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Abstract 

This thesis presents a multi-agent cooperative search approach to optimize the op-

eration of large and complex natural gas pipeline networks. The proposed approach 

is based on a biologically-inspired computational model, namely particle swarm opti-

mization, and the main objective is to determine the control parameters of a natural 

gas transmission pipeline network that result in optimal operation while maintaining 

the desired throughput and satisfying given system constraints. Solving this problem 

is not trivial given the large number of decision variables and constraints, the nature 

of the objective functions and the limited time available to obtain the solution. The 

used cooperative search approach improves on the pure competition of search agents 

by the sporadic exchange of solutions which are integrated into the search state of the 

search agents and also used to improve their search control. The approach exploits the 

strength of particle swarm optimization in each agent to deal with high-dimensional 

problems that include a mix of discrete and continuous decision variables. Incorpora-

tion of domain knowledge into the search allowed the identification of solutions that can 

be pre-evaluated without having to use the time consuming pipeline simulations used 
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to measure the quality of a solution. The experimental evaluation with real problem 

instances from TransCanada PipeLines Ltd. show that the developed system meets the 

industry's time requirements and, for large and complex pipeline networks, it reliably 

outperforms the current state-of-the-art interactive method by creating solutions that 

require at least 12% less energy, reducing not only the transportation costs but also 

the amount of greenhouse gas emissions being dissipated to the atmosphere. 
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I 

1 Introduction 

The goal of the research work in this thesis is to optimize natural gas pipeline operations 

within the time frame required by the transportation industry. To achieve this goal 

we propose a biologically-inspired computational model to find the set of operational 

settings that optimizes the operation of natural gas pipeline networks. 

A pipeline transmission system is represented by a complex network that may 

consist of hundreds of nodes, devices and other equipment to control. Approximately 

95% of Canada's crude oil and natural gas is transported by pipelines. Natural gas is 

generally received from receipt points along the pipeline network and delivered to sales 

stations at specified flows and pressures. Between these points a pressure drop occurs 

due to gas expansion, friction loss, changes in elevation and changes in temperature 

[Mohitpour et Al. 2003]. Compression is required to overcome the pressure losses that 

occur over the length of the pipeline. Adding compressor stations at intervals along 

the pipeline network is one of the solutions used to achieve and maintain the required 

pressure. Just in TransCanada's Alberta Gas Transmission System there are more 

than 50 compressor stations with at least two compressor units in each station. This 

quantity neither includes gathering networks nor the facilities from other transportation 
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companies. 

A typical compressor station can include one or several compressor units which in 

turn can be of different type, i.e. different models with different capacity and efficiency. 

Natural gas-fueled turbine engines are the most common drivers for compressors on 

natural gas transmission pipelines in Canada. Gas turbines spin centrifugal compres-

sors and compress the gas up to a hundred times atmospheric pressure to move the gas. 

The amount of gas used by turbines can reach 3-5% of the transported gas [Wu 1998]. 

According to [on Trade and UNCTAD 2004] North America's natural gas consumption 

in 2003 was 27.5 Tcf. Using 2003's industrial gas prices of $5.78 USD/Mcf [of America 

IPAA], an average of 4% of transportation costs ( 1.1 Tcf) would represent $6.35 billion 

USD. A small improvement in pipeline operations could lead to substantial savings in 

operating costs; for the 2003 example an improvement of 1% could save $63.5 million 

USD. 

Reduction of the energy used in pipeline operations not only has a tremendous 

economical impact but also quite an environmental one. More efficient operation of 

compressor stations results in less greenhouse gas (GHG) emissions being dissipated 

to the atmosphere. More than 50% of the total human-caused GHG emissions result 

from the production and use of energy [Foundation 1999]. About 70% of GHG emis-

sions from natural gas occur when natural gas is burned to produce heat or energy 

[Foundation 1999]. Pipelines emit carbon dioxide (CO2) mainly due to energy used at 

the compressor stations. Combustion of natural gas generates mostly CO2 and water 
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vapor, the same substances emitted when people breathe. For each megawatt (MW) of 

energy produced (35% th. eff.) five tonnes of CO2 are generated per year [Botros et al. 

2004]; i.e. a transportation company with capacity of 3,000 MW would emit 15,000 

tonnes of CO2 per year. CO2 is one of the gases that contribute to the greenhouse 

effect; the others are methane (CE4) and nitrous oxide (NO2). Pipeline -companies 

reduce CEO emissions mainly by improving the use of energy acquiring more efficient 

equipment and by adopting better operating practices. 

Operation of a natural gas pipeline network implies the selection of all op-

erational settings of the components of the network in order to maintain not only the 

desired throughput but also to meet the standards and regulations designed to minimize 

the risk of high-pressure transmission lines. It turns out that for specific throughput 

requirements there are several options to operate the compressor units at the compres-

sor stations and achieve these requirements. Each of these options commonly implies 

different transportation costs. 

The research in this thesis addresses the problem of determining the operational 

configuration of compressor stations and other pipeline devices that uses the minimum 

amount of energy (e.g. fuel, power) for given transportation requirements. The configu-

ration includes, for example, the set of compressors that should be ONLINE/OFFLINE, 

and if ONLINE, the corresponding level of operation. The solution procedure should 

lead to the result in a short period of time to enable optimization of operations as often 

as necessary to keep the process as close as possible to optimal conditions. 
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To tackle this problem we propose a multi-agent cooperative search system in which 

the search agents explore the search space and exchange solutions from time to time 

to update the search state and improve the search control. We use particle swarm 

optimization as set-based search and test the proposed approach using real problem 

instances of TransCanada PipeLines Ltd. Close interaction with experts in pipeline 

operations allowed the identification of domain knowledge useful to improve the effi-

ciency of the search. This knowledge was incorporated and used to identify solutions 

that can be evaluated without using the time-intensive pipeline simulations that are 

normally needed to measure the quality of a solution. 

Results of the experiments show that the proposed multi-agent cooperative search 

system can deal with high-dimensional problems that include a mix of discrete and 

continuous decision variables. Results demonstrate that the proposed approach meets 

TransCanada's time requirements and confirms that, for large and complex pipeline 

networks our appi'oach reliably outperforms the current state-of-the-art interactive 

method used by industry by creating solutions that require at least 12% less energy. In 

addition, we present the extension of the multi-agent cooperative search system to the 

multi-objective optimization case, again proving that the proposed approach is capable 

of solving complex pipeline sub-networks in a timely manner. 

This thesis is organized as follows. Chapter 2 introduces preliminary concepts of 

optimization theory followed by the description of the main components of a pipeline 

sub-network that can be optimized to reduce the cost of transportation and GHG emis-
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sions. Chapter 3 introduces fundamental concepts of search systems, particle swarm 

optimization, as well as distributed search systems. Our proposed approach to opti-

mize natural gas pipeline operations is introduced in Chapter 4. Chapter 5 presents 

the extension of our approach to the multi-objective optimization case. Chapter 6 sum-

marizes related work relevant to the various topics covered in this- thesis. Chapter 7 

presents the results of the experiments set to analyze the performance of our approach 

and compare it against other methods. And Chapter 8 summarizes the work done 

during this research and provides directions for future work. 
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2 Optimization of Natural Gas Pipeline 

Operations - Basic Concepts 

The first part of this chapter is an introduction to preliminary concepts of optimization 

theory for single and multi-objective problems. The second part explains the main 

components that can be optimized while operating a natural gas transportation system 

including some fundamentals of hydraulics. The chapter concludes with a description 

of the optimization of pipeline operations as a search problem. 

2.1 Preliminary Concepts of Optimization 

Before dealing explicitly with the problem of optimization of natural gas pipeline op-

erations we describe a general multi-objective optimization problem as: 

subject to 

Minimize f() : [f'(), f2(), ••, fn,,,()] (2.1) 

g()≥O i = 1,2,•••,flineq (2.2) 

h()=0 j=l,2, ... ,neq (2.3) 
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where Y = (x1, x2, ..., x) is the vector of decision variables, f() : IPJtx —+ IR, i = 

1) 2, , obj are the objective functions and gj(), h(x) : TR IR, j = 1, 2, ..., ineq, 

j = 1,21 ..., fleq are constraint functions of the problem, nineq and fleq E IN. 

Most real-life optimization problems are multi-objective. For single-objective op-

timization problems the optimum is the best of a set of candidate solutions. But for 

multi-objective optimization (MOO) the definition of an optimum is not that simple. 

This is because of the potentially conflicting objectives: while some solutions may favor 

an objective they may deteriorate other objectives at the same time. 

There are different options to deal with MOO: aggregation, ordering, and Pareto 

dominance. Aggregation methods aim for the optimization of a weighted sum of the 

objectives and defining the weight of each objective is problem dependent. Ordering 

methods consider one objective function at a time based on a specific criterion, e.g 

lexicographic ordering of the objectives which might be sensitive to the order assigned 

to the objectives. Pareto dominance establishes the notion of preference to decide if 

one solution is better than other considering the value of all the objectives. Pareto 

dominance is used in this research work and the main concepts are provided below. 

The set of solutions that cannot improve any objective without degrading one or 

several objectives is called the set of non-dominated solutions. This set is also called 

the Pareto-optimal set and the corresponding set of vectors of objective functions is 

called Pareto front. The concept of Pareto-optimality was first introduced by Francis 

Ysidro Edgeworth but later conceptualized by the Italian economist Vilfredo Pareto in 
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his work Manual of Political Economy in 1906 [Engelbrecht 2005]. 

The following definitions are from [Reyes-Sierra and Coello 2006]. 

Definition 2.1: Given two vectors f and f2 E 1R°, we say that f ≤ f2 if fl ,i ≤ 

Vi = 1,... , obj, and that j dominates j (denoted by j - j) if f-1 < f2 and j; j. 

Definition 2.2: A vector of decision variables X C Wo is nondominated with 

respect to X, if there does not exist another x' E X such that f(') -< 

Definition 2.3: A vector of decision variables E F C Wx is Pareto-optimal if it 

is nondominated with respect to F, where F is the feasible region. 

Definition 2.4: The Pareto-optimal set (*) is defined by 'P* = {9 E F 9 is 

Pareto-optimal}. 

Definition 2.5: The Pareto front (*) is defined by P.P' = {f() E W-bi I 

One goal of MOO algorithms is to minimize the distance between the set of non-

dominated solutions obtained by the algorithm and the true Pareto front. For some 

problems the true Pareto front is not known and as a consequence this goal cannot 

be pursued. Another important goal is to promote diversity of the solutions by using 

operators to attract decision vectors towards less populated areas of the Pareto front. 

A third goal is aimed to maintain a record of the non-dominated solutions already 

found, a kind of elitist strategy used by maintaining a repository of these solutions. 

7* is the set of solutions from where decision makers can select a solution. The 

maximum number of accepted solutions in a Pareto-optimal set is represented by n-. 
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Restrictions on the size of the archive have an impact on the diversity of solutions 

and the computation time. There must be a balance between the requirements of a 

satisfactory representation of P* and P7 and the time required to execute the MOO 

search algorithm. 

The concepts introduced above and the definitions of Pareto dominance are neces-

sary for the comparison of solutions in the MOO problem which will be introduced in 

Chapter 5. 

2.2 Optimization of Natural Gas Pipeline Operations 

Operation of a natural gas pipeline network implies the selection of all operational 

settings of the components of the network in order to maintain not only the desired 

throughputs but also to meet the standards and regulations designed to limit the 

inherent risk of high-pressure transmission lines to a minimum. 

Optimization of natural gas pipeline operations (NOPO) can be achieved by opti-

mizing objectives such as fuel consumption, throughput and limepack' [Botros et al. 

2004, 2006]. The objective of this research work is, in addition to optimize f(s), also 

to reduce the computational cost necessary to find the vector of operational settings 

() that optimizes the operation of pipeline transmission networks, i.e. achieve a min-

imal (or nearly minimal) cost of transportation of natural gas while satisfying safety 

regulations and meeting customer demands. 

'Volume of gas contained in a pipeline system at any point in time. 
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More formally, the main variables that affect the fuel consumption are the mass 

flow rate (ñ2), suction pressure (F8) and discharge pressure (Pd) at each compressor 

station (CS). The cost of operation of CSi can then be expressed as Ti(, F3, Pd). The 

objective function f() for the fuel minimization problem can then be calculated as: 

Minimize fl (g) (2.4) 

where ncs is the total number of CSs in the pipeline network and {, P, Pd} E Y. 

The maximum throughput can be represented by: 

DN 

Maximize f2() = Qi (2.5) 

where Qi is the flow at delivery node i, and nDIV is the number of delivery nodes. 

According to [Botros et al. 2004] the maximum linepack can be formulated by the 

following objective function2: 

Maximize LD2Pa C  ZT (2.6) 

where C is a lumped constant for linepack calculation, L is the length of the pipe, D 

is the internal diameter of the pipe, Pa the average pressure, Za the average compress-

ibility factor, and Ta the average temperature. 

Some of the constraints imposed to the solution of f () are governed by the physical 

characteristics of each compressor unit such as surge' (Sy) and stonewall4 (St) limits, 

'For a given segment of pipe. 

3Limit set to avoid unstable conditions (pulsating flow) in centrifugal compressors operating under 
low flow conditions. 

4High flow condition in which the velocity of the fluid can approach sonic speed. 
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minimum (Sp-) and maximum (sp+) speed, and minimum (HP) and maximum 

(HP+) power. The set of constraints for each compressor unit j at CSj is given by: 

HPij <HP, < HP. 

SPj < SPi,j < SP j 

s9ij < Qi,jlspi,j < Stij 

(2.7) 

(2.8) 

(2.9) 

where j = I, -, rtc , and n is the total number of compressor units at CS. 

The feasible domain Dij of compressor unit j at CSj is determined in terms of 

adiabatic head (Hi), volumetric flow rate (Q), speed (Spa), and adiabatic efficiency 

(ij). The relationship between H, Q, Sp, and 77 can be described by [Percell and Ryan 

1987]: 

H/Sp2 = h1 + h2(Q/Sp) + h3(Q/Sp)2 + h4(Q/Sp)3 (2.10) 

77 = Ci + e(Q/Sp) + e3(Q/Sp)2 + c4(Q/Sp) (2.11) 

where hr and er (r = 1, 2, 3, 4) are constants that depend on the compressor unit j. H, 

Q and S are related to rh, P and Pd by: 

K-i 

H=ZRT3K' lL)  

Q=ZRT3 Ps 

(2.12) 

(2.13) 

where Z is the gas compressibility factor, R the gas constant, T3 the suction tempera-

ture, and K the adiabatic gas exponent. From Equation 2.9, Qj,j may take any value 
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within the interval [Q, Q.] determined by QSO  = Sp and Q. = Sp. 

Hij is lower bounded by Sp. and St,, and upper bounded by Sp. and 

The fuel cost function çoj (, P3, Pd) for compressor unit j can be calculated as: 

co(ñi,P3,Pd) 77 (2.14) 

where a is constant. 

Other sets of constraints of the form of g() and h(x) as in Eqs. 2.2 and 2.3 are 

governed by pipeline characteristics such as operating pressure limits, mass flow balance 

equations and flow equations. Although a detailed description of these equations is out 

of the scope of this work, a good reference for pipeline hydraulics can be found in 

[Mohitpour et al. 2003]. 

In addition to the compressor settings described above, other hydraulic components 

that belong to and affect f(s) are the settings of all control valves (CV) and block 

valves (]3V) in the transportation system, as well as the availability of gas supply (re-

ceipts) and market demand (deliveries). It is worth noting that some of the components 

of the solution vector 9 are discrete decision variables such as the status of the CSs 

(ONLINE/OFFLINE) and the status of BVs (FULLYOPENED/FULLYCLOSED), hence 

adding complexity to the solution surface and as a consequence adding difficulty to the 

problem. 

Why is the optimization of NGPO a difficult problem to solve? 
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Solution of the optimization of pipeline operations problem is definitely not straight-

forward due to the non-convexity of Dij, non-linearity and non-convexity of Wjj, and 

non-convexity of the set defined by the pipe flow equations [Wu 1998]. 

The dimension of the vector (1141 = n) of the optimization problem directly 

depends on the size (fl) and configuration5 of the pipeline network under investigation 

and the number of parameters considered sufficient to define its operation. A typical 

network might consist of thousands of pipes, dozens of CSs with several compressor 

units inside, meter stations, cooling systems and a large number of different devices 

such as CVs and BVs. The complexity of the optimization problem grows with m, the 

well known curse of dimensionality problem. 

Solving this problem has proven to be computationally expensive. The big challenge 

is to identify the set of pipeline operational settings —e.g. pressure at control nodes, 

mass flow rates, compressors settings, status of block valves, etc.— that optimizes 

objectives such as the fuel consumption within an acceptable time frame. The solution 

space of f () may be composed by many, from hundreds to millions, of combinations of 

operational settings that satisfy Equations 2.2 and 2.3 but the goal of this research work 

is to identify the combination of operational parameters in (or sets of combinations) 

that optimizes f () and to do this in a timely manner. 

Optimization is a search for an optimum solution by iteratively transforming a cur-

rent candidate solution into a new, hopefully better, solution [Engelbrecht 2005]. In 

5E.g. gun-barrel, serial, parallel, looped, etc. 
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other words, optimization of NGPO is a search for the vector that optimizes f(). 

In this context, Chapter 3 introduces fundamental concepts of search systems and the 

importance of the design parameters to speedup the search. Then, Chapter 4 presents 

the proposed search system capable of optimizing, within the given time requirements, 

the operation of large and complex natural gas pipeline networks while handling all 

standard and additional non-standard components of large pipeline networks. Chapter 

5 presents the extension to the multi-objective optimization case. The proposed ap-

proach has been tested using several real world scenarios and the results are presented 

and discussed in Chapter 7. 
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3 Search Systems 

Optimization of pipeline operations involves continuous and discrete decision variables. 

As a result, search methods that evaluate more and more instantiated partial solutions 

such as Branch-and-Bound or A*, are not easily applicable to this type of optimization 

problem. The fact that the quality of a solution has to be measured using a pipeline 

simulator completely excludes these approaches since a partial solution will trigger an 

error message from the pipeline simulator without providing other useful information 

for the search control. Therefore the search methods used in this research to solve 

the NGPO problem are instantiations of the so-called set-based search approach in 

which a search state consists of one or several (a set of) solutions, and the transition 

operators use all or some of the solutions in the current state to create new solutions. 

Examples for set-based search are hill-climbing, simulated annealing, tabu search', 

genetic algorithms, evolutionary strategies, and particle swarm systems. We selected 

particle swarm systeths to solve the NGPO problem. 

The objective of this chapter is to introduce the basic terminology of set-based 

search, explore the principles of particle swarm optimization, and conclude with con-

6A11 these use only one solution in a state. 
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cepts for distributed search systems. In other words, this chapter covers the funda-

mental principles on which our proposed approach for solving the NGPO problem is 

based. 

3.1. Set-based Search 

In general, a search can be described as traversing a sequence of search states. A 

search state (s) describes the progress a search has made and therefore contains 

many pieces of information. The following terminology of set-based search is taken 

from [Denzinger 2000]. A set-based search model A is defined by a set of facts 1 

and a set of extension rules &ct that describes all the valid transitions between the 

states. 

A set-based search process P is defined by the triple? = (A, Env, .C), where Env 

is the environment of the search process which models external influences, information 

not included in a search state, and perhaps also knowledge about the problem to be 

solved. The search control JC guides the search process by selecting the next step 

of the search based on the current state and the environment, i.e. IC : S x Snv - 5, 

where S is the set of possible search states. The quality of the design of IC has strong 

impact on the efficiency of the search process, e.g. the computation time. If there is 

interest on improving a search algorithm, spending some time on the careful design of 

IC will surely pay off. 

A set-based search instance Ins is defined by the tuple Ins = (sit, ), where 
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S' nu  S is the initial state of the search, and : S -+ {TRUE, FALSE} is the ter-

mination condition of the search. Examples of termination conditions are: terminate 

when a maximum number of search steps or time limit has been reached, when an 

acceptable solution has been found, when no improvement is observed over a number 

of transitions, etc.. 

Set-based search is an appropriate approach to model and solve search problems 

characterized by little structure. Examples of this kind of problems are the deductive 

generation of explicit knowledge that is used in many expert systems, and the solution 

of optimization problems for which, in addition to the function to optimize, only general 

knowledge is available to find a good suboptimal solution [Denzinger 1999]. 

3.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population-based search algorithm inspired 

by the social behavior of bird flocks in their hunt for food, and was originally proposed 

in 1995 [Eberhart and Kennedy 1995], [Kennedy and Eberhart 1995]. The main idea 

is that the behavior of an individual, also called particle, is influenced by its own 

experience (cognitive learning) and by the experience of successful individuals in its 

group (the social behavior). 

The position of a particle is represented by Xj (t). The position is updated by adding 

the velocity vector (t) to the current position as follows: 
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= - 1) + (t) (3.1) 

The velocity vector '7j(t) is calculated as: 

(t) = W'fij(t - 1) + Clrl(xBo - x(t — 1)) + C2r2(2G - - 1)) (3.2) 

where xj3o is the particle's best position found so far and XBG is the best position 

found so far by the whole swarm. )/V is the inertia weight that controls the effect of the 

previous velocity, C1 is the cognitive learning factor that controls the influence of the 

particle's own experience, C2 is the social learning factor that controls the influence of 

the other particles, and r1, r2 E [0, 1] are random values. C1 and C2 are usually defined 

as constants and sometimes are referred to as trust parameters where C1 expresses 

how much confidence a particle has in itself and C2 expresses how much confidence a 

particle has in its neighbors. The general PSO algorithm is depicted in Table 3.1. 

Large values for W facilitate exploration with increased diversity while small values 

for W promote local exploitation. The optimal value for W is problem-dependent 

[Shi and Eberhart 1998]. There have been theoretical studies about the convergence 

properties of PSO which have concluded that the performance of P50 is sensitive to 

the selection of the control parameters W, C1, and C2 [Engelbrecht 2005]. Studies in 

[0zcan and Mohan 1998] and [Ozcan and Mohan 1999] concluded that, when 0 < q < 4, 

where q = ç + 02, and Oi = Ciri,i = 1, 2, the trajectory of a particle is a sinusoidal 

wave where the initial conditions determine the amplitude and frequency of the wave. 

This periodic nature may lead the particle to search in regions of the search space 
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Table 3.1: General PSO Algorithm 

A Generic Pseudo Code of Particle Swarm Optimization 

Initialize swarm 

Evaluate swarm 

Identify leader (best particle in the swarm) 

While c 54 TRUE 

Fly: update velocity and position 

Evaluate swarm 

Identify leaders (best own experience and best in the swarm) 

End 
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already visited. [Suganthan 1999] suggested a linear decrease in C1 and C2 but reported 

no improvement in performance by using this scheme. [Ratnaweera et al. 2002] built 

further on the suggestion of [Suganthan 1999] and proposed C1 to be linearly decreasing 

over time and C2 linearly increasing. This scheme promotes exploration at early stages 

of the search and convergence towards the global best near the end of the search. In 

[Ho et al. 2005] authors argue that r1 and r2 are not completely independent and 

propose the condition r2 = 1 - r1. [den Berg 2002] showed that the basic PSO is 

neither a local nor global optimizer because once the search reaches the state where 

Xi = XJ3Q = XJ3G, Vi = 1, 2, ..., aswarm, no further progress can be made. The problem 

is that if this state is reached before the optimum is found the swarm will be stuck. 

The author in [den Berg 2002] suggested two options to extend PSO to a global search 

algorithm. The first option is to generate new random solutions, for example with a 

mutation operator, or force a random search around XBG with hill-climbing or a similar 

approach [Engelbrecht 2005]. The second option is to multi-start PSO, i.e. once the 

swarm has converged the particles are re-initialized randomly. 

The operator mutation, sometimes called turbulence or craziness, is intended to 

promote diversity in the swarm and avoid —or rescue from— premature convergence to 

potential local minima. This operator has significant impact in the performance of the 

algorithm and even though it is normally applied in the decision variable space some 

authors such as [Ho et al. 2005] have applied it to the velocity vector just before 

updating the position of a particle. 
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PSO was originally developed for continuous-valued spaces. The first discrete PSO 

to operate on binary search spaces was developed in [Kennedy and Eberhart 1997]. In 

practice, the types of problems that can be solved with PSO are large-scale, discrete, 

combinatorial, and non-convex problems. P50 avoids local optima by using specific 

operators and does not require restrictive conditions in the function such as continuity 

or differentiability to the second order. 

PSO for Multi-Objective Optimization 

One of the most important issues in multi-objective optimization (MOO) in general 

and also in MOOPSO is that of determining when one solution is better than another 

solution with respect to all objectives. In the single-objective case XBO is replaced 

by if f() < f(x130 ), where f is the only objective function in the optimization 

(minimization) problem. But in the multi-objective case this replacement is not that 

intuitive and notions of preference, such as those of Pareto-dominance introduced in 

Section 2.1, are needed. 

As stated in Section 2.1, MOO algorithms should maintain a record of the already 

obtained solutions and also promote diversity of solutions. The research work on 

this thesis makes use of the adaptive archive grid approach introduced in [Coello and 

Salazar-Lechuga 2002] and [Coello et al. 2002], and later improved in [Coello et al. 
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2004], to manage the truncated archive' of non-dominated solutions. The adaptive 

archive grid approach is based on the Pareto archive evolutionary strategy (PAES) 

proposed in [Knowles and Come 2000], in which the objective function space is divided 

into a certain number of hypercubes. The edge of the hypercubes is calculated by 

1 = a fkm I'kmmn Vk = 1, 2, ..., obj, where a E [0, 1] is the selection pressure, Amax 

and fkmjn are the maximum and minimum values of fk in the archive respectively, and 

aswarm is the size of the swarm. A new particle is added into the archive if it is a 

non-dominated solution. Each non-dominated solution is assigned to its corresponding 

hypercube according to its f value, where the value of each of the objectives is a 

coordinate in the hyperdimensional space. 

Among the most important features of the multi-objective PSO approaches are the 

mechanisms used to select the leader XBG (Eq. 3.2) from the archive. The adaptive 

archive grid algorithm in [Coello et a1 2004] assigns a fitness value to each hypercube 

that contains more than one particle. The fitness value of each hypercube is calculated 

as fh = , where k is any number k> 1, and rid is the number of particles contained 
nd 

in that hypercube. This function aims to decrease the fitness of the hypercubes with 

higher density. XBG is then selected from the archive using the roulette wheel selection 

on the hypercubes fitness values. If the selected hypercube has nd > 1 then XBG is 

selected randomly among the particles contained in that hypercube. If the maximum 

capacity of the archive has been reached and a new particle has to be added, then a 

7By truncated we mean that the archive has a maximum capacity. 
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particle from a highly populated area of the Pareto front is removed. 

The Pareto dominance criteria is used to update the value of x 0, in other words, 

if the current position is dominated by x 0, then c remains intact. If the current x  

position dominates XBQ, then xj3o is replaced by the current position of the particle. 

If neither , position dominates one of them is selected randomly. If a particle that is a 

member of the archive becomes dominated it is removed. 

3.3 Distributed Search Systems 

Multi-agent systems are an approach to model and implement distributed search con-

cepts. The following terminology is taken from [Denzinger 2000]. A multi-agent 

search system MASS consists of a start agent Ags, an end agent AgE, a set of 

search agents {A91, Ag2, ..., Agfl8$ }, and a communication structure lCom. The 

objective of a MASS is to solve a specific search problem. The search agents reside 

in a set of processing units which could be processors, cores, computers, etc.. The role 

of the start agent Ags is to take an instance Ins of the search problem and create 

instances Ins1, Ins2, ..., 1 MASS I one for each search agent in the MASS. The in-

stances Ins, (Vi = 1, 2, ..., nMA55) can be exact copies of the original Ins, portions of 

it, or rather different problems related to Ins. Each search agent works on the search 

instance it received from Ags and communicates, with certain frequency, with the rest 

of the search agents using the communication structure Kom. Once the search of the 

search agents has reached a point that allows the generation of a solution the end agent 
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AgE creates and reports the solution to Ins found by the MASS. 

3.3.1 A Search Agent 

A search agent Agi is characterized by the triple (?j, Kom, mes), where Pi is a 

search process, and mesi is the communication function of Ag. As stated in Section 

3.1, 72 itself is characterized by the triple (Ad, Env, Kj), where A is the search 

model used by the process, Env is the environment within the MASS that the search 

process perceives, and 1Cj is the search control that Pi uses for A. The environment 

is a subset of the data areas in Kom. The search control selects the next step of the 

search (s') based on the current state (s) and the current values of the data areas in 

the environment (e). Since e is considered by the search control, the search of a search 

agent can be influenced by changing its environment e. Other search agents can change 

e by using their communication functions. A communication function mesi takes the 

current values of the data areas in Kom and the current search state of Agi and creates 

new values for the data areas in Kom. It usually creates only new values for some of 

the data areas, not all of them. 

Two important parts of the definition of a MASS are the structure of Kom and the 

effect that the functions mesi have over Kom. The communication structure ACorn can 

be used to model approaches such as blackboard-like and message-passing, but it should 

be noted that implementing a particular ACorn on different hardware structures can lead 

to considerable differences in performance. This can also be true for the method in 
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which the search agents are mapped to the set of processing units. If performance is 

an issue for the search problem at hand, then the best option is to assign each active 

search agent to its own processing unit. As a consequence the number of active search 

agents should not exceed the number of processing units available in the system. 

3.3.2 Our Distribution Concept 

The distributed search approach used in this work is based on a homogeneous version 

of TECHs (TEams for Cooperative Heterogeneous Search) introduced in [Denzinger 

and Fuchs 1999] and [Denzinger and Offermann 1999]. TECHs is an instantiation of 

the Improving on the Competition Approach paradigm from [Denzinger 2000], in which 

every search agent is provided with a complete instance of the search problem to be 

solved. In the pure Competition Approach the search agents simply perform the search 

in parallel until one of them finds a solution. The performance of the Competition 

Approach can be improved by allowing the team of search agents to communicate 

during the course of the search and share important information to guide the search. 

In TECHS, the work of the search agents is done in so-called rounds, and each 

round consists of three phases: search, information selection, and filtering. During 

the search phase each search agent tries to solve the received search instance using 

its search process. During the information selection phase each search agent evaluates 

its results and decides whether these results might be of interest to some or all other 

search agents in the MASS. The selected information is sent out to these other search 
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Figure 3.1: A round in TECHS for 3 search agents. 

Agent 1 

Search 

Filter 

Search Search 

Ageiit2 

Search 

Agent 3 

Search 

+ 
Select Info 

Filter 

* 
Search 

Round ii 

niessage 
exchange 

Round n + 1 

agents, which in turn evaluate the usefulness of the received information and, if useful 

(filtering phase), they integrate the information into their search for the next round. 

Figure 3.1 illustrates one round of TECHS for three search agents. 

There are two slight differences between the distributed approach proposed in this 

research work and TECHS. The first difference resides in the message exchange, and 

the second in the filtering phase. As in TECHS, all search agents perform the search, 

then each of them selects the important information to be shared with the rest of the 

search agents in the MASS. But instead of all search agents sending the selected 

information to everyone, only nmAss - 1 search agents send their selected information 

to a master agent AgM. AgM collects the information, including its own, performs the 

filtering phase, and sends back the filtered information to the rest of the search agents 

in the MASS. The search agents in the MASS integrate the received information and 

continue with the next round of the search until the termination condition is reached. 
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The communication structure ICom has designated data areas for each search agent. 

There are two main types of information search agents can communicate: partial so-

lutions8 and control information. Each of these types of information can, in turn, be 

classified as positive information or negative information. Partial solutions are directly 

incorporated into the search state of a search agent, while control information affects 

the search control of a search agent [Denzinger and Offermann 1999]. 

The mes-function of a search agent is used to select the information to be shared 

with other search agents. The mes-function is allowed to modify the data areas in lCom 

associated with the other search agents in the MASS. The mes-functions are usually 

implemented by sending messages to other search agents. The integration of new 

information into the data areas for an agent Agi that forms the agent's environment 

Envi is done according to the type of information. As already stated, solutions are 

appropriately added into the search state if they pass the filter criterion, while control 

information influences the decisions of ICi of Ag. 

The whole search ends if either: the solution is found —if it is possible for the search 

agents to detect this— or when a certain time limit is reached. AgE collects the results 

from all search agents and then either presents the solution or the best result found so 

far in the given time frame. 

8Note that the definition of partial solutions includes full solutions. 
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4 Optimization of 

Natural Gas Pipeline Operations using 

Multiple Cooperating Set-based Search Agents 

This chapter introduces the proposed multi-agent cooperative search approach applied 

to the solution of the complex problem of optimization of natural gas pipeline opera-

tions in which the objective is to supply the desired demand at delivery locations with 

adequate pressure satisfying the governing laws of conservation of mass and energy. 

To demonstrate the performance of the proposed approach we tested it using real 

-and as consequence complex- problem instances provided by TransCanada PipeLines 

Ltd. The experimental evaluation shows that our approach meets the realistic time 

requirements imposed by the transportation industry and demonstrates that it reliably 

outperforms the interactive method currently used in commercial tools. The proposed 

search system is not only fast but also capable of finding better solutions than state-

of-the-art methods currently used by the natural gas transportation industry. Results 

of the experiments reported in Chapter 7 show that, in terms of fuel consumption, the 

cost of our solutions for large sub-networks are at least 12% better than the compared 



4.1 PSO as Set-based Search System 29 

approaches. For significant volume of transported gas this percentage translates into a 

considerable monetary amount. Now, it is important to mention that reduction of the 

energy used in pipeline operations not only has a tremendous economical impact but 

also an environmental one. More efficient operation of compressor stations results in 

less greenhouse gas emissions being dissipated to the atmosphere. 

This chapter is organized as follows. Section 4.1 introduces particle swarm optimiza-

tion (PSO) as an instantiation of set-based search, Section 4.2 presents a distribution 

concept for set-based PSO, and Section 4.3 details the application of the distributed 

set-based PSO approach to the optimization of NGPO. 

4.1 PSO as Set-based Search System 

This section presents particle swarm optimization as an instantiation of set-based search 

by merging the terminology of set-based search systems introduced in Section 3.1 with 

the principles of PSO introduced in Section 3.2. 

4.1.1 Search Model 

As stated earlier, a set-based search model A is defined by a set of facts ..7 and a 

set of extension rules ext. In the instantiation of set-based search to describe PSO, a 

particle p is described by: 

p=(i,Bo) (4.1) 
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where is the vector of decision variables of the optimization problem as stated in Eq. 

2.1, also called the position of the particle p, VY is the velocity vector of particle p, and 

XBO is the particle's best position found so far. The set of facts F is the set of all 

possible particles defined as F = {(, , xBo)X) xj3o E 55, E VS} where 88 is a 

predefined solution space limiting the values that decision variables can take, and VS 

is a predefined velocity space set to control the global exploration of particles, i.e. to 

avoid divergence. 

As stated in Section 3.2, the idea behind PSO is to update the position of each of 

the particles of the swarm in every step of the search, i.e. by letting the swarm fly. The 

new position of each particle is influenced by its own experience and by the experience 

of the rest of the particles in the swarm. For that reason, in order to update the 

position of a particle during its flight it is necessary to identify first the best position 

of each particle i (xj3o, Vi = 1) 2, ..., flawarm), and the best position found so far by 

the whole swarm (MBa). With these two values in hand the new velocity (v'') and 

new position () of each particle can be updated following Equations 3.2 and 3.1 

respectively. 

Now, using the set-based search terminology, the flight of the swarm is governed 

by a set of extension rules Ext. The set Ext works on a complete search state 

and dictates the valid transitions to move the particles of the swarm from one state of 

the search (s) to a new one (sfleW) The set of valid extension rules is defined as follows: 
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The symbol ci is a criterion  used to compare two vectors (in this case vectors that 

represent positions) and indicate which one is better, i.e. X-1 is better than x2 if XI X2 

This operator is defined according to the problem to be solved. mut(x') indicates a 

mutation to the vector which is also defined according to the problem to be solved. 

90rdering, ranking, preference, etc. 
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The mutation operator used in this work is the so-called non-uniform mutation 

[Michalewicz 1996], in which the variability range Ri (i = 1, 2, ..., nm), of each decision 

variable decreases over time. The mutation operator modifies the value of the decision 

variables of a particle with certain probability Pmut E [0, 1]. Pmut is the probability of 

mutation, normally a user-defined value that is kept constant. More specifically, the 

variability range lj of decision variable i is narrowed down during the flight of the 

swarm according to the non-linear function Rj = (1 - g/g)51F'mut proposed in [Coello 

et al. 2004], such that R. - 0 as g - g, where g is the current transition, and 0 is the 

termination condition for the search expressed as maximum number of transitions. 

The values of PBG , W, C1, and C2 are explained in Section 4.1.3. By updating 

the values pew, J7.2CW, and YBneow, for each particle the whole swarm flies over the search 

space towards the optimal solution &*. 

4.1.2 Search Instance 

A search instance Ins is defined by an initial search state and a termination 

condition 9 as: 

'nit mit mit Ins = (5iflit, 0) = ({p ,P2 , " P 3war,n}' 0) (4.2) -

s init 
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an impact on the quality of the solution of the search, for example an inappropriate 

criterion could direct the swarm towards a local minimum, an early convergence. g 

can be set to a maximum number of particle evaluations or a processing time limit. 

4.1.3 Search Process 

As introduced in Section 3. 1, a search process is defined as P = (A, K:, Env). In 

the instantiation of set-based search to PSO the search control K: makes use of explicit 

information to guide the flight of the swarm. IC stores the best solution found so far 

by the whole swarm, XJ3G. This value is calculated as follows: 

-new 
XBG - { 

ew 3- 1ff <IXBG, and 'j XBO new . 'BnO' (i =h j),i,j = 1, 2, , swarrn 

XI3G else 

where i is defined as in Section 4.1.1. 

The search control K: also selects the inertia weight )'V, and the social C1 and cogni-

tive C2 learning factors. As mentioned earlier, there already exist in literature several 

methods to select these parameters. In this thesis we use the criterion introduced in 

[Toscano-Pulido and Coello 2004]. This criterion is an approach useful to deal with the 

difficulties of fine tuning of these parameters for specific problems or problem instances. 

The parameters are given by W = p(O.l, 0.5) and C = p(l.5, 2), i = 1, 2, where p(l, u) 

is a random number generator function that returns a value within a predefined interval 

[1, u]. IcC also selects r1 and r2 as follows: ri = p(O, 1), i = 1, 2. 
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The search control /C determines whether the mutation operator is applied to a 

given particle or not according to: IF p(O, 1) <Pmut THEN the particle is mutated. 

In summary, this section presented PSO as an instantiation of set-based search, 

including the definition of a particle, the initialization of the swarm, the governing rules 

of the flight, and the termination condition. These concepts are the fundamentals for 

set-based PSO as search algorithm. 

4.2 Our Distributed Set-based PSO Search System 

Section 4.1 introduced the sequential (single-agent) definition of set-based PSO. This 

section introduces the distributed concept of set-based PSO as a collaborative multi-

agent search system using the distributed search system concepts introduced in Section 

3.3. 

Let us assume that our multi-agent search system MASS consists of nMASS search 

agents each of which is assigned to its own processing unit10. One of the search agents 

has the role of master agent AgM which in addition to solving its own search instance 

it also performs the role of start agent (Ags) and end agent (AgE) as defined in Section 

3.3. The master agent AgM assigns a search instance Insi to each Agi in the MASS, 

including itself. 

'°As stated earlier, the number of processing units (n) available in the system should be greater or 
equal than the number of search agents in the MASS, i.e. MASS, to improve the performance 
of the search. 
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As in the case of most set-based search methods, in our distributed set-based PSO 

the initial state of each search agent Ag consists of a set of randomly created particles, 

i.e. each Ag initializes its own swarm resulting in nMAss-different initial swarms or 

states. 

Once all search agents are initialized they proceed to perform the search. Every 

time the communication condition becomes TRUE the communication is started 

and each search agent Ag (Ag AgM ) sends its selected information to the master 

agent AgM . The communication condition ccomm is set TRUE every n,,,,,.,,-number 

of search steps (see Figure 4.1). Although this condition imposes synchronization, a 

potential bottleneck in the system, and may let one or more search agents be idle for 

a little time, the proposed communication condition proved to be appropriate for the 

search instances tested leading to insignificant idle time11. 

The distributed set-based PSO makes use of positive information in the following 

manner. ICom contains two types of data areas called positive control information 

(kt) and positive solution information (solt) for each search agent Agi in the 

MASS. In k, the other search agents' mess-functions (i j i, j = 1, 2, ..., flMASS) 

put their best solution found so far: XBG. In solt., the other search agents' mess-

functions put the best k, solutions they found during the last round. At first glance 

the information in k seems to be redundant but is not because of two reasons. Both 

"This communication scheme works well to solve problems in which the computational effort for 
communication is negligible compared to the run time for the evaluation of solutions to avoid over-
loading AgM and slow down the search. 
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Figure 4.1: Communication between search agents in the MASS. 

Ag 

reasons are related to the use that Agi makes of this information in its own environment. 

First, the information in kt is filtered by selecting the best solution overall. If the 

best solution overall is better than the search agent's & EQ then the search agent updates 

its EQ with the new value just received. This indicates that information in kt affects 

the search control Kj of the search agent Ag, which in turn affects the adjustment 

of the velocity vector 'ii. Now, the information in solt is also filtered by selecting the 

best k2 solutions in it. The k2-selected solutions are then used to replace the k2 worst 

current solutions in each Ag 's current state essentially moving the position of these k2 

particles to different, hopefully better, areas of the search space. It should be noted 

that the velocity vectors of these k2 particles are not affected by the substitution and 
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that the best ancestor of each particle is only updated if the new solution is better. By 

not influencing the velocity vectors, different search agents might have particles located 

at the same coordinates in the search space but will produce different successors if the 

velocities and the leaders are different. In conclusion, the use that search agents make 

of the kP and solt data areas is definitely different. 

The second reason makes the need for the two data areas even more evident. The 

values of solt (i = 1,2, ..., flMASS) are not to be updated after every single round. 

They are updated only after every n801t rounds. If the search states of all search 

agents were to be updated after every single round this would quickly. direct all search 

agents to explore the same area of the search space thus resulting in redundant and 

perhaps useless work. While the use of kt only establishes a common direction for 

the particles, using solt too often would move k2 particles to, or near to, this best 

solution without exploring solutions situated between the current positions and this 

best area. It should be noted that solt has the capability to rescue search agents 

currently exploring bad areas of the search space by moving the particles elsewhere. 

Balancing the frequency of the use of solt requires some calibration of the system and 

this is how n301± was determined in the experiments of this thesis. 
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4.3 Distributed Set-based PSO for Optimization of Pipeline 

Operations 

This section describes the application of our distributed set-based PSO search system 

to the optimization of operations of natural gas pipeline networks. The end result 

of this section is a system called IOPO, which stands for Intelligent Optimization of 

Pipeline Operations. 

4.3.1 Optimization of NGPO 

As indicated in Chapter 2, optimization of NGPO can be achieved by optimizing ob-

jectives such as fuel consumption, throughput and linepack. Without loss of generality 

these objectives are represented here as fl, f2, and f3 respectively. Following Equation 

2.1, the NGPO optimization problem can be stated as finding the vector which: 

Minimize f() [f(), f(), f(+)} (4.3) 

subject to 

g()≥O i = ', 2 ,••,ineq (4.4) 

h(x)O 31,2, ... ,fleq (4.5) 

where is a vector of decision variables, of dimension nx whose components are the 

parameters needed to operate a specific pipeline network. As mentioned in Chapter 

2, due to the nature of the NGPO problem the vector t includes a mix of continuous 

and discrete decision variables, i.e. = [x, x, ..., Xd X, x, ..., xJ, where d and n 



4.3 Distributed Set-based PSO for Optimization of Pipeline Operations 39 

are the number of discrete (xi) and continuous (xi) decision variables respectively; and 

nx = d + n. Discrete decision variables in are the status of each compressor station 

(ONLINE/OFFLINE) and the state of each block valve (FULLYOPENED/FULLYCLOSED) 

present in the pipeline network. The continuous decision variables in are control 

pressures at each compressor station (either P3 or Pd), control pressure at each control 

valve (either P3 or Pd), and the control pressure at each meter station considered in the 

pipeline system under consideration. An additional continuous decision variable is the 

proration ratio used to modulate the volume of gas received/delivered in the pipeline 

system. 

Discrete decision variables are treated as continuous variables during the flight 

of the swarm, i.e. 4 E [0, 1]. Then; just before 9 is evaluated the values of 4 

are rounded to discrete values, 4 E {0, 1}, to represent the ONLINE, OFFLINE, 

FULLYOPENED, or FULLYCLOSED value. The values that the continuous decision 

variables are allowed to take are restricted by the physical limits of the pipeline network, 

e.g. maximum/minimum allowed operating pressure, minimum contractual delivery 

pressure, etc.. For example, in case a decision variable represents the pressure at a 

control node the decision variable will be allowed to take only values within a specific 

range of pressures for design and safety reasons. Specifically, x E [Pmin, Pmax], where 

and Pmax are the minimum and maximum allowed pressure values for this element 

or device within the pipeline system. 
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For the NGPO problems studied in this thesis, the following elements of a pipeline 

network were considered: 

Compressor stations. For each CS two decision variables are needed: one continuous 

decision variable to represent the suction or discharge pressure, and one discrete 

decision variable to represent the status of the CS. 

Block valves. For each BV present in the pipeline network one discrete decision van-

able is necessary to indicate its status. 

Control valves. For each CV present in the pipeline network one continuous decision 

variable is necessary to indicate its control pressure. 

Meter stations. For each meter station present in the pipeline network one continu-

ous decision variable is necessary to indicate the pressure at this control node. 

Proration ratio. One continuous decision variable is used to represent the proration 

factor at a specific meter station. 

J() : TR' —+ 1R3 is the vector of objective functions, f () is the amount of 

fuel consumed by all ONLINE compressor stations in the pipeline network, f2(9) is the 

throughput at a specific node or nodes of the network, and f () is the total linepack 

in the pipeline system. The functions () : TR —+ W ineq and () : Jflq 

are constraint functions of the NGPO problem at hand. The value of f () is calcu-

lated using a hydraulic network solver, which in the following will be called hydraulic 

simulator. The hydraulic simulator provides few results which can be used to assess 
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Figure 4.2: Communication between the search algorithm and the hydraulic simulator 

Search 
Algorithm 

I 
Pipeline sub-network 

(simulator) 

the quality of each candidate solution vector . The hydraulic simulator used in the 

experiments of the NGPO problem is a non-isothermal hydraulic model that simulates 

the steady state gas flow within the pipeline system considering temperature profiles 

and composition of the transported gas. The hydraulic simulator basically evaluates 

how well the pipeline system would operate if the values of the parameters contained 

in were to be implemented to operate the modeled pipeline network. The hydraulic 

simulator returns measures of performance such as the total fuel consumption by com-

pressor stations, the throughput at strategic nodes, and the total linepack in the system 

(see Figure 4.2). 

The hydraulic simulator used in the experiments of this research work is proprietary 

to TransCanada PipeLines Ltd. and therefore had to be treated like a blackbox. It 

can only be disclosed that, at very high level, the search process calls the hydraulic 

simulator every time it needs to evaluate a solution vector . The solution vector is 

written into a file which is part of the input information required by the hydraulic 

simulator. The hydraulic simulator does its work and then writes the results of the 

simulation into an output file. This file is read by the search process after the hydraulic 
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simulation ends. 

The hydraulic simulator reports all the constraint violations caused by (() 

and i()) such as pressure at control nodes with values under Pmin or over Pmax, 

any reverse flow situation, power violations, etc. To keep the reader of this thesis in 

perspective, the number of nineq and n,q is in the order of hundreds to thousands for 

the problem instances studied in this research work. 

The hydraulic simulator also returns what we call the hydraulic correctness of 

a solution vector, an integer value 7C() E {O, 1}. If 7-C() = 1,x is assumed to be 

hydraulically correct. Note that may be an infeasible solution vector, i.e. it may cause 

constraint violations within the pipeline system such as pressure violations or reverse 

flows, but the hydraulic simulator is able to converge to a solution. If 7-C() = 0, then 

is considered hydraulically incorrect, i.e. the vector contains operational settings 

that are not only infeasible but physically impossible to be implemented in the pipeline 

network modeled. 

4.3.2 Set-based PSO for Optimization of NGPO 

A solution for an instance of the NGPO problem consists of the parts of the vector 

that represent the parameters needed to operate a specific pipeline network as defined 

in Section 4.3.1. An instance of the NGPO problem consists of the network topology 

that is needed for the pipeline simulator, the technical description of all compressor 

units at the CSs, the BVs, the CVs, the flow requirements at specific points in the 
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pipeline network, and the set of boundary conditions for the network that describe 

receipts and deliveries, i.e. location and volume of gas that goes into or out of the 

network. 

A particle p for an instance of the NGPO problem is described by p = (AV, XBO) 

where is the vector of decision variables as described in Section 4.3.1, 13 is the vector 

of velocities of the particle, and xj 0 is the particle's best position found so far. 88 is 

by default restricted by the physical limits of the pipeline components. VS is limited 

to prevent the velocity from growing out of bounds. Traditionally, in set-based search 

systems the initial values of are selected randomly within 88. We found that 88 can 

in fact be reduced to a significantly smaller set 881njt (88init C 88) in such a way that 

the time needed to perform the search and find an. acceptable solution is remarkably 

less, thus improving the performance of the search algorithm. 

4.3.2.1 Using NGPO Knowledge to Reduce the Search Space 

As explained in Chapter 3, general knowledge about the application problem can be 

considered in the design of the search model A and/or search control JC to improve 

the performance of the search. It should be noted that selection of the knowledge is 

critical: appropriate knowledge can improve the search but, by the same token, badly 

chosen knowledge can weaken the performance of the search. Useful knowledge about 

the NGPO problem was identified and used to improve the efficiency of the proposed 

set-based PSO search system. It is important to emphasize that the NGPO knowledge 
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used to improve the proposed search approach is generic knowledge and is applicable 

to all NGPO problem instances tested in this thesis. It is knowledge that is available 

or, in the worst case, not too complicated to obtain. This knowledge revealed certain 

properties of the NGPO problem. 

We used part of the acquired knowledge about the NGPO problem tb improve the 

design of the search model by restricting the initial solution space from 88 to ssjt 

to speed up the search. We observed that, in contrast to other real-world optimization 

problems, solutions to the NGPO problem (as stated in this research work) that are 

close in the objective space are also close in the decision variable space. Based on this 

information, it is assumed that once an acceptable solution is found there is a high 

probability that the optimal solution is not too far from there. 

This knowledge is used in the following way. The initial population is generated 

with the position of the particles initialized randomly within 88, i.e. E 88, Vi = 

1, 2, ..., 'n.swarm, with zero velocity. And because &.init  & it then we represent each 

initial particle as p t ( nit, j, nit) 12 The search, as described before, is performed 

until the termination condition g is set TRUE. 9 becomes TRUE when the first ac-

ceptable solution is found. For the NGPO problem, the first acceptable solution is 

the first solution vector that the hydraulic simulator reports as being hydraulically 

correct (RC 1)13. The time needed to find an acceptable solution varies with the 

complexity and size of the pipeline network, i.e. it is faster to find acceptable solu-

'2The velocity vector is updated first, then the position vector. 

13The term hydraulic correctness was introduced in Section 4.3.1. 
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tions for small pipeline networks than for large and complex ones. The solution to this 

problem at this particular stage of the search, i.e. the first acceptable solution found, 

is represented by o. 

The position vector becomes the center of what will be called delimited 

by o ± a7, where a is a parameter a E [0, 0.51, R is the vector that contains the 

variability range of each decision variable, and 88iThit C SS. Right after the first 

acceptable solution is found the swarm is moved to the neighborhood of o and 

the search continues from there. In other words, the positions of all particles are 

re-initialized randomly with & it E fflnit = , and 

-'init 
XBO. - I 

7?;init 

XBO 

if & it < XBO1 

else 

Vi = 11 2; ..., aswarm, and 4 i a comparison operator which will be explained in the next 

section. Note that none of the components of the newly created vector ffjnit should 

take a value outside of the physical requirements imposed by the original SS. A small 

value of a creates a tight 8St space around o, and as a -+ 0.5, SSu1t ) SS. 

The positions of the particles remain limited by the range imposed by S8' during 

n t-number of transitions and then the range is reset to the original and wider range 

defined by SS. Opening the range of the decision variables is important for two reasons. 

First, to have the opportunity to rescue the swarm in case it becomes trapped in a 
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bad area of the search space. Second, to have the opportunity to search for better 

solutions, perhaps the optimum, that might be outside of the space delimited by SSinuit. 

The journey of the swarm ends when a predefined number of particle evaluations is 

reached. 

It is important to mention that the statement 'solutions that are close in the ob-

jective space are also close in the decision variable space' was observed only on the 

continuous decision variables (xlq E [Pmjn, P,navI, i = 1, 2, ..., ne). Discrete decision 

variables —which could easily account for almost 50% of the total number of decision 

variables in the NGPO problem— do not necessarily follow this behavior, their value 

may change abruptly which still gives complexity to the search problem. Otherwise 

the search would be able to find the optimum solution almost immediately, right after 

finding Yo. 

4.3.2.2 Criteria to Compare Solutions 

In order to update the position and velocity of the particles in the swarm using the 

set of extension rules introduced in Section 4.1.1 to create the next state of the search, 

it is necessary to identify the particle's best position found so far (XBo), and the best 

position found so far by the whole swarm (XBG). As a consequence a criterion to 

compare position vectors is necessary. 

If the objective of the optimization problem is to find the vector P that minimizes 

the energy consumption for the operation of a given pipeline network, then the obvious 
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choice is to use the fuel consumption caused by each particle, represented as fl (y) 

in Eq. 4.3, to measure the quality of each solution vector 9. Then, the criterion to 

compare two solution vectors could be defined as: position 1 is better than position 2 

(represented as ) if fi(i) < f1(2). But the obvious selection of using just the 

fuel consumption to compare solution vectors ignores other information about that 

is readily available and is important. 

As mentioned in Section 4.3.1, each solution vector is evaluated using a hydraulic 

simulator which determines the effects of using the operational settings encoded in 

if it were to be implemented in the pipeline network. The most important information 

reported by the hydraulic simulator, relevant for our research work, is: 

• the amount of fuel consumed by the compressor units (fl), throughput (f2), and 

linepack (fe) 

• the physical violations in the pipeline system ( and /) 

• the hydraulic correctness of the solution vector (71C) 

All this information has influence on the quality of and should be considered when 

comparing two solution vectors. Current solution approaches may suggest considering 

all this information simultaneously by creating an evaluation (fitness) function that 

combines all these metrics into a single numerical value. The fitness of the vector 

could then be used to compare solution vectors and for control purposes. But finding 

such a fitness function is not an easy task and often requires additional system pa-
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rameters that need to be set for every instance of the search problem to solve. For 

example, [Botros et al. 2004] and []3otros et al. 2006] combined the value of the objec-

tive functions with the physical violations into a cost function and reported difficulty 

on the dynamic selection of penalty parameters for the violations. 

For our approach we have selected a different method, namely the lexicograph-

ical combination of orderings. In order to compare the position of two particles 

i and x2, a triple (RC (9), f(&)) is determined for each of them. As introduced 

in Section 4.3.1, the hydraulic correctness of (7-C(9) E {0, 1}) is a binary func-

tion indicating whether the position vector represents a hydraulically correct solution 

(RC() = 1) or not (HC() = 0). The function accounts for all the constraint 

- - - ineq -9 fleq -# 

violations out of the sets g' (9 ) and h(x) as follows f (x) = E.1 gj (x) I + E=1 I h (x) I. 

And f(&) is the fuel consumed by the compressor units running in all the ONLINE 

compressor stations. Now, the position of particle 1 is considered better than the po-

sition of particle 2 ( i ), if either 7-LC( 1) > ?-LC(  2), or if 7-1C( 1) 7-1C( 2) and 

< f(), or if RC( 1) = 71C( 2) and f(&1) = l(2) and f(&) < f1(2). In 

other words, hydraulically correct solutions are always better than hydraulically in-

correct ones, solutions with less constraint violations are better than solutions with 

more constraint violations, and valid solutions are compared based on their energy 

consumption. 



4.3 Distributed Set-based PSO for Optimization of Pipeline Operations 49  

4.3.2.3 Using NGPO Knowledge to Avoid Unnecessary Evaluations 

We identified knowledge about the NGPO problem useful to avoid the evaluation of 

invalid solutions without the need of consulting the time-consuming hydraulic simula-

tion. It is important to mention that the time required by each run of the hydraulic 

simulator is not constant. After running several experiments it was observed that the 

time needed by the hydraulic simulator to evaluate a single solution for a given search 

problem varies tremendously depending on the quality of the solution vector Y. For 

example, if 'HC(i) = 1 the hydraulic simulator usually needs less time to converge and 

provide the evaluation results than in the case of ?-C() = 0. This reason motivated 

the characterization of bad solution vectors. 

It was observed that, for any given instance of the NGPO problem, there is a mini-

mum number of CSs that must be ONLINE to be able to move the given transportation 

requirements of natural gas. By knowing this information the search agents can easily 

identify (pre-evaluate) if a particle in the swarm is at a position that does not have 

the minimum number of CSs running and simply avoid an unnecessary time-consuming 

evaluation with the hydraulic simulator. It is now known that bad solutions, like the 

ones that do not satisfy the minimum number of CSs running, consume plenty of time 

during its evaluation because the hydraulic simulator makes numerous attempts to 

make the solution converge, and at the end undoubtedly reports that the vector is 

an invalid solution. A candidate solution that does not satisfy the minimum number 

of CSs ONLINE will most likely cause a RC()= 0 or a very large () value. 
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To make use of this knowledge a pre-evaluation function Mcs(x) E {0, 1} is applied 

to each candidate solution just prior to its evaluation with the hydraulic simulator. If 

Mcs(x) = 1 it means that the solution vector satisfies the minimum number of 

ONLINE CSs, then is evaluated with the hydraulic simulator to generate the triple 

If Mc() = 0 it means that the solution vector does not 

satisfy the minimum number of ONLINE CSs, hence this solution vector should not be 

evaluated with the hydraulic simulator and should be strongly penalized. 

4.3.3 A Distributed Set-based PSO for the Optimization of NPGO 

This section describes the application of our distributed set-based PSO search approach 

described in Section 4.2 and illustrated in Fig. 4.1 to the optimization of NGPO. The 

overall implementation is called IOPO (Intelligent Optimization of Pipeline Operations). 

Like other approaches following the Improving on the Competition Approach paradigm 

as characterized in [Denzinger 2000], IOPO creates one search process for each pro-

cessing unit (processor or core) available in the system. In other words, there will be 

as many search agents in the MASS as processing units are available in the system. 

The distributed search starts with the master agent A9M assigning a search instance 

Ins to each of the search agents in the MASS including itself. For the NGPO problem, 

each of the nMASS search agent receives an exact copy of Ins. All search agents have 

first the task of finding the vector of operational settings that consumes the minimum 

amount of fuel to satisfy the transportation requirements for a specific pipeline network 
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specified in the search problem. 

Initial Population. Each search agent Ag (Vi = 1,2, ..., ThMASS) generates its 

initial population of particles following the criterion proposed in Section 4.3.2.1, which 

is based on knowledge about the NOPO problem and designed to speed up the search. 

Eventually, one of the search agents will find a hydraulic correct solution and will relo-

cate its swarm to that neighborhood. Because all search agents communicate regularly 

(see Cooperation below), whenever a search agent finds an acceptable solution this 

solution will be shared to the rest of the MASS in the next communication step and 

the particles of all swarms will be relocated., The search agents will no longer search 

for the first hydraulically correct solution, they now will relocate their population and 

continue the search from there. 

Search. At this point in time all search agents in the MASS are performing search 

and evaluating solution vectors using their own instance of the hydraulic simulator. 

Cooperation. Every time the communication condition becomes TRUE, 

each search agent Agi makes use of its mes-function to provide its best solution found 

so fax ( BG) into the corresponding data area of AgM . Among all the flMASS-XBGS 

solution vectors there will be one that is the best overall. AgM selects the best XBG 

among all and distributes it into the kP areas. If the best solution overall is better'4 

than the search agent's XBG the search agent updates its X13G with the best overall. 

There is no exchange of solt information during this kind of search. 

14 The criterion used to compare two solution vectors and decide which one is better, if not equal, 
was introduced in Section 4.3.2.2. 
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Termination. The MASS continues the distributed search with the particles of 

the swarms updating their velocity and position according to the set of extension rules 

Ext introduced in Section 4.1.1, establishing communication every mc0m1n 11umber of 

search steps until the termination condition g is set TRUE. AgM collects the results 

of all search agents and presents the best solution to the given search problem. 

TOPO balances the danger of having all search processes searching the same area 

of the search space which typically has as consequence ample redundant computations 

and the need to get search processes out of not so good (but locally optimal) areas 

when compared with the areas where the other processes are. 

It is important to mention that the evaluation of solution vectors is by far the most 

computationally expensive part of the optimization of NGPO problem. The evaluation 

of candidate solutions with the hydraulic simulator takes nearly all the time of each 

process. In JOPO most processors/cores are running hydraulic simulations in parallel, 

an effect all known distribution concepts for this type of search want to achieve. 
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5 Extending IOPO to Multi-Objective 

Optimization 

Most real-life optimization problems have the property of being multi-objective. For 

single-objective optimization problems the optimum is the best of a set of candidate 

solutions. But for multi-objective optimization (MOO) the definition of an optimum is 

not that simple. This is because of the often conflicting objectives, while some solutions 

may favor one objective at the same time they may deteriorate another objective or 

objectives. The solution to a MOO problem is a set of non-dominated solutions. 

As mentioned in Section 2.1, one of the main goals of every MOO algorithm is 

to keep record of the non-dominated solutions as the search progresses. Keeping this 

record can be interpreted as a kind of elitism. At the beginning of the search this 

record of non-dominated solutions, often called archive in MOO literature, is empty. 

As the search progresses new non-dominated solutions enter into the archive and others 

are removed. There are two main reasons to remove solutions from the archive: 1) if a 

solution becomes dominated, and 2) if the archive has limited capacity and a solution 

has to be removed following a predetermined criterion. The idea is that at the end of 
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the search the archive will be a subset of the true Pareto front, and as a consequence a 

subset of the optimal solutions to the search problem. Having a set of solutions being 

equal in quality (all of them are non-dominated) makes the selection of best particles 

more complicated than for the single objective case. 

This chapter presents the extension of IOPO to the MOO case and it is organized as 

follows.. First, Section 5.1 extends the set-based PSO search definitions introduced in 

Section 4.1 now to the MOO case. Then Section 5.2 extends the distributed set-based 

PSO search definitions introduced in Section 4.2 now to the MOO case. And Section 

5.3 presents the application of IOPO to solve the MOO NGPO problem. 

5.1 Extending Set-based PSO Search Definitions to MOO 

Most of the set-based PSO definitions introduced in Section 4.1 are directly applicable 

to the MOO case. In this section, each definition is addressed and if there is a difference 

with the previous definitions it is explained in detail. 

5.1.1 Search Model 

In set-based PSO, for single and also MOO, a particle is defined by the tuple p = 

(, , x50). A set-based search model A is defined by a set of facts and a set of 

extension rules (.F = {() ' , XB  XEQ E SS, E VS} and ext respectively). 

The set of extension rules Ext for the MOO case is given by: 
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{ new , new new 1 { {pi, P2, .., Pm8warm } " Pi , t I 
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else 

,'MOO XBO 

≤ aswarm, 

which is almost identical to the set Sxt defined for the single-objective case. The only 

difference is the operator <Moo used to compare two position vectors and indicate 

which of the two is better. This operator is defined according to the MOO problem to 

be solved; our definition is presented in Section 5.3.1. The criterion to select W, C1, 

and C2 is identical to the criterion for the single objective case introduced in Section 
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4.1.3. The selection of YB11j for MOO is explained in Section 5.1.3. The same mutation 

operator mut(x) introduced in Section 4.1.1 for the single objective case is used here 

in the MOO case. 

5.1.2 Search Instance 

The MOO definition of search instance Ins is the same as the one introduced for 

single objective: Ins = (si, g) = ({p nit , pnit, ..., Par,n } ), where is the initial 

search state and g is the termination condition of the search. 8mmjt can be generated 

randomly or by using knowledge related to the problem at hand and the particular 

instance. 

5.1.3 Search Process 

A search process is defined by the tuple P = (A, JC, Env). As in the single-objective 

case, in MOO the search control K also makes use of explicit information to guide 

the flight of the swarm. For single-objective optimization K stores the best solution 

found so far by the whole swarm: XBG. But for the MOO case, instead of storing a 

single value, K stores the set of non-dominated solutions found so far by the swarm, 

PJ temp, and selects XBG for each particle from that set. To do so, IC performs the 

adaptive archive grid algorithm introduced in Section 3.2. In a few words, in the 

adaptive archive grid algorithm the objective function space is divided into a certain 

number of hypercubes. Each element of is assigned to an hypercube according 
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to its f value. A fitness value is assigned to each particle in l)Jrtemp which is inversely 

proportional to the density (or number of particles) contained in the hypercube. The 

less particles in the hypercube, the higher the fitness value of its elements. XBG is 

selected by IC from the elements in P.Ftemp using the roulette wheel selection scheme 

based on the fitness value mentioned before, thus steering exploration towards the 

hypercubes with less density. 

By updating the values pew, fjw, and gyj, for each particle (Vi = 1, 2, ..., flswarrn), 

the swarm will eventually fly towards the Pareto front. 

5.2 Extending Distributed Set-based PSO Search to MOO 

This section introduces the extension of distributed set-based PSO search to the MOO 

case. The proposed approach consists of two main phases: PHASE I which aims at 

finding a preliminary Pareto front with a few transitions, and PHASE II that makes 

use of the results obtained in PHASE I as starting point to find the Pareto front that op-

timizes the objectives of the optimization problem at hand. The following two sections 

present the details of these two phases of IOPO for MOO. 

5.2.1 Phase I 

During PHASE I the goal of each of the search agents in the MASS (Ag1, Ag2, 

Agfl88 ), is to explore a specific area of the search space and obtain, in a limited 

number of transitions, a set of non-dominated solutions to form a preliminary Pareto 
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front, denoted as P.?'tempj (Vi = 1, 2, ..., nMASs), one for each search agent in the 

MASS. 

5.2.1.1 Phase I: Initial Population 

The search starts when the master agent AgM assigns a particular instance Insi to 

each of the search agents in the MASS. The search instance for each of the search 

agents Agi is defined by Ins = (sr, ), where g is a predefined number of transitions, 

init '5j X3 -nit - { mit mit iriit } mit 
Pi,i 'P2,i " Pflswarm, ' = ( knit, V , XBO./ ( knit, , nit), and E 

88nit) Vi = 1) 2, ..., MASS, Vi = 1, 2, ..., nswarm, As mentioned before, the criterion to 

create the 88mnjt spaces is problem dependent. Our proposed criterion for the NGPO 

is based on the partition of the search space 88 into considerable smaller sets SSTit 

to speed up the search. This criterion will be introduced in Section 5.3.2. 

5.2.1.2 Phase I: Search 

Each Agj, including AgM, initializes its population, and performs the search until the 

termination condition becomes TRUE after npHASEI-number of transitions. During 

PHASE I the positions of the particles of Agm remain limited to the variability range 

imposed by 55mt• 
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5.2.1.3 Phase I: Cooperation 

Note that communication may not be necessary between the search agents during 

PHASE I other than for the assignment of the search instances and the collection of the 

results, as will be explained in Section 5.3.2. 

5.2.1.4 Phase I: Termination 

At the end of the search in PHASE I each search agent Agi sends its resulting PFtemp 

to A9M. AgM receives and merges the preliminary Pareto fronts provided by all search 

agents and produces a single set of non-dominated solutions, denoted as P.Fit. q)iThit 

is then used by the MASS to initialize the particles in PHASE II. 

In Summary, the objective of PHASE I in our proposed approach is to avoid sending 

the particles of the swarm to perform a blind search in the potentially immense 88 

space. The difficult part is to find an appropriate way to divide the given Ins into 

nMAss instances, one for each search agent in the MASS, to perform the search 

faster. An option we found suitable was to divide the search space using knowledge 

particular to the application, as will be shown in Section 5.3 in which, details of the 

NGPO problem are provided. 
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5.2.2 Phase II 

During PHASE lithe entire team of search agents will explore the search space looking 

for 27, the Pareto front that contains the set of optimal solutions. To do so, the 

MASS applies the distributed set-based PSO search system proposed in Section 4.2. 

The criterion to create 55jmjt in PHASE II is based on the use of ?.Fmfht as starting 

point for the search. The reason to do this is because the Pareto optimal set associated 

with 2mjt indicates, up to that point in time, the most promising area to continue 

the search. 

5.2.2.1 Phase II: Initial Population 

The master agent A9M takes the position vectors () from the Pareto optimal set 

associated with 7,mfht to create 88znit• Each search agent re-initializes the positions 

of its particles randomly with E 85inZt onit = O', and 

-.inil; - 

XBO. - 

.4: init -. 

iLL X <MOO XBQ 

else 

Vi = 1, 2, ..., swarm, for all search agents in the MASS. The variability range of each 

decision variable dictated by 552jt is the variability range of the position vectors of the 

non-dominated solutions resulted from PHASE I. The operator 1MOO is a comparison 

criterion for MOO and will be explained in Section 5.3.1. 
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5.2.2.2 Phase II: Search 

Note that if one or more search agents were assigned to bad search areas during PHASE 

I, they will be rescued in PHASE II. At this point in time each search agent Agi is 

working on its search instance and updating its OWfl P.Ttempj. 

5.2.2.3 Phase II: Cooperation 

As in the single-objective case, the search agents communicate periodically with AgM 

whenever the communication condition becomes TRUE after certain number of transi-

tions to exchange specific pieces of information. 

In early stages of PHASE II the P.emp1 sets contain a small number of elements. 

At this time the search agents can obtain some benefit from learning where other 

swarms have found good solutions. For that reason, every time the communication 

condition ccomm • becomes TRUE after m501-•-number of transitions, each search agent 

Agi makes use of its mes-function to provide k, solutions. Each search agent randomly 

selects these k, solutions from the XBOS of its swarm. All these solutions provided by 

the search agents are merged by AgM eliminating those that become dominated. k2 

solution vectors are then selected out of the remaining solutions". The k2 solutions are 

used to randomly replace k2 current solutions in each Ag's state, essentially moving the 

position of these particles to hopefully better areas of the search space. The velocity of 

'5k2 is the maximum number of positions that will be replaced. If the number of the remaining 
non-dominated solutions is smaller than k2 only those remaining are replaced. 
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the reallocated particles remains the same, and the particle's best ancestor is updated 

only if the relocated position is better. 

As the search progresses the number of elements in the sets ?..Ftempj grows and 

may even reach its maximum capacity. At this time these sets are the best reference 

to guide the search. For this reason every time the communication condition comm ± 

becomes TRUE, each search agent Agi makes use of its mes-function to provide its 

current P.Ftempj. ccofl2m0- is set TRUE every nkt-number of transitions. AYM merges 

the P.'FtempjS found by the search agents and discards all solution vectors that become 

dominated. The task of A9M is to obtain a P.'Ftemp with maximum capacity of k3 

solution vectors, and provide it to all the search agents in the MASS. If the number 

of solution vectors in P.temp is larger than Ic3, AYM starts deleting solution vectors 

from the hypercubes with major density until the k3 maximum quota is reached. 

The type of communication exchange is controlled by linearly increasing n30 i- and 

linearly decreasing flk+ over time. 

5.2.2.4 Phase II: Termination 

Phase II ends when the termination condition g becomes TRUE after npFIASErE-number 

of transitions. 

With this 2-phase approach for MOO we expect the MASS be able to find a solu-

tion to a given instance of the search faster than the approach used for single-objective 
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optimization which is basically PHASE II only. Results of the experiments reported in 

Chapter 7, with and without PHASE I, demonstrate that the algorithmic design aspects 

of IOPO for MOO decreases the computational cost and makes it efficient to solve the 

complex MOO of NGPO problem. 

5.3 Extending IOPO to Multi-Objective Optimization of NGPO 

As explained in Section 4.3.1, the NGPO problem can be stated as a multi-objective 

optimization problem with conflicting objectives such as minimizing fuel consumption 

while maximizing throughput and also maximizing (or minimizing) the linepack in the 

pipeline system. In this thesis we studied and solved the 2-objective NGPO optimiza-

tion problem for fuel minimization and throughput maximization. 

From an operations point of view, studying the MOO case for the NGPO problem 

makes sense not only to be able to find the optimal vector & to operate the pipeline 

network at a specific throughput with minimum fuel consumption, but also to know 

other Pareto optimal vectors in the vicinity of that may contain slightly different 

operational settings. For example, two non-dominated solutions located very close in 

the objective space may imply the use of different CSs in the decision variable space. 

Having a few sets of operational settings available may be helpful in case a CS has to 

be OFFLINE for reasons such as maintenance or upgrade of the equipment. Having 

additional operating settings provides flexibility to operate the network close to optimal 

conditions. Also, the full Pareto front and the Pareto optimal set provide the complete 
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spectrum of variation of the operating settings of the pipeline network if operated in 

optimal conditions. 

As mentioned before, sending the swarm to perform a blind search is simply not an 

option because the search space is huge and it will take too much time to find useful 

solutions. But operation of a pipeline network requires the solution in a timely manner. 

With this time restriction in mind we proposed the 2-phase approach introduced in 

Section 5.2 aimed to reduce the time needed to find the solution. In this section 

we explain how the proposed 2-phase approach is applied to solve the MOO of the 

NGPO pioblem. But first we need to define the criteria to compare solution vectors, 

an important definition that will be used later. 

5.3.1 Criteria to Compare Solutions 

In Section 4.3.2.2 we proposed a lexicographical combination of orderings to com-

pare two position vectors based on the triple (HC (9), 1(), f()), where 7-IC indicates 

the hydraulic correctness of the solution vector , accounts for all the violations 

caused by the set of operational settings encoded in if implemented in the pipeline 

network, and f indicates the fuel consumed by the OSs. 

For the MOO case we also use a lexicographical combination of orderings to com-

pare position vectors based on the triple (RC(), J()). Note that this time the 

criterion includes a vector of objective functions f(s) instead of just a single objec-

tive. Now, the position of particle 1 is considered better than the position of particle 2 
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(1Moo2), if either 7-IC( 1) > 7-tC( 2) or, if RC( 1) = HC( -2 and <( 2) or, 

if 7-C( 1) = ?-C( 2) and Q() = 2(2) and J() -< f@2). The symbol -< indicates 

dominance as introduced in Definition 2.1 in Section 2.1. In other words, hydraulically 

correct solutions are always better than incorrect ones, solutions with less constraint 

violations are better than solutions with more violations, and valid solutions are com-

pared based on the Pareto dominance criterion which considers the value of all the 

objective functions simultaneously. Now, if we go back to the set of extension rules 

xt for the MOO case introduced in Section 5.1.1, we can see that a particle's best 

solution (XBQ) will only be updated if it becomes dominated. In other words, a newly 

created non-dominated solution not dominating the current XBO has no effect in this 

particular value. 

5.3.2 Phase I 

We identified knowledge about the NGPO problem and used it in the MOO case 

to divide 88 into smaller 88mnjt sets. It is important to mention that selection of this 

knowledge to improve the search is critical, and not a trivial task, especially for a MOO 

problem with conflicting objectives because conflict can arise between the knowledge 

that optimizes one of the objectives but conflicts with the knowledge used to optimize 

the other objective. 

In our case in which one objective is to maximize throughput, knowledge about 

NGPO will direct the search towards the states in which most CSs are ONLINE, and 
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perhaps working at maximum capacity —within the physical limits— in order to move 

as much gas as possible and maximize the throughput at the control node of interest. 

However, because the second objective is to minimize the fuel consumed by compressor 

units at the CSs in the pipeline network, then knowledge particular to this objective 

will try to use the smallest possible number of CSs to reduce the gas consumption, 

which contradicts the solution to the former objective. Patterns of behavior like these 

could not be easily applied without affecting one or the other objective. 

We observed that among the decision variables used to define the NGPO problem 

there is one that is of particular interest. We will refer to this decision variable as Pr, 

where Pr E [Prmjn, PTmax ]. Pr is one of the continuous decision variables in ', the 

vector of operational settings of the pipeline network, and is associated to the amount 

of gas received in the pipeline network". 

This knowledge about NGPO was used to partition the decision variable space and 

create 88ijt• Based on the meaning of Pr, SS is reduced to a number of smaller 

SSinuit sets by restricting the value that Pr can take. Each SS is practically equal 

to SS except for the range allowed for Pr. The range of Pr is partitioned into Pr1, 

Pr2, .. .,Pr,,,  segments covering the complete range of Pr. With this condition, each 

instance corresponds to a specific area of the search space. 

The number of segments ('npr) is determined depending on the size and complexity 

'6A11 the pipeline networks studied in this thesis are modeled by the hydraulic simulator as a closed 
system, i.e. the amount of gas that comes into the pipeline network should be equal to the amount of 
gas delivered plus the gas consumed by the compressor units. 
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of the optimization problem, i.e. the pipeline network. For small pipeline networks, 

depending on the number of processing units available, a number of segments np, = 

MASS could work well. In other words, 88 is partitioned into nmAss smaller sets and 

the search agents initialize their population according to Section 5.2.1.1, with $$ Th 

defined as described in the previous paragraph. Each of the nmAss search agents works 

on the received instance, does the search, and at the end reports its 7. to AgM. 

For larger and more complex pipeline networks the performance of the search can be 

improved by partitioning 88 into more pieces than before17, i.e. with nPr > nMASS 18 

This means that one or more search agents will be assigned more than one Ins. If a 

search agent is assigned more than one instance it will first work on one instance, then 

continue with another one, and so on, until the search agent processes all the instances 

it received. This may appear a very long process but it is not for two reasons. 

First, we use again the NGPO knowledge described in Section 4.3.2 which reveals 

that solutions to the NGPO problem that are close in the objective space are also close 

in the decision variable space". We use this knowledge in the following way. The 

solution vectors associated to 2temp for the segment Pri are used as starting point 

for the search in the adjacent segment Prj, where Pr1, Pr2, ..., Pr, Prj, ..., Prnpr, a 

strategy that definitely speeds up the search. 

"This is similar to what Suttner did in [Suttner 1995]. 

'8Preferab1y with np, being a multiple of nM.4S.s. 

'9As mentioned earlier, it is important to note that this behavior is followed only by those decision 
variables that are continuous (x E [Pmin, Pmax], i = 1, 2, ..., ne). Discrete variables not necessarily 
behave like this, their value may change abruptly which still gives complexity to the search problem. 
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Second, knowledge about NGPO indicates that the number of existing valid so-

lutions to operate the pipeline network at low throughput levels is larger than the 

number of valid solutions existing to operate the pipeline network at higher through-

put levels. The reason is because the pipeline network has more flexibility to satisfy 

the transportation requirements at low throughput levels, and this has an impact on 

computation time. We decided to organize the search in the MASS as follows. 55 is 

divided into the smaller sets SS, ssr,..., SSinit , where ThP is a number of parti-

tions that convert the original search space into smaller, tractable search spaces. The 

selection of np, is a parameter of our system (rip > nMASS) and requires some tuning. 

Now, instead of assigning one search agent to a particular S8 (i = 1, 2, ..., 

all search agents in the MASS are assigned to Iris1 to search for P.temp1. The 

search agents initialize their population following the approach introduced in Section 

5.2.1.1. They perform the search within SSrt and communicate as described in Section 

5.2.2.3. The search in Ins1 ends after a determined number of transitions. The resulting 

solution vectors associated to P1tempi are used to initialize the positions of the particles 

of the search agents as described in Section 5.2.2.1 to start searching in Ins2. This 

process is repeated until the np, instances are completed. AgM does the union of 

the np, nondominated sets to generate ppmit This newly generated set is used to 

initialize the search in PHASE II. 
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5.3.3 Phase II 

As mentioned earlier, PHASE II is almost identical to the distributed set-based PSO 

search system introduced for single-objective optimization in Chapter 4. However, 

because MOO is a much more complex problem to solve we added PHASE I to improve 

the selection of 55jt• 

The end result of PHASE I is a set of non-dominated solution vectors (PT") found 

by the MASS. The position vectors associated to those non-dominated solutions are 

used as reference to create 55jmjt• 

In PHASE II, all search agents in the MASS re-initialize the position of their 

particles randomly with E 55jmit, as explained in Section 5.2.2.1. Note that none 

of the components of the newly created vectors 9.1, nit should take a value outside of the 

physical constraints imposed by the original SS. 

As for the single-objective case, the position of the particles remains limited to the 

variability range imposed by 55jjt during nPHASEIIo number of transitions and then the 

range is reset to the original, and wider, range defined by 88. As mentioned earlier, 

early experiments not documented in this thesis showed that opening the range of the 

decision variables is important to have the opportunity to rescue the swarm in case it 

becomes trapped in a bad area of the search space and also to have the opportunity to 

search for better solutions that might be outside of the space delimited by 55mnjt 

At this point in time all the search agents in the MASS are performing search 

and evaluating solution vectors using their own instance of the hydraulic simulator 
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and updating their velocities and positions according to the set of extension rules . xt 

introduced in Section 5.1.1. Each search agent Agi keeps updating the record of the 

best solutions found so far in its PFtempj. 

The search agents in the MASS communicate as explained in Section 5.2.2.3. The 

search ends when the termination condition 9 is set TRUE. At the end AgM presents 

which represents the best solutions found by the MASS to the given search 

problem. 
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6 Related Work 

This chapter summarizes relevant work related to the various topics involved in this 

thesis and is organized as follows. We start with Section 6.1 presenting a summary 

of previous approaches aimed at the optimization of NGPO. This particular section 

also introduces two state-of-the-art methods that we use in the experiments reported 

in Chapter 7 to compare them against our IOPO approach. Section 6.2 lists the most 

relevant distribution approaches and Section 6.3 describes relevant PSO work done for 

the particular case of ' multi-objective optimization. 

6.1 Other Approaches for Optimization of Pipeline Opera-

tions 

In some situations the operators of the compressor stations maintain the desired through-

puts by shutting down or controlling individual compressor units' speeds based on 

experience, generally a trial and error process without any guarantee of optimality 

[Krishnaswami et al. 2004]. In better cases, network operators run their best guesses 

in hydraulic simulators of the pipeline network to determine the reaction of the system 
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for a given set of operating parameters. Gas controllers are required to scan the pipeline 

system for upsets and emergencies while monitoring operating valves and compressors 

as often as necessary for safe and efficient transmission of the scheduled gas volumes 

from their operations control centre [Kerkhof et al. 2002]. Reality is that the number 

of variables that gas controllers, operators and planners have to consider simultane-

ously is very large and minimization of fuel consumption is an objective that cannot 

be expected from human calculations. 

An enormous amount of work has been invested in the past to develop an automatic 

method to optimize pipeline operations. In the following paragraphs we list some of 

these approaches, noting that some of them were applied to the transportation of 

natural gas and others for fluids such as oil and water. As stated in earlier sections of 

this thesis, the principles to operate and perhaps optimize the operation of this kind 

of transportation systems are similar -to a certain extent- and that is the reason to 

include these references as related work. 

The earliest work on developing optimization algorithms for natural gas pipeline 

networks can be tracked back to 1968 ([Wong and Larson 1968] in [Wu 1998]) when 

dynamic programming techniques were used to solve optimization problems for 

simple pipeline networks. 

Early research on NOPO optimization focused on techniques such as enumeration, 

i.e. the evaluation of all possible solutions. Enumeration severely limits the size and 

complexity of the pipeline network systems that can be solved. It can only be applied 
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to simple and small pipeline networks; otherwise it becomes a prohibitively expensive 

and definitely a time-consuming approach. In [Veloso et al. 2004] a spreadsheet-based 

computational tool was used to reduce the energy consumption at each pumping sta-

tion in oil pipelines. The methodology was based on the construction of a database 

relating the pumping power consumption for all possible pumping arrangements and 

viable flow rate ranges of the pipeline network under consideration. The cost of each 

pumping arrangement was calculated by running each combination using the Stoner 

Pipeline Simulator V9.31 as hydraulic simulator. After running all the possible pump-

ing arrangements the data is exported to a worksheet avoiding the need of running the 

simulator again in the future. The spreadsheet was then used to select the minimum 

pumping cost for each operation point as needed. This method was used for pipeline 

networks consisting of only 3 pumping stations, where each station was equipped with 

either 3 or 4 pumps respectively. 

Enumeration and dynamic programming were combined in [Bolkan 1991] for 

optimal design and operation of a pipeline network. All pump combinations at each 

pumping station were arranged in increasing discharge pressure order, then selecting 

the pump combination just sufficient to pump the fluid at a required pressure. A 

solution for the entire network is found by using Bellman's principle of optimality. 

Numerical examples are reported for 15 pumping stations with 3 pump units each, and 

10 possible suction pressures. 
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Other approaches aim to simplify the optimization problem through the lineariza-

tion of the objective function and constraints. [Goslinga et al. 1994] proposed an exact 

first order linearization of the constraints by first order Taylor's series expansion and 

the linear programming problem is solved using Simplex. 

[Krishnaswami et al. 2004] used sequential unconstrained optimization with 

an exterior penalty function to minimize the total fuel consumption while maintain-

ing a desired throughput. The speeds of the centrifugal compressors (with similar 

or dissimilar units) were selected as the decision variables and the solution was con-

strained by minimum and maximum speed limits, and by minimum mass flow rate at 

the compressor station. The work was designed for optimization of only one compres-

sor station. The experiments reported results for a single compressor station with up 

to 10 compressor units. The authors claim the methodology can be extended beyond 

the compressor station level to the network level but no results were presented. 

Other approaches are aimed at the reduction of the dimension of the optimization 

problem. [Wu 1998] used a combination of graph theory and non linear functional anal-

ysis to determine linear supersets of the feasible solutions and convex lower bounding 

for the cost function. Based on those results a network decomposition method 

was introduced to reduce the size and difficulty of the problem. Among the numerical 

experiments provided in his work, the most complex problem instance was a pipeline 

network with 8 compressor stations with identical centrifugal compressor units in par-

allel and did not include other pipeline elements such as block valves, control valves or 
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regulators. The research work continued and later on [Rios-Mercado et al. 2002] did a 

theoretical study of the properties of a gas pipeline network and exploited those prop-

erties to reduce the problem dimension. The authors proposed a network reduction 

method to reduce the number of independent variables and non linear equality con-

straints. The research work reported important theoretical findings but did not include 

any numerical examples. Further work using reduced graphs combined with dynamic 

programming with a given pressure discretization was presented in [Rios-Mercado 2002] 

considering only the case of identical units in series for isothermal models. Unfortu-

nately no experimental results were reported. 

None of the traditional approaches were able to optimize realistic pipeline networks 

mostly because of the complexity imposed by the pipeline network modeling. Nev-

ertheless, with advances in computing power and biologically-inspired search systems 

more research groups have extended their studies to explore optimization techniques 

applied to problems in transmission networks of larger size and increased complexity, 

in other words, for more realistic scenarios. 

Genetic algorithms, and more recently particle swarm optimization and ant colony 

optimization, have been ued to optimize the design of water distribution systems, 

for the most part to determine design parameters such as pipe diameters prior to the 

construction of the pipeline networks [Simpson et al. 1994, Dandy et al. 1996, Zhang 

1999, Maier et al. 2003, Jung and Karney 2004, Eusuff 2004]. In the area of optimization 

of pipeline operations, genetic algorithms and simulated annealing have been used for 
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natural gas pipeline systems as early as in 1983. 

[Goldberg 1983], [Goldberg 1987a], and [Goldberg 1987b] proposed a decision-

making system to operate and control gas pipeline networks in normal summer and 

winter conditions as well as to learn how to detect leaks in the system. A learning 

classifier system was developed to create, evaluate and exploit string rules to control 

a simulated pipeline system. New rules are created using genetic algorithms by repro-

ducing, crossing and mutating rules contained in the current rule set. The proposed 

approach was tested for steady state using a simple serial system composed by 10 com-

pressor units and 10 pieces of pipe. In other words, this scenario could be interpreted 

as 10 compressor stations with only one compressor unit inside. This configuration has 

significantly less complexity compared to realistic pipeline networks —like the ones stud-

ied in this thesis— in which compressor stations have several compressor units inside, 

i.e. more settings of operating options from where pipeline operators have to choose 

from to reduce the transportation cost. Goldberg's work also included the transient 

case in a single line, i.e. with one compressor and one pipe. 

[Wright et al. 1998] applied simulated annealing as technique for finding the 

optimum configuration and power settings for multiple compressors arranged in series 

or parallel. The objective of the work was first aimed for fuel optimization at the 

compressor station level by searching for the best arrangement of the compressor units 

at the station rather than aiming for the optimization of operation of the complete 

pipeline network. The compressor stations were assumed to be in series with a fixed 
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pressure drop between any two adjacent compressor stations from the discharge of 

the upstream station to the suction of the downstream station. Although results are 

reported for pipeline networks as complex as 25 compressor stations with 10 compressor 

units each, it is not clear if many assumptions were considered to simplify the problem 

and report processing times in the order of 6.5 minutes. 

[Botros et al. 2004] applied genetic algorithms to optimize large gas pipeline 

networks. The model of the pipeline network included several elements such as line 

crossovers, multi-unit compressor stations, block and control valves. Results on sub-

networks up to the size of 25 compressor stations revealed that the main limiting 

factor of this approach was the computation effort caused by the great number of 

evaluations necessary to find a satisfactory solution. This approach used a binary 

representation of the decision variables and, as indicated by [Michalewicz 1996], the 

binary representation has some drawbacks when applied to multidimensional, high 

precision constrained optimization problems. In [Botros et al. 2004] the binary vector 

used to represent the decision variables of a small pipeline network consisting of only 8 

compressor stations had a length of 99 bits implying a search space of about 6.33 x 1029. 

Unfortunately, for a larger and more realistic pipeline sub-network represented with a 

binary vector of 260 bits the space grows dramatically to 1.85 x 1078 cases. [Zhang 

1999] also applied genetic algorithms for pipeline network design and reported a large 

decision space of 1021 generated by strings of 84 bits of length. The research for 

large and complex pipeline sub-networks was continued in [Stoifregen et al. 2005] and 
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[Botros et al. 2006] where surrogate methods were introduced aimed to reduce the 

time consumed during the evaluations of the solution vectors. However, the prolonged 

runtimes needed to optimize realistic pipeline sub-networks continued to be the main 

drawback of this approach eliminating any possibility to be applicable to the day-by-

day operations. Results in Section 7.2 show the comparison between the performance 

of this approach (called MOGA) and our proposed approach (called IOPO) showing 

that our approach satisfies the essential time constraints required by pipeline operators. 

The Commercial Approach. One of the problems of existing software tools for 

fuel optimization is that they are unable to handle devices which have only two states 

such as block valves that can be FULLYOPENED and FULLYCLoSED. Additionally, 

software tools are limited to a specific number of decision variables which automatically 

restrict the area of the pipeline network that can be modeled and optimized. As a 

consequence at TransCanada PipeLines, the established practice involves the use of in-

house developed simulation software to analyze pipeline operations and determine the 

operating configuration that optimizes the fuel consumption on the pipeline system. 

This approach requires the user to provide a valid initial solution. The process of finding 

improved operating configurations is an iterative one. The user makes adjustments 

to the input and repeats the simulation several times with the adjusted input until 

successively improved solutions are found. A major shortcoming of the established 

method is the significant amount of human interaction and intervention, and therefore 

the significant time and effort required to successively iterate to a solution. 
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Due to these problems, TransCanada PipeLines has been actively researching meth-

ods and evaluating commercial products to improve upon the current practice. In fact, 

TransCanada PipeLines supported the research presented in [Botros et al. 2004] and 

[Botros et al. 2006] which developed the MOGA method that used Genetic Algorithms 

to solve the problem fully and automatically. However, as already stated, this research 

was not able to provide the run-time performance that TransCanada PipeLines needs. 

The research in [Botros et al. 2004] and [Botros et al. 2006] used hydraulic simulation 

software developed in-house at TransCanada PipeLines. For this thesis work we used 

the same hydraulic simulator. 

In addition to the MOGA research activities, TransCanada PipeLines has been 

evaluating the suitability of commercial optimization software for the purpose of op-

timizing fuel usage on the pipeline system and reduce emissions. For the purpose of 

this thesis the commercial software is referred to as the commercial method. Sim-

ilar to the in-house developed method, shortcomings have been encountered with the 

commercial method of fuel optimization. This method also requires the user to find a 

valid and feasible solution as a starting point for the optimization to be able to start 

and also requires a significant amount of human intervention to successively iterate 

to a solution. This iterative process, illustrated in Figure 6.1, makes it difficult to 

predict its duration and it is clear that the experience of the user has strong influence 

on the time needed to obtain the results. In addition, some pipeline components such 

as block valves can be modeled but not handled as decision variables by the optimiza-
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Figure 6.1: Current Approach: Human-Simulator-Optimizer Interaction. 
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tion method. In Chapter 7 we use this commercial method as comparison point in 

our experiments to reflect the state-of-the-art in the field. Neither the commercial 

method nor the MOGA optimization methods have been developed to take advantage 

of distributed computing. 

6.2 Approaches for Distributing/Parallelizing Evaluations 

Real world optimization problems are characterized by 1) requiring a large number of 

evaluations of solutions vectors and/or 2) evaluations that are computationally expen-

sive, i.e. that take too much time. There are various approaches to tackle these kinds 

of problems. Some methods are aimed to reduce the computational cost of the evalu-
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ation by using approximation functions as the surrogate methods used in [Stoifregen 

et al. 2005] and [Botros et al. 2006]. Other methods opt for distributing the evalua-

tions in various processor units. This section summarizes work related to distributed 

approaches. 

Evolutionary algorithms have become the method at hand for multi-objective op-

timization (MOO) problems that are too complex to be solved by exact methods such 

as linear programming and gradient search due to the inherent parallelism and their 

capability to exploit similarities of solutions [Zitzler et al. 2000]. Many multi-objective 

evolutionary algorithms (MOEAs) are successfully applied to real-world optimization 

problems but achieving better efficiency remains a goal. The attractive characteristics 

of parallel MOEAs include concurrent search for multiple solutions, ease of paralleliz-

ing serial MOEAs, reduction of wall clock execution time, and achieving better overall 

effectiveness [VanVeldhuizen et al. 2003]. For a thorough discussion of evolutionary 

algorithms for MOO the reader is referred to [Coello 2006]. 

In single-objective and multi-objective optimization, expensive objective function 

evaluations (in terms of CPU time), are often completed in less wall clock time by de-

composing the computational load across two or more processors. One approach is to 

utilize parallel function decomposition computational techniques. Another approach is 

to spatially decompose the population across a given set of processors. In general, dis-

tributed multi-objective evolutionary algorithms are classified into four broad streams: 

master-slave, island (or coarse-grained), diffusion (or fine-grained), and hybrid, each of 
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which may be implemented in either synchronized or non-synchronized way. Although 

there are other classifications of distributed search in literature we present [VanVeld-

huizen et al. 2003] 's classification since it is rather simple. 

In the master-slave scheme objective function evaluations are distributed among 

several processors called slaves. It can be that all slaves evaluate all objective func-

tions or also that different objectives (or subsets of objectives) are assigned to different 

slaves. Although the master processor could also be used for objective function evalu-

ations in general it is dedicated to execute evolutionary operators and other overhead 

functions. This scheme helps to reduce the runtime when the problem involves reason-

ably intricate and time consuming objective function evaluations in a proportion that 

the communication time between processors is insignificant. 

In the island scheme the population is divided among the available processors 

and each processor' is considered an island. The individuals in each island perform 

the search on their own and sporadically exchange (migrate) individuals with other 

islands. The frequency of the communication, the number of individuals to exchange, 

and the criterion to select and replace individuals are all parameters to set. Each of 

the islands can have the same or different operators or search algorithms than the rest 

of the islands. 

In the diffusion scheme the number of individuals per processor is very small 

and the processors are assigned either to overlapping or dynamically changing neigh-

borhoods. The evolutionary operators are applied within each neighborhood, and 
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whenever improved solutions are found they are slowly diffused to the rest of the 

neighborhoods. 

One kind of hierarchical hybrid scheme is a tree or graph search structure de-

signed to find better algorithmic structures for a given problem. The bottom nodes 

contain different MOEAs with specific parameters. The next level of nodes evalu-

ates the performance of the bottom nodes and adjusts the parameters to improve the 

MOEAs performance, and this process is continued until it reaches the top node. 

6.3 PSO for Multi-Objective Optimization Problems 

Several applications of PSO to MOO problems have been proposed before, for example 

[Hu and Eberhart 2002] and [Toscano-Pulido and Coello 2004]. A comprehensive review 

of MOO PSO can be found in [Reyes-Sierra and Coello 2006]. This section introduces 

PSO applications relevant for this thesis. 

[Xiao-hua et al. 2005] introduced an approach for MOO based on the Agent-

Environment-Rules initially introduced in [Liu et al. 2002]. The authors modified 

the general velocity equation to include the influence not only from personal and global 

experience but also local experience from the neighborhood. The neighborhoods are 

defined as in a lattice topology where all particles reside in an agent lattice environ-

ment. The particles can either compete or cooperate with its neighbors to acquire more 

resources which is a measure of fitness. A clonal selection operator is used to accelerate 
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the search. The efficiency of this approach was tested with benchmark problems from 

[Zitzler and Thiele 1999]. 

The covering MOPSO proposed in [Mostaghim and Teich 2004] consists of two 

phases: the initial run and the covering phase. In the initial run a MOPSO (multi-

objective PSO) algorithm searches the whole search space for a good approximation 

of the Pareto front with restricted archive size. In the covering phase, the particles 

of the population are divided into sub-swarms and each sub-swarm is assigned to a 

non-dominated solution obtained as result of the initial run. The objective of the 

sub-swarms during the covering phase is to fill the gaps between the non-dominated 

solutions obtained in the initial run; in this phase there is no limit in the size of 

the archive. The covering MOPSO is based in the strong assumption that the initial 

run will provide relatively well distributed solutions very close to the Pareto-optimal 

front. The method was tested using four test functions from [Deb 2001], and also 

using an antenna design study which included only 12 decision variables. The total 

number of evaluations in the experiments (including the initial run and the covering 

phase) varied from 140,000 to 1.2 million. This method can not be applied to solve 

problems like the optimization of NGPO because its success relies in a huge number 

of function evaluations. The time restrictions imposed to the NGPO optimization 

problem require a search algorithm capable of solving complex pipeline sub-networks 

using a limited number of function evaluations because they are very time consuming. 

On the other hand, it is not clear if the covering MOPSO method is efficient for 
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high dimensional problems because it was tested with optimization problems with 

dimension no larger than 30 decision variables. A better approach, robust and scalable, 

is definitely needed to solve problems such as the NGPO which are characterized not 

only by a high dimensionality but also by the mix of continuous and discrete variables. 

Section 7.2 shows the capability of our method to tackle these kinds of problems. 

In [Janson and Merkie 2005] the authors proposed ClustMPSO, an hybrid ap-

proach based on the combination of K-means clustering and PSO to solve MOO prob-

lems. The clustering is applied to the particle's best positions resulting in K clusters 

or swarms. Each of these swarms has its own non-dominated front. The union of all 

non-dominated fronts is the total non-dominated front. Particles within these non-

dominated fronts can be dominated by particles within other swarms. The particle's 

best position is updated if it becomes dominated or, with certain probability is replaced 

by a dominated particle. Each particle randomly selects the swarm's best particle from 

the non-dominated front of the swarm to which it belongs. The particle updates this 

value periodically, after a certain number of transitions, or earlier if its swarm's best 

position becomes dominated. In other words, particles in a swarm most likely have 

different leaders. If all particles of a swarm are dominated by the total non-dominated 

front for a certain number of iterations the swarm is relocated. C1ustMPSO was tested 

on an artificial multi-objective optimization problem with 3 real valued decision vari-

ables and a disconnected-continuous front. It was also tested on two instances of the 

molecular docking problem from biochemistry using 500,000 evaluations. This ap-
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proach is not appropriate for complex and highly dimensional optimization problems 

such as the NGPO in which the search space is immense and, contrary to the problems 

treated in [Janson and Merkle 2005], the particles of the swarm will take too much time 

to find a non-dominated solution, if they eventually find one. ClustMPSO assumes that 

during the initial phase the swarm will be able to find a set of non-dominated solu-

tions. This assumption cannot be made for the NGPO case, which is particularly 

complex and a single swarm will take too much time (time--> oo) to find an acceptable 

set of preliminary non-dominated solutions. This is demonstrated in the experiments 

reported in Section 7.4, in which we compare the result of using a practically blind 

search opposite to using our proposed limited search. 
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7 Experimental Evaluation 

The experiments reported in this chapter were done with real instances of TransCanada 

PipeLines Ltd. network: 

TransCanada is a leader in the responsible development and reliable 
operation of North American energy infrastructure. Its network of more 
than 59,000 kilometers of pipeline taps into virtually all major gas supply 
basins in North America. TransCanada is one of the continent's largest 
providers of gas storage and related services with approximately 360 billion 
cubic feet of storage capacity. A growing independent power producer, 
TransCanada also owns, or has interests in, approximately 7,700 megawatts 
of power 20 

Optimization of pipeline operations is a very competitive research area as signifi-

cant improvements in operations can generate considerable commercial advantage over 

competitors. Due to the proprietary nature of TransCanada PipeLines Ltd.'s data 

and the commercial sensitivity of the results the information revealed in this chapter, 

including the real cost of the solutions, is detailed only at a very high level. 

This chapter is organized as follows. Section 7.1 describes the settings used for 

the experiments as well as the problem instances of the NGPO problem studied in 

this thesis. Section 7.2 demonstrates IOPO's performance against other approaches 

20www.transcanada.com 
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for the optimization of NOPO. Results in Section 7.3 illustrate the effect of the Multi-

Agent/Hardware platform aspect, and Section 7.4 shows the results of JOPO when 

applied to the MOO of the NGPO problem. 

7.1 Settings of the Experiments 

This section includes the settings for the experiments of this thesis. The first section 

describes the natural gas pipeline sub-networks used as problem instances. The second 

section provides details of the hardware used for the different experiments. 

7.1.1 Problem Instances 

Large pipeline networks are complex systems that often have to be broken down into 

more manageable parts to be operated (and perhaps optimized) independently. The 

nodes where these parts or sub-networks connect are called exchange nodes and their 

pressures and flows are set to specific values by human operators. For this thesis we use 

six problem instances from two different pipeline sub-networks within TransCanada 

PipeLines Ltd.'s pipeline system. These sub-networks are called SUBNETWORK 1 

(SN1) and SUBNETWORK 2 (SN2). 

SN1 is a small pipeline sub-network located in southern Alberta, Canada, which 

includes 6 compressor stations and one control valve. SN1 is illustrated in the shaded 

area in Figure 7.1, and the resulting 13 decision variables (n=7, nd=6) necessary 

to describe this sub-network are listed in Table 7.1. On the other hand, SN2 is a 
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considerable larger sub-network which is illustrated in Figure 7.2. SN2 consists of 20 

compressor stations, 8 control valves, 3 block valves, one control pressure at a meter 

station, and one proration ratio variable, resulting in a total of 53 decision variables 

(n0=29, nd=24) listed in Table 7.2, where 

max is the maximum allowable operating pressure (CSs and CVs) or the maxi-

mum contract pressure (CS, CV, meter station), whichever is less 

• Pmin is the minimum suction pressure (CS, CV, meter station) 

• PTmax is the maximum meter station proration factor 

• PTmin is the minimum meter station proration factor 

SN1 and SN2 are actual divisions of the pipeline network that are optimized sepa-

rately in TransCanada PipeLines Ltd's current practices. Naturally these sub-networks 

connect to other sub-networks respecting the boundary conditions. We considered three 

different scenarios of flow requirements for each of the sub-networks namely high flow 

(HF), medium flow (MF), and low flow (LF), for a total of six problem instances. 

7.1.2 Hardware 

The experiments with IOPO reported in Sections 7.2 and 7.4 were run on a 2 Dual Core 

Intel Xeon 5160 3.00 GHz workstation with 2GB of RAM running Windows XP as the 

operating system. Each search agent in IOPO was assigned to its own processing unit, 

with one of these processes also realizing the start, end, and master search agent. The 
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- 

Figure 7.1: Natural gas pipeline SUBNETWORK 1 in Alberta, Canada. 
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Figure 7.2: Natural gas pipeline SUBNETWORK 2 in Alberta, Canada. 
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Table 7.1: List of decision variables considered in SUBNETWORK 1 

QUANTITY TYPE OF DV ALLOWED VALUES 

6 CS pressure [Pmjn, Pmax] 

6 CS status {ONLINE, OFFLINE} 

1 CV pressure [Pmin, Pmaxl 

Table 7.2: List of decision variables considered in SUBNETWORK 2 

QUANTITY TYPE OF DV ALLOWED VALUES 

20 CS pressure 

20 CS status 

8 CV pressure 

3 BV status 

1 Meter station pressure 

1 Proratio ratio 

[Pmin, Pmax] 

{ ONLINE, OF'FLINE} 

Pmax] 

{ FULLYOPENED, FULLYCLOSED} 

[Pmin, Pmaxl 

{P'T'LF, PTMF, P'rHF} or [Prmjn, PTmaxl 
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communication structure lCom was done by having the mesi send messages between 

the processes. IOPO is implemented in C. 

The experiments in Section 7.3 were run using four Pentium III, 996 MHz, with 

256 MB of RAM and a BayStack 450 at 100 Mbps; 

7.2 Comparison of IOPO with Other Systems 

The following series of experiments are aimed to demonstrate the performance of IOPO 

when applied to the problem of fuel minimization for TransCanada PipeLines Ltd's 

pipeline operations. IOPO is compared against MOGA and the commercial method 

introduced in Section 6.1, The experiments in this section are aimed at the minimiza-

tion of the cost of transportation for a fixed throughput using steady state simulations 

of natural gas pipeline networks. 

The IOPO parameters for the problem instances SN1/HF, SN1/MF, and SN1/LF 

are nMASS= 41 swarm'°, comm 5, =50. The IOPO parameters for the 

three problem instances SN2/HF, SN2/MF, and SN2/LF are MASS=4, Thswarm=10, 

n 2=30, comm'°, g=ioo. The wall clock time of the commercial method includes 

the system's run time plus the estimated worst case interaction time for an experienced 

user which is 5 minutes for SN1 and 40 minutes for SN2. For IOPO, we report in both 

tables the average over 10 runs (due to the heavy use of random factors in the search). 

While MOGA also uses random factors, we only performed one run for each problem 

instance due to the very long runtimes for SN2. 
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As Table 7.3 shows, IOPO and the commercial method need approximately the same 

time to produce their results, both within the acceptable time requirements. Note that 

IOPO is fully automatic and does not require a user to provide a valid starting solution. 

It uses 4 search agents, one for each available core. MOGA's run time for the large 

sub-network (SN2) is far too long to meet TrausCanada's time requirements to support 

pipeline operations on a day-to-day basis. 

In order to compare the quality of the solution of the three approaches in terms of 

fuel consumption the results were normalized using the commercial method as reference 

(100%). Results in Table 7.4, in which smaller values represent better solutions, show 

that the performance of the three systems is comparable for the small pipeline sub-

network (SN1). Note that IOPO is substantially better for the larger and more complex 

sub-network which has higher throughput levels and higher fuel consumption than the 

smaller one. For the SN2/MF instance IOPO's fuel consumption is 12% better (lower) 

than the commercial method which would amount to an operating cost reduction of 

$28.7 Million per year for the combined cost of fuel gas and the environmental impact of 

CO2 emissions at current market prices ($7/ GJ and $15/Tonnes of CO2 respectively). 

If the prices increase the operating cost reduction increases. The fuel consumption 

differences between the optimization methods are for ideal pipeline operating conditions 

which almost never occur. However, the results can be used in the development of 

operating strategies which can take advantage of this value opportunity. Even if the 

transportation industry can capture 10% of the potential dollar saving improvements, 
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Table 7.3: Comparison with regard to Run time (wall clock time). 

Instance MOGA Commercial Method IOPO 

SN1/BF 0:25:00 0:05:31 0:04:19 

SN1/MF 0:26:15 0:05:38 0:02:32 

SN1/LF 0:23:00 0:05:27 0:01:59 

SN2/HF 107:46:00 0:43:09 0:29:02 

SN2/MF 107:49:01 0:49:43 0:27:06 

SN2/LF 99:14:00 0:49:09 0:28:19 

the results are still substantial. 

7.3 Evaluation of the Multi-Agent/Hardware Platform As-

pect 

As mentioned in Section 7.1.2, the available hardware for this thesis is a workstation 

with two dual cores. The next series of experiments aim at evaluating the multi-agent 

aspect of the IOPO system, more precisely the influence of the number of agents used 

on the results. We concentrate our analysis only on the search instances for SN2 since 

the runtimes for SN1 are too short to see any significant changes. 

As stated in our introduction, a big draw towards using multi-agent search ap-

proaches for hard optimization problems in industry is the seemingly obvious fit for 
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Table 7.4: Comparison with regard to fuel consumption (Commercial Method = 

100%). 

Instance MOGA Commercial Method JOPO 

SN1/HF 101 100 99 

SN1/MF 104 100 104 

SN1/LF 102 100 102 

SN2/HF 90 100 86 

SN2/MF 96 100 88 

SN2/LF 92 100 86 

multi-processor multi-core workstations in order to use the number of available pro-

cessors to speed-up the search. In order to analyze this aspect of our system, we ran 

experimental series for 1, 2, 3 and 4 search agents in IOPO (flMASS = 1, 2, 3 and 4 

respectively), where for each number of search agents the total number of solutions 

created —and therefore the number of calls to the hydraulic simulator— were the same, 

namely 4000, which was also the number used for the experiments in Section 7.2 for 

SN2. This means that with one search agent this search agent performs 400 updates 

of the 10 particles, with 2 search agents each search agent does 200 updates of their 

10 particles and so on. For 2, 3, and 4 search agents we fit their searches into 10 

rounds, so that for two search agents the communication between the search agents 
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takes place every 20 updates up to communicating after every 10 updates for 4 search 

agents. This way, the communication overhead is essentially the same for each number 

of search agents and we can get a good picture regarding the utilization of the proces-

sors by IOPO. As in the previous subsection, we report the average runtime over 10 

runs. 

Table 7.5 shows the results of the experimental series described above. As can 

be seen, the results are rather disappointing. While using 2 search agents gives us 

quite some speed-up despite the additional communication effort, adding the 3rd and 

the 4th search agent does not really accomplish a lot. The question from the multi-

agent perspective is now, if this disappointing outcome is due to the multi-agent search 

approach, i.e. TECHs/IOPO, or due to the combination of this approach with a multi-

processor multi-core hardware platform. While we did not use all of the features of 

TEOHS as described in [lJenzinger and Fuchs 1999] and [Denzinger and Offermann 

1999] by not using heterogeneous search agents we definitely reduced the possibility for 

synergetic effects, and it is a well-known fact that for each cooperative search scheme 

and each problem instance there is a maximum number of processors beyond which no 

gains in speed can be achieved, we nevertheless were not convinced that this number is 

2 for all the search instances we were looking at. Therefore we suspected the hardware 

platform to be the problem and in order to prove this we switched, as proof of concept, 

to a network of 4 old Pentium III with 256 MB of RAM each that we had available. 

Table 7.6 presents the runtime comparison using the Pentium III computers. As 
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Table 7.5: Runtime comparison for different numbers of search agents (in minutes), 

using a 2 Dual Core workstation) 

Instance 1 search agent 2 search agents 3 search agents 4 search agents 

SN2/HF 54 33 31 30 

SN2/MF 50 29 28 27 

SN2/LF 56 33 31 29 

can be seen, adding a Yd and 4th search agent, i.e. processor, now has still quite an 

impact on the runtimes ruling out the TECHs/IOPO approach as sole problem. We 

can not expect linear improvements when adding more search agents/processors in our 

setting simply because with a smaller number of particle updates the mes-function of 

a search agent Agi does have to choose from many results, thus providing less useful 

information to other search agents, respectively really useful information only later 

during a run. Therefore the results of Table 7.6 reflect well the behavior we expect 

from a homogeneous version of TEal-is. 

But why does changing from the multi-processor multi-core platform to a multi-

computer platform produce a so different behavior? While we were able to assign the 

search agents to different cores, we do not know what the operating system does with 

the simulator processes. But even more important, all cores do share the same periph-

ery, i.e. memory that is not on the processor chip and access to the file system. Given 

the fact that the pipeline simulations produce substantial file traffic and also require 
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Table 7.6: Runtime comparison for different number of search agents (in minutes), 

using 4 Pentium Ills) 

Instance 1 search agent 2 search agents 3 search agents 4 search agents 

SN2/HF 240 125 92 69 

SN2/MF 220 116 82 63 

SN2/LF 225 132 83 65 

significant memory, this might produce system level bottlenecks that result in the ob-

served disappointing behavior. This requires additional research and at the moment 

we have to accept the fact that we might have to include systems level programming 

into the search agents to overcome this. 

While the utilization of the available processors is not a strong point of JOPO at 

least for multi-processor multi-core hardware architecture, speed-up is not the only 

thing that is of interest for our industry partner. Most set-based search approaches 

make considerable use of random factors, so that two runs of a system using such 

approaches usually lead to two different solutions being found as the best solution of 

a run. Bow much runs vary with this regard is of quite some importance for a user. 

Therefore we compared the results from Table 7.5 with regard to how much the runs 

vary in their solution quality. 

Figures 7.3, 7.4 and 7.5 provide the graphical representation of the variance over 

10 runs in solution quality (normalized fuel consumption) in our experiments for the 
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Figure 7.3: Variance in solution quality for different number of search agents (HF). 
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Figure 7.4: Variance in solution quality for different numbers of search agents (MF). 
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Figure 7.5: Variance in solution quality for different numbers of search agents (LF). 
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HF, MF, and LF instance respectively. As the figures show, using more search agents 

has a positive effect here since the variance is reduced with each search agent added to 

the system. This means that the quality of the solutions produced by IOPO is more 

predictable when more search agents are used which, from an economical and planning 

point of view, is a very important observation. 

Although it is out of the scope of this thesis, additional testing could be done 

to evaluate IOPO's performance across a variety of serial, parallel, and distributed 

architectures. Architectural characteristics of interest may include network topology, 

processor speed, memory access, I/O, and the like, 

7.4 IOPO for Multi-Objective Optimization of NGPO 

In Section 7.2 we compared the performance of IOPO against two other approaches 

when applied to the fuel (single-objective) optimization problem of NGPO. In this 

section we present lOPOs performance for an even more challenging test: the multi-

objective optimization of NGPO. The experiments in this section concentrate on the 

minimization of fuel consumption (Min fi (i)) while maximizing the throughput (Max 

f2()) for steady state simulations of natural gas pipeline networks. 

At the time of this thesis there were no other methods for multi-objective opti-

mization of NGPO available to compare against IOPO. The commercial method used 

for comparison in Section 7.2 is restricted to single objective optimization problems. 

MOGA on the other hand, has the capability to treat multi-objective problems but 
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proved to be extremely slow for the single-objective NGPO optimization problem so 

that it was not worthwhile to test it for the MOO case. 

The MOO experiments in this section are aimed to evaluate the performance of 

the two-phase approach introduced in Chapter 5 to optimize the operations of the 

largest and more complex pipeline sub-network, SN2. Note that, in contrast to the 3 

flow instances (HF, MF, LF) used in the experiments of Section 7.2, the 2-objective 

scenario in this section considers the complete spectrum of flow levels, from the lowest 

flow level to the highest flow level. With the proposed two-phase approach we expect 

the MASS to be able to find solutions (Pareto front) to the given instance of the 

search problem not only faster but with better quality than if using only PHASE II 

(referred as PHASE IT-Only). 

In order to make a fair comparison between both methods we should let both 

either: 1) use the same number of transitions to solve the problem, or 2) let them 

run for the same amount of time and then compare their solutions. We selected the 

first option and set an approximately equal maximum number of iterations for each of 

the methods, see Table 7.7. The IOPO parameters for PHASE II-Only are MASS=4, 

fl8warm 36, n t=62, n301+ = [20,30,40,50], nk+ = [70,50,30,20,10], g=207. The IOPO 

parameters for the two-phase IOPO approach for MOO are: for PHASE I MAss=4, 

swarm 10, nk+=[30,15,5], =50, npr=12, and for PHASE 

II are MASS 4, swarrn 20, n t=21, n801t=[10,15,20,25], nkF=[15,20,15,10,5], g=72. 

Figure 7.6 shows the results, the non-dominated fronts, found by the two approaches: 
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Table 7.7: Results of Multi-Objective Optimization of SN2 

System Max. Number of Transitions Run Time (mm) 

IOPO (Two-Phase Approach) 29,760 228 

IOPO (PHASE II-Only) 29,808 200 

. PHASE IT-Only (triangles) 

• Two-phase IOPO approach for MOO (filled circles) 

where the x-axis indicates the total amount of fuel consumed fi () by the compressor 

units that are being used in all those compressor stations that are ONLINE. The y-axis 

is the throughput f2() at a node of interest. 

There is an obvious difference in the capability of the approaches to cover the 

complete front with a well distributed set of solutions. Note that the solutions found 

by PHASE II-Only are concentrated in the lower-left area. There are three important 

observations about these results. First, the pipeline system has considerable more 

flexibility, e.g. more valid configurations, to operate when the throughput level is low; 

this is the reason why it is easier to find solutions in this area of the search space 

and as a consequence this part of the Pareto front is quickly populated21. The second 

observation is related to the discontinuities observed in the Pareto front obtained by 

21 fl is also important to mention that the hydraulic simulation runs consume more time for higher 
throughput levels than for lower throughput levels. 



7.4 IOPO for Multi-Objective Optimization of NGPO 104 

Th
ro

ug
hp

ut
 1
2(

x 
o IOPO for MOO 

•A PHASE  Only 

od o 

$ 000 

Fuel fl(x) 

Figure 7.6: Multi-Objective Optimization of SN2 = Mm h(g), Max f2() 

the two-phase approach. Careful examination of the sets of operating points at the 

edging points of the gaps reveals simultaneous changes in the status of one or even 

two compressor stations from one solution to the nearest one, just right after the gap. 

The third observation is about the number of solutions allowed in the Pareto front. As 

introduced in Section 2.1, this number can be controlled by controlling the maximum 

capacity of the archive that stores the set of non-dominated solutions. In this case, for 

the two-phase approach increasing the size of the archive would not provide additional 

information about the system, just redundant solutions. 

Now, to put the reader in perspective, we mention the differences between our two-

phase IOPO approach and a previous attempt to solve the MOO for NGPO problem 
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using MOGA. In the work reported in [Botros et al. 2004], MOGA was applied to 

solve the MOO NGPO problem (Min fuel, Max throughput) for an instance of similar 

complexity to our SN2 (53 decision variables). The results of the experiments demon-

strated difficulty with the genetic algorithms parameter selection as different parameter 

selection provided different solutions, i.e. different Pareto fronts. The experiment that 

provided the best (but still incomplete) Pareto front required 100,000 evaluations us-

ing a population size of 500 and a total of 200 generations". Unfortunately no run 

time was reported in the results, but results of our experiments demonstrate that the 

two-phase IOPO approach can find the complete Pareto front using less than 30,000 

evaluations (Table 7.7), which directly translates into a reduced runtime compared to 

MOGA23. 

Later on, in [Botros et al. 2006] the authors provided an improved solution approach 

based on the use of surrogate methods. The results of the experiments for two-objective 

optimization only report MOGA's performance for a small instance of similar complex-

ity to SN1 ( 13 decision variables) showing again difficulty to approximate the complete 

Pareto front. The best run time reported on this significantly smaller pipeline sub-

network was 3.05 hours (183 minutes)24 compared to the 228 minutes IOPO needs to 

solve the larger and more complex SN2 pipeline subnetwork (53 decision variables). 

Unfortunately no computational time was reported in the publication for the larger 

21 Pareto front data shown in Figure 9 in [Botros et al. 2004]. 

23A reminder that the function evaluations are the most time consuming part of the search, and 
that the same hydraulic simulator was used in the MOGA and IOPO experiments. 

24 Computational time reported in Table 6 in [Botros et al. 2006]. 
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network similar to our SN2. 

The results of the experiments in this section demonstrate that, although the form 

that each search agent in the MASS interacts with the hydraulic simulator is not 

the most desirable, the algorithmic design aspects of IOPO for MOO decreases the 

computational cost and makes it efficient to solve the complex problem of MOO of 

NGPO and the solution is obtained in an acceptable time frame. 

25Reading and writing files is the only way to communicate with the hydraulic simulator used in 
this thesis. 
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8 Conclusions and Future Work 

This chapter summarizes the proposed approch to optimize natural gas pipeline oper-

ations and highlights the results achieved from the experiments in terms of execution 

time and quality of the solution. This chapter also includes potential directions for 

future work that were identified during the course of this research. 

8.1 Summary 

The main objective of this thesis is to reduce the computational cost required to op-

timize the operation of large and complex natural gas pipeline networks while main-

taining not only the targeted throughputs and delivery contracts but also meeting the 

standards and regulations aimed to reduce the inherent risk of high-pressure trans-

portation systems. 

To achieve this goal we proposed a biologically-inspired computational model in the 

form of a multi-agent cooperative search system. The search agents in the system are 

designed to perform the search and communicate periodically to exchange solutions, 

some of which are incorporated in the search agents' search state and others are used 
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to improve their search control. The approach exploits the strength of particle swarm 

optimization to deal with high-dimensional problems that include a mix of discrete and 

continuous decision variables. Domain knowledge was incorporated into the search 

to improve its efficiency. This permitted the identification of solutions that can be 

evaluated without having to use the time-intensive pipeline simulations used to measure 

the quality of a solution and the creation of a lexicographical combination of orderings 

to compare solution vectors to guide the search more efficiently. The use of the multi-

agent approach showed to be advantageous with regard to reducing the solution quality 

variance between several runs, something crucial for the industrial users of the search 

system. We also extended the proposed approach to the multi-objective optimization 

case. 

The experimental evaluation was done using six problem instances from two pipeline 

sub-networks of TransCanada PipeLines Ltd.. Results showed that the IOPO system is 

able to optimize real world pipeline sub-networks for various flow requirements within 

the 30 minutes time limit that is considered reasonable. The improved performance 

of IOPO is noticeable in the problem instances that involve the large and complex 

pipeline sub-network in which it reliably outperforms the interactive method currently 

considered as state-of-the-art in the transportation industry by producing solutions 

that are at least 12% better [Mora et al. 2008a, Mora et al. 2008b]. Given the consid-

erable large volume of natural gas that is transported in modern transmission lines, the 

improved solution obtained with IOPO can be translated into a considerable reduc-
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tion in operation and maintenance costs and a significant reduction of greenhouse gas 

emissions. It is important to mention that, in contrast to the requirements imposed by 

the commercial system, IOPO achieves these results without any human interaction 

making the quality of the solution independent of the experience of the user. 

8.2 Future Work 

The research reported in this thesis is only the first step in exploiting the potential 

that multi-agent cooperative search with biologically-inspired methods has for solving 

hard optimization problems in industry. Our PSO approach allows for much more 

customization to the needs of TransCanada PipeLines Ltd. than what we have realized 

so far. Good solutions from system runs for similar problems can be used to guide the 

swarm faster towards good solutions. The currently homogeneous processes used to 

make use of the multi-processors and multi-cores can be enhanced by allowing the use 

of heterogeneous search processes with other biologically-inspired techniques such as 

genetic algorithms. 

With further speed improvements comes the possibility to try out different bound-

ary conditions for pipeline sub-networks which should be undertaken by having the 

distributed solution processes for each pipeline sub-network cooperate on an addi-

tional level, thus providing the human decision makers with better support for their 

negotiations regarding these boundary conditions. Biologically-inspired methods also 

offer the possibility of multi-objective optimization, which is a second direction leading 
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nearer towards the real decision making process that TransCanada PipeLines Ltd. is 

employing. The proposed approach can be used to find either the minimum or the 

maximum linepack levels for different flow conditions and provide what is called the 

linepack envelope which indicates the valid operating region from which the best oper-

ational settings (those that lead to the least amount of fuel consumed by compressor 

stations) can be identified. 

This research will be continued to use TOPO for different connected pipeline sub-

networks of the TransCanada PipeLines Ltd. system. The results would reinforce the 

viability and robustness of IOPO and the potential for deployment of the system. 

We are pleased to know that the industry is willing to assess non conventional ap-

proaches such as our TOPO system to tackle problems like the optimization of pipeline 

operations. We hope that the application of this research encourages the trial of these 

approaches for other real world problems as these challenging problem push the devel-

opment of new methods. The proposed approach in this thesis can be used as the basis 

to treat problems with similar characteristics. Just for the case of pipeline operations, 

the application can be extended to the transportation of other fluids such as oil and 

its derivates by making the necessary adaptations, e.g. by using equations for incom-

pressible fluids, using pumping stations instead of compressor stations, etc.. By the 

same token, this method can be a reasonable solution for similar problem instances in 

water distribution networks. 



BIBLIOGRAPHY 111 

Bibliography 

Bolkan, Y. G. (1991). An efficient algorithm for optimal pipeline design and operation. 

Master's thesis, University of Calgary. 

Botros, K. K., Sennhauser, D., Jungowski, K., Poissant, G., Golshan, H., and Stoifre-

gen, J. (2004). Multi-objective optimization of large pipeline networks using genetic 

algorithms. In International Pipeline Conference 2004, Calgary, Canada. ASME. 

Botros, K. K., Sennhauser, D., Stoffregen, J., Jungowski, K., and Goishan, H. (2006). 

Large pipeline network optimization - summary and conclusions of transcanada re-

search effort. In International Pipeline Conference 2006, Calgary, Canada. ASME. 

Coello, C. A. and Salazar-Lechuga, M. (2002). Mopso: A proposal for multiple objective 

particle swarm optimization. In In Proceedings of the IEEE Congress on Evolutionary 

Computation, volume 2, pages 1051-1056, Piscataway, New Jersey. IEEE Service 

Center. 

Coello, C. A., Toscano-Pulido, G., and Salazar-Lechuga, M. (2002). An extension of 

particle swarm optimization that can handle multiple objectives. In Workshop on 



BIBLIOGRAPHY 112 

Multiple Objective Metaheuristics, Paris, France. 

Coello, C. A., Toscano-Pulido, G., and Salazar-Lechuga, M. (2004). Handling multiple 

objectives with particle swarm optimization. IEEE Transactions On Evolutionary 

Computation, 8(3) :256-279. 

Coello, C. A. C. (2006). Evolutionary multi-objective optimization: A historical view 

of the field. In IEEE Computational Intelligence Magazine, volume 1, No. 1, pages 

28-36. 

Dandy, G. C., Simpson, A. R., and Murphy, L. J. ( 1996). An improved genetic algo-

rithm for pipe network optimization. Water Resources Research, 32(2) :449-458. 

Deb, K. (2001). Multi- Objective Optimization Using Evolutionary Algorithms. John 

Wiley & Sons. 

den Berg, F. V. (2002). An Analysis of Particle Swarm Optimizers. PhD thesis, 

Department of Computer Science, University of Pretoria, Pretoria, South Africa. 

Denzinger, J. ( 1999). Distributed Knowledge-based Search. PhD thesis, University of 

Kaiserslautern, Kaiserslautern, Germany. 

Denzinger, J. (2000). Conflicting Agents: Conflict management in multi-agent systems, 

chapter Conflict Handling in Collaborative Search, pages 251-278. Kluwer Academic 

Publishers. 



BIBLIOGRAPHY 113 

Denzinger, J. and Fuchs, D. (1999). Cooperation of heterogeneous provers. In Inter-

national Joint Conference on Artificial Intelligence IJCAI-99, pages 10-15. 

Denzinger, J. and Offermann, T. (1999). On cooperation between evolutionary algo-

rithms and other search paradigms. In Congress on Evolutionary Computation 1999, 

pages 2317-2324. IEEE-Press. 

Eberhart, R. C. and Kennedy, J. ( 1995). A new optimizer using particle swarm theory. 

In Proceedings of the 6th International Symposium on Micromachine and Human 

Science, pages 39-43. 

Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelligence. John 

Wiley & Sons. 

Eusuff, M. M. (2004). Water Resources Decision Making using Meta-Heuristic Opti-

mization Methods. PhD thesis, Department of Civil Engineering and Engineering 

Mechanics, University of Arizona. 

Foundation, P. C. (1999). Our Petroleum Challenge: Exploring Canadas Oil and Gas 

Industry. Petroleum Communication Foundation. 

Goldberg, D. E. (1983). Computer-Aided Gas Pipeline Operation Using Genetic Algo-

rithms and Rule Learning. PhD thesis, The University of Michigan. 



BIBLIOGRAPHY 114 

Goldberg, D. B. (1987a). Computer-aided pipeline operation using genetic algorithms 

and rule learning, part i: Genetic algorithms in pipeline optimization. Engineering 

with Computers, 3:35-45. 

Goldberg, D. E. (1987b). Computer-aided pipeline operation using genetic algorithms 

and rule learning, part ii: Rule learning control of a pipeline under normal and 

abnormal conditions. Engineering with Computers, 3:47-58. 

Goslinga, J., Kaulback, M., Witczak, K., and McNeill, B. ( 1994). A method for pipeline 

network optimization. In 13th OMAE Offshore Mechanics and Arctic Engineering 

Conference, volume 5, pages 31-43. Pipeline Technology, ASME. 

Ho, S. L., Shiyou, Y., Guangzheng, N., Lo, B. W. C., and Wong, H. C. (2005). A 

particle swarm optimization-based method for multi-objective design optimization. 

IEEE Transactions on Magnetics, 41(5):1756-1759. 

Hu, X. and Eberhart, R. (2002). Multi-objective optimization using dynamic neigh-

borhood particle swarm optimizaiton. In et. al., D. B. F., editor, Congress on Evo-

lutionary, Computation (CEC'OO), volume 2, pages 1677-1681. IEEE. 

Janson, S. and Merkie, D. (2005). A new multi-objective particle swarm optimiza-

tion algorithm using clustering applied to automated docking. In Blesa, M. J., 

Blum, C., Roli, A., and Sampels, M., editors, Hybrid Metaheuristics, Second In-

ternational Workshop, volume 3636 of Lecture Notes in Computer Science, pages 

128-142. Springer. 



BIBLIOGRAPHY 115 

Jung, B. S. and Karney, B. W. (2004). Transient state control in pipelines using gas 

and particle swarm optimization. In Liong, Phoon, and Babovic, editors, 6th Inter-

national Conference on Hydroinformatics. World Scientific Publishing Company. 

Kennedy, J. and Eberhart, R. C. ( 1995). Particle swarm optimization. In Proceedings of 

the 1995 IEEE International Conference on Neural Networks (ICNN'95), volume 4, 

pages 1942-1948. IEEE Service Center. 

Kennedy, J. and Ebèrhart, R. C. ( 1997). A discrete binary version of the particle swarm 

algorithm. In Proceedings of the World Multiconference on Systemics, Cybernetics 

and Informatics, pages 4104-4109. 

Kerkhof, J., Williams, L., Mah, K., and Kmet, J. (2002). Transcanada pipelines: An 

expert advisory system for pipeline operations. In International Pipeline Conference. 

ASME. 

Knowles, J. D. and Come, D. W. (2000). Approximating the nondominated front using 

the pareto archived evolution strategy. Evolutionary Computation, 8(2):149-172. 

Krishnaswami, P., Chapman, K. S., and Abbaspour, M. (2004). Fuel-efficient operation 

of compressor stations using simulation-based optimization. In International Pipeline 

Conference, number IPC04-0113. ASME. 

Liu, J., Jing, H., and Tang, Y. (2002). Multi-agent oriented constraint satisfaction. 

Artificial Intelligence, 136(l):101-144. 



BIBLIOGRAPHY 116 

Maier, H R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, H. Y., 

and Tan, C. L. (2003). Ant colony for design of water distribution systems. Journal 

of Water Resources Planning and Management ASCE, pages 200-209. 

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolutionary Pro-

grams. Springer-Verlag, Berlin, 3rd revised and extended edition. 

Mohitpour, M., Goishan, H., and Murray, A. (2003). Pipeline Design 8 Construction: 

A Practical Approach. ASME. 

Mora, T., Denzinger, J., and Goishan, H. 

pipeline operations. In Berger, Burg, 

(2008a). Cooperative search for optimizing 

N., editor, 7th mt. Conf. on Autonomous 

Agents and Multiagent Systems (AAMAS OO8), Industry and Applications Track, 

Estoril, Portugal. International Foundation for Autonomous Agents and Multiagent 

Systems. 

Mora, T., Sesay, A., Denzinger, J., Golshan, H., Poissant, G., and Konecnik, C. 

(2008b). Fuel optimization using biologically-inspired computational models. In In-

ternational Pipeline Conference 2008, Operations & Maintenance, Calgary, Canada. 

Mostaghim, S. and Teich, J. (2004). Covering pareto-optimal fronts by subswarms in 

multi-objective particle swarm optimization. In Congress on Evolutionary Compu-

tation (CEC 200), volume 2, pages 1404-1411. 

of America (IPAA) Americas Oil; I. P. A. and Producers, G. (2004). Economic reports,. 

Website. http://www.ipaa.org/info/econreports/usps.asp?Table=Chartl2. 



BIBLIOGRAPHY 117 

on Trade, U. N. C. and UNCTAD, D. (2004). United nations conference on trade and 

development unctad. Website. http://ro .unctad.org/infocomm/anglais/gas/ 

market . htm. 

Ozcan, E. and Mohan, C. K. (1998). Analysis of a simple particle swarm optimiza-

tion system. In Intelligent Engineering Systems Through Artificial Neural Networks, 

pages 253-258. 

Ozcan, E. and Mohan, C. K. (1999). Particle swarm optimization: Surfing the waves. 

In Congress on Evolutionary Computation, pages 1939-1944. IEEE Press. 

Percell, P. B. and Ryan, M. J. (1987). Steady-state optimization of gas pipeline network 

operation. In Pipeline Simulation Interest Group Annual Meeting, number 8703, 

Tulsa, USA. 

Ratnaweera, A. C., Halgamuge, S. K., and Watson, H. C. (2002). Particle swarm 

optimizer with time varying acceleration coefficients. In International Conference 

on Soft Computing and Intelligent Systems, pages 240-255. 

Reyes-Sierra, M. and Coello, C. A. C. (2006). Multi-objective particle swarm optimiz-

ers: A survey of the state-of-the-art. Journal of Computational Intelligence Research, 

2(3) : 287-308. 

Rios-Mercado, R. Z. (2002). Handbook of Applied Optimization, chapter Natural Gas 

Pipeline Optimization. Oxford University Press. 



BIBLIOGRAPHY 118 

Rios-Mercado, R. Z., Wu, S., Scott, L. R., and Boyd, B. A. (2002). A reduction 

technique for natural gas transmission network optimization problems. Annals of 

Operations Research, 117(1). 

Shi, Y. and Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. 

In Proceedings of the 7th Annual Conference on Evolutionary Programming, pages 

591-600. 

Simpson, A. R., Dandy, G. C., and Murphy, L. J. (1994). Genetic algorithms compared 

to other techniques for pipe optimization. Journal of Water Resources Planning and 

Management ASCE, 120(4):423-443. 

Stoifregen, J., Botros, K., Sennhauser, D., Jungowski, K., and Goishan, H. (2005). 

Pipeline network optimization application of genetic algorithm methodologies. In 

Pipeline Simulation Interest Group, number 0502, San Antonio, USA. 

Suganthan, P. N. (1999). Particle swarm optimiser with neighborhood operator. In 

IEEE Congress on Evolutionary Computation, pages 1958-1962. 

Suttner, C. B. (1995). Parallelization of Search-based Systems by Static Partitioning 

with Slackness. PhD thesis, Institut fur Informatik, Technische Universitat Munchen. 

Published by InfixVer1ag, Volume DISKI 101. 

Toscano-Pulido, G. and Coello, C. A. (2004). Using clustering techniques to improve 

the performance of a particle swarm optimizer. In Genetic and Evolutionary Com-



BIBLIOGRAPHY 119 

put ation Conference GECCO, volume 3102 of Lecture Notes In Computer Science, 

pages 225-237. 

VanVeidhuizen, D., Zydallis, J., and Lamont, G. (2003). Considerations in engineering 

parallel multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary 

Computation, 7(2):144-173. 

Veloso, B. C., Fires, L. F. G., and Azevedo, L. F. A. (2004). Optimization of pump 

energy consumption in oil pipelines. In International Pipeline Conference, Calgary, 

Canada. ASME. 

Wong, P. J. and Larson, R. R. (1968). Optimization of natural-gas pipeline systems via 

dynamic programming. IEEE Transactions on Automatic Control, 13(5):475-481. 

Wright, S., Somani, M., and Ditzel, C. (1998). Compressor station optimization. In 

Pipeline Simulation Interest Group, number 9805, Denver, USA. 

Wu, S. ( 1998). Steady-State Simulation and Fuel Cost Minimization of Gas Pipeline 

Networks. PhD thesis, Department of Mathematics, University of Houston. 

Xiao-hua, Z., Hong-yun, M., and Li-cheng, J. (2005). Intelligent particle swarm opti-

mization in multiobjective optimization. In Congress on Evolutionary Computation 

(CEC OO5). 



BIBLIOGRAPHY 120 

Zhang, Z. (1999). Fluid transients and pipeline optimization using genetic algorithms. 

Master's thesis, Graduate Department of Civil and Environmental Engineering, Uni-

versity of Toronto. 

Zitzler, E. and Thiele, L. ( 1999). Multi-objective evolutionary algorithm: A compara-

tive case study and the strength pareto approach. IEEE Transactions on Evolution-

ary Computation, 3 (4)(4):257-271. 

Zitzler, E., Thiele, L., and Deb, K. (2000). Comparison of multiobjective evolutionary 

algorithms: Empirical results. Evolutionary Computation, 8(2):173-195. 


