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Abstract

Microgrids have paved the way through the exploitation of distributed generation resources and

eliminating the requisite of high-duty transmission infrastructure. The study presented in this

thesis develops a two-stage optimization problem for the optimal sizing and operation of cam-

pus/institutional microgrids considering delivery charges. At the first stage, a mixed integer linear

programming(MILP) is implemented to determine the optimal configuration of microgrid which

consists of solar Photo-Voltaics(PVs), batteries and microturbines(MTs). The incorporation of de-

livery charges leads to a significant reduction in transmission charges without sacrificing the power

exchange limit. Resulted savings on electricity bill grants the capital investment in microgrid com-

ponents. In the second stage, a mixed integer nonlinear programming(MINLP) on a rolling horizon

basis is formulated for the optimal operation of the microgrid under sizing results obtained in the

first stage. Moreover, an efficient Peak Load(PL) hour forecast framework is established to min-

imize the coincident PL charges. Both volatile and flat electricity price scenarios are studied to

investigate the impact of electricity prices on microgrid optimal sizing and operation. In order to

test the proposed methodology, University of Calgary main campus is selected as the case study

and historical hourly load data are used.
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Chapter 1

Introduction

1.1 Background

1.1.1 Energy Outlook

Energy plays an essential role in modern life. The breakdown of total electricity consumption by

the International Energy Agency (IEA) declares industry as the highest energy consuming sector

with 42% share of the world energy consumption in 2016. Among other energy sectors, residential

users with 27% share and commercial and public services with 22% share, are reported as the

primary electricity demanding sectors. The remaining 9% was consumed by transportation and

other sectors such as agriculture [1].

The authors of International Energy Outlook 2017 (IEO2017) provide different longterm en-

ergy trend projections for major energy consumers worldwide. The Reference Case presented in

IEO2017 relies on the continuous improvements in known technologies and economic and demo-

graphic forecasts for 16 world regions, under the current policies in effect. In the case mentioned

above, total world energy consumption is expected to rise from 575 quadrillion British thermal

units (Btu) in 2015 to 736 quadrillion Btu in 2040, denoting a 28% increase over 25 years. The

IEO2017 also provides projections under uncertainty associated with economic growth rates and

world oil prices. All the energy trend projections presented in IEO2017 affirm the increasing en-
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ergy demand by 2040, while the high oil prices are assumed to increase economic activity and

reinforce a higher increase in energy consumption specially in nonmember countries of Organiza-

tion for Economic Cooperation and Development (OECD) [2].

The IEA provides three different World Energy Outlook (WEO) scenarios to project future en-

ergy trends. In the New Policy Scenario (NPS), authors affirm that by executing the announced

policies and continuous motivations from the government, the final electricity consumption will

likely increase to 34,470 TWh by 2040. Alternatively, current policies scenario provides a cautious

assessment projection of 37,000 TWh demand by 2040 in the case of considering the effective poli-

cies by mid 2017 without further motivation for new actions. Sustainable Development Scenario

(SDS), is an integrated WEO scenario which mainly aims for climate stabilization, improved air

quality and universal energy access along with energy security risk reduction. A high peak in CO2

emissions is expected in SDS scenario with a rapid decrease afterwards. All the above-mentioned

scenarios confirm the growing energy demand under certain assumptions [3].

Due to the electrification of energy uses, the increase in electricity consumption is more rapid

compared to other energy resources. The principal recognized governing factors for increased

demand include income and population growth, technological and industrial advancement and

more accessible electricity service to end users [2].

Figure 1.1 illustrates the historical data and also future projections of world total electricity

generation by resource for the IEO2017 Reference Case. Thus far, coal has the largest share of

net electricity generation worldwide with approximately 40% of total generation. However, coal-

fired power generation produces profoundly harmful environmental impacts and pollutants which

yields to global warming and public health issues. Many governments are taking actions to phase

out traditional coal-fired power plants and replacing them with renewable energy resources and

high-efficiency coal units.
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Figure 1.1: World Net Electricity Generation by Energy Resource [2].

According to Figure 1.1, natural gas accounts for approximately 22% of net electricity gener-

ation in 2015. Natural gas, the cleanest fossil fuel energy resource is absorbing the attention to

displace coal-fired power plants due to the low capital costs, relatively low fuel costs, lower emis-

sions, co-generation ability and higher efficiency. The above-mentioned advantages have made

natural gas the fastest growing fossil fuel generation resource with an average yearly growth of

2.1% from 2015 to 2040 [2, 4].

Renewable energy resources are the fastest growing energy resources with an increase rate of

2.8% from 2015 to 2040 based on IEO2017 Reference Case. In 2040, green energy and coal are

expected to supply the same share of world electricity generation at 31%. Hydro-power provided

roughly 72% of net renewable generation in 2015, along with 14% wind and 4% solar contribution.

Geothermal, biomass and waves account for the remaining 10% share of green energy. Due to

technological advancement, higher conversion efficiencies, climate actions and incentive policies,

wind and solar capacity are expected to rise significantly by 2040. The Reference Case projects

25% wind and 10% solar capacity for 2040 [2].

Nuclear power is one of the most efficient forms of alternative energy which provides approx-

imately 11% share of net electricity generation in 2015. The nuclear contribution is not expected
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to vary much in the Reference Case projections [2].

1.1.2 Canada Electricity Production in compliance with Paris Agreement

Energy Fact Book 2018-2019 published by Natural Resources Canada states that Canada sup-

plied 3% of the world net electricity generation in 2016. Statistics also report that Canada exports

approximately 11% of its overall generation to the United States through 34 active interties. Hydro-

electricity and nuclear power are the main generation resources in Canada with Hydro accounting

for 59% of the net generation and 15% nuclear power supply. The Greenhouse Gas (GHG) emit-

ting resources such as coal and petroleum liquids include 19% of electricity generation in Canada

while the remaining 7% of generation is supplied by non-hydro renewables [5].

The adverse impacts of GHG emissions on climate change, health issues and economy urge

the need for global efforts to address the issues mentioned above. Paris Agreement is an accord

within the United Nations Framework Convention on Climate Change (UNFCCC), to confederate

the world’s countries against the GHG emissions and climate change. Paris Agreement, negotiated

by 196 parties, aims to maintain the increase in average temperature well below 2◦C and pursue

endeavors to limit the increase by 1.5◦C. Under the accord, each country is required to have an

individual plan or nationally determined contributions to combat GHG emissions [6].

Canada submitted its Intended Nationally Determined Contribution (INDC) to UNFCCC on

November 17, 2016. Consistent with Paris Agreement goals, Canada’s Mid-Century Strategy tar-

gets an 80% net GHG reduction by 2050, from 2005 levels. The government of Canada developed

the Pan-Canadian framework (PCF) for clean growth and climate change which aims for a 30%

emissions abatement compared to 2005 levels by 2030 and also a carbon taxation strategy on the

pathway to Mid-Century Strategy. The PCF was the outcome of Canada’s First Ministers and

Indigenous Leaders meeting in Vancouver on March 3, 2016, who reached a consensus to boost

the climate actions already taken by provinces and territories to meet Canada decarbonizing tar-

gets [7, 8].

Among the current climate actions, Climate Leadership Plan announced by the government of
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Alberta is worth mentioning, which aims to end coal pollution by 2030. Moreover, introducing

carbon taxation and reducing methane emissions by 45% by 2025 are amongst the most substan-

tial goals of Climate Leadership Plan [9]. The government of Canada reported that Alberta was

responsible for 53% of the overall Canada GHG emissions in 2015 [10]. Also, the government of

Ontario decommissioned all the coal generators by 2014 as the leading province in taking climate

and environmental actions [11].

The innovative and creative policies outlines by PFC includes carbon pricing, clean energy

promotion and energy efficiency improvements. However, the effective transition to clean energy

requires infrastructure considerations and investments such as creating jobs and devise competi-

tiveness impacts on businesses [7].

1.1.3 Alberta Electricity Market

In Canada, provincial and territorial jurisdictions are responsible for the regulatory oversight of

the electricity sector. While most of the provinces operate their jurisdiction through Crown corpo-

rations and regulatory agencies, Alberta and Ontario went through unique deregulation processes

over the last decade [12, 13]. This thesis aims to investigate the Alberta restructured electricity

market in particular.

In general, the Alberta electricity bill comprises three main components: energy charge, trans-

mission charge and distribution charge. Energy charge accounts for the cost of producing energy

whereas, transmission and distribution charges are referred to the costs associated with moving

energy through the high voltage transmission lines to the substations and distributing the energy to

consumers through low voltage lines, respectively. All electricity users share the transmission and

distribution charges regulated by the Alberta Utilities Commission (AUC) for receiving the safe

and reliable electricity service [14].

Electricity charges are calculated based on hourly electricity pool prices. Alberta wholesale

power pool operated by Alberta Electric System Operator (AESO) is a competitive energy-only

market in transition to a new market structure including energy market and capacity market [15].
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In the current energy-only market structure, generators receive payments only for the capacity

dispatched not for the available capacity. In the power pool framework, hourly electricity pool

prices for buying and selling energy is the same and is set by merit order curve [16].

Canadian transmission network consists of 160,000 Kilometers (km) of high voltage lines

which follows a north-south orientation and large interties between Canada and the United States.

The north-south orientation is due to the large hydro and nuclear projects located in the north,

while most population lies in southern regions in the border with United States [13]. Alberta

provincial transmission system maintained by Transmission Facility Owners (TFOs) is designated

a monopoly service with the AESO responsible for the planning of the transmission network and

rate regulations. Alberta electricity market is unconstrained, and all the entities have open ac-

cess to the grid. Approximately 89% of net electricity generation in Alberta was supplied by coal

and natural gas in 2017 [14]. The current transmission network requires expansions to satisfy the

increased demand, phase out the coal-fired units and accommodate higher penetration of renew-

ables consistent with Paris Agreement and Climate Leadership Plan. The costs associated with the

expansion of the infrastructure is recognized as the rationality behind the increased transmission

charges in Alberta [17].

Distribution sector in Alberta is operated by Distribution Facility Owners (DFOs). Distribution

utilities are responsible for bringing electricity from transmission lines to end users through sub-

stations and low-voltage lines. The AUC monitors and regulates the distribution tariffs to ensure

consumers receive a safe and reliable electricity service at a reasonable rate [14, 18].

In general, market participants can be connected to the distribution facility at a distribution

voltage(distribution connected) or at a transmission voltage(transmission connected) based on their

maximum electricity consumption. Distribution tariffs for distribution connected and transmission

connected consumers is set by DFOs, whereas transmission tariffs are set by the AESO.
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1.1.4 Transmission Charges

The electricity bill comprises three main components: energy charge, transmission charge and

distribution charge. Energy charge will account for the cost of producing energy whereas, trans-

mission and distribution charges are referred to the costs associated with moving energy through

the high voltage transmission lines to the substations and distributing the energy to consumers

through low voltage lines, respectively. All electricity users share the transmission and distribution

charges approved by AUC for receiving the reliable electricity service (cite aeso) .

The breakdown of the transmission charges referred as Demand Transmission Service (DTS)

charges is given in the following subsections.

Connection Charge

Connection charge incorporates three main elements: bulk system charge, local system charge and

point of delivery charge. Charges associated with the connection to the transmission line may

be fixed or variable. While variable charges are declared as charges applied to metered energy

on an hourly basis, fixed costs are referred to used substation fraction. A detailed explanation of

connection charge components is given in the following.

Bulk System Charge

Bulk system charge consists of coincident metered demand charges and metered energy charges.

However, coincident metered demand is the most significant charge rate among all DTS rates and

usually accounts for up to 50% of the overall transmission charges. Coincident metered demand

charge is applied to the metered demand at the point of delivery averaged over the 15-minute period

in which the bulk system demand has reached its maximum level during each month. Although

the coincident metered demand charge is averaged on a 15 minutes period, the available data are

usually provided hourly. For the sake of data availability, a general assumption is made in this

study that the load is averaged over a one hour period to determine the monthly peak load hour.
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Hence, coincident metered demand charge will be applied to metered energy at the monthly peak

load hour. Monthly peak load hour is a posteriori obtained information and forecast of the exact

day of its occurrence is impossible due to the significant long-term forecast errors. In the following

sections, a statistical analysis is done on the historical data to develop a forecast term for monthly

peak load hour.

Local System Charge

This section includes billing capacity and metered energy charges. Billing capacity is a monthly

charge and can be defined as the highest metered demand in settlement period, highest metered

demand in past 24 months or 90% of the contract capacity. In a microgrid system, energy storage

acts as a dispatchable generator when being discharged while it acts as a load when being charged.

The aggregation of demand and battery size as billing capacity in a microgrid will result in huge

DTS charges, therefore, this term must be optimized in the sizing algorithm as well as the size

of microgrid components. The billing capacity is a decision variable which constrains the power

exchange with the grid. To ensure the reliability of the system, the minimum billing capacity must

be the highest metered demand in case the internal generation by microgrid become interrupted.

Point of Delivery Charge

Point of delivery charge is associated with substation charge and volumes of billing capacity. Both

of these charges are applied monthly and since calculations of the substation fraction are very

complex, we assume that the substation fraction is 1. Moreover, there are fixed charges associated

with fractions of billing capacity in the point of delivery section. Details of these charges are

provided in Table 4.2.

Operating Reserve Charge Estimate

Reliability is the most important goal in power grids. In order to handle the unexpected imbal-

ances between the supply and demand resulted by contingencies, faults in dispatchable generation

8



units, uncertainty in renewable energy generation and lag periods between supply and demand, a

reserved energy capacity is required. Regulating, spinning and supplemental reserves have differ-

ent response times and ensure the reliability of the system in case of any imbalances. The cost of

operating reserve will be calculated as a percentage of the hourly pool price and is applied to the

hourly metered energy.

Voltage Control Charge

In a power system, the voltage must be within certain limits to ensure the proper operation of

the electrical equipment, reduce power loss and increase power system resilience. In Alberta,

AESO controls the voltage through various methods including generator terminal voltage adjust-

ment, switching capacitor banks and reactors, transformer tap changes, static VAR compensator,

transmission must run(TMR) level adjustments and line switchings. AESO calculates the hourly

voltage control charge as a product of hourly metered energy and rate voltage control charge.

Other System Support Services Charge

This section comprises charges associated with highest metered demand and apparent power dif-

ference. Highest metered demand is a posteriori charge and cannot be optimized, hence it is not

considered in this study. Due to the complexity of apparent power calculations, this term is also

neglected in this study.

1.1.5 Distribution Charges

After transmission systems, distribution systems ensure a safe and reliable delivery of the energy

to the end users through low voltage lines, substations, and transformers. Distribution companies

have monopoly positions in their areas, hence a strict regulation is necessary to ensure a fair distri-

bution rate to consumers. Distribution rates are regulated by Alberta Utilities Commission (AUC)

in Alberta. Consumers may be connected to the distribution company facilities at a distribution

9



voltage or transmission voltage.

Transmission Connected

For consumers connected to distribution facilities at a transmission voltage, the distribution access

service fee is applied. Service charge is a fixed daily charge and is included in the electricity bill

calculations.

Distribution Connected

Large distributed generation sites with on-site generation with a minimum export capacity of 1,000

kVA which are connected in parallel with the electric distribution system are defined as distribution

connected. In addition to the daily service charge, a charge is also applied to energy consumption

for distribution connected sites during on peak hours which is from 8.00 AM to 9:00 PM from

Monday to Friday.

In this study a transmission connected microgrid is studied.

1.1.6 Microgrid Motivation

The social and environmental concerns arising from the current electrical energy generation re-

sources, growing demand and technological advancement urge the need for increased deployment

of renewable energy resources. Distributed Energy Resources (DERs) play a crucial role to accom-

plish this goal [19].

DERs consists of relatively small-scale generation units and energy storage systems which are

capable of serving the grid individually or aggregated. Whereas higher energy efficiency, increased

reliability, energy independence, lower transmission losses and lower electricity costs are accred-

ited as the privileges of DERs, making the renewable energy resources exploitation conceivable is

DERs’ most significant environmental advantage [20, 21].
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Figure 1.2: Centralized Generation vs. Distributed Generation

Though, the penetration of the renewable energy will also raise concerns associated with their

the inherent intermittency. The full deployment of renewable energy is feasible through installa-

tion and coordination of multiple DERs to absorb the intermittency of renewable generation and

ensure the reliability of the system. Figure 1.2 illustrates the centralized generation and distributed

generation structure.

According to Figure 1.2, the resource management is relatively simple in the centralized gener-

ation while coordination of DERs requires smart multi-directional communications between load

and resources in distributed generation.

Microgrids have appeared as the solution to overcome the challenges and issues associated with

the implementation of DERs to the current power system infrastructure [22,23]. Microgrids struc-

ture considers an aggregation of dispatchable and non-dispatchable micro-generation resources

along with energy storage systems as a fully or partially self-sustained subsystem of the power
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system [24, 25]. Depending on their connection to the grid, microgrids fall into two categories:

grid-connected or islanded. Microgrids are connected to the grid at the Point of Common Coupling

(PCC).

1.2 Motivation and Problem Statement

Issues regarding the deployment of DERs in microgrid structure are twofold. First, the reliable

and economic operation of the microgrid entails the optimal and proper sizes of geographically

feasible DERs. Moreover, effective energy management techniques are needed to ensure the unin-

terrupted satisfaction of the load and reliable and economic operation of the microgrid considering

the interactions with the main grid.

The focus of this study is on optimal sizing and scheduling of tight geographical campuses

or communities. In this category of microgrids, the technical feasibility of DERs is predefined,

whereas the proposed methodology will investigate the economic and environmental aspects. The

previous work done in the optimal sizing and scheduling only considers the energy charges of the

microgrids. Due to the excess generation in the province, 2017 pool prices have experienced a

11 $
MWh decline in average compared to 2015 resulting in flat price dynamics. On the basis thereof,

arbitrage opportunities and selling energy to the grid are no longer efficient revenue streams which

will highly jeopardize the interest in microgrids investments.

Implementation of DERs and on-site generation profoundly impacts the delivery charges of the

microgrid. Depending on the microgrid connection to the grid (transmission-connected or distri-

bution connected), delivery charges may be fixed or variable. Incorporating the delivery charge

items in the design and operation of microgrids can effectively reduce the electricity bill.

The campus microgrid in the present work comprises solar PV systems, MT, battery energy

storage and connection to the main grid at a transmission voltage. It is important to mention that

wind turbine technology is not technically and environmentally feasible in municipal areas where

campuses are located.
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This study aims to incorporate the sizing and scheduling problem in a two-stage optimization

algorithm. In the first stage, a MILP formulation tackles the optimal design problem under con-

sideration of environmental and economic requirements. This formulation approaches electricity

and fuel prices, demand and weather parameters in a deterministic way, although they are stochas-

tic in nature. This is due to the unpredictable characteristic of the aforementioned parameters

in an hourly basis for the 15 years lifetime of the project. The final output of this algorithm is

a compendium of optimal size and number of the DERs, economic results including capital and

operational costs and revenues, in addition to the transmission service parameters.

In the following stage of the optimization problem, the acquired sizes and parameters from the

previous stage is the primary input to a Dynamic Real Time Optimization (DRTO) algorithm in a

MINLP framework for the optimal operation of the system. This section also includes a statistical

analysis of the monthly peak load hour in the bulk system. The dynamic programming takes into

account the uncertainty of the stochastic parameters to efficiently manage the resources and battery

operation. The forecast of stochastic parameters including load, weather data, electricity pool price

and fuel prices is beyond the scope of this study. Incorporating the perfect knowledge of stochastic

parameters shows the efficacy of the PL hour forecast.

1.3 Contribution

Microgrid technologies are subject to very high capital costs. The primary advantage of this ap-

proach is inessential external investments as on-site generation creates many opportunities for cost

reduction and profit maximization. The work presented in this thesis enables the full exploitation

of the microgrid resources and also market opportunities in both design and operation stages.

The contributions of this work are listed as below:

• Delivery charges can account for up to 50% of the final electricity bill. This novel approach

not only takes into account these charges realistically, but also takes advantage of the avail-

able opportunities of microgrid to minimize the delivery costs and even approach it as a
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revenue stream. The reduced delivery charges along with energy exchange revenues in the

project life span are invested in the purchasing microgrid components. In addition to the

optimal size and number of DERs, this algorithm will consider the aggregation of loads and

on-site generation and genuinely determines the billing capacity.

• While coincident metered demand charge is reflected as an after the fact delivery charge

item, the daily peak load hour forecast in this thesis not only avoids this charge effectively,

but also accredits coincident metered demand as substantial revenue stream.

• Lastly, the implementation of the optimal sizes of microgrid components and billing capacity

along with the precise peak load hour forecast in a proactive scheduling framework will

notably reduce the electricity bill.

Although this methodology does not investigate the optimal placement of the components ow-

ing to tight geographical locations of campus microgrids, it is applicable to other centralized sets

of loads such as communities.

1.4 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 reviews the literature regarding the opti-

mization techniques and optimal sizing and scheduling of microgrids. Chapter 3 presents a two-

stage optimization problem including the MILP problem for the optimal sizing problem followed

by a DRTO algorithm in a MINLP framework for the optimal operation. Chapter 4 provides the

general assumptions along with the analysis and comparison of sizing and scheduling simulation

results. Finally, chapter 5 covers a summary of the present work’s conclusions and recommenda-

tions for future work.
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Chapter 2

Literature Review

2.1 Optimization Overview

Mathematical optimization is concerned with systematical selection of the best element from a set

of alternative solutions x = {x1,x2, ...,xn} under given circumstances hi(x) and g j(x) in order to

either minimize or maximize a function f (x). [26, 27].

The general formulation of an optimization problem is represented as:

min
x

f (x), s.t.


hi(x) = 0, i = 1, ...,mh

g j(x)≤ 0, j = 1, ...,mg

(2.1)

Where f (x) is the objective function, x is the vector of decision variables, mh and mg are

positive integers and hi(x) and g j(x) are the equality and inequality constraints, respectively.

Optimization problems have been categorized with regards to the form of equations and type

of decision variables or constraints as follows:

• Linear and Nonlinear

• Continues, Discrete and Mixed-integer

• Deterministic and Stochastic
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• Constrained and unconstrained

• Static and Dynamic

• Convex and Non-convex

Briefly, if linear relationships represent the requirements of a problem it falls in linear program-

ming category. Otherwise, the problem belongs to nonlinear programming. The nature of decision

variables determines if the optimization is continuous or discrete. If both integer and continuous

variables are present in the optimization, it is called mixed-integer programming. The data for

the given problem may be perfectly known or be subject to uncertainties, resulting in determinis-

tic and stochastic optimization problems, respectively. The limitations of decision variables may

be incorporated in the formulations as constraints or penalty terms, whereas the former is called

constrained optimization and the latter is unconstrained optimization. Dynamic optimization takes

into account the impact of current decisions on future possibilities. Convexness of the constraints

determine if the optimization is convex or non-convex [28].

In the following, common optimization problems in power systems and specifically this thesis

will be discussed in a more detailed manner.

2.1.1 Linear Programming (LP)

In general, a Linear Programming (LP) problem aims to minimize a linear objective function of

continuous real variables exposed to linear constraints. Equation 2.2 describes the general form of

LP as:

min
x

cT x, s.t.


Ax = b

Cx≤ d

x ∈ X

(2.2)

where cT x allude to the linear objective function, with c representing the cost vector. Ax = b
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and Cx ≤ d are the set of equality and inequality constraints which define a convex polytope as

the feasibility region required to acquire the optimal solution of the objective function. Lastly, the

unknown decision variables x belong to X which represents the feasible solution space [29].

Figure 2.1: Geometrical representation of a linear program [30]

Figure 2.1 illustrates the geometrical representation of a linear problem. The equalities and

inequalities have formed a convex polyhedral feasible region. The level curves(dashed lines) of

the linear objective function f (x,y) = 2x+y are hyperplanes orthogonal to the gray solid line with

the slope of m = 1
2 . The maximum is determined to be 12 occurring at point P = (5,2) [31].

Simplex algorithm and interior point method are well-known solving algorithms for LP. The

simplex method, developed by George Dantzig in 1941, introduces a systematic approach to test

the feasible set’s adjacent vertices in sequence, ensuring that at every new vertex, the objective

function is non-decreasing [32, 33]. On the other hand, in 1984 Narendra Karmarkar introduced

the first efficient algorithm for solving LP problems in polynomial time. Karmarkar’s algorithm
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falls within the interior-point methods category, which traverses the interior of the feasible region

to reach the optimal solution [34,35]. While both algorithms are efficient in practice, interior-point

methods are proved to handle highly constrained LPs better. Moreover, interior-point methods

have been used in solving constrained and convex nonlinear problems [36].

2.1.2 Non-Linear Programming(NLP)

Nonlinear programming(NLP) is referred to the solving optimization problems where nonlinear-

ities are present in either the objective function or some of the constraints. The mathematical

representation of NLP is given by equation 2.3:

min
x

f (x), s.t.


hi(x) = 0, i = 1, ...,mh

g j(x)≤ 0, j = 1, ...,mg

x ∈ X

(2.3)

Where f (x) is the objective function, hi(x) and g j(x) are the equality and inequality constraints

which define the feasible region X and at least one of the f (x), hi(x) and g j(x) are nonlinear.

Unlike LP problems, the feasible region of NLPs may not be convex necessarily. In fact, the

convexity of feasible region in NLP is specified by equalities and inequalities. That is, if function

f (x,y) is convex and if the points x and y satisfy the equation 2.4:

f (αx+βy)≤ α f (x)+β f (y) (2.4)

For all α , β ∈ R, and α +β = 1 with α ≥ 0,β ≥ 0 .

The solving methods for NLPs highly depend on the convexity of the problem. Contrary to

the convex problems in which local optima is the global optima, multiple locally optimum solu-

tions may exist in non-convex problems and finding the global optimum is often difficult. Convex

optimization problems can be solved by various methods including interior-point methods, bundle

methods and cutting-plane methods efficiently [31].
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Several approaches also exist for solving non-convex problems. NLPs can be immediately re-

formulated utilizing linear approximation methods which leads to a more computationally tractable

problem with a guaranteed global optimum. Another approach is to employ branch and bound

techniques consisting of systematic enumerations of feasible solutions set by state space search

in the form of a rooted tree. In this algorithm design paradigm, a solution of the optimization

problem must be found heuristically and be set as an upper bound U on the candidate solutions.

Afterwards, the feasible region is splitting into two or more subsets recursively, called ”branch-

ing”. In the minimization problem, the lower bound of all the candidate solutions in the branched

subsets is computed which is regarded as ”bounding”. If the computed lower bound is less than

the upper bound, it will replace U . Otherwise, this branch will not lead to an optimal solution and

must be pruned or eliminated. The pruning does not affect the algorithm but reduces the storage

requirements. The algorithm terminates if the difference of lower bound and upper bound is less

than a predefined value ε [37, 38].

Necessary and sufficient optimality conditions in NLPs are provided by Karush–Kuhn–Tucker

conditions [39].

2.1.3 Mixed Integer Linear and Nonlinear Programming (MILP and MINLP)

In the previous optimization techniques, all the design variables were assumed to be continuous

which could take any real value. Some design variables such as on/off status of machines may take

binary values only or the number of physical components and devices can take positive integers

only. If one or some of the design variables are restricted to take on integer values only, then the

problem is called Mixed-Integer Programming (MIP). Equation 2.5 represents the mathematical

formulation of MIP:
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min
x

Z = f (x,y) s.t.


h(x,y) = 0

g(x,y)≤ 0

x ∈ X ,y ∈ Y

(2.5)

where f (x,y), h(x,y), and g(x,y) can be either linear or nonlinear which will determine if the

problem is Mixed-Integer Linear Programming (MILP) or Mixed-Integer Nonlinear Programming

(MINLP), respectively. Decision variable x can take any real value, whilst y is restricted to take

integer values [26].

Among the several techniques available for solving MIP problems, the aforementioned branch

and bound and the cutting-plane of Ralph E. Gomory have proved to be efficient and relatively

fast [40]. Cutting plane method for solving integer convex programming problems assumes that a

bounded minimum exists and embeds a portion of the feasible region set in a compact polyhedral

convex set. This algorithm will then cut off parts of the feasible region of linear relaxation such that

the optimal integer solution becomes an extreme point which can be easily found by the simplex

method. The cutting process takes place by finding an inequality based on separation problem.

Eventually, the algorithm either converges after finite iterations due to the finite number of integers

in the compact polyhedral set or obtains information regarding the infeasibility of the problem [41].

The efficient combination of two ”branch and bound” and ”cutting plane” methods, called ”branch

and cut” has overcome the numerical instabilities associated to cutting plane methods, making the

branch and cut algorithm very successful and widespread [42]. For MINLP problems, the improved

branch-and-bound algorithm [43] and the extended cutting plane algorithm [44, 45] are proved to

efficiently solve convex and non-convex problems. In addition, outer approximation algorithm [46]

and generalized benders decomposition [47] method are widely used in the nonlinear convex class

of MINLP problems.
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2.1.4 Dynamic Programming(DP)

Dynamic programming(DP) is concerned with solving inter-temporal optimization problems, specif-

ically in economic theory and practice which requires a sequential decision making process over

time. In fact, in dynamic optimization, present time decisions affect the future possibilities and

taking this impact into account is demanded. Hence, the optimization problem is extended in the

future horizon to equip the algorithm with the future parameters [48, 49]. The general state-space

form of dynamic problems is:

min
u(τ)

∫ t0+th

t0
Φ(z(τ),u(τ),χ(τ))dτ s.t.



dz
dτ

= f (z(τ),u(τ),χ(τ))

0 = g(z(τ),u(τ),χ(τ))

0≥ h(z(τ),u(τ),χ(τ))

z(t0) = z0, ∀τ ∈ [t0, t0 + th]

(2.6)

where t0 is the current time and th indicates the receding horizon, z(τ) is the set of state vari-

ables, u(τ) is the set of decision variable, and χ(τ) are the system disturbances. The first two

equations describe the dynamic model constrained by the third inequality. System’s initial state is

given by z0 [50].

DP was developed by Richard Bellman in the 1950s and is increasingly employed in several

areas of decision making. This category of problems is usually complex which can be handled by

breaking down into simpler sub-problems in a recursive manner [51]. Among the advantages of

DP is its capability to effectively cope with discrete variables and non-convex, non-differentiable

and discontinuous functions. Moreover, the stochastic variability can be incorporated in DP with

simple modifications to the deterministic procedure [26].

2.1.5 Other Optimization Problems

In reality, uncertain parameters are present in the optimization problems which may arise from

either random objective functions or random constraints. This randomness leads to the category
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of stochastic optimization [52–54]. Other optimization techniques including probabilistic pro-

gramming, robust programming and fuzzy programming have also approached the problems with

stochastic nature [55]. Similar to stochastic programming, robust programming aims to deal with

the uncertainty present in the problem. Robust programming is concerned with finding solutions

that are valid, even under the worst case scenario [56–59]. Fuzzy programming is equipped to

tackle the uncertainties in the form of imprecision and ambiguity of system data and linguistic

vagueness [60–62]. In the case there is not enough data to support previous stochastic models,

scenario and policy aggregation techniques can be incorporated [63].

The previously discussed optimization techniques were all exact methods. Applying these

methods to complicated problems may not be feasible in polynomial time. Conversely, heuris-

tic algorithms have been proved to converge in a reasonable time frame. The major drawback of

heuristic algorithms is that they do not guarantee the global optimum, although while used in con-

junction with exact methods their efficiency can improve. Simulated Annealing(SA) [64], Cuckoo

search algorithm [65], Ant Colony Optimization [66, 67], Genetic Algorithm(GA) [68], Particle

Swarm Optimization(PSO) [69] are among the widely used heuristic optimization techniques.

2.2 Microgrids

2.2.1 Microgrids Optimal Sizing

The early stage planning of microgrids is concerned with the optimal combination of type and

capacity of DERs and energy storage along with their optimal placement, considering social, envi-

ronmental, technological and economic concerns. Based on microgrid ownership, developers may

prioritize one concern over another in the microgrid project deployment. The following items are

recognized as the main objectives of microgrids projects:

• Maximizing green energy production

• Minimizing or capping GHG emissions
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• Maximizing economic profit

• Minimizing operational costs

• Minimizing the fuel consumption to diminish dependency on fuel imports

• Minimizing voltage deviations

• Operating at the highest reliability level

• Minimizing transmission losses

Concerns regarding the optimal sitting of the DERs in microgrids depends on the type of mi-

crogrids. For tight geographical multiple loads or single load projects, optimal selection, sizing

and sitting of DER components tends to take into account the techno-economic parameters regard-

less of the spatial considerations. In this approach, DERs are connected next to the load as studied

in [70–74]. Alternatively, for microgrids in utility-scale or distributed multiple loads, DER plan-

ning requires the consideration of available spatial resources to ensure the fulfillment of the social,

environmental and technological policies. One of the successful techniques applied to the optimal

sitting problem is the Geographic Information System (GIS) which aims to find the suitable loca-

tions for DER installation [75–78]. In [79], MILP and MINLP optimization models are designed

and tested for the optimal sizing and placement of DERs. The methodology proposed has two main

parts, whereas the first part implements a Geographic Information System/Multicriteria decision

analysis (GIS/MCDA) to find the suitable location for DERs placement. In the second part, the

optimal size and final installation location of the DERs are determined. Moreover, the literature

review indicates that power flow analysis techniques are required in the planning and operation

stages of microgrid projects to ensure that installed size and location of DERs are compatible with

the characteristics of common distribution system in steady state operation [80–82]. Traditional

power flow analysis methods using different types of buses such as PV , PQ and V θ buses cannot

be applied to microgrid projects directly arising from the following reasons: Relatively small sizes

of DERs cannot be treated as a slack bus capable of maintaining the system frequency and its

23



local bus voltage constant; modeling the DERs as PV/PQ buses requires a pre-specified amount

of power supplied by each unit which is not applicable realistically; due to the intermittency of

DER power generation, microgrid frequency is not fixed and varies within a range. The authors

of [83–85] proposed novel power flow techniques to overcome the aforementioned limitations.

Disregarding the optimal sitting perspective, rich literature is dedicated to the optimal selection

and sizing of microgrid components. Generally, studies on the optimal sizing problem may be

classified into two main categories. The first category adopts a pre-specified operation strategy for

some or all of the operation parameters. Hence the obtained sizing results are optimal only under

specific conditions. In [86], Soroudi and Ehsan proposed a dynamic multi-objective model which

includes placement, sizing and timing of DERs owned by distribution utility. The two-stage opti-

mization problem considers capital costs while running costs are disregarded and a fuzzy satisfy-

ing method for technical constraints is introduced to choose the best solution of the non-dominated

results set of the heuristic search method. The study lacks an optimal management strategy in

addition to the included capital investment consideration. Arabali et al. presented a stochastic

framework for optimal sizing and reliability analysis of a hybrid power system. The study aims

to minimize the capital costs and satisfy the reliability requirements by incorporating a pattern

search optimization method and sequential Monte Carlo Simulation. A compromise-solution tech-

nique is exerted to find a trade-off between costs and reliability level while the operation rules

are preset [87]. Also, Wishart et al. do not consider optimized management of DERs, although

enhanced control strategies based on frequency droop for DERs in islanded microgrid operation is

adopted [88]. The study proposed in [89] considers the lifetime characteristics of battery energy

storage in a multi-objective optimization problem aiming to minimize power generation costs and

maximize the useful life of the battery in simultaneous sizing and operation of an islanded mi-

crogrid. The incorporation of battery lifetime characteristics and their associated costs established

a set of optimal parameters for economic operation of the microgrid, however the basic flow of

operation for the rest of microgrid components in priori known . In addition, traditional optimal

design studies usually are carried out through minimum capital and operation costs. However, the
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deregulated energy markets have created many opportunities to exploit the potentials of the market

where the optimal design is not necessarily obtained by cost minimization. Hence, the optimal

design postulates the contemplation of optimal management strategies.

In the second category, the optimal sizing and operation strategy are optimized simultaneously

and the design scenarios consider the evaluation of both operational and capital costs. Within

this category, two main approaches exist. The first approach incorporates two-stage optimization

techniques considering the investment as the master problem and operation as the sub-problem.

Moradi et al. developed a hybrid optimization method to solve the master-slave objective function

addressing economic efficiency, environmental restrictions, and reliability improvement. The hy-

brid optimization utilized PSO and fuzzy algorithm to minimize operational and outage costs and

obtain the optimal capacity of DERs [90]. An optimized multi-objective management is explicitly

considered in the optimal design of DERs in microgrids by means of a generalized double-shell

framework presented by the authors of [91]. In the proposed study, the internal shell provides the

outer shell with an evaluation of the multi-objective operation of each design solution via the nested

formulation. The high-quality design scenarios are captured by incorporation of a multimodal op-

timizer with an indicator based evolutionary algorithm. Another two-stage optimization is utilized

in the optimal planning and design of combined cooling, heat and power (CCHP) microgrid sys-

tem. Non-dominated sorting genetic algorithm-II (NSGA-II) and mixed integer linear problem

(MILP) are employed in the optimal design and optimal operation stages, respectively [92]. In

such problems with several stages of optimization to find the optimal design results and test their

efficiency in operation stage, heuristic algorithms such as PSO and GA are incorporated in most of

the work reported in the literature when optimal results are not easy to obtain.

The second approach integrates the planning and operation problems into a single optimization

problem. Atia and Yamada [70], employed a MILP to solve the operation and sizing of a residential

microgrid including solar and wind energy, thermal load and battery energy storage considering

demand response programs. The unified objective function for design and operation problems re-

turns the optimal capacities of DERs and inverters along with the hourly optimal power dispatch
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in the optimization horizon. Chen et al. proposed a technique for sizing of grid-connected mi-

crogrids with the assistance of demand-side management considering joint-optimization of design

and operation. The original double-objective function aims to minimize the total annual costs and

maximize customer satisfaction which is converted to a single-objective function using a fuzzy

satisfaction-maximizing method. The final problem is solved using MILP [93].

2.2.2 Microgrids Energy Management

After the sizing and placement phase of the microgrid project, an efficient energy management

strategy is required due to the high deployment of intermittent renewable energy and increased

controllable loads. The energy management system for microgrid encompasses both supply and

demand side management to ensure the satisfaction of technical constraints along with the eco-

nomical, reliable and sustainable operation of microgrid. The decision making process for optimal

operation entails monitoring, analyzing and forecasting of power generation resources, electri-

cal and thermal demand, meteorological data, energy market prices and ancillary service market

prices. The aforementioned information when incorporated in the energy management system

provides the optimal schedule of power generation resources, battery energy storage, controllable

loads and power exchange with the main grid. The effective management and coordination of

DERs and loads improve the system performance, sustainable development and handling the dis-

turbances. However, the implementation of optimal schedules requires a control scheme to enforce

the determined set-points. Figure 2.2 depicts the flow of information to the Microgrid Central Con-

troller(MCC) and decisions sent to the Local Controllers(LC) in a centralized energy management

system [94].
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Figure 2.2: Microgrid Energy Management System

MCC is responsible for the proper coordination of all local LCs for their corresponding task

through the accumulation of all the information and cost function. The returned decisions and

set-points by optimization algorithm which are sent to each LC to enforce the optimal operation of

microgrid components.

Economic dispatch and unit commitment problems were traditionally used in energy manage-

ment of power system and microgrids. Economic dispatch is concerned with the optimal short-term

allocation of output power among various supply resources available to serve the load at net mini-

mum cost. Unit commitment problem is similar to economic dispatch but also involves determin-

ing the start-up and shut down schedule of thermal and electrical supply resources to meet demand

at minimum operational cost or environmental impact. Economic dispatch and unit commitment

both require a constant estimation of generation and load parameters within a given time. Many ef-

forts have been made to make the classic economic dispatch and unit commitment problems work

for the restructured power system and microgrids [95–100]. However with the increased integra-

tion of renewable resources, battery energy storages and electric vehicles, the energy management

strategies used in microgrids have been diversified from classic economic dispatch and unit com-
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mitment problems. The substantial research done in the field of microgrid energy management is

categorized as follow s.

Energy Management Techniques Based on MILP and MINLP

Typically, the scheduling problem of microgrids has objective function including cost, profit or

emissions optimization(continuous variables) or on/off schedule(binary variables) of dispatchable

resources and controllable loads. Hence, one of the most common techniques used in optimal

energy management of microgrids is the MIP as described in 2.1.3. This category of optimization

problems are solved by various state of the art solvers such as Gurobi and CPLEX, available in

commercial programming softwares and programming languages such as the General Algebraic

Modeling System (GAMS) [101], the A Mathematical Programming Language (AMPL) [102,103],

MATLAB, Python and R.

The authors of [104] presented a MILP method to determine the generation and load policies

aiming for minimizing operational costs of a grid-connected microgrid system consisting of MT,

Fuel Cell(FC), battery bank, wind and photovoltaic energy resources. The technical constraint such

as ramps, minimum up and downtime, and generation limits are addressed in the modeling of MTs

and FCs. Moreover, the controllable load modeling includes three kinds of critical, reschedulable

and curtailable loads. Although the model is developed for the energy management of microgrids,

it can be incorporated in the planning and design stages of a microgrid project.

Luna et al. developed an adaptable online energy management strategy through MILP aim-

ing for minimization of operational costs and load disconnections in grid-connected and islanded

microgrids. The proposed work in tested experimentally and is able to deal with the variation in

renewable energy. This study considers the generation side management only, while an evaluation

framework is established to quantitatively assess the enhancements in savings and computational

time with the investigation of three cases including perfect forecast, imperfect forecast and accurate

information [105].

Helal et al. proposed a MINLP for the optimal scheduling of a remote hybrid AC/DC mi-
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crogrid considering demand response program for home appliances and water desalination units.

The algorithm intends to minimize the operational costs of microgrid by droop control of DERs.

The microgrid controller also ensures the stable operation of microgrid by controlling the power

exchange between the AC and DC sides [106].

Energy Management Techniques Based on Dynamic Programming

One of the characteristics of microgrid scheduling is the multi-stage sequential decision making

since decisions at the current time affect the decisions to be made in future. The concept of DP

in energy management systems benefits the supervisory control with the possibility of taking into

account a finite number of future states for renewable generation, load demand, electricity and an-

cillary service market prices to optimally determine the schedule of supply and demand resources

and most importantly battery energy storage charge/discharge decisions. The potential future states

are provided to the algorithm through forecast or estimation of parameters. DP gives the sequence

of the optimal decisions also called optimal policies for the studied future, however, only the first

policy is applied and the rest of decisions will be disregarded. As the algorithm receives the pre-

dicted future states, calculations repeat for the new time step. In the case accurate forecasts are

available for volatile parameters such as electricity prices, a DP can significantly enhance the prof-

itability of microgrid.

Palma-Behnke et al. proposed a rolling horizon strategy for a microgrid comprising solar pan-

els, wind turbines, battery energy storage and a diesel generator. This study is based on solving a

MIP for each iteration, where the forecast information for renewables and load demand is provided

by phenomenological models and neural network, respectively. The results of unit commitment

rolling horizon strategy are compared to the standard unit commitment to prove the advantage of

the proposed algorithm in handling updated data from forecasted variables [107].

Trifkovic et al. presented a dynamic real-time optimization(DRTO) and control for a stand-

alone hybrid microgrid consisting of photovoltaic arrays, wind turbine, battery, electrolyzers, hy-

drogen storage tanks, and fuel cells in Lambton College, Sarnia, Canada. Two levels of hierarchy
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are incorporated in this study with the DRTO(supervisory level) responsible for determination of

optimal policies and low-level control layer accounting for enforcing the optimal policies to the

DERs and communicating the forecasted variables and system states back to the supervisory level.

Through the establishment of the bidirectional communication between the two control levels,

unforeseen internal and exogenous disturbances are addressed quickly [50].

In [108], an optimal energy management strategy is developed which aims for minimizing the

cash flow including power exchange with the main grid and battery ageing cost in a grid-connected

microgrid. The power exchange with grid considers two cases of autonomy tariff and dynamic

prices and the maximum net import is desired.

Energy Management Techniques Based on Stochastic and Robust programming

The previous literature discussed was based on deterministic approaches toward the forecasted

uncertain and intermittent parameters such as renewable generation, load demand and market

prices. Although powerful forecast tools are developed for load demand [109–111], solar irra-

diation [112, 113], wind energy [114, 115], electricity prices [116–118] and fuel prices [119], but

these uncertain parameters are forecasted only to an accuracy. Hence, the deterministic approaches

based on forecasts do not guarantee the optimal operation. Stochastic programming [120–123],

chance constrained programming [124], scenario-based optimization [125], probabilistic program-

ming [126], robust optimization [127–129] and parametric programming [130] are among the tech-

niques developed to deal with the uncertainties in microgrid scheduling.

In [120], a two-stage stochastic optimization problem is formulated for the optimal operation

of a microgrid to accommodate the uncertainties arising from renewable energy resources. The

MINLP problem is decomposed into one master problem for energy scheduling with the purpose

of minimizing the operational costs and power losses, and one subproblem for power flow compu-

tation considering wind and solar intermittencies. Two subproblems are solved iteratively until the

power losses fall into a specified limit.

The authors of [124] present a chance-constrained programming framework for the peak power
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shaving and frequency regulation of a grid-connected microgrid while systematically incorporating

uncertainties of renewable energy resources and random demands. Chance constraints are devel-

oped to bound the magnitude and capacity of uncertain renewable output for protection purpose

and frequency regulation, respectively. Case study results verify the superiority of the proposed

method over greedy planning, scenario-based and robust programming approaches in terms of

average cost saving.

Mohammadi et al. proposed a scenario-based stochastic framework for the optimal operation

of a microgrid under concurrent incorporation of uncertainties raised from load demand, solar and

wind energy generation and market prices. The proposed method has two phases, where in the first

phase scenarios are generated using Probability Distribution Function(PDF) of each uncertain vari-

able and then most dissimilar and probable scenarios are selected by means of scenario reduction

techniques. The selected deterministic scenarios with certain probabilities are solved by Adaptive

Modified Firefly Algorithm (AMFA) meeting different equality and inequality constraints in the

second phase. Results demonstrate dependability enhancements of optimal solutions due to more

than three times uncertainty spectrum captured compared to deterministic framework [125].

Xiang et al. developed a scenario-based robust energy management technique to optimize the

worst-case realization of renewable energy generation production and load. The robust method

aims for maximum total exchange cost and minimum social benefit costs simultaneously. Taguchi

orthogonal array(OA) utilizes the uncertainty sets for renewable generation and load which are

provided by interval prediction to generate a limited number of testing scenarios with best statisti-

cal information. A search strategy based OA is designed to optimize the worst case scenario and

the results are proved to be robust against most possible realizations of the modeled uncertain set

by Monte Carlo [127].

Umeozor et al. propose a parametric MILP problem for the operational energy management of

a grid-connected microgrid by means of parameterization of uncertain coordinates of wind and so-

lar power production. The original nonlinear problem is transformed into a linear bi-level problem

with the upper level responsible for the parameterizing scheme and lower level accounting for the
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optimal operation decisions. The proposed methodology enables better handling of uncertainty,

more accurate solutions and faster computations [130].

Energy Management Techniques Based on Heuristic Optimization

The multiple number of renewable energy resources, battery energy storages and demand response

programs significantly increase the number of variables that must be taken into account in optimal

scheduling problem. Moreover, the incorporation of the uncertain variables leads to highly non-

convex MINLP computationally demanding problems. Heuristic algorithms are based on local

optimization and will always lead to a reasonable solution to complex problems at a fast computa-

tional speed, however mostly with the sacrifice of guarantee of optimality. Hence, heuristic meth-

ods are largely employed in microgrid energy management problems. The popular approaches are

GA [131, 132], memory-based GA [133], PSO [134, 135], Artificial bee colony(ABC) [136, 137]

and SA [138].

Elsied et al. present a multi-objective real-time energy management system based on GA which

aims for energy cost minimization, GHG emissions minimization and maximization of the avail-

able renewable energy resources. The robust and reliable ZigBee communication infrastructure is

used to exchange the information and commands between MCC and DERs in real-time [131].

In [134], an energy management strategy based on PSO is presented for a microgrid consisting

of different distributed generation units and energy storage devices. The uncertainty of the renew-

able generation resources, load and market prices are incorporated in the proposed probabilistic

approach. The goal of this PSO based scheduling is minimizing the total energy and operating cost

of the microgrid. PSO is proved to be more or comparably efficient in finding the best solution

compared to the techniques reported in the literature [139].
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Chapter 3

Methodology

Sizing and scheduling are the main parts of microgrid projects whereas scheduling efficacy highly

depends on the size of microgrid components and parameters. Many studies have approached the

design and operation of microgrids considering energy costs only. In the proposed methodology, in

addition to the energy costs, transmission and distribution costs are also incorporated. While distri-

bution costs are fixed for transmission connected microgrids, transmission costs can be minimized

by taking advantage of the daily PL hour forecast developed in this chapter. This methodology

formulates a two-stage optimization problem for the design and operation of campus microgrids.

In the first stage, a MILP formulation tackles the optimal design problem under consideration of

environmental and economic policies. While maximizing green energy production seeks to priori-

tize environmental concerns, minimizing electricity bill under capped carbon emissions integrates

environmental and economic concerns in optimal sizing problem. Savings on electricity bill re-

sulted from minimized transmission costs and microgrid optimal operation, would be invested in

purchasing microgrid technologies. Optimal number and size of microgrid technologies, along

with the estimated revenues, operational costs and capital costs are the resultants of the sizing

algorithm under various scenarios.

Subsequently, the obtained number and size of microgrid technologies are the primary inputs

to the next stage of the optimal design and operation problem. Also, the hourly microgrid power

33



exchange limit with the main grid is imported form the sizing algorithm. Eventually, the schedul-

ing problem is formulated on a rolling horizon basis which enables the microgrid to determine the

optimal policies of each technology, considering future states of uncertain variables. The conse-

quential MINLP aims to minimize the microgrid electricity bill under the designed sizing scenarios

and avoiding the coincident metered demand charge.

3.1 Coincident Peak Load Forecast

The coincident metered demand charge is a posteriori charge and accounts for the metered demand

at the monthly PL hour in the bulk system. The information required to deal with the coincident

metered demand is twofold; hour of the day and day of the month.

The monthly PL hour for the years 2011 to 2017 are provided in Table 3.1. According to his-

torical data, the monthly PL hour has a repeating pattern at least for 6 months of the year. Whereas,

the exact occurrence day of PL does not have a repeating pattern and in order to determine it, the

whole month’s load data is required at the beginning of the month. Since long term forecasts are

usually unavailable or very inaccurate, estimating the day of the month in which the PL occurs is

infeasible. Therefore, a statistical analysis of historical data is developed to only estimate the PL

hour for each month.

Table 3.1: Monthly peak load hour for years 2011 to 2017

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2011 18 20 20 12 17 13 16 17 17 19 18 18
2012 18 19 20 11 17 14 14 14 15 19 18 18
2013 18 19 21 12 17 16 16 17 17 20 18 18
2014 18 19 20 12 14 17 16 16 17 19 18 18
2015 18 19 20 12 17 15 17 15 15 20 18 18
2016 18 19 20 14 17 15 16 16 16 10 18 18
2017 18 19 20 10 17 17 17 17 17 18 18 18

First, the bulk system load data are clustered into months and the frequency analysis is applied

to each month’s load data, separately. For example, to determine the PL hour of January, only the
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historical data for January are utilized in the frequency analysis. The load vector data is converted

into a matrix LoadHour,Day with rows representing hours and columns representing days. The

maximum daily load and its corresponding hour, are extracted from the data by equation 3.1:

(PL Hour,PL Magnitude) =
D

∑
Day=1

Max(LoadHour,Day) (3.1)

PL Hour is the set of daily PL hours over D days, where D depends on the number of days

studied. The PL probability for each hour is given by equation 3.2.

Probability(h) =
24

∑
h=1

number of h in PL Hour
D

∀ h ∈ {1, ...,24} (3.2)

The hour with maximum probability is considered as the PL hour for the studied month. In

other words, the probability vector implies that the PL occurs in one of the days in the month at

the hour with maximum probability. Accordingly, this approach does not give any information re-

garding the occurrence day of PL. To resolve this issue, instead of applying the coincident metered

demand charge once in a month, it is applied every day at the estimated PL hour. Hence, only an

accurate PL hour forecast is required to guarantee the minimization of coincident metered demand

charges.

The final output of the algorithm is a Daily Peak Load Hour (DPLH) vector with binary ele-

ments, where 1 indicates daily PL hour and 0 indicates non-PL hours described in equation 3.3.

For example, if hour 18:00 is the most probable PL hour in January, the elements of DPLH(t)

associated to hour 18:00 equals 1 for the month of January.

DPLH(t) =

 1, If t is a daily peak load hour

0, Else
∀ (t) (3.3)

The actual PL hour or the monthly PL hour from historical data also forms a vector with binary

values, where only one element of this vector equals 1 in each month. This vector will be used in

the scheduling algorithm to test the efficacy of DPLH(t) estimation.
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3.2 Microgrid Sizing

In this section, the structure and formulations of campus microgrid sizing are discussed. The

proposed algorithm is based on the work of [79], while some of the restrictions are relaxed due to

the specific geographical location of the campus. The focus of this methodology is to determine

the size and configuration of aggregated on-site power generation from PV modules and a MT,

along with a battery and connection to the main grid in a tight geographical location.

3.2.1 Microgrid structure

Figure 3.1 depicts the proposed microgrid structure. This fully interconnected microgrid is con-

nected to the main grid at the PCC.

Figure 3.1: Microgrid Structure

The excess internal generation can charge the battery or be sold to the grid. Demand may be

supplied by internal generation, purchasing energy from the grid or discharging the battery. The
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energy inputs to the battery are grid and internal generation. Also, battery may retain its energy for

future hours, send it to the load or sell it to the main grid.

3.2.2 Microgrid Components

This section overviews the detailed description of microgrid technologies used in this study. So-

lar and wind energy are the primary renewable energy resources in microgrid projects, although,

restrictions may apply to their exploitation.

In Alberta, municipalities determine the wind turbine setbacks and validate them in land use

bylaws. These land use bylaws for placement of wind turbines are one of the most critical el-

ements in microgrid design phase. Bylaws may cover municipal roadways, property lines and

also dwellings on lands for participating and non-participating land owners and sites of potential

residence locations. Some municipalities have bylaws designating specific setbacks while others

may refer to provincial regulatory policies for noise from wind turbines or in some cases consider

no specific regulatory. However, all stages of wind turbine installation projects must consider lo-

cal zoning requirements provided in municipal development plans or land use bylaws. Based on

municipal constraints, 500 meters and 750 meters setbacks are required from participating and

non-participating residents, respectively [140]. Due to the limitations mentioned above and con-

sidering the location of campuses in urban areas, wind turbine placement is not feasible in campus

microgrid projects.

Photovoltaic modules

Solar energy is the only renewable resource that can be exploited in campus microgrid projects.

Depending on the weather conditions and temperature, there are various mathematical models

for expressing the output of the PV modules. The new PV modules are equipped with Maximum

Power Point Tracking (MPPT) technology which enables the PV panel to optimally absorb the solar

irradiation and maximize the efficiency of the conversion system. Since the campus microgrid

projects are quite large scale projects, poly-crystal silicon-based modules are preferred due to
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economic aspects. Detailed specifications of the PV module under standard test conditions is

provided in the table 3.2. All the specifications are provided by Allesun Industries Inc data sheet

for 310-330W modules.

Table 3.2: Specifications of the PV modules at 1000 W
m2 and 25◦C

Specifications Value
Maximum Power 325 W
Module Efficiency 16.85%
Module Operating Temperature -40◦ to +90◦ F
Module Area 1.75 m2

The hourly output of the aggregated PV modules is given in equation 3.4.

PPV (t) = nPV ∗Prated,PV ∗
H(t)

HRated
∀ (t) (3.4)

Where, nPV is the optimal number of PV modules, Prated,PV is the maximum module power,

ηModule,PV is the module efficiency and H(t) is the hourly solar irradiation [141].

Natural Gas Microturbine (MT)

Natural gas MTs offer several advantages including lower emissions, lower electricity costs, co-

generation ability and higher efficiency compared to other fossil fuel power generation technolo-

gies. Thus, MTs are selected as the dispatchable power generation resource in the proposed hybrid

microgrid structure.

Due to the low efficiency in low set points, the minimum power output of MT is set to 50% of

the MT size and is formulated as follows :

0.5∗SizeMT ≤ PMT (t)≤ SizeMT ∀ (t) (3.5)

Carbon emissions is a limiting factor in MT sizing under scenarios in which the environmental

impacts of the microgrid are considered. Equation 3.6 formulates the carbon emissions for the MT

technology used in this study.
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Carbon Emissions =
T

∑
t=1

PMT (t)∗ (VFuel ∗EFuel) (3.6)

Where VFuel is the volume of fuel to energy ratio for natural gas in m3

MWh and EFuel is the carbon

emission to volume of fuel ratio for natural gas in kg
m3 .

Energy Storage System

Energy storage systems play diverse important roles in microgrid projects. ESS systems are used

for peak shaving, emergency power resource and arbitrage. In the proposed study the most impor-

tant role of the ESS is to take advantage of the arbitrage opportunities in the very volatile electricity

market and also supply the demand at the PL hour which is usually in the evening when there is

no solar generation and the electricity prices are quite high.

Due to the higher efficiency and power density of lithium ion batteries, they are the most pop-

ular batteries in both grid scale and small scale applications [142, 143]. The detailed specification

of the battery used in this algorithm is provided in table 3.3.

Table 3.3: Li-ion battery design characteristics

Characteristics Value
Maximum possible storage capacity 20 MWh
Maximum possible power charged or discharged 40MW
Minimum discharge and charge duration 30 min
Lifetime ≈ 15 years
Number of cycles ≈ 3500 cycles
Charging efficiency 90%
Discharging efficiency 95%
DoD 80%

Equation 3.7 expresses the mathematical formulation of battery State of Charge (SOC).

SOC(t) = SOC(t−1)+ηc ∗PCharge(t)−
PDischarge(t)

ηd
∀ (t) (3.7)

The current hour SOC depends on the previous hour SOC and the power discharged or charged

to the battery. PCharge(t) and PDischarge(t) are the decision variables in the optimization problem.
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However, safe and efficient operation of battery requires important considerations. Batteries should

not be discharged under 20% of their capacity, because it damages the battery and reduces its life

span drastically. Overcharging the battery may also cause damaging the battery and even burn it.

The restriction on SOC is given by equation 3.8.

(1−DoD)∗SizeBatt < SOC(t)< sizeBatt ∀ (t) (3.8)

In equation 3.9 battery size is restricted by the maximum allowed size for battery in the design.

0≤ SizeBatt ≤ SizeBatt,Max (3.9)

Power charged or discharged from the battery is also restricted by the battery size and is for-

mulated in 3.10 and 3.11.

0≤ PCharge(t)≤ SizeBatt ∀ (t) (3.10)

0≤ PDischarge(t)≤ SizeBatt ∀ (t) (3.11)

However the life span of the battery is 15 years, repeated battery charge and discharge will

degrade the battery resulting in declining capacity and elevated self discharge. Thus, batteries may

be discharged a limited number of cycles. In this study, a full discharge of the usable capacity of

the battery, is considered as one cycle. Equation 3.12 bounds the number of cycles for the one year

of project operation.

T

∑
t=1

PDischarge(t)≤
Maximum Battery Cycles

Project Life Span
∗DoD∗SizeBatt (3.12)
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3.2.3 Problem Formulation

Capital Costs

Capital costs for tight geography microgrid projects such as campus microgrids comprises the cost

of purchasing and installing power generation technologies. In this project, capital costs include

the cost of purchasing PV modules, MT and Battery which is formulated in equation 3.13.

Capital Cost = nPV ∗CostBuy,PV +SizeMT ∗CostBuy,MT +SizeBatt ∗CostBuy,Batt (3.13)

CostBuy,PV includes cost of the panel, inverter, racks, cable, DC−AC boxes and installation of

each PV module, while nPV is the optimal number of PV panels calculated by the optimization

problem. CostBuy,MT is the cost of MT per MW while SizeMT is the optimized MT size. The third

term in the capital costs is the cost of battery and is a product of battery size in MWh, and cost of

battery per MWh.

Operational Costs

After purchasing the microgrid technologies, the operation of each technology and connection to

the main grid forms operational costs in microgrid operation. Operational costs include cost of

buying energy from the grid, DTS charges and Operation and Maintenance (O&M) cost of PV,

MT and battery. Equation 3.14 gives the mathematical formulation of operational cost:

Opeartional Costs =CostO&M,PV +CostO&M,MT +CostO&M,Batt +CostBuy,Grid+

CostTransmission +CostDistribution

(3.14)

Detailed discussion of operational costs components is given in the following.

• O&M Cost of PV

PV modules require cleaning since over time they accumulate dirt and their efficiency de-

creases. Also, due to the high cost of repair and also profit loss during shut down of solar
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technology, monitoring of PV modules is highly recommended as preventative actions will

minimize the profit loss. Cleaning and monitoring costs account for O&MPV . Equation 3.15

formulates the operational cost of PV which is a product of power produced by PV and O&M

cost of PV which is per MWh.

CostO&M,PV =
T

∑
t=1

PPV (t)∗O&MPV (3.15)

• O&M Cost of MT

Reliable and uninterrupted operation of MT also requires maintenance and preventative ac-

tions which are categorized as O&MMT . In addition to the O&M costs, carbon taxation also

applies to the CO2 produced by MT. Equation 3.16 formulates the overall O&M costs of MT.

CostO&M,MT =
T

∑
t=1

PMT (t)∗ (O&MMT +VFuel ∗ (CostFuel(t)+EFuel ∗TaxFuel)) (3.16)

• O&M Cost of Battery

Energy storage systems require annual monitoring to ensure reliable operation. O&MBatt are

in $/MWh and will be applied to the energy discharged from battery.

CostO&M,batt =
T

∑
t=1

PDischarge(t)∗O&MBatt (3.17)

• Cost of Purchasing Energy from the Main Grid

In grid connected microgrids, when the internal generation is not sufficient to meet the de-

mand or charge the battery, the needed energy is bought from the main grid. Microgrid may

also buy energy from the main grid to charge the battery. Cost of buying power from the grid

is a product of amount of energy bought from the grid and price of electricity at the specified

hour as formulated in equation 3.18.
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CostBuy,Grid =
T

∑
t=1

PBuy,Grid(t)∗PriceElectricity(t) (3.18)

• Transmission Charges

This item formulates CostTransmission which is referred as DTS charges discussed in section

1.1.4. Billing capacity charges and substation charges are applied only once a month, hence,

we introduce a billing term which is zero except for the last hour of each month. Second

term in equation 3.19 is related to all the charges applied to the metered energy. The most

significant charge among all DTS charges is the coincident metered demand charge which is

applied to the energy bought from the grid at the monthly PL hour represented by the term

PeakLoad(t).

CostTransmission =
T

∑
t=1

(BCap ∗BCC+SubFrac +SubCharge)∗Billing(t)+(TCRCE+

BSC+RSC+VCC+ORC ∗Price Electricity(t))∗PBuy,Grid(t)+PeakLoad(t)∗

PC ∗PBuy,Grid(t)

(3.19)

Actual bulk system load data are used to determine the PeakLoad(t) which is a binary vector

with 0 values at all hours except for the hour with maximum system load in the month.

• Distribution Charges

Distribution charges discussed in section 1.1.5 for transmission connected sites are calcu-

lated on a daily basis as follows:

CostDistribution =
T

∑
t=1

Service Charge∗Distribution Billing(t) (3.20)

The term Distribution Billing(t) is a vector of binaries which is 1 only at the ending hour of

each day, representing the daily service charge hour.
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Revenue

In a centralized energy market, cost of buying and selling the energy is the same and is referred as

pool price. Hence, the revenue obtained from selling energy to the grid is a product of energy sold

to the grid and price of electricity at the respective hour. However, at the monthly PL hour, there

is another revenue term for the power sold to the main grid. The profit made by consumers must

be carried back to them through distribution company. Equation 3.21 formulates the two terms of

revenue in the studied microgrid.

Revenue =
T

∑
t=1

PSell,Grid(t)∗PriceElectricity(t)+PeakLoad(t)∗PSell,Grid(t)∗PC (3.21)

Pay-Off Time

The centralized electricity market prices are very volatile and long term hourly forecasts are not

feasible. Also, by averaging the data on longer periods, important parts of the information will be

lost. Hence, in this study, the first year’s perfect data will be given to the optimization problem. The

optimization problem is solved subject to an increase rate associated to operational costs, revenues

and no microgrid electricity bill for the upcoming years.

The main source of investment for purchasing microgrid components is the savings on elec-

tricity bill in the case of installing a microgrid. In order to calculate the savings, first the normal

electricity bill must be calculated. In the absence of microgrid, the electricity bill will include the

power purchasing costs from the grid, transmission and distribution charges and also operational

costs of any existing on-site generation. The annual growth of costs and revenues is assumed to be

equal and is represented by the term α .

Campus Normal Bill(y) = (1+α)∗Campus Normal Bill(y−1) ∀ (y > 1) (3.22)

Revenue(y) = (1+α)∗Revenue(y−1) ∀ (y > 1) (3.23)
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Operational Costs(y) = (1+α)∗Operational Costs(y−1) ∀ (y > 1) (3.24)

In this study, the owner perspective is investigated. The electricity bill to be paid after installing

the microgrid is defined as the difference of revenue and operational costs. The Saving term is

formulated in equation 3.25.

Savings =
Y

∑
y=1

1
(1+β )(y−1)

∗ (Campus Normal Bill(y)+Revenue(y)−

Operational Costs(y))

(3.25)

In order to bring future values to present, a discount rate is defined based on inflation rates.

Capital costs are capped by the total savings during the life span of the project.

Capital Costs≤ Savings (3.26)

Microgrid Electricity Bill

The final electricity bill for microgrid is the difference of costs and revenues, given as follows:

Microgrid Bill =
T

∑
t=1

(Operational Costs)−Revenue (3.27)

Obviously, a negative electricity bill means revenues obtained are larger than operational costs

and the microgrid is profitable.

Constraints

Important factors need to be considered in microgrid operation to ensure the reliability of the

system. The reliable and economic operation of the microgrid is limited by many important con-

straints. These factors may be equality or inequality terms.

• Power balance

This item is the most important constraint in microgrid formulations which must be held at
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any cost. Equation 3.28 formulates the power balance. This equation ensures the supply of

the demand considering battery charge/discharge and power exchange with grid.

PBuy,Grid +PDischarge(t)+PPV (t)+PMT (t) = PDemand(t)+PSell,Grid(t)+

PCharge(t) ∀ (t)
(3.28)

• Available area for PV modules

One limiting factor related to the PV modules is the available area for the installation of

PV modules. This item is specially important in the campus microgrid design which the

available land is very limited due to the location of campuses in cities.

0≤ nPV ≤
Available area f or PV

PV module area
∀ nPV ∈ Z (3.29)

• Power Exchange with the Grid

As discussed in transmission charges section, the power bought from the grid or sold to it is

limited by the billing capacity.

0≤ PBuy,Grid(t)≤ BCap ∀ (t) (3.30)

0≤ PSell,Grid(t)≤ BCap ∀ (t) (3.31)

Scenarios and Objective Functions

The microgrid sizing can be formulated considering different objective functions. The objective

function can be minimizing the Microgrid Bill under different circumstances such as reduced car-

bon emissions or carbon free microgrid design or maximizing the green energy production.
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3.3 Microgrid Scheduling

After obtaining the optimal sizes of the microgrid components, an efficient energy management

algorithm is needed to ensure microgrid reliable and economic operation. Hence, a DRTO algo-

rithm is developed to mitigate the adverse impacts of uncertainty in electricity prices, load and

solar power generation on optimal scheduling. DRTO is a proactive energy management algorithm

which extends the accessible system states in the scheduling horizon.

3.3.1 Problem Formulation

This section formulates the DRTO problem. In each iteration, all equations are solved from t0 to

th which is the optimization horizon, assuming that all the future system states are available up to

th. The current point t0 is extended to T which is the project total time span equal to 8760 hours.

Since the operation of microgrid technologies is similar to the sizing, equations are not discussed

extensively. For more detailed discussions on equations, please refer to the sizing section.

Battery Operation

The energy storage operation is similar to the sizing algorithm. SOC will be calculated based on

the energy stored in the battery from previous hour and the energy charged or discharged from the

battery. PCharge(t) and PDischarge(t) are the decision variables in this equation. The new batteries

offer the usable capacity of battery which is different for each battery technology. So, for the

consistency, the usable capacity of battery is set as the maximum battery capacity in MWh, while

the minimum is zero.

SOC(t +1) = SOC(t)+ηc ∗PCharge(t)−
PDischarge(t)

ηd
∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.32)
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Operational Costs

The operational costs in the optimal scheduling, are similar to operational costs in the sizing algo-

rithm. However, in scheduling algorithm all the costs are calculated hourly and are not accumulated

during the project horizon.

Operational Costs(t) =CostO&M,PV (t)+CostO&M,MT (t)+CostO&M,Batt(t)+

CostBuy,Grid(t)+CostTransmission(t)+CostDistribution(t)

∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T}

(3.33)

• Solar Energy O&M

This item will formulate the hourly operational costs of PV which is proportional to the solar

power generation.

CostO&M,PV (t) = PPV (t)∗O&MPV ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.34)

• Microturbine O&M

Similar to the sizing algorithm, operational costs of the microturbine are calculated based on

equation 3.35.

CostO&M,MT (t) = PMT (t)∗ (O&MMT +VFuel ∗ (CostFuel(t)+EFuel ∗TaxFuel))

∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T}
(3.35)

• Battery O&M

The O&M cost of battery is proportional to the discharged energy from battery.

CostO&M,batt(t) = PDischarge(t)∗O&MBatt ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.36)
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• Power Purchase Costs

Power purchase costs are a product of energy bought from the grid and electricity price at

the same hour.

CostBuy,Grid(t) = PBuy,Grid(t)∗PriceElectricity(t) ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.37)

• Transmission Charges

As discussed before, DTS charges are usually inevitable since they are related to the relia-

bility of the system. The most important term of cost that can be avoided is the coincident

metered demand charge.

CostTranmission(t) = (BCap ∗BCC+SubFrac +SubCharge)∗Billing(t)+(TCRCE+

BSC+RSC+VCC+ORC ∗Price Electricity(t))∗PBuy,Grid(t)+PeakLoad(t)∗

PC ∗PBuy,Grid(t) ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T}

(3.38)

Since PeakLoad(t) is unknown during scheduling, different representaions are tested to in-

vestigate the impact of each approach. First, the forecasted daily PL hour is used which

creates a framework to avoid the most probable PL hour of each day and consequently the

PL hour of the month. Other approaches then test the efficacy of the proposed forecast. A

perfect knowledge of the system load is assumed and the actual monthly PL hour is also

extracted to represent PeakLoad(t). In order to determine the impact of daily PL versus the

monthly PL, a comparison of scheduling results with actual PL hour information on both

daily and monthly basis is done.

• Distribution Charges

Distribution charges will be simply given by the following equation.
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CostDistribution(t) = Service Charge∗Distribution Billing(t)

∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T}
(3.39)

Revenue

The revenue in the scheduling algorithm also comes from selling energy to the grid on regular basis

and monthly PL hour.

Revenue(t) = PSell,Grid(t)∗PriceElectricity(t)+PeakLoad(t)∗PSell,Grid(t)∗PC

∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T}
(3.40)

Constraints

• Power Balance

Power balance constraint ensures the reliable operation of the microgrid.

PBuy,Grid +PDischarge(t)+PPV (t)+PMT (t) = PDemand(t)+PSell,Grid(t)+PCharge(t)

∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T}
(3.41)

• Power Exchange with the Grid

Power exchange with the grid must be less than or equal to the billing capacity.

0≤ PBuy,Grid ≤ BCap ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.42)

0≤ PSell,Grid ≤ BCap ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.43)

• Microturbine Output Limits

This constraint enables the partial dispatch of the MT along with efficiency considerations.

Also, the maximum output of the MT must be less than the MT size which is found by sizing
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algorithm.

0.5∗SizeMT < PMT (t)< SizeMT ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.44)

• Battery Level Limits

Battery level must be less than the usable capacity of the battery.

0 < SOC(t +1)< DoD∗SizeBatt ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.45)

Objective function

The hourly electricity bill includes operational costs minus revenues. The total bill for one year of

microgrid operation is formulated by equation 3.47.

Bill(t) = Operational Costs(t)−Revenue(t) ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.46)

Total Bill =
T

∑
t=1

Bill(t) ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.47)

The main objective function considered in this study is minimizing the electricity bill.

Ob jective = Minimize(Total Bill) ∀ t ∈ {t0, ..., th} , t0 ∈ {1, ...,T} (3.48)

The MILP problem for optimal sizing and MINLP problem for optimal scheduling were solved

in GAMS/MATLAB enviornment using CPLEX and BARON solvers, respectively. GAMS R©(License

24.3.3) and MATLAB R©R2016b softwares were installed on a 64-bit HP laptop with Intel(R)

Core(TM)i7-8550U @ 1.80GHz processor and 16 GB RAM to run the optimization models.
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Chapter 4

Results and Discussion

This chapter represents the proposed methodology results for a campus microgrid. First, the case

study is introduced and relative information is provided. Next, the sizing algorithm results with

the available data are discussed. Moving forward to the scheduling algorithm, first the statistical

results for PL hour forecast are given and finally, the scheduling results for the specified sizing

scenarios are discussed.

4.1 Case Study - University of Calgary

The studied campus is University of Calgary (UofC) main campus located in the northwest area

of Calgary in the province of Alberta. The University of Calgary was established in 1966, with

170,000+ alumni and more than 30,000 current students. The total main campus area is around

2.13 km2. The maximum campus electricity consumption is approximately 14 MW. A base load

of approximately 8 MW also exists which mostly accounts for research facilities and labs. Figure

4.1 shows the load profile of the main campus over one year. The different load profile in the very

beginning and very end of the data set is due to the new year holidays which university is almost

closed.
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Figure 4.1: UofC 2015 total electricity demand

The UofC electricity consumption is obtained by adding the energy flowing in the university

grid through six main feeders. However, there is also a Central Heating and Cooling Plant (CHP)

onsite with 12 MW output. A part of this CHP plant output is consumed onsite and the metering

data for the supplied buildings by CHP is not available. To resolve this issue, it is assumed that

the CHP size is 8 MW with an average output of 6.5 MW. For security reasons, more detailed

information regarding the electricity grid in campus can not be provided.

Figure 4.2 illustrates UofC map with all the information regarding the buildings and parking

lots. Cogeneration plant is located in HP building denoted by the red arrow. Hence this is the

location that MT is assumed to be installed. Battery energy storage is also assumed to be installed

next to the cogeneration facility.

The area devoted to the placement of PV modules includes the rooftops of buildings. Also, by

constructing ceilings for the parking lots these areas can also be used for installing PV modules.
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Figure 4.2: University of Calgary Map

4.2 Sizing Results

4.2.1 General Assumptions

In this section, the sizing results are provided. The designed scenarios will run under the gen-

eral assumptions listed in table 4.1. General assumptions are the considered sizes and prices for

purchasing, maintenance and operation of equipments. All prices are in Canadian dollars.
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Parameter Value

Capital Costs

PV $451.75
Module

Battery $450,000
MWh

MT $2,100,000
MW

Operational Costs
PV $6.08

MWh

MT $12.60
MWh

Natural Gas Volume of Fuel/Energy Ratio 117.36 m3

MWh

Natural Gas Emission /Volume of Fuel Ratio 2.2 kg
m3

Carbon Taxation 0.031 $
Kg

Annual Growth of Costs & Revenue

OperationalCosts %4

Revenue %4

ElectricityBill %4

Discount Rate %2.5

Service Charge 23 $
day

Alberta Carbon Emission Factor 0.82 TonCO2
MWh

Table 4.1: General Assumptions

The purchasing cost of the battery is based on the values found in [144]. Purchasing costs and

the specifications for the MT were provided by Vergent Power Solutions for a Low-Pressure Natural

Gas Capston 200 kW microturbine. The aggregated cost for 1 MW units is used in this study. The

operational costs of MT include the O&M costs, fuel purchasing costs and carbon taxation costs.

O&M cost of MT is an average of values published by National Institute of Building Sciences.

Natural gas fuel prices are a monthly average of historical prices reported in Gas Alberta Inc

website. The CO2 emission factor for natural gas accounts for the amount of CO2 produced from

burning 1 m3 of natural gas and is obtained from Natural Resources Canada. Carbon taxation rates

in Alberta are reported on the government website.

Two sources of CO2 emissions is considered in this study. First, the carbon emissions di-
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rectly produced from the installed microgrid and second, the carbon emissions of imported energy

from the grid. Depending on the carbon intensity of primary electricity generation resources, each

province has a specific emission factor. Alberta has the carbon emission factor of 0.82 Ton/MWh

which is the highest emission factor for grid electricity in Canada.

Allesun Industries Inc in Canada provides cost of purchasing PV modules. The price reported

for one module, includes the cost of the panel, inverter, racks, cable and DC AC boxes in addition

to the installation costs. The O&M costs used in this study are obtained from [145, 146].

Discount rates are based on the inflation rates reported by Statistics Canada. Rate DTS for

years 2015 and 2017 listed in table 4.2 are published by AESO. The detailed discussion of all DTS

components is given in section 1.1.4. Rate DTS is applied to all the scenarios evaluated in this

study.

Clusters Rate component 2015 Charge Rate 2017 Charge Rate

Bulk System Charge
Coincident Metered Demand $ 9,305 /MW/month $ 10,670 /MW/month

Metered Energy $1.09 /MWh $1.25 /MWh

Local System Charge
Billing Capacity $ 2,162 /MW/month $ 2,356 /MW/month

Metered Energy $0.76 /MWh $0.87 /MWh

Point of Delivery Charge

Substation fraction $ 7,865 /month $ 8,789 /month

First (7.5 SF) MW of billing capacity $ 3,184 /MW/month $ 3,559 /MW/month

Next (9.5 SF) MW of billing capacity $ 1,994 /MW/month $ 2,229 /MW/month

Next (23 SF) MW of billing capacity $ 1,391 /MW/month $1,555 /MW/month

all remaining MW of billing capacity $ 901 /MW/month $ 1,007 /MW/month

Operating reserve charge Metered Energy Pool Price * 6.41% Pool Price * 6.99%

Tranmission Constraint Metered Energy $ 0 /MWh $ 0.07 /MWh

Voltage Control Charge Metered Energy $ 0.05 /MWh $ 0.07 /MWh

Table 4.2: Rate DTS for the years 2015 and 2017
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4.2.2 Scenarios

Base case scenario

For the base case scenario, MT size and billing capacity are considered to be free variables in the

optimization problem. However, a 20 MWh maximum size for battery is still considered. The

microgrid is assumed to be transmission connected and the objective is to minimize electricity bill.

Since the base case scenario is very general, other scenarios are designed to investigate the impact

of regulations and limitations in the sizing project.

Case #1 : Reduced Carbon Emissions

Renewable energy and reduced carbon emissions are of the main motivations to microgrid projects.

This case scenario aims to reduce the base case MT carbon emission by 50% since moving to zero

carbon emission microgrid may not be instantly feasible for every microgrid owner in terms of

both economical and also operational aspects. The rest of the parameters are considered to be the

same as base case scenario.

Case #2 : Zero Carbon Emission

Many communities and campuses are on the way of shutting down all the fossil fuel energy produc-

tion resources in longterm. This case scenario intends to investigate the optimal size and number

of energy storage and PV modules in a carbon-free microgrid. Compared to the base case scenario,

only the carbon emissions are forced to be zero for this evaluation.

Case #3 : Maximize Green Energy Resource Installation

The most economic operation is not the objective in every microgrid project. The third additional

scenario takes into account environmental concerns and green energy production. This case is

similar to the base case, but instead of minimizing the electricity bill, the optimizer maximizes the

green energy installation. MT size and energy storage size are optimized accordingly.
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Case #4 : Existing MT onsite

In the last additional scenario, sizing results are obtained considering the existing MT in the UofC

campus. In this case, the MT size is set to 8 MW and the rest of microgrid components are

optimized accordingly. To calculate the normal electricity bill prior to microgrid installation, MT

output is considered to be 6.5 MW constantly while the rest of the energy demand will be bought

from the grid. Similar to the base case, the objective of the microgrid is minimizing the electricity

bill.

4.2.3 Sizing Results

In this section, sizing results for the proposed scenarios are provided and discussed. All the results

are provided for years 2015 and 2017. In average, 2015 electricity prices are about 11 $/MWh

higher than 2017 electricity prices. Also, according to Figure 4.3, 2015 electricity prices are more

volatile than 2017 electricity prices in general. The volatility of prices profoundly impacts the

microgrid operation and component sizes. Also, the effect of carbon taxation will be investigated

by comparing results under taxation and ignoring it.

Economic results indicate that although 2017 electricity prices are lower than 2015 electricity

prices in average, 2017 microgrid utility bill is higher for all the scenarios compared to the 2015

microgrid utility bill. This is due to the lower regular campus utility bill in low prices and conse-

quently less savings available for being invested in purchasing microgrid components. Also, flat

electricity prices result in less arbitrage opportunities and consequently lower revenues. In general,

introducing carbon tax to all the scenarios makes the microgrid less profitable due to the higher

operational costs.

In the Base Case scenario, there is no limitation on carbon emissions and the optimizer is free

to choose the MT size and dispatch it frequently in order to minimize the electricity bill. No

carbon taxation 2015 scenario is the most profitable case among all the scenarios. Introducing

carbon tax to 2015 and 2017 scenarios results in a slightly smaller MT size, more number of PV

modules and less carbon emissions while the maximum battery size is chosen. Although MT size
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has not reduced noticeably after carbon taxation is introduced, carbon emissions are decreased

15% and 27% for years 2015 and 2017, respectively. However, the energy bought from the grid

has increased under carbon tax and according to electricity generation emission factor in Alberta,

net CO2 emissions from on site MT and grid does not vary much considering carbon tax. All

sub-scenarios are profitable, while 2015 sub-scenarios are more profitable due to more available

revenue streams from arbitrage opportunities.

Figure 4.3: 2015 and 2017 Electricity Price Profiles

The economic results are provided in Table 4.3 followed by sizing results in Table 4.4. The

difference between the regular bill and microgrid bill gives the annual savings on electricity bill

which will be invested in capital costs of the microgrid components. A negative bill means that

grid owes the microgrid and microgrid is profitable.

Scenario #1 cuts the MT carbon emissions in the base case scenarios by 50%. This constraint

has encouraged the solar energy production and all sub-scenarios have reached the maximum num-

ber of PV modules that can be installed. The reduction in MT size is more for carbon taxed sub-

scenarios. Since the maximum battery size is chosen and there is not more area for installing PV

modules, the required energy must be supplied from the grid. The net CO2 emissions has increased
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around 20% in all sub-scenarios compared to their respective sub-scenarios in Base Case. More-

over, carbon taxation has increased net CO2 emissions for both years. In terms of utility bill, there

is a relatively small increase in electricity bill, however, sub-scenarios are still profitable in general.

Case #2 is the same as the base case, but the optimizer is forced to make the emissions zero.

Since there are no carbon emissions, there is no impact by carbon taxation. So, results for 2015

and 2017 sub-scenarios has been replicated. The optimizer chose the maximum battery size and

also the maximum number of PV modules allowed for both years. In other words, microgrid uses

all the available resources to supply the demand while minimizing the utility bill. Interactions

with the main grid are inevitable in this scenario and although microgrid has no direct carbon

emissions, the net carbon emissions for both years is around 60% more than the Base Case net

emissions. Compared to previous cases, utility bill has increased due to the reduced low cost

on-site generation. 2015 sub-scenarios are still profitable under the forced constraint on carbon

emissions.

Case #3 favours the environmental policies and green energy installation over economic aspects

of microgrid planning. Hence, maximizing the green energy production is the objective of this

scenario while there is no limitation on carbon emissions. The maximum number of allowed PV

modules is chosen along with battery and MT. The MT size is similar to the base load of campus.

For 2015, the results are replicated for the two sub-scenarios. Carbon taxation has encouraged

the battery installation for 2017. The maximum battery size is not selected, because the selected

battery size is able to fulfill the investments required for purchasing maximum number of PV

modules. The relatively higher utility bill is a good indicative of the objective of this case. The

energy bought from the grid has decreased due to smaller size of the battery and this reduction

is reflected in the very low level of grid CO2 emissions. This scenario has the lowest net CO2

emissions among all the discussed scenarios.

Case #4 considers the existing MT at UofC campus. The MT size is set to 8 MW and the

optimizer finds the battery size and number of PV modules accordingly. Regular bill for Case #4

sub-cases is less than other cases since 6.5 MW of the campus load is supplied by MT and only
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the remaining demand is bought from the grid. For all sub-scenarios, the maximum number of PV

modules is selected along with the maximum battery size. In terms of carbon emissions, carbon

taxation enforces a reduction in MT dispatch, however, it also results in increased power purchase

from the main grid and consequently increased net carbon emissions. This scenario demonstrates

that with the existing MT on campus and smart energy management strategies, profitable micro-

grids can be installed and maximum solar energy can be exploited.

Among all the scenarios discussed, maximized green energy production scenario seems more

realistic and in line with the motivations of microgrid installation. First, in terms of the environ-

mental impact, this scenario aims for maximum exploitation of renewable resources along with

minimum carbon emissions among the studied scenarios. Also, MT installation is considered

which is very beneficial for campus microgrids where supplying the heat accounts for a big share

of energy consumption. So, upgrading the MT to co-generation facility is very beneficial. In gen-

eral, the on-site MT is environmentally preferred due to the high emission factor for electricity

generation in Alberta.

Based on DTS rates, noticeable charges apply to billing capacity in local system charge and

point of delivery charge sections. Referring to the results, there is a 20 MWh battery, 15 MW MT

and 22 MW of solar electricity generation but only around 14MW of demand on campus. Billing

capacity restricts the amount of power exchange with the main grid in the optimization problem.

In general, billing capacity column results imply the importance of optimal billing capacity for

different sizes of microgrid components. These results also emphasize that higher bounds for

energy exchange with the grid do not necessarily yield to lower electricity bills.

According to Figures 4.4 and 4.5 revenue out of selling power to the grid in the monthly PL

hour is a primary source of revenue in all cases specifically for year 2017. For all the evaluated

scenarios, the revenue out of selling energy to the grid for the year 2017, is reduced noticeably

compared to the year 2015. The zero carbon emission and maximized green energy scenarios have

the lowest revenues for both years which is resulted from lower on-site generation and smaller

battery size, respectively.
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Figure 4.4: 2015 Revenues for the Scenarios Evaluated

Figure 4.5: 2017 Revenues for the Scenarios Evaluated
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Figures 4.6 and 4.7 give graphical representation of the DTS charges for years 2015 and 2017.

In all the cases, DTS charges are reduced significantly except for the case that an existing microgrid

is considered. Generally, DTS charges are higher for 2017 due to higher Rate DTS for 2017

compared to 2015. Usually, in scenarios under taxation, a higher DTS charge is resulted. This

slight difference may be due to the lower MT size under carbon taxation scenarios which will

eventually result in more power purchase from the grid and higher metered energy and consequent

DTS charges.

Billing capacity is one of the major charges associated to DTS. It must be noted that billing

capacity for all scenarios is comparably higher than the regular billing capacity when no microgrid

is installed. In other words, although the optimally determined billing capacity increases the DTS

charges, the optimal power exchange level with the grid reduces the utility bill overally.

Figure 4.6: 2015 DTS Charges for Microgrid Scenarios Compared to Regular DTS Bill
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Figure 4.7: 2017 DTS Charges for Microgrid Scenarios Compared to Regular DTS Bill

4.3 Peak Load Hour Forecast

This section investigates the PL hour forecast results. As explained before, monthly PL hour

usually has a repeating pattern. Table 4.5 introduces the most frequent daily PL hour for each

month as the most probable monthly PL hour.

For each month PL hour estimation, all the calculations are applied to historical data for the

same month. For example, for January, historical data column means previous load data for Jan-

uary up to four years in the past. Different amount of data is used in the statistical analysis to

demonstrate the robust nature of daily PL hour. Results show that after using two years of past

data, the PL hour does not change much as the historical data amount increase. Consequently, the

accuracy of the results compared to the actual PL hour does not vary much for different amount of

data.

Although, only taking the previous year load data could forecast PL hour with reasonable or

even high accuracy, the PL hour forecast using four years of historical data is favoured in this study.
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This is due to the fact that in general, more historical data represents the PL hour characteristics

better.

PL governing factors are temperature, lighting hour, electricity price and after work hours.

Usually, when people arrive home after work around 16:00 to 21:00, they will turn on heating or

air conditioning, lights and other household appliances. This justifies the daily PL hour mostly

happening between 16:00 and 21:00.

However, actual PL hour results show that PL does not always follow the reasoning mentioned

above. Other factors such as electricity price can impact the load consumption significantly. When

electricity price is low during on-peak hours (8:00 to 21:00), price sensitive industrial loads do not

go offline leading to very high demands in hours other than the daily usual PL hour.

4.4 Optimal Scheduling - DRTO

The optimal sizes of microgrid components are imported to an efficient scheduling algorithm.

The DRTO is done for years 2015 and 2017. Electricity prices, UofC campus demand and solar

irradiation, are assumed to be known 4 hours in the future. All the parameters for operational

costs and DTS rates are similar to the values used in the sizing algorithm. To avoid the coincident

metered demand charge, the forecasted daily PL hours in section 4.3 and also perfect monthly PL

hours are used and the efficiency of the proposed daily PL hour forecast is discussed.

4.4.1 Microgrid Operation Under Forecasted Daily Peak Load Hour

Microgrid Utility Bill Under Forecasted Daily Peak Load Hour

This section provides the electricity bill under various sizing scenarios evaluated. All results show

the accumulated electricity bill over one year (8760 hours). At the monthly billing hour which is

the ending hour of each month, constant charges affiliated with local system charge and point of

delivery charge will take place. Moreover, at the monthly PL hour, there may be a step increase

or decrease in the electricity bill depending on the accuracy of the daily PL hour forecast and
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available energy to be sold to the grid. The step decrease in the electricity bill is a result of selling

energy to the grid in the monthly PL hour.

Figure 4.8 illustrates the electricity bill associated to four base case sub-scenarios. In all cases,

taxation contributes to a higher electricity bill due to higher operational costs. Also, the slope of the

electricity bill increase is higher in scenarios under taxation. This is due to the smaller size of MT

and less internal generation. Although the Starting May to end of July, a steep reduction in utility

bill is observed for 2015 sub-scenarios. This steep decrease in the bill is incited by very volatile and

high electricity prices during the proposed hours which is coincident to the maximum solar energy

production and higher export capacities. Revenues obtained by battery arbitrage operation also

reduced the utility bill during volatile electricity prices period. 2017 utility bill is ever increasing

except for the accurately forecasted monthly PL hours and also the month of August when volatile

electricity prices are triggered.

Figure 4.8: Utility Bill for Base Case

Figure 4.9 illustrates the scheduling results for Case #1 sub-scenarios. As discussed previously,

69



this scenario cuts the carbon emissions in Base Case by 50%. The same trend as Base Case holds

for Case #1 results; however, the electricity bill is increased for all sub-scenarios. This general

increase is again addressed by the smaller MT size due to the carbon emission reduction.

The next results depicted in Figure 4.10 provide the electricity bill for Case #2 sub-scenarios.

Since Case #2 forces the carbon emissions and accordingly MT size to zero, the sub-scenarios

are narrated to two sub-scenarios based on years regardless of the carbon taxation. Loss of the

dispatchable on-site generation by MT resulted in smaller step reductions in accurately forecasted

PL hour compared to the Base Case and consequently higher utility bill for both years is obtained.

Figure 4.9: Utility Bill for Case1 : Reduced Carbon Emissions

Figure 4.11 demonstrates the electricity bill for Case #3 sub-scenarios. The objective of sizing

algorithm is to maximize the green energy production for case #3. Whereof the 2015 sub-scenarios

acquire the same size of microgrid components regardless of the carbon taxation, the utility bill

is higher for the taxed sub-scenario due to the higher operational costs. It is observed that 2015

scenarios could be profitable although the environmental concerns are prioritized.
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Figure 4.10: Utility Bill for Case2 : Zero Carbon Emissions

Figure 4.11: Utility Bill for Case3 : Maximize Green Energy Resource Installation
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The scheduling results for the last case is depicted in Figure 4.12. Case #4 minimizes the

electricity bill based on an existing MT at UofC campus and accordingly optimized size and num-

ber of other microgrid components and parameters. The electricity bill trends for the same year

sub-scenarios are very similar, however carbon taxation induced a higher MT operational cost and

therefore less frequently dispatching of MT. Similar to previously discussed scenarios, a steep re-

duction in 2015 electricity bills occur form May to August along of high and volatile electricity

prices.

Figure 4.12: Utility Bill for Case4 : Existing MT Onsite

Optimal Operation of Microgrid Components

This section discusses the optimal policies for microgrid components and also exchanged power

with the main grid. The Base Case scenario results are shown for two specific days in 2015 and

2017. To investigate the operation of microgrid in monthly PL hour two specific days are selected.

The monthly PL occurrence day in the month of July is the first sample while the PL is correctly

forecasted. Also, the PL occurrence day in March is chosen to discuss the operation of microgrid
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when PL hour is not correctly forecasted.

The operation of battery depicted in Figure 4.13 shows that in winter months battery is dis-

patched more frequently. This is justified by the less solar irradiation and duration in cold months

and consequently less solar power generation. hence, the discharged energy from the battery is the

primary source of energy sold to the grid in cold months . While in warmer months, the excess

solar power generation is sold to the grid and battery is dispatched less regularly. Although, during

the high and volatile electricity prices in May, June and July the battery operation has increased.

Figure 4.13: Battery Operation in Year 2015

The detailed operation of microgrid components for March 2nd, 2015 is shown in Figure 4.14

along with respective electricity prices. In general, during the sun hours microgrid sells the excess

on-site generation to the main grid. In this month, hour 20:00 is the actual monthly Pl hour, while

the proposed forecast estimated hour 21:00. In the forecasted PL hour microgrid avoids buying

energy and sells the surplus energy from the MT and battery to the main grid. Although the PL

hour revenue is missed, the electricity price relative to forecasted PL hour is high and compensates

73



a part of coincident metered demand charge. It also must be noted that the electricity price for

forecasted PL hour is higher than the actual PL hour, which indicates that electricity price and bulk

system demand are not fully correlated.

Figure 4.15 gives the optimal policies of microgrid components for July 9th, 2015. In the

specified day, monthly PL hour occurs at hour 17:00 similar to the proposed forecast result. Due to

the longer hours of solar irradiation, more energy is sold to the grid, however the power exchange

is capped to the billing capacity. The remaining produced energy is charged to the battery. At hour

8:00 electricity prices start increasing, hence, battery is charged at 7:00 with the energy bought

from the grid. MT is generally dispatched at 8MW, but the dispatch level increased at the high

electricity price triggered at 13:00 and also hour 22:00 when the solar energy is declining and

electricity price is relatively high.

Figure 4.14: Microgrid Operation on March 2nd, 2015
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Figure 4.15: Microgrid Operation on July 9th, 2015

The battery operation for year 2017 is shown in Figure 4.16 which follows the same reasoning

for year 2015.

Microgrid operation under wrong forecasted PL hour is given by 4.17 for March 9th, 2017.

Again the monthly PL hour is 20:00 while the forecasted PL hour considers hour 21:00. Due to

this error, battery retains its energy for hour 21:00 to sell it to the grid. However, the relative high

electricity price for hour 20:00 results in avoiding power purchase from the grid. It is also observed

that at hour 7:00, a high electricity price is triggered and battery is fully discharged.

In Figure 4.18, microgrid operates optimally under the accurate forecasted PL hour on July

27th, 2017. The power purchase from the grid is minimized to zero during the sun hours and all

the excess energy capped to the billing capacity is sold to the grid. Although high electricity prices

are triggered for hours 11:00 and 12:00, battery is not discharged and all the energy sold is from

solar energy and MT.
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Figure 4.16: Battery Operation in Year 2017

Figure 4.17: Microgrid Operation on March 9th, 2017
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Figure 4.18: Microgrid Operation on July 27th, 2017

4.4.2 Daily Peak Load Hour Forecast Error Impact on Electricity Bill

In this section, the utility bills using actual monthly PL hour and also forecasted daily PL hour

are provided in Figure 4.19 for Base Case sub-scenarios. Results show although the daily PL hour

forecast accuracy for years 2015 and 2017 is 66.66% similarly, the difference in electricity bills

using the daily PL hour forecast and perfectly known monthly PL hour is higher for 2017 compared

to 2015. The level of internal power generation can explain this. Based on sizing results, 2015

sub-scenarios have more installed PV modules and also bigger MT sizes. Hence, more resources

are available for selling energy to the grid at the accurately forecasted PL hours. Consequently,

these revenues flattened the forecast error impact for 2015. In addition, 2017 has a higher rate for

coincident metered demand charge, hence the forecast error induced a higher utility bill. Also, for

scenarios under taxation a relatively higher utility bill is eventuated. This difference is also due to

the smaller MT size and dispatch level which leads to lower revenues in PL hour.
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nevertheless, the coincident metered demand charges are reduced 66.66% for both years and

considering the DTS revenues, the proposed forecast has noticeably reduced the overall utility bill.

Figure 4.19: Efficiency of the Forecasted Daily Peak Load Hour for Base Case Scenarios

4.4.3 Daily Peak Load hour vs Monthly Peak Load Hour Electricity Bill

Predicting the hour of monthly PL may be possible to an accuracy, but the monthly PL hour is a

posteriori event and forecasting the exact day of PL occurrence is impossible with the available

data. This may impact the scheduling results since for 29 or 30 days of each month, a wrong

assumption associated with coincident metered demand charge is impacting the optimal microgrid

policies. In order to quantify the effect of daily PL hour versus monthly PL hour, two approaches

have been investigated.

In the first approach, only the PL hour is assumed to be perfectly known. Hence, the PL hour

is assumed to happen every day and the optimal policies are found resulting in the provided elec-

tricity bills in Figure 4.20. Alternatively, in the next approach, the exact day and hour of monthly
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PL are assumed to be known and the optimal policies are found accordingly. The difference of

the respective sub-scenarios quantifies the deficiency of daily PL hour forecast compared to the

perfectly known monthly PL hour.

It is observed that the difference is negligible since the PL hour generally happens in the

evening hours when the electricity prices are relatively high. Hence, the wrong assumption re-

garding the PL occurrence does not impact the optimal operation negatively.

Figure 4.20: Impact of the Wrong Assumption on Monthly Peak Load Hour
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

The evermore growing global electricity demand, international efforts for GHG emissions reduc-

tion and the necessity for green energy production along with technological advancement, has led

to the move toward decentralized power systems. Microgrids have emerged as the best possible

way to exploit the benefits of distributed generation resources. This hybrid structure comprising

of wind turbines, PV panels, microturbines and batteries ensures the reliable and efficient sup-

ply of the demand. One of the major issues associated with microgrid projects is the interactions

with the main grid regarding energy exchange and also receiving transmission services. This is

the first time that transmission charges are implemented in the design and operation of microgrid

projects. Compared to energy-only approaches, this study considers the electricity bill more re-

alistically. Moreover, the transmission charges such as billing capacity and coincident metered

demand charge are minimized.

The focus of this study is on campus/institutional microgrids. This tight geographical category

of microgrids are usually placed in urban areas where the implementation of DERs such as wind

turbines are impossible due to social, environmental and technological policies. Also, the installa-

tion of PV panels is bounded with the available area. Due to the limitations of renewable energy

80



resources, on-site green energy production may not be able to supply all the demand. Hence, power

exchange with the main grid is very crucial. The case study investigated in this thesis is University

of Calgary main campus located in the northwest area of Calgary.

The optimal sizing and scheduling of the proposed microgrid are accomplished by implement-

ing a two-stage optimization algorithm. In the first stage of the problem, the optimal number and

size of DERs including PV panels, microturbine and battery and billing capacity are found con-

sidering the transmission service parameters. The economic assessment of installed DERs, power

exchange and transmission charges are also acquired. This MIP model was solved for different

scenarios to explore the impact of reduced CO2 emissions, maximum green energy production and

electricity pool prices on the final electricity bill. Moreover, installing a microgrid considering the

existing microturbine in the University of Calgary main campus is considered.

The assessment of optimal sizing problem demonstrates that although 2017 electricity prices

are less than 2015 electricity prices in general, 2017 scenarios resulted in higher utility bill com-

pared to the respective 2015 scenarios. Moreover, introducing carbon taxation resulted in smaller

MT size, lower CO2 emissions, higher operational costs and lower profit in all the evaluated scenar-

ios. The evaluation of DTS charges proves that implementation of transmission service parameters

has significantly reduced the DTS charges. Also, revenues obtained in monthly PL hour, account

for the primary revenue stream in most of the evaluated scenarios.

In the next stage of the optimization problem, the sizing results are fed to a DRTO algorithm

designed for the optimal operation of the microgrid components. Load, solar irradiation and elec-

tricity prices are assumed to be perfectly known. Daily PL hour forecast by statistical analysis of

historical bulk system load data, demonstrates up to 75% accuracy. The scheduling results confirm

that under the optimal sizes of components, microgrid have enough resources to not only avoid

coincident metered demand charge but also sell energy to the grid and make revenue. Comparison

of the utility bill under daily PL hour forecast and actual monthly PL hour, affirm the efficacy of

the proposed forecast. Moreover, the electricity bill profile under 2015 and 2017 prices demon-

strates that predictive energy management strategies enable the microgrid to take advantage of high
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electricity prices and reduce the electricity bill.

Overall, this novel strategy introduces transmission service charges as another potential benefit

of microgrid projects to reduce the electricity bill. The optimal sizing methodology allows the

consideration of economic and environmental objectives based on the priorities of the microgrid

owner. The sophisticated proposed scheduling algorithm confirms the effectuality of sizing results.

It is also concluded that University of Calgary has enough resources to install profitable microgrids.

5.2 Recommendations and Future Work

As regards the study proposed in this thesis is based on perfect knowledge on stochastic variables

including demand, solar irradiation, natural gas prices and most importantly, electricity prices,

future work may be extended to develop forecasting methods for the aforementioned stochastic

variables. Forecasts are specifically required in optimal scheduling of the energy storage.

Moreover, the MT considered in the design and operation of the proposed microgrid is used

only for power generation. Since the buildings in campuses are located very closely and consider-

ing the extreme cold weather in North America, combined heat and power(CHP) operation of the

MT would be very efficient.

Furthermore, all the data, policies and tariffs in this study are based on the Alberta electric-

ity market. It would be interesting to consider the impact of microgrid projects on transmission

charges in other deregulated market environments.
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