
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2018-06-07

Bounded Width Dichotomies in

Constraint Satisfaction Problems

Liprandi, Maximiliano

Liprandi, M. (2018). Bounded Width Dichotomies in Constraint Satisfaction Problems (Doctoral

thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/31986

http://hdl.handle.net/1880/106758

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Bounded Width Dichotomies in Constraint Satisfaction Problems

by

Maximiliano Liprandi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

JUNE, 2018

c© Maximiliano Liprandi 2018

Abstract

In this thesis we examine the connection between structures with bounded width, poly-

morphisms and pebble games. There has been extensive work on trying to prove the di-

chotomy conjecture for finite structures, namely, the Constraint Satisfaction Problem (CSP)

of a finite structure is either in P or NP-complete. We are interested in finding classes in

which a stronger dichotomy exists; namely, where every structure has either bounded width

or a hard CSP. We call this kind of dichotomy a bounded width dichotomy. We will investi-

gate properties of polymorphisms of structures with bounded width, and use this to look at

classes of directed graphs with a bounded width dichotomy.

ii

Preface

This dissertation is submitted for the degree of Doctor of Philosophy at the University of

Calgary. It contains original work done under the supervision of Drs. Claude Laflamme and

Robert Woodrow.

iii

Acknowledgements

I would like to thank my supervisors, Claude Laflamme and Robert Woodrow, for their

invaluable help and guidance, their patience and dedication, and their constant support and

encouragement throughout my program.

I would also like to thank Richard Guy for his careful and dedicated help with my writing,

and his never-ending support. Thanks to Gary MacGillivray for providing useful insight and

suggestions for an earlier version of this thesis. Thanks to Jacobus Swarts for helping me

find new ideas and lines of work. Thanks to Diane Fenton for her proofreading, her ideas,

and her unconditional support. Thanks to Mark Girard for creating an excellent template

and all his help with LATEX.

iv

Table of Contents

Abstract ii

Preface iii

Acknowledgements iv

Table of Contents v

List of Figures and Illustrations vii

List of Symbols, Abbreviations and Nomenclature viii

1 Introduction 1
1.1 Relational structures . 2
1.2 Graph theory . 4

1.2.1 The Mycielski graphs . 9
1.3 Logic . 11
1.4 Homomorphisms . 12
1.5 Polymorphisms and algebra . 14
1.6 Constraint Satisfaction Problems . 15
1.7 Computational complexity . 16
1.8 Datalog and bounded width . 17

2 Constraint Satisfaction Problems 20
2.1 Positive primitive-definable relations . 21
2.2 Polymorphisms and algebras . 22

2.2.1 Conservative Weak Near-Unanimity polymorphisms 27
2.3 Bounded width . 32

3 Pebble Games 38
3.1 k-Pebble games . 38
3.2 The case Kn . 39
3.3 (`, k)-Pebble games . 42
3.4 Pebble games and bounded width . 43

v

4 Directed Graphs 47
4.1 Reduction to directed graphs . 47
4.2 Directed cycles . 49
4.3 Tournaments . 50
4.4 Semi-complete graphs with bounded width 57
4.5 Transitive directed graphs . 63

4.5.1 Transitive directed graphs and X-enumerations 66
4.6 Directed graphs that do not allow a binary conservative WNU polymorphism 69

5 Conclusion 80

Bibliography 86

A Pebble Game program 91

B Program for finding X-enumerations in H ′ 98

C Computer program for finding 4-vertex directed graphs without a BCWNU
polymorphism. 102

D A 4-ary WNU polymorphism for the directed graph R4. 108

vi

List of Figures and Illustrations

1.1 The complete graphs K2, K3, K4 . 5
1.2 The directed graphs ~L3 and ~C3. 6
1.3 The tournament T4 . 7
1.4 The directed graph ~L2 ⊕ ~L2. 8
1.5 The directed graphs v ⊕ ~C3 and ~C3 ⊕ v. 8
1.6 The Mycielski graphs M2,M3,M4 . 10
1.7 A graph G with core K3. 13

2.1 Relation between complexity classes and polymorphisms present in the struc-
ture. 34

3.1 Game state after the first round of play. 40
3.2 End of the game: Duplicator has no moves. 40
3.3 The Mycielski graph of order 4, M4 . 42
3.4 Derivation tree of FALSE on π(C5) . 45

4.1 The directed cycles ~C2, ~C3, ~C4. 49
4.2 4-vertex tournaments . 53
4.3 A graph with no topological X-enumeration. 66
4.4 A transitive graph with no topological X-enumeration. 67
4.5 Crossings in the X-enumeration of H with X edges highlighted. 67
4.6 The directed graph H and its transitive closure H ′. 69
4.7 4-vertex directed graphs that do not admit a binary conservative WNU poly-

morphism. 72
4.8 Base case for Theorem 4.48. 73
4.9 Case 2 in Theorem 4.48. 73
4.10 Base case for Theorem 4.50. 75

5.1 Directed graphs with a WNU polymorphism but no conservative WNU poly-
morphism of the same arity. 85

vii

List of Symbols, Abbreviations and
Nomenclature

Symbol or abbreviation Definition
¬ The negation operator. 11
∨ The OR operator. 11
∧ The AND operator. 11
∆,Γ A relational structure. 3
∆ |= ϕ The structure ∆ models the formula ϕ. 11
〈∆〉pp The expansion of ∆ by its pp-definable relations. 22
Π A decision problem. 16
π A Datalog program. 17
τ A signature. 3
χ(G) The chromatic number of G. 4
A An algebra. 15

C The directed graph ~C3 ⊕ ~C3. 53
~Cn A directed cycle on n vertices. 6
CSP(∆) The constraint satisfaction problem of ∆. 15
dom(h) The domain of a function h. 43
f (k)(r̄1, ..., r̄n) The k-tuple (f(r1,1, ..., rn,1), ..., f(r1,k, ..., rn,k)). 14
FALSE The empty relation of arity 0. 3
G = (V ;E) A (directed) graph with vertices V and edges E. 3
G1 ⊕G2 The linear sum of G1 and G2. 8
G The class of graphs. 3
H A winning strategy for Duplicator. 43
Iv, Jv Families of arcs of a circle. 30
Inv(A) The relations that are preserved by A. 22
Kn The complete graph on n vertices. 4
Kn The empty graph on n vertices. 4
~Ln The directed graph v1 ⊕ ...⊕ vn. 6
Mn The Mycielski graph of order n. 9
max{x1, ..., xn} The maximum element of {x1, ..., xn}. 23
min{x1, ..., xn} The minimum element of {x1, ..., xn}. 23
N,S Distinguished points on a circle. 30

viii

Symbol or abbreviation Definition
[n] The set {1, 2, ..., n}. 4
N+(v) The set of vertices with an edge from v. 57
N−(v) The set of vertices with an edge to v. 57
N(u) The set of neighbours of a vertex u. 42
Na(x̄) The number of components of x̄ equal to a. 54
Pol(∆) The set of polymorphisms of ∆. 14
pp Positive primitive. 15
R A relation symbol. 2
R∆ The relation in ∆ associated with R. 4

Rn The directed graph ~Cn with an edge reversed. 78
Sn The symmetric group over [n]. 72

T4 The smallest tournament that contains ~C4. 7
Tractable Of a problem that is in P. 16
TRUE The non-empty relation of arity 0. 3
u � v An edge of a directed graph. i.e. (u, v) ∈ E. 5
uv An edge of a graph. i.e. (u, v), (v, u) ∈ E. 4
WNU Weak near-unanimity. 24
x̄ A k-tuple (x1, x2, ..., xk). 15

x− The vertex x with x− � x in ~C3. 54

x+ The vertex x with x � x+ in ~C3. 54

ix

Chapter 1

Introduction

Constraint satisfaction problems (CSPs) can model a wide range of decision problems, and

occur frequently in theoretical computer science. CSPs with finite templates have been

extensively studied. In 1978, Schaefer [39] showed that every CSP of a Boolean (two-element)

template is either tractable or NP-complete. Hell and Nešetřil showed in [22] that this

“dichotomy” property is also true for simple graphs. One of the central problems in the

study of the complexity of CSPs with finite templates is the Dichotomy Conjecture posed by

Feder and Vardi in their seminal paper [18] in 1999, which states that every finite relational

structure has either a tractable CSP or an NP-complete one. An algebraic approach has

proved helpful in the study of this conjecture. An equivalent dichotomy conjecture was

stated in [12] that ties the dichotomy to the existence of a certain kind of polymorphism in

the structure.

We will examine the complexity of CSPs of finite structures by focusing on structures

with bounded width, and the conditions that can be found to determine whether a structure

has bounded width. We will use algebraic tools, as well as certain pebble games, which have

a strong connection to the notion of bounded width. We will look for classes of directed

graphs where a bounded width dichotomy exists. For this we will study known classes with

a traditional “P versus NP-complete” dichotomy, and determine whether a bounded width

1

dichotomy also exists.

In Chapter 1, we describe the definitions and concepts that we will use in this thesis,

as well as give illustrative examples to help the readers to familiarize themselves with these

concepts. In Chapter 2, we will examine the connection between the complexity of CSPs

and the existence of certain polymorphisms. We will give some useful results for determining

whether a structure has bounded width by finding special polymorphisms. In Chapter 3,

we will examine pebble games and their connection to Datalog and structures with bounded

width. In Chapter 4, we will look at classes of directed graphs that exhibit a bounded width

dichotomy. We will prove that the class of tournaments, and more generally the class of con-

nected locally semi-complete graphs, have a bounded width dichotomy. We will also show

that transitive directed graphs have bounded width, and give different proofs utilizing Dat-

alog and pebble games. We will give an analysis of directed graphs of at most four vertices

that do not admit a binary, conservative WNU polymorphism, of which two have bounded

width, and analyze a generalization of these two directed graphs. We found that some of

the work we had done for tournaments had already been done in [3]. However, we employ

different methods in our proofs and refine some of the results in [3]. We will discuss open

questions and further research in Chapter 5.

1.1 Relational structures

In this thesis we will examine the CSP of certain relational structures. We introduce the

basic notions associated with relational structures and provide simple examples for these

concepts.

Definition 1.1. Given a set D, a relation R of arity k on D is a subset of Dk. We write

R(x1, ..., xk) for the atomic sentence (x1, ..., xk) ∈ R.

There are two relations of arity zero (since R0 has only one element) which can be thought

2

of as boolean constants, and will often be referred to as FALSE (for the empty relation)

and TRUE (for the non-empty relation).

Definition 1.2. A signature τ is a set τ = {Ri}, i ∈ I of relation symbols Ri, each with

an associated arity ki.

Definition 1.3. A τ -structure ∆ = (D; {Ri}i∈I) is a set D (its domain) together with

relations Ri of arity ki on D.

Example 1.4. The structure NAE = ({0, 1};R) with R = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} is

a τ -structure with signature τ = {R} and domain {0, 1}. The relation R has arity 3. The

name of the structure stands for “Not All Equal”, since its relation R contains all triples

where not every component is the same. Structures with 2-element domains are usually

referred to as Boolean.

Example 1.5. We can think of the class G of graphs as a class of τ -structures, where

the signature τ = {E} consists of a single binary relation symbol E that represents the

edge relation of graphs. A structure from G is a graph G = (V ;E) with domain V , which

corresponds to the vertices of G, and with a binary, symmetric relation E that corresponds

to the edges of G. For a more detailed description of graphs see Section 1.2.

Unless noted, we will not distinguish a structure ∆ = (D; {Ri}i∈I) from its domain D.

We will therefore use d ∈ ∆ to refer to an element d ∈ D.

In this thesis we will study relational structures ∆ = (D; {Ri}i∈I) where D is a finite set.

Unless otherwise stated, we will assume that relational structures have finite domains.

Definition 1.6. Given a τ -structure ∆ = (D; {Ri}i∈I), a τ -structure ∆′ = (D′; {Ri
′}i∈I) is

a substructure of ∆ if D′ ⊆ D and Ri
′ ⊆ Ri for all i. We say ∆′ = (D′; {Ri

′}i∈I) is an

induced substructure of ∆ if, in addition, Ri
′ = Ri ∩ (D′)ki .

Example 1.7. Let D = {a, b, c}, D′ = {a, b}, R = {(a, b)(b, c)(c, a)}, R′ = ∅, R′′ = {(a, b)}.

Then ∆′ = (D′;R′) is a substructure (but not an induced substructure) of ∆, while ∆′′ =

(D′, R′′) is an induced substructure (and therefore a substructure) of ∆.

3

We will not usually distinguish between a relation symbol R and its associated set in a

given structure. If we are considering two τ -structures ∆ and Γ, we will write R∆, RΓ for

the associated relations in each structure.

1.2 Graph theory

We define graphs and directed graphs as relational structures in the following way:

Definition 1.8. A (simple) graph is a structure (V ;E) where E is a symmetric, irreflexive

binary relation. If (v1, v2) ∈ E, we say v1 is connected to v2 (and vice-versa), and we write

v1v2 ∈ E.

When working with graphs, since their edge relation is symmetric, we will sometimes

write only (v1, v2) ∈ E to represent (v1, v2), (v2, v1) ∈ E. It is assumed that in a graph

(v1, v2) ∈ E implies (v2, v1) ∈ E.

Definition 1.9. Given a graph G, the chromatic number of G, denoted by χ(G), is the

least number of colours needed to colour the vertices of G so that no adjacent vertices share

the same colour. Any finite graph can be coloured by assigning a different color for each

vertex. Thus for G = (V ;E), we have that χ(G) ≤ |V |.

Example 1.10. Given n ≥ 1, the complete graph on n vertices, denoted by Kn, is given by

Kn = (V ;E), where V = [n] and E = V 2 \ {(v, v)|v ∈ V }. The empty graph on n vertices,

denoted by Kn, is given by Kn = (V ;E ′), where V = [n] and E ′ is a binary relation with

E ′ = ∅. The graph Kn has chromatic number n, while the graph Kn has chromatic number

1. The graphs K2, K3 and K4 are shown in Figure 1.1.

Example 1.11. A graph G = (V ;E) is bipartite if V = A ∪ B for some A and B such

that there is no edge between any two elements of A or any two elements of B. The graph

K2 is bipartite, while Kn is not, for n ≥ 3. The graph Kn is bipartite for any n.

4

r r
K2

r r
r

�
�
�
�
�

T
T
T
T
T

K3

r r
r
r

�
�
�
�
�

""
"

T
T
T
T
T

bb
b

K4

Figure 1.1: The complete graphs K2, K3, K4

Definition 1.12. Given a graph G = (V ;E), a path is a sequence of vertices v1, ..., vn ∈ G

such that (vi, vi+1) ∈ E for 1 ≤ 1 < n. We say that v1, ..., vn is a path from v1 to vn, with

length n− 1.

Definition 1.13. A graph G = (V ;E) is connected if, for every pair of vertices u, v ∈ V ,

there is a path u, x1, x1x2, ..., xn, v connecting them.

Definition 1.14. A (simple) directed graph is a structure (V ;E) where E is an asym-

metric, irreflexive binary relation. If (v1, v2) ∈ E, then we say that v1 is connected to v2,

or that v2 is connected from v1, and we write v1 � v2.

We will mostly focus on simple graphs. Unless specified, we will assume graphs and

directed graphs to be simple. Note that a non-simple graph may contain loops, so its edge

relation is not irreflexive, and a non-simple directed graph may contain loops and pairs of

edges u � v, v � u, so its edge relation is not irreflexive or asymmetric.

Definition 1.15. Given a directed graph G = (V ;E), a directed path is a sequence of

vertices v1, · · · , vn ∈ G such that (vi, vi+1) ∈ E for 1 ≤ 1 < n. We say that v1, · · · , vn is a

directed path from v1 to vn, with length n− 1.

Definition 1.16. Let G be a directed graph. A vertex v ∈ G is a source if there is no

vertex u ∈ G such that u � v. Similarly, v is a sink if there is no vertex u ∈ G such that

v � u.

5

~L3
~C3

Figure 1.2: The directed graphs ~L3 and ~C3.

Example 1.17. The directed graph ~Ln has vertices u1, · · · , un, and ui � uj if and only

if i < j. This graph represents a strict linear order on n elements. The vertex u1 is a

source and the vertex un is a sink. The directed graph ~Cn has vertices v1, · · · , vn and edges

v1 � v2, · · · , vn−1 � vn, vn � v1. We call ~Cn the directed cycle on n vertices. The directed

cycle ~Cn has no sources or sinks. The directed graphs ~L3 and ~C3 are shown in Figure 1.2.

Example 1.18. A tournament T on n vertices is a complete simple directed graph; that is,

T = (V ;E) where V = [n] and for all v1, v2 ∈ V with v1 6= v2, exactly one of (v1, v2), (v2, v1)

is in E.

Definition 1.19. A directed graph is weakly connected if its associated graph (the graph

obtained by transforming directed edges into edges) is connected.

Definition 1.20. A directed graph G is strongly connected if for every pair of vertices

u, v ∈ G, there is a path u � x1 � · · · � xn � v from u to v and a path v � y1 � · · · � ym � u

from v to u, where xi, yi are vertices of G. Note that m or n could be 0.

Every strongly connected graph is also weakly connected, but the converse is not always

true.

Example 1.21. The graph ~L3 (Figure 1.2) is weakly connected, but not strongly connected.

The graph ~C3 (Figure 1.2) is strongly connected (and thus weakly connected).

Definition 1.22. A directed graph G with n vertices is pancyclic if it contains a directed

cycle of length k for every 3 ≤ k ≤ n.

6

a b

c

d

T4

Figure 1.3: The tournament T4

Example 1.23. The tournament T4 shown in 1.3 has a 3-cycle a � b � c � a and a 4-cycle

a � b � c � d � a. It is therefore pancyclic. Note that this implies that T4 is also strongly

connected.

We provide a theorem that will be used in Chapter 4, that shows that if a tournament

contains a cycle of length n, then it also contains cycles of length 3 ≤ k ≤ n.

Theorem 1.24. [21] If a tournament T is strongly connected, then it is pancyclic.

Proof. Assume that T has n ≥ 3 vertices. We proceed by induction. Assume that T is

strongly connected. Then it is not transitive, and so it has a cycle of length 3. Now assume

that it has a cycle C = v1 � v2 � · · · � vk � v1 of length k < n. We will prove it has a

cycle of length k + 1. There are two cases: either there exists a vertex u ∈ T not in C that

is connected to a point in C and connected from a point in C, or there is no such vertex u.

Case 1. Suppose that there is a vertex u ∈ T not in C that is connected from vi and

to vj. Let v` be the first vertex in C, starting from vi, that is connected from u. Then

v1 � · · · � v`−1 � u � v` · · · � vk � v1 is a cycle of length k + 1.

Case 2. If no such u exists, then we can partition all vertices in T not in C into two

subsets U1 and U2 such that every vertex in U1 is connected to every vertex in C, and every

vertex in U2 is connected from every vertex in C. Since there is no u as in case 1 (and since

k < n), one of these sets must be non-empty, and so both of them must be non-empty, since

T is strongly connected. Furthermore, there must exist u1 ∈ U1 and u2 ∈ U2 such that u2 is

connected to u1. Then u1 � v1 � · · · � vk−1 � u2 � u1 is a cycle of length k + 1.

7

u1

v1

u2

v2

~L2 ⊕ ~L2

Figure 1.4: The directed graph ~L2 ⊕ ~L2.

v ⊕ ~C3
~C3 ⊕ v

Figure 1.5: The directed graphs v ⊕ ~C3 and ~C3 ⊕ v.

Definition 1.25. Let G1 = (V1;E1), G2 = (V2;E2) be disjoint directed graphs. The linear

sum of G1 and G2, denoted by G1⊕G2, is the directed graph H = (V ;E), where V = V1∪V2

and E = E1 ∪ E2 ∪ {(v1, v2)|v1 ∈ V1, v2 ∈ V2}.

For a given vertex v, we will denote v ⊕ G1 = H ⊕ G1, G1 ⊕ v = G1 ⊕ H, where

H = ({v};E) and E = ∅.

Example 1.26. Given the directed graph ~L2 = ({u, v}; {(u, v)}), the linear sum ~L2 ⊕ ~L2 is

the directed graph

~L2 ⊕ ~L2 = ({u1, u2, v1, v2}; {(u1, v1), (u2, v2), (u1, u2), (u1, v2), (v1, u2), (v1, v2)})

as shown in Figure 1.4. By renaming the vertices u1, v1, u2, v2 into u1, u2, u3, u4, in that

order, we can see that ~L2 ⊕ ~L2 coincides with the directed graph ~L4.

Note that linear sum is not commutative.

Example 1.27. Let v be a vertex and ~C3 the directed cycle on 3 vertices. Then the graphs

v ⊕ ~C3 and ~C3 ⊕ v (see Figure 1.5) are not copies of each other, since the first has a vertex

with 3 outgoing edges, while the second does not.

8

1.2.1 The Mycielski graphs

The Mycielski graphs, denoted by Mn where n ≥ 2, is a family of graphs which are con-

structed recursively and have the properties that they are triangle-free (i.e. it does not

contain the graph K3 as an induced subgraph), and increasing in chromatic number with

n. We will use these graphs in Chapter 3 to show certain properties of pebble games (see

Section 3.2).

We construct the family as follows. The starting graph is M2 = K2, a single edge. We

obtain Mn+1 from Mn in the following way:

Let u1, · · · , ur be the vertices of Mn. Then Mn+1 will have m = 2r+1 vertices, v1, · · · , vr,

w1, · · · , wr, z. The edges of Mn+1 will be vivj, viwj, wivj for each edge uiuj of Mn, as well as

zwi for i = 1, · · · , r. The graphs M2,M3 and M4 are shown in Figure 1.6. The graph M5

has 23 vertices and 71 edges. The Online Encyclopedia of Integer Sequences contains the

following sequences related to the Mycielski graphs:

• A266550 Independence number, i.e., number of vertices. [40]

• A122695 Number of edges. [17]

• A137890 Number of (directed) Hamiltonian paths. [41]

• A143247 Number of (directed) Hamiltonian circuits. [42]

• A234625 Number of undirected cycles. [43]

• A193148 Number of spanning trees. [44]

• A287432 Number of connected dominating sets. [45]

Proposition 1.28. [36] The Mycielski graph Mn is triangle-free and has chromatic number

n.

9

t t
M2

t t
tt

t

B
B
B
B
B

Z
Z
Z
Z
Z�

�
�
�
�

�
�
�
�
�

M3

t t
tt

t

B
B
B
B
B

Z
Z
Z
Z
Z�

�
�
�
�

�
�
�
�
�

ttt ttt
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�Z

Z
Z
Z
Z
Z
Z

B
B
B
B
B
B
B
B

hh((
SS��

M4

Figure 1.6: The Mycielski graphs M2,M3,M4

Proof. We proceed by induction. Clearly M2 = K2 is triangle-free and has chromatic

number 2. Let k ≥ 2 and suppose Mk is triangle-free and has chromatic number k. Let

v1, · · · , vr,w1, · · · , wr, z be the vertices of Mk+1 as in the construction above. Since by con-

struction w1, · · · , wr is an independent set, Mk+1 does not have any triangles with two or

more vertices in {w1, · · · , wr}. Therefore Mk+1 does not have a triangle with z as one of its

vertices. We only need to verify that Mk+1 does not have triangles of the form vivjw` for

some i, j, ` ∈ [r]. If these vertices formed a triangle, then by construction Mk would have the

edges uiuj, uiu`, uju`, which is a contradiction. Therefore Mk+1 is triangle-free. We are left

with proving that Mk+1 has chromatic number k+1. Notice that Mk+1 \{z} can be coloured

with k colours, by taking a k-colouring of Mk and colouring vi, wi with the same colour as

ui. But any colouring of Mk+1 \ {z} requires at least k colours for the set {w1, · · · , wr},

since wi and vi have the same set of neighbours, and the subgraph induced by {v1, · · · , vr}

is isomorphic to Mk. Therefore Mk+1 \ {z} has chromatic number k, and since z is adjacent

to w1, · · · , wr, it requires a new colour. Therefore Mk+1 has chromatic number k + 1.

10

1.3 Logic

We refer the reader to [24] for an introduction to logic and model theory. We will give

informal explanations for the basic concepts that we will use.

Definition 1.29. An atomic formula ϕ over τ , called an atomic τ -formula, is an expres-

sion of the form R(x1, · · · , xk), where R ∈ τ is of arity k. The atomic formula ϕ expresses

(x1, · · · , xk) ∈ R.

Definition 1.30. The set of formulas over τ is the smallest set containing all the atomic

τ -formulas such that if ϕ, ψ are formulas and x is a variable, then

1. ¬ϕ is a formula,

2. ϕ ∨ ψ and ϕ ∧ ψ are formulas,

3. ∃x ϕ and ∀x ϕ are formulas.

Example 1.31. Given a graph G = (V ;E), where τ = {E}, an atomic formula is of the

form E(x1, x2) and represents the statement “there is an edge between x1 and x2”. An

example of a τ -formula is

ϕ(x1, x2) = ∃x(E(x1, x) ∧ E(x, x2)),

which represents the statement “there is a path of length 2 between x1 and x2”.

Definition 1.32. Given a τ -structure ∆, a τ -formula ϕ(x1, · · · , xn), and elements t1, · · · , tn ∈

D, we say ∆ models ϕ(t1, · · · , tn) (and write ∆ |= ϕ(t1, · · · , tn)) if ϕ(t1, · · · , tn) is true in

∆.

Example 1.33. Let G = (V ;E) where V = {u, v, w} and E contains the edges uv, vw but

not uw. Let ϕ(x1, x2) be the formula from Example 1.31. Then G does not model ϕ(u, v),

since there is no path of length 2 between u and v.

11

1.4 Homomorphisms

Definition 1.34. Given τ -structures ∆ and Γ, a function ϕ : ∆→ Γ is a homomorphism

if it preserves the relations in τ ; that is, for all R ∈ τ (of, say, arity k), if (d1, · · · , dk) ∈ R∆

then (ϕ(d1), · · · , ϕ(dk)) ∈ RΓ.

Example 1.35. Consider ∆ = K3,3, the complete bipartite graph on 3 and 3 vertices, with its

independent sets of vertices labelled {a1, a2, a3}, {b1, b2, b3} respectively, and Γ = K2, a single

edge, with vertices labelled x, y. Then the function ϕ : ∆ → Γ, with ϕ(ai) = x, ϕ(bj) = y

for all i, j ∈ [3], is a homomorphism.

Example 1.36. Let G be a graph and Kn be the complete graph on n vertices. A homomor-

phism from G to Kn will produce a colouring of G with n colours by using a different colour

for the pre-image of each vertex of Kn. Additionally, every colouring of G with n vertices

gives a homomorphism from G to Kn by identifying each colour with a vertex of Kn and

mapping every vertex of G coloured with that colour to the associated vertex of Kn. We see

that there is a homomorphism from G to Kn if and only if G can be coloured with n colours.

This gives us a way to define the chromatic number of a graph using homomorphisms: the

graph G has chromatic number n if there is a homomorphism from G to Kn, but there is no

homomorphism from G to Kn−1.

Definition 1.37. An isomorphism is a bijective homomorphism ϕ such that ϕ−1 is also a

homomorphism. A homomorphism ϕ : ∆→ ∆ is called an endomorphism. An automor-

phism is an endomorphism that is an isomorphism.

Let ∆ be a relational structure and f : ∆→ ∆ a bijective endomorphism of ∆. Since ∆

is finite, f must be a permutation of the elements of ∆ and so fn = f ◦ · · · ◦ f will be the

identity operation for some n. Therefore f is an isomorphism.

Example 1.38. Let Kn be the complete graph with vertices u1, · · · , un. Any permutation

σ : [n] → [n] gives an isomorphism fσ of Kn by fσ(ui) = uσ(i). Let K̄n be the empty graph

12

a

b c

d

G

u

v w

K3

Figure 1.7: A graph G with core K3.

on the vertices v1, · · · , vn. The homomorphism g : K̄n → K̄n given by g(vi) = v1 is an

endomorphism, but not an automorphism (since g is not bijective).

Definition 1.39. Two structures ∆ and Γ are homomorphically equivalent if there exist

homomorphisms ϕ1 : ∆→ Γ and ϕ2 : Γ→ ∆.

Definition 1.40. A finite structure ∆′ is a core if every endomorphism ϕ : ∆′ → ∆′ is an

automorphism.

Example 1.41. The complete graph Kn is a core. To see this, note that any endomorphism

ϕ : Kn → Kn must be injective, since there is an edge between every pair of vertices of Kn.

Any injective endomorphism of a finite structure is also surjective, so it is an automorphism.

Definition 1.42. Given a finite τ -structure ∆, a τ -structure ∆′ is a core of ∆ if ∆′ is a

core and ∆′ is homomorphically equivalent to ∆.

Example 1.43. Consider the graph G illustrated in Figure 1.7. Note that there is a homo-

morphism from G to K3 obtained by mapping the vertices a, d to the same vertex in K3,

and there is a natural inclusion from K3 to G. Therefore G and K3 are homomorphically

equivalent. Since K3 is a core, K3 is a core of G.

We can verify that every finite τ -structure ∆ has a core. If every endomorphism of ∆ is

an automorphism, then ∆ is a core. Otherwise, there is an endomorphism f : ∆ → ∆ that

is not surjective. Let ∆1 be the induced substructure of ∆ whose domain is the image of

13

f . Then ∆1 is homomorphically equivalent to ∆. If ∆1 is not a core, then we repeat this

process until we find a core ∆n (this will always happen since ∆ is finite and one-element

structures are cores.) Since ∆n is also homomorphically equivalent to ∆, ∆n is the core of

∆. Note that the core of ∆ is unique up to isomorphism.

1.5 Polymorphisms and algebra

Given an operation f : Dn → D and k-tuples r̄1, r̄2, · · · , r̄n ∈ Dk, where r̄i = (ri,1, · · · , ri,k),

we denote by f (k)(r̄1, · · · , r̄n) the k-tuple

(f(r1,1, r2,1, · · · , rn,1), · · · , f(r1,k, r2,k, .., rn,k)).

Definition 1.44. An operation f : ∆n → ∆ is a polymorphism if, for all R ∈ ∆ (of arity

k), the following is true: if r̄1, · · · , r̄n ∈ R, then f (k)(r̄1, · · · , r̄n) ∈ R.

Example 1.45. Let ∆ = ~Lm (~Lm = ({v1, · · · , vm}; {(vi, vj)|i < j}), see Example 1.17) and

let f : ∆n → ∆ be defined by f(x1, · · · , xn) = ud where d = min {i | ui ∈ {x1, · · · , xn}}.

In other words, f(x1, · · · , xn) is the minimum of {x1, · · · , xn} with respect to the order-

ing u1 < · · · < um. Then f is a polymorphism. To see this, suppose we have tuples

r1 = (x1, y1), · · · ., rn = (xn, yn) ∈ E; i.e. x1 � y1, · · · , xn � yn. We need to prove that

f (2)(r1, · · · , rn) ∈ E; i.e. f(x1, · · · , xn) � f(y1, · · · , yn). If f(x1, · · · , xn) = ud = xi for some

i and f(y1, · · · , yn) = ue = yj for some j, then d ≤ d′ where ud′ = xj, and d′ < e, since

xj � yj. Therefore d < e and so ud � ue, as needed.

Polymorphisms can be composed in the following way: if f : Dn → D, and g1, · · · , gn :

Dk → D are polymorphisms of ∆, then f(g1, · · · , gk) : Dk → D is given by

f(g1, · · · , gk)(x̄) = f(g1(x̄), · · · , gn(x̄)).

We denote the class of polymorphisms of ∆ by Pol(∆).

14

Definition 1.46. An operation π : Dn → D is a projection if there exists i ∈ [n] such that

π(x1, · · · , xn) = xi for all x1, · · · , xn ∈ D.

The set of polymorphisms of ∆ contains all projections of ∆ and is closed under compo-

sition. We call a set with these properties a clone.

Definition 1.47. An algebra is an ordered pair A = (A;F), where A is a non-empty set

and F is a family of finitary operations on A. The set A is called the universe of A.

Definition 1.48. A first-order formula ψ over τ is primitive positive if it is of the form

ψ(x̄) = (∃ȳ)(φ1(x̄, ȳ) ∧ · · · ∧ φl(x̄, ȳ)),

where the formulas φi are atomic; that is, they are of the form “R(z1, · · · , zk)” for some

R ∈ τ , or of the form “z1 = z2”. We call ψ a pp-formula.

1.6 Constraint Satisfaction Problems

Definition 1.49. Given a τ−structure ∆, the Constraint Satisfaction Problem (or

CSP) associated with ∆ is the following decision problem: given a finite τ−structure S, is

there a homomorphism f : S → ∆? The structure ∆ is called the template of the CSP ,

while S is an instance of it.

Example 1.50. Let ∆ = K2, the graph consisting of two vertices joined by an edge. Then

CSP(∆) is the following decision problem: given a finite graph G, is there a homomorphism

from G to ∆? Suppose there exists a homomorphism f . Then, the pre-image of each vertex

of ∆ under f must be an independent set, since otherwise the edge relation would not be

preserved. Therefore, the vertices of G form two independent sets, with no restrictions

15

between vertices from different sets. We see that there is a homomorphism between G and

∆ if and only if G is bipartite.

1.7 Computational complexity

When studying CSPs, we are interested in their complexity; that is, how fast we can answer

the decision problem. Given an instance S of CSP(∆), we think of its size as the number of

elements of S plus the number of tuples in its relations.

We refer the reader to [1] and [38] for an introduction to computational complexity and

complexity classes. We will give informal explanations for the complexity classes to which

we will most commonly refer.

Definition 1.51. A decision problem Π of size n is in P if it can be solved by an algorithm

that needs at most Q(n) steps, for some polynomial Q. In this case we say that Π is

tractable.

Example 1.52. The problem of deciding whether a graph G = (V ;E) is triangle-free is in

P, since it is sufficient to check if every 3-element subset of V forms a triangle. This can be

done within Q(n) steps, where Q is a polynomial of degree 3 and n is the size of G.

Example 1.53. The problem CSP(K2) described in Example 1.50 is tractable, since it is

equivalent to deciding whether there is an odd cycle in a given graph G, which is well-known

to be a tractable problem.

Definition 1.54. A decision problem of size n is in NP if any YES instance to it can be

verified within Q(n) steps, for some polynomial Q. In particular, decision problems in P are

also in NP.

Example 1.55. The problem of deciding whether the vertices of a graph G = (V ;E) can

be coloured using 3 colours is in NP, since to check whether a given colouring of G with 3

colours is valid it is sufficient to check that every edge of G has vertices of different colours.

16

This can be done within Q(n) steps, where Q is a polynomial of degree 2 and n is the size

of G.

Definition 1.56. A decision problem Π is NP-complete when it is in NP and it is at

least as hard as any other problem in NP. That is, given a problem Σ in NP, there is a

polynomial-time reduction from Π to Σ.

Example 1.57. The problem of deciding whether the vertex of a graph G = (V ;E) can

be coloured using n colours is NP-complete for every n > 2. Note that this problem is

equivalent to CSP(Kn).

1.8 Datalog and bounded width

Datalog is the language of logic programs without function symbols. A datalog program is

a finite set of rules of the form

R0(x0
1, · · · , x0

`) : −R1(x1
1, · · · , x1

k1
), · · · , Rr(x

r
1, · · · , xrkr).

The relation tuple R0(x0
1, · · · , x0

`) is the head of the rule, while the tuples R1(x1
1, · · · , x1

k1
),

· · · , Rr(x
r
1, · · · , xrkr) make the body of the rule. The relation symbols that only appear in

the body of the rules are called EDBs (extensional databases), and the rest of the symbols

are called IDBs (intentional databases).

Let ∆ = (D;R) and π be a datalog program with IDBs P1, · · · , Pm and EDBsR1, · · · , Rn ∈

R. An evaluation of π on ∆ creates a new structure ∆′ in steps i = 0, 1, · · · according to

the rules of the program, in the following way: on step 0, we start with a structure ∆(0)

with domain D(0) = D and relations R
(0)
j = Ri, 1 ≤ j ≤ n and P

(0)
k = ∅, 1 ≤ k ≤ m. The

domain and EDBs will not change during the evaluation of the program (i.e. D(i) = D and

R
(i)
j = Rj for all i, j). On step i > 0, a structure ∆i is created from ∆i−1 by adding tuples

to each P
(i−1)
k in the following way. For each rule of π

17

R0(x0
1, · · · , x0

`) : −R1(x1
1, · · · , x1

k1
), · · · , Rr(x

r
1, · · · , xrkr),

if R
(i−1)
1 (y1

1, · · · , y1
k1

), · · · , R(i−1)
r (yr1, · · · , yrkr) hold in ∆i−1, then we add the tuple (y0

1, · · · , y0
`)

to R
(i)
0 , where y0

p = yjq if and only if x0
p = yjq . The step ends when no new tuples can be added

this way for any rule. The evaluation ends when ∆(j) = ∆(j−1), in which case ∆′ = ∆(j).

In Datalog programs associated with CSP problems, we have a distinguished 0-arity

relation FALSE.

Definition 1.58. A Datalog program π solves CSP(∆) if FALSE is derived for an instance

S if and only if there is no homomorphism from S to ∆.

Example 1.59. An example of a Datalog program π is the following:

oddpath(x, y) : −E(x, y)

twopath(x, y) : −E(x, z), E(z, y)

oddpath(x, y) : −oddpath(x, z), twopath(z, y)

FALSE : −oddpath(x, x)

This program takes as input a graph G with a set of edges E and decides whether an odd

cycle exists in the following way: the first rule instructs that every edge from G is an odd

path, the second rule instructs that adding two adjacent edges from G forms a 2-path, and

the third rule instructs that odd paths are obtained by combining a (previously obtained)

odd path with an adjacent 2-path. Finally, FALSE is derived if an odd cycle exists.

Definition 1.60. A datalog program has width (l, k) if every IDB is at most l-ary, and if

every rule contains at most k different variables. A τ -structure ∆ has width (`, k) if there

exists an (`, k)-Datalog program that solves CSP(∆). We say ∆ has width ` if it has width

(`, k) for some k. We say ∆ has bounded width if it has width ` for some finite `.

18

Note that every Datalog program has a finite number of variables in its rules, so it has

width (l, k) for some l, k. Therefore a structure ∆ has bounded width if there is a Datalog

program that solves CSP(∆).

Example 1.61. Consider the program π from Example 1.59:

oddpath(x, y) : −E(x, y)

twopath(x, y) : −E(x, z), E(z, y)

oddpath(x, y) : −oddpath(x, z), twopath(z, y)

FALSE : −oddpath(x, x)

This Datalog program has width (2,3) since every IDB has arity at most 2, and there are

at most 3 different variables per rule. It derives FALSE precisely when an odd cycle exists.

This program solves CSP(K2) (where K2 is a graph with two vertices and an edge connecting

them). This is because for every instance S of CSP(K2), there is an homomorphism from S

to K2 if and only if S is bipartite, which is the case if and only if S does not have an odd

cycle in it. Therefore π derives FALSE on S if and only if there is no homomorphism from S

to K2. Since π has width (2,3), we have that K2 has width (2,3) and so has bounded width.

19

Chapter 2

Constraint Satisfaction Problems

We are interested in studying the computational complexity of CSPs. One of the central

problems in the study of the complexity of CSPs with finite templates is the Dichotomy

Conjecture posed by Feder and Vardi in their seminal paper [18] in 1999:

Conjecture 2.1 (Dichotomy Conjecture). Given a finite relational structure ∆, CSP(∆) is

either in P or NP-complete.

Note that for any finite structure ∆, CSP(∆) is in NP, so if P = NP then the conjecture

is true. On the other hand, it was shown in [30] that if P 6=NP, then there are infinitely many

complexity classes between P and NP. The dichotomy conjecture has been proved for special

classes of structures, but remains unanswered in the general case. In this thesis, we will

focus on a different class of tractable problems: those with bounded width. In this section,

we look at algebraic properties of structures that affect the complexity of their CSP, and

in particular which of these properties can be used to determine whether a structure has

bounded width.

20

2.1 Positive primitive-definable relations

Let ∆ be a τ -structure and ψ(x̄) = (∃ȳ)(φ1(x̄, ȳ) ∧ ... ∧ φr(x̄, ȳ)) be a pp-formula over τ ,

where x̄ = (x1, ..., xk) and ȳ = (y1, ..., y`). Then ψ defines a k-ary relation Rψ on ∆, where

Rψ = {x̄ ∈ Dk|∆ |= ψ(x̄)}. We say that Rψ is pp-definable from ∆.

Note that in general adding relations to a structure will make its CSP at least as hard.

If ∆ = (D;R) and ∆′ = (D;R′), with R ⊆ R′, then every instance S of CSP(∆) can be

viewed as an instance of CSP(∆′) by interpreting R = ∅ for R ∈ R′ \ R, and so CSP(∆)

can be reduced to CSP(∆′). However, adding pp-definable relations to a structure does not

increase the complexity of its CSP, as the following theorem shows.

Theorem 2.2 (Folklore). Let ψ be a pp-formula and Rψ be defined by ψ on ∆ = {D;R1, ..., Rn},

and let ∆′ = {D;R1, ..., Rn, Rψ}. Then CSP (∆′) can be reduced to CSP (∆) in polynomial

time.

Proof. Suppose ψ(x̄) = (∃ȳ)(φ1(x̄, ȳ)∧...∧φr(x̄, ȳ)), where x̄ = (x1, ..., xk) and ȳ = (y1, ..., y`).

Let S ′ = {S ′;R1, ..., Rn, Rψ} be an instance of CSP (∆′). We construct an instance

S = {S;R1, ..., Rn} of CSP (∆) in the following way:

the set S is obtained from S ′ by adding dummy variables y1, ..., y` for each x̄ ∈ Rψ; that

is,

S = S ′
⋃

x̄i∈Rψ

{yi,1, ..., yi,`}.

Then, each Ri
S is obtained from Ri

S′ by adding for each φi(x̄, ȳ) (which is of the form

Rj(z1, ..., zkj) for some j) the tuple (z1, ..., zkj); that is,

Ri
S = Ri

S′ ∪
{

(z1, ..., zkj)
∣∣ φi(x̄, ȳ) = Rj(z1, ..., zkj) for some i, j

}
.

Then there exists a homomorphism f : S → ∆ if and only if there exists a homomorphism

f ′ : S ′ → ∆. To see this, suppose that f : S → ∆ is a homomorphism. Let f ′ : S ′ → ∆

21

be given by f ′ = f |S′ . Then f ′ preserves every Ri
S′ , since Ri

S′ = Ri
S ∩ Ski . For every

x̄ ∈ Rψ, we have that ψ(f (k)(x̄)) is satisfied in ∆, since every φj(f
(k)(x̄), f (`)(ȳ)) is satisfied.

Therefore ∆ |= ψ(f (k)(x̄)) and so f ′(x̄) = f(x̄) ∈ Rψ
∆.

We are left with verifying that if there is a homomorphism f ′ : S ′ → ∆′ then there is

also a homomorphism f : S → ∆. Create f as an extension of f ′ in the following way: for

every dummy tuple ȳ ∈ Sl defined from a tuple x̄ ∈ Rψ, we have that f ′(k)(x̄) ∈ Rψ (since

f ′ preserves Rψ), so there exists ȳ′ = (y1
′, .., y`

′) that witnesses ∆ |= ψ(f (k)(x̄)). Letting

f(yi) = yi
′ gives us the desired extension.

2.2 Polymorphisms and algebras

Let 〈∆〉pp be the relational structure with same the domain as ∆ containing all the relations

that are pp-definable from ∆. Given a set A of (finitary) operations of ∆, let Inv(A) denote

the relational structure with the same domain as ∆ whose relations are precisely those

preserved by all the operations in A. The following theorem shows that pp-definable relations

are closely related to polymorphisms.

Theorem 2.3. [19] Let ∆ be a finite relational structure. Then

〈∆〉pp = Inv(Pol(∆)).

The clone of polymorphisms of a structure seems to be the appropriate algebraic object

to analyze when studying CSPs. The complexity of CSPs is determined by the structure

of this clone, and many conclusions can be drawn when certain types of polymorphisms are

present in this clone. For example, a Mal’tsev operation is a 3-ary operation f : D3 → D

satisfying

f(x, y, y) = f(y, y, x) = x for all x, y ∈ D.

22

Theorem 2.4. [11] Let ∆ be a finite structure. If Pol(∆) contains a Mal’tsev operation,

then CSP(∆) is tractable.

Theorem 2.4 shows that the presence of a Mal’tsev polymorphism guarantees a tractable

CSP, and provides a way to check that a given structure has a CSP in P.

Example 2.5. Let ∆ = ({0, 1};R), where R = {(0, 1), (1, 0)}; that is, (x, y) ∈ R if and

only if x = 1− y. Let f : ∆3 → ∆ be defined by f(x, y, z) = x⊕ y ⊕ z where ⊕ represents

XOR addition (i.e. 0⊕ 0 = 1⊕ 1 = 0, 0⊕ 1 = 1⊕ 0 = 1). Since f(x, y, y) = x⊕ y ⊕ y = y

and f(y, y, x) = y ⊕ y ⊕ x = x, we have that f is a Mal’tsev operation. To see that f is a

polymorphism, suppose that (x1, x2), (y1, y2), (z1, z2) ∈ R. Then x2 = 1−x1, y2 = 1−y1, z2 =

1− z1, and so

f(x2, y2, z2) = (1− x1)⊕ (1− y1)⊕ (1− z1) = 1− (x1 ⊕ y1 ⊕ z1) = 1− f(x1, y1, z1).

Therefore (f(x1, y1, z1), f(x2, y2, z2)) ∈ R.

A similar property is known for majority operations. An operation f : D3 → D is a

majority operation if it satisfies

f(x, x, y) = f(x, y, x) = f(y, x, x) = x for all x, y ∈ D.

Theorem 2.6. [26] Let ∆ be a finite structure. If Pol(∆) contains a majority operation,

then CSP(∆) is tractable.

Theorem 2.6 gives us a similar tool to determine that a given structure has a tractable

CSP, by looking for a different arity 3 polymorphism.

Example 2.7. Let ∆ = ({0, 1};R), where R = {(0, 1), (1, 0)}. Let f : ∆3 → ∆ be defined by

f(x1, x2, x3) = maxi<j{min{xi, xj}}. Then we see that f(x, x, y) = max{x,min{x, y}} = x.

Similarly, f(x, y, x) = f(x, x, y) = x, therefore f is a majority operation. To see that f

23

is a polymorphism, suppose that (x1, x2), (y1, y2), (z1, z2) ∈ R. Since ∆ only contains two

elements, at least two of x1, x2, x3 are equal, and at least two of y1, y2, y3 are equal. Since f

is a majority operation, we have that there exists 1 ≤ i ≤ 3 such that f(x1, x2, x3) = xi and

f(y1, y2, y3) = yi. Since (xi, yi) ∈ R, we have that (f(x1, x2, x3), f(y1, y2, y3)) ∈ R.

Given an algebra A = (A;F) we say that F is tractable (NP-complete) if (A; Inv(F)) has

a tractable (NP-complete) CSP. Similarly, we say that A is tractable (NP-complete) if F is

tractable (NP-complete).

The set Pol(Inv(F)) consists of all operations that can be obtained from compositions of

operations in F and projections. If f ∈ Pol(Inv(F)), we say f is a term operation of A.

Definition 2.8. An operation f : Dn → D is idempotent if

f(x, ..., x) = x for all x ∈ D.

Definition 2.9. The full idempotent reduct of A = (A;F) is the algebra A0 = (A; Termid(A)),

where Termid(A) consists of all idempotent term operations of A.

Theorem 2.10. [12] A finite surjective algebra A is tractable (or NP-complete) if and only

if its full idempotent reduct A0 is tractable (or NP-complete).

Theorem 2.10 shows us how it suffices to study the idempotent polymorphisms when

analyzing the polymorphism clone of a structure. We are in particular interested in studying

weak near-unanimity (WNU) operations.

Definition 2.11. Let n > 1. An operation f : Dn → D is a weak near-unanimity

operation if it is idempotent and satisfies

f(x, ..., x, y) = f(x, ..., x, y, x) = ... = f(y, x, ..., x) for all x, y ∈ D.

Note that a majority operation is a particular case of a WNU operation.

24

Studying the presence of WNU operations in the polymorphism clone of a structure ∆

can help analyze the complexity of CSP(∆), thanks to the following theorems.

Theorem 2.12. [12] If a τ -structure ∆ has no WNU operation, then CSP(∆) is NP-

complete.

Theorem 2.13. [5] A core ∆ has bounded width if and only if it has WNU polymorphisms

of all but finitely many arities.

The algebraic dichotomy conjecture refines the dichotomy conjecture, tying it to the

presence of a WNU operation in the polymorphism clone.

Conjecture 2.14 (Algebraic Dichotomy Conjecture [12]). Let ∆ be a finite core. If ∆ has

a WNU polymorphism, then CSP(∆) is solvable in polynomial time. Otherwise, CSP(∆) is

NP-complete.

While Conjecture 2.14 only refers to cores, this is sufficient to establish a dichotomy on

every finite structure, since every finite structure ∆ has a core ∆′ with an equivalent CSP,

in the sense that every instance of CSP(∆) is also an instance of CSP(∆′) with the same

answer.

Hence we have a tool for determining the complexity of a CSP by analyzing the presence

of WNU operations: if no WNU operation exists, the CSP is NP-complete. If there are

WNU operation of all but finitely many arities, then the CSP has bounded width. Proving

the Algebraic Dichotomy Conjecture would give a way to study structures in between these

two cases, since the existence of a WNU operation would imply that the CSP is in P.

Example 2.15. Let ∆ = ({0, 1}; {(0, 1), (1, 0)}) (hence ∆ is isomorphic to K2). Then ∆

does not have any binary WNU polymorphism, since for any binary polymorphism f ,

(f(0, 1), f(1, 0)) ∈ {(0, 1), (1, 0)},

25

and so f(0, 1) 6= f(1, 0). If f is a WNU operation, then it must satisfy f(0, 1) = f(1, 0),

which is impossible. However, for arity n > 2, the set of n-tuples {(0, ..., 0, 1),, (1, 0, ..., 0)}

and {(1, ..., 1, 0), ..., (0, 1, ..., 1)} are disjoint, so there exists an idempotent polymorphism f

that satisfies

f(x, ..., x, y) = ... = f(y, x, ..., x) for all x, y ∈ {0, 1}

Since ∆ has WNU polymorphisms of all but one arity, we can conclude from Theorem 2.13

that ∆ has bounded width.

We can also test for bounded width on structures with the following class of operations:

Definition 2.16. Let n > 1. An operation f : Dn → D is a near-unanimity operation

if it satisfies

f(x, ..., x, y) = f(x, ..., x, y, x) = ... = f(y, x, ..., x) = x for all x, y ∈ D.

Note that near-unanimity (NU) polymorphisms are a type of WNU polymorphisms.

Theorem 2.17 (Folklore). Let ∆ = (D;R1, ..., Rn) be a finite structure that is a core, and

let f : ∆k → ∆ be a NU polymorphism. Then ∆ has bounded width.

Proof. We will show that, given an m-ary NU polymorphism, we can create an (m+ 1)-ary

NU polymorphism, thus guaranteeing that ∆ has bounded width from Theorem 2.13.

Let g : ∆m → ∆ be a NU polymorphism. Let g′ : ∆m+1 → ∆ be defined by

g′(x1, ..., xm, xm+1) = g(x1, ..., xm).

Then g′ is a NU operation, since if at least m of x1, ..., xm+1 are equal to x, then at least

m−1 of x1, ..., xm are equal to x, and g is a NU operation. To see that g′ preserves relations,

let R be a relation of ∆ with arity r, and let

(x1,1, ..., x1,r), ..., (xm,1, ..., xm,r), (xm+1,1, ..., xm+1,r) ∈ R.

26

Then, since (x1,1, ..., x1,r), ..., (xm,1, ..., xm,r) ∈ R, we have that

(g(x1,1, ..., xm,1), ..., g(x1,r, ..., xm,r)) ∈ R.

Therefore

(g′(x1,1, ..., xm+1,1), ..., g′(x1,r, ..., xm+1,r)) ∈ R,

and the proof follows.

2.2.1 Conservative Weak Near-Unanimity polymorphisms

We can refine Theorem 2.13 if we look for WNU polymorphisms that also preserve sets. We

define this explicitly:

Definition 2.18. [9] Let ∆ be a relational structure. A WNU polymorphism f : ∆k → ∆

is conservative if

f(x1, ..., xk) ∈ {x1, ..., xk} for every x1, ..., xk ∈ ∆.

By looking for conservative WNU polymorphisms, we can work with any structure (not

necessarily a core). This is in part due to the following result:

Lemma 2.19. Let ∆′ be an induced substructure of ∆. If ∆ has a conservative WNU

polymorphism of arity k, then ∆′ has a conservative WNU polymorphism of arity k as well.

Proof. Let f : ∆k → ∆ be a conservative WNU polymorphism of ∆. Define f ′ : ∆′k → ∆′

by f ′(x1, · · · , xk) = f(x1, · · · , xk) (this is well defined since f is conservative). Then, since f

is a conservative WNU polymorphism, f ′ is idempotent, and satisfies f ′(x, · · · , x, y) = · · · =

f ′(y, x, · · · , x) for all x, y ∈ ∆′, as well as f ′(x1, · · · , xk) ∈ {x1, · · · , xk} for all x1, · · · , xk ∈

∆′. Therefore f ′ is a conservative WNU polymorphism of ∆′.

27

From a conservative WNU polymorphism of arity 2 we can build a sequence of conser-

vative WNU polymorphisms of arities k ≥ 2. Let f2 : ∆2 → ∆ be a conservative WNU of

∆. Note that, since f2 is conservative,

f2(x, f2(x, y)) = f2(x, y).

Let fk : ∆k → ∆ be defined recursively by

fk(x1, · · · , xk) = f2(fk−1(x1, · · · , xk−1), xk) for k > 2.

Note that fk is idempotent for any k ≥ 2, and so

fk(x, · · · , x, y) = f2(x, y) for all x, y ∈ G.

Additionally, every fk with k ≥ 2 has the WNU property. We can prove this by induction.

We have already seen that f2 has the WNU property. Assume that fk−1 has the WNU

property for some k > 2. We will prove that

fk(y, x, · · · , x) = fk(x, y, x, · · · , x) = · · · = fk(x, · · · , x, y, x).

Since fk−1 has the WNU property, we have fk(y, x, · · · , x) = · · · = fk(x., · · · , x, y, x)

(from the definition of fk). Furthermore,

28

fk(x, · · · , x, y) = f2(x, y),

fk(y, x, · · · , x) = f2(fk−1(y, x, · · · , x), x)

= f2(fk−1(x, · · · , x, y), x)

= f2(f2(x, y), x)

= f2(x, y)

Therefore fk has the WNU property.

We see that ∆ has a sequence of (conservative) WNU polymorphisms of arity k for k ≥ 2.

We summarize these results in the following theorem:

Theorem 2.20. Let ∆ be a relational structure with a conservative WNU polymorphism of

arity 2. Then ∆ has bounded width.

Proof. From the previous construction, we see that ∆ has conservative WNU polymorphisms

of arity k for every k ≥ 2. Therefore, from Lemma 2.19, the core ∆′ of ∆ has conservative

WNU polymorphisms of arity k for every k ≥ 2. Therefore ∆′ has bounded width. Since ∆

and ∆′ are homomorphically equivalent, we have that ∆ has bounded width.

Corollary 2.21. Let ∆ be a structure and g : ∆n → ∆ a conservative WNU polymorphism

of ∆ such that

g(x, · · · , x, y) = g(y, · · · , y, x) for all x, y ∈ ∆.

Then ∆ has bounded width.

Proof. We can define f2 : ∆2 → ∆ by f2(x, y) = g(x, · · · , x, y). Then f2 is idempotent

and conservative (since g is idempotent and conservative), and f2(x, y) = g(x, · · · , x, y) =

g(y, · · · , y, x) = f2(y, x). Therefore, f2 is a conservative WNU polymorphism of ∆. From

Theorem 2.20, ∆ has bounded width.

29

Theorem 2.20 does not necessarily characterize structures with bounded width, but gives

us a tool for finding structures with bounded width, even if the structure is not a core.

A special case of a conservative, binary WNU polymorphism is a conservative semilattice

polymorphism, which is also associative. The term semilattice comes from the fact that a

semilattice contains an operation with similar properties: it is idempotent, associative and

commutative.

Definition 2.22. Let ∆ be a relational structure. A binary polymorphism f : ∆2 → ∆ is

associative if it satisfies

f(x, f(y, z)) = f(f(x, y), z) for all x, y, z ∈ ∆.

Definition 2.23. [23] Let ∆ be a relational structure. A binary polymorphism f : ∆2 → ∆

is a semilattice polymorphism if f is a binary, associative WNU polymorphism.

Since conservative semilattice polymorphisms are binary conservative WNU polymor-

phisms, any directed graph G that admits a conservative semilattice polymorphism has

bounded width, due to Theorem 2.20. However, not every directed graph with bounded

width admits a conservative semilattice polymorphism. For example, the graph ~C3 (de-

scribed in Example 1.17) does not admit a conservative semilattice polymorphism, since any

semilattice polymorphism f : ~C2
3 → ~C3 must satisfy

f(v1, f(v2, v3)) = f(f(v1, v2), v3) = f(v3, f(v1, v2))

and

f(v3, f(v1, v2)) � f(v1, f(v2, v3)),

but this cannot happen since ~C3 has no loops. However, ~C3 has bounded width (see Corollary

4.9).

Hell and Rafiey gave a characterization of directed graphs that admit a conservative

30

semilattice polymorphism in [23]:

Definition 2.24. [23] Let C be a circle with two distinguished points, N and S, and let H

be a directed graph. Let {Iv}, v ∈ H and {Jv}, v ∈ H be two families of arcs of C such that

each Iv contains N but not S, and each Jv contains S but not N . We say the families {Iv}

and {Jv} are consistent if they have the same clockwise order of their clockwise ends; i.e.,

the clockwise end of Iv precedes in the clockwise order the clockwise end of Iw if and only if

the clockwise end of Jv precedes in the clockwise order the clockwise end of Jw.

Definition 2.25. [23] Let H be a directed graph. A bi-arc representation of H is a

consistent pair of families of circular arcs {Iv}, {Jv}, v ∈ H (as described in Definition 2.24)

such that u � v if and only if Iu and Jv are disjoint. A directed graph H is called a bi-arc

directed graph if it has a bi-arc representation.

Theorem 2.26. [23] The class of bi-arc directed graphs coincides with the class of directed

graphs that admit a conservative semilattice polymorphism.

We can redefine semilattice polymorphisms by replacing the associative property with a

transitive property.

Definition 2.27. Let ∆ be a relational structure. A binary polymorphism f : ∆2 → ∆

is a transitive polymorphism if f(x, y) = x and f(y, z) = y implies f(x, z) = x for all

x, y, z ∈ ∆.

A conservative, transitive WNU polymorphism f : ∆ → ∆ defines an order on ∆ by

making f(x, y) = min{x, y}. This was noted independently in [32]. This is well-defined

since f is conservative, transitive, idempotent, and has the WNU property.

Theorem 2.28. Let ∆ be a relational structure. A binary polymorphism f : ∆2 → ∆ is

a conservative semilattice polymorphism if and only if f is a conservative, transitive WNU

polymorphism.

31

Proof. First we prove that a semilattice polymorphism is transitive. Suppose that f is a

semilattice polymorphism, and suppose that f(x, y) = x, f(y, z) = y for some x, y, z ∈ ∆.

Then, since f is associative,

f(x, z) = f(f(x, y), z) = f(x, f(y, z)) = f(x, y) = x.

Therefore f is transitive. Now suppose that f is a conservative, transitive WNU polymor-

phism. To show that f is a semilattice polymorphism, we must show that f is associative.

Since f defined an order on ∆ by making f(x, y) = min{x, y}, we have that

f(f(x, y), z) = min{x, y, z}

and

f(x, f(y, z)) = min{x, y, z}.

Therefore f(x, (f(y, z))) = f(f(x, y), z) for all x, y, z ∈ ∆.

2.3 Bounded width

Structures with bounded width offer a computational advantage over other structures with

tractable CSPs. While there exist efficient algorithms for both types of structure that decide

whether a homomorphism from a given instance exists, in the case of a structure with

bounded width this algorithm is explicitly known. If there exists a Datalog program that

solves CSP(∆), then ∆ has bounded width, and CSP(∆) is in particular tractable. However,

it is not necessary to consider all Datalog programs. Instead, it is sufficient to consider the

Canonical Datalog program, defined in [18].

The Canonical (`, k)-Datalog program for ∆ infers all constraints on ` variables that can

be obtained from k variables. If the program can infer the empty relation FALSE from

an instance S, then the instance has no solution. It is called canonical since it derives

32

every constraint that a Datalog program with the same parameters could derive, and solves

CSP(∆) if any Datalog program with the same parameters does. This is shown in the

following theorem:

Theorem 2.29. [18] If there exists an (`, k)-Datalog program that solves CSP(∆), then the

Canonical (`, k)-Datalog program for ∆ solves it as well.

We are therefore interested in identifying which structures with tractable CSPs also have

bounded width and in finding classes of structures where a stronger CSP dichotomy exists.

We state this in the following question:

Question 2.30. For which classes C is the following dichotomy true: for every ∆ ∈ C, either

∆ has bounded width or CSP(∆) is NP-complete?

We will refer to a dichotomy described in Question 2.30 as a bounded width di-

chotomy.

Example 2.31. Hell and Nešetřil proved in [22] that simple graphs have an NP-complete

CSP if and only if they are non-bipartite. Otherwise, they have a tractable CSP. We have

seen in Example 1.61 that bipartite graphs have bounded width, since there is a Datalog

program that solves their CSP. Therefore, simple graphs have a bounded width dichotomy.

We will study classes of directed graphs that have a bounded width dichotomy in Chapter

4.

While the definition of bounded width relies on the existence of an appropriate Datalog

program, we have shown ways to characterize or test for bounded width (as well as other

complexity classes) through the presence of certain polymorphisms. We summarize these

results in Figure 2.1. The square boxes represent complexity classes, while the rounded

boxes represents the presence of a given type of operation in Pol(∆). Arrows represent

containment (e.g. if ∆ admits a majority polymorphism, then CSP(∆) is in P), while the

red arrow represents part of the Algebraic Dichotomy Conjecture that remains open.

33

Bounded Width

P

NP-Complete

Conservative
Semilattice

BCWNU

NU

WNU of arity
k ≥ N

Mal’tsev Majority WNU

No WNU

?

Figure 2.1: Relation between complexity classes and polymorphisms present in the structure.

34

Note that Theorem 3.2 does not hold for every structure ∆ with a tractable CSP. We

give an example:

Example 2.32. Consider the structure Linear Equations with domain F2, the two-element

field, and relations

δbā,n = {(x1, ..., xn) ∈ {0, 1}n|a1x1 + ...+ anxn = b}

for every n ∈ N, b, a1, ..., an ∈ {0, 1}, where ā = (a1, ..., an). An instance of this CSP is simply

a system of linear equations over F2, and the problem is equivalent to deciding whether the

system is consistent, which can be done in polynomial time in a number of different ways

(e.g. through Gaussian elimination).

However, for any k ∈ N, choose n > k and look at the instance given by the system


x1 + ...+ xn = 0

x1 + ...+ xn = 1

.

This system is clearly inconsistent, so there is no homomorphism to our structure ∆.

However, every assignment of k variables is trivially a partial homomorphism, since there

are no (non-empty) relations of arity at most k in our instance.

The structure Linear Equations has a tractable CSP, but it does not have bounded

width. Even though Linear Equations is not a finite structure since it has infinitely many

relations, there are finite structures that share this property of having a tractable CSP but

not bounded width. We give an example of this in 2.35.

One way to determine that a structure does not have bounded width is by showing it has

the ability to count.

Definition 2.33. [18] A τ -structure ∆ has the ability to count if the following conditions

hold:

35

1. There exist elements d0, d1 ∈ ∆ as well as a 3-ary relation C that contains the triples

(d0, d0, d1), (d0, d1, d0), (d1, d0, d0) and a unary relation Z that contains d0.

2. If an instance S of CSP(∆) contains only the relations C and Z, and all tuples from

these two relations can be partitioned into sets A and B such that A contains exactly

one more tuple of the relation C than B, and each element of S appears in exactly one

tuple from each set (or in none at all), then there is no homomorphism from S to ∆.

Theorem 2.34. [18] If a τ -structure ∆ has the ability to count, then it does not have bounded

width.

Example 2.35. Consider the structure Boolean Algebra, with domain {0, 1} and relations

representing the conjunction, disjunction and negation operations. We can think of these

relations as

∧ = {(x, y, z) ∈ {0, 1}3|x ∧ y = z},

∨ = {(x, y, z) ∈ {0, 1}3|x ∨ y = z},

¬ = {(x, y) ∈ {0, 1}2|x = ¬y}.

Then

f(x, y, z) = (¬y ∧ x) ∨ (¬y ∧ z) ∨ (x ∧ y ∧ z)

is a polymorphism that satisfies the Mal’tsev condition f(x, y, y) = f(y, x, x) = y. This

is because

f(x, y, y) = (¬y ∧ x) ∨ (x ∧ y) = x

and

36

f(y, y, x) = (¬y ∧ x) ∨ (y ∧ x) = x.

This implies that the CSP problem for Boolean Algebra is in P. We can define (in a

positive-primitive way) the following relations in this structure:

Z = {x ∈ {0, 1} | ∃y : x ∧ y = x, x = ¬y},

C = {(x, y, z) ∈ {0, 1}3 | ∃u, v : x ∨ y = u, u = ¬z, x ∧ y = v, z ∧ y = v, Z(v)}.

Note that this yields Z = {0} and C = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We can think of these

relations as x = 0 when x ∈ Z, and x+ y+ z = 1 when (x, y, z) ∈ C. Therefore, when given

an instance S of CSP(Boolean Algebra) that satisfies condition 2 of Definition 2.33, then

by subtracting the tuples (interpreted as equations) in set B from the ones in set A, we are

left with 0 = 1, which cannot be satisfied. Therefore there is no homomorphism from such

instance S to Boolean Algebra. We conclude that Boolean Algebra has the ability to

count.

While there exist examples of structures with a tractable CSP and without bounded

width, there are many classes of structures where this does not occur. We will study some

of these classes in Chapter 4.

37

Chapter 3

Pebble Games

In order to further analyze CSPs, certain homomorphism-building games can be studied.

The idea behind these games arises naturally when trying to construct a homomorphism

between two given structures. They are particularly interesting when no homomorphism

exists but some partial homomorphisms may be constructed.

3.1 k-Pebble games

In a k-pebble game, we have two players, Spoiler and Duplicator, who play on τ -structures

S and ∆. Spoiler has k striped pebbles, labelled 1 through k. Similarly, Duplicator has k

dotted pebbles, labelled 1 through k.

The game plays in rounds. In the first round, Spoiler starts by placing the striped pebbles

1, ..., k on elements s1
1, ..., s

1
k of S. Duplicator responds by placing the dotted pebbles 1, ..., k

on elements d1
1, ..., d

1
k of ∆, which represent the images of the respective elements chosen by

Spoiler under a partial homomorphism. In round j, Spoiler removes a striped pebble i from

sj−1
i and places it on a new element sji of S. Duplicator removes dotted pebble i from dj−1

i

and places it on a new element dji of ∆. If at any time the assignment sji 7→ dji , i = 1,, k is

not a partial homomorphism from S to ∆, Spoiler wins the game. If Duplicator can ensure

that Spoiler never wins, Duplicator wins the game.

38

We can assume that in the first round, Spoiler places the striped pebbles one at a time,

with Duplicator responding by placing the matching dotted pebble each time. This will not

affect winning strategies; only the number of rounds played might change.

We will study these games by fixing ∆ and then analyzing the game for different structures

S and values of k, in a similar way to how we analyze CSPs.

Note that if there is a homomorphism from S to ∆, Duplicator has a winning strategy, by

always playing according to that homomorphism. We are therefore interested in situations

where there is no homomorphism between S and ∆, and we are interested in finding which

player has a winning strategy.

3.2 The case Kn

We begin with the case ∆ = K2. We know that there is a homomorphism between S and

K2 if and only if S is bipartite, so Duplicator will have a winning strategy as long as S is

bipartite. Additionally, if k ≤ 2, Duplicator can also win by always placing different dotted

pebbles on different vertices of K2.

We will start by analyzing the case ∆ = K2 with S being an odd cycle and k = 3. If

S = C3 then spoiler can win in one round by placing a striped pebble on each vertex, since

there is no homomorphism from C3 to K2. Let S = C5, and label the vertices of C5 as

a, b, c, d, e in clockwise order. Label the vertices of K2 as x, y. Spoiler can start by playing

on a and then, regardless of Duplicator’s play (they are symmetric, so assume Duplicator

plays on x), by playing on c. If Duplicator plays on y, Spoiler can place the third striped

pebble on vertex b and win. If instead Duplicator places the second dotted pebble on x

(same as the first dotted pebble), Spoiler can then move on e, and so Duplicator must play

on y, since a and e are adjacent (see Figure 3.1). Then the round is over and Spoiler can

remove the first pebble (Duplicator must do the same) and place it on d. Duplicator loses

the game since the dotted pebble 2 is on x, the dotted pebble 3 is on y, and d is adjacent to

39

both c and e (see Figure 3.2).

f
-

(Partial homomorphism

matching pebbles)

Spoiler

i i
i ii Duplicator

i
i

S ∆

�
�
�

l
l

,
,

B
B
B

1
1

2

,2

3

3

Figure 3.1: Game state after the first round of play.

f -
(Partial homomorphism

matching pebbles)

Spoiler Duplicator

i i
i ii

i
i

S ∆

�
�
�

l
l

,
,

B
B
B

1

2

3

3

2

Figure 3.2: End of the game: Duplicator has no moves.

More generally, let S = Cn, with n odd. Label the vertices of Cn as a1, a2, ..., an in

clockwise order. Spoiler can start by playing on a1 and then on an+1
2

. Suppose again that

Duplicator starts by playing on x. This breaks Cn down into two paths (going clockwise

from a1 to an+1
2

and from an+1
2

to a1) of different parity, and so regardless of Duplicator’s

play, one of the two paths will not map homomorphically to K2 with the two assignments

chosen. Spoiler can then play in the midpoint of a path with no homomorphism. This again

breaks the path down into two smaller paths, one of which will not map homomorphically to

K2 with the assignments chosen (depending on where Duplicator plays). This way, Spoiler

can leave the two striped pebbles on the endpoints of the smaller path that does not map

to K2, and take the remaining striped pebble and place it on the midpoint of this path. As

40

before, this creates two smaller paths, one of which will not map homomorphically to K2.

By repeating this strategy, Spoiler can half the length of the path each round until the path

has length 3, and Duplicator has no available play and loses the game. By playing with this

“binary search” strategy, Spoiler can win in blog2(n)c rounds. We have included a program

in Appendix A that computes the number of rounds needed for Spoiler to win the 3-pebble

game on Cn and K2 for n < 14.

Note that if Spoiler has a winning strategy with k pebbles, then Spoiler will also have a

winning strategy with k + 1 pebbles. Indeed, if Spoiler has k ≥ 3 pebbles in the previous

example, Spoiler can perform k− 2 steps of the binary search each round, and so can win in

b log2(n)
k−2
c = blog2k−2(n)c rounds.

In general, if S is non-bipartite, it will have an odd cycle in it. In the 3-pebble game,

Spoiler can then play exclusively on the smallest odd cycle in S and win in the way described

above.

We have shown that if ∆ = K2 and k ≥ 3, then Duplicator wins the k-pebble game

between S and ∆ if and only if there is a homomorphism from S to ∆. This property does

not hold for Kn with n ≥ 3. If k > n, there exists S such that there is no homomorphism

from S to ∆, but Duplicator has a winning strategy. Note that if S is n-colourable, there is

a homomorphism from S to Kn.

Let k = n + 1. A suitable candidate for S is the Mycielski Mk graph of order k (see

1.2.1). It has chromatic number k (and so there is no homomorphism from Mk to Kk−1),

and it is triangle-free. Figure 3.3 shows the Mycielski graph of order 4. Does Duplicator

have a winning strategy for the k−pebble game from Mk to Kk−1?

For a given stage of play, let P be the set of vertices of Mk with pebbles on them, and

f : P → Kk−1 be the partial homomorphism associated with Duplicator’s play. Assume that

Spoiler plays on a vertex v ∈ Mk \ P , and for all w ∈ Kk−1 let fw : P ∪ {v} → Kk−1 be the

extension of f that maps v to w ∈ Kk−1.

41

Figure 3.3: The Mycielski graph of order 4, M4

Let ψ : Kk−1 → N be defined by

ψ(w) = max
u∈Mk

{|fw (N(u) ∩ (P ∪ {v})) |} .

The winning strategy for Duplicator is to choose w ∈ Kk−1 that minimizes ψ(w). In

other words, Duplicator is trying to minimize the images of sets of pebble vertices of S that

belong to the same neighbourhood. If we think of the partial homomorphism as a (partial) n-

colouring of S, Duplicator is trying to minimize the number of colours in each neighbourhood

of a vertex of S.

This way, for Spoiler to win, the last striped pebble must be placed on a vertex v that is

adjacent to k − 1 pebbles, each having a different colour. Duplicator would only choose the

last available colour for the last dotted pebble if any other choice would have not formed a

valid colouring. But N(v) is an independent set for each v ∈ Mk, so Spoiler would need an

additional n − 2 striped pebbles to force the last colour to be used in N(v). This requires

too many pebbles, since (k−1)+(k−2) > k when k > 3, so Spoiler does not have a winning

strategy, and therefore Duplicator does.

3.3 (`, k)-Pebble games

We can generalize k-pebble games by adding a variable ` < k that tells us how many striped

pebbles Spoiler must pick up every round.

42

The (`, k)-pebble game is played in rounds as well. In the first round, Spoiler places

k striped pebbles on elements s1
1, ..., s

1
k of S and Duplicator responds by placing dotted

pebbles 1, ..., k on elements d1
1, ..., d

1
k of ∆. In subsequent rounds, Spoiler picks up k − `

striped pebbles from S and places them on new elements, and Duplicator must respond by

picking up the corresponding dotted pebbles and placing them on elements of ∆. If at any

point the associated mapping is not a partial homomorphism, Spoiler wins. If Duplicator

can ensure that Spoiler never wins, then Duplicator wins. We can see that the k-pebble

game corresponds to the (k − 1, k)-pebble game under this definition.

We can think of a winning strategy for Duplicator as a family of partial homomorphisms

that corresponds to the partial assignments given by the choice of pebbles for each player,

with the property that Duplicator must always have a valid play. This is achieved in the

following way:

Definition 3.1. A winning strategy for Duplicator for the (`, k)-pebble game between

S and ∆ is a non-empty set H of partial homomorphisms from S to ∆ such that

• H is closed under restrictions of its members

• for all functions h ∈ ∆ with |dom(h)| = d ≤ ` and for all a1, ..., ak−d ∈ S there is an

extension h′ ∈ H of h that is defined on a1, ..., ak−d.

3.4 Pebble games and bounded width

We saw that for ∆ = K2, Duplicator always wins if k ≤ 2, while if k ≥ 3 Duplicator wins

if and only if S is bipartite; that is, if S maps to K2. However, for n > 2, when ∆ = Kn,

Duplicator will have a winning strategy for some S that do not map to ∆. What is the

difference between these cases? This question is answered by the following theorem:

Theorem 3.2. [28] Let ∆ be a τ -structure. There exists a (k − 1, k)-Datalog program that

solves CSP(∆) if and only if the following condition holds:

43

for every τ -structure S, if Duplicator wins the k-pebble game on S and ∆, then there is

a homomorphism from S to ∆.

Theorem 3.2 shows a connection between k-pebble games and structures that have a

CSP that is solved by a (k − 1, k)-Datalog program. There is also a connections between

(`, k)-pebble games and Canonical (`, k)-Datalog programs, shown in the following theorem:

Theorem 3.3. [18] The Canonical (`, k)-Datalog program for ∆ derives FALSE on S if and

only if Spoiler has a winning strategy for the associated (`, k)-pebble game.

We can think of winning strategies for Spoiler as a decision tree, and compare it to the

derivation tree of FALSE when running the Canonical Program on S. In this way it can

be shown that a winning decision tree exists for Spoiler precisely when FALSE can be derived.

Example 3.4. Suppose that S = C5 = ({a, b, c, d, e}; {(a, b), ..., (e, a)}) and ∆ = K2 =

({u, v}; {(u, v)}). We will give a (2, 3)-Datalog program that solves CSP(K2) and use it to

derive a winning strategy for Spoiler in the associated game.

Consider the following (2,3)-Datalog Program π (discussed in example 1.59):

oddpath(x, y) : −E(x, y) (3.1)

twopath(x, y) : −E(x, z), E(z, y) (3.2)

oddpath(x, y) : −oddpath(x, z), twopath(z, y) (3.3)

FALSE : −oddpath(x, x) (3.4)

When running π with C5 as an instance, we obtain the following relations in each rule:

3.1 oddpath = E(C5)

3.2 twopath = {(a, c), (b, d), ..., (e, b)}

3.3 oddpath = {a, b, c, d, e}2

44

3.4 FALSE.

When running π with K2 as an instance, we obtain instead:

3.1 oddpath = {(u, v)}

3.2 twopath = {(u, u), (v, v)}

3.3 oddpath = {(u, v)}.

In this case, FALSE is not derived on rule 3.4.

We can write a derivation tree of FALSE from running π on C5 by backtracking, say,

obtaining FALSE from oddpath(a, a)

E(a, b) E(b, c) E(c, d)

oddpath(a, b) twopath(b, d) E(d, e) E(e, a)

oddpath(a, d) twopath(d, a)

oddpath(a, a)

FALSE

3.1 3.2

3.3 3.2

3.3

3.4

Figure 3.4: Derivation tree of FALSE on π(C5)

We can use this derivation tree to construct a winning strategy for Spoiler. We will

traverse the tree from its root to one of its leaves. When moving from a node to its children,

Spoiler will place striped pebbles on the vertices of C5 associated with the body of that rule.

In the first turn, we move from FALSE to the tuple oddpath(a, a). In this case, Spoiler

needs to play on the vertex a (it is irrelevant what Spoiler does with the rest of the striped

45

pebbles). Then Duplicator must choose an image of a in K2, say u. Whatever Duplicator

chooses, it will create a tuple that is not in the associated relation in the derivation of π(K2).

In this case, the tuple (u, u) is not in oddpath. The next turn begins and Spoiler moves down

from oddpath(a, a) to its children. Since oddpath(a, a) is obtained from the rule

oddpath(a, a) : −oddpath(a, d), twopath(d, a),

Spoiler will keep the striped pebble on a and place a new striped pebble on d (again, the

third pebble is irrelevant this turn, since the rule only used two vertices). Then Duplicator

must either choose the assignment d 7→ u or d 7→ v. Each one creates a tuple that is not in

one of the associated relations in the derivation of π(K2). Suppose that Duplicator chooses

d 7→ v. Then we have that (a, d) ∈ twopath, but (u, v) 6∈ twopath in the associated relation.

Therefore Spoiler chooses to play on the node twopath(d, a). By going down to its children,

we have that twopath(d, a) is obtained from the rule

twopath(d, a) : −E(d, e), E(e, a).

Therefore Spoiler will keep the striped pebbles on d, a and place a striped pebble on e.

Now each possible assignment of e creates a tuple not in E, which is an original relation of

K2 and thus will make the assignment invalid. At this point Spoiler wins.

Theorems 3.2 and 3.3 give us another set of tools to determine if a structure has bounded

width, other than finding appropriate Datalog programs or looking for certain polymor-

phisms. We can also analyze the associated pebble games to determine if a structure has

bounded width. In Section 4.5 we give a proof that transitive directed graphs have bounded

width by analyzing the associated (1, 2)-pebble game.

46

Chapter 4

Directed Graphs

4.1 Reduction to directed graphs

Feder and Vardi [18] showed that every CSP is polynomial-time equivalent to the CSP of a

directed graph. Therefore the dichotomy conjecture can be reduced to the case of directed

graphs; that is, it is sufficient to show there is a dichotomy for directed graphs to prove the

general case.

Buĺın, Delic, Jackson and Niven [13] showed that the CSP of every structure ∆ is logspace

equivalent to the CSP of a directed graph D(∆), and gave an explicit construction for D(∆).

Moreover, this graph preserves many of the polymorphism properties of the original structure.

We introduce some definitions that will be used in the theorem:

Definition 4.1. [13] An operational signature is a set of operation symbols with associ-

ated arities.

Definition 4.2. [13] An identity is an expression of the form u ≈ v where u, v are terms

in some operational signature. An identity u ≈ v is linear if u and v involve at most one

occurrence of an operational symbol. An identity u ≈ v is balanced if the sets of variables

occurring in u and v are the same.

47

Example 4.3. [13] The identities f(x, y) ≈ g(x), h(x, y, z) ≈ x are linear. The identity

f(x, x, y) ≈ g(y, x, x) is balanced.

Definition 4.4. [13] A set of identities Σ is linear if it contains only linear identities;

balanced if all the identities in Σ are balanced; and idempotent if for each operation

symbol f appearing in an identity of Σ, the identity f(x, ..., x) ≈ x is in Σ.

Definition 4.5. [13] Let Σ be a set of identities in a signature with operation symbols

F = {fλ|λ ∈ Λ}. We say that a relational structure A satisfies Σ (and write A |= Σ) if

for every λ ∈ Λ there is a polymorphism fA
λ ∈ Pol(A) such that the identities in Σ hold

universally in A when for each λ ∈ Λ the symbol fλ is interpreted as fA
λ .

We can now state the theorem from [13].

Theorem 4.6. [13] For every relational structure ∆ there exists a directed graph D(∆) such

that the following hold:

1. CSP(∆) and CSP(D(∆)) are logspace equivalent.

2. ∆ is a core if and only if D(∆) is a core.

3. If Σ is a linear idempotent set of identities such that the algebra of polymorphisms of Z

satisfies Σ and each identity in Σ is either balanced or contains at most two variables,

then

∆ |= Σ if and only if D(∆) |= Σ

where Z is the directed path a � b � c � d.

In particular, if ∆ is a core and has bounded width, then D(∆) has bounded width.

Theorem 4.6 shows that it is sufficient to analyze the CSP of directed graphs when

analyzing the CSP of finite structures, since for every finite structure there is a directed

graph with an equivalent CSP. Moreover, understanding which classes of directed graphs

48

have a bounded width dichotomy will help us understand which classes of structures also

have a bounded width dichotomy. We are thus interested in studying the CSP of finite

directed graphs and understanding which directed graphs have bounded width.

4.2 Directed cycles

We start by analyzing a simple class of directed graphs to give an illustrative example and

a simple result that we will use in Section 4.4.

Example 4.7. The directed cycle ~C2 has vertices v1, v2 and edges v1 � v2, v2 � v1. We

illustrate this by drawing an undirected edge between the vertices. Note that ~C2 is not

simple, while ~Cn is simple for n > 2.

~C2
~C3

~C4

Figure 4.1: The directed cycles ~C2, ~C3, ~C4.

Note that there exists a homomorphism from ~Cm to ~Cn if and only if m is a multiple of

n. We can use this to give the following useful result. This was independently found in [32].

Lemma 4.8. A directed cycle ~Cn has a WNU polymorphism of arity k for every k ≥ 3.

Proof. Let k ≥ 3 and consider ~Cn
k
, which has elements of the form (v1, · · · , vk) for v1, · · · vk ∈

~Cn and edges (u1, · · · , uk) � (v1, · · · , vk) whenever ui � vi for every 1 ≤ i ≤ k. Every element

v̄ ∈ ~Cn
k

has exactly one incoming edge and one outgoing edge, where v̄ = (v1, ..., vk) has an

edge to ū = (u1, ..., uk) if vi � ui for every i. Notice that v̄ belongs to a cycle, since following

the outgoing edges from v̄ will get us back to v̄ after n steps. Therefore ~Cn
k

is the disjoint

union of directed cycles with n elements each.

49

We are only interested in cycles of ~Cn
k

that contain elements of the form (y, x, ..., x),

(x, y, x, ..., x), ..., or (x, ..., x, y), since for every other connected component a projection onto

any coordinate will provide a WNU polymorphism for those elements. Suppose (without

loss of generality) that a cycle contains the element (x, ..., x, y) for some x, y ∈ ~Cn. Then

every element of that cycle is of the form (x′, ..., x′, y′) for some x′, y′ ∈ ~Cn. Since k ≥ 3

and x is repeated at least twice in (x, ..., x, y), no other element from that cycle can have

as its components a permutation of the components of (x, ..., x, y). In other words, no other

element in that cycle is of the form (y, x, ..., x), (x, y, x, ..., x), ..., or (x, ..., x, y). We can then

define a WNU polymorphism on these cycles by mapping (y, x, ..., x), (x, y, x, ..., x), ..., and

(x, ..., x, y) to the same element (say x).

An example of a WNU of arity k of ~Cn is f : ~Cn
k
→ ~Cn where

f(x̄) = f(x1, ..., xk) =


x if for some j, xi = x for every i 6= j

x1 otherwise.

Every directed cycle is a core, so we can conclude that directed cycles have bounded

width.

Corollary 4.9. The directed cycle ~Cn has bounded width for every n.

4.3 Tournaments

A special case of directed graphs is the class of tournaments. Recall from 1.18 that a

tournament T is a complete directed graph; that is, for every v1, v2 ∈ T , either (v1, v2) ∈ E,

(v2, v1) ∈ E, or v1 = v2. Every endomorphism of a tournament must be injective, so all

tournaments are cores, and therefore we can study the existence of WNU polymorphisms to

determine whether they have bounded width.

For the following theorem we need to introduce the concept of semi-complete graphs.

50

Definition 4.10. A directed graph G = (V ;E) is semi-complete if, for every pair of

distinct vertices v1, v2 ∈ V , at least one of v1 � v2, v2 � v1 holds. Note that semi-complete

graphs are not always simple, since we can have u � v and v � u for vertices u, v.

Semi-complete graphs are a natural extension of tournaments, and hold similar proper-

ties. It was shown in [3] that semi-complete graphs (and in particular tournaments) possess

the CSP dichotomy: the CSP of a semi-complete graph is either NP-complete or in P.

Theorem 4.11. [3] Let H be a semi-complete directed graph.

• If H contains at most one directed cycle, then CSP(H) is in P.

• Otherwise CSP(H) is NP-complete.

We will show that tournaments have a bounded width dichotomy: the CSP of a tourna-

ment is either NP-complete or has bounded width. Although many of the results we give

were already found in [3], we will provide our own proofs which employ different methods.

Up to isomorphism there is exactly one tournament with one vertex and one with two ver-

tices, namely a single vertex and a single edge. These two have WNU polymorphisms of any

arity. In fact, any tournament obtained from a finite linear order has a WNU polymorphism

f of every arity, that is, the family of directed graphs ~Ln = ({v1, · · · , vn}; {(vi, vj)|i < j})

all have WNU polymorphisms of every arity. We show this in the following lemma:

Lemma 4.12. The directed graph ~Ln (see Example 1.17) has a WNU polymorphism of arity

k for k ≥ 2.

Proof. Let f : ~Ln
k
→ ~Ln be given by

f(x1, ..., xk) = min{x1, ..., xk}.

Then f is a WNU polymorphism. To see this, note that f is idempotent and satisfies

f(y, x, ..., x) = ... = f(x, ..., x, y). Suppose x1 � y1, ..., xk � yk. Then x1 < y1, ..., xk <

51

yk, so min{x1, ..., xk} < min{y1, ..., yk}. Therefore f also preserves edges and is a WNU

polymorphism.

There are two non-isomorphic tournaments with 3 vertices: a 3-cycle and a linear order

on 3 elements. It is easy to verify that these tournaments have WNU polymorphisms of

every arity.

We provide a lemma that will help us determine the complexity of tournaments obtained

from simple constructions.

Lemma 4.13. If a tournament T = (V ;E) has a WNU polymorphism f of arity n, then

the linear sums T ⊕ {u}, {u} ⊕ T also have a WNU polymorphism of arity n.

Proof. We will describe the WNU polymorphism for T ⊕ {u}, but the same function is also

a WNU polymorphism for {u} ⊕ T .

Let T ⊕ {u} = T ′ = (V ′;E ′) and let f ′ : T ′n → T ′ be given by

f ′(x1, ...xn) =


f(x1, ..., xn) if x1, ..., xn ∈ V

u if u ∈ {x1, ..., xn}
.

Since f is a WNU polymorphism, we see that f ′ is idempotent and satisfies f ′(y, x, ..., x) =

... = f ′(x, ..., x, y). Now suppose x1 � y1, ..., xn � yn. Clearly u 6∈ {x1, ..., xn}. If u ∈

{y1, ..., yn}, then f ′(x1, .., xn) = f(x1, .., xn) → f ′(y1, ..., yn) = u. If u 6∈ {y1, ..., yn}, then

f ′(x1, .., xn) = f(x1, .., xn) � f(y1, ..., yn) = f ′(y1, ..., yn). So f ′ is a WNU polymorphism of

arity n.

There are four non-isomorphic tournaments with 4 vertices, illustrated in Figure 4.2.

The first three consist of a linear order, a linear sum of a vertex and a 3-cycle, and a

linear sum of a 3-cycle and a vertex. From Lemmas 4.12 and 4.13, we see that they have

WNU polymorphisms of every arity.

52

L4 v ⊕ ~C3
~C3 ⊕ v T4

Figure 4.2: 4-vertex tournaments

The fourth tournament can be expressed as T4 = (V ;E) where V = {a, b, c, d} and

E = {(a, b), (b, c), (c, d), (d, a), (d, b), (c, a)}. Note that this tournament does not have a 5-

cycle. If it did, a vertex would be visited twice in the cycle, and this would imply the

tournament has a 1-cycle or 2-cycle, which is impossible.

We will show that T4 does not have a WNU polymorphism of arity n = 3m+ 1 for each

choice of m. Suppose f is a WNU polymorphism of T of arity n and consider the tuples

x̄1 = (b, c, d, ..., b, c, d, a), ..., x̄n = (a, b, c, d, b, c, d, ..., b, c, d). Since f preserves edges, we have

that f(x̄1)...f(x̄n)f(x̄1) is an n-cycle. Since T4 does not have 1-cycles or 2-cycles, and n ≡ 1

(mod 3), we have that {f(x̄1), ..., f(x̄n)} = {a, b, c, d}. In T n4 , there is a 5-path from the tuple

x̄i to the tuple (a, ..., a, b, a, ..., a) where b is in the i-th position, by combining the 5-paths

(a � b � c � d � a � b),(b � c � a � b � c � a), (c � d � a � b � c � a),(d � a � b �

c � d � a). Since f is a WNU polymorphism, we have that f(b, a, ..., a) = ... = f(a, ..., a, b).

There is a 5-path in T4 from every f(x̄i) to f(b, a, ..., a), and f(x̄i) = f(b, a, ..., a) for some i,

so T4 has a 5-cycle, which is impossible. Therefore there is no WNU polymorphism of T4 of

arity n. From Theorem 2.13, we have that T4 does not have bounded width.

Note that if a tournament T has a 4-cycle (namely a � b � c � d � a), then it does not

have a 2-ary WNU. If f : T 2 → T is a WNU of T , then f(a, c) � f(b, d) � f(c, a) = f(a, c),

which cannot happen in T . Which tournaments do not have a 4-cycle in them?

If a tournament T has an n−cycle a1...ana1 with n > 4, then from Theorem 1.24 the

subtournament induced by a1, ..., an is pancyclic and so it has a 4-cycle. Thus a tournament

with no 4-cycles is of the form T1⊕ ...⊕Tn, where Ti is either a vertex or a 3-cycle. However,

53

not every tournament of this form admits a WNU polymorphism. The following theorem

was proved independently in [3], but we use different methods in our proof.

Theorem 4.14. Let C = ~C3

(1)
⊕ ~C3

(2)
, where ~C3

(i)
= ai � bi � ci � ai is a 3-cycle. Then

C does not have a WNU polymorphism of arity n for any n.

To prove this theorem we will use the following lemmas:

Lemma 4.15. Let f : Cn → C be a WNU polymorphism of the graph C described in

Theorem 4.14. If x̄ = (x1, ..., xn) ∈ (~C3

(i)
)n, then f(x̄) ∈ ~C3

(i)
.

Proof. Assume without loss of generality that x̄ ∈ (~C3

(1)
)n. Then f(x̄) � f(a2, ..., a2) = a2.

Similarly, f(x̄) � b2, f(x̄) � c2. Then f(x̄) cannot be a2, b2 or c2, so it must be in ~C3

(1)
.

For Lemma 4.18 we will need to define the following notation.

Definition 4.16. Let S be a set and let x̄ = (x1, ..., xn) ∈ Sn. For a ∈ S, define Na(x̄) =

|{i ∈ [n]|xi = a}|.

Definition 4.17. Let x ∈ ~C3

(i)
. Then x−,x+ are the vertices in ~C3

(i)
such that x− � x �

x+.

Lemma 4.18. Let k > n ≥ 1 and f : Ck → C be a WNU polymorphism of the graph C

described in Theorem 4.14. For all x ∈ C, if Nx(z̄) = k − n then f(z̄) = x

Proof. We proceed by induction on n. Let n = 1. If Nx(z̄) = k − 1, then z̄ is of the form

(x, ..., x, y, x, ..., x). Assume without loss of generality that x ∈ ~C3

(1)
and z̄ = (y, x, ..., x).

Then we have two cases:

Case 1. If y ∈ ~C3

(2)
, then

x− = f(x−, ..., x−) � f(z̄) � f(y+, ..., y+) = y+.

54

Therefore f(z̄) ∈ {x, y}. We have that f(z̄) � f(y+, ..., y+, y), as well as f(z̄) �

f(y+, y++, ..., y++) and f(y+, ..., y+, y++) � f(y+, y++, ..., y++), because f is a WNU poly-

morphism. By Lemma 4.15,

f(y+, ..., y+, y), f(y+, y++, ..., y++) ∈ ~C3

(2)
.

Therefore f(z̄) is connected to two vertices of ~C3

(2)
and must therefore be x.

Case 2. If y ∈ ~C3

(1)
, then by lemma 4.15 f(z̄) ∈ ~C3

(1)
. Since f(z̄) � f(a2, x

+, ..., x+),

and from the previous case f(a2, x
+, ..., x+) = x+, we have that f(z̄) = x.

Now assume that f(z̄) = x whenever Nx(z̄) = k −m for all m < n < k. Suppose that

Nx(z̄) = k − n, and without loss of generality let us assume that z̄ = (x, ..., x, y1, ..., yn) and

x ∈ ~C3

(1)
. We have three cases: either y1, ..., yn ∈ ~C3

(1)
, or some yi ∈ ~C3

(2)
but not all yi are

the same, or y1 = ... = yn ∈ ~C3

(2)
. We will first look at the second case described, followed

by the first and third.

Case 1. Assume without loss of generality that y1 ∈ ~C3

(2)
and y1 6= y2; that is, there

exists y ∈ ~C3

(2)
\{y+

1 } such that y2 � y. Then f(x−, ..., x−, y−2 , ..., y
−
n) � f(z̄) (since x− � y1)

and by our hypothesis f(x−, ..., x−, y−2 , ..., y
−
n) = x−. Similarly,

f(z̄) � f(y+
1 , ..., y

+
1 , y

+
2 , ..., y

+
n) = y+

1 ,

and

f(z̄) � f(y, ..., y, y+
1 , y, y

+
3 , ..., y

+
n) = y.

Since y+
1 6= y, we have that f(z̄) 6∈ ~C3

(2)
, and since x− � f(z̄), we have f(z̄) = x.

Case 2. Suppose that every yi is in ~C3

(1)
. Then f(z̄) ∈ ~C3

(1)
, and from the previous case

f(z̄) � f(x+, ..., x+, a2, b2, ..., b2) = x+,

so f(z̄) = x.

55

Case 3. Suppose that y1 = ... = yn ∈ ~C3

(2)
. Then since x− � f(z̄) and f(z̄) � y+

1 , we

have that f(z̄) ∈ {x, y1}. But f(z̄) � f(y1, ..., y1, y
+
1 , ..., y

+
1), and by the previous case we

have that f(y1, ..., y1, y
+
1 , ..., y

+
1) = y1. Therefore f(z̄) = x.

We are now ready to give the proof for Theorem 4.14.

Proof of Theorem 4.14. Suppose that f : Cn → C is a WNU polymorphism of C. Then, by

lemma 4.18,

f(a1,, a1, b1) = a1, f(b1, a1,, a1) = b1

which cannot happen since f is a WNU polymorphism.

From Theorem 4.14 we conclude that C has a hard CSP, which was found independently

in [3].

Corollary 4.19. CSP(C) is NP-complete, where C is the tournament described in Theorem

4.14.

The tournaments T4 and ~C3 ⊕ ~C3 are the base cases for tournaments that have a hard

CSP. We can see that any tournament containing T4 or ~C3 ⊕ ~C3 has a hard CSP with the

following theorem:

Theorem 4.20. [6] Let H be a directed graph with no sources or sinks, and let H ′ be a

loop-less digraph containing H as a subgraph. If H does not admit a homomorphism to a

cycle of length greater than one, then CSP(H ′) is NP-complete.

With this result we can characterize tournaments with bounded width, and note that the

class of tournaments have a bounded width dichotomy.

Theorem 4.21. Let T be a tournament. If T has at most one cycle, then T has bounded

width. Otherwise, CSP(T) is NP-complete.

56

Proof. Let T be a tournament T with a least two cycles. Then it contains either T4 or

~C3 ⊕ ~C3 as a subtournament. Since neither T4 nor ~C3 ⊕ ~C3 admit a homomorphism to any

cycle of length greater than one, it follows from Theorem 4.20 that CSP(T) is NP-complete.

If a tournament T has at most one cycle, then it is of the form

T = T1 ⊕ T2 ⊕ ...⊕ Tn

where at most one Ti is a copy of ~C3 and every other Tj is a single vertex. From lemma 4.13,

we see that T has bounded width.

4.4 Semi-complete graphs with bounded width

Theorem 4.11 shows that there exists a dichotomy in the CSPs of semi-complete graphs. This

result was extended in [4] to a larger class of directed graphs, called locally semi-complete

graphs.

Definition 4.22. A directed graph G = (V ;E) is locally semi-complete if, for every

v ∈ V , the sets N+(v) = {u ∈ V |v � u} and N−(v) = {u ∈ V |u � v} each induce a

semi-complete graph.

Remark 4.23. In this section we will be working with semi-complete graphs, which may not

be simple. Therefore we will not assume directed graphs to be simple in this Section.

Example 4.24. Let k ≥ 4. The directed cycle ~Ck = ({v1, · · · vk}; {(v1, v2), · · · , (vk, v1)}) is

locally semi-complete, since |N+(vi)| = |N−(vi)| = 1 for every 1 ≤ i ≤ k, so the subgraphs

induced by these sets are trivially semi-complete, as they only contain one vertex. However,

the directed cycle ~Ck is not semicomplete, since there are pairs of vertices not connected by

an edge (e.g. v1 and v3).

Locally semi-complete directed graphs are a natural generalization of semi-complete

graphs. Bang-Jensen, MacGillivray and Swarts showed in [4] that locally semi-complete

57

directed graphs also possess a CSP dichotomy. We will use their construction to show that

in fact connected locally semi-complete directed graphs have a bounded width dichotomy.

Lemma 4.25. [2] A local tournament H is acyclic if and only if it admits an enumeration

v1, v2, ..., vn of its vertices such that whenever vi � vj, then i < j and vk � vl for all

i ≤ k < l ≤ j.

To state the classification theorem from [4], we need to do the following construction

(from [4]):

Definition 4.26. Let H be a loop-free directed graph with vertices v1, ..., v` and let D1, ..., D`

be directed graphs. Define H[D1, ...,D`] to be the directed graph obtained by replacing

each vertex vi from H with Di, and replacing every edge vi � vj with the set of edges

{di � dj | di ∈ Di, dj ∈ Dj}

Let T = (V ;E) be a connected locally semi-complete graph with exactly one cycle, and

let C be its cycle. Then

T = H[D1, D2, ..., D`]

where H is an acyclic local tournament with an enumeration h1, ..., h` such as the one from

4.25, Dj = C for some j, and |Di| = 1 for i 6= j. If ` ≥ 2, then C must be semi-complete, so

either C = ~C2 or C = ~C3.

Let S be the set of neighbours of C. Partition V \ S into the set of vertices that come

before C in the ordering of H (call it A) and the set of vertices that come after C (call it

B). Then A induces a subgraph T1, S induces a subgraph T2 and B induces a subgraph T3.

Theorem 4.27. [4] Let T be a connected locally semi-complete directed graph.

• If T is acyclic, then CSP(T) is in P.

• If T has exactly one cycle and T is a directed cycle or T2 is semi-complete and at least

one of T1 or T3 is empty, then CSP(T) is in P. Otherwise CSP(T) is NP-complete.

58

• If T contains at least two cycles, then CSP(T) is NP-complete.

We refine this theorem by showing that connected locally semi-complete directed graphs

have a bounded width dichotomy.

Theorem 4.28. Let T be a connected locally semi-complete directed graph.

• If T is acyclic, then T has bounded width.

• If T has exactly one cycle and T is a directed cycle or T2 is semi-complete and at least

one of T1 or T3 is empty, then T has bounded width. Otherwise CSP(T) is NP-complete.

• If T contains at least two cycles, then CSP(T) is NP-complete.

In order to prove Theorem 4.28 we follow the construction from [4] and refine some of

their theorems to help us establish the bounded width dichotomy.

Lemma 4.29. Let T be a connected, acyclic, locally semi-complete directed graph. Then T

has a conservative WNU polymorphism of arity k for every k ≥ 2.

Proof. Since T is acyclic, from Lemma 4.25 it has an enumeration v1 < v2 < ... < vn of its

vertices such that if vi � vj, then vi < vj and vk � vl for all i ≤ k < l ≤ j. Let k ≥ 2 and

consider the operation fk : T k → T defined by fk(x1, ..., xk) = min{x1, ..., xk}. Then fk is

clearly conservative, idempotent and has the WNU property. We are left with showing that

fk is a polymorphism.

Suppose that x1 � y1, x2 � y2, ..., xk � yk, where f(x1, ..., xk) = xi = vi1 for some i, and

f(y1, ..., yk) = yj = vj2 for some j, where vi1 = xi � y1 = vi2 and vj1 = xj � yj = vj2 . Then

vi1 ≤ vj1 < vj2 ≤ vi2

so fk(x1, ..., xk) � fk(y1, ..., yk).

Corollary 4.30. Let T be a connected, acyclic, locally semi-complete directed graph. Then

T has bounded width.

59

Proof. This follows from Lemma 4.29 and Theorem 2.20.

The enumeration described in Lemma 4.25 is an example of an X−enumeration, which

we will use in the following results. We give a definition:

Definition 4.31. Let H be a directed graph. An enumeration h1 < h2 < ... < hn of the

vertices of H is an X−enumeration if it has the following property: if hi � hj and hk � h`,

then min{hi, hk} � min{hj, h`}.

It was shown in [20] that graphs with an X-enumeration have tractable CSPs.

Theorem 4.32. [20] Let H be a directed graph with an X-enumeration. Then CSP(H) is

in P.

We refine this theorem in terms of existence of WNU polymorphisms. This result was

found independently in [32].

Theorem 4.33. Let H be a directed graph with an X-enumeration. Then H has a conser-

vative WNU polymorphism of arity k for every k ≥ 2.

Proof. Let H have an X-enumeration h1 < h2 < ... < hn. Define fk : Hk → H by

f(x1, ..., xk) = min{x1, ..., xk}. Clearly fk is conservative, idempotent and has the WNU

property. We are left with showing that fk is a polymorphism. Suppose that x1 � y1, ..., xk �

yk, and let xi = f(x1, ..., xk) = min{x1, ..., xk}, yj = f(y1, ..., yk) = min{y1, ..., yk}. Then,

since xi � yi and xj � yj, we have

min{xi, xj} = xi � yj = min{yi, yj},

so f(x1, ..., xk) � f(y1, ..., yk).

Corollary 4.34. Let H be a directed graph with X-enumeration. Then H has bounded width.

Proof. This follows from Theorems 4.33 and 2.20.

60

We introduce another construction used in [3] that preserves WNU polymorphisms.

Definition 4.35. Let H1 be a loop-free directed graph with an X-enumeration h1 < ... < hn.

Let H2 be a directed graph. Form the directed graph H by replacing hn with H2 and adding,

for every edge hi � hn (or hn � hi), an edge hi � h (or h � hi) for every h ∈ H2. The graph

H is called the X-graft(H1, H2).

Example 4.36. Let H1 = ~L3 = {({u1, u2, u3}; {(u1, u2), (u1, u3), (u2, 3)}) and H2 = ~L2 =

({v1, v2}; {(v1, v2}). ThenH1 has anX-enumeration u1 < u2 < u3, andH = X-graft(H1, H2),

where

H = ({u1, u2, v1, v2}; {(u1, u2), (u1, v1), (u1, v2), (u2, v1), (u2, v2), (v1, v2)}),

which is isomorphic to ~L4.

Theorem 4.37. [20] Let H = X-graft(H1, H2) such that CSP(H2) is in P. Then CSP(H)

is in P.

Theorem 4.37 shows that the X-graft construction preserves the property of a tractable

CSP, since graphs with an X-enumeration have a tractable CSP. We refine this theorem in

terms of existence of WNU polymorphisms. This was found independently in [32].

Theorem 4.38. Let H = X-graft(H1, H2) such that H2 has a WNU polymorphism of arity

k. Then H has a WNU polymorphism of arity k.

Proof. Suppose that f2 : Hk
2 → H2 is a WNU polymorphism. Let f : Hk → H be defined by

f(x1, ..., xk) =


f2(x1, ..., xk) if x1, ..., xk ∈ H2

min{xi|xi ∈ H1} otherwise.

Clearly f is idempotent and has the WNU property. We are left with showing that f is

a polymorphism. Suppose that x1 � y1, ..., xk � yk.

61

If x1, ..., xk, y1, ..., yk ∈ H2 or if xi, yj ∈ H1 for some i, j then clearly f(x1, ..., xk) �

f(y1, ..., yk).

If x1, ..., xk ∈ H2, and yi ∈ H1 for some i, let yj = f(y1, ..., yk) = min{y`|y` ∈ H1}. Since

xj � yj, with xj ∈ H2, yj ∈ H1, we have that h � yj for all h ∈ H1, from the X-graft

construction. Therefore f(x1, ..., xk) � yj.

If xi ∈ H1 for some i and y1, ..., yk ∈ H2, let xj = f(x1, ..., xk) = min{x`|x` ∈ H1}. Since

xj � yj, with xj ∈ H1, yj ∈ H2, we have that xj � h for all h ∈ H2, from the X-graft

construction. Therefore xj � f(y1, ..., yk).

Recall from Theorem 2.13 that cores have bounded width precisely when they have WNU

polymorphism of all but finitely many arities. It can easily be seen that tournaments (and

semi-complete graphs in general) are cores, and it was shown in [4] that connected locally

semi-complete directed graphs are cores as well.

Theorem 4.39. [4] A connected locally semi-complete digraph H is a core.

We can now give a proof for Theorem 4.28.

Proof of Theorem 4.28. We are left with showing that the connected locally semi-complete

graphs with a tractable CSP have bounded width.

If T is acyclic, we know from Lemma 4.25 that its vertices admit an enumeration v1 <

v2 < ... < vn such that whenever vi � vj, then i < j and vk � vl for all i ≤ k < l ≤ j.

Clearly this is an X-enumeration, so from Theorems 4.33 and 4.39 T has bounded width.

Suppose that T has exactly one cycle. If T is a directed cycle, then T has bounded

width from Corollary 4.9. Let us assume that T2 is semi-complete and one of T1 or T3 is

empty. Suppose without loss of generality that T3 is empty. (We can obtain the other case

by reversing all the arrows in the graph.) Following the proof of Theorem 4.27, it can be

shown that T = X − graft(T ′, T ′′), where T ′ has an X-enumeration and T ′′ is a tournament

62

with exactly one cycle. From Theorem 4.21, T ′′ has bounded width, and so from Theorems

4.38 and 4.39, T has bounded width.

4.5 Transitive directed graphs

We give an analysis for another class of directed graphs: transitive graphs.

Definition 4.40. A directed graph G = (V ;E) is transitive if E is a transitive relation.

In other words, for every u, v, w ∈ G, if u � v, v � w, then u � w.

Since any directed graph with a loop has a trivial CSP, we will focus on studying the

CSP of loop-free transitive directed graphs. If a transitive directed graph contains a cycle

as a subgraph (not necessarily induced), then by the transitive property it contains a loop.

Therefore loop-free transitive directed graphs have no cycles, and are thus equivalent to the

class of strict partial orders.

Remark 4.41. While some transitive graphs are not simple, we will be analyzing loop-free

transitive graphs, which are simple. We will therefore assume directed graphs to be simple

in this Section.

We will prove that loop-free transitive graphs have bounded width by finding a Datalog

program that solves their CSP. We will also give a proof that utilizes the associated pebble

game.

Theorem 4.42. Let H be a loop-free transitive directed graph. Then H has bounded width.

Proof. Let H be a loop-free transitive graph with longest path of length n, on the vertices

v0 � v1 � ... � vn. Let G be a directed graph. If G contains a path of length more than

n (allowing for repetition of vertices, so this includes cycles of any length), then there is

no homomorphism from G to H, which can be seen by following the images of the path

of length more than n. If G does not contain paths of length more than n, consider the

following construction:

63

Let G0 = G and let S0 be the set of vertices in G without an incoming edge in G. Let

S1 be the set of vertices of G0 \ S0 without an incoming edge in G1 = [G0 \ S0], the graph

induced by the vertices G0 \ S0. For i ≥ 1, let Si+1 be the set of vertices of Gi \ Si without

an incoming edge in Gi+1 = [Gi \ Si]. Notice that Sn+1 is empty. Clearly the sets S0, ..., Sn

form a partition of the vertices of G (otherwise G would contain a cycle).

Let f : G → H be defined by f(u) = vi for u ∈ Si. Then if u1 � u2, where u1 ∈ Si,

u2 ∈ Sj, clearly i < j, so f(u1) = vi � vj = f(u2). Therefore f is a homomorphism.

If G has a path of length more than n, then in particular it has a path of length n + 1.

Therefore there exists a homomorphism from G to H if and only if G does not have a path

of length n+ 1. This can be determined with the following (2, 3)-Datalog program π:

π (4.1)

P1(x, y) : −E(x, y)

P2(x, y) : −P1(x, z), P1(z, y)

P3(x, y) : −P2(x, z), P1(z, y)

.

.

.

Pn(x, y) : −Pn−1(x, z), P1(z, y)

FALSE : −Pn(x, z), P1(z, y)

The program computes all the paths of length n on step n, and returns FALSE if and

only if there is a path of length n + 1. Therefore the program solves CSPH, which implies

that H has bounded width.

64

We have seen that loop-free transitive directed graphs have width (2, 3) from the program

Π described in 4.1. We can show that in fact these graphs have width (1, 2) by looking at

the associated pebble games.

Theorem 4.43. Let H be a loop-free transitive directed graph, and let G be a directed graph.

Then Spoiler wins the (1, 2)-pebble game on G and H if and only if there is no homomorphism

from G to H.

Proof. If there is a homomorphism from G to H, then Duplicator wins the game by playing

according to the homomorphism. Suppose that H has a longest path of length n and

there is no homomorphism from G to H. Then G has a path of length n + 1, namely

v0 � v1 � ... � vn+1 (note the vi need not be different). Then Spoiler can place pebbles

along this path, so that on round i + 1 there are pebbles on vi−1, vi, and spoiler takes the

pebble from vi−1 and places it on vi+1. This way, Duplicator is forced to trace a path of

length i + 1 on H, so when Spoiler places a pebble on vn+1 (if Spoiler has not yet won),

Duplicator will be unable to move and will lose the game.

Corollary 4.44. Let H be a loop-free transitive directed graph. Then H has width (1, 2).

Proof. This follows from Theorems 4.43 and 3.3.

Corollary 4.44 ensures that for any loop-free transitive directed graph H there exists a

(1, 2)-Datalog program that solves CSP(H). However, it is not necessarily a simple task to

find such a program. We see that for loop-free transitive directed graphs, it is more intuitive

to analyze the pebble games to establish their bounded width. This shows that pebble games

can be a helpful method for verifying that certain structures have bounded width.

Theorem 4.42 can be extended to any acyclic directed graph with a large enough transitive

component.

Theorem 4.45. Let H be an acyclic directed graph with longest path of length n and such

that H has a subgraph H ′ that is isomorphic to ~Ln+1. Then H has bounded width.

65

Proof. If H is an acyclic directed graph with longest path of length n, then there is a

homomorphism from H to ~Ln+1. If H ′ is a subgraph of H that is isomorphic to ~Ln+1,

then there is a natural homomorphism from ~Ln+1 to H and therefore H is homomorphically

equivalent to ~Ln+1. Then the Datalog program Π from 4.1 solves CSP(H).

4.5.1 Transitive directed graphs and X-enumerations

We know from Theorem 4.33 that directed graphs that are cores and have an X-enumeration

have bounded width. We would like to know if the converse is also true: whether every cycle-

free directed graph with bounded width has an X-enumeration. Note that graphs with a

cycle do not admit an X-enumeration, so we must make the distinction.

Consider enumerations with the property that if vi � vj, then i < j. We call these

topological enumerations.

a

b c

d
G

Figure 4.3: A graph with no topological X-enumeration.

Consider the graph G in Figure 4.3. Any topological enumeration must satisfy a < b <

c < d. However, this is not an X-enumeration, since a � d, b � c, but a 6� c. We can allow

topological X-enumerations in G to exist by making G transitive; that is, by adding u � w

every time u � v, v � w, for any u, v, w ∈ G.

We have shown in Theorem 4.42 that loop-free transitive directed graphs have bounded

width. However, not every transitive directed graph has a topological X-enumeration.

Consider the graph H in Figure 4.4. Any topological enumeration of H must satisfy

a < b < c, u < v < w. If a < u, then the crossing a � w, u � w shows that this is

not an X-enumeration. If instead u < a, the same happens with u � c, a � b. Therefore H

66

does not have a topological X-enumeration.

Even though H does not have topological X-enumerations, c < b < a < u < w < v is

an X-enumeration (although not topological) of H. This can be checked by inspecting the

crossings from Figure 4.5. There are three crossings. The first one corresponds to the edges

u � v, v � w. The crossing is highlighted in blue, and the edge min{u, v} � min{v, w} is

blue as well. The other two crossings are highlighted in red, and they correspond to the pairs

of edges a � w, u � c and a � b, u � c. In both cases, the X-edge corresponds to a � c,

which is coloured red in the figure.

a

b

c

u

v

w

H

Figure 4.4: A transitive graph with no topological X-enumeration.

c

b

a

u

w

v

c

b

a

u

w

v

Figure 4.5: Crossings in the X-enumeration of H with X edges highlighted.

It turns out that the class of directed graphs that admit an X-enumeration coincides

with the class of directed graphs that admit a conservative semilattice polymorphism, or

equivalently, a conservative, transitive WNU polymorphism. (For a more detailed discussion

on these polymorphisms see Section 2.2.1.) This was found independently in [23].

67

Theorem 4.46. Let G be a directed graph. Then G admits an X-enumeration if and only

if G admits a binary, conservative, transitive WNU polymorphism.

Proof. (⇒)Suppose that G admits an X-enumeration. From Theorem 4.33, G admits a

binary, conservative WNU polymorphism f : G2 → G defined by

f(u, v) = min{u, v}.

We will prove that f is a transitive WNU polymorphism. Suppose that f(u, v) = min{u, v} =

u, f(v, w) = min{v, w} = v. Then

f(u,w) = min{u,w} = min{min{u, v}, w}

= min{u,min{v, w}}

= min{u, v} = u.

Therefore f is a transitive polymorphism.

(⇐)Suppose that f : G2 → G is a conservative, transitive WNU polymorphism. Enu-

merate the vertices of G by vi < vj if and only if f(vi, vj) = vi, for i 6= j (this enumeration

is well-defined because f is conservative, transitive and has the WNU property). Suppose

that vi � vj and vk � v`. Since f is a polymorphism,

min{xi, xk} = f(xi, xk) � f(xj, x`) = min xj, x`.

Therefore the enumeration is an X-enumeration.

Even though directed graphs only admit an X-enumeration when they admit a transitive

WNU polymorphism, not every transitive graph admits an X-enumeration. Consider the

graph H and its transitive closure H ′ (see Figure 4.6). The directed graph H has an X-

enumeration a < b1 < b2 < c1 < c2 < d, which can be easily checked, since the enumeration

68

a

b1 b2

c1 c2

d

H

a

b1 b2

c1 c2

d

H ′

Figure 4.6: The directed graph H and its transitive closure H ′.

has no crossings. However, its transitive closure, H ′, has noX-enumeration. We have checked

this with the help of a program that determines for every enumeration of the vertices of H ′

whether it is an X-enumeration. See Appendix B for the program written in C++. The

graph H ′ gives us an example of a directed graph with no cycles that has bounded width,

but no X-enumeration.

Thanks to Hell and Rafiey’s classification of bi-arc graphs from [23] and Theorem 4.46

we can see that the class of directed graphs that admit a X-enumeration corresponds to the

class of bi-arc directed graphs.

Theorem 4.47. [23] The class of bi-arc directed graphs coincides with the class of directed

graphs that a admit an X-enumeration.

Proof. This follows from Theorems 2.26, 2.28 and 4.46.

4.6 Directed graphs that do not allow a binary conser-

vative WNU polymorphism

We know from Theorem 2.20 that graphs that admit a binary conservative WNU (BCWNU)

polymorphism have bounded width. The converse is not always true. For example, we know

from Lemma 4.9 that the directed graph

~C4 = ({1, 2, 3, 4}; {(1, 2)(2, 3)(3, 4)(4, 1)})

69

has bounded width. However, this graph does not admit any binary polymorphism, since

any such polymorphism f must satisfy

f(1, 3) � f(2, 4) � f(3, 1) = f(1, 3),

which is impossible. Note that in general, if a directed graph G does not admit a BCWNU

polymorphism, then any directed graph H which contains G as an induced subgraph will

also not admit a BCWNU polymorphism.

We are interested in determining which directed graphs share this property of having

bounded width but not admitting a BCWNU polymorphism. We are not interested in graphs

with loops, since these have a trivial CSP. Note that a directed graph with a double edge (i.e.

with vertices a, b such that a � b and b � a) does not allow a BCWNU polymorphism unless

the graph has a loop. With the help of a computer program, we found all directed graphs

without loops or double edges, that have at most 4 vertices and do not admit a BCWNU

polymorphism. They are the following: (see Figure 4.6).

~C4 = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (4, 1)})

R4 = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (1, 4)})

G = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (1, 4), (4, 2)})

H = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (4, 1), (4, 2)})

T4 = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (4, 1), (3, 1), (4, 2)})

70

We have shown in Theorems 4.9 and 4.21 that the directed cycle ~C4 has bounded width,

while the tournament T4 = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (4, 1), (3, 1), (4, 2)}) has an NP-

complete CSP.

Let us analyze the second directed graph from the list, R4. We will show that it has

bounded width by finding a 3-ary NU polymorphism for it. Let f3 : R3
4 → R4 be such that

f3(x, x, y) = f3(x, y, x) = f3(y, x, x) = x for all x, y ∈ R4

and be defined in the following way when x, y, z are pairwise different:

f3(x, y, z) =


1 if {x, y, z} = {1, 2, 3}

4 if {x, y, z} = {2, 3, 4}

x otherwise.

Clearly, f3 is a NU operation, since it is a majority function. To see that f3 is a poly-

morphism, let x̄ = (x1, x2, x3) and ȳ = (y1, y2, y3) be such that x1 � y1, x2 � y2, x3 � y3.

Then we have that either x̄ has a repeated component, or {x1, x2, x3} = {1, 2, 3}. Similarly,

either ȳ has a repeated component, or {y1, y2, y3} = {2, 3, 4}. We then have 4 cases:

Case 1. If x̄ and ȳ have repeated components, then clearly f3(x̄) = f3(ȳ), since f3 is a

majority function.

Case 2. If x̄ has a repeated component, and {y1, y2, y3} = {2, 3, 4}, then the repeated

component of x̄ is connected to at least two of the vertices 2, 3, 4. Since the only vertex

in R4 that is connected to two different vertices is 1, we have that f3(x̄) = 1, and since

f3(ȳ) = 4, we have f3(x̄) � f3(ȳ).

Case 3. If {x1, x2, x3} = {1, 2, 3} and ȳ has a repeated component, then at least two

of the vertices 1,2,3 are connected to the repeated component of ȳ. Since the only vertex

in R4 that is connected from two different vertices is 4, we have that f3(ȳ) = 4, and since

f3(x̄) = 1, we have f3(x̄) � f3(ȳ).

71

Figure 4.7: 4-vertex directed graphs that do not admit a binary conservative WNU poly-
morphism.

4 2

3

1

R4

4 2

3

1

~C4

4 2

3

1

G

4 2

3

1

H

4 2

3

1

T4

Case 4. If {x1, x2, x3} = {1, 2, 3} and {y1, y2, y3} = {2, 3, 4}, then clearly f3(x̄) � f3(ȳ).

Since R4 has a NU polymorphism, and R4 is a core, we have from Theorem 2.17 that R4

has bounded width.

We will now look at the next two graphs in our list, G and H. We will prove that both

of these graphs have a hard CSP.

Let G = ({1, 2, 3, 4}; {(1, 2), (1, 4), (2, 3), (3, 4), (4, 2)}) (see Figure 4.6). We will show

CSP(G) is NP-complete, by showing that it has no WNU polymorphisms. Note that G is a

core.

Notation: Given a polymorphism f : Gn → G, we will write x1x2 · · ·xn for f(x1, x2, · · · , xn).

Furthermore, if the tuple x̄ = (x1, · · · , x1, x2, · · · , x2) has k copies of x1 and ` copies of x2,

we will write x̄ = xk1x
`
2. We write x1x2 · · ·xn =∗ x if

f(xσ(1), xσ(2), · · · , xσ(n)) = x for all σ ∈ Sn,

72

Figure 4.8: Base case for Theorem 4.48.
1 · · · 12

2 · · · 243

3 · · · 324

4 · · · 432

Figure 4.9: Case 2 in Theorem 4.48.

4 · · · 42 · · · 23 · · · 32 · · · 23 · · · 34 · · · 43 · · · 32 · · · 24 · · · 4
2k 2k 2k 2k 2k 2k

1 · · · · · · · · · .12 · · · 2 = 2 2 = 2 · · · 21 · · · · · · · · · .1
2k 2k

that is, the formula holds for any permutation of the tuple (x1, · · · , xn). Therefore, since f

is a WNU polymorphism, we have xky =∗ xky for all x, y ∈ G.

To prove that CSP(G) is NP-complete, we need the following Lemma.

Theorem 4.48. Let G = ({1, 2, 3, 4}; {(1, 2), (1, 4), (2, 3), (3, 4), (4, 2)}). Then G does not

have a WNU polymorphism of arity n for any n ≥ 2.

Proof. We prove that G does not have WNU polymorphisms by contradiction. Let f : Gn →

G be a WNU polymorphism. We will first prove that such an operation has the following

property:

Claim: Let k ≥ 0 be such that 2k < n. Then 1n−2k22k =∗ 1 and 2n−2k12k =∗ 2.

We proceed by induction.

For k = 0, we have that 1n−12 =∗ 1n−12, so 1n−12 � 4n−223 and 1n−12 � 2n−234. Since

4n−223 � 2n−234 � 3n−242 � 4n−223, we have that 1n−12 is connected to two different

vertices in a 3-cycle, so 1n−12 =∗ 1 (see Figure 4.6). Furthermore, 3n−14 � 4n−12 � 2n−13 �

3n−14, and since 1 = 1n � 4n−12, 1 = 1n−12 � 2n−13, we have that 3n−14 =∗ 3. Since

73

2n−11 � 3n−14 =∗ 3, we have that 2n−11 =∗ 2.

Let k > 0, with 2k < n, and assume that 1n−2k−1
22k−1

=∗ 1 and that 2n−2k−1
12k−1

=∗ 2.

Since

4n−2k2k−13k−1 � 2n−2k3k−14k−1 � 3n−2k4k−12k−1 � 4n−2k2k−13k−1,

and

1 = 1n−2k−1

22k−1

� 4n−2k2k−13k−1

as well as

1 = 1n−2k22k−1

12k−1

� 2n−2k3k−14k−1,

then 3n−2k4k−12k−1 = ∗3. Given that 2n−2k12k � 3n−2k4k−12k−1, we get that 2n−2k12k =

∗2. From this, we see that 3n−2k42k = ∗3, 4n−2k22k = ∗4, 2n−2k32k = ∗2, as well as 3n−2k22k =

∗3, 4n−2k32k = ∗4. Since

1n−2k22k � 2n−2k32k

and

1n−2k22k � 4n−2k32k ,

we see that 1n−2k22k =∗ 1.

We can now go back to our proof by contradiction. Let n ≥ 2 and let f : Gn → G be a

WNU polymorphism. We have two cases: either n = 2k for some k, or there exists k such

that 2k < n, n < 2k+1.

Case 1. If n = 2k for some n, then from 12k−1
22k−1

=∗ 1 and 22k−1
12k−1

=∗ 2, which is

impossible. Therefore G does not have a WNU polymorphism of arity n.

Case 2. Let k be such that 2k < n, n < 2k+1. Then we have a 3-cycle with vertices

4n−2k22k+1−n3n−2k � 2n−2k32k+1−n4n−2k � 3n−2k42k+1−n2n−2k .

74

Figure 4.10: Base case for Theorem 4.50.
4 · · · 41

3 · · · 34 4 · · · 42

2 · · · 21

1 · · · 13

3 · · · 32

2 · · · 24

However,

2 = 12k2n−2k � 4n−2k22k+1−n3n−2k

and

2 = 2n−2k12k � 3n−2k42k+1−n2n−2k ,

which is impossible, since the vertex 2 is not connected to two different vertices in a 3-cycle

(see Figure 4.6). Therefore G does not have a WNU polymorphism of arity n.

Corollary 4.49. Let G = ({1, 2, 3, 4}; {(1, 2), (1, 4), (2, 3), (3, 4), (4, 2)}). Then CSP(G) is

NP-complete.

We now analyze the fourth graph on our list.

Let H = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (4, 1), (4, 2)}) (see Figure 4.6). We will show that

H has a hard CSP by showing it does not admit any WNU polymorphisms.

Notation: when working with this directed graph, given a vertex x we will write x+ to

denote the next vertex in the cycle 1 � 2 � 3 � 4 � 1, and x− to denote the previous vertex.

For example 3+ = 4, 3− = 2. We will write x++ = x++
, so 4++ = 2.

Theorem 4.50. Let H = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (4, 1), (4, 2)}. Then H does not

have a WNU polymorphism of arity n for any n ≥ 2.

Proof. We prove that H has no WNU polymorphism by contradiction. Let n ≥ 3 and

f : Hn → H be a WNU polymorphism. We will show that such an operation has the

following property:

Claim: xn−kx1x2 · · ·xk =∗ x for 0 ≤ k < n, x, x1, · · · , xn ∈ H.

We proceed by induction. Clearly, the statement is true for k = 0 since f is idempotent.

75

For k = 1, since 4k1 � 2, either 4k1 =∗ 4 or 4k1 =∗ 1. Suppose that 4k1 =∗ 1. Then

2k1 =∗ 2, 3k2 =∗ 3, 2k1 =∗ 2.

Additionally, 3k4 =∗ 4, but 3k4 � 4k2 � 1k3 � 2k4, and there is no such path from 4 to 2.

Therefore 4k1 =∗ 4. Then 3k4 =∗ 3 and so 4k2 =∗ 4. This implies that 3k1 =∗ 3, 2k4 =∗

2, 3k2 =∗ 3, so 4k3 =∗ 4. We conclude that 4kx =∗ 4 for all x ∈ H. Therefore 3kx =∗ 3 and

2kx =∗ 2 for all x ∈ H. This implies that 1kx =∗ 1 for all x ∈ H.

Now let k ≥ 1 and suppose that xn−kx1 · · ·xk =∗ x for all x, x1, · · · , xk ∈ H. We

will show that xn−k−1x1 · · ·xk+1 =∗ x for all x, x1, · · · , xk+1 ∈ H by first showing that

4n−k−1x1 · · ·xk+1 =∗ 4 for all x, x1, · · · , xk+1 ∈ H.

Since, by assumption, 4n−k3x1 · · ·xk−1 =∗ 4 and 32n−kx+
1 + · · ·x+

k−1+ =∗ 2 for all

x1, · · · , xk−1 ∈ H, and we have that

4n−k3x1 · · ·xk−1 � 21n−k−14x+
1 · · ·x+

k−1 � 32n−kx1 + + · · · xk−1 + +

we conclude that 1n−k−124x+
1 · · ·x+

k−1+ =∗ 1. Therefore

2n−k−13yx++
1 · · ·x++

k−1 =∗ 2

3n−k−14y+x−1 · · ·x−k−1 =∗ 3

4n−k−11y++x1 · · ·xk−1 =∗ 4

4n−k−12y++x1 · · ·xk−1 =∗ 4

for all x, x1, · · · , xk+1 ∈ H and y ∈ {1, 2}. Note that y++ ∈ {3, 4}. We are then left with

showing that 4n−k−1x1 · · ·xk+1 =∗ 4 when x1, · · · , xk+1 ∈ {1, 2} and when x1, · · · , xk+1 ∈

{3, 4}.

Since 3n−k−142x1..xk−1 =∗ 3 for all for all x, x1, · · · , xk−1 ∈ H, we have that

76

2n−k−134x−1 ..x
−
k−1 =∗ 2

3n−k−141x1..xk−1 =∗ 3

4n−k−1y2x+
1 ..x

+
k−1 =∗ 4,

where y ∈ {1, 2}. Furthermore, 3n−k−14k+1 =∗ 3 and so 4n−k−11k+1 =∗ 4. Since we know

by our induction hypothesis that 4n−k−1x1 · · · xk+1 = ∗4 when xi = 4 for some i, we are left

with showing that 4n−k−13k+1 =∗ 4.

Since 4n−k−12k+1 =∗ 4, we have

3n−k−11k+1 =∗ 3

2n−k−14k+1 =∗ 2

3n−k−12k+1 =∗ 3

4n−k−13k+1 =∗ 4.

This completes our proof that 4n−k−1x1 · · ·xk+1 = ∗4 for all x1, · · · , xk+1 ∈ H. There-

fore 3n−k−1x−1 · · ·x−k+1 = ∗3, 2n−k−1x++
1 · · ·x++

k+1 = ∗2, and 1n−k−1x+
1 · · ·x+

k+1 = ∗1 for all

x1, · · · , xk+1 ∈ H, so we have xn−k−1x1 · · ·xk+1 =∗ x for all x, x1, · · · , xk+1 ∈ H.

We can now finish our proof by contradiction. Let n ≥ 2 and let f : Hn → H be a

WNU polymorphism. Then, for any 1 < k < n, 1n−k2k =∗ 1 and 1n−k2k =∗ 2, which is

impossible.

Since H is a core, Theorem 4.50 guarantees that H has a hard CSP.

Corollary 4.51. Let H = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (4, 1), (4, 2)}. Then CSP(H) is

NP-complete.

We conclude that the only directed graphs with 4 vertices, that do not have loops or

77

double edges, and have bounded width but no BCWNU polymorphism, are ~C4 and R4. We

know from Lemma 4.9 that, in general, ~C2k has bounded width. However, ~C2k does not

admit any binary WNU polymorphisms, since any such polymorphism f must satisfy

f(1, k + 1) � f(2, k + 2) � · · · � f(k, 2k) � f(k + 1, 1) = f(1, k + 1),

which is impossible since there is no homomorphism from ~Ck to ~C2k. We will obtain a similar

generalization for R4.

Let Rn = ({1, · · · , n}; {(1, 2), (2, 3), · · · , (n−1, n), (1, n)}) be a directed n-cycle with one

edge reversed. We will prove that, for k ≥ 2, the graph R2k has bounded width, but does

not admit a BCWNU polymorphism.

Suppose f : R2k
2 → R2k is a WNU polymorphism. Then we have that

f(1, k) � f(2, k + 1) � · · · � f(k + 1, 2k)

and that

f(1, k) � f(2k, k + 1) = f(k + 1, 2k)

therefore we have that Rk+1 is a subgraph of R2k, which is impossible. We see that R2k does

not admit a binary WNU polymorphism.

Theorem 4.52. The directed graph R2k has bounded width for k ≥ 2.

Proof. Let k ≥ 2. Since R2k is a core, it is enough to prove that R2k admits a NU polymor-

phism, from Theorem 2.17.

Let f : R2k
3 → R2k be such that

f(x, x, y) = f(x, y, x) = f(y, x, x) for all x, y ∈ R2k

and is defined in the following way when x, y, z are pairwise different:

78

f(x, y, z) =


2k if {2, 2k} ⊆ {x, y, z}

1 if {1, 2k − 1} ⊆ {x, y, z}

x otherwise.

We will say that a tuple (x, y, z) is of type 1 if x = y, x = z or y = z. We will say that

(x, y, z) is of type 2 if it is not of type 1 and either {2, 2k} ⊆ {x, y, z} or {1, 2k−1} ⊆ {x, y, z}.

We will say that that (x, y, z) is of type 3 if it is not of type 1 or 2.

Suppose x1 � x2, y1 � y2, z1 � z2. Note that this implies that either the tuples (x1, y1, z1)

and (x2, y2, z2) are of the same type, or one is of type 1 and the other is of type 2.

If both tuples are of the same type, then clearly f(x1, y1, z1) � f(x2, y2, z2). If (x1, y1, z1)

is of type 1 and (x2, y2, z2) is of type 2, then it must be the case that {2, 2k} ⊆ {x2, y2, z2},

since 1 is not connected from any vertex of R2k. Then f(x1, y1, z1) = 1 and so f(x1, y1, z1)

� f(x2, y2, z2). If (x1, y1, z1) is of type 2 and (x2, y2, z2) is of type 1, then it must be that

{1, 2k−1} ⊆ {x1, y1, z1}, since 2k is not connected to any vertex of R2k. Then f(x2, y2, z2) =

2k and so f(x1, y1, z1) � f(x2, y2, z2). Therefore f is a NU polymorphism.

79

Chapter 5

Conclusion

While the CSP dichotomy conjecture is widely believed to be true, the notion of bounded

width provides the possibility of formulating and studying refined and stronger versions of the

dichotomy. While there exist directed graphs with a tractable CSP that do not have bounded

width, we find that many popular classes of graphs exhibit a bounded width dichotomy. The

class of tournaments, as well as the more general class of connected locally semi-complete

directed graphs, have a bounded width dichotomy. Transitive directed graphs have bounded

width.

There are many tools that can help us determine whether a structure has bounded width,

including looking for special polymorphisms, as well as analyzing some pebble games and

Datalog programs. While the presence of a semilattice polymorphism determines that a

structure has bounded width, this only works for a reduced class of directed graphs: bi-arc

graphs. The presence of a binary, conservative WNU is still sufficient to determine that a

structure has bounded width, and this criterion works for a larger class of directed graphs,

including odd directed cycles. The complete graphs Kn, n ≥ 3 are known to have an NP-

complete CSP; however, we found that the Mycielski graphs explicitly witness their lack of

bounded width through the associated pebble games.

We have by no means resolved all the problems that naturally arise. We discuss some

80

questions left unanswered, which could form the basis for future work.

Question 5.1. If S is a substructure of ∆ and ∆ has a tractable CSP (bounded width) is it

true that S has a tractable CSP (bounded width)?

This is true for simple graphs, but not in general. A simple counterexample is the

following:

Let S = (V ;E) = K3, and let ∆ = (V ;E ′), where E ′ = V 2, that is, the (not simple)

graph obtained by adding to K3 a loop at every vertex. Note that CSP (S) is NP-complete,

while CSP(∆) is trivial (every finite graph maps to it).

However, some special cases can be studied. We give an example

Proposition 5.2. Let G = (V ;E) be a (simple) graph, with v 6∈ V and let G′ = (V ′;E ′),

where V ′ = V ∪ {v}, E ′ = E ∪ {(g, v)|g ∈ V } ∪ {(v, g)|g ∈ V }. That is, G′ is obtained

by adding a vertex v to G and an edge from every vertex of G to v. Then CSP(G) can be

reduced to CSP(G′).

Proof. Let S = (S;ES) be an instance of CSP(G). Create an instance S ′ = (S ′;ES′) of

CSP(G′) by adding a vertex v′ to S and an edge from every vertex of S to v′. Then there is

a homomorphism from S to G if and only if there is a homomorphism from S ′ to G′. To see

this, suppose that there exists f : S → G. We can extend f to a homomorphism f ′ : S ′ → G′

by making f ′(v′) = v. Next, suppose that there exists a homomorphism f ′ : S ′ → G′. If

f ′(v′) = v, then the image of S under f ′ is contained in S, so the restriction of f ′ to S is a

homomorphism from S to G. Otherwise, if f ′(v′) = s ∈ S, then (s, f ′(t)) ∈ E ′ for all t ∈ S.

Therefore G′ has an isomorphism g that swaps v and s, and fixes every other vertex of G.

Then f ◦ g : S ′ → G′ is a homomorphism and f(g(v′)) = v, which is our previous case.

We see that we can saturate the relations of a structure to make a hard problem tractable.

We then refine our question:

81

Question 5.3. If S is an induced substructure of ∆ and ∆ has a tractable CSP (bounded

width) is it true that S has a tractable CSP (bounded width)?

This is true for simple graphs. Hell and Nešetřil proved in [22] that the CSP of a graph

G is tractable if and only if G is bipartite. If G is bipartite, any (induced) subgraph of G

is also bipartite, and so will have a tractable CSP. A bipartite graph G will have the same

CSP as K2 if G has an edge, and the same CSP as K̄2 if G has no edges. Both K2 and K̄2

have bounded width, so G has bounded width as well. Therefore a graph G has bounded

width if and only if G is bipartite, so if G has bounded width any induced subgraph of it

will have bounded width. Simple graphs have a bounded width dichotomy.

Question 5.3 is still false for (not simple) graphs. If we construct a graph G by adding a

loop to a vertex of K4, then G has a trivial CSP, but K3 is an induced subgraph of G.

We can consider Question 5.3 for the class of tournaments. We can reduce this question

to the following one:

Question 5.4. Let T = (V ;E) be a tournament with a WNU polymorphism of T . Does T

have a conservative WNU polymorphism of arity n? That is, is there a WNU polymorphism

f : V n → V of T such that

f(x1, ..., xn) ∈ {x1, ..., xn} for all x1, ..., xn ∈ V ?

A positive answer to this question would imply that if a tournament T has bounded

width, then any subtournament of T has bounded width as well. This is because, since all

tournaments are cores, if T has bounded width then it has a WNU of all but finitely many

arities. For each of these arities n, there is a WNU polymorphism gn with the above property.

If S is a subtournament of T , then gn|S is a WNU of S of arity n, and so S has bounded width.

Alternatively, we can try to answer Question 5.3 for tournaments by studying the asso-

ciated pebble games. From Theorem 3.2, we know that a tournament T has bounded width

82

if and only if there exists k such that, for all directed graphs G, Spoiler wins the k-pebble

game on G and T if and only if there is no homomorphism from G to T .

Suppose a tournament T has bounded width (assume that ¬CSP(T) is expressible in

k-Datalog). Given a subtournament T ′ of T , does T ′ have bounded width? Or, in par-

ticular, is ¬CSP(T ′) expressible in k-Datalog? To prove that we must prove that, for any

directed graph G′, Spoiler wins the k-pebble game on G′ and T ′ if and only if there is no

homomorphism from G′ to T ′. If there is no homomorphism from G′ to T , then there is no

homomorphism from G′ to T ′, and since T has bounded width, Spoiler wins the k-pebble

game on G′ and T . This winning strategy naturally produces a winning strategy for Spoiler

in the k-pebble game on G′ and T ′. If there is a homomorphism from G′ to T ′, then Dupli-

cator wins the k-pebble game on G′ and T ′. Therefore we are left with the case where there

is no homomorphism between G′ and T ′, but there is one between G′ and T . We can assume

without loss of generality that T ′ has precisely one fewer vertex than T , since then we can

iterate this argument to obtain any desired subtournament of T . Suppose that T ′ = (V ′;E ′)

and T = (V ′ ∪ {v};E). If there is no homomorphism from G′ to T ′, but there is one from

G′ to T , can we construct a directed graph G by adding a vertex u to G′ such that there

is no homomorphism from G to T? If this is the case, then Spoiler wins the k-pebble game

on G and T , and in particular Spoiler wins the k + 1-pebble game on G and T with an

unmovable pebble on u ∈ G and v ∈ T , since this game would be at least as hard for Dupli-

cator to win as the k-pebble game on G and T . With Spoiler’s winning strategy in this game

we might be able to recover a winning strategy for Spoiler in the k-pebble game on G′ and T ′.

However, consider the following example:

Example 5.5. Let T ′ = ~L5 with vertices v1, ..., v5 (where vi � vj if and only if i < j) and

let T have vertices v1, ..., v5, v where v1 � v, v � v2, v4 � v, v � v5 (either v3 � v or v � v3

will work). If G′ = ~C3, say u1 � u2 � u3 � u1, then clearly there is no homomorphism

from G′ to T ′ and there is a homomorphism from G′ to T since G′ is a subtournament of G.

83

However, we cannot add a vertex to G′ to create a graph G that does not map to T , since T

has every 4-vertex tournament as a subtournament. So we see that given G′ that does not

map to T ′ but maps to T , we cannot always find a G that does not map to T by adding a

vertex to G′.

Theorem 4.21 answers Question 5.4, since the only tournaments that admit a WNU

polymorphism are the ones that contain at most one cycle, which have conservative WNU

polymorphism of arity k for every k ≥ 2. However, the question still remains open for

(simple) directed graphs.

Question 5.6. Let G = (V ;E) be a (simple) directed graph and f : Gn → G a WNU

polymorphism of G. Does G have a conservative WNU polymorphism of arity n?

Consider the graph G = ~C1 ∪ ~C2 = ({0, 1, 2}; {(0, 0), (1, 2), (2, 1)}). This graph does

not have a binary conservative WNU polymorphism, since ~C2 does not admit a BCWNU

polymorphism. However, the operation f : G2 → G defined by

f(x, y) =


x if x = y

0 otherwise.

is a WNU polymorphism of G. We can also find an example that does not contain

loops. Consider the graph H = ~C3 ∪ ~C6, the disjoint union of a copy of ~C3 and a copy of

~C6. This graph does not have a binary conservative WNU polymorphism, since ~C6 does

not admit a BCWNU polymorphism. However, we know that there exists a binary WNU

f : ~C3 → ~C3 and a homomorphism h : ~C6 → ~C3. From these, we can create a homomorphism

h′ : ~C3 ∪ ~C6 → ~C3 defined by

h′(x) =


x if x ∈ ~C3

h(x) if x ∈ ~C6

84

~C1 ∪ ~C2
~C3 ∪ ~C6

Figure 5.1: Directed graphs with a WNU polymorphism but no conservative WNU poly-
morphism of the same arity.

and a polymorphism f ′ : H2 → H defined by

f ′(x, y) =


x if x = y

f(h′(x), h′(y)) otherwise.

We see that there are directed graphs (with or without loops) with a WNU polymorphism

of arity 2, that do not have a conservative WNU of the same arity (see Figure 5.1). We do

not know if this is true for connected directed graphs, or for other arities.

In Section 4.6 we found that the directed graphs R2k have bounded width, but do not

admit a BCWNU polymorphism. The only directed graphs on at most 4 vertices, without

loops or double edges, that have bounded width and do not admit a BCWNU polymorphism

are ~C4, and R4. Are there graphs outside of these families with similar properties?

Question 5.7. Is there a directed graph without loops or double edges, not having either

of ~C2k, R2k, k ≥ 2, as an induced subgraph, that has bounded width but does not admit a

BCWNU polymorphism?

85

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, New York, NY, USA, 1st edition, 2009.

[2] Jørgen Bang-Jensen. Locally semicomplete digraphs: A generalization of tournaments.

Journal of Graph Theory, 14:371–390, 1990.

[3] Jørgen Bang-Jensen, Pavol Hell, and Gary MacGillivray. The complexity of colouring

by semicomplete digraphs. SIAM J. Discret. Math., 1(3):281–298, August 1988.

[4] Jørgen Bang-Jensen, Gary MacGillivray, and Jacobus Swarts. The complexity of colour-

ing by locally semicomplete digraphs. Discrete Mathematics, 310(20):2675 – 2684, 2010.

Graph Theory — Dedicated to Carsten Thomassen on his 60th Birthday.

[5] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local con-

sistency methods. J. ACM, 61(1):3:1–3:19, January 2014.

[6] Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs

with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and

Hell). SIAM J. Comput., 38(5):1782–1802, January 2009.

[7] Manuel Bodirsky and Vı́ctor Dalmau. Datalog and constraint satisfaction with infinite

templates. CoRR, abs/0809.2386, 2008.

[8] Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homo-

geneous templates. J. Logic Comput., 16(3):359–373, 2006.

86

[9] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM

Trans. Comput. Logic, 12(4):24:1–24:66, July 2011.

[10] Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. Journal of Com-

puter and System Sciences, 82(2):347 – 356, 2016.

[11] Andrei A. Bulatov and Vı́ctor Dalmau. A simple algorithm for maltsev constraints.

SIAM J. Comput., 36(1):16–27, 2006.

[12] Andrei A. Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of

constraints using finite algebras. SIAM J. Comput., 34(3):720–742, March 2005.

[13] Jakub Bulin, Dejan Delic, Marcel Jackson, and Todd Niven. On the reduction of

the CSP dichotomy conjecture to digraphs. In Principles and Practice of Constraint

Programming - 19th International Conference, CP 2013, Uppsala, Sweden, September

16-20, 2013. Proceedings, pages 184–199, 2013.

[14] Jakub Bulin, Dejan Delic, Marcel Jackson, and Todd Niven. A finer reduction of con-

straint problems to digraphs. Logical Methods in Computer Science, 11(4), 2015.

[15] Hubie Chen. Logic column 17: A rendezvous of logic, complexity, and algebra. CoRR,

abs/cs/0611018, 2006.

[16] Vı́ctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint Satisfaction,

Bounded Treewidth, and Finite-Variable Logics, pages 310–326. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2002.

[17] David Eppstein. https://oeis.org/A122695. Number of edges in the n-th Mycielski

graph.

[18] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic

snp and constraint satisfaction: A study through datalog and group theory. SIAM

Journal on Computing, 28(1):57–104, 1998.

87

[19] David Geiger. Closed systems of functions and predicates. Pacific J. Math., 27:95–100,

1968.

[20] Wolfgang Gutjahr, Emo Welzl, and Gerhard Woeginger. Polynomial graph-colorings.

Discrete Applied Mathematics, 35(1):29 – 45, 1992.

[21] Frank Harary and Leo Moser. The theory of round robin tournaments. The American

Mathematical Monthly, 73(3):231–246, 1966.

[22] Pavol Hell and Jaroslav Nešetřil. On the complexity of h-coloring. Journal of Combi-

natorial Theory, Series B, 48(1):92 – 110, 1990.

[23] Pavol Hell and Arash Rafiey. Bi-arc digraphs and conservative polymorphisms. CoRR,

abs/1608.03368, 2016.

[24] Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applications.

Cambridge University Press, 1993.

[25] Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Com-

puter Science, 200(1):185 – 204, 1998.

[26] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J.

ACM, 44(4):527–548, July 1997.

[27] Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of datalog: Tools

and a case study. Journal of Computer and System Sciences, 51(1):110 – 134, 1995.

[28] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint

satisfaction. Journal of Computer and System Sciences, 61(2):302 – 332, 2000.

[29] Phokion G. Kolaitis and Moshe Y. Vardi. A game-theoretic approach to constraint

satisfaction. In Proceedings of the Seventeenth National Conference on Artificial In-

telligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,

pages 175–181. AAAI Press, 2000.

88

[30] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–

171, January 1975.

[31] Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra

universalis, 56(3):439–466, Jun 2007.

[32] Gary MacGillivray and Jacobus Swarts. Weak near-unanimity functions and digraph

homomorphism problems. Theoretical Computer Science, 477:32 – 47, 2013.

[33] Gary MacGillivray, Jacobus Swarts, and Jørgen Bang-Jensen. A graph theoretic proof

of the complexity of colouring by a local tournament with at least two directed cycles.

Contributions to Discrete Mathematics, 6(2), 2011.

[34] Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric opera-

tions. Algebra universalis, 59(3):463–489, Dec 2008.

[35] John W. Moon. Topics on tournaments. Athena series: Selected topics in mathematics.

Holt, Rinehart and Winston, 1968.

[36] Jan Mycielski. Sur le coloriage des graphs. Colloquium Mathematicae, 3(2):161–162,

1955.

[37] Jakob Nordstrom. Pebble Games, Proof Complexity, and Time-Space Trade-offs. ArXiv

e-prints, July 2013.

[38] Christos H. Papadimitriou. Computational complexity. In Encyclopedia of Computer

Science, pages 260–265. John Wiley and Sons Ltd., Chichester, UK.

[39] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226,

New York, NY, USA, 1978. ACM.

[40] Eric W. Weisstein. https://oeis.org/A266550. Independence number of the n-Mycielski

graph.

89

[41] Eric W. Weisstein. https://oeis.org/A137890. Number of (directed) Hamiltonian paths

in the n-Mycielski graph.

[42] Eric W. Weisstein. https://oeis.org/A143247. Number of (directed) Hamiltonian cir-

cuits in the Mycielski graph of order n.

[43] Eric W. Weisstein. https://oeis.org/A234625. Numbers of undirected cycles in the

n-Mycielski graph.

[44] Eric W. Weisstein. https://oeis.org/A193148. Numbers of spanning trees of the My-

cielski graphs.

[45] Eric W. Weisstein. https://oeis.org/A287432. Number of connected dominating sets in

the n-Mycielski graph.

90

Appendix A

Pebble Game program

The following C++ program computes the number of rounds it takes for Spoiler to win in

a (k − 1, k)-pebble game played on Cn (an odd cycle of length n) and K2, for n < 14. It

recursively analyzes game positions and stores how many rounds are needed for Spoiler to

win at a given position. If at the current position the associated partial homomorphism is

not valid, the game is considered to be won by Spoiler and so it needs zero more rounds for

Spoiler to win.

#inc lude<iostream>

#inc lude< l i s t >

#inc lude<s t r i ng>

us ing namespace std ;

i n t mem1 [2 0 0 0 0 0 0] [1 0] [2] ;

i n t mem2 [2 0 0 0 0 0 0] [1 0] [1 0] [2] ;

i n t play1 (s t r i n g s , i n t l e v e l) ;

i n t play2 (s t r i n g s , i n t p , i n t l e v e l) ;

l i s t <s t r i ng> L ;

i n t k ;

91

i n t n ;

i n t conv (s t r i n g s)

{

i n t num=0;

i n t power=1;

f o r (i n t i =0; i<n ; i++)

{

num+= (power ∗(i n t (s [i])− i n t (’ 0 ’))) ;

power∗=3;

}

re turn num;

}

i n t iph (s t r i n g s , i n t i , i n t p)

{

i n t aux1 = (i−1)%n ;

i n t aux2 = (i +1)%n ;

i f (i n t (s [aux1])− i n t (’0 ’)==p | | (i n t (s [aux2])− i n t (’0 ’)==p))

re turn 0 ;

e l s e re turn 1 ;

}

i n t g e n l i s t (s t r i n g s , s t r i n g sub , i n t l)

{

i f (l==k) re turn 0 ;

e l s e i f (sub . l ength ()==n)

{

i n t t e s t =0;

f o r (i n t i =0; i<n ; i++)

{ i f (sub [i] != ’ 0 ’) t e s t ++;}

i f (t e s t !=0) L . push back (sub) ;

}

e l s e i f (l==k−1)

{

f o r (i n t i=sub . l ength () ; i<n ; i++)

92

{

sub . push back (’ 0 ’) ;

}

L . push back (sub) ;

}

e l s e

{

s t r i n g cur = sub ;

cur . push back (s [sub . l ength ()]) ;

i f (s [sub . l ength ()] == ’0 ’)

{

g e n l i s t (s , cur , l) ;

}

e l s e

{

s t r i n g aux = cur ;

aux [sub . l ength ()] = ’ 0 ’ ;

g e n l i s t (s , aux , l) ;

g e n l i s t (s , cur , l +1);

}

}

re turn 0 ;

}

i n t play1 (s t r i n g s , i n t l e v e l)

{

i f (mem1[conv (s)] [l e v e l] [0]==1)

{ re turn mem1[conv (s)] [l e v e l] [1] ; }

i n t a s s i gned =0;

f o r (i n t i =0; i< n ; i++)

93

{

i f (s [i] ! = ’ 0 ’) { as s i gned ++;}

}

i f (ass igned<k)

{

i n t aux1 ;

i n t min1=50;

f o r (i n t i =0; i<n ; i++)

{

i f (s [i]== ’0 ’)

{aux1=play2 (s , i , l e v e l) ; min1= (min1<aux1? min1 : aux1) ; }

}

mem1[conv (s)] [l e v e l] [0] = 1 ;

mem1[conv (s)] [l e v e l] [1] = min1 ;

re turn min1 ;

}

i f (a s s i gned ==k)

{

i n t min2=50;

i n t aux2 ;

s t r i n g c u r s t r i n g ;

l i s t <s t r i ng> a u x l i s t ;

g e n l i s t (s , ”” , 0) ;

a u x l i s t=L ; L . c l e a r () ;

f o r (l i s t <s t r i ng > : : i t e r a t o r i t=a u x l i s t . begin () ;

i t != a u x l i s t . end () ; ++i t)

{

c u r s t r i n g = ∗ i t ;

f o r (i n t i =0; i<n ; i++)

{

i f (c u r s t r i n g [i]== ’0 ’)

{

aux2=

94

play2 (cu r s t r i ng , i , l e v e l +1);

min2=

(min2<aux2? min2 : aux2) ;

}

}

}

mem1[conv (s)] [l e v e l] [0] = 1 ;

mem1[conv (s)] [l e v e l] [1]=1+ min2 ;

re turn 1+min2 ;

}

}

i n t play2 (s t r i n g s , i n t p , i n t l e v e l)

{

i f (l e v e l ==5) { re turn 50 ;}

s t r i n g hold=s ;

i f (mem2[conv (s)] [p] [l e v e l] [0]==1) { re turn mem2[conv (s)] [p] [l e v e l] [1] ; }

i f (iph (s , p,1)==0 && iph (s , p,2)==0) re turn 1 ;

i f (iph (s , p,1)==0 && iph (s , p,2)==1)

{

s [p]= ’2 ’ ; i n t r e t1=play1 (s , l e v e l) ;

mem2[conv (hold)] [p] [l e v e l] [0] = 1 ;

mem2[conv (hold)] [p] [l e v e l] [1] = re t1 ; r e turn r e t1 ;

}

i f (iph (s , p,1)==1 && iph (s , p,2)==0)

{

s [p]= ’1 ’ ; i n t r e t2= play1 (s , l e v e l) ;

mem2[conv (hold)] [p] [l e v e l] [0] = 1 ;

mem2[conv (hold)] [p] [l e v e l] [1] = re t2 ; r e turn r e t2 ;

}

e l s e

95

{

s t r i n g auxs = s ;

auxs [p]= ’1 ’ ;

s [p]= ’2 ’ ;

i n t va l1=play1 (auxs , l e v e l) ;

i n t va l2=play1 (s , l e v e l) ;

i n t r e t3 =(val1>va l2 ? va l1 : va l2) ;

mem2[conv (hold)] [p] [l e v e l] [0] = 1 ;

mem2[conv (hold)] [p] [l e v e l] [1] = re t3 ;

r e turn r e t3 ;

}

}

i n t main ()

{

k=3;

n=9;

cout <<”k = ”<< k<< endl<< ”n value”<<endl ;

f o r (i n t odd=1; odd<7; odd++)

{

n=2∗odd+1;

memset (mem1, 0 , s i z e o f (mem1)) ;

memset (mem2, 0 , s i z e o f (mem2)) ;

s t r i n g s t a r t =””;

f o r (i n t i =0; i<n ; i++) { s t a r t . push back (’ 0 ’) ; }

cout <<n << ” ” <<play1 (s ta r t ,1)<< endl ;

}

96

system (”PAUSE”) ;

r e turn 0 ;

}

It returns the following table

n value

3 1

5 2

7 2

9 3

11 3

13 3

97

Appendix B

Program for finding X-enumerations

in H ′

The following program goes through every enumeration of the vertices of H ′ (from Figure 4.6) and prints

the ones that are X-enumerations. Since it does not print any enumeration, we conclude that H ′ has no X-

enumeration. The function isX takes a permutation of the vertices of H ′ and checks whether min{hi, hk} �

min{hj , h`} every time vi � vj and vk � v`.

#inc lude <iostream>

#inc lude <s t r i ng>

us ing namespace std ;

i n t isPerm (i n t a , i n t b , i n t c , i n t d , i n t e , i n t f)

{ // checks whether abcdef i s a permutation o f 123456.

i n t check =1;

check∗=a−b ;

check∗=a−c ;

check∗=a−d ;

check∗=a−e ;

check∗=a−f ;

check∗=b−c ;

check∗=b−d ;

check∗=b−e ;

98

check∗=b−f ;

check∗=c−d ;

check∗=c−e ;

check∗=c−f ;

check∗=d−e ;

check∗=d−f ;

check∗=e−f ;

i f (check != 0) { re turn 1 ;}

e l s e { re turn 0 ;}

}

i n t isEdge (i n t a , i n t b)

{ // checks whether ab i s an edge o f H’

i f ((a==1 && b!=1) | | (a==2 && b==4)

| | (a==3 && b==5) | | (a !=6 && b==6))

{ re turn 1 ;}

e l s e re turn 0 ;

}

i n t isX (i n t a , i n t b , i n t c , i n t d , i n t e , i n t f)

{ // checks i f abcdef i s an X−enum

f o r (i n t i =1; i <6; i++)

{ // we check f o r c r o s s i n g s o f the form i−>j ,

// k−>l , assuming i<k , l<j .

f o r (i n t l =1; l <6; l++)

{

f o r (i n t k=i +1;k<7;k++)

{

f o r (i n t j=l +1; j <7; j++)

{

i f (i sEdge (i , j)==1 && isEdge (k , l)==1

&& isEdge (i , l)==0)

{ re turn 0 ;}

99

}

}

}

}

re turn 1 ;

}

i n t main ()

{

f o r (i n t i 1 =1; i1 <7; i 1++)

{

f o r (i n t i 2 =1; i2 <7; i 2++)

{

f o r (i n t i 3 =1; i3 <7; i 3++)

{

f o r (i n t i 4 =1; i4 <7; i 4++)

{

f o r (i n t i 5 =1; i5 <7; i 5++)

{

f o r (i n t i 6 =1; i6 <7; i 6++)

{

i f (isPerm (i1 , i2 , i3 , i4 , i5 , i 6)==1

&& isX (i1 , i2 , i3 , i4 , i5 , i 6)==1)

{

cout<< ”The permutation ” << i 1

<< i 2 << i3<< i4<< i5<< i 6

<< ” i s an X−enumeration”<<endl ;

}

}

}

} // t h i s i t e r a t e d loop checks f o r every element

} // o f [6] ˆ 6 i f i t i s a v a l i d X−enumeration

} //and p r i n t s the v a l i d ones .

}

100

re turn {0} ;

}

101

Appendix C

Computer program for finding

4-vertex directed graphs without a

BCWNU polymorphism.

The following computer program, written in Python, finds all 4-vertex directed graphs, without loops or

double edges, that do not admit a binary, conservative WNU polymorphism. It lists them by their incidence

matrix, and counts them by ”type”, which counts how many vertices have in-degree 0,1,2,3, and how many

vertices have out-degree 0,1,2,3.

de f c r e a t e (matrix , source) :

matrix [0] [1] = source [0] [0]

matrix [0] [2] = source [0] [1]

matrix [0] [3] = source [0] [2]

matrix [1] [0] = source [1] [0]

matrix [1] [2] = source [1] [1]

matrix [1] [3] = source [1] [2]

matrix [2] [0] = source [2] [0]

matrix [2] [1] = source [2] [1]

matrix [2] [3] = source [2] [2]

matrix [3] [0] = source [3] [0]

matrix [3] [1] = source [3] [1]

102

matrix [3] [2] = source [3] [2]

r e turn

de f checktype (matrix , typearray) : #re tu rn s 1 i f matrix has type typearray , 0 otherwi se

array =[0 , 0 , 0 , 0 , 0 , 0]

f o r x in range (0 , 4) :

count=0

f o r y in range (0 , 4) :

i f matrix [x] [y]==1:

count+=1

i f count==0:

array [0]+=1

i f count==1:

array [1]+=1

i f count==2:

array [2]+=1

f o r x in range (0 , 4) :

count=0

f o r y in range (0 , 4) :

i f matrix [y] [x]==1:

count+=1

i f count==0:

array [3]+=1

i f count==1:

array [4]+=1

i f count==2:

array [5]+=1

i f array==typearray :

r e turn 1

de f dotype (matrix) :

array =[0 , 0 , 0 , 0 , 0 , 0]

103

f o r x in range (0 , 4) :

count=0

f o r y in range (0 , 4) :

i f matrix [x] [y]==1:

count+=1

i f count==0:

array [0]+=1

i f count==1:

array [1]+=1

i f count==2:

array [2]+=1

f o r x in range (0 , 4) :

count=0

f o r y in range (0 , 4) :

i f matrix [y] [x]==1:

count+=1

i f count==0:

array [3]+=1

i f count==1:

array [4]+=1

i f count==2:

array [5]+=1

pr in t (array)

re turn

de f pr in t43 (matrix) :

f o r x in range (0 , 4) :

p r i n t (’{0} {1} {2}\n ’ . format (matrix [x] [0] , matrix [x] [1] ,

matrix [x] [2]))

r e turn

de f i s s i m p l e (matrix) :

f o r i in range (0 , 3) :

104

f o r j in range (i +1 ,4) :

i f matrix [i] [j]==1 and matrix [j] [i]==1:

re turn 0 #we have a 2−c y c l e

re turn 1 #we dont have 2−c y c l e s

de f pr in t44 (matrix) :

f o r x in range (0 , 4) :

p r i n t (’{0} {1} {2} {3}\n ’ . format (matrix [x] [0] , matrix [x] [1] ,

matrix [x] [2] , matrix [x] [3]))

r e turn

de f i s p o l y (f , G) :

f o r a in range (0 , 3) : #we check f o r a l l i n s t a n c e s o f a−>c , b−>d

f o r b in range (a +1 ,4) : #we assume wlog that a<b

f o r c in range (0 , 3) : #we analyze the case c<d

f o r d in range (c +1 ,4) :

i f G[a] [c]==1 and G[b] [d]==1:

i f f [a] [b]==0 and f [c] [d]==1 and G[a] [d]==0:

re turn 0 #i t i s not a polymorphism

i f f [a] [b]==1 and f [c] [d]==0 and G[b] [c]==0:

re turn 0 #i t i s not a polymorphism

f o r d in range (0 , 3) : #we analyze the case c>d

f o r c in range (d+1 ,4) :

i f G[a] [c]==1 and G[b] [d]==1:

i f f [a] [b]==0 and f [c] [d]==0 and G[a] [d]==0:

re turn 0 #i t i s not a polymorphism

i f f [a] [b]==1 and f [c] [d]==1 and G[b] [c]==0:

re turn 0 #i t i s not a polymorphism

return 1 #i f we didnt f i n d any problems , i t i s a polymorphism

graph = [[0 , 0 , 0 , 0] , [0 , 0 , 0 , 0] , [0 , 0 , 0 , 0] , [0 , 0 , 0 , 0]]

auxgraph = [[0 , 0 , 0] , [0 , 0 , 0] , [0 , 0 , 0] , [0 , 0 , 0]]

poly = [[0 , 0 , 0 , 0] , [0 , 0 , 0 , 0] , [0 , 0 , 0 , 0] , [0 , 0 , 0 , 0]]

graphcount=0

105

f o r x in range (0 , 4 0 9 6) :

d=2048

i=0

j=0

f o r m in range (0 , 1 2) :

i f x>=d :

x=x−d

auxgraph [i] [j]=1

e l s e :

auxgraph [i] [j]=0

j+=1

i f j ==3:

j=0

i+=1

d=d/2

c r e a t e (graph , auxgraph)

i f i s s i m p l e (graph)==1:

marker=0

f o r y in range (0 , 6 4) :

d iv=32

k=0

l=0

f o r m in range (0 , 1 6) :

i f k==l :

poly [k] [l]=0

e l i f k>l :

poly [k] [l]= poly [l] [k]

e l i f y>=div :

y=y−div

poly [k] [l]=1

e l s e :

poly [k] [l]=0

i f k<l :

106

div=div /2

l+=1

i f l ==4:

l=0

k+=1

i f i s p o l y (poly , graph)==1:

marker=1

i f marker==0:

pr in t44 (graph)

dotype (graph)

graphcount+=1

107

Appendix D

A 4-ary WNU polymorphism for the

directed graph R4.

In Section 4.6 we saw that the graph R4 = ({1, 2, 3, 4}; {(1, 2), (2, 3), (3, 4), (1, 4)}) has bounded width, since

it has a 3-ary NU polymorphism, and this implies that it has a a k−ary NU polymorphism for every k ≥ 3.

It is natural to ask, however, whether this graph allows other kinds of WNU polymorphisms.

We were able to find a 4-ary WNU polymorphism for R4 by taking a candidate function and changing

its image by one value at a time until a an algorithm confirmed it was a WNU polymorphism. To describe

the polymorphism, we need to define the following function:

Let maj(x1, x2, x3, x4) be equal to the most repeated component of the tuple (x1, x2, x3, x4), if there

is one, or zero otherwise. Note that maj(x1, x2, x3, x4) = 0 only if x1, x2, x3, x3 are pairwise different or

when there are two different repeated components in (x1, x2, x3, x4), that is, xσ(1) = xσ(2), xσ(3) = xσ(4),

xσ(1) 6= xσ(3) for some σ ∈ S4.

We now describe a 4-ary WNU polymorphism of R4. Let f4 : F 4
4 → R4 be such that

108

f4(1, 2, 2, 3) = 1

f4(1, 2, 3, 2) = 1

f4(1, 3, 2, 2) = 1

f4(3, 1, 2, 2) = 1

f4(3, 2, 1, 2) = 1

f4(3, 2, 2, 1) = 1

f4(2, 4, 3, 3) = 2

f4(2, 3, 4, 3) = 2

f4(2, 3, 3, 4) = 2

f4(4, 2, 3, 3) = 2

f4(4, 3, 2, 3) = 2

f4(4, 3, 3, 2) = 2

and is defined in the following way for other tuples:

f4(x1, x2, x3, x4) =


x1 if maj(x1, x2, x3, x4) = 0

maj(x1, x2, x3, x4) otherwise.

We used a computer program to check that f4 is a WNU polymorphism of R4.

The reason why the function f4 needs to have different values from maj on particular tuples comes from

the fact that f4 needs to satisfy the following requirements:

f4(1, 2, 2, 3) � f4(4, 3, 3, 4), f4(1, 2, 2, 1) � f4(2, 3, 3, 4).

In this case, maj(1, 2, 2, 3) = 2 but maj(4, 3, 3, 4) = 4, and maj(1, 2, 2, 1) = 1, but maj(2, 3, 3, 4) = 3.

The same is true for certain permutations of the coordinates of these tuples.

We used the following Python program to check that f4 is a polymorphism. It stores the images

of f4 in the 4-dimensional list ’poly4’. For example, the image of the tuple x1, x2, x3, x4 is stored in

poly4[x1][x2][x3][x4]. It then checks for every pair of tuples (x1, x2, x3, x4), (y1, y2, y3, y4) such that xi �

yi, 1 ≤ i ≤ 4, whether f4(x1, x2, x3, x4) � f4(y1, y2, y3, y4) and outputs ’it is a polymorphism of the graph’ if

109

this is the case.

graph = [[0 , 1 , 0 , 1] , [0 , 0 , 1 , 0] , [0 , 0 , 0 , 1] , [0 , 0 , 0 , 0]]

de f i sPo ly4 (f , G) : #checks i f a 3 ary operat i on i s a polymorphism o f a graph G

f o r a1 in range (0 , 4) :

f o r a2 in range (0 , 4) :

f o r b1 in range (0 , 4) :

f o r b2 in range (0 , 4) :

f o r c1 in range (0 , 4) :

f o r c2 in range (0 , 4) :

f o r d1 in range (0 , 4) :

f o r d2 in range (0 , 4) :

va lue1=f [a1] [b1] [c1] [d1]

va lue2=f [a2] [b2] [c2] [d2]

i f G[a1] [a2]==1 and G[b1] [b2]==1

and G[c1] [c2]==1 and G[d1] [d2]==1

and G[value1] [va lue2]==0:

p r i n t (a1 , b1 , c1 , d1 , a2 , b2 , c2 , d2)

p r i n t (value1 , value2)

re turn 0

return 1

de f dominating (a , b , c , d) :

n =[0 ,0 , 0 , 0]

n [a]+=1

n [b]+=1

n [c]+=1

n [d]+=1

i f n [0]>n [1] and n[0]>n [2] and n[0]>n [3] :

r e turn 0

i f n [1]>n [0] and n[1]>n [2] and n[1]>n [3] :

r e turn 1

110

i f n [2]>n [1] and n[2]>n [0] and n[2]>n [3] :

r e turn 2

i f n [3]>n [1] and n[3]>n [2] and n[3]>n [0] :

r e turn 3

return 4

de f s i z e (a , b , c , d) :

i f a==b and b==c and c==d :

re turn 1

e l i f (a==b and b==c) or (a==b and b==d) or (a==c and c==d) or (b==c and c==d) :

re turn 2

e l i f (a==b and c==d) or (a==c and b==d) or (a==d and b==c) :

r e turn 2

e l i f a==b or a==c or a==d or b==c or b==d or c==d :

re turn 3

e l s e :

r e turn 4

dim=4

poly4 = [[[[0 f o r l in xrange (dim)] f o r k in xrange (dim)]

f o r j in xrange (dim)] f o r i in xrange (dim)]

poly4 [0] [0] [0] [0]

f o r i in xrange (4) :

f o r j in xrange (4) :

f o r k in xrange (4) :

f o r l in xrange (4) :

i f s i z e (i , j , k , l)==3:

i f dominating (i , j , k , l)==0:

poly4 [i] [j] [k] [l]=0

i f dominating (i , j , k , l)==1:

poly4 [i] [j] [k] [l]=1

i f dominating (i , j , k , l)==2:

poly4 [i] [j] [k] [l]= i

i f dominating (i , j , k , l)==3:

111

poly4 [i] [j] [k] [l]=3

i f s i z e (i , j , k , l)==4:

poly4 [i] [j] [k] [l]= i

e l s e :

i f dominating (i , j , k , l)==0:

poly4 [i] [j] [k] [l]=0

i f dominating (i , j , k , l)==1:

poly4 [i] [j] [k] [l]=1

i f dominating (i , j , k , l)==2:

poly4 [i] [j] [k] [l]=2

i f dominating (i , j , k , l)==3:

poly4 [i] [j] [k] [l]=3

i f dominating (i , j , k , l)==4:

poly4 [i] [j] [k] [l]= i

poly4 [1] [3] [2] [2] = 1

poly4 [1] [2] [3] [2] = 1

poly4 [1] [2] [2] [3] = 1

poly4 [0] [1] [1] [2] = 0

poly4 [0] [1] [2] [1] = 0

poly4 [0] [2] [1] [1] = 0

poly4 [3] [1] [2] [2] = 1

poly4 [3] [2] [1] [2] = 1

poly4 [3] [2] [2] [1] = 1

poly4 [2] [0] [1] [1] = 0

poly4 [2] [1] [0] [1] = 0

poly4 [2] [1] [1] [0] = 0

i f i sPo ly4 (poly4 , graph)==1:

p r i n t (’ i t i s a polymorphism o f the graph ’)

112

