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Abstract 

Traffic congestion on urban freeways has become a serious problem in major metropolitan areas, 

causing delays, pollution, reduced road safety and degradation of infrastructure. Predictive 

freeway control measures are shown to be effective in reducing traffic congestion on urban 

freeways. Each predictive freeway control measure includes three major components: 1) freeway 

capacity constraints 2) a traffic prediction model, and 3) an optimization problem formulation with 

respective solution.  

Most of the freeway control models considered deterministic values of capacity, occupancy or 

density as the physical constraints. However, previous research confirmed that the observed 

freeway capacity follows a probabilistic behavior. In terms of the traffic prediction models, the 

majority of control approaches used deterministic macroscopic traffic flow models to predict the 

traffic parameters. These models are not suitable in capturing lane by lane and stochastic traffic 

behavior caused by uncertainties in driving behaviors of road users and network conditions.  

Finally, the current optimization approaches mainly try to achieve system-wide benefits while 

overlooking the impact of local stochastic constraints and equity issues of such systems.  

In this thesis, I initially investigated and modeled the probabilistic behavior of freeway capacity 

based on real-world traffic data. The results not only confirmed probabilistic capacity, but also 

indicated that different weather conditions result in the distinct parameters of the probability 

distribution functions.  

Thereafter, I developed a traffic state prediction approach based on a stochastic microscopic three-

phase model. The rigorous analysis carried out showed that the proposed method predicts traffic 

parameters with an accuracy comparable to that of data-driven models without the same intensive 

data requirements. 
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 Finally, I developed a predictive ramp metering approach that facilitates cooperative control using 

a bargaining game theory approach. This configuration allows the controllers to communicate their 

state and decision information, and find the control solution with a compromise between local and 

global performance. This unique property allows local equity considerations, in regard to a fair 

distribution of occurrence of breakdown events, while seeking system-wide efficiency. The results 

showed that the proposed model outperformed the deterministic capacity-based models in terms 

of the effectiveness and equity of the ramp metering solutions. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background 

Traffic congestion is a common condition in large and growing metropolitan areas across the 

world. One of the typical occurrences of traffic congestion is on critical urban freeways that carry 

high volumes of vehicles. The resulting traffic breakdowns on freeways lead to various problems 

including travel delays, and higher risk of collisions. Traffic operation is further hindered by the 

reduction in the discharge flow rate at the downstream of bottlenecks due to the capacity drop 

phenomenon (Cassidy & Bertini, 1999; D. Chen & Ahn, 2018; Leclercq et al., 2016; Srivastava & 

Geroliminis, 2013; K. Yuan et al., 2015). Additionally, idling in long traffic queues causes fuel 

consumption, air pollution and has severe environmental impacts. The efficiency of freeways can 

be optimized by using real-time traffic control and management systems which respond to the 

dynamic and the random nature of traffic almost instantaneously. Considerable safety, 

environmental and performance enhancements result from developing efficient freeway traffic 

control solutions.  

Several freeway control strategies have been developed in recent years for improving the 

operation of freeway traffic and alleviating traffic congestion. The main freeway control methods 

are ramp metering, variable speed limits, and variable message signage. These methods were 

initially proposed to be applied individually in local control plans (Alessandri et al., 1999; 

Messmer & Papageorgiou, 1994; Papageorgiou et al., 2003; Papageorgiou & Kotsialos, 2002; 

Smulders, 1990). With further developments in computation and communication technologies, 

coordinated and integrated freeway control plans were developed in which a combination of 
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control methods were simultaneously applied in several segments of freeways (D. Li et al., 2014; 

X. Liu et al., 2013; Li Zhang et al., 2012). 

Ramp metering is one of the most efficient control measures on freeways in which the 

number of merging vehicles to the freeway mainstream is calculated and implemented to reduce 

congestion. Previous studies have shown that, applying optimal ramp metering strategies can 

decrease the total time spent (TTS) on the network by up to 50 percent (Papageorgiou & Kotsialos, 

2002). Various ramp metering methods have been developed in the literature that can be 

categorized into three main groups based on the level of responsiveness to the real-time traffic 

dynamics including: 1) Off-line or pre-timed control 2) Reactive or responsive control, and 3) 

Predictive or proactive control. A brief explanation of each group is presented bellow.  

Off-line or fixed-time ramp metering is mainly developed based on historical traffic data 

for a particular time of day. In fixed-time ramp metering a linear or quadratic programming 

formulation is developed and solved, off-line, to derive the optimal ramp metering rates. In this 

method, real-time traffic information is not utilized which results in considerable errors in the 

computation and consequently underutilization or overloading of the freeway (Ghods et al., 2010; 

Papageorgiou & Kotsialos, 2002).  

Rather than the historical traffic data, real-time traffic measurements are used to develop 

reactive control strategies to respond to the real traffic conditions on freeways. Reactive strategies 

determine control variables based on maintaining traffic conditions closed to predefined levels. 

Various reactive ramp metering strategies are developed and applied around the world in local or 

coordinated control applications. ALINEA (Asservissement Line´aired’Entre´e Autoroutie´re) and 

demand-capacity methods are well-known local ramp metering strategies (Hadj-Salem et al., 1990; 

Masher, 1975). More advanced reactive ramp metering plans such as helper algorithm and system-
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wide adaptive ramp metering (SWARM) are mainly formulated based on optimizing an objective 

criterion such as total time spent considering the capacity constraints on the freeway and on-ramps 

(Lipp et al., 1991; Paesani, 1997). The solution to such optimization problem is a dynamic vector 

of optimized ramp metering rates for a relatively long segment of the freeway. The reactive 

freeway control strategies have been shown to be more efficient compared to the off-line methods 

(Papageorgiou & Kotsialos, 2002). However, the main drawback of such control measures is the 

relatively long computation time due to the large number of variables specially in the coordinated 

control applications. In other words, by the time the control plan is formulated and deployed, the 

traffic conditions may have changed. Predictive control schemes that are explained next, were 

developed to overcome the limitation of their reactive control counterpart. 

Predictive control strategies are developed based on responding to the predicted traffic 

conditions over a short future horizon (e.g. 5 min), and they have been shown to be more effective 

compared to the reactive schemes by eliminating the time lag between real-time observations and 

control actions (Ghods et al., 2010). Model predictive control (MPC) is a widely adopted predictive 

traffic control approach that finds optimal control measures over a rolling horizon. An MPC-based 

predictive freeway control model includes a traffic prediction model, responsible for multiple-step 

ahead traffic state predictions, and an optimization problem formulation that finds the optimal 

control solutions subject to the operational and physical constraints of the network. The 

performance of MPC-based freeway control strategies is highly affected by the adaptability and 

accuracy of the traffic prediction model and the system constraints model. However, there are still 

several gaps in the literature regarding these main components and procedures of MPC-based 

traffic control models. 
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1.2 Motivations for a predictive stochastic capacity-based ramp metering model 

So far, the majority of MPC-based control approaches use deterministic macroscopic 

traffic flow models (e.g. METANET, CTM) to predict traffic parameters and the value of the 

objective function (Bellemans et al., 2003; Ferrara et al., 2012; Ghods et al., 2010; A. Hegyi, 2004; 

Hegyi et al., 2005; Karimi et al., 2004; M. H. Ma et al., 2015; Papageorgiou, 1995; Papamichail et 

al., 2010; Zegeye et al., 2009). However, the indeterminate impacts of the stochastic driver 

behaviors may violate the theoretical assumptions of such models and cause suboptimal operations 

on the freeway segments (Papamichail et al., 2010; G. Zhang & Wang, 2013). 

In addition, decades of research on breakdown phenomena in freeway bottlenecks 

confirmed that the observed freeway capacity follows certain probabilistic behaviors (Brilon et al., 

2005; Brilon & Geistefeldt, 2009; Y. Y. Chen et al., 2016; Elefteriadou et al., 2011; Elefteriadou 

& Lertworawanich, 2003; Geistefeldt, 2010; Han & Ahn, 2018; Ozguven & Ozbay, 2008; Persaud 

et al., 2001; K. Yuan et al., 2015). In other words, at a given flow rate under free flow conditions, 

traffic breakdowns may occur, but they do not necessarily occur. However, the majority of the 

previously developed freeway control models did not take into account the stochastic behavior of 

freeway capacity, and the models mainly considered deterministic values of capacity, occupancy, 

or density (Hegyi et al., 2005; Lu et al., 2011; M. H. Ma et al., 2015; Papageorgiou, 1995).  

Under saturated traffic conditions, drivers must adjust their speed to the preceding vehicles 

while keeping a space gap. To maintain this gap, drivers need to make decisions regarding 

acceleration, deceleration, and lane changing maneuvers. These driving behaviors vary greatly 

from one driver to another depending on their aggressivity, reaction time, and vehicular 

characteristics. When traffic volume is high, microscopic driving decisions, such as sudden 

deceleration or lane changing, can lead to uneven headway distributions, which create shockwaves 
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and possibly traffic breakdown. Stochastic behavior can be macroscopically represented by either 

the well-known scatter-plot in the congested branch of the fundamental diagram of traffic flow as 

demonstrated in empirical studies or, the synchronized flow area in the three-phase theory (Kerner, 

2002; X. Wu et al., 2010). Such behavior cannot be fully modeled using a macroscopic traffic flow 

model, the model of choice in most freeway control strategies. Macroscopic flow models utilize 

aggregate point detector data (e.g., average speed, flow, and density), which often obscure many 

features of interest such as any abrupt changes in the traffic that may be the root cause of traffic 

breakdowns. 

With the advancement of probe and connected and automated vehicles (CAVs) 

technologies, in addition to stationary data, copious precise and accurate microscopic data is 

expected to be gathered and disseminated in real time. Microscopic stochastic traffic prediction 

models are yet to be augmented with such microscopic data that can be harnessed to closely reflect 

the stochasticity of a driver’s behaviors. The advantage of developing such microscopic prediction 

models is that they are capable of estimating traffic flow parameters on a lane by lane basis.  

Analysis of empirical traffic data shows that speed breakdowns on freeway bottlenecks do 

not occur at the same time for all lanes (D. Ma et al., 2013). For instance, next to a lane drop 

section, congestion often starts in the right lane due to the lane changing activity of merging 

vehicles. Predicting the onset of breakdown in the right lane of a merging bottleneck can be used 

to trigger proactive controls, which can avoid breakdown occurrence and its propagation to other 

lanes. While still in its infancy, per lane traffic state prediction is critical to the development of 

proactive and adaptive control strategies (Nagalur Subraveti et al., 2019). An example of an 

application of this technology is the recently growing area of microscopic traffic control schemes 

such as trajectory optimization for connected and automated vehicles CAVs (Hu & Sun, 2019).  
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In addition, most of the MPC-based traffic control measures find the optimized control 

solutions in a non-cooperative manner. In other words, the controllers do not communicate and 

utilize the information regarding the traffic state and control decisions of other controllers. 

However, such communications can be exploited to improve the decision making of each 

controller. Future development of CAVs and infrastructure to infrastructure (I2I) and vehicle to 

infrastructure (V2I) communications can play a substantial role in enabling real-time controllers 

to work cooperatively to achieve overall objectives of improved freeway performance (Shaaban et 

al., 2016).  

 

1.3 Objective and scope 

The main objective of this research is to enhance the existing predictive ramp metering 

methods by developing a dynamic predictive and cooperative ramp metering strategy that 

considers the probabilistic behavior of freeway capacity. For this purpose, three sub-problems are 

required to be examined: 1) probabilistic freeway capacity modeling, 2) stochastic microscopic-

based short-term traffic state prediction model, and 3) predictive and cooperative ramp metering 

under probabilistic capacity. Each subproblem targets a critical component of the general 

predictive freeway control structure, shown in Figure 1.1. The following is a brief overview of 

each sub-problem. 

 

1.3.1 Probabilistic freeway capacity modeling 

In recent decades, it has been shown that freeway capacity varies depending on the segment 

of a freeway, such as weave, merge, or diverge areas, and on the time of day. Data analysis showed 

that breakdowns do not necessarily occur at the same traffic demand; this finding challenged the 
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traditional deterministic capacity definition (Elefteriadou & Lertworawanich, 2003; Persaud et al., 

2001). In general, stochastic breakdowns and capacity behaviors are investigated through model- 

 

Figure 1.1. A schematic structure of predictive freeway control 

 

based analysis and data-based analysis approaches. In the model-based analysis, a probabilistic 

model is selected, and data is used to calibrate model parameters. In contrast, in the data-based 

analysis, no predefined probabilistic model is determined, and the best model is selected according 

to compatibility with the dataset. These studies considered pre-breakdown flows, breakdown 

flows, and discharge flows to investigate stochastic behaviors. Some particular models include 

Markov chains, Product Limit Method, Bayesian estimators (Brilon et al., 2005; Brilon & 

Geistefeldt, 2009; Evans et al., 2001; Modi et al., 2014; Ozguven & Ozbay, 2008). 

Regardless of the various analytical approaches, all studies confirmed the stochastic 

behavior of freeway capacity, especially at merging bottlenecks. However, most traffic control 
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schemes are designed based on a constant (deterministic) bottleneck capacity, which leads to a 

latent possibility of control failure or capacity underutilization depending on the aggressiveness or 

conservativeness of the control measure. 

In order to achieve a better understanding of breakdown behavior on freeway merging 

bottlenecks, in this research, real observed traffic data on Highway 2 in Calgary, Alberta is used 

to derive and compare both deterministic and probabilistic behaviors of pre-breakdown flows. 

 

1.3.2 Stochastic short-term traffic state prediction model 

Connected and automated vehicle initiatives, moving close to deployment, will provide a 

wealth of individual vehicle trajectories data that in conjunction with fixed sensor data can be used 

as input to next generation of advanced traffic control devices. Data fusion methods that combine 

traffic information from such mobile sensors (e.g. CAVs) and stationary sensors have been shown 

to improve the accuracy and efficiency of traffic prediction results (Di et al., 2010; Guo et al., 

2014a; Nantes et al., 2016; Ruppe et al., 2012; van Erp et al., 2018; Vlahogianni et al., 2014). A 

few analytic models such as the LWR, CTM, METANET, and RENAISSANCE macroscopic 

stochastic models are used to capture some aspects of probe vehicle information and fuse them 

with detector data to produce more accurate traffic state predictions (Allström, 2016; Bekiaris-

Liberis et al., 2016a; Duret & Yuan, 2017; Kawasaki et al., 2019; Mazaré et al., 2012; 

Papadopoulou et al., 2018; Van Hinsbergen et al., 2010; Y. Wang et al., 2008; Work et al., 2008; 

Y. Yuan et al., 2012).  

However, it is important to examine if additional insights can be gained with the use of 

microscopic models that can reflect the unique stochastic driver behavioral aspects that are 

captured through the collected mobile data. Such insights would be helpful to identify the location 
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and magnitude of any microscopic disturbance that are the main trigger of traffic breakdown in 

heavy traffic. Examples include shock wave formation that are usually created at the individual 

vehicle level (e.g. vehicle changing lanes or coming to a sudden stop). A few studies have explored 

the use of microscopic traffic flow models to estimate and predict traffic conditions over a short 

prediction horizon; however, the stochastic car following parameters are not adequately 

considered. (Chrobok et al., 2002; Miska, 2007; Schreckenberg & Wahle, 2001). 

In addition, studies showed that fundamental diagram parameters vary significantly among 

lanes, and aggregated parameters may result in a non-equilibrium fundamental diagram attributed 

to mixing different traffic states. Thus, lane-specific behavior analysis is critical to predict the 

traffic parameters, the occurrence of breakdown at bottlenecks, and the propagation of congested 

patterns over lanes (Duret & Audin, 2009; Pan et al., 2019; Shiomi et al., 2015).  

 

1.3.3 Predictive and cooperative ramp metering under probabilistic capacity  

A series of existing studies on stochastic-capacity-based control approaches showed 

significant improvements in freeway operations in terms of increased throughput of freeways, 

delayed breakdowns, and reduced average travel time and congestion duration (Dong et al., 2018; 

Han & Ahn, 2018; Jin et al., 2018; Pan et al., 2019; Schmitt & Lygeros, 2020; H. Wang et al., 

2010; Zhong et al., 2014). In the analysis conducted in the literature, several challenges are 

revealed that still need to be addressed in developing predictive ramp metering strategies. While 

there is limited research on modeling stochastic capacity in merging bottlenecks from a lane by 

lane perspective, there are even fewer studies that incorporate these lane level stochastic behaviors 

into freeway control models.  
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In addition, only a few works in the literature utilized microscopic models in the predictive 

traffic control methods. For instance, Zegeye et al. (2009)  used the Gazis-Herman-Rothery (GHR) 

stimuli-response car-following model in an MPC-based speed limit control approach, along with 

an average-speed-based emission model to simultaneously optimize total time spent (TTS) and 

emissions. However, the car following model in this study considered only the longitudinal 

kinematic behavior of vehicles and drivers. To our knowledge, no study incorporated the stochastic 

microscopic traffic models to the MPC-based ramp metering strategies.  

In most MPC-based ramp metering models the system-wide efficiency is achieved at the 

expense of some controllers losing performance compared to others. This issue raised concerns 

regarding the equity of such systems. A cooperative ramp metering solution that is able to provide 

a balance trade-off among local and global performance of the control strategy while considering 

the stochastic local breakdown probabilities, is yet to be explored.   

 

1.4 Proposed methodology and research contributions 

In this thesis, a dynamic predictive and cooperative ramp metering strategy is proposed 

that considers the probabilistic behavior of freeway capacity. The developed model relies on a 

stochastic microscopic traffic state and travel time prediction model that fuses data from probe and 

future connected and automated vehicles (CAVs) with stationary detector data to obtain short-term 

traffic predictions based on an adaptive Kalman filter (AKF) on a lane by lane basis. The multi-

step ahead traffic state prediction outputs are used to identify occurrences of stochastic breakdowns 

and to trigger and operate the cooperative ramp metering control. 

The problem of cooperative ramp control is formulated to minimize system-wide travel 

time while considering the stochasticity of local bottleneck capacity. The proposed approach 



 

11 

 

considers the need for flexibility in the solution to the ramp metering problem by integrating the 

system-wide and local benefits through a bargaining framework 

This thesis documents several key contributions made to the field of freeway traffic 

prediction and control. The contributions of this research can be summarized in three categories 

that are outlined below. 

Contributions to the probabilistic freeway capacity modeling: The following 

contributions are made to the freeway capacity modeling:  

 Modeling deterministic freeway capacity based on real observed data and using a new 

regression analysis method to calibrate the fundamental diagram and evaluating the impacts of 

various weather conditions on FD parameters. 

  Modeling probabilistic freeway capacity and evaluating the impacts of various weather 

conditions on the parameters of the probability distribution models. 

Contributions to the short-term traffic state and spatial-temporal traffic pattern 

prediction: The model developed for this part of the research offers several contributions. The 

contributions are listed as follows: 

 Developing a short-term microscopic-based traffic prediction model that incorporates the 

stochasticity of driver behaviors such as lane changing, deceleration, and acceleration 

decisions to the lane-based traffic state prediction problem. This analytical based prediction 

model has the explanatory power to reconstruct and predict congestion phenomena resulting 

from both recurrent and non-recurrent traffic conditions without the need of intensive historical 

data.  

 Predicting the lane-by-lane spatiotemporal congestion patterns to provide timely information 

on anticipated breakdown occurrence. 
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 Addressing the inconsistency of measurement problem generated by the multi-type sensors 

(i.e. detector and CAV data) by the utilization of the adaptive Kalman filtering (AKF) methods. 

The self-adaptability properties of AKF makes the traffic states prediction problem on a lane 

level basis computationally efficient for multiple short time steps ahead. 

Contributions to the predictive ramp metering under probabilistic capacity: In this 

work, I attempt to address the existing gap in the literature through the following contributions:  

- Developing a predictive and cooperative ramp metering model based on a distributed model 

predictive control approach. The bargaining properties of the proposed model give the 

controllers the choice to cooperate depending on the benefits achieved from the cooperative 

decision and prioritizes avoidance of localized traffic breakdown.  

- Incorporating the stochasticity in traffic demand and freeway capacity in both the traffic 

prediction and control models. 

- Modeling the probability of breakdowns in individual lanes, that is embodied in the novel ramp 

metering framework. 

 

1.5 Thesis organization  

This thesis consists of five chapters that are laid out as follows: 

Chapter 2 is devoted to the modeling and calibration of deterministic and probabilistic 

freeway capacity at merging bottlenecks. This chapter begins with a comprehensive overview of 

previous studies on breakdown analysis and stochastic capacity modeling. The study site and data 

collection and processing are explained, followed by the deterministic and probabilistic modeling 

of freeway capacity under various weather conditions. The analysis in this chapter is based on real 

observed field data with the main focus of calibraring realistic modelling of stochastic capacity 
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and breakdown capacity. Thus, unlike the next two chapters, the analysis conducted in this chapter 

does not consider CAVs. 

  Chapter 3 presents a short-term traffic state and spatial-temporal pattern prediction model, 

developed to produce multi-step ahead predictions of traffic flow, speed, and travel time on a lane 

by lane basis.  This chapter also covers spatial-temporal congested pattern predictions and a 

comprehensive sensitivity and comparative analysis of the results.  

Chapter 4 includes the formulation of a predictive and cooperative ramp metering based 

on a distributed model predictive control. The bargaining game solution algorithm and the 

incorporation of probabilistic capacity to the control process are also explained. Several control 

scenarios are implemented to evaluate the efficiency, effectiveness, and equity of the models.   

Chapter 5 summarizes the findings of this research and concludes the work described in 

this dissertation. The contributions of this research to the greater body of literature are described 

and recommendations for future research are made. 
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CHAPTER 2:  DETERMINISTIC AND STOCHASTIC FREEWAY CAPACITY 

ANALYSIS AND THE IMPACTS OF WEATHER CONDITIONS 1 

 

2.1 Introduction and background 

The capacity of road transportation facilities is traditionally considered as a constant value 

representing the maximum vehicular traffic that the facility can carry. According to the Highway 

Capacity Manual, capacity is defined as “the maximum hourly rate at which persons or vehicles 

can be reasonably expected to traverse a point or a uniform section of a lane or roadway during a 

given time-period under prevailing roadway traffic and control condition” (HCM 2010). The term 

“reasonably expected” is somewhat arbitrary, which allows capacity to stochastically change 

according to the traffic condition at a given location.  

 In the majority of studies, breakdown occurrence and capacity drop are considered as 

interrelated concepts. When the demand exceeds capacity, the traffic state transits from an un-

congested state to a congested state which is known as the breakdown state (Elefteriadou & 

Lertworawanich, 2003). The congested traffic state after breakdown is an undesirable phenomenon 

that results in increased travel time and decreased freeway efficiency. Determining the empirical 

freeway capacity which represents the real-world traffic conditions is critical for effective traffic 

management and control strategies to effectively avoid breakdown occurrence and reduce 

congestion on freeways.  

Several studies were conducted to develop macroscopic traffic flow models to derive the 

freeway capacity and represent its stochastic nature. In recent traffic management strategies, the 

 

1 The contents of this chapter have been used in the paper entitled: “Deterministic and stochastic freeway capacity 
analysis based on weather conditions”. Published in “Journal of Transportation Engineering, Part A: Systems”, 145(5), 
May 2019.With permission from ASCE (Appendix II). 
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demand fluctuation is monitored closely using real-time traffic data. Several reactive and proactive 

control methods are developed to adapt with the fluctuation of the demand. However, most of these 

studies still assume that the capacity has fixed value and thus the variability of the supply side of 

the control problem has still not been given enough attention. Only a few studies challenged the 

definition of capacity as a stationary value and a few models were proposed to model the 

stochasticity of freeway capacity and, in devising freeway control strategy based on this concept 

of freeway capacity (Elefteriadou et al., 2011a).  

To our knowledge, the factors that contribute to the probabilistic nature of capacity were 

not fully explored yet. Factors such as weather and road conditions were shown to have a major 

impact on fixed capacity and on the shape of the fundamental diagram (FD) (Lam et al., 2008; B. 

L. Smith et al., 2003; K. Yuan et al., 2015). However, the impact of the weather conditions on the 

shape of the distribution of the stochastic capacity and on the jam density is still not examined. 

Modeling and incorporating weather impacts are important steps in understanding and modeling 

the stochastic capacity. Such analysis is a crucial step for providing a more realistic representation 

of capacity of freeways that can be used in devising traffic control and management strategies.  

In this research, real observed traffic data on Highway 2 in Calgary, Alberta is used to 

derive the stochastic behavior of pre-breakdown flows. In this study, pre-breakdown flow is 

defined as the flow rate in the time interval prior to the occurrence of breakdown as a representative 

of a traffic flow at which the average speed is above the minimum acceptable desired speed.  A 

new regression analysis method is used to calibrate the fundamental diagram and to investigate the 

effects of various weather conditions on the freeway capacity and other FD parameters. For this 

purpose, the macroscopic behavior of the traffic stream at the study site is analyzed and the Newell 

triangular model is calibrated using an algorithm developed by Muggeo (2003) to calibrate a 
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regression model for the data sets with unknown break-points. Weather condition as one of the 

most important causes of stochastic behavior of capacity is also investigated to determine their 

impacts on FD parameters, especially on the freeway capacity. Thereafter, breakdown 

phenomenon and stochastic capacity are analyzed as probabilistic concepts. Probability 

distribution of pre-breakdown flows are derived from the data set and compared under various 

weather conditions. Finally, the results from the probabilistic approach are compared to the 

deterministic value of capacity derived from the fundamental diagram.  

Traffic flow theories and fundamental diagrams have been developed in recent decades to 

describe the mathematical relationship among fundamental characteristics of traffic streams 

including flow, speed, and density, and to determine capacity on freeways. These parameters are 

essential elements of all analysis tools in design, operation and control of urban streets and 

highways (Newell, 1993; Dhingra & Gull 2008). 

 The capacity of freeway as a critical parameter in freeway design and control was assumed 

as a constant value for several years. However, it has been shown that freeway capacity varies in 

different segments of a freeway such as weaving, merge or diverge areas and for different times 

of day. However, the variance of capacity and other traffic parameters has not been thoroughly 

explored (Rakha & Zhang, 2006; Yao et al., 2009; Yeon et al., 2009). Moreover, some recent 

studies investigated the concept of capacity as a stochastic parameter (Polus & Pollatschek, 2002). 

Dervisoglu et al. (2009) calibrated the fundamental diagrams for a freeway network using 

data filtering and an approximate quantile regression model. The authors estimated the capacity of 

freeway using the maximum observed flow and showed that capacity does not necessarily appear 

during breakdown (Dervisoglu et al., 2009). 
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Data analysis showed that breakdown does not necessarily occur at the same traffic 

demand; this finding challenged the traditional definition of capacity as a vague conceptual 

definition (Kittelson & Roess, 2000). Elefteriadou & Lertworawanich (2003) investigated various 

definitions of freeway capacity and tried to develop a more accurate definition and an estimation 

method for freeway capacity. For this purpose, the authors examined traffic operations at two 

freeway bottlenecks, considering pre-breakdown flow which is the flow rate at the time interval 

prior breakdown occurrence, breakdown flow which is the flow rate at the breakdown interval, 

and discharge flow as the flow rate in the interval after breakdown at which the breakdown is 

dissolved.  The most important finding was that the maximum flows were from pre-breakdown 

flows set for one of the sites, and from the discharge flows for the other site; however, breakdown 

flows were less than other groups for both study sites. Discharge flow rate was also shown to vary 

according to the congestion state and the average speed at the upstream of the bottleneck (Yuan et 

al., 2015, 2017). 

Kerner, (2002) defined traffic breakdown as a transition from free flow to synchronized 

flow (F to S transition) and freeway capacity in three-phase theory framework is a range, including 

an infinite number of traffic flows between a minimum threshold flow for breakdown and the 

maximum freeway capacity. The nucleation nature of traffic breakdown was also analyzed through 

empirical and spatiotemporal traffic information and it was proved to be triggered by speed 

disturbances and stochastic driver’s responses to these fluctuations (Kerner, 2017).  

In general, developed stochastic breakdown and capacity studies can be categorized in two 

major groups which are model-based analysis and data-based analysis. In the model-based 

analysis, a probabilistic model is selected, and data is used to calibrate the model parameters. On 

the other hand, in the data-based analysis, no predefined probabilistic model is determined, and 
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the best model is selected according to the compatibility with the data set. Elefteriadou (1994) 

developed a probabilistic model which determined the probability of breakdown based on traffic 

flow on the freeway and the merging vehicles cluster size on the on-ramp (Elefteriadou 1994). 

This model was further developed using Markov chains to determine the probability distribution 

of breakdown before a given time (Evans et al., 2001). 

 In another model-based study, traffic breakdown was considered as a failure event and a 

probability distribution function was developed using the analogy with statistics of life analysis 

based on the product limit method. Traffic dynamics, traffic reliability, and traffic efficiency and 

capacity drop phenomenon were also investigated in this study (Brilon et al., 2005; Brilon & 

Geistefeldt, 2009). This method was recently used to estimate reasonable values of capacity for 

Florida highways (Modi et al., 2014). In another model-based approach, the three different 

estimators of Baysian, Kaplan-Meier, and Nelson-Aalen were calibrated and compared in terms of 

modeling probabilistic breakdown. It was found that the non-parametric Baysian estimator model 

represents a more complete probability curve compared to the other two estimators (Ozguven & 

Ozbay, 2008). 

The majority of stochastic breakdown analysis in the literature fit in the data-based analysis 

group. Statistical exploration of breakdown phenomenon was initiated by a numerical 

investigation of pre-queue and queue-discharge flows probabilities (Persaud et al. 1998). This 

study was further developed to calibrate a logistic model to calculate the probability of breakdown 

and to evaluate the effect of fixed-rate and variable-rate ramp metering on those probabilities 

(Persaud et al., 2001). In another data analysis approach, stochastic momentary capacity was 

determined based on the intersection of best fit regression lines for dense and unstable flow 

regimes in observed speed-flow data (Polus & Pollatschek, 2002). 
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Geistefeldt (2010) investigated the consistency of model-based and data-based breakdown 

probability models. The results indicated that while the data-based method overestimates the 

breakdown probability at low flow rates it underestimates it at highest volumes. On the other hand, 

the product limit method as a model-based approach showed more consistency especially for the 

highest volumes; however; it requires a considerable data to achieve acceptable results 

(Geistefeldt, 2010). Laflamme (2013) determined the stochastic capacity independent of the 

breakdown information by an extreme value distribution function to the daily maxima data set 

(Laflamme, 2013). In a recent study, a combined stochastic capacity and stochastic differential 

equation model was developed to describe the traffic conditions on freeways and showed that 

breakdown phenomenon and the congestion recovery are stochastic processes (Ossenbruggen, 

2016). 

There are few studies in the literature that investigated the impact of weather conditions on 

traffic flow parameters. However, none of them explored the effects of different weather 

conditions on the stochastic behavior of capacity and its probabilistic distribution models. Smith 

et al. (2003) explored the influence of intensity of rainfall on the capacity and operating speed of 

freeways and found that heavy rain decreases the capacity up to 30% (B. L. Smith et al., 2003). 

The influence of rainfall with various intensity levels and different probabilities of occurrence 

formed a set of scenarios to include the demand and supply uncertainties in a traffic assignment 

problem using weather forecasted data (Lam et al., 2008). These studies mainly reported ranges of 

reduction percentage of capacity for various rainfall intensities. However, these ranges do not 

provide sufficient information about the stochastic effects of weather conditions in estimating the 

probability of traffic breakdown; such consideration is crucial for online traffic flow management 

and control. 
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2.2 Study site description and data collection 

The study area for this research is a northern segment of Highway 2 (Deerfoot Trail) in 

Calgary, Alberta, located between McKnight Boulevard and 32nd Avenue (Figure 2.1). Deerfoot 

Trail is a freeway section of the Queen Elizabeth II highway and is the major north-south 

transportation route through the city of Calgary. The majority of Deerfoot Trail is 6 lanes in total, 

but there are several 4, 8, and 10 lane sections. The segment that is studied in this research is in 

southbound direction and includes 4 lanes with a posted speed limit of 100km/hr.  

Remote traffic microwave sensors (RTMS) were used to collect data for this study. RTMS 

measures the distance to objects in the path of its microwave beam. This ranging capability allows 

it to detect moving and stationary vehicles in multiple direction zones and a single RTMS can 

monitor traffic in up to twelve lanes. The internal processor calculates volumes, occupancy, 

headway, average speed, and vehicle classification for each lane and transmits the information 

using its communication interface (RTMS G4, User Guide). For this study, the RTMS located at 

300 meters upstream of the intersection of Deerfoot Trail and 32nd avenue was used to collect 

traffic information. Traffic data was collected from August 2015 to February 2016 for the total 

duration of 150 days at 30-second time intervals. The aggregated data for 15-min intervals was 

calculated for the analysis carried out in this study which formed a sample size of 8470 and 130 

data points for free flow and congested flow respectively. Traffic information from other sensors 

located between the observed on-ramp and the downstream bottleneck was also investigated to 

detect propagated congestion from downstream bottleneck.  

Weather condition reports provided by the Government of Canada for the Calgary 

International Airport station were used to categorize the collected data set into four weather 
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conditions including: snowy, rainy, low visibility and clear. The government of Canada provides 

access to the historical weather, climate data, and related information for numerous locations 

across Canada. The reports are available as the hourly, daily and monthly summaries. In this study, 

the hourly information of the qualitative description of weather conditions was used (Historical 

weather and climate data 2016). However, some of the descriptions were combined to avoid 

numerous weather categories. Table 2.1 shows the weather conditions classification based on 

different reported subcategories and the number of available data points for each weather 

condition. 

 

 

Figure 2.1. Study site for breakdown analysis 
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Table  2.1. Various weather conditions and subcategories 

Weather conditions Clear Low Visibility Rainy Snowy 

Weather subcategories 

Clear 

Mainly clear 

Cloudy 

Mostly cloudy 

 

Fog 

Freezing fog 

Freezing drizzle 

Ice crystals 

Smoke 

Blowing dust 

Haze 

Rain 

Rain shower 

Moderate rain 

Thunderstorm 

 

Snow 

Blowing snow 

Snow shower 

Snow grains 

 

 

Number of data points 4854 1992 550 1204 

 

2.3 Calibration of the Newell triangular model 

The collected data is used to investigate the interaction between macroscopic specifications 

of traffic behavior on Deerfoot Trail, Calgary, Canada. The maximum observed flow as a constant 

value for capacity is determined through the fundamental diagram. The collected data set is 

categorized based on four weather conditions including snowy, rainy, low visibility, and clear. The 

Newell triangular model is calibrated for the whole data set and for the categories separately. 

 

2.3.1 FD calibration for the full data set 

FD calibration is conducted based on the recently developed statistical approach of 

Muggeo algorithm. This method was initially developed for biomedical applications in which 

effect of some risk factors may change before and after some threshold value (Muggeo 2003). In 

this segmented regression algorithm, an iterative calculation process is conducted to calculate the 

break-point, which is the point of slope change in the triangular regression. Thus, first, a fixed 

break-point is assumed based on the condition that the first order Taylor’s expansion holds around 

the break-point. Then, the regression line slopes are calculated, and the break-point is improved 
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based on the new fit. This process continues until convergence (Muggeo 2003). The details of the 

Muggeo’s regression algorithm are presented in Appendix I.  

The advantage of using Muggeo algorithm compared to previously developed fundamental 

diagram regression models is that in this method the calibration is completely based on the 

statistical analysis of the whole data set and avoids imposing statistically biased thresholds to the 

analysis. Muggeo algorithm is used to adopt a triangular model for the data set directly and the 

break-point of the regression is found at the density of 15.8 veh/km through this process. The jam 

density which is the x-intercept of the regression line for the congested part, is 154.4 veh/km/l. 

However, it can be observed from the scatterplot that most of the observation in the sample space 

are from the free flow. The subsequent step of analysis is conducted to avoid the errors caused by 

the unbalanced data set. 

In the next step, the data set is categorized into two groups, with the densities lower than 

the break-point, corresponding to the free flow state, and the densities above the break-point, 

corresponding to the congested state. The maximum observed capacity and the corresponding 

density (i.e. critical density) are obtained from the intersection of the extended regression line of 

the free flow part and the horizontal line passing the maximum observed flow. This deterministic 

maximum value was considered as an estimation of capacity to model the ideal performance of the 

freeway in the calibrated macroscopic model. Various parameters such as weather conditions, 

incidents, and drivers’ behavior may decrease the capacity to a lower value. Thus, the choice of 

maximum observed capacity provides a basis to evaluate the impact of various weather conditions 

on the ideal freeway operation (Dervisoglu et al., 2009). The regression analysis results for both 

steps are illustrated in Table 2.2. 
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Table  2.2. Summary of the triangular regression using Muggeo algorithm 

Steps Parameters Estimated P-value 

Step1 

Free flow slope 110.1 <2e-16 

Congested state slope -12.6 <2e-16 

Break-point 15.8 NA 

Step 2 

Free flow slope 110.1 <2e-16 

Maximum flow on congested line 2092.9 <2e-16 

Congested state slope -16.4 <2e-16 

Notes: 

Residual standard error (free flow): 74.07 on 54340 degrees of freedom 

Multiple R-squared (free flow): 0.98 

F-statistic (free flow): 2.419e+06 on 1 and 54340 DF, p-value: < 2.2e-16 

Residual standard error (congested flow): 326.6 on 1004 degrees of freedom 

Multiple R-squared (congested flow):  0.2286, Adjusted R-squared:  0.2278 

F-statistic (congested flow): 297.5 on 1 and 1004 DF, p-value: < 2.2e-16 

 

The summary of the results in Table 2.3 shows that the calibrated line for the free flow 

state has a high R-squared value of 0.98 and a low p-value, which shows the strong linear 

relationship between flow and density with the free flow speed of 110.1 km/hr and the critical 

density of 20.7 veh/km/l. The maximum flow based on the discussed method is found to be equal 

to 2288 veh/hr/l. However, the R-squared value of 0.23 for the congested flow shows a weak linear 

regression. This result is compatible with the empirical studies conducted by Kerner who 

developed accordingly the three-phase theory of traffic flow in which the congested flow covers 

an area on the flow-density plane. The regression line represents the backward shockwave speed 

in the flow-density or the J line in the context of three-phase theory; however, it may not be an 

accurate representative of the entire congested flow behavior (Kerner, 2009). The p-value and the 
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F-statistics are small, which show the statistical significance of a jam density value of 127.4 

veh/km/l.  

 

Table  2.3. FD Parameters for proposed regression method and simple regression 

Parameters Proposed approach Simple regression 

free flow speed 110.1 110.7 

jam density 127.4 126.8 

critical density 20.7 20.5 

Flow reduction 465.8 461.2 

Std. Error 
Free flow part: 74.0 

Congested flow part: 326.6 

Free flow part: 46.8 

Congested flow part: 322.3 

R-squared 
Free flow part: 0.98 

Congested flow part: 0.23 

Free flow part: 0.99 

Congested flow part: 0.23 

F-statistics p-value: < 2.2e-16 p-value: < 2.2e-16 

 

Figure 2.2 illustrates the data points and regression lines for the full data set in color red; a 

clear flow drop is observed when the density reaches the critical density. The flow reduction at the 

break point in this analysis is equal to 465.8 veh/hr/l, which is about a 20 percent decrease in flow.  

  The results of the proposed fundamental diagram calibration approach are compared to 

those obtained based on a previous study (Dervisoglu et al., 2009) that used the simple linear 

regression to find the Newell triangular model by imposing the minimum free flow speed threshold 

of 95 km/hr. Thus, the data points that correspond to speed values below 95 km/ hr were 

deliberately ignored. However, since there is no clear evidence that these records were wrongly 

reported, from a statistical analysis perspective, it is not recommended to disregard such 

observations from the data set. To address this shortcoming, the segmented regression model 

adopted in this research is used to filter the data and avoids the problem of manually manipulating 
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the data. The comparison of the results, shown in Table 2.3, indicates that the fundamental 

parameters of the triangular model including free flow speed, critical density, and jam density are 

similar in both methods. 

 

2.3.2 FD calibration for various weather condition categories 

In this section, the collected data points are categorized based on hourly weather conditions 

reports for the selected time-period (Historical weather and climate data, 2016). Four categories 

of weather condition are included: clear, rainy, snowy and low visibility. Similar to the previous 

section, Muggeo calibration approach is applied separately to the four categories to evaluate the 

influence of weather condition on FD parameters. The results of the analysis are illustrated in Table 

2.4 and the plot of regression lines in Figure 2.2. 

 

Table  2.4. FD Parameters for various weather conditions 

Parameters Clear Low Visibility Rainy Snowy All conditions 

free flow speed (km/hr) 110.7 109.8 106.2 98.5 110.1 

Capacity (veh/hr/l) 2288 2208 1992 1964 2288 

critical density (veh/km/l) 20.6 20.1 18.6 19.8 20.7 

Congested state slope -13.9 -14.6 -20.4 -20.8 -16.4 

jam density (veh/km/l) 155.6 143.7 102.4 89.1 127.4 

Average Spacing (m/veh) 6.4 7.0 9.8 11.0 7.8 

Flow reduction(veh/hr) 368.0 357.1 237.1 430.6 465.8 

R-squared for Free flow 0.98 0.98 0.97 0.91 0.98 

R-squared for congested flow 0.26 0.47 0.33 0.16 0.23 

F-statistics (p-value) <2e-16 <2e-16 <2e-16 <2e-7 <2e-16 
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Figure 2.2. Calibrated FD for various weather conditions and all data 

 

Comparing the results shows that the influence of weather conditions on the FD parameters 

is significant. This is especially the case for rainy and snowy conditions in which the maximum 

observed flow decreases from 2288 veh/hr/l for clear weather to 1992 and 1964 veh/hr/l, 

respectively. The effect on jam density is also significant. The results of the calibrated model show 

that jam density decreases from 155 veh/km/l in clear condition to 102 and 89 veh/km/l for rainy 

and snowy conditions, respectively. This is an important finding that might explain the impact of 

weather on drivers’ lane following behavior. In addition, this finding that different jam densities 

exist under different weather condition is expected to have a significant contribution to devise 

more robust freeway real-time queue warnings and management schemes. The variation in jam 

densities under adverse weather condition might be attributed to drivers’ attempt to keep larger 

and safer spacing with the leading vehicle. More specifically, the results show that rainy and snowy 
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weather induce drivers not only to drive slower but also to keep a larger distance headway to the 

leading vehicle (i.e. smaller jam density). On the other hand, in clear weather conditions, drivers 

are willing to accept shorter space and time headways to the leading vehicle. Unfortunately, there 

is a lack of research on human factors to further support such findings. More research needs to be 

conducted on car following models under different weather conditions, to further explain our 

findings.  

According to the regression analysis results, the R-squared value is high for the free flow 

part and it is acceptable for the congested part except for the snowy condition. The low R-squared 

value corresponding to the snowy days might be explained by the different intensity levels of snow 

precipitation such as heavy snow, moderate snow, snowy/rainy, etc., however, all these levels were 

aggregated under snowy condition. Using more data points and more accurate weather condition 

information may help to improve the regression results. 

2.4 Stochastic breakdown and capacity analysis 

In this section pre-breakdown flows are analyzed to investigate the stochastic nature of 

breakdown phenomenon and freeway capacity. For this purpose, aggregated data in 15 min time 

intervals is used. Breakdown events are identified based on the speed threshold of 70 km/hr, which 

was selected based on the FFS (Free Flow Speed) curves for multi-lane highways and according 

to prior similar studies (Brilon et al., 2005; Elefteriadou & Lertworawanich, 2003; Ozguven & 

Ozbay, 2008; HCM 2010). Speed threshold can be calibrated through experiments for different 

locations, weather conditions, and based on the desirable level of service. A combination of speed 

with other traffic flow parameters such as density, flow, and occupancy may provide a more robust 

basis to identify breakdown phenomenon based on classic flow theories (Wu et al., 2010). 

However, it is not consistent with empirical findings of three-phase theory in which traffic 
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breakdown (F to S transition) occurs at a critical synchronization speed (Kerner, 2009). The 

aggregated flow for the last time interval before breakdown is considered as pre-breakdown flow. 

The analysis is conducted for the full data set and for the categorized data set based on weather 

conditions. 

 

2.4.1 Probability distribution for the full data set 

In the first step, the empirical cumulative distribution function is plotted and smoothed 

using the Gaussian Kernel method to calculate the density of data using R programing software. 

Based on the observation of the smoothed density function and the empirical cumulative 

distribution, and the nature of the sample space of pre-breakdown flows, it is statistically 

reasonable to assume that the sample belongs to an extreme value distribution. 

The Weibull distribution is one of the most popular life distributions with a flexible shape 

which enables it to model a wide range of failure events, and it can be theoretically derived as an 

extreme value distribution. The Weibull distribution is selected in this study to model the 

probabilistic characteristics of breakdown events (Reiss and Thomas 2007). Probability 

distribution function (PDF) and cumulative distribution function (CDF) for three-parameters 

Weibull distribution are shown in equations (2.1) and (2.2) respectively. The most likelihood 

estimation (MLE) method is used to calculate the distribution parameters, and several basic tests 

are conducted as diagnostics (Meeker and Escobar 1994). 

𝑃 𝑥  – 𝑒𝑥𝑝  –                                                                                                                    (2.1) 

𝐶 𝑥 1 𝑒𝑥𝑝  –                                                                                                                        (2.2) 

Where,𝜆, 𝜇, and 𝜎 are shape, scale and location parameters. 
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In MLE, a likelihood function is the probability of observed data written as a function of 

distribution parameters including shape, scale, and location which is shown in equations (2.3) to 

(2.6). Thereafter, model parameters are calculated to maximize the likelihood function (Meeker 

and Escobar 1994). The transformation technique is used to simplify the calculation and to improve 

the accuracy of results given the number of data points (200 points). Thus, the Weibull model is 

transformed into the Gumbel model and MLE is used to derive the parameters. The analysis results 

are summarized in Table 2.5 and PDF plot and CDF plot for the full data set is derived as equations 

(2.5) and (2.6) respectively. 

𝐿 𝜆, 𝜇, 𝜎|𝑥 ∏ 𝑓 𝑥 |𝜆, 𝜇, 𝜎                                                                                                                   (2.3) 

Where,𝑛 is the number of samples. The log of the likelihood function is simplified to:  

𝑙𝑜𝑔𝐿 𝜆, 𝜇, 𝜎|𝑥 𝑛𝜆 log  𝜇 𝑛𝑙𝑜𝑔 𝜆 𝜆 1 ∑ log 𝑥 𝜎  𝜇 𝜆 ∑ 𝑥 𝜎 𝜆          (2.4) 

𝑃 𝑥 .

.

 – .

.

.
𝑒𝑥𝑝  – .

.

.
                                                                            (2.5) 

𝐶 𝑥 1 𝑒𝑥𝑝  – .

.

.
                                                                                                                     (2.6) 

The estimated distribution function is compared to the empirical distribution function to 

conduct the diagnostics through generating the probability plots, quantile plots, density plots and 

return period plots (Figure 2.3). The comparison of the calibrated model results with the empirical 

results in all four plots reveals the adequacy of the model. 
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Figure 2.3. Diagnostics for the fit distribution function of all data 

 

2.4.2 Probability distribution under different weather conditions 

The above approach is applied for the data classified under the four described weather 

conditions to evaluate and compare the stochastic behavior of capacity under different weather. 

Since there are only five data points in rainy condition, the model is derived for only the clear, 

snowy and low visibility categories. Cumulative probability and density plot for the full data set 

and for different weather conditions are shown in Figure 2.4. 
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Figure 2.4. Cumulative probabilities and density plots for various weather condition (a & b) 

 

The parameter estimation results are summarized in Table 2.5. The results show that 

Weibull distribution fits pre-breakdown flows for all weather conditions; however, the parameters 

are different. The Kruskal-Wallis rank sum test is conducted to evaluate the similarity between 

probability distribution parameters for the full data set and for the parameters derived for different 

weather conditions. The test results of Kruskal-Wallis chi-squared = 33.56, degree of freedom = 

3, and p-value = 2.45e-07 showed that the null hypothesis of similar distributions for the sample 
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sets is rejected and it is concluded that the sample of full data set and the samples for clear, snowy, 

low visibility conditions are from different distributions. 

 

Table  2.5. Estimated parameters and standard error of Weibull distributions 

Weather condition Shape Location Scale 

All conditions -0.33 1462.4 289.2 

Clear -0.44 1627.1 289.3 

Snowy -0.17 1197.6 193.8 

Low Visibility -0.14 1510 154.0 

 

The scale parameter (𝜇) describes the dispersion of the data. A larger value of scale 

parameter results in a distribution that is more spread out. Results of this study show that the 

distribution of the pre-breakdown flows for clear condition and the full data set is more spread out 

compared to the snowy and low visibility conditions. The resulting reduction in dispersion of the 

pre-breakdown flows under adverse weather conditions can be attributed to the fact that, under 

inclement weather conditions the majority of the drivers tend to reduce their speed, adopt a safer 

following distance and avoid lane changing. These resulting driving behaviors lead to a more 

synchronization in driving behavior and thus a reduction in the stochasticity of observed pre-

breakdown flows. Thus, the breakdown will occur in the shortest range of traffic flows. 

A summary of the results’ analysis is illustrated in Table 2.6, which compares the capacity 

estimation using the fundamental diagram to the probabilistic capacities under various weather 

conditions. Comparing the results of constant capacity from the fundamental diagrams for different 

weather conditions shows that the capacity decreases about 324 and 296 veh/hr/l from clear 

weather to snowy and rainy weather conditions, respectively. Ignoring such differences in freeway 
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control strategies such as ramp metering and variable speed limit results in reduction in their 

functionality. 

Stochastic capacity analysis reveals even more fluctuations in freeway capacity under 

different weather conditions. If the capacity is considered as the 95% quantile of the probabilistic 

model, the freeway capacity is 2108 veh/hr/l for clear weather condition, and 1881 and 1650 

veh/hr/l for low visibility and snowy conditions, respectively. Comparing these results to those 

corresponding to the full data breakdown capacity of 2007 veh/hr/l shows a reduction of 357 

veh/hr/l in capacity in snowy condition. 

 

Table  2.6. Deterministic and stochastic capacities for various weather conditions 

Analysis approach Probability Clear Rainy Snowy 
Low 

visibility 

All 

conditions 

Constant capacity from FD NA 2288 1992 1964 2208 2288 

Probabilistic capacity 

95% 2108 NA 1650 1881 2007 

75% 1905 NA 1415 1685 1757 

50% 1725 NA 1266 1565 1562 

 

The PDF and CDF plots also show that the probability of breakdown has a considerable 

fluctuation under different weather conditions and also as compared to the full data set. The 

comparison clearly shows that, modeling the stochastic behavior of freeway capacity under 

different weather conditions provides a more realistic illustration of traffic-carrying ability of 

freeways. For instance, for a given traffic flow of 1500 veh/hr/l, while the corresponding 

probability of breakdown is 41% for the full data set, it is only 20%, for clear weather condition 

34%, for low visibility condition and as high as 78% in snowy weather condition. In other words, 

there is a 78% chance that the freeway capacity is below 1500vh/hr/l in snowy weather. This 
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finding is significant since if the full data set is considered to model the stochastic capacity, it 

results in an over-estimation of capacity for snowy condition which will diminish the effectiveness 

of freeway control schemes and ultimately results in traffic breakdown on freeways. 

The outcomes of this chapter is used as a solid empirical basis to calibrate a proper 

probabilistic model of pre-breakdown flows. This model informed the modelling and simulation 

analysis in Chapter 4. 
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CHAPTER 3:  A STOCHASTIC MICROSCOPIC BASED FREEWAY TRAFFIC STATE 

AND SPATIAL-TEMPORAL PATTERN PREDICTION IN A CONNECTED 

VEHICLE ENVIRONMENT  

 

3.1 Introduction 

3.1.1 Background and motivations 

Traffic estimation and prediction models play a crucial role for both road users and traffic 

managers as these models are the primary input to traffic management and control systems. The 

stochastic nature of driving behavior often is the root cause of fluctuating traffic patterns and traffic 

flow characteristics. For instance, in heavy traffic, microscopic triggers, such as changing lanes or 

suddenly hitting the brakes, create a domino effect of stop-and-go waves (Khondaker & Kattan, 

2015; Zheng et al., 2011). These stochastic behaviors are the core mechanisms for the transition 

from uncongested to congested traffics states which can be further amplified under adverse 

weather conditions (Heshami et al., 2019; Suh & Yeo, 2016); thereby suggesting the need to 

incorporate stochasticity into traffic prediction models. 

According to the empirical findings of the three-phase theory developed by Kerner (2002), 

traffic patterns are categorized into: free flow (F), synchronized flow (S), and wide moving jam 

(J). Transitions between the traffic phases, such as F to S or S to J, are stochastic phenomena that 

are triggered and caused by driver decisions such as lane changing, over-acceleration, or speed 

adaption (Kerner, 2002; Kerner & Klenov, 2003). The downstream front of a synchronized flow 

is fixed at a bottleneck, and vehicles move at a synchronized steady speed slower than the free 

flow speed. In contrast, a wide moving jam is triggered by drivers’ over deceleration behavior with 

an initial synchronized flow while the downstream front propagates upstream with a steady speed. 
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Identifying and predicting these spatial-temporal patterns provides valuable information to 

determine the onset of congestion and associated phase transition from pre-congested to congested 

patterns; this input could be vital for advanced control schemes. Considering spatial-temporal 

pattern predictions, which is still largely overlooked in the literature, suggests using microscopic 

traffic prediction models.   

This research develops a stochastic microscopic model that predicts traffic parameters 

including flow, speed, and travel time based on the three-phase theory using microscopic trajectory 

data from connected vehicles. To make the prediction more robust for the next time intervals, an 

adaptive Kalman filter (AKF) is used as a data fusion tool to combine the noisy measurements of 

trajectory and travel time data from CAVs and other floating car data resources (e.g., taxi, uber, 

etc.) with traditional fixed traffic detector data. It is to be noted that only the vehicle to 

Infrastructure (V2I) connectivity feature of CAVs is considered. In other words, this thesis only 

considers that CAVs share their speed, location and positions with a Road Side Unit (RSU). 

Utilizing and fusing complementary stationary detector and floating car data is shown to 

significantly improve the performance of prediction algorithms. In addition, forecasting of traffic 

objects (FOTO) and automatic tracking of moving traffic jams (ASDA) models, developed by 

Kerner et al. (2005), are used to dynamically predict traffic patterns and locations of  jam fronts. 

The online application of FOTO and ASDA models, where parameters are calibrated offline, on 

various real freeway networks showed the effectiveness of these models. The developed analytical 

model in this research is unique in that it provides lane by lane stochastic prediction of flow and 

speed information for multiple timesteps ahead.  
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3.1.2 Review of the previous studies 

In the literature, Oh et al., (2015) classified short-term traffic state prediction models into 

three broad categories: parametric data-based, non-parametric data-based, and model-based 

analytical methods. These approaches can be further categorized based on the study area (i.e., 

arterial roads versus freeway), application (i.e., route guidance versus real-time traffic control), 

and data type and availability (i.e., stationary traffic detectors, probe vehicles, etc.). The reader can 

refer to Vlahogianni et al. (2014) for a detailed review of the literature.  

Parametric data-based approaches include linear regression and time series such as auto-

regressive integrated moving average (ARIMA) and the Kalman filter (KF). ARIMA methods 

apply a smoothing filter to estimate average traffic conditions, thereby missing transitions from 

free flow to stop-and-go conditions and vice versa. These oscillations in traffic states are non-

stationary phenomena that cannot be captured by ARIMA methods, but they are important traffic 

behaviors to capture (Vlahogianni et al., 2014). KF processes include real-time observations 

sequentially following an autoregressive relation and allow additional measurements to be 

incorporated. Another important feature of the KF is its ability to fuse various sources of data and 

to consider noisy measurements (e.g., during incidents). The KF has been successfully used for 

short-term traffic prediction for recurrent congestion (Xie et al., 2007). The main issue in utilizing 

a basic KF in traffic estimation and prediction is considering known and fixed noise statistics from 

historical data. Even if carefully pre-identified via offline tuning, the traffic state estimator may 

deviate under sudden endogenous changing stochastic traffic fluctuations (e.g. vehicle coming to 

a sudden stop) as well as exogenous conditions (e.g. collision). As a remedy, adaptive KF 

processes were introduced for more robust traffic state prediction (Guo et al., 2014b). 
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Non-parametric data-based methods include the application of artificial intelligence (AI) 

and pattern searching techniques (e.g., neural networks, Kth nearest neighbor, and deep learning) 

using historical data and real-time data (Cai et al., 2016; Kumar et al., 2013; Oh et al., 2015; Polson 

& Sokolov, 2017; Y. Wu et al., 2018). Despite increased prediction accuracy, these data-driven 

models do not fully reflect inherent traffic characteristics as they cannot explain the underlying 

traffic phenomena as incorporated in spatial and temporal traffic behavior. Incorporating this 

behavior is necessary to explain and model the underlying stochastic and fast-changing traffic flow 

behaviors that can result from either abrupt disturbances caused by non-recurrent congestion, 

weather conditions, and/or control measures such as ramp metering rates and variable speed limits 

that can change traffic conditions. Moreover, data processing, parameter calibration, and 

prediction modules are time-consuming processes, and therefore, the transferability and 

application of data-driven approaches in real-time control strategies is limited.   

Model-based approaches, also known as analytical traffic state prediction approaches, are 

adaptable and responsive to the dynamic changes in traffic conditions (Oh et al., 2018; Vlahogianni 

et al., 2014). The advantage of these models lies in their explanatory power and capability of 

providing insights into examined systems that are typically harder to obtain from their data-driven 

counterparts. Model-based traffic prediction models are mainly classified into macroscopic and 

microscopic approaches. These approaches can in turn be either deterministic or stochastic.  

In macroscopic models, a roadway is subdivided into homogenous segments and the time 

is discretized into short time intervals. The aggregated traffic state parameters need to be calibrated 

for each segment and updated for each time step. To achieve accurate estimations, the segments 

need to be short (300 m- 500 m) and traffic data must be collected for each segment. Deterministic 

macroscopic models such as the Cell Transmission Model (CTM) and Burgers equation have been 
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used to develop travel time prediction methods (Chow et al., 2009; Kachroo et al., 2001; Oh et al., 

2018). Another commonly used macroscopic model in traffic state prediction literature is the 

METANET model, which is a discretization and modification of the Payne model. The 

METANET calibration and validation studies have shown its effectiveness in traffic simulation 

and prediction applications, especially where the geometry of a corridor and traffic conditions are 

simple. However, a corridor with complex geometric characteristics and traffic conditions may 

require segment-specific parameter values to reflect segment-specific behaviors, and this 

requirement needs a large data collection and significant calibration efforts (Wang et al., 2018).  

Lane-level traffic management is an important tool to alleviate congestion by balancing 

lane-flow distribution. So far, most macroscopic models focus on overall section traffic dynamics 

with no consideration to individual lane flows. Studies showed that fundamental diagram 

parameters vary significantly among lanes, and aggregated parameters may result in a non-

equilibrium fundamental diagram attributed to mixing different traffic states. Thus, lane-specific 

behavior analysis is critical to predict the occurrence of breakdown at bottlenecks and the 

propagation of congested patterns over lanes (Duret & Audin, 2009; Pan et al., 2019; Shiomi et 

al., 2015). Bekiaris-Liberis et al. (2016b, 2017) proposed a macroscopic traffic estimation model 

using CAVs to estimate lane by lane density and overall speed and flow for a 400 m long freeway 

segment. In a recent paper, (Nagalur Subraveti et al., 2019) extended the original CTM to model 

and manage the flow dynamics on a lane by lane basis where lane change rates are computed as a 

function of various incentives such as maintaining route, keep-right bias, changing to lower density 

lanes, etc. The results showed the sensitivity of density estimations to FD parameter; yet the 

application of this model to traffic state prediction has not been investigated (Nagalur Subraveti et 

al., 2019). 
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A few non-parametric data-based models attempted to predict lane-level traffic state 

parameters based on AI techniques (Gu et al., 2019; Ke et al., 2020; Raza & Zhong, 2017). A 

fusion deep learning approach proposed by Gu et al. (2019) combined long short-term memory 

(LSTM) and gated recurrent unit (GRU) neural networks to learn the spatial-temporal correlations 

of lane section variables from the historical speed series information. Comparison of the results 

with benchmark models such as ARIMA, LWR and MLP showed the superior performance of this 

model for short-term 2- minute speed prediction on a lane- level basis. 

Stochastic macroscopic models were introduced to incorporate the probabilistic nature of 

traffic flow behavior. Sumalee et al. (2011) extended the CTM to estimate stochastic freeway 

traffic states based on stochastic fundamental flow–density diagrams and stochastic travel demand. 

The developed stochastic CTM (SCTM) was adopted as a network loading model to generate 

traffic flow profiles from traffic data collected by detectors to capture the randomness in both 

demand and supply. The first-in-first-out (FIFO) concept was extended to estimate travel time 

distribution based on the stochastic cumulative inflow and outflow curves. The SCTM was 

successful in representing a more realistic model of stochastic traffic flow behavior compared to 

traditional macroscopic models, especially in the case of incidents (Sumalee et al., 2011, 2013). 

Extending deterministic macroscopic models to stochastic macroscopic models improved the 

ability of such models to represent dynamic and stochastic traffic behavior. However, they still 

suffer from several restricting features such as numerous boundary variables for subsystems, 

simplifying assumptions regarding various traffic modes and the probability of occurrence of each 

mode, inability to address non-recurrent conditions, and limitations in adapting to severe 

environmental conditions.  
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A few studies have explored the use of microscopic traffic flow models to estimate and 

predict traffic conditions over a short prediction horizon. Most of these studies used cellular 

automaton (CA) models as a simulation tool that combines present traffic measurements with 

historical data to estimate future traffic conditions (Chrobok et al., 2002; Miska, 2007; 

Schreckenberg & Wahle, 2001). Liu et al. (2006) used the CORSIM microscopic traffic simulator 

combined with a KF to predict travel time. The nearest neighbor method and a decision tree were 

also used to predict traffic volumes. Sunderrajan et al. (2016) developed an agent-based 

microsimulation approach to estimate traffic flow and density on homogenous expressways using 

floating car data. Intelligent driver model (IDM) and the general model of Minimizing overall 

braking induced by lane change (MOBIL) were utilized to reproduce acceleration and lane 

changing behaviors, respectively (Treiber et al., 2000; Treiber & Kesting, 2018). Recently, Treiber 

& Kesting (2018) extended their original IDM to reflect stochasticity of traffic flow oscillations 

due to three generic mechanisms including string instability, external white acceleration noise, and 

action point thresholds. The authors provided valuable insight into the importance of considering 

heterogeneous driving characteristics and instabilities arising from lane changing behaviors in 

traffic estimation.  

Inspired by the three-phase theory, a few studies explored traffic speed and travel time 

estimation and prediction approaches. Rempe et al., (2016) proposed a Phase-based Smoothing 

Method for traffic speed estimation that was able to distinguish three traffic phases. Rehborn and 

Palmer (2008) compared travel time estimation for current traffic conditions from FOTO and 

ASDA models to real historical time series by calculating a quality index as a measure of accuracy. 

The developed model was able to reconstruct traffic patterns and predict travel time for time 

horizons shorter than one minute. In another three-phase theory-based method moving bottlenecks 
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were predicted based on the phase transition events detected by probe vehicles (Wegerle et al., 

2019). Tian et al. (2015) reproduced Kerner’s three-phase theory findings including reconstructing 

synchronized flow and wide moving jams and their transitions through a new cellular automaton 

model. In this model, the space gap between vehicles oscillated around a desired space gap rather 

than considering a deterministic space gap used by the FD approaches. Deng et al. (2013) analyzed 

probe data on data cubes, which are tools that organize data sets into multidimensional 

aggregations with respect to the data dimensions and user-specified aggregation hierarchies. Data 

cubes were used to identify traffic “congestion events” as dynamic spatial-temporal progresses 

that were then aggregated at different levels of granularity. The proposed model was effective in 

identifying recurrent congested patterns. However, the model required extensive historical floating 

data to identify the similar congested patterns, and it was unable to capture non-recurrent 

congestion events.   

 

3.2 The proposed Traffic state prediction and pattern tracking approach 

A schematic sketch of the proposed procedure is illustrated in Figure 3.1. The traffic 

prediction model developed in this research consists of three main modules: 

Module A - The online simulation module that represents the surveillance system database that 

feeds the system with observation data from different sources such as CAVs and detectors. As 

explained in more detail in section 3.2.1, the online simulation module receives floating car data 

including location and speed and, thus, travel time. This module also simulates vehicle movements 

and estimates the traffic parameters for the required time interval for the location of downstream 

detectors. This module’s outputs are noisy measurements of traffic state parameters, including 

flow, average speed, and link travel times on a lane by lane basis.     
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Module B - The data fusion, and traffic parameter prediction module receives the noisy 

measurements of traffic state parameters for the detector location from Module A. An AKF is used 

to fuse the received data with detector measurements. The outputs are the predicted traffic state 

parameters for the following time interval.  

Module C - Spatial-temporal traffic pattern tracking, and prediction module uses the predicted 

traffic state parameters in FOTO and ASDA models to detect synchronized flow and wide moving 

jams. Moreover, this module dynamically identifies the predicted location of jam fronts and their 

resulting propagation on freeways. The mathematical models for each module are discussed below: 

 

Figure 3.1. Schematic sketch of the proposed traffic state and travel time prediction model 

 

3.2.1 Module A: Online simulation 

Module A in Figure 3.1 uses the Kerner-Kelnov stochastic microscopic model (KK model) 

(Kerner & Klenov, 2003) to simulate traffic conditions on a freeway segment in real time. KK is 

a stochastic microscopic three-phase traffic model that represents stochastic driver behaviors and 
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their impact on traffic flow behavior, especially in freeway bottlenecks. The reader is referred to 

Kerner and Klenov (2003) for more detailed information regarding the KK stochastic microscopic 

model. In this module, vehicles’ speed and location information are received from CAVs and other 

probe vehicles. Thus, vehicles’ movements for each simulation time step 𝜏  are simulated based 

on the car-following rules below:   

𝑣 max 0, min 𝑣 , 𝑣 , , 𝑣 ,  (3.1) 

𝑥 𝑥 𝑣 𝜏 (3.2) 

𝑣 ,
𝑣 ∆           𝑎𝑡            𝑔 𝐷
𝑣 𝑎 𝜏         𝑎𝑡            𝑔 𝐷  (3.3) 

∆ max 𝑏 𝜏, min 𝑎 𝜏, 𝑣 , 𝑣  (3.4) 

𝐷 𝑑 𝐺 𝑣 , 𝑣 ,   (3.5) 

𝐺 𝑣 , 𝑣 , max 0, 𝑐𝜏𝑣 𝛽𝑎 𝑣 𝑣 𝑣 ,  (3.6) 

Where 𝑥  and 𝑣  are the vehicle’s location and speed, 𝑎 0 and 𝑏 0 are acceleration and 

deceleration, and 𝑣 , 𝑣 , , 𝑣 ,  are free flow speed, desirable speed, and safe speed, respectively.  

𝑔  is the space gap from the leading vehicle, and  𝐷  is the synchronization distance, which is the 

distance at which a vehicle tends to adjust its speed in accordance with the preceding vehicle’s 

speed. 𝑘 1, 𝛽, and 𝑎 are constants, and safe speed (𝑣 ,  is calculated based on (3.7) to (3.12): 

𝑣 , min 𝑣 ,
𝑔
𝜏

𝑣   (3.7)

𝑣 𝑣 𝑔 , 𝑣 , 𝑏𝜏 𝛼 𝛽 ) (3.8)

𝛼 2
𝑑 , 𝑔

𝑏𝜏
1
4

1
2
  (3.9)
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Where 𝛼  is the integer part of  , , 𝛽  is the fractional part of , , and 𝑣  is the anticipation 

speed for the leading vehicle (Krauss et al., 1997). Stochastic driver behaviors and random 

deceleration and acceleration decisions and their impacts on vehicular motions are modeled based 

on the following rules: 

𝑆
1          𝑖𝑓 𝑣 𝑣 𝛿

1            𝑖𝑓 𝑣 𝑣 𝛿
0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.13) 

Where 𝑆  shows whether the vehicle decelerates (𝑆 1 , accelerates (𝑆 1 , or 

maintains its speed (𝑆 0  by comparing the expected speed (𝑣 ) to the current speed (𝑣 .  

𝛿 is a constant 𝛿 𝑎𝜏 .  

Thereafter, random acceleration or deceleration is modeled as follows: 

𝜉
𝜉           𝑖𝑓 𝑆 1
𝜉            𝑖𝑓 𝑆 1
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
   (3.14)  

Where 𝜉 , 𝜉  are impulsive random variables for deceleration and acceleration calculated by𝜉  

𝑎𝜏𝜃 p 𝑟  and 𝜉  𝑎𝜏𝜃 p 𝑟  where p and p are probabilities of random deceleration and 

acceleration; 𝑟 =rand(0,1), 𝜃 𝑧 0 𝑎𝑡 𝑧 0 𝑎𝑛𝑑 𝜃 𝑧 1 𝑎𝑡 𝑧 0.  

Random time delays in acceleration and deceleration are calculated based on the following 

stochastic functions: 

𝑎  𝑎𝜃 P r  , 𝑏  𝑎𝜃 P r     (3.15)  

𝑑 , 𝑏𝜏 𝛼 𝛽
𝛼 𝛼 1

2
  (3.10)

𝛽
𝑑 , 𝑔

𝛼 1 𝑏𝜏
𝛼

2
  (3.11)

𝑣 max 0, min 𝑣 , 𝑎𝜏, 𝑣 , 𝑎𝜏,
𝑔 ,

𝜏
𝑎𝜏  (3.12)
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P
p           𝑖𝑓 𝑆 1
1           𝑖𝑓 𝑆 1 , P

p  𝑖𝑓 𝑆 1
p  𝑖𝑓 𝑆 1 

   (3.16)  

Whenever a CAV’s simulated coordinate is past the nearest downstream detector location, 

the vehicle is counted, and its speed is recorded. The average travel time from a previous upstream 

detector for CAVs is also recorded for each time interval. The macroscopic parameters are 

aggregated and estimated based on simulating the vehicles trajectories and thus, the vector (𝑦 ), 

representing the flow, speed, and travel time estimations, is obtained for multiple time intervals 

ahead. 

 

3.2.2 Module B: Data fusion and traffic parameter prediction 

A KF, which is an efficient recursive process that estimates and updates the state of 

dynamic systems, is a superior approach in traffic state estimation and prediction (Ojeda, 

Kibangou, & de Wit, 2013). This module develops an AKF process that receives information on 

the estimated aggregated traffic flow, speed, and travel time from the online simulator. Since the 

CAVs randomly enter the simulation according to their designated penetration rate, their actual 

observed rate is not available at each time step; thus, detector data is used to dynamically update 

the “observed” rate of CAVs in the AKF process. Once the state measurements become available, 

the estimations are updated, and the traffic state is predicted for the next time intervals. The model 

dynamics for the evolution of the macroscopic parameters are assumed to be following a random 

walk model. Such assumption might be a simplifying one but has been shown by previous 

researchers (Ojeda, 2014; Ojeda et al., 2013; Xia et al., 2011) to be effective for short-term traffic 

prediction purposes. Thereafter, the AKF is used for the three following processes: 1) filtering, 2) 

smoothing the impact of missing data by fusing detector information, and 3) multiple-step ahead 
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prediction. The state transition as a linear discrete time stochastic process, as shown in equation 

(3.17). 

𝑥  𝑥 𝑊  (3.17) 

Where 𝑥  is the process’s state vector at time step 𝑘. The process noise (𝑊 ) is assumed to be 

Gaussian white noise with a covariance of Q. This assumption was tested using Kolmogorov–

Smirnov test and based on state measurements of various simulation runs. Once the next 

measurement is observed, the AKF updates the estimates using the following measurement 

equation: 

𝑦 𝐻 𝑥 𝑉  (3.18) 

Where 𝑦  is the noisy measurement of the stae 𝑥 at time 𝑘, and 𝑣  is the measurement Gaussian 

noise with a covariance of 𝑅. The hypothesis of Gaussian distribution for the observation noise 

𝑉  was not rejected in the statistic test. The observation model (𝐻  handles the impact of CAVs’ 

penetration rate by dynamically updating the percentage of CAVs based on the detector 

measurements. 

The a posteriori estimate of flow/speed 𝑥 𝑘 𝑘  is calculated as follows: 

𝑥 𝑘 𝑘 𝑥 𝑘 𝑘 1 𝐾 𝑦 𝐻 𝑥 𝑘 𝑘 1  (3.19)

Where 𝐾  is the updated Kalman gain equal to:  

𝐾  𝑃 𝑘 𝑘 1 𝐻 𝐻 𝑃 𝑘 𝑘 1 𝐻 𝑅  (3.20)

And the error covariance is updated to:  

𝑃 1 𝐾 𝐻  𝑃 𝑘 𝑘 1  (3.21)

The process is projected to the next time step with the following a priori estimates of error 

covariance and predicted parameters as follows: 
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𝑃 𝑘 1 𝑘 𝑃 𝑄  (3.22)

𝑥 𝑘 1 𝑘 𝑥 𝑘 𝑘 𝑞  (3.23)

The AKF process is initialized based on the assumptions of 𝑥 𝑘0 𝑘 1 𝑥 , where 𝑥 𝑘0 𝑘 1   

is an a priori estimate of flow/speed, and  𝑥  is the actual detector measurement for the time 

interval k0. The a priori estimate of the error covariance is assumed to be 𝑃 𝑘0 𝑘 1 1.  

The a priori statistics for stochastic errors are adaptively estimated based on the empirical 

estimators proposed by Myers & Tapley (1976). This method is developed based on a limited 

memory algorithm that adaptively estimates the a priori statistics of errors based on noise samples 

as intuitive approximations of true errors. The simplicity of this method and its efficiency in 

producing estimations with a limited number of samples makes it a promising candidate for online 

applications, and it has been used in many traffic state prediction studies in the literature to 

adaptively estimate noise statistics (Aljamal et al., 2020; Chu et al., 2005; Huang et al., 2018; 

Ojeda, Kibangou, & de Wit, 2013; Xia et al., 2011; Zhou et al., 2017). 

Thus, measurement noise covariance 𝑅   and process noise covariance 𝑄  for traffic flow 

and speed are updated based on equations (3.24) to (3.29). Choosing the number N of past 

observations is based on identifying the time frame in which the structural changes in traffic state 

parameters are considered. Review of the literature shows a range of sample sizes from N=4 (Ojeda 

etal., 2013) to N=20 (Zhou et al., 2017) of covariance matching methods. After testing sample 

sizes from N=5, increasing by 5, to N=30 and calculating the corresponding minimum mean 

prediction errors, N = 5 and N=15 was selected for the online noise statistics estimations for traffic 

flow and speed parameters respectively.      

𝑟 𝑦 𝐻 𝑥 𝑘 𝑘 1  (3.24)
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�̂�
1
𝑁

𝑟  
(3.25)

𝑅
1

𝑁 1
𝑟 �̂� 𝑟 �̂�

𝑁 1
𝑁

𝐻 𝑃 𝑘 𝑘 1 𝐻  (3.26)

𝑞 𝑥 𝑘 𝑘 𝑥 𝑘 1 𝑘 1  (3.27)

𝑞
1
𝑁

𝑞  
(3.28)

𝑄
1

𝑁 1
𝑞 𝑞 𝑞 𝑞

𝑁 1
𝑁

𝑃 𝑘 1 𝑘 1 𝑃 𝑘 𝑘  
(3.29)

Module B’s outputs are predicted traffic flow and speed for a specified time horizon. In addition, 

total link travel time is predicted based on the predicted average travel time for CAVs multiplied 

by predicted traffic flow for each time interval. 

For the multiple step ahead prediction purpose, where the detector measurements are not 

available, the simulated measurements from module A, for 𝑚 time steps ahead, are considered as 

future observations of the traffic state parameters. While for each 𝑥 𝑘 𝑚 𝑘  ,  𝑅 𝑅 , and 𝑄  is 

calculated from (3.29). 

 

3.2.3 Module C: Spatial-temporal traffic pattern tracking and prediction 

Forecasting of traffic objects (FOTO) and automatic tracking of moving traffic jams 

(ASDA) models effectively reconstruct the spatiotemporal traffic patterns on real-world highway 

corridors without calibrating model parameters. The accuracy of the reconstructed patterns is 

highly dependent on the distance between detectors and the relative position of the detectors to the 

bottlenecks (B. S. Kerner et al., 2005; Rehborn & Palmer, 2008). In this module, predicted traffic 
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flow and mean speed for two groups of detectors are utilized in FOTO and ASDA models to 

dynamically predict the traffic patterns. The first group consists of two loop detectors located at 

the upstream and downstream bottlenecks on a freeway link; theses detectors collect traffic 

parameters from all vehicles. The second group includes virtual data aggregation points [virtual 

spot detectors (VSDs)] that can be considered at desired distances along a freeway link. At these 

data collection and aggregation points, trajectory data from CAVs are collected and converted to 

predicted traffic state parameters, as described in Module A and Module B. The AKF adapts an 

estimation of noise covariances from the closest detector to project to a future time interval. This 

modification allows the model to utilize data from CAVs rather than from stationary measurements 

captured from infrastructure on the link. Thereafter, FOTO and ASDA models utilize the predicted 

traffic state information as follows: 

First the traffic phase at each detector location is identified as follows: 

FOTO detects free flow if 𝑣 𝑣 . 

FOTO detects synchronized flow if 𝑣 𝑣 . 

FOTO detects wide moving jam if 𝑣 𝑣   and  𝑞 𝑞 . 

Where 𝑣  and 𝑞   are predicted speed and flow, respectively, at the detector.  If synchronized flow 

is detected, the upstream front of the synchronized flow 𝑥  is determined as follows: 

𝑥 𝜕∆𝑀 𝑘  (3.30)

∆𝑀 𝑘 ∆𝑀 𝑘 /𝑛 (3.31)

∆𝑀 𝑘 ∑ 𝑞 𝑘
,

∑ 𝑞∗ 𝑘
,

      at    𝑘 𝑘 ,  (3.32)

𝑞∗ 𝑘 𝑞 𝑘 𝑞 𝑘 𝑞 𝑘  (3.33)

Where 𝜕 is a model parameter representing the occupied segment of a freeway lane by each 

vehicle, including the space gap, in synchronized flow conditions, 𝑞 𝑘  is the predicted flow for 
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the upstream detector, 𝑞 𝑘  is the on-ramp flow, and 𝑞 𝑘  is the upstream exiting flow, if 

located between detectors. 

If a wide moving jam is detected, the upstream front 𝑥  and downstream front 

𝑥  of the wide moving jam are detected as follows: 

𝑥  ∑     𝑓𝑜𝑟 𝑘 𝑘 ,,
 (3.34)

𝑥  ∑     𝑓𝑜𝑟 𝑘 𝑘 ,,
 (3.35)

Where, 𝑞 𝑘  and 𝑣 𝑘  and, 𝑞 𝑘 and 𝑣 𝑘  are the predicted flow rates and average speed at 

the upstream and downstream detectors, respectively; 𝑘 ,  is the time instant when the moving jam 

is detected at the downstream detector; the time 𝑘 ,  determines the appearance of the downstream 

jam front at this detector; 𝑞  and 𝜌  are the minimum flow rate, and  the maximum vehicle 

density within the jam, respectively. 

 

3.3 Simulation results 

The proposed traffic state and pattern prediction model is applied to a hypothetical freeway 

segment with a total length of 13 km, including two on-ramps located at the 5 km and 13 km marks 

and two off-ramps at 1.5 km upstream of the on-ramps. As shown in Figure 3.2, the main detectors 

(A and B) are located at the on-ramp bottlenecks, which are the desired locations to deploy traffic 

control devices (e.g., ramp meters), and thus, reliable prediction of traffic parameters is required. 

There are also two detectors that count the merging and exiting vehicles. Similar to Bekiaris-

Liberis et al. (2016), virtual spot detectors (VSD1-VSD7) are located on the segment to collect 

CAVs’ trajectory data for pattern tracking purposes. The distance between VSDs in this study is 

1000 m; however, it can be adapted according to desired computation time, prediction accuracy, 
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and homogeneity of the link, while the VSDs only attributed to the computational burden of the 

model and not to monetary costs. Vehicle motion, lane changing, and merging behaviors are 

simulated based on the Kerner-Kelnov (2003) stochastic three-phase model as described in Module 

A.  

With the expected near future developments in CAVs, frequent updates of speed and 

positioning data will be available. Trajectory data from CAVs is assumed to be updated every 10 

seconds. Other resolutions of data availability, including 5 and 30 seconds, were also tested. As 

expected, the results using a 5 second frequency showed higher accuracy at the expense of higher 

computation time, and the 30 second discrete time steps did not provide reliable predictions due 

to the microscopic characteristics of the proposed model. In this research, as a trade-off between 

computational time and prediction performance, a 10 second update interval is chosen. Whenever, 

the new trajectory data becomes available it is updated in module A, which helps to avoid error 

accumulation in the simulation process.  

Model parameters for the stochastic microscopic model are illustrated in Table 3.1. Most 

of the parameters are adopted from the original model in Kerner-Kelnov (2003). Parameters such 

as   probabilities of random acceleration and deceleration, and lane changing, are based on driver’s 

behavioral analysis and classification studies for moderate risk-taker drivers by Li et al. (2017) for 

the base scenario. These parameters are later examined by way of sensitivity analysis to assess 

their impact on the model performance. For real-world applications, local driver behavioral models 

and vehicle compositions can be used to calibrate the model parameters. 

The case study is designed to replicate peak period traffic conditions, and vehicles enter 

lanes according to a random log-normal distribution function, which has been suggested for 

congested traffic conditions in previous studies (X. Chen et al., 2010; Kong & Guo, 2016). The 
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mean value of the distribution function changes every 20 minutes to reflect the increase and 

decrease in traffic flow at the beginning and ending of the peak period. CAVs are randomly tagged 

based on the specified penetration rates. Merging vehicles enter the segment at a uniform average 

rate with the rate changing every 20 minutes. Exiting vehicles are randomly tagged to exit from 

the off-ramps with exit probabilities of 10% and 40% for the first and second exits, respectively.  

 

Figure 3.2. Freeway sketch and detector layout 

 

3.3.1 Traffic state prediction results 

Figures 3.3 to 3.7 show the traffic state prediction results for the first and second bottleneck 

locations, representing an 8 km segment. These figures include traffic flow, speed, total travel 

time, and average travel time flow per lane and the total predicted traffic flow for all lanes in 1-

minute intervals for a total duration of 90 minutes for locations A and B, respectively. Traffic flow 

is reported as an hourly flow, which is calculated based on 5-minute traffic counts, and then 

converted to the hourly flow rate. Figures 3.4 and 3.6 illustrate the average predicted speed per 

lane and overall average speed of all lanes for the same time period at locations A and B, 

respectively. Total travel time and average travel time for the studied segment between two 

bottlenecks for 1-minute intervals are shown in Figure 3.7.  
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Table  3.1. Model parameters for the three-phase stochastic microscopic model 

 

The online simulator in Module A tracks all vehicle trajectories, and thus, collects traffic 

information from all vehicles, which is used as the ground truth data to evaluate the performance 

of the prediction model. The mean absolute percentage error (MAPE) index, one of the most 

common measures for evaluating the accuracy of prediction methods, is calculated based on the 

following equation:  

𝑀𝐴𝑃𝐸
|𝐴 𝑃 |

𝐴
 (3.36)

 Where 𝐴  is the actual value of the traffic state parameter at time step t based on the information 

from all vehicles traveling the segment during the simulation period, and 𝑃  is the predicted value 

of the same parameter.  

The results show that the developed approach predicts traffic flow at 1-minute time 

intervals for the more congested bottleneck (location B) with accuracies of 7.3%, 4.6%, 3.8%, and 

Parameter Description Value 

𝜏 Simulation interval 1 s 

𝑣  Free flow speed 30 m/s 

𝑑 Vehicle length including minimum space gap 7.5 m 

𝑐 constant 1.5 

𝛽 constant 0.3 

𝑎 Maximum acceleration 1 m/𝑠  

𝑏 Maximum deceleration 0.5 m/𝑠  

𝛿 Constant<< 𝑎𝜏 0.01 

𝑃  Probability of random acceleration 0.3 

𝑃  Probability of random deceleration 0.2 

𝑝  Probability of random delay in acceleration 
0.575+0.125*minimum 

(1,𝑣 /10  

𝑝  Probability of random delay in deceleration 0.3 

𝑝  Probability of random delay in deceleration 0.48+0.32𝜃 𝑣 15  
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3.0% for the right lane, middle lane, left lane, and all lanes, respectively. MAPE is higher for the 

right lane, which is attributed to the expected higher traffic disturbances due to merging and 

existing vehicles. The results also show that prediction errors for per lane traffic flows are slightly 

higher compared to those in the case where all lanes are considered together. The higher error is 

due to vehicles that change lanes within the prediction horizon, which affects the per lane 

predictions, while the total flow for all lanes at the detector location stays unchanged. Owing to 

less disturbances at location A, which is the less congested bottleneck, higher accuracy in flow 

predictions is observed with the MAPEs of 3% to 3.8% throughout the lanes. 

 

 

Figure 3.3. Traffic flow prediction for 1-minute intervals per lane and overall (Location A) 
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Figure 3.4. Average speed prediction for 1-minute intervals per lane and overall (Location A) 
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Figure 3.5. Traffic flow prediction for 1-minute intervals per lane and overall (Location B) 

 
 

 
Figure 3.6. Average speed prediction for 1-minute intervals per lane and overall (Location B) 
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Figure 3.7. Total and average travel time predictions for 1-minute intervals for segment A-B 

 

 
Figure 3.6 shows the “actual” and predicted average speed for the right, middle, and left 

lanes, as well as the average estimated speed of all lanes for location B. Average speed and its 

fluctuations vary among the lanes, resulting in varying levels of accuracy of 10.0%, 8.2%, 6.6%, 

and 6.6% for the right lane, middle lane, left lane, and all lanes, respectively. This result is expected 

due to the higher congestion level in the right lane. Here, merging vehicles from the on-ramp 

decrease the average speed of vehicles at the detector location to around 10 km/hr. However, the 

lowest average speed for all lanes remains around 30 km/hr. Moreover, a breakdown in the right 

lane happens at t= 44 min and propagates to the left lane at t=47 min, while the average speed for 

all lanes identifies the breakdown at t= 48 min. One of the important findings of this analysis is 

that despite the higher prediction performance, the average speed for all lanes is not an adequate 

or appropriate measure for identifying the severity and time of a speed breakdown, especially for 

the purpose of taking proactive control actions. In this case, for instance, relying on overall speed 

prediction results in a 5-minute time lag in identifying the onset of a breakdown. In contrast, right 

lane speed prediction is shown to be highly effective in identifying the onset of a breakdown; it 

has an accuracy within 1 minute.  
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Location A, shown in Figure 3.4, is configured at a lower congestion level to evaluate the 

model performance for such conditions. While the MAPEs for the speed predictions at location A 

stay below 4%, the sharp decrease in speed resulting from slow-moving vehicles, which are 

merging into the freeway, is not always fully captured by the prediction model. Such discrepancy 

between the “observed” and predicted speed that might be a limitation of the proposed model is 

mainly reported when the freeway is at free flow condition (i.e.  density is lower than the critical 

density). Thereby, the stochasticity of driver behavior results is some vehicles merging at 

significantly low speed that cannot be fully predicted by the model. However, as shown in Figure 

3.4, this low speed is not sustained for long time, as the vehicles accelerate to merge with the 

freeway at free flow speed.     

 The proposed model is also used to predict the total and average travel time for the segment 

between two bottlenecks (8 km). Total travel time for all vehicles that traverse the link and pass 

the detector location (in vehicle-second) is predicted within an accuracy of 8.6%, which is a higher 

error compared to the predicted average travel time (in seconds) with a MAPE of 4.7%. Total 

travel time predictions include an error component related to the vehicle count, which justifies the 

error difference compared to average travel times. 

 

3.3.2 Sensitivity analysis 

The impacts of the penetration rates of CAVs on the proposed model’s performance are 

evaluated for 50%, 30%, 10% penetration rates and for different time step horizons. To gain a 

better understanding of the prediction errors for various scenarios, Root Mean Square Error 

(RMSE) indexes are also analyzed. A RMSE index provides a complementary understanding of 
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the prediction error magnitude by illustrating the standard deviation of prediction errors. It is 

calculated as follows: 

𝑅𝑀𝑆𝐸 𝐴 𝑃 /𝑛 (3.37)

However, increasing the prediction interval to 2 minutes increases MAPEs to around 10% 

for all penetration rates. Statistical analysis was conducted to evaluate the impact of the penetration 

rate of CAVs on MAPEs for overall flow predictions within a specific time interval (Table 3.2). 

These results show that in most cases, decreasing the penetration rate of CAVs does not 

significantly affect the accuracy of the total flow predictions, with the exception of when the 

penetration rate decreases from 50% to 30%. However, longer prediction intervals increase noisy 

measurements and ultimately impact the accuracy of predictions.  

Per lane flow prediction results indicate that MAPEs fluctuate from 7.3% to 9.8% for the 

right lane, and the errors decrease for the middle and left lanes, which is expected because there 

are fewer traffic fluctuations on those lanes compared to the right lane where all merging and 

exiting maneuvers take place. Analyzing 60 simulation runs shows that, in most runs, noisy 

measurements of traffic counts are underestimated for the middle and the left lanes. This issue can 

be resolved by adding a parameter to the AKF equations that requires historical data and calibration 

of the noise function to increase the accuracy of per lane and total flow predictions.   

The results for the speed predictions show that the proposed model is able to predict the 

average speed for all lanes with a MAPE of below 9% for all scenarios. A slight reduction in 

accuracy is observed by increasing the prediction time interval with MAPEs, which corresponds 

to around a 2% increase in MAPE in the worst-case scenario. According to the t-test results, shown 

in Table 3.3, penetration rates does not have a significant impact on the mean MAPE for all lane 



 

62 

 

speed predictions. In contrast, per lane speed prediction results show a wide range of MAPEs, 

spanning between 6.6% for the left lane up to 16.0% for the right lane. Random fluctuations in 

demand, and more importantly, stochastic driver behaviors in speed adaption and merging 

maneuvers result in different traffic patterns affecting speed fluctuations and causing the wide 

range of per lane speed prediction errors.  

Figure 3.8 shows that the accuracy of speed prediction is lower for the right lane in all 

scenarios. The MAPE for the right lane for 1-minute prediction intervals ranges from 10.0% to 

13.9%. This issue is caused by drastic speed fluctuations at the merging region of the studied 

segment; these fluctuations strongly affect the right lane’s speed profile. Another potential 

explanation behind the reduced prediction performance is the possibility of not observing any 

CAVs in cases with low penetration rates (10%). In these cases, the average speed is considered 

equal to the average speed of the previous time interval. This assumption results in higher error, 

especially if a drastic change has happened to the speed profile in the meantime due to a low-speed 

merging vehicle. Although the prediction error is relatively high for speed in the right lane, the 

breakdown phenomena are predicted on time for almost all scenarios.  

Figure 3.9 shows the time that breakdowns happened in 30 simulation runs. All runs were 

based on 1-minute prediction intervals; however, the penetration rate of CAVs was 50% for runs 

1 to 10, 30% for runs 11 to 20, and 10% for runs 21 to 30. In this research, the onset of a breakdown 

was when the average speed fell below 70 km/hr. Mean and variance of the probability 

distributions for traffic demand were the same for all runs. However, speed breakdowns happened 

at different times due to the stochastic driver behaviors (responding to traffic conditions). The 

times of the onsets of breakdowns were also different on three lanes for the same simulation run. 

The number at the left of each breakdown point in Figure 3.9 shows the time difference between 
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the actual and predicted breakdown. For the right lane, in 19 out of 30 simulation runs, speed 

breakdown occurrence is correctly predicted at the same minute it occurred. For 8 of the simulation 

runs, the onset of breakdown is predicted one minute behind the actual occurrence, and in 3 cases, 

the prediction is one minute earlier.  

For the middle and left lanes, the time differences were spread over a wider range from 0 

to 5 minutes because when a breakdown occurred in the right lane, speed usually stayed low and 

congestion propagated upstream, until the traffic condition changed or a control measure was 

applied. However, in other lanes, when the average speed fluctuated around the speed threshold 

and a speed breakdown happened, sometimes there was an increase in the average speed and a fast 

return to the free flow condition. Thus, the prediction model may not capture these fluctuations, 

even if the MAPE is low. In general, despite the relatively low speed prediction performance of 

the right lane in terms of MAPEs (10.0% to 13.9%), the developed model is still able to identify 

and predict breakdown occurrence (i.e. when speed falls below 70 km/hr and this speed is sustained 

for 5 minutes) in the right lane in a timely manner. Such level of accuracy in the prediction is 

acceptable given the stochastic nature of traffic breakdown at bottlenecks. Consequently, the 

model can effectively aid in implementing proactive control strategies to prevent the propagation 

of a breakdown to the other lanes by primitively balancing lane flow distribution among the other 

lanes. This solution cannot be achieved by predicting the average speed on all lanes. 

Prediction results for multiple time steps ahead considering 50% CAVs are shown in Table 

3.4. The accuracy of predictions decreases for farther time steps ahead as expected, due to the 

increased noise in observations, and the lack of detector measurements to help in tuning the noise 

coefficient. According to the results, total traffic flow for the first 1-minute time interval ahead is 

predicted with relatively high accuracies, with MAPEs of 3.0% to 3.8% for different penetration 
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rates of CAVs. Further time steps ahead still show mean prediction errors below 10% and 15% for 

flow and speed parameters, respectively. The rolling horizon process will take care of continuously 

updating and reducing these longer interval predictions errors. 

A sensitivity analysis is performed to investigate the impact of imperfect calibration of 

stochastic parameters of the microscopic model on the performance of the approach. The results 

reveal that, compared to the base simulation parameters, a variation of 10% in the probability of 

random acceleration, deceleration, and lane changing causes an increase of up to 1% in mean 

prediction errors for both per lane and overall flow parameters, as well as for the left lane and all 

lane speeds. In addition, an increase of up to 4% in mean errors is observed for right lane and 

middle lane speed predictions. 

The performance of the travel time predictions decreased as prediction intervals increased 

from 1 minute to 2 minutes and where MAPE, for the total travel time prediction, increased from 

8.6% to 13.3%; the penetration rate of CAVs remained unchanged at 50%. Similar to the overall 

flow and speed predictions, total travel time predictions showed a slight increase in MAPE as the 

penetration of CAVs decreased. Due to the small difference among the average errors, t-test 

analysis was conducted to compare the means of MAPEs for each pair of scenarios, which 

confirmed that the mean errors were not significantly different, except for the average travel times 

in 2-minute prediction intervals (Table 3.3). 
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Table  3.2. Error Indexes for 1-minute and 2-minute prediction intervals 

Error index 
Traffic state 

parameter 

1-min prediction interval 2-min prediction interval 

50% 

CAVs 

30% 

CAVs 

10% 

CAVs 

50% 

CAVs 

30% 

CAVs 

10% 

CAVs 

MAPE 
 

Flow-right lane 7.3% 9.1% 9.8% 8.1% 8.8% 11.2% 

Flow-middle lane 4.6% 6.0% 8.6% 8.0% 9.1% 11.6% 

Flow-left lane 3.8% 7.5% 9.0% 9.5% 9.9% 11.2% 

Flow-all lanes 3.2% 3.5% 3.8% 7.2% 8.2% 10.5% 

Speed-right lane 10.0% 12.1% 13.9% 14.1% 15.1% 16.0% 

Speed -middle 

lane 
8.2% 9.0% 9.8% 10.6% 11.4% 13.0% 

Speed -left lane 6.6% 6.8% 6.8% 7.3% 7.9% 8.0% 

Speed -all lanes 6.6% 6.8% 7.0% 8.1% 8.6% 8.9% 

Total travel time 8.6% 8.7% 9.4% 13.3% 13.4% 13.7% 

Average travel 

time 
4.3% 5.2% 5.9% 4.3% 4.6% 5.1% 

RMSE 

(veh/h/lane) 

Flow-right lane 99 115 125 101 121 144 

Flow-middle lane 80 103 110 152 169 170 

Flow-left lane 71 105 112 136 140 168 

RMSE 

(veh/h) 
Flow-all lanes 145 162 174 305 351 405 

RMSE (km/h) 

Speed -right lane 6 7 8 9 9 10 

Speed -middle 

lane 
7 9 10 10 11 11 

Speed -left lane 7 7 8 8 9 9 

Speed -all lanes 5 5 6 7 7 8 

RMSE (veh-

sec) 
Total travel time 2723 2815 2708 8159 8451 9082 

RMSE (sec) 
Average travel 

time 
20 24 26 19 21 24 
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Table  3.3. t-statistics test results for means of MAPE errors in overall flow and speed 

predictions 

Parameter 
Prediction 
intervals 

Scenario Pairs Alpha N t-Critical t-stat 
P-

value

MAPE for 
all-lanes Flow 

predictions 

1 minute 
 

50% CAVs-30% CAVs 

0.05 
 

10 
 

2.26 
 

-4.05 0.003 
30% CAVs-10% CAVs -1.21 0.25

2 minutes 
50% CAVs-30% CAVs -0.14 0.89
30% CAVs-10% CAVs 1.08 0.31

MAPE for 
all-lanes 
Speed 

predictions 

1 minute 
50% CAVs-30% CAVs 0.43 0.68 
30% CAVs-10% CAVs -1.14 0.28

2 minutes 
50% CAVs-30% CAVs -0.38 0.71 
30% CAVs-10% CAVs -0.43 0.68

MAPE for 
Total Travel 

time 

1 minute 
50% CAVs-30% CAVs -0.43 0.68
30% CAVs-10% CAVs -2.02 0.07

2 minutes 
50% CAVs-30% CAVs -0.32 0.75
30% CAVs-10% CAVs -0.79 0.45 

MAPE for 
Average 

Travel time 

1 minute 
50% CAVs-30% CAVs -1.77 0.11
30% CAVs-10% CAVs -1.5 0.16 

2 minutes 
50% CAVs-30% CAVs -4.5 0.002 
30% CAVs-10% CAVs -2.6 0.03 

 

Table  3.4. MAPEs for multiple step ahead predictions with 1-minute prediction intervals 

Traffic state parameter 
1-min 

ahead 

2-min 

ahead 

3-min 

ahead 

4-min 

ahead 

5-min 

ahead 

Flow-right lane 7.3% 9.5% 11% 12.2% 14% 

Flow-middle lane 4.6% 6.5% 8.1% 9.5% 10.9% 

Flow-left lane 3.8% 5.4% 7% 8.2% 9.1% 

Flow-all lanes 3.2% 4.5% 6.1% 7.2% 9.2% 

Speed-right lane 10.0% 14.2% 15.9% 17% 18.1% 

Speed -middle lane 8.2% 12.1% 13.7% 14.5% 15.7% 

Speed -left lane 6.6% 10.2% 11% 12.1% 12.9% 

Speed -all lanes 6.6% 9% 10.1% 10.9% 13% 

Total travel time 8.6% 11.9% 12.8% 13.5% 14.5% 

Average travel time 4.3% 6.5% 7.8% 8.9% 10% 
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(a) 1-minute intervals                                             (b) 2-minute intervals 

Figure 3.8. Mean Absolute Percentage Error for: (a) 1-minute intervals, (b) 2-minute intervals 

 

(a) (b) 

 

(c)
Figure 3.9. Prediction of breakdown occurrence time for over 30 simulation runs; (a) Right lane, 

(b) Middle lane, (c) Left lane 
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3.3.3 Comparison to other methods 

In order to further evaluate the performance of the proposed traffic state prediction model, 

two state of the art models are considered as benchmarks. Autoregressive integrated moving 

average (ARIMA) model has gradually become a standard method to compare with newly 

developed forecasting models because of its well-defined theoretical foundations and promising 

ability to predict traffic parameters (Lin et al., 2018). Thus, a seasonal ARIMA (SARIMA) model 

combined with a Kalman filter is chosen as the first benchmark model. On the other hand, traffic 

parameters display time-dependent volatilities that can not be explained by ARIMA models. 

Therefore, recent studies combined the generalized autoregressive conditional heteroskedasticity 

(GARCH) process with ARIMA to explain and predict such volatilities (Guo et al., 2014b; Y. 

Zhang et al., 2014). As a second benchmark, a SARIMA+GARCH structure is implemented and, 

an AKF is utilized to adaptively smooth the noise parameters. Interested readers can refer to Guo 

et al. (2014) for detailed explanation of this model. Traffic data from the same simulation runs and 

for the same aggregation and prediction intervals are used in this comparative analysis. Data sets 

including 1800 data points are used to calibrate the SARIMA (0,1,1) (0,1,1) and GARCH (1,1) 

structures for overall flow, average speed and average travel time predictions. The AKF process is 

similar to the proposed model while, the future observations of the state parameters are produced 

by the time series structures.  

Figure 3.10 demonstrates a sample of the actual and predicted traffic flow, speed, and 

average travel time for location (B) for all examined models. Flow and average travel time 

prediction results show that both the proposed microsimulation-based model and 

SARIMA+GARCH+AKF model can accurately predict the evolution of these parameters over 1-

minute prediction intervals compared to SARIMA+KF. In terms of the speed predictions, it can 
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be observed that the proposed model can better capture the sudden changes in traffic speed, while 

the SARIMA+KF model has a tendency of underestimating the future speed and, 

SARIMA+GARCH+AKF shows rather large fluctuations around the actual speed values.    

To further examine the prediction performance, the results for multiple step ahead 

predictions are summarized in Table 3.5. The MAPE results show that the proposed model 

consistently outperforms both benchmark models for all prediction steps, especially in the case of 

speed predictions. The accuracy of predictions reduces for farther time steps ahead for all methods. 

This can be attributed to the increased uncertainty associated with future traffic behavior. In terms 

of the flow predictions, the corresponding MAPEs results of the proposed model show only a slight 

improvement compared to those of the SARIMA+GARCH+AKF model with MAPEs of 3% to 

10% for 1 to 5 prediction steps ahead for both models. The flow prediction results for 

SARIMA+KF shows a lower performance compared to the other models due to the lack of 

adaptability of the KF and also the lack of noise modeling properties of the GARCH model. The 

MAPEs for the average travel time predictions spread in a range of 4.3% to 10% for the proposed 

model, while ranging from 7.3% to 11.5% for the benchmark models which shows the advantage 

of the proposed model in this regard.  

Speed prediction results demonstrate that the time series-based benchmark models are 

consistently inferior to the proposed model as the MAPEs are above 13% even for the first 

prediction step.  While, the proposed model exhibits  MAPEs of 6.6% to 13% for 1 to 5 prediction 

steps ahead. This higher performance can be attributed to the adaptability of the microscopic 

simulation model to the prevailing traffic conditions by capturing the CAVs data and simulating 

the drivers’ behaviors accordingly. Moreover, the microscopic model considers stochastic driver 

behaviors such as lane changing, over acceleration, and speed adaption effects, which later form 
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the macroscopic traffic parameters. These attributes enable the model to predict the speed 

fluctuations, especially the timely prediction of the onset of breakdown which is critical 

information for traffic control purposes. Using more advanced time series modeling and artificial 

intelligence approaches on larger data sets might lead to improve prediction performance. 

However, the training and computation burden of such models limits their applicability to the real-

time traffic control.  

 

  

 

 

Figure 3.10. Traffic flow, speed, and average travel time prediction for 1-minute intervals 
(Location B) 
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Table  3.5. MAPEs for predictions based on the proposed method, SARIMA+KF method, and, 

SARIMA+GARCH+AKF (%) 

 Proposed model SARIMA+KF SARIMA+GARCH+AKF 

Number of 

prediction 

steps 

ahead 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Flow 3.2 4.5 6.1 7.2 9.2 6.3 7.9 8.8 10.2 11.5 3.3 4.9 6.5 7.6 10.1 

Speed 6.6 9.0 10.1 10.9 13.0 16.6 18.9 20.0 22.1 24.0 13.0 14.9 15.8 16.5 17.9 

Average 

travel time 
4.3 6.5 7.8 8.9 10 7.8 9.6 10.3 10.9 11.5 7.3 8.2 9.1 9.9 10.2 

 

3.3.4 Spatial-temporal pattern prediction results 

Module C of the developed model utilized the predicted traffic state information and FOTO 

and ASDA models to anticipate dynamically the formation and propagation of synchronized flow 

and wide moving jams in space and time, based on equations (3.30) to (3.35).  

Figure 3.11 shows the time-space diagram with the expected traffic patterns for the right 

lane in space and time. Actual detectors are located at the fixed bottleneck locations, upstream and 

downstream of the link at x=5000 and x= 13000. Virtual spot detectors are assumed to be distanced 

1000 m apart to collect average speed and traffic flow information. The background image in 

Figure 3.11 shows the actual vehicle trajectories on the link for the entire time period; the green 

trajectories correspond to vehicles with free flow speed, the blue ones reflect vehicles with a speed 

between 40 km/hr and 70 km/ hr, and the red ones represent vehicles with speeds below 40 km/ 

hr, which corresponds to an average wide jam speed (B. S. Kerner et al., 2005). Predicted jam 

fronts are shown with black and yellow lines for synchronized flow and wide moving jams, 

respectively. The model parameters used in the FOTO and ASDA models are 𝑣 =70 km/hr, 

𝑣 =40 km/hr, 𝑞 900 /𝑙𝑎𝑛𝑒, and  𝜌 =80 veh/km/lane.  
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The black line in Figure 3.11 shows the upstream front of a synchronized flow (XSup), 

while the downstream front is fixed at the bottleneck location x=13300 m (the merging region of 

the on-ramp is from x=13000 m to x=13500 m). As illustrated in Figure 3.11, a few F to S to F 

transitions occur from t=5 min to t=32 min; these transitions are not detected by the tracking model 

because of a specific model setting that considers an F to S transition only if it lasts for at least 5 

minutes. An F to S to J transition is detected at t=42 min forming the first wide moving jam (J1), 

which takes 8 minutes to dissipate (at t=50). While the second wide moving jam (J2) is predicted 

to occur at t=60 min, the real trajectory data indicates that it actually occurs at t = 59 min; 

consequently, there is a 1-minute delay in the prediction of J2.  Based on the actual vehicle 

trajectory plot, lighter traffic conditions corresponding to the synchronized flow are observed from 

t= 75 min   to t = 85 min, which results in local dissipation of the wide moving jam; however, the 

developed model is not able to reproduce these transitions. In fact, these synchronized flow 

patterns are observed at VSD6 and VSD7 (Figure 3.11(a)) for short periods of time, which causes 

the model to consider J2 as one pattern rather than three adjacent moving jams. The estimated 

speed for the downstream front of the wide moving jams is around 10 km/hr for all jams, which is 

consistent with the trajectory data.  

Due to the complex spatial and temporal characteristics of traffic patterns, calculating an 

index to evaluate the accuracy of the predicted jam fronts is challenging. However, a visual 

examination of the predicted spatiotemporal patterns shows a good accordance compared to the 

trajectory data, especially the data that represents the occurrence and dissipation of synchronized 

flow and wide moving jams. In the case of J4 in Figure 3.11(a), the wide moving jam emerges 

between detectors VSD5 and VSD6; thus, the ASDA model is unable to track the S to J transition 

and the jam fronts until J4 reaches VSD5. 
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The developed model was tested to reproduce and predict traffic patterns in the middle and 

left lanes of the studied freeway segment. The upstream front of the synchronized flow was 

reproduced with satisfactory results in the middle and left lanes. However, the results were not as 

accurate for the wide moving jam predictions. As illustrated in Figure 3.11(b), the time and 

location of the wide moving jams were not efficiently predicted. This result may be explained by 

the fact that a breakdown in the right lane was triggered by the fixed bottleneck located at the 

merging region, where vehicles merged into the mainstream. However, a speed breakdown in other 

lanes was caused by stochastic drivers’ behavior in over acceleration and lane changing and their 

attributed stochastic delays. These stochastic behaviors caused multiple stochastic transitions 

between traffic phases over short time periods. Another potential reason was that the onset of a 

breakdown in the middle and left lanes occurred upstream of the bottleneck detectors (usually 

between detector B and VSD7); therefore, the breakdown would not have been tracked by detector 

B.  

 

 
(a) Right lane 
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(b) Middle lane 

 
(c) Left lane 

Figure 3.11. Predicted synchronized flow and wide moving jam patterns in space and time on the 

(a) right lane, (b) middle lane, and (c) left lane 

 

3.3.5 Online simulation and computation time 

A critical requirement for short-term and real-time traffic state prediction models is to 

produce timely predictions of the traffic state parameters while allowing for sufficient slack time 

to compute and inject proactive control measures. The proposed model is implemented using Go 

1.14 programming language on a 64-bit Windows PC with 1.8 GHZ Inel Core-i7 and 16 GB of 

RAM (Appendix II). The online simulation and prediction processes take around 40 seconds for 

modeling a 2-hours traffic operation period on the network. This computation time is equivalent 
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to around 0.67 second for 1-minute prediction interval, which shows the potential applicability of 

the model for real-time implementation. In a real-world application of online microscopic 

simulation models, (Y. Liu et al., 2006) reported a computation time of 120 seconds over a 2-hours 

period for online simulation and prediction of travel times on a network with 10 detectors. 

 

3.4 Findings and discussions 

There were several interesting facts revealed by the results of this study in the following 

areas: 

Overall traffic state predictions: According to the results, overall traffic flow, average 

speed, and total travel time for 1-minute intervals and a 10% penetration rate of CAVs were 

predicted with MAPEs of 3.8%, 7.0%, and 5.9%, respectively.  Most of the studies on short-term 

data-driven traffic parameters reported MAPEs of 6% to 12% for traffic flow, 4% to 15% for 

average speed, and 4% to 14% for travel time predictions (Comert et al., 2016; Fei et al., 2011; 

Vlahogianni et al., 2004). Most of the data-driven approaches in the literature adapted applicable 

prediction horizons of 1 to 25 minutes and reported increased errors with larger prediction 

horizons. Model-based approaches did not suggest an appropriate prediction interval duration, but 

most studies reported higher accuracy for longer periods of 30 to 120 minutes (Oh et al., 2015, 

2018). The accuracy of different prediction models could not be simply compared due to several 

factors that contributed to the efficiency and accuracy of the models. However, in general, the 

prediction time horizon and level of accuracy for the model proposed in this research is comparable 

with data-based techniques; the proposed model has the advantages of model-based methods 

regarding adaptability and explanatory powers.  
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The accuracy of predictions for aggregated traffic state parameters, including overall traffic 

flow, overall speed, and total and average travel times, is not significantly affected by the 

penetration rate of CAVs within the range of 10% to 50%. Thus, with 10% of CAVs, satisfactory 

predictions can be achieved, with MAPEs below 10% for all aggregated parameters and 1-minute 

prediction intervals. At this rate and for 2-minute intervals, errors stay below 10.5%, 8.9%, and 

13.7% for traffic flow, speed, and total travel time, respectively. These findings are in line with 

the results of Allström (2016), who achieved accuracies of 5% to 12% with 15% of probe vehicles. 

However, Seo & Kusakabe (2015) observed a 40% error in flow prediction when the penetration 

rate was as low as 3.5%. Thus, a minimum rate of CAVs should be available to achieve reliable 

predictions, even though, after a certain rate, the reliability may not necessarily improve by further 

increasing the penetration rate. Toppen & Wunderlich (2003) came to the same conclusion: at the 

highest levels of accuracy, little may be gained by making further improvements, and 

consequently, it makes little sense to invest in improvements if the gain in accuracy is minimal. In 

contrast, Tarnoff et al. (2008) concluded that if the error exceeds 20%, it undermines the 

effectiveness of the system and the public will lose confidence in the information source. 

Lane by lane predictions: In this research, traffic state parameters are predicted on a lane 

by lane basis. This information is crucial to produce effective lane management strategies and 

driver assistant systems that promote a more balanced lane-flow distribution. Scenario analysis of 

different prediction intervals and penetration rates of CAVs shows a wider range of prediction 

errors on different lanes. In general, the prediction results for 1-minute intervals are superior 

compared to 2-minute intervals, and errors slightly increase by reducing the penetration rates, 

which is expected. Per lane flow predictions are shown to be reliable even with 10% of market 

penetration rates of CAVs. However, per lane speed prediction in the right lane, result in a MAPE 
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of 10% to 16%. Although this is a limitation of the proposed model, it falls in the recommended 

error range in the literature, which is 5-20% (Allström, 2016). However, one of the important 

contributions of this research is that the onset time of the occurrence of a breakdown in the right 

lane, which is an important indicator used to activate control devices, can still be predicted with 

an error in the range of 1 minute even with 10% CAVs. Speed prediction errors for speed in the 

left lane are lower, with an error of around 6.6% and a slight decrease in MAPEs (0.2% decrease) 

by reducing the penetration rate from 50% to 30%. Thus, statistical tests were conducted to 

compare the mean MAPEs of all simulation runs for each scenario. The t-test results showed that 

changing the penetration rates does not significantly impact the mean MAPEs for these parameters. 

The same argument regarding an optimum reliability of predictions, which is achieved by a certain 

minimum penetration rate, may apply here.  

While no analytical model-based traffic prediction methods have been developed for lane-

level traffic state, the data-based lane-level fusion deep learning (FDL) speed prediction approach 

developed by (Gu et al., 2019) resulted in an average MAPE of 6.20%, 6.16% and 6.43% for the 

speed predictions at the right, middle and left lanes respectively. The prediction accuracy of FDL 

approach is shown to be similar to that obtained for our proposed method. Compared to the 90 

minutes peak-period prediction span in our study, the MAPEs in the FDL approach are calculated 

over 24 hours of total prediction period which result in reduced MAPEs due to the higher accuracy 

during off-peak hours. A few recent studies revealed significant differences in operational 

characteristics of traffic lanes on freeways, and consequently, driving and lane changing behaviors 

should be incorporated to develop accurate multilane macroscopic traffic flow models (Duret et 

al., 2012; Nagalur Subraveti et al., 2019; Pan et al., 2019; Shiomi et al., 2015). These models 

should be further investigated so they can be used in model-based lane by lane traffic state 



 

78 

 

predictions, especially when only stationary traffic data is available. In this present study, utilizing 

a combination of stationary and floating traffic data as input to the stochastic microscopic model 

and AKF reduces the extensive effort of calibrating multiple lane changing incentive parameters 

that are necessary requirements for macroscopic models. 

Onset of breakdown: One of the main outcomes of this research is predicting the time of a 

breakdown occurrence on freeway lanes. As shown in Figure 3.9, the proposed model predicts the 

occurrence of a breakdown in the right lane a maximum of 1 minute later than the actual 

occurrence. The time difference between the actual and predicted onset of a breakdown is in the 

range of 0 to 5 minutes in the middle and left lanes because the stochastic lane changing behaviors 

are the main triggers of breakdowns in these lanes. Another promising finding is the apparent time 

difference between the onset of a breakdown when it is identified in the right lane and when the 

overall speed breakdown occurs. In other words, in most cases, breakdown in the right lane occurs 

at least 6 minutes before the overall breakdown. This result is in line with the results of previous 

studies that investigated lane-based breakdown and found breakdown occurred at different times 

in different lanes (Ma et al., 2013; Goto et al., 2018). Thus, utilizing average speed for all lanes as 

an indicator to activate control measures on freeway bottlenecks may cause inappropriate or 

insufficient control decisions. Future research should examine and compare the effectiveness of 

potential control strategies using both overall and right lane speed thresholds as indications of 

breakdown.  

A further interesting finding is that in 16 out of 30 simulation runs, breakdown does not 

happen in the left lane at all. This further illuminates the need to develop lane management systems 

to optimize traffic flow efficiency (recently investigated by Yao et al. (2017). Although this is a 
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partial limitation of the method in lane management applications, it does not affect future 

applications in on-ramp control, where breakdown in the right lane is the main concern.   

Traffic pattern prediction: The spatial and temporal evolution of synchronized flow and 

wide moving jam patterns is predicted in this research based on the FOTO and ASDA models 

proposed by Kerner et al. (2005). However, some extensions are suggested. First, mutating the 

trajectory data to supplementary macroscopic traffic parameters at the VSD locations improves 

the accuracy of the tracked patterns with no need to add measurement infrastructure. Second, 

pattern tracking, and prediction is conducted on a lane by lane basis to count for different traffic 

behavior in the freeway lanes. The results revealed that the model may not be able to accurately 

reproduce congested patterns in the middle and left lanes. This result warrants further investigation 

to develop lane by lane congestion tracking approaches. Despite the discussed limitations, the 

detected and predicted congested patterns provide valuable information to activate freeway control 

and management measures. A novel application is to place a variable speed limit (VSL) sign 

upstream of the congested area to prevent jam propagation further upstream. This issue has not 

been investigated in VSL studies and applications. Another potential application is to produce 

accurate information about traffic conditions that can be used in driver assistance systems and 

variable message signs.  

According to the above results and discussions the main advantages of the proposed traffic 

state prediction model can be summarized as follows: 1) given the short prediction interval, the 

accuracies of the overall traffic state parameters’ predictions are similar or superior than other 

data-driven methods and yet without requiring intensive data; 2) the theoretical microscopic 

modeling approach combined with a data fusion model is shown to properly capture, reconstruct, 

and predict non-recurrent traffic conditions and spatiotemporal patterns on a lane by lane basis; 
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and 3) the model is able to predict the breakdown occurrence for the right lane at an early stage 

and with minimal time lag, which is critical to proactively inject proper remedy actions (e.g. RM 

or VSL) to prevent congestion propagation.      
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CHAPTER 4:  A DYNAMIC BARGAINING GAME THEORY APPROACH TO RAMP 

METERING UNDER STOCHASTIC CAPACITY IN A CONNECTED VEHICLE 

ENVIRONMENT 

 

4.1 Introduction  

4.1.1 Background and motivations  

Analysis of empirical traffic data shows that breakdowns in freeway bottlenecks do not 

occur at the same time for all lanes (D. Ma et al., 2013; Pan et al., 2019). For instance, next to a 

lane drop section, congestion often starts first in the right lane because of the lane changing activity 

of merging/diverging vehicles and then later propagates to the other lanes. However, modeling the 

stochastic breakdown behavior as a function of the traffic state in the right lane has been often 

overlooked in bottleneck capacity analysis, and more importantly, in ramp control approaches. 

Modeling the stochastic breakdown behavior and predicting the onset of a breakdown in the right 

lane of a merging bottleneck can be used as a proactive trigger in freeway controls (e.g., smart 

management of lateral flows) to take timely actions to prevent breakdown, thereby avoiding the 

propagation of breakdown to other lanes. 

Despite the confirmed system-wide benefits of responsive and predictive ramp metering 

approaches, only a few studies in the literature raised concerns regarding the equity of such 

systems. Equity concerns may result in public and political opposition when it comes to 

implementing ramp metering strategies in the field (Benouar, 2004; Yin et al., 2004; Zhang & 

Levinson, 2005). Equity is a complex and broad concept that can be defined and measured in 

several ways. In general, equity is defined as a fair distribution of positive and negative outcomes 

from changing a policy or implementing a new policy (Cook & Messik, 1983). Current approaches 
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mainly consider achieving a fair ramp metering solution in regard to waiting times on the metered 

ramps. However, fairness, in general, is difficult to define, and it depends on various factors such 

as policies, road user combinations, location of the network, and land use at the vicinity of the 

network. Thus, identifying and optimizing an inclusive equity index that accounts for such diverse 

definitions is a complex and perhaps an even impossible task, especially in dynamic and predictive 

ramp control settings. Tackling this issue using the concept of utility for road users and/or 

controllers might be helpful to develop a more adjustable and flexible control method that is able 

to consider and quantify available information and authorities’ and users’ perspectives of equity. 

 The proposed ramp metering approach in this study considers the need for flexibility in 

the solution to the ramp metering problem through a bargaining framework. Queue constraints are 

introduced in the majority of ramp metering models to prevent queue spillback and also to render 

the control approach more equitable in regard to waiting times in ramp queues. However, queue 

constraints decrease the effectiveness of the models: the ramp metering models fail to prevent or 

dissolve congested conditions completely (Papamichail et al., 2010). Thus, there are two critical 

parameters that need to be examined more closely: the frequency of the failure events that indicate 

the effectiveness of the capacity constraints and the distribution of the failure events among various 

ramps in a network, the latter being a critical equity concern. The number of breakdown events 

over a long period of operation has not been evaluated as an equity measure in previous studies. 

In addition, despite decades of effort to address equity concerns of ramp metering 

implementations, developing flexible and computationally efficient control models that consider 

local equity while achieving system-wide efficiency is still in its infancy. I2I and V2I 

communication of future CAVs can be explored to address many of these challenges. I2I 

communications can play a unique role in enabling real-time controllers to work cooperatively to 



 

83 

 

achieve the overall objective of improved freeway efficiency and equity while increasing safety 

and reliability. In addition, through their V2I capabilities, CAVs can disseminate vital information 

on lane-by-lane vehicle trajectories to road infrastructure (e.g., RM), leading to optimized traffic 

management schemes. Using CAV information in stochastic microscopic models to develop ramp 

metering approaches needs to be further investigated. This chapter takes many steps in this 

direction.  

This research develops a stochastic model predictive control approach that optimizes ramp 

metering rates while accounting for the stochastic system dynamics and stochastic bottleneck 

capacity. To rectify the problem of a long computation time in the model predictive control (MPC) 

approach for real-time applications, a bargaining game theory approach has been adopted that 

allows for dynamic communication among controllers. Thus, the freeway control strategy 

developed in this study is formulated as a stochastic distributed model predictive control (SDMPC) 

framework based on a bargaining game approach to process the available information. This 

configuration allows the controllers to communicate their state and decision information while 

reducing the computational burden. Consequently, this configuration is a compromise between 

local and global performance (Portilla et al., 2012; Valencia, 2012; Valencia et al., 2015). 

4.1.2 Review of the previous studies 

The literature review section in this chapter is explained in three categories according to 

the main issues discussed in the studies (Figure 4.1). 
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Figure 4.1. Literature review classification 

 

A) Freeway control based on stochastic capacity 

In recent years, there has been a growing number of appeals to model probabilistic 

breakdowns on freeway bottlenecks, and more importantly, to develop freeway control measures 

under such uncertainties (Dong et al., 2018; Han & Ahn, 2018; Pan et al., 2019; Schmitt & 

Lygeros, 2020; H. Wang et al., 2010; Zhong et al., 2014). Wu et al. (2010) used a pre-determined 

risk level based on the cumulative probability distribution of a breakdown to find the operational 

capacity. They also applied a chance-constrained zone algorithm approach to ramp metering with 

the objective of optimizing freeway throughput. In another study, Elefteriadou et al. (2011)  used 

a product limit method to model the numerical values of the probability of a breakdown, and ramp 

metering rates were determined based on a 15% to 20% probability of a breakdown at each 

bottleneck. In a local ramp metering strategy, the metered ramp flows were calculated considering 
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short-term and mid-term mainline flows. The developed algorithm required data measurements 

and control actuation on a second by second basis (Trapp, 2016). The above stochastic-capacity-

based control approaches significantly improved the throughput of freeways, delayed breakdowns, 

and reduced average travel time and congestion duration. 

Kerner (2002) proposed a three-phase theory, and according to the empirical findings, 

Kerner identified two different phases, in addition to free flow, of synchronized flow and wide 

moving jams with different microscopic and macroscopic characteristics. Transitions between the 

traffic phases are stochastic phenomena that are caused by microscopic driver behaviors such as 

over-acceleration and speed adoption; therefore, the stochastic transitions result in stochastic 

capacity on freeway bottlenecks. Based on this concept, Kerner (2007) developed a local congested 

traffic control approach (ANCONA) in which synchronized flow patterns were allowed to occur 

at the merging bottlenecks. Thereafter, the ramp metering control was triggered to localize the 

congested pattern in the vicinity of the bottleneck and to prevent its propagation. Despite the 

difficulty of applying ANCONA in a coordinated way at the network level, comparing its 

outcomes to free flow control approaches showed higher throughputs on the main road and on-

ramps, and lower vehicle waiting times on the on-ramps (Kerner, 2007).  

At the network level, a breakdown minimization (BM) principle was introduced to assign 

link flow rates in a way that the probability of a breakdown occurrence in at least one of the 

bottlenecks is minimized. In other words, BM is equivalent to maximizing the probability that a 

breakdown occurs at none of the bottlenecks. This approach to traffic assignment showed 

considerably greater inflow rates compared to user equilibrium and system optimized approaches; 

however, a spatial control measure must be implemented along with BM to localize congestion if 

a breakdown has occurred (Kerner, 2011). 
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B) Freeway control based on Game theory 

Game theory is a mathematical optimization framework that includes a number of decision-

makers (players) with conflicting interests. The game theoretical approaches allow for modeling 

multiple players that can be adversaries with various concerns regarding performance or reliability, 

which may or may not be consistent with other players or with the system-wide performance. In 

regard to transportation networks, various groups of users, authorities, agencies, controllers, etc. 

can be considered as players with contradictory utilities. Thus, the application of game theory in 

traffic modeling and control has been expanded over recent decades (Alvarez & Poznyak, 2010; 

Hollander & Prashker, 2006; Kang & Rakha, 2017; Pisarski & Canudas-De-Wit, 2016; Taale, 

2009; Talebpour et al., 2015). 

Chen & Ben-Akiva (1998) first explored the integration of dynamic traffic control and 

dynamic traffic assignment using three non-cooperative games, and the results showed the 

superiority of Stackelberg equilibrium compared to Cournot and Monopoly games (Chen & Ben-

Akiva, 1998). The Stackelberg game, in which one or more players can anticipate the reactions of 

other players, was later used to develop integrated anticipatory road network controls (Taale, 

2008). Integrated and coordinated control problems include several variables that need to be 

considered in the formulation and optimization process. Game theory models provide a 

computationally efficient framework to solve the dynamic control problems in real time (Ghods et 

al., 2010; Hollander & Prashker, 2006). However, most traffic control strategies in the framework 

of game theory are formulated based on non-cooperative games in which the players (i.e., 

controllers) do not have information about the traffic conditions, actions of other players, and 

respective outcomes (Alvarez & Poznyak, 2010; Ghods et al., 2010). In real traffic networks, this 

information can be available and transferable among controllers through traffic control and 



 

87 

 

management infrastructure. The transfer of information is expected to become seamlessly sharable 

in the near future.  

C) Equity in ramp metering 

In ramp metering, equity is usually considered as a fair distribution of the reduction in 

travel time by ramp metering among on-ramp and freeway users. For instance, local ramp metering 

independently applied to multiple ramps may result in very long queues on some ramps compared 

to others, which is unfair (Papamichail et al., 2010). Another empirical study by Levinson et al. 

(2002) reported that ramp meters were more beneficial for long trips compared to short trips on 

Route 169 in the Twin Cities, Minnesota. This study showed that by implementing ramp metering, 

network users who travel three exits or fewer experience less reduction in travel time, while longer 

distance travelers benefit more, which caused public resistance to ramp metering and raised 

substantial doubts on the overall system effectiveness for users who were experiencing long delays 

on the ramp (Levinson et al., 2002; Levinson & Zhang, 2006; Lei Zhang & Levinson, 2005). Thus, 

it is important to develop ramp metering methods that are able to integrate both system-wide and 

local benefits in determining a ramp metering rate solution. 

A few practical measures in the literature that considered equity factors or RM include a 

lower threshold for ramp metering rates, maximum allowable waiting times, ramp queue overrides, 

and weighted penalties for queue constraints. These practical solutions are shown to provide 

implicitly more balanced solutions to the ramp metering problem in terms of equity considerations 

(Kotsialos & Papageorgiou, 2004; G. Zhang & Wang, 2013). More explicit approaches considered 

weighted travel time optimization, incorporated dynamic penalties, or quantified and optimized 

spatial and temporal equity indexes to achieve some degree of fairness. Most of these studies 

showed measurable success in decreasing inequalities in ramp metering solutions, while the results 
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were highly sensitive to the correct tuning of weight and penalty coefficients or required complex 

grouping and heuristic approaches to solve the ramp metering problem (Khoo, 2011; Meng & 

Ling, 2010; Q. Tian et al., 2012; Lei Zhang & Levinson, 2005). 

 

4.2 Dynamic and cooperative ramp metering approach 

In this study, the problem of cooperative ramp control is formulated to minimize system-

wide travel time while considering the stochasticity of local bottleneck capacity. The freeway 

network is assumed to be continuously monitored and, thus, receives real time data. In addition to 

aggregate speed, density and flow data from point detectors and microscopic trajectory data are 

assumed to be available via vehicle to infrastructure communication (V2I). Thus, connected 

vehicles that are equipped with advanced sensing and communication capabilities will enable 

constant monitoring and exchange of their individual speed and position information with other 

roadside units (RSU) via 5G or DCRC.  

The proposed method is formulated in a model predictive framework. Model predictive 

control (MPC), also known as receding-horizon control, is an online control approach that uses the 

dynamic information provided by infrastructure to optimize proactively a predefined cost function 

while considering the operational (e.g., maximum acceptable waiting time) and physical 

constraints of the system (e.g., queue storage capacity of a ramp).  

MPC-based freeway control approaches are mainly focused on minimizing the total travel 

time on a freeway segment by controlling one or more control variables such as ramp metering 

rates and variable speed limits. Each MPC problem includes three main components: 1) a state-

space model that describes and predicts the dynamic evolution of the system as a function of the 

current state of the system and control actions; 2) a system performance measure, commonly 
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represented by a quadratic cost function; and 3) a set of constraints determined by the operational 

and physical limitations of the system.  

A general centralized MPC problem can be formulated as follows: 

   min ∑ 𝑥 ℎ 1|𝑘 𝑊𝑥 ℎ 1|𝑘 ∑ 𝑢 ℎ 𝑉𝑢 ℎ                             

 s.t:  

  𝑥 ℎ 1 𝑓 𝑥 ℎ , 𝑢 ℎ                

  𝑥 ℎ 1 ∈ 𝑋 , 𝑢 ℎ ∈ 𝑈 

(4.1)

where, 𝑁  and 𝑁  are control and prediction horizons (with 𝑁  ≤ 𝑁 ). To limit the computational 

complexity, a control horizon (Nc<Np) is applied, after which the control variable in the MPC 

does not change. 𝑥 ℎ  denotes the vector for the state of the system at time step ℎ , and 𝑢 ℎ  

shows the control input vector. Diagonal matrices,  𝑊 and 𝑉 with positive diagonal elements, are 

penalty matrices for the rate of change in the state and input parameters, which are responsible for 

preventing abrupt changes in those parameters. 𝑓 𝑥 ℎ , 𝑢 ℎ  is a function describing the time 

evolution of the dynamic system. The centralized MPC problem in (4.1) needs to be solved in real 

time to produce proactive control measures, which makes it impractical for real-life, large-scale 

networks, especially when multiple parameters are being optimized. Distributed model predictive 

control (DMPC) is an effective way to overcome the issue of computational burden in MPC. Thus, 

the ramp metering problem in this research is formulated as a stochastic distributed model 

predictive control (SDMPC). 

As shown in Figure 4.2, once real-time data is collected and entered into the SDMPC, the 

model runs two modules: 1) a traffic state estimation/prediction model so traffic disturbances and 

bottleneck formation are anticipated for a future horizon (Np) before they even occur and 2) a 

game theory-based RM solution algorithm where RM actions are determined through a bargaining 



 

90 

 

game, and remedial and proactive RM control strategies are injected into the system in a rolling 

horizon fashion. In this rolling horizon scheme, only the first optimized RM values are 

implemented. The horizon is then shifted one sample time with new information becoming 

available from the system and fed back to the optimization function. The control time step used in 

this study is 1 minute, meaning that the RM system is able to adjust its rates every minute if 

required. Thus, the whole process is repeated continuously until the end of the simulation.  

 

 

Figure 4.2. Schematic diagram of the proposed SDMPC model and bargaining game solution to 

solve the predictive ramp metering problem 
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In SDMPC, the system is divided into several subsystems that communicate and share 

information to locally solve the MPC control actions, while trying to achieve some degree of 

coordination (Negenborn et al., 2008). As shown in Figure 4.3, the freeway network in this study 

is decomposed into M segments where each segment includes a local ramp controller. 

The state-space model for each segment is formulated as a subsystem with a discrete-time 

stochastic linear state-space model: 

 𝑥 𝑘 1 𝐴𝑥 𝑘 𝐵𝑢 𝑘 𝑤 𝑘  

𝑦 𝑘 𝐶 𝑥 𝑘 𝑣 𝑘  

for 𝑟 1, 2, … 𝑀                    (4.2a)

for 𝑟 1, 2, … 𝑀                    (4.2b)

For each subsystem, the future state of the system is a function of the current local state 𝑥 𝑘  

and the current local control input 𝑢 𝑘 . In the ramp metering context, 𝑥 𝑘  is the vector of 

traffic parameters including flow, speed, and average travel time for the subsystem 𝑟   at time 

step 𝑘 , and 𝑢 𝑘  is the vector of ramp metering rates produced by the respective controller. 

The exact measurements of the state parameters are not available, but they can be estimated using 

the measurement equation 𝑦 𝑘 , and 𝐴, 𝐵, and 𝐶 are the state-space system matrices. The 

measurement noises are represented by 𝑣 𝑘 , and the system disturbances, 𝑤 𝑘 , are assumed to 

capture the combined impact of model uncertainty and exogenous disturbances (e.g., fluctuation 

in demand or collisions) on the state evolutions. 𝑤 𝑘  and 𝑣 𝑘  are assumed to be Gaussian 

white noises with covariances of 𝑄  and 𝑅 . This assumption was tested using a Kolmogorov–

Smirnov test and based on state measurements of various simulation runs as detailed Chapter 3.  
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Figure 4.3. Schematic diagram of DMPC for a freeway segment with the ability to share 

information among controllers 

 

The objective function of the decomposed system (i.e., each ramp meter in the case of this 

research) can be stated as equation (4.3) according to (Portilla et al., 2012; Valencia Arroyave, 

2012; Venkat et al., 2005). The SDMPC problem in (4.3) can be solved by minimizing the expected 

cost of the decomposed system according to Heirung et al. (2018). 

   min 𝐸 ∑ ∑ 𝑥 ℎ 1|𝑘 𝑊 𝑥 ℎ 1|𝑘 ∑ 𝑢 ℎ 𝑉 𝑢 ℎ                 

 s.t:  

  𝑥 ℎ 1 𝑓 𝑥 ℎ , 𝑢 ℎ , 𝑢 ℎ                

  𝐸 𝑥 ℎ 1 ∈ 𝑋  , 𝑢 ℎ ∈ 𝑈  

(4.3)

The term ∑ 𝑥 ℎ 1|𝑘 𝑊 𝑥 ℎ 1|𝑘 ∑ 𝑢 ℎ 𝑉 𝑢 ℎ  indicates the local cost 

function and is referred to as 𝜙 𝐱 𝑘 , 𝐮 𝑘  for simplification in the rest of this chapter. 𝑥 ℎ  

and 𝑢 ℎ  are the local state and control input vectors; 𝑋  and 𝑈  are the local feasible sets for 

𝑥 ℎ  and 𝑢 ℎ , respectively, with 𝑋 ∏ 𝑋  and 𝑈 ∏ 𝑈 , which are the Cartesian products 

of the local feasible sets as expressed in Vanket et al. (2006). The control information as 

disseminated by other controllers is denoted by 𝑢 ℎ . The state constraint is modified to reflect 
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the fact that the state is a stochastic variable. According to Heirung et al. (2018), (Zhou et al., 

2017), the SDMPC problem in (4.3) can be solved for the expected value of the predicted state 

instead of the actual value if the system disturbances are assumed to be Gaussian white noise. 

Thus, the optimal control that minimizes the expected cost can be converted to a deterministic 

optimization problem that treats the state estimate as its actual value, while an AKF that is 

developed to correct the noisy measurements produces the a priori estimate of the state. This 

research uses an extended version of the model based on a stochastic microscopic three-phase 

model, explained in Chapter 3, to estimate and predict traffic flow, speed, and travel time for short 

prediction horizons and for multiple time steps ahead. A brief mathematical formulation of the 

model is presented here.   

4.2.1 Short-term microscopic-based traffic prediction model  

The traffic prediction model in this research uses the Kerner-Kelnov (KK) stochastic 

microscopic model to simulate traffic conditions on a freeway segment in real time. KK is a 

stochastic microscopic three-phase theory-based traffic model that represents stochastic driver 

behaviors and their impacts on traffic behavior, especially in the context of freeway bottlenecks 

(Boris S. Kerner & Klenov, 2003). The details of the KK microscopic model are explained in 

Chapter 3. The following summary is provided for the reader’s convenience. Briefly, vehicles’ 

speed and location information are expected to be obtained from CAVs and other probe vehicles, 

and traffic state parameters, including flow, average speed, and link travel times, are estimated on 

a lane by lane basis as noisy measurements. Stochastic driver behaviors and random deceleration 

and acceleration decisions and their impacts on vehicular motions are considered in this model. 

Whenever a CAV’s simulated coordinate is past the nearest downstream detector location, the 

vehicle is counted, and its speed is recorded. The number of counted vehicles is corrected based 
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on the average penetration rate of CAVs in the previous time intervals and is recorded as a noisy 

measurement of traffic flow. The average travel time from a previous upstream detector for CAVs 

is also recorded for each time interval.  

 An AKF is used to combine the received data from the online simulator with detector 

measurements. When detector measurements become available, estimations are updated, and the 

traffic state is predicted for multiple time intervals ahead. The AKF in this study is based on a 

series of sequential estimators that simultaneously calculate suboptimal adaptive estimations of 

the unknown a priori state and observation noise statistics of the system state based on N past 

observations. The details of The AKF predictor are explained in Chapter 3.  

Choosing the number N of past observations is based on identifying the time frame in 

which the structural changes in traffic state parameters are considered. Review of the literature 

shows a range of sample sizes from N=4 (Ojeda, Kibangou, & de Wit, 2013) to N=20 (Zhou et al., 

2017) of past observations. Considering 10-second observation intervals and after testing sample 

sizes increasing by 10 from N=10 to N=60 and calculating the corresponding minimum mean 

prediction errors, N = 20 and N=30 were selected for the online noise statistics estimations for 

traffic flow and speed parameters, respectively.   

 

4.2.2 Bargaining game solution to the SDMPC problem with stochastic capacity  

In the SDMPC optimization problem in (4.3), each controller finds its local optimized 

action (𝐮 𝑘 ) based on its local cost function 𝜙 𝐱 𝑘 , 𝐮 𝑘  and local constraints, while also 

considering the decisions of other controllers. This situation can be formulated as a multi-player 

game with a set of “rules” defined by the local players and global system model; it also considers 

both operational and physical constraints. The “players” of the game are the controllers, and their 



 

95 

 

desired “strategy” is to minimize the local system-wide control cost function; thus, their “desired 

choices” are the local control actions.  

According to (Nash, 1953; Valencia Arroyave, 2012; Valencia et al., 2015), the bargaining 

and negotiation process of the game needs to be defined by the disagreement point (𝜂 𝑘 ), which 

is defined as the added benefit (i.e., less decrease in local performance) perceived by a player if 

the player decides not to cooperate with the other players; consequently, the player acts solely 

based on their own local benefits. In other words, the disagreement point can be defined as the cost 

or disutility associated with a local alternative action when agreement is not a plausible alternative. 

For instance, in a ramp metering context, the coordinated ramp metering rate that is calculated by 

the SDMPC with the objective of optimizing the total system performance could result in a higher 

link travel time or breakdown occurrence in the vicinity of the local controller compared to what 

is expected by the localized control. In this case, the controller may decide not to cooperate and 

choose a ramp metering rate that better satisfies its local requirements. 

In this framework, the utility of the controller 𝑟 at each time step is defined based on the 

difference between the expected maximum cost of a non-cooperative decision (i.e., disagreement 

point)  𝜂 𝑘 ) and that of the local cost function in the event of a cooperative 

decision  𝜙 𝐱 𝑘 , 𝐮 𝑘 . Thus, each controller tries to find a sequence of actions (𝐮 𝑘 ) that 

maximizes its utility ((𝜂 𝑘 )- 𝜙 𝐱 𝑘 , 𝐮 𝑘 , which is equivalent to a set of actions that 

minimizes 𝜙 𝐱 𝑘 , 𝐮 𝑘  where, 𝜂 𝑘 𝜙 𝐱 𝑘 , 𝐮 𝑘 .  

The solution to the optimization problem in (4.3) is formulated based on maximizing the 

Nash products of the utility functions ∏ 𝜂 𝑘 𝜙 𝐱 𝑘 , 𝐮 𝑘  that can be transformed into 

(4.4) according to Valencia (2012) because log max ∏ 𝑔 𝑘 max log ∏ 𝑔 𝑘

𝑚𝑎𝑥 ∑ log 𝑔 𝑘  for any convex function 𝑔 𝑘 .  
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   𝑚𝑎𝑥 ∑ 𝑊 log 𝜂 𝑘 𝜙 𝐱 𝑘 , 𝐮 𝑘                                  

 s.t:  

  𝑥 ℎ 1 𝑓 𝑥 ℎ , 𝑢 ℎ , 𝑢 ℎ                

   𝜂 𝑘 𝜙 𝑥 𝑘 , 𝑢 𝑘  

   𝑥 ℎ ∈ 𝑋  , 𝑢 ℎ ∈ 𝑈  

(4.4)

where 𝑊  is the weight factor for each controller and ∑ 𝑊 1. The weight can be set to provide 

more priority for a given RM. The function 𝑓 𝑥 ℎ , 𝑢 ℎ , 𝑢 ℎ  is the prediction model 

described in section 4.2.1 and Chapter 3, and it is a function of the current state, inputs from the 

current controller, and inputs from other controllers. The solution of the optimization problem in 

(4.4) is unique and Pareto optimal where no change could improve the satisfaction of one player 

without other players being negatively affected. If the solution to (4.4) is feasible, the first time 

step of the control sequence is applied to the system; otherwise, the non-cooperative alternative is 

chosen as the control action that is inserted into the freeway system. In both cases, the disagreement 

point is dynamically evolved for the next time step as explained in the following section.  

According to the above framework, the freeway control system in this research is divided 

into M distributed parallel subsystems where each subsystem includes an on-ramp and its upstream 

link. Controllers are modeled to minimize the total expected system delays, and the local cost 

function is defined by equation (4.5). 

𝜙 𝐱 𝑘 , 𝐮 𝑘  𝑇 ℎ 𝑇 𝐿 ℎ 𝑉 𝑑 ℎ 𝑑 ℎ 1  (4.5)

Where 𝑇 ℎ  is the average link travel time predicted by the model explained in section 4.2.1 and 

Chapter 3. 𝑇  is the prediction step, and 𝐿 ℎ  is the expected queue length on the ramp obtained 

using the simple queuing model 𝐿 ℎ 𝐿 ℎ 1 𝑇 𝐷 ℎ 𝑑 ℎ  where 𝐷 ℎ  is the 
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ramp arrival inflow, and 𝑑 ℎ  is the metered flow that is allowed to merge onto the freeway (i.e., 

ramp metering rate). 𝑉  is a nonnegative weighting factor that enables the control strategy to 

penalize undesirable abrupt changes in the selected ramp metering rates in two consecutive time 

periods. Thus, the bargaining game for the cooperative ramp metering problem is as follows: 

𝑚𝑎𝑥 ∑ 𝑊 log 𝜂 𝑘 𝜙 𝐱 𝑘 , 𝐮 𝑘                                  

 s.t:  

  𝑥 ℎ 1 𝑓 𝑇 ℎ , 𝐹 ℎ , 𝑑 ℎ , 𝑑 ℎ                

   𝜂 𝑘 𝜙 𝑥 𝑘 , 𝑢 𝑘  

   𝐿 𝐿 ℎ 𝐿  

   𝑑 𝑑 ℎ 𝑑  

(4.6)

Where 𝐿  and 𝐿  are the minimum and maximum queue length on ramp 𝑟 respectively, 

and 𝑑  and 𝑑  indicate the range of the metered flow. 

 

4.2.3 Formulating the disagreement point as a function of the local probability of a breakdown 

occurrence 

The disagreement point needs to incentivize cooperative behavior and enhance the local 

performance of all players. These features can be achieved by dynamically updating the 

disagreement point at each time step of the optimization process as shown in (4.7) (Nash, 1953; 

Valencia Arroyave, 2012; Valencia et al., 2015). Thus, if the solution to (4.6) is feasible (e.g., a 

cooperative decision has been made), the disagreement cost can be reduced to improve the 

performance of the controller at the next time step by increasing the expectation of cooperative 

behavior. Otherwise, the current local control action overrides the solution in (4.6), and the 

disagreement cost increases according to (4.7) to encourage cooperative behavior by expanding 
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the solution space to improve the chance of finding a cooperative set of actions in future time steps. 

The coefficient (𝛼 ) can be either fixed or dynamically changed according to a user’s preference 

of the range of change in local performance and expectations.  

𝜂 𝑘 1
𝜂 𝑘 𝛼 𝜂 𝑘 𝜙 𝐱 𝑘 , 𝐮 𝑘 𝑖𝑓𝜂 𝑘 𝜙 𝐱 𝑘 , 𝐮 𝑘   

𝜙 𝐱 𝑘 , 𝐮 𝑘 𝑖𝑓𝜂 𝑘 𝜙 𝐱 𝑘 , 𝐮 𝑘
 (4.7)

According to (Chun & Thomson, 1990), the bargaining game problem with uncertain 

disagreement points can be solved by replacing the uncertain disagreement point with the expected 

value that represents the loss of local performance, which is evaluated at the current time for an 

unknown future condition. For the ramp metering problem in this research, the disagreement point 

that is the controllers’ expected maximum loss of performance is defined based on the expected 

probability of a breakdown occurrence; this definition considers the stochastic capacity of freeway 

bottlenecks. Further, each controller finds a ramp metering rate that maintains the local probability 

of a breakdown within a determined range considering the predicted traffic states and local 

physical constraints. 

In this research, the dynamic evolution of the disagreement point is projected by increasing 

or decreasing the accepted risk of a breakdown within the determined threshold. In other words, if 

the controller decides to cooperate, the controller tries to improve its local performance in the next 

time step by decreasing its expected level of risk of a breakdown, which is equivalent to lowering 

the local probability of a breakdown. According to the stochastic nature of a breakdown, this 

evolution approach is equivalent to decreasing the disagreement point with a random  

𝛼 ) coefficient at each time step. In contrast, if the controller decides not to cooperate, the 

disagreement point needs to be increased to encourage cooperation in future time steps. Thus, the 

controller increases its expected risk of a breakdown by accepting a higher probability of a 
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breakdown. This higher probability is determined based on the rejected cooperative ramp metering 

rate, the predicted traffic condition for the next time step, and the resulting risk level. The chosen 

ramp metering rate at the disagreement point 𝑑 ℎ ) is used to calculate the disagreement 

point cost function 𝜂 𝑘  by adding the expected average link travel time and ramp waiting time. 

The probability of a breakdown and the desired risk level are calculated by modeling the 

breakdown behavior at merging bottleneck locations. 

 In the metastable condition, traffic breakdowns occur due to speed disturbances that have 

amplitudes larger than the critical amplitude (Kerner, 2002). In other words, when traffic flow is 

high, a smaller speed disturbance can result in a higher probability of a breakdown. The critical 

amplitude is not deterministic and varies with changes in traffic volume; thus, the probability of a 

breakdown in a freeway bottleneck is an increasing function of traffic flow (Elefteriadou et al., 

1995; Persaud et al., 1998). Furthermore, as shown in Nagalur Subraveti et al. (2019) and in 

Chapter 3 of this thesis, speed disturbances at merging bottlenecks initially occur in the right lane 

where merging vehicles enter the freeway and possibly trigger a breakdown, which may propagate 

to other lanes. However, most of the freeway capacity studies model breakdown probabilities 

based on total traffic flow in all lanes. In this study, the probability of a breakdown is calibrated 

and modeled based on both total traffic flow and right lane traffic flow to evaluate the performance 

of the control model. As thoroughly explained in Chapter 2, the Weibull distribution is one of the 

most popular life distributions with a flexible shape that enables it to model a wide range of failure 

events, and it can be theoretically derived as an extreme value distribution (Brilon et al., 2005; 

Reiss and Thomas, 2007; Chow et al., 2009; Heshami et al., 2019). A 2-parameter Weibull 

distribution function is calibrated to represent the stochastic capacity at bottlenecks. The 
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probability density function and cumulative distribution function for the Weibull distribution are 

as follows: 

𝑃 𝐹  𝑒𝑥𝑝                                                                                                                        (4.8) 

𝐶 𝐹 1 𝑒𝑥𝑝                                                                                                                                  (4.9) 

Where 𝜆 and 𝜇 are shape and scale parameters, respectively, and 𝐹 𝐹 𝑑  where 

𝐹  is replaced by 𝐹  if total traffic flow is considered to calibrate the distribution function. 

Further details are presented in Section 4.3.2. 

 

4.3 Numerical analysis 

4.3.1. Baseline scenario network and traffic demand  

The developed cooperative ramp metering approach is applied to a hypothetical freeway 

network of a total length of 15 km. As shown in Figure 4.4, the network consists of a three-lane 

mainstream, three metered on-ramps, ramp 1, ramp 2, and ramp 3 located at the 6 km, 9 km, and 

12 km marks, respectively, and three off-ramps 1 km upstream of each on-ramp. The three-lane 

configuration allows for regenerating the disturbances caused by lane changing activities as 

observed in real world freeway networks. As a trade-off between computational time and 

prediction performance, a 5 second update interval for trajectory data from CAVs is chosen, and 

the data is aggregated over 10-second prediction intervals. The base scenario is defined to replicate 

busy peak period traffic conditions; thus, vehicles enter the freeway according to a random log-

normal distribution function with mean and standard deviations shown in Figure 4.5(a) (X. Chen 

et al., 2010; Kong & Guo, 2016). An intensive analysis to evaluate the sensitivity of the prediction 

results to the market penetration rate of CAVs is conducted earlier in Chapter 3. The results 
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confirmed that the lane by lane and overall traffic state parameters can be reliably predicted with 

10% penetration of CAVs, except for speed in the right lane, which needs a 30% rate. Thus, CAVs 

are randomly tagged based on a 30% market penetration rate for this base scenario. Merging 

vehicles are generated at a uniform average rate that changes over 20-minute time spans as shown 

in Figure 4.5(b). Off- ramps are also modeled in the benchmark model to consider the disturbances 

caused by lane changing maneuvers of exiting vehicles. Vehicles are randomly tagged to exit from 

the off-ramps with exit probabilities of 10% for the first exit, and 20% for the second and third 

exits.  

 

Figure 4.4. Benchmark network with three on-ramps 

 

 (a) Mainstream demand  (b) On ramps demand 

Figure 4.5. Demand scenarios considered in the experiment simulations 
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4.3.2. Stochastic breakdown model  

The probability distribution function for traffic breakdown is analyzed based on 60 random 

simulation runs using the same traffic demand distribution on all runs. Breakdown events are 

identified based on the speed threshold of 70 km/hr, which is selected based on the free flow speed 

(FFS) curves for multi-lane highways and according to prior similar studies (Brilon et al., 2005; 

Elefteriadou & Lertworawanich, 2003; Ozguven & Ozbay, 2008; HCM, 2010) . Pre-breakdown 

flows for the right lane, all lanes, and on the on-ramps are recorded. The empirical cumulative 

distribution function for the summation of pre-breakdown flows and merging flows are plotted and 

smoothed. Based on the observation of the empirical cumulative distribution, smoothed density 

function, and the nature of the sample space of pre-breakdown flows, it is statistically reasonable 

to assume that the sample belongs to an extreme value distribution. The Weibull distribution is 

one of the most popular extreme value distributions with a flexible shape that enables it to model 

a wide range of failure events. Thus, the Weibull distribution is selected in this study to model the 

probabilistic characteristics of breakdown events (Reiss & Thomas, 2007; Heshami et al., 2019). 

The Anderson-Darling and Kolmogorov-Smirnov statistical tests and graphical tools are 

used to fit the proper distribution function to the dataset of pre-breakdown flows and to calibrate 

the model parameters. The statistical tests measure how well data fits a specific distribution. The 

null hypothesis is that data follows a specific distribution, and the p-value, t-statistics, and critical 

values show if the null hypothesis is rejected or not for different significance levels. The analysis 

shows that pre-breakdown total flows and right-lane flows are distributed as two-parameter 

Weibull distribution functions. The results for the statistical analysis and the calibrated distribution 

parameters for both right-lane flows and total flows are shown in Table 4.1 and Table 4.2. The 

estimated probability density and cumulative probability distributions are shown in Figure 4.6. 
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Thereafter, the risk level, defined as the probability of a breakdown, can be determined using the 

cumulative distribution function. In the examined case study, a range of 15% to 50% was chosen 

as the risk level thresholds according to probabilistic ramp metering approaches in the literature 

and the calibrated distribution functions (Elefteriadou et al., 2011b; Trapp, 2016).  

The disagreement point at the first time step is chosen based on an initial risk level of 30%, 

which is equivalent to a cumulative probability of a breakdown of 30%, and it dynamically evolves 

through the bargaining process. For instance, if the current accepted risk level results in achieving 

a cooperative decision, the controller should increase its local performance by accepting a lower 

risk level for the next time step. For the purpose of this case study, a 5% reduction in risk level to 

a minimum of a 15% probability of a breakdown is considered. Due to stochastic traffic behavior, 

this reduction is equivalent to choosing a random (𝛼 ) coefficient in equation (4.7). In contrast, if 

the current risk level and associated disagreement cost do not result in a cooperative solution, the 

controller increases its disagreement point to be equal to the current optimal local cost according 

to (4.7). In this case, the controller rejects the optimum ramp metering rate because it causes a 

higher risk level. Thus, for the next time interval, the rejected ramp metering rate and the predicted 

flow is used to calculate the associated probability of a breakdown based on the probability 

distribution. The calculated probability (risk level) is considered to calculate the next disagreement 

point. If the increased risk level exceeds the maximum threshold of 50%, then the risk level is 

considered to be equal to 50%.     
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Table  4.1 . Kolmogorov-Smirnov (KS) test results for the 2P Weibull distribution of right lane 

pre-breakdown flows 

Pre-breakdown 
flow 

KS       
P-value 

Critical value Shape 
parameter 

𝜆 

Scale 
parameter 

𝜇 𝛼=0.05 𝛼=0.02 𝛼=0.01 

Right-lane flow 0.81 0.17 0.19 0.21 20 2108 

Total flow 0.53 0.17 0.19 0.21 23 5224 

 

Table  4.2. Anderson-Darling (AD) test results for the 2P Weibull distribution of total pre-

breakdown flows 

Pre-breakdown 
flow 

AD       
Statistic 

Critical value Shape 
parameter 

𝜆 

Scale 
parameter 

𝜇 𝛼=0.05 𝛼=0.01 𝛼=0.01 

Right-lane flow 0.19 2.50 3.29 3.91 20 2108 

Total flow 0.68 2.50 3.29 3.91 23 5224 
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(a) 

 (b) 

Figure 4.6. Probability distribution plots for pre-breakdown flows in a) the right lane and b) all 

lanes 

 

4.3.3. Ramp metering results for the Base Scenario - Stochastic capacity based on the right lane 

pre-breakdown flow model 

After calibrating the probability distributions for the stochastic capacity at merging 

bottlenecks, the developed game-theory based ramp metering approach was tested. In the DMPC 

problem, the simulation step (𝑇  was considered to be 10 seconds. The optimal prediction horizon 

(𝑁 ) and control horizon (𝑁 ) were found to be approximately around 6 minutes and 3 minutes, 



 

106 

 

respectively. These horizons allowed the whole response of the system to be considered, while not 

taking the farther future demand too much into account. A larger difference among 𝑁  and 𝑁  

resulted in reduced performance because only the first sample of the optimized solution was 

applied to the system. The metered ramp flow is chosen form the range of 1 to 12 vehicles per 

minute. The benchmark network, online simulation, and traffic prediction and control processes 

were developed and implemented using the Go 1.14 programming language on a 64-bit Windows 

PC with 1.8 GHZ Intel Core-i7 and 16 GB of RAM. Go is a modern language that enables fast 

development and at the same time produces a highly efficient executable on multiple platforms 

(https://go.dev/). Moreover, Go's concurrency construct offers an efficient way of running a large 

number of simultaneous computations. Finally, a Go project can be easily changed to work on 

server or desktop applications, making future development easier.  

An interior point algorithm was used to solve the local optimization problems in the DMPC 

approach. The optimal control was computed and applied to the traffic system every minute. The 

maximum allowable queue length at on ramps was set to 30 vehicles to prevent spillback onto the 

street. Initially, the developed ramp metering model was implemented to model the right-lane flow 

breakdown. The calculated ramp metering rates and the queue evolution on the ramps for the 

implemented control method are shown in Figure 4.7(a) and 4.7(b), respectively. As shown, as 

demand increased, ramp metering switches on, and the queue length on the ramps gradually 

increased to reach approximately the maximum length of 30 vehicles.  
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    (a)                                                                       (b) 

Figure 4.7. Ramp metering rates and queue evolutions 

 

Figure 4.8 compares the evolution of speed, traffic flow, and link travel time for the 

cooperative ramp metering scenario with the no control case. The figure shows that ramp control 

actions are effective in proactively mitigating congested traffic conditions, which delays or even 

prevents the occurrence of traffic breakdowns. The speed evolution on the links in Figure 4.8 

shows that, at the earlier time periods, average speed fluctuates between 60 km/hr and free flow 

speed; these fluctuations in speed indicate merging activities. As merging demand from on-ramps 

increases, traffic breakdown occurs as a bottleneck forms and congestion starts propagating 

upstream on links 2 and 1. Using the cooperative ramp metering measures, the congested patterns 

completely dissolve on link 3, smoothing out traffic patterns on upstream links. This improvement 

results in higher flow rates and lower link travel times compared to the no control case. The 

minimum observed speed is also shown to be higher in the controlled case: the average reported 

speeds are 32, 40, and 56 km/hr for links 1, 2, and 3, respectively, compared to the average speeds 

of 20, 23, and 23 km/hr, respectively, in the no control case. In general, the total time spent on the 

network is reduced by 24% compared to the no control case.  
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In the no control case, as illustrated in the time-space diagrams of vehicle trajectories in 

Figure 4.9 (a), the perturbation in the vicinity of ramp 1 and ramp 2, caused by vehicles slowing 

down or changing lanes, promptly results in the emergence of a wide moving jam propagating 

upstream and triggering traffic to slow down and almost stop. In addition, the propagation of the 

wide moving jam on link 2 results in the further deterioration of traffic conditions on link 1; 

consequently, another wide moving jam is formed on link 1. The congestion, more localized on 

link 3, is mainly due to the capacity drop downstream of the ramp 2 metering mainstream flow 

that approaches ramp 3; however, a considerable delay is still observed.  

Figure 4.9 (b) demonstrates the effectiveness of the cooperative RM measures in damping 

down shockwave propagations over the entire network. For example, congestion on link 3 is 

completely prevented. The perturbance on the freeway in the vicinity of ramp 2 causes a localized 

synchronized flow on a small stretch of the freeway; however, this synchronized flow pattern is 

shown to quickly resolve, and its impacts are not propagated further upstream. Ramp 1 still exhibits 

some perturbation and shows wave formation, but the impact is significantly reduced. In addition, 

a shockwave forms on link 1 because link 1 has a higher mainstream demand compared to the 

other links as 20% of the initial demand exits from each downstream off-ramp. In addition, the 

limited queue storage on the ramp does not allow further increases in the ramp metering rate to 

prevent congestion. Despite this limitation, the time duration of congested conditions and the 

spatial propagation of wide moving jams are both significantly reduced.  
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Figure 4.8. Speed, flow, and link travel time evolutions under the SDMPC ramp metering 

implementation vs. no control case 
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         (a)                                                                   (b) 

 

Figure 4.9. Breakdown behavior on the network under (a) no control and (b) the SDMPC ramp 

metering implementation  

 

4.3.4. Measures of performance: efficiency, effectiveness, and equity  

It has been noted in previous freeway control studies that ramp metering measures may not 

be effective if the ramp queue storage is limited, the capacity and/or density constraints are not 

properly chosen, or traffic flow in the mainstream is too high (Hegyi et al., 2005; Kerner, 2007; 

Papamichail et al., 2010). However, the performance of ramp metering methods has mainly been 

evaluated solely based on their efficiency in reducing delays and vehicle time spent on the entire 

network. To the authors knowledge, the long-term effectiveness of ramp metering methods in 

terms of the number of times that they fail to address congested conditions has not been evaluated 

as a measure of performance. In addition, the few studies that investigated ramp metering 
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performance in terms of equity considerations are mainly focused on an equitable ramp waiting 

times (Meng & Ling, 2010; Papamichail et al., 2010). Therefore, in this research, the performance 

of the proposed model is evaluated based on three critical aspects: efficiency, effectiveness, and 

equity. The focus is on the impacts of stochastic capacity and the cooperative solution algorithm. 

For this purpose, the following scenarios are examined: 

Scenario 1: No control 

Scenario 2: Stochastic capacity based on right lane pre-breakdown flow model (proposed 

base model) 

Scenario 3: Stochastic capacity based on total pre-breakdown flow model 

Scenario 4: Deterministic capacity centralized MPC  

Scenario 5: Deterministic capacity distributed MPC 

Scenario 6: ALINEA  

For the deterministic capacity-based approaches in Scenario 4 and Scenario 5, a capacity of 4700 

vehicles per hour (veh/hr) is considered; this capacity is equivalent to 90% of the most frequent 

observed value of pre-breakdown flow. In Scenario 6, ALINEA (Asservissement 

Line´aired’Entre´e Autoroutie´re) is implemented, which is a widely used method in real on-ramp 

installations. It has been frequently used as a benchmark to compare to other ramp metering 

methods from all categories. ALINEA is a local and responsive feedback control approach that 

has been shown to successfully ameliorate traffic conditions at freeway on-ramps, especially when 

the admissible queue length on the ramp is unlimited or extremely large (Papamichail et al., 2010). 
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A) Efficiency evaluation 

The efficiency of the implemented scenarios is evaluated in terms of average travel time 

(seconds) and the total time spent (TTS) (veh.hr). In Figure 4.10, the evolution of the average 

travel time for the implemented scenarios is plotted for comparison. All control scenarios show 

significant improvement in terms of average travel times compared to the no control case. While 

scenarios 2 and 3 are both stochastic capacity-based methods, scenario 2, which considers the 

right-lane breakdown model, performs slightly better. Scenarios 4 and 5 are both deterministic 

capacity-based approaches, but the centralized MPC approach in Scenario 4 reduces average travel 

time more than in scenario 5. ALINEA successfully performs: it has similar results to scenarios 2 

and 3 until around t=60 min. Increasing traffic demand significantly reduces the efficiency of 

ALINEA because each independent ALINEA responds to the congested condition when it reaches 

its area and is detected by the feedback detectors, which may result in a late response; in the 

meantime, congestion starts to propagate upstream. In addition, the limited ramp queue storage 

prevents ALINEA from mitigating the congestion.  

 

Figure 4.10. Average travel times for the examined control scenarios 
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To better compare the performance of the implemented scenarios, TTS on the network by 

mainstream and merging vehicles, including waiting times on the ramps, are calculated. Table 4.3 

presents the TTS and the % improvement for each of the examined scenarios. According to the 

results, TTS is reported as 680 (veh.hr) for scenario 2 and 725 (veh.hr) for scenario 3; therefore, a 

5% increase in efficiency when a right-lane breakdown probability is assumed. This outcome 

indicates the superior performance of the right-lane pre-breakdown model in proactively capturing 

stochastic breakdown behavior. Thus, the controllers in this scenario can make more timely and 

efficient ramp metering decisions. Overall, Table 4.3 reports that scenario 4 shows the best 

performance in terms of TTS because it improved by 27% compared to the no control case; this 

improvement is 3% higher than that obtained by the SDMPC approach. The higher efficiency in 

scenario 4 is mainly due to the centralized framework, which finds a system-wide optimal solution 

to the ramp metering problem. ALINEA shows less improvement in TTS because it tries to 

maintain downstream density at approximately the critical density by preventing merging vehicles 

on the ramp for as long as necessary. Consequently, ramp queues reach their maximum length 

most of the time, which increases ramp waiting times.   

 

Table  4.3. Total time spent on the freeway network in the examined scenarios 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

TTS (Veh.hr) 891 680 725 653 772 789 

SD of TTS - 24 39 - - - 

Improvement Benchmark 24% 19% 27% 14% 12% 
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B) Effectiveness evaluation 

Effectiveness is usually defined as producing the intended or expected outcomes 

consistently and sustainably over time (Drucker, 1963; Griffin & Moorhead, 2010; McDonough 

and Braungart, 2013). For traffic control methods, a certain method is considered effective if it 

successfully improves traffic conditions for the given assumptions and constraints over long-term 

operation; efficiency elaborates on the level of improvement with a short-run perspective. As 

mentioned earlier, ramp metering measures may not be always successful because of physical 

constraints or inadequate capacity. To be more specific, due to the uncertain behavior of freeway 

capacity at merging bottlenecks, assuming a deterministic value for capacity may result in the 

underutilization of infrastructure or, in extreme cases, failure of the control measure when larger 

capacities are considered. Thus, due to the stochastic nature of traffic demand and supply (e.g., 

capacity), the performance of control measures in responding to traffic conditions may not be 

consistent over different periods of freeway operation. In other words, despite control actions, 

breakdowns may still occur because of various uncertainties. For this research, effectiveness is 

defined as the number of breakdown events that occur during each scenario.  

Sixty random simulation runs were conducted using the stochastic microscopic simulation 

model. The simulation runs represented 60 peak periods over the course of freeway operation. In 

the no control case (scenario 1), breakdowns occurred in all simulation runs on link 1 and in 52 

out of 60 simulation runs on link 2. The number of breakdowns decreased for link 3 despite the 

same ramp demand as other locations. The absence of a breakdown on ramp 3 could be explained 

by the capacity drop phenomena at the upstream bottlenecks, which metered traffic flow and 

density on link 3. In addition, a portion of the initial demand exited the network from three 

upstream off-ramps, further reducing the mainstream demand at the location of the third 
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bottleneck. Overall, considering 180 situations in which a breakdown could occur during the 60 

simulation runs and 3 bottlenecks, 148 breakdown events were observed, which was equivalent to 

82% of all possibilities.  

When ramp metering measures were implemented, the number and duration of breakdown 

events were significantly reduced for all scenarios; however, a number of congested patterns were 

still observed. In these cases, the control actions were considered to be insufficient (i.e., they failed) 

if the improvement in the average link travel time compared to the no control case was less than 

5%; in this case, the scenario was considered as a breakdown occurrence. Table 4.4 presents the 

number of breakdowns, according to the above definition, for each link during the 60 simulation 

runs. In general, the stochastic capacity-based approaches with bargaining game solution 

(scenarios 2 and 3) were shown to be more effective; these scenarios experienced a failure rate of 

17% (scenario 2)  and 21% (scenario 3) in the control actions out of the total breakdown 

possibilities because the approaches more realistically model actual breakdown behavior. As 

indicated in Table 4.4, scenario 2 showed the best performance in terms of stopping and dissolving 

congestion. The effectiveness of scenario 2 was attributed to three main characteristics of the 

proposed model: i) lane by lane predictions resulted in a more timely and precise anticipation of 

traffic state, ii) the bargaining game solution locally prevented breakdowns when necessary, and 

iii) the stochastic capacity considerations especially as a function of merging and right lane 

activities captured probabilistic breakdown behaviors. Interestingly, ALINEA had a lower 

breakdown ratio (24%) compared to scenarios 4 and 5 even though its efficiency was lower due to 

larger queueing times. The main reason for this result could be the less sensitivity of ALINEA to 

uncertain capacities because it targeted critical occupancy instead. Consequently, ALINEA was 

more successful than the approaches in scenarios 4 and 5 in preventing breakdowns over several 
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periods of operation despite the approach lacking the predictive and coordinative features of the 

other approaches. 

 

Table  4.4. Number of breakdown events that occurred during the 60 simulation runs for all 

scenarios 

Control cases 
Number of breakdown events 

Link 1 Link 2 Link 3 Total number Total percentage 

Scenario 1 60 52 36 148 82% 

Scenario 2 13 10 8 31 17% 

Scenario 3 14 13 11 38 21% 

Scenario 4 12 25 10 47 26% 

Scenario 5 16 20 15 50 28% 

Scenario 6 21 15 8 44 24% 

 

C) Equity evaluation 

Most studies in the literature focused on achieving equity over each control cycle and 

equitable waiting times in ramp queues. Papamichail et al. (2010) considered average time for 

queuing and traveling 6.5 km downstream as measures of equity over the control period; they also 

considered a more balanced travel time among all controlled ramps to be a more equitable solution. 

A few studies tried to achieve an optimal weighted travel time or optimal equity index over each 

control cycle (Khoo, 2011; Meng & Ling, 2010; Q. Tian et al., 2012; Lei Zhang & Levinson, 

2005), but long-term equity impacts of ramp metering have not been evaluated in any of these 

studies. In this research, the equitability of the proposed ramp metering is evaluated from two 

aspects. First, short-run equity is evaluated in terms of the average value of the sum of queueing 
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time on each ramp and travel time to the downstream ramp location. This evaluation measure of 

ramp equity is similar to the one used by Papamichali et al. (2010). The second aspect, which is 

unique to this research, is expressed in terms of the fair distribution of the impacts of RM strategies. 

This aspect can be expressed in terms of the frequency of occurrence of failed control actions 

among controllers. These measures are included because failures are unavoidable due to the 

stochastic nature of traffic demand and supply. In other words, with certain control measures, some 

ramps may become congested more frequently than others for the sake of system optimality. Thus, 

an RM scheme is fairer when it results in a fair distribution of failure occurrences. 

Figure 4.11 presents the average times for queuing and traveling to the downstream ramp 

for all scenarios. In general, the evaluated travel time shows some degree of balance among all 

ramps for all MPC-based scenarios compared to the no-control and ALINEA scenarios. This result 

is achieved by distributing the burden of travel time reduction among controllers through 

coordinated ramp metering and the imposed queue constraints. The bargaining game-based 

methods (scenarios 2, 3, and 5) show more balanced results compared to the centralized MPC 

(scenario 4), this balance is gained by the incentive-based cooperation among controllers. This 

fairness, however, is achieved at the expense of a lower TTS improvement in scenarios 2, 3, and 

5, compared to scenario 4, since equity and efficiency are partially competing properties.  
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Figure 4.11. Average queuing waiting times plus traveling downstream link 

 

Long-run equity properties of the implemented scenarios are evaluated in terms of the 

balanced distribution of the number of failed ramp metering solutions produced by the scenarios; 

failure is considered as a travel time reduction of less than 5% compared to the no control case. 

Stochastic characteristics of traffic demand and supply cause inconsistencies in the control 

outcomes in real world applications, while no studies to date have evaluated inadequacies as a 

measure of fairness. Table 4.4 indicates the number of breakdowns for each link over the 60 

simulation runs. While the total number of breakdowns is considered as a measure of effectiveness 

of the implemented scenarios, the balance of these numbers among controllers can be considered 

as an equity measure. These measures can indicate equity for regular commuters that frequently 

enter the network from a specific ramp by identifying how often the commuters encounter 

congestion compared to commuters who enter from other ramps. As shown in Table 4.4, in 

scenarios 2 and 3, there is a balance among the number of breakdown events among controllers 

within a range of 8 to 13 and 10 to 14 breakdowns, respectively. Thus, these scenarios are more 
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equitable solutions compared to scenario 4, which has a wide range (10 to 25) in the number of 

breakdowns for different ramps. For instance, in scenario 4, over the course of 60 periods (e.g., 

days), vehicles merging from ramp 1 are likely to experience congestion 25 times on link 2 due to 

the failure of the downstream controller; this number is around 10 times for vehicles entering from 

ramp 3 over the same period of operation. This inequality in scenario 4 is mainly caused by the 

imposed deterministic capacity, which results in the MPC model not adequately handling dynamic 

and stochastic breakdown behavior. ALINEA also fails to perform in terms of long-run equity.   

In general, the simulation results show that the proposed DMPC with the bargaining game 

solution (Scenario 2) outperforms the centralized MPC and uncoordinated ALINEA in terms of 

short-run and long-run equity and effectiveness measures. However, this superiority is achieved 

by compromising system-wide efficiency in terms of total time spent on the network; in other 

words, there is an approximate 3% loss of performance. The cooperative properties of the 

bargaining game-based approach attain higher equity and effectiveness performance by facilitating 

communication among the controllers: each controller receives the traffic state and decision 

information from other controllers. In contrast, in the centralized MPC of scenario 4, the optimized 

solution is calculated based on a controller’s assumption of the decisions of other controllers and 

not the actual data from the other controllers; consequently, the solution may be less effective. In 

addition, the ability of the controllers to determine their expected local costs based on the 

probabilistic breakdown model and their potential to make local decisions improves the 

effectiveness of the proposed approach.  
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CHAPTER 5:  SUMMARY OF RESEARCH FINDINGS AND CONCLUSIONS 

This chapter presents a summary of the research, concluding remarks and provides 

potential directions for novel research. Sections 5.1, 5.2 and 5.3 share an overall research summary 

and the key findings related to Chapters 2, 3 and 4. The areas that may be of interest for future 

study are suggested in Section 5.4. 

 

5.1 Research contributions and findings on deterministic and stochastic freeway capacity 

modeling 

The definition, estimation, and stochastic nature of freeway capacity were abundantly 

investigated in previous studies. However, the influence of weather conditions on the stochasticity 

of freeway jam density and capacity and its distribution were not thoroughly examined. The main 

contributions of Chapter 2 were as follows:  

1) Modeling and calibration of deterministic capacity under various weather 

conditions. The calibrated segmented regression algorithm calculates a break-point in the data set 

based on an iterative calculation process, which is the point of slope change in the triangular 

regression (critical density). The advantage of using this algorithm compared to previously 

developed fundamental diagram regression models is that in this segmented regression approach 

the calibration is completely based on the statistical analysis of the whole data set ; thereby 

avoiding imposing statistically biased thresholds to divide the data set into the free flow and 

congested sections. 

 Fixed values of capacity were first derived from the fundamental diagrams; then the 

impact of weather conditions on the maximum hourly flow, the distribution of capacity and jam 

densities were investigated. The results showed that, even if the deterministic value is considered, 
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the effect of weather conditions on capacity and jam density is statistically significant and may not 

be ignored due to their considerable fluctuations under different weather conditions. 

2) Modeling and calibration of probabilistic capacity under various weather 

conditions. The stochastic capacity of the freeway was also explored based on analyzing the 

frequency of different pre-breakdown flows. A Weibull distribution function was calibrated for 

each type of weather conditions (i.e. snow, rain, clear, etc.). The statistical analysis showed that 

the difference among the parameters of the distributions are significant for different weather 

conditions.  

 

5.2 Research contributions and findings on short-term traffic prediction in a connected 

vehicle environment 

Chapter 3 presented a traffic state prediction approach based on a stochastic microscopic 

three-phase model. The model consists of three modules: 1) online simulation, 2) data fusion and 

prediction, and 3) spatial-temporal traffic pattern tracking and prediction. The developed model 

utilizes speed and location information from floating vehicle data (e.g., probes and CAVs) to 

estimate traffic state parameters based on a stochastic microscopic model. These estimated traffic 

parameters are then fused with fixed detector measurements using an AKF to obtain traffic state 

predictions on a lane by lane basis over a short time horizon. This predicted information is in turn 

used to dynamically track and predict the spatial-temporal congestion patterns.  

The developed model contributes to the body of knowledge as follows: 

1) Developing a short-term microscopic-based traffic prediction model that 

incorporates the stochasticity of driver behaviors. The developed microscopic model considers 

stochastic driver behaviors such as lane changing, over acceleration, and speed adaption effects. 
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These microscopic decisions are the main triggers of traffic breakdowns on freeways. 

Additionally, rather than using historical traffic data, the model uses information from previous 

time intervals to continuously self-adapt and calibrate its error parameters once predicted 

information becomes available as measurements; thereby increasing the model’s efficiency for 

online applications.  

2) Predicting the traffic parameters on a lane by lane basis and predicting the lane by 

lane spatiotemporal congestion patterns. The developed prediction model produces lane by lane 

predictions of traffic parameters which include traffic flow and speed on a lane by lane basis, 

predicted link travel time, and predicted spatiotemporal congested patterns. This information can 

be used as critical inputs to trigger proactive freeway and lane management control measures. The 

developed model relies on emerging data collection technologies (e.g. CAV) to reproduce and 

predict the desired microscopic/macroscopic traffic flow characteristics and spatiotemporal 

patterns lane by lane. This lane-based information can be transmitted to other CAVs or road 

infrastructure to activate control actions needed to proactively delay or even prevent the 

propagation of congested traffic patterns.  

3) Addressing the inconsistency of measurement problem generated by the multi-type 

sensors (i.e. detector and CAV data) by the utilization of the adaptive Kalman filtering (AKF) 

method. A unique characteristic of the developed model is combining the complementary aspects 

of both the theoretical model-based and data-based approaches to synergize the levels of accuracy 

and efficiency of the outcomes. More specifically, the proposed model carries the explanatory 

power of the model-based microscopic traffic, which enables the model to reconstruct and predict 

recurrent and non-recurrent traffic through an online simulator. Meanwhile, its efficient recursive 
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and adaptive process enables lane by lane traffic parameters prediction for short horizons with 

parallel accuracy to that of data-driven models, yet without similar intensive data requirements.  

The results of the developed approach are shown to outperform those of the benchmark 

time series-based prediction models. The predictions are tested under several scenarios with 

numerous simulation runs to determine their performance. The examined scenarios include 1-

minute and 2-minute prediction intervals and different levels of market penetration rates of CAVs. 

The rigorous analysis carried out shows that the proposed model-based traffic prediction method 

predicts traffic state parameters for short time intervals of 1 minute with an accuracy comparable 

to that of data-driven models.  

Lane by lane and overall traffic state parameters are shown to be reliably predicted when 

combined information from fixed sensor data with only 10% penetration of CAVs; however, a 

similar level of reliability of prediction could not be obtained for the resulting speed predictions 

for the right lane. These outcomes can be explained by the stochasticity of drivers’ behavior when 

driving in the right lane and the need to take more frequent decisions pertaining to merging, 

deceleration, and speed adaption. Yet, the comparison of the results with SARIMA+KF and 

SARIMA+GARCH+AKF benchmark models showed the superiority of the proposed method 

especially in terms of speed predictions. 

The key findings showed that it is important that lane by lane traffic state predictions are 

examined due to the various mechanisms in the emergence and propagation of congested patterns 

in different lanes of freeways. The results of the runs clearly show the considerable time lag 

between the onset of a breakdown in the right lane compared to the later overall speed breakdown 

at a bottleneck.  
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The other unique contribution is the spatial-temporal congested traffic patterns that are also 

predicted on a lane by lane basis. The results demonstrated that the proposed model reliably 

reproduces and predicts synchronized flow and wide moving jams, including jam fronts and wave 

speeds in the right lane. However, the outputs do not seem promising for other lanes, especially in 

identifying wide moving jams. More work needs to be conducted in the future to improve that. 

 
 
 

5.3 Research contributions and findings on cooperative ramp metering in a connected 

vehicle environment 

In Chapter 4, a dynamic predictive and cooperative ramp metering approach that considers 

the stochastic behavior of freeway capacity in terms of total flow and right lane flow breakdown 

probability models is developed. In this chapter, the ramp metering problem is modeled based on 

a distributed model control algorithm, which is solved based on a bargaining game approach. In 

the bargaining game, each controller, a player in the game, solves the local optimization problem 

simultaneously based on its own costs and constraints and the information received from the other 

controllers.  

1) Developing a predictive and cooperative ramp metering model based on a 

distributed model predictive control approach. The developed distributed model facilitates the 

communication among controllers. Based on the received information, the local RM controller can 

choose not to cooperate based on the expected local probability of a breakdown because avoiding 

a local breakdown is considered a higher local priority compared to minimizing total system travel 

time. This unique property allows for a more equitable distribution of breakdown events, while 

seeking system-wide efficiency. In other words, the proposed approach maintains the effectiveness 

of local control decisions and achieves system-wide efficiency whenever it is possible. 
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The performance of the proposed model is evaluated and compared based on six scenarios: 

no control, stochastic capacity based on a right lane pre-breakdown flow model, stochastic capacity 

based on a total pre-breakdown flow model, deterministic capacity-based centralized MPC, 

deterministic capacity-based distributed MPC, and a local feedback control (ALINEA). The 

performances of the scenarios are evaluated and compared based on efficiency, effectiveness, and 

equity considerations.  

The results showed that the proposed model consistently outperforms the deterministic 

capacity-based models in terms of effectiveness and equity of the ramp metering solutions. 

Effectiveness is defined in terms of the control method’s ability to improve traffic conditions,  

consistently, under dynamic and changing traffic behavior over operation periods; whereas the 

efficiency measure elaborates on the level of improvement.  

In this research, effectiveness is introduced as a novel measure of performance, and it is 

evaluated based on the number of failed control actions. Equity is measured based on a more 

balanced distribution of the failures and queuing and travel time among controllers. In respect to 

efficiency, defined as a reduction in total time spent on the network, the centralized approach is 

shown to perform slightly better than the proposed model (3% more reduction in TTS). Thus, the 

proposed bargaining game theory approach is capable of finding solutions with a balanced trade 

off between equity and efficiency. In other words, the developed approach successfully addresses 

the equity and effectiveness issues in RM without sacrificing efficiency. 

 

5.4 Future extensions 

Based on the outcomes of Chapter 2, it is suggested that the stochastic behavior of freeway 

capacity under various weather conditions be modeled, and the appropriate probabilistic model be 
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selected based on the real-time weather condition reports. For future studies, the proposed 

approach can be further combined with reliability analysis of probabilistic capacity. Such analysis 

can help traffic engineers select the most appropriate quantile of the probabilistic model based on 

the desired level of service. Another potential research subject is using the same data set in hazard 

functions to predict the time of breakdown occurrence. In addition, previous studies have shown 

that the freeway capacity may change according to the vehicle mix and the proportion of heavy 

vehicles to standard vehicles; thus, evaluating their impacts on the probabilistic behavior and 

distribution of freeway capacity would be an interesting area to explore.  

There are several research directions that can be recommended for future research 

according to the outcomes of Chapter 3. The next step of this research should include the validation 

of the model performance using a different microscopic traffic simulation model or real observed 

data (e.g. NGSIM). In this research, CAVs are assumed to have similar driving behavior as human 

driven vehicles. In heavy traffic, CAV driving behavior also influence and impact non-equipped 

vehicles travelling nearby which have to mirror their driving behavior. An extension of this work 

should incorporate distinct car-following and lane-changing models for CAV and human driven 

vehicles. In future studies, more advanced AKF methods, such as correlation techniques that can 

produce unbiased estimations of noise statistics can be investigated in the context of real-time 

traffic prediction problems. In addition, application of other advanced filtering approaches that are 

able to handle various error distributions (e.g. particle filters) is another promising approach to 

explore. 

A potential extension to the ramp metering model in Chapter 4 is to consider other equity 

concerns that can be modeled using the definition of disagreement point or unequal weight factors 

of the utility function of the bargaining game. Integrating multiple control measures such as 
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variable speed limit and ramp metering using the proposed bargaining game framework is another 

interesting addition that may have a synergetic effect reducing the number of failure events in 

freeway congestion control strategies. 
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APPENDICES 

Appendix I 

A possible parameterization to model segmented relationship between the response and 

the variable 𝑍 is to fit the terms: 

𝛼𝑍 𝛽 𝑍 𝜑  

where 𝜑 is the break-point and 𝑍 𝜑 = 𝑍 𝜑 𝐼 𝑍 𝜑  being 𝐼 𝐴 1 if 𝐴 is true. 𝛼 is 

the slope of the left line segment (for 𝑍 𝜑 , and 𝛽 is the difference in slopes; thus, (𝛼 𝛽) is 

the slope of the right segment an if the break-point exist, |𝛽| 0.  Note that the loge-likelihood 

is not differentiable at  𝑍 𝜑.  

The key in fitting segmented regression by means of the linearization is that relevant first 

order Taylor’s expansion around 𝜑  holds exactly, provided that 𝜑   is the break-point: 

𝑍 𝜑 𝑍 𝜑 𝜑 𝜑 1 𝐼 𝑍 𝜑  

where 1 𝐼 𝑍 𝜑  is the first derivative of 𝑍 𝜑  assessed in 𝜑 . There fore the 

algorithm at each step 𝑠 is: 

1. Fix 𝜑  and calculate 𝑍 𝜑  and 1 𝐼 𝑍 𝜑 . 

2. Fit the model as: 𝛼𝑍 𝛽 𝑍 𝜑 𝛿 1 𝐼 𝑍 𝜑 . Coefficient 𝛿 measures the 

difference between the two fitted straight lines (before and after  𝜑  (s)) at 𝑍 𝜑 . 

3. Improve the break-point estimate by (𝜑 𝜑 . 

4. Repeat the process until convergence.  
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Appendix III 

Simulation program: 

 
#-----------------------NEW FILE--------------------------- sim/cmd/csv/main.go 
package main 
import ( 
"encoding/csv" 
"flag" 
"fmt" 
"io" 
"io/ioutil" 
"log" 
"os" 
"path/filepath" 
"sim" 
"sim/common" 
"sim/controller" 
"sim/placer" 
"sim/simulator" 
"sort" 
"strconv" 
"strings" 
) 
const ( 
top = "a_top" 
mid = "b_mid" 
bot = "c_bot" 
ramp = "d_rmp" 
exit = "e_exit" 
) 
var rampStarts = make([]float32, 0) 
var exitStarts = make([]float32, 0) 
var exitProbs = make([]float32, 0) 
var detectorDelta = float32(0) 
var confPath string 
var outPath string 
var adjustDelta float32 
func main() { 
os.Remove("./out.log") 
w, _ := os.OpenFile("./out.log", os.O_CREATE|os.O_RDWR, 0755) 
log.SetOutput(w) 
p1 := flag.String("p", "./", "the path for config.csv and poisson_rate.csv") 
p2 := flag.String("o", "./", "the path for outputs") 
flag.Parse() 
if len(*p1) == 0 || len(*p2) == 0 { 
log.Println(*p1, *p2) 
flag.Usage() 
os.Exit(0) 
} 
confPath = *p1 
outPath = *p2 
f1, err := os.Open(filepath.Join(confPath, "config1.csv")) 
if err != nil { 
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log.Fatalf("Could not open csv file: %v", err) 
} 
defer f1.Close() 
f2, err := os.Open(filepath.Join(confPath, "config2.csv")) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f2.Close() 
f3, err := os.Open(filepath.Join(confPath, "ramps.csv")) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f3.Close() 
r1 := csv.NewReader(f1) 
_, err = r1.Read() 
r2 := csv.NewReader(f2) 
_, err = r2.Read() 
r3 := csv.NewReader(f3) 
_, err = r2.Read() 
if err != nil { 
log.Fatalf("Could not read csv file: %v", err) 
} 
sim1 := &sim.Config{} 
sim2 := &sim.Config{} 
for { 
record, err := r1.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Fatal(err) 
} 
parseProperty(record, sim1) 
} 
for { 
record, err := r2.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Fatal(err) 
} 
parseProperty(record, sim2) 
} 
for { 
record, err := r3.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Fatal(err) 
} 
parseRamp(record) 
} 
adjustExitProbs() 
sim1.OutDir = filepath.Join(outPath, "run1_report1") 
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sim1.OptimizeDir = filepath.Join(outPath, "run1_report3") 
sim1.ExitPositions = exitStarts 
sim1.ExitProbabilities = exitProbs 
sim2.OutDir = filepath.Join(outPath, "run1_report2") 
sim2.OptimizeDir = filepath.Join(outPath, "run1_report3") 
sim2.ExitPositions = exitStarts 
sim2.ExitProbabilities = exitProbs 
run1(*sim1, *sim2) 
sim1.OutDir = filepath.Join(outPath, "run2_report1") 
sim1.OptimizeDir = filepath.Join(outPath, "run2_report3") 
sim2.OutDir = filepath.Join(outPath, "run2_report2") 
sim2.OptimizeDir = filepath.Join(outPath, "run2_report3") 
run2(*sim1, *sim2) 
} 
func run1(conf1 sim.Config, conf2 sim.Config) { 
log.Println("------------> Running the simulation with optimized light.") 
toRemove := make([]string, 0) 
pattern, _ := filepath.Glob(conf1.OutDir + "*") 
toRemove = append(toRemove, pattern...) 
pattern, _ = filepath.Glob(conf2.OutDir + "*") 
toRemove = append(toRemove, pattern...) 
pattern, _ = filepath.Glob(conf2.OptimizeDir + "*") 
toRemove = append(toRemove, pattern...) 
for _, dir := range toRemove { 
os.RemoveAll(dir) 
} 
conf1.UseAlwaysGreen = false 
conf2.UseAlwaysGreen = false 
reports := initialSim(conf1, conf2) 
sort.Strings(reports) 
} 
func run2(conf1 sim.Config, conf2 sim.Config) { 
log.Println("------------> Running the simulation with always green light and the same seed.") 
toRemove := make([]string, 0) 
pattern, _ := filepath.Glob(conf1.OutDir + "*") 
toRemove = append(toRemove, pattern...) 
pattern, _ = filepath.Glob(conf2.OutDir + "*") 
toRemove = append(toRemove, pattern...) 
pattern, _ = filepath.Glob(conf2.OptimizeDir + "*") 
toRemove = append(toRemove, pattern...) 
for _, dir := range toRemove { 
os.RemoveAll(dir) 
} 
conf1.UseAlwaysGreen = true 
conf2.UseAlwaysGreen = true 
sim.HasPresetSeeds = true 
reports := initialSim(conf1, conf2) 
sort.Strings(reports) 
} 
func initialSim(conf sim.Config, conf2 sim.Config) []string { 
os.RemoveAll(conf.OutDir) 
os.MkdirAll(conf.OutDir, 0755) 
lInfo := getLaneCopy(conf) 
setGenRates(lInfo, conf) 
dInfo := getNormalDetectorsCopy(conf) 
linkInfo := getLinkCopy(conf) 
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iCP := placer.NewNormalPlacer(conf) 
for _, l := range lInfo { 
log.Println(l.ID, l.Name, "Start:", l.Start, "End:", l.End) 
} 
s := simulator.NewInitialSim(lInfo, dInfo, linkInfo, iCP, conf) 
s.SetOtherSimulator(flowPredictSim, conf2) 
s.Simulate() 
return nil 
} 
func flowPredictSim(probeInfoPaths []string, conf sim.Config, outDir string, simulationDuration float32) 
*sim.OptimizerDecision { 
conf.SimulationDuration = simulationDuration 
os.RemoveAll(outDir) 
os.MkdirAll(outDir, 0755) 
lInfo := getLaneCopy(conf) 
setExactForLanes(lInfo, probeInfoPaths, conf, conf.SnapshotIncrement) 
dInfo := getNormalDetectorsCopy(conf) 
baseReport1Path := filepath.Dir(probeInfoPaths[0]) 
setPredictDetector(dInfo, baseReport1Path, conf) 
linkInfo := getLinkCopy(conf) 
iCP := placer.NewRespectfulPlacer(conf) 
s := simulator.NewFlowSim(lInfo, dInfo, linkInfo, iCP, conf) 
decision := s.Simulate() 
s.Save(outDir) 
return decision 
} 
func setGenRates(lInfo []simulator.LaneInfo, conf sim.Config) { 
ratesDir := filepath.Join(confPath, "rates") 
rates, err := ioutil.ReadDir(ratesDir) 
if err != nil { 
log.Fatalf("Could not read dir info: [%v]", err) 
} 
for _, r := range rates { 
idx := -1 
rType := "" 
if strings.HasPrefix(r.Name(), top) { 
idx = 0 
rType = r.Name()[len(top)+1 : strings.Index(r.Name(), ".")] 
} else if strings.HasPrefix(r.Name(), mid) { 
idx = 1 
rType = r.Name()[len(mid)+1 : strings.Index(r.Name(), ".")] 
} else if strings.HasPrefix(r.Name(), bot) { 
idx = 2 
rType = r.Name()[len(bot)+1 : strings.Index(r.Name(), ".")] 
} else if strings.HasPrefix(r.Name(), ramp) { 
rIdxLen := strings.Index(r.Name()[len(ramp):], "_") 
rIdx, err := strconv.Atoi(r.Name()[len(ramp) : len(ramp)+rIdxLen]) 
if err != nil { 
log.Fatalf("Incorrect ramp id: [%v]", err) 
} 
idx = getIthRampID(rIdx) 
rType = r.Name()[len(ramp)+1+rIdxLen : strings.Index(r.Name(), ".")] 
} else { 
continue 
} 
speed := fmt.Sprintf("%f", conf.MaxFreeFlowSpeed) 
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if idx >= 3 { 
speed = fmt.Sprintf("%f", conf.MaxFreeFlowSpeedOnRamp) 
} 
lInfo[idx].Gen = map[string]string{"name": rType, "speed": speed, "path": filepath.Join(ratesDir, r.Name()), "col": 
"1"} 
} 
} 
func setExactForLanes(lInfo []simulator.LaneInfo, probeInfoPaths []string, conf sim.Config, interval float32) { 
for i := 0; i < len(lInfo); i++ { 
lInfo[i].Gen = map[string]string{"name": "exact", "path": probeInfoPaths[i], "interval": fmt.Sprintf("%.1f", 
interval)} 
} 
} 
func setPredictDetector(dInfo []simulator.DetectorInfo, baseReport1Path string, conf sim.Config) { 
for i := 0; i < len(dInfo); i++ { 
dInfo[i].DType = "predict" 
dInfo[i].Path = filepath.Join(baseReport1Path, fmt.Sprintf("report-detector-%d.csv", i)) 
} 
} 
// merging lanes visual: 
// -\-----\--------------------Start----------------d0----------/------------/-------d1--|----\-----\--------------------Start-------------
---d6----------/------------/-------d7----- 
// \-----\d5-------| /-----d4---------d2---------/d3----------/ | \-----\d11------| /-----d10--------d8---------/d9----------/ 
// /------/ controller | /------/ controller 
// /------/ | /------/ 
func getNormalDetectorsCopy(conf sim.Config) []simulator.DetectorInfo { 
dInfo := []simulator.DetectorInfo{} 
id := 0 
for i, start := range rampStarts { 
startOfMerge := start + conf.NonMergingRampLength + conf.MergingRampLength 
endOfMerge := start + conf.NonMergingRampLength + conf.MergingRampLength + conf.MergingRegionLength 
startOfParallel := start + conf.NonMergingRampLength 
dInfo = append(dInfo, simulator.DetectorInfo{ 
ID: id, 
DType: "normal", 
Pos: startOfMerge - detectorDelta, 
}) 
id++ 
dInfo = append(dInfo, simulator.DetectorInfo{ 
ID: id, 
DType: "normal", 
Pos: endOfMerge + adjustDelta*detectorDelta, 
}) 
id++ 
dInfo = append(dInfo, simulator.DetectorInfo{ 
ID: id, 
DType: "normal", 
Pos: startOfMerge - detectorDelta, 
}) 
id++ 
dInfo = append(dInfo, simulator.DetectorInfo{ 
ID: id, 
DType: "normal", 
Pos: startOfMerge, 
}) 
id++ 
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dInfo = append(dInfo, simulator.DetectorInfo{ 
ID: id, 
DType: "normal", 
Pos: startOfParallel - detectorDelta, 
}) 
id++ 
// NOTE: we are assuming that # of exit ramps is the same as number of merging ramps 
dInfo = append(dInfo, simulator.DetectorInfo{ 
ID: id, 
DType: "normal", 
Pos: exitStarts[i] + conf.ExitLaneLength + detectorDelta, 
}) 
id++ 
} 
for i := 0; i < getExtraManualDetectors(conf); i++ { 
dInfo = append(dInfo, simulator.DetectorInfo{ 
ID: id, 
DType: "normal", 
Pos: float32((i + 1) * 1000), 
}) 
id++ 
} 
return dInfo 
} 
func getExtraManualDetectors(conf sim.Config) int { 
maxCount := int(conf.LaneLength / 1000) 
realCount := maxCount 
for i := 0; i < maxCount; i++ { 
pos := float32((i + 1) * 1000) 
if pos >= conf.LaneLength { 
realCount = i + 1 
break 
} 
} 
return realCount 
} 
func getLinkCopy(conf sim.Config) []simulator.LinkInfo { 
totalRampDetectors := len(rampStarts) * 6 
linkInfo := make([]simulator.LinkInfo, totalRampDetectors) 
for i := 0; i < totalRampDetectors; i++ { 
linkInfo[i] = simulator.LinkInfo{ 
DetectorID: i, 
PrevDetecIDLane: -1, 
PrevDetecIDRamp: -1, 
PrevDetecIDExit: -1, 
} 
if i%6 < 2 { 
linkInfo[i].LanesID = []int{0, 1, 2} 
} else if i%6 < 5 { 
linkInfo[i].LanesID = []int{getIthRampID(i / 6)} 
} else { 
linkInfo[i].LanesID = []int{getIthExitID(i / 6)} 
} 
if i/6 > 0 && i%6 == 1 { 
linkInfo[i].PrevDetecIDLane = i - 6 
linkInfo[i].PrevDetecIDRamp = i + 2 
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linkInfo[i].PrevDetectIDRampForTravelTime = i + 3 
linkInfo[i].PrevDetecIDExit = i + 4 
} 
} 
firstExtraDetector := totalRampDetectors 
for i := 0; i < getExtraManualDetectors(conf); i++ { 
linkInfo = append(linkInfo, simulator.LinkInfo{ 
DetectorID: firstExtraDetector + i, 
PrevDetecIDLane: firstExtraDetector + i - 1, 
PrevDetecIDRamp: -1, 
PrevDetecIDExit: -1, 
LanesID: []int{0, 1, 2}, 
}) 
} 
return linkInfo 
} 
func getLaneCopy(conf sim.Config) []simulator.LaneInfo { 
lInfo := []simulator.LaneInfo{ 
{ 
ID: 0, 
Start: 0, 
End: conf.LaneLength, 
Name: top, 
Ramp: false, 
ExitLane: false, 
Controllers: make([]sim.Controller, 0), 
}, 
{ 
ID: 1, 
Start: 0, 
End: conf.LaneLength, 
Name: mid, 
Ramp: false, 
ExitLane: false, 
Controllers: make([]sim.Controller, 0), 
}, 
{ 
ID: 2, 
Start: 0, 
End: conf.LaneLength, 
Name: bot, 
Ramp: false, 
ExitLane: false, 
Controllers: make([]sim.Controller, 0), 
}, 
} 
for i := range rampStarts { 
// Exit lanes appear first, therefore they have a smaller id 
lInfo = append(lInfo, 
simulator.LaneInfo{ 
ID: getIthExitID(i), 
Start: exitStarts[i], 
Name: fmt.Sprintf("%s%d", exit, i), 
Ramp: false, 
ExitLane: true, 
Controllers: make([]sim.Controller, 0), 
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}, 
) 
// Merging lanes have light controllers 
controllerPos := rampStarts[i] + conf.NonMergingRampLength + conf.MergingRampLength 
var ctrler sim.Controller 
if conf.UseAlwaysGreen { 
ctrler = controller.NewAlwaysLight(controllerPos, controller.GREEN) 
} else { 
fileNamePattern := "optimize-detect-%d-%d.csv" 
// TODO these are hard coded for 3 sepcific ramp 
optimizerInfoPath := "Invalid" 
switch i { 
case 0: 
log.Println("Skip optimizer for ramp 0") 
case 1: 
optimizerInfoPath = filepath.Join(conf.OptimizeDir, fmt.Sprintf(fileNamePattern, 7, 10)) 
case 2: 
optimizerInfoPath = filepath.Join(conf.OptimizeDir, fmt.Sprintf(fileNamePattern, 13, 16)) 
case 3: 
optimizerInfoPath = filepath.Join(conf.OptimizeDir, fmt.Sprintf(fileNamePattern, 19, 22)) 
} 
ctrler = controller.NewOptimizedLight(controllerPos, optimizerInfoPath, 60, conf.TimeStep, 
conf.TimeForGreenLight) // TODO hardcoded value 60 
} 
lInfo = append(lInfo, 
simulator.LaneInfo{ 
ID: getIthRampID(i), 
Start: rampStarts[i], 
Name: fmt.Sprintf("%s%d", ramp, i), 
Ramp: true, 
ExitLane: false, 
Controllers: []sim.Controller{ctrler}, 
}, 
) 
} 
return lInfo 
} 
func parseRamp(cells []string) { 
if cells[0] == "AdjustDelta" { 
adjustDelta = common.ToFloat(cells[1]) 
} else if cells[0] == "DetectorDelta" { 
detectorDelta = common.ToFloat(cells[1]) 
} else { 
if strings.Contains(cells[0], "RampStart") { 
rampStarts = append(rampStarts, common.ToFloat(cells[1])) 
} else if strings.Contains(cells[0], "ExitStart") { 
ePosProb := strings.Split(cells[1], "-") 
pos := common.ToFloat(ePosProb[0]) 
prob := common.ToFloat(ePosProb[1]) 
exitStarts = append(exitStarts, pos) 
exitProbs = append(exitProbs, prob) 
} 
} 
} 
func adjustExitProbs() { 
adjusted := make([]float32, len(exitProbs)) 
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for i := 0; i < len(exitProbs); i++ { 
adjusted[i] = exitProbs[i] 
} 
log.Printf("Exit probs: %.2f %.2f %.2f", adjusted[0], adjusted[1], adjusted[2]) 
exitProbs = adjusted 
} 
func getIthRampID(i int) int { 
return 3 + 1 + i*2 
} 
func getIthExitID(i int) int { 
return 3 + i*2 
} 
func parseProperty(cells []string, sim *sim.Config) bool { 
switch cells[0] { 
case "TimeStep": 
sim.TimeStep = common.ToFloat(cells[1]) 
sim.LambdaOn = 0.75 * sim.TimeStep 
case "SamplingDuration": 
sim.SamplingDuration = common.ToFloat(cells[1]) 
case "LookAheadDistance": 
sim.LookAheadDistance = common.ToFloat(cells[1]) 
case "Sigma1": 
sim.Sigma1 = common.ToFloat(cells[1]) 
case "Sigma2": 
sim.Sigma2 = common.ToFloat(cells[1]) 
case "Sigma": 
sim.Sigma = common.ToFloat(cells[1]) 
case "K": 
sim.K = common.ToFloat(cells[1]) 
case "Beta": 
sim.Beta = common.ToFloat(cells[1]) 
case "MaxAcceleration": 
sim.MaxAcceleration = common.ToFloat(cells[1]) 
case "MaxDeceleration": 
sim.MaxDeceleration = common.ToFloat(cells[1]) 
case "DeltaVR1": 
sim.DeltaVR1 = common.ToFloat(cells[1]) 
case "DeltaVR2": 
sim.DeltaVR2 = common.ToFloat(cells[1]) 
case "Length": 
sim.Length = common.ToFloat(cells[1]) 
case "MaxFreeFlowSpeed": 
sim.MaxFreeFlowSpeed = common.ToFloat(cells[1]) 
case "MaxFreeFlowSpeedOnRamp": 
sim.MaxFreeFlowSpeedOnRamp = common.ToFloat(cells[1]) 
case "DecelerationProb": 
sim.DecelerationProb = common.ToFloat(cells[1]) 
case "AccelerationProb": 
sim.AccelerationProb = common.ToFloat(cells[1]) 
case "LaneChangeProb": 
sim.LaneChangeProb = common.ToFloat(cells[1]) 
case "MergeProb": 
sim.MergeProb = common.ToFloat(cells[1]) 
case "SimulationDuration": 
sim.SimulationDuration = common.ToFloat(cells[1]) 
case "LaneLength": 
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sim.LaneLength = common.ToFloat(cells[1]) 
case "SafeDistance": 
sim.SafeDistance = common.ToFloat(cells[1]) 
case "DetectorRange": 
sim.DetectorRange = common.ToFloat(cells[1]) 
case "ProbeProbability": 
sim.ProbeProbability = common.ToFloat(cells[1]) 
case "SnapshotIncrement": 
sim.SnapshotIncrement = common.ToFloat(cells[1]) 
case "MergingRegionLength": 
sim.MergingRegionLength = common.ToFloat(cells[1]) 
case "MergingRampLength": 
sim.MergingRampLength = common.ToFloat(cells[1]) 
case "NonMergingRampLength": 
sim.NonMergingRampLength = common.ToFloat(cells[1]) 
case "KFN": 
sim.KFN = common.ToInt(cells[1]) 
case "AverageCarLength": 
sim.AverageCarLength = common.ToFloat(cells[1]) 
case "VSyn": 
sim.VSyn = common.ToFloat(cells[1]) 
case "VJam": 
sim.VJam = common.ToFloat(cells[1]) 
case "QJam_1": 
sim.QJam1 = common.ToFloat(cells[1]) 
case "QMinT_1": 
sim.QMinT1 = common.ToFloat(cells[1]) 
case "ROMaxT_1": 
sim.ROMaxT1 = common.ToFloat(cells[1]) 
case "QJam_3": 
sim.QJam3 = common.ToFloat(cells[1]) 
case "QMinT_3": 
sim.QMinT3 = common.ToFloat(cells[1]) 
case "ROMaxT_3": 
sim.ROMaxT3 = common.ToFloat(cells[1]) 
case "PatternMU": 
sim.PatternMU = common.ToFloat(cells[1]) 
case "Tave": 
sim.Tave = common.ToFloat(cells[1]) 
case "ExitDistance": 
sim.ExitDistance = common.ToFloat(cells[1]) 
case "ExitLaneLength": 
sim.ExitLaneLength = common.ToFloat(cells[1]) 
case "LightInterval": 
sim.LightInterval = common.ToFloat(cells[1]) 
case "SimpleQtt": 
sim.SimpleQtt = float64(common.ToFloat(cells[1])) 
case "SimpleRtt": 
sim.SimpleRtt = float64(common.ToFloat(cells[1])) 
case "StepAheadCount": 
sim.StepAheadCount = common.ToInt(cells[1]) 
case "Alpha1": 
sim.Alpha1 = float64(common.ToInt(cells[1])) 
case "Alpha2": 
sim.Alpha2 = float64(common.ToInt(cells[1])) 
case "Alpha3": 
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sim.Alpha3 = float64(common.ToInt(cells[1])) 
case "Beta1": 
sim.Beta1 = float64(common.ToInt(cells[1])) 
case "Beta2": 
sim.Beta2 = float64(common.ToInt(cells[1])) 
case "Beta3": 
sim.Beta3 = float64(common.ToInt(cells[1])) 
case "W1": 
sim.W1 = float64(common.ToInt(cells[1])) 
case "W2": 
sim.W2 = float64(common.ToInt(cells[1])) 
case "W3": 
sim.W3 = float64(common.ToInt(cells[1])) 
case "Alpha": 
sim.Alpha = float64(common.ToInt(cells[1])) 
case "QueueRampMax1": 
sim.QueueRampMax1 = float64(common.ToInt(cells[1])) 
case "QueueRampMax2": 
sim.QueueRampMax2 = float64(common.ToInt(cells[1])) 
case "QueueRampMax3": 
sim.QueueRampMax2 = float64(common.ToInt(cells[1])) 
case "TimeForGreenLight": 
sim.TimeForGreenLight = float64(common.ToInt(cells[1])) 
case "RunSim2": 
sim.RunSim2 = cells[1] == "yes" 
case "PenalizedDeltaFlowOn": 
sim.PenalizedDeltaFlowOn = int(common.ToInt(cells[1])) 
default: 
return false 
} 
return true 
} 
#-----------------------NEW FILE--------------------------- sim/lane/lane_test.go 
package lane 
import ( 
"log" 
"sim" 
"sim/car" 
"sim/change" 
"testing" 
) 
func state(position float32, speed float32) *sim.CarState { 
return &sim.CarState{ 
Position: position, 
Speed: speed, 
} 
} 
func TestLaneSingleNormal(t *testing.T) { 
config := sim.DefaultConfig() 
cars := []*sim.Car{ 
car.New(state(10, 30), 0, false, false, 0, -1, config), 
car.New(state(11, 30), 1, false, false, 0, -1, config), 
} 
start := float32(0) 
end := float32(100) 
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shoulder := NewNormalLane(NormalInfo{-1, car.NewCarRepo(), start, end, change.NewNever(), 
change.NewNever(), "shoulder"}, car.New, car.NextState, config) 
l := NewNormalLane(NormalInfo{0, car.NewCarRepo(), start, end, change.NewNever(), change.NewNever(), 
"normal"}, car.New, car.NextState, config) 
l.Adjacent(shoulder, shoulder) 
for _, c := range cars { 
l.Add(c) 
} 
l.Simulate() 
log.Println(l) 
l.Simulate() 
log.Println(l) 
} 
func TestRamp(t *testing.T) { 
config := sim.DefaultConfig() 
cars := []*sim.Car{ 
car.New(state(10, 30), 0, false, false, 0, -1, config), 
car.New(state(11, 30), 1, false, false, 0, -1, config), 
} 
start := float32(0) 
mergeStart := float32(100) 
mergeLength := float32(50) 
end := float32(500) 
shoulder := NewNormalLane(NormalInfo{-1, car.NewCarRepo(), start, end, change.NewNever(), 
change.NewNever(), "shoulder"}, car.New, car.NextState, config) 
normal := NewNormalLane(NormalInfo{0, car.NewCarRepo(), start, end, change.NewNever(), 
change.NewNever(), "normal"}, car.New, car.NextState, config) 
normal.Adjacent(shoulder, shoulder) 
ramp := NewRampLane(RampInfo{1, car.NewCarRepo(), start, mergeStart, mergeLength, change.NewNever(), 
change.NewNever(), "ramp"}, car.New, car.NextState, config) 
ramp.Adjacent(normal, shoulder) 
for _, c := range cars { 
ramp.Add(c) 
} 
ramp.Simulate() 
log.Println(ramp) 
ramp.Simulate() 
log.Println(ramp) 
} 
#-----------------------NEW FILE--------------------------- sim/lane/lane.go 
package lane 
import ( 
"bytes" 
"fmt" 
"sim" 
) 
type lane struct { 
repo sim.CarRepo 
leftChange sim.LaneChanger 
rightChange sim.LaneChanger 
neverChange sim.LaneChanger 
left []sim.Lane 
right []sim.Lane 
start float32 
mergeStart float32 
end float32 
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id int 
isRamp bool 
newCar sim.NewCar 
computeNext sim.ComputeNext 
conf sim.Config 
name string 
n int 
timeStep float32 
moves map[*sim.Car]sim.Lane 
controllers []sim.Controller 
} 
func (l *lane) String() string { 
var buf []byte 
b := bytes.NewBuffer(buf) 
b.WriteString(l.name + ": ") 
cars := make([]*sim.Car, 0, l.Leng()) 
for i := 0; ; i++ { 
if c, ok := l.Get(i); ok { 
cars = append(cars, c) 
} else { 
break 
} 
} 
for i := 0; i < len(cars); i++ { 
idx := len(cars) - 1 - i 
b.WriteString(fmt.Sprintf("%s ", cars[idx])) 
} 
return b.String() 
} 
// NormalInfo holds the information necessary for creating a normal lane. 
type NormalInfo struct { 
ID int 
Repo sim.CarRepo 
Start float32 
End float32 
LChanger sim.LaneChanger 
RChanger sim.LaneChanger 
Name string 
} 
// RampInfo holds the information necessary for creating a ramp. 
type RampInfo struct { 
ID int 
Repo sim.CarRepo 
Start float32 
MergeStart float32 
MergeLength float32 
LChanger sim.LaneChanger 
Never sim.LaneChanger 
Name string 
} 
// ExitInfo holds the information necessary for creating an exit ramp. 
type ExitInfo struct { 
ID int 
Repo sim.CarRepo 
Start float32 
Length float32 
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LChanger sim.LaneChanger 
Never sim.LaneChanger 
Name string 
} 
type lightState struct { 
isRed bool 
pos float32 
} 
// NewNormalLane creates a non-ramp lane. 
func NewNormalLane(inf NormalInfo, newCar sim.NewCar, computeNext sim.ComputeNext, controllers 
[]sim.Controller, conf sim.Config) sim.Lane { 
return &lane{moves: make(map[*sim.Car]sim.Lane, 0), controllers: controllers, repo: inf.Repo, start: inf.Start, 
mergeStart: -1, end: inf.End, id: inf.ID, rightChange: inf.RChanger, 
} 
// NewRampLane creates a ramp lane. 
func NewRampLane(inf RampInfo, newCar sim.NewCar, computeNext sim.ComputeNext, controllers 
[]sim.Controller, conf sim.Config) sim.Lane { 
end := inf.MergeStart + inf.MergeLength 
return &lane{moves: make(map[*sim.Car]sim.Lane, 0), controllers: controllers, repo: inf.Repo, start: inf.Start, 
mergeStart: inf.MergeStart, end: end, id: inf.ID, leftChange: inf.LChanger 
} 
// NewExitLane creates a ramp lane. 
func NewExitLane(inf ExitInfo, newCar sim.NewCar, computeNext sim.ComputeNext, controllers []sim.Controller, 
conf sim.Config) sim.Lane { 
end := inf.Start + 3*conf.ExitLaneLength 
return &lane{moves: make(map[*sim.Car]sim.Lane, 0), controllers: controllers, repo: inf.Repo, start: inf.Start, 
mergeStart: -1, end: end, id: inf.ID, rightChange: inf.Never, leftChange 
} 
// Adjacent sets the adjacent lanes 
func (l *lane) Adjacent(left []sim.Lane, right []sim.Lane) { 
l.left = left 
l.right = right 
} 
// Start returns the starting position of a lane 
func (l *lane) Start() float32 { 
return l.start 
} 
// End returns the end position of a lane 
func (l *lane) End() float32 { 
return l.end 
} 
// Add adds a car to the car repository 
func (l *lane) Place(c *sim.CarState, id int) { 
existing, ok := l.repo.GetByID(id) 
if !ok { 
now := float32(l.n) * l.timeStep 
nc := l.newCar(c, id, l.isRamp, now, l.End(), l.conf) 
l.repo.Add(nc) 
} else { 
existing.Next = c 
curr := *c 
prev := *c 
existing.Curr = &curr 
existing.Prev = &prev 
l.repo.Sort() 
} 
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} 
func (l *lane) Add(c *sim.Car) { 
l.repo.Add(c) 
} 
func (l *lane) Sort() { 
l.repo.Sort() 
} 
// Remove removes a car to the car repository 
func (l *lane) Remove(c *sim.Car) { 
l.repo.Remove(c) 
} 
// After returns the first car after a position 
func (l *lane) After(pos float32, excludingID int) *sim.Car { 
return l.repo.After(pos, excludingID) 
} 
// Before returns the last car before a position 
func (l *lane) Before(pos float32) *sim.Car { 
return l.repo.Before(pos) 
} 
func (l *lane) AfterInNext(pos float32, excludingID int) *sim.Car { 
return l.repo.AfterInNext(pos, excludingID) 
} 
// Before returns the last car before a position 
func (l *lane) BeforeInNext(pos float32) *sim.Car { 
return l.repo.BeforeInNext(pos) 
} 
// GetBetween returns all the cars between two points 
func (l *lane) GetBetween(start float32, end float32) []*sim.Car { 
return l.repo.GetBetween(start, end) 
} 
func (l *lane) Clean() []*sim.Car { 
removeCars := make([]*sim.Car, 0, 1000000) 
if !l.IsRamp() { 
for i := 0; ; i++ { 
if me, ok := l.Get(i); ok { 
if me.Prev.Position >= l.end || me.Curr.Position >= l.end || me.Next.Position >= l.end { 
removeCars = append(removeCars, me) 
} else { 
break 
} 
} else { 
break 
} 
} 
//for _, c := range removeCars { 
for i := range removeCars { 
l.Remove(removeCars[len(removeCars)-i-1]) 
} 
} 
return removeCars 
} 
func (l *lane) Name() string { 
return l.name 
} 
// AllProbes returns all the cars that are marked as probe cars 
func (l *lane) AllProbes() []*sim.Car { 
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return l.repo.AllProbes() 
} 
func (l *lane) Leng() int { 
return l.repo.Leng() 
} 
// Get returns car at an index. Returns and error in case index is out of range. 
func (l *lane) Get(idx int) (*sim.Car, bool) { 
return l.repo.Get(idx) 
} 
func (l *lane) GetByID(id int) (*sim.Car, bool) { 
return l.repo.GetByID(id) 
} 
func (l *lane) GetFirst() (*sim.Car, bool) { 
return l.repo.GetFirst() 
} 
// move changes a car location from the current lane to the target lane. 
func (l *lane) Move() map[*sim.Car]sim.Lane { 
for c, target := range l.moves { 
l.repo.Remove(c) 
target.Add(c) 
} 
defer func() { l.moves = make(map[*sim.Car]sim.Lane, 0) }() 
return l.moves 
} 
// IsRamp returns true if the lane is a ramp. 
func (l *lane) IsRamp() bool { 
return l.isRamp 
} 
func (l *lane) Simulate() error { 
l.repo.Sort() 
l.n++ 
lightStates := make([]lightState, len(l.controllers)) 
for i, controller := range l.controllers { 
lightStates[i].isRed = controller.IsRed() 
lightStates[i].pos = controller.Position() 
} 
nextLightIdx := len(lightStates) - 1 
for i := 0; ; i++ { 
if me, ok := l.Get(i); ok { 
pos := me.Curr.Position 
preced := l.After(pos, me.ID) // need to increase pos by a small amount, otherwise it would return itself 
rPreced := l.right[0].AfterInNext(pos, sim.InvalidID) 
rTrail := l.right[0].BeforeInNext(pos) 
right := sim.ChangePack{ 
LaneChanger: l.rightChange, 
Preceding: sim.TimePack{ 
Curr: rPreced.Next, // Since we simulate from left to right, by this point the right lane has not shifted next to current 
Prev: rPreced.Curr, 
}, 
Trailing: sim.TimePack{ 
Curr: rTrail.Next, 
Prev: rTrail.Curr, 
}, 
} 
lPreced := l.left[0].After(pos, sim.InvalidID) 
lTrail := l.left[0].Before(pos) 
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lc := l.getLeftChanger(me.Curr.Position) 
left := sim.ChangePack{ 
LaneChanger: lc, 
Preceding: sim.TimePack{ 
Curr: lPreced.Curr, 
Prev: lPreced.Prev, 
}, 
Trailing: sim.TimePack{ 
Curr: lTrail.Curr, 
Prev: lTrail.Prev, 
}, 
} 
isOnRampMerging := l.isRamp && me.Curr.Position > l.mergeStart 
isApproachingRedLight := false 
if nextLightIdx >= 0 && pos < lightStates[nextLightIdx].pos { 
if lightStates[nextLightIdx].isRed { 
isApproachingRedLight = true 
} 
nextLightIdx-- 
} 
direction, err := l.computeNext(me, preced, left, right, isApproachingRedLight, isOnRampMerging) 
if err != nil { 
return err 
} 
if direction == sim.ChangeLeft { 
l.moves[me] = l.left[0] 
} else if direction == sim.ChangeRight { 
l.moves[me] = l.right[0] 
} else if direction == sim.ExitLane { 
if len(l.right) == 1 { 
// behave as changeRight 
l.moves[me] = l.right[0] 
} else { 
// behave as exit 
for _, rl := range l.right { 
if pos >= rl.Start() && pos <= rl.Start()+l.conf.ExitLaneLength { 
l.moves[me] = rl 
} 
} 
} 
} 
} else { 
return nil 
} 
} 
} 
func (l *lane) getLeftChanger(position float32) sim.LaneChanger { 
if l.isRamp && position < l.mergeStart { 
return l.neverChange 
} 
return l.leftChange 
} 
#-----------------------NEW FILE--------------------------- sim/car/car_repo_test.go 
package car 
import ( 
"sim" 
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"testing" 
) 
func genCar(pos float32, probe bool, id int) *sim.Car { 
return &sim.Car{ 
ID: id, 
Curr: &sim.CarState{ 
Position: pos, 
Speed: -1000, 
SpaceGap: -1000, 
VSafeN: -1000, 
AccState: 0, 
IsProbe: probe, 
}, 
Prev: &sim.CarState{}, 
Next: &sim.CarState{}, 
Internal: &sim.CarInternalState{}, 
Extra: &sim.CarExtraInfo{}, 
} 
} 
func TestAddNormal(t *testing.T) { 
c := genCar(10, true, 1) 
rep := NewCarRepo() 
r := rep.(*repo) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c) 
if len(r.cars) != 1 { 
t.Errorf("Expected to see length = 1, got length = %d", len(r.cars)) 
} 
} 
func TestAddExtend(t *testing.T) { 
c1 := genCar(10, true, 1) 
c2 := genCar(10, true, 2) 
c3 := genCar(10, true, 3) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
if cap(r.cars) != 2 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
rep.Add(c3) 
if len(r.cars) != 3 { 
t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
if cap(r.cars) != 4 { 
t.Errorf("Expected to see cap = 4, got cap = %d", cap(r.cars)) 
} 
} 
func TestAddSort(t *testing.T) { 
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c1 := genCar(10, true, 1) 
c2 := genCar(20, true, 2) 
c3 := genCar(5, true, 3) 
c4 := genCar(30, true, 4) 
c5 := genCar(6, true, 5) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
rep.Add(c3) 
rep.Add(c4) 
rep.Add(c5) 
if len(r.cars) != 5 { 
t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
if r.cars[0].ID != 4 { 
t.Errorf("Error in sorting cars. Expected id %d at position 0, got ID %d", 4, r.cars[0].ID) 
} 
if r.cars[1].ID != 2 { 
t.Errorf("Error in sorting cars. Expected id %d at position 1, got ID %d", 2, r.cars[1].ID) 
} 
if r.cars[2].ID != 1 { 
t.Errorf("Error in sorting cars. Expected id %d at position 2, got ID %d", 1, r.cars[2].ID) 
} 
if r.cars[3].ID != 5 { 
t.Errorf("Error in sorting cars. Expected id %d at position 3, got ID %d", 5, r.cars[3].ID) 
} 
if r.cars[4].ID != 3 { 
t.Errorf("Error in sorting cars. Expected id %d at position 4, got ID %d", 3, r.cars[4].ID) 
} 
} 
// 2018/04/15 21:01:08 c_bot: [6:30.0@1440.0] [7:30.0@540.0] [3:30.0@1170.0] [2:30.0@2070.0] 
func TestAddBugSort(t *testing.T) { 
c1 := genCar(540, true, 7) 
c2 := genCar(1170, true, 3) 
c3 := genCar(2070, true, 2) 
c4 := genCar(1440, true, 6) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
rep.Add(c3) 
rep.Add(c4) 
if len(r.cars) != 4 { 
t.Errorf("Expected to see length = 4, got length = %d", len(r.cars)) 
} 
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if r.cars[0].ID != 2 { 
t.Errorf("Error in sorting cars. Expected id %d at position 0, got ID %d", 2, r.cars[0].ID) 
} 
if r.cars[1].ID != 6 { 
t.Errorf("Error in sorting cars. Expected id %d at position 1, got ID %d", 6, r.cars[1].ID) 
} 
if r.cars[2].ID != 3 { 
t.Errorf("Error in sorting cars. Expected id %d at position 2, got ID %d", 3, r.cars[2].ID) 
} 
if r.cars[3].ID != 7 { 
t.Errorf("Error in sorting cars. Expected id %d at position 3, got ID %d", 7, r.cars[3].ID) 
} 
} 
func TestRemove(t *testing.T) { 
c1 := genCar(10, true, 1) 
c2 := genCar(20, true, 2) 
c3 := genCar(5, true, 3) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
rep.Add(c3) 
if len(r.cars) != 3 { 
t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
rep.Remove(c1) 
if len(r.cars) != 2 { 
t.Errorf("Expected to see length = 2, got length = %d", len(r.cars)) 
} 
if r.cars[0].ID != 2 { 
t.Errorf("Error in sorting cars. Expected id %d at position 1, got ID %d", 2, r.cars[1].ID) 
} 
if r.cars[1].ID != 3 { 
t.Errorf("Error in sorting cars. Expected id %d at position 0, got ID %d", 3, r.cars[0].ID) 
} 
} 
func TestAfter(t *testing.T) { 
c1 := genCar(10, true, 1) 
c2 := genCar(20, true, 2) 
c3 := genCar(5, true, 3) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
rep.Add(c3) 
if len(r.cars) != 3 { 
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t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
tests := []struct { 
pos float32 
id int 
}{ 
{ 
pos: 0, 
id: 3, 
}, 
{ 
pos: 5, 
id: 3, 
}, 
{ 
pos: 6, 
id: 1, 
}, 
{ 
pos: 30, 
id: -1, // plus infinity car 
}, 
} 
for i, test := range tests { 
a := rep.After(test.pos, -1) 
if test.id != a.ID { 
t.Errorf("Error in tast case %d: expected id %d, got %d", i, test.id, a.ID) 
} 
} 
} 
func TestAfterEmpty(t *testing.T) { 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
a := rep.After(0, -3) 
if -1 != a.ID { 
t.Errorf("Error expected plus inf, got %d", a.ID) 
} 
} 
func TestBefore(t *testing.T) { 
c1 := genCar(10, true, 1) 
c2 := genCar(20, true, 2) 
c3 := genCar(5, true, 3) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
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rep.Add(c3) 
if len(r.cars) != 3 { 
t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
tests := []struct { 
pos float32 
id int 
}{ 
{ 
pos: 0, 
id: -2, 
}, 
{ 
pos: 5, 
id: 3, 
}, 
{ 
pos: 10, 
id: 3, 
}, 
{ 
pos: 11, 
id: 1, 
}, 
{ 
pos: 6, 
id: 3, 
}, 
{ 
pos: 30, 
id: 2, 
}, 
} 
for i, test := range tests { 
a := rep.Before(test.pos) 
if test.id != a.ID { 
t.Errorf("Error in tast case %d: expected id %d, got %d", i, test.id, a.ID) 
} 
} 
} 
func TestBeforeEmpty(t *testing.T) { 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
a := rep.Before(10) 
if -2 != a.ID { 
t.Errorf("Error expected minues inf, got %d", a.ID) 
} 
} 
func TestBetween(t *testing.T) { 
c := make([]*sim.Car, 3) 
c[0] = genCar(10, true, 1) 
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c[1] = genCar(20, true, 2) 
c[2] = genCar(5, true, 3) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c[0]) 
rep.Add(c[1]) 
rep.Add(c[2]) 
if len(r.cars) != 3 { 
t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
tests := []struct { 
start float32 
end float32 
ids []int 
}{ 
{ 
start: 0, 
end: 30, 
ids: []int{2, 1, 3}, 
}, 
{ 
start: 0, 
end: 1, 
ids: []int{}, 
}, 
{ 
start: 30, 
end: 40, 
ids: []int{}, 
}, 
{ 
start: 5, 
end: 9, 
ids: []int{3}, 
}, 
} 
for _, test := range tests { 
ids := rep.GetBetween(test.start, test.end) 
for i, id := range ids { 
if id.ID != test.ids[i] { 
t.Errorf("Error in tast case %d: expected id %d, got %d", i, test.ids[i], id.ID) 
} 
} 
} 
} 
func TestBetweenEmpty(t *testing.T) { 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
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t.Errorf("Error in test setup") 
} 
ids := rep.GetBetween(10, 100) 
if len(ids) != 0 { 
t.Errorf("Did not expect any cars, got %v", ids) 
} 
} 
func TestGet(t *testing.T) { 
c1 := genCar(10, true, 1) 
c2 := genCar(20, true, 2) 
c3 := genCar(5, true, 3) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
rep.Add(c3) 
if len(r.cars) != 3 { 
t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
if c, ok := rep.Get(0); ok { 
if c != r.cars[0] { 
t.Errorf("Got incorrect car at index 0. Expected car ID %d, got ID %d.", r.cars[0].ID, c.ID) 
} 
} else { 
t.Errorf("Got index out of range for 0") 
} 
if c, ok := rep.Get(2); ok { 
if c != r.cars[2] { 
t.Errorf("Got incorrect car at index 2. Expected car ID %d, got ID %d.", r.cars[2].ID, c.ID) 
} 
} else { 
t.Errorf("Got index out of range for 2") 
} 
if _, ok := rep.Get(3); ok { 
t.Errorf("Expected to get index out of range, did not get any error!") 
} 
} 
func TestProbe(t *testing.T) { 
c1 := genCar(10, false, 1) 
c2 := genCar(20, true, 2) 
c3 := genCar(5, true, 3) 
rep := NewCarRepo() 
r := rep.(*repo) 
r.maxLen = 2 
r.cars = make(sortedCars, 0, r.maxLen) 
if len(r.cars) != 0 { 
t.Errorf("Error in test setup") 
} 
rep.Add(c1) 
rep.Add(c2) 
rep.Add(c3) 
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if len(r.cars) != 3 { 
t.Errorf("Expected to see length = 3, got length = %d", len(r.cars)) 
} 
probes := rep.AllProbes() 
if len(probes) != 2 { 
t.Errorf("Did not return all probes, expected 2, got [%v]", probes) 
} 
for _, p := range probes { 
if !p.Curr.IsProbe { 
t.Errorf("Returned a car that is not a probe car %v", p) 
} 
} 
} 
#-----------------------NEW FILE--------------------------- sim/car/car_test.go 
package car 
import ( 
"log" 
"sim" 
"testing" 
) 
func genState(position float32) *sim.CarState { 
return &sim.CarState{ 
Position: position, 
Speed: 30, 
SpaceGap: 7, 
AccState: 0, 
IsProbe: false, 
} 
} 
type never struct { 
} 
func (n *never) Can(current sim.TimePack, precedingInSame sim.TimePack, precedingInTarget sim.TimePack, 
trailingInTarget sim.TimePack) (float32, float32, bool) { 
return -1, -1, false 
} 
func (n *never) Want(probability float32) bool { 
return false 
} 
func TestAll(t *testing.T) { 
config := sim.DefaultConfig() 
cCar := New(genState(10), 0, false, false, 0, -1, config) 
// changing the values of cPrecd speed should affect the next speed of cCar 
cPrecd := New(genState(50), 1, false, false, 0, -1, config) 
right := sim.ChangePack{ 
LaneChanger: &never{}, 
Preceding: sim.TimePack{}, 
Trailing: sim.TimePack{}, 
} 
left := sim.ChangePack{ 
LaneChanger: &never{}, 
Preceding: sim.TimePack{}, 
Trailing: sim.TimePack{}, 
} 
log.Println(cCar) 
NextState(cCar, cPrecd, left, right, false) 
log.Printf("%s", cCar) 
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NextState(cCar, cPrecd, left, right, false) 
log.Printf("%s", cCar) 
} 
#-----------------------NEW FILE--------------------------- sim/car/car.go 
package car 
import ( 
"bytes" 
"fmt" 
"math" 
"math/rand" 
"sim" 
"sim/common" 
) 
var conf sim.Config 
// New creates a new car using default settings 
func New(initState *sim.CarState, id int, isOnRamp bool, genTime float32, rampEnd float32, config sim.Config) 
*sim.Car { 
conf = config 
cPos := initState.Position 
pPos := initState.Position 
c := &sim.Car{ 
ID: id, 
GenTime: genTime, 
Prev: &sim.CarState{ 
Position: pPos, 
Speed: initState.Speed, 
SpaceGap: initState.SpaceGap, 
VSafeN: initState.VSafeN, 
AccState: initState.AccState, 
IsProbe: initState.IsProbe, 
SelectedForExit: initState.SelectedForExit, 
ExitPosition: initState.ExitPosition, 
}, 
Curr: &sim.CarState{ 
Position: cPos, 
Speed: initState.Speed, 
SpaceGap: initState.SpaceGap, 
VSafeN: initState.VSafeN, 
AccState: initState.AccState, 
IsProbe: initState.IsProbe, 
SelectedForExit: initState.SelectedForExit, 
ExitPosition: initState.ExitPosition, 
}, 
Next: &sim.CarState{ 
Position: initState.Position, 
Speed: initState.Speed, 
SpaceGap: initState.SpaceGap, 
VSafeN: initState.VSafeN, 
AccState: initState.AccState, 
IsProbe: initState.IsProbe, 
SelectedForExit: initState.SelectedForExit, 
ExitPosition: initState.ExitPosition, 
}, 
Internal: &sim.CarInternalState{}, 
Extra: &sim.CarExtraInfo{ 
SecondRun: false, 
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Preceding: &sim.CarState{}, 
RampMerging: false, 
OnRamp: isOnRamp, 
RampEnd: rampEnd, 
PrecedingInLeftOfRamp: &sim.CarState{}, 
}, 
} 
return c 
} 
func debugDetails(c *sim.Car) string { 
var buff []byte 
b := bytes.NewBuffer(buff) 
b.WriteString(fmt.Sprintf("ID: %d, GenTime: %.1f\n", c.ID, c.GenTime)) 
b.WriteString(fmt.Sprintf("Prev: %+v\n", c.Prev)) 
b.WriteString(fmt.Sprintf("Curr: %+v\n", c.Curr)) 
b.WriteString(fmt.Sprintf("Next: %+v\n", c.Next)) 
b.WriteString(fmt.Sprintf("Internal: %+v\n", c.Internal)) 
b.WriteString(fmt.Sprintf("&{SecondRun:%v Preceding:%+v RampMerging:%v OnRamp:%v RampEnd:%.1f 
PrecedingInLeftOfRamp:%+v}", c.Extra.SecondRun, c.Extra.Preceding, c.Extra.RampMerging, 
return b.String() 
} 
// NextState computes and sets the next state of the car and returns the car's intent to change. 
func NextState(c *sim.Car, preceding *sim.Car, left sim.ChangePack, right sim.ChangePack, 
isApproachingRedLight bool, isOnRampMerging bool) (int, error) { 
c.Extra.Preceding = preceding.Curr 
c.Extra.RampMerging = isOnRampMerging 
c.Extra.PrecedingInLeftOfRamp = left.Preceding.Curr 
*c.Prev = *c.Curr 
*c.Curr = *c.Next 
simulate(c) 
currPack := sim.TimePack{Curr: c.Curr, Prev: c.Prev} 
precPack := sim.TimePack{Curr: preceding.Curr, Prev: preceding.Prev} 
// If there is a red light, stay in the same lane and reduce speed. Otherwise, bahave as normal 
if isApproachingRedLight { 
c.Next.Speed = c.Curr.Speed - 2 
if c.Next.Speed < 0 { 
c.Next.Speed = 0 
} 
c.Next.Position -= c.Next.Speed * conf.TimeStep 
calcNextTimestepPos(c) 
} else { 
wantsToExit := nearDesignatedExit(c) 
if !c.Extra.OnRamp && wantsToExit { 
rSpeed, rPosition, cr := right.Can(currPack, precPack, right.Preceding, right.Trailing) 
if cr { 
c.Next.Speed = rSpeed 
c.Next.Position = rPosition 
return sim.ExitLane, nil 
} 
// Since current is now in prev, check prev 
} 
if c.Extra.OnRamp || (!wantsToExit && (!c.Extra.OnRamp && (c.Prev.Speed > preceding.Curr.Speed))) { 
lChangeProb := conf.LaneChangeProb 
if c.Extra.OnRamp { 
lChangeProb = conf.MergeProb 
} 
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lSpeed, lPosition, cl := left.Can(currPack, precPack, left.Preceding, left.Trailing) 
wl := left.Want(lChangeProb) 
rSpeed, rPosition, cr := right.Can(currPack, precPack, right.Preceding, right.Trailing) 
wr := right.Want(conf.LaneChangeProb) 
if cl && wl { 
c.Next.Speed = lSpeed 
c.Next.Position = lPosition 
c.Extra.OnRamp = false 
return sim.ChangeLeft, nil 
} else if cr && wr { 
c.Next.Speed = rSpeed 
c.Next.Position = rPosition 
return sim.ChangeRight, nil 
} else { 
// If car is on merging region and cannot merge and there is no other car in front of it, reduce the speed by 2 
// Then undo the position change and compute position again 
if c.Extra.RampMerging && (c.Extra.Preceding.Position == math.MaxFloat32) { 
c.Next.Speed = c.Curr.Speed - 2 
if c.Next.Speed < 0 { 
c.Next.Speed = 0 
} 
c.Next.Position -= c.Next.Speed * conf.TimeStep 
calcNextTimestepPos(c) 
} 
} 
} 
} 
return sim.Stay, nil 
} 
func nearDesignatedExit(c *sim.Car) bool { 
// Since current is now in prev, check prev 
distanceToExit := (c.Prev.ExitPosition + conf.ExitLaneLength) - c.Prev.Position 
if distanceToExit < 0 { 
return false 
} 
return c.Prev.SelectedForExit && (distanceToExit <= conf.ExitDistance) 
} 
func leaveRamp(c *sim.Car) { 
c.Extra.OnRamp = false 
} 
func simulate(c *sim.Car) { 
calcAccDec(c) 
calcSynchronizationDistance(c) 
calcDelta(c) 
calcSpeedAdaptation(c) 
calcSpaceGap(c) 
calcVSafeN(c) 
calcSafeSpeed(c) 
calcNextTimestepSpeed(c) 
calcNextTimestepPos(c) 
} 
func calcAccDec(c *sim.Car) { 
r1 := rand.Float32() 
// EQ-15 
P0 := float32(0.575 + 0.125*math.Min(1, float64(c.Curr.Speed/10.0))) // p0 
if c.Curr.AccState == 1 { 
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P0 = 1 
} 
// EQ-16 
P1 := float32(0.3) // p1 
if c.Curr.AccState == -1 { 
P1 = 0.48 + 0.32*common.Theta(c.Curr.Speed-15) // p2 
} 
// EQ-13 
c.Internal.Acceleration = conf.MaxAcceleration * common.Theta(P0-r1) 
// EQ-14 
c.Internal.Deceleration = conf.MaxAcceleration * common.Theta(P1-r1) 
} 
func adjustSpeedMergingRamp(c *sim.Car, vLN float32) float32 { 
if c.Extra.RampMerging { 
vPlusN := c.Extra.PrecedingInLeftOfRamp.Speed 
vLN = float32(math.Max(0, math.Min(float64(conf.MaxFreeFlowSpeed), float64(vPlusN+conf.DeltaVR2)))) 
} 
return vLN 
} 
// EQ-5 
func calcSynchronizationDistance(c *sim.Car) { 
vLN := c.Extra.Preceding.Speed 
vLN = adjustSpeedMergingRamp(c, vLN) 
c.Internal.SynchronizationDistance = conf.Length + common.G(c.Curr.Speed, vLN, conf.TimeStep, conf.K, 
conf.MaxAcceleration, conf.Beta) 
} 
// Must be run after calcAccDec & calcSynchronizationDistance 
// EQ-4 
func calcDelta(c *sim.Car) { 
vLN := c.Extra.Preceding.Speed 
vLN = adjustSpeedMergingRamp(c, vLN) 
secondVal := float32(math.Min(float64(c.Internal.Acceleration*conf.TimeStep), float64(vLN-c.Curr.Speed))) 
currentDelta := float32(math.Max(float64(-c.Internal.Deceleration*conf.TimeStep), float64(secondVal))) 
c.Internal.Delta = currentDelta 
} 
// Must be run after calcDelta 
// EQ-3 
func calcSpeedAdaptation(c *sim.Car) { 
xLN := c.Extra.Preceding.Position 
if c.Extra.RampMerging { 
xLN = c.Extra.PrecedingInLeftOfRamp.Position 
} 
if (xLN - c.Curr.Position) <= c.Internal.SynchronizationDistance { 
c.Internal.SpeedAdaptation = c.Curr.Speed + c.Internal.Delta 
} else { 
c.Internal.SpeedAdaptation = c.Curr.Speed + c.Internal.Acceleration*conf.TimeStep 
} 
} 
// EQ-18 
func calcSpaceGap(c *sim.Car) { 
gap := c.Extra.Preceding.Position - c.Curr.Position - conf.Length 
c.Next.SpaceGap = gap 
} 
// Must be called after calcSpaceGap 
func calcVSafeN(c *sim.Car) { 
vsn := common.VSafe(c.Next.SpaceGap, c.Extra.Preceding.Speed, conf.MaxDeceleration, conf.TimeStep) 
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c.Next.VSafeN = vsn 
} 
// Must be called after calcVSafeN 
// EQ-17 
func calcSafeSpeed(c *sim.Car) { 
at := conf.MaxAcceleration * conf.TimeStep 
secondVal := math.Min(float64(c.Extra.Preceding.Speed-at), float64(c.Extra.Preceding.SpaceGap/conf.TimeStep)) 
// EQ-19 
// v^a_l 
anticipatedSpeedOfPrecedingCar := math.Max(0, math.Min(float64(c.Extra.Preceding.VSafeN-at), secondVal)) 
c.Internal.SafeSpeed = float32(math.Min(float64(c.Next.VSafeN), 
float64(c.Next.SpaceGap/conf.TimeStep)+anticipatedSpeedOfPrecedingCar)) 
} 
// EQ-10 
func calcAccState(c *sim.Car, noiseFreeSpeed float32) { 
if noiseFreeSpeed < c.Curr.Speed-conf.Sigma { 
c.Next.AccState = -1 
} else if noiseFreeSpeed > c.Curr.Speed+conf.Sigma { 
c.Next.AccState = 1 
} else { 
c.Next.AccState = 0 
} 
} 
// EQ-9 
func calcNoise(c *sim.Car, noiseFreeSpeed float32) float32 { 
if c.Next.AccState == -1 { 
// EQ-11 
r := rand.Float32() 
decelerationRandomSource := conf.MaxAcceleration * conf.TimeStep * common.Theta(conf.DecelerationProb-r) 
return -1 * decelerationRandomSource 
} else if c.Next.AccState == 1 { 
// EQ-12 
r := rand.Float32() 
accelerationRandomSource := conf.MaxAcceleration * conf.TimeStep * common.Theta(conf.AccelerationProb-r) 
return -1 * accelerationRandomSource 
} else { 
c.Next.AccState = 0 
return 0 
} 
} 
// EQ-7 
func calcNoiseFreeSpeed(c *sim.Car) float32 { 
return float32(math.Max(0, math.Min(float64(conf.MaxFreeFlowSpeed), 
math.Min(float64(c.Internal.SpeedAdaptation), float64(c.Internal.SafeSpeed))))) 
} 
// EQ-8 
func calcNoisySpeed(c *sim.Car, noiseFreeSpeed float32) float32 { 
noise := calcNoise(c, noiseFreeSpeed) 
firstMinVal := math.Min(float64(conf.MaxFreeFlowSpeed), float64(noiseFreeSpeed+noise)) 
secondMinVal := math.Min(float64(c.Curr.Speed+conf.MaxAcceleration*conf.TimeStep), 
float64(c.Internal.SafeSpeed)) 
return float32(math.Max(0, math.Min(firstMinVal, secondMinVal))) 
} 
// Must be run after calcSpeedAdaptation & calcSafeSpeed 
// EQ-1 
func calcNextTimestepSpeed(c *sim.Car) { 
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newNoiseFreeSpeed := calcNoiseFreeSpeed(c) 
calcAccState(c, newNoiseFreeSpeed) 
if c.Extra.SecondRun { 
newNoiseFreeSpeed = calcNoisySpeed(c, newNoiseFreeSpeed) 
} 
if !c.Extra.SecondRun { 
c.Extra.SecondRun = true 
} 
c.Next.Speed = newNoiseFreeSpeed 
} 
func rampSpeedAdjustment(c *sim.Car, currentSpeed float32) float32 { 
if c.Extra.OnRamp { 
// set a speed that would keep it in lane 
newPos := c.Curr.Position + currentSpeed*conf.TimeStep 
if newPos > c.Extra.RampEnd { 
for { 
currentSpeed = currentSpeed / 2.0 
newPos = c.Curr.Position + currentSpeed*conf.TimeStep 
if newPos < c.Extra.RampEnd { 
break 
} 
if currentSpeed < 1 { 
currentSpeed = 0 
break 
} 
} 
} 
} 
return currentSpeed 
} 
// EQ-2 
func calcNextTimestepPos(c *sim.Car) { 
c.Next.Position = c.Curr.Position + c.Next.Speed*conf.TimeStep 
} 
#-----------------------NEW FILE--------------------------- sim/car/car_repo.go 
package car 
import ( 
"bytes" 
"fmt" 
"log" 
"math" 
"sim" 
"sort" 
) 
type sortedCars []*sim.Car 
type repo struct { 
cars sortedCars 
maxLen int 
plusInf *sim.Car 
minusInf *sim.Car 
} 
// NewCarRepo creates a car repository 
func NewCarRepo() sim.CarRepo { 
maxLen := 1000000 
cars := make(sortedCars, 0, maxLen) 
plusInf := &sim.Car{ 
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ID: sim.PlusInfID, 
Prev: &sim.CarState{ 
Position: math.MaxFloat32, 
Speed: math.MaxFloat32, 
SpaceGap: math.MaxFloat32, 
VSafeN: math.MaxFloat32, 
AccState: 0, 
IsProbe: false, 
SelectedForExit: false, 
ExitPosition: math.MaxFloat32, 
}, 
Curr: &sim.CarState{ 
Position: math.MaxFloat32, 
Speed: math.MaxFloat32, 
SpaceGap: math.MaxFloat32, 
VSafeN: math.MaxFloat32, 
AccState: 0, 
IsProbe: false, 
SelectedForExit: false, 
ExitPosition: math.MaxFloat32, 
}, 
Next: &sim.CarState{ 
Position: math.MaxFloat32, 
Speed: math.MaxFloat32, 
SpaceGap: math.MaxFloat32, 
VSafeN: math.MaxFloat32, 
AccState: 0, 
IsProbe: false, 
SelectedForExit: false, 
ExitPosition: math.MaxFloat32, 
}, 
Internal: &sim.CarInternalState{}, 
Extra: &sim.CarExtraInfo{}, 
} 
minusInf := &sim.Car{ 
ID: sim.MinusInfID, 
Prev: &sim.CarState{ 
Position: -math.MaxFloat32, 
Speed: -math.MaxFloat32, 
SpaceGap: math.MaxFloat32, 
VSafeN: -math.MaxFloat32, 
AccState: 0, 
IsProbe: false, 
SelectedForExit: false, 
ExitPosition: math.MaxFloat32, 
}, 
Curr: &sim.CarState{ 
Position: -math.MaxFloat32, 
Speed: -math.MaxFloat32, 
SpaceGap: math.MaxFloat32, 
VSafeN: -math.MaxFloat32, 
AccState: 0, 
IsProbe: false, 
SelectedForExit: false, 
ExitPosition: math.MaxFloat32, 
}, 
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Next: &sim.CarState{ 
Position: -math.MaxFloat32, 
Speed: -math.MaxFloat32, 
SpaceGap: math.MaxFloat32, 
VSafeN: -math.MaxFloat32, 
AccState: 0, 
IsProbe: false, 
SelectedForExit: false, 
ExitPosition: math.MaxFloat32, 
}, 
Internal: &sim.CarInternalState{}, 
Extra: &sim.CarExtraInfo{}, 
} 
return &repo{ 
cars: cars, 
maxLen: maxLen, 
plusInf: plusInf, 
minusInf: minusInf, 
} 
} 
func (r *repo) Leng() int { 
return len(r.cars) 
} 
func (s sortedCars) Len() int { 
return len(s) 
} 
func (s sortedCars) Swap(i, j int) { 
s[i], s[j] = s[j], s[i] 
} 
func (s sortedCars) Less(i, j int) bool { 
return s[i].Curr.Position < s[j].Curr.Position 
} 
func (r repo) String() string { 
var buf []byte 
b := bytes.NewBuffer(buf) 
for _, c := range r.cars { 
b.WriteString(fmt.Sprintf("%s, ", c)) 
} 
return b.String() 
} 
func (r *repo) Sort() { 
sort.Sort(sort.Reverse(r.cars)) 
} 
// Add adds a car to the car repository 
func (r *repo) Add(c *sim.Car) { 
if len(r.cars) == cap(r.cars) { 
r.maxLen = 2 * r.maxLen 
newCars := make(sortedCars, 0, r.maxLen) 
for i := 0; i < len(r.cars); i++ { 
newCars = append(newCars, r.cars[i]) 
} 
r.cars = newCars 
} 
if len(r.cars) == 0 { 
r.cars = append(r.cars, c) 
} else { 
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p := bSearch(c.Curr.Position, r.cars, 0, len(r.cars)-1) 
if c.Curr.Position >= r.cars[p].Curr.Position { 
r.cars = append(r.cars, nil) 
copy(r.cars[p+1:], r.cars[p:]) 
r.cars[p] = c 
} else { 
r.cars = append(r.cars, nil) 
copy(r.cars[p+2:], r.cars[p+1:]) 
r.cars[p+1] = c 
} 
} 
//r.cars = append(r.cars, c) 
sort.Sort(sort.Reverse(r.cars)) 
} 
// Remove removes a car to the car repository 
func (r *repo) Remove(c *sim.Car) { 
j := -1 
for i := 0; i < len(r.cars); i++ { 
if c == r.cars[i] { 
j = i 
break 
} 
} 
if j == -1 { 
log.Println("----------------------> ", c, r.cars) 
} 
r.cars = append(r.cars[:j], r.cars[j+1:]...) 
} 
func bSearch(pos float32, c sortedCars, s int, e int, next ...string) int { 
m := (s + e) / 2 
startPos := c[s].Curr.Position 
midPos := c[m].Curr.Position 
if len(next) > 0 { 
startPos = c[s].Next.Position 
midPos = c[m].Next.Position 
} 
if e <= s { 
return s 
} 
if e == s+1 { 
if pos > startPos { 
return s 
} 
return e 
} 
if pos > midPos { 
return bSearch(pos, c, s, m-1, next...) 
} 
if pos == midPos { 
return m 
} 
return bSearch(pos, c, m, e, next...) 
} 
// After returns the first car after a position 
func (r *repo) After(pos float32, excludeID int) *sim.Car { 
if len(r.cars) == 0 { 
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return r.plusInf 
} 
i := bSearch(pos, r.cars, 0, len(r.cars)-1) 
possible := []int{i, i - 1, i - 2} 
for _, p := range possible { 
if p >= 0 && p < len(r.cars) && r.cars[p].ID != excludeID && r.cars[p].Curr.Position >= pos { 
return r.cars[p] 
} 
} 
return r.plusInf 
} 
// After returns the first car after a position 
func (r *repo) AfterInNext(pos float32, excludeID int) *sim.Car { 
if len(r.cars) == 0 { 
return r.plusInf 
} 
i := bSearch(pos, r.cars, 0, len(r.cars)-1, "next") 
possible := []int{i, i - 1, i - 2} 
for _, p := range possible { 
if p >= 0 && p < len(r.cars) && r.cars[p].ID != excludeID && r.cars[p].Next.Position >= pos { 
return r.cars[p] 
} 
} 
return r.plusInf 
} 
// Before returns the last car before a position 
func (r *repo) Before(pos float32) *sim.Car { 
if len(r.cars) == 0 { 
return r.minusInf 
} 
i := bSearch(pos, r.cars, 0, len(r.cars)-1) 
possible := []int{i, i + 1, i + 2} 
for _, p := range possible { 
if p >= 0 && p < len(r.cars) && r.cars[p].Curr.Position <= pos { 
return r.cars[p] 
} 
} 
return r.minusInf 
} 
// Before returns the last car before a position 
func (r *repo) BeforeInNext(pos float32) *sim.Car { 
if len(r.cars) == 0 { 
return r.minusInf 
} 
i := bSearch(pos, r.cars, 0, len(r.cars)-1, "next") 
possible := []int{i, i + 1, i + 2} 
for _, p := range possible { 
if p >= 0 && p < len(r.cars) && r.cars[p].Next.Position <= pos { 
return r.cars[p] 
} 
} 
return r.minusInf 
} 
func (r *repo) GetBetween(start float32, end float32) []*sim.Car { 
ret := make([]*sim.Car, 0) 
for _, c := range r.cars { 
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if c.Prev.Position != 0 && c.Prev.Position < end && c.Curr.Position >= start { 
ret = append(ret, c) 
} 
} 
return ret 
} 
// AllProbes returns all the cars that are marked as probe cars 
func (r *repo) AllProbes() []*sim.Car { 
probes := make(sortedCars, 0, r.maxLen) 
for i := 0; i < len(r.cars); i++ { 
if r.cars[i].Curr.IsProbe { 
probes = append(probes, r.cars[i]) 
} 
} 
return probes 
} 
// Get returns car at an index. Returns and error in case index is out of range. 
func (r *repo) Get(idx int) (*sim.Car, bool) { 
if idx < len(r.cars) { 
return r.cars[idx], true 
} 
return nil, false 
} 
func (r *repo) GetByID(id int) (*sim.Car, bool) { 
for _, car := range r.cars { 
if car.ID == id { 
return car, true 
} 
} 
return nil, false 
} 
func (r *repo) GetFirst() (*sim.Car, bool) { 
if len(r.cars) != 0 { 
return r.cars[len(r.cars)-1], true 
} 
return nil, false 
} 
#-----------------------NEW FILE--------------------------- sim/car/init.go 
package car 
import ( 
"math/rand" 
"sim" 
"time" 
) 
func init() { 
if !sim.HasPresetSeeds { 
sim.CarSeed = time.Now().UTC().UnixNano() 
} 
rand.Seed(sim.CarSeed) 
} 
#-----------------------NEW FILE--------------------------- sim/change/security_test.go 
package change 
import ( 
"log" 
"sim" 
"testing" 
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) 
func state(position float32, speed float32, spaceGap float32) *sim.CarState { 
return &sim.CarState{ 
Position: position, 
Speed: speed, 
SpaceGap: spaceGap, 
VSafeN: -1000, 
AccState: 0, 
IsProbe: false, 
} 
} 
func TestPrecedingSecure(t *testing.T) { 
conf := sim.DefaultConfig() 
preceding := state(0, 30, 31) 
current := state(0, 30, 31) 
currSpeed := float32(30) 
isSec := securePreceding(current, preceding, currSpeed, conf) 
if !isSec { 
t.Errorf("Expeceted to be secure, got insecure.") 
} 
} 
func TestPrecedingInsecure(t *testing.T) { 
conf := sim.DefaultConfig() 
preceding := state(0, 30, 30) 
current := state(0, 30, 30) 
currSpeed := float32(30) 
isSec := securePreceding(current, preceding, currSpeed, conf) 
if isSec { 
t.Errorf("Expeceted to be insecure, got secure.") 
} 
} 
func TestTrailingSecure(t *testing.T) { 
conf := sim.DefaultConfig() 
trailing := state(0, 30, 31) 
current := state(0, 30, 31) 
currSpeed := float32(30) 
isSec := secureTrailing(current, trailing, currSpeed, conf) 
if !isSec { 
t.Errorf("Expeceted to be secure, got insecure.") 
} 
} 
func TestTrailingInsecure(t *testing.T) { 
conf := sim.DefaultConfig() 
trailing := state(0, 30, 30) 
current := state(0, 30, 30) 
currSpeed := float32(30) 
isSec := secureTrailing(current, trailing, currSpeed, conf) 
if isSec { 
t.Errorf("Expeceted to be insecure, got secure.") 
} 
} 
func TestRampSecurityStarAll(t *testing.T) { 
current := sim.TimePack{ 
Curr: state(130, 30, 31), 
Prev: state(100, 30, 31), 
} 
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precedingInTarget := sim.TimePack{ 
Curr: state(170, 30, 31), 
Prev: state(130, 30, 31), 
} 
trailingInTarget := sim.TimePack{ 
Curr: state(40, 30, 31), 
Prev: state(10, 30, 31), 
} 
c := sim.DefaultConfig() 
speed, pos, isSec := secureRamp(current, precedingInTarget, trailingInTarget, c) 
log.Printf("speed: %.2f, position: %.2f, isSec: %v", speed, pos, isSec) 
} 
#-----------------------NEW FILE--------------------------- sim/change/rightmost.go 
package change 
import ( 
"sim" 
) 
type changeRightmost struct { 
config sim.Config 
current *sim.CarState 
precedingInSame *sim.CarState 
precedingInTarget *sim.CarState 
trailingInTarget *sim.CarState 
} 
// NewRightmost creates a new instance of right lane changer. 
func NewRightmost(config sim.Config) sim.LaneChanger { 
return &changeRightmost{config: config} 
} 
func (c *changeRightmost) Can(current sim.TimePack, precedingInSame sim.TimePack, precedingInTarget 
sim.TimePack, trailingInTarget sim.TimePack) (float32, float32, bool) { 
c.current = current.Curr 
c.precedingInSame = precedingInSame.Curr 
c.precedingInTarget = precedingInTarget.Curr 
c.trailingInTarget = trailingInTarget.Curr 
currPos := current.Curr.Position 
start := current.Curr.ExitPosition 
end := start + c.config.ExitLaneLength 
cond1 := currPos >= start && currPos <= end 
cond2 := current.Curr.SelectedForExit 
return c.current.Speed, c.current.Position + c.current.Speed*c.config.TimeStep, cond1 && cond2 
} 
func (c *changeRightmost) Want(probability float32) bool { 
return true 
} 
#-----------------------NEW FILE--------------------------- sim/change/normal_right.go 
package change 
import ( 
"math" 
"math/rand" 
"sim" 
) 
type changeRight struct { 
config sim.Config 
current *sim.CarState 
precedingInSame *sim.CarState 
precedingInTarget *sim.CarState 
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trailingInTarget *sim.CarState 
} 
// NewNormalRight creates a new instance of right lane changer. 
func NewNormalRight(config sim.Config) sim.LaneChanger { 
return &changeRight{config: config} 
} 
func (c *changeRight) Can(current sim.TimePack, precedingInSame sim.TimePack, precedingInTarget 
sim.TimePack, trailingInTarget sim.TimePack) (float32, float32, bool) { 
c.current = current.Curr 
c.precedingInSame = precedingInSame.Curr 
c.precedingInTarget = precedingInTarget.Curr 
c.trailingInTarget = trailingInTarget.Curr 
cond1 := c.can() 
cond2 := secureTrailing(current.Curr, c.trailingInTarget, c.trailingInTarget.Speed, c.config) 
cond3 := securePreceding(current.Curr, c.precedingInTarget, c.precedingInTarget.Speed, c.config) 
return c.current.Speed, c.current.Position + c.current.Speed*c.config.TimeStep, cond1 && cond2 && cond3 
} 
func (c *changeRight) Want(probability float32) bool { 
return rand.Float32() < probability 
} 
func (c *changeRight) can() bool { 
vPlusN := c.precedingInTarget.Speed 
vLN := c.precedingInSame.Speed 
if c.precedingInTarget.SpaceGap > c.config.LookAheadDistance { 
vPlusN = math.MaxFloat32 
} 
if c.current.SpaceGap > c.config.LookAheadDistance { 
vLN = math.MaxFloat32 
} 
cond1 := vPlusN > vLN+c.config.Sigma2 
cond2 := vPlusN > c.current.Speed+c.config.Sigma2 
return cond1 || cond2 
} 
#-----------------------NEW FILE--------------------------- sim/change/normal_left.go 
package change 
import ( 
"math" 
"math/rand" 
"sim" 
) 
type changeLeft struct { 
config sim.Config 
current *sim.CarState 
precedingInSame *sim.CarState 
precedingInTarget *sim.CarState 
trailingInTarget *sim.CarState 
} 
// NewNormalLeft creates a new instance of left lane changer. 
func NewNormalLeft(config sim.Config) sim.LaneChanger { 
return &changeLeft{config: config} 
} 
func (c *changeLeft) Can(current sim.TimePack, precedingInSame sim.TimePack, precedingInTarget 
sim.TimePack, trailingInTarget sim.TimePack) (float32, float32, bool) { 
c.current = current.Curr 
c.precedingInSame = precedingInSame.Curr 
c.precedingInTarget = precedingInTarget.Curr 
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c.trailingInTarget = trailingInTarget.Curr 
cond1 := c.can() 
cond2 := secureTrailing(current.Curr, c.trailingInTarget, c.trailingInTarget.Speed, c.config) 
cond3 := securePreceding(current.Curr, c.precedingInTarget, c.precedingInTarget.Speed, c.config) 
return c.current.Speed, c.current.Position + c.current.Speed*c.config.TimeStep, cond1 && cond2 && cond3 
} 
func (c *changeLeft) Want(probability float32) bool { 
return rand.Float32() < probability 
} 
func (c *changeLeft) can() bool { 
vPlusN := c.precedingInTarget.Speed 
vLN := c.precedingInSame.Speed 
if c.precedingInTarget.SpaceGap > c.config.LookAheadDistance { 
vPlusN = math.MaxFloat32 
} 
if c.current.Speed > c.config.LookAheadDistance { 
vLN = math.MaxFloat32 
} 
cond1 := vPlusN >= vLN+c.config.Sigma1 
cond2 := c.current.Speed >= vLN 
return cond1 && cond2 
} 
#-----------------------NEW FILE--------------------------- sim/change/security.go 
package change 
import ( 
"math" 
"sim" 
"sim/common" 
) 
func securePreceding(current *sim.CarState, precedingInTarget *sim.CarState, vN float32, c sim.Config) bool { 
if precedingInTarget.Speed == math.MaxFloat32 { 
return true 
} 
ts := precedingInTarget.Position - current.Position - c.Length 
s0 := vN * c.TimeStep 
s1 := common.G(vN, precedingInTarget.Speed, c.TimeStep, c.K, c.MaxAcceleration, c.Beta) 
return float64(ts) > math.Min(float64(s0), float64(s1)) 
} 
func secureTrailing(current *sim.CarState, trailingInTarget *sim.CarState, vN float32, c sim.Config) bool { 
if trailingInTarget.Position == -math.MaxFloat32 { 
return true 
} 
ts := current.Position - trailingInTarget.Position - c.Length 
s0 := trailingInTarget.Speed * c.TimeStep 
s1 := common.G(trailingInTarget.Speed, vN, c.TimeStep, c.K, c.MaxAcceleration, c.Beta) 
return float64(ts) > math.Min(float64(s0), float64(s1)) 
} 
func applyRuleStar(current sim.TimePack, precedingInTarget sim.TimePack, c sim.Config) float32 { 
vPlusN := precedingInTarget.Curr.Speed 
vN := current.Curr.Speed 
vN = float32(math.Min(float64(vPlusN), float64(vN+c.DeltaVR1))) 
return vN 
} 
// Returns speed, position, and whether it is secure or not 
func secureRamp(current sim.TimePack, precedingInTarget sim.TimePack, trailingInTarget sim.TimePack, c 
sim.Config) (float32, float32, bool) { 
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vN := applyRuleStar(current, precedingInTarget, c) 
if vN > 30 { 
vN = 30 
} 
cond1 := secureTrailing(current.Curr, trailingInTarget.Curr, vN, c) 
cond2 := securePreceding(current.Curr, precedingInTarget.Curr, vN, c) 
security := cond1 && cond2 
if security { 
return vN, current.Curr.Position + vN*c.TimeStep, true 
} 
security = applyRuleDoubleStar(current, trailingInTarget, precedingInTarget, c) 
if security { 
var xMN float32 
if precedingInTarget.Curr.Position == math.MaxInt32 { 
xMN = trailingInTarget.Curr.Position + c.Length 
if xMN == -math.MaxInt32 { 
xMN = current.Curr.Position 
} 
} else if trailingInTarget.Curr.Position == -math.MaxInt32 { 
xMN = precedingInTarget.Curr.Position - c.Length 
} else { 
xMN = (precedingInTarget.Curr.Position + trailingInTarget.Curr.Position) / 2.0 
} 
cc := xMN + vN*c.TimeStep 
estimatedTrailing := trailingInTarget.Curr.Position + trailingInTarget.Curr.Speed*c.TimeStep 
if cc <= estimatedTrailing { 
cc = estimatedTrailing + vN*c.TimeStep 
} 
if cc <= current.Curr.Position { 
cc = current.Curr.Position + vN*c.TimeStep 
} 
return vN, cc, true 
} 
return -1, -1, false 
} 
func applyRuleDoubleStar(current sim.TimePack, trailingInTarget sim.TimePack, precedingInTarget 
sim.TimePack, c sim.Config) bool { 
minGapOnRamp := c.LambdaOn*precedingInTarget.Curr.Speed + c.Length 
cond1 := (precedingInTarget.Curr.Position - trailingInTarget.Curr.Position - c.Length) > minGapOnRamp 
return cond1 
} 
#-----------------------NEW FILE--------------------------- sim/change/never.go 
package change 
import ( 
"sim" 
) 
type never struct { 
} 
// NewNever creates a new instance of lane changer that never permits the change. 
func NewNever() sim.LaneChanger { 
return &never{} 
} 
func (n *never) Can(current sim.TimePack, precedingInSame sim.TimePack, precedingInTarget sim.TimePack, 
trailingInTarget sim.TimePack) (float32, float32, bool) { 
return -1, -1, false 
} 
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func (n *never) Want(probability float32) bool { 
return false 
} 
#-----------------------NEW FILE--------------------------- sim/change/ramp_left.go 
package change 
import ( 
"math" 
"math/rand" 
"sim" 
) 
type changeRampLeft struct { 
config sim.Config 
current *sim.CarState 
precedingInSame *sim.CarState 
precedingInTarget *sim.CarState 
trailingInTarget *sim.CarState 
} 
// NewRampLeft creates a new instance of left lane changer for ramp's merging region. 
func NewRampLeft(config sim.Config) sim.LaneChanger { 
return &changeRampLeft{config: config} 
} 
func (c *changeRampLeft) Can(current sim.TimePack, precedingInSame sim.TimePack, precedingInTarget 
sim.TimePack, trailingInTarget sim.TimePack) (float32, float32, bool) { 
c.current = current.Curr 
c.precedingInSame = precedingInSame.Curr 
c.precedingInTarget = precedingInTarget.Curr 
c.trailingInTarget = trailingInTarget.Curr 
if c.trailingInTarget.Position == -math.MaxFloat32 && c.precedingInTarget.Position == math.MaxFloat32 { 
return current.Curr.Speed, current.Curr.Position + current.Curr.Speed*c.config.TimeStep, true 
} 
cond1 := true 
speed, position, cond2 := secureRamp(current, precedingInTarget, trailingInTarget, c.config) 
return speed, position, cond1 && cond2 
} 
func (c *changeRampLeft) Want(probability float32) bool { 
return rand.Float32() <= probability 
} 
func (c *changeRampLeft) can() bool { 
vPlusN := c.precedingInTarget.Speed 
vLN := c.precedingInSame.Speed 
if c.precedingInTarget.SpaceGap > c.config.LookAheadDistance { 
vPlusN = math.MaxFloat32 
} 
if c.current.Speed > c.config.LookAheadDistance { 
vLN = math.MaxFloat32 
} 
cond1 := vPlusN >= vLN+c.config.Sigma1 
cond2 := c.current.Speed >= vLN 
return cond1 && cond2 
} 
#-----------------------NEW FILE--------------------------- sim/change/init.go 
package change 
import ( 
"math/rand" 
"sim" 
"time" 
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) 
func init() { 
if !sim.HasPresetSeeds { 
sim.ChangeSeed = time.Now().UTC().UnixNano() 
} 
rand.Seed(sim.ChangeSeed) 
} 
#-----------------------NEW FILE--------------------------- sim/change/normal_left_test.go 
package change 
import ( 
"log" 
"sim" 
"testing" 
) 
func TestChangeSuccessLeft(t *testing.T) { 
config := sim.DefaultConfig() 
changer := NewNormalLeft(config) 
current := sim.TimePack{ 
Curr: state(130, 30, 31), 
Prev: state(100, 30, 31), 
} 
precedingInTarget := sim.TimePack{ 
Curr: state(170, 30, 31), 
Prev: state(130, 30, 31), 
} 
precedingInSame := sim.TimePack{ 
Curr: state(170, 30, 31), 
Prev: state(130, 30, 31), 
} 
trailingInTarget := sim.TimePack{ 
Curr: state(40, 30, 31), 
Prev: state(10, 30, 31), 
} 
speed, position, can := changer.Can(current, precedingInSame, precedingInTarget, trailingInTarget) 
log.Printf("Change lane: speed: %.2f, position: %.2f, can: %v", speed, position, can) 
} 
#-----------------------NEW FILE--------------------------- sim/interfaces.go 
package sim 
import ( 
"fmt" 
) 
const ( 
// ChangeLeft is the intent to change to the left lane 
ChangeLeft = iota 
// Stay is the intent to stay in the current lane 
Stay 
// ChangeRight is the intent to change to the right lane 
ChangeRight 
// ExitLane is the intent to change to the right and exit the main lane 
ExitLane 
) 
const ( 
GENERAL = "general" 
ALL = "all" 
TOP = "top" 
MID = "bot" 
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BOT = "mid" 
ALL_TRAVEL = "all_travel" 
) 
const ( 
// PlusInfID is the id of the car at the plus infinity 
PlusInfID = -1 
// MinusInfID is the id of the car at the minus infinity 
MinusInfID = -2 
InvalidID = -3 
) 
// NewCar creates stateful car from an initial state 
type NewCar func(initState *CarState, id int, isOnRamp bool, genTime float32, rampEnd float32, config Config) 
*Car 
// ComputeNext calculates the next speed and position of the car 
type ComputeNext func(current *Car, preceding *Car, left ChangePack, right ChangePack, isApproachingRedLight 
bool, isOnRampMerging bool) (int, error) 
// Car holds the informatios about a stateful car 
type Car struct { 
ID int 
GenTime float32 
Prev *CarState 
Curr *CarState 
Next *CarState 
Internal *CarInternalState 
Extra *CarExtraInfo 
} 
func (c Car) String() string { 
//return fmt.Sprintf("[ID: %d, Probe: %v, Curr:(Speed: %.2f, Position: %.2f), Next: (Speed: %.2f, Position: %.2f)]", 
c.ID, c.Curr.IsProbe, c.Curr.Speed, c.Curr.Position, c.Next.Speed, c.Next.Position) 
return fmt.Sprintf("[%d:%.1f@%.1f->%.1f->%.1f]", c.ID, c.Curr.Speed, c.Prev.Position, c.Curr.Position, 
c.Next.Position) 
} 
// CarState is a small interface exposing only the position and speed of the car. 
type CarState struct { 
Position float32 
Speed float32 
SpaceGap float32 
VSafeN float32 
AccState float32 
IsProbe bool 
SelectedForExit bool 
ExitPosition float32 
} 
// CarInternalState is used for computing the next state of the car. 
type CarInternalState struct { 
// v_c,n 
SpeedAdaptation float32 
// v_s,n 
SafeSpeed float32 
// v^safeN 
//vSafeN float32 
// // g_n -> stored in state 
// spaceGap float32 
// b_n 
Deceleration float32 
// a_n 
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Acceleration float32 
// D_n 
SynchronizationDistance float32 
// delta 
Delta float32 
} 
// CarExtraInfo are some non-internal info about the car 
type CarExtraInfo struct { 
SecondRun bool 
Preceding *CarState 
RampMerging bool 
OnRamp bool 
RampEnd float32 
PrecedingInLeftOfRamp *CarState 
} 
// TimePack is a wrapper for holding the current and previous state of a car. 
type TimePack struct { 
Curr *CarState 
Prev *CarState 
} 
// Controller acts as the red/green light 
type Controller interface { 
IsRed() bool 
Position() float32 
Simulate() 
} 
// LaneChanger offers the functionality to check if a lane change is possible and whether it can happen. 
type LaneChanger interface { 
// Checks if a car can change lane. If it can, it also returns the new speed and position of the car. 
Can(current TimePack, precedingInSame TimePack, precedingInTarget TimePack, trailingInTarget TimePack) 
(float32, float32, bool) 
Want(probability float32) bool 
} 
// ChangePack holds all the information about changing to a target lane. 
type ChangePack struct { 
LaneChanger 
Preceding TimePack 
Trailing TimePack 
} 
// CarRepo maintains a list of sorted cars. 
type CarRepo interface { 
// Add adds a car to the car repository 
Add(c *Car) 
// Remove removes a car to the car repository 
Remove(c *Car) 
// After returns the first car after a position 
After(pos float32, excludeID int) *Car 
// Before returns the last car before a position 
Before(pos float32) *Car 
// After returns the first car after a position 
AfterInNext(pos float32, excludeID int) *Car 
// Before returns the last car before a position 
BeforeInNext(pos float32) *Car 
// GetBetween returns all the cars between two points 
GetBetween(start float32, end float32) []*Car 
// AllProbes returns all the cars that are marked as probe cars 
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AllProbes() []*Car 
// Get returns car at an index. Returns and error in case index is out of range. 
Get(idx int) (*Car, bool) 
GetByID(id int) (*Car, bool) 
Leng() int 
GetFirst() (*Car, bool) 
Sort() 
} 
// Lane reprents the functionality that a lane of a road supports. 
type Lane interface { 
CarRepo 
// Move changes a car location from the current lane to the target lane. 
Simulate() error 
// Start returns the starting position of a lane 
Start() float32 
// End returns the end position of a lane 
End() float32 
Move() map[*Car]Lane 
// Adjacent sets the adjacent lanes 
Adjacent(left []Lane, right []Lane) 
// IsRamp returns true if the lane is ramp 
IsRamp() bool 
Clean() []*Car 
Place(c *CarState, id int) 
Name() string 
} 
// Generator creates new cars based on some internal distribution. 
type Generator interface { 
// Cars returns the cars generated in the given timestep and the corresponding time interval 
Cars() ([]*CarState, []int, float32) 
} 
// CarPlacer generates cars and puts the into a lane. 
// It is up to the CarPlacer to respect or ignore the preferred location of the generated cars. 
type CarPlacer interface { 
// Register adds a lane and its corresponding car generator in which cars are generated and placed 
Register(l Lane, g Generator) 
// GenNPlace generates and places the cars in all the registered lanes 
GenNPlace() 
} 
// Detector simulates a detector on the road. 
type Detector interface { 
Register(l []Lane) 
Detect() 
// Predict is called at the begining of the timestep predict based on Kalman Filter 
Predict() 
ID() int 
GatherForController() DetectorPredStat 
Report() []Report 
// TransferredFrom checks if the cars that have left the source detector have arrived at the current detector. 
// It then call Transfer to signal the source detector to clears its just left list. 
TransferredFrom() 
// Transfer deletes the car ids from the just left list 
Transfer(carIDs []int) 
Stat(choice string) *DetectorStat 
SetPrevious(d Detector, rampDetector Detector) 
} 
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type Report struct { 
Content string 
Name string 
} 
type DetectorPredStat struct { 
BotSpeedXHat []float32 
TravelAVGMultiAhead [][]float64 
FlowBotMultiAhead [][]float64 
FlowAllMultiAhead [][]float64 
} 
type DetectorStat struct { 
ID int 
PredSpeed []float32 
PredFlow []float32 
RealSpeed []float32 
RealFlow []float32 
Density []float32 
Location float32 
LaneCount int 
// JustLeft returns the car ids that have recently left the detector's range 
JustLeft map[int]float32 
} 
type PredictGroup struct { 
Curr *DetectorStat 
PrevLane *DetectorStat 
PrevRamp *DetectorStat 
PrevExit *DetectorStat 
Name string 
} 
type SetSimFunc func(probeInfoPaths []string, conf Config, outDir string, simulationDuration float32) 
*OptimizerDecision 
// Simulator connects the lanes and detectors and outputs the final result of the simulation. 
type Simulator interface { 
SetOtherSimulator(SetSimFunc, Config) 
Simulate() *OptimizerDecision 
Save(dir string) []string 
} 
type OptimizerDecision struct { 
AlwaysGreen map[string]bool 
Rate map[string]int 
} 
// Config holds the simulation parameters. 
type Config struct { 
LookAheadDistance float32 
Sigma1 float32 
Sigma2 float32 
Sigma float32 
TimeStep float32 
K float32 
Beta float32 
MaxAcceleration float32 
MaxDeceleration float32 
DeltaVR1 float32 
DeltaVR2 float32 
Length float32 
LambdaOn float32 
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MaxFreeFlowSpeed float32 
MaxFreeFlowSpeedOnRamp float32 
DecelerationProb float32 
AccelerationProb float32 
// P_c 
LaneChangeProb float32 
SimulationDuration float32 
LaneLength float32 
MergeProb float32 
// l_safe 
SafeDistance float32 
SamplingDuration float32 
DetectorRange float32 
ProbeProbability float32 
SnapshotIncrement float32 
MergingRegionLength float32 
MergingRampLength float32 
NonMergingRampLength float32 
OutDir string 
OptimizeDir string 
// KFN is the kalmant filter history, N 
KFN int 
AverageCarLength float32 
VSyn float32 
VJam float32 
QJam1 float32 // veh/seconds -> user will input per minute 
QMinT1 float32 
ROMaxT1 float32 
QJam3 float32 // veh/seconds -> user will input per minute 
QMinT3 float32 
ROMaxT3 float32 
PatternMU float32 
Tave float32 
ExitDistance float32 
ExitPositions []float32 
ExitProbabilities []float32 
ExitLaneLength float32 
LightInterval float32 
SimpleQtt float64 
SimpleRtt float64 
StepAheadCount int 
Alpha1 float64 
Alpha2 float64 
Alpha3 float64 
Beta1 float64 
Beta2 float64 
Beta3 float64 
W1 float64 
W2 float64 
W3 float64 
Alpha float64 
QueueRampMax1 float64 
QueueRampMax2 float64 
QueueRampMax3 float64 
TimeForGreenLight float64 
RunSim2 bool 
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UseAlwaysGreen bool // set during runtime NOT by csv file 
PenalizedDeltaFlowOn int 
} 
// DefaultConfig returns the default values as stated in the paper. 
func DefaultConfig() Config { 
timeStep := float32(1) 
return Config{ 
LookAheadDistance: 500, 
Sigma1: 1, 
Sigma2: 2, 
Sigma: 0.01, 
TimeStep: timeStep, 
K: 3, 
Beta: 1, 
MaxAcceleration: 0.5, 
MaxDeceleration: 0.5, 
DeltaVR1: 10, 
DeltaVR2: 5, 
Length: 7.5, 
LambdaOn: 0.75 * timeStep, 
MaxFreeFlowSpeed: 30, 
MaxFreeFlowSpeedOnRamp: 15, 
DecelerationProb: 0.1, 
AccelerationProb: 0.17, 
LaneChangeProb: 0.2, 
MergeProb: 1, 
SimulationDuration: 2 * 60 * 60, // 2 hours in seconds 
LaneLength: 20 * 1000, // 20 KM 
SafeDistance: 5, 
SamplingDuration: 10, 
DetectorRange: 1, 
ProbeProbability: 1, 
SnapshotIncrement: 10, 
MergingRegionLength: 300, 
MergingRampLength: 600, 
NonMergingRampLength: 600, 
OutDir: "./report", 
KFN: 5, 
AverageCarLength: 4, 
VSyn: 19 * 3.6, 
VJam: 10 * 3.6, 
QJam1: 20 * 60, // veh/min 
QMinT1: 0, 
ROMaxT1: 120 * 3, // veh/km (for 3 lanes) 
QJam3: 20 * 60, // veh/min 
QMinT3: 0, 
ROMaxT3: 120 * 3, // veh/km (for 3 lanes) 
PatternMU: 1, // TODO don't know the value 
Tave: 1, // minute 
ExitDistance: 2000, // meter 
ExitPositions: []float32{5000}, 
ExitProbabilities: []float32{0.1}, 
ExitLaneLength: 600, 
LightInterval: 60, 
} 
} 
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// DefaultSecondConfig returns the default values as stated in the paper. 
func DefaultSecondConfig() Config { 
timeStep := float32(10) 
return Config{ 
LookAheadDistance: 500, 
Sigma1: 1, 
Sigma2: 2, 
Sigma: 0.01, 
TimeStep: timeStep, 
K: 3, 
Beta: 1, 
MaxAcceleration: 0.5, 
MaxDeceleration: 0.5, 
DeltaVR1: 10, 
DeltaVR2: 5, 
Length: 7.5, 
LambdaOn: 0.75 * timeStep, 
MaxFreeFlowSpeed: 30, 
MaxFreeFlowSpeedOnRamp: 15, 
DecelerationProb: 0.1, 
AccelerationProb: 0.17, 
LaneChangeProb: 0.2, 
MergeProb: 1, 
SimulationDuration: 2 * 60 * 60, // 2 hours in seconds 
LaneLength: 20 * 1000, // 20 KM 
SafeDistance: 5, 
SamplingDuration: 60, 
DetectorRange: 1, 
ProbeProbability: 1, 
SnapshotIncrement: 10, 
MergingRegionLength: 300, 
MergingRampLength: 600, 
NonMergingRampLength: 600, 
OutDir: "./report2", 
KFN: 5, 
AverageCarLength: 4, 
VSyn: 19 * 3.6, 
VJam: 10 * 3.6, 
QJam1: 20 * 60, // veh/min 
QMinT1: 0, 
ROMaxT1: 120 * 3, // veh/km (for three lanes) 
QJam3: 20 * 60, // veh/min 
QMinT3: 0, 
ROMaxT3: 120 * 3, // veh/km (for three lanes) 
PatternMU: 1, // TODO don't know the value 
Tave: 1, // minute 
ExitDistance: 2000, // meter 
ExitPositions: []float32{5000}, 
ExitProbabilities: []float32{0.1}, 
ExitLaneLength: 600, 
LightInterval: 60, 
} 
} 
#-----------------------NEW FILE--------------------------- sim/placer/placer.go 
package placer 
import ( 
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"math" 
"sim" 
"sim/common" 
"sort" 
) 
type place struct { 
lanes []sim.Lane 
lg map[sim.Lane]sim.Generator 
q map[sim.Lane][]*sim.CarState 
ids map[sim.Lane][]int 
place placer 
conf sim.Config 
} 
type placer func(*place, sim.Lane, []*sim.CarState, float32) []*sim.CarState 
var carID = 0 
// NewRespectfulPlacer returns a car placer that positions the cars in their preferred position 
// and at their preferred speed. 
func NewRespectfulPlacer(conf sim.Config) sim.CarPlacer { 
return &place{ 
lanes: make([]sim.Lane, 0), 
lg: make(map[sim.Lane]sim.Generator), 
q: make(map[sim.Lane][]*sim.CarState), 
ids: make(map[sim.Lane][]int), 
place: respect, 
conf: conf, 
} 
} 
// NewNormalPlacer returns a car placer that positions the cars based on the free spot avialability 
// at the begining of the lane. 
func NewNormalPlacer(conf sim.Config) sim.CarPlacer { 
return &place{ 
lanes: make([]sim.Lane, 0), 
lg: make(map[sim.Lane]sim.Generator), 
q: make(map[sim.Lane][]*sim.CarState), 
place: normal, 
conf: conf, 
} 
} 
// Register adds a lane and its corresponding car generator in which cars are generated and placed 
func (p *place) Register(l sim.Lane, g sim.Generator) { 
p.lanes = append(p.lanes, l) 
p.lg[l] = g 
} 
// GenNPlace generates and places the cars in all the registered lanes 
func (p *place) GenNPlace() { 
for _, l := range p.lanes { 
g := p.lg[l] 
if g != nil { // for exit lanes where no car is generated 
newCars, ids, timeInterval := g.Cars() 
p.q[l] = append(p.q[l], newCars...) 
if ids != nil { 
p.ids[l] = append(p.ids[l], ids...) 
} 
p.q[l] = p.place(p, l, p.q[l], timeInterval) 
} 
} 
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} 
type carIDPairs struct { 
cars []*sim.CarState 
ids []int 
} 
func (s carIDPairs) Len() int { 
return len(s.cars) 
} 
func (s carIDPairs) Swap(i, j int) { 
s.cars[i], s.cars[j] = s.cars[j], s.cars[i] 
s.ids[i], s.ids[j] = s.ids[j], s.ids[i] 
} 
func (s carIDPairs) Less(i, j int) bool { 
return s.cars[i].Position < s.cars[j].Position 
} 
func respect(p *place, l sim.Lane, cars []*sim.CarState, timeInterval float32) []*sim.CarState { 
if len(cars) > 0 { 
removeCars := make([]*sim.Car, 0, 1000000) 
for i := 0; ; i++ { 
if me, ok := l.Get(i); ok { 
removeCars = append(removeCars, me) 
} else { 
break 
} 
} 
for _, c := range removeCars { 
l.Remove(c) 
} 
} 
pairs := carIDPairs{cars, p.ids[l]} 
sort.Sort(sort.Reverse(pairs)) 
for i, c := range pairs.cars { 
l.Place(c, pairs.ids[i]) 
} 
p.ids[l] = make([]int, 0) 
return make([]*sim.CarState, 0) 
} 
func normal(p *place, l sim.Lane, cars []*sim.CarState, timeInterval float32) (remaining []*sim.CarState) { 
if l.Leng() == 0 { // can place all cars in queue in equal distance 
fixedPosInterval := p.conf.MaxFreeFlowSpeed * timeInterval 
pos := l.Start() 
var spaceGap float32 
var precedingCarSpeed float32 
for i := 0; i < len(cars); i++ { 
if i == len(cars)-1 { 
spaceGap = math.MaxInt32 
precedingCarSpeed = math.MaxInt32 
} else { 
spaceGap = fixedPosInterval - p.conf.Length 
precedingCarSpeed = p.conf.MaxFreeFlowSpeed 
} 
vSafeN := common.VSafe(spaceGap, precedingCarSpeed, p.conf.MaxDeceleration, p.conf.TimeStep) 
if l.IsRamp() { 
cars[i].Speed = p.conf.MaxFreeFlowSpeedOnRamp 
} else { 
cars[i].Speed = p.conf.MaxFreeFlowSpeed 
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} 
cars[i].Position = pos 
cars[i].SpaceGap = spaceGap 
cars[i].VSafeN = vSafeN 
l.Place(cars[i], carID) 
carID++ 
pos += fixedPosInterval 
} 
return make([]*sim.CarState, 0) 
} 
i := 0 
for ; i < len(cars); i++ { 
furthestUpstream, _ := l.GetFirst() 
if furthestUpstream.Curr.Position-l.Start() >= p.conf.SafeDistance { 
speed := furthestUpstream.Curr.Speed 
pos := float32(math.Max(float64(l.Start()), float64(furthestUpstream.Curr.Position)-
math.Max(float64(speed*timeInterval), float64(p.conf.SafeDistance)))) 
spaceGap := furthestUpstream.Curr.Position - pos - p.conf.Length 
if spaceGap < 0 { 
break 
} 
precedingCarSpeed := furthestUpstream.Curr.Speed 
vSafeN := common.VSafe(spaceGap, precedingCarSpeed, p.conf.MaxDeceleration, p.conf.TimeStep) 
cars[i].Speed = speed 
cars[i].Position = pos 
cars[i].SpaceGap = spaceGap 
cars[i].VSafeN = vSafeN 
l.Place(cars[i], carID) 
carID++ 
} else { 
break 
} 
} 
if i == len(cars) { 
return make([]*sim.CarState, 0) 
} 
return cars[i:] 
} 
#-----------------------NEW FILE--------------------------- sim/gen/poisson_test.go 
package gen 
import ( 
"sim" 
"testing" 
) 
func TestParseMUList(t *testing.T) { 
path := "test.csv" 
parseMUList(path, "1") 
} 
func TestPoisson(t *testing.T) { 
conf := sim.DefaultConfig() 
p := NewPoisson(map[string]string{ 
"path": "test.csv", 
"col": "1", 
}, conf) 
histogram := make([]int, 0) 
currMin := -1 
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elapsed := float32(0) 
for elapsed < 120*60 { 
m := int(elapsed / 60) 
if m != currMin { 
histogram = append(histogram, 0) 
currMin = m 
} 
cars, _, _ := p.Cars() 
histogram[m] += len(cars) 
elapsed += conf.TimeStep 
} 
for _, h := range histogram { 
str := "" 
for i := 0; i < h; i++ { 
str += "*" 
} 
} 
} 
#-----------------------NEW FILE--------------------------- sim/gen/factory.go 
package gen 
import ( 
"sim" 
"sim/common" 
) 
func GenFactory(genConf map[string]string, conf sim.Config) sim.Generator { 
if genConf["name"] == "normal" { 
return NewNormal(genConf, conf) 
} else if genConf["name"] == "lognormal" { 
return NewLogNormal(genConf, conf) 
} else if genConf["name"] == "fixed" { 
return NewFixed(genConf, conf) 
} else if genConf["name"] == "exact" { 
return NewExact(genConf, conf) 
} else if genConf["name"] == "poisson" { 
return NewPoisson(genConf, conf) 
} 
return nil 
} 
func get(prop string, genConf map[string]string) float32 { 
return common.ToFloat(genConf[prop]) 
} 
#-----------------------NEW FILE--------------------------- sim/gen/exact_test.go 
package gen 
import ( 
"log" 
"sim" 
"testing" 
) 
func TestExact(t *testing.T) { 
conf := sim.DefaultConfig() 
p := NewExact(map[string]string{ 
"path": "exact_test.csv", 
}, conf) 
elapsed := float32(0) 
for ; elapsed < 60*1; elapsed += conf.TimeStep { 
_, _, _ = p.Cars() 
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} 
cars, _, _ := p.Cars() 
log.Println(cars) 
} 
#-----------------------NEW FILE--------------------------- sim/gen/fixed.go 
package gen 
import ( 
"sim" 
) 
// generates fixed distribution of input 
type fixed struct { 
n int 
ts float32 
last float32 
interval float32 
speed float32 
p *probeState 
} 
// NewFixedRate receives the number of cars per __minute__ as input and creates normal generator 
func NewFixedRate(genConf map[string]string, conf sim.Config) sim.Generator { 
rate := get("rate", genConf) 
interval := float32(60) / float32(rate) 
return &fixed{ 
n: 0, 
ts: conf.TimeStep, 
last: 0, 
interval: interval, 
speed: conf.MaxFreeFlowSpeed, 
p: &probeState{ 
probeProbability: conf.ProbeProbability, 
exitPos: conf.ExitPositions, 
exitProb: conf.ExitProbabilities, 
}, 
} 
} 
func (n *fixed) Cars() ([]*sim.CarState, []int, float32) { 
n.n++ 
now := float32(n.n) * n.ts 
timePassed := now - n.last 
newCount := int(timePassed / n.interval) 
n.last = n.last + float32(newCount)*n.interval 
newCars := make([]*sim.CarState, 0) 
for i := 0; i < newCount; i++ { 
e, p := n.p.exit() 
newCars = append(newCars, &sim.CarState{ 
Position: 0, 
Speed: n.speed, 
SpaceGap: -1000, 
VSafeN: -1000, 
AccState: 0.0, 
IsProbe: n.p.gen(), 
SelectedForExit: e, 
ExitPosition: p, 
}) 
} 
return newCars, nil, n.interval 



 

207 

 

} 
#-----------------------NEW FILE--------------------------- sim/gen/normal.go 
package gen 
import ( 
"encoding/csv" 
"io" 
"log" 
"math" 
"math/rand" 
"os" 
"sim" 
"sim/common" 
) 
type normal struct { 
timeInterval int 
timeStep float32 
mean float32 
variance float32 
mvList map[int]mv 
genInterval float32 
last float32 
soFar float32 
lastIDX int 
n int 
speed float32 
pp *probeState 
} 
type mv struct { 
mean float32 
variance float32 
} 
func NewNormal(genConf map[string]string, conf sim.Config) sim.Generator { 
return &normal{ 
timeInterval: 60, 
timeStep: conf.TimeStep, 
mvList: parseMeanVariance(genConf["path"]), 
genInterval: 0, 
last: 0, 
soFar: 0, 
lastIDX: -1, 
n: 0, 
speed: common.ToFloat(genConf["speed"]), 
pp: &probeState{ 
probeProbability: conf.ProbeProbability, 
exitPos: conf.ExitPositions, 
exitProb: conf.ExitProbabilities, 
}, 
} 
} 
func (p *normal) Cars() ([]*sim.CarState, []int, float32) { 
p.n++ 
now := float32(p.n) * p.timeStep 
idx := int(now / float32(60)) 
if _, ok := p.mvList[idx]; !ok { 
idx = p.lastIDX 
} 
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if idx != p.lastIDX { 
// update generation parameters 
p.lastIDX = idx 
p.mean = p.mvList[idx].mean 
p.variance = p.mvList[idx].variance 
x := 0 
X := rand.Float64() 
acc := float64(0) 
for { 
newP := p.p(x) 
if acc <= X && acc+newP >= X { 
break 
} 
acc += newP 
x++ 
} 
p.genInterval = float32(60) / float32(x) 
p.soFar = 0 
} 
timePassed := now - p.last 
newCars := make([]*sim.CarState, 0) 
if !math.IsInf(float64(p.genInterval), 1) { 
newCount := int(timePassed / p.genInterval) 
p.last = p.last + float32(newCount)*p.genInterval 
for i := 0; i < newCount; i++ { 
exit, exitPos := p.pp.exit() 
newCars = append(newCars, &sim.CarState{ 
Position: 0, 
Speed: p.speed, 
SpaceGap: -1000, 
VSafeN: -1000, 
AccState: 0.0, 
IsProbe: p.pp.gen(), 
SelectedForExit: exit, 
ExitPosition: exitPos, 
}) 
} 
} else { 
p.last = now 
} 
//log.Println("Generated: ", len(newCars)) 
return newCars, nil, p.genInterval 
} 
func (p *normal) p(x int) float64 { 
a := 1.0 / math.Sqrt(2*math.Pi*math.Pow(float64(p.variance), 2)) 
b := math.Pow(float64(float32(x)-p.mean), 2) 
c := 2 * math.Pow(float64(p.variance), 2) 
d := math.Pow(math.E, -1*b/c) 
return a * d 
} 
func parseMeanVariance(path string) map[int]mv { 
f, err := os.Open(path) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f.Close() 
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r := csv.NewReader(f) 
_, err = r.Read() 
if err != nil { 
log.Fatalf("Could not read csv file: %v", err) 
} 
result := make(map[int]mv) 
for { 
record, err := r.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Fatal(err) 
} 
result[common.ToInt(record[0])] = mv{ 
mean: common.ToFloat(record[1]), 
variance: common.ToFloat(record[2]), 
} 
} 
return result 
} 
#-----------------------NEW FILE--------------------------- sim/gen/poisson.go 
package gen 
import ( 
"encoding/csv" 
"io" 
"log" 
"math" 
"math/rand" 
"os" 
"sim" 
"sim/common" 
) 
// generates poisson distribution of input 
type poisson struct { 
timeInterval int 
timeStep float32 
mu float32 
muList map[int]float32 
genInterval float32 
last float32 
soFar float32 
lastIDX int 
n int 
speed float32 
pp *probeState 
random bool 
} 
func NewPoisson(genConf map[string]string, conf sim.Config) sim.Generator { 
return &poisson{ 
timeInterval: 60, 
timeStep: conf.TimeStep, 
muList: parseMUList(genConf["path"], genConf["col"]), 
genInterval: 0, 
last: 0, 
soFar: 0, 
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lastIDX: -1, 
n: 0, 
speed: common.ToFloat(genConf["speed"]), 
pp: &probeState{ 
probeProbability: conf.ProbeProbability, 
exitPos: conf.ExitPositions, 
exitProb: conf.ExitProbabilities, 
}, 
random: true, 
} 
} 
func NewFixed(genConf map[string]string, conf sim.Config) sim.Generator { 
return &poisson{ 
timeInterval: 60, 
timeStep: conf.TimeStep, 
muList: parseMUList(genConf["path"], genConf["col"]), 
genInterval: 0, 
last: 0, 
soFar: 0, 
lastIDX: -1, 
n: 0, 
speed: common.ToFloat(genConf["speed"]), 
pp: &probeState{ 
probeProbability: conf.ProbeProbability, 
exitPos: conf.ExitPositions, 
exitProb: conf.ExitProbabilities, 
}, 
random: false, 
} 
} 
func (p *poisson) Cars() ([]*sim.CarState, []int, float32) { 
p.n++ 
now := float32(p.n) * p.timeStep 
idx := int(now / float32(60)) 
if _, ok := p.muList[idx]; !ok { 
idx = p.lastIDX 
} 
if idx != p.lastIDX { 
// update generation parameters 
p.lastIDX = idx 
p.mu = p.muList[idx] 
if p.random { 
x := 0 
X := rand.Float64() 
acc := float64(0) 
for { 
newP := p.p(x) 
if acc <= X && acc+newP >= X { 
break 
} 
acc += newP 
x++ 
} 
p.genInterval = float32(60) / float32(x) 
p.soFar = 0 
} else { 
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p.genInterval = float32(60) / float32(p.mu) 
p.soFar = 0 
} 
} 
timePassed := now - p.last 
newCars := make([]*sim.CarState, 0) 
if !math.IsInf(float64(p.genInterval), 1) { 
newCount := int(timePassed / p.genInterval) 
p.last = p.last + float32(newCount)*p.genInterval 
for i := 0; i < newCount; i++ { 
exit, exitPos := p.pp.exit() 
newCars = append(newCars, &sim.CarState{ 
Position: 0, 
Speed: p.speed, 
SpaceGap: -1000, 
VSafeN: -1000, 
AccState: 0.0, 
IsProbe: p.pp.gen(), 
SelectedForExit: exit, 
ExitPosition: exitPos, 
}) 
} 
} else { 
p.last = now 
} 
return newCars, nil, p.genInterval 
} 
func (p *poisson) p(x int) float64 { 
a := math.Pow(float64(p.mu), float64(x)) * math.Pow(math.E, -float64(p.mu)) 
b := float64(factorial(x)) 
return a / b 
} 
func factorial(x int) int { 
if x == 0 { 
return 1 
} 
return x * factorial(x-1) 
} 
func parseMUList(path string, col string) map[int]float32 { 
id := common.ToInt(col) 
f, err := os.Open(path) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f.Close() 
r := csv.NewReader(f) 
_, err = r.Read() 
if err != nil { 
log.Fatalf("Could not read csv file: %v", err) 
} 
result := make(map[int]float32) 
for { 
record, err := r.Read() 
if err == io.EOF { 
break 
} 
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if err != nil { 
log.Fatal(err) 
} 
result[common.ToInt(record[0])] = common.ToFloat(record[id]) 
} 
return result 
} 
#-----------------------NEW FILE--------------------------- sim/gen/probe.go 
package gen 
import ( 
"math" 
"math/rand" 
) 
type probeState struct { 
probeProbability float32 
exitPos []float32 
exitProb []float32 
} 
func (p *probeState) gen() bool { 
return rand.Float32() < p.probeProbability 
} 
func (p *probeState) exit() (bool, float32) { 
prob := rand.Float32() 
acc := make([]float32, len(p.exitProb)) 
acc[0] = p.exitProb[0] 
for i := 1; i < len(p.exitProb); i++ { 
acc[i] = acc[i-1] + p.exitProb[i] 
} 
for i, pp := range acc { 
if prob < pp { 
return true, p.exitPos[i] 
} 
} 
return false, math.MaxFloat32 
} 
#-----------------------NEW FILE--------------------------- sim/gen/exact.go 
package gen 
import ( 
"encoding/csv" 
"io" 
"log" 
"os" 
"sim" 
"sim/common" 
) 
// generates poisson distribution of input 
type exact struct { 
timeStep float32 
pos []map[int]carInfo 
lastIdx int 
n int 
snapRefreshInterval float32 
} 
type carInfo struct { 
id int 
timeGen float32 
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position float32 
speed float32 
spaceGap float32 
vSafeN float32 
selectedForExit bool 
exitPosition float32 
} 
func NewExact(genConf map[string]string, conf sim.Config) sim.Generator { 
interval := common.ToFloat(genConf["interval"]) 
return &exact{ 
timeStep: conf.TimeStep, 
pos: parsePositions(genConf["path"], interval), 
n: 0, 
snapRefreshInterval: interval, 
} 
} 
func (e *exact) Cars() ([]*sim.CarState, []int, float32) { 
e.n++ 
newCars := make([]*sim.CarState, 0) 
newIDs := make([]int, 0) 
now := float32(e.n) * e.timeStep 
idx := int(now / e.snapRefreshInterval) 
if idx < len(e.pos) && e.lastIdx != idx { 
e.lastIdx = idx 
for id, info := range e.pos[idx] { 
newCars = append(newCars, &sim.CarState{ 
Position: info.position, 
Speed: info.speed, 
SpaceGap: info.spaceGap, 
VSafeN: info.vSafeN, 
AccState: 0.0, 
IsProbe: true, 
SelectedForExit: info.selectedForExit, 
ExitPosition: info.exitPosition, 
}) 
newIDs = append(newIDs, id) 
} 
} 
return newCars, newIDs, -1 
} 
func parsePositions(path string, snapRefreshInterval float32) []map[int]carInfo { 
f, err := os.Open(path) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
r := csv.NewReader(f) 
_, err = r.Read() 
if err != nil { 
log.Fatalf("Could not read csv file: %v", err) 
} 
currIntervalIdx := 0 
result := make([]map[int]carInfo, 0) 
result = append(result, make(map[int]carInfo, 0)) 
for { 
record, err := r.Read() 
if err == io.EOF { 
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break 
} 
if err != nil { 
log.Fatal(err) 
} 
e := parseExact(record) 
if e.timeGen > float32(currIntervalIdx)*snapRefreshInterval { 
for e.timeGen > float32(currIntervalIdx)*snapRefreshInterval { 
currIntervalIdx++ 
result = append(result, make(map[int]carInfo, 0)) 
} 
} 
if e.position == -1 { 
delete(result[currIntervalIdx], e.id) 
} else { 
result[currIntervalIdx][e.id] = e 
} 
} 
return result 
} 
func parseExact(cells []string) carInfo { 
return carInfo{ 
timeGen: common.ToFloat(cells[0]), 
id: common.ToInt(cells[1]), 
speed: common.ToFloat(cells[2]), 
position: common.ToFloat(cells[3]), 
spaceGap: common.ToFloat(cells[4]), 
vSafeN: common.ToFloat(cells[5]), 
selectedForExit: common.ToBool(cells[6]), 
exitPosition: common.ToFloat(cells[7]), 
} 
} 
#-----------------------NEW FILE--------------------------- sim/gen/lognormal.go 
package gen 
import ( 
"encoding/csv" 
"io" 
"log" 
"math" 
"math/rand" 
"os" 
"sim" 
"sim/common" 
) 
type lognormal struct { 
timeInterval int 
timeStep float32 
mean float32 
theta float32 
variance float32 
mvtList map[int]mvt 
genInterval float32 
last float32 
soFar float32 
lastIDX int 
n int 
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speed float32 
pp *probeState 
} 
type mvt struct { 
mean float32 
variance float32 
theta float32 
} 
func NewLogNormal(genConf map[string]string, conf sim.Config) sim.Generator { 
return &lognormal{ 
timeInterval: 60, 
timeStep: conf.TimeStep, 
mvtList: parseMeanVarianceTheta(genConf["path"]), 
genInterval: 0, 
last: 0, 
soFar: 0, 
lastIDX: -1, 
n: 0, 
speed: common.ToFloat(genConf["speed"]), 
pp: &probeState{ 
probeProbability: conf.ProbeProbability, 
exitPos: conf.ExitPositions, 
exitProb: conf.ExitProbabilities, 
}, 
} 
} 
func (p *lognormal) Cars() ([]*sim.CarState, []int, float32) { 
p.n++ 
now := float32(p.n) * p.timeStep 
idx := int(now / float32(60)) 
if _, ok := p.mvtList[idx]; !ok { 
idx = p.lastIDX 
} 
if idx != p.lastIDX { 
// update generation parameters 
p.lastIDX = idx 
p.mean = p.mvtList[idx].mean 
p.variance = p.mvtList[idx].variance 
p.theta = p.mvtList[idx].theta 
x := 0 
X := rand.Float64() 
acc := float64(0) 
for { 
newP := p.p(x) 
if acc <= X && acc+newP >= X { 
break 
} 
acc += newP 
x++ 
} 
p.genInterval = float32(60) / float32(x) 
p.soFar = 0 
} 
timePassed := now - p.last 
newCars := make([]*sim.CarState, 0) 
if !math.IsInf(float64(p.genInterval), 1) { 
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newCount := int(timePassed / p.genInterval) 
p.last = p.last + float32(newCount)*p.genInterval 
for i := 0; i < newCount; i++ { 
exit, exitPos := p.pp.exit() 
newCars = append(newCars, &sim.CarState{ 
Position: 0, 
Speed: p.speed, 
SpaceGap: -1000, 
VSafeN: -1000, 
AccState: 0.0, 
IsProbe: p.pp.gen(), 
SelectedForExit: exit, 
ExitPosition: exitPos, 
}) 
} 
} else { 
p.last = now 
} 
//log.Println("Generated: ", len(newCars)) 
return newCars, nil, p.genInterval 
} 
func (p *lognormal) p(x int) float64 { 
xTheta := float64(x) - float64(p.theta) 
a := math.Log(xTheta / float64(p.mean)) 
b := math.Pow(a, 2) 
c := 2 * math.Pow(float64(p.variance), 2) 
d := b / c 
e := math.Pow(math.E, -1*d) 
f := math.Sqrt(2 * math.Pi) 
g := xTheta * float64(p.variance) * f 
h := e / g 
return h 
} 
func parseMeanVarianceTheta(path string) map[int]mvt { 
f, err := os.Open(path) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
r := csv.NewReader(f) 
_, err = r.Read() 
if err != nil { 
log.Fatalf("Could not read csv file: %v", err) 
} 
result := make(map[int]mvt) 
for { 
record, err := r.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Fatal(err) 
} 
result[common.ToInt(record[0])] = mvt{ 
mean: common.ToFloat(record[1]), 
variance: common.ToFloat(record[2]), 
theta: common.ToFloat(record[3]), 
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} 
} 
return result 
} 
#-----------------------NEW FILE--------------------------- sim/gen/init.go 
package gen 
import ( 
"math/rand" 
"sim" 
"time" 
) 
func init() { 
if sim.HasPresetSeeds { 
sim.GeneratorSeed = time.Now().UTC().UnixNano() 
} 
rand.Seed(sim.GeneratorSeed) 
} 
#-----------------------NEW FILE--------------------------- sim/gen/generator_test.go 
package gen 
import ( 
"math" 
"sim" 
"testing" 
) 
func TestFixedEmpty(t *testing.T) { 
conf := sim.DefaultConfig() 
conf.TimeStep = 1 
g := NewFixedRate(map[string]string{"rate": "0.1"}, conf) 
cars, _, interval := g.Cars() 
if interval != float32(60)/float32(0.1) { 
t.Error("Incorrect time interval") 
} 
if len(cars) != 0 { 
t.Errorf("Did not expect to get any cars, got %v", cars) 
} 
} 
func TestFixedExact(t *testing.T) { 
conf := sim.DefaultConfig() 
conf.TimeStep = 1 
g := NewFixedRate(map[string]string{"rate": "1"}, conf) 
for i := 0; i < 59; i++ { 
cars, _, interval := g.Cars() 
if interval != float32(60)/float32(1) { 
t.Error("Incorrect time interval") 
} 
if len(cars) != 0 { 
t.Errorf("Did not expect to get any cars, got %v", cars) 
} 
} 
cars, _, interval := g.Cars() 
if interval != float32(60)/float32(1) { 
t.Error("Incorrect time interval") 
} 
if len(cars) != 1 { 
t.Errorf("Expected to see a car, got %v", cars) 
} 
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} 
func TestFixedRemaining(t *testing.T) { 
conf := sim.DefaultConfig() 
conf.TimeStep = 1 
g := NewFixedRate(map[string]string{"rate": "0.9"}, conf) 
for i := 0; i < 60+6; i++ { 
cars, _, interval := g.Cars() 
if interval != float32(60)/float32(0.9) { 
t.Error("Incorrect time interval") 
} 
if len(cars) != 0 { 
t.Errorf("Did not expect to get any cars, got %v", cars) 
} 
} 
cars, _, interval := g.Cars() 
if interval != float32(60)/float32(0.9) { 
t.Error("Incorrect time interval") 
} 
if len(cars) != 1 { 
t.Errorf("Expected to see a car, got %v", cars) 
} 
expect := 60 + float32(60*0.1)/float32(0.9) 
if math.Abs(float64(g.(*fixed).last-expect)) > float64(0.00001) { 
t.Errorf("Expected the last car to be generated at %f seconds and one third of a second, but got %f", expect, 
g.(*fixed).last) 
} 
} 
#-----------------------NEW FILE--------------------------- sim/controller/optimized_light.go 
package controller 
import ( 
"encoding/csv" 
"io" 
"log" 
"math" 
"os" 
"sim" 
"sim/common" 
) 
type optimized struct { 
position float32 
infoFilePath string 
interval float32 
timeStep float32 
light int 
n int 
i int 
durationOfEachLight float32 
allowedCarsInInterval []bool 
} 
func NewOptimizedLight(position float32, infoFilePath string, interval float32, timeStep float32, timeForEachCar 
float64) sim.Controller { 
return &optimized{ 
position: position, infoFilePath: infoFilePath, interval: interval, timeStep: timeStep, 
light: GREEN, n: 0, i: 0, 
allowedCarsInInterval: make([]bool, int(interval/float32(timeForEachCar))), 
durationOfEachLight: float32(timeForEachCar), 
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} 
} 
func (p *optimized) IsRed() bool { 
return p.light == RED 
} 
func (p *optimized) Position() float32 { 
return p.position 
} 
func (p *optimized) Simulate() { 
p.n++ 
t := int(math.Floor(float64((float32(p.n) * p.timeStep) / p.interval))) 
alwaysGreen := true 
if p.i != t { 
p.i = t 
hourlyRate := 0 
alwaysGreen, hourlyRate = parseControllerData(p.infoFilePath, t) 
// convert rate from per hour to per minute 
rate := int(math.Ceil(float64(hourlyRate) * float64(60) / float64(3600))) 
if !alwaysGreen { 
// reset 
numberOfLightChanges := len(p.allowedCarsInInterval) 
for j := 0; j < numberOfLightChanges; j++ { 
p.allowedCarsInInterval[j] = false 
} 
// set new values 
if rate == numberOfLightChanges { 
for j := 0; j < numberOfLightChanges; j++ { 
p.allowedCarsInInterval[j] = true 
} 
} else if rate < numberOfLightChanges { 
skip := numberOfLightChanges / rate 
soFar := 0 
for j := 0; j < numberOfLightChanges; j += skip { 
soFar++ 
p.allowedCarsInInterval[j] = true 
if soFar == rate { 
break 
} 
} 
if soFar != rate { 
if rate-soFar == 1 { 
for j := numberOfLightChanges - 1; j >= 0; j-- { 
if p.allowedCarsInInterval[j] == false { 
p.allowedCarsInInterval[j] = true 
break 
} 
} 
} else if rate-soFar == -1 { 
for j := numberOfLightChanges - 1; j >= 0; j-- { 
if p.allowedCarsInInterval[j] == true { 
p.allowedCarsInInterval[j] = false 
break 
} 
} 
} 
count := 0 
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for j := numberOfLightChanges - 1; j >= 0; j-- { 
if p.allowedCarsInInterval[j] == true { 
count++ 
} 
} 
if count != rate { 
log.Fatalf("expected at most one left-over, got %d. numberOfLightChanges: %d, rate: %d, allowedCarsInInterval: 
%v", rate-count, numberOfLightChanges, rate, p.allowedCarsInInterval 
} 
} 
} else { 
// Note: discussed and decided to set the max rate to 700 
//log.Fatalf("rate bigger than numberOfLigtchanges: %d > %d. Hourly rate: %d", rate, numberOfLightChanges, 
hourlyRate) 
log.Printf("Warnning: rate bigger than numberOfLigtchanges: %d > %d. Hourly rate: %d. Setting the light to always 
green.", rate, numberOfLightChanges, hourlyRate) 
for j := 0; j < numberOfLightChanges; j++ { 
p.allowedCarsInInterval[j] = true 
} 
} 
} 
} 
if alwaysGreen { 
p.light = GREEN 
} else { 
// Calc which interval we are in 
// Then set the light to green or red based on allowedCarsInInterval 
currTime := int(float32(p.n) * p.timeStep) 
timeInsideMinute := currTime % 60 
intervalIdx := timeInsideMinute / len(p.allowedCarsInInterval) 
if p.allowedCarsInInterval[intervalIdx] { 
p.light = GREEN 
} else { 
p.light = RED 
} 
} 
} 
func parseControllerData(path string, t int) (bool, int) { 
log.Println("looking for ", t) 
//Step,....,always-green,rate 
f, err := os.Open(path) 
if os.IsNotExist(err) { 
log.Println("----> no record of controller file, defaulting to always green") 
return true, 0 
} 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f.Close() 
r := csv.NewReader(f) 
alwaysGreen := true 
rate := 0 
record, err := r.Read() 
alwaysGreenIdx := 0 
rateIdx := 0 
for i, token := range record { 



 

221 

 

if token == "always-green" { 
alwaysGreenIdx = i 
} 
if token == "rate" { 
rateIdx = i 
} 
} 
for { 
record, err = r.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Println(err, record, r.FieldsPerRecord) 
log.Fatal(err) 
} 
step := int(common.ToFloat(record[0])) 
log.Println("----> Found", step) 
if step == t { 
alwaysGreen = common.ToBool(record[alwaysGreenIdx]) 
rate = common.ToInt(record[rateIdx]) 
log.Printf("Found a matching timestep. always-green: %v, rate: %d\n", alwaysGreen, rate) 
return alwaysGreen, rate 
} 
} 
log.Printf("----> did not find a matching record, defaulting to green. always-green: %v, rate: %d\n", alwaysGreen, 
rate) 
return alwaysGreen, rate 
} 
#-----------------------NEW FILE--------------------------- sim/controller/always_light.go 
package controller 
import ( 
"sim" 
) 
type always struct { 
position float32 
light int 
} 
func NewAlwaysLight(position float32, light int) sim.Controller { 
return &always{position: position, light: light} 
} 
func (p *always) IsRed() bool { 
return p.light == RED 
} 
func (p *always) Position() float32 { 
return p.position 
} 
func (p *always) Simulate() { 
} 
#-----------------------NEW FILE--------------------------- sim/controller/periodic_light.go 
package controller 
import ( 
"math" 
"sim" 
) 
type periodic struct { 
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position float32 
interval float32 
timeStep float32 
light int 
n int 
i int 
soFar int 
} 
const ( 
GREEN = iota 
RED 
) 
func NewPeriodicLight(position float32, interval float32, timeStep float32) sim.Controller { 
return &periodic{position: position, interval: interval, timeStep: timeStep, light: GREEN, n: 0, i: 0, soFar: 0} 
} 
func (p *periodic) IsRed() bool { 
return p.light == RED 
} 
func (p *periodic) Position() float32 { 
return p.position 
} 
func (p *periodic) Simulate() { 
p.n++ 
i := int(math.Floor(float64((float32(p.n) * p.timeStep) / p.interval))) 
if p.i != i { 
p.i = i 
if p.IsRed() { 
p.soFar++ 
if p.soFar == 1 { 
p.soFar = 0 
p.light = GREEN 
} 
} else { 
p.soFar++ 
if p.soFar == 4 { 
p.soFar = 0 
p.light = RED 
} 
} 
} 
} 
#-----------------------NEW FILE--------------------------- sim/common/common.go 
package common 
import ( 
"log" 
"math" 
"strconv" 
) 
// EQ-6 
func G(mySpeed float32, precedingCarSpeed float32, timeStep float32, k float32, maxAcceleration float32, beta 
float32) float32 { 
v1 := timeStep * k * mySpeed 
v2 := (beta / maxAcceleration) * mySpeed * (mySpeed - precedingCarSpeed) 
return float32(math.Max(0, float64(v1+v2))) 
} 
func Theta(input float32) float32 { 



 

223 

 

if input < 0 { 
return 0 
} 
return 1 
} 
func VSafe(gN float32, vLN float32, macDecel float32, timeStep float32) float32 { 
return OldVSafe(gN, vLN, macDecel) 
} 
func OldVSafe(gN float32, vLN float32, macDecel float32) float32 { 
div := vLN / macDecel 
betaP := float32(math.Mod(float64(div), 1)) 
alphaP := div - betaP 
dPN := macDecel * (alphaP*betaP + (alphaP*(alphaP-1))/2) 
tmp := 2 * ((dPN + gN) / macDecel) 
alphaSafe := float32(math.Sqrt(float64(tmp+0.25)) - 0.5) 
alphaSafe = float32(math.Abs(float64(alphaSafe))) 
betaSafe := (tmp - float32(math.Pow(float64(alphaSafe), 2)) - (alphaSafe)) / (2 + 2*alphaSafe) 
vsn := macDecel * (alphaSafe + betaSafe) 
if math.IsNaN(float64(vsn)) { 
vsn = math.MaxFloat32 
} 
return vsn 
} 
func ToInt(str string) int { 
val, err := strconv.Atoi(str) 
if err != nil { 
log.Fatal(err) 
} 
return val 
} 
func ToFloat(str string) float32 { 
val, err := strconv.ParseFloat(str, 32) 
if err != nil { 
log.Fatal(err) 
} 
return float32(val) 
} 
func ToBool(str string) bool { 
val, err := strconv.ParseBool(str) 
if err != nil { 
log.Fatal(err) 
} 
return val 
} 
#-----------------------NEW FILE--------------------------- sim/detector/detector.go 
package detector 
import ( 
"bytes" 
"fmt" 
"log" 
"math" 
"sim" 
"strconv" 
) 
type simpleDetector struct { 
id int 
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start float32 
end float32 
timeStep float32 
sampling float32 
n int 
statLength int 
stat *statStore 
lanes []sim.Lane 
t int 
averageCarLength float32 
vSyn float32 
vJam float32 
qJam1 float32 
qJam3 float32 
prev sim.Detector 
prevRamp sim.Detector 
} 
type statStore struct { 
travelTime []float32 
travelTimeFromPrev []float32 
travelTimeLaneFromPrev map[sim.Lane][]float32 
totalCount []int 
uniqueCount []int 
fromPrevCount []int 
fromPrevInLaneCount map[sim.Lane][]int 
speeds []float32 
occupancy []float32 
laneCount map[sim.Lane][]int 
laneProbeCount map[sim.Lane][]int 
laneSpeed map[sim.Lane][]float32 
laneProbeSpeed map[sim.Lane][]float32 
under map[int]sim.Lane 
dStats map[string]*sim.DetectorStat 
} 
var s struct{} 
// NewDetector creates a detector on a location at road. 
func NewDetector(id int, location float32, conf sim.Config) sim.Detector { 
statLen := int(conf.SimulationDuration/conf.SamplingDuration) + 1 
dStats := make(map[string]*sim.DetectorStat) 
dStats[sim.GENERAL] = &sim.DetectorStat{ 
JustLeft: make(map[int]float32), 
Location: location, 
Density: make([]float32, statLen), 
PredSpeed: make([]float32, statLen), 
PredFlow: make([]float32, statLen), 
} 
stat := &statStore{ 
travelTime: make([]float32, statLen), 
travelTimeFromPrev: make([]float32, statLen), 
travelTimeLaneFromPrev: make(map[sim.Lane][]float32), 
totalCount: make([]int, statLen), 
uniqueCount: make([]int, statLen), 
fromPrevCount: make([]int, statLen), 
fromPrevInLaneCount: make(map[sim.Lane][]int), 
speeds: make([]float32, statLen), 
occupancy: make([]float32, statLen), 
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under: make(map[int]sim.Lane), 
dStats: dStats, 
} 
return &simpleDetector{ 
id: id, 
start: location - conf.DetectorRange/2, 
end: location + conf.DetectorRange/2, 
timeStep: conf.TimeStep, 
sampling: conf.SamplingDuration, 
n: 0, 
statLength: statLen, 
t: 0, 
averageCarLength: conf.AverageCarLength, 
vSyn: conf.VSyn, 
vJam: conf.VJam, 
qJam1: conf.QJam1, 
qJam3: conf.QJam3, 
stat: stat, 
} 
} 
func (d *simpleDetector) ID() int { 
return d.id 
} 
func (d *simpleDetector) SetPrevious(prev sim.Detector, prevRamp sim.Detector) { 
d.prev = prev 
d.prevRamp = prevRamp 
} 
func (d *simpleDetector) Register(lanes []sim.Lane) { 
d.lanes = lanes 
d.stat.laneCount = make(map[sim.Lane][]int) 
d.stat.laneProbeCount = make(map[sim.Lane][]int) 
d.stat.laneSpeed = make(map[sim.Lane][]float32) 
d.stat.laneProbeSpeed = make(map[sim.Lane][]float32) 
for _, l := range lanes { 
d.stat.laneCount[l] = make([]int, d.statLength) 
d.stat.laneProbeCount[l] = make([]int, d.statLength) 
d.stat.laneSpeed[l] = make([]float32, d.statLength) 
d.stat.laneProbeSpeed[l] = make([]float32, d.statLength) 
} 
d.stat.dStats[sim.GENERAL].LaneCount = len(lanes) 
for _, l := range lanes { 
d.stat.travelTimeLaneFromPrev[l] = make([]float32, d.statLength) 
d.stat.fromPrevInLaneCount[l] = make([]int, d.statLength) 
} 
} 
func (d *simpleDetector) Detect() { 
d.n++ 
t := int(math.Floor(float64((float32(d.n) * d.timeStep) / d.sampling))) 
d.t = t 
occupancyInc := float32(0) 
now := float32(d.n) * d.timeStep 
for _, l := range d.lanes { 
for _, car := range l.GetBetween(d.end, d.end) { 
speed := truncate(car.Curr.Speed) 
d.stat.totalCount[t]++ 
d.stat.speeds[t] += speed 
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d.stat.laneCount[l][t]++ 
if car.Curr.IsProbe { 
d.stat.laneProbeCount[l][t]++ 
} 
d.stat.laneSpeed[l][t] += speed 
if car.Curr.IsProbe { 
d.stat.laneProbeSpeed[l][t] += speed 
} 
} 
} 
for _, l := range d.lanes { 
for _, car := range l.GetBetween(d.start, d.end) { 
occupancyInc = d.timeStep 
if _, ok := d.stat.under[car.ID]; !ok { 
// have not seen this car before 
d.stat.under[car.ID] = l 
d.stat.travelTime[t] += now - car.GenTime 
d.stat.uniqueCount[t]++ 
} 
} 
} 
d.stat.occupancy[t] += occupancyInc 
// density keeps updating. its stable and correct value will be its last value 
d.stat.dStats[sim.GENERAL].Density[d.t] = d.stat.occupancy[d.t] * 1000 / float32(d.averageCarLength*d.sampling) 
cars := make(map[int]struct{}) 
for _, l := range d.lanes { 
for _, car := range l.GetBetween(d.start, d.end) { 
cars[car.ID] = s 
} 
} 
for seen := range d.stat.under { 
if _, ok := cars[seen]; !ok { 
d.stat.dStats[sim.GENERAL].JustLeft[seen] = now 
} 
} 
for car := range d.stat.dStats[sim.GENERAL].JustLeft { 
delete(d.stat.under, car) 
} 
} 
func (d *simpleDetector) TransferredFrom() { 
i := int(math.Floor(float64((float32(d.n) * d.timeStep) / d.sampling))) 
now := float32(d.n+1) * d.timeStep 
if d.prev != nil { 
jl := d.prev.Stat(sim.GENERAL).JustLeft 
transferred := intersection(jl, d.stat.under) 
// Update traveltime in between 
for _, id := range transferred { 
l := d.stat.under[id] 
d.stat.travelTimeFromPrev[i] += now - jl[id] 
d.stat.travelTimeLaneFromPrev[l][i] += now - jl[id] 
d.stat.fromPrevCount[i]++ 
d.stat.fromPrevInLaneCount[l][i]++ 
} 
d.prev.Transfer(transferred) 
} 
if d.prevRamp != nil { 
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jl := d.prevRamp.Stat(sim.GENERAL).JustLeft 
transferred := intersection(jl, d.stat.under) 
// Update traveltime in between 
for _, id := range transferred { 
l := d.stat.under[id] 
d.stat.travelTimeFromPrev[i] += now - jl[id] 
d.stat.travelTimeLaneFromPrev[l][i] += now - jl[id] 
d.stat.fromPrevCount[i]++ 
d.stat.fromPrevInLaneCount[l][i]++ 
} 
d.prevRamp.Transfer(transferred) 
} 
} 
func intersection(a map[int]float32, b map[int]sim.Lane) []int { 
common := make([]int, 0) 
for k := range a { 
if _, ok := b[k]; ok { 
common = append(common, k) 
} 
} 
return common 
} 
func (d *simpleDetector) Transfer(carIDs []int) { 
for _, id := range carIDs { 
delete(d.stat.dStats[sim.GENERAL].JustLeft, id) 
} 
} 
func (d *simpleDetector) Stat(choice string) *sim.DetectorStat { 
return d.stat.dStats[choice] 
} 
func truncate(speed float32) float32 { 
places := float32(1 * 100) 
truncated := float32(int(speed*places)) / places 
return truncated 
} 
func (d *simpleDetector) Report() []sim.Report { 
var b []byte 
buf := bytes.NewBuffer(b) 
_, _ = buf.WriteString("Averaging Time,Average Speed,") 
for i := 0; i < len(d.lanes); i++ { 
_, _ = buf.WriteString("Count(lane-") 
_, _ = buf.WriteString(d.lanes[i].Name()) 
_, _ = buf.WriteString("),") 
_, _ = buf.WriteString("ProbeCount(lane-") 
_, _ = buf.WriteString(d.lanes[i].Name()) 
_, _ = buf.WriteString("),") 
_, _ = buf.WriteString("Speed(lane-") 
_, _ = buf.WriteString(d.lanes[i].Name()) 
_, _ = buf.WriteString("),") 
_, _ = buf.WriteString("ProbeSpeed(lane-") 
_, _ = buf.WriteString(d.lanes[i].Name()) 
_, _ = buf.WriteString("),") 
} 
_, _ = buf.WriteString("Count(all lanes),Occupancy,Density,Travel Time,Travel Time from Previous (lane-
all),Count from prev travel time (lane-all),") 
for i := 0; i < len(d.lanes); i++ { 
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_, _ = buf.WriteString("Travel Time from Previous (lane-") 
_, _ = buf.WriteString(d.lanes[i].Name()) 
_, _ = buf.WriteString("),") 
_, _ = buf.WriteString("Count from prev travel time (lane-") 
_, _ = buf.WriteString(d.lanes[i].Name()) 
_, _ = buf.WriteString("),") 
} 
buf.WriteString("\n") 
for i := 0; i < d.statLength; i++ { 
averagingTime := d.sampling 
speeds := float32(0) 
total := d.stat.totalCount[i] 
if total != 0 { 
speeds += d.stat.speeds[i] / float32(total) 
} 
occupancy := d.stat.occupancy[i] * 100.0 / averagingTime 
density := d.stat.dStats[sim.GENERAL].Density[i] 
laneCounts := make([]int, len(d.lanes)) 
laneProbeCounts := make([]int, len(d.lanes)) 
laneSpeeds := make([]float32, len(d.lanes)) 
laneProbeSpeeds := make([]float32, len(d.lanes)) 
for k, l := range d.lanes { 
laneCounts[k] = d.stat.laneCount[l][i] 
laneProbeCounts[k] = d.stat.laneProbeCount[l][i] 
laneSpeeds[k] = d.stat.laneSpeed[l][i] 
laneProbeSpeeds[k] = d.stat.laneProbeSpeed[l][i] 
} 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", (averagingTime * float32(i+1)))) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", speeds)) 
_, _ = buf.WriteString(",") 
for j, laneCount := range laneCounts { 
_, _ = buf.WriteString(strconv.Itoa(laneCount)) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(strconv.Itoa(laneProbeCounts[j])) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", laneSpeeds[j]/(float32(laneCount)))) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", laneProbeSpeeds[j]/(float32(laneProbeCounts[j])))) 
_, _ = buf.WriteString(",") 
} 
_, _ = buf.WriteString(strconv.Itoa(total)) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", occupancy)) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", density)) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", d.stat.travelTime[i])) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", d.stat.travelTimeFromPrev[i])) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%d", d.stat.fromPrevCount[i])) 
_, _ = buf.WriteString(",") 
for _, l := range d.lanes { 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", d.stat.travelTimeLaneFromPrev[l][i])) 
_, _ = buf.WriteString(",") 
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_, _ = buf.WriteString(fmt.Sprintf("%d", d.stat.fromPrevInLaneCount[l][i])) 
_, _ = buf.WriteString(",") 
} 
_, _ = buf.WriteString("\n") 
} 
return []sim.Report{ 
sim.Report{Content: buf.String(), Name: ""}, 
} 
} 
func (d *simpleDetector) Predict() { 
log.Fatal("Predict is not supported in simple detector") 
} 
func (f *simpleDetector) GatherForController() sim.DetectorPredStat { 
log.Fatal("gather for controller is not supported in simple detector") 
return sim.DetectorPredStat{} 
} 
#-----------------------NEW FILE--------------------------- sim/detector/factory.go 
package detector 
import "sim" 
func Factory(shouldReport bool, id int, location float32, dType string, path string, conf sim.Config) sim.Detector { 
switch dType { 
case "normal": 
return NewDetector(id, location, conf) 
case "predict": 
return NewFlowDetectPredict(shouldReport, id, location, path, conf) 
} 
return nil 
} 
#-----------------------NEW FILE--------------------------- sim/detector/kalman_cal.go 
package detector 
import ( 
"bytes" 
"fmt" 
"sim/kalman" 
"strconv" 
) 
// -------------------------------------------------------------- 
type SimpleKalman struct { 
states []*kalman.State 
cumulativeReal []float32 
cumulativeNoisy []float32 
KFN int 
LastN int 
SimpleQtt float64 
SimpleRtt float64 
stepAheadCount int 
} 
func (k *SimpleKalman) StepAheadStates(state int) []float64 { 
return k.states[state].StepAheadStates 
} 
func (k *SimpleKalman) AddFirstStates(i int) { 
state := &kalman.State{ 
X: float64(k.cumulativeReal[i]), // This comes from first simulation and is calculated at the end of timestep 
Y: float64(k.cumulativeNoisy[i]), // use the latest detection result 
P: 1, 
XHat: float64(k.cumulativeNoisy[i]), 
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} 
k.states = append(k.states, state) 
} 
func (k *SimpleKalman) Predict(i int, historyStart int) float32 { 
// newState is the prediction for the end of this timestep 
k.states[len(k.states)-1].X = float64(k.cumulativeReal[i]) 
k.states[len(k.states)-1].Y = float64(k.cumulativeNoisy[i]) 
newState := kalman.SimplePredict(k.states[historyStart:], k.KFN, k.SimpleQtt, k.SimpleRtt, k.stepAheadCount) 
k.states = append(k.states, &newState) 
return float32(newState.XHat) 
} 
func (k *SimpleKalman) ToCsv(sampling float32, realProbeRate []float32) string { 
var b []byte 
buf := bytes.NewBuffer(b) 
_, _ = buf.WriteString("Step,T,time,Xt,Yt,N,P(t/t-1),Kt,P(t/t),XHat(t/t-
1),Xhat(t/t),Xhat(t+1/t),P(t+1/t),rhat(t),Rhat(t),qhat(t),Qhat(t),Xhat(t/t),Xhat(t+1/t)") 
for i := 0; i < k.stepAheadCount; i++ { 
_, _ = buf.WriteString(fmt.Sprintf(",Xhat(t+%d/t)", i+2)) 
} 
_, _ = buf.WriteString(",RealProbeRate\n") 
t := -k.KFN 
for i, state := range k.states { 
_, _ = buf.WriteString(strconv.Itoa(i + 1)) 
_, _ = buf.WriteString(",") 
if t < 0 { 
_, _ = buf.WriteString("-,") 
} else { 
_, _ = buf.WriteString("t") 
_, _ = buf.WriteString(strconv.Itoa(t)) 
_, _ = buf.WriteString(",") 
} 
_, _ = buf.WriteString(strconv.Itoa(i * int(sampling))) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f,%.2f,%d,", float64(k.cumulativeReal[i])/float64(60), k.cumulativeNoisy[i], 
k.KFN)) 
_, _ = buf.WriteString(state.String()) 
_, _ = buf.WriteString(fmt.Sprintf(",%.2f", realProbeRate[i])) 
_, _ = buf.WriteString("\n") 
t++ 
} 
return buf.String() 
} 
// -------------------------------------------------------------- 
type MultiStepAheadKalman struct { 
states []*kalman.State 
cumulativeReal []float32 
cumulativeNoisy []float32 
KFN int 
LastN int 
stepAheadCount int 
} 
func (k *MultiStepAheadKalman) StepAheadStates(state int) []float64 { 
return k.states[state].StepAheadStates 
} 
func (k *MultiStepAheadKalman) AddFirstStates(i int) { 
state := &kalman.State{ 
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X: float64(k.cumulativeReal[i]), // This comes from first simulation and is calculated at the end of timestep 
Y: float64(k.cumulativeNoisy[i]), // use the latest detection result 
P: 1, 
XHat: float64(k.cumulativeNoisy[i]), 
} 
k.states = append(k.states, state) 
} 
func (k *MultiStepAheadKalman) Predict(i int, historyStart int) float32 { 
// newState is the prediction for the end of this timestep 
k.states[len(k.states)-1].X = float64(k.cumulativeReal[i]) 
k.states[len(k.states)-1].Y = float64(k.cumulativeNoisy[i]) 
newState := kalman.MultiStepAheadPredict(k.states[historyStart:], k.KFN, k.stepAheadCount) 
k.states = append(k.states, &newState) 
return float32(newState.XHat) 
} 
func (k *MultiStepAheadKalman) ToCsv(sampling float32, realProbeRate []float32) string { 
var b []byte 
buf := bytes.NewBuffer(b) 
//_, _ = buf.WriteString("Step,T,time,Xt,Yt,N,P(t/t-1),Kt,P(t/t),XHat(t/t-
1),Xhat(t/t),Xhat(t+1/t),P(t+1/t),rhat(t),Rhat(t),qhat(t),Qhat(t),RealProbeRate\n") 
_, _ = buf.WriteString("Step,T,time,Xt,Yt,N,P(t/t-1),Kt,P(t/t),XHat(t/t-
1),Xhat(t/t),Xhat(t+1/t),P(t+1/t),rhat(t),Rhat(t),qhat(t),Qhat(t),Xhat(t/t),Xhat(t+1/t)") 
for i := 0; i < k.stepAheadCount; i++ { 
_, _ = buf.WriteString(fmt.Sprintf(",Xhat(t+%d/t)", i+2)) 
} 
_, _ = buf.WriteString(",RealProbeRate\n") 
t := -k.KFN 
for i, state := range k.states { 
_, _ = buf.WriteString(strconv.Itoa(i + 1)) 
_, _ = buf.WriteString(",") 
if t < 0 { 
_, _ = buf.WriteString("-,") 
} else { 
_, _ = buf.WriteString("t") 
_, _ = buf.WriteString(strconv.Itoa(t)) 
_, _ = buf.WriteString(",") 
} 
_, _ = buf.WriteString(strconv.Itoa(i * int(sampling))) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f,%.2f,%d,", k.cumulativeReal[i], k.cumulativeNoisy[i], k.KFN)) 
_, _ = buf.WriteString(state.String()) 
_, _ = buf.WriteString(fmt.Sprintf(",%.2f", realProbeRate[i])) 
_, _ = buf.WriteString("\n") 
t++ 
} 
return buf.String() 
} 
// -------------------------------------------------------------- 
type TravelKalman struct { 
*SimpleKalman 
} 
func (f *TravelKalman) CalcCMReal(real []float32, curr float32, i int) { 
f.SimpleKalman.cumulativeReal[i] = curr // cumulativeLastN(real, curr, i, f.LastN) 
} 
func (f *TravelKalman) CalcCMNoisy(real []float32, curr float32, i int) { 
f.SimpleKalman.cumulativeNoisy[i] = curr // cumulativeLastN(real, curr, i, f.LastN) 
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} 
func NewTravelKalman(statLen int, LastN int, KFN int, Qtt, Rtt float64, stepAheadCount int) *TravelKalman { 
k := &TravelKalman{ 
SimpleKalman: &SimpleKalman{ 
KFN: KFN, 
LastN: LastN, 
states: make([]*kalman.State, 0), 
cumulativeReal: make([]float32, statLen), 
cumulativeNoisy: make([]float32, statLen), 
SimpleQtt: Qtt, 
SimpleRtt: Rtt, 
stepAheadCount: stepAheadCount, 
}, 
} 
return k 
} 
// ------------------------------------------------------------------ 
type FlowKalman struct { 
*MultiStepAheadKalman 
Sampling float32 
} 
func (f *FlowKalman) CalcCMReal(real []float32, curr float32, i int) { 
f.cumulativeReal[i] = cumulativeLastN(real, curr, i, f.LastN, f.Sampling) 
} 
func (f *FlowKalman) CalcCMNoisy(real []float32, curr float32, i int) { 
f.cumulativeNoisy[i] = cumulativeLastN(real, curr, i, f.LastN, f.Sampling) 
} 
func NewFlowKalman(statLen int, LastN int, KFN int, sampling float32, stepAheadCount int) *FlowKalman { 
k := &FlowKalman{ 
MultiStepAheadKalman: &MultiStepAheadKalman{ 
KFN: KFN, 
LastN: LastN, 
states: make([]*kalman.State, 0), 
cumulativeReal: make([]float32, statLen), 
cumulativeNoisy: make([]float32, statLen), 
stepAheadCount: stepAheadCount, 
}, 
Sampling: sampling, 
} 
return k 
} 
// -------------------------------------------------------------- 
type SpeedKalman struct { 
*MultiStepAheadKalman 
} 
func (f *SpeedKalman) CalcCMReal(real []float32, i int) { 
f.cumulativeReal[i] = real[i] * 3.6 
} 
func (f *SpeedKalman) CalcCMNoisy(noisy []float32, i int) { 
f.cumulativeNoisy[i] = noisy[i] * 3.6 
} 
func NewSpeedKalman(statLen int, LastN int, KFN int, stepAheadCount int) *SpeedKalman { 
k := &SpeedKalman{ 
MultiStepAheadKalman: &MultiStepAheadKalman{ 
KFN: KFN, 
LastN: LastN, 
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states: make([]*kalman.State, 0), 
cumulativeReal: make([]float32, statLen), 
cumulativeNoisy: make([]float32, statLen), 
stepAheadCount: stepAheadCount, 
}, 
} 
return k 
} 
func cumulativeLastN(real []float32, curr float32, i int, lastN int, sampling float32) float32 { 
dvd := sampling / 60.0 
if i < lastN { 
return curr * (12.0 / dvd) 
} 
sum := curr 
for j := 1; j < lastN; j++ { 
sum += real[i-j] 
} 
return sum * (12.0 / dvd) // To report hourly 
} 
#-----------------------NEW FILE--------------------------- sim/detector/pred_groups.go 
package detector 
import ( 
"encoding/csv" 
"fmt" 
"io" 
"log" 
"os" 
"sim" 
"sim/common" 
"sim/kalman" 
"strings" 
) 
type IPredGroup interface { 
CalcCM(t int, sampling, probeRate float32) 
Predict(t, newT, historyStart int, vSyn, vJam float32) 
AddFirstStates(t int) 
KalmanStates() []*kalman.State 
CalcDensity(t int) 
init() 
DS() *sim.DetectorStat 
} 
// -------------------------- FLOW/SPEED -------------------- 
type PredGroup struct { 
name string 
flow *FlowKalman 
speed *SpeedKalman 
SpeedNoisy []float32 
FlowNoisy []float32 
SpeedReal []float32 
FlowReal []float32 
RealProbeRate []float32 
seenCount []int 
DetectorStat *sim.DetectorStat 
} 
func newPredGroup(name string, statLen int, LastN int, KFN int, location float32, detectorID int, flow, speed, 
realProbeRate []float32, sampling float32, stepAheadCount int) *PredGroup 
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return &PredGroup{ 
name: name, 
flow: NewFlowKalman(statLen, LastN, KFN, sampling, stepAheadCount), 
speed: NewSpeedKalman(statLen, LastN, KFN, stepAheadCount), 
DetectorStat: &sim.DetectorStat{ 
ID: detectorID, 
JustLeft: nil, 
Location: location, 
Density: make([]float32, statLen), 
PredSpeed: make([]float32, 0, statLen), 
PredFlow: make([]float32, 0, statLen), 
RealSpeed: make([]float32, 0, statLen), 
RealFlow: make([]float32, 0, statLen), 
}, 
seenCount: make([]int, statLen), 
SpeedNoisy: make([]float32, statLen), 
FlowNoisy: make([]float32, statLen), 
SpeedReal: speed, 
FlowReal: flow, 
RealProbeRate: realProbeRate, 
} 
} 
func averagePreviousN(probeRates []float32, t, n int) float32 { 
var sum float32 
count := 0 
for i := t; i > t-n; i-- { 
if i == -1 { 
break 
} 
count++ 
sum += probeRates[i] 
} 
if count == 0 { 
if sum == 0 { 
return 1 
} 
return sum 
} 
avg := sum / float32(count) 
if avg == 0 { 
return 1 
} 
return avg 
} 
func (p *PredGroup) CalcCM(t int, sampling, probeRate float32) { 
// Calculate noisy values 
p.FlowNoisy[t] = p.FlowNoisy[t] / (sampling / float32(60)) // convert to average per minute 
if t != 0 && p.RealProbeRate[t] < 0.0000001 { 
// nothing, keep noisy flow as is 
} else if t != 0 { 
p.FlowNoisy[t] = p.FlowNoisy[t] / averagePreviousN(p.RealProbeRate, t-1, 5) // extrapolate the estimated noisy 
flow 
} 
if p.seenCount[t] == 0 { 
p.SpeedNoisy[t] = 0 
if t-1 >= 0 { 
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p.SpeedNoisy[t] = p.SpeedNoisy[t-1] 
} 
} else { 
p.SpeedNoisy[t] = p.SpeedNoisy[t] / float32(p.seenCount[t]) // just compute the average 
} 
p.flow.CalcCMReal(p.FlowReal, p.FlowReal[t], t) 
p.flow.CalcCMNoisy(p.FlowReal, p.FlowNoisy[t], t) 
p.speed.CalcCMReal(p.SpeedReal, t) 
p.speed.CalcCMNoisy(p.SpeedNoisy, t) 
} 
func (p *PredGroup) Predict(t, newT, historyStart int, vSyn, vJam float32) { 
flowXHat := p.flow.Predict(t, historyStart) 
p.DetectorStat.PredFlow = append(p.DetectorStat.PredFlow, flowXHat) 
p.DetectorStat.RealFlow = append(p.DetectorStat.RealFlow, p.flow.cumulativeReal[t]) 
speedXHat := p.speed.Predict(t, historyStart) 
p.DetectorStat.PredSpeed = append(p.DetectorStat.PredSpeed, speedXHat) 
p.DetectorStat.RealSpeed = append(p.DetectorStat.RealSpeed, p.speed.cumulativeReal[t]) 
} 
func (p *PredGroup) KalmanStates() []*kalman.State { 
return p.flow.states 
} 
func (p *PredGroup) AddFirstStates(t int) { 
p.flow.AddFirstStates(t) 
p.speed.AddFirstStates(t) 
p.DetectorStat.PredFlow = append(p.DetectorStat.PredFlow, 0) 
p.DetectorStat.PredSpeed = append(p.DetectorStat.PredSpeed, 0) 
p.DetectorStat.RealFlow = append(p.DetectorStat.RealFlow, 0) 
p.DetectorStat.RealSpeed = append(p.DetectorStat.RealSpeed, 0) 
} 
func (p *PredGroup) CalcDensity(t int) { 
// Unit: veh/km 
if p.DetectorStat.PredSpeed[t] == 0 { 
p.DetectorStat.Density[t] = 0 
} else { 
p.DetectorStat.Density[t] = p.DetectorStat.PredFlow[t] / p.DetectorStat.PredSpeed[t] 
} 
} 
func (p *PredGroup) DS() *sim.DetectorStat { 
return p.DetectorStat 
} 
func (p *PredGroup) init() { 
if len(p.DetectorStat.PredFlow) == 0 { 
p.DetectorStat.PredFlow = append(p.DetectorStat.PredFlow, 0) 
p.DetectorStat.PredSpeed = append(p.DetectorStat.PredSpeed, 0) 
p.DetectorStat.RealFlow = append(p.DetectorStat.RealFlow, 0) 
p.DetectorStat.RealSpeed = append(p.DetectorStat.RealSpeed, 0) 
} 
} 
func parseRealFlow(path string, sampling float32) ([]float32, []float32, []float32) { 
// REMOVED this line -> Detector 0: located at 1000 meters down the road 
//Averaging Time,Average Speed,Count(lane1),Count(lane2),Count(lane3),Count(merge1),Count(all 
lanes),Occupancy,Density,Travel Time,Travel Time from Previous 
//10.00,0.00,0,0,0,0,0,0.00,0.00,0.00,0.00 
f, err := os.Open(path) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
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} 
defer f.Close() 
r := csv.NewReader(f) 
resultSpeed := make([]float32, 0) 
resultFlow := make([]float32, 0) 
realProbeRate := make([]float32, 0) 
record, err := r.Read() 
allIdx := 0 
probeTopIdx := 0 
probeMidIdx := 0 
probeBotIdx := 0 
for i, token := range record { 
if strings.Contains(token, "Count(all lanes)") { 
allIdx = i 
break 
} 
if strings.Contains(token, "ProbeCount(lane-a_top)") { 
probeTopIdx = i 
} 
if strings.Contains(token, "ProbeCount(lane-b_mid)") { 
probeMidIdx = i 
} 
if strings.Contains(token, "ProbeCount(lane-c_bot)") { 
probeBotIdx = i 
} 
} 
speed := float32(0) 
count := 0 
probeCount := 0 
for { 
record, err = r.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Println(err, record, r.FieldsPerRecord) 
log.Fatal(err) 
} 
step := int(common.ToFloat(record[0])) 
s := common.ToFloat(record[1]) 
all := int(common.ToFloat(record[allIdx])) 
probes := int(common.ToFloat(record[probeTopIdx])) 
probes += int(common.ToFloat(record[probeMidIdx])) 
probes += int(common.ToFloat(record[probeBotIdx])) 
if step%int(sampling) == 0 { 
resultFlow = append(resultFlow, float32(count)) 
if count == 0 { 
realProbeRate = append(realProbeRate, 0) 
} else { 
realProbeRate = append(realProbeRate, float32(probeCount)/float32(count)) 
} 
if count == 0 { 
resultSpeed = append(resultSpeed, 0) 
} else { 
resultSpeed = append(resultSpeed, speed/float32(count)) 
} 
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count = 0 
probeCount = 0 
speed = 0 
} 
count += all 
probeCount += probes 
speed += (s * float32(all)) 
} 
return resultFlow, resultSpeed, realProbeRate 
} 
func parseRealForLane(name, path string, sampling float32) ([]float32, []float32, []float32) { 
// REMOVED this line -> Detector 0: located at 1000 meters down the road 
//Averaging Time,Average Speed,Count(lane1),Count(lane2),Count(lane3),Count(merge1),Count(all 
lanes),Occupancy,Density,Travel Time,Travel Time from Previous 
//10.00,0.00,0,0,0,0,0,0.00,0.00,0.00,0.00 
f, err := os.Open(path) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f.Close() 
r := csv.NewReader(f) 
resultSpeed := make([]float32, 0) 
resultFlow := make([]float32, 0) 
probeRate := make([]float32, 0) 
record, err := r.Read() 
flowIdx := 0 
probeIdx := 0 
speedIdx := 0 
for i, token := range record { 
if token == fmt.Sprintf("Count(lane-%s)", name) { 
flowIdx = i 
} 
if token == fmt.Sprintf("ProbeCount(lane-%s)", name) { 
probeIdx = i 
} 
if token == fmt.Sprintf("Speed(lane-%s)", name) { 
speedIdx = i 
} 
} 
speed := float32(0) 
count := 0 
probeCount := 0 
for { 
record, err = r.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Println(err, record, r.FieldsPerRecord) 
log.Fatal(err) 
} 
step := int(common.ToFloat(record[0])) 
s := float32(0) 
if record[speedIdx] != "NaN" { 
s = common.ToFloat(record[speedIdx]) 
} 
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all := int(common.ToFloat(record[flowIdx])) 
probe := int(common.ToFloat(record[probeIdx])) 
if step%int(sampling) == 0 { 
resultFlow = append(resultFlow, float32(count)) 
if count == 0 { 
probeRate = append(probeRate, 0) 
} else { 
probeRate = append(probeRate, float32(probeCount)/float32(count)) 
} 
if count == 0 { 
resultSpeed = append(resultSpeed, 0) 
} else { 
resultSpeed = append(resultSpeed, speed/float32(count)) 
} 
count = 0 
probeCount = 0 
speed = 0 
} 
count += all 
probeCount += probe 
speed += (s * float32(all)) 
} 
return resultFlow, resultSpeed, probeRate 
} 
// -------------------------- TRAVEL -------------------- 
type TravelPredGroup struct { 
travel *TravelKalman 
Noisy []float32 
FlowNoisy []int 
Real []float32 
RealProbeRate []float32 
DetectorStat *sim.DetectorStat 
} 
func newTravelPredGroup(statLen int, LastN int, KFN int, location float32, real []float32, realProbeRate []float32, 
Qtt, Rtt float64, stepAheadCount int) *TravelPredGroup { 
return &TravelPredGroup{ 
travel: NewTravelKalman(statLen, LastN, KFN, Qtt, Rtt, stepAheadCount), 
DetectorStat: &sim.DetectorStat{ 
JustLeft: nil, 
Location: location, 
Density: nil, 
PredSpeed: nil, 
PredFlow: nil, 
RealSpeed: nil, 
RealFlow: nil, 
}, 
Noisy: make([]float32, statLen), 
FlowNoisy: make([]int, statLen), 
Real: real, 
RealProbeRate: realProbeRate, 
} 
} 
func (p *TravelPredGroup) CalcCM(t int, sampling, probeRate float32) { 
count := float32(p.FlowNoisy[t]) 
if count != 0 { 
p.Noisy[t] = p.Noisy[t] / count 
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} 
if p.Noisy[t] <= 0.01 && t-1 >= 0 { // 0.01 is chosen to mean 0 since after the above calculations, the travel time 
could be a float 
p.Noisy[t] = p.Noisy[t-1] 
} 
p.travel.CalcCMReal(p.Real, p.Real[t], t) 
p.travel.CalcCMNoisy(p.Real, p.Noisy[t], t) 
} 
func (p *TravelPredGroup) Predict(t, newT, historyStart int, vSyn, vJam float32) { 
p.travel.SimpleKalman.Predict(t, historyStart) 
} 
func (p *TravelPredGroup) KalmanStates() []*kalman.State { 
return p.travel.SimpleKalman.states 
} 
func (p *TravelPredGroup) AddFirstStates(t int) { 
p.travel.SimpleKalman.AddFirstStates(t) 
} 
func (p *TravelPredGroup) CalcDensity(t int) { 
// Nothing 
} 
func (p *TravelPredGroup) init() { 
if len(p.DetectorStat.PredFlow) == 0 { 
p.DetectorStat.RealFlow = append(p.DetectorStat.RealFlow, 0) 
} 
} 
func (p *TravelPredGroup) DS() *sim.DetectorStat { 
return p.DetectorStat 
} 
func parseRealTravel(name string, path string, sampling float32) []float32 { 
// REMOVED this line -> Detector 0: located at 1000 meters down the road 
//Averaging Time,Average Speed,Count(lane1),Count(lane2),Count(lane3),Count(merge1),Count(all 
lanes),Occupancy,Density,Travel Time,Travel Time from Previous 
//10.00,0.00,0,0,0,0,0,0.00,0.00,0.00,0.00 
f, err := os.Open(path) 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f.Close() 
r := csv.NewReader(f) 
result := make([]float32, 0) 
record, err := r.Read() 
idx := 0 
for i, token := range record { 
if strings.Contains(token, fmt.Sprintf("Travel Time from Previous (lane-%s)", name)) { 
idx = i 
} 
} 
count := 0 
for { 
record, err = r.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Println(err, record, r.FieldsPerRecord) 
log.Fatal(err) 



 

240 

 

} 
step := int(common.ToFloat(record[0])) 
all := int(common.ToFloat(record[idx])) 
if step%int(sampling) == 0 { 
result = append(result, float32(count)) 
count = 0 
} 
count += all 
} 
return result 
} 
// -------------------- GENERAL 
type GeneralGroup struct { 
DetectorStat *sim.DetectorStat 
} 
func newGeneralGroup() *GeneralGroup { 
return &GeneralGroup{DetectorStat: &sim.DetectorStat{JustLeft: make(map[int]float32)}} 
} 
func (p *GeneralGroup) DS() *sim.DetectorStat { 
return p.DetectorStat 
} 
func (p *GeneralGroup) CalcCM(t int, sampling, probeRate float32) {} 
func (p *GeneralGroup) Predict(t, newT, historyStart int, vSyn, vJam float32) {} 
func (p *GeneralGroup) AddFirstStates(t int) {} 
func (p *GeneralGroup) CalcDensity(t int) {} 
func (p *GeneralGroup) init() {} 
func (p *GeneralGroup) KalmanStates() []*kalman.State { return nil } 
#-----------------------NEW FILE--------------------------- sim/detector/predict_detect.go 
package detector 
import ( 
"bytes" 
"fmt" 
"log" 
"math" 
"sim" 
"strconv" 
) 
type flowDetect struct { 
id int 
shouldReport bool 
lanes []sim.Lane 
n int 
start float32 
end float32 
timeStep float32 
sampling float32 
probeRate float32 
KFN int 
LastN int 
historyStart int 
t int 
occupancy []float32 
averageCarLength float32 
vSyn float32 
vJam float32 
qJam1 float32 
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qJam3 float32 
prev sim.Detector 
prevRamp sim.Detector 
group map[string]IPredGroup 
under map[int]sim.Lane 
travelFromPrevAll []float32 
travelFromPrevCount []int 
} 
// NewFlowDetectPredict creates a detector on a location at road. 
func NewFlowDetectPredict(shouldReport bool, id int, location float32, path string, conf sim.Config) sim.Detector { 
statLen := int(conf.SimulationDuration/conf.SamplingDuration) + 1 
group := make(map[string]IPredGroup) 
LastN := 5 // TODO: change 5 to a config as stated above 
realFlow, realSpeed, realProbeRate := parseRealFlow(path, conf.SamplingDuration) 
group[sim.ALL] = newPredGroup(sim.ALL, statLen, LastN, conf.KFN, location, id, realFlow, realSpeed, 
realProbeRate, conf.SamplingDuration, conf.StepAheadCount) 
topRealFlow, topRealSpeed, topRealProbeRate := parseRealForLane("a_top", path, conf.SamplingDuration) 
group[sim.TOP] = newPredGroup(sim.TOP, statLen, LastN, conf.KFN, location, id, topRealFlow, topRealSpeed, 
topRealProbeRate, conf.SamplingDuration, conf.StepAheadCount) 
midRealFlow, midRealSpeed, midRealProbeRate := parseRealForLane("b_mid", path, conf.SamplingDuration) 
group[sim.MID] = newPredGroup(sim.MID, statLen, LastN, conf.KFN, location, id, midRealFlow, midRealSpeed, 
midRealProbeRate, conf.SamplingDuration, conf.StepAheadCount) 
botRealFlow, botRealSpeed, botRealProbeRate := parseRealForLane("c_bot", path, conf.SamplingDuration) 
group[sim.BOT] = newPredGroup(sim.BOT, statLen, LastN, conf.KFN, location, id, botRealFlow, botRealSpeed, 
botRealProbeRate, conf.SamplingDuration, conf.StepAheadCount) 
group[sim.GENERAL] = newGeneralGroup() 
allRealTravel := parseRealTravel("all", path, conf.SamplingDuration) 
group[sim.ALL_TRAVEL] = newTravelPredGroup(statLen, LastN, conf.KFN, location, allRealTravel, 
realProbeRate, conf.SimpleQtt, conf.SimpleRtt, conf.StepAheadCount) 
return &flowDetect{ 
shouldReport: shouldReport, 
id: id, 
n: 0, 
start: location - conf.DetectorRange/2, 
end: location + conf.DetectorRange/2, 
timeStep: conf.TimeStep, 
sampling: conf.SamplingDuration, 
probeRate: conf.ProbeProbability, 
KFN: conf.KFN, 
LastN: LastN, 
historyStart: -conf.KFN, 
t: 0, 
occupancy: make([]float32, statLen), 
travelFromPrevAll: make([]float32, statLen), 
travelFromPrevCount: make([]int, statLen), 
averageCarLength: conf.AverageCarLength, 
vSyn: conf.VSyn, 
vJam: conf.VJam, 
qJam1: conf.QJam1, 
qJam3: conf.QJam3, 
group: group, 
under: make(map[int]sim.Lane), 
} 
} 
func (d *flowDetect) ID() int { 
return d.id 
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} 
func (d *flowDetect) Register(lanes []sim.Lane) { 
d.lanes = lanes 
d.group[sim.ALL].DS().LaneCount = len(d.lanes) 
d.group[sim.TOP].DS().LaneCount = 1 
d.group[sim.MID].DS().LaneCount = 1 
d.group[sim.BOT].DS().LaneCount = 1 
d.group[sim.ALL_TRAVEL].DS().LaneCount = len(d.lanes) 
} 
func (d *flowDetect) SetPrevious(prev sim.Detector, prevRamp sim.Detector) { 
d.prev = prev 
d.prevRamp = prevRamp 
} 
func (d *flowDetect) Detect() { 
d.n++ 
i := int(math.Floor(float64((float32(d.n) * d.timeStep) / d.sampling))) 
for _, l := range d.lanes { 
for _, car := range l.GetBetween(d.end, d.end) { // this returns the cars that have just passed 
speed := truncate(car.Curr.Speed) 
d.group[sim.ALL].(*PredGroup).FlowNoisy[i]++ 
d.group[sim.ALL].(*PredGroup).SpeedNoisy[i] += speed 
d.group[sim.ALL].(*PredGroup).seenCount[i]++ 
switch l.Name() { 
case "a_top": 
d.group[sim.TOP].(*PredGroup).FlowNoisy[i]++ 
d.group[sim.TOP].(*PredGroup).SpeedNoisy[i] += speed 
d.group[sim.TOP].(*PredGroup).seenCount[i]++ 
case "b_mid": 
d.group[sim.MID].(*PredGroup).FlowNoisy[i]++ 
d.group[sim.MID].(*PredGroup).SpeedNoisy[i] += speed 
d.group[sim.MID].(*PredGroup).seenCount[i]++ 
case "c_bot": 
d.group[sim.BOT].(*PredGroup).FlowNoisy[i]++ 
d.group[sim.BOT].(*PredGroup).SpeedNoisy[i] += speed 
d.group[sim.BOT].(*PredGroup).seenCount[i]++ 
} 
// travel time 
if _, ok := d.under[car.ID]; !ok { 
// have not seen this car before 
d.under[car.ID] = l 
} 
} 
} 
occupancyInc := float32(0) 
for _, l := range d.lanes { 
cars := l.GetBetween(d.start, d.end) 
if len(cars) > 0 { 
occupancyInc = d.timeStep 
} 
} 
d.occupancy[i] += occupancyInc 
// travel time 
now := float32(d.n) * d.timeStep 
cars := make(map[int]struct{}) 
for _, l := range d.lanes { 
for _, car := range l.GetBetween(d.start, d.end) { 
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cars[car.ID] = s 
} 
} 
for seen := range d.under { 
if _, ok := cars[seen]; !ok { 
d.group[sim.GENERAL].DS().JustLeft[seen] = now 
} 
} 
for car := range d.group[sim.GENERAL].DS().JustLeft { 
delete(d.under, car) 
} 
} 
func (d *flowDetect) Predict() { 
newT := int(math.Floor(float64((float32(d.n) * d.timeStep) / d.sampling))) 
if newT == 0 { 
for gName := range d.group { 
d.group[gName].init() 
} 
return 
} 
if d.t != newT { 
for gName := range d.group { 
d.group[gName].CalcCM(d.t, d.sampling, d.probeRate) 
if d.historyStart >= 0 { 
if d.historyStart == 0 { 
// Adding another one that will be overwritten by the next call to predict 
d.group[gName].AddFirstStates(d.t) 
} 
d.group[gName].Predict(d.t, newT, d.historyStart, d.vSyn, d.vJam) 
if d.ID() == 7 && gName == sim.BOT { 
log.Println(d.t, d.group[gName].(*PredGroup).speed.cumulativeReal[d.t], 
d.group[gName].(*PredGroup).speed.cumulativeNoisy[d.t]) 
} 
} else { 
d.group[gName].AddFirstStates(d.t) 
} 
d.group[gName].CalcDensity(d.t) 
} 
d.t = newT 
d.historyStart++ 
} 
} 
func (d *flowDetect) GatherForController() sim.DetectorPredStat { 
speedsBot := d.group[sim.BOT].DS().PredSpeed 
avgTravel := d.group[sim.ALL_TRAVEL].KalmanStates() 
flowAll := d.group[sim.ALL].KalmanStates() 
flowBot := d.group[sim.BOT].KalmanStates() 
avgTravelMSA := make([][]float64, len(avgTravel)) 
for i := range avgTravel { 
avgTravelMSA[i] = avgTravel[i].StepAheadStates 
} 
flowAllMSA := make([][]float64, len(flowAll)) 
for i := range flowAll { 
flowAllMSA[i] = flowAll[i].StepAheadStates 
} 
flowBotMSA := make([][]float64, len(flowBot)) 
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for i := range flowAll { 
flowBotMSA[i] = flowBot[i].StepAheadStates 
} 
return sim.DetectorPredStat{ 
BotSpeedXHat: speedsBot, 
TravelAVGMultiAhead: avgTravelMSA, 
FlowAllMultiAhead: flowAllMSA, 
FlowBotMultiAhead: flowBotMSA, 
} 
} 
func (d *flowDetect) Report() []sim.Report { 
// Other than KF output, print the following: 
// x, l, tt from ASADA and FODA 
if d.shouldReport { 
return []sim.Report{ 
sim.Report{Content: d.group[sim.ALL].(*PredGroup).flow.ToCsv(d.sampling, 
d.group[sim.ALL].(*PredGroup).RealProbeRate), Name: "flow-all"}, 
sim.Report{Content: d.group[sim.ALL].(*PredGroup).speed.ToCsv(d.sampling, 
d.group[sim.ALL].(*PredGroup).RealProbeRate), Name: "speed-all"}, 
sim.Report{Content: d.group[sim.TOP].(*PredGroup).flow.ToCsv(d.sampling, 
d.group[sim.TOP].(*PredGroup).RealProbeRate), Name: "flow-top"}, 
sim.Report{Content: d.group[sim.TOP].(*PredGroup).speed.ToCsv(d.sampling, 
d.group[sim.TOP].(*PredGroup).RealProbeRate), Name: "speed-top"}, 
sim.Report{Content: d.group[sim.MID].(*PredGroup).flow.ToCsv(d.sampling, 
d.group[sim.MID].(*PredGroup).RealProbeRate), Name: "flow-mid"}, 
sim.Report{Content: d.group[sim.MID].(*PredGroup).speed.ToCsv(d.sampling, 
d.group[sim.MID].(*PredGroup).RealProbeRate), Name: "speed-mid"}, 
sim.Report{Content: d.group[sim.BOT].(*PredGroup).flow.ToCsv(d.sampling, 
d.group[sim.BOT].(*PredGroup).RealProbeRate), Name: "flow-bot"}, 
sim.Report{Content: d.group[sim.BOT].(*PredGroup).speed.ToCsv(d.sampling, 
d.group[sim.BOT].(*PredGroup).RealProbeRate), Name: "speed-bot"}, 
sim.Report{Content: d.group[sim.ALL_TRAVEL].(*TravelPredGroup).travel.SimpleKalman.ToCsv(d.sampling, 
d.group[sim.ALL_TRAVEL].(*TravelPredGroup).RealProbeRate), Name: "travel-all-average" 
sim.Report{Content: d.totalTravelFromFlow(), Name: "total-travel-all"}, 
sim.Report{Content: d.ToCsv(), Name: "new-travel"}, 
} 
} 
return []sim.Report{} 
} 
func (d *flowDetect) totalTravelFromFlow() string { 
travelGroup := d.group[sim.ALL_TRAVEL].(*TravelPredGroup) 
flowGroup := d.group[sim.ALL].(*PredGroup).flow 
var b []byte 
buf := bytes.NewBuffer(b) 
_, _ = buf.WriteString("Step,T,time,Xt,Xhat(t+1/t)") 
for i := range travelGroup.travel.SimpleKalman.StepAheadStates(0) { 
_, _ = buf.WriteString(fmt.Sprintf("MSA_%d,", i)) 
} 
_, _ = buf.WriteString("\n") 
t := -travelGroup.travel.SimpleKalman.KFN 
for i, state := range travelGroup.travel.SimpleKalman.states { 
_, _ = buf.WriteString(strconv.Itoa(i + 1)) 
_, _ = buf.WriteString(",") 
if t < 0 { 
_, _ = buf.WriteString("-,") 
} else { 



 

245 

 

_, _ = buf.WriteString("t") 
_, _ = buf.WriteString(strconv.Itoa(t)) 
_, _ = buf.WriteString(",") 
} 
_, _ = buf.WriteString(strconv.Itoa(i * int(d.sampling))) 
_, _ = buf.WriteString(",") 
_, _ = buf.WriteString(fmt.Sprintf("%.2f,", travelGroup.travel.SimpleKalman.cumulativeReal[i])) 
// coverting to total 
travelNextXHat := state.NextXHat() 
flowNextXHat := float64(flowGroup.MultiStepAheadKalman.states[i].NextXHat()) / float64(60) 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", travelNextXHat*flowNextXHat)) 
// printing MultiStepAhead values 
for j, msaTravel := range travelGroup.travel.SimpleKalman.StepAheadStates(i) { 
msaFlow := flowGroup.MultiStepAheadKalman.StepAheadStates(i)[j] 
_, _ = buf.WriteString(fmt.Sprintf("%.2f", msaTravel*msaFlow)) 
} 
_, _ = buf.WriteString("\n") 
t++ 
} 
return buf.String() 
} 
func (d *flowDetect) ToCsv() string { 
var b []byte 
buf := bytes.NewBuffer(b) 
_, _ = buf.WriteString("Step,T,travel_time_all,travel_time_all_count\n") 
length := len(d.group[sim.ALL_TRAVEL].(*TravelPredGroup).Noisy) 
t := -d.KFN 
for i := 0; i < length; i++ { 
_, _ = buf.WriteString(strconv.Itoa(i + 1)) 
_, _ = buf.WriteString(",") 
if t < 0 { 
_, _ = buf.WriteString("-,") 
} else { 
_, _ = buf.WriteString("t") 
_, _ = buf.WriteString(strconv.Itoa(t)) 
_, _ = buf.WriteString(",") 
} 
_, _ = buf.WriteString(fmt.Sprintf("%.2f,", d.travelFromPrevAll[i])) 
_, _ = buf.WriteString(fmt.Sprintf("%d,", d.travelFromPrevCount[i])) 
_, _ = buf.WriteString("\n") 
t++ 
} 
return buf.String() 
} 
func (d *flowDetect) TransferredFrom() { 
i := int(math.Floor(float64((float32(d.n) * d.timeStep) / d.sampling))) 
now := float32(d.n+1) * d.timeStep 
if d.prev != nil { 
jl := d.prev.Stat(sim.GENERAL).JustLeft 
transferred := intersection(jl, d.under) 
// Update traveltime in between 
for _, id := range transferred { 
timeDiff := now - jl[id] 
d.group[sim.ALL_TRAVEL].(*TravelPredGroup).Noisy[i] += timeDiff 
d.group[sim.ALL_TRAVEL].(*TravelPredGroup).FlowNoisy[i]++ 
d.travelFromPrevAll[i] += timeDiff 
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d.travelFromPrevCount[i]++ 
} 
d.prev.Transfer(transferred) 
} 
if d.prevRamp != nil { 
jl := d.prevRamp.Stat(sim.GENERAL).JustLeft 
transferred := intersection(jl, d.under) 
// Update traveltime in between 
for _, id := range transferred { 
timeDiff := now - jl[id] 
d.group[sim.ALL_TRAVEL].(*TravelPredGroup).Noisy[i] += timeDiff 
d.group[sim.ALL_TRAVEL].(*TravelPredGroup).FlowNoisy[i]++ 
d.travelFromPrevAll[i] += timeDiff 
d.travelFromPrevCount[i]++ 
} 
d.prevRamp.Transfer(transferred) 
} 
} 
func (d *flowDetect) Transfer(carIDs []int) { 
for _, id := range carIDs { 
delete(d.group[sim.GENERAL].DS().JustLeft, id) 
} 
} 
func (d *flowDetect) Stat(choice string) *sim.DetectorStat { 
return d.group[choice].DS() 
} 
#-----------------------NEW FILE--------------------------- sim/simulator/simulator.go 
package simulator 
import ( 
"bytes" 
"fmt" 
"image" 
"image/color" 
"io/ioutil" 
"log" 
"math" 
"os" 
"sim" 
"sim/car" 
"sim/change" 
"sim/detector" 
"sim/gen" 
"sim/lane" 
"sort" 
"time" 
) 
var ss struct{} 
type initialSimulator struct { 
currTime float32 
maxTime float32 
snapshotIncrement float32 
currSnapshotTime float32 
conf sim.Config 
conf2 sim.Config 
lanes []sim.Lane 
cp sim.CarPlacer 
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detectors []sim.Detector 
probeSnaps map[sim.Lane][]*probeSnapshot 
n int 
chart map[sim.Lane][][][]float32 
moves map[sim.Lane]map[*sim.Car]struct{} 
controllers []sim.Controller 
timing map[string]int64 
callableSecondSim sim.SetSimFunc 
} 
// LaneInfo holds information need to creat a lane 
type LaneInfo struct { 
ID int 
Name string 
Ramp bool 
ExitLane bool 
Start float32 
End float32 // in case of ramp, end is the merge begining 
Gen map[string]string 
Controllers []sim.Controller 
} 
// DetectorInfo holds information need to creat a detector 
type DetectorInfo struct { 
ID int 
DType string 
Pos float32 
Path string 
} 
type state struct { 
pos float32 
speed float32 
spaceGap float32 
vSafeN float32 
selectedForExit bool 
exitPosition float32 
} 
type probeSnapshot struct { 
t float32 
cars map[int]state 
} 
// LaneInfo and DetectorInfo -> LinkInfo 
type LinkInfo struct { 
DetectorID int 
LanesID []int 
PrevDetecIDLane int 
PrevDetecIDRamp int 
PrevDetectIDRampForTravelTime int 
PrevDetecIDExit int 
} 
// NewInitialSim creates the first simulator that will be run 
func NewInitialSim(lInf []LaneInfo, dInfo []DetectorInfo, linkInof []LinkInfo, iCP sim.CarPlacer, config 
sim.Config) sim.Simulator { 
s := new(initialSimulator) 
s.conf = config 
s.maxTime = s.conf.SimulationDuration 
s.currTime = 0 
s.snapshotIncrement = s.conf.SnapshotIncrement 
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s.currSnapshotTime = 0 
s.n = 0 
s.chart = make(map[sim.Lane][][][]float32) 
s.moves = make(map[sim.Lane]map[*sim.Car]struct{}) 
rampCount := createLanes(s, lInf) 
log.Println("Number of ramps: ", rampCount) 
log.Println("Starting a simulation with max time of ", s.maxTime) 
fmt.Println("Starting a simulation with max time of ", s.maxTime) 
for _, l := range s.lanes { 
s.chart[l] = make([][][]float32, int(s.maxTime/config.SnapshotIncrement)+1) 
s.moves[l] = make(map[*sim.Car]struct{}) 
for i := 0; i < len(s.chart); i++ { 
s.chart[l][i] = make([][]float32, 0) 
} 
} 
s.probeSnaps = make(map[sim.Lane][]*probeSnapshot) 
s.cp = iCP 
for i, l := range s.lanes { 
s.probeSnaps[l] = make([]*probeSnapshot, 0) 
s.cp.Register(l, gen.GenFactory(lInf[i].Gen, s.conf)) 
} 
s.detectors = make([]sim.Detector, len(dInfo)) 
for i, inf := range dInfo { 
//shouldReport := inf.ID%6 == 1 
shouldReport := true 
s.detectors[i] = detector.Factory(shouldReport, inf.ID, inf.Pos, inf.DType, inf.Path, s.conf) 
relatedLanes := make([]sim.Lane, 0) 
for _, j := range linkInof[i].LanesID { 
relatedLanes = append(relatedLanes, s.lanes[j]) 
} 
s.detectors[i].Register(relatedLanes) 
} 
// Refer to the visual in the main.go for detector ids 
for i := range dInfo { 
idx := linkInof[i].PrevDetecIDLane 
ridx := linkInof[i].PrevDetectIDRampForTravelTime 
if i != dInfo[i].ID { 
log.Fatalf("Mismatch in detector id: %d %d", i, dInfo[i].ID) 
} 
if idx != -1 && i%6 == 1 { 
s.detectors[i].SetPrevious(s.detectors[idx], s.detectors[ridx]) 
} 
} 
for i := 0; i < len(s.detectors); i++ { 
if linkInof[i].PrevDetecIDLane != -1 && linkInof[i].PrevDetecIDRamp != -1 { 
group := make(map[string]*sim.PredictGroup) 
group[sim.ALL] = &sim.PredictGroup{ 
Name: sim.ALL, 
Curr: s.detectors[i].Stat(sim.ALL), 
PrevLane: s.detectors[linkInof[i].PrevDetecIDLane].Stat(sim.ALL), 
PrevRamp: s.detectors[linkInof[i].PrevDetecIDRamp].Stat(sim.ALL), 
PrevExit: s.detectors[linkInof[i].PrevDetecIDExit].Stat(sim.ALL), 
} 
group[sim.TOP] = &sim.PredictGroup{ 
Name: sim.TOP, 
Curr: s.detectors[i].Stat(sim.TOP), 
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PrevLane: s.detectors[linkInof[i].PrevDetecIDLane].Stat(sim.TOP), 
PrevRamp: s.detectors[linkInof[i].PrevDetecIDRamp].Stat(sim.TOP), 
PrevExit: s.detectors[linkInof[i].PrevDetecIDExit].Stat(sim.TOP), 
} 
group[sim.MID] = &sim.PredictGroup{ 
Name: sim.MID, 
Curr: s.detectors[i].Stat(sim.MID), 
PrevLane: s.detectors[linkInof[i].PrevDetecIDLane].Stat(sim.MID), 
PrevRamp: s.detectors[linkInof[i].PrevDetecIDRamp].Stat(sim.MID), 
PrevExit: s.detectors[linkInof[i].PrevDetecIDExit].Stat(sim.MID), 
} 
group[sim.BOT] = &sim.PredictGroup{ 
Name: sim.BOT, 
Curr: s.detectors[i].Stat(sim.BOT), 
PrevLane: s.detectors[linkInof[i].PrevDetecIDLane].Stat(sim.BOT), 
PrevRamp: s.detectors[linkInof[i].PrevDetecIDRamp].Stat(sim.BOT), 
PrevExit: s.detectors[linkInof[i].PrevDetecIDExit].Stat(sim.BOT), 
} 
//log.Println(s.detectors[i].ID(), ": ", linkInof[i].PrevDetecIDLane, linkInof[i].PrevDetecIDRamp, 
linkInof[i].PrevDetecIDExit) 
} 
} 
s.timing = make(map[string]int64) 
return s 
} 
func createLanes(s *initialSimulator, inf []LaneInfo) int { 
normal := make([]LaneInfo, 0) 
ramp := make([]LaneInfo, 0) 
exit := make([]LaneInfo, 0) 
for _, li := range inf { 
if li.Ramp { 
ramp = append(ramp, li) 
} else if li.ExitLane { 
exit = append(exit, li) 
} else { 
normal = append(normal, li) 
} 
} 
shoulder := []sim.Lane{lane.NewNormalLane(lane.NormalInfo{ID: -1, Repo: car.NewCarRepo(), Start: -
math.MaxFloat32, End: s.conf.LaneLength, RChanger: change.NewNever(), LChanger: change 
s.lanes = make([]sim.Lane, 0) 
for i := 0; i < len(normal); i++ { 
right := change.NewNormalRight(s.conf) 
left := change.NewNormalLeft(s.conf) 
if i == 0 { 
left = change.NewNever() 
} 
if i == len(normal)-1 { 
right = change.NewRightmost(s.conf) 
} 
l := lane.NewNormalLane(lane.NormalInfo{ID: normal[i].ID, Repo: car.NewCarRepo(), Start: normal[i].Start, End: 
normal[i].End, RChanger: right, LChanger: left, Name: normal[i].Name}, 
s.lanes = append(s.lanes, l) 
if len(s.lanes)-1 != normal[i].ID { 
log.Fatalf("Mismatch in normal lane id: %d %d", len(s.lanes)-1, normal[i].ID) 
} 
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} 
if len(ramp) != len(exit) { 
log.Fatalf("Mismatch in ramp and exit: %d vs %d", len(ramp), len(exit)) 
} 
exitLanes := make([]sim.Lane, 0) 
for i := 0; i < len(ramp); i++ { 
e := lane.NewExitLane(lane.ExitInfo{ID: exit[i].ID, Repo: car.NewCarRepo(), Start: exit[i].Start, Never: 
change.NewNever(), Name: exit[i].Name}, car.New, car.NextState, exit[i].Controllers 
s.lanes = append(s.lanes, e) 
exitLanes = append(exitLanes, e) 
if len(s.lanes)-1 != exit[i].ID { 
log.Fatalf("Mismatch in exit lane id: %d %d", len(s.lanes)-1, exit[i].ID) 
} 
r := lane.NewRampLane(lane.RampInfo{ID: ramp[i].ID, Repo: car.NewCarRepo(), Start: ramp[i].Start, MergeStart: 
ramp[i].Start + s.conf.NonMergingRampLength + s.conf.MergingRampLength 
s.lanes = append(s.lanes, r) 
if len(s.lanes)-1 != ramp[i].ID { 
log.Fatalf("Mismatch in ramp lane id: %d %d", len(s.lanes)-1, ramp[i].ID) 
} 
} 
s.lanes[0].Adjacent(shoulder, []sim.Lane{s.lanes[1]}) 
s.lanes[1].Adjacent([]sim.Lane{s.lanes[0]}, []sim.Lane{s.lanes[2]}) 
s.lanes[2].Adjacent([]sim.Lane{s.lanes[1]}, append(shoulder, exitLanes...)) 
for i := 4; i < len(s.lanes); i += 2 { // ramps 
s.lanes[i].Adjacent([]sim.Lane{s.lanes[2]}, shoulder) 
} 
for i := 3; i < len(s.lanes); i += 2 { // exit lanes 
s.lanes[i].Adjacent(shoulder, shoulder) 
} 
s.controllers = make([]sim.Controller, 0) 
for _, i := range inf { 
s.controllers = append(s.controllers, i.Controllers...) 
} 
return len(ramp) 
} 
func (s *initialSimulator) Simulate() *sim.OptimizerDecision { 
for s.currTime < s.maxTime { 
s.currTime += s.conf.TimeStep 
log.Printf("----------------------------------- %.0f ----------------------\n", s.currTime) 
start := time.Now() 
s.cp.GenNPlace() 
s.timing["generate"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, c := range s.controllers { 
c.Simulate() 
} 
s.timing["controller_sim"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, l := range s.lanes { 
l.Simulate() 
} 
s.timing["lane_sim"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, d := range s.detectors { 
d.Detect() 
} 
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for i := 1; i < len(s.detectors); i++ { 
s.detectors[i].TransferredFrom() 
} 
s.timing["detector"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, l := range s.lanes { 
moves := l.Move() 
for m, _ := range moves { 
s.moves[l][m] = ss 
} 
} 
s.timing["change_lanes"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, l := range s.lanes { 
cleaned := l.Clean() 
for _, c := range cleaned { 
s.moves[l][c] = ss 
} 
} 
s.timing["clean"] += time.Since(start).Nanoseconds() 
start = time.Now() 
if s.currTime >= s.currSnapshotTime { 
s.currSnapshotTime += s.snapshotIncrement 
for _, l := range s.lanes { 
currentProbeCars := l.AllProbes() 
s.recordProbeCars(s.probeSnaps, l, currentProbeCars) 
s.moves[l] = make(map[*sim.Car]struct{}) 
} 
} 
s.timing["snapshot"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, l := range s.lanes { 
for i := 0; ; i++ { 
if me, ok := l.Get(i); ok { 
s.chart[l][s.n] = append(s.chart[l][s.n], []float32{float32(me.ID), me.Curr.Position, me.Curr.Speed}) 
} else { 
break 
} 
} 
} 
s.timing["chart"] += time.Since(start).Nanoseconds() 
if int(s.currTime/s.conf.SnapshotIncrement) != s.n { 
s.n++ 
} 
//for _, l := range s.lanes { 
// log.Printf("%s\n\n", l) 
//} 
if int(s.currTime)%60 == 0 { 
reports := s.Save(fmt.Sprintf("%s_%.2f", s.conf.OutDir, s.currTime)) 
sort.Strings(reports) 
if s.conf.RunSim2 { 
callSecondAt := float32(360) 
if s.conf.UseAlwaysGreen { 
callSecondAt = s.maxTime - s.conf.TimeStep 
} 
// Call 2nd simulation 
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if s.currTime >= callSecondAt { 
log.Println("Invoking simulation 2") 
decision := s.callableSecondSim(reports, s.conf2, fmt.Sprintf("%s_%.2f", s.conf2.OutDir, s.currTime), s.currTime) 
log.Println("Ending simulation 2") 
log.Println("--> recieved from simulation 2: ", decision) 
// Set it for the next call to controller 
} 
} 
} 
} 
return nil 
} 
func (s *initialSimulator) SetOtherSimulator(callableSecondSim sim.SetSimFunc, conf2 sim.Config) { 
s.callableSecondSim = callableSecondSim 
s.conf2 = conf2 
} 
func (s *initialSimulator) recordProbeCars(probeSnaps map[sim.Lane][]*probeSnapshot, l sim.Lane, 
currentProbeCars []*sim.Car) { 
newSnap := s.takeSnapshot(currentProbeCars, l) 
probeSnaps[l] = append(probeSnaps[l], newSnap) 
} 
func (s *initialSimulator) takeSnapshot(cars []*sim.Car, l sim.Lane) *probeSnapshot { 
snap := &probeSnapshot{ 
t: s.currTime, 
cars: make(map[int]state), 
} 
for _, car := range cars { 
snap.cars[car.ID] = state{pos: car.Curr.Position, speed: car.Curr.Speed, spaceGap: car.Curr.SpaceGap, vSafeN: 
car.Curr.SpaceGap, selectedForExit: car.Curr.SelectedForExit, exitPosition 
} 
for c, _ := range s.moves[l] { 
snap.cars[c.ID] = state{pos: -1, speed: -1, spaceGap: -1, vSafeN: -1, selectedForExit: false, exitPosition: 
math.MaxFloat32} 
} 
return snap 
} 
func (s *initialSimulator) Save(dir string) []string { 
start := time.Now() 
reports := make([]string, 0) 
os.Mkdir(dir, 0755) 
for _, d := range s.detectors { 
ioutil.WriteFile(fmt.Sprintf("%s/report-detector-%d.csv", dir, d.ID()), []byte(d.Report()[0].Content), 0755) 
} 
for l, snaps := range s.probeSnaps { 
var b []byte 
buf := bytes.NewBuffer(b) 
buf.WriteString("gen_time,id,speed,position,spacegap,vsafen,selectedForExit,exitPosition\n") 
for _, snap := range snaps { 
if len(snap.cars) > 0 { 
for id, car := range snap.cars { 
buf.WriteString(fmt.Sprintf("%.2f,%d,%.2f,%.2f,%.2f,%.2f,%v,%.1f\n", snap.t, id, car.speed, car.pos, car.spaceGap, 
car.vSafeN, car.selectedForExit, car.exitPosition)) 
} 
} 
} 
path := fmt.Sprintf("%s/probes-in-%s.csv", dir, l.Name()) 
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ioutil.WriteFile(path, buf.Bytes(), 0755) 
reports = append(reports, path) 
} 
maxID := 0 
for _, l := range s.lanes { 
for _, carsPlaces := range s.chart[l] { 
for _, carPlace := range carsPlaces { 
if int(carPlace[0]) > maxID { 
maxID = int(carPlace[0]) 
} 
} 
} 
} 
for _, l := range s.lanes { 
sPath := fmt.Sprintf("%s/v-t-%s.csv", dir, l.Name()) 
lPath := fmt.Sprintf("%s/x-t-%s.csv", dir, l.Name()) 
var sB []byte 
var lB []byte 
sBuf := bytes.NewBuffer(sB) 
lBuf := bytes.NewBuffer(lB) 
sBuf.WriteString("car id,") 
lBuf.WriteString("car id,") 
for i := 0; i <= maxID; i++ { 
sBuf.WriteString(fmt.Sprintf("%d,", i)) 
lBuf.WriteString(fmt.Sprintf("%d,", i)) 
} 
sBuf.Bytes()[len(sBuf.Bytes())-1] = '\n' 
lBuf.Bytes()[len(lBuf.Bytes())-1] = '\n' 
sBuf.WriteString("Time(sec)\n") 
lBuf.WriteString("Time(sec)\n") 
for i, carsPlaces := range s.chart[l] { 
sBuf.WriteString(fmt.Sprintf("%d,", (i+1)*10)) 
lBuf.WriteString(fmt.Sprintf("%d,", (i+1)*10)) 
sVal := make([]float32, maxID+1) 
lVal := make([]float32, maxID+1) 
for _, carPlace := range carsPlaces { 
sVal[int(carPlace[0])] = carPlace[2] 
lVal[int(carPlace[0])] = carPlace[1] 
} 
for j := 0; j <= maxID; j++ { 
sBuf.WriteString(fmt.Sprintf("%.1f,", sVal[j])) 
lBuf.WriteString(fmt.Sprintf("%.1f,", lVal[j])) 
} 
sBuf.Bytes()[len(sBuf.Bytes())-1] = '\n' 
lBuf.Bytes()[len(lBuf.Bytes())-1] = '\n' 
} 
ioutil.WriteFile(sPath, sBuf.Bytes(), 0755) 
ioutil.WriteFile(lPath, lBuf.Bytes(), 0755) 
} 
log.Println("----------- Timing for first simulation:") 
s.timing["report"] += time.Since(start).Nanoseconds() 
for k, v := range s.timing { 
log.Printf("%s:\t%.1f sec\n", k, float64(v)/float64(1000000000)) 
} 
log.Println("----------------------------------------") 
return reports 



 

254 

 

} 
func drawXs(width int, height int, img *image.NRGBA) { 
for x := 0; x < width; x += 60 { 
c := color.NRGBA{255, 0, 0, 255} 
for i := 0; i < 50; i++ { 
img.Set(x, height-i, c) 
img.Set(x+1, height-i, c) 
} 
} 
} 
func drawYs(width int, height int, img *image.NRGBA) { 
for y := 0; y < height; y += 1000 { 
c := color.NRGBA{255, 0, 0, 255} 
for i := 0; i < 50; i++ { 
img.Set(i, height-y, c) 
img.Set(i, height-y-1, c) 
} 
} 
} 
#-----------------------NEW FILE--------------------------- sim/simulator/predict_simulator.go 
package simulator 
import ( 
"bytes" 
"encoding/csv" 
"fmt" 
"io" 
"io/ioutil" 
"log" 
"math" 
"os" 
"path/filepath" 
"sim" 
"sim/common" 
"time" 
) 
type flowSim struct { 
*initialSimulator 
} 
// NewFlowSim creates a simulator for flow simulation 
func NewFlowSim(inf []LaneInfo, dInfo []DetectorInfo, linkInfo []LinkInfo, iCP sim.CarPlacer, config sim.Config) 
sim.Simulator { 
return &flowSim{NewInitialSim(inf, dInfo, linkInfo, iCP, config).(*initialSimulator)} 
} 
func (f *flowSim) Simulate() *sim.OptimizerDecision { 
optimizerCalled := false 
decision := &sim.OptimizerDecision{} 
for f.currTime <= f.maxTime+f.conf.TimeStep { 
f.currTime += f.conf.TimeStep 
log.Printf("-----------------------------------^%.0f ----------------------\n", f.currTime) 
start := time.Now() 
f.cp.GenNPlace() 
f.timing["generate"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, c := range f.controllers { 
// Preserve choices from controller in sim1 
c.Simulate() 
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} 
f.timing["controller"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, l := range f.lanes { 
l.Simulate() 
} 
f.timing["lane_sim"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, d := range f.detectors { 
d.Detect() 
} 
for i := 1; i < len(f.detectors); i++ { 
f.detectors[i].TransferredFrom() 
} 
for _, l := range f.lanes { 
l.Move() 
} 
f.timing["detect"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, l := range f.lanes { 
l.Clean() 
} 
f.timing["clean"] += time.Since(start).Nanoseconds() 
start = time.Now() 
for _, d := range f.detectors { 
d.Predict() 
} 
f.timing["predict"] += time.Since(start).Nanoseconds() 
start = time.Now() 
if f.currTime == f.maxTime && !optimizerCalled { 
// Calling at the end of the last 60 minutes and save the result for the next call of simulation 1 
decision = f.optimizeForController() 
log.Println(decision) 
optimizerCalled = true 
} 
f.timing["optimize-controller"] += time.Since(start).Nanoseconds() 
} 
return decision 
} 
type detectorConsts struct { 
mainKey string 
rampKey string 
alpha float64 
beta float64 
otherDets []int 
} 
type optimizer struct { 
consts []detectorConsts 
dets map[string]sim.DetectorPredStat 
detsGroupCount int 
t int 
msa int 
ttDisHat []float64 
ttLocalHat []float64 
flowOnHat []int 
alpha float64 
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w []float64 
queuerampMax []float64 
d *sim.OptimizerDecision 
VSyn float32 
outDir string 
useDefaults bool 
penalizeDeltaFlowOn int 
} 
// Convention 
// - i is index of needOptimization 
// - r is index of detector r = needOptimization[i] 
// - j is index of flowOns 
// - p is index of multistep ahead timestep 
// - k is used when none of the above are usable 
// ---> We also have the following dimentions 
// - 3D: [i][j][p] or [r][j][p] 
// - 2D: [i][p] or [r][p] 
func (f *flowSim) optimizeForController() *sim.OptimizerDecision { 
consts := []detectorConsts{ 
{mainKey: "7", rampKey: "10", alpha: f.conf.Alpha1, beta: f.conf.Beta1, otherDets: []int{1, 2}}, 
{mainKey: "13", rampKey: "16", alpha: f.conf.Alpha2, beta: f.conf.Beta2, otherDets: []int{0, 2}}, 
{mainKey: "19", rampKey: "22", alpha: f.conf.Alpha3, beta: f.conf.Beta3, otherDets: []int{0, 1}}, 
} 
d := &sim.OptimizerDecision{ 
AlwaysGreen: map[string]bool{ 
"7": false, 
"13": false, 
"19": false, 
}, 
Rate: map[string]int{ 
"7": 0, 
"13": 0, 
"19": 0, 
}, 
} 
dets := make(map[string]sim.DetectorPredStat) 
dets["7"] = f.detectors[7].GatherForController() 
dets["10"] = f.detectors[10].GatherForController() 
dets["13"] = f.detectors[13].GatherForController() 
dets["16"] = f.detectors[16].GatherForController() 
dets["19"] = f.detectors[19].GatherForController() 
dets["22"] = f.detectors[19].GatherForController() 
detsGroupCount := 3 
msa := 5 
t := int(math.Floor(float64((f.currTime / f.conf.SamplingDuration)))) - 1 
prevOptimizerPath := filepath.Join(f.conf.OptimizeDir, "optimize-detect-%s-%s.csv") 
// Read the previously calculated values from the file. If all the values are -1, 
// then use the default values 
ttDisHat, ttLocalHat, flowOnHat, useDefaults, err := retrieveHatValues(detsGroupCount, msa, prevOptimizerPath, 
t-1) 
if err != nil { 
log.Fatalf("Error in reading previous hat values from file: %v", err) 
} 
o := &optimizer{ 
consts: consts, 
dets: dets, 
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msa: msa, 
d: d, 
t: t, 
VSyn: f.conf.VSyn, 
alpha: f.conf.Alpha, 
w: []float64{f.conf.W1, f.conf.W2, f.conf.W3}, 
queuerampMax: []float64{f.conf.QueueRampMax1, f.conf.QueueRampMax2, f.conf.QueueRampMax3}, 
detsGroupCount: detsGroupCount, 
ttDisHat: ttDisHat, 
ttLocalHat: ttLocalHat, 
flowOnHat: flowOnHat, 
useDefaults: useDefaults, 
outDir: f.conf.OptimizeDir, 
penalizeDeltaFlowOn: f.conf.PenalizedDeltaFlowOn, 
} 
o.optimize() 
return o.d 
} 
func retrieveHatValues(detsGroupCount, msa int, path string, t int) ([]float64, []float64, []int, bool, error) { 
ttDisHat := make([]float64, detsGroupCount) 
ttLocalHat := make([]float64, detsGroupCount) 
flowOnHat := make([]int, detsGroupCount) 
// Read data from file 
f, err := os.Open(path) 
if os.IsNotExist(err) { 
log.Println("No record of controller file. Using defaults") 
return ttDisHat, ttLocalHat, flowOnHat, true, nil 
} 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f.Close() 
r := csv.NewReader(f) 
headerRecord, err := r.Read() 
var matchingRecord []string = nil 
for { 
record, err := r.Read() 
if err == io.EOF { 
break 
} 
if err != nil { 
log.Println(err, record, r.FieldsPerRecord) 
log.Fatalf("Unexpected error in file %s: %v", path, err) 
} 
step := int(common.ToFloat(record[0])) 
if step == t { 
matchingRecord = record 
} 
} 
if matchingRecord == nil { 
return nil, nil, nil, false, fmt.Errorf("Could not find timestep %d in %s", t, path) 
} 
// interpret the data 
useDefaults := true 
for r := 0; r < detsGroupCount; r++ { 
pattern, err := getItemFromRecord(headerRecord, matchingRecord, ",TTdishat") 
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if err != nil { 
return nil, nil, nil, false, err 
} 
ttDisHat[r] = pattern 
pattern, err = getItemFromRecord(headerRecord, matchingRecord, ",TTlocalhat") 
if err != nil { 
return nil, nil, nil, false, err 
} 
ttLocalHat[r] = pattern 
pattern, err = getItemFromRecord(headerRecord, matchingRecord, ",Flowonhat") 
if err != nil { 
return nil, nil, nil, false, err 
} 
flowOnHat[r] = int(pattern) 
if ttDisHat[r] != -1 || ttLocalHat[r] != -1 || flowOnHat[r] != -1 { 
useDefaults = false 
} 
} 
return ttDisHat, ttLocalHat, flowOnHat, useDefaults, nil 
} 
func getItemFromRecord(headerRecord, contentRecord []string, pattern string) (float64, error) { 
for i, token := range headerRecord { 
if token == pattern { 
return float64(common.ToFloat(contentRecord[i])), nil 
} 
} 
return 0, fmt.Errorf("could not find %s in the csv file", pattern) 
} 
func parseControllerData(path string, t int) (bool, int) { 
log.Println("looking for ", t) 
//Step,....,always-green,rate 
f, err := os.Open(path) 
if os.IsNotExist(err) { 
log.Println("----> no record of controller file, defaulting to always green") 
return true, 0 
} 
if err != nil { 
log.Fatalf("Could not open csv file: %v", err) 
} 
defer f.Close() 
r := csv.NewReader(f) 
alwaysGreen := true 
rate := 0 
record, err := r.Read() 
alwaysGreenIdx := 0 
rateIdx := 0 
for i, token := range record { 
if token == "always-green" { 
alwaysGreenIdx = i 
} 
if token == "rate" { 
rateIdx = i 
} 
} 
for { 
record, err = r.Read() 
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if err == io.EOF { 
break 
} 
if err != nil { 
log.Println(err, record, r.FieldsPerRecord) 
log.Fatal(err) 
} 
step := int(common.ToFloat(record[0])) 
log.Println("----> Found", step) 
if step == t { 
alwaysGreen = common.ToBool(record[alwaysGreenIdx]) 
rate = common.ToInt(record[rateIdx]) 
log.Printf("Found a matching timestep. always-green: %v, rate: %d\n", alwaysGreen, rate) 
return alwaysGreen, rate 
} 
} 
log.Printf("----> did not find a matching record, defaulting to green. always-green: %v, rate: %d\n", alwaysGreen, 
rate) 
return alwaysGreen, rate 
} 
func (o *optimizer) optimize() { 
if o.useDefaults { 
// ttDisHat[r][p] = 1 in case of default, use formula 4 and use xhat of flowall of detec 10 instead of flowon-dis use 
previous values only if the previous also needed optimization, otherwise use defaults 
// ttLocalHat[r][p] = 1 the same ttDisHat 
// flowOnHat[r][p] = 400 in case of default, use the xhat of flowall of detector 10 
flowOnDisHat := make([][]float64, o.detsGroupCount) 
sigmaFlowOnDisHat := make([]int, o.detsGroupCount) 
for r := 0; r < o.detsGroupCount; r++ { 
flowOnDisHat[r] = make([]float64, o.msa) 
sigmaFlowOnDisHat[r] = int(0) 
for p := 0; p < o.msa; p++ { 
kRamp := o.consts[r].rampKey 
o.flowOnHat[r] = int(o.dets[kRamp].FlowAllMultiAhead[o.t][0]) // TODO which timestep? 
flowOnDisHat[r][p] = o.dets[kRamp].FlowAllMultiAhead[o.t][p] // TODO which timestep? 
sigmaFlowOnDisHat[r] += int(flowOnDisHat[r][p]) 
} 
} 
allttDisHat, _ := o.calcAllLocalDisagreementCosts([]int{0, 1, 2}, flowOnDisHat, sigmaFlowOnDisHat) 
allttLocalHat, _ := o.calcAllLocalDisagreementCosts([]int{0, 1, 2}, flowOnDisHat, sigmaFlowOnDisHat) 
o.ttDisHat = allttDisHat[0] 
o.ttLocalHat = allttLocalHat[0] 
} 
flowOns := []float64{100, 200, 300, 400, 500, 600, 700} 
needOptimization := make([]int, 0) 
// This loop has a corresponding part at the end as well 
//for r := range o.consts { 
// if o.dets[o.consts[r].mainKey].BotSpeedXHat[o.t] >= o.VSyn { 
// o.d.AlwaysGreen[o.consts[r].mainKey] = true 
// } else { 
// needOptimization = append(needOptimization, r) 
// } 
//} 
for r := range o.consts { 
needOptimization = append(needOptimization, r) 
} 
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if len(needOptimization) != 0 { 
pb, queuerampPB := o.calcAllProbabilityOfBreakdown(needOptimization, flowOns) 
// loop over pb and find flowons that MINimize it 
// pb should be converted to another pb where newGrid[index of need optimization][index of timestep] 
flowOnDises := make([][]float64, len(needOptimization)) // each o.msa elements 
for i := range pb { 
flowOnDises[i] = make([]float64, o.msa) 
for p := 0; p < o.msa; p++ { 
minFlowOn := flowOns[len(flowOns)-1] // choosing 700 as default min 
min := pb[i][len(flowOns)-1][p] // choosing 700 as default min 
for j := 0; j < len(flowOns); j++ { 
r := needOptimization[i] 
if queuerampPB[i][j][p] >= 0 && queuerampPB[i][j][p] <= o.queuerampMax[r] { 
min = math.Min(pb[i][j][p], min) 
minFlowOn = flowOns[j] 
} 
} 
flowOnDises[i][p] = minFlowOn 
} 
} 
log.Println("--------------calcAllLocalDisagreementCosts-----------------------------------") 
ttDis, queuerampDis := o.calcAllLocalDisagreementCosts(needOptimization, flowOnDises, o.flowOnHat) 
log.Println("--------------calcAllLocalCosts-----------------------------------") 
ttLocalWithVariable, queuerampWithVariable := o.calcAllLocalCosts(needOptimization, flowOns, o.flowOnHat) 
ttLocal, selectedFlowOns := o.optimizeLocalCost(ttLocalWithVariable, queuerampWithVariable, ttDis, 
needOptimization, flowOns) 
// Set for values for the next iteration by saving them on disk 
for r := 0; r < o.detsGroupCount; r++ { 
if i, ok := intInSlice(r, needOptimization); ok { 
wasAbleToOptimize := true 
sigmaTTDis := float64(0) 
for p := 0; p < o.msa; p++ { 
if selectedFlowOns[i][p] == -1 { 
wasAbleToOptimize = false 
} 
sigmaTTDis += ttDis[i][p] 
} 
if wasAbleToOptimize { 
o.ttDisHat[r] = sigmaTTDis - o.alpha*(sigmaTTDis-ttLocal[i]) 
o.ttLocalHat[r] = ttLocal[i] 
o.flowOnHat[r] = int(flowOns[selectedFlowOns[i][0]]) 
} else { 
o.ttDisHat[r] = ttLocal[i] 
o.ttLocalHat[r] = ttLocal[i] 
//o.flowOnHat[r][p] will remain as before 
} 
} else { 
// keep the previous values 
} 
} 
for i := range needOptimization { 
// We always use 0 for decision making 
rate := o.flowOnHat[needOptimization[i]] 
if o.dets[o.consts[needOptimization[i]].mainKey].BotSpeedXHat[o.t] <= o.VSyn { 
o.d.Rate[o.consts[needOptimization[i]].mainKey] = rate 
} else { 
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o.d.AlwaysGreen[o.consts[needOptimization[i]].mainKey] = true 
} 
} 
o.save(needOptimization, pb, flowOns, flowOnDises, ttDis, queuerampDis, ttLocalWithVariable, 
queuerampWithVariable, selectedFlowOns) 
} else { 
// it is already set to be always green 
// reseting the hat values 
for r := 0; r < o.detsGroupCount; r++ { 
for p := 0; p < o.msa; p++ { 
o.ttDisHat[r] = -1 
o.ttLocalHat[r] = -1 
o.flowOnHat[r] = -1 
} 
} 
o.save(needOptimization, nil, flowOns, nil, nil, nil, nil, nil, nil) 
} 
} 
func fileExists(filename string) bool { 
info, err := os.Stat(filename) 
if os.IsNotExist(err) { 
return false 
} 
return !info.IsDir() 
} 
func (o *optimizer) save(needOptimization []int, pb [][][]float64, flowOns []float64, flowOnDises [][]float64, 
ttDis, queuerampDis [][]float64, 
ttLocalWithVariables, queuerampWithVariables [][][]float64, 
selectedFlowOns [][]int, 
) { 
os.Mkdir(o.outDir, 0755) 
fileNamePattern := filepath.Join(o.outDir, "optimize-detect-%s-%s.csv") 
for r := 0; r < o.detsGroupCount; r++ { 
var b []byte 
buf := bytes.NewBuffer(b) 
fileName := fmt.Sprintf(fileNamePattern, o.consts[r].mainKey, o.consts[r].rampKey) 
if !fileExists(fileName) { 
o.writeHeader(buf, flowOns) 
} else { 
prv, err := ioutil.ReadFile(fileName) 
if err != nil { 
log.Fatalf("could not read the previous file %s: %v", fileName, err) 
} 
buf.Write(prv) 
} 
// --------- new content 
// This file will be read by controllers in the next timestep 
// Therefore, we increase the timestep to make reading easier 
_, _ = buf.WriteString(fmt.Sprintf("%d", o.t+1)) 
if i, ok := intInSlice(r, needOptimization); ok { 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(fmt.Sprintf(",%.2f", pb[i][j][p])) 
} 
} 
for p := 0; p < o.msa; p++ { 
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buf.WriteString(fmt.Sprintf(",%d", int(flowOnDises[i][p]))) 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(fmt.Sprintf(",%.2f", ttDis[i][p])) 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(fmt.Sprintf(",%.2f", queuerampDis[i][p])) 
} 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(fmt.Sprintf(",%.2f", ttLocalWithVariables[i][j][p])) 
} 
} 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(fmt.Sprintf(",%.2f", queuerampWithVariables[i][j][p])) 
} 
} 
for p := 0; p < o.msa; p++ { 
index := selectedFlowOns[i][p] 
if index == -1 { 
buf.WriteString(fmt.Sprintf(",%d", index)) 
} else { 
buf.WriteString(fmt.Sprintf(",%.2f", flowOns[index])) 
} 
} 
} else { 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(",-") 
} 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(",-") 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(",-") 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(",-") 
} 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(",-") 
} 
} 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(",-") 
} 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(",-") 
} 
} 
buf.WriteString(fmt.Sprintf(",%.2f", o.ttDisHat[r])) 
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buf.WriteString(fmt.Sprintf(",%.2f", o.ttLocalHat[r])) 
buf.WriteString(fmt.Sprintf(",%d", o.flowOnHat[r])) 
buf.WriteString(fmt.Sprintf(",%v,%d\n", o.d.AlwaysGreen[o.consts[r].mainKey], o.d.Rate[o.consts[r].mainKey])) 
if err := ioutil.WriteFile(fileName, buf.Bytes(), 0755); err != nil { 
log.Fatalf("could not write file %s: %v", fileName, err) 
} 
} 
} 
func (o *optimizer) writeHeader(buf *bytes.Buffer, flowOns []float64) { 
_, _ = buf.WriteString("Step") 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(fmt.Sprintf(",PB[t+%d/t]-flow-%d", p+1, int(flowOns[j]))) 
} 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(fmt.Sprintf(",flowon-dis[t+%d/t]", p+1)) 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(fmt.Sprintf(",TTdis[t+%d/t]", p+1)) 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(fmt.Sprintf(",queueramp-dis[t+%d/t]", p+1)) 
} 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(fmt.Sprintf(",TTlocal[t+%d/t]-flow-%d", p+1, int(flowOns[j]))) 
} 
} 
for p := 0; p < o.msa; p++ { 
for j := 0; j < len(flowOns); j++ { 
buf.WriteString(fmt.Sprintf(",queueramp[t+%d/t]-flow-%d", p+1, int(flowOns[j]))) 
} 
} 
for p := 0; p < o.msa; p++ { 
buf.WriteString(fmt.Sprintf(",selectedFlows[t+%d/t]", p+1)) 
} 
buf.WriteString(",TTdishat") 
buf.WriteString(",TTlocalhat") 
buf.WriteString(",Flowonhat") 
buf.WriteString(",always-green,rate\n") 
} 
func (o *optimizer) optimizeLocalCost(ttLocalWithVariable [][][]float64, queuerampWithVariable [][][]float64, 
ttDis [][]float64, needOptimization []int, flowOns []float64) ([]float64 
ttLocal := make([]float64, len(needOptimization)) 
selectedFlowOns := make([][]int, len(needOptimization)) 
for i := range needOptimization { 
r := needOptimization[i] 
r1 := o.consts[r].otherDets[0] 
r2 := o.consts[r].otherDets[1] 
selectedFlowOns[i] = make([]int, o.msa) 
sigmaTTDis := float64(0) 
sigmaTTLocalHat1 := o.ttLocalHat[r1] 
sigmaTTDisHat1 := o.ttDisHat[r1] 
sigmaTTLocalHat2 := o.ttLocalHat[r2] 
sigmaTTDisHat2 := o.ttDisHat[r2] 
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for p := 0; p < o.msa; p++ { 
sigmaTTDis += ttDis[i][p] 
} 
fixed1 := float64(0) 
if _, ok := intInSlice(r1, needOptimization); ok { 
if sigmaTTDisHat1 == sigmaTTLocalHat1 { 
fixed1 = o.w[r1] 
} else { 
fixed1 = o.w[r1] * math.Log10(sigmaTTDisHat1-sigmaTTLocalHat1) 
} 
} 
fixed2 := float64(0) 
if _, ok := intInSlice(r2, needOptimization); ok { 
if sigmaTTDisHat2 == sigmaTTLocalHat2 { 
fixed2 = o.w[r2] 
} else { 
fixed2 = o.w[r2] * math.Log10(sigmaTTDisHat2-sigmaTTLocalHat2) 
} 
} 
total := float64(-1) 
selectedFlowOns[i] = []int{-1, -1, -1, -1, -1} 
start := time.Now() 
log.Printf("Started permutation at %v", start) 
for j0 := 0; j0 < 7; j0++ { 
for j1 := 0; j1 < 7; j1++ { 
for j2 := 0; j2 < 7; j2++ { 
for j3 := 0; j3 < 7; j3++ { 
for j4 := 0; j4 < 7; j4++ { 
sigmaTTLocalWithVariable := ttLocalWithVariable[i][j0][0] + ttLocalWithVariable[i][j1][1] + 
ttLocalWithVariable[i][j2][2] + ttLocalWithVariable[i][j3][3] + ttLocalWithVariable 
variable := o.w[r] 
if sigmaTTDis != sigmaTTLocalWithVariable { 
variable *= math.Log10(sigmaTTDis - sigmaTTLocalWithVariable) 
} 
// compute maximum 
if sigmaTTDis >= sigmaTTLocalWithVariable && queuerampWithVariable[i][j0][0] >= 0 && 
queuerampWithVariable[i][j0][0] <= o.queuerampMax[r] && queuerampWithVariable[i][j1][1] >= 
log.Printf("----> fixed1: %.2f, fixed2: %.2f\n", fixed1, fixed2) 
if variable+fixed1+fixed2 > total { 
total = variable + fixed1 + fixed2 
selectedFlowOns[i][0] = j0 
selectedFlowOns[i][1] = j1 
selectedFlowOns[i][2] = j2 
selectedFlowOns[i][3] = j3 
selectedFlowOns[i][4] = j4 
ttLocal[i] = sigmaTTLocalWithVariable 
} 
} 
} 
} 
} 
} 
} 
log.Printf("-------> took: %v to do the maximization\n", time.Since(start).Nanoseconds()) 
} 
return ttLocal, selectedFlowOns 
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} 
func intInSlice(a int, list []int) (int, bool) { 
for j, b := range list { 
if b == a { 
return j, true 
} 
} 
return -1, false 
} 
func (o *optimizer) calcAllProbabilityOfBreakdown(needOptimization []int, flowOns []float64) ([][][]float64, 
[][][]float64) { 
grid := make([][][]float64, len(needOptimization)) 
queueramp := make([][][]float64, len(needOptimization)) 
for i := range needOptimization { 
kMain := o.consts[needOptimization[i]].mainKey 
alpha := o.consts[needOptimization[i]].alpha 
beta := o.consts[needOptimization[i]].beta 
grid[i] = make([][]float64, len(flowOns)) 
queueramp[i] = make([][]float64, len(flowOns)) 
for j, flowOn := range flowOns { 
kRamp := o.consts[needOptimization[i]].rampKey 
grid[i][j], queueramp[i][j] = o.calcProbabilityOfBreakdown(kMain, alpha, beta, kRamp, flowOn) 
} 
} 
return grid, queueramp 
} 
func (o *optimizer) calcProbabilityOfBreakdown(kMain string, alpha, beta float64, kRamp string, flowOn float64) 
([]float64, []float64) { 
pb := make([]float64, o.msa) 
queueramp := make([]float64, o.msa) 
for p := range pb { 
flowBot := o.dets[kMain].FlowBotMultiAhead[o.t][p] 
val := (flowBot + flowOn) / beta 
term1 := 1.0 // alpha * math.Pow(val, alpha-1) / beta 
term2 := math.Exp(-(math.Pow(val, alpha))) 
//pb[p] = term1 * term2 
pb[p] = term1 - term2 
log.Printf("----> PB[%.2f]: flowBot: %.2f, val: %.2f, term2: %.2f, pb: %.2f\n", flowOn, flowBot, val, term2, pb[p]) 
flowAllRamp := o.dets[kRamp].FlowAllMultiAhead[o.t][p] 
queueramp[p] = (flowAllRamp - flowOn) / float64(60) 
if queueramp[p] < 0 { 
queueramp[p] = 0 
} 
queueramp[p] = math.Ceil(queueramp[p]) 
} 
return pb, queueramp 
} 
func (o *optimizer) calcAllLocalDisagreementCosts(needOptimization []int, flowOnDises [][]float64, 
optimizedFlowOnHat []int) ([][]float64, [][]float64) { 
ttDis := make([][]float64, len(needOptimization)) 
queuerampDis := make([][]float64, len(needOptimization)) 
for i := range needOptimization { 
kMain := o.consts[needOptimization[i]].mainKey 
kRamp := o.consts[needOptimization[i]].rampKey 
ttDis[i] = make([]float64, o.msa) 
queuerampDis[i] = make([]float64, o.msa) 
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ttDis[i], queuerampDis[i] = o.calcLocalCost(kMain, kRamp, flowOnDises[i], float64(optimizedFlowOnHat[i])) 
} 
return ttDis, queuerampDis 
} 
func (o *optimizer) calcAllLocalCosts(needOptimization []int, flowOns []float64, optimizedFlowOnHat []int) 
([][][]float64, [][][]float64) { 
ttLocal := make([][][]float64, len(needOptimization)) 
queueramp := make([][][]float64, len(needOptimization)) 
for i := range needOptimization { 
kMain := o.consts[needOptimization[i]].mainKey 
kRamp := o.consts[needOptimization[i]].rampKey 
ttLocal[i] = make([][]float64, len(flowOns)) 
queueramp[i] = make([][]float64, len(flowOns)) 
for j, flowOn := range flowOns { 
flowOnSame := make([]float64, o.msa) 
for p := range flowOnSame { 
flowOnSame[p] = flowOn 
} 
ttLocal[i][j], queueramp[i][j] = o.calcLocalCost(kMain, kRamp, flowOnSame, float64(optimizedFlowOnHat[i])) 
} 
} 
return ttLocal, queueramp 
} 
func (o *optimizer) calcLocalCost(kMain, kRamp string, flowOn []float64, optimizedFlowOnHat float64) 
([]float64, []float64) { 
ttLocal := make([]float64, o.msa) 
queueramp := make([]float64, o.msa) 
for p := range ttLocal { 
averageTT := o.dets[kMain].TravelAVGMultiAhead[o.t][p] 
flowAllMain := o.dets[kMain].FlowAllMultiAhead[o.t][p] 
flowAllRamp := o.dets[kRamp].FlowAllMultiAhead[o.t][p] 
queueramp[p] = (flowAllRamp - flowOn[p]) / float64(60) 
if queueramp[p] < 0 { 
queueramp[p] = 0 
} 
queueramp[p] = math.Ceil(queueramp[p]) 
ttLocal[p] = averageTT*(flowAllMain)/float64(60*60) + queueramp[p] + 
float64(o.penalizeDeltaFlowOn)*(math.Pow(flowOn[p]-optimizedFlowOnHat, 2)) 
log.Printf("-----------> [%.2f]: averageTT: %.2f, flowAllMain: %.2f flowAllRamp: %.2f, queueramp: %.2f, part1: 
%.2f, part2: %.2f, penalized: %d, optimizedFlowOnHat: %.2f\n", flowOn[ 
} 
return ttLocal, queueramp 
} 
func (f *flowSim) Save(dir string) []string { 
start := time.Now() 
for _, d := range f.detectors { 
report := d.Report() 
for _, r := range report { 
ioutil.WriteFile(fmt.Sprintf("%s/report-detector-%d-%s.csv", dir, d.ID(), r.Name), []byte(r.Content), 0755) 
} 
} 
f.timing["save"] += time.Since(start).Nanoseconds() 
log.Println("----------- Timing for second simulation:") 
f.timing["report"] += time.Since(start).Nanoseconds() 
for k, v := range f.timing { 
log.Printf("%s:\t%.1f sec\n", k, float64(v)/float64(1000000000)) 
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} 
log.Println("----------------------------------------") 
return nil 
} 
func (s *flowSim) SetOtherSimulator(callableSecondSim sim.SetSimFunc, conf2 sim.Config) { 
// not needed 
} 
#-----------------------NEW FILE--------------------------- sim/kalman/kalman.go 
package kalman 
import ( 
"fmt" 
"log" 
"math" 
) 
// State holds the KF apriori state 
type State struct { 
X float64 // real 
Y float64 // noisy 
P float64 
XHat float64 // estimate of real 
rHat float64 
RHat float64 
qHat float64 
QHat float64 
K float64 
xHatTT float64 
pTT float64 
nextXHat float64 
nextP float64 
StepAheadStates []float64 
} 
var negligible = 0.01 
func (s *State) String() string { 
base := fmt.Sprintf("%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f", s.P, s.K, s.pTT, s.XHat, s.xHatTT, 
s.nextXHat, s.nextP, s.rHat, s.RHat, s.qHat, s.QHat) 
if len(s.StepAheadStates) == 0 { 
return base 
} 
extra := "" 
for _, a := range s.StepAheadStates { 
extra = fmt.Sprintf("%s,%.2f", extra, a) 
} 
return fmt.Sprintf("%s,%s", base, extra) 
} 
func (s *State) NextXHat() float64 { 
return s.nextXHat 
} 
// Step moves the simulation one step forward 
func Step(past []*State, next *State) []*State { 
newState := make([]*State, len(past)) 
copy(newState[:], past[1:]) 
newState[len(past)-1] = next 
return newState 
} 
// SimplePredict computes the apriori estimate 
func SimplePredict(pastStates []*State, N int, Qtt, Rtt float64, stepAheadCount int) State { 
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if len(pastStates) != N+1 { 
log.Fatal("Need ", N+1, " levels, got ", len(pastStates)) 
} 
curr := pastStates[len(pastStates)-1] 
curr.rHat = float64(0) 
for i := 1; i < len(pastStates); i++ { 
s := pastStates[i] 
curr.rHat += s.Y - s.X 
} 
curr.rHat *= float64(1) / float64(N) 
if curr.rHat == 0 { 
curr.rHat = negligible 
} 
curr.RHat = Rtt 
curr.K = curr.P * (float64(1) / (curr.P + curr.RHat)) 
curr.pTT = (1 - curr.K) * curr.P 
curr.qHat = float64(0) 
for i := 1; i < len(pastStates); i++ { 
s := pastStates[i] 
st1 := pastStates[i-1] 
curr.qHat += s.XHat - st1.XHat 
} 
curr.qHat *= float64(1) / float64(N) 
if curr.qHat == 0 { 
curr.qHat = negligible 
} 
curr.QHat = Qtt 
curr.xHatTT = curr.XHat + curr.K*(curr.Y-curr.XHat) 
curr.nextP = curr.pTT + curr.QHat 
curr.nextXHat = curr.xHatTT + curr.qHat 
if curr.nextXHat < 0 { 
curr.nextXHat = 0 
} 
prevXhats := make([]float64, N+1+stepAheadCount) 
for i := 0; i < N+1; i++ { 
prevXhats[i] = pastStates[i].xHatTT 
} 
prevXhats[N+1] = curr.nextXHat 
curr.StepAheadStates = make([]float64, stepAheadCount+2) 
curr.StepAheadStates[0] = curr.xHatTT 
curr.StepAheadStates[1] = curr.nextXHat 
qHatMulti := float64(0) 
for i := N + 1; i < len(prevXhats); i++ { 
// calculet new qHat from prevXhats 
qHatMultiNew := float64(0) 
for j := 0; j < N; j++ { 
qHatMultiNew += prevXhats[i-j] - prevXhats[i-j-1] 
} 
qHatMultiNew *= float64(1) / float64(N) 
if qHatMultiNew == 0 { 
qHatMultiNew = negligible 
} 
qHatMulti += qHatMultiNew 
curr.StepAheadStates[i-N+1] = curr.nextXHat + qHatMulti 
if i+1 != len(prevXhats) { 
prevXhats[i+1] = curr.StepAheadStates[i-N+1] 
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} 
} 
next := State{ 
P: curr.nextP, 
XHat: curr.nextXHat, 
} 
return next 
} 
// MultiStepAheadPredict computes the apriori estimate 
func MultiStepAheadPredict(pastStates []*State, N int, stepAheadCount int) State { 
if len(pastStates) != N+1 { 
log.Fatal("Need ", N+1, " levels, got ", len(pastStates)) 
} 
curr := pastStates[len(pastStates)-1] 
curr.rHat = float64(0) 
for i := 1; i < len(pastStates); i++ { 
s := pastStates[i] 
curr.rHat += s.Y - s.X 
} 
curr.rHat *= float64(1) / float64(N) 
if curr.rHat == 0 { 
curr.rHat = negligible 
} 
curr.RHat = float64(0) 
for i := 1; i < len(pastStates); i++ { 
s := pastStates[i] 
curr.RHat += math.Pow((s.Y - s.X - curr.rHat), 2) 
//curr.RHat -= ((float64(N-1) / float64(N)) * s.P) 
} 
curr.RHat *= float64(1) / float64(N-1) 
if curr.RHat == 0 { 
curr.RHat = negligible 
} 
curr.K = curr.P * (float64(1) / (curr.P + curr.RHat)) 
curr.pTT = (1 - curr.K) * curr.P 
curr.qHat = float64(0) 
for i := 1; i < len(pastStates); i++ { 
s := pastStates[i] 
st1 := pastStates[i-1] 
curr.qHat += s.X - st1.X 
} 
curr.qHat *= float64(1) / float64(N) 
if curr.qHat == 0 { 
curr.qHat = negligible 
} 
curr.QHat = float64(0) 
for i := 1; i < len(pastStates); i++ { 
s := pastStates[i] 
st1 := pastStates[i-1] 
curr.QHat += math.Pow((s.X - st1.X - curr.qHat), 2) 
} 
curr.QHat *= float64(1) / float64(N-1) 
if curr.QHat == 0 { 
curr.QHat = negligible 
} 
curr.xHatTT = curr.XHat + curr.K*(curr.Y-curr.XHat) 
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curr.nextP = curr.pTT + curr.QHat 
curr.nextXHat = curr.xHatTT + curr.qHat 
if curr.nextXHat < 0 { 
curr.nextXHat = 0 
} 
prevXhats := make([]float64, N+1+stepAheadCount) 
for i := 0; i < N+1; i++ { 
prevXhats[i] = pastStates[i].xHatTT 
} 
prevXhats[N+1] = curr.nextXHat 
curr.StepAheadStates = make([]float64, stepAheadCount+2) 
curr.StepAheadStates[0] = curr.xHatTT 
curr.StepAheadStates[1] = curr.nextXHat 
qHatMulti := float64(0) 
for i := N + 1; i < len(prevXhats); i++ { 
// calculet new qHat from prevXhats 
qHatMultiNew := float64(0) 
for j := 0; j < N; j++ { 
qHatMultiNew += prevXhats[i-j] - prevXhats[i-j-1] 
} 
qHatMultiNew *= float64(1) / float64(N) 
if qHatMultiNew == 0 { 
qHatMultiNew = negligible 
} 
qHatMulti += qHatMultiNew 
curr.StepAheadStates[i-N+1] = curr.nextXHat + qHatMulti 
if i+1 != len(prevXhats) { 
prevXhats[i+1] = curr.StepAheadStates[i-N+1] 
} 
} 
next := State{ 
P: curr.nextP, 
XHat: curr.nextXHat, 
} 
return next 
} 
#-----------------------NEW FILE--------------------------- sim/singleton_seed.go 
package sim 
var HasPresetSeeds bool = false 
var CarSeed int64 
var ChangeSeed int64 
var GeneratorSeed int64 
// controller, detector, kalman, lane, placer, simulator do not have seed 
 

 


