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Abstract

Optimal and sustainable management of natural resources requires knowl-

edge about the behaviour of mathematical models of harvesting under

many different types of conditions. In this thesis, the effects of delays on

the optimality and sustainability of harvesting models are studied, with

a particular focus on delayed impulsive harvesting models. We begin by

considering delays within a continuous harvesting model and derive suffi-

cient conditions for stability of harvesting models with general growth and

harvesting rate. We also derive maximum sustainable yields for models

with both logistic and Gompertz growth, and show that they are delay

dependent. Then we consider the main object of the thesis, a logistic

differential equation subject to impulsive delayed harvesting, where the

deduction information is a function of the population size at the time

of one of the previous impulses. A close connection to the dynamics of

high-order difference equations is used to conclude that while the inclu-

sion of a delay in the impulsive condition does not impact the optimality

of the yield, sustainability may be highly affected and is once again delay-

dependent. Maximum and other types of yields are explored, and sharp

stability tests are obtained for the model, as well as explicit sufficient

conditions. It is also shown that persistence of the solution is not guar-
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anteed for all positive initial conditions, and extinction in finite time is

possible, as is illustrated in the simulations. The results of this thesis

imply that delays within harvesting should be kept short to maintain the

sustainability of resources.

iii



Preface

This thesis contains material that has been submitted for publication.

Chapter 3 is adapted from "Optimality and Sustainability of Delayed Im-

pulsive Harvesting" which as of July 14, 2022 has been submitted for

publication in Communications in Nonlinear Science and Numerical Sim-

ulation. In this paper I wrote the initial draft, with editing and additions

done jointly between Professor Elena Braverman and myself.
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Chapter 1

Introduction

1.1 Continuous Harvesting

Sustainable management of natural resources is a major issue currently

facing our world. An essential part of the solution requires determining

the behaviour and optimality of various types of harvesting models [9].

Harvesting can be represented as occurring either continuously or only

during short-time periods. Continuous harvesting can be described as a

continuous deduction term appearing in an ordinary Differential Equation

(DE) describing population dynamics
dN
dt

= F (N(t))− h(N(t)), t > 0

N(0) = N0

where F, h are the growth and harvesting functions, respectively. It as-

sumes that harvesting occurs without any interruptions, whereas impul-

sive harvesting corresponds to part of the stock being removed at specific

moments in time, with the duration of the harvesting event being negli-
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gible compared to the overall process time.

1.2 Impulsive Harvesting

Impulsive harvesting is represented by an impulsive DE

dN
dt

= F (N(t)), t 6= nT, n ∈ N

∆N(nT ) = h(N(nT )), t = nT, n ∈ N

N(0) = N0

where F, h are the growth and harvesting functions respectively, T >

0 is the time between impulses. We assume that the function N(t) is

left continuous, and denote the size of the population after harvesting

as limh→0+ N(nT + h) = N(nT+), and the size of the population N(t)

before harvesting as limh→0− N(nT + h) = N(nT ). Then the change in

population size after a harvesting event is denoted ∆N(nT ) = N(nT+)−

N(nT ).

In this model, the DE governs the behaviour of the system outside

of the impulsive harvest moments, t 6= nT . At the impulsive moments

t = nT , the impulsive condition ∆N(nT ) = h(N(nT )) takes control

of the model and harvesting occurs. Impulsive DEs have many practical

applications such as pest control [42], pulse vaccination strategies [20], and

optimal harvesting in fisheries [11]. For more on the theory of impulsive

DEs see the monograph [4].

The duration of an impulse is generally assumed to be negligible com-

pared to the overall duration of the process. In cases where it is not,

such as the administration and absorption of drugs into the body, non-
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instantaneous impulse theory is used [2]. In this thesis, it will be assumed

that all impulses are instantaneous with negligible duration.

Even though continuous harvesting may be preferable from the point

of view of both maximizing harvest and sustainability [7, 44], it is not

always realistic or easily applicable. This is why investigation of impulsive

harvesting models is important.

1.3 Common Growth and Harvesting

Functions

Various growth and harvesting functions are considered in the literature.

One of the most famous growth functions used in population models is

the logistic growth function

F1(N(t)) = rN(t)

(
1− N(t)

Kc

)
(1.1)

where N(t) is the population size at time t, r > 0 is the intrinsic growth

rate of the system, andKc > 0 is the carrying capacity of the environment.

Another commonly used function is the Gompertz growth function

F2(N(t)) = rN(t) ln

(
Kc

N(t)

)
. (1.2)

Others examples include the Smith, Gilpin-Ayala, and Nisbet-Gurney

growth functions [5].

Similarly there are various forms of harvesting functions found in the

literature. The simplest is a constant deduction

hd(N) = d (1.3)
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where d > 0 is some constant that does not depend on N(t). Since this

type of harvesting is not dependent on N(t), including a delay within

harvesting would have no effect. The dynamics and optimal harvesting

policies of (1.3) were investigated for continuous models in [9], and im-

pulsive models in [47, 48]. A more commonly used harvesting function

is

h(N) = EN(t) (1.4)

where E > 0 is some constant that represents the harvesting effort. This

type of linear harvesting can also be referred to as catch per unit effort

harvesting (or the catch per unit effort hypothesis), since the yield is

directly proportional to both the harvesting effort E, and the population

size at time t. It will be the harvesting function that is predominantly used

in this thesis. Other examples include non-linear harvesting functions

similar to a Cobb-Douglas production function

h(N) = EαN(t)β (1.5)

where α > 0 represents how the yield responds to changes in fishing effort,

and β > 0 represents the sensitivity of the yield to changes in stock levels.

Widely used in economics, the Cobb-Douglas function has been used in

harvesting models where changes in population size do not immediately

lead to changes in the yield. Pelagic fisheries, where fish tend to travel in

large groups, are an example of where it has been applied [14, 21]. Since

fishers are able to target large aggregations of fish for harvesting, yields

may not decrease even though the fish stock and number of aggregations

are decreasing.
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We note that the harvesting effort E is interpreted differently between

the continuous and impulsive harvesting models. In the continuous model,

E is interpreted as a harvesting rate similar to how r is thought of as the

growth rate, and can be any positive number E > 0. In contrast, in

the impulsive harvesting model E is interpreted as the proportion of the

population that is harvested, leading to the condition that E ∈ (0, 1).

1.4 Delays

It is not always realistic to assume that the available population size data

is completely up to date. Instead, it is more likely that all data will be at

least somewhat out of date, leading to harvesting decisions that are made

based off of old information, and introduces a delay into the harvesting

functions of our models. In other studies, delays within harvesting have

been included to represent targeted harvesting based on age [26].

It is well known that including delays within a DE model of popula-

tion dynamics can lead to major changes to its behaviour, such as causing

instability, oscillations, and extinction which are not observed in a cor-

responding ordinary DE model [36]. The famous Hutchinson equation

is one such example. A logistic equation with no delay, has a carrying

capacity equilibrium which is always a globally attractive equilibrium for

all non-trivial positive solutions. Whereas the inclusion of a delay to form

the Hutchinson equation can cause the carrying capacity equilibrium to

become unstable for certain values of delay.

Stability of non-linear delay DEs (DDEs) is often studied by methods

which are similar to those of ordinary DEs (ODEs), such as linearization.
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In this method, an associated linear DDE is found by linearizing the non-

linear DDE around an equilibrium with respect to both the function at

time t, and to the function at the specified delay values t − τ . We then

look for solutions of the associated linear DDE which are in the form

N(t) = eλt, and obtain a characteristic equation for the DDE in terms of

λ. If all the roots of the characteristic equation have negative real part,

then this indicates local asymptotic stability of the equilibrium. However,

characteristic equations of DDEs are much more complex compared to

those of ODEs. In general the characteristic equation that is obtained

is transcendental, which makes analyzing the roots of the characteristic

equation more difficult [36]. Take for example, one of the simplest DDEs

dN

dt
= rN(t− τ)

r > 0, τ > 0. Assuming a solution of the form N(t) = eλt gives the

transcendental characteristic equation

λ = re−λτ .

Other examples specific to the effects of delays on continuous harvest-

ing models can be seen in [6, 26, 32, 45], where delay is incorporated into

the harvesting function.

The incorporation of delays into impulsive conditions goes back to

the 1990s [1], with recent progress summarized in [31]. Delayed impul-

sive harvesting of a logistic equation was considered in [34], with further

discussion of bifurcations in [12, 13].
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1.5 Optimal Harvesting Policies

If harvesting is restricted to only the surplus production of a popula-

tion, then theoretically, harvesting should be able to continue indefinitely

without drastically altering the stock levels. This is the idea behind the

Maximum Sustainable Yield (MSY). A more precise characterization of

the MSY will be given in Chapter 2 and Chapter 3 for the continuous and

impulsive harvesting models respectively.

The concept of the MSY emerged in the 20th century, and since then

has had a complicated history. It has been criticized for its contributions

to the over-fishing and subsequent collapse of fisheries in recent years [29].

One reason for this is that catches have a tendency to exceed the MSY

year over year. In addition, it has been shown that applying single species

MSYs to ecosystems with a multi-level food chain, can cause extinction

of some species [28, 30]. However, this does not mean that we have no

use for the MSY. In [33] the author discusses the need to transition to an

ecosystem based management strategy of fisheries, but emphasizes that

single species indicators such as the MSY are still necessary since they

can account for species specific traits. Instead, both [33, 38] discussed

transitioning to seeing the MSY as a limiting factor instead of a goal to

be achieved.

The MSY has been well studied for various types of models. The

MSYs for logistic and Gompertz continuous linear harvesting models with

no delay are given byMSYL = rKc

4
andMSYG = rKc

e
, respectively [9, 24].

Optimal harvesting policies for impulsive harvesting models with no delay

have been investigated for models with logistic growth [47] (the results

7



of which will be summarized in Theorem 3.2.1), Gompertz growth [48],

and for models with the addition of by catch mortality [7]. Moreover, the

optimality of a stochastic impulsive harvesting Gompertz equation was

considered in [43].

Since environments can change unpredictably, the addition of stochas-

tic fluctuations into population models is worthy of attention. It rep-

resents an additional challenge in the evaluation of optimal harvesting

policies, with the MSY often being replaced by the expectation of the

MSY (MESY). For stochastic logistic equations with and without growth

delays, the MESY is often dependent upon both the harvesting effort and

the intensity of the environmental fluctuations [40, 46].

As has already been discussed, it is not feasible to only consider species

existing in isolation. In reality, all species are part of an ecosystem and

food chain where they coexist, compete and/or serve as prey. This has led

to extensive literature on MSY harvesting of single or multiple populations

within a food chain [3, 15, 23, 39].

To the best of our knowledge, there has been no discussion of optimal

harvesting policies for delayed impulses in the literature. Our work in

Chapter 3 aims to fill this gap. Furthermore, there has been no specific

mention of optimal harvesting policies for delayed continuous harvesting

with logistic or Gompertz growth in the literature. A MSY for these

continuous models will be derived in Chapter 2 for the sake of comparison

to optimal harvesting policies for delayed impulses.
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1.6 Discrete vs. Continuous Models

Continuous models of population dynamics are closely connected to dif-

ference equations, which has led to extensive study of discrete population

models [5]. A general difference equation is given by

xn+1 = f(xn, xn−1, ..., xn−k), n ∈ N0 := N ∪ {0}

with initial conditions x0, ..., x−k, and can be thought of as defining a

recursive sequence via function iteration. While appearing simple, dif-

ference equations can exhibit complex dynamics, which underscores their

importance within population modelling. Stability of non-linear equations

is studied in much the same way as for continuous models, via lineariza-

tion. One difference is that with continuous models, we assume a solution

of the linear equation to be in the formN(t) = eλt and look for roots of the

characteristic equation which have negative real part to imply asymptotic

stability. In contrast, for difference equations we assume a solution of the

form xn = λn to obtain the characteristic equation, and have asymptotic

stability if all roots lie inside the unit circle. For more on the theory of

difference equations, see the monographs [16, 25].

Optimal harvesting policies for a discrete Beverton-Holt model were

investigated in [8], while a discrete age structured model, which allows for

selective harvesting based on age, was considered in [37]. The question

of harvest timing within a season has been explored through the discrete

Seno model [35] which is a convex combination of population growth

before and after harvesting. Using this discrete model, [17] showed that

for high enough harvesting intensities harvesting timing has no effect on

the stability of the model. Further in [22] the authors showed that unless
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there is a cost to harvesting at the beginning or ending of a season, then

it is generally optimal to harvest at the beginning of a season.

1.7 Overview

Our main goal in this thesis will be to investigate the optimality and sus-

tainability of delayed impulsive harvesting, the majority of which is done

in Chapter 3. In Chapter 2, we will begin by studying a general model

with continuous delayed harvesting. We will derive sufficient conditions

for the existence and uniqueness of positive equilibriums and their stabil-

ity. We will then utilize the results to derive MSYs for both the logistic

and Gompertz models with delayed continuous harvesting. The chapter

will conclude with a brief discussion of the oscillation of the logistic equa-

tion with delayed harvesting, and numerical simulations. In Chapter 3 we

study a logistic equation with impulsive delayed harvesting. We will be-

gin by showing a connection between the continuous and discrete models,

and derive sufficient conditions for the immediate extinction of the pop-

ulation. We then utilize the discrete model to derive stability conditions

for the positive periodic solutions, and use those results to derive a MSY

for the model. The results will show that while the inclusion of the delay

in the impulses will not affect the optimality of the yield, it will greatly

affect the sustainability. Sustainability of yields that are not maximal

will also be discussed. The chapter will conclude with numerical results,

including numerical simulations that show that the positive periodic so-

lution is not globally attractive for all initial values. Finally, Chapter 4

will discuss some extensions of this research, and possible future work.
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Chapter 2

Delayed Continuous Harvesting

2.1 Introduction

In population modelling, harvesting can be represented by a continuous

deduction term. It is often assumed that population information used

to make harvesting decisions is up to date and instantaneously available,

leading to harvesting that is a function of the population at time t. Models

of this type, such as the logistic and Gompertz differential equations with

linear harvesting terms have been well studied [9, 24]. As was discussed in

Chapter 1, it is natural to assume that any available population data will

be at least somewhat out of date. When this is the case, the continuous

deduction term representing harvesting in our models will be a function

of a delayed estimate of the population, which introduces a delay into the

model.

In this chapter we will consider the following general population dy-

namical system with delayed continuous harvesting

11




dN
dt

= F (N(t))− h(N(t− τ)), t > 0

N(t) = φ(t), t ∈ [−τ, 0]

(2.1)

where Kc > 0 represents the carrying capacity of the population, F (N) :

[0, Kc] → [0,∞) represents the intrinsic combination of the birth and

death rate of a population, h(N) : [0, Kc] → [0, Kc] is the harvesting

function, τ > 0 represents the harvesting delay, and φ(t) : [0,∞)→ [0,∞)

gives the initial data of a system on t ∈ [−τ, 0]. We begin by assuming

the following about F and h.

H1. F is continuously differentiable on (0, Kc), F (0) = F (Kc) = 0, and

F ′(0) > 0.

H2. h is continuously differentiable on (0, Kc), h(0) = 0, and h′(N) > 0

for all N ∈ (0, Kc).

As we will see, H1, H2 along with the condition that F ′(0) > h′(0)

will guarantee existence of a positive equilibrium. But, under the stronger

conditions H3, H4 we are also able to guarantee uniqueness.

H3. F is continuously differentiable on (0, Kc), F (0) = F (Kc) = 0,

F ′(0) > 0, and F ′′(N) < 0 ∀N ∈ (0, Kc).

H4. h is continuously differentiable on (0, Kc), h(0) = 0, h′(N) > 0 and

h′′(N) ≥ 0 for all N ∈ (0, Kc).

Everywhere below, we assume that H3, H4 hold unless stated other-

wise. H3 implies that F is "hump-shaped", while H4 implies that h is

non-decreasing. We note that many of the most commonly used growth
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rates F (·) in the literature, such as logistic, Gompertz, Smith [5], satisfy

H3. And furthermore many common harvesting terms h(·) satisfy H4

such as a linear harvesting function h(N) = EN(t), or a Cobb Douglas

harvesting function h(N) = EαN(t)β, α > 0, β ≥ 1.

The chapter is organized as follows. Section 2.2 will state some needed

background results on stability and oscillation of DDEs, as well as defin-

ing what is meant by a MSY for this model. Section 2.3 will show the

existence and uniqueness of equilibriums of (2.1) under H3, H4, and de-

rive conditions for stability of the positive equilibrium. These results will

then be used to derive the MSY for both a logistic and Gompertz model

with delayed harvesting. Section 2.4 will briefly explore oscillations of the

logistic equation with delayed harvesting, and show that under specific

conditions, solutions will be guaranteed to oscillate around the positive

equilibrium. Finally, Section 2.5 will contain examples, illustrative nu-

merical simulations, and concluding remarks.

2.2 Preliminaries

Our main focus of this chapter will be to derive a MSY for the delayed

harvesting model under various growth rates. For the delayed continuous

harvesting model, each yield Y (E) will correspond to a constant solution

of the DDE (2.1).

Definition 1. The maximum yield (MY) of (2.1) is a yield associated

to an optimal constant solution such that no other solution will have a

corresponding yield that will exceed the MY.
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Definition 2. The optimal harvesting effort Eopt is the value of E which

maximizes the yield Y (E).

Since Eopt is the value of E which maximizes Y (E), then MY =

Y (Eopt).

Definition 3. A maximum sustainable yield (MSY) of (2.1) is a MY such

that the optimal constant solution associated to the MY is at least locally

asymptotically stable.

Definition 4. A solution N∗ of (2.1) is said to be stable if for all ε > 0

there exists δ = δ(ε) > 0 such that ‖φ − N∗‖ < δ implies that ‖N(t) −

N∗‖ < ε, t > 0.

Definition 5. A solution N∗ of (2.1) is asymptotically stable if it is stable

and if there exists b > 0 such that whenever ‖φ−N∗‖ < b thenN(t)→ N∗

as t→∞.

We cite the following result on the stability of linear delay differential

equations from [36].

Lemma 2.2.1 ([36, Theorem 4.7, pg 53]). Consider the linear delay dif-

ferential equation

u′(t) = Au(t) +Bu(t− τ) (2.2)

with A,B ∈ R, τ > 0. Then if:

(a) A+B > 0 then the zero solution of (2.2) is unstable.

(b) A+B < 0 and B ≥ A then the zero solution of (2.2) is asymptotically

stable.
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(c) A+B < 0 and B < A then there exists

τ ∗ =
arccos(−A/B)√

B2 − A2

such that the zero solution of (2.2) is asymptotically stable for 0 < τ < τ ∗

and unstable for τ > τ ∗. Furthermore, when τ = τ ∗ the characteristic

equation has a pair of purely imaginary roots.

Conditions for persistence and boundedness of solutions of the logistic

equation with delayed impulsive harvesting have been studied in [6, 10].

While both papers assumed that initial data had the property N0 =

φ(0) > φ(t) for t ∈ [−τ, 0), [6] had the additional condition that N0 < Kc.

The following is obtained as a simple corollary of results found in both

papers.

Lemma 2.2.2 ([6, 10]). Consider a logistic growth model with delayed

harvesting, 
dN
dt

= rN(t)

(
1− N(t)

Kc

)
− EN(t− τ)

N(t) = φ(t), t ∈ [−τ, 0]

(2.3)

Assume that the initial conditions satisfy N0 > φ(t) for t ∈ [−τ, 0). Let

Eτe(λ−1)rτ ≤ 1

e
, λ = max

{
1,
N0

Kc

}
(2.4)

hold, then if:

(i) N0 ≤ Kc, 0 < N(t) ≤ Kc

(ii) N0 > Kc, there exists T > 0 such that 0 < N(t) ≤ N0, 0 ≤ t < T and

0 < N(t) ≤ Kc, t ≥ T .
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The following theorems focus on the linearized oscillation of delay

differential equations.

Theorem 2.2.3 ([19, Theorem 1.5.1, pg 67]). Consider

dx

dt
+

n∑
j=1

Pj(t)x(t− τj) = 0; t ≥ t0 (2.5)

where
Pj ∈ C([t0,∞),R+), lim

t→∞
Pj(t) = pj

τj ∈ [0,∞), j = 1, . . . , n

If the characteristic equation

λ+
n∑
j=1

pje
−λτj = 0

associated with the limiting equation of (2.5) has no real roots, then all

the non-trivial solutions of (2.5) are oscillatory.

2.3 Stability and MSY

Lemma 2.3.1. The trivial equilibrium N∗ = 0 of (2.1) always exists, and

if F ′(0) > h′(0) where F, h satisfy H1, H2 respectively, then a positive

equilibrium N∗ also exists and is a solution of F (N) = h(N) for N ∈

(0, Kc).

Proof. It is clear that the trivial equilibrium N∗ = 0 always exists by H1,

H2. Since h is strictly increasing h(0) < h(Kc) → F (Kc) < h(Kc) since

F (Kc) = 0.

Define the continuous and differentiable function G(N) = F (N) −

h(N). Then G(0) = 0 and G′(0) > 0. By the limit definition of the
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derivative

G′(0) = lim
δ→0+

G(δ)−G(0)

δ
=

1

δ
lim
δ→0+

G(δ) > 0.

Since G is continuous, this implies that for some neighbourhood around

zero, G(N) > 0. Choose a point c in that neighbourhood, then F (c) >

h(c).

Since F (Kc) < h(Kc), F (c) > h(c) and F, h are continuous func-

tions, then by The Intermediate Value Theorem ∃N∗ ∈ (0, Kc) such that

F (N∗) = h(N∗).

Note that under the assumptions H1, H2 the solution N∗ is not nec-

essarily unique.

Example 2.3.1.1. Let

F (N) = 0.6N ln

(
20

N

)
h(N) = sin(N) + 1.11N.

Then F ′(0) > h′(0), F (0) = F (20) = h(0) = 0, and h′(N) > 0 ∀N ∈

(0, 20). Thus F, h satisfy H1, H2, however there are 3 solutions in (0, 20)

of F (N) = h(N) given by N∗ ≈ 0.671, 3.137, 4.516 so the equilibrium is

not unique.
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Figure 2.1: In this figure we see F (N) = 0.6N ln(20/N), h(N) =
sin(N) + 1.11N . Equilibriums N∗ are solutions to F (N) = h(N) for
N ∈ (0, 20). Since F, h satisfy H1, H2, F ′(0) > h′(0), (and not H3,H4)
there are 3 equilibriums N∗ ≈ 0.671, 3.137, 4.516. See the appendix, Mul-
tipleEquils.m for MATLAB code.

To guarantee the uniqueness of the positive equilibrium we assume

the stricter conditions H3, H4 on F, h.

Lemma 2.3.2. The trivial equilibrium N∗ = 0 of (2.1) always exists and

if F ′(0) > h′(0) where F, h satisfy H3, H4 respectively, then a positive

equilibrium N∗ exists and is unique where N∗ is a solution of F (N∗) =

h(N∗).

Proof. By Lemma 2.3.1 we can see that both the trivial and positive

equilibriums exist. Thus we only need to show uniqueness of the positive

equilibrium.

Assume for the sake of contradiction ∃N∗1 , N∗2 ∈ (0, Kc), N∗1 < N∗2

such that F (N∗1 )− h(N∗1 ) = 0, F (N∗2 )− h(N∗2 ) = 0.

Let G(N) = F (N) − h(N). By Rolle’s Theorem ∃b ∈ (0, N∗1 ) such

that G′(b) = 0. Similarly, by Rolle’s Theorem ∃c ∈ (N∗1 , N
∗
2 ) such that
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G′(c) = 0. Now since F ′′ < 0, h′′(N) ≥ 0 then G′′ < 0 which implies

that G′(N) is strictly decreasing. Thus for b < c, G′(b) > G′(c). However

this would imply that 0 = G′(b) > G′(c) = 0 which is a contradiction.

Therefore N∗ is unique.

Lemma 2.3.3. Let F ′(0) > h′(0), where H3, H4 hold. Then (2.1) has a

non-zero, positive equilibrium N∗, and if:

(a) −h′(N∗) ≥ F ′(N∗) then the equilibrium is locally asymptotically sta-

ble.

(b) −h′(N∗) < F ′(N∗) then there exists

τ ∗ :=
arccos(F ′(N∗)/h′(N∗))√

h′(N∗)2 − F ′(N∗)2
> 0 (2.6)

such that the equilibrium is locally asymptotically stable if 0 < τ < τ ∗ and

unstable for τ > τ ∗.

Proof. By Lemma 2.3.2 the positive equilibrium exists, and is unique.

Linearizing (2.1) around the positive equilibrium N∗ we obtain the lin-

earized equation

u′(t) = Au(t) +Bu(t− τ)

with

A =
∂

∂N(t)
(F (N(t))− h(N(t− τ)))

∣∣∣∣
(N∗,N∗)

= F ′(N∗)

B =
∂

∂N(t− τ)
(F (N(t))− h(N(t− τ)))

∣∣∣∣
(N∗,N∗)

= −h′(N∗)

Whenever the zero solution of the linearized equation is asymptotically

stable, by linearization theory the equilibrium is locally asymptotically

stable. Whenever the zero solution of the linearized equation is unstable,

then so is the equilibrium N∗.
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While H3, H4 hold we will show that F ′(N∗) < h′(N∗). Thus case (a)

of Lemma 2.2.1 will not apply, and we may always assume that F ′(N∗) <

h′(N∗).

Once again let G(N) = F (N)−h(N). Recall that the positive equilib-

rium N∗ is defined as the solution of F (N∗) = G(N∗). Thus G(N∗) = 0.

Since G(0) = 0, G(N∗) = 0, by Rolle’s Theorem ∃b ∈ (0, N∗) such that

G′(b) = 0.

Since G′′(N) < 0, ∀N ∈ (0, Kc) the derivative G′(N) is strictly de-

creasing i.e. for b < N∗, G′(b) > G′(N∗). Assume for the sake of

contradiction that F ′(N∗) ≥ h′(N∗) which implies G′(N∗) ≥ 0. Then

0 = G′(b) > G′(N∗) ≥ 0 which is a contradiction.

Thus F ′(N∗) < h′(N∗), and we do not need to consider case (a) of

Lemma 2.2.1.

The result then follows from letting A = F ′(N∗), B = −h′(N∗) in

parts (b) and (c) of Lemma 2.2.1.

Because of the general statement of Lemmata 2.3.1, 2.3.3 the results

can be applied to any F satisfiying H3 such as (1.1),(1.2), and h satisfying

H4 such as (1.4), (1.5) with α = 1, β ≥ 1. Below we will consider

(2.1) with both a logistic (1.1) and a Gompertz (1.2) growth with linear

harvesting term (1.4). The results will be used to derive a MSY for both

models.

Logistic Growth

In this section we will derive a MSY for (2.1) with logistic growth rate

and linear harvesting term.
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Corollary 2.3.3.1. Consider (2.3). Let r > E, and

τ ∗ =
arccos(2− r/E)√
E2 − (2E − r)2

. (2.7)

Then the positive equilibrium

N∗ =
(r − E)Kc

r
(2.8)

exists. If in addition:

(a) r ≥ 3E then N∗ is locally asymptotically stable.

(b) r < 3E and 0 ≤ τ < τ ∗ then N∗ is locally asymptotically stable.

(c) r < 3E and τ > τ ∗ then N∗ is unstable.

Proof. By the definition of (1.1), (1.4), we compute

F ′1(N(t)) = r − 2rN(t)

Kc

, h′(N(t− τ)) = E.

The positive equilibrium exists and is equal to N∗ = (r−E)Kc

r
.

F ′1(N
∗) = 2E − r, h′(N∗) = E

Applying Lemma 2.3.3 part (b), if r > E and −E ≥ 2E − r ↔ r ≥ 3E

thenN∗ is locally asymptotically stable. By Lemma 2.3.3 part (c) if r > E

and r < 3E then if 0 ≤ τ < τ ∗, with τ ∗ as defined in (2.7) created by

substituting F ′1(N∗), h′(N∗) into (2.6), then N∗ is locally asymptotically

stable, and if τ > τ ∗ then N∗ is unstable. Note that part (a) of Lemma

2.3.3 would only apply if r < E, as such it is not considered here.

Lemma 2.3.4. Consider (2.3). Then the yield is given by

Y (E) = EN∗ =
KcE(r − E)

r
. (2.9)
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It is increasing for E ∈ (0, Eopt) and decreasing for E ∈ (Eopt,∞) with

Eopt = r/2. The maximum yield (MY) is given by

MY = Y (Eopt) =
rKc

4
(2.10)

and is associated to N∗ = Kc/2.

Proof.

Y ′(E) = Kc −
2EKc

r

Y ′(E) > 0 for E < r/2, Y ′(E) < 0 for E > r/2. Define Eopt = r/2, then

Y (E) is increasing for E ∈ (0, Eopt), decreasing for E ∈ (Eopt,∞) and is

maximized when E = Eopt. Therefore the maximum yieldMY = Y (Eopt)

and this yield is associated to N∗(Eopt) = (r−Eopt)Kc

r
= Kc

2
.

Theorem 2.3.5. The MY (2.10) of (2.3) is a maximum sustainable yield

(MSY) if 0 ≤ τ < π/r.

Proof. By Lemma 2.3.4 the yield is maximized when E = Eopt. When

E = Eopt, then 3Eopt = 3(r/2) > r and Eopt − r = (r/2) − r < 0. So by

Corollary 2.3.3.1 if 0 ≤ τ < τ ∗ then N∗ = Kc/2 is locally asymptotically

stable. When E = Eopt, τ ∗ as given in (2.7) becomes,

τ ∗ =
arccos(2− r

(r/2)
)√

(r/2)2 − (2(r/2)− r)2

=
arccos(0)√

r2/4

=
π

2
· 2

r

=
π

r

Therefore, if 0 ≤ τ < π/r then N∗ is locally asymptotically stable, and

the MY associated to N∗ is sustainable. Therefore the MY becomes a

MSY when 0 ≤ τ < π/r.
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Gompertz Growth

In this section we will derive a MSY for (2.1) with Gompertz growth rate

and linear harvesting term.

Corollary 2.3.5.1. Consider
dN
dt

= rN(t) ln

(
Kc

N(t)

)
− EN(t− τ)

N(t) = φ(t), t ∈ [−τ, 0].

(2.11)

Let

τ ∗ =
arccos(1− r/E)√

2Er − r2
. (2.12)

Then the positive equilibrium

N∗ = Kce
−E/r (2.13)

exists. If in addition:

(a) r ≥ 2E then N∗ is locally asymptotically stable.

(b) r < 2E and 0 ≤ τ < τ ∗ then N∗ is locally asymptotically stable.

(c) r < 2E and τ > τ ∗ then N∗ is unstable.

Proof. By the definition of (1.2), (1.4), we compute

F ′2(N(t)) = r ln

(
Kc

N(t)

)
− r, h′(N(t− τ)) = E.

The positive equilibrium exists and is equal to N∗ = Kce
−E/r.

F ′2(N
∗) = E − r, h′(N∗) = E

Applying Lemma 2.3.3 part (b), if −E ≥ E − r ↔ r ≥ 2E then N∗

is locally asymptotically stable. By Lemma 2.3.3 part (c), if r < 2E
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then if 0 ≤ τ < τ ∗, with τ ∗ as defined in (2.12) found by substituting

F ′2(N
∗), h′(N∗) into (2.6), then N∗ is locally asymptotically stable. And,

if τ > τ ∗ then N∗ is unstable. Note that Lemma 2.3.3 part (a) would

only apply if r < 0, as such it is not considered here.

Lemma 2.3.6. Consider (2.11). Then the yield is given by

Y (E) = EN∗ = EKce
−E/r. (2.14)

It is increasing for E ∈ (0, Eopt) and decreasing for E ∈ (Eopt,∞) with

Eopt = r. The maximum yield (MY) is given by

MY = Y (Eopt) =
rKc

e
(2.15)

and is associated to N∗ = Kc/e.

Proof.

Y ′(E) = Kce
−E/r(1− E/r)

Y ′(E) > 0 for E < r, Y ′(E) < 0 for E > r. Defining Eopt = r, Y (E)

is increasing for E ∈ (0, Eopt), decreasing for E ∈ (Eopt,∞) and is maxi-

mized when E = Eopt. Therefore the maximum yield MY = Y (Eopt) and

this yield is associated to N∗(Eopt) = Kce
−Eopt/r = Kc/e.

Theorem 2.3.7. The MY (2.15) of (2.11) is a maximum sustainable

yield (MSY) if 0 ≤ τ < π/2r.

Proof. By Lemma 2.3.6 the yield is maximized when E = Eopt. When

E = Eopt then r < 2(r), so by Corollary 2.3.5.1 if 0 ≤ τ < τ ∗ then

N∗ = Kc/e is locally asymptotically stable. When E = Eopt, τ ∗ as given
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in (2.12) becomes

τ ∗ =
arccos(1− r/(r))√

2(r)r − r2

=
arccos(0)

r

=
π

2r

Therefore if 0 ≤ τ < π/r then N∗ is locally asymptotically stable, and

the MY associated to N∗ is sustainable. Therefore the MY becomes a

MSY when 0 ≤ τ < π/2r.

2.4 Oscillation

A solution of (2.1) is said to oscillate around an equilibrium N∗ if the

function N(t)−N∗ is neither eventually positive, nor eventually negative.

A DDE is said to be oscillatory if all of its solutions oscillate, and non-

oscillatory if at least one solution does not oscillate. Many results on the

oscillation of delay differential equations were given in the monographs

[18, 19], one of which was included in Section 2.2.

Our goal for this section will be to show that under specific conditions,

solutions of (2.3) oscillate around N∗ under the additional assumption

that if for some t∗, N(t∗) ≤ 0 then N(t) = 0 for all t > t∗. We will say

that a solution is eventually greater than a lower bound a, if ∃t1 such

that ∀t > t1 N(t) > a, and eventually lower than an upper bound b, if

∃t2 such that ∀t > t2 N(t) < b.

The proof of the following Theorem will take place in two steps. The

first step will be to show that there are no solutions of (2.3) which are

eventually above N∗. This step will follow the proof of the linearized
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stability theorems found in [18, 19], but is included here for completeness.

The second will be to show that there are no solutions which are eventually

in
[
EKc

r
,N∗

)
. This step is similar to Step 1 and the proofs of linearized

stability found in [18, 19], however, most linearized stability theorems

assume that the non-linear functions fi(N(t)−N∗) < 0 ∀N(t) ∈ (0, N∗)

(fi will be defined in the proof), which we will see is not the case here.

Instead we restrict our attention to a smaller strip of possible N(t) values,

and show oscillation for solutions which are eventually in this strip.

Theorem 2.4.1. Let r − 2E > 0. If N(t) is a solution of (2.3) which is

eventually greater than EKc

r
and the equation

λ+ (r − 2E) + Ee−λτ = 0 (2.16)

has no real roots, then that solution oscillates around N∗ = Kc(r−E)
r

.

Proof. Assume that (2.16) has no real roots. Set x(t) = N(t)−N∗, then

(2.3) becomes

dx

dt
+

r

Kc

x(t)2 + (r − 2E)x(t) + Ex(t− τ) = 0 (2.17)

and the condition that N(t) is eventually greater than EKc

r
is equivalent

to the condition that x(t) is eventually greater than −Kc(r−2E)
r

. It is clear

that the solution N(t) of (2.3) oscillates around N∗ if and only if x(t)

oscillates about 0. Now let,

p1 = r − 2E, p2 = E

f1(x) =
r

Kc(r − 2E)
x2 + x, f2(x) = x

τ1 = 0, τ2 = τ
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then we may re-write (2.17) as

dx

dt
+

2∑
j=1

pjfj(x(t− τj)) = 0

Step 1: No eventually positive solution of (2.17).

Suppose for the sake of contradiction that (2.17) has a non-oscillatory

solution x(t) which we shall assume is eventually positive. Since for some

t1, x(t) > 0 ∀t > t1 + τ then,

f1(x(t)) > 0, f2(x(t− τ)) > 0

∀t > t1. So eventually,

dx

dt
= −

(
p1f1(x(t)) + p2f2(x(t− τ))

)
< 0.

Thus,

lim
t→∞

x(t) = l ≥ 0

exists. If l > 0 then f1(l) > 0, f2(l) > 0 and

lim
t→∞

dx

dt
= −

(
p1f1(l) + p2f2(l)

)
< 0

This would imply that eventually x(t) is always decreasing with no lower

bound which is a contradiction since we have already assumed that x(t)

is eventually positive. Therefore l = 0 and

lim
t→∞

x(t) = 0.

Now let

Pj(t) =
pjfj(x(t− τj))
x(t− τj)

(2.18)
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so that (2.17) can be written as

dx

dt
+

2∑
j=1

Pj(t)x(t− τj) = 0, (2.19)

where

lim
t→∞

P1(t) = lim
t→∞

(r − 2E)

(
r

Kc(r − 2E)
x(t) + 1

)
= r − 2E = p1

lim
t→∞

P2(t) = lim
t→∞

E = p2.

Set t0 = t1 + τ , then by Theorem 2.2.3 when the characteristic equation

(2.16) has no real roots, all the non-trivial solutions of (2.17) oscillate.

But this is a contradiction since we assumed x(t) was eventually positive.

Therefore, there are no eventually positive solutions of (2.17).

Step 2: No solutions which are eventually in
[
−Kc(r − 2E)

r
, 0

)

Suppose for the sake of contradiction that (2.17) has a non-oscillatory

solution x(t) which is eventually in
[
−Kc(r − 2E)

r
, 0

)
. Then,

f1(x(t)) ≤ 0, f2(x(t− τ)) < 0

∀t > t2 + τ . So eventually,

dx

dt
= −

(
p1f1(x(t)) + p2f2(x(t− τ))

)
> 0

which implies that the function is increasing ∀t > t2 + τ .

Thus

lim
t→∞

x(t) = l, l ∈
[
−Kc(r − 2E)

r
, 0

]
exists. However if l ∈

[
−Kc(r−2E)

r
, 0

)
this would imply that l is an equi-

librium point of (2.17). This is a contradiction since we can show that
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the only equilibriums of (2.17) are x = 0,−N∗. Thus

lim
t→∞

x(t) = 0.

We define the functions Pj(t) as in (2.18) and re-write (2.17) as (2.19). Set

t0 = t2+τ , then by Theorem 2.2.3 when the characteristic equation (2.16)

has no real roots, all the non-trivial solutions of (2.17) oscillate. But this is

a contradiction since we have assumed that x(t) was eventually negative.

Therefore there are no solutions which are eventually in
[
−Kc(r−2E)

r
, 0

)
.

Since there are no solutions of (2.17) which are eventually above 0 or

which are eventually in
[
−Kc(r−2E)

r
, 0

)
then we say that there are no solu-

tions of (2.3) which are eventually above N∗ or which are in
[
EKc

r
, N∗

)
.

Thus if we have a solution which is eventually above EKc

r
then this must

mean that that solution oscillates around N∗.

It is important to note that Theorem 2.4.1 is not a full characteri-

zation of conditions for oscillation of (2.3). Perhaps more importantly,

in Section 2.5 we will show that there exist solutions which do not oscil-

late around N∗ even though the characteristic equation only has complex

roots. Under the additional assumption that N(t) = max{N(t), 0} these

solutions will become zero in finite time. This implies that for (2.3), os-

cillation of an associated linearized equation does not imply oscillation

in all circumstances. It then makes sense that the Linearized Oscillation

Theorems found in [18, 19], did not apply to our equation.

The real use of Theorem 2.4.1 comes when considering asymptotically

stable equilibriums. Say we have an asymptotically stable equilibrium N∗

of (2.3), and initial conditions are such that the equilibrium is attracting.
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Then

lim
t→∞

N(t) = N∗.

We can then say that if the characteristic equation has no real roots, the

solutions with initial conditions such that the equilibrium is attracting,

will oscillate around N∗ with decreasing amplitude.

2.5 Numerical Simulations and Discussion
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Figure 2.2: Solutions to (2.3), r = 1.2, Eopt = 0.6, Kc = 300, τ ∗ =
2.61, φ(t) = 130 + 30H(t + 0.5). (Left) τ = 2.4 < 2.61, thus N∗ =
150 is locally asymptotically stable, and the solution converges to the
equilibrium. (Right) τ = 2.7 > 2.61, thus N∗ is unstable and the solution
oscillates around N∗ with increasing amplitude before hitting extinction
at t ≈ 55.

In Figure. 2.2 stability of the positive equilibrium N∗ = 150 of (2.3)

(r = 1.2, E = Eopt = 0.6, Kc = 300 initial data φ(t) = 130+30H(t+0.5),

t ∈ [−2.7, 0]) is investigated for changing value of delay. The solutions

were computed using the MATLAB function dde23 which solves delay

differential equations for constant delays, with the additional stipulation
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that if for some t∗, N(t∗) ≤ 0, then N(t) = 0 for all t > t∗. See the

appendix, LogisticStable.m and LogisticUnStable.m for MATLAB code.

The function H(t) refers to the Heaviside step function and is defined

as

H(t) =


0 , t < 0

1
2

, t = 0

1 , t > 0

Since E = Eopt, the harvesting is optimal, and the positive equilibrium

N∗ = 150 is associated to the maximum yield. By Theorem 2.3.5 the

MY is sustainable, and by extension the positive equilibrium is locally

asymptotically stable when 0 ≤ τ < 2.61799. In Figure. 2.2 (left) τ = 2.4

which means that N∗ is locally asymptotically stable. We can see that

the solution oscillates with decreasing amplitude before converging to

the equilibrium. In Figure. 2.2 (right) τ = 2.7 which means that N∗

is unstable. Indeed we can see that while the initial history starts the

solution close to N∗, the solution oscillates with increasing amplitude,

eventually hitting zero in finite time.

In Figure. 2.3 stability of the positive equilibrium N∗ ≈ 110.3638

of (2.11) (r = 0.6, E = Eopt = 0.6, Kc = 300, initial data φ(t) =

90 + 30H(t + 0.5), t ∈ [−2.7, 0]) is investigated for changing value of

delay. The solutions were once again computed using dde23, with the

additional stipulation that if for some t∗, N(t∗) ≤ 0, then N(t) = 0 for all

t > t∗. See the appendix, GompertzStable.m and GompertzUnStable.m

for MATLAB code.

Since E = Eopt the harvesting is optimal, and the positive equilibrium
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Figure 2.3: Solutions to (2.11) r = 0.6, Eopt = 0.6, Kc = 300, τ ∗ =
2.61, φ(t) = 90 + 30H(t + 0.5). (Left) τ = 2.4 < 2.61, thus N∗ ≈
110.3638 is locally asymptotically stable, and the solution converges to
the equilibrium. (Right) τ = 2.7 > 2.61 and thus N∗ is unstable, and the
solution oscillates around N∗ with increasing amplitude hitting extinction
at some time t ≈ 62.

N∗ is associated to the maximum yield. By Theorem 2.3.7 the MY is

sustainable, and by extension the positive equilibrium is locally asymp-

totically stable when 0 ≤ τ < 2.61799. In the figure on the left τ = 2.4

which means that N∗ is locally asymptotically stable. We can see that

the solution oscillates with decreasing amplitude before converging to the

equilibrium. In the figure on the right τ = 2.7 which means that N∗

is unstable. Indeed we can see that while the initial history starts the

solution close to N∗, the solution oscillates with increasing amplitude,

eventually hitting zero in finite time.

In Figure. 2.4, solutions of (2.3) (r = 1, E = 0.4, Kc = 300, τ = 5,

with different initial data are compared. The solutions were computed

using dde23, with the additional stipulation that if for some t∗, N(t∗) ≤

0, then N(t) = 0 for all t > t∗. See the appendix, Oscillation.m and

NonOscillation.m for MATLAB code.
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Figure 2.4: Solution to (2.3), r = 1, E = 0.4, Kc = 300, τ = 5 < τ ∗ =
6.04. Here 2E < r = 1 < 3E, so N∗ is locally asymptotically stable, and
the roots of the characteristic equation are complex. (Left) Solution with
φ(t) = 130 + 20H(t + 4) oscillating around N∗. (Right) Solution with
φ(t) = 110− 100H(t+ 4) does not oscillate around N∗.

Since 2E < r < 3E, and τ = 5 < τ ∗ = 6.046 by Corollary 2.3.3.1 the

N∗ = 180 equilibrium is locally asymptotically stable. If initial conditions

are such that N∗ is attractive, then

lim
t→∞

N(t) = N∗

and by Theorem. 2.4.1 the solution should oscillate around N∗.

In Figure. 2.4 (left), the solution with initial data φ(t) = 130 +

20H(t + 4) is shown oscillating around N∗, with decreasing amplitude.

In contrast Figure. 2.4 (right) shows the solution with initial data φ(t) =

110−100H(t+4) going to zero without oscillating. The difference is that

Figure. 2.4 (left) has initial data for which the equilibrium is attractive.

Thus Theorem. 2.4.1 guarantees that the solution oscillates around N∗.

While Figure. 2.4 (right) must have initial data for which the equilibrium

is not attractive, and hence Theorem. 2.4.1 does not apply. This further

illustrates how with the logistic model, oscillation of a corresponding lin-
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earized equation does not necessarily imply oscillation of the non-linear

equation.

Conclusion

The results of this chapter can be summarized as follows:

1. Under appropriate assumptions on the growth and harvesting rates,

we show the existence and uniqueness of a positive equilibrium for

a general delayed harvesting model.

2. The inclusion of the delay into harvesting does not affect the max-

imum yield (optimality) of the logistic or Gompertz models. How-

ever it does affect the sustainability of both.

3. Oscillation of the logistic delayed harvesting model can be guaran-

teed for solutions which are eventually above a certain threshold

when the characteristic equation has no real roots. This implies

oscillation of solutions for asymptotically stable equilibriums, when

the characteristic equation has no roots.

Furthermore, based on Theorems 2.3.5, 2.3.7, we see that delays should

be kept small to avoid extinction of populations under optimal harvesting

policies.

Representing harvesting by a continuous deduction in a differential

equation is a simple model which allows for easy analysis, and has been

used extensively. However, this type of model relies on the assumption

that harvesting is constantly occurring. A more realistic harvesting model

would be one that takes into account that harvesting does not occur
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without interruption and often a portion of the stock is removed at a

single moment in time. Impulsive harvesting is one such example and

will be investigated in the next chapter.
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Chapter 3

Delayed Impulsive Harvesting

3.1 Introduction

Impulsive harvesting refers to when a large portion of the stock is removed

at a single point in time and is modelled by impulsive DEs. As was

discussed in chapter 1, whenever control is involved, it is natural to assume

that the information available at the control implementation point is not

up-to-date, leading to delayed impulsive conditions.

We consider the logistic equation with constant effort impulsive har-

vesting that is dependent upon delayed data. This assumes that the

information used to determine hunting or fishery quotas is based on the

on the population size collected during one of the previous harvesting

events.

The main object of this chapter is the delayed impulsive harvesting
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model, given for a fixed k ∈ N as

dN
dt

= rN(t)

(
1− N(t)

Kc

)
, t 6= nT, n ∈ N

N(nT+) = max{N(nT )− EN((n− k)T ), 0}, t = nT, n ∈ N,

N(0) = N0, N(−T ) = N−1, ..., N(−kT ) = N−k

(3.1)

with prescribed initial conditions

Ni ∈ (0,∞), i = −k, ..., 0.

In this model, N(t) represents a size or a biomass of the population at

time t, r > 0 is the intrinsic growth rate, Kc > 0 is a carrying capacity of

the environment, T > 0 is the time between two consecutive harvesting

events, E is a harvesting effort and in contrast to Chapter 2, it is assumed

that E ∈ (0, 1) to avoid immediate extinction. In addition we assume

that restocking does not occur. In general k ∈ N, though references to

the non-delayed model with k = 0 will also be given. We note that here

we have dropped the notation ∆N(nT ) = N(nT+)−N(nT ), and instead

have rewritten the impulsive condition to emphasize that the population

is always a maximum of the population and zero. This is to avoid the

possibility of negative populations, which do not make biological sense.

The goal of this chapter is first to consider the sustainability of (3.1)

under harvesting, which corresponds to the local asymptotic stability of

a positive solution which will be described later, and second to explore

the sustainable yield (SY) and the maximum sustainable yield (MSY) of

(3.1). The chapter is structured to follow this purpose. After present-

ing relevant definitions and auxiliary results in Section 3.2, we explore
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stability of positive periodic solutions of (3.1) in Section 3.3. All the

issues connected to SY and MSY, and relevant solutions of (3.1), are

postponed to Section 3.4. We will show that while optimality is unaf-

fected by the magnitude of delay, sustainability of the optimal solution

is delay-dependent for k ≥ 2. The analysis of the impact of the delay on

local asymptotic stability of the positive solution is based on the results

obtained in Section 3.3. Finally, Section 3.5 includes examples, numer-

ical simulations, as well as discussion of the results and possible future

directions.

3.2 Preliminaries

Definition 6. A solution N∗(t) of (3.1) is said to be stable if for any ε > 0

there exists a δ = δ(ε) > 0 such that the inequalities |Nj −N∗(jT )| < δ,

j = −k, . . . , 0, where Nj are the initial conditions, imply |N(t)−N∗(t)| <

ε for all t > 0.

Definition 7. A solution of the impulsive system (3.1) is said to be

locally asymptotically stable if it is stable and there exists η > 0 such that

lim
t→∞
|N(t)−N∗(t)| = 0 for any |Nj −N∗(jT )| < η, j = −k, . . . , 0, where

Nj are the initial conditions.

Definition 8. A solution of the impulsive system (3.1) is said to be glob-

ally asymptotically stable if it is stable and if ∀N0, ..., N−k > 0, lim
t→∞
|N(t)−

N∗(t)| = 0 (i.e. η =∞).

A general difference equation is given by

xn+1 = f(xn, xn−1, ..., xn−k), n ∈ N0 := N ∪ {0} (3.2)
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with the initial conditions x0, ..., x−k.

Definition 9. A solution xn ≡ x∗ of (3.2) is stable if for all ε > 0,

there exists a δ > 0 such that max{|x0 − x∗|, ..., |x−k − x∗|} < δ implies

|xn − x∗| < ε for any n ≥ 0.

Definition 10. A solution x∗ of (3.2) is locally asymptotically stable if it is

stable and if there exists η > 0 such that if max{|x0−x∗|, ..., |x−k−x∗|} <

η then lim
n→∞

|xn − x∗| = 0.

Definition 11. A solution x∗ of (3.2) is said to be globally asymptotically

stable if it is stable and if ∀x0, ..., x−k > 0, lim
n→∞

|xn − x∗| = 0.

Since in (3.1) we will be considering T -periodic solutions, there is

a slight change in the definition of the MSY. In chapter 2 our yields

corresponded to constant solutions of the continuous harvesting model,

whereas for the delayed impulsive harvesting model our yields will be

associated to T -periodic solutions of (3.1). The interpretation of Eopt as

the value of E which maximizes the yield remains the same.

Definition 12. The maximum yield (MY) of (3.1) is a yield associated

to an optimal T -periodic solution of (3.1) such that no other solution will

have a corresponding yield that will exceed the MY.

Definition 13. A maximum sustainable yield (MSY) of (3.1) is a MY

such that the optimal T -periodic solution associated to the MY is at least

locally asymptotically stable.

In [47], the authors considered a MSY for (3.1) with k = 0. The

results are summarized in the following.
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Lemma 3.2.1. [47] Consider (3.1) for k = 0

dN

dt
= rN(t)

(
1− N(t)

Kc

)
, t 6= nT, n ∈ N

N(nT+) = max{(1− E)N(nT ), 0}, t = nT, n ∈ N

N(0) = N0.

(3.3)

Then the optimal harvesting effort is

Eopt = 1− e−rT/2. (3.4)

and the MSY is given by

MSY =
Kc(e

rT/2 − 1)

T (erT/2 + 1)
(3.5)

The optimal positive periodic solution N∗(t) of (3.3) corresponding to the

MSY and Eopt is globally attracting with

N∗(nT+) =
Kc

erT/2 + 1
. (3.6)

In [47] analysis of a non-delayed impulsive model (3.3) is reduced to

a non-linear difference equation which is first order. We also intensively

exploit this connection between the difference and the impulsive equa-

tions. Although when a delay is incorporated in the impulsive condition

such as in (3.1), the difference equation becomes higher order. We recall

that for difference equations, the roots of the characteristic equation of

an associated linearized model should lie inside the unit circle for local

asymptotic stability. This is in contrast to differential equations where

the real parts of the roots have to be negative. Some auxiliary results

regarding difference equations are listed below.
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Lemma 3.2.2 ([16, Theorem 2.37, pg. 95]). The zeros of the character-

istic polynomial with p0 > 0, p1 > 0

p(λ) = λ2 − p0λ+ p1

lie inside the unit circle if and only if p0 − 1 < p1 < 1.

The result of [25, Theorem 1.1.1, Part f, pg. 7] describes conditions

when a root of a quadratic equation lies on the unit disc.

Lemma 3.2.3 ([25, Theorem 1.1.1, Part f, pg. 7]). A necessary and

sufficient condition for a root of the characteristic equation of

p(λ) = λ2 − p0λ+ p1

with p0, p1 ∈ R to have a root satisfying |λ| = 1 is that either

|p0| = |1 + p1|

or

p1 = 1 and |p0| ≤ 2.

In this case the equilibrium is called a non-hyperbolic point.

The following result is cited from [16, Theorem 5.10, pg. 253].

Lemma 3.2.4 ([16, Theorem 5.10, pg. 253]). If
k∑
i=0

|pi| < 1 then the zero

solution of the difference equation

xn+k+1 + p0xn+k + p1xn+k−1 + ...+ pkxn = 0

is asymptotically stable.

The following result can be found in [16, Theorem 5.3, P. 249].
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Lemma 3.2.5 ([16, Theorem 5.3, pg. 249]). Let p0 > 0, pk ∈ R be

arbitrary, and k ∈ N. The zero solution of

xn+1 − p0xn + pkxn−k = 0 (3.7)

is asymptotically stable if and only if |p0| < (k + 1)/k and

(i) |p0| − 1 < pk < (p20 + 1− 2|p0| cos(θ∗))1/2 if k is odd or

(ii) |pk − p0| < 1 and |pk| < (p20 + 1− 2|p0| cos(θ∗))1/2 if k is even,

where θ∗ is the solution of the equation

sin(kθ)

sin((k + 1)θ)
=

1

|p0|
, θ ∈

(
0,

π

k + 1

)
. (3.8)

However, we do not need the general form of Lemma 3.2.5, since in

our model 0 < pk < p0. When this is the case, the left inequality in both

(i) and (ii) becomes p0 < pk + 1, while the right inequalities coincide.

Corollary 3.2.5.1. Let 0 < pk < p0. Then (3.7) is asymptotically stable

if and only if the following two inequalities hold:

p0 < min

{
pk + 1,

k + 1

k

}
, pk <

√
p20 + 1− 2p0 cos(θ∗) , (3.9)

where θ∗ is the solution of (3.8).

A generalization of Lemma 3.2.6 is considered in [16, Theorem 5.2,

pg. 248].

Lemma 3.2.6 ([16, Theorem 5.2, pg. 248]). Let q ∈ (0, 2). The zero

solution of the equation

xn+1 = xn − qxn−k

is asymptotically stable for k = 1. It is asymptotically stable for k ≥ 2 if

and only if in addition

q < 2 cos

(
kπ

2k + 1

)
.
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After stating the above results, we are in a position to proceed to

analysis of sustainability under delayed harvesting.

3.3 Stability

First, we reduce the dynamics of a differential equation with delayed

impulsive harvesting to those of a difference equation.

Lemma 3.3.1. The solution of (3.1) on the interval t ∈ (nT, (n+ 1)T ),

n ∈ N0 is

N(t) =
Kce

r(t−nT )N(nT+)

Kc +N(nT+)(er(t−nT ) − 1)
. (3.10)

The solution of (3.1) with N(nT+) = xn at the point just after harvesting

t = nT satisfies the difference equation

xn+1 = max

{
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)
, 0

}
= max{f(xn, xn−k), 0}, n ∈ N0,

(3.11)

where x−k, ..., x0, are given by the initial data

xi = Ni, i = −k, ..., 0.

Proof. For t ∈ (nT, (n+1)T ), n ∈ N0, the impulsive model is non-delayed,

and the solution of the differential equation exists and is monotone on the

interval. To find the solution on t ∈ (nT, (n+1)T ) we solve the differential

equation and obtain

N(t) =
Kce

r(t−nT )N(nT+)

N(nT+)(er(t−nT ) − 1) +Kc

, t ∈ (nT, (n+ 1)T ).

The size of N(t) at the end of the nth time period and before harvesting

is given by,

N((n+ 1)T ) =
KcN(nT+)erT

Kc +N(nT+)(erT − 1)
.
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Using the value of N(t) before harvesting as a function of N(nT+), com-

bined with the definition of the impulsive condition in (3.1), gives

N((n+ 1)T+) = max

{
KcN(nT+)erT

Kc +N(nT+)(erT − 1)

− E KcN((n− k)T+)erT

Kc +N((n− k)T+)(erT − 1)
, 0

}
.

Letting N(nT+) = xn, which is the size of the population after a

harvesting event, we obtain difference equation (3.11) for n ∈ N0, with

prescribed initial conditions xi = N(iT+) = Ni for i = −k, ..., 0.

After the reduction to a difference equation, let us justify that stability

of (3.1) can be deduced from that of (3.11).

Lemma 3.3.2. x∗ is a locally asymptotically stable equilibrium of the dif-

ference equation (3.11) if and only if the solution to (3.1) with N(nT+) =

x∗, is locally asymptotically stable as well.

Proof. It is easy to see that asymptotic stability of a solution to (3.1)

implies asymptotic stability of the associated difference equation. First,

let us note that the function

g(a, x) =
Kcax

Kc + x(a− 1)
(3.12)

for a fixed a = ers > 1 and any non-negative x, has the derivative in

x

∂g(s, x)

∂x
=

K2
c e
rs

(Kc + x(ers − 1))2
,

∣∣∣∣∂g(s, x)

∂x

∣∣∣∣ ≤ ers ≤ erT .

Let us assume that the solution x∗ of (3.11) is stable. Then for any

ε > 0 there exists δ > 0 such that, once all |x−j − x∗| < δ, j = 0, . . . , k,
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we get |xn−x∗| < εe−rT . The solution N∗ corresponding to x∗ on interval

(nT, (n+ 1)T ) is N∗(nT+) = x∗ with

N∗(t) =
Kce

r(t−nT )x∗

x∗(er(t−nT ) − 1) +Kc

.

Following (3.10), we note that on (nT, (n + 1)T ), there exist ζ between

xn and x∗, s ∈ [0, T ] such that

|N(t)−N∗(t)| =
∣∣∣∣ Kce

r(t−nT )xn
xn(er(t−nT ) − 1) +Kc

− Kce
r(t−nT )x∗

x∗(er(t−nT ) − 1) +Kc

∣∣∣∣
=

∣∣∣∣∂g(s, ζ)

∂x

∣∣∣∣ |xn − x∗| ≤ erT εe−rT = ε,

thus N∗ is stable.

Finally, let the solution x∗ of (3.11) be locally asymptotically stable.

If n0 is such a number that |xn − x∗| < εe−rT for n ≥ n0, as above,

|N(t)−N∗(t)| ≤ erT εe−rT = ε, t ≥ nT, n ≥ n0,

thus N∗ is both stable and attractive, and therefore is locally asymptoti-

cally stable, which concludes the proof.

Next, let us describe solution bounds for a harvested population.

Lemma 3.3.3. Let E ∈ (0, 1). Then for any non-negative initial values

and x0 > 0 there exists n0 ∈ N such that the solution xn to (3.11) is in

[0, Kc] for n ≥ n0.

Proof. First, let us note that if for any n ∈ N0, xn ≤ Kc, then xn+1 ≤ Kc.

As we will see, this also holds true for the initial conditions. If at least

one xj ≤ Kc for j = −k, ...,−1 then at the latest xj+k+1 ≤ Kc, and the

sequence is less than Kc for all further n ≥ j + k + 1. Therefore we only
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have to exclude the case xn, xn−k > Kc for any n ≥ 0. Assuming n > k,

xn, xn−k > Kc, we get

xn+1 =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)

< xn − E
K2
c e
rT

Kc +Kc(erT − 1)

= xn − EKc,

thus after j =

[
xn −Kc

EKc

]
+ 1 steps, where [y] is the integer part of y, we

get xn+j ≤ Kc, which concludes the proof.

Difference equation (3.11) has the trivial equilibrium x∗ = 0, ∀rT > 0,

and when rT > − ln(1− E) it has a single positive equilibrium

x∗ =
((1− E)erT − 1)Kc

erT − 1
. (3.13)

If rT ≤ − ln(1 − E) then only the trivial equilibrium exists, and as we

will show in Lemma 3.3.4 the solutions of (3.11), and hence (3.1) will

inevitably go to extinction.

Lemma 3.3.4. If

rT ≤ − ln(1− E), (3.14)

all solutions of (3.11) tend to zero.

Proof. Let rT ≤ − ln(1 − E). By Lemma 3.3.3 we can simply consider

xn ∈ [0, Kc] for n large enough. If for some n ∈ N, xn = 0, xn+j = 0

∀j ∈ N in the solution of (3.11), implying convergence of the sequence to

zero, so we restrict ourselves to only considering positive sequences {xn}.

Let {xn} be an eventually monotone sequence, then it has a limit d.

If d = 0, we get that the sequence has converged to zero; if d > 0, we let
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n→∞ in

xn+1 =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)
.

This implies that d is a positive equilibrium solution of (3.11), which is

a contradiction when rT ≤ − ln(1− E). Thus, we have only to consider

sequences {xn} that are neither eventually non-increasing nor eventually

non-decreasing.

Before we handle this case, let us notice, first, that the function

g(a, x) :=
Kcxa

Kc + x(a− 1)
= Kc −

Kc(Kc − x)

Kc + x(a− 1)
(3.15)

is strictly increasing in both x and a for Kc > 0 and a > 1 (here a =

erT > 1 for rT > 0).

Let k = 1, since we are only considering sequences that are not non-

decreasing, this implies that there exists some n such that xn < xn−1.

This leads us to the following,

xn+1 =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−1e

rT

Kc + xn−1(erT − 1)

<
(1− E)Kcxne

rT

Kc + xn(erT − 1)

≤
(1− E)Kcxn

1
1−E

Kc + xn−k(
1

1−E − 1)

=
Kcxn

Kc + xn
E

1−E

< xn.

By induction we get that {xj} is a monotonically decreasing sequence

starting with j = n, and thus it converges to zero, as justified above.

Next, consider k ≥ 2. If there exists n such that

xn = min{xn−k, xn−k+1, . . . , xn−1, xn},
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then since g(erT , xn) ≤ g(erT , xn−k) and by (3.14), erT ≤ 1

1− E
, we get

xn+1 =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)

≤ (1− E)Kcxne
rT

Kc + xn(erT − 1)

≤
(1− E)Kcxn

1
1−E

Kc + xn−k(
1

1−E − 1)

=
Kcxn

Kc + xn
E

1−E

< xn

as above. Thus xn+1 < xn and

xn+1 = min{xn−k+1, xn−k+2, . . . , xn, xn+1},

which yields that xn+2 < xn+1. The same argument implies by induction

that {xn} is monotonically decreasing and thus converges to zero.

Finally, let us consider the case when

xn > min{xn−k, xn−k+1, . . . , xn−1}

for any n. Then there exists n0 ∈ N such that for any n ≥ n0

m := lim inf
n→∞

xn ≥ min{xn0−k, ..., xn0}. (3.16)

Introducing the function A through g as defined in (3.15) and using in-

equality (3.14), we get

A(x) := x− (1− E)g(erT , x)

≥ x− (1− E)g

(
1

1− E
, x

)
= x− Kcx

Kc + x E
1−E

=: a(x).

(3.17)
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Note that

a(x) = x

(
1− Kc

Kc + E
1−Ex

)
is monotone increasing for x ∈ [0, Kc] (as a product of two non-negative

increasing functions) from a(0) = 0 to a(Kc) = EKc > 0. Let us choose

ε > 0 such that a(x) > ε for x ∈ [m
2
, Kc]. From (3.17) we get A(x) > ε,

x ∈ [m
2
, Kc] as well. Define a positive δ ∈

(
0,
ε

4

)
satisfying

δ < min
{m

2
, Kc −

m

2

}
such that for any x, y ∈ [0, Kc], the inequality |x− y| ≤ δ implies

∣∣g (erT , x)− g (erT , y)∣∣ ≤ ε

2
.

Such δ > 0 exists, as g(erT , x) defined in (3.15) is continuous and thus

uniformly continuous for x ∈ [0, Kc].

By the definition of m in (3.16) for any δ > 0 there is n0 ∈ N such that

xn > m− δ
2
for any n ≥ n0− k. Now, we also know that for any n0 there

is n > n0 such that xn < m+ δ
2
. Based on this, we know that there must

exist somem− δ
2
< xn−k and some xn < m+ δ

2
, and since we have assumed

that xn > min{xn−k, xn−k+1, . . . , xn−1} then there must exist xn−k < xn

which means that for n sufficiently large m− δ
2
< xn−k < xn < m+ δ

2
and

thus for any δ > 0 there exists n0 ∈ N such that |xn − xn−k| < δ. Using
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this we obtain,

xn+1 = g
(
erT , xn

)
− Eg

(
erT , xn−k

)
= g

(
erT , xn

)
− Eg

(
erT , xn

)
+ E

[
g
(
erT , xn

)
− g

(
erT , xn−k

) ]
= xn − A(xn) + E

[
g
(
erT , xn

)
− g

(
erT , xn−k

) ]
≤ xn − a(xn) + E

∣∣∣∣g (erT , xn)− g (erT , xn−k) ∣∣∣∣
< xn − ε+ E

ε

2

< xn − ε+
ε

2

= xn −
ε

2

< xn − 2δ ≤ m+ δ − 2δ

= m− δ

< m− δ

2
,

which contradicts to the assumption that xn > m−δ/2 for any n ≥ n0−k.

Thus the scenario described by (3.16) is impossible, and the solution either

coincides with zero, starting at some xj, or tends to zero.

Theorem 3.3.5. If (3.14) holds, all solutions of (3.1) tend to zero.

Proof. By Lemma 3.14, if (3.14) holds then all solutions of the difference

equation tend to zero. This implies that N(nT+)→ 0, and by (3.10) the

solution of (3.1) N(t) on (nT, (n+ 1)T ) also tends to zero. Therefore all

solutions of (3.1) tend to zero.

By Theorem 3.3.5, it is sufficient to consider only the case

rT > − ln(1− E). (3.18)
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If this condition is not satisfied, all solutions tend to zero. Everywhere

below we assume that (3.18) holds.

Next, let us focus on the behaviour of the difference equation when

the harvesting is delayed by a single time period k = 1. This will lead

to the second-order difference equation, and allow us to apply necessary

and sufficient results such as Lemma 3.2.2 and 3.2.3 to obtain explicit

conditions for stability of the difference equation.

Lemma 3.3.6. Let k = 1. If E ∈ (0, 1/2] then there exists a positive

equilibrium of (3.11) which is locally asymptotically stable.

For E ∈ (1/2, 1), if

rT < − ln

(
(1− E)2

E

)
(3.19)

then the positive equilibrium of (3.11) is locally unstable, while if

rT > − ln

(
(1− E)2

E

)
, (3.20)

the positive equilibrium of (3.11) is locally asymptotically stable.

Proof. As rT > − ln(1 − E), there exists a unique positive equilibrium

x∗.

Let k = 1, then (3.11) has the form xn+1 = max{f(xn, xn−1), 0}.

Linearizing around x∗ we get the corresponding linearized equation,

un+1 = p0un − p1un−1

where,

p0 =
∂f

∂xn
(x∗, x∗) =

K2erT

(K + xn(erT − 1))2

∣∣∣∣
(x∗,x∗)

=
e−rT

(1− E)2

p1 = − ∂f

∂xn−1
(x∗, x∗) = E

K2erT

(K + xn−1(erT − 1))2

∣∣∣∣
(x∗,x∗)

=
Ee−rT

(1− E)2
.
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The characteristic equation of the linearized equation is λ2−p0λ+p1 = 0

and we wish to find explicit conditions describing when these roots lie

inside the unit disc.

By applying Lemma 3.2.2, for the roots of the characteristic equation

to lie inside the unit disc, we only require that p1 < 1 (the left inequality

p0 − 1 < p1 is automatically satisfied for all rT > − ln(1 − E)). This

inequality is equivalent to,

rT > − ln

(
(1− E)2

E

)
,

which coincides with (3.20).

If E ∈ (0, 1/2], then − ln((1 − E)2/E) ≤ − ln(1 − E), and therefore

the positive equilibrium x∗ is locally asymptotically stable as (3.20) holds

automatically when (3.18) holds.

If E ∈ (1/2, 1), (3.20) implies that the positive equilibrium x∗ exists

and is locally asymptotically stable.

Using Lemma 3.2.3, we analyze instability case. When E ∈ (1/2, 1), if

− ln(1−E) < rT ≤ − ln((1−E)2/E), the positive equilibrium exists and

the roots of the characteristic equation satisfy max{|λ1|, |λ2|} ≥ 1. By

Lemma 3.2.3 we can show that a root of the characteristic equation has

|λ| = 1 if and only if rT = − ln((1 − E)2/E) on this interval. Therefore

for − ln(1 − E) < rT < − ln((1 − E)2/E) which corresponds to (3.19),

max{|λ1|, |λ2|} > 1 and by linearization the equilibrium is unstable.

Lemmata 3.3.6 and 3.3.2 immediately imply
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Theorem 3.3.7. Let k=1. If rT > − ln

(
(1−E)2

E

)
, then there exists a

unique positive periodic solution N∗(t) of (3.1) with

N∗(nT+) = x∗ =
((1− E)erT − 1)Kc

erT − 1
, (3.21)

and this solution is locally asymptotically stable.

While Theorem 3.3.7 is similar in many ways to the result of [47] cited

in Lemma 3.2.1, here we do not observe attractivity of the solution for all

initial conditions, implying that the solution is attractive but not globally

attractive, as is illustrate in Figure 3.5

Remark 1. Even for k = 1 and any x−1, there is a domain of initial

values x0 guaranteeing immediate extinction. Since, g(x, erT ) as defined

in (3.12) is strictly increasing in both arguments, g(erT , 0) = 0, there are

values of x0 < x−1 such that

Kcx0e
rT

Kc + x0(erT − 1)
≤ EKcx−1e

rT

Kc + x−1(erT − 1)
,

leading to x1 = x2 = · · · = 0.

The following condition is more general than Lemma 3.3.6 in that it

is valid for all k ∈ N. However it will in general be difficult to use it to

obtain explicit conditions for stability like the ones in Lemma 3.3.6.

Lemma 3.3.8. The positive equilibrium x∗ of difference equation (3.11)

exists. It is asymptotically stable if and only if both inequalities hold

e−rT

(1− E)2
<
k + 1

k

cos(θ∗) <
e−rT (1 + E)

2(1− E)
+

(1− E)2erT

2
,

(3.22)
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where θ∗ is a solution of

sin(kθ)

sin((k + 1)θ)
= (1− E)2erT , θ ∈

(
0,

π

k + 1

)
. (3.23)

Proof. As (3.18) holds, there exists a positive equilibrium x∗ of (3.11).

Linearizing the difference equation xn+1 = f(xn, xn−k) as given in (3.11)

around the positive equilibrium x∗ given in (3.13), we get the correspond-

ing linearized equation

un+1 = p0un − pkun−k, p0 =
e−rT

(1− E)2
, pk =

Ee−rT

(1− E)2
. (3.24)

By Corollary 3.2.5.1, the zero solution of the linearized equation is asymp-

totically stable if and only if the inequalities in (3.9) hold, or equivalently,

e−rT

(1− E)2
<
k + 1

k
,

Ee−rT

(1− E)2
<

√
e−2rT

(1− E)4
+ 1− 2

e−rT

(1− E)2
cos(θ∗).

Note that the inequality p0 < pk + 1 ⇔ e−rT < Ee−rT + (1 − E)2 is

equivalent to e−rT < 1 − E, which is satisfied due to (3.18). Thus the

first inequality is the same as in (3.22), while computing the squares in

the second gives

E2e−2rT

(1− E)4
<

e−2rT

(1− E)4
+ 1− 2e−rT

(1− E)2
cos(θ∗).

After rearranging, the desired result is acquired.

Applied to (3.1), Lemma 3.3.8 immediately gives a sharp asymptotic

stability result.

Theorem 3.3.9. There exists a unique positive periodic solution N∗(t)

of (3.1) given by (3.21) which is locally asymptotically stable if and only

if both inequalities in (3.22) hold, where θ∗ is a solution of (3.23).
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The following stability condition is delay-independent, but it is only

sufficient, meaning there may still exist (and indeed do exist) values of

rT < ln(E + 1)− 2 ln(1−E) such that the equilibrium is locally asymp-

totically stable.

Theorem 3.3.10. If

rT > ln(E + 1)− 2 ln(1− E) (3.25)

then the positive periodic solution N∗(t) of (3.1) exists as given in (3.21),

and this solution is locally asymptotically stable.

Proof. If (3.25) holds, then so does (3.18) and the positive equilibrium of

(3.11) exists. Reducing (3.1) to difference equation (3.11), we once again

linearize (3.11) around x∗ to obtain (3.24), and require

|p0|+ |pk| =
1 + E

(1− E)2
e−rT < 1.

By Lemma 3.2.4, if the above inequality which is equivalent to (3.25)

holds, then the zero solution of the linearized equation is asymptoti-

cally stable. Thus if (3.25) holds, x∗ is locally asymptotically stable. By

Lemma 3.3.2 the solution (3.21) is locally asymptotically stable if (3.25)

holds.

3.4 MSY

Next, we proceed with the analysis of a maximum yield (MY) and a

maximum sustainable yield (MSY). We recall that a yield is said to be

sustainable if it corresponds to a solution that is at least locally asymp-

totically stable.
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Lemma 3.4.1. The yield of (3.1) is associated to solution (3.21) and is

given by

Y (E) =
KcE

(1− E)T

(
(1− E)erT − 1

erT − 1

)
. (3.26)

This yield is an increasing function for E ∈ (0, Eopt) and decreasing for

E ∈ (Eopt, 1).

Proof. For an optimal T -periodic solution of (3.1), we get N∗(nT+) =

N∗((n+ 1)T+) = x∗ where (3.21) holds. Then the associated yield is

Y (E) =
EN(nT )

T

=
E

1− E
· N(nT+)

T

=
E

1− E
· Kc

T

(
(1− E)erT − 1

erT − 1

)
.

Its derivative in E

Y ′(E) =
Kc

T (erT − 1)

d

dE

[
EerT + 1− 1

1− E

]
=

Kc

T (erT − 1)

[
erT − 1

(1− E)2

]
,

satisfies Y ′(E) > 0 for (1 − E)2 > e−rT , which is equivalent to E ∈

(0, Eopt), and Y ′(E) < 0 for E ∈ (Eopt, 1).

Lemma 3.4.2. The maximal yield (MY) for the delayed impulsive har-

vesting model (3.1) k ∈ N is equal to the MY for the non-delayed impul-

sive harvesting model (3.5), with k = 0. The optimal harvesting effort is

Eopt = 1− e−rT/2 and the MY is associated to the solution (3.6).

Proof. By the proof of Lemma 3.4.1 the maximum yield is attained at

E = Eopt and has the value (yield per time)

MYdelayed = Y (Eopt) =
Kc

T

(
erT/2 − 1

erT/2 + 1

)
= MYnon−delayed.
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withMYnon−delayed given in (3.5). In addition, the periodic solution (3.21)

when E = Eopt becomes N∗(nT+) =
Kc

erT/2 + 1
, as in (3.6).

Theorem 3.4.3. The MY of (3.1) is a MSY if either k = 1 or k ≥ 2

and

rT < −2 ln

(
1− 2 cos

(
kπ

2k + 1

))
. (3.27)

Proof. By Lemma 3.3.1 the solutions to (3.1) satisfy (3.11). Linearizing

the difference equation xn+1 = f(xn, xn−k) around the positive equilib-

rium x∗ given in (3.13) with

f(xn, xn−k) =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)
,

we get

un+1 =
e−rT

(1− E)2
un −

Ee−rT

(1− E)2
un−k.

When E = Eopt by Lemma 3.4.2, the yield is maximal and the linearized

difference equation becomes

un+1 = un − (1− e−rT/2)un−k

with the equilibrium (3.6). In addition (3.18) is equivalent to rT > 0.

Then by Lemma 3.2.6, for k = 1 the zero solution of the linearized equa-

tion is asymptotically stable for any rT > 0. For k ≥ 2 the zero solution

of the linearized equation is locally asymptotically stable if and only if

1− e−rT/2 < 2 cos

(
kπ

2k + 1

)
which is equivalent to (3.27). Finally, by Lemma 3.3.2, a solution of (3.1)

satisfying (3.6) is locally asymptotically stable, once (3.27) is satisfied.

By definition, a unique positive periodic solution N∗(t) given by (3.6), for

either k = 1 or both k ≥ 2 and rT satisfying (3.27), leads to MSY.
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Unlike the non-delayed case, there is a possibility that the maximum

yield is not sustainable. If E is different from Eopt, then to avoid extinction

the choice of harvesting efforts should still be among those leading to a

sustainable yield. The set of such efforts is non-empty, as the following

statement guarantees.

Theorem 3.4.4. Let k ≥ 2 and

E∗ =
2 + e−rT −

√
e−rT (e−rT + 8)

2
. (3.28)

Then E∗ < Eopt, and for any E ∈ (0, E∗) the yield as given in (3.26) is

sustainable.

Proof. First, let us note that, first, E∗ defined in (3.28) is positive and,

as 4e−rT/2 > 4e−rT , we have
√
e−rT (e−rT + 8) > e−rT + 2e−rT/2 leading

to E∗ < Eopt.

For a fixed E ∈ (0, 1), we get a solution (3.21) N(nT+) = x∗, cor-

responding to a yield as given in (3.26). As justified earlier, Y (E) is an

increasing function of E for E ∈ (0, Eopt).

By Theorem 3.3.10 and Lemma 3.3.2 the solution is locally asymp-

totically stable for any k if erT >
E + 1

(1− E)2
, which is equivalent to E2 −

(2 + e−rT )E + 1 − e−rT > 0. The quadratic inequality is also satisfied if

E ∈ (0, E∗), meaning that for any E ∈ (0, E∗) the yield is sustainable,

which concludes the proof.

Lemma 3.4.5. If for some choice of Es ∈ (0, Eopt] the associated yield is

sustainable, then for any E ∈ (0, Es] the yield associated with E is also

sustainable.
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Proof. If the yield associated with Es is sustainable then by definition

this implies that the associated solution with N∗(nT+) = x∗ as given by

(3.21) is locally asymptotically stable.

By Lemma 3.3.8 this implies that both inequalities in (3.22) must hold

for Es, where θ∗ is a root of (3.23).

Since for any E ≤ Eopt,

e−rT

(1− E)2
≤ e−rT

(1− Eopt)2
= 1 <

k + 1

k
,

it is clear that the first inequality in (3.22) is satisfied for any E ∈ (0, Es].

Thus we can turn our attention to the second inequality. Denote the right

hand side of the second inequality in (3.22) for a fixed rT as h1

h1(E) :=
(1 + E)e−rT

2(1− E)
+

(1− E)2erT

2
for some fixed rT (3.29)

and the left hand side in (3.23) as

h2(θ(E)) :=
sin(kθ(E))

sin((k + 1)θ(E))
, θ ∈ I = (0, π/(k + 1)). (3.30)

We have from (3.23),

h′2(θ(E))
dθ

dE
=

d

dE
[(1− E)2erT ] = −2(1− E)erT < 0.

Also,

h′2(θ(E)) =
k cos(kθ) sin((k + 1)θ)− (k + 1) cos((k + 1)θ) sin(kθ)

sin((k + 1)θ)2

= k

(
sin((k + 1)θ) cos(kθ)− sin(kθ) cos((k + 1)θ)

sin((k + 1)θ)2

)
− cos((k + 1)θ) sin(kθ)

sin((k + 1)θ)2

= k

(
sin(θ)

sin((k + 1)θ)2

)
− cos((k + 1)θ) sin(kθ)

sin((k + 1)θ)2

=
sin(θ)

sin((k + 1)θ)2

(
k − cos((k + 1)θ) sin(kθ)

sin(θ)

)
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Now, sin(θ)/ sin((k + 1)θ)2 > 0 ∀θ ∈ I, and we will show that k sin(θ)−

cos((k+1)θ) sin(kθ) > 0 leading to h′2(θ(E)) > 0. Since cos((k+1)θ) ≤ 1

then

k sin(θ)− cos((k + 1)θ) sin(kθ) > k sin(θ)− sin(kθ) := H1(θ).

Now H ′1(θ) = k(cos(θ) − cos(kθ)) > 0 since cos(θ) is decreasing for all

θ ∈ (0, π) and for θ ∈ I both θ, kθ ∈ (0, π). Thus since H1(0) = 0, then

H1(θ) > 0 and k sin(θ)− cos((k + 1)θ) sin(kθ) > 0 for θ ∈ I.

Since h′2(θ(E)) > 0, the inequality h′2(θ(E))
dθ

dE
< 0 implies

dθ

dE
< 0.

Thus θ(E) decreases in E and cos(θ(E)) increases in E. Further we can

show that,

h′1(E) =
e−rT

(1− E)2
− (1− E)erT < 0

for E < 1− e−2rT/3. Since we have assumed that E ≤ Eopt < 1− e−2rT/3

then h′1(E) < 0 and we can see h1(E) decreases in E.

Since the yield associated with Es is sustainable, we have

cos(θ(Es)) < h1(Es).

Since cos(θ(E)) decreases and h1(E) increases for decreasing E, then for

any E ≤ Es

cos(θ(E)) < h1(E)

and the second inequality in (3.22) is satisfied.

Since both inequalities in (3.22) are satisfied for E ≤ Es, the solu-

tion associated to E is locally asymptotically stable and thus the yield is

sustainable.

Corollary 3.4.5.1. Let k = 1, then for any E ∈ (0, Eopt] the associated

yield is sustainable.
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Proof. Follows immediately from Lemma 3.4.5, and Theorem 3.4.3.

Corollary 3.4.5.2. Let k ≥ 2, and rT < −2 ln

(
1 − 2 cos

(
kπ

2k+1

))
.

Then for any E ∈ (0, Eopt] the associated yield is sustainable.

Proof. Follows immediately from Lemma 3.4.5 and Theorem 3.4.3.

Theorem 3.4.6 determines the maximum bound on E which guarantees

a sustainable yield when rT does not satisfy (3.27).

Theorem 3.4.6. Let k ≥ 2, and rT ≥ −2 ln

(
1− 2 cos

(
kπ

2k+1

))
. Then

there exists E∗∗ ∈ (0, Eopt] and θ∗∗ ∈
(

0, π
k+1

)
such that (E∗∗, θ∗∗) is a

solution of 
cos(θ) = (1+E)e−rT

2(1−E)
+ (1−E)2erT

2

sin(kθ)

sin((k + 1)θ)
= (1− E)2erT .

(3.31)

For any E ∈ (0, E∗∗) the yield is sustainable, while for E ∈ [E∗∗, 1) the

yield is unsustainable.

Proof. Let us prove that E∗∗ exists. By Theorem 3.4.3 when k ≥ 2,

rT ≥ −2 ln

(
1−2 cos

(
kπ

2k+1

))
and E = Eopt then the solution associated

to the yield is unstable and cos(θ(Eopt)) ≥ h1(Eopt). On the other hand,

when E → 0+ we get in (3.22) cos(θ(0+)) < cosh(rT ) = h1(0
+). Since

cos(θ(0+)) < h1(0
+) and cos(θ(Eopt)) ≥ h1(Eopt) then by the continuity

of cos(θ(E)) and the Intermediate Value Theorem, there exists a solution

(θ(E∗∗), E∗∗) of (3.31) with E∗∗ ∈ (0, Eopt]

Since by Lemma 3.4.1 the yield Y (E) is increasing for E ∈ (0, Eopt],

then Y (E∗∗) is maximal among the possible sustainable yields, although

because it does not satisfy (3.22), it itself is not sustainable.
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However for E = (E∗∗)− = limE→(E∗∗)− E, by the argument that as E

decreases, cos(θ(E)) decreases and h1(E) increases, (E∗∗)− will satisfy the

conditions in (3.22) and the associated yield will be sustainable. Then by

Lemma 3.4.5, for any E ∈ (0, E∗∗) the associated yield will be sustainable.

3.5 Numerical Simulations and Discussion

Let us illustrate sustainability of the optimal yield with simulations.

0 5 10 15 20 25

t

0

50

100

150

200

250

300

350

400

450

N
(t

)

Survival of delayed impulsive harvest: k=2

Solution with N(-2T) = 200, N(-T) = 200, N(0) = 180
Optimal Solution

0 5 10 15 20 25

t

0

50

100

150

200

250

300

350

400

450

N
(t

)
Extinction of delayed impulsive harvest: k=2

Solution with N(-2T) = 140, N(-T) = 140, N(0) = 110
Optimal Solution

Figure 3.1: Solution to (3.1) with k = 2, Kc = 500, and E = Eopt =
1 − e−rT/2. The figure on the left shows the optimal solution to (3.1)
(red), and the solution to (3.1) with r = 1, T = 1 and initial conditions
N(−2T ) = 200, N(−T ) = 200, N(0) = 180 (black). Since 0 < rT <
1.9248, the optimal solution is locally asymptotically stable. The figure
on the right shows the optimal solution to (3.1) (red), and the solution
to (3.1) with r = 2.1, T = 1 and initial conditions N(−2T ) = 140,
N(−T ) = 140, N(0) = 110 (black). Since rT > 1.9248, the optimal
solution is unstable.

In Fig. 3.1, stable and unstable optimal solutions to (3.1) with k = 2

are compared. Solutions were computed until either the relative error of

N((n+1)T+) and N(nT+) was less than 10−4, n = 100 had been reached,
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or the population reached extinction i.e. N(nT+) = 0. See the appendix,

OptimalImpulsiveHarvest.m for MATLAB code.

Since k = 2 > 1, Theorem 3.4.3 states that the optimal solution is

locally asymptotically stable if and only if 0 < rT < 1.9248. The left

figure has rT = 1, hence by Theorem 3.4.3 the optimal solution (3.6) is

locally asymptotically stable. Therefore the solution N(t) converges to

the optimal positive periodic solution (3.6), and is said to survive. The

figure on the right has rT = 2.1, thus by Theorem 3.4.3 the optimal

solution (3.6) is unstable. Therefore, the solution N(t) goes to zero, and

the population is said to be extinct at time t = 25.
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Figure 3.2: Solutions to (3.1) k = 1, r = 1.37, T = 1, Kc = 307.16,
Eopt ≈ 0.49. The positive T -periodic solution with N∗(nT+) = 102.78
is locally asymptotically stable. The dots in this figure show whether
the population survives (green) or goes extinct (black) given the initial
conditions.

In the above figure, each dot represents a solution to (3.1)( k = 1),

with a set of initial values N(0) and N(−T ). For each solution, both
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N(0) and N(−T ) were chosen from a uniform distribution of numbers

in [0, 2Kc] = [0, 614.3218]. If after 10500 iterations N(nT+) was within

±10 of the positive equilibrium solution N∗(nT+) = 102.7816, then the

population was said to have survived, and the dot was coloured green.

If at any point within the 10500 iterations the size of the population af-

ter harvesting was less than 10−3 then the population was said to have

gone to extinction, and the dot was coloured black. See the appendix,

montecarlo.m for MATLAB code. By Theorem 3.4.3 (see also Theorem

3.4.4) the positive equilibrium solution with N∗(nT+) = 102.7816 is lo-

cally asymptotically stable. Indeed for a wide range of initial values the

population does converge to the equilibrium solution and the population

survives. However for a range of initial values far from the positive equi-

librium the population does not survive and goes to extinction. This

highlights the lack of global attractivity of the equilibrium even for the

optimal harvesting model which is locally asymptotically stable for all

rT > 0.

We have shown that asymptotic stability of the difference equation

which corresponds to the optimal solution of impulsive model (3.1) is k-

dependent. In fact, we can show that as k → ∞, the range of possible

rT values that allow a locally asymptotically stable equilibrium shrinks.

The upper bound of the range of values plotted in Fig. 3.3, is

b(k) = −2 ln

(
1− 2 cos

(
πk

2k + 1

))
.

Conclusion

The results of this chapter can be summarized as follows:
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Figure 3.3: The function b(k) is monotonically decreasing since b′(k) < 0
for k > 1, and lim

k→∞
b(k) = 0.

1. With delayed impulsive harvesting, positivity of a solution with non-

negative non-trivial initial conditions is not guaranteed, extinction

in finite time is possible.

2. The delay does not influence the maximum yield (optimality) but

can influence its sustainability.

3. With sharp local stability conditions, the optimal solution associ-

ated with the maximum yield is locally asymptotically stable in

both non-delay [47] and one-step-delay cases. For longer delays,

there are bounds on rT to attain MSY: the longer the delay is, the

more frequent impulses should be.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis we have shown that the inclusion of a delay in the harvesting

terms of both continuous and impulsive harvesting models does not affect

the maximum yield but can highly affect sustainability. In general, we

observe that sustainability of harvesting is dependent on the delay.

Chapter 2 focused on continuous models of delayed harvesting. There

we derived sufficient conditions for the stability of positive equilibriums for

a general harvesting model under appropriate assumptions on growth and

harvesting functions F, h. We then derived the MSY for the logistic and

Gompertz models and found that while the MY of the delayed models

were equal to the MSY of the models with no delay, the sustainability

was guaranteed only under additional assumptions on model parameters,

unlike the model with no delay. For example, the MSY of the logistic

equation was found to only be valid when 0 ≤ τ < π/r, or equivalently

0 ≤ r < π/τ . This implies that as the delay increases, the range of
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possible parameters r which will give a sustainable yield will become

smaller and smaller, leading to a higher chance that the MY will be

unsustainable. This is similar to what is observed later on in Chapter 3

where as k increases the range of sustainable parameters rT decreases.

Further in this chapter, we looked at the oscillation of solutions of the

logistic equation with delayed harvesting, and saw that the non-existence

of real roots of the characteristic equation did not immediately imply

oscillation of solutions around the positive equilibrium.

In Chapter 3 we considered a logistic equation subject to delayed im-

pulsive harvesting. We saw that for this model, when model parameters

satisfy rT ≤ − ln(1 − E), or equivalently E ≥ 1 − e−rT , then solutions

of the delayed impulsive harvesting model go to 0. This is particularly

interesting since this extinction condition is completely independent of

the delay. Then we derived a MSY for the model and saw that like the

continuous model, the sustainability of the MY was subject to additional

conditions on model parameters. In particular, the conditions were delay

dependent, and as was seen in Figure 3.3 the upper bound of sustainable

rT values was monotonically decreasing for increasing k. This is signif-

icant since it shows that the delays in information should be taken into

consideration when making harvesting decisions. If a delay is present in

population data, but harvesting decisions are made using an MSY from

the non-delayed model, then the population could go to extinction unex-

pectedly.

Now let us consider what happens when rT is outside of the bounds

for MY sustainability. When this is the case, there is two main courses

of action which would maintain the sustainability of harvesting. The first
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is that the time between harvesting events T should be reduced until rT

is within (3.27). However, this assumes an ability to change T , which

may not be possible if T represents a seasonal harvesting event. The

second option is that the harvesting effort should be reduced to below E∗∗

as given in Theorem 3.4.6. This would give a yield that is sustainable,

although care should be taken to not meet or exceed E∗∗ since yields

associated with E ≥ E∗∗ will not be sustainable.

Finally in Chapter 3 we saw that the positive periodic solutions, which

correspond to persistence of the population, are not globally attracting

for all initial values. In particular if the delayed population estimate is

very high and the true population size very low, then immediate extinc-

tion of the population can occur. This means that attention needs to

be paid to historical data and external factors when making harvesting

decisions. For example, if past historical data indicates a high popula-

tion, but directly before harvesting an adverse event such as an epidemic

is observed to destroy a large proportion of the stock, then harvesting

should be reduced below the optimal levels found in this thesis or com-

pletely stopped to avoid immediate extinction. While specific ranges of

initial values which guarantee persistence of the solution were not ob-

tained, the method shown in Figure 3.5 allows for initial examination of

possible ranges.

4.2 Future Work

Chapter 2 concluded with a brief discussion on when we could guaran-

tee oscillation of the logistic equation with delayed continuous harvesting
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(2.3). It was noted that because this non-linear equation did not fulfill

the hypotheses of the linearized oscillation Theorems found in [18, 19],

then oscillation of an associated linear equation did not necessarily imply

oscillation of the non-linear equation (see Figure 2.4). While we were able

to derive some results, a full characterization of conditions for the oscil-

lation of solutions has yet to be obtained. As we have seen in the proof,

the lower bound EKc

r
plays an important role in the oscillation conditions

for this equation. By this fact, and by further numerical simulations,

we consider it likely that if φ(0) > EKc

r
, and the characteristic equation

(2.16) has no real roots, then solutions of (2.3) will oscillate around N∗.

In Chapter 3, it was noted that the positive periodic solution of the de-

layed impulsive harvesting model is not globally attracting for all initial

values. Thus, as was illustrated in Figure 3.5, even though the solu-

tion N(t) may be locally asymptotically stable (and the associated yield

sustainable), there exists a range of initial values where the population

goes to extinction. Indeed we have shown that for initial values where

the delayed estimate of the population size is very high, and the cur-

rent population size is very low we can have immediate extinction of the

population. It would be advantageous to obtain ranges of initial values

for which the positive solution is guaranteed to be globally attracting.

Following [25], a good strategy for approaching this problem is to only

consider domains where the right hand side of the difference equation is

either monotonically increasing or decreasing in all of its arguments. In

addition, we note that the domains obtained by the method for Figure

3.5, change with changing rT,Kc values, which implies that the domain

of attractive initial values will depend in some way on rT,Kc.
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In the delayed impulsive harvesting model, it was assumed that all

harvesting delays were a multiple k ∈ N of the time period T . It would

be useful to extend this research to more general impulse delays, such as

S-type delays which encompass both discrete and distributed delays, and

were used in [40]. This would allow investigation of harvesting which is

dependent on population data collected at a time that is not a multiple

of T , or where the timestamps of the population data are non-constant

and are chosen from a probability distribution.

The approach of [7] where a deduction which does not contribute to

the yield is incorporated in each impulsive harvest, can also be incorpo-

rated into the delayed impulsive harvesting model. This deduction could

represent the presence of bycatch mortality, where harvesting is associ-

ated with some harm to the population. It is expected that like the results

seen in Chapters 2,3, a harvesting delay will not change the maximum

yield in the presence of bycatch mortality. Whether or not the maximum

yield will still be sustainable is an open question.

Another extension would be including a delay during times of contin-

uous dynamics controlled by the DE. Doing so would change this problem

from a logistic, to a Hutchinson’s equation type model
dN
dt

= rN(t)

(
1− N(t−ρ)

Kc

)
, t 6= nT

N(nT+) = max{N(nT )− EN((n− k)T ), 0}, t = nT

for some ρ > 0 and initial conditionsN(t) = φ(t) for t ∈ [−max{τ, kT}, 0].

Unless ρ = jT for some j ∈ N, it is unlikely that the solution to the DE

will be able to be computed analytically on some interval. This would

mean that we would not be able to find a corresponding difference equa-
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tion, and would require a different method of analysis. Some options

could include reducing the delayed impulsive equation to a system of

non-delayed impulsive equations as in [12] or other methods found in

[31]. Again we anticipate that the maximum yield will not change. But

the additional delay is expected to further contribute to instability of

positive periodic solutions.

Finally, in Chapter 1 it was mentioned that it is not realistic to assume

that species exist in complete isolation from one another. While single

species harvesting policies are still useful, it is necessary to expand our

thinking and model food chains and ecosystems since applying a single

species policy to a multi-species ecosystem could cause extinction of one

or more of the individual species [28, 30]. Some work has been done to

find optimal harvesting policies for non-delayed impulsive systems with

populations which interact with one another [27, 41]. In our context, this

would mean investigating the effect of delayed impulses on a multi-level

predator-prey model, and deriving an optimal harvesting policy.
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Appendix

MATLAB Code - Continuous Delayed

Harvesting

Conditions for Multiple Equilibriums

MultipleEquils.m

1 % Script MultipleEquils.m

2 %

3 % This script produces Figure 2.1 which illustrates how

4 % for F,h under the assumptions H1, H2 (without H3,H4)

5 % it is possible to have multiple positive equilibriums,

6 % where equilibriums are solutions of F(N) = h(N)

7 %

8 % F(N) = 0.6*N*(log(20/N))

9 % h(N) = sin(N) + 1.11*N

10 %

11 % Plot F

12 fplot(@(N) 0.6*N*(log(20/N)),[0 20],...

13 'r','DisplayName','F(N) = 0.6 N ln(20/N)')

14 hold on
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15 % Plot h

16 fplot(@(N) sin(N) + 1.11*N,[0 20],...

17 'b','DisplayName','h(N) = sin(N) + 1.11N')

18 title('$F,h$ satisfying H1, H2, ...

$F^{\prime}(0)>h^{\prime}(0)$, with multiple ...

equilibriums','Interpreter','latex')

19 xlabel('$N$','Interpreter','latex')

20 ylabel('$F(N)/h(N)$','Interpreter','latex')

21 % Structure to hold the zeros of F(N) = h(N)

22 x=zeros(1,3);

23 y=zeros(1,3);

24 % Use fzero to find the 3 zeros of F(N) = h(N)

25 x(1) = fzero(@(N) 0.6*N*(log(20/N)) − (sin(N) + ...

1.11*N),[0.5,0.7]);

26 x(2) = fzero(@(N) 0.6*N*(log(20/N)) − (sin(N) + ...

1.11*N),[3,3.4]);

27 x(3) = fzero(@(N) 0.6*N*(log(20/N)) − (sin(N) + ...

1.11*N),[4.2,4.7]);

28 y(1) = 0.6*x(1)*(log(20/x(1)));

29 y(2) = 0.6*x(2)*(log(20/x(2)));

30 y(3) = 0.6*x(3)*(log(20/x(3)));

31 % Plot solutions of F(N) = h(N)

32 scatter(x,y, 'ok','filled','DisplayName','Solutions to ...

$ F(N) = h(N)$')

33 legend('Interpreter','latex')

34 ylim([0 10])
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Stable and Unstable Solutions with Logistic Growth

Rate

LogisticStable.m

1 % function LogisticStable

2 %

3 % This function produces a graph which shows a solution

4 % of the logistic equation with delayed harvesting

5 % converging to the positive equilibrium as seen

6 % in Figure 2.2.

7 %

8 % Model parameters are chosen so that harvesting is optimal

9 % the equilibrium is locally asymptotically stable

10 % according to conditions derived in Theorem 2.3.5.

11 %

12 % Note that there is no input or output of this

13 % function. This function simply displays a graph.

14 %

15 % Input:

16 %

17 % Output:

18 %

19 function LogisticStable

20 % Get model parameters

21 [r,E,K,lag]=params;

22 % Solve the solution from t = 0 to t = 120 using dde23

23 sol1 = dde23(@rhs,lag,@hist,[0, 120]);

24 l = length(sol1.y);

25 x = zeros(1,l);
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26 y = zeros(1,l);

27 x = sol1.x;

28 y = sol1.y;

29 % If population has hit zero at some time then the

30 % population is zero for all further times

31 for i=1:l

32 if y(i)≤0

33 y(i) = 0;

34 end

35 end

36 figure;

37 % Plot solution of logistic equation with delayed

38 % harvesting

39 plot(x,y,'−r','Linewidth',1,'DisplayName','Solution ...

with inital data $\phi(t)=130+30H(t+0.5)$');

40 title('Survival of the logistic equation with delayed ...

harvest, \tau = 2.4','FontSize',16);

41 xlabel('t','FontSize',14);

42 ylabel('N(t)','FontSize',14);

43 hold on

44 % Plot equilibrium line N^* = K/2

45 yline(K/2,'−−k','LineWidth',1,'DisplayName','$N^*$');

46 legend('Interpreter','Latex','Location','Southeast');

47 xlim([0,120])

48 ylim([0,200])

49 hold off

50

51 % function s = hist(t)

52 %

53 % Initial history function − needed for dde23

54 % See dde23 for more documentation about what is needed in
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55 % this history function. See ddex1, ddex2 for more

56 % examples.

57 %

58 % Input:

59 % t − time

60 %

61 % Output:

62 % s − value of the initial data at t

63 %

64 function s = hist(t)

65 s = 130 + heaviside(t+0.5)*(160−130);

66

67 % function dNdt = rhs(t,N,Z)

68 %

69 % Function defining the right hand side of the DDE

70 % See dde23 for more documentation about what is needed in

71 % the DE function. See ddex1, ddex2 for more examples.

72 %

73 % Input:

74 % t − time

75 % N − solution

76 % Z − approximates the value of the solution at t = t−tau

77 %

78 % Output:

79 % dNdt − change in population size at time t

80 function dNdt = rhs(t,N,Z)

81 [r,E,K,lag]=params;

82 Nlag = Z(:,1);

83 dNdt = (r)*N*(1−(N/(K))) − (E)*Nlag;

84

85 % function [r,E,K,tau] = params
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86 %

87 % Manually sets model parameters.

88 %

89 % Input:

90 %

91 % Output:

92 % r − intrinsic growth rate

93 % E − harvesting effort

94 % tau − harvesting delay

95 % K − carrying capacity

96 function [r,E,K,tau] = params

97 r = 1.2;

98 E = r/2; % optimal harvesting effort

99 % 2.4 < pi/1.2 thus the equilibrium is locally

100 % asymptotically stable

101 tau = 2.4;

102 K = 300;

LogisticUnStable.m

1 % function LogisticUnStable

2 %

3 % This function produces a graph which shows a solution

4 % of the logistic equation with delayed harvesting going

5 % to zero as seen in Figure 2.2.

6 %

7 % Model parameters are chosen so that harvesting is

8 % optimal the equilibrium is unstable according to

9 % conditions derived in Theorem 2.3.5.

10 % Note that there is no input or output of this function.

11 % This function simply displays a graph.
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12 %

13 % Input:

14 %

15 % Output:

16 %

17 function LogisticUnStable

18 % Get model parameters

19 [r,E,K,lag]=params;

20 % Solve the solution from t = 0 to t = 60 using dde23

21 sol1 = dde23(@rhs,lag,@hist,[0, 60]);

22 l = length(sol1.y);

23 x = zeros(1,l);

24 y = zeros(1,l);

25 x = sol1.x;

26 y = sol1.y;

27 % If population has hit zero at some time then the

28 % population is zero for all further times

29 for i=1:l

30 if y(i)≤0

31 y(i) = 0;

32 end

33 end

34 figure;

35 % Plot solution of logistic equation with

36 % delayed harvesting

37 plot(x,y,'−r','Linewidth',1,'DisplayName','Solution ...

with inital data $\phi(t)=130+30H(t+0.5)$');

38 title('Extinction of the logistic equation with delayed ...

harvest, \tau = 2.7','FontSize',16);

39 xlabel('t','FontSize',14);

40 ylabel('N(t)','FontSize',14);

85



41 hold on

42 % Plot equilibrium line N^* = K/2

43 yline(K/2,'−−k','LineWidth',1,'DisplayName','$N^*$');

44 legend('Interpreter','Latex','Location','Southwest');

45 xlim([0,54])

46 ylim([0,220])

47 hold off

48

49 % function s = hist(t)

50 %

51 % Initial history function

52 % See dde23 for more documentation about what is needed

53 % in this history function. See ddex1, ddex2 for more

54 % examples.

55 %

56 % Input:

57 % t − time

58 %

59 % Output:

60 % s − value of the initial data at t

61 %

62 function s = hist(t)

63 s = 130 + heaviside(t+0.5)*(160−130);

64

65 % function dNdt = rhs(t,N,Z)

66 %

67 % Function defining the right hand side of the DDE

68 % See dde23 for more documentation about what is

69 % needed in the DE function. See ddex1, ddex2

70 % for more examples.

71 %
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72 % Input:

73 % t − time

74 % N − solution

75 % Z − approximates the value of the

76 % solution with at t = t−tau

77 %

78 % Output:

79 % dNdt − change in population size at time t

80 function dNdt = rhs(t,N,Z)

81 [r,E,K,lag]=params;

82 Nlag = Z(:,1);

83 dNdt = (r)*N*(1−(N/(K))) − (E)*Nlag;

84

85 % function [r,E,K,tau] = params

86 %

87 % Manually sets model parameters.

88 %

89 % Input:

90 %

91 % Output:

92 % r − intrinsic growth rate

93 % E − harvesting effort

94 % tau − harvesting delay

95 % K − carrying capacity

96 function [r,E,K,tau] = params

97 r = 1.2;

98 E = r/2; % optimal harvesting E_{opt} = r/2

99 tau = 2.7; % 2.7 > pi/1.2 thus the equilibrium is unstable

100 K = 300;
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Stable and Unstable Solutions with Gompertz

Growth Rate

GompertzStable.m

1 % function GompertzStable

2 %

3 % This function produces a graph which shows a solution

4 % of the Gompertz equation with delayed harvesting

5 % converging to the positive equilibrium as seen in

6 % Figure 2.3.

7 %

8 % Model parameters are chosen so that harvesting is

9 % optimal and the equilibrium is locally asymptotically

10 % stable according to conditions derived in Theorem 2.3.7.

11 %

12 % Note that there is no input or output of this function.

13 % This function simply displays a graph.

14 %

15 % Input:

16 %

17 % Output:

18 %

19 function GompertzStable

20 % Get model parameters

21 [r,E,K,lag]=params;

22 % Solve the solution from t = 0 to t = 120 using dde23

23 sol1 = dde23(@rhs,lag,@hist,[0, 120]);

24 l = length(sol1.y);

25 x = zeros(1,l);
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26 y = zeros(1,l);

27 x = sol1.x;

28 y = sol1.y;

29 % If population has hit zero at some time then the

30 % population is zero for all further times

31 for i=1:l

32 if y(i)≤0

33 y(i) = 0;

34 end

35 end

36 figure;

37 % Plot solution of Gompertz equation with delayed

38 % harvesting

39 plot(x,y,'−r','Linewidth',1,'DisplayName','Solution ...

with inital data $\phi(t)=90+30H(t+0.5)$');

40 title('Survival of the Gompertz equation with delayed ...

harvest, \tau = 2.4','FontSize',16);

41 xlabel('t','FontSize',14);

42 ylabel('N(t)','FontSize',14);

43 hold on

44 % Plot equilibrium line N^* = K/e

45 yline(K/exp(1),'−−k','LineWidth',1,'DisplayName','$N^*$');

46 legend('Interpreter','Latex','Location','Southeast');

47 xlim([0,120])

48 ylim([0,200])

49 hold off

50

51 % function s = hist(t)

52 %

53 % Initial history function − needed for dde23

54 % See dde23 for more documentation about what is needed
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55 % in this history function. See ddex1, ddex2 for more

56 % examples.

57 %

58 % Input:

59 % t − time

60 %

61 % Output:

62 % s − value of the initial data at t

63 %

64 function s = hist(t)

65 s = 90 + heaviside(t+0.5)*(160−130);

66

67 % function dNdt = rhs(t,N,Z)

68 %

69 % Function defining the right hand side of the DDE

70 % See dde23 for more documentation about what is needed

71 % in the DE function. See ddex1, ddex2 for more examples.

72 %

73 % Input:

74 % t − time

75 % N − solution

76 % Z − approximates the value of the solution at t = t−tau

77 %

78 % Output:

79 % dNdt − change in population size at time t

80 function dNdt = rhs(t,N,Z)

81 [r,E,K,lag]=params;

82 Nlag = Z(:,1);

83 dNdt = (r)*N*(log(K/N)) − (E)*Nlag;

84

85 % function [r,E,K,tau] = params
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86 %

87 % Manually sets model parameters.

88 %

89 % Input:

90 %

91 % Output:

92 % r − intrinsic growth rate

93 % E − harvesting effort

94 % tau − harvesting delay

95 % K − carrying capacity

96 function [r,E,K,tau] = params

97 r = 0.6;

98 E = r; % optimal harvesting effort E_{opt} = r

99 % 2.4 < pi/2*(0.6) thus the equilibrium is locally

100 % asymptotically stable

101 tau = 2.4;

102 K = 300;

GompertzUnStable.m

1 % function GompertzUnStable

2 %

3 % This function produces a graph which shows a solution

4 % of the Gompertz equation with delayed harvesting going

5 % to zero as seen in Figure 2.3.

6 %

7 % Model parameters are chosen so that harvesting is optimal

8 % and the equilibrium is unstable according to conditions

9 % derived in Theorem 2.3.7.

10 %

11 % Note that there is no input or output of this function.
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12 % This function simply displays a graph.

13 %

14 % Input:

15 %

16 % Output:

17 %

18 function GompertzUnStable

19 % Get model parameters

20 [r,E,K,lag]=params;

21 % Solve the solution from t = 0 to t = 120 using dde23

22 sol1 = dde23(@rhs,lag,@hist,[0, 120]);

23 l = length(sol1.y);

24 x = zeros(1,l);

25 y = zeros(1,l);

26 x = sol1.x;

27 y = sol1.y;

28 % If population has hit zero at some time then the

29 % population is zero for all further times

30 for i=1:l

31 if y(i)≤0

32 y(i) = 0;

33 end

34 end

35 figure;

36 % Plot solution of Gompertz equation with delayed

37 % harvesting

38 plot(x,y,'−r','Linewidth',1,'DisplayName','Solution ...

with inital data $\phi(t)=90+30H(t+0.5)$');

39 title('Extinction of the Gompertz equation with delayed ...

harvest, \tau = 2.7','FontSize',16);

40 xlabel('t','FontSize',14);
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41 ylabel('N(t)','FontSize',14);

42 hold on

43 % Plot equilibrium line N^* = K/e

44 yline(K/exp(1),'−−k','LineWidth',1,'DisplayName','$N^*$');

45 legend('Interpreter','Latex','Location','Southeast')

46 xlim([0,64])

47 ylim([0,200])

48 hold off

49

50 % function s = hist(t)

51 %

52 % Initial history function

53 % See dde23 for more documentation about what is needed

54 % in this history function. See ddex1, ddex2 for more

55 % examples.

56 %

57 % Input:

58 % t − time

59 %

60 % Output:

61 % s − value of the initial data at t

62 %

63 function s = hist(t)

64 s = 90 + heaviside(t+0.5)*(160−130);

65

66 % function dNdt = rhs(t,N,Z)

67 %

68 % Function defining the right hand side of the DDE

69 % See dde23 for more documentation about what is needed

70 % in the DE function. See ddex1, ddex2 for more examples.

71 %
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72 % Input:

73 % t − time

74 % N − solution

75 % Z − approximates the value of the solution at t = t−tau

76 %

77 % Output:

78 % dNdt − change in population size at time t

79 function dNdt = rhs(t,N,Z)

80 [r,E,K,lag]=params;

81 Nlag = Z(:,1);

82 dNdt = (r)*N*(log(K/N)) − (E)*Nlag;

83

84 % function [r,E,K,tau] = params

85 %

86 % Manually sets model parameters.

87 %

88 % Input:

89 %

90 % Output:

91 % r − intrinsic growth rate

92 % E − harvesting effort

93 % tau − harvesting delay

94 % K − carrying capacity

95 function [r,E,K,tau] = params

96 r = 0.6;

97 E = r; % optimal harvesting effort E_{opt} = r

98 % 2.7 > pi/2*(0.6) thus the equilibrium is unstable

99 tau = 2.7;

100 K = 300;
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Oscillation and Non-oscillation of the Logistic

Equation

Oscillation.m

1 % function Oscillation

2 %

3 % This function produces a graph which shows a solution

4 % oscillating around the equilibrium of the logistic

5 % equation with delayed harvesting when the roots of the

6 % characteristic equation are complex as seen in

7 % Figure 2.4.

8 % Note that there is no input or output of this function.

9 % This function simply displays a graph.

10 %

11 % Input:

12 %

13 % Output:

14 %

15 %

16 function Oscillation

17 % Check that the roots of the characteristic equation are

18 % complex.

19 flag = checkRoots;

20 if flag==1

21 error('Check model parameters')

22 end

23 % Get model parameters

24 [r,E,K,lag]=params;

25 % Calculate important values
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26 [equil,permBound] = importantVals;

27 % Solve the solution from t = 0 to t = 200 using dde23

28 sol1 = dde23(@rhs,lag,@hist,[0, 200]);

29 % Create solution structures

30 l = length(sol1.y);

31 x = zeros(1,l);

32 y = zeros(1,l);

33 x = sol1.x;

34 y = sol1.y;

35 % If population has hit zero at some time then the

36 % population is zero for all further times

37 for i=1:l

38 if y(i)≤0

39 y(i) = 0;

40 end

41 end

42 figure;

43 % Plot solution of logistic equation with delayed

44 % harvesting

45 plot(x,y,'−r','Linewidth',1,'DisplayName','Solution ...

with inital data $\phi(t)=130+20H(t+4)$');

46 title('Oscillation of the logistic equation with ...

delayed harvest','FontSize',16);

47 xlabel('t','FontSize',14);

48 ylabel('N(t)','FontSize',14);

49 hold on

50 % Plot equilibrium line

51 yline(equil,'−−k','LineWidth',1,'DisplayName','$N^*$');

52 % Plot EK_c/r line

53 yline(permBound,':k','LineWidth',1,'DisplayName','$\frac{E ...

K_c}{r}$');
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54 legend('Interpreter','Latex','Location','Northeast');

55 ylim([0,230])

56

57

58 % function s = hist(t)

59 %

60 % Initial history function

61 % See dde23 for more documentation about what is needed

62 % in this history function. See ddex1, ddex2 for more

63 % examples.

64 %

65 % Input:

66 % t − time

67 %

68 % Output:

69 % s − value of the initial data at t

70 %

71 function s = hist(t)

72 % Initial data is above EK_c/r

73 s = 130 + heaviside(t+4)*(150−130);

74

75 % function dNdt = rhs(t,N,Z)

76 %

77 % Function defining the right hand side of the DDE

78 % See dde23 for more documentation about what is needed

79 % in the DE function. See ddex1, ddex2 for more examples.

80 %

81 % Input:

82 % t − time

83 % N − solution

84 % Z − approximates the value of the solution at t = t−tau
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85 %

86 % Output:

87 % dNdt − change in population size at time t

88 function dNdt = rhs(t,N,Z)

89 % Get model parameters

90 [r,E,K,lag]=params;

91 Nlag = Z(:,1);

92 % Set RHS

93 dNdt = (r)*N*(1−(N/(K))) − (E)*Nlag;

94

95 % function [equil,permBound] = importantVals

96 %

97 % Calculate some important values for use later

98 %

99 % Input:

100 %

101 % Output:

102 % equil − positive equilibrium of the logistic equation

103 % with delayed harvesting

104 % permBound − lower bound EK_c/r

105 function [equil,permBound] = importantVals

106 % Get model parameters

107 [r,E,K,lag]=params;

108 equil = (r−E)*K/r;

109 permBound = E*K/r;

110

111 % function [r,E,K,tau] = params

112 %

113 % Manually sets model parameters.

114 %

115 % Input:
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116 %

117 % Output:

118 % r − intrinsic growth rate

119 % E − harvesting effort

120 % tau − harvesting delay

121 % K − carrying capacity

122 function [r,E,K,tau] = params

123 r = 1;

124 E = 0.4;

125 tau = 5;

126 K = 300;

127

128 % function [flag] = checkRoots

129 %

130 % This function checks to make sure that the roots of the

131 % characteristic equation are complex, as well as r>2E.

132 % If the roots are all complex then flag = 0.

133 % If there is a real root of the characteristic equation

134 % then flag = 1 and an error message is shown. If 2E>r

135 % then flag = 1 and error message is shown.

136 %

137 % If an error message is shown, change the model parameters

138 % in function params.

139 %

140 % Input:

141 %

142 % Output:

143 % flag − 0 if model parameters are okay, 1 otherwise.

144 function [flag] = checkRoots

145 [r,E,K,lag]=params;

146 if lag*exp((r−2*E)*lag)>1/(exp(1)*E)
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147 flag = 0;

148 else

149 flag = 1;

150 error('chosen parameters have real root of char eqn')

151 end

152 if 2*E>r

153 flag = 1;

154 error('r must be greater than 2E')

155 end

NonOscillation.m

1 % function NonOscillation

2 %

3 % This function produces a graph which shows a solution

4 % not oscillating around the equilibrium of the logistic

5 % equation with delayed harvesting when the roots of the

6 % characteristic equation are complex as seen in

7 % Figure 2.4.

8 % Note that there is no input or output of this function.

9 % This function simply displays a graph.

10 %

11 % Input:

12 %

13 % Output:

14 %

15 %

16 function NonOscillation

17 % Check that the roots of the characteristic equation are

18 % complex.

19 flag = checkRoots;
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20 if flag==1

21 error('Check model parameters')

22 end

23 % Get model parameters

24 [r,E,K,lag]=params;

25 % Calculate important values

26 [equil,permBound] = importantVals;

27 % Solve the solution from t = 0 to t = 100 using dde23

28 sol1 = dde23(@rhs,lag,@hist,[0, 100]);

29 % Create solution structures

30 l = length(sol1.y);

31 x = zeros(1,l);

32 y = zeros(1,l);

33 x = sol1.x;

34 y = sol1.y;

35 % If population has hit zero at some time then the

36 % population is zero for all further times

37 for i=1:l

38 if y(i)≤0

39 y(i) = 0;

40 end

41 end

42 figure;

43 % Plot solution of logistic equation with delayed

44 % harvesting

45 plot(x,y,'−r','Linewidth',1,'DisplayName','Solution ...

with inital data $\phi(t)=110−100H(t+4)$');

46 title('Non−oscillation of the logistic equation with ...

delayed harvest','FontSize',16);

47 xlabel('t','FontSize',14);

48 ylabel('N(t)','FontSize',14);

101



49 hold on

50 % Plot equilibrium line

51 yline(equil,'−−k','LineWidth',1,'DisplayName','$N^*$');

52 % Plot EK_c/r line

53 yline(permBound,':k','LineWidth',1,'DisplayName','$\frac{E ...

K_c}{r}$');

54 legend('Interpreter','Latex','Location','Northeast');

55 ylim([0,190])

56 % dde23 only shows the solution up until around t= 2.9.

57 % This simply extends the graph to an even number.

58 h1 = fplot(@(x) 0, [2,5], '−r', 'Linewidth', 1);

59 h1.Annotation.LegendInformation.IconDisplayStyle = 'off';

60

61 % function s = hist(t)

62 %

63 % Initial history function

64 % See dde23 for more documentation about what is needed

65 % in this history function.

66 % See ddex1, ddex2 for more examples.

67 %

68 % Input:

69 % t − time

70 %

71 % Output:

72 % s − value of the initial data at t

73 %

74 function s = hist(t)

75 [equil,permBound] = importantVals;

76 % Initial data begins below EK_c/r

77 s = permBound − 10 + heaviside(t+4)*(10−(permBound−10));

78
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79 % function dNdt = rhs(t,N,Z)

80 %

81 % Function defining the right hand side of the DDE

82 % See dde23 for more documentation about what is needed

83 % in the DE function. See ddex1, ddex2 for more examples.

84 %

85 % Input:

86 % t − time

87 % N − solution

88 % Z − approximates the value of the solution at t = t−tau

89 %

90 % Output:

91 % dNdt − change in population size at time t

92 function dNdt = rhs(t,N,Z)

93 % Get model parameters

94 [r,E,K,lag]=params;

95 Nlag = Z(:,1);

96 % Set RHS

97 dNdt = (r)*N*(1−(N/(K))) − (E)*Nlag;

98

99 % function [equil,permBound] = importantVals

100 %

101 % Calculate some important values for use later

102 %

103 % Input:

104 %

105 % Output:

106 % equil − positive equilibrium of the logistic equation

107 % with delayed harvesting

108 % permBound − lower bound EK_c/r

109 function [equil,permBound] = importantVals
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110 % Get model parameters

111 [r,E,K,lag]=params;

112 equil = (r−E)*K/r;

113 permBound = E*K/r;

114

115 % function [r,E,K,tau] = params

116 %

117 % Manually sets model parameters.

118 %

119 % Input:

120 %

121 % Output:

122 % r − intrinsic growth rate

123 % E − harvesting effort

124 % tau − harvesting delay

125 % K − carrying capacity

126 function [r,E,K,tau] = params

127 r = 1;

128 E = 0.4;

129 tau = 5;

130 K = 300;

131

132 % function [flag] = checkRoots

133 %

134 % This function checks to make sure that the roots of the

135 % characteristic equation are complex, as well as r>2E.

136 % If the roots are all complex then flag = 0. If there ...

is a

137 % real root of the characteristic equation then flag = 1

138 % and an error message is shown. If 2E>r then flag = 1 and

139 % error message is shown.
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140 %

141 % If an error message is shown, change the model parameters

142 % in function params.

143 %

144 % Input:

145 %

146 % Output:

147 % flag − 0 if model parameters are okay, 1 otherwise.

148 function [flag] = checkRoots

149 [r,E,K,lag]=params;

150 if lag*exp((r−2*E)*lag)>1/(exp(1)*E)

151 flag = 0;

152 else

153 flag = 1;

154 error('chosen parameters have real root of char eqn')

155 end

156 if 2*E>r

157 flag = 1;

158 error('r must be greater than 2E')

159 end
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MATLAB Code - Impulsive Delayed

Harvesting

Stable and Unstable Solutions with Logistic Growth

Rate

OptimalImpulsiveHarvest.m

1 % Script OptimalImpulsiveHarvest.m

2 %

3 % This script creates two graphs which illustrate how

4 % changing rT value can affect stability of the optimal

5 % solution when k > 1 as shown in Figure

6 % 3.1.

7 %

8 % The harvesting in this model will be delayed by k=2

9 % harvesting periods and be optimal.

10 % i.e. E = 1 − e^{−rT/2}.

11 % The first graph will have 0<rT<1.9248 which means the

12 % harvesting will be stable, and the population will

13 % survive. The second graph will have rT> 1.9248 which

14 % means the harvesting will be unstable and the population

15 % will go to extinction.

16 %

17 % Set unchanging parameters

18 % K − carrying capacity

19 % iters − max numbers of iterations

20 % TOL − tolerance

21 % delay − number of time intervals data has been
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22 % delayed by (k)

23 K=500;

24 iters = 100;

25 TOL = 1e−4;

26 delay = 2;

27 %

28 % Figure 1 − Stable Oscillations

29 %

30 % r − intrinsic growth rate

31 % T − time between harvesting intervals

32 r=1;

33 T=1;

34 % Calculate optimal harvesting effort

35 E = 1 − exp(−r*T/2);

36 % Calculate optimal N(nT^+)

37 N0 = calculateN0(r,K,T,E);

38 h = @(t)200+heaviside(t+T/2)*(180−200);

39 % Calculate the value of the solution at t = nT^+, N(nT^+)

40 [t1,x1] = ImpulsiveHarvestSequence3(r,E,K,T,h,iters,TOL);

41 figure(1)

42 % Using the solution values N(nT^+) plot these points and

43 % plot the solution

44 % trajectory between these points as determined by the

45 % differential equation.

46 plotSolution(t1,x1,r,T,K,h,delay,'k','k','−k','Solution ...

with N(−2T) = 200, N(−T) = 200, N(0) = 180')

47 hold on

48 title('Survival of delayed impulsive harvest: ...

k=2','FontSize',16)

49 xlabel('t','FontSize',14)

50 ylabel('N(t)','FontSize',14)
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51 % Create optimal solution with N(nT^+) = N0 for all n.

52 tO = t1;

53 xO = zeros(1,length(tO));

54 for i=1:length(tO)

55 xO(i) = N0;

56 end

57 % Plot optimal solution trajectory for t != nT^+

58 plotSolution(tO,xO,r,T,K,h,delay,'r','rs','−−r','Optimal ...

Solution')

59 ylim([0,450])

60 legend('Location','southeast')

61 hold off

62 %

63 % Figure 2 − Unstable Oscillations

64 %

65 r=2.1;

66 T=1;

67 % Calculate optimal harvesting effort

68 E = 1 − exp(−r*T/2);

69 % Calculate optimal N(nT^+)

70 N0=calculateN0(r,K,T,E);

71 h = @(t) 140 +heaviside(t+T/2)*(110−140);

72 % Calculate the value of the solution at t = nT^+, N(nT^+)

73 [t2,x2] = ImpulsiveHarvestSequence3(r,E,K,T,h,iters,TOL);

74 figure(2)

75 % Using the solution values N(nT^+) plot these points and

76 % plot the solution trajectory between these points as

77 % determined by the differential equation.

78 plotSolution(t2,x2,r,T,K,h,delay,'k','k','−k','Solution ...

with N(−2T) = 140, N(−T) = 140, N(0) = 110')

79 hold on
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80 title('Extinction of delayed impulsive harvest: ...

k=2','FontSize',16)

81 xlabel('t','FontSize',14)

82 ylabel('N(t)','FontSize',14)

83 % Reshape tO

84 % NOTE this variable is t "oh" not t "zero"

85 tO = zeros(1,length(t2)+2);

86 for i=1:length(t2)

87 tO(i) = t2(i);

88 end

89 tO(i+1)=tO(i)+T;

90 tO(i+2)=tO(i)+2*T;

91 % Create optimal solution

92 xO2 = zeros(1,length(t2)+2);

93 for i=1:length(tO)

94 xO2(i) = N0;

95 end

96 % Plot optimal solution trajectory for t != nT^+

97 plotSolution(tO,xO2,r,T,K,h,delay,'r','rs','−−r','Optimal ...

Solution')

98 ylim([0,450])

99 xlim([t2(1),t2(end)+3*T])

100 legend('Location','southwest')

101 hold off

ImpulsiveHarvestSequence3.m

1 % function [t,x] = ...

ImpulsiveHarvestSequence3(r,E,K,T,h,iters,TOL)

2 %

3 % This function calculates the value of solutions to the
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4 % logistic equation with delayed impulsive harvesting at

5 % t=nT^+. Here the harvesting is delayed by a two time

6 % periods.

7 % N(nT^+) = x_n is defined by iterates of the third order

8 % non−linear difference equation.

9 %

10 % k = 2

11 %

12 % Input:

13 % r − growth rate for the system

14 % K − carrying capacity

15 % T − period for impulsive harvesting (also the delay

16 % value)

17 % h − function defining the history of the system when

18 % −T<t<0

19 % E − harvesting effort

20 % iters − max number of iterations desired

21 % TOL − desired relative error for stopping

22 %

23 % Output:

24 % t − time points starting at −T, and repeating every

25 % T units, up to the

26 % last time point corresponding to the last iteration

27 % x − iterations corresponding to N((n−2)T+,0,N_0)

28 %

29 function [t,x] = ...

ImpulsiveHarvestSequence3(r,E,K,T,h,iters,TOL)

30 % creates an array for the max size that could possibly

31 % needed as defined by iters. Most of x1 will not be needed

32 % and will be discarded later.

33 x1 = zeros(1,iters+3);
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34 % define x0 and x1 the two initial values as described by

35 % the initial data function h

36 x1(1) = h(−2*T);

37 x1(2) = h(−T);

38 x1(3) = h(0);

39 ERR = 100000;

40 % Create iterations from the definition of the difference

41 % equation

42 for n=4:(iters+3)

43 % Calculate iterates

44 x1(n) = K*x1(n−1)*exp(r*T)/(K+x1(n−1)*(exp(r*T) − ...

1))+(−E)*(K*x1(n−3)*exp(r*T))/(K+x1(n−3)*(exp(r*T)−1));

45 % Calculate relative error

46 ERR = abs(x1(n) − x1(n−1))/x1(n);

47 % If iterates are less than or equal to zero, then all

48 % further iterates

49 % are zero (no negative populations)

50 if x1(n)≤0

51 x1(n) = 0;

52 break;

53 end

54 % If two succesive iterations are sufficiently close

55 % then stop creating new iterations.

56 if (ERR < TOL)

57 break;

58 end

59 end

60 % Defines the result vector x by the iterations calculated,

61 % discards the rest of the unused x1

62 x = zeros(1,n);

63 t = zeros(1,n);
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64 for i=1:n

65 x(i) = x1(i);

66 t(i) = −2*T + (i−1)*T;

67 end

68 end

plotSolution.m

1 % function [tV,xV] = ...

plotSolution(tV,xV,r,T,K,h,delay,color,marker,linestyle,title)

2 %

3 % This function takes in the value of the solution at

4 % N(nT^+) and produces the a graph defining the evolution

5 % of the function over all t values as defined by the

6 % impulsive equation.

7 %

8 % Input:

9 %

10 % tV − time vector running back to −delay*T

11 % xV − values of the solution at N(nT^+) going back

12 % to −delay*T

13 % r − intrinsic growth rate

14 % T − length of time between harvesting events

15 % K − carrying capacity of the population

16 % h − initial data function

17 % delay − number of intervals by which the harvesting is

18 % delayed

19 % color − string indicating the color plot should be

20 % (may not be used − enter random color e.g. 'r')

21 % marker − string indicating type of marker to indicate

22 % endpoints e.g.'rs' give a red square
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23 % linestyle − string indicating linestyle and color

24 % e.g. '−−r' gives a

25 % red dotted line

26 % title − string containing legend display name for graph

27 %

28 % Output:

29 % tV − time vector running back to −delay*T

30 % xV − values of the solution at N(nT^+) going back

31 % to −delay*T

32 %

33 function [tV,xV] = ...

plotSolution(tV,xV,r,T,K,h,delay,color,marker,linestyle,title)

34 % # of intervals covered by tV, xV

35 d = length(tV);

36 % # of intervals that require a solution plotted between

37 % N(nT^+) values

38 m = d − (delay + 1);

39 % Create structures to hold N(nT)

40 endpoints = zeros(1,d);

41 tendpoints = [tV,(d−delay)*T];

42 % Initial data points are considered to be N(nT) values

43 for i=1:delay+1

44 endpoints(i)=xV(i);

45 end

46 hold on

47 % Plot the solution on each sub interval

48 for n=0:m

49 N = @(t) createSol(t,tV,xV,r,K,T,delay,n);

50 % Calculate N(nT) values

51 endpoints(n+delay+2) = N((n+1)*T);

52 if n==0
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53 fplot(N,[n*T,(n+1)*T],linestyle,'DisplayName',title);

54 else

55 h = ...

fplot(N,[n*T,(n+1)*T],linestyle,'DisplayName','');

56 % Since there are m separate plots, we only need

57 % legend information for the first one.

58 h.Annotation.LegendInformation.IconDisplayStyle ...

= 'off';

59 end

60 end

61 xlim([tV(1),tendpoints(end)])

62 % The next two plots illustrate the left continuous

63 % nature of our solution

64 % This plot puts open dots at N(nT^+)

65 h = scatter(tV,xV,marker);

66 h.Annotation.LegendInformation.IconDisplayStyle = 'off';

67 % This plot puts closed dots at N(nT)

68 if endpoints(end) == 0

69 % The population has become zero at some point.

70 % Do not keep plotting solution values.

71 h = ...

scatter(tendpoints(1:d),endpoints(1:d),marker,'filled','DisplayName','');

72 h.Annotation.LegendInformation.IconDisplayStyle = ...

'off';

73 h = ...

scatter([tV(end)],[xV(end)],marker,'filled','DisplayName','');

74 h.Annotation.LegendInformation.IconDisplayStyle = ...

'off';

75 h = fplot(@(t) 0, ...

[tV(end),tV(end)+4*T],linestyle,'Linewidth',1);

76 h.Annotation.LegendInformation.IconDisplayStyle = ...
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'off';

77 else

78 h = ...

scatter(tendpoints,endpoints,marker,'filled','DisplayName','');

79 h.Annotation.LegendInformation.IconDisplayStyle = ...

'off';

80 end

81 hold off

82 end

createSol.m

1 % function f = createSol(t,tV,xV,r,K,T,delay,n)

2 %

3 % This givees the solution to the logistic DE over the

4 % interval [nT,(n+1)T]

5 %

6 % Input:

7 % t − time variable running from nT to (n+1)T

8 % tV − vector of time stamps running from −delay*T

9 % forwards

10 % xV − vector of the solution values at N(nT^+) running

11 % from −delay*T forwards

12 % r − intrinsic growth rate

13 % K − carrying capacity

14 % T − length of time between harvesting intervals

15 % delay − number of harvesting intervals that the

16 % harvesting has been delayed by

17 % n − refers to which interval you are plotting over

18 %

19 % Output:
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20 % f − value of the solution of the logistic DE at ...

time t

21 %

22 function f = createSol(t,tV,xV,r,K,T,delay,n)

23 f = ...

K*exp(r*(t−n*T))*xV(n+delay+1)/(xV(n+delay+1)*(exp(r*(t−n*T))−1)+K);

24 end

calculateN0.m

1 % function N0 = calculateN0(r,K,T,E)

2 %

3 % This function calculates the positive equilibrium

4 % xStar of the difference equation, and the value

5 % of the T−periodic solution at t=nT^+

6 % i.e. N(nT^+) = xStar.

7 %

8 % Input:

9 % r − intrinsic growth rate

10 % K − carrying capacity

11 % T − time between harvesting moments

12 % E − harvesting effort

13 %

14 % Output:

15 % xStar − positive equilibrium of the non−linear

16 % difference equation

17 %

18 function xStar = calculateN0(r,K,T,E)

19 xStar=K*((1−E)*exp(r*T)−1)/(exp(r*T)−1);

20 end
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Non-Global Attractivity of the Optimal Solution

montecarlo.m

1 % Script montecarlo.m

2 %

3 % Runs a Monte Carlo like simulation for testing

4 % attractivity of the equilibrium as shown in Figure 3.2.

5 %

6 % Begin with simulations for logistic impulsive equation

7 % with impulse delay k = 1.

8 %

9 % This code will compute 10000 solutions of the logistic

10 % equation with delayed impulsive harvesting at t=nT^+.

11 %

12 % Solutions will be computed until either the relative

13 % error of N(nT^+) and N((n+1)T^+) is within 1e−4, or

14 % until n = 10500.

15 %

16 iters = 10500;

17 err = 1e−4;

18 % N − number of solutions to be calculated

19 N = 10000;

20 %

21 % Set model parameters. Since E = E_{opt}, k=1, by

22 % Theorem 3.4.3 the solution calculated will be locally

23 % asymptotically stable for every

24 % choice of rT.

25 %

26 % r − intrinsic growth rate

27 % K − carrying capacity
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28 % T − time between harvesting moments

29 % E − harvesting effort

30 %

31 r = 1.3747;

32 K = 307.1609;

33 T = 1;

34 E = 1 − exp(−r*T/2);

35 %

36 % For each solution N data1 stores information about that

37 % solution. data1(N,1) = N(−T), data1(N,2) = N(0),

38 % data1(N,3) = 0,1,−1.

39 %

40 % If data1(N,3) = 0 then either there exists N(nT^+) = 0

41 % or N(nT^+)< 10*err

42 % If data1(N,3) = 1 then the solution has converged to

43 % the positive T−periodic solution.

44 % If data1(N,3) = −1 then after 10500 iterations that

45 % solution has neither converged to zero, nor come within

46 % 10 units of the positive T−periodic solution.

47 % These data points are not displayed

48 data1 = zeros(N,3);

49 % Choose initial conditions from uniform distribution

50 % between 0 and twice the carrying capacity

51 %

52 low = 0;

53 high = 2*K;

54 IC1 = (high − low).*rand(N,1) + low;

55 IC2 = (high − low).*rand(N,1) + low;

56 % Begin calculating solutions

57 for i = 1:N

58 % Use heaviside step function to create a continuous
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59 % initial data function for passing to

60 % ImpulsiveHarvestSequence2

61 h = @(t)IC1(i) + heaviside(t+(T/2))*(IC2(i) − IC1(i));

62 % Call to ImpulsiveHarvestSequence2

63 % t1 − vector containing time points T, 2T, 3T, etc.

64 % x1 − vector containing solution values at N(nT^+)

65 [t1,x1] = ...

ImpulsiveHarvestSequence2(r,E,K,T,h,iters,err);

66 % Put initial conditions into data1 structure

67 data1(i,1) = IC1(i);

68 data1(i,2) = IC2(i);

69 % Call to calculateN0 which calculates the value of

70 % the optimal T−periodic solution at t=nT^+

71 N0 = calculateN0(r,K,T,E);

72 % if after 10500 iterations the N(nT^+) is within 10

73 % units of the optimal T−periodic solution then the

74 % solution is said to have converged.

75 if (x1(end)≥ N0 − 10)&&(x1(end)≤ N0 + 10)

76 data1(i,3) = 1;

77 % if after 10500 iterations N(nT^+) is less than

78 % 10*err then the solution is said to have gone extinct

79 elseif (x1(end)≤ 10*err)

80 data1(i,3) = 0;

81 elseif x1(end)==0

82 data1(i,3) = 0;

83 % solution has neither converged nor gone to zero

84 % after 10500 iterations

85 else

86 data1(i,3) = −1;

87 end

88 end
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89 figure(1)

90 % Sort row of data1 so that all solutions which went

91 % extinct are grouped together, as are solutions which

92 % survived and inconlusive solutions.

93 B = sortrows(data1,3);

94 % Calculate the number of solutions which did not converge.

95 num3 = sum(B(:,3)==−1);

96 % Calculate the number of solutions which went extinct.

97 num2 = sum(B(:,3)==0);

98 % Calculate the number of solutions which survived.

99 num1 = sum(B(:,3)==1);

100 % Begin creating the figure

101 hold on

102 if num2> 0

103 % plot the initial conditions from all the

104 % solutions which went extinct. Color the dots black.

105 % All extinct solutions are held within rows num3+1

106 % to num2+num3 of the structure B.

107 scatter(B(num3+1:num2+num3,1),B(num3+1:num2+num3,2),'filled','black','DisplayName','Extinction')

108 end

109 if num1>0

110 % plot the initial conditions from all the solutions

111 % which survived. Color the dots green.

112 % All survived solutions are held within rows

113 % num2 + num3 + 1 to num3 + num2 + num1 of the

114 % structure B.

115 scatter(B(num3+num2+1:num3+num2+num1,1),B(num3+num2+1:num3+num2+num1,2),'filled','MarkerFaceColor',[0.5, ...

0.77, 0.5],'DisplayName','Survival')

116 end

117 % Create legend and title for the graph

118 legend
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119 xlabel('N(−T)','FontSize',14)

120 ylabel('N(0)','FontSize',14)

121 title('Survival and Extinction: k=1, E = ...

E_{opt}','FontSize',16)

122 hold off

ImpulsiveHarvestSequence2.m

1 % function [t,x] = ...

ImpulsiveHarvestSequence2(r,E,K,T,h,iters,TOL)

2 %

3 % This function calculates the value of solutions to the

4 % logistic equation with delayed impulsive harvesting at

5 % t=nT^+. Here the harvesting is delayed by a single

6 % time period.

7 %

8 % k = 1

9 %

10 % N(nT^+) = x_n is defined by iterates of the second order

11 % non−linear difference equation.

12 %

13 % Input:

14 % r − intrinsic growth rate

15 % K − carrying capacity

16 % T − time between harvesting moments (also equal to

17 % the delay when k=1)

18 % h − function defining the history of the system when

19 % −T<t<0

20 % E − harvesting effort

21 % iters − max number of iterations desired

22 % TOL − desired relative error for stopping
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23 %

24 % Output:

25 % t − time points starting at −T, and repeating every

26 % T units, up to the

27 % last time point corresponding to the last iteration

28 % x − iterations of the difference equation

29 % x(n) = N(nT^+)

30 %

31 function [t,x] = ...

ImpulsiveHarvestSequence2(r,E,K,T,h,iters,TOL)

32 % Creates an array for the max size that could possibly

33 % needed as defined by iters. Most of x1 will not be needed

34 % and will be discarded later.

35 x1 = zeros(1,iters+2);

36 % Define x0 and x1 the two initial values as described by

37 % the initial data

38 % function h

39 x1(1) = h(−T);

40 x1(2) = h(0);

41 ERR = 100000;

42 % Create iterations from the definition of the difference

43 % equation

44 for n=3:(iters+2)

45 % Calculate iterates

46 x1(n) = K*x1(n−1)*exp(r*T)/(K+x1(n−1)*(exp(r*T) − ...

1))+(−E)*(K*x1(n−2)*exp(r*T))/(K+x1(n−2)*(exp(r*T)−1));

47 % Calculate relative error

48 ERR = abs(x1(n) − x1(n−1))/x1(n);

49 % If iterates are less than or equal to zero, then all

50 % further iterates are zero (no negative populations)

51 if x1(n)≤0
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52 x1(n) = 0;

53 break;

54 end

55 % If the two succesive iterations are sufficiently

56 % close then stop creating new iterations

57 if (ERR < TOL)

58 break;

59 end

60 end

61 % Defines the result vector x by the iterations calculated,

62 % discards the rest of the unused x1

63 x = zeros(1,n);

64 t = zeros(1,n);

65 for i=1:n

66 x(i) = x1(i);

67 t(i) = −T + (i−1)*T;

68 end

69 end

123



Upper Bound

UpperBound.m

1 % Script UpperBound.m

2 %

3 % Code to create Figure 3.3 illustrating how the ...

function b(k) goes to zero

4 % monotonically as k becomes large

5 %

6 % plot b(k)

7 fplot(@(k)−2*log(1−2*cos(pi*k/(2*k+1))),[0,10],'k')

8 hold on

9 % Create title, x,y labels and force y limits to start ...

at zero

10 title('b(k) − Upper stability bound on rT','FontSize',16)

11 xlabel('k')

12 ylabel('b(k)')

13 ylim([0,7])
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