
THE UNIVERSITY OF CALGARY 

Assessing Approximation Methods for Modelling 

Non-Linear Dynamic Behaviour of Structures 

by 

Tracy Teh 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF CIVIL ENGINEERING 

CALGARY, ALBERTA 

APRIL, 1995 

© Tracy Teh 1995 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Graduate 

Studies for acceptance, a thesis entitled "Assessing Approximation Methods for Modelling 

Non-Linear Dynamic Behaviour of Structures" submitted by Tracy Teh in partial 

fulfilment of the requirements for the degree of Master of Science. 

Supervisor, Dr.T.G.Brown, Dept. of Civil Engineering 

Dr.A.Ghali, Dept. of Civil Engineering 

'ç. 
Date 

Dr.M.A.Màs, Dept. of Civil Engineering 

Dr.M.Epstein, Dept. of Mechanical Engineering 

11 



ABSTRACT 

The objective of this thesis is to review approximation methods that solve linear structural 

dynamic problems. Performance of these methods for both linear and non-linear models 

using various time step sizes will be examined. 

The thesis is split into two main components, the first looks at a selection of common 

approximation methods. The general "Single-Step" scheme, which models a variety of 

methods, was examined in detail. Procedures for assessing the approximation methods 

for linear problems were investigated; a program was developed and used to evaluate 

some of these procedures. 

The second stage of the thesis looks at non-linear problems, the concept of iterative 

procedures modelling material non-linearity is introduced. The finite element program 

Nonsap was modified to include the general "Single-Step" scheme. Nonsap was used to 

investigate the accuracy of displacements and computational efficiency of the 

approximation methods and iterative procedures for non-linear problems. 
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CHAPTER ONE 

INTRODUCTION 

The objective of this thesis is to review the approximation methods which model linear 

dynamic equations and then apply these same methods to non-linear problems. Ultimately 

this research will be used to model the non-linear dynamic equations governing structural 

vibrations due to ice impact, however this is not within the scope of this thesis. 

The dynamic system with n-degrees of freedom is represented by non-linear differential 

equations. Geometric and material variations cause the non-linearity in the structural 

stiffness. Figure 1.1 represents the generalized single degree of freedom dynamic system. 

The forces existing in the system are shown in the force equilibrium diagram. The terms 

and f1 denote the damping, stiffness and inertial forces respectively. The 

equilibrium equation of forces acting on the mass may be written: 

fD(t) + f(t) + f1(t) = f(t) (1.1) 

Below is the corresponding general multi-degree of freedom dynamic equation formed in 

terms of the systems kinematics. 

M5 + Cx + Kx = f(t) (1.2) 

Where M, C and K are the mass, damping and stiffness matrices, x the displacement, the 

dots represent time derivatives, and f(t) is the applied external force. 

Direct time integration of the differential equations can require a large number of very 

small time steps depending on the degree of non-linearity; this is because it is assumed 

that the physical properties of the system remain linear or constant for the increments of 

time. The time stepping is generally based on finite difference methods which simplify 

the numerical integration process. Difference equations move forward in time for a finite 
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number of discrete time intervals, At. Assumptions on the variation of displacement, 

velocity and acceleration are made for each time step, the form of these assumptions 

affects the accuracy, stability and eventual cost of the solution procedure. 

The Newmark and Houbolt schemes (Bathe and Wilson ( 1973)), two of the earliest one-

step formulations, were conceived in the 1950's. E.L.Wilson formed a direct integration 

scheme, called the Wilson 0 method, at the University of California in 1968 (Bathe and 

Wilson (1973) and Clough and Penzien ( 1993)). The Wilson 0 method is a self starting, 

one-step integration scheme, which satisfies the dynamic equations of motion outside the 

time interval at the 0, or collocation point. Since the development of these three well 

known and indeed well utilized schemes, researchers have continued to try and find the 

ultimate approximation method that is highly sensitive to stability and accuracy 

considerations. O.C.Zienkiewicz, one of the pioneers in the development of the dynamic 

approximation methods, looked at the formulation of a general solution scheme first by 

examining the Taylor Series Collocation and then the Weighted Residual approach. The 

earliest work formed multi-step finite difference formulas; later it was found that one-step 

methods were more advantageous and hence the development of the " Single-Step Time 

Marching" and "Generalized Newmark" procedures (Zienkiewicz and Taylor ( 1991)). 

Most of the one-step schemes used to solve dynamic equations use a similar methodology 

as the Wilson 0 method. To begin the path of research, an examination of this method 

will be conducted. This will then provide a platform from which to work. 
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1.1 WILSON 0 METHOD 

The Wilson 0 method models the dynamic equation by splitting a time domain into a 

series of discrete time steps, At. Acceleration is assumed to vary linearly over an 

extended time interval, from t to t+0At, see Figure 1.2. Using the known initial 

conditions at the start of the time step, the conditions at the end of the time increment are 

calculated explicitly. 

'r represents a variable increase in time, its value ranging from t ≤ t ≤ t+0At. From 

Figure 1.2 it is seen that equation ( 1.3) can be formulated by comparing the accelerations 

from time t to ti-At and t to t+'r. 

5 t+.t_ ; = 
- t -ii: 

(1.3) 

Equation ( 1.3) is rearranged in terms of the acceleration at any point in the time interval. 

xt+r= ;+ 
Tt 

(1.4) 

To calculate the velocity and displacement at C, the acceleration equation ( 1.4) is 

integrated with respect to time. 

'C2 x =*•-(-) 
t+t t t 2At 

j'r2 'C3 
xt+t= x+ 't+ _!__+ _(x+1-) 

2 6At 

(1.5) 

(1.6) 

If r is made equal to the collocation point, that is the end of the extended time step OAt, 

then t+t becomes t+OAt. Equations ( 1.4), ( 1.5) and ( 1.6) are therefore reduced to the 
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following: 

Xt+OAt = t + -  Rd 

Xt+eM *+50At+ 82At 
2 

e2 t2 93At2 
t+OAt  x1+*18Lt+ + (-5) 

2 6 

(1.7) 

(1.8) 

(1.9) 

To define an approximation solution the dynamic equation ( 1.2) is first written in terms 

of the kinematics at the end of the extended time period. 

M+01 + C*t+04M + Kx t+OAt = 
(1.10) 

Equations ( 1.7), ( 1.8) and ( 1.9) are substituted into the new dynamic equation ( 1.10). All 

prescribed terms are collected together on the right hand side and the unknown 

acceleration at t + it terms on the left hand side of the equation. 

j+{Me+ C92it + KO3Lt2 
2 6J 

-M5 1(1-9) 

02 A t )I-K jx, x (9At)2 
_c{ +[eAt_  22 (I 

If a new symbol x is defined, equation ( 1.11) can be simplified further: 
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= + +  {Me C92At K93At2 f-I (1.12) 
2 6 

f+0 -M1d(l-O)-C1.{* +5t19At_  OAt 
2 

(0At)2(. 
+AOAt+ II -

2 -T i 

(1.13) 

Equations (1.5) and ( 1.6) are recalculated for t equal to the end of the discrete time 

period At, giving ( 1.14) and ( 1.15). 

xt+txtt+ At _(xt+M -) 

5At2 At2 
Xt+4M Xt+* At+__ 

2 6 

(1.14) 

(1.15) 

The next step is to find the velocity and displacement at the end of the discrete time step, 

this is achieved by substituting the newly derived acceleration expression into equations 

(1.14) and (1.15). Now that equations for the kinematics at t+At are formulated they can 

be combined and simplified into the final approximation difference equation with the 

following structure: 

Lf +oAt 

Xt+4M 

(1.16) 
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Where A is the amplification matrix and L the load operator, and they have the following 

formation: 

A= 

Where: 

-K(c+KeAt) -KK - 

At( IC P-) At iKAt 1+) 1-K(C+KOAt) -____ 

2 2 2 

At(1K8) AJI_AtK(c+KeAt)) 1icKAt2 
TT ( 6 I 6 

L= 

K 

2 

6 

C =M(o_l)+ceAt(8_1+K(9At0_1 
23 

(1.17) 

(1.18) 

The Wilson 8 solution scheme can also be applied using the following matrix equation 

where 'C is equal to 8At: 

= l. t+ (1.20) 

The effective stiffness matrix and effective load vector are calculated in Bathe and Wilson 

(1976), for reference they are listed here: 

= K  +  6 M + _2_C (1.21) 
(OAt)2 OAt 
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= + e(f- f) + M 6 6 X  I\ (OAt)2 OAt 

(-6At3 .' OAt.. 
C xt +2x +_ 2 x t) 

(1.22) 

This method is adopted in Nonsap, a computer program which will be examined further 

in Chapter Four. 

The displacement calculated at the collocation point OAt is then used to solve the 

following expressions for displacement, velocity and acceleration at the end of the time 

step. 

= (x OAx) - ____x + x 6 6. .. 11_3 
O3At2 O2i.t 

At 
= +  

.. = x At2 
+ At, + _(x + 

6 

1.2 THESIS OUTLINE 

(1.23) 

The next two chapters will review a selection of common approximation methods under 

two classifications, multi-step and single-step schemes. The general "Single-Step Time 

Marching" solution scheme, which can model a variety of other methods, will be 

examined in detail. Procedures for assessing the approximation methods for linear 
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problems will be investigated. Computer program dynamic.c, developed by the writer to 

study a selection of common solution schemes including the " Single-Step Time Marching" 

scheme, will be used to apply some of these procedures. 

Chapters four and five of the thesis will look at non-linear problems, the idea of iterative 

procedures to model material non-linearity will be introduced. The finite element 

program Nonsap, developed by Bathe, Wilson and Iding, was modified to include the 

general "Single-Step Time Marching" scheme. Nonsap will be used to explore the 

accuracy of the displacements output by the approximation methods for non-linear 

problems. Time step sizes will be studied to determine their effect on the solution time 

for both the approximation method and the non-linear equilibrium iterative procedure. 

The final chapter will draw on the conclusions made during the analysis of the 

approximation methods for both linear and non-linear problems. Some recommendations 

will also be suggested. 
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CHAPTER TWO 

DYNAMIC SOLUTION SCHEMES 

Since the development of the Wilson 8 scheme there has been a concerted effort to try 

and formulate the ideal numerical method approximation. In the 1960's and 1970's many 

of these schemes took the form of multi-step finite difference approximations. These 

algorithms have now been superseded by improved single-step methods, development of 

which mostly began in the 1980's and they remain a topic of research today. This 

chapter will examine both multi- and single-step methods. 

2.1 MULTI-STEP SCHEMES 

Multi-step algorithms are finite difference approximations of the dynamic equation. Finite 

difference approximations require knowledge of the displacement and force history over 

a number of time steps to determine new displacements. The name multi-step is derived 

from the notion that the kinematic history is prescribed for a number of discrete time 

increments. 

2.1.1 TRUNCATED TAYLOR SERIES COLLOCATION 

Finite difference expressions for velocity and displacement at the end of a time step, n+l, 

are initially derived using Taylor series expansions: 

*n+1 = + + ) At + 

2 

:Z At3 
+ + 5çAt2 + _____ + 

2 3! 

(2.1) 

(2.2) 

The velocity expression is truncated after the acceleration term. Acceleration at n is 

represented by an interpolation function from n to n+l. Constant parameter y, which has 
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limits 0 ≤ y:5 1, expresses the variation of acceleration within the time interval in terms 

of initial and final acceleration. If, for example, 'y equals a half then constant acceleration 

is applied. 

= + (l-'y)3çtt + ç1t (2.3) 

The displacement equation is also truncated after the acceleration term which is again 

represented by an interpolation function. Constant parameter 2P controls the acceleration 

behaviour and has limits 0 ≤ 2f3 ≤ 1. 

x = x + At + + (2.4) 

If equations (2.3) and (2.4) are rearranged in terms of the new acceleration they become: 

1 
= ..( n+  

YAt 

5c+l = - ( _ x - x - 5cAt - At2 ) PA t2 n+1 n n 

(2.5) 

(2.6) 

Chan et. al. (1969) formulated a general expression for the special case of the dynamic 

equation where y equals a half. A similar procedure can be applied to produce a general 

expression for variable y, see solution in Appendix A. 1. The method utilizes equation 

(1.2) at time ç, t and ç1. Substitutions for displacement, velocity and acceleration at 

the end of the time steps using equations (2.3)-(2.6) are made. The final simplified form 

of the difference equation is: 
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M [x+1 -2x+x 1] + CAt ["yx 1+(l-2'y)x+(y-l)x 1J 

+ K.At2 1x +(L +y-20)xn+1 

- At2 {t3f = 0 
n+1 2 

(2.7) 

The displacement and velocity expansions can also be used to derive a matrix equation 

in terms of displacement, velocity and acceleration at a single time step as shown in 

Chapter One with the Wilson 9 method, Hilber and Hughes ( 1978) and Hilber et. al. 

(1977). A general single-step solution scheme which encompasses the above method will 

be discussed later in section 2.2.1. 

2.1.2 A WEIGHTED RESIDUAL APPROACH 

An alternative method of deriving equation (2.7) is to use the finite element weighted-

residual process documented by Zienkiewicz ( 1977). The domain of the problem is set 

from -& to +At, and the unknown displacement term x, is expanded in terms of shape 

functions N: 

x =E Nix, i=n-1,n,n+1 (2.8) 

The resultant shape functions at time n+l, n and n-i are seen in Figure 2.1 a-c, they are 

written mathematically as follows: (- 1 ≤ =t/At ≤ +1) 

N 1= _ 4(1 -) 

N 

N =(l+) 
n+1 

(2.9) 
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N 
n-i 

b) 

c) 

d) 

e) 

f) 

g) 

1 

At 

I 

At 

1 

N 
n 

N 
n+ I 

n2 At n. 1 At n At n+ I 

N 
n-2 

N 
n-i 

N 
n 

I Nn+i 

FIGURE 2.1 SHAPE FUNCTIONS FOR A QUADRATIC AND A CUBIC EQUATION 
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A weighted-residual equation for the set domain is calculated using (2.10): 

LM 

fW [ M5+C*+Kx-f] dt = 0 
(2.10) 

At 

fW [M Ex1+ C E$11x1+ K EN1x_ Ef1N] dt = 0 

The above shape functions are differentiated with respect to time ( is replaced by tlAt) 

and then substituted into equation (2.10). It is assumed that f is interpolated in the same 

way as x in equation (2.8) using the same shape functions. On integration the following 

expression is formulated if W is set equal to one: 

CLt rx -x M{x 1-2x+x_1] + n+1 n1] 

+ Kt2[x +2x + At2[f+1 +2f + = 0 
3 Tj T[T 

(2.11) 

The full derivation of this equation is in Appendix A.2. Equation (2.11) is identical to 

(2.7) when parameters 1/2 and =1/6 are substituted. Values for the parameters y and 

are determined for the known weighting function W. The standard equations (2.12) and 

(2.13) for y and P are: 

1 = fW (4+_j) d4/fWd4 
1 -1 - 

= 4[Yw1+d/wd] 

(2.12) 

(2.13) 
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These parameters are solved using a weighting function W equal to one which yields our 

values of 'y=1/2 and =1/6. An improved form of this equation is achieved by increasing 

the order from a quadratic to a cubic using shape functions for four time stations n+1, n, 

n-i, n-2, with 4 in the domain 0:5 ≤ 3, see Figure 2.1 d-g. 

N 1 = 

Nn = 

N 1 = 

N 2 = 

4 
-4 
4 
-4 

(2.14) 

To study the accuracy and stability of the general cubic equation a particular dynamic 

case is examined where damping and force effects are eliminated. (w2=k/m) 

= — O)2X = g(x,t) (2.15) 

The cubic equation derivation follows a similar methodology to the quadratic equation, 

the following is the weighted-residual solution: 

1) +(.._!+.i)(()1 t)2] [( -3i) +( -..+213 _..y)(wAt)2]x 
2 

{(3 ,_5) +3y)((iXt)2] x1+{( -i+2) +( -J.Ly+ 1)(0)&)2]x 2 0 (2.16) 
6 6 

Because the order of the general equation has been increased by one there are three 

parameters to consider a, 0and y. 
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a = fW 4 3 d4/ fWd 

= fW •2 d4/fWd 

i = fW4 d/5Wd 

(2.17) 

The Wilson 0 family parameters are derived using equivalence equations introduced by 

Wood, see footnote in Zienkiewicz ( 1977). 

cx = 2 + 40 + 392+ 0 

i =±+ 29 + 02 

,y= i+e 

(2.18) 

Table 2.1 lists the parameter values for some of the common solution schemes to be used 

in the general cubic equation. 

Method Controlling 

Factor 

cx 13 

Houbolt W=1 @ t=3 27 9 3 

Wilson 0 9 = 1.4 16.224 6.0933 2.4 

Wilson 0 0 = 2.0 30 28/3 3 

Newmark 9 = 0.0 2 4/3 1 

TABLE 2.1 PARAMETER VALUES FOR COMMON SOLUTION SCHEMES 

USING THE WEIGHTED RESIDUAL CUBIC EQUATION 
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Equation (2.16) can be reduced to a difference equation when the (( At)2 terms are moved 

to the right hand side and like displacement terms are collected together. 

3 3 

E vix+2 = At2E ljn+j2 
j-0 j-0 

The variables v, and iij are as follows: 

= 2-? 
0 7-1 

= 3y-5 
1 'y— 1 

2 

= 4-37 

y— 1 

V3 = 

10 = 

- La +13-L"-Y+ 1 
6 6 

7-1 

= La—!13+37 

12 = 

y-i 

-La + 213-!? 

y-1 

(2.19) 

(2.20) 

Wood ( 1977), used the above difference equation to analyze the stability and accuracy of 

the solution schemes listed in Table 2.1, a discussion of his work is in chapter three. 

2.2 SINGLE-STEP SCHEMES 

The single-step algorithms approximate the dynamic equation using known displacement, 

velocity and force values from the previous step only and hence the name single-step. 

2.2.1 GENERALIZED NEWMARK SCHEMES 

In 1984 Katona began developing the beta-rn method which was later to be published in 

a paper by Katona and Zienkiewicz (1985). The beta-rn method is a single-step 

formulation of the Truncated Taylor Series Collocation family. Its development was a 
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response to the need for a variable time increment which could yield more accurate 

results. The single-step schemes were also an advantage as only initial conditions from 

the previous time step were required to initiate the solution process, and also they were 

viable methods for non-linear dynamic problems. Since the beta-rn method, the 

Generalized Newmark scheme, which is essentially the same but simpler to apply, was 

derived. This scheme is also known as the GNpj method (Zienkiewicz and Taylor 

(1991)), the p representing the order of approximation polynomial; for example a linear, 

quadratic or cubic solution. The j stands for the order of the problem equation which in 

our case is dynamic and therefore j equals two. The following three equations are Taylor 

expansion approximations at the collocation point for displacement, velocity and 

acceleration. Note the notation: 

p = dx 
x 

xn+1 = xn +,&t* 

= +At5ç 

+ At P p + At ' ( - p 
r P TjX 1 x) 

+  
At' At' ( - p 

+... 

(p-i)! (p_l)!tn+i X 

p - i = p-i 
+, +, At - 

X n+1 x n Xn (X• + I x) 

(2.21) 

(2.22) 

(2.23) 



19 

For a cubic solution of the dynamic equation (GN32) the above expressions reduce to: 

At2 .. At' At3 (-  
x 1 = x +A +_ x +- + ---+ V 

2 ' 6 

= * + Atj + At2- 12 At2 --(+- V 

= 5 +Atç + 1At V 

(2.24) 

(2.25) 

(2.26) 

The Pi parameters control the variation of the pth differential term over the time interval 

n to n+1; in the GN22 case this parameter dictates the acceleration behaviour. The 

dynamic equation becomes the following standard matrix equation with an effective 

stiffness and effective load term when equations (2.24)-(2.26) are substituted into the 

general equation ( 1.2) at time step n+ 1. 

kç 1= - ft 

At2 + K At, 
= M 1At + 3___ 

At2 
+x R (R. 

•• 2 

+K { At2 _ At3 1 x+i At+5 _—+ x ( f3 2 3)j_f 

(2.27) 

(2.28) 

(2.29) 

Once the matrix equation is solved the term can be substituted back into equations 
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(2.24)-(2.26) to solve for the new displacement, velocity and acceleration. The load 

vector f is dealt with in the next section 2.2.2. 

2.2.2 SINGLE-STEP TIME MARCHING SCHEMES 

This set of solution schemes follows the same line of argument as the multi-step 

Weighted Residual Method by Zienkiewicz described in section 2.1.2. This scheme is 

known as the SSpj method, Zienkiewicz et. al. (1984) and Zienkiewicz and Taylor ( 1991), 

where the p represents the order of the approximation polynomial and the j the order of 

the dynamic equation which is two. 

A function x is approximated as the following polynomial: 

t2 1 
x = x + t+ n+...+c4P)tp 11  

2 
(2.30) 

This function and its derivatives are used to solve the Weighted Residual equation (2.10) 

with time interval from 0 to At, expression (2.31) is defined to reduce the final equation. 

At 

fW [ M5+C*+Kx-f] dt = 0 

At 
'W t dt 

0 At 0 q A t q 

fW  dt  

(2.10) 

(2.31) 

The process just discussed is simplified with the substitution of the following equations 

which define displacement, velocity and acceleration at the end of the time step in terms 
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of previous known values at the start: 

p-i 

xn+i = 

q=O 

O cx At 
  + 

P op 

q! p! 

q -1 cx? t-' x q 

+   n+i = 
q= 1 E  (q-l)! (p 

a? & P-2 ° 
  +  p-2 

q=2 (q-2)! (p-2)! 

(2.32) 

(2.33) 

(2.34) 

Parameter represents some average value of the pth derivative for the time interval. 

See Figure 2.2 for graphical representation of the SSpj method. 

If p is set equal to three the kinematic equations (2.32)-(2.34) become: 

x = x+*At8 
Lt2 °2 + a (3) At 83 

, 
fl+j n ' + Rn 2 6 

3 AtO2 
n+I = 5çAte1+ a  

x +1 = 5 + a3At81 

(2.35) 

(2.36) 

(2.37) 
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FIGURE 2.2 APPROXIMATION OF X FOR A QUADRATIC ALGORITHM 
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After substitution of the kinematic equations into (2.10) the following matrix equation is 

generated: 

(3)-1 

1=MAt91+ CAt2 ° KAt3 2 93 

2 6 

(2.38) 

(2.39) 

= M( + C( + AtO1) + K[x+ A At81+ At 0 
(2.40) 

2 )- f 

The final displacement, velocity and acceleration values at the end of the time step are 

then obtained by solving the three polynomial expansions: 

X At, 
x + 1 = x + At +  + 3) At3 

2 

*n+1 = + 5 At + At2 

xn+1 = R i +c43At 

The load vector f is assumed to vary linearly over the time interval: 

(2.41) 

(2.42) 

(2.43) 

f = 91f 1 + (1-0)f (2.44) 

Table 2.2 contains the parameter values required to emulate some more common solution 

schemes using either the GNpj or the SSpj general equations. The Bossak and the Hilber, 
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Hughes and Taylor (HHT) parameters represent a dynamic equation with no damping or 

force effects. The parameters required for a dynamic equation with damping and force 

can be found in references Zienkiewicz et. al. (1984), Katona and Zienkiewicz (1985) and 

Zienkiewicz and Taylor ( 1991). 

General Equation And 

Solution Scheme 

Newmark 

SS22/GN22 

GNpj 

8, SSpj 

I2 GNpj 

°2 SSpj 

GNpj 

03 SSpj 

S 2cL 

SS321GN32 

Houbolt 2 11/3 6 

Wilson Theta ow 

Bossak [Wood 

et. al. (1980)] 

2P + 2/3 - cLB 6f3 

HHT [Hilber 

et. al. (1977)] 

1 2 + 2/3 -2aH2 6(1+cxH) 

TABLE 2.2 PARAMETER VALUES FOR COMMON SOLUTION SCHEMES 

USING EITHER THE GNpj OR THE SSpj GENERAL EQUATION 
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CHAPTER THREE 

STABILITY AND ACCURACY OF METHODS 

The solution schemes discussed in chapter two each behave differently with varying time 

increment and parameter values, this behaviour is of interest to us as it represents the 

stability and accuracy of the schemes. To study the significance of the variables chosen, 

two C programs were written: see appendix B for program documentation and listings. 

The first program, dynamic.c, incorporated some of the common solution schemes 

including the Single-Step, SSpj, algorithm for a one dimensional problem with no 

damping effect. The SSpj scheme was selected because it simulates all the common 

solution methods and also eliminates the requirement to make assumptions about the force 

and displacement history prior to time step t-At. Dynamic.c calculates the oscillating 

displacement pattern for a prescribed time period, this data is used to determine the 

amplitude decay and period elongation of the solution. During the displacement 

calculations the amplification matrix A is formulated, for examples of the amplification 

matrix see equation (1.17) and section 3.2 of this chapter. This matrix is output to a file 

for the second program eigen.c to calculate the spectral radius of the A matrix for the 

prescribed conditions, also used for the assessment of accuracy. Figures 3.1 and 3.2 

present flow charts of the programs dynamic.c and eigen.c. 

This chapter deals with the various mathematical methods used to assess the solution 

schemes so that an optimum algorithm can be selected for a particular dynamic problem. 

The results from the programs are then compared with previous research and some 

conclusions about the effectiveness of the common schemes are made. 
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INPUT 
"filename" 

SET UP 
PARAMETER 
VALUES 

SET i=O 
EQUATE T, At &(*) 
SET INITIAL 
CONDITIONS 

is 
SCHEME 

CUBIC 

9 

FORM A&f 
MATRIX, CALC. 
SPEC. RADIUS & 
0/P "filename".dat 

FIGURE 3.1 FLOW CHART OF DYNAMIC.0 

04  

SOLVE EQN. 
(3.31) FOR THE 
NEW DISP., VEL. 
& ACCEL. 

YES 

OUTPUT DISPS. 
AT EACH TIME 
STEP 

FORM A&f 
MATRIX 
OUTPUT A TO 
"filename 'dat 

DOES 
i = TOTAL 

NO. OF TIME 
STEPS 

7 
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USE KNOWN 
DISPLACEMENTS 
TO FORM AN 
INTERPOLATION 
FUNCTION 

FIND POINTS OF 
MAXIMUM & 
ZERO 
DISPLACEMENT 

CALCULATE THE 
AMPLITUDE 
DECAY AND 
PERIOD 
ELONGATION 

OUTPUT AMP. 
DECAY & 
PERIOD ELONG. 

TO "filename" .res 
& ap.j'fjlename" 

( END) 

FIGURE 3.1 FLOW CHART OF DYNAMIC.0 CONTINUED 
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START 

INPUT NUMBER 
OF CASES FROM 

"filename ". dat 

SET i= 1 

YES 

( ED D NO 

INPUT A 
MATRIX FROM 

"filename ". dat 

CALL TO IMSLC 
EIGEN VALUE 
MATH ROUTINE 

FIND MODULUS 
OF 
EIGEN VALUES 
AND OUTPUT 
TO "filename".dat2 

'V 

i=i+1 

FIGURE 3.2 FLOW CHART OF EIGEN.0 
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3.1 STABILITY AND ACCURACY 

A number of methods which estimate the integration errors for the approximation of the 

dynamic equation have been developed. These methods examine the stability and 

accuracy of the solution schemes. For a very accurate solution the schemes require a 

small time step size which is inversely proportional to the smallest period. However the 

primary response of the structure may be due to lower frequencies, and hence a much 

larger time step size which is inversely proportional to the primary period may give 

excellent results and reduce the computational effort significantly. We therefore need to 

know how the solution schemes behave for the higher frequencies when the i.tJT is large. 

Bathe and Wilson ( 1976) stated that the stability of the schemes for these largeAt/T's is 

governed by the behaviour of the initial conditions, they must not be amplified artificially 

making integration of the lower frequencies worthless. Bathe and Wilson also said that 

errors in the displacements, velocities and accelerations due to computer round-off must 

not grow during the integration. Stability of a scheme is determined by examining its 

behaviour for the prescribed initial conditions with zero load applied. 

The selection of time step size for conditionally stable schemes is dictated by the imposed 

stability conditions. For an un-conditionally stable scheme a time step size must be 

selected which is just small enough to produce accurate results but no smaller so as not 

to increase computational time. Therefore accuracy behaviour of the approximation 

methods over a range of time step sizes is required. We begin by looking at 

mathematical approaches to determining the stability and accuracy of these solution 

schemes. 

Lambert (1973) stated the following theorem, "A necessary and sufficient condition for 

a linear multi-step method to be convergent is that it be consistent and zero-stable. 

Consistency controls magnitude of local truncation error, zero-stability controls manner 

in which error is propagated." 
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Equation (2.19) written again below, is rearranged forming a linear difference operator 

: see (3.2). 

k k :: vx+ = 
j=O jO 

[x4t] = k.xn+j - 
At2jjj gn +j] 

The functions x and are expandable by Taylor's series: 

xn+j = x +jAtx+ (jAt)2 2! 

(3.1) 

(3.2) 

(3.3) 

gn+j = 3c+= X+jAt+... (3.4) 

Substitution of the above truncated Taylor expansions into (3.2) yields the following 

equation: 

1 r )2 
[x;At]= VOX +v1[x+AtA + At2 3 I 2! flj 2L 2! •VIx +t* 2A +  (2At  Rn 

+...+vk[xfl+kAtxfl+ (kAt)2 Rn  

_At2 {1103c .- r1[3ç+At ]+ 1-l2[3c +2AtK]+... 1k[5 +kAt]} 

(3.5) 

When like differential terms are collected together the linear difference operator is 

reduced to a simpler form. 
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dqX 

= Cq 

Written in full the C1 terms are: 

Co = Vo+Vl+V2+•••+Vk 

CI = vl+2v2.I ... +kvk 

= .[VI+22v2+...+k2vk] - [ o+1iI + 2+.+1k] 

(3.6) 

1 
Cq = [VI +2qV 2 + ... +k qV k]  - (q _2)!h1 2 2 k1k1 (3.7) 

Lambert stated that the order of the multi-step method is deduced using the following 

relationship: 

C0 =C1 =C2 = ... =C=C1,1 =O (3.8) 

With this rule applying, the truncation error associated with the linear operator equation 

is: 

d" 2'x 
C Lt" 2   p+2 

(3.9) 

A linear multi-step method is said to be consistent if it has order greater than or equal to 
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one, hence CO, C1 and C2 must always be equal to zero for consistency to apply. The 

weighted residual multi-step equation, with k set to three, is consistent since it has order 

p equal to two. This is derived by substituting the v and i1i values in equation (2.20) into 

the Ci terms and solving. The truncation error can be reduced if the parameter values are 

specifically selected to produce further zero C, terms, in this example C4 and C5 are: 

C4 =  1 [l8y-6-11] 
12(i- 1) 

C  15   [15i-2a-12] 
12(y- 1) 

(3.10) 

(3.11) 

To increase the order of p the following values are assigned to the a and 3 parameters 

producing zero C4 and C5 terms. 

-6 
2 

(3.12) 

The truncation error is derived by substituting the a and P values into the C6 term and 

solving. 

C6 =  -1 (3.13) 
240(y- 1) 

The fact that CO and C1 are zero implies that there is a double root equal to one, this is 

known as the double principal root. Examining equation (3.2) the difference operator can 

be split into two characteristic polynomials, one in terms of v and the other in terms of 

the i factor. 
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k k 

= Evi = 

j=O j=O 

(3.14) 

For zero-stability the first characteristic polynomial () should not have a root of 

modulus greater than one. If the polynomial has a root of modulus one, it lies on the 

circumference of the unit circle, then its multiplicity should be no greater than two, this 

is the Dahiquist Stability rule, Lambert (1973). Further roots are spurious and they 

should lie within the unit circle to satisfy the zero-stability criterion. In the weighted 

residual example 4(1) = l) = 0, implying there is a double root at one. The third root 

is ('y - 2)/(y - 1) which is less than one if y satisfies the conditions 3/2 ≤ < co, therefore 

the scheme satisfies the zero-stability and consistency conditions. 

If the amplification matrix is stable, that is the algorithm does not keep growing without 

bounds, for all parameter values and time increment size, then the algorithm is 

unconditionally stable. When the scheme requires limits on these variables the algorithm 

is conditionally stable. This stability behaviour can be examined further using the Routh-

Herwitz criterion, see Gantmacher ( 1960). This method of evaluation uses the stability 

polynomial (3.15) transformed from a real to an imaginary axis using the transformation 

function r = (l+z)/(1-z). This transformation simply maps the unit circle on to the real 

negative z plane, see Figure 3.3. 

vri+(uAt)2Ei1j r = 0 (3.15) 
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I r I < 1 Re z<O 

r plane 

aPPec, 

IrI=1 Re z=O 

'1appe 
z plane 

FIGURE 3.3 MAPPING UNIT CIRCLE ON TO THE IMAGINARY AXIS RE Z 

EQUAL TO ZERO 
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After the transformation the stability polynomial becomes the following if k is equal to 

three. 

{v3 + (ü)At)2r)(l .i-z)3 + {v2 +(ttit) 2}(1 + z)2(1 - z) 

+ {v1 +(o)At)21j1 }( l + z)(1 - z)2 + {v0 +(ci)At) 0}(1 - z)3 = 0 

This equation is simplified by collecting like z factors. 

b0z3+bz2+b2z+b3 - 0 

The b, coefficients in equation (3.17) are as follows: 

b0 = (V3 -v2 +v1 -v0) +(oAt)2(1i3 12 +11k -1) 

b1 = (3v3 -v2 -V1 +3v0) +((oAt)2(3i3 12T11+ 310) 

b2 = (3v3+v2 -VI -3v0)+((t)2(3T13+12-11-310) 

b3 (v3 +v2 +v1 + v0) + (CO t)2 (TI 3 +112 111 

(3.16) 

(3.17) 

(3.18) 

The Routh-Herwitz criterion states that the following equalities must be satisfied for a 

stable algorithm: 

SS22: b0 > 0, b1 ≥ 0, b2 ≥ 0 

SS32: b0 > 0, b1 ≥ 0, b2 ≥ 0, b3 ≥ 0, b1b2-b3b0 ≥ 0 

(3.19) 
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When the Routh-Herwitz criterion is used to determine the stability of the weighted 

residual general equation the b1 values obtained are: 

b0 = 

b1 --

b2  

b3 = 

1 { 8- 12+q2(24- 16'y)} 

4-8q2 

1 -'y 

q2(24'y-36) 

y- 1 

12q2 

'y- 1 

(3.20) 

Note the notation q2=(( Lt)2 / 12. From the b2 value it is deduced that 'y ≥ 3/2 and from 

b1 oit ≤ '16 in order to satisfy the equalities. 

Returning to the SSpj and GNpj schemes, a method is required to analyze the stability 

and accuracy of a single-step solution scheme with no damping or force term. A cubic 

solution of the characteristic polynomial is calculated by solving det (A - ?J) where A is 

the amplification matrix, I the identity matrix and ? are the eigenvalues. 

det(A - ?I) = - 2A1 X, + A,) - A3 = E qj X -j = 0 (3.21) 
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The A1,A2 and A3 variables are invariants of the amplification matrix and they equal the 

following: 

A1 = trace A = 4 A1 
A2 = (principal minors) 

'22 A33 - A 32 A32 A23 + All 

A3 = det A 

A33 -A31 A13 

The single-step matrix equation is written as: 

+ A11 A22 -A21 Al2 

X 1 = AX, X112 = A2X, ... = AX 

In this matrix equation A is the amplification matrix and X is: 

Taking a linear combination of equations (3.23) the following is written: 

q0X +q1X 1 +... +q px = (q01 +q1A +... +qAP ) x 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

If coefficients q0, q1,••,q equal the coefficients in the characteristic polynomial then 

equation (3.25) equals zero by the Cayley-Hamilton theorem, Froberg ( 1969). 

Eq = x -2A1x 1 +Ax 2 - A3x 43 = 0 
j=O 

(3.26) 
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It can be seen that the characteristic polynomial (3.21) is similar to the multi-step 

formulation (3.26), therefore the invariants of A for either the GNpj or SSpj schemes can 

be used to determine the multi-step form of the single-step equations. Wood (1990) 

followed this procedure and hence defined the SS22 and SS32 coefficients which are 

listed in Table 3.1. Note that the SS32 V3 variable has been normalized as it was in the 

weighted residual formulation in section 2.1.2. The stability and accuracy conditions of 

the SSpj and GNpj algorithms are identical so for the rest of this chapter the SSpj scheme 

only will be studied. 

The truncation error C +2 of the single-step SSpj schemes can now be calculated by 

substituting in the v and Tjj values in Table 3.1 into equations (3.7). All the SSpj 

schemes are consistent, that is they have order greater than or equal to one, this is due 

to the algorithm construction, see Wood ( 1990). Table 3.2 lists the coefficients required 

to calculate the truncation errors. 

Stability of the SSpj schemes can also be calculated by substituting the v3 and m 
parameters into equations (3.18) and then satisfying the Routh-Herwitz equalities. Note 

that (oAt)2 is always positive so that many of the solution schemes are stable for all time 

increment sizes. Table 3.2 lists the equalities that must be satisfied for stability. 

If zero amplitude decay is required then the Routh-flerwitz equalities below must apply: 

SS22: b1 = 0 

SS32: b1b2 - b3b0 = 0 

(3.27) 
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Solution 

Scheme 

J Coefficients For Multi-Step Equation 

Vi Ili 

5S22 0 

1 

1 (e-2o+1)I2 

-2 (201-202+1)/2 

2 

SS32 0 

1 

2 

3 

1 02/2 

(1-0)/0 (30f 391_0 3+ 1 )/691 

(30-2)/0, (303-602+4)1601 

(1-38)/O, (301+302-303+1)/601 

1 83/681 

TABLE 3.1 COEFFICIENTS FOR THE MULTI-STEP EQUIVALENT OF THE 

SINGLE-STEP EQUATIONS 
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Truncation 

Coefficients 

C3 

SS22 SS32 

0 

C4 

C5 

(2-392-301)16 (601-602-1)/1201 

(1-392-01)/6 (701-602-203- 1)/1201 

C6 

Routh-Herwitz 

Stability Criterion 

(47-21092-3091)/720 (15001-10502-9003-19)/3600, 

(ot)2>2/(91-92) 

0≥1/2 

((w.t)2> 12(1-291)/(493-692+1) 

(Mt)2—>- 121(602-691-1) 

0≥1/2 

TABLE 3.2 COEFFICIENTS TO CALCULATE TRUNCATION ERROR AND 

STABILITY FOR THE SINGLE-STEP EQUATIONS 
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This stability behaviour can easily be examined by plotting the spectral radius of the 

amplification matrix against At/T. The smaller the spectral radius the more rapid the 

convergence of the algorithm, this phenomenon can be taken advantage of when damping 

out higher modes, which is often desirable for multi-degree of freedom systems. The 

spectral radius is equal to the modulus of the largest eigenvalue of the amplification 

matrix: 

p(r) = max IA.11 ≤ 1 (3.28) 

For stability the spectral radius must be less than or equal to one. 

We now look at an analytical development which determines the accuracy of the 

approximation methods. Numerical dissipation of the systems kinematics is measured by 

the magnitude of amplitude decay occurring; and the numerical dispersion, due to the 

approximation, is measured by the amount of period elongation or phase lag. 

Amplitude decay is determined by taking two consecutive peaks, or troughs, in a system 

with no physical damping applied, and calculating the percentage decrement in the 

amplitude over time, see equation (3.29). Period elongation on the other hand is 

established by finding the percentage difference between the true dynamic period of the 

system, T, and the algorithmic period output by the solution scheme, 'I', see equation 

(3.30). 

% Amplitude Decay = 100 -  100 11 1stpeakIx I2nd Peak] 

% Period Elongation =  iooi -   100 
T 

(3.29) 

(3.30) 
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3.2 PROGRAMMING THEORY 

Before the SSpj algorithm can be used it must be arranged into a matrix equation format 

which is programmable, the equation has an amplification matrix A and a force vector L. 

Dynamic.c was coded for a single degree of freedom system hence the notation for the 

mass, stiffness and damping terms is lower case. 

(3.31) 

The amplification matrix and force vector used in the SS32 formulation are generated by 

substituting the cx 3 equation (2.38) into the three kinematic equations (2.41)-(2.43). 

1 - kAt3 1 - kAt3O1 1 - mAt - kAt3O2 

61c 61c 2 6-K 12K 

A = - kAt3 -  kAt3e1 - mAt - kAt3e2 (3.32) 

2K 2K 2K 4K 

- kAt3 - kAt3O1 - mAt - kAt382 

K K K 2K 
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L=.At, 
K 

1 

kAt39 
K=mitO1 + 3 

6 

The SS22 matrices are calculated in a similar fashion: 

A= 

1 - kAt2 1 - kbt291 

2K 2K 

- kM2 kAt2O 
1-

K K 

kAt2O2 
K = 

2 

(3.33) 

(3.34) 

(3.35) 

The above matrix calculations are performed in subroutines SS32 and SS22. The matrices 

are then used to solve (3.31) in routine Equation, the force term is calculated using 

equation (2.44). Subroutine Equation also calculates the frequency, period and time step 

size of the dynamic system. 
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C,) 

T=. 

k (3.36) 

in 

CO 

(3.37) 

At = T (3.38) 
Number of divisions specified 

Subroutine Elong....decay determines the two points which span the displacement plots so 

called zero line of oscillation, and also the two points spanning the maximum 

displacement from the zero line. The first cycle of the plot is ignored as the initial 

conditions can deform its displacement pattern producing erroneous period and amplitude 

results. The points are used to calculate the exact crossing point and maximum 

displacement of the plot by applying an interpolation function in subroutine Interp. The 

interpolation function employed is the Divided Difference, see Gerald and Wheatley 

(1984). A nth degree polynomial can be used to find any point x1 along itself if several 

values of x are defined. 

P(x1) = f1 = d0 + (x - x0)d1 + ... +(x - x0)(x - x) ... (x - x 1)d (3.39) 
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The d1 values are formed using divided difference theory, below are examples of the zero, 

first and second order divided difference equations: 

f[x0] = f0 = d0 

f[x0,x1] =  fl- f0 = d1 
x1 -x0 

- f[x1,x2} - f[x0,x1] 
f[x0,x1,x2] -   = d2 

x2-x0 

(3.40) 

Equations (3.40) are substituted into the polynomial (3.39), for a cubic solution n is set 

equal to three. In Interp points zero and one are known, point two which is half way 

between zero and one in time is to be calculated, therefore x, becomes x2 and the 

following equation is solved: 

P3(x2) = 0  1 0 (x2 - xo)  +1  12' (x2 -x0)(x2 - x1) = f (3.41) 
Ix1 -x0 x2-xO 

Once the crossing points are known the oscillations periods and amplitudes can be 

calculated. The period elongation is determined by comparing three consecutive periods 

with the dynamic equation period T which is calculated in (3.37), see equation (3.30). 

Two consecutive maximum amplitudes are used to calculate the amplitude decay for the 

algorithm, see equation (3.29). 

Program eigen.c calls an imsi C maths routine which calculates the eigenvalues for the 

cubic SS32 amplification matrix, and dynamic.c calculates the eigenvalues for the 

quadratic SS22 schemes. The modulus of each eigenvalue is determined and the largest 

of these corresponds to the spectral radius. 
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3.3 EXAMPLES 

Using the stability and truncation error equations in Table 3.2, Table 3.3 was tabulated 

for the examples that are to be discussed. For all the cases where the spectral radius, 

amplitude decay and period elongation are to be determined, the mass and stiffness equal 

one, therefore frequency o equals 1 and period T equals 2ic. The initial conditions were 

taken as x(0)=3, x'(0)=O and f(0)=0. 

The displacement plots illustrated in this section were taken for a time increment T112, 

the initial conditions equalled those published in the paper by Katona and Zienkiewicz 

(1985), they were x(0)=x'(0)=0.7071 and f(0)=0. These conditions give an exact solution: 

x(t) = sin + (3.42) 

The trapezoidal scheme produces a spectral radius equal to one for all At/T, also by the 

Routh-Herwitz criterion equation (3.27), b1 equals zero which means there is no natural 

damping within the solution scheme. As a check for accuracy of amplitude decay 

calculated by the computer the special case of the Newmark method was run and 

amplitude decay plotted. If no errors occur amplitude decay should be zero, looking at 

plot in Figure 3.4 it is apparent that errors are present. Up to At/i' equal to 0.1 there are 

virtually no errors but as the number of divisions within the period decreases the errors 

begin to rapidly increase. At At/i' equal to 0.25, corresponding to a period divided into 

four time steps the error is approximately six percent and at three divisions per period the 

errors incurred are a high nine percent. This means that the results obtained for the 

following examples give a reasonably accurate picture up to At/i' equal to 0.25 but give 

erroneous results for larger At/T. 
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Solution 

Scheme 

Fox-Goodwin 

Trapezium 

Central Diff. 

Wilson Theta 

Houbolt 

5S32 Case 1 

SS32 Case 2 

Wilson Theta 

Wilson Theta 

Newmark 

Bossak Case 1 

Bossak Case 2 

Hilber, Hughes 

& Taylor (HHT) 

9, 02 93 Stability 

Limit 

((OLt)2m 

Truncation 

Error 

0.5 0.1667 6.0 C6=-0.0042 

0.5 0.5 00 C4=-0.1667 

0.5 0.0 

1.37 1.8769 2.5714 

4.0 C4=+0.0833 

00 C4=-0.2458 

2.0 3.6667 6.0 00 C4=-0.4583 

0.5 0.6667 0.75 

0.5 0.3333 0.25 

00 C4=-0.3333 

6.0 C6=-0.0083 

1.4 1.96 2.744 

2.0 4.0 8.0 

00 C4=-0.2595 

00 C4=-0.54 17 

0.55 0.6 00 C3=-0.0500 

1.1 1.3717 1.815 

1.1 1.7667 3.0 

00 C4= -0'1992 

00 C4=-0.3788 

1.0 1.2517 1.6335 00 C4=-0.2092 

TABLE 3.3 SAMPLE SINGLE-STEP SCHEMES AND THEIR CORRESPONDING 

TRUNCATION ERRORS AND STABILITY REQUIREMENTS 
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Close-Up of Trapezium's Amplitude Decay 
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FIGURE 3.4 MEASURING PROGRAM ACCURACY USING THE TRAPEZIUM 

SOLUTION 
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The first tests run were used to check the program, results were cross checked with those 

produced in Katona and Zienkiewicz's paper (1985). The tests also act as a comparison 

for various SS22 and SS32 schemes. Figure 3.5 shows a comparison of three quadratic 

algorithms, these are the trapezium, Fox-Goodwin and central difference schemes. The 

Fox-Goodwin scheme has the smallest truncation error and therefore should be the most 

accurate; however stability limits exist and therefore affect the range of time step size 

over which this scheme gives reasonable results. The trapezium method is 

unconditionally stable but should not give as accurate results, it also has zero amplitude 

decay which may be undesirable if damping of unwanted modes of frequency is required. 

The central difference scheme is an explicit method. Explicit methods calculate new 

displacements by substituting central difference expressions for velocity and acceleration 

at time t into the dynamic equation, implicit schemes use kinematic equations at time 

t+At. The draw back with the central difference scheme is that it has limits on time 

increment size. Figure 3.5 a. shows the displacement plot for the fourth period, it is easy 

to see that the Fox-Goodwin scheme has no apparent period elongation and a slight 

amplitude decay, therefore proving that it is the most accurate scheme, if the time 

increment is below its critical stability value. The trapezium and central difference 

schemes both have no amplitude decay but possess period errors. Figure 3.5 b. shows the 

range of iMIT over which the Fox-Goodwin and central difference methods are stable, it 

also shows the trapezium schemes spectral radius equal to one for the entire range. 

Figure 3.6 a. and b. present a more accurate picture of the amplitude decay and period 

elongation seen in the displacement plot which shows iWF at a set value of 0.0833. Both 

plots show that the trends of accuracy, as the time increment size increases, is variable 

with each scheme. It is interesting to note that the central difference scheme has period 

reduction while all the other schemes studied have period elongation. 
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The SS32 algorithms are compared in Figures 3.7 and 3.8. Four schemes were compared, 

the Wilson 0 (0=1.37), Houbolt and two SS32 schemes, Case one with optimal stability 

and Case two with optimal accuracy. The Houbolt scheme shows clearly in Figure 3.7 

a. that it has the most severe amplitude decay and period elongation, this is reflected in 

Figure 3.8 a. and b. for the corresponding value of At/T. An important point to make is 

that the Houbolt period elongation does not grow as rapidly as the SS32 cases which 

produce very inaccurate results at large time increments. The spectral radius, Figure 3.7 

b., shows that the optimal accuracy scheme is unstable when AtJT exceeds a value around 

0.3. This corresponds to the stability requirement in Table 3.3 where the maximum At 

permitted is approximately TI(2.55) which results in a At/i' value of 0.39. Case one has 

a spectral radius of one and the condition in equation (3.27) is satisfied therefore this 

scheme has zero amplitude decay which may or may not be desirable. 

Figures 3.9 and 3.10 examine the stability and accuracy of two Wilson 0 and two 

Newmark schemes, the intention of this comparison is to see the effect that parameter 

values and the order of the algorithm can have on the solution. The Wilson 8 schemes, 

which are cubic, were given values of 8 of 2.0 and 1.4. The quadratic Newmark schemes 

selected were the special case with 6 equal to 0.5 and a equal to 0.25 which will be 

referred to as the Trapezium method, and the case where 6 equals 0.55 and a equals 0.3 

which will be referred to as the Newmark case. For conversion to the SS22 and SS32 

algorithms see Table 2.2. All these schemes have unconditional stability and all but the 

Newmark case have truncation error of order four. Examining the plots the Wilson 0 

methods vary dramatically in behaviour, the 2.0 case has the most severe damping of all 

the schemes and its spectral radius confirms this result. This scheme also has the worst 

period elongation especially for the smaller time increments. The Newmark scheme 

produces the best results if a small but non-zero amplitude decay is required. 

The final set of plots in Figures 3.11 and 3.12 serve as a comparison of results produced 

by Wood et. al. (1980) and Hilber et. al. (1977). Two Bossak examples were selected 

and one Hilber,Hughes and Taylor example which is referred to as HHT in the plots. For 
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the conversion see Table 2.2. 

Bossak Case 1: as  B=0.3025 TB=°6 

Bossak Case 2 : ;=-0.l =O.5 ;-0.6 

HHT Case : cx= -0.1 PH=O.3O25 H-0.6 

Before continuing with these examples a brief background of the algorithms is helpful. 

Both schemes introduced an extra parameter to control artificial damping and here they 

are determined for the case with no damping. The Bossak-Newmark scheme (Wood et. 

A (1980)), uses the same method that Chan et. al. (1969) did in the truncated Taylor 

series collocation method to solve the dynamic equation: 

M 1 (l - o)+ M5ç; + Kx 41 = f 1 (3.43) 

Hilber, Hughes and Taylor (Hilber et. A (1977)), also adapted the general dynamic 

equation by using the following dynamic equation: 

Miç + Kx 1(l +(x)- KxflaH = f 1 (3.44) 

The three cases are unconditionally stable and all have second order accuracy, that is p 

equals two. Bossak Case one and the HHT example have very similar period elongations, 

their amplitude decays are similar but begin to diverge as the MT increases. Bossak 

Case two has poor amplitude decay and period elongation for small LWr but between 0.15 

and 0.25 the scheme becomes more accurate than the other two cases. It should be noted 

that all these schemes have much less amplitude decay than they have period elongation, 

see the displacement plot in Figure 3.11 a. 



56 

Of all the schemes studied the Newmark probably gives the best results for period 

elongation, over an unbounded time increment size range, however if zero damping is 

required the Trapezium is the best solution. The SS32 Case two and the Fox-Goodwin 

give very good results but they become unstable and are therefore very limiting. 
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FIGURE 3.9 COMPARISON OF SCHEMES WITH DIFFERING PARAMETER 

VALUES 
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FIGURE 3.11 THE BOSSAK AND HILBER, HUGHES AND TAYLOR 

SCHEMES 
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FIGURE 3.12 THE BOSSAK AND HILBER, HUGHES AND TAYLOR 

SCHEMES 
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CHAPTER FOUR 

SOLUTION OF NON-LINEAR PROBLEMS USING ITERATIVE 

PROCEDURES 

The second stage of the work introduced the concept of iterative procedures. Knowledge 

of these is a requirement when dealing with non-linear structural dynamic problems. 

Non-linearity in structures may be due to a number of reasons, for example a change from 

elastic to plastic behaviour, which is known as material non-linearity, or because of large 

structural deformations called geometric non-linearity. For more information on these 

types of structural behaviour see Zienkiewicz and Taylor ( 1991). This chapter begins by 

looking at some of the iterative methods in common use which model non-linear 

behaviour, and how effective they are. This leads to the next stage of research which was 

a study of the finite element program Nonsap. Nonsap, a structural analysis program for 

static and dynamic response of non-linear systems, was developed by Bathe, Wilson and 

Iding (1974), at the University of California, Berkeley in 1974. This version of Nonsap 

was selected because of its capability to perform non-linear dynamic problems and its 

adaptability to modification; in this case the inclusion of new dynamic schemes. It was 

decided that some amendments would be required to make Nonsap a tool that could be 

used in the study of time increment size effects for non-linear dynamic problems. The 

last section of this chapter looks at the amendments made and how the theory in Nonsap 

was altered. 

4.1 ITERATIVE METHODS 

The key to a rapidly converging iterative procedure is to first have a good starting point, 

this means selecting an accurate ' predictor' dynamic solution scheme, see Chapter Three. 

An efficient iterative procedure is then chosen as the 'corrector'. It should be 

remembered that choosing a method which requires repetitive updating and inverting of 

the effective stiffness matrix, which is called the Jacobian in matrix theory, will increase 

the solution time significantly. There are essentially two types of iterative method, the 
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'fixed tangent' which calculates the Jacobian and keeps it constant throughout the 

iterations, and the ' secant' schemes which update the Jacobian using values from each 

previous iteration. 

Briefly, the iterative procedures use known displacements, velocities and accelerations 

from the previous time step to calculate an effective load vector and effective stiffness 

matrix. These are then used to calculate an incremental displacement using a ratio 

relationship, see Figure 4.1. A problem arises because the effective stiffness matrix 

behaves linearly while the solution is non-linear. The solution is to perform a 

convergence check to see if the incremental displacement is significantly different, if this 

is true then the above procedure is repeated until the incremental displacement converges 

to the required tolerance. These multiple iterations have the effect of dissipating the out-

of-balance force vectors, graphically they appear to step along the non-linear force curve 

in a series of straight lines. In the following sections there are more detailed descriptions 

of examples of the two basic iterative procedures. 

4.1.1 MODIFIED NEWTON ITERATION SCHEME 

The Modified Newton method uses a constant stiffness matrix, it was named the ' initial 

stress' or 'load transfer' process by Zienkiewicz and his co-workers, Nayak and 

Zienldewicz ( 1972). The Modified Newton Iteration method uses the effective load 

matrix for a time increment from n to n+l, and the displacement for the first iteration 

which is made equal to the known displacement at the start of the time increment 

n, to track along a curve of a non-linear force vector: 

n+1 = P(x 1)- f (4.1) 

The P(x 1) is the internal force vector and f is the external force vector, see equation 

(2.44). An approximation is made about the total force vector for a selected incremental 

step from ito i+ 1. 
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\(i-1) 

ft (i) (i - i) + I a ix = 0 R  
n+1 n+1 

,fli+1 

TX 

(4.2) 

The effective stiffness matrix, a constant approximation for this scheme, is formed at the 

beginning of the iterative procedure. Equation (4.2) can be rearranged into a form that 

is used to solve for the displacement increment Ax@. 

Ltx' =- i' ') 

The new displacement for the known force vector can be calculated. 

- a 1) + (i) 
- 

(4.3) 

(4.4) 

This new displacement value is used to calculate the new effective load vector. A 

convergence check using a specified tolerance is applied to see if the Ax incremental 

displacement is significantly smaller than the total displacement for the time step. If this 

is not the case then the whole process is repeated from equation (4.3) with i now equal 

to i+l. Figure 4.1 is a diagram showing the iterative process just described and below 

is a summary of the Modified Newton procedure. 

1 Record x = x(i-i) 1.1 

2 Compute I) 

3 Solve For Ax (i) 

4 Compute x 1 

5 Convergence ? No, Begin At 2 Again 
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The Modified Newton method is less expensive on computer memory than the Newton-

Raphson method which uses the same procedure but reforms the effective stiffness matrix 

before each iteration. It should be noted that the Newton-Raphson method converges 

more rapidly and therefore fewer computations are required but this does not compensate 

for the costly stiffness reformations. 

4.1.2 QUASI-NEWTON METHOD 

Improvement in convergence of schemes is often desirable in cases of very large plastic 

failure or displacement, hence the development of the quasi-Newton methods. The quasi-

Newton, also referred to as the variable gradient method, improves on the Modified 

Newton, which only converges linearly, and the Newton-Raphson methods. Instead of 

totally reforming the effective stiffness matrix each iteration the quasi-Newton methods 

only slightly modify the stiffness matrix, see Figure 4.2. The secant method is one of the 

simplest of the quasi-Newton schemes, it begins by first calculating the value of Ax' 

using equation (4.3) of the Modified Newton method. This value is then used to calculate 

the new total displacement and then the effective load matrix at i equal to one. The 

secant ' slope' K° of the non-linear force curve is solved using the known values just 

calculated. 

= -( ) (-'ft 1 _ft(l) \ 
n+1 1 

(4.5) 

The secant ' slope' term can now be used to calculate a new displacement increment 

value. 

,\x (1) ) R 1 (4.6) 

The t\x'2 is used to determine the total displacement in equation (4.4). As with the 

Modified Newton method a convergence check is carried out, if non-convergent then a 

new displacement increment is calculated by applying equations (4.5) and (4.6) again, 

these equations are written here in their general form: 
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1 - ( -) 
Ax'= -.( k') (R1 - fl+) ((i))_l i(i_l) 

_..(t(')\_l ft(i) 
S n+1 

(4.7) 

(4.8) 

If the secant method is used to solve for a single degree of freedom system the matrix 

and vectors in equation (4.7) reduce to scalars, and hence the determination of the 

effective secant stiffness is a trivial solution. The secant scheme will converge almost 

as rapid as the Newton-Raphson method but with much greater computer efficiency. 

For multi-degree of freedom systems the determination of the effective secant stiffness 

matrix, in equation (4.7), is no longer simple if matrix algebra is to be preserved. A 

number of secant update methods exist which calculate a new effective stiffness matrix 

using previously calculated matrices. One of these methods is the Broyden, Fletcher, 

Goldfarb and Shanno (BFGS) method (Zienkiewicz and Taylor (1991), and Owen and 

Hinton ( 1986)). The BFGS method converges quickly and also preserves symmetry and 

positive definiteness of the effective stiffness matrix. The secant method procedure is 

used but the determination of the new effective stiffness matrix is now calculated using 

the following expression: 

(k lil  = (1+ w.v1T)(!Y' BFGS (I + vw"BFGS ) 
(4.9) 
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Note that I is the identity matrix, and v, and w, equal the following expressions: 

Where y equals: 

vi = 

Ax j) 

(Ax 0) )T ,1(i - 1) 

(AX ( t))T (i-I) 
+ I 

W i =   
Ax(i)T ,1(i-1) 

y(i_I) = ft(i_1) - (i) 

n+1 n+1 

(4.10) 

(4.11) 

Matthies and Strang ( 1979) reported that the BFGS method converges under more 

extreme loading increment cases than the Modified Newton procedure, and there are 

substantial computational savings with the stiffness reformations. It was also found that 

the BFGS method consistently took fewer iterations to converge than the Modified 

Newton iteration scheme. For further information on the application of the BFGS method 

see Matthies and Strang (1979). 

4.2 NONSAP, A FINITE ELEMENT PROGRAM 

Nonsap was written using the Wilson 0 and Newmark ' predictor' schemes in conjunction 

with the Modified Newton 'corrector' method to solve non-linear dynamic problems. The 

Wilson 0 and Newmark schemes do not always give the best dynamic solution for a 

problem, therefore Nonsap was improved by introducing the SSpj scheme which can 

simulate a large selection of algorithms. A study on the effect of time increment size on 

a non-linear case was carried out after the amendments. Time step influences the stability 

and accuracy of the dynamic solution schemes and the rate of convergence of the iterative 

procedure, the results of this study are in Chapter Five. 
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4.2.1 A LINEAR FORMULATION 

A review of Nonsap's step-by-step integration scheme with the SSpj amendments are 

discussed here. Reference to Figure 4.3, which illustrates Nonsap's methodology with a 

flow chart, will help during the following discussion. Firstly, following the procedure for 

a linear case, the effective stiffness matrix and effective load vector are formulated as in 

Chapter One. 

= M(a0 +a1a)+ Cal + K(a2 + aj3) 

The Wilson e and Newmark effective load vector is: 

= R + 9(RtAt -Rt)+M [x1(a3+a6a)+(a4 + a7c) +X1(a5+a8a)] 

+C [xa6 + a7 + 3a3] + K [x(a9 + a6 ) +(a10 +a7 )+ 1(a11 +aj)] 

While the SSpj effective load vector is: 

(4.12) 

(4.13) 

= R +- 8(R1 -R)-M [x1(a3 +a6a)+*(a4 +a7a) +3(a5 + a8(z)] (4.14) 

-C [xa6 +* a7 + ia8] - K [x(a9 + a6 ) 

The x and 0 terms are factors giving the Rayleigh damping contribution from the mass 

and stiffness matrices, see Clough and Penzien ( 1993), and 8 equals one for the Newmark 

scheme. The a1 to a11 terms are dependent on the solution scheme selected, for examples 

of their evaluation see the Wilson 8 equations ( 1.21) and ( 1.22), and the SS32 equations 

(2.39) and (2.40). The values for a1 for the Wilson 8, Newmark, SS22 and SS32 are 

listed in Table 4.1. 

Once the effective stiffness and load expressions are evaluated they are used to solve for 

the displacement at t + r for the Wilson 8 and Newmark schemes, or for the cç," term 

for the SSpj algorithms using equations ( 1.20) or (2.38) respectively. These terms are 
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Wilson 9 Newmark SS22 SS32 

a0 6/(9&)2 1/(aAt2) 1 91At 

a1 3I(9Lt) 8/(ctht) 91At (92Al2)I2 

a2 1 1 (92At2)I2 (93At3)I6 

a3 a0 a0 0 0 

a4 2a1 1/(cxAt) 0 0 

a5 2 1/(2a)-1 0 1 

a6 a1 a1 0 0 

a7 a5 6/a-i a0 a5 

a8 (9At)/2 At(SIc - 2)/2 0 a0 

a9 0 0 a0 a5 

a10 0 0 a1 a0 

a11 0 0 0 a1 

a12 a0/9 a0 0 1 

a13 (-2a1)/9 -a4 1 At 

a14 1 - 3/0 -a5 0 a13 

a15 At/2 At(l - 6) At (At2)I2 

a16 At2/6 6At a15 a13 

a17 - - 0 a15 

a18 - - 
- (At2)I2 (At3)/6 

TABLE 4.1 THE SOLUTION SCHEMES a1 PARAMETER VALUES. 
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then used to solve the following kinematic equations for displacement, velocity and 

acceleration at the end of the time step. 

Wilson 8 

Newmark 

SSpj 

+At +OAt  X +a14 

Xt+At _ x+al5(xA+x) 

=x t + At + a16(X A 

=a I2 (x +AI _x+al3 A 

At+Al x1+a155 + a 
It  

XtfM = Xt+X 

+M =a12 +a13 c4" 

At+At :*+ a14 5 +a15 c4" 

Xt+M =x +a 16 A+a17 X+a18 c4" 

The following relationship applies: 

K  

(4.15) 

(4.16) 

(4.17) 

(4.18) 

4.2.2 A NON-LINEAR FORMULATION 

The non-linear process requires small amendments to the linear versions of the effective 

stiffness matrix and load vector, this allows for the introduction of the Modified Newton 

iteration procedure illustrated in Figure 4.3. The non-linear formulation has a linear and 

a non-linear stiffness contribution, KL represents the linear and KNL the non-linear 

component. The Wilson 9 and the Newmark methods begin by solving the following 

equations: 
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= M(a0 +a1a)+ Cal + KL(a2+aj) + KNL a2 (4.19) 

(i-1) t+r = R1 + 0(R A -R)+M [*1(a4+a7a)+i 1(a5+a8cz)] (4.20) 

+C [* al+Ra8]+KL 

Note that there is no capability for Rayleigh damping from the non-linear stiffness portion 

in Nonsap. The effective stiffness matrix and the effective load vector are used to solve 

for the incremental displacement. 

x'' = 
(4.21) 

The SSpj schemes use a slightly different approach, the following are the equations for 

the effective stiffness and effective load vectors: 

= M (a0 + a1 x) + Ca1 + (KL + KNL ) (a + a1 ) 

= R1 +e1(R+1-R1) - M [x1(a3 + a6a) + A(a4 +a7(Y) + 5ç(a5 +a3(Y-)] 

-C [x1a6+*1a7+5 1a8] 

(KL +KNL )[x1(a9 + a613) -+- A (a10 + a7 ) + 5(a11+a8l3)] 

(4.22) 

(4.23) 

The SSpj formulation allows for Rayleigh damping for both the linear and non-linear 

contributions of the stiffness matrix, this makes the scheme slightly more general and 

accurate. Unlike the Wilson 0 and the Newmark formulations the SSpj method uses the 

effective stiffness matrix and the effective load matrix to solve an equation of the same 

form as (2.38) for at i - 1. 
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= 
(4.24) 

The next stage of the Modified Newton scheme is to apply the first iteration and check 

for convergence. In Nonsap this is achieved for all dynamic solution schemes by first 

calculating the load residual which represents the error due to the simplification of the 

effective load term. Equations (4.25) are used to calculate the displacement, velocity and 

acceleration at the extended time step for the Wilson 9 and the Newmark schemes. 

(i- x 
1) - ''+a4 A1+a55 --a0  

• (i-i) - (i-1) +a8 5 xt+T --a1x 

(i-i) - 

(4.25) 

These equations are used to solve the general residual equation for the (i - l)st effective 

out-of-balance loads. The effective residual equation for the Wilson 9 and the Newmark 

schemes is: 

(i-i) I:kt+T (i-I)= R1 + e(Rt+At -R1)+M +a*'} +c 

I (i-1)1 
+KL [X t;;'}+1 NL [Xt+, 

(4.26) 

The FNL term represents the non-linear forces in the structure due to the material non-

linearity. This effective residual term is then used in place of the effective load vector 

in equation (4.3) to solve for the incremental displacement error. 

= i1 pp(i1) 
+t 

(4.27) 
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Nonsap uses the new total displacement for the time step and the incremental 

displacement from the iterative procedure to perform a convergence check. 

(1) (i-1) 
Xt+ r XX 

k 

E (ix (I) )2 
i=1 
  < tolerance 

(4.28) 

k = number of equations (4.29) 

For the SSpj cases use equations (4.30) at iteration (i - 1) to solve the following effective 

residual equation (4.31). 

x1+ 

(i-I) x+ = a1a Xil) +a7 * ; 1+a8  

r -' . (i-1)J lic (i i)lRE' = R +Q1(R-R)-M +c 1+ -C t+t j 

- ( KL + FNL) + ix (11)1 
t+t j 

(4.30) 

(4.31) 

The total residual error is then applied in equation (4.32) to yield the incremental error 

in the alpha term. 

=V DP (' 1) (4.32) 
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This incremental error is added to the total alpha at (i - 1). 

(4.33) 

But as the SSpj scheme uses a slightly different procedure, the convergence check must 

be adapted. A new xJ value is calculated with equation (4.30) using the new 

term. The following equation is then used to calculate the incremental change in 

displacement for the extended time period, the displacement value then allows the 

convergence check to be performed in equation (4.29). 

Ax 0 (i) (i - 1) (4.34) = 

If the schemes converge to the prescribed tolerance then in the Wilson 0 and the 

Newmark methods x,0' is used to solve equations (4.15) and (4.16). The SSpj schemes 

use the oc to solve kinematic equations (4.17). If convergence does not occur then the 

iterative procedure is repeated as in the Modified Newton method in section 4.1.1 from 

the point of reforming the effective load residual, equation (4.26) and (4.31), with i now 

equal to i + 1. 

Figures 4.4 and 4.5 demonstrate the iterative procedure for both the methods discussed. 
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CHAPTER FIVE 

EXAMPLES USING NONSAP 

Before amendments were made to Nonsap a preliminary linear study was performed, this 

was designed to obtain a better understanding of Nonsap and its capabilities. Nonsap can 

perform linear, non-linear, static and dynamic analyses; therefore various scenarios using 

all of these options were investigated. 

All the displacements in the following figures are those recorded at node twenty, the free 

end of the cantilever shown in Figure 5.1. Stresses are taken from integration point nine 

in element one, this is the stress output position closest to the point of maximum 

compression in the cantilever. 

5.1 PRELIMINARY LINEAR STATIC AND DYNAMIC STUDY OF NONSAP 

We begin by examining the problem to be studied in Figure 5.1. A cantilever 40"x 1"x 

1 " is divided into four eight-node isoparametric elements which were selected because of 

their ability to model linear stress patterns. The cantilever is given a Young's modulus 

E = 30E+6 lb in 2, Poissons ratio '0 = 0.3, and density p = 0.00074 lb-sec2in4. A 

downward forcing function is applied to the tip of the cantilever at its free end and the 

displacements and stresses produced by Nonsap are recorded. 

To test the model an initial linear static analysis was conducted. The program output was 

checked against hand calculations for deflection and stresses in the z axis. The results 

proved the model was indeed behaving as the hand calculations indicated. The program 

results are illustrated in Figure 5.2. The displacements output at the free end were -8.26" 

and -8.43" for the four and eight element models. Hand calculations produced a 

displacement of -8.53", therefore the four and eight element models had errors of 3.17 

percent and 1.17 percent The stresses output were of the correct order when compared 

to hand calculations, there was some difference which was to be expected because stresses 
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in Nonsap are calculated at the integration points so they are slightly conservative when 

compared with hand calculations at the corner nodes of the elements. 

The linear dynamic analysis was used to determine the best method of solution for the 

non-linear dynamic analysis. The first linear dynamic test modelled a four and an eight 

element cantilever using the Wilson 8 method with 8 equal to 1.4. At was set to 0.01 

seconds and a triangular dynamic loading function applied as shown in Figure 5.3. 

The test showed displacement variations at node twenty for both models were 

insignificant, see Figure 5.4. It was therefore deduced that the four isoparametric 

elements adequately modelled the cantilever deflection, this is the same conclusion arrived 

at for the static analysis. 

The second test examined the differences in time dependent displacements for the two 

different mass matrices offered in Nonsap, these are the consistent and lumped mass 

matrix. The lumped mass matrix distributes the structure mass to the nodes, resulting in 

a diagonal matrix. The consistent mass matrix, a slightly more accurate representation 

of mass distribution, uses virtual displacements to model the mass coupling effects 

between coordinates, for further information see dough and Penzien (1993). 

Figure 5.5 shows minor variability in deflection for the two mass matrix formulations. 

These differences are due to the different natural frequencies for the two mass matrices, 

see Table 5.1 for the natural frequencies and periods for the two methods. 
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5.1.1 STUDY OF TIME INCREMENT SIZE 

The following tests were designed to examine the sensitivity of dynamic solution schemes 

with respect to time increment sizes. Two dynamic solution methods originally available 

in Nonsap, the Wilson 0 and the Newmark schemes were used. All the runs used a 

lumped mass matrix so the period of free vibration was equal to 0.049 seconds, and the 

structure was modelled using the four element, eight-node isoparametric representation. 

Time increments investigated ranged from 0.1 to 0.0001 seconds, the corresponding AtJT 

values are given in Table 5.2. The forcing function was triangular causing a large 

displacement in the cantilever and then free vibration, no damping was used so all 

damping observed is a result of inaccurate approximation methods. 

Time Increment / Period (seconds) (T=0.049 sec) 

At 0.1 0.01 0.005 0.001 0.0001 

AtiT 2.0408 0.2041 0.1020 0.0204 0.0020 

TABLE 5.2 CORRESPONDING TIME INCREMENT SIZE AND PERIODS 

Figure 5.6 a. shows the deflection output for the Wilson 0 method (0 = 1.4) for the 

prescribed time span. For a large time increment, it equal to 0.1 seconds, the results give 

a very crude picture of deflection. This is no surprise since a step size this large 

corresponds to a itTI' equal to 2.0, therefore deflections are only being calculated once 

every two periods of oscillation. 

All the other time step sizes are small enough to model the vibration, the real question 

is how accurate are their solutions. The close-up plot in Figure 5.6 b. shows the free 

vibration in the cantilever from 0.2 to 0.3 seconds. It can be seen clearly that a time step 
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equal to 0.01 seconds has severe amplitude decay and that the solution is still quite crude 

compared to that resulting from smaller At values. 

The line representing time step 0.005 seconds is slightly out of phase with the 0.001 and 

0.0001 time step, this is probably due to a slight period elongation. The above 

observations correspond correctly to those published in a paper by Bathe and Wilson 

(1973), see Figure 5.7 and 5.8. The step size 0.005 seconds produced a period elongation 

of approximately five percent, and step size 0.01 seconds has period elongation and 

amplitude decay of approximately fifteen and nineteen percent respectively. 

The Newmark scheme studied is a special case with 6 equal to 0.5 and a equal to 0.25; 

it is commonly known as the trapezoidal method. The displacements output in Figure 

5.9a., tell much the same story as the Wilson 9 method, good results are only achieved 

when the step size is reduced to 0.005 seconds or less. One important observation is that 

the deflections do not show any amplitude decay, this is especially visible when looking 

at the close-up plot of At equal to 0.01 seconds. Bathe and Wilson (1973) also came to 

this conclusion when they examined the spectral radius and found that it has a constant 

value of one for all At, for the trapezoidal scheme. 

5.1.2 STUDY OF PARAMETER VALUES 

The final series of runs for the linear dynamic case compares both the Wilson 9 and the 

Newmark methods with varying parameters. The following parameter values were used: 

for the Wilson 9 method; 9 equal to 1.4 and 2.0, and for the Newmark scheme; 6's of 0.5 

and 0.55 and Ws of 0.25 and 0.3. The results are displayed in Figure 5.10 a. and b.. The 

Wilson 9 method with 9 equal to 2.0 has the most period elongation of all the schemes. 

When 9 is reduced to 1.4 the period elongation decreases, however the Newmark solution 

schemes yield even more accurate results. This is clearly seen in our results and the 

graphs by Bathe and Wilson. Wilson 9 of 2.0 has severe amplitude decay which 

according to Bathe and Wilson should be significantly greater than twenty percent for a 

time step of 0.01 seconds. Finally our plot for the Trapezoidal case of the Newmark 
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scheme re-confirms the conclusion that there is zero amplitude decay, this was pointed 

out in section 3.3. 

5.2 NON-LINEAR DYNAMIC STUDY 

A cantilever problem was also used to examine the non-linear behaviour of the 

approximation methods and the Modified Newton iterative procedure used by Nonsap. 

The model was subjected to material non-linearity using the Von Mises yield criterion 

model. The Von Mises model defines the plastic strain increments in relation to a yield 

surface, that is the point at which an elastic stress increment which exceeds the yield 

criterion becomes a plastic strain, see Figure 5.11 a.. The plasticity causes the internal 

forces of the material to behave non-linearly and therefore the dynamics of the structure 

are altered. Plastic deformation is non-recoverable so when the structural force is 

unloaded as in the case of the oscillating cantilever, the strain does not return to zero and 

when reloaded the strain increases in a linear elastic fashion. However if the load is 

increased beyond the previous maximum stress the structure experiences further plastic 

strain. Strain hardening allows the yield point stress to increase with plasticity. Figure 

5.11 b. demonstrates the stress strain relationship discussed. For further reading refer to 

Zienkiewicz and Taylor (1991) and Spencer ( 1968). 

The linear cantilever model with length reduced to 16"xl"xl" and a forcing function at 

the beam free end was selected; see Figure 5.12 for cantilever model and 5.13 for the 

forcing function. The degree of plasticity was controlled to prevent the beam failure and 

to preserve the numerical behaviour of the solution schemes. The following were 

prescribed values; Young's modulus E = 30E+6 lb in 2, Poissons ratio L) = 0.3 and density 

P = 0.00074 lb-sec2in. For the non-linear bilinear isotropic model a value for strain 

hardening modulus E = 3E+6 lb in 2, and a yield stress in simple tension , = 1OE+3 lb 

in -2 were applied. The fundamental frequencies and periods for the cantilever problem 

using a lumped mass matrix are listed in Table 5.3. Time steps used in the following 

cases are shown in Table 5.4; it should be remembered that a time step no greater than 
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Frequency 

Number 

1 

2 

3 

Frequency, f Frequency, co Period, T (seconds) 

(rad/sec) (cycles/see) 

796.1 126.7 0.007892 

4870.0 775.0 0.001290 

13660.0 2175.0 0.0004599 

TABLE 5.3 FREQUENCY AND PERIOD DATA FOR THE NON-LINEAR 

CANTILEVER PROBLEM USING A LUMPED MASS MATRIX 

At (sec.) At/T1 At/T2 At/T3 T1/At 

0.002 0.25342 1.55039 4.34877 3.946 

0.001 0.12671 0.77519 2.17439 7.892 

0.0005 0.06336 0.38760 1.08719 15.784 

0.00025 0.03168 0.19380 0.54360 31.568 

0.000125 0.01584 0.09690 0.27180 63.136 

TABLE 5.4 TIME INCREMENT SIZE AND PERIOD DATA 
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T1/10 is recommended, T1 is the period of the primary mode. 

The force curve selected had an increasing ramp load which caused yielding in the model 

in approximately the same time span as the primary period of the structure. The load was 

then held constant, consequently structural oscillations at a frequency close to the 

structure's natural frequency occurred. 

5.2.1 VERIFICATION OF NEW SSpj SCHEMES 

To test the new version of Nonsap the original Wilson 8 and Newmark schemes were run 

and the results compared with the corresponding SSpj schemes using the new SSpj source 

code. The Wilson 0 case used had 8 equal to 1.4, and the special Trapezium form of the 

Newmark scheme was run. For the equivalent SSpj parameters see Table 3.3. The 

displacement results for time step At equal to 5.OE-4 seconds are illustrated in Figure 5.14 

a. and b.. 

Initially all the schemes analyzed used a Modified Newton iteration convergence tolerance 

of 0.005 (100 iterations were allowed), the displacement plot is shown in Figure 5.14 a.. 

The plot indicated that the Wilson 0 and the Trapezium schemes had comparable results, 

however the equivalent SSpj methods produced displacement plots which were severely 

damped and elongated, suggesting that the structure was experiencing different stress 

levels. It was concluded that the SSpj iterative method was less sensitive than the 

original Wilson 0 and Newmark iteration process which iterates using the incremental 

displacement rather than the total ot". If sensitivity was the problem then' the results 

would be improved by adjusting the convergence tolerance; hence an investigation of the 

tolerance was carried out. The final tolerance selected was reduced to 0.001, see the 

displacement plot in Figure 5.14 b.. An element of confidence in the accuracy of the 

results was achieved, the Wilson 0 and SS32 schemes were almost identical and the 

Trapezium and SS22 schemes produced results with only a small margin of variation. 

The tolerance could have been reduced further to get even better results but this would 

have resulted in a significant increase in solution time due to the added number of 
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FIGURE 5.14 COMPARISON PLOTS OF THE WILSON 0 AND NEWMARK 

SCHEMES WITH THE NEW SSpj SCHEMES 
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iterations, and hence would be counter-productive. 

Figure 5.15 demonstrates the improvement in the predicted displacements for the SSpj 

schemes by decreasing the tolerance for the iteration scheme from 0.005 to 0.001. The 

improvement is especially marked for the SS22 form of the Trapezium method which was 

over damping. This over damping was due to inaccurate calculation of the stresses which 

produced plastic behaviour where the other schemes were elastic. 

Two studies were performed, they examined the effect of time increment size and solution 

scheme on the total solution time and displacement history accuracy. In some cases the 

stresses were also examined as they helped to give a better picture of the dynamics which 

the schemes predicted. For all the following tests the convergence tolerance was fixed 

at 0.001, and the SSpj forms of the Wilson 0 and Newmark schemes were used. 

5.2.2 STUDY OF TIME INCREMENT SIZE 

The first set of results illustrated in Figure 5.16 a. show the displacements at various time 

steps using the Wilson 8 method with parameter 9 equal to 1.4. The time increments 

ranged from 2.OE-3 down to 1.25E-4 seconds, these sizes were selected because they 

represent approximately one quarter down to one sixty-fourth of the primary period. A 

tenth of the first two fundamental periods also falls within this range, see Table 5.4. 

The displacement plot for time increment equal to 2.OE-3 seconds is cut short at time 

0.018 seconds due to a diverging iterative procedure. It is not surprising that the 

numerical behaviour breaks down at this time step since it corresponds to approximately 

a quarter of the primary period, this is a fairly coarse time step. This conclusion is 

consistent with the discussion in section 3.3 where it was found that the program 

dynamic.c could not accurately predict displacements for time steps greater than a tenth 

of the primary period. 
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FIGURE 5.16 COMPARISON PLOTS OF THE WILSON 8 SCHEME WITH 

DIFFERENT TIME STEP SIZES 
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WITH DIFFERENT TIME STEP SIZES 



100 

It is clear that the results slowly converge as the time step is reduced. Note that time 

steps of 2.5E-4 and l.25E-4 seconds show minor divergence in their displacement history, 

therefore reducing the step further would probably yield insignificant improvements in 

accuracy. The larger time steps display more amplitude decay resulting in a conservative 

estimate of the maximum displacement. The displacement plots begin to go out of phase 

during the plastic deformation of the structure approximately between 0.01 and 0.019 

seconds depending on the time step used (in this case At = 1.OE-3 seconds). The larger 

time increments under-estimate the stress level during plasticity but remain in the plastic 

mode for a slightly longer period of time, see Figure 5.17. The Wilson 0 method also 

shows more severe period elongation as the time step is increased. 

The bar graph in Figure 5.16 b. presents the distribution and the total time taken for each 

case run. We are interested in the time incurred during the iterative procedure and 

reformation of the effective stiffness matrix and load vectors. The iterative procedure is 

far less draining on computer time than reforming the matrices, the procedure takes 

approximately twenty percent of the total time verses sixty to seventy percent for the 

reformations. Matrix reformation occurs every time step therefore the more time 

increments required, that is the smaller the time step, the greater the increase in total 

solution time. This trend is apparent in Figure 5.16 b., as the time step is decreased the 

total solution time becomes much larger. Since the significance of the iterative procedure 

is less it is preferable to increase the time step size and increase the number of iterations 

required per time step. Note that the user should he careful not to sacrifice the accuracy 

of the displacement history by increasing the step size too much. 

Appendix C contains plots of the displacements and solution times for various other 

solution schemes. The conclusions made about the Wilson 0 method apply to them also. 

One point to be made is that the Hilber, Hughes and Taylor scheme (HHT) in Figure C.3, 

like the Wilson 9 method was capable of solving for a time step equal to l.OE-3 seconds, 

all the other methods failed during the plastic range and therefore are numerically more 

sensitive. The Trapezium method in Figure C. 1 showed it had the least variation of 
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accuracy as the time increment was increased. 

5.2.3 STUDY OF SOLUTION SCHEMES AND PARAMETER VALUES 

The final set of tests examines the influence of the solution schemes on the displacement 

accuracy and the total solution times. Five of the solution schemes previously examined 

in section 3.3 were compared at two different time steps, 5.OE-4 and 1.25E-4 seconds. 

The five schemes tested were; Trapezium, Bossak case 2, HHT, Houbolt and Wilson 8 

(0 = 1.4), parameter values are listed in Table 3.3. 

For the non-linear problem no exact solution is known, however no damping is introduced 

into the system and we also know that the trapezium method has zero amplitude decay. 

The trapezium method had the least period elongation for the linear analysis in section 

3.3 when the time increment was one sixteenth of period T1. Therefore the following 

results will be compared against the trapezium method assuming that it yields the best 

solution. 

Figure 5.18 illustrates the displacement and time graphs for the five schemes for a time 

increment equal to 5.OE-4 seconds. It is clear that the Houbolt scheme has the most 

amplitude decay and period elongation. All the other schemes do not suffer much 

amplitude decay although the Bossak and Wilson 0 methods show a significant degree 

of period elongation. The phase errors begin during the plasticity stage, the 

corresponding stress plot in Figure 5.19 also shows variations of stresses during the 

plasticity range, therefore indicating errors. The Houbolt scheme had the most severely 

damped stress plot and hence the poor representation of displacement history in Figure 

5.18 a.. Both the Trapezium and HHT methods produce roughly identical displacement 

and stress plots. The displacement plot for time step equal to l.25E-4 seconds, in Figure 

5.20 a., shows that all the schemes have converged. The Houbolt method was the only 

scheme which shows period elongation, however this elongation error is very small. 
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The bar graphs in Figures 5.18 b. and 5.20 b. show that there is little difference in total 

time between all the solution schemes, therefore it is concluded that the times taken are 

not solution dependant. This conclusion also applies to the time taken for the iterations 

and the matrix reformations. 

The final test run examined the effect of varying the parameters of the Wilson 0 and 

Newmark schemes, see Figure 5.21. The displacement plot shows that the Wilson 0 

scheme, with 8 equal to 2.0, has severe amplitude decay and period elongation in 

comparison to the special trapezium form of the Newmark scheme. The other Wilson 0 

method and the Newmark scheme with 6 equal to 0.55 and a equal to 0.3 have similar 

amplitude decay, but the Wilson 0 method shows signs of greater period elongation. 

These findings are consistent with those discussed in section 5.1.2 for the linear cases of 

these solution schemes. The solution time bar graph also confirms the conclusion that 

solution time is independent of solution scheme. 
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FIGURE 5.18 COMPARISON PLOTS OF DIFFERENT SOLUTION SCHEMES 

WITH TIME STEP EQUAL TO 5.OE-4 SECONDS 
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FIGURE 5.19 COMPARISON STRESS PLOT OF DIFFERENT SOLUTION 

SCHEMES WITH TIME STEP EQUAL TO 5.OE-4 SECONDS 
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FIGURE 5.20 COMPARISON PLOTS OF DIFFERENT SOLUTION SCHEMES 

WITH TIME STEP EQUAL TO 1.25E-4 SECONDS 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

The conclusions made about the various approximation methods and how they behave for 

a range of time step sizes are based on the examples in this thesis. However these 

conclusions are consistent with results published by other authors for linear dynamic 

problems. 

The multi-step finite difference approximations for the dynamic equation of equilibrium 

require knowledge of the displacement and force history over a number of time steps. 

When writing the first version of program dynamic.c difficulties arose while making 

assumptions about the displacement and force history prior to time step one. During the 

investigation of the single-step procedures it was found that information about the 

kinematics and forces were only required for the previous time step and therefore less 

assumptions about the system were made. The general single-step approximations also 

made testing of a large number of possible solution methods available and hence for our 

research purposes it was concluded that the analyses should be carried out using the SSpj 

scheme. Note that the SSpj approximation is essentially the same as the GNpj algorithm 

and therefore it was only necessary to study one of the methods. 

In Chapter Two various procedures were used to investigate the accuracy and stability of 

approximation methods. Lambert's theorem ( 1973) highlighted the importance of 

consistency and zero-stability for the schemes as they determine the magnitude of the 

truncation error and its propagational behaviour. The Routh-Herwitz stability criterion 

was also introduced. Table 3.2 lists the conditions that the SSpj schemes must satisfy in 

order to meet the stability and accuracy requirements. Table 3.3 shows the corresponding 

conditions for a selection of solution cases. The SSpj scheme is always consistent but 

unconditional stability will only apply for some of the prescribed parameter values. For 
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example the Fox-Goodwin and Central Difference cases are only stable for a bounded 

range of time increment size where they satisfy the Routh-Herwitz criterion. 

For additional information on the stability and accuracy of approximation schemes, 

methods of measuring spectral radius, and percentage amplitude decay and period 

elongation were examined. This analytical approach was more useful than the 

mathematical developments discussed in the last paragraph as a greater understanding of 

each solution case's behaviour for a range of time step sizes was achieved. This kind of 

information is useful when examining a model which has a wide range of frequency 

modes. For example it maybe desirable to filter out higher modes of oscillation with 

amplitude decay and therefore knowledge of the decay behaviour over a range of time 

step sizes will be required. The spectral radius was of particular interest as it identified 

those schemes which were conditionally stable and at what point the time step size caused 

instability. 

It was concluded that the spectral radius and the Routh-Herwitz criteria were consistent 

in their identification of solution schemes with conditional stability, and for the time step 

size where the instability begins. Both procedures were in agreement when pinpointing 

the schemes that have zero amplitude decay. The truncation error indicated which 

schemes were the most accurate but did not specify if the accuracy applied to the period 

elongation or the amplitude decay and to what order the accuracy was. Therefore it is 

not of much benefit in comparison to the information that the percentage amplitude decay 

and period elongation can provide. 

The forcing functions used in the analyses using Nonsap were selected to produce an 

oscillating displacement response. In the linear study a simple triangular function was 

adequate in producing free oscillations which easily highlighted accuracy problems. The 

non-linear analysis was more sensitive to the forcing function. Too much load in a time 

span close to the natural frequency of the structure or a severe change in the load, for 

example the apex of a triangular forcing function, caused the Modified Newton iterations 
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to diverge resulting in failure of the solution. If the load was not large enough the 

oscillations were too small making it impossible to see any amplitude decay or period 

elongation in the displacements. The conclusion is that when selecting a forcing function 

to study approximation schemes careful consideration of the structures dimensions and 

natural frequency must be made first. 

The Modified Newton iteration convergence tolerance size is very important if good 

displacement results are to be achieved. The SSpj schemes were less sensitive than the 

Wilson 0 and Newmark schemes so when selecting a tolerance value this must be taken 

into consideration. The smaller the tolerance value the more accurate the displacement 

results, however there is an increase in solution time due to an increase in the number of 

iterations. 

In Chapter Three dynamic.c was used to determine the time increment size where the 

displacements were no longer satisfactory. According to the Routh-Herwitz criteria and 

spectral radius the Trapezium scheme has zero amplitude decay but when the time step 

was greater than a tenth of the period, amplitude decay was observed. In both the linear 

and non-linear analyses using Nonsap the same conclusion was deduced. For all the 

schemes tested the results were very poor when the time step was larger than a tenth of 

the fundamental period. Bathe and Wilson ( 1973) also observed this behaviour and they 

suggest using a smaller time step than the period divided by ten. 

All the analyses showed that reduction of the time step decreased errors in accuracy. The 

linear study showed that the amplitude decay and period elongation for all the solution 

schemes tended towards zero as the time increment decreased, and schemes with 

conditional stability behaved well with small st's. For the non-linear analysis 

displacement plots converged for all the schemes tested with diminishing time step. Some 

schemes failed when the time step was too large; this was due to the iterative procedure 

diverging. 
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The solution time of the non-linear problems increased dramatically when the time step 

was reduced. For all the cases matrix reformation and solution of the simultaneous 

equations were more draining on time than the iterative procedure, therefore to reduce 

solution time the time step should be made as large as possible but not to the extent that 

the accuracy of the solution is compromised. 

The selection of solution scheme and parameter size is very important. The linear and 

non-linear studies indicated significant variations in displacement for different test cases. 

Schemes which showed greater accuracy in the linear study also excelled in the non-linear 

problems, for example, when the time step size was kept below a tenth of the primary 

period, the Trapezium scheme performed well. The trapezium method experienced the 

least period elongation and zero amplitude decay for the non-linear model, it was also the 

most accurate un-conditionally stable scheme for the linear tests. The Hilber, Hughes and 

Taylor method (HHT) was another un-conditionally stable scheme, but with some 

amplitude decay for both the linear and non-linear tests, this amplitude decay may be 

desirable for some problems. The Houbolt and Wilson e scheme with 8 equal to two, 
performed very poorly when the time step was large. In the non-linear case for accurate 

results the Houbolt scheme required a time step approximately one thirty-second of the 

primary period. All these results lead to the conclusion that the schemes behave in a 

similar manner whether the problem is linear or non-linear. 

Hilber et. al. ( 1977) stated that the HHT approximation was developed to satisfy the 

following requirements: 

1. Un-conditional stability for linear problems. 

2. Control of numerical dissipation without changing time step sizes, zero dissipation 

should be achievable. 

3. Dissipation should effect the lower frequencies as little as possible. 

By making the aH term zero the HHT method simulates the Newmark scheme. Zero 
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amplitude decay is achievable by reducing the HHT scheme into the special Trapezium 

form of the Newmark method, this is done by making N and 'YH equal to a quarter and 

a half respectively. The numerical damping is controlled by altering the values of the a 

and Ia terms, it is for this reason that I recommend the use of the HHT approximation. 

The linear and non-linear examples showed that the Trapezium method was the best 

scheme if zero amplitude decay is required, and as mentioned we can simulate the 

Trapezium method with the HHT approximation. When damping of the high frequencies 

is necessary the HHT example in chapters three and five behaved the best. This HHT 

case had the least amplitude decay and period elongation for small time step sizes 

resulting in accurate calculation of the displacements for the lower frequencies; for large 

time step sizes the desirable amplitude decay was introduced. 

Solution time was marginally effected by the scheme selected, therefore it was deduced 

that solution time is scheme independent. 

6.2 RECOMMENDATIONS 

The iterative procedure used in Nonsap was the Modified Newton method. This 

procedure is more computer efficient than the Newton-Raphson method but it does not 

converge as quickly. The Secant method converges almost as quickly as the Newton-

Raphson procedure but is much more efficient. Various other Quasi-Newton iterative 

procedures have been developed which converge even more effectively than the Secant 

method. It is recommended that some of these Quasi-Newton iterative procedures be 

investigated further. With their introduction into Nonsap a study of these iterative 

procedures and their combined effect with the SSpj approximation methods on solution 

times would be very interesting. 

Zienkiewicz and Xie ( 1991) and Zeng et. al. (1992) develop the idea of adaptive time 

stepping. This procedure adjusts time step sizes throughout the solution process to reduce 

computational errors. An error estimator predicts the optimal step size from time to time 



112 

to reduce the local error incurred at each time step within a prescribed tolerance. They 

reported that the error estimator introduces only a small increase in computational cost. 

The adaptive time stepping procedure could add considerable improvements to the 

accuracy of the displacements particularly for non-linear problems. It is suggested that 

the addition of such error estimators to the non-linear investigation be done to see their 

significance in terms of accuracy improvements, and computational cost. 

6.3 COMMENTS 

From the testing documented in this thesis it can be seen that the size of the time 

increment is very important when modelling vibrational deflection. Structures have 

differing natural frequencies therefore it is a good idea to determine the structures period 

of oscillation in order to calculate a good estimate of At by taking at minimum a tenth 

of the primary period. 

Solution scheme and parameter size also play an important role in the accuracy of the 

displacements. With a little investigation an optimum solution scheme with prescribed 

parameter sizes can be selected for the required range of time step sizes. 



113 

BIBLIOGRAPHY 

Bathe, K.J., Wilson, E.L. (1973) Stability and Accuracy Analysis of Direct Integration 

Methods, Earthquake Engineering and Structural Dynamics, Vol.1, pp.283-291 

Bathe, K.J., Wilson, E.L., Iding, R.H. ( 1974) Nonsap a Structural Analysis Program for 

Static and Dynamic Response of Non-Linear Systems, University of California, Berkeley, 

U.S.A., Report Number UCSESM 74-3 

Bathe, K.J., Wilson, E.L. ( 1976) Numerical Methods in Finite Element Analysis, Prentice-

Hall, Inc., U.S.A. 

Chan, S.P., Cox, H.L., Benfield, W.A. ( 1969) Transient Analysis of Forced Vibrations of 

Complex Structural-Mechanical Systems, The Royal Aeronautical Society Journal, Vol.66, 

pp.457-460 

Clough, R.W., Penzien, J. ( 1993) Dynamics of Structures, Second Edition, McGraw-Hill 

Book Company, U.S.A. 

Froberg, C.-E. ( 1969) Introduction to Numerical Analysis, Second Edition, Addison-

Wesley Publishing Company, U.S.A. 

Gantmacher, F.R. (1960) The Theory of Matrices, Vol. 2, Chelsea Publishing Company, 

New York, U.S.A. 

Gerald, C.F., Wheatley, P.O. ( 1984) Applied Numerical Analysis, Third Edition, Addison-

Wesley Publishing Company, U.S.A. 



114 

Hilber, H.M., Hughes, T.J.R., Taylor, R.L. (1977) Improved Numerical Dissipation for 

Time Integration Algorithms in Structural Dynamics, Earthquake Engineering and 

Structural Dynamics, Vol.5, pp.283-292 

Hilber, H.M., Hughes, T.J.R. ( 1978) Collocation, Dissipation and 'Overshoot' for Time 

Integration Schemes in Structural Dynamics, Earthquake Engineering and Structural 

Dynamics, Vol.6, pp.99-117 

Katona, M.G., Zienkiewicz, O.C. (1985) A Unified Set of Single Step Algorithms, Part 3: 

The Beta-rn Method, a Generalization of the Newmark Scheme, International Journal for 

Numerical Methods in Engineering, Vol.21, pp. 1345-1359 

Lambert, J.D. ( 1973) Computational Methods in Ordinary Differential Equations, Wiley, 

London, U.K. 

Matthies, H., Strang, U. ( 1979) The Solution of Non-Linear Finite Element Equations, 

International Journal for Numerical Methods in Engineering, Vol. 14, pp. 1613-1626 

Nayak, G.C., Zienkiewicz, O.C. ( 1972) Note on the 'Alpha'-Constant Stiffness Method for 

the Analysis of Non-Linear Problems, International Journal for Numerical Methods in 

Engineering, Vol.4, pp.579-582 

Owen, D.R.J., Hinton, E. ( 1986) Finite Element in Plasticity, Theory and Practice, 

Pineridge Press Limited, Swansea, U.K. 

Spencer, G.C. (1968) Introduction to Plasticity, Chapman and Hall Ltd., London, U.K. 



115 

Wood, W.L. ( 1977) On the Zienkiewicz Four-Time-Level Scheme for the Numerical 

Integration of Vibration Problems, International Journal for Numerical Methods in 

Engineering, Vol. 11, pp. 1519-1528 

Wood, W. L. ( 1990) Practical Time Stepping Schemes, Clarendon Press, Oxford, U.K. 

Wood, W.L., Bossak, M., Zienkiewicz O.C. ( 1980) An Alpha Modification of Newmark's 

Method, International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1562-

1566 

Zeng, L.F., Wiberg, N.-E., Li, X.D., Xie, Y.M. ( 1992) A Posteriori Local Error 

Estimation and Adaptive Time-Stepping for Newmark Integration in Dynamic Analysis, 

Earthquake Engineering and Structural Dynamics, Vol.21, pp.555-571 

Zienkiewicz, O.C. (1977) A New Look at the Newmark, Houbolt and Other Time Stepping 

Formulas. A Weighted Residual Approach, Earthquake Engineering and Structural 

Dynamics, Vol.5, pp.413-418 

Zienkiewicz, O.C., Wood, W.L., Hine, N.W., Taylor, R.L. ( 1984) A Unified Set of Single 

Step Algorithms, Part 1: General Formulation and Applications, International Journal for 

Numerical Methods in Engineering, Vol.20, pp. 1529-1552 

Zienkiewicz, O.C., Taylor, R.L. ( 1991) The Finite Element Method Fourth Edition, 

Volume 2 Solid and Fluid Mechanics, Dynamics and Non-Linearity, McGraw-Hill Book 

Company, London, U.K. 

Zienkiewicz, O.C., Xie, Y.M. ( 1991) A Simple Error Estimator and Adaptive Time 

Stepping Procedure for Dynamic Analysis, Earthquake Engineering and Structural 

Dynamics, Vol.20, pp.87 1-887 



116 

APPENDIX A 

A.1 TRUNCATED TAYLOR SERIES COLLOCATION 

The general dynamic equation, 

M3+ C*+ Kx = f 

is written for three separate times n-i, n and n+1. 

(A1.1) 

MR n-1+ CA 1 + Kx 1 = f 1 (A1.2) 

M5+ Kx = f (AI.3) 

M•1 +C 1 + Kx 1 = f+1 (A1.4) 

Equations (A1.2),(A1.3) and (A 1.4) are multiplied by t2(V2-'y+3), At2(½+y-213) and Aep 

respectively and are then added together. 

M [c+ +5 (!+y-2) +3 n-I (!2 _ y+f3)}it2 + 
C 1* 3--k (L+?-23)+* (!_7+l3)]It2 + [ n+1 fl n1 2 

K [x+1 +x (.L+y-2f3) +x 1(_y+)JAt2 - 

f +f ( +Y-2P) +f (.]At2 
1 n+I 2 

(A1.5) 

The resultant equation (A1.5) can be simplified further. The mass term is reduced by 

substitution of the acceleration term at n+l with equation (2.6). 
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[;+ i + (L+y-2) + 

- x - *At + yAt2(5ç-3ç1) + iç 1At2c.+13) - it2J3 

(A1.6) 

The velocity and acceleration terms are eliminated by substituting equations (2.5) and 

(2.6) for acceleration at n therefore that the final mass term is: 

= xn+1 - + xn_I (A1.7) 

The damping term is simplified by inputting equation (2.3) for the f3At and (y-) velocity 

terms at time steps n+ 1 and n respectively. 

+ (!+ y-23) + 1 ]At = I +i 

At 
_(* +x + At(* -A.) + 
2 n-I) n+I 

At. 
= ' _(x +An-I ) + At((1 -7)3çAt +yR11+ 1At) 
2  

+('y-f3)((1--y)R 1At +'yçAt)At 

The fIAt acceleration terms are substituted by equation (2.6). 

At = .()k+ A) + f3At(5At +.....L.[x 1 - x - AAt _ Xn At2]) 

+ (-) (( 1 -y)5ç 1At + yçAt) At 

(AI.8) 

(A 1.9) 

(A1.1O) 

The previous substitution introduced two new acceleration terms at time n, these are 

replaced by equations (2.6) and (2.5). 
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= x-x 1+y(x 1 -x - At) 

+yAt2[(L -'y)5 +7X '- PA (y3 
n-I nj 

(Al. 11) 

Further substitution of equations (2.5) and (2.6) for the acceleration terms at n will give 

the following final simplified form of the damping term. 

= 

Hence (A1.5) the general equation, is reduced to the following: 

M [x+1 -2x +x1] + CAt['yx 1+(l -2y)x+(y- 1)x 1] 

+ KM2 {13X +1 +(!+.y-2f)x+(!_+13)x 1] 

= 0 

(AI.12) 

(AI.13) 

A.2 WEIGHTED RESIDUAL 

The multi-step Zienkiewicz Weighted Residual equation (2.10) is solved by first 

substituting in the following shape functions in equation (2.9) and their corresponding 

derivatives. 

N =L1L-i) r =( _fL 2At I -) R =J_ '' At ) AtAt ) At 
2t 

N=1-_L. N=-_-. N=-_ 
n At2 " At2 At2 

N =JJL+i') $4 .LLL+) R 1=.L 
'' 2At(At n+I At(At 2) r At2 

(A2.1) 

If the weighting function W is set equal to one for the entire domain the weighted 



KAtIit 4Lt At 
+ ____._x +_x +_x 
2 13 fl+I 3 fl 3 fl1 
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residual equation is reduced to the following integral where p equals t/At and q equals 

(t/At)2: 

At 
Cu 1' ' 1 IN 

tt ) 2px+Jp_ ,} __.{x +1 -2x-t-x 1}+_JIp+ k 

+K{.!(+P)X+(1 _q)Xn+.!(q_P)Xni} 

_{!(+P)f+(1 _)f+4(_P)fni }.dt=O 

(A2.2) 

After the integration and multiplying through by At/2 to simplify, general equation (A2.3) 

is yielded. 

(A2.3) 
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APPENDIX B 

B.1 DYNAMIC.0 

B.1.1 INTRODUCTION 

This program was designed to simulate one-step solution methods which solve linear 

dynamic problems. Dynamic.c will run the selection of common solution schemes 

discussed in Chapter Two. A copy of the program code is listed in section B.3. 

Once a solution scheme is selected by the user, appropriate parameters and initial 

conditions must be chosen. The program uses the solution scheme to calculate the 

displacement history of the structure for a prescribed time, the displacement history is 

translated into a displacement plot against time using an interpolation function. 

Amplitude decay and period elongation for the displacement plot are determined by 

locating the maximum and zero amplitude points. 

The spectral radius is calculated within dynamic.c if the scheme is quadratic. However 

if the scheme is cubic the A matrix is output to "filename".dat, it is then used by eigen.c 

to calculate the modulus of A's eigenvalues. 

Using the amplitude decay, period elongation and spectral radius the user can determine 

which of the solution schemes gives the most accurate results for the prescribed dynamic 

problem. 

B.1.2 ASSUMPTIONS AND LIMITATIONS 

The following rules apply: 

1. All filenames have a maximum length of 80 characters which includes any file 

extensions which are added by dynamic.c. 

2. A maximum of 1000 time steps are permitted so an appropriate At must be 

selected for the prescribed total time period for the solution. 
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3. A limit of 14 different cases may be run for each input file, note that each case 

only differs by the number of prescribed divisions per period T. 

4. No damping is possible in dynamic.c, the following is the governing single degree 

of freedom structural dynamic equation for dynamic.c: 

m3+kx = f(t) (B1.1) 

5. Initial acceleration is calculated using equation (B 1.1) and the prescribed mass, 

stiffness, initial displacement and force. 

6. Dynamic.c can only solve problems using the solution schemes in Table B.I. 

7. The interpolation function gives very poor results for time steps larger than the 

period T/3. 

B.1.3 INPUT DESCRIPTION 

One input file is required to run the program, it contains the following data, an example 

is seen in Figure B.!: 

1. Mass - the mass of the agitated system (real). 

2. Stiffness - the stiffness of the agitated system (real). 

3. Force - the applied force (real). 

4. Force duration - the period of time the force is applied (real). 

5. Initial displacement - the systems displacement at time increment zero (real). 

6. Initial velocity - the systems velocity at time increment zero (real). 

7. Displacement switch (int) - 0 = no displacements output 

1 = yes displacements output 

8. Time, number of cases + (increments x number of cases) - total length of time for 

solution (real), number of cases (int) and the number of divisions per period T, for 

each case (int). 

9. Scheme - solution scheme identification number (int). 

10. Parameters - the parameter values to be applied in solution, see Table B. 1 (real). 
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Scheme 

Wilson 0 

Bossak 

HHT 

?H - ½- aB 

Newmark 

Houbolt 

SS22 

SS32 

Scheme 

I.D. 

Number 

1 

2 

3 

4 

5 

6 

7 

Parameters 

Param. 1 Param. 2 Param. 2 

ow -  - 

- 

aH PH - 

2ci - 

01 02 - 

8, 02 83 

Order Of 

Solution 

Scheme 

Cubic 

Cubic 

Cubic 

Quadratic 

Cubic 

Quadratic 

Cubic 

TABLE B.! POSSIBLE SOLUTION SCHEMES IN DYNAMIC.0 

1.0 
1.0 
0.0 
0.0 
3.0 
0.0 
0 
26.02 50 3 
2 
-0.1 0.3025 

FIGURE B.1 EXAMPLE INPUT FILE 
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B.1.4 OUTPUT DESCRIPTION 

There are three output flies, examples of which are in Figures (B.2)-(B.4): 

1. "filename".res - first there is optional output of the structures displacement history. 

Dynamic.c outputs the period T, time increment size At and the percentage 

amplitude decay and period elongations. There is a new set of data for each case. 

2. "tfllename".dat - there are two possible output files. The first in Figure (B.3a) is 

output for a cubic solution, the first integer represents the number of cases and the 

following multiples of three data lines represent the A matrices. The second 

output file Figure (B.3b) is output for a quadratic solution scheme, it lists the A 

matrix and its corresponding eigenvalues. Table B.1 lists the order of each 

solution scheme. 

3. ap_"fllename" - the first integer equals the number of cases and the following 

numbers are the amplitude decay and period elongation for each case. 

B.1.5 RUNNING INSTRUCTIONS 

To run dynamic.c type the following command at the prompt: 

dynamic "filename" 
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Bossakl.resl 

Time Displacement 
0.000000 3.000000 
1.047 198 1.643099 
2.094395 -1.114105 
3.141593 -2.904586 
4.188790 -2.265658 
5.235988 0.229382 
6.283185 2.487263 
7.330383 2.650537 
8.377580 0.624844 
9.424778 - 1.877176 
10.471976 
11.519173 
12.566371 
13.6 13568 
14.660766 
15.707963 
16.755161 
17.802358 
18.849556 
19.896753 
20.943951 
21.991149 
23.038346 
24.085544 
25. 132741 

-2.783015 
-1.376354 
1.138292 
2.665852 
1.965574 
-0.342190 
-2.323369 
-2.350422 
-0.438626 
1.798121 
2.508983 
1.137082 
-1.146151 
-2.440268 
-1.697070 

Period 
Time increment 
Time increment/Period 
Amplitude decay 
Period Elongation (T & 
Period Elongation (T & 
Period Elongation (T & 

= 6.283 185 
= 1.047198 
= 0.166667 
= 5.206276 

T[1]) = 11.140951 
T[2]) = 10.131836 
T[3]) = 13.199870 

FIGURE B.2 EXAMPLE OUTPUT FILE 'filename".res 



125 

2 
OUTPUT 1 

0.433914 0.7 16957 
-1.132173 0.433914 

Eigenvalue 1: 0.4339 14 + i(0.900954) 
Eigenvalue 2 : 0.4339 14 - i(0.900954) 

OUTPUT 2 

0.569667 0.784833 
-0.860666 0.569667 

Eigenvalue 1: 0.569667 i- i(0.821876) 
Eigenvalue 2 : 0.569667 - i(0.821876) 

FIGURE B.3 a EXAMPLE OUTPUT FILE "fllename".dat FOR QUADRATIC 

SOLUTION SCHEME 

2 
0.833180 0.816498 0.279950 
-0.500459 0.449495 0.339849 
-1.000918 - 1.101009 -0.320301 
0.872343 0.859577 0.296039 
-0.382972 0.578731 0.388117 
-0.765943 -0.842538 -0.223766 

FIGURE B.3 b EXAMPLE OUTPUT FILE "fllename".dat FOR CUBIC 

SOLUTION SCHEME 
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B.2 EIGEN.0 

B.2.1 INTRODUCTION 

Eigen.c was written to accompany dynamic.c, it simply calculates the eigenvalues and the 

modulus of the eigenvalues for any cubic A matrix output by dynamic.c. The eigenvalues 

are calculated using an imsic math library routine, the program listing is in section B.4. 

B.2.2 ASSUMPTIONS AND LIMITATIONS 

There are essentially only two limitations which apply to eigen.c. The first being that the 

program will only work for cubic solutions, that is it can only calculate the eigenvalues 

for a 3 x 3 matrix with an input file using the same format as "filename".dat which was 

output by dynamic.c. The second is that all file names have a limit in length of 80 

characters. 

B.2.3 INPUT AND OUTPUT DESCRIPTION 

The input file is output by dynamic.c, it is described in section 13.1.4 and is named 

"fllename".dat. 

There is one output file, "fllename".dat2, see Figure B.5. The output file lists the A 

matrix for each case and the eigenvalues with their corresponding modulus. 

B.2.4 RUNNING INSTRUCTIONS 

As eigen.c uses an imsic math routine the computer environment must first be initialized 

using the following instruction at the prompt: 

• use imslc 

To run eigen.c type the following command at the prompt: 

a.out "fllename".dat 
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2 
8.600429 13.798828 
5.206276 11.140951 

FIGURE B.4 EXAMPLE OUTPUT FILE ap_"fllename" 

0.83318 0.816498 0.27995 
-0.500459 0.449495 0.339849 
-1.00092 -1.10101 -0.320301 
OUTPUT 1 

Eigenvalue 0 : 0.448445 + i(0.875695) 
Eigenvalue 1: 0.448445 + i(-0.875695) 
Eigenvalue 2 : 0.0654832 + 1(0) 
Eigenvalues modulus: 0.983842 0.983842 0.065483 

0.872343 0.859577 0.296039 
-0.382972 0.578731 0.388117 
-0.765943 -0.842538 -0.223766 
OUTPUT 2 

Eigenvalue 0 : 0.578046 + i(0.804 132) 
Eigenvalue 1: 0.578046 + i(-0.804132) 
Eigenvalue 2 : 0.07 12157 + i(0) 
Eigenvalues modulus : 0.990336 0.990336 0.071216 

FIGURE B.5 EXAMPLE OUTPUT FILE 'fi1ename".dat2 
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B.3 DYNAMIC.0 LISTING 

1* Program To Model Dynamic System */ 
1* By Tracy Greener, Jan, 1994 */ 

/* Version 2 *1 

1* Additional SSpj Formulation */ 

#include <string.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#define MOD(a) (sqrt(pow(a,2))) 

/* define global variables */ 

mt scheme, num[15], n, count, swtch; 
double x[15][1000], param[3], par[3], coeff[6], time, step, period, omega, zero; 
char oname[80] ,onamel [80] ,oname2[80]; 

main(argc, argv) 
mt argc; 
char **argv; 

( 
FILE *opf,*opfl,*0pf2; 

Arg_check(argc); 
Input(argv); 

ParamsO; 

1* open files */ 

strcpy(oname,argv[ 1]); 
strcat(oname,".res"); 
strcpy(oname2,argv[ 1]); 
opf=fopen(oname, "w"); 
strcpy(onamel,"ap_"); 
strcat(onamel,argv[1]); 
opfl=fopen(onamel,"w"); 
strcat(oname2," .dat"); 
opf2=fopen(oname2,"w"); 

fprintf(0pf2," %d\n" ,num[0]); 
fprintf(opfl,"%d\n",num[O]); 
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for(n= 1 ;n<=num [0] ;++n) 
Equation(argv,opf,opfl,op12); 

fclose(opO; 
fclose(opf 1); 
fclose(opf2); 

) 

1* Routine to check run line is correct *1 
Arg.....check(argc) 
mt argc; 
{ 
if(argc !=2){ 
fprintf(stderr,"\n Usage: <prog> <ijp file> <o/p file> ***\nu'); 

exit(- 1); 

} 
} 

1* Routine to read data from input file *1 
Input(argv) 
char **argv; 

{ 
mt i; 
char iname[80]; 
FILE *jpf; 

strcpy(iname,argv[ 1]); 
ipf=fopen(iname," r"); 

/* check file is open *1 

if(ipf==NULL) { 
fprintf(stderr,"\n *** Cannot open input file %s ***\nh',iname); 

fclose(ipO; 
exit(- I); 

) 

1* [0]=mass [ 1]=stiff [2]=force [3]=dur [4]=initial disp [5]=initial vel *1 

for(i=0;i<6;++i) { 
fflush(ipf); 
fscanf(ipf," %Ie\n" ,&coeff[i]); 

} 
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1* switch 0 = on, 1 = off, displacements */ 
fflush(ipf); 
fscanf(ipf," %d\n" ,&swtch); 
fflush(ipf); 
fscanf(ipf," %le%d" ,&time,&num [0]); 

for(i=1 ;i<=num[0] ;++i) 
fscanf(ipf," %d",&num [i]); 

fflush(ipf); 
fscanf(ipf, "\n% d\n ",&scheme); 

1* Bossak, HHT, Newmark & other (p=2) input *1 
if(scheme==2 II scheme==3 U scheme==4 II scheme==7){ 
fflush(ipf); 
1* [0]=gamma [ 1]=beta or [0]=alpha [ l]=beta *1 
fscanf(ipf," %le%le" ,&par[0],&par[ 1]); 

I 

/* Wilson Theta input [0]=theta *1 
if(scheme== 1) { 
fflush(ipf); 
fscanf(ipf," %le" ,&par[0]); 

} 

1* Houbolt or other (p=3) schemes *1 
if(scheme=5 II scheme==6){ 
fflush(ipf); 
1* [0]=alpha [1]beta [2]=gamma *1 
fscanf(ipf, "%le%le%le" ,&param [0] ,&param [ 1 ],&param [2]); 

I 

fclose(ipf); 

I 

1* Routine to set up the parameters *1 
Params() 

mt i; 

switch(scheme) 
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/*Wjlson Theta*/ 

case 1: 
param[O]=par[O]; 
param [ 1]=pow(par[O] ,2); 
param [2]=pow(par[O] ,3); 
break; 

/*Bossak*/ 
case 2: 
param [O]= l.O-par[O]; 
param[l]=(2.O/3.0)par[O]+(2.O*par[ 1]); 
param[2]=6.O*par[l]; 
break; 

/*Hjlber, Hughes & Taylor (HHT)*/ 
case 3: 
param[O]=1.O; 
param [ 1]=(2.O/3.0)+(2.O*par[ l])(2.O* (pow(par[O],2))); 
param[2]=6.O*par[ 1]*( 1.O+par[OJ); 

break; 

/*Newmark*/ 

case 4: 
param[O]=par[O]; 
param[l]=2.O*par[l]; 
break; 

/*Houbolt*/ 

case 5: 
break; 

/*SSpj (p 3)*/ 

case 6: 
break; 

/*SSpj (p=2)*/ 

case 7: 
param[O]=par[O]; 
param[1]=par[1]; 
break; 

default: 
fprintf(stderr,"\n Incorrect case input value ***\nu'); 

exit(- 1); 
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} 
} 

1* Routine to calculate displacements *1 
Equation(argv, opf, opfl, opf2) 
FILE *opf, *opfl, *0pf2; 
char **argv; 

{ 
mt i, j, tmp, lapse, lap, tag; 
double Amat[1000], fmat[1000], xdot[1000], xddot[1000], 111000], force, dummy; 

fprintf(opf,"\n %s%d\n ******** *****\n\nu',oname,n); 

if(scheme==7 U scheme==4)fprintf(0pf2," OUTPUT %d\n\n",n); 
if(swtch== 1) fprintf(opf," Time Displacement\n"); 

/* Calculate frequency, period and step size / 
omega=sqrt(coeff[ 1 ]/coefflo]); 
period=2.0*M_Pllomega; 
step=period/num[n]; 

lapse=coeff[3]/step; 
lap=time/step; 

1* Prescribe initial conditions *1 

x[n] [0]=coeff[4]; 
xdot[0]=coeff[5]; 
xddot[0]=(coeff[2]-(coeff[ 1]*coeff[4]))/coeff[0]; 
tag=0; 

for(i=0;klapse;++i) { 
f[i]=coeff[2]; 
tag=i; 

} 

dummy=pow(step,2); 

/* Call routine to calculate amplification and load matrices *1 
if(scheme==4 U scheme==7) 
SS22(&Amat,&fmat,op12); /* Single-Step quadratic algorithm *1 
else 
SS32(&Amat,&fmat,opf2); /* Single-Step cubic algorithm */ 
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for(i=O;i<lap;++i) { 

if(swtch==l && i==O)Output(&i,opf); 
force=(param[O] *f[i+ 1])+(( 1 .0-param [O] ) *f[j]); 

1* Solve matrix equation *1 

if(scheme==4 II scheme==7){ 
x[n] [i+ l]=(Amat[O] *x[n] [i])+(Amat[ l]*xdot[i]*step)+(fmat[O]*force); 
xdot[i+ 1 ]=((Amat[2] *x[n] {i])+(Amat[3] *xdot[ i] *step)+(fmat[ 1 ]*force))/step; 

} 
else{ 

x[n] [i+ 1 ]=(Amat[O]*x[n] [i])+(Amat[ 1] *xdot[ 1] *step)+(Amat[2] *xddot[ ii *dummy)+(fma 
t[O]*force); 

xdot[i+l]=((Amat[3]*x[n][i])+(Amat[4] *xdot[j]*step)+(Amat[5]*xddot[j]*dummy)+(fm 
at[ 1] *force))/ step 

xddot[i+ 1] =((Amat[6] *x[n] [i])+(Amat[7] *xdot[ij *step)+(Amat[8]*xddot[ ii *dummy)+(f 
mat[2] *force))/dummy; 

} 

tmp=i+1; 
if(swtch==l) Output(&tmp,opf); 

} 
Elong_decay(opf,opf 1); 

} 

1* Formulation of amplification & force matrix *1 
SS22(Amat,fmat,opf2) 
FILE *opf2; 
double *Amat,*fmat; 

{ 
double P. Q, R, sq_step, W, Y, Z, eigenl, eigen2 ,U; 

sq_step=pow(step,2); 
P=coeff[O]+((sq_step*param[ 1] *coeff[ 1 ])/2.0); 
Q=sq_step/(2.O*P); 

R=sq_step/P; 

Amat[O] = 1.O(Q*coeff[ 1]); 
Amat[ l]=1.O(Q*coeff[ 1] *param [0]); 
Amat[2]=R*coeff[ 1]; 
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Amat[3]=1.0(R*coeff[ 1]*param [0]); 

fmat[0]=Q; 
fmat[ l]=R; 

fprintf(opf2,"%f % f\n",Amat[O],Amat[ 1]); 
fprintf(opf2," %f %f\n\n",Amat[2] ,Amat[3]); 

W=Amat[0]+Amat[3]; 
Y=W/2.0; 
Z=(pow(W,2))(4.0*((Amat[0]*Amat[3])(Amat[ 1]*Amat[2]))); 
if(Z<0.0) 
U=(sqrt(-Z))/2.0; 
fprintf(opf2," Eigenvalue 1: %f + i(%f)\n",Y,U); 
fprintf(opf2," Eigenvalue 2 : %f - i(%f)\n\n",Y,U); 

I 
else{ 
U=(sqrt(Z))/2.O; 
eigen 1=Y+U; 
eigen2=Y-U; 
fprintf(opf2," Eigenvalue 1: %f\n",eigen 1); 
fprintf(opf2," Eigenvalue 2 : %f\n\n",eigen2); 

I 

I 

1* Formulation of amplification & force matrix *1 
SS32(Amat,fmat,0pf2) 
FILE *0pf2; 
double *Amat,*fmat; 

{ 
mt i; 
double P, Q, R, S, cube—step; 

cube_step=pow(step,3); 
P=(step*param [0] *coeff[O])+((cube step*param [2] *coeff[ 11)/6.0); 
Q=cube_step/(P*6.0); 
R=cube_stepl(P*2.0); 

S=cube_step/P; 

Amat[0]=l O.(Q*coeff[ 1]); 
Amat[ l]=1.0(Q*coeff[ 1]*param[0]); 
Amat[2]=( 1.0/2.0)((Q*coeff[0])/(pow(step,2)))((Q*coeff[ 1]*param [ 1])/2.0); 

Amat[3]=- 1.0*R*coeff[ 1]; 
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Amat[4]= 1.O(R*coeff[ 1]*param [0]); 
Amat[5]= 1.0*((R*coeff[0] )/(pow(step,2)))((R*coeff[ 1]*param [ 1 ])/2.0); 
Amat[6]=- 1.0*S*coeff[ 1]; 
Amat[7]=- 1.O*S*coeff[ 1]*param [0]; 
Amat[8]= 1.0((S*coeff[0])/(pow(step,2)))((S *coeff[ 1] *parj{ 1 ])/2.0); 

fmat[0]=Q; 
fmat[1]=R; 
fmat[2]=S; 

for(i=O;i<3 ;++i) 
fprintf(opf2," %f %f %f\n" ,Amat[i*3],Amat[(i*3)+ 1],Amat[(i*3)+2]); 

} 

f* Routine to output the results */ 
Output(no, ofile) 
mt *no; 
FILE *ofile; 

{ 
mt temp; 
double tmp; 

temp=*no; 

tmp=telnp*step; 

fprintf(ofile," %f % An t' ,tmp,x[nj [temp]); 

} 

/*Routine to calculate amplitude decay and period elongation *1 
Elong_decay(ofile,opf 1) 
FILE *ofile, *opf 1; 

{ 
double 1[2), lint[2], T[3], Tint[3], Tag[4], Tagint[4], error, AD, LAD, PE[3], PEI[3], 
value, temp[4]; 
mt i, j, flag[4], dummy, i, ptx[2], tmp, k; 

dummy=1; 
ind=O; 

if(coeff[3]==time) { 
zero=coeff[2]/coeff[ 1]; 
}else 
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zero=O.O; 

1* Locating points which bound the point of max. & zero amplitude */ 
for(i=O;k4;++i) 
for(j=dummy;;+-i-j) { 
if((x[n][j]>zero && x[n][j+1]>=zero) II (x[n][j]<zero && x[n][j+1}<z=zero)) 
continue; 
else( 
ind+=1; 
dummy=j+ 1; 
if(ind==((i+ 1)*2)) { 
temp[i]=x[n]U); 
flag[i]=j; 
break; 

} 
} 

k=1; 

if(MOD(x[n] [flag[i]+ 1 ]-zero)<MOD(x[n] [flag[i]- 1]-zero))( 
tmp=flag[i]+ 1; 

Interp(&flag[i],&flag[i] ,&tmp,&Tagint[ib&k); 

} 
else{ 
tmp=flag[i]- 1; 
Interp(&flag[i] ,&tmp,&flag[i] ,&Tagint[i] ,&k); 

} 

if(i<2) ( 
for(j=dummy;;++j){ 
if(MOD(x[n] [j]-zero)<MOD(x [n] [j+ 1 ]-zero)) 
continue; 
else{ 
if(MOD(x[n] U+ 1]-zero)<MOD(x[n] [j-i ]-zero)) 
ptx[O]=j-1; 
ptx[1]=j; 

} 
else{ 
ptx[O]=j; 
ptx[1]=j+1; 

dummy=j+l; 
break; 
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} 
} 
k=0; 

1* Call routine performing interpolation function */ 
if((MOD(x[n] [ptx[0]]-zero))>(MOD(x[n] [ptx[1]]-zero))) { 
Interp(&ptx[0],&ptx[0],&ptx[ 1] ,&lint[i] ,&k); 

} 
else{ 
Interp(&ptx[ 1 ],&ptx[0] ,&ptx[ 1],&lint[i] ,&k); 

} 
} 
} 

/* Calculate period elongation */ 

for(i=0;i<3;++i) { 
Tint[i]=Tagint[i+ 1]-Tagint[i]; 
PEI[i]=(100.0/period*Tint[i]) 100.0; 

} 

/* Calculate amplitude decay *1 
LAD= 100.0-(1 00.0/lint(O] *lint[ I]); 
value=step/period; 

/* Output data */ 

fprintf(ofile, "\n Period 
fprintf(ofile," Time increment 
fprintf(ofile," Time increment/Period 
fprintf(ofile," Amplitude decay 
fprintf(ofile," Period Elongation (T & T{l}) = %ftn",PEI[O]); 
fprintf(ofile," Period Elongation (T & T[2]) = %fn",PEI[ 1]); 
fprintf(ofile," Period Elongation (T & T[3]) = %ñn",PEI[2]); 
fprintf(opfl," %f %f\n" ,LAD,PEI[0]); 

) 

= %f\n",period); 
= %f\n",step); 
= %f\n",value); 
= %f\n",LAD); 

1* Interpolation scheme to calculate amplitude decay etc...*/ 

Interp(pt0,ptl,pt2,max,tmp) 
double *max; 
mt *ptO, *ptl, *pa, *tmp; 

{ 
double bound[3], poly[3], AD, 1, var[3]; 
mt i, j, maxpt; 
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maxpt=*ptO; 

bound[O]=*ptl; 
bound[1]=*pt2; 

1* construct the variables in the polynomial *1 
for(i=O;i<2;++i) 
var[i]=(x[n] [maxpt+i]-x[n] [maxpt+i- 1])/(((maxpt+i)*step)((maxptii 1)*step)); 

var[2]=(var[ 1 ]-var[O])/(((maxpt+ 1)*step)(maxpt 1)*step); 

poly[O]=x[n] [(int)bound[O]]; 
poly[ 1]=x[nj [(int)bound[ 1]]; 

/* Locate points of max. & zero amplitude *1 

for(;;){ 
if(MOD(poly[ 1] -poly [O])>O.00 1) 
bound[2]=(bound[ 1 ]+bound[O])/2.O; 

poly[2]=x[n] [maxpt- 1]+(var[O] *step*(bound[2].. (maxpt- 1)))+(var[2] *step *step* (bound[2 
]-(maxpt- 1))*(bound[2]maxpt)); 

if(MOD(poly[O]-zero)<MOD(poly[ 1 ]-zero)) 
jf(*tmp=0) { 
poly[O]=poly[2]; 
bound [0] =bound [2] 

} 
else{ 
poly[1]=poly[2]; 

bound[ 1]=bound[2]; 
I 
I 
else{ 
jf(*tmp=_O) { 
poly[ l]=poly[2]; 

bound[ 1]=bound[2]; 

} 
else{ 
poly[0] =poly [2]; 
bound[O] =bound [2]; 

I 

)else 
break; 

I 
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if(MOD(poly[O]-zero)>MOD(poly[ l]-zero)) { 
jf(*tmp=.-4) 

l=(MOD(poly[O]-zero)); 
else 
1=bound[ 1] * p; 

} 
else{ 
jf(*tmp=_O) 
l=(MOD(poly[ 1 ]-zero)); 
else 

l=bound[O]*step; 

} 

*max1; 

I 
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B.4 EIGEN.0 LISTING 

1* Program to calculate eigenvalues *1 
1* By Tracy Greener Jan, 1994 */ 

#include <imsl.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <string.h> 

char oname[80], oname2[80]; 

main(argc, argv) 
mt argc; 
char **argv; 

{ 
FILE *opf, *opf2; 

double Amat[9] ,value[3]; 

mt n=3,i,j,num; 
cLcomplex *eval; 

/* Read Amat values from input file 

strcpy(oname,argv[ 1]); 
opf=fopen(oname," r"); 
strcpy(oname2,argv[ 1]); 
strcat(oname2,"2"); 
opf2=fopen(oname2,ttw"); 

fflush(opf); 
fscanf(opf," %d\n" ,&num); 

*1 

for(j=0;j<num;++j) 
for(i=0;i<3;+-i-i) { 
fflush(opt); 
fscanf(opf," %le Me %le\n" ,&Amat[i*3],&Amat[(i*3)+ l],&Amat[(i*3)+2]); 

fprintf(opt2,"%g %g %g\n",Am at[i*3] ,Amat[(i*3)+ 1] ,Amat[(i*3)+2]); 

} 

/* Call imslc eigenvalue routine / 

eval=imsl_d_eig.gen(n,Amat,0); 
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/* Output eigenvalues *1 

fprintf(opf2," OUTPUT %d\n\nt1,j+l); 
for(i=O;i<3 ;++i) { 
fprintf(opf2," Eigenvalue %d : %g + i(%g)\n",i,eval[i].re,eval[i].im); 

value[i]=sqrt((pow(eval[i].re,2))+(pow(eval[i] .im,2))); 
} 
fprintf(opf2," Eigenvalues modulus: %f %f %f\n\n\n",value[O] ,value[ 1],value[2]); 

} 

I 
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APPENDIX C 

GRAPHS FROM NON-LINEAR STUDY USING NONSAP 
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FIGURE C.1 COMPARISON PLOTS OF THE TRAPEZIUM SCHEME WITH 

DIFFERENT TIME STEP SIZES 
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a. Displacement Plot 
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FIGURE C.3 COMPARISON PLOTS OF THE HILBER, HUGHES AND TAYLOR 

SCHEME WITH DIFFERENT TIME STEP SIZES 
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a. Displacement Plot 
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