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Abstract

Existing Internet of Things architectures rely on middleware (cloud services) to host coor-

dination logic among devices. This middleware is based on Event Based Systems where

the Broker architecture and the Publish/Subscribe design pattern are used to deal with het-

erogeneous environments and for decoupling purposes, being the MQTT protocol one of

the most extensively used Event Based Systems for Internet of Things Solutions.

Two prominent security issues in these type middleware are: possible network inter-

ruptions between devices and the middleware, and potentially compromised devices. This

thesis proposes Scoping and Execution Monitoring in Event Based Systems to cope with

possible network disconnections, and to deal with misbehavior of faulty or compromised

devices. I define a mathematical model for Event Based Systems where the interplay be-

tween Scoping and Execution monitoring is formalized, and empirically evaluate the per-

formance of these security mechanisms.
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Chapter 1

Introduction

The Internet of Things is an emerging domain characterized by the ability of devices to

connect to the Internet for various purposes, including data aggregation and coordination

among them. This concept has been widely adopted in different vertical markets, such as:

Home Automation, Connected Cars, Health Care, Manufacturing, etc. The main compo-

nent of an IoT architecture is the middleware.

The middleware makes available a notification service used by devices to communicate

with one another, and hosts their coordination logic (i.e., rules that orchestrate interaction

among devices). Additionally, the middleware may perform other tasks such as data ag-

gregation, access control to restrict access to services and data provided by devices, etc.

In this work, contributions are made to improve the communication and coordination logic

aspects of the middleware.

The notification service in the middleware, is usually implemented as an Event Based

System. These type of systems are commonly implemented by a combination of the broker

architecture and the Publish/Subscribe design pattern, both of which have been widely used

in distributed systems.

The broker architecture abstracts away the communication idiosyncrasy of low-level

networking details, so that components in distributed systems connected to heterogeneous

networking infrastructures can communicate with one another. Perhaps the most prominent

example of a broker architecture is the World Wide Web [13, §2.3], where web browsers

(i.e., clients) can communicate with different web servers (i.e., servers) through the com-

bination of Internet gateways and the Internet infrastructure itself (i.e., the broker). In this

scenario, clients and servers are not directly connected to the Internet, instead they are con-
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nected to local area networks via different networking technologies (e.g., Ethernet, WiFi,

3G, LTE, etc.), and they rely on Internet providers that offer gateways to the Internet.

In the context of the Internet of Things, a wide variety of networking technologies are

found. ZigBee, Z-wave, NFC, LPWAN, Thread and BLE are some examples of network-

ing technologies used to enable communication among resource constrained devices. Ad-

ditionally, IoT devices may also use conventional networking technologies (e.g., Ethernet,

WiFi, 3G, LTE, etc.) in order to access the Internet. This clearly shows that heterogeneity is

prominent in IoT systems, where massively distributed systems are built using IoT devices.

For this reason, it is only natural to use the broker architecture in IoT middleware.

The Publish/Subscribe design pattern is used to decouple parties involved in a commu-

nication. This is achieved by the way in which publishers, subscribers and an intermediary

entity, namely, the notification system interact with one another. Producers send events

to the notification system where the subscribers previously shown their interest to specific

events in form of subscriptions. In case a particular event is received by the notification

system, and a subscription to this event is found, the notification system will notify the cor-

responding subscribers about this event. In this sense, a publisher does not address events

to specific subscribers, nor does the publisher know their identities. Similarly, subscribers

do not know the identity of publishers, since they issue subscriptions to the notification

system. In this sense, publishers and subscribers can be added to the system, without major

repercussions, which results in high scalability potential.

In contrast, in a typical client-server communication, clients need to know the identity

or location of the servers in order to submit their requests. Consequently, every time a new

server is added or removed, all clients need to be reconfigured, which represents a problem

in terms of scalability.

In the Internet of Things, devices are constantly added or removed from the system,

thus scalability considerations have to be taken into account. The decoupling features of
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the Publish/Subscribe pattern offer better scalability potential, since devices do not need to

learn the identities or locations of other devices.

Prior work on securing the broker architecture and the publish subscribe design pattern

focus their attention on confidentiality of events [29], assume publishers to be honest [30],

and are based on standard considerations such as access control [12]. However, two security

issues that are prominent in the IoT, have not been considered.

Firstly, devices in IoT architectures are usually connected to the middleware via Inter-

net, which represents a single point of failure. Since coordination logic is usually hosted

in the middleware, any event that could interrupt communication between devices and the

middleware (network device failure, DDoS attacks, etc.) represents a threat for the whole

system. Although, a lot of interactions between IoT devices may be dispensable (e.g., if

motion is detected by the motion sensor, turn on the lights), some interaction may actually

be critical for safety or health purposes. For example, a smoke detector that interacts with

a thermostat, in such a way that, if high CO2 levels are measured by the smoke detector,

the thermostat could turn the furnace off, to help prevent toxic CO2 levels.

Secondly, it is unavoidable for IoT devices to be compromised. In October of 2016,

hundreds of thousands of compromised IoT devices were used to execute a DDoS attack

on Dyn, a domain name service provider. This attack disrupted access to major Internet

services, such as, Twitter, Paypal and Spotify [6]. Another example occurred in a casino in

North America, where a smart fish tank was compromised, allowing attackers to gain access

to the local network [8]. When devices are compromised, they might cause deviation in

coordination logic. For example, a compromised thermostat in a home automation system

might report erroneous temperatures, which could trigger actions from other devices (e.g.,

the furnace could turn down the temperature of the house during winter).

In this research project, two security mechanisms are proposed: scoping and execution

monitoring. Scoping is proposed as a countermeasure for network failures, and it refers
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to hosting coordination logic in multiple interconnected broker nodes. Devices connected

to a broker node create some form of network domain, called a scope, which can be used

to delimit and constrain the visibility of events produced or consumed by them. Addi-

tionally, scopes act as publisher of internal produced events, and as consumers of outside

notifications, which allows for interconnection of multiple scopes.

Each scope is capable of handling communication and coordination among internal

devices (and scopes). Additionally, scopes can be distributed in different network areas,

such that devices handling critical operations can be connected to a local scope, whereas

another scope, hosted in the Internet, can be used for interactions between a broader group

of devices. This way, even in the case that communication to the Internet is interrupted,

critical operations may still persist.

Scoping was originally proposed by Fiege et al. [17, 19, 18], where it is used as mech-

anism to facilitate engineering and coordinations of components in event based systems.

In their work, Fiege et al. define visibility of events in scopes in terms of a fixed visibil-

ity policy based on shared ancestors. In this thesis, scoping is considered from a security

perspective, and allows for more tailored visibility policies.

The second security mechanism proposed in this work is execution monitoring. Exe-

cution monitoring is an enforcement mechanism that works by monitoring execution steps

of some untrusted system. In [28], Schneider proposes execution monitoring to monitor

execution of programs defined as a sequence of actions. In his work, execution monitors

interpose themselves between the program being monitored, and the platform running the

program. These execution monitors enforce security policies by terminating the program

upon detecting a sequence of actions that violates them. An extension to Schneider’s work

is proposed by Ligatti et al. [23], where the execution monitors are not only capable of ter-

minating programs, but also of modifying the stream of events that the monitored program

sends to the underlying platform at run time.
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In the context of a traditional broker architecture, an execution monitors can be used

to monitor sequence of events propagated through one communication channel (e.g., from

a device to the middleware). This enables individual components of a distributed system

to be monitored, even if they cannot be controlled directly. Furthermore, by integrating

scoping and execution monitoring, execution monitors can additionally be used to moni-

tor communication channels between different groups of components (e.g., between two

scopes).

In this work, I demonstrate how the combination of scoping and execution monitoring

can be used to implement security policies to prevent leakage of sensitive information and,

execution of potentially dangerous behavior.

The specific contributions of this thesis are the followings:

1. I formulated a model for Event Based Systems (Chapter 3), that incorporates

Scoping an Execution Monitoring. This model allows the configuration of

Visibility Control rules of scopes by including brokering policies.

2. I demonstrated how the two protection mechanisms, scoping with brokering

policies, and execution monitoring, can be leverage to impose various forms

of visibility control (Section 3.4).

3. I conducted a case study where I demonstrate the use of scoping and execu-

tion monitoring to enforce security policies (Section 3.5).

4. I extended Mosquitto [25], an open source implementation of the MQTT

protocol [11], to support Scoping and Execution Monitoring (Chapter 4).

5. I mechanized the proposed model using PLT Redex [4] (Section 4.1).

6. I evaluated the performance of the extended version of Mosquito in terms

of Message Throughput (Chapter 5)
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Chapter 2

Background

In this chapter I introduce the concepts used as the basis of this thesis. Firstly, §2.1 intro-

duces the general structure of an IoT architecture, in terms of its main components: Mid-

dleware, IoT Devices and Gateways. Then, in §2.2, I provide a description of Event Based

Systems, which are based in the Event-Based cooperations model [19]. In §2.3 an overview

of the MQTT protocol is given, which is one of the most extensively used protocols used

in the Internet of Things. Finally, §2.4 presents the definition of an edit automaton, which

is used in this research project to realize Execution Monitoring.

2.1 IoT Architecture

The Internet of Things (IoT) is the concept of connecting any type of device to the Inter-

net. This includes cellphones, washing machines, thermostats, wearable devices, industrial

machinery, and pretty much anything we can think of. This concept has caught the at-

tention of numerous companies who are trying to come up with their own solutions for

the different vertical markets of IoT such as: Home Automation, Automotive, Healthcare,

Manufacturing, etc.

In the particular case of Home Automation systems, some of the most well known com-

panies who have released products and services related to this market, including Google

(Nest), Samsung (SmartThings) and Apple (HomeKit). Although their solutions are differ-

ent, they all involve the cooperation between the following components: Middleware, IoT

Devices, and Gateways.

Figure 2.1 illustrates the main components of an IoT architecture, and their connectiv-

ity. In the following sections, a description of each of these components is given.
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Middleware/Cloud Service

Gateway

IoT Devices

MQTT / CoAP / APIs

Z-Wave / ZigBee / BLE

MQTT / CoAP / APIs

Figure 2.1: IoT Architecture

2.1.1 Middleware

The middleware is implemented as an Event Based System, with a combination of the Bro-

ker architectural style and the Publish/Subscribe design pattern [13], to host the cooperation

logic among their devices. The Broker architectural style abstracts away the network id-

iosyncrasy of low-level network protocols such as ZigBee, Z-Wave, Thread, WiFi, etc.

This enables devices to communicate to one another seamlessly by relaying information

through a Broker. At the same time, this Broker makes available a notification system, that

propagates information in the form of events from one device (the producer) to the rest of

the devices (the consumers), so that they can react appropriately to these events.

The notification system is usually implemented by the Publish/Subscribe design pat-

tern, due to its high decoupling features. Decoupling refers to the independence between

publishers and subscribers, and is achieved by the way in which publishers, subscribers

and the notification system interact with one another. Publishers send events to the noti-

fication system where the subscribers previously shown their interest to specific events in

form of subscriptions. In case a particular event is received by the notification system, and

a subscription to this event is found, the notification system will notify the corresponding

subscribers about this event. In this sense, publisher does not address events to specific sub-

scribers, nor does the publisher know the identities of the subscribers. Subscribers do not
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know the identity of publishers, since they issue subscriptions to the notification system.

In IoT systems, the Publish/Subscribe design pattern is needed because otherwise com-

municating parties would need to know the existence (i.e., the network address or the iden-

tifier) of each other. Thus, every time a device was added or removed, all other devices

would need to be reconfigured. With the Publish/Subscribe design pattern, communicating

parties do not need to know of the existence of one another, which facilitates the addition

and removal of devices. This feature offers high scalability potential to the systems.

2.1.2 IoT Devices

The term IoT Device refers to any type of device such as thermostats, light bulbs, door

locks, medical equipment, industrial machinery, etc. that is capable to connect to the Inter-

net. Devices are categorized in Sensors and Actuators:

Sensors. This type of devices gather information about their environment, some examples

of sensors are: motion sensors and thermostats.

Actuators. This type of devices are used to execute actions, some examples of actuators

are: door locks and light bulbs.

Although many devices are capable of connecting to the Internet by themselves, some-

times the resources available to some of them are very limited. For example, a battery

powered motion sensor, with a limited supply of energy, cannot be connected to the In-

ternet through common mechanisms such as WiFi, which are very power hungry. Instead,

in constrained devices, different type of network protocols are implemented, which en-

able them to efficiently use their limited resources. Some examples of such protocols are:

ZigBee, Z-Wave, Thread and BLE.
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Addressee Initiated by Consumer Initiated by Producer
Direct Request/Reply Callback

Indirect Anonymous
Request/Reply Event-Based

Table 2.1: Cooperation Models

2.1.3 Gateways

Network protocols used by constrained devices, are not capable to communicate directly

with the Internet. In order to enable constrained devices to communicate with the middle-

ware, gateways are used, which are devices that acts as interpreters between two or more

different network protocols.

Although communication between gateways and the middleware is done via Internet,

the use of an application level protocol is necessary. Two of the most popular standard

application layer protocols used for the Internet of Things are: MQTT and CoAP. However,

some companies prefer using proprietary API for this type of communications.

2.2 Event Based Systems

Fiege et al. [20] define an event based system as a system in which its components com-

municate by generating/receiving event notifications, where an event notification is a data

representation that describes an occurrence of a particular event of interest, and components

can be either consumers and/or producers. In their work, Fiege et al. propose a taxonomy

of cooperation models, based on two important characteristics: 1) who is the initiator of the

communication (the consumer or the producer), and 2) whether the addressee is known or

unknown. This taxonomy distinguishes four cooperation models: Request/reply, Anony-

mous request/reply, Callback and Event-Based (see Table 2.1).

Request/reply: In this cooperation model, the consumer initiates the cooperation by re-

questing data and/or functionality from the provider, and in return, it expects
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data and/or an specific task to be done. This request is directly addressed

to the provider, and its identity is known. Additionally, in this cooperation

model replies are mandatory.

Anonymous request/reply: In this cooperation model, consumers initiate the cooperation

by requesting data and/or functionality. However, requests are not addressed

to specific providers. Instead, requests are delivered to an arbitrary (possibly

dynamically determined) set of recipients, and the identity of the recipient(s)

is not know a priory by the consumer. Additionally, in this cooperation

model one request may yield multiple responses.

Callback: In the callback cooperation model, consumers register at specific known providers

to be notified whenever some condition is met. The provider is responsible

of 1) maintaining the list of registered consumers, and 2) constantly evalu-

ating if the notifications conditions are met, and notify registered consumers

if necessary. In this sense, producers initiate the communication when the

a notification condition is met, however, identities of the consumers are

known a priori.

Event-Based: In the event based cooperation model, producers are the initiators of the

communication. Producers generate notifications addressed to no particular

recipient(s), whereas consumers express their interest on specific events in

the form of subscriptions. Providers are not aware of the consumers, which

relieves them from the task of maintaining a list of subscribers. Instead,

all dependencies and coordination between providers and consumers are

handled by an external entity (e.g., Broker). In this cooperation model,

components are “self-focused” in the sense that they know how to react

to input notifications, and publish updates about their own state, but never

publish a notification with the intention of triggering an action.
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Anonymous request/reply and event-based cooperation model are often confused, since

both cooperation models achieve anonymity between producers and consumers. However,

in the anonymous request reply cooperation model, the initiator of the communication (i.e.,

the consumer) expects data and/or functionality as a result of its request, which results in

dependency on external provided data. In the event-based cooperation model, the initiator

of the communication (i.e., the producer) does not publish information with the intention

of triggering actions and/or receiving data.

In an event based system, its components make use of the event-based cooperation

model which offers the highest level of decoupling between producers and consumers.

This type of systems are usually implemented by the Publish/Subscribe design pattern.

2.3 The MQTT protocol

MQTT [11] is a messaging transport protocol that makes use of the Publish/Subscribe

design pattern to provide one-to-many message distribution and decoupling features. In this

design pattern subscribers express their interest on specific events in forms of subscriptions,

and subscribers are the source of these events. According to [15], there exits three different

types of subscriptions systems: Topic-Based, Content-Based and Type-Based.

The MQTT protocol subscription system is of type Topic-Based, where subscription

on events is based on Topic Names. Topic Names in MQTT are UTF-8 encoded strings as

specified in [31], excluding encoding of code points between U+D800 and U+DFFF. One

special character used in topic names is the topic level separator (forward slash ”/”). This

character is used to add structure to the Topic Names and divides them into multiple levels.

However, the use of topic level separators is not mandatory. One example Topic Name

could be “smoke-detector/co-level”.

In MQTT, publishers publish events using Topic Names, whereas subscribers express

their interest on specific topics by using Topic Filters. A Topic Filter is just a regular Topic
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Name as described before, with the (non mandatory) addition of special characters known

as wildcards. Wildcards, allow subscribers to subcribe to multiple topics at once. The two

different wildcards as defined in [11] are:

Multi Level Wildcard. The number sign (#) is used to match an arbitrary number of levels

in a topic. For example, if a client (subscriber) subscribes to the Topic

Filter ”smoke-detector/#”, it would receive messages published under the

following Topic Names:

• smoke-detector/info/status

• smoke-detector/action/target-state

• smoke-detector/version

When only this wildcard is used as Topic Filter, it implies a subscription to

all Topic Names.

Single Level Wildcard. The plus sign (+) is used to match a single level in a topic. For ex-

ample, if a client (subscriber) subscribes to the Topic Filter ”smote-detector/+”,

it would receive messages published under the following Topic Names:

• smoke-detector/

• smoke-detector/version

On the other hand, this client would not receive messages published under

the following Topic Names:

• smoke-detector/info/status

• smoke-detector/action/target-state

Topic Names and Topic filters are mainly used to distinguish what event a certain sub-

scriber should be notified about. However, an event in the MQTT protocol not only consists
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Control Packet Name Value Description
Reserver 0 Reserved
CONNECT 1 Client request to connect to the Server
CONNACK 2 Connect acknowledgment
PUBLISH 3 Publish message
PUBACK 4 Publish acknowlegment
PUBREC 5 Publish received
PUBREL 6 Publish release
PUBCOMP 7 Publish complete
SUBSCRIBE 8 Client subscribe request
SUBACK 9 Subscribe acknowlegment
UNSUBSCRIBE 10 Unsubscribe request
UNSUBACK 11 Unsubscribe acknowledgment
PINGREQ 12 PING request
PINGRESP 13 PING response
DISCONNECT 14 Client is disconnecting
Reserved 15 Reserved

Table 2.2: MQTT Control Packet Types

of a Topic Name, but it also has an associated payload. The payload is used to carry the

actual application information to be used by the subscribers, and its data type is application

dependent.

The MQTT protocol works by exchanging messages called control packets, where six-

teen different control packets types are defined and are represented as a 4-bit unsigned

value. Table 2.2 shows a list of these control packets. Finally, the MQTT protocol de-

fines two different type of entities: MQTT Server (Broker), and MQTT Clients (Publishers

and/or Subscribers). The Server is on charge of maintaining the list of subscriptions, receive

event from the publishers, match event against subscriptions and send the corresponding

notifications. Clients simply send and/or receive events.

2.3.1 Quality of Service levels

In chapter 4, the implementation of scoping and execution monitoring on top of an open

source implementation of the MQTT protocol is described. To fully appreciate this imple-

mentation, particularly §4.2.2 and §4.3.3, it is paramount to understand in detail the Quality
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MQTT Client MQTT Server

PUBLISH

Notify subscribers

Figure 2.2: MQTT - QoS 0 - At most once delivery

MQTT Client MQTT Server

PUBLISH
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PUBACK

Store PUBLISH 

Release PUBLISH 

Figure 2.3: MQTT - QoS 1 - At least once delivery
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& Release PUBLISH
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Release PUBLISH & 
Store PUBREL 

Store PUBLISH 

PUBREL

PUBCOMP

Release PUBREL

Figure 2.4: MQTT - QoS 2 - Exactly once delivery
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of Service levels defined by the MQTT protocol.

In the MQTT protocol, three Quality of Service (QoS) levels related to the delivery

of events from publishers to subscribers are described. Illustrative examples of these QoS

levels are shown in Figures 2.2, 2.3, and 2.4, where the sender is assumed to be a MQTT

Client, and the receiver is assumed to be a MQTT Server.

QoS 0: At most once delivery. In this QoS level, the delivery of an event is not guaran-

teed, and it depends on the capabilities of the underlying network. In this

level no response is expected from the receiver, and the event arrives once

or not at all. An example of this QoS level is shown in Figure 2.2, where:

• The sender:

– Sends a PUBLISH packet.

• The receiver:

– Accepts the message and notifies subscribers

with matching subscriptions.

QoS 1: At least once delivery. This quality of service level guarantees the event to be de-

livered to the receiver at least once. However, the receiver could receive

multiple copies of the same event. An example of this QoS level is shown

in Figure 2.3, where:

• The sender:

– Sends a PUBLISH packet with a packet iden-

tifier.

– Stores the PUBLISH packet as until it receives

the corresponding PUBACK packet from the

receiver with the same packet id.
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• The receiver:

– Accepts the message and notifies subscribers

with matching subscriptions.

– Responds the PUBLISH packet with a PUB-

ACK packet with the same packet identifier.

QoS 2: Exactly once delivery. This quality of service level guarantees events to be deliv-

ered to receivers exactly once (loss or duplication events is unacceptable).

An example of this QoS level is shown in Figure 2.4, where:

• The sender:

– Sends a PUBLISH packet with a packet iden-

tifier.

– Stores PUBLISH packet until it receives the

corresponding PUBREC packet from the re-

ceiver with the same packet id.

– Responds the PUBREC packet with a PUB-

REL packet using the same packet identifier

than the original PUBLISH packet.

– Stores the PUBREL packet until it receives

the corresponding PUBCOMP packet from the

receiver with the same packet id.

• The receiver:

– Responds the PUBLISH packet with a PUB-

REC packet with the same packet identifier.

– Stores the PUBLISH packet until it receives

the corresponding PUBREL packet.
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– Responds the PUBREL packet with a PUB-

COMP packet with the same packet identifier

than the original PUBLISH packet and noti-

fies subscribers with matching subscription.

2.4 Edit Automata

Security automata have been widely used for monitoring the execution of programs. In

[28], Schneider proposes the notion of security automaton, which is capable of interposing

itself between an untrusted program and the platform on which it runs. This automaton is

used to enforce security policies and runs in parallel with the monitored program, analyzing

the sequence of actions the program executes. If the monitor recognizes a sequence that

violates its policy, it terminates the program. Ligatti et al. [24] [23] propose an extension to

the security automaton, called edit automata, capable not only of terminating a program in

case of a violation, but also of modifying the stream of events that the monitored program

sends to the underlying platform at run time.

A system (program) is specified via a set of actions (or events)A, and an execution σ is

a finite sequence of actions. The set of all finite-length sequences of actions in the system

is denoted by A∗, having σ and τ as typical members of this set. The concatenation of two

sequences is denoted by τ;σ , and ε represents the empty sequence.

An edit automaton is described as a triple of the form (Q,q0,δ ), where Q is the possi-

bly countably infinite set of states of the automaton, and q0 represents its initial state, such

that q0 ∈ Q. The single-step transition relation in the automaton is denoted by (q,σ)
τ→E

(q′,σ ′), where σ represents the sequence of actions the monitored program wants to exe-

cute, q is the current state of the automaton, σ ′ and q′ represents the sequence of actions

and the new state of the automaton after it takes a single step. The input sequence σ is not

observable to the rest of the world (i.e., it is only visible to the edit automata), and τ is an
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observable sequence of at most one action observable to the rest of the world.

The total transition function δ of an edit automaton has the form δ : Q×A → Q×

(A∪{ε}). Given a current state q and an input action a, if δ (q,a) = (q′,a′), it specifies

the next state q′ of the automaton, and the action a′ to be inserted into the output stream

(i.e., a′ is made observable) without consuming the input action a. On the other hand, if

δ (q,a) = (q′,ε), it represents that a should be suppressed, that is, a is consumed without

being made observable.

Formally, given a single step (q,σ)
τ→E (q′,σ ′) for the edit automata, and having a and

a′ representing typical members ofA, the transition relation is defined by the following set

of transition rules:

• E-Ins. Insert an action into the output stream.

◦ Precondition: σ = a;σ ′∧δ (q,a) = (q′,a′)

◦ Effect: (q,σ)
a′→E (q′,σ)

◦ Description: To insert an action into the output stream, two conditions have to be

met:

1. a is the first action in the execution σ .

2. Given the current state q of the automaton, δ (q,a) = (q′,a′) is defined,

where q′ is the next state of the automaton, and a′ is the action to be

inserted.

Consequently, a′ becomes observable to the world, and σ represents the remaining

sequence of actions the monitored program wants to execute, which means that the

input action a is not consumed.

• E-Sup. Suppress one input action.

◦ Precondition: σ = a;σ ′∧δ (q,a) = (q′,ε)

◦ Effect: (q,σ)
ε→E (q,σ ′)

◦ Description: An input action is suppressed, when the following conditions are met:
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1. a is the first action in the execution σ .

2. Given the current state q of the automaton, δ (q,a) = (q′,ε) is defined,

this represents that the input action a should be suppressed.

Consequently, a is consumed from the input sequence of actions σ without being

made observable, and σ ′ represents the remaining sequence of actions the monitored

program wants to execute.

Edit automata is the cornerstone of execution monitoring as defined in this thesis, al-

though a slightly different characterization is used in this work. In the next chapter, the

formalization of the mathematical model for event based systems is given, where edit au-

tomata is revisited in §3.3.2.

My contributions to the security of IoT middleware are contained in the three following

chapters. Chapter 3 introduces a mathematical model for event based systems, where the

interplay between scoping and execution monitoring is formalized. Chapter 4 describes

two implementations conducted during the research project. Finally, chapter 5 contains

the results of the performance evaluation of the security mechanisms, based on one of the

implementations described in chapter 4.
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Chapter 3

Event Based Systems Model

This chapter introduces a highly configurable mathematical model for Event Based Sys-

tems. The model defines the interplay between both security mechanisms: execution mon-

itoring and scoping. Execution monitoring is used to monitor the behavior of potential

malfunctioning or compromised devices, and scoping enables the system administrator to

tailor events propagation according to her needs.

This chapter is organized as follows. In §3.1 a description of the Threat Model and

Security Assumptions of the research is given. §3.3 describes the operational semantics of

the model. §3.4 illustrates how it is possible to configure the model to enforce different

types of visibility control.

3.1 Threat Model and Security Assumptions

As described in [19], the event-based cooperation model involves three different types of

entities: producers, consumers and a notification service. Publishers initiate the communi-

cation by sending information to the notification service in form of events, however these

events are not addressed to any particular recipient (or set of recipients), instead, the no-

tification service is in charge of relaying events from producers to consumers based on

subscriptions. Consumers express their interest on specific events by issuing subscriptions

in the notification service, and when a published event matches one consumer’s subscrip-

tion, the service system relays this event to the interested consumers. Since notifications

are not directed to particular consumers, a consumer may receive events from many pub-

lishers. Additionally, these entities are connected to one another through some form of

network connection.
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In the context of Internet of Things, devices may act as publishers, or subscribers,

or both. The notification services is made available by the middleware, and devices are

connected to the middleware through some form of network connection. In the following

paragraphs, the threat model and the security assumptions in which this research is based

are described in terms of the aforementioned entities.

Middleware. The middleware is assumed to be trustworthy. All events relayed by the

notification service embedded in the middleware are assumed to be integral.

Devices. Devices are corruptible. This corruption affects the publication of events, thus,

events published by corrupted devices should not be trusted. On the other

hand, subscriptions are registered on the middleware, which is trusted. Once

registered, subscriptions are not affected by the corruption of devices.

Network Connection. It is also assumed that network connection devices and the middle-

ware may fail (due to DDoS attacks, a faulty network device, etc.).

The goal of this research project is to 1) offer the ability to detect and react appropriately

to potentially malicious events, and 2) preserve critical operations among devices in the

event of an interruption of a network connection.

3.2 Security Mechanisms

In order to deal with the threat mode described in §3.1, a number of security mechanisms

are incorporated in the model. In the following paragraphs, a high level description of such

security mechanisms is provided.

Scoping. To respond gracefully to possible network failures, a notification service based

on a network of interconnected scopes is proposed. Scopes can be seen

as independent brokering nodes capable of handling communication among
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smaller groups of devices. To maintain communication between devices

in charge of critical operations (e.g., safety related devices), these devices

could belong to the same scope. This particular scope could be hosted in

the local area network with respect to its corresponding connected devices.

A second scope, connected to the former scope, and hosted in a different

network area (e.g., Internet) could be responsible of handling supportive

interactions among a broader group of devices. This way, even if commu-

nication between the two scopes is interrupted (e.g., Internet connection is

lost), all critical operations hosted in the local area network will persist.

The term scoping is inherited from previous work of Fiege et al. [17, 19, 18].

In their work, Fiege et al. use scopes in event based systems for engineering

purposes, where clients (i.e., publishers and subscribers) and scopes are or-

ganized in a hierarchical structure. The visibility of events published in one

scope is then delimited by the configuration of the hierarchical structure, in

a similar fashion than the visibility of variables in a statically scoped pro-

gramming languages is delimited by the scope in which they are declared.

In this work, scoping is adopted not only as a security mechanism to counter

possible network disconnections, but also to delimit the visibility of events,

feature that can be used for confidentiality and integrity purposes.

Execution Monitoring. Execution monitoring is a special application of execution moni-

tors [28]. It can be used to detect behavioral anomalies on publications and

notification of events in order to react appropriately. Additionally, using

Execution Monitoring, it is possible to induce two popular features in Event

Based Systems: Event Filtering and Event Mapping.
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3.3 Modelling Distributed Event Systems

In an event based system, publishers, subscribers and the notification service interact with

one another by:

1. Issuing subscriptions to express interest on specific events (subscribe).

2. Canceling subscriptions (unsubscribe).

3. Transferring events from publishers to the notification service, and from the

notification service to subscribers (transmit).

4. Queuing up notifications for all subscribers who issued a corresponding sub-

scription (broker).

I categorized these interactions into two groups. The first group is composed of the

subscribe and unsubscribe operations, and is called Administrative tasks. The second

group is composed of the transmit and broker operations, and is called Event transmission

tasks.

In this research, it is assumed that subscriptions are previously configured by the sys-

tem administrator, as such, the model only takes into account transitions caused by Event

transmissions tasks.

3.3.1 Preliminaries

Suppose R⊆ S×S is a binary relation over S. Then R(a,b) is written to assert that (a,b) ∈

R. The power set of S is written as 2S.

3.3.2 Execution Monitoring

In this work, an edit automaton (EA) is defined as a quadruple 〈Σ,Q,q0,δ 〉, such that Σ

is a finite set of symbols, Q is a countable set of states, q0 ∈ Q is the initial state, and
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δ : Q×Σ→ Q×Σ∗ is the transition function. Given a current state q and an input symbol

a, δ (q,a) is a pair (q′,w), where q′ is the next state, and w is a sequence of output symbols

generated by the transition. If the output sequence is the empty string (ε), then the input

event is “suppressed.”, otherwise the output sequence is inserted into the output stream,

making it observable to the world. Throughout this chapter, a, b and c denote typical

members of Σ, and u, v and w denote typical members of Σ∗.

In §2.4, the original characterization of edit automata [24] was introduced, where the

single-step transition of the autoamata is defined by two transition rules: E-Ins and E-

Sup. E-Ins is used to insert an event into the output stream (i.e., make it visible) without

consuming the input event, and E-Sup is used to consume and suppress the input event

without making it observable to the world. One natural question to ask is whether or not

both characterizations are equivalent. In preparation for this discussion, consider EA to

be used to refer to the original edit automata definition, and EA∗ is used to refer to the

characterization introduced in this section.

Observe that EA is simply a special case of EA∗, where the output sequence of events

is composed of at most one event. On the other hand, in EA, one input event in the au-

tomaton can be either suppressed without inserting a single event into the output stream,

or it can be used to generate an arbitrary long sequence of events, where each event in the

generated sequence requires one state transition in the automaton. This means that both

characterizations of edit automata can be used to suppress events, or to generate sequence

of events, with the only difference being the number of transitions required for the second

task by each of them. In this sense, both EA and EA∗ are equivalent. In this work, the

characterization of EA∗ is preferred because of the possibility of generating sequence of

events on real time.

3.3.3 Ontology

A system schema (or simply a schema) χ is a quintuple 〈CG,EP,BP,sub,v〉:
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• CG is a connection graph of the form 〈D,S, link〉:

– D and S are two disjoint, finite sets of entities. D is the set

of devices, and S is the set of scopes. Each scope represents

a broker. To denote D∪S, E(χ) is written.

Devices represent IoT Devices in an Internet of Things sys-

tem. The term “scope” is inherited from previous work [17,

19, 18], and each scope represents a broker, or more pre-

cisely, a server process that passes along messages from de-

vices publishing events to other devices subscribed to such

events. The term entity is used to refer to either a device or

a scope, and each entity represents a node in the connection

graph. Typically, each broker runs on a dedicated machine

in the network, however multiple brokers may be executed

in one single machine, and each of them is represented as an

independent scope in the connection graph.

– link ⊆ E ×E is a binary relation over entities. It represents

network connections. The binary relation link satisfies two

additional requirements: (a) link is symmetric but irreflexive;

(b) link∩ (D×D) = /0.

In other words, the connection graph can be seen as a loop-free undirected

graph, with vertices labelled as either devices or scopes, so that devices are

never adjacent to one another. Furthermore, link induces four binary re-

lations: publish = link∩ (D×S) captures device-to-broker links, notify =

link∩ (S×D) captures broker-to-device links, bridge = link∩ (S×S) cap-

tures broker-to-broker links, and monitored = link \ notify captures links

with a broker as the destination.
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Intuitively, the connection graph is used to define devices, scopes, and con-

nections between them, which represents IoT devices, brokers, and network

connections in a real IoT system.

• The event policy EP is a quadruple 〈Σ,Q,q0,∆〉:

– Σ, Q, and q0 are the components of an EA. Σ is the set of

events (more precisely event topics) that can be transmitted

in the system.

– ∆ : monitored→ (Q×Σ→Q×Σ∗) assigns an EA transition

function to each monitored link.

More specifically, the EA M(x,y) = 〈Σ,Q,q0,∆(x,y)〉 is the EA that trans-

forms the events sent from x to y.

The event policy is used to define what execution monitors will be used,

and the network connections each of them will monitor. This component

represents a configuration defined by the system administrator, who is re-

sponsible for configuring the IoT system.

• BP is the brokering policy, which is a structure of the form 〈T , type,allow〉:

– T is a finite set of link types.

– type : link→T assigns a link type to each link.

– allow⊆T ×T is a binary relation defined over T . If allow(t1,

t2), then a broker is allowed to pass along an event it receives

from a link of type t1 to a link of type t2.

The brokering policy BP induces a ternary relation propagate⊆ E ×E ×E ,

so that propagate(x,y,z) iff link(x,y), link(y,z), and allow(type(x,y), type(y,

z)). That is, propagate(x,y,z) asserts that an event passing through link
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(x,y) is allowed to be further propagated by the broker y through the link

(y,z).

Intuitively, the brokering policy represents the visibility control rules con-

figured by the system administrator, who uses the configuration to delimit

the propagation of events in the system.

• sub : notify→ 2Σ assigns a set of events to each scope-to-device link. Intu-

itively, sub(x,y) is the set of events subscribed by device y in scope x.

This component of the schema is used to represent the subscriptions of all

devices in the system.

• v is a partial ordering defined over the set of annotated tasks. Intuitively,

the dynamics of the system is modelled as the generation and discharging

of tasks. These tasks are “queued up” in a work list within the system state

for further processing. A task τ is defined via the following grammar.

τ ::= transmit(x,y,a) | broker(x,y,w)

where x,y ∈ E , a ∈ Σ, and w ∈ Σ∗. To denote the set of all tasks defined for

schema χ , TKχ is written.

An annotated task is a construct of the form τ[tgen, tpub], in which the task

τ is annotated with two timestamps (i.e., natural numbers), (i) tgen, the gen-

eration time of τ , and (ii) tpub, the generation time of the event publication

task from which τ is derived. The set of all annotated tasks for schema χ is

denoted by ATχ , and α is a typical member of ATχ .

By imposing the partial ordering v over ATχ to indicate how tasks are pri-

oritized, one can simulate different quality-of-service (QoS) concepts (see

§3.3.6 for details). In particular, if α v α ′, then α will be processed before
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α ′. The annotation of tasks allows v to be formulated in terms of times-

tamps (e.g., FIFO).

In IoT systems, devices and brokers are connected to one another through

different types of network technologies. The speed at which events can

be propagated through the different network connections, depends on the

underlying network technologies used. The partial ordering v is used to

simulate different QoS assumptions (see §3.3.6), which are assumptions

about the relative speed of network connections. In other words, the par-

tial orderingv is used to account for different network speed in the network

connections of the system.

3.3.4 System States

Given a schema χ , a system state γ is a triple 〈t,ST,WL〉:

• The system state tracks a global clock, for which t ∈ N is the current time.

The clock is used within the model for producing timestamps.

• ST : monitored→ Q is a function assigning an EA state to each link that is

monitored by an EA. In particular, ST(x,y) is the current state of M(x,y),

the EA guarding link (x,y).

• The work list WL ⊆ ATχ is a finite set of annotated tasks. In the follow-

ing, the predicate select(α,WL) asserts that α is a minimal element in WL

according to v. Note that for a given WL there may be multiple annotated

tasks satisfying the select predicate. As usual, nondeterminism is implied in

such cases.

Let Γχ be the set of all system states as defined above. γ denotes a typical member of

Γχ . The initial state of a system is γinit = 〈0,ST init, /0〉, where ST init(x,y) = q0 for every
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(x,y) ∈ monitored (i.e., the initial state of all execution monitors is q0).

3.3.5 State Transition

Given a schema χ , a state transition relation is defined by · →χ · ⊆ Γχ ×Γχ . Intuitively,

γ →χ γ ′ means that γ ′ is a successor state of γ . The transition relation is defined by the

following set of transition rules, which specify the condition under which γ →χ γ ′, where

γ = 〈t,ST,WL〉, and γ ′ = 〈t ′,ST ′,WL′〉. In the following specification, the following con-

vention is followed by default, unless the rules explicitly say otherwise: t ′= t+1, ST ′= ST

and WL′ = WL.

• T-Publish. Generate an event publication task.

◦ Precondition: publish(x,y), and a ∈ Σ.

◦ Effect: WL′ = WL∪{ transmit(x,y,a)[t, t]}

• T-Notify. Consume an event notification task.

◦ Precondition: select(α,WL), α = τ[tgen, tpub], τ = transmit(x,y,a), and notify(x,y).

◦ Effect: WL′ = WL\{α }.

• T-Deliver. Transmit an event over a link, and apply execution monitor to the transmitted

event.

◦ Precondition: select(α,WL), α = τ[tgen, tpub], τ = transmit(x,y,a), and monitored(x,y).

◦ Effect: Let δ = ∆(x,y) and (q,w) = δ (ST(x,y),a). Then ST ′(x,y) = q, and WL′ =

WL1∪WL2, where:

WL1 = WL\{α }

WL2 =


{broker(x,y,w)[t, tpub]} if w 6= ε

/0 otherwise

• T-Broker. Process a sequence of received events to create further transmissions.

◦ Precondition: select(α,WL), α = τ[tgen, tpub], and τ = broker(x,y,aw), such that a ∈

Σ and w ∈ Σ∗.
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◦ Effect: Let Z = {z ∈ E | bridge(y,z)∨ (notify(y,z)∧ a ∈ sub(y,z))}. Then WL′ =

WL1∪WL2∪WL3, where:

WL1 = WL\{α }

WL2 =


{broker(x,y,w)[t, tpub]} if w 6= ε

/0 otherwise

WL3 = { transmit(y,z,a)[t, tpub] |

z 6= x∧ z ∈ Z∧propagate(x,y,z)}

3.3.6 Quality-of-Service Assumptions

The partial ordering v is used for simulating different QoS assumptions. These QoS as-

sumptions are essentially assumptions about relative network speed in the system, as con-

currency leads to nondeterminism in the ordering of events observed by an execution moni-

tor. To illustrate howv can be used for reflecting QoS assumptions, the following example

called normal QoS is specified through the definition of a partial ordering vn.

Intuitively, normal QoS is intended to capture the following:

1. Brokering tasks (broker( , , )) are carried out in the broker process, and

thus it is executed “intantaneously.”

2. Devices are connected to brokers via fast network connections (e.g., LAN).

The order of event publication by different devices connected to the same

broker is therefore preserved.

3. The network connections between brokers (i.e., bridges) have unpredictable

speed (e.g., WAN). Although messages passing through a link will be de-

livered in the same order in which they are transmitted, messages passing

through parallel links will travel at unpredictable relative speed.
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To capture the intuition above, the normal QoS is captured in a partial orderinvn. Suppose

α = τ[tgen, tpub] and α ′ = τ ′[t ′gen, t
′
pub] are two annotated tasks. The partial orderingvn over

annotated tasks is defined, so that α vn α ′ when one of the following holds:

Norm-1 τ is a brokering task and τ ′ is a transmission task.

Norm-2 τ = transmit(x,y,a) and τ ′ = transmit(x,y,b) for some x,y∈ E and a,b∈ Σ,

and tgen ≤ t ′gen.

Norm-3 τ = transmit(x,z,a) and τ ′ = transmit(y,z,b) for some x,y ∈ D and z ∈ S ,

and tgen ≤ t ′gen.

The following are some observations about the definition above:

• Since Norm-1 ensures that brokering tasks receive higher priority than trans-

mission tasks, and T-Broker introduces at most one brokering task after

consuming a brokering task, it is a state invariant that there is at most one

brokering task in the work list. Thus there is no need to impose further

ordering among brokering tasks.

• The effect of Norm-1 is that, when an event is delivered to a broker, broker-

ing will occur “instantaneously,” leading to the generation of further trans-

mission tasks in the work list. Event transmission will only resume after the

brokering of a delivered event is complete.

• Norm-2 ensures that a communication link delivers events on a first-come-

first-serve basis. In other words, when events travel through a communica-

tion link, they are delivered in the same order in which they are transmitted.

• Norm-3 ensures that, when multiple publishers are linked directly to a bro-

ker, the events they publish will arrive at that broker in the order of publica-

tion.
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Other than the guarantees above, the relative speed of the communication links may vary

nondeterministically, and arbitrary interleaving may occur to event transmissions.

3.4 Visibility Control

This chapter demonstrates how the two protection mechanisms, brokering control and exe-

cution monitoring, can be leverage to impose various forms of visibility control.

3.4.1 Visibility Control via Brokering Policies

The most liberal brokering policy is BP0 = 〈T0, type0,allow0〉, where T0 is a singleton

set {t0}, type0 maps every link to t0, and allow0 = {(t0, t0)}. This trivial brokering policy

allows every event received from a link to be forwarded to another link. This set-up is

essentially the bridge feature of Mosquitto [25]: a bridge connects two MQTT brokers, so

that the events received by one broker are made visible to the other broker. This liberal

brokering policy, however, suffers from the following shortcoming. The brokers connected

by bridges form a single scope of events. There is no regulation of what events are visible

to which subscribers, making it difficulty to confine the visibility of sensitive events (e.g.,

personal health alerts). Imposing brokering policies more restrictive than BP0 allows us to

regulate the flow of information, as we illustrate in the following.

3.4.1.1 Information Flow Control

Brokering policies allow us to impose a form of information flow control in the style of the

Bell-LaPadula (BLP) model [22]. The basic idea of the BLP scheme is that information

sources (e.g., publishers) and information consumers (e.g., subscribers) are labelled with

security labels (e.g., unclassified, confidential, secret, top secret). These security labels

form a lattice structure, and is thus partially ordered. BLP is essentially an access control

model that forbids “reading up” and “writing down” [27]. So information may only flow

from “low” information sources to “high” information consumers.
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In the context of Event Based Systems, an event publication is a “write,” and an event

subscription can be considered a “read.” Rather than assigning security labels to entities, a

more uniform and flexible approach is used to assign security labels to links. The key idea

is that, when a broker y receives an event from a link (x,y), y is allowed to propagate the

event to a subsequent link (y,z) if the security label of the second link is at least as high

as the security label of the first link. Consequently, the semantics of assigning a security

label t to a link is that events flowing through that link comes from sources with security

labels lower than or equal to t. When an event is transmitted through the system, it goes

through links with monotonically increasing labels t1 ≤ t2 ≤ t3 ≤ . . .. More specifically,

one can configure the brokering policy BP = 〈T , type,allow〉 as follows to control the flow

of information within the system.

BLP-1 Let (T ,≤) be a partially ordered set of security labels.

BLP-2 The function type assigns a security label to each link, in such a way that

type(x,y) ≤ type(y,z) whenever y ∈ D. That is, a notification link of a de-

vice y must have a security label no higher than the security label of every

publication link of y. In other words, the device is “reading down” through

the notification link, and “writing up” through the publication link.

BLP-3 Define allow so that allow(t1, t2) if and only if t1 ≤ t2. That is, an event

flowing through a link (x,y) with a security label l will only be propagated

to a link (y,z) with a security label h at least as high as l.

With the scheme above, successive links that transmit an event will have monotonically

increasing security labels. This observation is formalized as follows.

A sequence x0x1 . . .xn of entities in CG is called a flow path if (a) (xi,xi+1) ∈ link for

0 ≤ i < n, (b) for 0 < i < n, if xi ∈ S, then xi−1 6= xi+1 and propagate(xi−1,xi,xi+1). A

flow path is a flow route when none of the entities other than the two ends (i.e., x1, x2,
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. . . , xn−1) is a device. A flow path is a potential path of information flow through the

system. Intermediary entities along a flow path can be devices which read a message and

then propagate information by publishing a correlated message. A flow route is a flow path

for which the intermediary entities are all scopes.

With the way allow is defined (BLP-3), type(xi−1,xi) ≤ type(xi,xi+1) when a broker

xi relays a message from link (xi−1,xi) to link (xi,xi+1). Thus a message passes through

links of monotonically increasing security labels as it travels through a flow route. A flow

path is essentially the concatenation of flow routes for which the concatenation points are

devices. The definition of type (BLP-2) ensures that monotonicity is preserved by such

concatenation.

The administrator of the system may have some preconceived ideas about what flow

paths (resp. routes) are permitted. An important validation task is to ensure that the config-

uration of the connection graph and the brokering policy does not violate her expectation.

Given a connection graph CG = 〈D,S, link〉, one can use a variant of the Floyd-Warshall

algorithm [14, §25.2] to compute whether there is a legitimate flow path between each pair

of entities (more precisely, between each pair of links). The algorithm runs in O(M3) time,

where M = |link|. The algorithm can be adopted to identify either flow paths or flow routes.

Such an analysis allows us to debug the topology of the connection graph and the assign-

ment of security labels, so as to ensure that devices that are supposed to communicate with

one another can do so, and flow paths that are not supposed to exist are not accidentally

enabled. Such an algorithm is described in full details in appendix A.

3.4.1.2 Component Architecture

The modular distributed event-based systems proposed in [17, 18, 19] is the idea that bro-

kers and devices are organized into a hierarchy. This hierarchy is used to promote modular-

ity in the engineering and designing of distributed systems, based on event based systems.

Devices connected to one broker are bundled together to form a component, which delim-
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Figure 3.1: Component Architecture

its and constrains the visibility of events produced or consumed by them. Additionally,

components act as publisher of internally produced events, and as consumers of outside

notifications. This allows for further bundling, such that components can be bundled to-

gether to form higher-level components. This hierarchical grouping of components to form

higher level components allows distributed systems to be constructed in a modular manner.

The component architecture hierarchy is specified through a parenthood relation, parent

⊆ E ×E . Intuitively, parent(x,y) asserts that y is a parent of x. Two further restrictions

apply to the specification of parent. First, a device is never a parent of any entity. Second,

parenthood chains never form a cycle, not even a loop (i.e., a loop arises when an entity is

its own parent).

Each broker bundles together a number of publishers, subscribers and children brokers,

in order to provide a communication channel among them. Figure 3.1 illustrates a directed

graph representation of a component hierarchy using six brokers (A, B, C, D, E and F)

and six devices (1, 2, 3, 4, 5 and 6). In Figure 3.1, an arrow coming from an entity x to

another entity y represents the relation parent(x,y). Messages published in a broker x are

visible in another broker y, if and only if x and y share a common ancestor in the parenthood

hierarchy. For example, an event published by device 1 should be visible in brokers B, E

and F, whereas an event published by device 3 should be visible in all brokers. To simulate
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this model, it is possible to configure the brokering policy BP = 〈T , type,allow〉 as follows:

• Let T = {up,down}.

• link = {(x,y) ∈ E ×E | either parent(x,y) or parent(y,x)}

• The function type reflects the parenthood relation, so that type(x,y) = up if

parent(x,y), and type(x,y) = down otherwise.

• Define allow so that allow(t1, t2) holds unless t1 = down and t2 = up. Ef-

fectively, a message can move “up” the hierarchy, and then “down”, but

never move “up” again after it has moved “down.” In other words, a broker

can propagate a message form a parent to a child (i.e., allow(down,down)),

from a child to another child (i.e., allow(up,down)), and from a child to a

parent (i.e., allow(up,up)), but never from a parent to another parent (i.e.,

allow(down,up)).

The above scheme ensures that events published in a scope x are visible to subscribers in

another scope y if and only if x and y share a common ancestor in the hierarchy. To see

this, observe that a flow route from one device to another will only go from “up” to “down”

but not vice versa. This essentially means that the flow route will first reach a common

ancestor of the two devices before reaching its destination. Thus the sharing of a common

ancestor determines visibility.

A directed acyclic graph (of which the parenthood hierarchy is a special case) forms

a conjoined forest whenever the following condition holds: There is at most one directed

path from any given node to any other node in the graph. Figure 3.2 illustrates an example

of a directed acyclic graph that is not a conjoined forest, whereas Figure 3.3 illustrates an

example of a conjoined forest. Notice that all conjoined forest are directed acyclic graphs,

but the opposite does not hold. Intuitively, in a conjoined forest, even though “trees” may

share branches, duplicate event delivery and circular transmission are not possible. In the

following, we consider only parenthood hierarchies that are conjoined forests.
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Figure 3.2: Directed Acyclic Graph

Figure 3.3: Conjoined Forest
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3.4.1.3 Discussions

In §3.3.3, the brokering policy is introduced as a mechanism to define the visibility of

events based on types associated to links. A different approach to define visibility could be

articulated in terms of links, such that the administrator was able to define what links are

able to propagate events to other specific links in a link by link fashion. In this work, the

type-based brokering policy is used because of following considerations.

Firstly, it is more likely that the system administrator would want to work with the more

abstract notion of types than to work with brokering policies on a link by link basis. Under

this link-based formulation, every time a link is introduced, the administrator would have

to reformulate the brokering policy. On the other hand, with the type-based formulation,

when a new link is introduced, no change to the brokering policy is needed. All it takes is

for the administrator to assign a type to the new link.

Secondly, the link-by-link formulation is subsumed by the type-based formulation. If

every link in the system is assigned a distinct type, then the link-based formulation can

be “emulated” by the type-based formulation. In this sense, any brokering policy defined

under the link-by-link formulation, can also be defined under the type-based formulation,

which means that no expressive power is lost by working with types rather than links.

3.4.2 Visibility Control via Execution Monitoring

Event filtering and event mapping are popular visibility control mechanisms in distributed

event-based systems. They are featured in the model of Fiege et al. [17, 19], and imple-

mented in Mosquitto [25]. We demonstrate that these two mechanisms are special cases of

execution monitoring.

3.4.2.1 Event Filtering

Some events are used for coordination logics that belong to the internal working of a dis-

tributed software component. Publications of such events should not be visible outside of
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the component because of confidentiality considerations, and subscriptions of these events

should be invisible to the component’s clients because of integrity considerations.

Suppose E ⊆ Σ is a subset of events that are allowed to pass through a link. Define

the event filtering transition function filter(E) so that δ (q0,a) = (q0,a) if a ∈ E, and

δ (q0,a) = (q0,ε) if a 6∈ E. By setting ∆(x,y) = filter(E), only events in E will be transmit-

ted along the link.

Event filtering leads naturally to the notion of event “import” and “export” for compo-

nent architectures such as the one presented in §3.4.1.2. A scope x can present an interface

to each parent scope y. The interface consists of a set Eimport of events that x is willing to

import from y, and a set Eexport of events x is willing to export to y. If the publication of

an event in Eexport is visible in x, then it will also be visible in y. If the subscription of an

event in Eimport is visible in x, then it will also be visible in y. To achieve the above, we set

∆(x,y) = filter(Eexport), and ∆(y,x) = filter(Eimport).

3.4.2.2 Event Mapping

Event mapping is the transformation of events from one naming scheme to another naming

scheme when they are transmitted along a link. Event mapping is particularly useful for

presenting an alternative interface of a distributed software component to a client compo-

nent, often for “gluing” purposes or for information hiding. Suppose f : Σ→ Σ is a function

that renames events. Define the event mapping transition function mapper( f ) : Q×Σ→

Q×Σ∗ such that mapper( f )(q0,a) = (q0, f (a)). That is, the EA remains in state q0 at all

time, and output f (a) when the input event is a. Setting ∆(x,y) to mapper( f ) will cause all

events passing through link (x,y) to be renamed according to f .

3.4.3 RBAC Based Visibility Control

The combination of publish/subscribe middleware and Role-Based Access Control (RBAC),

proposed in [12], is used to delimit the events that clients (i.e., publishers and subscribers)
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are able to publish and subscribe to. The idea is that publishers and subscribers are as-

signed to roles, and each role is associated to a set of events that it can publish, and to a set

of events that it can subscribe to. In this section, it is shown how the different components

of the model can be configured to support this form of RBAC, where roles are represented

by scopes.

Let R be the set of roles in the system, then the set of events that members of each

role r ∈ R can publish is denoted by pub(r), and the set of events that members of each

role r ∈ R can subscribe to is denoted by sub(r), such that pub(r) ⊆ Σ and sub(r) ⊆ Σ.

The following paragraphs describe the configuration of the model used to delimit event

publication and subscription based on roles.

Firstly, the connection graph is configured as follows:

RBAC-CG-1 D is defined according to the system administrator needs, to represent the

set of all devices in the system.

RBAC-CG-2 Define the set of scopes S as follows:

• S pub = {rpub|r ∈ R}

• Ssub = {rsub|r ∈ R}

• S = S pub∪Ssub∪{Bus}

To simulate each role r ∈ R, two scopes rpub and rsub are defined in the

connection graph. The scope rpub is used to delimit the events published

by devices belonging to role r, whereas the scope rsub is used to delimit the

events that these devices can be notified about. Additionally, the scope Bus

is used by all other scopes for event propagation purposes.

RBAC-CG-3 Let Sroles be the set of all scopes in the system except for the scope Bus, that

is, Sroles = S pub∪Ssub. Then, define the binary relation link as follows:

link = {(s,Bus)|s ∈ Sroles}∪{(Bus,s)|s ∈ Sroles}∪ linkroles
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Figure 3.4: RBAC - Connection Graph Configuration

This means that all scopes representing roles are connected to the scope

Bus. To represent membership of devices to roles, devices belonging to a

role r ∈ R have to be connected to its corresponding scopes rpub and rsub.

Define linkroles to represent this, for example:

linkroles = {(d,rpub),(rpub,d),(d,rsub),(rsub,d)}

Where d ∈ D and rpub,rsub ∈ S represent the role r. This configuration of

linkroles means that d is assigned to the role r.

Figure 3.4 illustrates an example of a configuration graph, where two roles r1 and r2

are represented by the scopes rpub
1 ,rsub

1 ,rpub
2 and rsub

2 . Furthermore, device d1 is member of

the role r1 while device r2 is member of role r2.

After having configured the connection graph, the visibility of events is defined with

the following configuration of the brokering policy.

RBAC-BP-1 Let T = {SubUp,SubDown,PubUp,PubDown,DevUp,DevDown}.
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RBAC-BP-2 The function type assigns types to links as follows:

type(x,y) =



SubUp if x ∈ Ssub∧ y = Bus

SubDown if y ∈ Ssub∧ x = Bus

PubUp if x ∈ S pub∧ y = Bus

PubDown if y ∈ S pub∧ x = Bus

DevUp if x ∈ D∧ y ∈ Sroles

DevDown if y ∈ D∧ x ∈ Sroles

RBAC-BP-3 Define allow to be:

allow = {(PubUp,SubDown),(DevUp,PubUp),(SubDown,DevDown)}

The above configuration of the brokering policy, defines six types of links (RBAC-BP-

1). By the way in which the function type is defined (RBAC-BP-2), links of types DevUp

and DevDown are used to identify links between devices and scopes representing roles.

Links of types PubUp and PubDown identify links between scopes used to delimit publica-

tion of events, and the root scope Bus. Similarly, links of types SubUp and SubDown iden-

tify links between scopes used to delimit event notification, and the root scope Bus. Finally,

the configuration of allow (RBAC-BP-3) makes sure that devices can only publish events to

publishing scopes (i.e., allow(DevUp,PubUp)), then these events are propagated from pub-

lishing scopes to subscribing scopes through the Bus scope (i.e., allow(PubUp,SubDown)),

and finally delivered from subscribing scopes to devices (i.e., allow(SubDown,DevDown)).

This configuration disables any other type of propagation, including direct communication

of devices (i.e., propagation form a type DevUp to a type DevDown is not allowed).

Figure 3.5 illustrates an example of the configuration graph in figure 3.4 with a broker-

ing policy defined as described in the previous paragraphs.

The brokering policy makes sure that event propagations follow specific flow routes.

However, to impose control over what events are allowed to be propagated through the
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Figure 3.5: RBAC - Brokering Policy Configuration

allowed flow routes, execution monitoring is configured through the event policy. Particu-

larly, the event filtering transition function defined in 3.4.2.1 is used for this purpose.

Consider Role : Sroles → R to be a function that maps scopes used to represent roles,

to their corresponding role, such that Role(rpub) = Role(rsub) is the role represented by

scopes rpub and rsub. Then, the function ∆ of the event policy is defined as follows:

∆(x,y) =


filter(sub(Role(y))) if y ∈ Ssub∧ x = Bus

filter(pub(Role(x))) if x ∈ S pub∧ y = Bus

Intuitively, this configuration of the event policy means that events propagated from

publishing scopes to the root scope Bus are filtered, so that only events publishable by their

corresponding roles are allowed. Events propagated to subscribing scopes from the Bus

scope are filtered in a similar fashion, in order to comply to the subscribing restrictions of

their corresponding roles.

Figure 3.6 illustrates an example of a final configuration of the connection graph, the

brokering policy and the event policy as described in this section. This configuration allows

devices to be assigned to one role by simply connecting them to its corresponding scopes.
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Figure 3.6: RBAC - Final Configuration

However, there are some issues related to this configuration of the model. Firstly, if devices

are members of multiple roles, it implies that multiple flow routes are available between

different devices, which could result in events being delivered multiple times to subscribers.

Secondly, because in this configuration devices and scopes are connected in such a way that

they form a cycle, then it is unavoidable for devices to listen to their own publications. To

address these issues, the following restrictions are imposed:

1. Every device must belong to exactly one role. However, new roles can be

created to accommodate event publication and subscription according to the

system administrator needs.

2. Roles cannot subscribe to events publishable by them, that is: ∀r ∈ R,

pub(r)∩ sub(r) = /0

In this section, it was demonstrated how the model can be instantiated to enforce a form

of RBAC inspired by [12], this is achieved through the use of scopes to model authorization

principals (i.e., roles), and with the combination of the brokering policy and the event

policy.
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Device Consumes Produces

MD none
MD motion

MD no motion

SC none none

DL
DL unlock

DL lock
none

DB
MD motion

MD no motion
AccessRequest

SP AccessRequest

AccessGranted

AccessDenied

DL unlock

Table 3.1: Events Produced/Consumed by Devices

3.5 Scoping and Execution Monitoring Case Study

In this section, an example use case illustrates how the model can be used to enforce se-

curity policies for IoT applications. In this example, two security policies are enforced

via scoping and execution monitoring taking into account the following security consid-

erations. Firstly, events published by some devices are considered to disclose sensitive

information. Therefore, they should be treated with special care. Secondly, the existence

of potentially compromised devices that behave in a way that violates certain behavior pro-

tocols is assumed. Thus, mechanisms to protect the system against potentially malicious

events have to be implemented. Finally, this case study also demonstrates how scoping

can be used to delimit the visibility of events in order to ensure the protection of critical

devices, and to create private domains where devices that do not require interaction with

public networks (e.g., the Internet) can interact with one another.

Consider the following scenario. A home owner has acquired a number of smart devices

to implement automated tasks at home. Among these devices, she acquired: one motion

detector (MD), one security camera (SC) 1, one door lock (DL), and one door bell (DB).

Additionally, the home automation system is able to communicate with her smart phone

1It is assumed that the home owner has access to the security camera image through her smart phone, and
the security camera is used only to help the homeowner to make decisions (i.e., grant access or deny access),
but no direct interactions between the security camera and other devices are considered in this case study.
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Event Description
MD motion Motion detected by the Motion Detector
MD no motion No motion detected by the Motion Detector
DL unlock Commands the door lock to unlock the door
DL lock Commands the door lock to lock the door
AccessRequest Indicates that access has been requested
AccessGranted Indicates that access has been granted
AccessDenied Indicates that access has been denied

Table 3.2: Events Description

(SP) via Internet at all times. Finally, each of the smart devices may consume and produce

a number of events. The relationship between what events are produced and consumed by

each device is shown in Table 3.1, and a description of each event is given in Table 3.2.

Events related to the motion detector are used to detect the presence of people at home,

such that, if motion is detected (i.e., MD motion), it is inferred that someone is in the house,

and if no motion is detected (i.e., MD no motion), it means that the house is empty. Because

this information is very sensitive, special measures have to be taken for events published

by the motion detector.

Another critical event that has to be considered is the DL unlock event. This event is

used to command the door lock to unlock the door, thereby granting access to the house.

If no security measures are taken, this event could be potentially used by a compromised

device to unlock the door. For this reason, it is paramount to have a mechanism to discrim-

inate between legitimate DL unlock events allowed by the homeowner, and potentially

malicious events of this type (e.g., published by compromised devices).

The door bell is a special device that works with the motion detector to send notifica-

tions to the homeowner, such that, if nobody is at home (i.e., MD no motion) and someone

rings the bell, an access request notification event (i.e., AccessRequest) is published by

the door bell. However, if someone is at home (i.e., MD motion), and the door bell is rung,

no events are published by the door bell. In response to the access request notification (i.e.,

AccessRequest), the homeowner may grant access (i.e., AccessGranted) and unlock the
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Figure 3.7: System configuration

door (i.e., DL unlock), or simply deny access (i.e., AccessDeny).

In this sense, legitimate DL unlock events are those that are formed by the sequence

AccessRequest, AccessGranted, DL unlock, because this sequence of events implies

that the homeowner was notified about one access request, and in response she explic-

itly granted access and unlocked the door. Finally, considering the above discussion, the

following security policies are imposed:

Policy 1. Prevent sensitive information (i.e., MD motion and MD no motion) from leaking

to the Internet.

Policy 2. Prevent the door from unlocking (i.e., DL unlock) unless an access has been pre-

viously requested (i.e., AccessRequest) and granted (i.e., AccessGranted).

Figure 3.7 illustrates a possible configuration of the system, with visibility control based

on the component architecture (see §3.4.1.2), and six scopes serving different purposes.

Scope “I” represent a scope hosted on the Internet, which enables interactions between

home devices, and the smart phone (SP) at any time. Scope “H1” can be seen as a gateway,

used to potentially filter events coming from the Internet into the local network, and events

propagated from the local network to the Internet. Scope “H4” is used to create a private
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Figure 3.8: Automaton 1

domain, where entities that do not require interaction with the Internet can interact with

one another. This private domain is created thanks to the visibility control based on the

component architecture, where visibility of events published in one scope is limited to

scopes sharing a common ancestor. This visibility control is enforced by not allowing

propagation of events from “down” links (i.e., red arrows) to “up” links (i.e., blue arrows).

In this particular case, events published in scope “H4”, are only made visible to scope

“H2”. Scope “H2” is the only scope that allows its hosted devices to communicate with

any other device in the system, including devices hosted in the private domain, and devices

hosted on the Internet. Notice that this is possible because “H2” shares a common ancestor

with every other scope in the system. Finally, “H3” isolates the door lock (DL), making

sure that any interactions between any other device and the door lock are monitored by at

an execution monitor (i.e., the execution monitor “A1”).

Notice that events published by the motion detector (MD) are delimited to the private

domain of the home automation system. In this way, the current configuration of the system

is used to enforce Policy 1.

The configuration of the system also facilitates the enforcement of Policy 2, since the

door lock is isolated in scope “H3”, which is guarded by the execution monitor Automaton

1 (A1).

Figure 3.8 illustrates Automaton 1. A1 is designed to enforce Policy 2, where events
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of type DL unlock are suppressed unless the sequence AccessRequest, AccessGranted

precedes them. In Figure 3.8 transitions between two states q and q′ have labels of the

form a→ w, which represents one entry in the transition function δ (q,a) = (q′,w), that

is, the left side of the arrow represents the input event being processed by the automaton,

and the right side of the arrow represents the sequence of events that are made visible to

the world (i.e., scope “H3” in this case). This automaton has three states, the initial state

q0, and states q1 and q2. State q0 represents that the AccessRequest event has not been

detected by the automaton. In this state, events of type DL unlock are suppressed since

they are not legitimate, and upon detecting an event of type AccessRequest, a transition

to state q1 is made. State q1 represents that the event AccessRequest was detected, but the

AccessGranted event has not been detected yet. In this state, events of type DL unlock

are also suppressed since they are not legitimate. This state has two possible transitions:

1) if the event AccessDenied is detected, it implies that the homeowner denied access

to the house, which results in a transition to the initial state q0 to restart the detection of

legitimate DL unlock events, and 2) if the event AccessGranted is detected, it implies

that the next DL unlock event is legitimate, thus a transition to state q2 is made. State

q2 represents that the sequence AccessRequest, AccessGranted was detected, which

implies that the next event of type DL unlock is legitimate. Upon detecting the event

DL unlock, the automaton makes this event visible to the world, and goes back to the initial

state, to restart the detection of further legitimate DL unlock events. With this automaton,

the implementation of both security policies is completed.

This chapter formally described a mathematical model for Event Based Systems that

includes both security mechanisms: Execution Monitoring and Scoping. These mecha-

nisms where leveraged to impose various forms of visibility control, including some form

of information flow control based in a popular access control model. Finally, a case study

was presented to demonstrate the use of the model, to implement security relevant policies
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for IoT applications. In the next chapter a description of two implementations conducted

during the research project is given.
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Chapter 4

Implementation of Scoping and Execution Monitoring

In this chapter, I describe two important implementation efforts conducted during this re-

search project. The first implementation, refers to the mechanization of the mathematical

model described in §3.3 using PLT Redex [4]. The second implementation is an extension

to the open source software Mosquitto [25] to support Scoping and Execution Monitoring.

The mechanization of the model using PLT Redex is briefly described in §4.1. In §4.2,

the background necessary to appreciate the extension to Mosquitto is given. Finally, §4.3

describes the implementation of Scoping and Execution Monitoring on top of Mosquitto.

4.1 Model mechanization using PLT Redex

Formalization of models is a very challenging task, since the language in which operational

semantics of the models are described are very different to what we normally use on a daily

basis. It is only natural that mistakes are made in the formalization process, even for the

most seasoned researchers.

Similar to the process of developing systems with regular programming languages,

where debugging tools help developers test their code. In the process of formalization of

models as state transition systems, there exist similar debugging tools to help “mechanize”

the modelling process. One such tool is PLT Redex.

PLT Redex [4, 16] is a language used for designing and debugging operational seman-

tics. With this language it is possible to quickly come up with executable semantic models.

These executables helped during the formalization process in this work, to spot bugs and

gain more insight about the model.

The model was machanized in a modular fashion, starting with a simple event based
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system, where no security mechanisms were included. Then, the implementation was

extended to include scoping, with visibility control based on the component architecture

3.4.1.2. The final version of this implementation was extended to include execution moni-

toring and scoping.

The magnitude of the work done for this implementation was measured in term the

number of lines written, for a total of 820 lines of code. These lines include the model

definition, as well as a number of test cases.

4.2 Mosquitto Implementation Preliminaries

This implementation is based on the source code of Mosquitto version 1.4.10, which was

the latest version when the project started, although the current latest released version of

Mosquitto is 1.4.14, released on July 11, 2017.

Mosquitto is an open source message broker that provides a lightweight implementation

of the MQTT protocol [11]. Additionally, this software supports a number of features that

makes it ideal for this project:

1. Compared to other open source MQTT brokers, Mosquitto is a minimalist

implementation of the MQTT protocol. It consists of 59 C language source

files (.h and .c files), with a total of 20,289 lines of code (for the MQTT

server implementation). Due to its relatively small size, identification of

crucial processes in the source code required minor efforts.

2. Mosquitto provides a feature called Bridge, for interconnecting Mosquitto

servers to simulate a large, distributed Broker. Scoping was implemented

on top of this facility, which accelerated the implementation process signif-

icantly.

3. Mosquitto also implements two lightweight clients: mosquitto sub and
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mosquitto pub. These clients, although simple, were used for automated

testing purposes.

The implementation of the two security mechanisms in Mosquitto involved a number

of C language source files where internal processes of Mosquitto were modified. New def-

initions were added to the internal structures of mosquitto defined in header files. Finally,

the compilation process of Mosquitto was updated via Makefiles. The magnitude of the

work done for the implementation was measured in terms of the diff between the extended

version code base, and the original Mosquitto code base, and it consists of 1,358 lines.

In order to appreciate the work done to implement the two security mechanisms, it is

necessary to revise two fundamental concepts of the original version of Mosquitto: The

Mosquitto bridging facilities, and the Mosquitto Message Flow.

In this section, a description of the Bridging facilities of Mosquitto is described in

§4.2.1. In §4.2.2 the message flow followed by Mosquitto upon receiving a message in the

three QoS levels is explained.

4.2.1 Mosquitto Bridging

In Mosquitto, a bridge is a feature that enables interconnections between two (or more)

Mosquitto Servers. This is done via the Mosquitto configuration file [2], where the topics

to be shared by the interconnected servers are defined. In its most extensive form, two

interconnected Mosquitto Servers (or Brokers) x and y may share events published in all

topics and in both directions (from x to y and vice versa). It means that the visibility of

the shared events is extended, so that they are visible in all the interconnected Mosquitto

Servers. For the rest of the chapter, it is assumed that bridges are always configured to

share all topics in both directions.

The bridge connection is configured only by one of the interconnected brokers. Say

for example that broker x established the bridge connection to broker y. In such case, y

53



treats x like a regular MQTT client, who is subscribed to the topic “#”, which is a wildcard

that indicates “all topics”. On the other hand, x is aware that y is a bridge, and whenever x

receives an event from a different source, it further propagates this event to y.

4.2.2 Mosquitto Message Flow

The MQTT standard [11] mandates the implementations of the following three Quality of

Service levels:

QoS 0: At most once delivery. In this QoS level, the delivery of an event is not guaran-

teed, and no response is expected from the receiver. Events delivered with

this QoS level arrive once or not at all. This QoS level is also known as “fire

and forget”.

QoS 1: At least one delivery. This quality of service level guarantees the event to be de-

livered to the receiver at least once. However, the receiver could receive

multiple copies of the same event.

QoS 2: Exactly one delivery. This quality of service level guarantees events to be deliv-

ered to receivers exactly once (loss or duplication of events is unacceptable).

For simplicity, and in preparation of the discussion ahead, a message a is defined to be

a tuple a = (mid, t, p,qos), where mid is a message id (e.g., an integer), t is the topic of the

message, p is its corresponding payload, and qos is the QoS level. Also, whenever a.mid,

a.t, a.p or a.qos is written, it implies that the message id, topic, payload or QoS level of

the message a are being referred to, respectively.

Additionally, a simplified message representation of the control packets used during

the communication between a publisher and the broker (as defined by the MQTT proto-

col specification) is used. These messages are: PUBLISH(mid, t, p,qos), PUBACK(mid),

PUBREC(mid), PUBREL(mid), and PUBCOMP(mid).
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In the following sections, the Message Flow (in terms of internal processing) of Mosquitto

for the three QoS levels is described. Because the interest of this extension of Mosquitto is

to transform the input message into a sequence of messages to be delivered, the description

of the message flow is delimited to the queueing process of Mosquitto, from the moment

the broker receives a message, to the moment it queue ups the corresponding notifications

for the subscribers.

4.2.2.1 QoS 0 Message Flow

The QoS 0 is the most simple among the three QoS levels defined in the MQTT protocol

specification. In this QoS level, a publisher x sends PUBLISH(mid, t, p,qos) to the broker.

Upon receiving this message, the broker verifies for subscriptions to topic t, and notifies

the corresponding subscribers. Notice that in this QoS level, no response from the broker

is expected by the publisher.

Internally, the Mosquitto broker performs the following tasks to comply with the pro-

tocol:

1. Read the incoming PUBLISH(mid, t, p,qos) message from x.

2. Store the message a = (mid, t, p,qos) into a list of stored messages.

3. Look for subscriptions to the topic t, and create a list of subscribers.

4. For each subscriber i in the list of subscribers:

(a) Generate a new message id midi, and queue up a new mes-

sage ai = (midi,a.t,a.p,qosi) for delivery, where qosi is the

QoS level in which the subscription was issued.

5. Remove a from the list of stored messages.
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4.2.2.2 QoS 1 Message Flow

In this QoS level, a publisher x sends PUBLISH(mid, t, p,qos) to the broker, and stores

the message ax = (mid, t, p,qos). Upon receiving this message, the broker verifies for

subscriptions to topic t, and notifies the corresponding subscribers. After having notified

all subscribers, the broker sends PUBACK(mid) to x. When x receives PUBACK(mid), it

proceeds to discard ax.

Internally, the Mosquitto broker performs the following tasks to comply with the pro-

tocol:

1. Read the incoming PUBLISH(mid, t, p,qos) message from x.

2. Store the message a = (mid, t, p,qos) into a list of stored messages.

3. Look for subscriptions to the topic t, and create a list of subscribers.

4. For each subscriber i in the list of subscribers:

(a) Generate a new message id midi, and queue up a new mes-

sage ai = (midi,a.t,a.p,qosi) for delivery, where qosi is the

QoS level in which the subscription was issued.

5. Send PUBACK(mid) to x.

6. Remove a from the list of stored messages.

4.2.2.3 QoS 2 Message Flow

In this QoS level, a publisher x sends PUBLISH(mid, t, p,qos) to the broker, and stores the

message ax = (mid, t, p,qos). Upon receiving PUBLISH(mid, t, p,qos), the broker stores

the message a = (mid, t, p,qos) in a list of stored messages, and sends PUBREC(mid) to x.

In response to PUBREC(mid), x sends PUBREL(mid) to the broker. Upon receiving this

last message, the broker verifies for subscriptions to topic t, and notifies the correspond-

ing subscribers. After having notified all subscribers, the broker sends PUBCOMP(mid)
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to x and proceeds to discard a from the list of stored messages. When x receives the

PUBCOMP(mid), it proceeds to discard ax.

Internally, the Mosquitto broker performs the following tasks to comply with the pro-

tocol:

1. Read the incoming PUBLISH(mid, t, p,qos) message from x.

2. Store the message a = (mid, t, p,qos) into a list of stored messages.

3. Send PUBREC(mid) to x.

4. Upon receiving PUBREL(mid) from x. Look for subscriptions to the topic

t, and create a list of subscribers.

5. For each subscriber i in the list of subscribers:

(a) Generate a new message id midi, and queue up a new mes-

sage ai = (midi,a.t,a.p,qosi) for delivery, where qosi is the

QoS level in which the subscription was issued.

6. Send PUBCOMP(mid) to x.

7. Remove a from the list of stored messages.

4.3 Implementation

The implementation of the security mechanisms is presented in the following sections.

§4.3.1 discusses how Scoping is implemented on top of the Mosquitto Bridging facili-

ties. §4.3.2 describes the Execution Monitoring Framework implemented in Mosquitto

to support custom made execution monitors. §4.3.3 illustrates the modifications done

to the Mosquitto Message Flow to support execution monitoring. Finally, §4.3.4 shows
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one example execution monitor implemented through the Execution Monitoring Frame-

work. Throughout this section, MOSQ HOME is used to refer to the base directory of the

Mosquitto source code.

4.3.1 Implementing Scoping

For this extension of Mosquitto, the visibility of messages is based on the scoping and

visibility definition given by Fiege et al. [17, 19]. As mentioned in §3.4.1.2, in this model,

a hierarchy of brokers (or scopes) is specified though a parenthood relation, parent⊆E×E ,

such that parent(x,y) implies that y is a parent of x.

To simulate this parenthood relation in Mosquitto, the convention is that, given two

interconnected brokers x and y, if x identifies y as a bridge, then y is a parent scope of x,

which denotes the relation parent(x,y). Devices are said to be children of the scope they

are connected to (due to a subscription or publication of events). Once this relationship has

been established, it is possible to identify four types of event propagation: parent-parent ,

parent-child , child-parent , and child-child.

1. parent-parent. The source of the input event is a parent scope, and the

target is another parent scope.

2. parent-child. The source of the input event is a parent scope, and the target

is a child scope/device.

3. child-parent. The source of the input event is a child scope/device, and the

target is a parent scope.

4. child-child. The source of the input event is a child scope/device, and the

target is another child scope/device.

To comply with the visibility rule impose by Fiege et al. [17, 19] (thats is, messages

published in a broker x are visible in another broker y, if and only if x and y share a common
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s t r u c t e x e c u t i o n m o n i t o r {
void ∗ s t a t e ;
enum e x e c m o n i t o r d i r e c t i o n d i r e c t i o n ;
i n t (∗ d e l t a f u n c t i o n ) ( s t r u c t e m e v e n t q u e u e ∗queue ,

void ∗∗ s t a t e , s t r u c t e x e c m o n i t o r e v e n t ∗ e v e n t ) ;
char ∗name ;

} ;

Figure 4.1: Execution Monitor Structure

ancestor), it was necessary to prevent event propagations of the type parent-parent.

The source file MOSQ HOME/src/subs.c in Mosquitto is intended to process sub-

scriptions made by clients in the server. In the final stage of the queuing process, after

processing a new incoming event to the server, the function subs process in this source

file enqueues events to all possible recipients, including subscribers and parent scopes. In

this function two critical pieces of information can be found: 1) the id of the source entity

of the event (source id), and 2) the list of recipients.

Using the source id and each recipient in the list of recipients, it was possible to identify

the type of event propagation to be done per recipient. Whenever a parent-parent event

propagation type was inferred, the queuing process for that particular recipient is canceled.

4.3.2 Implementing Execution Monitoring

To implement execution monitoring, a framework to support custom made execution mon-

itors was embedded into Mosquitto. Users of this framework can implement their own

execution monitors and configure what links are to be monitored with them. Execution

monitors are implemented as execution monitor modules, which are small C programs

(usually called shared libraries) loaded via dynamic linking into the framework.

In this framework, execution monitors are represented by the C structure shown in Fig-

ure 4.1, where state represents the current state of the execution monitor, direction is the

direction in which the execution monitor is to be executed, delta function is the transition
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Figure 4.2: Events Flow Directions

function of the execution monitor, and name is a label which associates the current execu-

tion monitor with one execution monitor type (used when configuring execution monitors

in the configuration file).

Execution Monitors are loaded from user created modules and associated with connec-

tion from one “working” broker, to any other entity the broker is interacting with. Consider

for example Figure 4.2, where B represents the “working” broker. From this figure, it is

possible to observe four different Event Flow Directions with respect to B:

Import Publication (im pub). An event is received by B from a child entity.

Import Subscription (im sub). An event is propagated from B to a child entity.

Export Publication (ex pub) An event is propagated from B to a parent broker.

Export Subscription (ex sub) An event is received by B from a parent broker.

These are the possible direction used in an execution monitor.

When an event is propagated between the working broker and any other entity, if there

is an execution monitor associated with such connection and the direction of the execu-
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s t r u c t e m v t a b l e {
i n t (∗ q add ) ( s t r u c t e m e v e n t q u e u e ∗queue , s t r u c t

e x e c m o n i t o r e v e n t ∗ e v e n t ) ;
s t r u c t e x e c m o n i t o r e v e n t ∗ (∗ q peek ) ( s t r u c t

e m e v e n t q u e u e ∗ queue ) ;
s t r u c t e x e c m o n i t o r e v e n t ∗ (∗ q pop ) ( s t r u c t

e m e v e n t q u e u e ∗ queue ) ;
void ∗ (∗ em mal loc ) ( s i z e t s i z e ) ;
void (∗ e m f r e e ) ( void ∗mem) ;

} ;

Figure 4.3: Framework Functions

tion monitor matches the current Event Flow Direction, then the transition function of the

execution monitor is called.

The transition function receives the current state q of the execution monitor, an input

event a, and a queue of events as inputs. The queue of events is used by the execution

monitor to represent the output sequence w of the transition function, and it is initiated with

the input event a as its first element (e.g. w = a). The transition function is responsible of

updating the current state q of the monitor, to the next state q′. This represents the transition

function δ (q,a) = (q′,w).

The framework makes available the set of functions shown in Figure 4.3, where q add

is used to enqueue events, q peek is used to look at the event at the front of the queue,

q pop is used to retrieve and remove the event at the front of the queue, and em malloc and

em free are used for memory management purposes.

After having created one execution monitor module, users can use the extended configu-

ration file of Mosquitto to load the module and associate it with any number of connections

with entities. Figure 4.4 illustrate the new entries added to the configuration file as part of

the framework. The monitor module option is used to load the execution monitor module

module full path with the name execution monitor name. The option monitor is used to

associate an execution monitor of type execution monitor name with the entity entity id,
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monitor module e x e c u t i o n m o n i t o r n a m e m o d u l e f u l l p a t h
monitor e n t i t y i d e x e c u t i o n m o n i t o r n a m e d i r e c t i o n

c o n f i g u r a t i o n f i l e
d e f a u l t m o n i t o r e x e c u t i o n m o n i t o r n a m e d i r e c t i o n

c o n f i g u r a t i o n f i l e

Figure 4.4: Extended Mosquitto Configuration File Entries

s t r u c t e x p o r t v t a b l e {
s t r u c t e x e c u t i o n m o n i t o r ∗ (∗ c o n s t r u c t o r ) ( c o n s t char
∗moni tor name , enum e x e c m o n i t o r d i r e c t i o n
d i r e c t i o n , c o n s t char ∗ c o n f f i l e ) ;

i n t (∗ d e s t r u c t o r ) ( c o n s t char ∗moni tor name , s t r u c t
e x e c u t i o n m o n i t o r ∗∗m o n i t o r ) ;

i n t (∗ l o a d f u n c t i o n s ) ( s t r u c t e m v t a b l e ∗ em funcs ) ;
} ;

Figure 4.5: Execution Monitor Functions

the Event Flow Direction direction, and the configuration file configuration file. Finally,

default monitors can be configured in the framework, so that entities with no specific exe-

cution monitors configured will be associated with the monitor set by the defaul monitor

entry.

Finally, to enable the framework to initiate the configured execution monitors, the ex-

ecution monitor modules must make available a set of functions as describe in Figure 4.5.

The function constructor is used to initiate a new instance of the execution monitor, and

the function destructor is used to destroy one instance. Finally, the function load functions

is used to load the queueing and memory function of the framework into the execution

monitor module.

4.3.3 Extended Mosquitto Message Flow

In order to support events queuing with execution monitoring, some modifications were

implemented in the Mosquitto Message Flow for all QoS levels. We use the lists of tasks

given in §4.2.2, and the notation described in §3.3 to illustrate the modifications included
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in the extended version of Mosquitto.

4.3.3.1 Extended QoS 0 Message Flow

In the list of tasks shown in this section, the modifications to the original message flow for

QoS 0 are described, and it is assumed that source id is the id of the entity who initiated

the message flow by “publishing” an event in the Mosquitto Server, and broker id is the id

of the Mosquitto Server. The extended version of Mosquitto performs the following tasks

in order to comply with the QoS 0 protocol and include execution monitoring:

1. Read the incoming PUBLISH(mid, t, p,qos) message from x.

2. Store the message a = (mid, t, p,qos) into a list of stored messages.

3. Let δ =∆(source id,broker id), and (q,w)= δ (ST(source id,broker id),a).

Then ST ′(source id,broker id)= q is the new state of the execution monitor

M(source id,broker id).

4. For each event b in the sequence w (in a FIFO fashion):

(a) Look for subscriptions to the topic b.t, and create a list of

subscribers.

(b) For each subscriber i in the list of subscribers:

i. Let δ = ∆(broker id, i) and

(qi,ui) = δ (ST(broker id, i),b).

Then ST ′(broker id, i) = qi is the new state of

the execution monitor M(broker id, i)

ii. For each event c=(midc,c.t,c.p,qosib) in the

sequence ui (in a FIFO fashion), where midc

is a new message id generated for c, and qosib
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is the QoS level in which subscriber i issued

a subscription to event b:

A. Queue up c for delivery.

5. Remove a from the list of stored messages.

In general terms, the modifications to the message flow of Mosquitto for QoS 0, in-

volves interposing execution monitors between critical operations of the queuing process,

so as to enqueue the resulting events for delivery to the corresponding recipients.

4.3.3.2 Extended QoS 1 Message Flow

In the list of tasks shown in this section, the modifications to the original message flow

for QoS 1 are described under the same assumptions than in the previous section. The

extended version of Mosquitto performs the following tasks in order to comply with the

QoS 1 protocol and include execution monitoring:

1. Read the incoming PUBLISH(mid, t, p,qos) message from x.

2. Store the message a = (mid, t, p,qos) into a list of stored messages.

3. Let δ =∆(source id,broker id), and (q,w)= δ (ST(source id,broker id),a).

Then ST ′(source id,broker id)= q is the new state of the execution monitor

M(source id,broker id).

4. For each event b in the sequence w (in a FIFO fashion):

(a) Look for subscriptions to the topic b.t, and create a list of

subscribers.

(b) For each subscriber i in the list of subscribers:

i. Let δ = ∆(broker id, i) and

(qi,ui) = δ (ST(broker id, i),b).
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Then ST ′(broker id, i) = qi is the new state of

the execution monitor M(broker id, i)

ii. For each event c=(midc,c.t,c.p,qosib) in the

sequence ui (in a FIFO fashion), where midc

is a new message id generated for c, and qosib

is the QoS level in which subscriber i issued

a subscription to event b:

A. Queue up c for delivery.

5. Send PUBACK(mid) to x.

6. Remove a from the list of stored messages.

The modifications in the QoS 1 message flow, are identical to those made to the QoS 0

message flow. This is because both of the message flows share most of their code, being the

only difference the PUBACK control packet sent as acknowledgment in the QoS 1 message

flow.

4.3.3.3 QoS 2 Message Flow

In the list of tasks shown in this section, the modifications to the original message flow

for QoS 2 are described under the same assumptions than in the previous sections. The

extended version of Mosquitto performs the following tasks in order to comply with the

QoS 2 protocol and include monitoring:

1. Read the incoming PUBLISH(mid, t, p,qos) message from x.

2. Store the message a = (mid, t, p,qos) into a list of stored messages.

3. Send PUBREC(mid) to x.

4. Upon receiving PUBREL(mid) from x. Let δ = ∆(source id,broker id),

and (q,w) = δ (ST(source id,broker id),a).
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Then ST ′(source id,broker id)= q is the new state of the execution monitor

M(source id,broker id).

5. For each event b in the sequence w (in a FIFO fashion):

(a) Look for subscriptions to the topic b.t, and create a list of

subscribers.

(b) For each subscriber i in the list of subscribers:

i. Let δ = ∆(broker id, i) and

(qi,ui) = δ (ST(broker id, i),b).

Then ST ′(broker id, i) = qi is the new state of

the execution monitor M(broker id, i)

ii. For each event c=(midc,c.t,c.p,qosib) in the

sequence ui (in a FIFO fashion), where midc

is a new message id generated for c, and qosib

is the QoS level in which subscriber i issued

a subscription to event b:

A. Queue up c for delivery.

6. Send PUBCOMP(mid) to x.

7. Remove a from the list of stored messages.

In general terms, the modifications to the message flow of Mosquitto for QoS 2 also

involve interposing execution monitors between critical operations of the queuing process.

However, in this case, it is necessary to take into account the intermediary control packets

(e.g., PUBREC and PUBREL) that have to be exchanged between the broker and the source

of the input event. Neglecting reception or delivery of these control packets, could result in

events not being propagated properly.
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map t o p i c 1 n e w t o p i c 1
map t o p i c 2 n e w t o p i c 2
map t o p i c 3 n e w t o p i c 3

Figure 4.6: Event Mapping Configuration File

4.3.4 Example Execution Monitor Module

This section shows a brief example of how the framework of §4.3.2 can be used to im-

plement one execution monitor based on Edit Automata. This example is not meant to be

extensive, that is, not all the source code for the an actual implementation is provided.

Consider the Event Mapping Edit Automaton described in §3.4.2.2 with a transition

function mapper( f ) : Q×Σ→ Q×Σ∗ such that mapper( f )(q0,a) = (q0, f (a)). This Edit

Automaton remains in the initial state q0 at all time, however it is necessary to describe the

event transformation function f . For that, it is possible to define the event transformation

function in terms of the configuration file shown in Figure 4.6, where each entry represents

the transformation from one event topic topicX , to a new event topic new topicX .

The Execution Monitor Module constructor initiates all instances of the Event Mapping

Execution Monitor with a NULL state (since the current state of the monitor is not actively

used), and loads the configuration file to create a look up table T , such that each entry

T [topicX ] = new topicX represents a transformation from topicX to new topicX . The

destructor function frees up the memory used for the look up table.

The transition function, given an input event a = (mid, topic, payload,qos), input state

NULL, and an input queue representing the sequence w = a, can simply check if there exist

an entry T [topic] in the look up table. In case that such entry exists, the output sequence

w = a is replaced by w = b, such that b = (mid,T [topic], payload,qos), this is, b is a copy

of a with a new topic T [topic].

Figure 4.7 illustrates a snippet of the source code used to implement the transition

function defined in the previous paragraph. Notice that the structure em funcs holds the
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references to the functions provided by the framework. Finally, in this example, the lookup

table is explicitly defined in the transition function, instead of being initialized based on a

configuration file.
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/∗ Lookup t a b l e s t r u c t u r e d e f i n i t i o n ∗ /
t y p e d e f s t r u c t {

char ∗ f r o m t o p i c ;
char ∗ t o t o p i c ;

} l o o k u p T a b l e ;

/∗ The t r a n s i t i o n f u n c t i o n ∗ /
i n t d e l t a f u n c t i o n ( s t r u c t e m e v e n t q u e u e ∗queue , void ∗∗ s t a t e , s t r u c t e x e c m o n i t o r e v e n t ∗

e v e n t ) {
l o o k u p T a b l e T [ ] = {

{” t o p i c 1 ” , ” n e w t o p i c 1 ” } ,
{” t o p i c 2 ” , ” n e w t o p i c 2 ” } ,
{” t o p i c 3 ” , ” n e w t o p i c 3 ” } ,

} ;
i n t numRecords = 3 ;
i n t i ;
i n t t o p i c l e n ;
s t r u c t e x e c m o n i t o r e v e n t ∗ new even t = NULL;
s t r u c t e x e c m o n i t o r e v e n t ∗ t m p e v e n t = NULL;

f o r ( i = 0 ; i < numRecords ; i ++){
/ / I f t h e r e e x i s t s a map f o r t h e t o p i c o f t h e e v e n t
i f ( ! s t r cm p ( T [ i ] . f r o m t o p i c , even t−>t o p i c ) ) {

/ / A l l o c a t e memory f o r t h e mapped v e r s i o n o f t h e e v e n t
new even t = em funcs−>em mal loc ( s i z e o f ( s t r u c t e x e c m o n i t o r e v e n t ) ) ;

/ / Map t h e o l d t o p i c u s i n g t h e lo ok up t a b l e
t o p i c l e n = s t r l e n ( T [ i ] . t o t o p i c ) ;
new event−>t o p i c = em funcs−>em mal loc ( s i z e o f ( char ) ∗ ( t o p i c l e n + 1) ) ;
memset ( new event−>t o p i c , 0 , s i z e o f ( char ) ∗ ( t o p i c l e n + 1) ) ;
s t r c p y ( new event−>t o p i c , T [ i ] . t o t o p i c ) ;

/ / Copy t h e e v e n t o f t h e i n p u t e v e n t t o t h e mapped v e r s i o n o f t h e e v e n t
new event−>p a y l o a d = em funcs−>em mal loc ( even t−>p a y l o a d l e n ) ;
memset ( new event−>pay load , 0 , even t−>p a y l o a d l e n ) ;
memcpy ( new event−>pay load , even t−>pay load , even t−>p a y l o a d l e n ) ;
new event−>p a y l o a d l e n = even t−>p a y l o a d l e n ;

/ / Remove o r i g i n a l e v e n t from t h e queue and f r e e up t h e c o r r e s p o n d i n g memory
t m p e v e n t = em funcs−>q pop ( queue ) ;
i f ( tmp even t−>t o p i c ) em funcs−>e m f r e e ( tmp even t−>t o p i c ) ;
i f ( tmp even t−>p a y l o a d ) em funcs−>e m f r e e ( tmp even t−>p a y l o a d ) ;
i f ( t m p e v e n t ) em funcs−>e m f r e e ( t m p e v e n t ) ;

/ / Add mapped e v e n t t o t h e queue
em funcs−>q add ( queue , new even t ) ;

re turn 0 ;
}

}
re turn 0 ;

}

Figure 4.7: Transition function source code
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Chapter 5

Performance Evaluation of Security Mechanisms

In this chapter, I present an empirical study conducted to measure the impact that scoping

and execution monitoring have on the performance of event based systems. In similar

studies [10] [21], two of the most standard measurements used to compare performance in

networking technologies, are latency and message throughput. Latency is the time it takes

to deliver one message from one designated point to another (e.g. from one publisher to

one subscriber), whereas message throughput is the rate in which messages are delivered

(e.g., number of messages per second), also from one designated point to another.

This study was performed using an open source implementation of the MQTT protocol,

namely, Mosquitto [25]. The performance of Mosquitto was evaluated using six different

configurations, and was measured in terms of message throughput. Message throughput

was used as the standard measurement due to the following reasons: 1) Message throughput

is commonly used to establish requirements and limits for IoT technologies [1][5], 2) pre-

liminary experiments conducted to measure latency shown negligible differences between

the original version of Mosquitto, and the extended version with the security mechanisms,

3) these latency experiments also shown to be very susceptible to latency peaks, which re-

sulted in inconsistent results, sometimes even favoring the extended version of Mosquitto.

Additionally, in similar experiments conducted by Babovic et al. [10], they recognize the

importance of measuring message throughput to minimize error.

To measure message throughput, one experiment was performed under three different

scenarios, and each scenario was executed for six rounds. Additionally, the experiment was

repeated once per Mosquitto configuration. This chapter introduces some preliminaries

in §5.1, where the configurations for Mosquitto are described. The experimental setup
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is detailed in §5.2, including the description of the scenarios and rounds, as well as the

hardware and software setup. Finally, results are discussed in §5.3.

5.1 Preliminaries

In the MQTT protocol, a topic-based subscription system is used [15], where subscribers

demonstrate their interest on particular events based on a topic (or subject). Furthermore,

events, are mainly regarded as a combination of a topic and a payload, where the payload

contains the actual application data. For example, a publisher could publish the current

temperature of the environment using the topic “current temperature” and payload “15”,

which would imply a current temperature of 15 degrees.

In my experiment, I used four different execution monitors which read one input event

a, and output a sequence of events w. The execution monitors used are: simple em, com-

plex em, hsup em, and mutli em.

simple em This execution monitor reads the topic of the input event a and outputs a se-

quence w consisting of one single event b, where the payload of b is a copy

of the payload of a. The topic of b is obtained by mapping the topic of a

using a lookup table. This execution monitor is used as a lower bound in

terms of complexity. More specifically, the running time of this execution

monitor is in constant time.

complex em This execution monitor reads the input event a and outputs a sequence w

consisting of one single event b. The topic of b is obtained by mapping the

topic of a using a lookup table. The payload of b is generated byte by byte

with random ASCII printable characters (0x20 to 0x7E), and has the same

size than the payload of a. This execution monitor is used as an upper bound

in terms of complexity. More specifically, the running time of this execution

monitor is in polynomial time with respect of the size of the payload.
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hsup em This execution monitor suppresses every other input event a based on its current

state. Particularly, the execution monitor has two possible states: “allow”

and “suppress”. Upon receiving the input event a, if the monitor is in state

“allow”, it will output a sequence w = a, and switch to state “suppress”.

On the other hand, if the monitor is in state “suppress”, it will suppress the

event a and switch to state “allow”.

multi em This execution monitor receives an input event a and duplicates it to produce

the output sequence w = aa.

The experiment was conducted using six different configurations of Mosquitto. In the

following section these configurations are described.

5.1.1 Mosquitto Configurations

In this study, two versions of Mosquitto are used: 1) The original Mosquitto without secu-

rity mechanisms, and 2) The extended version of Mosquitto (see chapter 4) with security

mechanisms.

The configurations of Mosquitto used during the experiment are defined by the version

of Mosquitto, and the execution monitor (if any) used. Each configuration is also related

to a factor Z, which represents the ratio of output events to input events for the execution

monitor used for that configuration. For example, the execution monitor simple em maps

one input event to a sequence of only one event, which represents an output event to input

event ratio of Z = 1÷ 1 = 1. However, in the case of the execution monitor multi em,

every input event is mapped to a sequence of two events, which represents an output event

to input event ratio of Z = 2÷ 1 = 2. For configurations with no execution monitors, the

factor Z is defined to be 1.

The configurations of Mosquitto used during the experiment are:

• Mosquitto without security mechanisms (ORI), with Z = 1.
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• Mosquitto with security mechanisms but no execution monitors modules

loaded (NEW), with Z = 1.

• Mosquitto with security mechanisms, using the execution monitor simple em

(SEM), with Z = 1.

• Mosquitto with security mechanisms, using the execution monitor com-

plex em (CEM), with Z = 1.

• Mosquitto with security mechanisms, using the execution monitor hsup em

(HSUP), with Z = 0.5.

• Mosquitto with security mechanisms, using the execution monitor multi em

(MULTI), with Z = 2.

5.2 Experimental Setup

The experiment was divided into three scenarios, and each scenario is executed for six

rounds per Mosquitto configuration. Scenarios are illustrated in §5.2.1, where each scenario

describes a different connectivity configuration between publishers, subscribers and scopes.

Rounds represent the rate at which messages are published in the scopes, and are discussed

in §5.2.2. Finally, §5.2.3 and §5.2.4 describes the hardware and software setup respectively.

5.2.1 Scenarios

As mentioned earlier, the experiment was divided into three scenarios: one scope, three

scopes and five scopes. The purpose of these scenarios, is to measure the impact that an

increasing the number of interconnected scopes have in terms of message throughput. In

all scenarios, all publishers publish messages to one scope (PBroker), and all subscribers

subscribe to events in another Scope (SBroker).
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PBroker
And

SBroker

𝑥1 Publishers

1 Subscriber

𝑥2 Publishers

1 Subscriber

𝑥14 Publishers

1 Subscriber

Figure 5.1: Scenario 1 - 1 Scope

PBroker

SBroker

𝑥1 Publishers

1 Subscriber

𝑥2 Publishers

1 Subscriber

𝑥14 Publishers

1 Subscriber

Figure 5.2: Scenario 2 - 3 Scopes
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Figure 5.3: Scenarios 3 - 5 Scopes

Publishers and subscribers are spawned in fourteen different machines, where each

machine launches one single subscriber, and an increasing number of publishers. In the

following paragraphs, scenarios 1, 2 and 3 are described.

Scenario 1. Figure 5.1 illustrates scenario 1, where only one scope is used to relay events

from publishers to subscribers. Publishers publish events in this scope, and

subscribers are the recipients of such events, in such a way that each event

is received by only one subscriber. The total number of publishers launched

per machine is described in §5.2.2.

Scenario 2. Figure 5.2 illustrates scenario 2, where three scopes are used to relay events

from publishers to subscribers. Publishers publish events in scope PBroker,

and subscribers subscribe to events in SBroker, in such a way that each event

is received by only one subscriber. The total number of publishers launched

per machine is described in §5.2.2.

Scenario 3. Figure 5.3 illustrates scenario 3, where five scopes are used to relay events
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from publishers to subscribers. Publishers publish events in scope PBroker,

and subscribers subscribe to events in SBroker, in such a way that each event

is received by only one subscriber. The total number of publishers launched

per machine is described in §5.2.2.

In figures 5.1, 5.2, and 5.3, arrows represent the flow of events. Additionally, when

using configurations with execution monitors (SEM, CEM, HSUP and MULTI), only one

execution monitor per scope is configured.

5.2.2 Rounds

Scenarios were divided into rounds, and in each round a fixed number of events per second

were published for a period of 10 minutes. The term Message Publish Rate is used to

refer to the rate in which messages are published in one round. For simplicity purposes, the

following abbreviations may be used throughout the rest of the chapter:

• MPR: Message Publish Rate.

• mps: Messages per second.

• MT: Message Throughput.

During each round, a different number of messages per second is published. The MPR

in rounds 1, 2, 3, 4, 5, and 6 is 5K, 10K, 15K, 20K, 25K, and 30K mps respectively.

In all scenarios, fourteen machines were used to spawn publishers and subscribers.

Each machine spawned an increasing number of publishers per round, and only one sub-

scriber. The total number of publishers launched per machine was calculated according

to the MPR of each round, so that each publisher would publish one message per second.

For example, if the goal is to publish a total of 5K mps, then a total of (aprox.) 5000/14

publishers were spawned per machine.
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Finally, in all instances of the experiment, a payload size of 175 bytes was used. This

payload size was chosen to represent a payload carrying sensor data. One example of

an MQTT message carrying information about the status of one battery can be found in

[3], with a payload size of 97 bytes (97 characters). A size of 175 bytes was used as an

upperbound.

5.2.3 Hardware Setup

In this study, fourteen machines were used to launch publishers and subscribers, and 5

machines were used to run Mosquitto Servers. These machines are virtual machines hosted

in the following hardware:

• Chasis: IBM BladeCenter H type

• Storage: SAN = 600 GB + 300 GB + 2TB

• Visualization Software: WMware ESXi, 4.1.0, 800380

• Processor Type: Intel(R) Xeon(R) CPU X5660 @ 2.80GHz

• CPU Cores: 12 CPUs x 2.8 GHz

All virtual machines have the following specifications:

• OS: Centos release 6.9 (Final)

• CPU: Intel(R) Xeon(R) CPU X5660 @ 2.80GHz (1 core)

• Memory: 8 GB

• Disk Space: 14 GB
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5.2.4 Software Setup

The Software used during the experiment is described in this section.

Mosquitto 1.4.10 (original): Open Source MQTT Server implementation. Used for Mosquitto

ORI configuration.

Mosquitto 1.4.10 (with security mechanisms): Open Source MQTT implementation with

added security mechanisms (Execution Monitors infrastructure). This is the

extended version of Mosquitto implemented for this research project, and

described in chapter 4. Used for Mosquitto NEW, SEM, CEM, HSUP and

MULTI configurations.

Mzbench [7]: Load Testing Tool where users are able to write benchmarking scenarios for

testing applications with different protocols. These scenarios use workers

(smaller applications written in Erlang or Python) to perform the bench-

marking tasks.

vmq mzbench [9]: Mzbench worker for the MQTT protocol. Publishers and Subscribers

used in the experiment are Mzbench scenarios which use the vmq mzbench

worker.

5.3 Results

In this section, the results of the experiment are presented in two different analysis. The

first analysis corresponds to the ORI, NEW, SEM and CEM Mosquitto configurations, and

the second one corresponds to the HSUP and MULTI Mosquitto configurations.

In the first analysis, I included comparable configurations of Mosquitto in terms of

message throughput, whereas the second analysis two non-comparable configurations of

Mosquitto are considered. To explain what comparable means in this context, the term

Calculated Message Throughput is introduced in the following section.
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5.3.1 Calculated Message Throughput

Calculated Message Throughput (CMT), is a calculated value, used as an upperbound in

terms of Message Throughput for each Configuration/Scenario/Round combination. This

value offers perspective to the results, and represents the maximum possible message

throughput obtained under the assumptions that no network delay is present, and that events

are processed by scopes instantaneously.

To illustrate, consider the configuration MULTI with a factor Z = 2, in the scenario

2 with 3 scopes, and round 3 with a MPR of 15K mps. Ideally, if the scopes executed

actions instantaneously, and no network delay was present, it would mean that events are

delivered from publishers to subscribers immediately, passing through all scopes. In the

configuration MULTI, each scope processes events using the execution monitor multi em,

which means that for every input event, a sequence of two events is produced per scope.

Since three scopes are used in scenario 2, a total of 2×2×2 = 8 events would be delivered

per published event. Then, considering a MPR of 15K mps, in this case the Calculated

Message Throughput would be 15K×23 = 120K mps.

Following this intuition, given the factor Z of one configuration, in a scenario with m

scopes, and a round with a MPR of x mps. The CMT is calculated using the following

formula:

CMT = x∗Zm

Two configurations are said to be comparable, if they have the same CMT to MPR ratio

under all scenarios and rounds. This conditions essentially means that two configurations

are comparable if the have the same factor Z. Additionally, two different scenario/configu-

ration combinations are said to be comparable if they have the same CMT to MPR ratio in

all rounds.

In the following section, a brief description of how Message Throughput is calculated
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from the empirical data is given.

5.3.2 Message Throughput

To measure message throughput, publishers and subscribers were launched in fourteen dif-

ferent machines as described in §5.2.2. Since machines are independent from one another,

the following formula is used to calculate the total message throughput. Let t(si) represent

the total number of messages delivered to the ith subscriber during one round (10 minutes),

where 1 ≤ i ≤ 14 (for a total of 14 subscribers, 1 per machine). The message throughput

(MT) for that round is calculated as follows:

MT =
∑

14
i=1 t(si)

10∗60

All MT’s have a corresponding CMT, and a MT is said to be an Optimum Message

Throughput (OMT), if it is equal to its corresponding CMT.

To offer one point of comparison between different scenario/configuration combina-

tions, the Maximum Message Throughput (MMT) is defined to be the highest Optimum

Message Throughput obtained throughout all the rounds of one scenario with the same

configuration.

5.3.3 Analysis 1 - Scoping and Execution Monitoring

The purpose of this analysis is to measure the impact in terms of message throughput that

scoping and execution monitoring have on event based systems. In this analysis, I com-

pare the message throughput of the Mosquitto with configuration ORI against the message

throughput of Mosquitto using configurations NEW, SEM, and CEM.

Figures 5.4, 5.5, and 5.6 illustrate the results used for this analysis. Each figure shows

the results for one scenario, where the x axis represents the Message Publish Rate (MPR)

used in each round, and the y axis represents Message Throughput (MT). Points in the

graphs represent the Message Throughput obtained using one particular MPR. In the fol-
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Figure 5.4: Experiment Results: Analysis 1 - Scenario 1

lowing paragraphs, each figure is analyzed independently and a summary of the most in-

teresting remarks is given per figure. Conclusions for both analysis are left for §5.3.5.

Figure 5.4, shows the message throughput of configurations ORI, NEW, SEM and CEM

in scenario 1. In this scenario, only one scope is used to relay events from publishers to

subscribers. This scenario is used to minimize the impact of scoping in order to measure

only the impact of execution monitoring. The results show that, when only one scope is

used:

1. Using the original version of Mosquitto, it is possible to reach a Maximum

Message Throughput of at least 30K mps (ORI).

2. Even after adding support for execution monitoring and scoping is added,

the Maximum Message Throughput remains at 30K mps if none of these

mechanisms is used (ORI vs NEW).

3. The impact of execution monitoring on message throughput depends on the
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Figure 5.5: Experiment Results: Analysis 1 - Scenario 2

speed of the execution monitor used. This means, that the slower the execu-

tion monitor used is, the more impact in terms of message throughput it has

(ORI vs CEM and SEM).

4. Even when execution monitors are used, it is possible to reach a Maximum

Message Throughput of 20K mps (CEM).

Figure 5.5, shows the message throughput of configurations ORI, NEW, SEM and CEM

in scenario 2. In this scenario, three scopes are used to relay events from publishers to

subscribers. This scenario is used to measure the impact of execution monitoring on three

interconnected scopes. It is worth to mention that in the case of configurations SEM and

CEM, one execution monitor is used per scope. To interconnect brokers in configuration

ORI, the bridging facility of Mosquitto described in §4.2.1 is used. The results show that,

when three scopes are used:

1. A Maximum Message Throughput of 25K mps is reached in the original
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Figure 5.6: Experiment Results: Analysis 1 - Scenario 3

version of Mosquitto (ORI).

2. When support for execution monitoring and scoping is added, the Maximum

Message Throughput drops from 25K mps to 20K mps (ORI vs NEW).

3. The impact of execution monitoring on message throughput depends on the

speed of the execution monitor used. This means, that the slower the execu-

tion monitor used is, the more impact in terms of message throughput it has

(ORI vs CEM and SEM).

4. Even when execution monitors are used, it is possible to reach a Maximum

Message Throughput of 15K mps (CEM).

Figure 5.6, shows the message throughput of configurations ORI, NEW, SEM and CEM

in scenario 3. In this scenario, five scopes are used to relay events from publishers to sub-

scribers. This scenario is used to measure the impact of execution monitoring on five inter-

connected scopes. Juts like in scenario 2, in configurations SEM and CEM, one execution
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monitor is used per scope, and bridges are used to interconnect brokers in configuration

ORI. The results show that, when five scopes are used:

1. A Maximum Message Throughput of 20K mps is reached in the original

version of Mosquitto (ORI).

2. When support for execution monitoring and scoping is added, the Maximum

Message Throughput stays at 20K mps (ORI vs NEW).

3. The impact of execution monitoring on message throughput depends on the

speed of the execution monitor used. This means, that the slower the execu-

tion monitor used is, the more impact in terms of message throughput it has

(ORI vs CEM and SEM).

4. Even when execution monitors are used, it is possible to reach a Maximum

Message Throughput of 15K mps (CEM).

5.3.4 Analysis 2 - Suppression and Multiplication of Events

The purpose of this analysis is to measure the impact that suppression and multiplica-

tion of events have in terms of message throughput. Intuitively, multiplication of events

could result in over-flooding of the communication channels, which could potentially have

a negative impact in message throughput. On the other hand, event suppression could help

alleviate the traffic in one communication channel, favoring the transmission of events.

Figures 5.7, 5.8 and 5.9 show the results for event suppression, and figures 5.10, 5.11

and 5.12 show the results for event multiplication. For event suppression, the configuration

HSUP was used, and the configuration MULTI was used for event multiplication.

In this set of results, the ratio of CMT to MPR depends on the number of execution

monitors used (1 per scope) and their factor Z. For example, in the case of MULTI with

Z = 2, when one, three, and five execution monitors are used, the ratios of CMT to MPR
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Figure 5.7: Experiment Results: Analysis 2 - Scenario 1, HSUP

are 21,23, and 25 respectively. This means that in this analysis, even scenarios using the

same configuration are non-comparable, at least, not in terms of message throughput.

To add perspective to the results, the calculated message throughput (CMT) is used

as reference in all figures. Each figure shows the results for one scenario/configuration

combination, where the x axis represents the Message Publish Rate (MPR) used in each

round, and the y axis represents Message Throughput (MT). Points in the graphs represent

the Message Throughput obtained using one particular MPR.

A new term named Maximum Message Publish Rate (MMPR) is introduced as an

alternative way to compare results. The MMPR is defined to be the MPR used to reach the

Maximum Message Throughput in a scenario/configuration combination.

In the following paragraphs, important observations of each figure are highlighted, how-

ever, conclusions are left for §5.3.5.

Figures 5.7, 5.8 and 5.9, shows the relation between MT and CMT for configuration

HSUP in scenarios 1, 2 and 3 respectively. In these figures, the following observations can
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Figure 5.8: Experiment Results: Analysis 2 - Scenario 2, HSUP
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Figure 5.9: Experiment Results: Analysis 2 - Scenario 3, HSUP
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Figure 5.10: Experiment Results: Analysis 2 - Scenario 1, MULTI

be done:

1. Figure 5.7 shows that, throughout all rounds of scenario 1, it was possible

to maintain an Optimum Message Throughput, despite of using execution

monitoring. The MMPR in scenario 1 with configuration HSUP is 30K mps.

2. Figure 5.8 shows that, in most rounds of scenario 2, it was possible to main-

tain an Optimum Message Throughput, except for round 6 with a MPR of

30K mps. The MMPR in scenario 2 with configuration HSUP is 25K mps.

3. Figure 5.9 shows that, in most rounds of scenario 3, it was also possible to

maintain an Optimum Message Throughput, except for rounds 5 and 6, with

a MPR of 25K and 30K mps respectively. The MMPR in scenario 3 with

configuration HSUP is 20K mps.

Figures 5.10, 5.11 and 5.12, shows the relation between MT and CMT for configuration

MULTI in scenarios 1, 2 and 3 respectively. In these figures, the following observations
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Figure 5.11: Experiment Results: Analysis 2 - Scenario 2, MULTI
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can be done:

1. Figure 5.7 shows that, in most rounds of scenario 1, it was possible to main-

tain an Optimum Message Throughput, except for rounds 5 and 6 wit a

MPR of 25K and 30K mps respectively. The MMPR in scenario 1 with

configuration MULTI is 20K mps.

2. Figure 5.8 shows that, only in round 1 of scenario 2, has on Optimum Mes-

sage Throughput. The MMPR in scenario 2 with configuration MULTI is

5K mps.

3. Figure 5.9 shows that, none of the Message Throughputs in scenario 3 with

configuration MULTI are Optimum.

In the following section, a discussion of the results for both analysis is presented based

on the observation given.

5.3.5 Discussion

The observations of Analysis 1, indicate that adding support for scoping and execution

monitoring has a negligible impact in terms of message throughput in an event based sys-

tem, as long as these mechanisms are not actively used. This essentially means that it is

possible to support these mechanisms, and preserve the same message throughput. How-

ever, once execution monitoring and/or scoping are used, the message throughput starts to

decline.

Take as a reference the Maximum Message Throughput of 30K mps of the original ver-

sion of Mosquitto (ORI) in scenario 1. This Maximum Message Throughput represents the

performance of a regular Event Based System with no security mechanisms. When execu-

tion monitoring alone was active, with the slowest execution monitor (scenario 1, CEM),

the Maximum Message Throughput dropped from 30K mps, to 20K mps. When scoping
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alone was active, with the most number of interconnected scopes (scenario 3, NEW), the

Maximum Message Throughput also dropped from 30K mps to 20K mps. This indicates

that a slow execution monitor has roughly the same impact than using a considerable num-

ber of interconnected scopes in terms of message throughput.

The worst case is represented by scenario 3 with configuration CEM, where 5 scopes

are interconnected, and each of them runs a slow execution monitor. In this case, the

Maximum Message Throughput drops from 30K mps, to 15K mps.

If these results are compared against the limits and requirements established for some

IoT technologies, it is possible add even more perspective. For example:

1. Amazon established a limit of 9K publish requests per AWS account for

their AWS Services (Table Message Broker Limits in the website) [1]. This

means that one AWS account, can publish a maximum of 9K mps to their

Message Broker.

2. Microsoft divides their IoT Hubs solutions into three tiers: S1, S2 and S3

[5]. The tier S3 is the most powerful of them, allowing an average message

throughput of 208,333 messages per minute (around 3.5K mps).

Comparing these values against the Maximum Message Throughput of 15K mps ob-

tained in the worst case, it is possible to observe that, even when execution monitoring and

scoping are used, an event based system may still be used to satisfy limits and requirements

imposed by real IoT technologies.

The observations of Analysis 2, indicate that event suppressing actually alleviates traffic

in a communication channel, which has a positive impact in terms of message throughput.

On the other hand, event multiplication has the opposite effect. This knowledge could be

useful for system administrators, to help them make educated decision when setting up

execution monitors in the system that involve suppression and multiplication of events.

Particularly, event multiplication has to be treated with care, since abusing this feature
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could result in an event based system not being able to keep up with the propagation of

events, which could result in delays in the system.
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Chapter 6

Conclusions, Related Work, and Future Work

6.1 Conclusion

This work introduced a mathematical model for Event Based Systems where the security

mechanisms scoping and execution monitoring are formalized. The main components of

this model offer the system administrator the ability to configure the structure of the system,

control event propagation, dictate the behavior and localization of execution monitors, and

simulate QoS assumptions to account for relative network speed.

In this work execution monitoring was implemented using edit automata [23], and it

was shown to be a powerful mechanism for monitoring events sequences. However, execu-

tion monitoring can be used for other purposes, such as: implementing coordination logic

among devices, and implementing event filtering and event mapping. Execution monitor-

ing, along with scoping, enables coordination logic to be distributed in a number of mid-

dleware nodes (scopes), and enable the enforcement of different forms of visibility control.

Different forms of visibility control were demonstrated based on the two protection

mechanisms, including information flow control based on the Bell-LaPadula model, and

event visibility control based on Fiege et al. [17, 19, 18]. Additionally, a case study was

presented, to demonstrate the use of scoping and execution monitoring in the context of a

home automation system, where two security policies were enforced via the combination

of scoping and execution monitoring.

During the research project, the mathematical model was mechanized using PLT Redex,

which was an essential factor in the debugging process of the model. Once the mathemati-

cal model was complete, to evaluate the performance of execution monitoring and scoping

on Event Based Systems, the open source software Mosquitto [25] was extended to support

92



these protection mechanisms.

An empirical evaluation of the performance was conducted, where the performance

was measured in terms of message throughput. This empirical evaluation shown that, de-

spite the impact that scoping and execution monitoring have on event based systems, the

extended version of Mosquitto was able to satisfy limits and requirements imposed by cur-

rent IoT technologies.

Finally, although the focus of this thesis was the middleware of IoT architectures, this

work attacked two of the main security challenges in middleware for distributed systems

based on the broker architecture, and the Publish/Subscribe design pattern: 1) Failure of

network infrastructure, and 2) potentially compromised devices. The contributions of this

thesis could be applied to similar architectures in different contexts with minimal modifi-

cations, however, the impact of scoping and execution monitoring in terms of performance

has to be carefully considered.

6.2 Related Work

Scoping and event mapping in event based systems were introduced by Fiege et al. [17,

19, 18]. In their work, scoping and event mapping were formalized within a trace-based

formalism adapted from temporal logic. Scoping particularly was proposed as a mecha-

nism to facilitate engineering and coordinations of components in event based systems. In

this thesis, scoping is used as a security mechanism used as a countermeasure to potential

interruptions of network connections. Additionally, Fiege et al. define visibility of events

in scopes in terms of a fixed visibility policy based on shared ancestors, whereas the model

proposed in this work is more flexible, and allows for custom made visibility policies. This

work also shows that event mapping is a special application of execution monitoring.

Schneider [28] classified the type of security policies enforceable with execution mon-

itors implemented as secure automatons. In his work, Schneider focuses in the monitoring
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of programs defined as a sequence of actions, where execution monitors interpose them-

selves between the program being monitored, and the machine running the program. The

execution monitors enforce security policies, by terminating the program upon detecting

a sequence of actions that violates them. Ligatti et al. [23] defined edit automata based

on Schneider’s work, by extending the capabilities of the security automaton. These new

automata are capable not only of terminating the program, but also of modifying it at run-

time. In this thesis work, execution monitoring is based on the edit automata proposed by

Ligatti et al., but it differs in the sense that the source of the monitored events are multiple

distributed devices, instead of a single program.

A Composite Event Detection framework is propose by Pietzuch et al. [26] for Pub-

lish/Subscribe Systems. A composite event is regarded as a special type of event published

when an event pattern occurs. For example, in the context of home automation systems,

a home owner may be interested in receiving notifications if somebody rings the door bell

when nobody is at home. With the Composite Event Detector proposed by Pietzuch et al.,

which is implemented as an automaton, this pattern of events can be detected, so as to pub-

lish a representative composite event. The automata used for composite event detection has

a close resemblance to the edit automata used to implement execution monitoring in this

work. This thesis differs from the Composite Event Detection framework in the following.

First, the automata used for composite event detection does not account for suppression

of events, which is a necessary feature for implementing security policies. Second, in the

Event Detection Framework, the Composite Event Detectors interact with the middleware

as if they were one more publish/subscribe entity, thus, all events are visible in the middle-

ware. In this thesis, execution monitors are interposed between two entities (i.e. between

devices and the middleware), in such a way that events propagated from one entity to an-

other are processed before they are delivered. Although, in appearance, this is a small dif-

ference, having the ability to intercept events is critical for security purposes. For example,
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if a malicious event was to be propagated from one entity to another, the execution monitor

can easily suppress it before it reaches its destination, preventing any possible harm to be

done.

Other different efforts have been done in order to augment security in Publish/Sub-

scribe systems. Srivatsa et al. proposed EventGuard [30], a framework used to protect

Publish/Subscribe systems. In their work, Srivatsa et al. assume publishers to be honest,

and all publications are assumed to be valid and correct. In contrast, this work assumes the

existence of rogue publishers, capable of publishing malicious events. Singh et al. [29]

proposed a secure version of the MQTT protocol named Secure MQTT (SMQTT). In their

work, confidentiality of messages is enforced by applying cryptographic techniques based

on Attribute Based Encryption. This works differs from SMQTT in that the main con-

cern of SMQTT, is the confidentiality of events, whereas this work focuses in detection of

potentially dangerous event sequences.

6.3 Future Work

Based on the contributions of this thesis, the following research opportunities arise:

1. In this work (§3.3.6), QoS assumptions are used to account for relative net-

work speed. Different QoS assumptions may produce different ordering on

event propagation. This implies that the order in which events are consumed

by execution monitors highly depends on the underlying QoS assumptions,

and their location. Important examples of future work derived from this

observation are:

(a) A clear identification of enforceable security policies based

on different QoS assumptions, and identification of possible

QoS independent enforceable security policies.
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(b) Definition of a high level language to describe enforceable

security policies, so as to compile policies into execution

monitors that enforce them, taking into account the under-

lying QoS assumptions.

2. In §3.5, the security mechanisms were used individually to enforce security

policies, however security policies that involved the combination of both

mechanisms were not considered. Future work involves the exploration of

what type of high-level security policies can be captured through the low-

level configuration of brokering policies and execution monitors.

3. Configuring the mathematical model taking into account both security mech-

anisms might be a challenging task. Possible future work to facilitate this

administrative task involves the design of a high-level specification language

for articulating behavioral protocols. These protocols could then be com-

piled down to specific configuration of scopes, links, brokering policies,

and execution monitors.
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Appendix A

All Link-Pairs Flow Routes

In §3.4.1.1, it was suggested that a variant of the Floyd-Warshall algorithm, namely All

Link-Pairs Flow Routes, can be used to compute whether there is a legitimate flow route

between each pair of entities in the system (more precisely, between each pair of links). The

Floyd-Warshall algorithm is used to compute All-Pairs Shortest Paths, given a weighted

directed graph G= 〈V,E〉, with a weight function w : E→R, that maps edges to real-valued

weights. The Floyd-Warshall algorithm uses the adjacency matrix representation of G to

compute all shortest paths between all pairs of vertices.

In the following sections, I describe how to adapt the Floyd-Warshall algorithm to com-

pute all legitimate flow routes in a connection graph CG = 〈D,S, link〉. In this variant,

weights are substituted for boolean values, such that, > represents the existence of a flow

route between two entities, and ⊥ represents the absence of such flow route. This process

is divided into two steps:

1. Transforming the connection graph CG into a directed graph G = 〈V,E〉

(§A.1).

2. Using the adjacency matrix representation of G to compute an answer ma-

trix D, which represents all legitimate flow routes in CG (§A.2).

Finally, §A.3 shows how, given two entities x and y, it is possible to compute whether

there is a legitimate flow route from x to y, based on the answer matrix D.
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A.1 Transformation

Given schema χ = 〈CG,EP,BP,sub,v〉 with a connection graph CG = 〈D,S, link〉 and a

brokering policy BP = 〈T , type,allow〉, we transform CG into a directed graph G = 〈V,E〉

as follows:

V = link

E = {((x,y),(y,z)) | propagate(x,y,z)∧ y ∈ S ∧ x 6= z}

That is, for each pair (x,y) ∈ link, a vertex v = (x,y) is created. Additionally, for all

tuples (x,y,z) ∈ propagate, the edge ((x,y),(y,z)) is defined if 1) y ∈ S , and 2) x 6= z. Note

that propagate(x,y,z) requires that (x,y),(y,z) ∈ link and allow(type(x,y), type(y,z)).

In simple words, the set V represent links between entities, and the set E induces the

single-hop flow routes in the system, where an edge ((x,y),(y,z)) ∈ E represents the flow

route xyz. For the algorithm, the graph G is represented as an adjacency matrix [14, §22.1]

R =
(
ri j
)
, such that:

ri j =


> (li, l j) ∈ E

⊥ otherwise

Then, ri j = > represents that there exists a single-hop flow route between links li and

l j, whereas ri j =⊥ represents that no single-hop flow route exists between links li an l j.

A.2 The algorithm

The All Link-Pairs Flow Routes algorithm considers the concept of intermediate links in

a flow route. Given a flow route p = l1 · · · lk, an intermediate link of p is any link in p other

than l1 or lk. That is, all links in p are intermediate links, except for the first link and last

link.
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The algorithm is based on the following observation. Consider the graph G = 〈V,E〉,

where V = {l1, l2, ..., lM}. Now, consider a subset {l1, l2, ..., lk} of V for some k ≤ M.

For any pair of links li, l j ∈ V for which there exists a flow route p = li · · · l j, and whose

intermediate links are drawn from {l1, l2, ..., lk}, one of two cases must hold:

Case 1: lk is not an intermediate link in the flow route p. In this case, all the intermedi-

ate links in the flow route p are drawn from the set {l1, l2, ..., lk−1}. This

intuitively means that, since lk is not an intermediate link of p, and p is the

flow route li · · · l j with intermediate links drawn from the set {l1, l2, ..., lk},

then p must be a flow route with intermediate links drawn from the set

{l1, l2, ..., lk−1}.

Case 2: lk is an intermediate link in the flow route p. This means that p is composed of

two segments: p1 = li · · · lk and p2 = lk · · · l j. Since intermediate links of

p are drawn from the set {l1, l2, ..., lk}, and p1 and p2 are segments of p,

then the intermediate links of p1 and p2 are also drawn from {l1, l2, ..., lk}.

Furthermore, since lk is not an intermediate link of either p1 or p2, then the

intermediate links of p1 and p2 are in the set {l1, l2, ..., lk−1}.

Observe that, in both cases, to answer if there is a flow route p = li · · · l j with interme-

diate links drawn from the set {l1, l2, ..., lk}, it is necessary to compute if there is a flow

route between all pairs of links with intermediate links drawn from the set {l1, l2, ..., lk−1}

beforehand.

Let d(k)
i j represent whether or not there exist a flow route between links li and l j for

which all intermediate links are in the set {l1, l2, ..., lk}. When k = 0, only flow routes

from li to l j with no intermediate links are considered. Such flow routes are the single-hop

flow routes represented by the edge (li, l j) ∈ E, hence d(0)
i j = ri j. The following recursive

definition obeys the above discussion.
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d(k)
i j =


ri j if k = 0

(d(k−1)
i j ∨ (d(k−1)

ik ∧d(k−1)
k j )) if k ≥ 1

Since for any flow route, all intermediate vertices are in the set {l1, l2, ..., lM}, the matrix

D(M) =
(

d(k)
i j

)
gives the final answer, such that d(k)

i j => if there exists a flow route from li

to l j and d(k)
i j =⊥ otherwise.

Finally, based on the aforementioned recurrence, Algorithm 1 can be used to compute

D(M). Where its input matrix is the adjacency matrix R as defined in §A.1, and rosw[R]

represents the number of rows (i.e., number of links) of R.

Algorithm 1 All Link-Pairs Flow Routes(R)

1: M← rows[R]
2: D(0)← R
3: for k← 1 to M do
4: for i← 1 to M do
5: for j← 1 to M do
6: d(k)

i j ← (d(k−1)
i j ∨ (d(k−1)

ik ∧d(k−1)
k j ))

7: end for
8: end for
9: end for

10: return D(M)

The algorithm runs in O(M3) where M is the number of links defined in the connection

graph CG, from which the input matrix R was inferred.

A.3 One Link-Pair flow route

Using the resulting matrix D(M), it is possible to verify if is there exists a flow route between

any two given entities x and y. Since each vertex li ∈V is also a link of the form li = (x,y),

f irst(li) is written to refer to the first entity in one link, and second(li) is used to refer to the

second entity, that is, f irst(li) = x, and second(li) = y. Given a matrix D = D(M), if there

exist any cell di j in D such that di j = >, f irst(li) = x and second(l j) = y, then there exist
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at least one flow route from x to y. An exhaustive search over D is then used to compute

the answer in Algorithm 2.

Algorithm 2 Link-Pair Flow Route(V , D, x, y)

1: M← rows[D]
2: for i← 1 to M do
3: if f irst(li) = x then
4: for j← 1 to M do
5: if second(l j) = y∧di j => then
6: return >
7: end if
8: end for
9: end if

10: end for
11: return ⊥

Algorithm 2 runs in O(M2), where M = |link|, that is, the total number of links defined

in the connection graph CG = 〈D,S, link〉. To account for all entity pairs, this algorithm

has to be repeated |E|× |E −1| times, for a total complexity of O((NM)2), where N = |E|.

Considering the complexity of both Algorithm 1 and Algorithm 2, the complexity of the

entire process is in O(M3 +(NM)2).
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