + fin, where the fi are smooth functions on

H

M, x R and the Y are vector fields in Gg. Thus, any evolution curve

f

may be constructed by concatenating the integral curves of such vector’
fields.  Indeed, if ty € domain(c), choose vl e Gg such that the
vectors Yl(c(to)) form a basis of Tc(to)Mwl' As Tﬁﬁlle is a

subbundle of TM.,.there is an ¢ > 0 such that Yi(c(t)) forms a basis

f’
of Tc Mwl, and therefore, there are smooth functions fi defined on a

(t) .
neighbourhood of c(tg) X (tg — e,te + €¢) such that
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dc

T~ Xg(e(t) = £,(e(t), 7" 1

since the left hand side takes values in TM")'LlMf :
o[§26) - Xy(e(8)),v] = diice(t))v - duce(t))v = o,

for all v € TmM. Choosing some e' < ¢, one may extend the functions
fi to all of Mf X R in such a manner that equation (10.1) holds on

(to —e',tg + e').

11 Denote by D,,D, the vector fields on Mf X R of the following

form:

D; : (m,s) - (XH(m) + Y(m,s),s,1) where Y is a smooth, time

dependent vector field on Mf X R which takes values in TMwl,

D; : (m,s) - (G(m),s,0), where G € Gf, and (m,s) - (XH(m),s,l).
Let D3 = D1 U Dg.

12 Define the Di reachability relation as follows: x;Dixz if there

are vector fields X”""Xn € Di and real numbers t"""tn such that

X . X
. ° Ftn(xz), where Ftk denotes the flow of X
n - k

reachability relation is an equivalence relation, and the Di

xl o‘..

Xy = Ft1 The Di

K

reachability equivalence class of x € Mf X R is denoted by [x]D .
i

13 The set of vector fields D3 is locally of finite type; that is,
1f x € M X R, then there are vector fields X!,...,X" on M X R such

that:
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1. X{(x),...,Xn(x) span dstb(D3) .
2. If X € D3, then there is some open neighbourhood U of x and

smooth functions f; on U such that

[X,x'110 = z f;(XJlu) .
J

One simply takes X' to be the vector fields in D, and verifies the

following: for G € Gf, Yt e Gg, and fi smooth functions on Mf X R,

[(m,S) + Ky (m) + (fi(m,S)Yi(m),s,l),(m,S) - (G(m),s,O)]
= (m,s) - ([XH’G] (m),s,O) + [—[LGfi](m)Yi(m),s,O]

+ (£(m,8)[Y},6](m),s,0) ,

where fiﬂf M- R by f?(m) = fi(m,s), and,

[m,9) + xgm) + (2,97 @) 15,1, (m5) + (Ky(w) s, 1)

afi s
= (m,s) - [ TS (m,s) - LXH £ Yi(m),s,O

+ [fi(m,s)[Yi,XH](m),s,Ol :

14 Let x € M, Xx R. The results of Sussman [1973] imply that [x]D3

f
is an immersed submanifold and maximal integral submanifold of
dstb(D3). The same reference shows that [x]Dl is an immersed

submanifold and maximal integral submanifold of some distribufion, say

E. Obviously, [x] ¢ [x], , so E ¢ dstb(D3). Taking Lie brackets of
D, D3
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vector fields in D; and considering the form of G, and the fact that E

f
is involutive, it is apparent that dstb(D3) ¢ E, so dstb(D3) = E.

Thus, [x]Dl = [X]Dg’ by the uniqueness of maximal integral

submanifolds.

15 Let py ¢ Mf X R - Mf be the projection onto the first factor. It

is obvious that the gauge equivalence class [m]g of me M is
m], = pa[[m,01; 0 M x (0}]

That is, [m]g is the set of points reachable from m in total time

zero. Ifm' € Mf, then

T(m',O)[(m’o)]D1 = dstb(Dg)(m,’o)

contains the vector (XH(m'),O,l). Therefore, [(m,O)]Dl is transversal

to M x {0}, so that [m]g is an immersed submanifold of M.

16 If m' € [m]g , then

-3
=
1}

01 [T e 0y [0y N T oM x 03]

= Tp, [dstb(na)(m,,o) 0 T oM X {0}]

o, [span(X(n,0) 5 X € D2) 0 Ty, oM x (03]

by pfoperty (13.1) of the set of vector fields D3. Thus,
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Tm.[m]g Tpy [(E a,G.(m') + (bXy(m),s,b) ; G, € Go,a,,b €R)

Tpl[(E aiGi(m'),s,O) ; Gi € Gf,ai € R]

dStb(Gf)m, 3

so that [m]g is an integral submanifold of dstb(Gf).

17 The set of vector fields Gf is clearly of locally finite type.

Thus, if m € M, the Gf reachability class of m, [m]G , is a maximal
f

integral submanifold of dstb(Gf). Since the vector fields
(m,s) - (G(ﬁ),S,O) ]

where G € Gf, are contained in Dj,.

[m]Gf x {0} ¢ [(m,0)], N Mx {0} = [m] x {0},

so that [m]G c [m]g. Therefore, the connected components of [m]g are
f

the maximal integral submanifolds of dstb(Gf).

18 It is useful to note the following fact: the gauge relation
defined by the evolution generated by the time dependent vector fields
of paragraph (10) and by the gauge relation generated by the ti@e
independant vector fields XH + Y, Y € Gy are identical. For the

proof, let D4 be the set of vector fields on Mf X R of the form

(m,s) = (Xﬁ(m) + Y(m),s,1) ,
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where Y € Gg. Then Dgq U D, is locally of finite type for the same
reason that D; is, and the same argument as paragraph (14) shows that,

if x € Mf X R, [x]Dq = [X]D4UD2' Since dstb(Dq U D;) = dstb(D3), the
uniqueness of maximal integral submanifolds shows that [x]D = [x]D =
4 3

[x]Dl , which implies that the two gauge relations are the same.

19 This fact may be used to show that if the vector fields XH + Y,
Y € Gy are complete on M,, then the gauge equivalence classes of the
evolution defined by equation (2.1) are connected, and hence are
exactly the maximal integral submanifolds of dstb(Gf). Indeed, if
m;Rgmz, then there are vector fields Y:i € Gg and real numbers ti such
that 2 ti = 0 and |

m (mz2) .

+y! +¥Y°
= FXH ° ... 0 FXH
t: t

n

But completeness of the vector fields implies that the curve

1
v S FXH+Y ° ° FXH+Yn (m2)
. §t1 cee Stn 2

is well defined, and v(1) = my, ¥(0) = my. Thus, any two points of a

gauge equivalence class may be connected by a smooth curve.
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CHAPTER 6

Lagrangian Systems

I Many physical systems have a natural lagrangian formulation:
there is given a Banach manifold Q, called the configuration space,
and a smooth function L : TQ -+ R called the lagrangian. The Legendre
transformation is the smooth, fiber preserving map FL : TQ - T*Q

defined by taking the fiberwise derivative of L:

FL(vq)wq = D(LquQ)‘(vq)wq
_d
=I5 £=0 L(Vq + twq)‘ .

Define the Lagrange one and two forms, and the energy function, by

8 FL*Bo

L

9y,

E(vq) = FL(vq)vq - L(vq) .

= FL*(OQ

Points of TQ evolve along smooth curves c such that

dec ,
Jd =
T YL dE ¢ ¢ . » 1

2 Define the smooth, fiber preserving map F?L : Q - T3Q by

2 - n2 1
F L(vq)(wq,wq.) =D (LITQQ)(vq)(wq,wq) .
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F?L has image in the symmetric elements of T3Q. The Lagrangian L is
called (weakly) regular if F3L has image in the (weakly) nondegenerate
elements of T2Q. In a natural chart of TQ with range U x [, FL(u,e) =

(u,D2L(u,e)), so
TFL(u,e,e;,e2) = (u,D2L(u,e),e;,D1D2L(u,e)e; + DaDL(u,eler) , 1
and also,
F?L(u,e)(e1,e2) = D3L(u,e)(e;,ez) l 2

An examination of these equations shows that L is (weakly) regular if
and only‘if FL is an (imme?sions local diffeomorphism. If FL is a
diffeomorphism, then L is called hyperregular. If L is regular, and Q
is reflexive, then wy is symplectic, and the évolution defined by
equation (1.1) is given by the flow of the hamiltonian vector field of

E.

3 The following theorem gives an important property of curves which
satisfy equation (1.1), and displays the connection between such
curves and the classical Euler-Lagrange equations. A curve ¢ in TQ is

called second order if it is the derivative of its projection to Q;

that is, if
gf (TQ °¢c)==c.
q Theoren. Let Q be a Banach manifold and I be a smooth

function on TQ.

1. If a smooth curve ¢ in TQ satisfies equation (1.1), then it
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also satisfies

FZL(c<t>>[c<t) - Srg e d®w =0,

for all w € Tr Thus, if L is weakly regular, any

Q.
(]
Q c(t)
curve satisfying equation (1.1) is second order.
In a natural chart of TQ with range U x E, a second order

curve

o(t) = [ue), $w]

satisfies equation (1.1) if and only if it satisfies

Lagrange’s equations in this chart:
d(D2L(c())F) = DyL(c(t))E

for all' f € E. In finite dimensions, these are equivalent

to the classical Euler-Lagrange equations

4| @rnndtan| = @wLaten

0g dq

using coordinates q!,...,q",a%,...,q" on TQ.

Proof

Paragraph (1.8) and equation (2.1) show that

op(u,e) ((u,e,e1,e2), (u,e,e1',e2"))

wg (FL(u,e)) (TFL(u,e,e;5,e2),TFL(u,e,e,",e2'))

D;D;L(u,e)(e;',e1) — DiD2L(u,e)(e;,er")

+ DpD2L(u,e)(ex',ey) — D2D2L(u,e)(ez,ey') .

71
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Also, E(u,e) = D;L(u,e)e - L(u,e), so

dE(u,e)(u,e,e;',e;")

D3D2L(u,e)(ey',e) + DpDyL(u,e)(eq!,e)

+ D2L(u,e)e;' - DjL(u,e)e;* - DL(u,e)es’

D1D2L(u,e)(e1',e) + D2D2L(u,e)(ez’,e)

- D1L(u,e)e;
.6 Collecting terms, a vector (u,e,e1,e2) will satisfy
(u,e,e;,ez) 4 wp = dE(u,e)
if and only if

D2Dz2L(u,e)(ez2',e — ;)
+ DxDzL(u,e)(ez',ez‘— e)

+ D1D2L(u,e)(ey,e1') + D2D2L(u,e)(ez,e;') — DyL(u,e)e;’ = 0 )

for all e;',e;*' € E. Letting e;' = 0 and ey' = p separately, these

equations are equivalent t6 the following two equations:
D3L(u,e)(f,e — e;) = 0 1
D(D2L(u,e)f)(e1,e2) — DyL(u,e)f = -D;D,L(u,e)(e; — e) . 2

w?  If e(t) = (u(t),e(t)) satisfies equation (1.1), then substituting
2
u(t), e(t), Ry, L)
dt T g

for (u,e,e;,ez) in equation (6.1) and observing equation (2.2) yields

the first statement of the theorem. Substituting



73

d d d?
u(t), (), g(t), ==(t)
dt dt 2
dt
for (u,e,e;,e2), it is apparent that equation (6.1) is statisfied
identically, and that equation (6.2) yields Lagrange’srequations in

the chart. ' n

8 If L is hyperregular, one may define a smooth function H on T*Q
by H=E ¢ EL~1. The hamiltonian systems (TQ,wL,E) and (T*Q,wo,H) are
in bijecfive correspondence via the symplectomorphism FL. One calls
the system (T*Q,wo,ﬁ) the canonical formulation of the lagrangian
systeﬁ. It is possible to construct a lagrangian system from a
hamiltonian system on T*Q, under conditions similar to hyperregulafity

(Abraham-Marsden [1978: 221]).

3 A lagrangian L : TQ - R is called semiregulaf if FL is a
subimmersion (Abraham-Marsden—-Ratiu [1983: 171]) and the level sets of

FL are connected.

10 Theoremn. Let Q be a Banach manifold and L : TqQ -+ R be
semiregular. Let vq € TqQ admit evoiution; that is, there is a smooth
curve ¢ in TQ that satisfies equation (1.1) and c(Oj =v . If

q

vé € TqQ is such that FL(vq) = FL(V&), then there is a smooth curve c'
in TQ that satisfies equation (1.1), c'(0) = vé, and FL ©¢ c! is a

restriction of FL ¢ c. Furthermore, vq and vé are gauge equivalent.
Proof

11 let v : [0,1] » TQ be a smooth curve such that FL ©¢ v is a

constant, say qq. Then ¢ lies within the fiber TqQ of TQ, since FL is
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fiber preserving. E is constant along ~:

g-t-{FL(v(t))v(t) _ Lo v(t)]

d(& ° (1))

g—t[aq('v(t)) ~Lo v(t)]

% g%(t) ~ FL(v(t)) g%(t?

=0.

As FL is a subimmersion, FL—l(aq) is an imbedded submanifold of TQ, so
FL—l(aq) is smoothly pathwise connected. Thus, E is constant on the

level sets of FL.

.12 Let U and V be open subsets of TQ and « : U + V be a
diffeomorphism such that FL ¢ « = FL. If c is a curve in U satisfying

equation (1.1), then « ° c also satisfies equation (1.1):

[Gta ® ) 4 a]m = vy e e [l o o) (t),u]
= wo(FL © « © o(t)) [TFL[p(a © ) ()], 7FIu]

= o (FL © c(t))[TFL'g§(t)],TFL(TaTa"‘w)]

= wg(FL © c(t))[TFL.%%(t)],TFL(Ta—Iw)]
= %%(t) 4 wL(Ta_lw)

= dE(Ta_lw)
= d(E © aul)w

= dE(w) ,

since E is constant along the level sets of FL.
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w13 Let wg € TQ. Since FL is a subimmersion, there is a
neighbourhood U of w , a convex neighbourhood Vof 0 in ker(TwFL), and
a smooth map p : U » V such that p(wp) = 0, FL(U) is an imbedded
submanifold of T*Q, and the map ¥ : U -+ FL(U) x V by ¥(w) =
(FL{w),p(w)) is.a diffeomorphism. I claim that the theorem is true

when restricted to points and curves in U.

.14 Let c_be a smooth curve in U which satisfies eéuation (1.1) and
let c(0) = qu Suppose vé € U is such that FL(vq) = FL(V&). The
translation 7; : (%,y) » (X,y + p(va) - p(vq)) maps an open

- neigbourhood W} < FL(U) x V of ?(vq) to an open neighbourhood

W2 € FL(U) x V of ?(va), since

11(!’(vq)) T;(FL(vq),p(vq))
(FL(vq) ’P("c';))
(,FL(VC'!),p(v('l))

?(vé) .

Thus, 72 : ?—I(WI) -+ ?—1(W2) by 72 -1

¥ "% 7, ©Y¥ ig a diffeomorphism

such that Tz(Vq) vq, and FL © 7, = 7. For some a, > 0, c((-a;,a;1))
c ?_1(W1), so ¢' = 72 ° c|(-ay,a4;) is a curve which satisfies equation
(1.1), by paragraph (12), c'(0) = vé and FL ¢ c' agrees with FL ¢ ¢ on

(-a1,a1).

.15 Suppose that gf . FL © c(t) # 0. Then FL ° c admits a local left
inverse at t = 0; that is, amap 8 : A € FL{U) = (—az,az) where A is
an open set containing c((-az,az)), B(Vq) = 0 and B satisfies

B °FL°c(t) =t for all t € (-az,az2). One may assume that a, < a;.
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Let f : R - [0,1] be a smooth function which is 0 on (—,a;/2] and is

1 on [0,9). Define the map 73 : A X V 2 A X ker(TwFL) by

T3(x,y) = (x,y + (£ ° B(x)) - (p°c' O B(x) - p°c?® B(x)) .
If te (—az,az), then

T3(? ° c(t)) = (FL(c(t)), p © c(t) + f(t)

(p ®c'(t) -p°c(t)),

S0 T3 maps ¥ ° c((-az,az)) into A X V, since V is convex. It follows
that r3 is a diffeomorphism from some open neighbourhood W3 < FL(U)

X V of Yn° c((-az,a2)) to some open set Wq ¢ FL(U) x V. Define the
diffeomorphism 74 : ?_I(Wg) - ?~1(W4) by }4 =90 75 0 v !. fThen
c((—az,az)) C Wy and 74 satisfies FL © 74 = FL, so that c" =

Tq © (c](-az,az)) is a curve that satisfies equation (1.1). But

c"(-az/2) = c(-a2/2), c(0) = vq and c"(0) = v&, so v R v'.

q9gq
w16 If %E . FL © c(t) = 0, then it is clear that dE(vq) = 0, since ¢

satisfies equation (1.1) and w, = FL*wo. If w € U is such that

L
FL(w) = FL(vq), the argument of paragraph (14) yields a diffeomorphism
Ts from some open neighbourhood of vq to some open neighbourhood of w

such that rs(vq) =wand FL © 75 = FL. Then E ° r5 = E, so

dE(vq) dE(75(w))

1

dE(rs(w))T 75 ° T (15°)
q
(rs*dE) ° T (r5")

dE ° T (r5")

0 .
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Therefore, dE is zero on FL—I(FL(vq)) N U. The following two curves
are contained in FL—I(FL(Vq)) N U for some open interval I of R

containing 0 and 1:

-1 1, . t .
4 [FL(vq),i(vq + vq) + E(V - vq)]

ky (t) q

Ky (t) v“[FL(vq),%(vq +ve) - %(vq - v&)]

Since ki(I) is contained in a level set of FL, i = 1,2,

dke;
— Jd
ge () 4 v

0 = dE © ki(tj

on I. But k;(0) = ka(0), k;(1) vq and k,(1) = v', so v R v'. This

q qgq
completes the proof that the theorem is true when restricted to points

and curves in U.

17 Let vq:e TqQ, FL(vq) = aq and suppose that there is a ;mooth
curve ¢ in TQ that satisfies equation (1.1) and c(0) = vq. Consider

the set

S = {we FL—I(aq); there is a smooth curve c' in TQ which
satisfies equation (1.1), ¢'(0) = w and FL ¢ c! is a

restriction of FL ¢ c}.

If w € S, then there is an open neighbourhood U of w such that the
theorem is true when restricted to points and curves in U. Therefore
Uun FL—I(aq) ¢ S. This shows that S is an open subset of FL_l(aq).
An identical argument shows that the complement of S in FL_I(aq) is
open. Since FL_l(aq) is connected, S = FL_I(aq). A similar argument

shows that the gauge equivalence class of vq contains FL_I(aq). 1
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18 ° Finding the points of TQ which admit evolution curves that are
second order is the second order problem for lagrangian systems
(Gotay-Nester [1980]). The next theorem ;asts doubt on the physical
significance of the second order problem by showing that, in the
semiregular cése, every evolution curve is gauge equivélent to a

second order evolution curve.

“18 Theorem. Let Q be a Banach manifold and L : TQ -+ R be

seﬁiregular. Let ¢ be a smooth curve in TQ that satisfies equation

(1.1).

1. If ¢* is any other smooth curve in TQ such that FL ° ¢ =
FL ¢ ¢', then ¢ also satisfies equation (1.1)

- d
2. FL © ¢ = FL ° EE(TQ ° )
Proof

20 Let ¢ be a smooth curve in TQ that satisfies equation (1.1) and
suppose that ¢! is another smooth curve in TQ such that FL ¢ ¢ =

FL © ¢'. Let tg € domain(c) = domain(c'). After some translations of
R, theorem (10) implies that there is a smooth curve ¢" in TQ that
satisfies equation kl.l), c"(tp) = ¢'(tp) and FL ¢ c" is a restriction

of FL ¢ ¢ = FL © c'. Therefore,

- 1d d
TFL ct(t) — == c"(t)
[agtto . dt to }

é—l FL © c'(t) ~ 4 FL ° c¢"(t)
dt dt
to tO

:0,



so that,
4 IEIOETE L] ety 1w = dB(e"(to))
0 to
= dE(c'(to)) .

As tg is arbitrary, this shows that c' satisfies equation (1.1).

..21 For the second statement, let tq € domain(c), aq

a = o= (1'Q ° c(t)) .

to

Let X be the vector field on TqQ defined by X(vq) =a-v. If

q
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'= FL(C(to)) and

vq € FL—l(aq), then there is a curve c' in TQ which satisfies equation

(1.1) c*(0) = vq, and FL © c' is a restriction of FL ¢ c. By

statement (4.1),

D(FLITqQ)(vq)((vq - a,va)

2
F L(vq)

2
F L(vq)

2 - 1
F L(vq)(vq a,vq)

c'(0) - gﬂto (g © o(t)),v}
c'(0) - %Elto (TQ ° cl(t)),Vé

for any vé € TqQ. Therefore, X is tangent to the closed, imbedded

submanifold FL_I(aq). The curve

¥(t) = a + (c(ty) — a)e

t

is an integral curve of X with initial condition ¥(0) = c(tg) €

FL_l(aq), 80 v is a curve in FL_I(aq).

Then
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FL(a)

H

FL{lim v(t)]

tao

1im FL(~v(t))
tam

1

o
q

C(to) .

As tg was arbitrary, this completes the proof of statement (19.2). a

22 Suppose that L is semiregular, and an open or closed map onto its
image. Then Mg = Image(FL) is an imbedded submanifold of T*Q. Since

E is constant along the level sets of FL and FL is a submersion onto
Mg, there is a smooth function H on Mg such that E = Ho FL. Let

i Mg » T*Q be the inclusion. The presymplectic system (Mo,i*wo,ﬁ)

is called the canonical formulation of the lagrangian system.

23 The evolution on Mg defined by the presymplectic system

(Mo,i*wo,ﬁ) is the image under FL of the lagrangian evolution on TQ.
Indeed, a straightforward computation shows that if c' is any smooth

curve in TQ that satisfies equation (1.1), and ¢ = FL ° ¢!, then

dc .k =
—d = (]
It 1ywo did ° c .

On the other hand, let c¢ be a curve in‘T*Q that satisfies this
equation, and iet te € domain(c). Choose wg € TQ such that

FL(wg) = c(tg). Using a neighbourhood U of wg as in parégraph (13),
one may find a curve ¢! : (tg — e,tg + €) » U such that FL © ¢! =
cl(tg — e,tg + €). A straightforward computation shows that c!

satisfies equation (1.1). Therefore
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[=9)

° cl(to — e,tg + e)] = ——[TQ o c'j(to —e,to + e)]

dtL Q t

d [ *
1T
also satisfies equation (1.1), and

FL © c'|(tg — e,tg + €)

FL d [ X

- N ° c|(ty — e,to + e)]

cl(to —e,to + €) .

As tg is arbitrary, this shows that the curve

d

t o a-t-['rg o c](t)

satisfies equation (1.1) and is mapped by FL to c. Thus, c is the

image of a lagrangian evolution curve.
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CHAPTER 7

The Extended Canonical Formalism and the Gauge Group

1 Further analysis of the lagrangian evolution of chapter (6) might

proceed by a study of the presymplectic system (Mo,i*w,ﬁ). This
presymplectic approach has the advantage of requiring no additional
data for its implementation, but has some drawbacks. The familiar
notions of Poisson bracket and momentum mapping, for example, are
difficult or impossible to define in a presymplectic context. The
problem of quantization motivates the attempt to realize the evolution
on My as a set of constraiged hamiltonian evolutions, providing a
cogent reason for retaining the symplectic structure of T*Q from the

outset.

2 For this program, one needs additional structure on the phase

space T*Q. Namely, assume the following:

1. There is a smooth function H on T*Q such that H = H|M,.
2. (T*Q,wo,¢°,J°) is a hamiltonian G° space such that the

action ¢° is infinitesimally free and My = (J°) '(0).

G® is called the primary gauge group. This structure serves to extend
the evolution on Mg to an evolution on all of T*Q: one decrees that

points of T*Q evolve along smcoth curves c¢ in T*Q such that
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(924 wo = @it © o] - fund_ve(e®, 1@ 1

That is,
[gs(t) 1 ]V = dH(c(t))v
at 1] | ’
for all v € fund_vf(d,L(G),c(t))?L.
3 Consider the lagrangian L : TQ - R by
L(vy) = 1/2 B(Q)(vy,vy) + Alav - v(a) ,

where B is a smooth section of T3Q of constant rank and image in the
symmetric elements of T3Q, B8 is a smooth one form on Q, and V is a

smooth function on Q. One easily shows that

FL(V W, = B(a) (v W ) + Ala)v
E(vy) = '/2 Blyg,v) + V(@) ,

FzL(vq) = B(q) .

Th&s,.FzL is of constant fank, so FL is a subimmersion. Also, if
aq € Image(FL), then FL—l(aq) is a translatioﬁ of a subspace of TqQ,
and hence is connected, so L is semiregular. Since B¢ is a vector
bundle ﬁdrphism of constant rank, it is an open mapping onto its
image. As FL is B¢ followed by the diffeomorphism of TQ which is

addition by 8, FL is also an open mapping onto its image.

4 Suppose that the distribution ker(B) on TQ is spanned by the
fundamental vector fields of an infinitesimally free action ¢ of a Lie

group G°. Assume that the map
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q -+ B(q) (fund_vf(d,%,q))

has constant value ug on Q. The action ¢ provides the hamiltonian G°

X
space (T*Q,wo,¢T ,J%), as defined in paragraph (2.15).

s The expression FL = B¢ + g © Ta shows that

Mo Image(FL)

ann(ker(B)) + 8 .
Also,

«, < (3°) " (uo)

— Jg(qq) — up(§) = 0 for all ¢ e L(G)

=N (aq - B(q)) (fund_vf($,¢,q9)) = 0 for all ¢ e L(G)

= o B8(qa) € ann(ker(B))

q

m

= « ann(ker(B)) + 8 ,

q

]

s0 (3% '(uo) = Mg. If pg is fixed under the Ad® action of G° on

L(G°)*, then M 'is coisotropic, and My is the zero level of the Ad*

. X
equivariant momentum mapping J° - uy for the ¢T action of G° on T'Q.

This is obviously the case when G° is comnutative. Another sufficient
condition is that 8 is a G° invariant one form on Q, since in this

\

case,
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Adiauo (8) #O{Ad _lal
g

B(q){fund_vf{¢,Ad _1§, J]
g

n

pcq><<¢;fund_vf<¢,e><q>>

{¢*_13}(q)(fund_vf<¢,a,q>>
g

Mo .

6 Regardless of whether ug is a fixed point of the Ad* action or

not, one may extend H by choosing a complement E to ker(B). If Q is a
riemannian manifold, then one may take E to be the orthogonal
complement of ker(B), so the entire extension process depends only on
the choice of action ¢. The splitting TQ = E @ ker(B) gives rise to
the splitting T*Q = ann(E) ® ann(ker(B)) and the projections p; : TQ -

E and pf : TQ -+ ann(ker(B)). The map « : T*Q -+ Mg by

ﬂ%)=ﬁmq—mw)+mm

is a projection of T*Q onto Mg : if aq € ann(ker(B)) then

pf<aq) + B()

% + B(q) .

“(“q + B8(q))

n

Thus, one may define H = H © 7. If Mo is zero, then B8 € ann(ker(B))

and My = ann(ker(B)). In this case, H(a; + a;) = ﬁ(a;), where

a; € ann(E) and a; € ann(ker(B)).
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) Let u € L(G°)* and consider the evolution on (3°) " '(u) defined by
equation (211). It is of interest to determine if this évolution
arises from some lagrangian evolution. Of course, if M = Mg, this
evolution is the image under FL of the lagrangian evolution implied by

L, as shown in paragraph (6.23). Denote by z the unique, smooth one

form_on Q that satisfies the conditions

¢(q) (fund_vf($,$,q)) = u(8) - ue(8), and

ﬁ(q)(vq) =0 if vq € E.

The evolution defined by equation (2.1) on (J°)_1(u) corresponds to
the lagrangian evolution defined by the lagrangian L=1L1+gu All
that needs to be verified is that Im(FL) = (J°) ‘() and that

H o FL = ﬁ, where E is the energy function of L. As L satisfies all

the conditions of the previous analysis on L, and

(B(q) + @) (fund_vE(d,£,9)) = uo(8) + u(§) — uo(s)

u(s) ,

for all § € L(G®), Im(FL) = (J ) *(u). Since E is independant of 8

anyway, E E is clear. But then

=

° Fi(vq) H(FL(v_) + #(2))

ﬁ(pf(FL<vq> + (@) - A@) + (@)

ﬁ(pT<FL(vq> — (a)) + B(a))

H° FL
(vq)
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E(vq)

E(vq).

8 I return now to the more general context of paragraph (2). The
following algorithm generates a sequence of subsets of vector fields

on T*Q:

Eq = fund_vf($,L(G%))

Ei+1 = Ei U [XH’Ei] u [Ei’Ei] .

As in chapter (5), if this algorithm terminates at a finite subset Ef,
then the connected components of the gauge relation defined by the
extended evolution on T*Q are the maximal integral submanifolds of

dstb(E In what follows, suppose that the gauge equivalance classes

£
of the extended evolution are connected, and postulate the existence
of a gauge group: a connected Lie group G with symplectic action ¢ on

T*Q such that:

1. G% is a closed subgroup of G.
2. If g€ G° then ¢(g,m) = ¢°(g,m).

3. fund_vf($,L(G)) = span(Ef).

It follows that the orbits of G are exactly the gauge eqiuvalence
classes of the extended evolution. One may assume that Jg = Jg for

all ¢ € L(G%).

9 Suppose that the final constraint set Mf € Mg is strongly first
class. Then H is an observable, and each point of Mf admits

evolution. I claim that J is constant on Mf. The proof is by
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induction on the following statement:

P(i): If ¢ € L(G) is such that fund_vf(¢,§) € Ei’ then Jg is

constant on Mf.

P(0) is true: if ¢ € L(G) is such that fund_vf($,¢) = fund vi(d,¢*)
for some ¢' € L(G), then Jg and Jg, differ by a constant on T*Q. By
hypothesig, ng is zero on Mg, and since Mf C Mg, this shows that Jg

is constant on Mf.

pu

3 Suppose i 2 0 is some integer for which P(i) is true. Let
¢ € L(G) be such that fund_vf(¢,§) € Ei+1' Then one of the following

three statements is true.

1. fund_vf($,%) € Ei'
2. fund_vf(¢,¢) = [fund_vf(d,$1),fund_vf($,82)] for some
gj é L(G) such that fund_vf(¢,§j) €E, j=12
3. fund_vf(9,§) = [XH,fund_vf(¢,§')] for some £' € L(G) such

that fund_vf(d,§') € Ei'

In the first case, Jg is constant on Mf by the induction hypothesis
directly. For the second and third cases, it suffices to find a

function f such that X, = fund_vf($,£) and f is constant on Mf. If

f
the second statement is true, then one may take f = {ng,ng}, by

paragraph (1.20). Suppose the third statement is true, and let the
constant value of ng on Mf be c. Then ng — ¢ is a constraint, so

{4,3,,} = {4,J,, - c} is also a constraint, and one may take
£

gl
£= {8,3,.).
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10 These hypotheses are sufficient to show that Mf is G invariant:
Let ¢ € L{G) and suppose J has value u on Mf. Since Mf is strongly

first class, J, — u(¢) is a constraint on Mf, and

§

hmlt_vf(Jg - u(g)) = hmlt_vf(Jg)

fund_vf(¢,$) ,

M. is invariant under the flow of fund_vf(¢,£). Let S € G be defined

f
by

S={geG; gme Mf for all m € Mf}.

Then S contains the image of the exponential mapping, and so contains

an open neighbourhood of the identity. By right translation, S is

open. Since A X Mf = ($)~1(Mf X Mf), A is closed as well. As G is

connected, A = G, so Mf @s G invariant. By paragraph (2.18), one may
assume that Mf is contained in the zero level set of J, J is Ad*

equivariant and the conditions of paragraph (8) continue to hold.

11 Let Q be a riemannian manifold, let the hypotheses of
theorem (3.24) hold and suppose 0 is a quasiregular value of J. Then

I claim that M, = J—I(O). Since Mf (= J—I(O), it suffices to show that

f
each point of J_I(O) admits evolution. By theorem (4.25), this will
be true if {H,Jg} vanishes on J_I(O) for all £ € L(G). If £ e L(G),

then
[Xg» fund_vE($,6)] = fund_vE($,8*)

for some §' € L(G). Therefore, {H,Jg} and J,, differ by a constant,

gl
so {H,Jg} is constant on J '(0). But {H,Jg} vanishes on M, € J o),
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S0 {H,Jg} vanishes on J—I(O). In rough terms, then, the following

statement is true:

If a gauge group for the evolution exists and

admits a sufficiently regular momentum mapping,

and if the final constraint set is strongly first
class, then the final constraint set is the zero

level of a momentum mapping of the gauge group.

12 The most general evolution on My is given piecewise by smooth
curves of the form gc(t) = g(t)c(t), where c is an integral curve of
XH and g is a smooth curve in G. The final theoretical result of this
chapter is a proof that gc is the integral curve of the (time
dependent) hamiltonian vector field of H + Jg(t) for some piecewise
smooth curve £ in L(G). Thus, the evolution on Mg is displayed as a

set of hamiltonian evolutions.

13 The derivative of the curve gc(t) is

d(ge(t)) = S(d(a(t),c(t))
_ dc - dg
- Tq)g(t)'c'ff(t) + T¢C(t)a€(t)
= Ty 1) (o0 + T 4y Te(t) - 1
-1
Let v € Tg(t)c(t)J (0), so that
d
V = = 7(s)
ds $=0

for some curve v in J—l(O). Then
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wo(T¢g(t)XH(C(t)),V) = wo[XH(C(t)),T¢g(t)_1V
= dH(c(t))T¢g(t)_lv
= %; S:OH J ¢g(t>_1 ° +(s)
== B 1(s)

dH(g(t)c(t))v ,

since H is G invariant on J—l(O). Therefore,

0o [T, Xy (e(8)) = Ky(a(B)e()),v]
dH(g(t)e(t))v — dH(g(t)e(t))v

:0’

for all veT Thus, the curve

-1
gwye(ty? (O

t - T¢g(t)XH(c(t)) - XH(g(t)c(t))

takes values in fund_vf($,L(G),g(t)c(t)). Let to € domain(c) and
mg = c{tg). The curve c(t) lies in the manifold Nmo N J—I(O) for 59me.
open interval of R about tg, since XH is tangent to this ﬁanifold.

Therefore, the curve g(t)c(t) lies in the manifold N, 0 J'(0) for

some open interval of R about tg. But

fund_vf($,N, N J Yo

is a smooth distribution of constant rank on Nho n J—I(O). Therefore,

this is a smooth curve £; in L(G), with domain an open interval in R,
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such that
Ty (1) Xg(e(t)) = Xg(g(£)e(t)) = fund vE(d,81(t),g(t)e(t)) ,

for all t € domain_(&;). Looking at the second summand of

equation (13.1),

dg _ dg
oty at) = T¢C(t)TRg(t)‘?Rg(t)_1 Fradd
_ dg
h Tq)g(t)c(t)TRg(t)_l a-E(t)
= fund_vf|¢, TR : %(t),g(t)c(t) .
g(t)™’
Let
§(t) = £;(t) + TR dgy

t)—l dt

defined on domain (£;). Then,

%E(g(t)c(t)) Xp(g(t)e(t)) + fund vi(9,8:(t),g(t)e(t))

dg
+ fund_vf|¢, TR _ (t),g(t)c(t)
()" dt

XH(g(t)C(t)) + fund_vf(¢,§(t),gc(t))

bhmlt_vf(H,gc(t)) + hmlt_vf(Jg(t),gc(t))

hmlt_vf(H + Jg(t)’gC(t)) s’
for t € domain (£,:).

14 This chapter is concluded with an example which has its érigins

‘in the theory of Yang-Mills fields (Harnad-Shnider-Vinet [1979}]).
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Specifically, Q = R® x RY with coordinates yb and x?, and the

lagrangian is given by

F2. = —¢ X2 + e xbxc
ij ijk'k abc 1" j
a _ *a b.c
Fok =Xt eapdY *k
-1 a.a _ 1 a .a
L="/2 FuFop = /a FysFss 1

15 One may organize this lagrangian in a more transparent form by
writing R® = R® x R® x R®; that is, by considering x? as the three

tuplet (x?,x?,x?) of vectors in R®. Then

a - _ a a
Fij = ey * (xg X x3)
a _ ,~ .a a
Fok = (xk) + (y X xk)

The last term of equation (14.1) becomes

a a
FRF®, = I Ik, X X, — €. .. x %
ij 1iJ L. i J ijk'k
i,J
= Xy X X2 — X3ll2 + WXy X K3 + X202 + lxz X x; + x3lt?
Flxy X x3 = M2 + lxs X %3 + Xal12 + ks X x2 + x
= 20y X Xz — x3l? + lxs X x; — XzM% + lxz X x5 — x111%)
so that
1 . 2 _ 1 2 2
L=z2lx, +yxxl - =(lx; x %9 — x3l1* + lxz X x; ~ Xl
2, k k 2 ,

+ Hxy X x3 — x1%) .

Note that F?szj has the peculiar property of being zero if and only
if either all of the vectors x;,%; and x3 are zero or if the vectors

X1,X2,X3 form a right handed orthonormal set.



16 This lagrangian is of the form of paragraph (3), with

Bl |y Lv i, 2, v Loext L) =2k -k
oy ax. dy ax. i
i i
. g . J .
By, x )|y = + %, — | =Z (y x %) * %4
dy ax. i
L i
B(y,x;) = i (y x %) + dx,
_ 1 2 2
V(y,xi) = g("xx X %3 — xX3l*® + llxz X x; — xll

+ Xy X x3 — 12 —= 2 lly % xinz) .
i

Clearly, B is of constant rank; in fact,
ker(B) = {& 27 - Ra} .
dy .
This observation provides a natural choice of the primary gauge group:
G% = R® with action ¢° on Q@ = R® x (R®)® by addition in the y

variables:

¢ (t, (v,x.)) = (v + t,x,) .
The action ¢° is free (and hence infinitesimally free), L(G°) = R® and
if § € R?

fund_vi(¢ ,§,(y,x;)) = ¢ g )

Wl(y,x,)

so ker(B) is spanned by the fundamental vector fields of $°.

Obviously,
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B(y,x;) (fund_vE($°,¢,(y,x;)) = Z (y x x;) - O

i
o

so ug = 0. Identifying 7¥Q with (R® x (R%®)3)%, and using coordinates

(yv,x.,pP,P.), one computes
i i

Jg(vs%;,p,p;) = (pdy + pidxi)[fund_vf(¢°,€,(y,xi))]

pg ,

énd so paragraph (5) implies that

Mo 7 Image(FL)

(3%)71(0)

{(v,%5P,p;) 5 Py = 0} .

The function H is easily computed:

E(y,%;,¥:%;) = % ? lx, 1% + V(y,ki)
FL(y,x,&,ii) = (y,xi,0,§<i +y X‘Xi) ,
so,
H(y,x.,0,p.) =‘l Sdp, -y x x. 1% + V(y,x.) .
i 1 2 ;g 1 i 1

The configuration space Q is naturally a riemannian manifold, and

Then pf : T*Q - ann(ker(B)) is given b§



so that

ﬂ(y,xi,p,pi

H(Yaxi,P’Pi

This completes t

17 The gauge v

X
PI(YintP’Pi) = (y’xisospi) ’

% ‘
) PL((Y:Xi,P,Pi -y X xi)) + (y,xi,O,y X xi)

= (v:%;,0,p)

)

H° w(y,xi,p,pi)

= ﬁ(y,xi,O,pi)

21 _ 2
=5 i Hpi y X Xi" + V(y,xi)
=15 p.2 =2y - (x. X p.)
2 i . i i
1 1
+ % (llx; X x2 — x30% + llxz X x; — Xall?

+ llxz X x3 — x112) .
he construct of the extended canonical formalism.
ector field algorithm procgeds as follows:

Eo={§-6—y;§em3‘.

Any two vector fields in Eg commute, and

[

g
Xyt 5;] hmlt_vt(-{H,J,})

hmlt_vf:—dH[ 9-]]

hmlt_vf

1t
T
iy
=
IQ
=
[ —

mmlt_ve| £ ¢t - (x; X pi)} i
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Thus, if one considers the natural action ¢! of SO(3) on the X,

variables as in paragraph (4.31), then
E, = fund_vf(¢°®,L(G%)) U fund_vf($?,L(SO(3))) .

Obviously, the Lie bracket of any two vector fields in E, is again in

E,. Although a direct computation will éhow that, if ¢ € L(S0(3)),
[y fund_ve($*,8)] = 0,

this equali%y ig a trivial consequence of the fact that H is invariant
under the action of S0(3) on T*Q. Therefore, the gauge vector field
algorithm terminates at E,, and one can take g = R?® x SO(3) as the

gauge group, with product action
6((t,A),(v,%,,P,p;)) = (v + t,A%,,p,Ap;) .

18 I claim that the evolution vector fields hmit_vf(H + Jg) are
complete. It suffices to show that if c(t) is an integral curve of
the vector field hmlt_vf(H + Jg ), and (t;,t2) € domain(c), then
c((t;,t2)) is contained in a compact set of T*Q. From the hamiltonian

directly,

%g (p © c(t)) =‘§ X, X Py -

As H + Jg is invariant under the action of S0(3) on T*Q, z Xs X py is
a conserved quantity of the flow of hmlt_vf(H + Jg)' Let its value on

the curve ¢ be a. Then, for some b € Rr?,

pe%c(t) =at +b.



98

Another converved quantity is H + Jg’ so that
(H + Jg) °c(t) =H®° c(t) + §(at +b) =k; ,

for some constant k;. Let ¢-(at + b) have minimum value k, on
[ti,t2]. The H ©° c(t) € k; - ka. An observation of H shows that the

set

{(y’xi’p’Pi) 3 H(Y)Xiaoypi) < ky — ka}

is compact. Since the image of [t;,tz] under p ° c is also compact,
c(t,,t2) is contained in the product of two compact sets. It follows
from paragraph (5.19) that the gauge equivalence classes of the

extended evolution are the orbits of the action of G on T*Q.

ts Finally, Mf = J—I(O): it is clear that J‘I(O) [ Mf, since 0 is a
quasiregular value of J, J_I(O) €M, and H is G invariant on J—I(O).

But also, M, < J—I(O), since the first secondary constraint set is

f

M;

1]

. wol _
{aq ; dH(aq)(Taqyo) 0 = 0}

. ) 0 -
{aq ; dH(aq)(fund_Vf(¢ ,L(G ),aq)) 0}

1]

i

{(y,xi,O,Pi) ; 28 (xi X pi) 0}

J oy .
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