Predicting X-Tree network performance using the Jade
environment

Li Xining and Brian Unger
Department of Computer Science
University of Calgary
Calgary, Alberta

Canada

ABSTRACT

Jade provides an integrated set of tools which are designed
to support the development of distributed software and systems.
The Jade environment provides tools for the design,
implementation, debugging, testing, maintenance, simulation, and
performance analysis of distributed, concurrent programs. A
network topology called X-tree has been implemented and
simulated using this Jade environment. This paper presents an
overview of the Jade environment, the X-tree network topology
and a robust routing algorithm for this topology. The
performance of the X-tree topology is also discussed.

1. INTRODUCTION

As computers have become smaller, cheaper, and more
numerous, people have become more and more interested in
connecting them together to form networks and distributed
systems. In any network there exists a collection of machines
intended for running user programs, and a number of
transmission lines for exchanging messages. Broadly speaking,
there are two general types of network topologies, one is the
common bus structure (broadcast channels), the other is the
interconnection structure(point-to-point channels).

When a point-to-point subset is used, an important design
issue is what the interconnection topology should look like.
Fig.l shows several possible topologies. Five desirable
properties of an interconnection topology can be defined:

(1). The distance of the network increases much more
slowly when the network is extended to arbitrarily many nodes.
Ideally, if N is the number of nodes, D the distance of the
network, then

. D
lim =0,
N—)E-

where the distance between a pair of nodes is calculated as
the minimum number of communication lines needed to convey
a message from one to the other. The distance of a network, i.e.
D, is the longest one among distances of every pair of nodes in

the network.
star

ring tree

(2). There is a fixed constant P, independent of the overall
size of the network , such that
V node € network degree(node) < P.

(3). The routing algorithm is easy to realize and
independent of the extension of the network.

(4). When some nodes or communication lines have failed,
the network can still function properly, although with lower
performance.

(5). The traffic load distribution is uniform for all nodes in
the network.

The relative performance of the network topologies of
Fig.1 can be classified as shown in Fig.2 using these five
properties.

In this report, We discuss the performance of the X-tree
topology [1] using a specific routing algorithm. A model of
communication in X-tree has been implemented using the Jade
system, and simulation results are presented.

2. THE- JADE DISTRIBUTED SOFTWARE
PROTOTYPING ENVIRONMENT

The Jade environment can be described in terms of four
functional levels: a hardware level, a kernel level, a
programming level, and a prototyping level. The facilities
available at each level include those provided at lower levels.
The prototyping level will thus provide the Jade user with
facilities from the programming level, as well as tools that
specifically support prototyping.

The three major areas of research in Jade, i.e. simulation,
distributed systems, and the user interface, all support the higher
environment levels.

The hardware level consists of different networks of
different kinds of computers. Currently, a 10Mbs token passing
ring network (Pronet) of Vax 11/780s running Unix 4.1 provide
the host resources. The Jade user workstations are Corvus
Concepts connected via the Corvus 1Mbs Omninet, an Ethernet
like network. One of the Vaxes is connected to the Omninet
which enables communication between any Vax and any of the

-
(
C |
(s

complete regular irregular

Fig.1 Several network topologies

75

star ring Lree complete regular irregular
Iim%:() yos no VoS yes yes ?
N—oc
Y n € newwork
d(m) <P no yes yos no yes 4
easy yes yos yes yos yes
routing
connee- bad bad bad good £ood ?
Livity
uniform no yes no yes yes ?
loads
Fig.2. Performances of some network topologies
workstations.
The prototyping level supports the modelling and
The kernel level consists of the Jade Inter-Process simulation of target distributed systems, including the target

Communication facility called Jipc (pronounced as "gypsy").
Jipc supports message passing between processes which reside
on any of the Vaxs or Corvus workststions via a synchronous
protocol. A stand alone version of this kernel has been
developed for the Corvus workstation and several sub-projects
are underway to port the Jipc kernel to other M68000 based
computers. A Unix version of Jipc has also been developed to
enable message passing between Unix processes, and between a
Unix process and workstation processes.

The Jipc protocol, its rationale, and experience with this
message based protocol are presented in [2]. Jipc is based on
the Thoth [3] communication protocol which includes blocking
"send", 'receive", "receive_any", “forward", and ‘“reply”
primitives. Interfaces to Jipc currently exist for five
programming languages: Ada, C, Lisp, Prolog, and Simula.
Distributed programs whose components are written in any
combination of these languages can be developed and tested, e.g.
one component in Ada, two in C, one in Lisp, several in Prolog,
etc..

The programming level consists of the Unix environment
with additional tools either in place or planned to support: 1)
cross compilation and downloading for the Corvus workstations,
2) the monitoring and debugging of distributed programs, 3) a
multi- media user interface to Jade, 4) general simulation
languages and package, 5) an online document preparation
system and 6) information management for projects and target
systems.

The programming languages currently supported include
Ada, C, Lisp, Prolog, and Simula on Vax/Unix and C on the
workstations. Cross compilation and downloading of Prolog and
Simula are under development. The user interface includes a
window system that provides a rectangular area, or window, on
the workstation screen for each process that the user wishes to
interact with, or observe. Unix processes, perhaps residing on
different Unix hosts, can be controlled via different windows, as
well as, processes that reside on user’s or other workstations.

A tool which graphically animates Jipc message
interactions among the concurrent processes of a distributed
computation has also been implemented {4]. Each message
interaction, such as “send" or "receive", has a corresponding
static graphical representation. The execution of a distributed
computation can then be monitored as an animated sequence of
these static images on the Corvus workstations.

Other general programming tools are planned, such as
speech input and output; interactive debugging and profiling; a
document preparation system; and an information management
system [5].

76

embedded computer system. Execution of the distributed
program under development by the modeled target system can be
simulated, including the system that are external to the embedded
computer system. Performance information can be collected,
displayed, and manipulated interactively [6} [7].

3. X-TREE AND ITS ROUTING ALGORITHM

3.1. What is X-tree?

X-tree is a kind of binary tree. The difference between
X-tree and a general binary tree is that each layer of X-tree is
connected into a ring, as shown in Fig.3.

Each node in X-tree has a unique identifier, an integer
number. If we chose a node arbitrarily and define it as "me",
then

parent = me/2;
left-brother = if (special(me))
then me*2-1 else me-1;
right-brother = if (special(me+1))
then (me+1)/2 else me+1;

left-child = me*2;

right-child = me*2+1;
where the boolean function special(x) will return true if x=2%*i,
else false.

The distance of X-tree is
D =2*og (N+1)-4 (N27)

and

Y node € X-tree degree(node) < 5

3.2. Routing algorithm

There are three classes of routing algorithms, static,
centralized, and distributed routing. Static routing is a simple
algorithm which is widely used. Each node maintains a table
with one row for each possible destination. A row gives the
best, second best, third best, etc, outgoing line for that
destination with a relative weight.

Before forwarding a packet, a node chooses among the
alternatives, using the weights as probabilities. The tables are
loaded into every node before the network is brought up, and not
changed thereafter. So if the topology and message traffic
changes dramatically and often, this algorithm will not perform
well.

N
/6\/ 7
2

—F—o—F——F——a—e-

4 =0

8
Fig.3. X-tree topology

Centralized routing is similar to static routing in that each b). if the distance from my left hand to destination is less
node maintains a table telling how to forward packets. The than or equal to 4 then send message to my left brother.
difference between them is how the routing tables are c). else send to right brother.
constructed. When centralized routing is used, somewhere (3). if the destination is my descendant, there are three cases:
within the network there is a routing control center (RCC). a). if it belongs to my left subtree, then send message to my
Periodically, each node sends status information to RCC. The left child.
RCC collects all this information, and then, based on its global b). if it belongs to my right subtree, then send message to
knowledge of the entire network, computes the optimal routes my right child.
from every node to every other node, and then distributes these c). if it does not belong to my subtree, then first find its

new tables to all the nodes. There are some disadvantages in ancestor who is my brother(see Fig.5), after that, go to step (2)
centralized routing algorithm, one of them is heavy concentration to chose the shortest route from me to brother.
of routing traffic on the lines leading into the RCC.

Besides the above basic rules, other rules to improve
robustness have been added:
(1). if the shortest route is broken, i.e. the next node selected
the above shortest routing algorithm is not alive, then
randomly select an active neighbour node (include the prior node
that transferred the message to me), and send the message to the
neighbour node.

(2). if the next node selected by the shortest routing
algorithm is the same as the prior node (that means the shortest
route was broken and the message was send back), then select an
active neighbour node randomly provided that it is not the prior
node. If there is no such neighbour node then send the message
back to the prior node.

Distributed routing involves each node in the network
periodically exchanging explicit routing information with its
neighbours to construct a local table containing dynamic by
information about the network. Then each node can base routing
decisions upon the current version of this table. No doubt, this
will increase the communication traffic.

Our approach for an X-tree routing algorithm is a mixture
of distributed and centralized routing. That is because in Jade
there are no time_out facilities - each node cannot know whether
its neighbour is active or not. The centralized controller
(manager) is used to send information to affected nodes when the
network topology has been changed.

These two additional rules guarantee that whenever the
shortest route breaks, the message will eventually be sent to the
destination provided that there is a route (or routes) from the
source to the destination. If the route from source to destination
does not exist, i.e. the source node and destination node belongs
to two isolated subnets respectively, the message will loop in the
subnet which the source node belongs to, until the
communication line between these two isolated subnets resumes.

Each node contains a local control process which attempts
to find a shortest route to send or transfer messages, that is, each
node local control process executes the same routing algorithm.
This routing algorithm is (here we follow the terms defined in
3.1):

(1). if me=destination then OK, stop transferring.

(2). if me and destination are brothers, there are three cases:

a). if level distance from me to destination is longer than 4,
as shown in Fig.4, then send message to parent.

- Q—Q—gg% o]

— .!c_vlel c‘isf&noc —_—y

Fig.4. The level distance longer than 4

Fig.5. Destination is not my descendant

3.3. A Simulation of X-tree Communication

Simulation is a technique for representing a dynamic
system by a model in order to gain insight into the operation of
the underlying system. The distributed simulation program for
X-tree consists of three parts: a menu events process , a manager
process and several node processes, as shown in Fig.6.

———
manager menu
events

o o o nOde

Fig.6. the program structure

The menu events process recognizes the event item
selected by the mouse, such as kill a node, resume a node, send
a message, send messages randomly, etc., and notifies the
manager process.

The manager process is responsible for collecting
simulation information, monitoring the change of the network,
and animating X-tree topology on the screen. For example,
when a node is killed, the manager process tells all that node’s
neighbours so they can change their connection tables. The icon
of the killed node is then erased from the screen.

The node processes execute the same algorithm. They
send or transfer messages, animate the communication routing on
the screen, or modify their status and tables according to the
commands from the manager.

3.4. X-tree Performance Results

To examine the behaviour of X-tree topology, dozens of
simulation were performed. Fig.7 presents three typical statistics
reports of the traffic load drawn from a 4-layer X-tree network
when the nodes send messages randomly among each other. The
term traffic load means the number of messages received by or
passed through a node. We can now summarize X-tree
performance in terms of the desirable properties defined in
section 1.

78

(1).

lim 22 log..(N+ 1)-4 -0;
N—yoo N

(2). V node € X-tree degree(node) < 5;

(3). The shortest routing algorithm is simple and easy to
implement;

(4). The connectivity of X-tree is much better than star, tree,
ring topologies;

(5). The traffic loads of X-tree are not exactly uniform.
Generally, the heavier traffic loads are located on the second last
layer of X-tree. We can justify this statement by referring Fig.7.

first serond third

node | load weight | load | weight | load weight
1 67 0.05 81 .05 250 0.05

2 113 0.08 135 0.08 {29 0.08

3 105 0.07 156 0.0n 111 0.08

1 133 0.09 150 0.08 151 0.09

5 139 0.10 159 0.09 506 0.10

G 142 0.10 173 0.10 171 0.09

7 108 0.07 151 0.08 106 0.08

] 74 0.05 108 0.06 286 0.05

9 83 0.08 93 0.05 200 0.06

10 86 0.08 92 0.05 207 0.06

b 70 0.05 T 0.01 287 0.05
12 86 0.06 103 0.06 297 0.00
13 87 0.08 12 0.06 282 0.05

(R} Kk 0.05 89 0.05 263 0.05
15 72 0.05 101 0.06 312 0.06
total 1113 100%% 1783 100% 5061 1007

Fig.7. Traffic loads of 15 nodes

4. CONCLUSION

In this paper, we presented an overview of the Jade
environment and a simulation of X-tree. Novel features of Jade
are that it supports the modelling and simulation of target
distributed systems including the animation of such simulations.
The goals of Jade are to provide a cost effective software
development environment that is both easy and comfortable to
use, and which can produce more reliable, maintainable
programs. Using the Jade environment, the X-tree network
topology and one routing algorithm has been simulated. These
preliminary simulation results suggest that this kind of
Interconnection topology may be suitable to build megamicro
computers which consist of hundreds or thousands of identical
small computers. For example, we can build some standard units,
each unit consists of, say, fifteen transputers (computer plus
communication mechanism), as Fig.8 below:

Fig.8. X-tree computer unit
Each of these units could be implemented in VLSI enabling a
very large X-tree to be constructed. Possible configurations
which could be constructed using these units are illustrated in
Fig.9 and Fig.10.

Fig.9. X-tree computer

to termingls

or PCYiPhc ra|
devices

Fig.10. X-tree-ring computer

ACKNOWLEDGEMENTS

We would like to express our thanks to the Natural
Sciences and Engineering Research Council of Canada for its
support of Project Jade, and our Jade colleagues for their
contributions.

79

REFERENCES

[1]. C. H. Sequin, A. M. Despain, and D. A. Patterson (1979)
"Communication in X-Tree, A Modular Multiprocessor System "
ACM 78 Proceeding, Washington, D.C.

{2]. Neal, R.,, Lomow, G.a., Peterson, M., Unger, B.W., and
Witten, LH. (1984) “Experience with an inter-process
communication protocol in a distributed programming
environment" CIPS Session 84 Conference, Calgary, Alberta

[3]. Cheriton, D.R., Malcolm, M.A., Melen, L.S. and Sager,
G.R,, (1979) "Thoth : a portable real time operating system."
CACM, 22 (2), 105-115, February

{4]. Unger, B.W,, Birtwistle, G., Cleary, J., Hill, D., Lomow,
G.A., Neal, R., Peterson, M., Witten, LH., and Wyvill, B. (1984)
“"Jade : a simulation and software prototyping environment.” Proc
SCS Conference on Simulation in Strongly Typed Languages,
San Diego, Colifornia, February

[5]. Bonham, M. and Witten, LH. (1984) "Towards distributed
document preparation with interactive and noninteractive
Viewing." CIPS Session 84 Conference, Calgary, Alberta

[6]. Dewar, A. and Unger, B.W. (1984) "Graphical tracing and
debugging of simulations." Proc SCS Conference on Simulation
in Strongly Typed Languages. San Diego, Colifornia, February

2 (7). Birtwistle, g., Wyvill, B., Levinson, D., and Neal, R. (1984)

"Visualizing a simulation using animated pictures." Proc SCS
Conference on Simulation in Strongly Typed Languages. San
Diego, Colifornia, February

