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ABSTRACT 

Studies of material failure using fracture mechanics have been considered of signif-

icant practical importance to engineering applications for their ability to predict and 

prevent catastrophic failures. A popular model of fracture mechanics, the two-phase 

single inclusion model, has provided insight into the interaction between cracking and 

the inclusion. However, it ignores the profound effects of degraded bonding quality 

and other surrounding medium on the composite materials. 

Thus, the author considers the three-phase inclusion model consisting of two cir-

cular regions, an infinitely extended region and the imperfect interfaces between the 

regions, which incorporates the profound effects of micromechanics, and thus, is of 

fundamental importance in understanding failure mechanisms and enhancing the per-

formance of composite materials. In addition, its, application can be extended to 

deal with functionally graded interphases and cemented implants embedded in bone. 

Although the three-phase model has recently been adapted to address imperfect ad-

hesion and to provide fundamental solutions to a generalized self-consistent scheme, 

all of the previous works deal with a single imperfect interface. A comprehensive 

literature search found no research addressing the situation where both interfaces are 

imperfect. 

In this study, a semi-analytic solution to the interaction between a pre-existing 

crack and a three-phase inclusion with spring-layer imperfect interfaces on both 

boundaries is presented. For the analytic approach, theories of linear elastic frac-

ture mechanics (LEFM) and linear elasticity with complex variable techniques are 

applied to address how interfacial damage on both interfaces simultaneously affects 

the tendency for the crack to propagate during mode I loading. 
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CHAPTER 1 

Introduction 

1.1 Composite Materials 

A composite material is a material system comprised of two or more materials that 

form a new material with new individual properties or characteristics. This can be 

called a multiphase material. Within the multiphase, is a region that is very stiff 

and is called the reinforcement. The continuous and compliant phase surrounding 

the reinforcement is called the matrix. Applied loads are usually transmitted into the 

reinforcement material through the matrix phase, with a small amount of the load 

being sustained by the matrix. By restraining brittle cracks from propagating between 

reinforcements, the matrix provides a barrier to cracking in the composite materials 

[1]. In addition, an independent phase between the matrix and the reinforcement is 

occasionally considered and is called the interphase (see Figure 1.1). The interphase 

is the result of a chemical interaction or other processing effect. 

Composite materials are prevalent in nature. Rocks are an aggregate of many 

different types of crystals and grains, and often include salt water or oil [2]. Bone 

and wood are the most common natural composites. Rom an engineering application 

standpoint, the composite is a multiphase material, which is artificially made to meet 

the specific performance requirements of every-thing from machinery, such as bicy-

cles, automobiles and aircrafts, to biomechanical applications, such as carbon/epoxy 

artificial limbs and carbon/polymer stems. One simple scheme for the classification 

of engineering composite materials is shown in Figure 1.2. This includes particulate 

composites, fibre-reinforced composites and laminate composites. 

Particulate composite materials are comprised of a continuous matrix phase and 
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particles randomly embedded within the matrix as a reinforcement phase. In partic-

ulate composites, the matrix bears a majority of the applied load and the particles 

strengthen the composite by preventing motion of dislocation. Laminate composites 

consist of two or more layers, bonded together, called lamina, which are thin, planar 

and unidirectional, and have a preferred high-strength direction. The orientation and 

combination of stacked lamina vary with the desired orientation of the high-strength 

reinforcement. Fibre-reinforced composites are the most doiniiant and important 

composite materials. With stiff and brittle fibres embedded in a soft and ductile 

matrix, fibre reinforcement composites dramatically increase strength, fatigue limits, 

resistance and stiffuess. Stiffness of a material along the fibre direction is usually 

governed by the mechanical properties of the fibres, while enhancement in the overall 

strength of the composite is achieved through the properties of the matrix [3]. Since 

stiffness transverse to the fibres direction is much lower than stiffness normal to the 

fibres, combinations of both laminate and fibre-reinforced composites, which stack 

multi-layers of fibres in the different directions, have been developed. 

Many new applications have been developed through the engineering of composite 

materials. Composite materials were first introduced in the form of steel-reinforced 

concrete in the nineteenth century and have been followed .by applications such as' 

the fibreglass boat in 1942, high-strength carbon fibre in the early 1960's and to-

day's nano-composite materials [3]. The demand for such high performance materials 

which can overcome extreme and severe conditions—conditions which single-phase 

conventional materials cannot sustain—fuels the study of composite materials that 

have advantages and dominant features of each constituent combined. Consequently, 

the advent of many advanced composites and the significant progress made in mate-

rials science and analytical approaches, such as micromechanics and macromechanics 



3 

which save time and costs associated with the expensive experiments necessary to test 

composites, considering the large number of permutations represented by composites, 

have attracted the attention of many scientists. Micromechanics is the analysis of 

the interactions between constituent materials, on the level of the individual phases 

and at the macromechanical level, to evaluate the equivalent overall response of a 

composite. 

A composite is a multiphase material that consists of many inh9mogeneities on 

a length scale much greater than the atomic scale, but which contain regions large 

enough to be considered locally continuous and essentially homogeneous at the macro-

scopic length scale [2, 4]. Also, the inhomogeneities bond with each other at interfaces. 

Thus, classical mechanics, such as linear elasticity and fracture mechanics can be ap-

plied to the material system without loosing generality, given certain assumptions. 

Namely, each phase, including the reinforcement and the matrix, shows linear elastic 

behaviour, and they bond together. The singular surface between the phases can be 

expressed in terms of special parameters such as the spring-type interface parame-

ter, which connects the two elastic constituent materials together smoothly. Thus, 

this thesis is developed based on the premise that three different imperfectly bonded 

phases show linear elastic behaviour and spring-type interface parameters represent 

degradation of bonding. Linear elasticity and fracture, mechanics are applied to the 

composite. 

1.2 Applied Mechanics of Composite Materials 

1.2.1 Introduction 

The underlying studies of the theory and analysis of composite materials were in-

troduced by Maxwell, Rayleigh and Einstein following Poisson's presentation of the 
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theory of induced magnetism, in which a composite material consists of conducting 

spherical inclusions and a nonconducting matrix, in 1826 [2]. With the advent of 

fibres as reinforcement constituents in the 1960s, came the dramatic development 

of micro/macromechanics with respect to composite materials. A macromechanical 

approach determines the effective, or overall, parameters of composites and predicts 

their average response. A rnicromechanical analysis depicts the interaction and rela-

tionship between fibres and the matrix; thus, the analysis illustrates the behaviour of 

deformation and stress within each constituent and local failure, such as matrix/fibre 

cracking and bonding failure at the interface or the interphase layer* [3]. For the study 

of strength and fracture toughness, which cannot be averaged, the micromechanical 

approach should be adapted. A well-known model of micromechanics, which considers 

three-phase system is the generalized self-consistent model (GSC) [5, 6]. 

Micromechanical analysis involves a representative volume element (RVE), which 

is defined as a sample volume having the same properties as the homogeneous com-

posite. Making the assumption that an inclusion like a fibre within the RVE is far 

enough apart from the others so that the interaction between inclusions can be ig-

nored, the RVE taken from composites is considered a single inclusion embedded 

within the matrix [7]. Hence, since it provides a much simpler approach to microme-. 

chanics, the single inclusion problem has attracted a great deal of attention, and has 

been considered a fundamental solution to the micromechanics analysis of composites. 

The interaction between a single inclusion within a matrix and material flaws 

(such as a crack [8, 9, 10, 11, 12] or a dislocation [13, 14, 15, 16]) has received a 

considerable amount of attention in the area of fracture mechanics. Understanding 

crack behaviour within an inclusion (fibre cracking) or within the matrix (matrix 

cracking) leads to the ability to predict strengthening, hardening and sudden brittle 
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failures of advanced composite materials. Thus, the.solution to a single inclusion such 

as a fibre interacting with a crack or a dislocation in the vicinity of the inclusion is of 

fundamental importance in understanding the failure analysis of composite materials. 

The widely accepted interface assumptions associated with micromechahics can 

be divided into the following categories: the interface is assumed perfect [5, 13, 16, 

17] or imperfect [18, 19, 20, 21]; the imperfect interface is homogeneous [22, 23] or 

inhomeogeneous along its boundary [24, 25]; the imperfect interface is modeled as a 

spring lyer [26, 27] or thin independent layer [28, 29]. 

1.2.2 Interface Conditions 

The most simple and commonly made assumption regarding interface bonding con-

ditions between constituent materials in composites is that the interface is perfectly 

bonded. It is an idealization of a complicated adhesion that assumes there is no 

bonding degradation or damage between the fibre and the surrounding matrix, such 

as weak adhesion and voids, or crack propagation along the interface. From an ana-

lytical point of view, the perfect interface means that tractions and displacements are 

continuous across the interface. Eshelby contributed to the development of this me-

chanical model [17]. Although Eshelby's model is-inadequate for complicated modern 

applications, its simple mathematical advantage, contributing to the early develop-

ment of micromechanics of composite materials, has been widely accepted [17, 29, 30, 

31, 32]. 

Since the actual degradation of interface bonding is not taken into account with the 

perfect interface, imperfect interface is introduced to simulate intermediate states of 

bonding, from initial perfect bonding to complete debonding. The imperfect interface 

condition is also simulated as an interphase layer, which is a thin annular layer between 



6 

a fibre and a matrix. In a micromechanic analysis, the intermediate zone is usually 

represented in two different ways: a finitely thin independent layer [29, 33, 34, 35] 

and a spring layer [18, 20, 21, 25, 26, 27]. 

As an independent phase, the mechanical properties of the interphase layer vary 

between the fibre and the surrounding matrix. The properties match those of the 

fibre on one side and the matrix on the other [33]. However, the interphase layer 

is considered a non-uniform, anisotropic region, with mechanical parameters distinct 

from both the fibre and the matrix [36]. Qaissaunee. and Santare [35] investigated 

an edge dislocation interacting with a three-phase elliptical inclusion in which all 

the interphases were assumed perfectly bonded. They addressed the presence of an 

interfacial zone, which had significant influence on the stress field in the matrix and 

the inclusion. Three parameters, namely, two elastic constants and the thickness of 

the layer are required to elucidate the behaviour of the interphase layer. However, 

it is very difficult to determine the constants, and the experiments required are very 

expensive. To overcome this difficulty, a spring-layer model is often used. 

The spring-layer model does not have an independent finite thickness layer. Thus, 

the three unknown parameters are reduced to two spring constant parameters: in 

other words, the two elastic constants and the thickness are incorporated, into two 

spring constants defined along the whole length of the interphase [37, 38]. The 

mathematical representation of this model is based on the premise that tractions 

are continuous, and displacements are discontinuous across the interface. Displace-

ment jumps across the interface are proportional, in terms of "spring-factor type" 

interface parameters, to their respective traction components at the boundary. Su-

dak [22] considered the interaction between a dislocation and a circular inhomogeneity 

subjected to antiplane shear, with the assumption of homogeneous spring-type inter-
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face parameters. It was found that a soft inclusion always attracts the dislocation, 

regardless of the state of adhesion at the interface. Thus, the equilibrium position of 

the dislocation cannot be obtained. Alternatively, a stiff inclusion causes an unstable 

equilibrium position that is affected by imperfect interface conditions and the shear 

modulus ratio. Amenyah et al. [26] investigated cracking within an fibre embedded 

in an infinite matrix subjected to thermal loadings. They incorporated the imperfect 

interface with spring-type interface, parameters into the single incluskn (fibre)system 

and found that the imperfe'ction of the interface had significant effects on the stress 

intensity factor (SIF). They also addressed the fact that the perfect interface model 

results in overestimation of the SIF by up to 100% in a hard inclusion, and 200% 

in a soft inclusion. Consequently, the imperfect interface condition is of significant 

importance in analysis. A relationship between an imperfect interface and crack prop-

agation in the matrix is proposed by Liu et al. [27]. In contrast to the perfect bonding 

condition, the imperfect interface causes greater SIFs at the nearby crack tip than at 

the distant tip, even when the fibre is stiffer than the matrix. Also, the imperfectness 

of adhesion leads to crack propagation in the interface, which eventually results in 

debonding. 

If the interface parameters are constant along the entire interface, it is called ho-

mogeneously imperfect, while it is non-homogeneously imperfect if it is not constant. 

The effects of an inhomogeneously imperfect interface on the stress fields induced 

within a fibre are addressed in [25]. The two spring-type interface parameters vary 

along normal and tangential directions, resulting in inhomogeneously imperfect inter-

face conditions, which lead to average stresses different from those of a homogeneously 

imperfect interface. 

Combining the two different methods mentioned above, authors have recently tried 
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to derive a more descriptive and detailed interpretation of crack propagation interac-

tions with respect to imperfect interfaces [39, 40, 41]. In this model, the interphase 

layer is considered an independent region with finite thickness. Inner interface bond-

ing, between the region and a fibre, is considered imperfect and is depicted by two 

spring-type interface parameters. The outer interface, which is in contact with the 

surrounding matrix, is assumed perfectly bonded. Adapting a three-phase circular in-

clusion model with the imperfect interface between a fibre and interphase layer, Kim 

and Sudak indicate that the degradation of interface bonding quality and mechanical 

properties of the interphase layer alter SIFs of a radial matrix crack and their in-

fluence on micromechanical analysis of composite constituents should not be ignored 

[39]. The interaction between an inhomogeneity and a screw dislocation in the inter-

phase layer with imperfect interface has been studied [41]. It has been demonstrated 

that the interphase thickness, imperfection of the inner interface, and ratio of mater-

ial properties compete with each other to alter the equilibrium position and stability 

of the dislocation. Henceforth, both mechanical properties of the independent region 

and imperfect bonding conditions should be taken into account. 

In this research, the interphase layer is assumed to be an independent region 

having imperfect bonding interfaces along both sides and the imperfection of the 

boundary is assumed to be homogeneously imperfect. 

1.2.3 Two-Phase Micromechanics Scheme 

• In this section, a simplified two-phase composite materials model is briefly introduced. 

Thom the analytical point of view, a inclusion represents a void or reinforcement such 

as a fibre. One of the most significant contributors to the establishment and shaping 

of the conceptual framework of the two-phase micromechanics scheme is Eshelby. In 



9 

• his 1957 paper [17], Eshelby's developed a tensor to solve for an elastic field pertur-

bation, within an inclusion and the matrix, caused by the inclusion being perfectly 

embedded in the matrix. His tensor has provided a foundation for the study and 

application of linear elastostatic theories, such as the theory of dislocations and in-

teractions between a crack and the matrix. In 1964 [13], Dundurs and Mura depicted 

the interaction between a circular inclusion embedded in an infinite elastic region and 

an edge dislocation in the neighbourhood of the inclusion by determining Airy's stress 

functions as a function of the Burger's vector. They addressed the fact that a stable 

equilibrium position exists in the matrix, even in the vicinity of a perfect interface. 

In addition, Poisson's ratios of the inclusion and the matrix and the orientation of 

the Burger's vector, with respect to the inclusion, Ware shown to have strong influences 

on matrix cracking. In 1965, Dundurs and Sendeckyj [14] turned their attention to 

fibre cracking, by solving a similar problem with a perfect interface, but which had a 

dislocation inside the inclusion. They found that the behaviours of the stable equi-

librium position within the inclusion were similar. In 1967, Dundurs [42] evaluated 

screw dislocation interaction with an inclusion. The influence of inclusion stiffness 

on the behaviour of the screw dislocation were addressed. A stiff inclusion repels the 

screw dislocation, whereas a compliant inclusiOn attracts the dislocation. This result 

has been proven by many authors in different ways [8, 27, 39, 43]. 

The interaction between a circular inclusion and an external radial crack was 

defined in terms of SIFs by Tamate in 1968 [8]. He stated that 'a relatively stiff 

inclusion causes lower SIFs, while a softer inclusion results in higher SIFs. His findings 

were in agreement with the results of Dundurs' 1967 work. In additiOn, he showed 

that the near crack tip is more vulnerable to the effects of an inclusion's parameters 

than the distant crack tip. To overcome the limitations encountered in the form of 
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the series expansion for complex stress potentials used by Tamate, Atkinson [9], in 

1972, introduced a dislocation density method in which singular integral equations for 

the distribution of dislocations which form a crack, are set up and solved numerically. 

Integrating over the dislocation density yields the stress fields. The solution for a 

single dislocation interacting with an inclusion was addressed by Dundurs and Mura 

[13] in 1964. Their solution was generalized to an arbitrarily oriented line crack by 

Erdogan et al. in 1974 [16]. Over the last two decades, the condition in which an 

imperfect cohesion exists along an interface including an interphase layer has been 

incorporated into the two-phase model as described in the previous section [18, 21, 

44,45). 

Research into the behaviours of a crack or dislocations interacting with an inclu-

sion in the two-phase composite system has had a significant impact on the devel-

opment of the fundamental theories of micromechanics. However, in considering the 

effects of an independent interphase layer; the influence of other inclusions surround-

ing an inhomogeneity, as in the GSC scheme; or other general three-phase cases such 

as cemented implant systems (implant/bone/PMMA); the three-phase micromechan-

ics scheme is of great practical importance and interest. 

1.2.4 Three-Phase Micromechanics Scheme 

The three-phase model, known as the GSC model, was first introduced by Christensen 

and Lo in 1979 [5]. They addressed the fact that perturbation caused by neighbouring 

inclusions should be taken into consideration when determining the effective shear 

modulus of the composite materials. The three-phase model consists of two circular 

regions and an infinitely extended region. The advantage of this model is that it 

provides a mathematical simplification of the single inclusion problem and takes into 
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account the effects of neighbouring inclusions and the matrix. Thus, it is.a simplified 

and generalized composite model, which offers more precise determination of the 

effective parameters, and effects the local characteristics and fracture mechanism of 

many physical applications. From a classical micromechanics perspective, the internal 

circular region is considered part of the inclusion, the annulus a part of the matrix 

phase, and the infinitely extending outer region a part of the composite phase, which 

is affected by both the neighbouring inclusions and the matrix [5]. Thus, this model 

presents the fundamental solution for the OSO model analysis. 

From an engineering application standpoint, a common physical example of the 

model is coated fibres embedded in a matrix. The internal component is the fibre, 

the intermediate region is the coating layer and the outer region is the surrounding 

matrix. The three-phase model is valuable for simulating the .interphase layer associ-

ated with bonding in composite materials. Furthermore, the methodology addressed 

in the three-phase model can easily be expanded into a multi-layer composite ma-

terial without losing generality [46] and can also be adapted to simulate particulate 

composite materials in two-dimensional micromechanical analysis [6]. 

Since Christensen and Lo [5] introduced the three-phase scheme in 1979, it has 

attracted the attention of many researchers interested in simulating the influence 

of both neighbouring inclusions and the surrounding matrix in the microstructure 

analysis of composite materials, and in representing an interphase. layer. In 1989, 

Luo and Weng [47] addressed how stress and strain fields are uniform in a fibre 

when Eshelby's S-tensor is applied to the three-phase scheme with perfect bonding 

interfaces. Stress fields in a composite with a coated inclusion were subjected to 

thermoelastic loading and evaluated by Benveniste et al. in 1989 [28]. In 1991, 

Luo and Chen compared two-phase models and three-phase models by considering 
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the effects of volume fibre fraction, and the thickness and material properties of an 

intermediate phase [48]. They demonstrated different results for the two models. By 

solving a problem of two concentric circles surrounded by unbounded medium, they 

addressed how the volume fibre fraction has a profound influence upon cracking in 

the matrix and how the stiffer surrounding medium, which is the infinitely extending 

outer region, suppresses crack propagation in the matrix. Also, they illustrated how 

the three-phase model shows a stable equilibrium position of the dislocation under 

much less stringent conditions, when compared with the two-phase model used by 

Dundurs and Mura [13], and how the trapping mechanism of the dislocation is more 

likely to take place in the three-phase model [49]. Of particular interest is how 

the stability of the dislocation is observed to be fundamentally independent of the 

orientation of its Burger's vector. These results are significantly different than the 

results seen using the two-phase model. In 1998, Ru provided the exact closed-

form solution for stress fields within an inclusion surrounded by an interphase layer 

under thermal loads, showing that the interphase layer has strong effects on the local 

stress, but moderate influences on the mean stress values [50]. In 2002, Wang and 

Shen, further developed the model by considering imperfect interface such as the 

inner circumferentially homogeneous sliding interface between an inclusion and the 

surrounding matrix [51]. By investigating how crack behaviours in the matrix interact 

with the imperfect interface, they depicted how the sliding interface influences the 

SIFs—the degradation of the initial bonding condition plays a predominant role in 

altering SIFs. 
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1.3 Applications of the Three-Phase Model 

1.3.1 Interphase Layer of Composite Materials 

It is well known that the quality of adhesion along an interface between a fibre and the 

matrix has a profound influence on the performance and failure of composite materi-

als, since the effective load transfer between the fibre and the matrix are compromised 

due to bonding defects, such as voids, impurities and cracking. The intermediate zone 

representing a state of adhesion between a fibre and matrix is known as the inter-

phase layer. The interphase layer can be illustrated by 'a two-phase model having 

an imperfect interface, with the assumption that its thickness is very thin and there 

are three parameters, the thickness and two elastic constants, which are incorporated 

into two spring-type interface parameters. However, as addressed in Section 1.2.2, 

the three-phase model is preferred, since it provides a more precise analysis of the 

interphase layer's influence on the failure mechanism of composite materials. 

The interphase layer is a chemical interaction by-product of the bonding between 

the constituents. However, it may also be introduced in the design stage to improve 

performance of the composite constituents. For example, fibres may be coated to 

improve the bonding between the fibres and the matrix. Xiao and Chen [52, 53] 

investigated the effect of coated fibre composites on bonding strength. They lemon-

strated that the thickness and mechanical properties of the coating materials compete 

with each other to alter the stress field around the circular inclusion. With a thick 

coating layer, the elastic properties of an inclusion have limited effects on the force of 

a dislocation, while the mechanical properties of both an inclusion and coating have 

substantial influence on the equilibrium position and the stability of the dislocation 

in the case of a thin coating layer. 
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The interphase layer can also include a thermal barrier coating in order to avoid 

thermal mismatch induced stresses in passivated interconnect lines in integrated cir-

cuits. Ru addressed how the interphase layer, with an intermediate thermal expansion 

coefficient between that of the matrix and the inclusion, should be implemented in 

order to reduce thermal stresses within both the inclusion and interphase layer [50]. 

In addition, in order to study stress and electric field concentrations in piezoelec-

tric composites and devices, Sudak investigated the relationship between residual 

electroelastic stresses induced by electromechanical loadings, and lattice mismatch 

between buried active components and surrounding materials [54]. Considering the 

interphase layer as a continuum with finite thickness, the works mentioned above have 

adapted the three-phase model to investigate its effects on the behaviour of composite 

materials. 

1.3.2 A Model of A Cemented Implant 

According to the National Hospital Discharge Survey of 2003, 36,000 of the 217,000 

total hip replacement (THR) surgeries and 33,000 of the 402,000 total knee replace-

ment (TKR) operations performed in the United States underwent revision surgery. 

Cemented implants, usually PMMA, are among the most popular types of prostheses. 

The predominant failure of cemented implants is aseptic loosening of the stem from a 

host bone. Of the many factors causing aseptic loosening, damage to the mechanical 

interlocking along the interfaces is the primary reason for loosening of a stem from 

the bone cement. 

It is important to understand the behaviours of each interface, namely, bone/cement 

and, cement/implant, to predict failure of the cemented prosthesis system. First, the 

interface between an implant and the bone cement can have either a smooth polished 
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surface, to facilitate implant insertion into the cement, or a porous surface, to increase 

interdigitation between the constituents. 

The interface between bone cement and the host bone has strong interdigitation. 

The interdigitation in a well-fixed cementing keeps its initally strong mechanical in-

terlocking and prohibits any relative shear slip. Compared to the adhesion between 

an implant and the bone cement, the mechanical interlocking and bonding along this 

interface is strong and less vulnerable to loosening. The three-phase model with two 

independently imperfect interfaces is of fundamental importance in predicting failure 

in an implant/cement/bone system. 

1.4 Overview of the Current Study 

Studying the behaviour of cracks or dislocations interacting with inclusions and the 

surrounding matrix is of fundamental importance in order to understand failure mech-

anisms and to enhance the performance of composite materials. A simplified scheme 

consisting of a single inclusion and a crack or a dislocation has been adopted for 

theoretical analyses by many researchers and has provided reasonable and reliable re-

sults. The application of the three-phase model includes bonding layers, any special 

coatings and cemented implants embedded into bone. 

The majority of the research dealing with the three-phase model has assumed that 

both inner and outer interfaces are perfectly bonded or that only the inner bound-

ary has imperfect adhesion. Although the imperfect interface has been considered 

a predominant parameter in micromechanical analysis and the degree of bonding 

degeneration at the interfaces has been known to dramatically alter stress fields in 

the composite constituents [26, 27], applying the imperfect interface condition to the 

three phase model is rare in the literature due to mathematical difficulties involved. 
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To illustrate this point, we will examine the dislocation density method. 

The dislocation density method, also called the singular integral equation method, 

was introduced and developed by Atkinson [9] and Erdogan et al. [16] and has been 

the most popular and widely accepted for simulating crack-inclusion or dislocation-

inclusion interactions. Although this procedure has contributed to the development 

of micromechanics of composite materials, thq computational difficulties associated 

with solving the singular integral equations for imperfect interfaces are still extremely 

challenging. To overcome the difficulties, a relatively simple series method has been 

incorporated into a two-phase imperfect interface model by Amenyah et al. [26] and 

Liu et al. [27], and into a three-phase model with an imperfect inner interface by 

Sudak [41] and Kim [39]. Sudak studied interactions between a screw dislocation and 

an inclusion in anti-plane shear employing a three-phase model with an imperfect 

interface by determining unknown complex coefficients using the series method. By 

establishing coefficients of complex potentials, Kim and Sudak also solved the three-

phase inclusion-crack interaction with general imperfect bonding conditions. Wang 

and Shen proposed the decoupled strategy, in which the dislocation density method 

and the series method were combined to show crack-inclusion interaction with sliding 

interface condition [51]. In this view, the three-phase model with imperfect bond-

ing along both inner and outer interfaces is considered to be the preferred and more 

precise model. However, although the three-phase model with inner/outer imperfect 

interfaces is identified, to the best of my knowledge, there is no research in the litera-

ture dealing with the three-phase scheme having imperfect bonding along both inner 

and outer interfaces. 

In the present work, both internal and external annular interfaces are considered 

imperfectly bonded and the series method is used to resolve the mathematical difficul-
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ties. Imperfectness of interfaces is modeled with dimensionless spring-type interface 

parameters and the effect of the parameters on the SIFs at crack tips is shown along 

crack locations. Thus, the aim of this research is to address how imperfections of 

both interfaces simultaneously affects propagation of a pre-existing radial crack in 

the annular region in plane elastostatics during the mechanical cracking processes. 

This thesis is organized into six chapters. Following this introduction which re-

viewed the basis of the three-phase model with imperfect interfaces, Chapter 2 pro-

vides a derivation of the mathematical formulations of the boundary value problem. 

Specifically, a semi-analytical solution to plane elastic deformation of a single inclusion 

interacting with a pre-existing radial crack is presented. The boundary conditions of 

an imperfect bonding along two interfaces are expressed in terms of stress potentials, 

which are represented solely in series forms. In Chapter 3, a rigorous solution to the 

boundary value problem is derived from the two imperfect bonding interfaces and 

a set of general algebraic equations is obtained. Chapter 4 outlines the numerical 

analysis procedures used to solve the algebraic equations and lays a foundation for 

SIFs to describe the behaviour of a radial crack under mode I loading. For the veri-

fication of formulations, numerical results from the derived formulations with perfect 

interfaces are compared to those published. In particular, a new phenomenon, the so-

called stable zone associated with debonding, is discussed in this chapter. Chapter 5 

deals with another application example of this rigorous model, namely implant/bone 

cement/bone system. The semi-analytical solution to the three-phase model is ap-

plied to the cemented implant design to show how the non-slip surface conditions of 

the implant affect performance and failure of the prosthesis. Chapter 6 summarizes 

the new findings of this research and concludes that the three-phase model having 

imperfect bonding along both inner and outer interfaces is general and preferred from 
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application perspective and the imperfectness of both interfaces should be taken into 

account for a more precise analysis. A brief insight into future work is presented at 

the end of the chapter. 

/ 



Figure 1.1 Phases of a composite materials (from Daniel et al. [3]) 
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a) Fiber-reitforced composites 
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b) Particulate composites 

c) Laminar composites 

Figure 1.2 Classification of Composite Materials 
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CHAPTER 2 

Analytical Formulation of A Boundary Value Problem 

2.1 Introduction 

We consider a domain in R2, infinite in extent, containing an inclusion, a matrix zone 

with a pre-existing radial crack and a composite phase (Figure 2.1). The inclusion, 

with center at the origin of the coordinate system and radius R0 occupies a region 

denoted by S0 and the matrix zone is modeled as an annulus with outer radius R1 

and represented by S1. The surrounding composite phase is represented by S2. All 

the materials occupying S0, S and 52 are assumed to be homogeneous and isotropic. 

The inclusion/matrix interface and the matrix/composite phase interface are denoted 

by curves or0 and or1, respectively and the interfaces OF0 and OI' are assumed to be 

homogeneously imperfect. The crack has length of 21 and unless otherwise stated, the 

subscripts 0, 1 and 2 will denote quantities in the domain 5o, S1 and S2, respectively. 

2.2 Formulation 

For plane deformation, the elastic stresses and their respective displacements in the 

polar coordinate system can be given in terms of two complex potentials (z) and 

b(z) as follows [55]: 

2/2 ('Ur + iu0) = &i0 1r'W (Z) - zço'(z) -  TZI 

arr + a00 = 2 ['(z) + (P,(Z)l I 

ar,. - zaro = ço'(z) + ço'(z) - e20 [çd'(z) +  

where 

(2.1) 
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z = x + iy = re 0 is the complex coordinate, 

= the shear modulus, 

u = Poisson's ratio, 

ic = 3 - 411 for plane strain, (3 - ii) / (1 + ii) for plane stress. 

Also, the resultant force acting on an arbitrary arc AB in an elastic body is given 

by [55] 

Fx + iFy —i 1(P(Z) + Z•01(z) + •W ] A , (2.2) 

where [f(*)] f(B) - f(A). 

Among the various mechanical descriptions of an imperfect interface, one of the 

most widely accepted models is based on the premise that tractions are continuous but 

displacements are discontinuous. Specifically, displacement jumps are proportional, 

in terms of 'spring-factor type' interface parameters, to their respective traction com-

ponents. In view of this, let us assume that the inclusion is imperfectly bonded to the 

matrix along the circular curve 8F0 and the matrix zone is also imperfectly bonded to 

the composite phase along c9I'. Then, the boundary value equations describing the 

problem above can be formulated. The traction continuity and displacement jump 

condition along F0 are given by [40] 

I I0rr - i0'011 = 0, 

Crr = m0 IIUrJj - m0u , rO = no IFioII - nouo° 

In the same way, the other boundary conditions along r, are given by 

llcTrr - WrOI! = 0, 

(2.3) 
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rr = m1 IlUril - m ii4 , a-ro = ni Iluoji - niu 5F1, (2.4) 

where m and n are non-negative spring-factor type interface parameter representing 

the degree of interface damage. Physically, these parameters represent the mechanical 

properties of the interface such as strength, stiffness and the overall degree of adhe-

sion along the interface [37]. The bracket expression * denotes jump across the 

interface, namely *fl = 11* 11, II*J!0 along r0 and = 11*112 - jJ*JJ along r1, and uO 

and u00 are additional displacements induced by the uniform stress-free eigenstrains 

(, , e) prescribed within the inclusion and the bonding medium w hich m ight be 

induced by thermal mismatch between adjoining materials. The advantage of defining 

the interface parameters m in the normal direction and n in the tangential direction 

in (2.3) and (2.4) is that they allow representation of degree of the interface imper-

fectness from complete debonding to perfect bonding through intermediate states. It 

is shown that the parameters, m = n = co in (2.3) and (2.4) lead the displacement 

jumps across the interfaces to zero, which corresponds to a perfect bonding condition. 

Interface tractions vanish as the value of the parameters approaches zero, which is as-

sociated with complete debonding. Any positive value of these parameters represents 

a degree of bonding inadequacy along the interfaces. 

2.3 Boundary Value Problem 

The boundary conditions along F0 and r, in (2.3) and (2.4) need to be expressed 

in terms of analytic functions ço(z) and (z). Each region such as So, S1 and 82 

requires two stress potentials to describe its stress fields so that it is required that six 

analytic functions ço0(z), bo(z), 1(z), 'çb1(z),ço2(z) and 2(z) be defined. Attention 

should be given to the boundary conditions along Pb and ri in region S since a radial 
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crack causes multi-valuedness. As a result, the analytic functions col (z) and (z) 

are divided into two pairs such as p 11 (z), 11 (z) and p 12(z), 12 (z): thus, p 11 (z) and 

are defined on and outward from F0 while w12 (z) and b12 (z) are defined on 

and inward from F1 (See section 2.4 for details). 

The traction continuation along Fc in (2.3) leads to the following expression 

(0rr Z0 rO)i = (°'rr - iog)0. (2.5) 

In view of (2.1)3, the above equation-is re-written in terms of analytic functions as 

[çog(z) + 4(z)]. (2.6) 

Since z' = R and z = R0c° at oF0 and ç'() = '(z) according to analytic contin-

uation (w'(z) = '()), . = and e° = are substituted into the equation (2.6) 

and it can be recast into the following form 

I R\ (R\ 
T2 0 

coç1(z)+7 \T) —zcoi(z)—ji(z) = (z)+ —z(z)—(z) or0. 

(2.7) 

It is noted thatthe stress potentials land are replaced with 11and 011. 

The normal and tangential displacement jump condition along Fo in (2.3)2 is re-

written based on (2.3) as 

0 rr = Ho hUrl! - mour°) - i (no line!! - n0u00) , OF0. (2.8) 

According to the assumption of traction continuation condition in (2.3)1, the left-
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hand-side of (2.8) can be either (crrr icTrO)o (Orr - ior9)1 along r0. Letting Urr - 
(cTrr - j0 r), we write the displacement jump condition in the following form 

(see Appendix 1 for detailed derivation) 

(m0—n0\ (mo+no\ 
(Orr i0 r0)0 = 2 ) JItr +iUOI+ (\ 2 ) "Ur - iUgIJ— (mozç° - inou°) 

(2.9) 

The additional displacement induced by the eigenstrains prescribed in the inclusion 

can be written as [10] 

0 
u =R (co cos2 O+4sin2O+4i L,sn 2O), u =R ( 2 6xsin2O+ 4 cos2O ) 

(2.10) 

Sudak et.aL[25] have shown that the last term in (2.9), the displacement induced by 

the uniform eigenstrains can be written in the following form 

fm+n\ + (m—n'\ 
(mou - inou°) mR061 + 2R0 ) - i3) Z2 + ( 2z2 ) R (62 + i63), ôI'0, 

(2.11) 

wheree1 241L, 62 ---- and 63 = ,. By substituting (2.11) into (2.9) and then 

using (2.1) and (2.2), we can express the displacement jump condition (2.3)2 in the 

following form (see Appendix 1 for detailed derivation) 

R0 (R\ 
(mo - no)(ic1 + l)-11(z) + (mo + no)(ic1 + 1) z - (2.12) -;--) 

= 4i Ico 10 (z) + (R2) - zcp'(z) -W 02 't'O (z)] + (mo - no) (I + (z) /co—)---ço0  
IL0 z 
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+(mo - no) (1 - !i) [R0 (&) 
R0— (Roz )] 

110 +TI/)0 

+(mo + no)(1 + ,.0L::i)f 0( R )+(m0+ no) ( 1— Li) [Ro(z) + b0 (z) 
110 I 110 RO Z  

+4moRo111e1+ 2p1(mo + no) (e2 - ie3)2 + 2111(mo - no)(e2 +ie3)R  
R0 Z2 

,z €r0. 

In a similar fashion of (2.7), the traction continuation along F1 in (2.4) can be 

written as 

+72 ( —z(z)—(z) = W12(Z)+W2 12 () —zço12(z)—b12 (z) (2.13) \ZJ 

r1. It is noted that the stress potentials ço12and 012 are used. Also, the 

displacement jump condition along r1 in (2.4)2 can be expressed in terms of stress 

potentials as follows (see Appendix 2 for detailed derivation) 

(R\ 
(m1 - m1) (r-1 +1) & z c12 (z) + (m1 + n1) (r., +1) -) 

— P z) + 12 jz) - — — 27) 

+ (mi - ni) (1 [R ,7'2(L2 2 1 172+ (RI )] 112)  

(2.14) 

+(mi_ni)(1+L12 R1 — 1 /' 21) 
112 , 

\ Y2 z 

z (i_Ltl ) [b2(z)+(z)] 
+ (m l+nl)R 1 

)z E Fi. 

In (2.14) there are no terms associated with the displacements induced by the 

uniform eigenstrains. Also, two different pairs of stress potentials in region Si are 

defined. The ço (z) and u (z) defined along (9r0 are incorporated into (2.7) and 
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(2.12): the other pair of analytic functions p12 (z) and 12 (z) are used in (2.13) and 

(2.14) along OF1. Thus, the boundary value problem describing the imperfect bonding 

condition along both inclusion/matrix and matrix/composite is expressed in the four 

equations such as (2.7), (2.12), (2.13) and (2.14) which are given solely in terms of 

stress potentials. 

2.4 Series Representation for Stress Potentials 

The stress potentials can be expressed solely in series representation. As addressed in 

Chapter 1, to overcome mathematical difficulties related to solving singular integral 

equations, this relatively simple series method is often adapted in the three-phase 

model. Now, the eight stress potentials shown in (2.7), (2.12), (2.13) and (2.14) are 

represented as series expansions in the variable of z within each domain. 

Let's consider region S0 first. The stress potentials p0(Z) and 0(z) are analytic 

within a inclusion and can be expanded into a Taylor series in So as follows 

00 

00 (Z) = bkz1c, (2.15) 
k=O k=0 

where ak and bk are undetermined complex coefficients. 

Secondly, the infinitely expanded region S2, namely the composite phase is con-

sidered. The stresses X, Yj, and X are assumed to exist and to be bounded and 

finite at infinity. In this view, the equations of (2.1)2,3 lead to a conclusion that 402(z) 

and 2(z) must have 0(1) as Izj -* 00. Thus, the remote loading at intinite can be 

characterized by the uniform stress field 

ço2(z)=Az-i-Q(1), 'cb2(z)=Bz-i-0(1), as I zJoo, (2.16) 
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where A is a given real number and B is a given complex number. Stresses in a 

Cartesian system [55] are given as 

xx+ Yy = 2[(z)+(z)], (2.17) 

—X+2iX = 2[c4'(z)+çb(z)]. 

By substituting (2.16) into (2.17) and solving the equations, we get a relationship 

between stresses and the constants in the following form 

Xx+Yy=4A,Y+iXy=2A+B,Xx_ixy 2A_B. (2.18) 

( co 00 oo\ Now, let X, 1, and X denote principal stresses \O'. , , oj at z = co, respectively. XY 

We re-write (2.18) as 

°+°=4A, icOO  o°—ic XY r=2A—B. (2.19) 

In this dissertation, we consider the case of a uniaxial load normal to the radial crack, 

namely, o-.° = 0, cr0 = o-°° and aOO = 0, and then the constants A and B are XY 

determined as 

(2.20) 

Thus, the stress potentials c02 (z) and 0 2(z) are expanded into a standard Laurent 

series in region S2 in the following form 

W2 (Z)=Az+ 
k=1 

z, 'b2(z) = Bz + 
k=1 

dkz_Jc, (2.21) 
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where A ç, B B = ç. 
Finally, the stress potentials W, (z) and 01(z) in region S1 containing a pre-existing 

radial crack have been expanded as series forms. In the present problem, since the 

intermediate matrix region S1 contains a crack, p1(z) and ?i1(z) are not analytic in 

the region. To solve the difficulties, let us employ analytic continuation [55] to express 

coi(z) and b1(z) in terms of two new functions that are analytic in a new domain D 

representing the intermediate region without the radial crack. Namely, D = 51 - 21. 

Thus, the stress potentials W1(z) and (z) can be expanded into standard Laurent 

series in D. In view of (2.2) and traction free condition along the crack-face 21, we 

can get the following condition 

F+iF [•O(Z) +z(Z)+(]B =0. (2.22) 

The above condition is expressed along the crack face in the upper and lower half 

planes as follows 

ço1(z) + z(z)+ + 1(z)+ = 0, z E 21, (2.23) 

= 0, z E 21. 

Let's consider the analytic continuation across the boundary which is the real 

axis. In particular, if the line of symmetry is the real axis, Schwarz's Reflection 

Principle can be employed into any analytic function fi in the upper plane D. f2 

defined in the lower plane D by f2 (z) = fi (2) is the analytic continuation of fi to 

D [56] . Muskhelishvili [55] defines the f2 (z) as a function to have the conjugate 

complex value of f at the point 2, namely J(z) = . By analytic continuation, 
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I +   + 
A (z)] = = [(z)] and [0i(z)] = 01 (z)].. Thus, 

(z)+ [(z)±i(z)] =  

-I - + (z) - + [z i(z) +  

0, 

0, 

z E 21, 

z E 21. 

By adding and subtracting the above equations, we get 

(2.24) 

- {z(z) +(z)] = - [z(z) +'(z)], z E 21,(2.25) 

(z) + [z  (z) + = - {o1(Zy + [z(z) + z E 21. 

First, let's consider (2.25). From the equation (2.25), a new analytic function is 

defined as follows 

X (z) p1 (Z) - {z  (z) +'(z)]. 

In view of (2.25), the following relation holds 

X(z)=G(z)X(z)+f(z), z E 21, 

(2.26) 

(2.27) 

where G(z) = 1 and f(z) = 0. The above problem is called the problem of linear 

relationship or the Hubert Problem [55]. Equation (2.25) is expressed in terms of the 
new function such as X (z)+ = X (z) -, which means that X (z) is continuous across 

the crack 21. Thus, X (z) is analytic in D representing a domain S minus 21 and 

across the crack face 21 and can be expanded into a Laurent series in D as follows 

00 

X(z)= k 
kz z E D, (2.28) 
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where ek are unknown complex coefficients. 

Secondly, (2.25)2 shows that the value of ço(z) + [z (z) + (z)] has opposite 

sign across the crack face and this is an another Hubert Problem with G(z) = —1 and 

1(z) = 0. By Plemelj's function and a solution given by Muskhelishvili [55], we get 

(z)+ [z(z)+(z)1 =  P(z)  
Oz - a) (z - 

where P(z) is an arbitrary polynomial and 

[vl,(z — a) (z — b)] [-,/(z — a) (z — b)] zE2l=(a,b). 

(2.29) 

For example, if the outer radius R1 is extended to the infinity and the value of the 

above equation (2.29) is finite and bounded at infinity, the polynomial P (z) would 

be taken as z. In the case where (2.29) holds in intermediate zone S1, P (z) is taken 

to be 1 for easy formulation. Now, let's define another new analytic function such as 

Y(z) /(z - a) (z - b) {p1(z) + z(z) + '(z)]. (2.30) 

Similarly to X (z), Y(z) is continuous across the crack 21 (Y(z) = Y(z)) and is 

analytic in D. Hence; the new analytic function can be expanded into a standard 

Laurent series as follows 

Y(z)= 
00 

k—oo 

fkzk, z e D, (2.31) 

where fk are unknown complex coefficients. Consequently, from (2.26) and (2.30), 
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the stress potentials ç(z) and b1(z) defined in S1 take the following forms 

1 1 
=  Y(z) + —X(z), 

2/(z—a)(z--b) 2 

and 

(2.32) 

01 (Z) = —X(z) +(z) - zco'(z). (2.33) 

It is noted that the aim of derivations of the stress potentials ç01 (z)and 01 (z) in S1 

is to investigate crack behaviours around crack tips, in other words, the inward crack 

propagation from crack tip a to the inner interface To and the outward propagation 

from the other tip b to the outer interface Ti. In (2.32), the term of  I  is a 

multi-valued function across the crack face but is analytic within a circular domain 

jzj <a including T0 U So and within an outward circular domain lzj > b including 

Ti US2. Let F(z) denote  and expand it into standard series forms. Since 

two different domains are considered, two notations, F(z) 11 and F(z) 12 represent the 

value of 2(.a)(-b) within a domain jzj <a including T0 U 5o and IzI > b including 
T1 U S2 respectively. 

First, F(z) ii in a lomain IzI <a is expanded into a Taylor series as follows 

Fii (z) 1 1 _.i I 

2(z—a)(z—b)2 2(z_b) (2.34) 

00 

go + g1z + 92Z  + 93Z3 + 94Z4 + gz5 + 96Z  + 97Z  + ... 

where gk are coefficients which are determined in terms of the crack tip position a 

and b. For example, the first eight coefficients are the following (see Appendix 3 for 
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detailed derivation) 

1 
g0 

9' 

2' 
(1  1 1 1 \ 

+ 

(3  1  1 1 3 1 \ 
92 = + + 16 Va-Mbl 

(5  1 3  1 3 1 5 132  '\ 
93 = +  +  +   

(35 ,  1 5  1 9 1 5 1 35  1  '\ 
+ + +  + 

/63  1 1 +15 1 +15 1 
= 512 Va1bh1 512 256 256 v''T 512 v'! 

63  1  
512 Vallbl 

96 

97 

( 
( 

231  1  
2048 V'a1b13 

63  1 105  1 25  1 105  1  
lO24 /a3b11 2048y'a59 512 /a7i7 2048 \/a9b5 

+ 63  1  +231  1  
1024 v'a11b3 2048 /a13b1 

3003  1   i 231  1  i 189  1 175  1 175  1  

28672 VOW 4O96v'ab1 4°96 v'ab 4096 'Jab 

+ 189  1  + 231 1 + 3003  1  
4096 /JT 4096 28672 v'a15b1 

Now, let's expand F(Z)12 in a domain IzI > b into Laurent series as follows 

F12 (Z) = 

A 00 

= (1 - )(i - )- = 

2/(z—a)(z—b) 

1 

h_1z' + h_2z 2 + h-3 Z- 3 + h_4z 4 + h_5z 5 

- +h-6Z- 6 + h_7z 7 + h_8z 8 + ) 

(2.35) 

where h_k are also coefficients which are determined in terms of the crack tip position 
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a and b in the following form (see Appendix 3 for detailed derivation) 

1 

2' 

1 (a+b)h_2 2 2 ' 

(a2 + ab+b2) 

I (5 a 3+ 3 2 + 3 2 +  3) 

16 1-6 T6 

h_5 = 1(35ja + ab + a 2 b 2 + ab + --35 b" 
2-8  64 T2 128 

1(63 35 = ga + 256a b + ja3b2 + ja2b3 + + ----b '' 
256 256 ) 

/ 231 
1( a6 + a5b + jJ-a4b2 + a3b3 + a2b4 ) 

= 4 256 1024 

2 +ab5 ± 231 b6 
512 1024 

h_8 
1 

2 

/ 429 7 
a + ga6b + a5b2 + 2048 ja4b L. 

+a2b5 + Jgab6 I 
2048" 

For approximation to F(x), the first 8 coefficients of F11 (z) in (2.34) are taken. 

Let çc11 (z) and 11 (z) denote stress potentials go1(z) and 'çb1(z) in a domain Izl <a 

around the crack tip a. Substituting (2.28), (2.31) and (2.34)2 into (2.32) for co11 (z) 

and (2.33) for b(z) yields (see Appendix 3 for detailed derivation) 

and 

= p7z7 -j-p6z6 +p5z5 +p4z4 +p3z3 +p2z2 +p1z1 +Po (2.36) 

+P_1z-1 + p_2z 2 + p_3z 3 + p_4z 4, 

= -6p7z7 - 5p6z6 - 4p5z5 - (3p + z4 - (2p + 63)Z3 (2.37) 
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- (P2+ e2) z2 - 1z1 + (P0 o) + (2P-i - Z-1 

+ (3P-2 e_2) z2 + (4p - e_3) z3 + (5p &.4) z4, 

where 

P6 = (97f—i + 6fo + sfi + 94f2 + 93f3 + gf4), 

P5 = (971-2 + 96f—i + 9510 + g4f1 + 93f2 + 9213 + gi14), 

P4 = (971_s +961-2 +gsf_i +9410 +93fi +9212+9113+9014 + 

P3 = (961_3 + 951-2 + 941—i + 9310 + g211 + 9112 + 9013 + •e3) 

P2 = (915f-3 + 941-2 + gf_i + gf0 + 9111 + 9012 + •e2) 

Pi = (941_3 +9312 +921_i ifo +g011+ •ej) 

PO = (93f-3 + 92f-2 + 91f—I + g0fo + I eo), 

P—i = (921_s + gif-2 + gof—i + 

P-2 (Ylf_3 + 901-2 + 

(90 = f— + 

= (e_4). 

In the similar way, the first 8 coefficients of F12 (--) in (2.35) are taken for approxi-

mation to F(x) in a domain jzf > b. Now W12 (Z) and 012 (z) denoting stress potentials 

(z) and 01 (z) in a domain Izi > b around a crack tip b are considered. Substituting 

(2.28), (2.31) and (2.35)2 into (2.32) for c012(z) and (2.33) for 12 (z) leads to the 
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following form (see Appendix 3 for detailed derivation) 

T12(z) = q3z3 +qz2 +q1z' +q0 +q_1z' +q_2z 2 +q-3Z- 3 +q-4Z-4 +q-5Z- 5 +q-6Z-6, 

(2.38) 

and 

b12(z)= 7q-6Z- 6 + 6q-5z- 5 + (5q_4 - e_4) z 4 + (4q3 - C3) z 3 (2.39) 

+ (3q_2 - C2) z 2 + (2q_i - z 1 + (q - o) - FjzI 

+ (- 2 - q2) z2 + (- - 2q3) z3 - 

where 

q3 = 

q2 =  

qi= 

qo = 

q._1 = 

q-2= 

q3 = 

q_4 = 

(h-lh + •e3) , 

(h-2h + h_1f3 + e2) 

(h-A + h_2f3 + h_1f2 + el 

(h-4h + h_3f3 + h_2f2 + h_1f1 + •eo) 

(h_514 + h_4f3 + h_3f2 + h_2f1 + h_1f0 + 

(h-6f4 + h_5f3 + h_4f2 + h_3f1 + h 2f0 + h_1f_1 + 

(h 7f4 + h_6f3 + h_5f2 + h_4f1 + h_3f0 + h_2f_1 + h_1f_2 + 

(h 8f4 + h_7f3 + h_6f2 + h_5f1 + h_j0 + h_3f_1 + h_2f_2 

+h-1f_3 + 6_4 
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: 
1 1z. —1J_4 le- 5 

q-6 = (h-8f2 + h 7f1 + h_6f0 + h_5f_1 + h_4f_2 + h 3f_3 + h_2f_4 ± 
2 ) ' 

h 8f3 + h_7f2 + h. 6f1 + h_5f0 + h_4f_1 + h 3f_2 + h_2f_3 
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Figure 2.1 Three-phase circular inclusion model with a radial crack 
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CHAPTER 3 

Algebraic Equations 

3.1 Introduction 

In this chapter, the eight stress potentials expressed in terms of finite series coefficients 

in Chapter 2 are substituted into the four boundary conditions (2.7), (2.12), (2.13) and 

(2.14). By comparing coefficients of powers of z, a set of 38 coupled linear algebraic 

equations are derived to determine 38 unknown coefficients of the stress potentials. 

In particular, uniaxial tensile loads are considered as the prescribed remote load 

normal to crack surface since Mode I stress intensity factor is the most critical factor 

leading composite material failure. Since a pre-existing crack is located and moving 

on the real axis, namely, the x-axis all the coefficients that we consider are assumed 

on the real axis as well. Henceforth, all the complex coefficients of stress potentials 

and their respective conjugates are the same. The imperfect interfaces are assumed 

homogeneous, which means the spring-factor type interface parameters do not vary 

along the interfaces. 

3.2 General Algebraic Equations on Inner Interface r0 

There are two boundary 'conditions along the inner interface 51'o: one is the traction 

continuity and the other is the displacement jump across the interface. First, let's 

consider the traction continuity condition. Substituting the stress potentials WO (z), 

b0 (z), o(z) and ''(z) into (2.7) gives the following expression (See Appendix 4 for 

the details) 

42 8 30 . 20 
p7z + p6z + (_35P7 + P5) z6 (3.1) 
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(1 4p_4\ 3p_3\ 
+ jTO, R010(12P4+4e4)_24P6__)z +((6P3+3e3_15PS —r,)z 

Ro 

+ ( (2p + 2e2) - 87 4 - P_2) z3 + (ei - - z2 + (0) z 
WT 

+ (W02- (2p_i _e_i)+2p1) 

+ (W'2 (12p - 3e_3) - 3p-i + 3R 3) z 2 

+ (W'2-(20P-4 -' 4e_4) - 8P-2 + 4R 4) z 3 + (5Rp5 - 15p_3) z 4 

+ (6R °p6 - 24p_4) z + 7p7R 2z 6 

786 7 

= —b W02-7z - W02- + (_35a7 - b5) z6 + (_2ia6 - b4) z5 

+ (_15a3 - b3) z4 + (_8a4 - b2) z3 + (_3a3 - b1) z2 + (0) z 

+2a1 + 2Ra2z  Woo ' + 3Rci3z 2 + 4Ra4z 3 + 5Ra5z 4 + 6R °a6z 5 + 7R12 Z-6. 

Also, deploying the stress potentials into (2.12). leads to the expression (See Ap-

pendix 4 for the details) 

(mo - no)( 1 + 1)Rop7z° + ((mo - no)( 1 + 1)Rop6 + (mo + no)( 1 + 1)_4) z5 P 

+ ((mo - na)( 1 + 1)Rop5 + (ma + no)( 1 + 1)_3) z4 (3.2) 
ju P  

+ ((mo - no) (ic1 + 1)Rop4 + (ma +na) (Ic1 + 1)P_2) 
W05-

+ ((ma - no)(Ic1 + 1)Rap3 + (ma +no) (Ii + 1)_i) z2 
10 

+ ((ma - na)(Ic1 + 1)Rop2 + (ma + no)(Ic1 + i)7vo) z 

+2m0 (,c1 + 1)Rap1 + [(ma - no)(Ici + 1)Rapo + (mo +na)(tc1 + 1)Rp2J z 1 

+ [(ma - na)(ic1 + 1)Rap 1 + (ma + no) (Ic1 + 1)Rp3] z 2 

+ [(ma + no) (ici + 1)Rp4 + (ma - no) (ici + 1)Rop_2] z3 
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+ [(ma + mo)('ci + 1)Rp5 + (ma - no) (ici + 1)Rap_3] z 4 

+ [(ma - no) (ic1 + 1)Rap_4 + (ma + na)(a'ci + 1)R'p6] z 5 

+(ma + no) (ic1 + 1)R 3p7z 6 

= 4/2l b7 + (ma + na)(1 - z8 W 02— 
J? ) 

+ (_4i i b6 + (ma + nom - z7 
/1 Ra ) + (4ii (_35a7 - b5) + (ma - no) + Ka±1)Raa7 ) 

+7(ma +na)(1— )Raa7 + (ma +na) - 1u0 iR0 -Lb5 

bto+ ( 4P ( 24a6 - *b4) + (ma - na)(1 + a)Raao ) 
+6(ma + no) (1— -)Roa6 + (ma +n0)(1 - ' 

Ito /LO Ro  

+ ( 4 i (-15a5 - b3) + (ma - no) + a)RaaIto s 

+5(mo +na)(1— )Raas + (ma +na) (1 - p0)Ro 3 ) 
+ (ii (_8a4 - *b2) + (ma no) (I + ica1)Raa4 )z 3 

+4(ma+ no) (1—)Raa4+(ma+na) - u0 1 Ro 2 

+ ( 4 (-_a3 - bR70 1) + (ma na)(1 + /ca 1)Raa3 + 2p1(mo+no)(e2—ie3) 

+3 (ma + no) (1 - )Raa3 + (ma +na)(1— 
+ /to( go Ro 

(ma - no) (I + a)Raa2 + (ma + no) (I + a)aa 

/to+(ma + no) (1 - 1)ba + 2(ma + na)(1 - ')Raa2Ito Ro  ) 
Ito 

+ ( 8aj + (ma - no) (I + no)Roai + Ra(ma - n o) - 

luo 

+(ma + na)(1 + o)Raai + 4maRa iei + (ma + na)(1 - 1)Raai 

) 

) 
( 8p 1Ra2 + (ma na)(1 + ia 1)Roao + 2(mo - na)(1 -  R 3a2 

+1 0 0 —1 

+(ma - no) (1 - )Rabo + (ma + no) (1 + a )Ra2 ) 
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l2la1Ra3 + 3(mo - no)(1 - Po 0 + (ma - no)(1 - ' JUo )Rb1 

+ +(mo + no) (I + o)Ra3 + 2ii1(mo - no) (62 + ie3)RPo 0 ) 
116la1Ra4 + 4(mo - no)(1 - + (ma - no)( 1 - )Rbyo 02 

+ +(mo + no) (I + o)Ra4 ) 
12Oa5 + 5(mo - no)(1 - )Ra5 + (ma - no)(1 - b3 )R + 1 R Mo 

+(mO+ no) (1+Ko 1)R09 a5 ) 
(24laiR0a6 + 6(mo - no)(1 - )R'a6 + (ma - o)(1 - )Rb + 4 Iz 

+ 

+(mo + no)(1 + ico-)R'a6 Yo 0 

28la1R2a7 + 7(mo - no) - 1.)1 3a7 + (ma - no) - 

Yo 0 

+(mo + no)(1 + o-)R 3a7 

+(mo - no)(1 - !.1.)R 3 b6 7 + (ma - no)(1 - 14)Rb7z_8. 
Yo /1 

Z-6 

By comparing coefficients of the same power of z, from z5 to z 4 in (3.1), we get 

the following set of coupled linear algebraic equations 

(12 4P 4  4 P4 + - 24 - z - (_24a6 - b4) z5Ro  

(P3 + - 15P5 - 3;3) z4 = (_15a5 - b3) z4, 
Ro 

2 2P-2 3 
(P2 + e2 - 8P4 - z = (_8a4 - bR02 2) z3, 

( 2e1 - P3 3 P—i" 2 
- -1 Z = (-3a3_ T02 bi)z2, 

Ro 

1 
(P_i - e_1 + 2pi) = 2a1, 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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(2Ro2p2 + P-2 - e_2) z 1 2Ra2z', (3.8) 

(12 3  P_3 - - 3P-i + 3Ro4 3) z_2 = 3R a3  (39) 

(20 4 P_4 - e_4 - SP-2 + 4R06P4) z 3 = 4Ra4z 3, (3.10) 

(5Rp5 - 15p_3) z 4 = 5Ra5z 4.  

It is noted that the coefficients of z1 are 0 in both sides (0 * z1 = 0 * z'). 

Similarly, comparing coefficients of the same power of z, from z5 to z 4 (3.2) gives 

another set of coupled linear algebraic equations as following 

( (mo - no) (ic1 + 
+(mo + no) (n, + 1)*p_4 

z5 = 

/ 4ii (_24a6 - b4) 

+(mo - no)(1 + icoi)Roa6 140 

+6(mo +no)(1— )Roa6 Po 

\ +(mo+no)(1 - 0'Ro 4 J 

4p, (—ma5 - b3) " ( (mo - no)( 1 + 1)Rop5 ) 4 +(mo - no)(1 + o)Roa5 
Ao 

+(mo + no) (1 + 1)p = +5(mo + no)(1 - )Roa5 
Ao 

b --1- \ + (mo + no) (1 - p0/0 J 

( (mo - no)( 1 + 1) RON 

+(mo +no) ('ii + 1)p_2 ) z 3 

7 4, (-8a4 - b2) \ 
+(mo - no) (I + ico 1)Roa4 

Yo 

+4(mo + no) (I - )Roa4 
Po 

\\ +(mo+no)( jL0)Ro 2 / 

z5, (3.12) 

z4; (3.13) 

z3, (3.14) 
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((mo— no) (ici+1)R0p3 +(mo +no) (ici + RUOP— 

( (mo — no) (ici+1)Rop2 ) 
+(mo + no)(ic1 + 1)po 

2mo(ic1 + 1)Rop1 = 

( (mo — no) (ii+1)Ropo 

+(mo + no)(ici + 1)Rp2 

Yo 2 

Z 

—3a3 - b1) + 2j(mo+no)(e2—ie3) \ 

+(mo - no)(1 + Ko1)Roa3110 

+3(mo + no)(1 - ')Roa3 

+(mo+no)(1_1 'b 

120)RO 1go 

/ (mo - no) (I + ico')Roa2 

+(mo + no) (I + o)ao 

+(mo + no) (1— 

\ +2(mo + no) (I - 1)Roa2 

8m, a, + (mo - no) (1 + ico al /Zo )Roa1 

+Ro(mo no) (1 - 

go 

+(mo + no)(1 + ito)Roai go 

+4moRop&1 + (mo +no)(1— go 1)Roa1 j 

I 

I 

(3.15)go 

—AL 

Z) (3.16) 

/ 8j 1Ra2 + (mo - no) (I + io)Roao 

+2 (mo - no) (I - L?1)Ra2 
/L0 

+(mo - no)(1 - )R0b0 

+(mo + no)(1 + 

(3.17) 

\ 
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((mo - no)( 1 + 

+(mo + no) (Ici + 1)Rp3 

( (mo + no) (i+ 
+(mo - no) (ici + 1)Rop_2 

( (mo + no) (Fci+ l)Rp5 ) = 

Z-3 

/ 
12u1Ra3 + 3(mo - no)  - 

= 
+(mo - no)(1 - 

Ao Z-2 

+(mo + no) (I + 
Yo 0 

+2p i (mo — no) (e2+iE3)R J 
(3.19) 

+(ino - no) (ici + 1)Rop_3 

/ 16 1Ra4 + 4(mo - no) (I - )Ra4 

+(mo - no) (1 - 1)Rb2 

+(mo + no) (I + to)Ra4 
Po 0 

/ 20 1Ra5 + 5(mo - no) (I - )Ra5 

+(mo - no) (I -  a) R7b3 

+(mo + no) (I + ico')Ra5 

/ 
(3.20) 

-4 z . 

3.3 General Algebraic Equations on Outer Interface F1 

Along the outer interface I'1, there are also two boundary conditions as addressed in 

the previous section. The traction continuity condition is considered first. Substi-

tuting the stress potentials ço2(z), i/ 2(z), ço12 (z) and b12 (z) into (2.13) we have the 

following expression (See Appendix 4 for the details) 

8 7 8 7 6 4 5 3 4 
—csz - - .c6z - c5z - i - —1c3z (3.22) 

1 1 1 1  i 
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2 / 1 1 "2 1 \ 2 
—c2z + - B) z +(2A + di) + d2z 1 

+ (_3c1 + d3) + (_8c2 + d4) 3 + (-15c13 + d5) 

+ (_24c4 + d6) + (_35c5 + d7) + (_48c6 + d8) 

—63c7z 8 - 80c8z 9 

I 17'\ (-5,,, 16\ (\5 (6_6 z) + 12 z) + - 4q_4 ) z 

+ (_3 (- - 2q3) - 3q 3 ) z4 + (_2 (- p2 - q) - 2_2 ) z3 

+( 1 _ Ri R6 
q_1 +3q3 _6q3) z2+ (2q2 _ 2q2)z 

RI 

+ (q, + q1 + (2q_1 - -) + (2 2R +2 (3q_2  z 1 

+ (3q3R1 4 - q_1 - 2q_1 +3 (4q_3 - '9-3) 1 2 ) Z -2 

RI 

+ (_2q_2 +4 (5q4 - e_4) - 6_2) z 3 

+ (-3q-3 + 30q-5 -L  12_a) z 4 + (_4q_4 + 42q_6 - 2O_4) z 5 

+ (-5q_5 - 30q_5) z 6 + (-6q.... - 42q_6) z. 

Finally, with go2(z), /.'2(z), ço12 (z) and b12 (z) substituted into (2.14), the last 

boundary condition (2.14) yields the following expression (See Appendix 4 for the 

details) 

(m1 +ni) (Ic1 + 1)q_6z7 (m1 +n1) (k1 + 1) q_5z6 

+ (mi + n1) (k1 +1) q_4 z5 + (mi + n1) (k1 +1) q_3 z 
T19 I 

+ (mi + m1) (Ic1 +1) q-2 I  

+ ((mi - n1) (Ic1 + 1) R1q3 + (m1 + n1) (Ic1 + 1) 
I ) 

(3.23) 
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+ ((mi - ni) (k1 + 1) R1q2 + (m1 + n1) (k1 +1) 1 qo) z + 2m1 (k1 + 1) R1qi 

+ ((mi - n1) (k1 + 1) R1q0 + (m1 + n1) (k1 +1) Rq2) z 1 

+ ((mi - ni) (k1 +1) R1q_1 + (m1 + n1) (/ +1) Rq3) 

+ (mi - m1) (k1 + 1) R1q2z 3 + (m1 - n1) (k1 + 1) Rjq_3z 4 

+ (mi n1) (k1 +1) R1q_4z 5 + (m1 - n1) (k1 +1) Riq_5z 6 

+ (,mi — ni) (k1 + 1) R1q_6z 7 

(4 t1\ 4 
= i\ 

I Y2 /22 )C4) 

+ ( 4 1 c3 + (mi — n1) (i - &) (d5 - C3) 4 

+(m1+n1)(1+.r1k2)ca,r 

+ ( 4 \ /2) /2 & ic2+(mi_nl)(1_" (d4*-_c2) 

+(mi+ni)(1+Lk2)c2 
A2 ) 

+ ( '1121 (RT, ci+*B) + (ml —n1)(1-1' (d3l-R-91 ) 2 — *ci) \ /22) 

+(mi+ni)(1+&k2)ci + (mi + ni) 1_&'B 1 
/22)R1 

+ (ml —ni) (1 1 d2 z 
\. /22) 

—4/2k (2A + d1) + (m1 + ni) (i + ?1 1 k2 AR, 
122  

+ (ml +ii)(1_Li) (ARI + diP2 Tl-

+ (m1 - ni) (i - i) (ARI + d1 ) + (m1 - n1) (i + 1k2 AR, 
P2 R, 122 

+ (_4iti d2 + (mi + ni) (i - & d2-- 
/12) R1) 

— 4/.ti (_3c1 + 2d3) + (m1 - ni) (i - ) BR 31 A2  

+(mi _ ni) (1+&k2)Rici 
A2  

+(mi+n1) 1 1- -141 (d3* - Rid) 
\ /22) 

z5 
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+ ( 4 i-ti (-8c2 + d4) + (m1 - ni) (i + 1k2) R1c2 
A2 ) Z-3 

+ (in1 + n1) (i - i) (d4_ - 2Ric2A2 Ri  

( - diii (_15c3 + d5) + (mi - n1) (i + k2) R1c3 
/12 

+ (mi + ni) (i - &) (d5-L - 3Rics) 

(-4ii1 (_24c4 + d6) + (m1 - n1) (i + k2) R1c4 
112 

P2 ) 

By comparing coefficients of the same power of z, from z5 to z 4 in (3.22), we get 

the following set of coupled linear algebraic equations 

+ 

+ 

4 5 
_ 1-0 c4z = (4e4 - 414 15, 

1 W 21- RIO 

3 4 
_c3z = 4 
W81- 1(+3e3 + 6q3 - 3q_3) z, 

-- 2 c2z = (+2132 + 2q2 - 2q_2 ) 
/ W16-

1 1 1 
-T4 C1 - ) - (e1 - - 3q3) z2, 

(2A + d1) = (+2q1 + 2q_1 7 - 

d2z' = (2 2R + - 2e_2 ) z_ l,1 RI  

z3, 

(_3c1 + 1 d3) z_2 = (3 3R - 3q_j + 12q_3 - ie_3 ) 

1. 11 T2 

(_8c2 + d4) z 3 = (4 (5q4 - -I T2 

(_15c3 + d5) z 4 = (+3oq_s - 15q 3) zT4. 

z-5. 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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Similar to the case of traction continuation along F0, the coefficients of z1 are 0 in 

both sides (0 * = 0 * z'). 

Finally, the last set of coupled linear algebraic equations is obtained by comparing 

coefficients of the same power of z, from z5 to z 4 in (3.23) 

4 \ 
1 ( 4a1 Rf c4 - (mi -, ii1) (i - 122) z5, (3.33) 

(ml + ni) (k1 + 1) q-4 - Z + (m1 + n1) (i + k2) c4 A2  

(ml + ni) (k1 + 1) q_3z 122 
1 (4Yj 3C3+(mj-nj) (1-a ) (dr_c3) ) 

+(mi +n1) (1+k2)cSr 

(3.34) 

(mj + ni) (k, + 1) 122 = ( 4i + ( 1c2 mi - n1) (i - i) (N-R, - c2) 
R 

+(mi+ni)(1+&k2)c2 

((mi-ni)(ki+1)R1q3 -R-X, -Nf ) 

+(mi+ni)(ki+1)q_1 ) z2- 

+(mi-ni) ( (d3-1r_rc1) 
P2) 

+(mi+n1) (1+ik2)ci. 

+(mi+mi 
Pj R1 

(3.35) 

z2 

I 
(3.36) 



(we) 
(,;,fT;7 _zp) \ - i) (Tu + 1w) + 

\ 

Z•j 121 T,— ( + ) (lu  

(+_) Tfl'J7— 

(OT7) 

/ - - I) (lu + 1w) + 

''2T ( Tj7 + i) (lu - 1w) + 

8219 ( - ) (lu - 1w) + 

(vpkr + t—) mu7— 

(6) 

1 

'1_z (p / - \ (mu + 1w) + = 

(s•) ' ('p + 'nv) ( ) ( 1 + Tut  + 

'v + i) (mu + Iw) + ( Z:y Ely '4+ v) ' j 

I 

z3bIj (i + ') (lu - Iw) 

sbT 
SUT (T + ')('u+ 'w)+ 

T-bTZr  + t) (mu - TVZ), ) 

(b (i + ') (mu + 'mu) + 

Ob 1 ( '2/)('u— 'mu) 

1V(I+T)(tu_1w)+ 

i 
/ \ ( 

T'P+'21 V) 1 —T)(1u-1w)+ 

= 

(L) 

i1 
(mu - 'mu) = z (ob (i + ') (iu + 1w) + bI (j + ') ('u  

09 
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(m1 - n1) (k1 + 1) Riq_3z 4 = 

/ (-15cs+d5) 

+ (m1 - nj) (i + k2) R1c3 z4A2  

\ +(m1+n1) 1'\ (d5 -L — 3R, C3) j '\ I2) Ri 

(3.42) 

Now, 38 coupled linear algebraic equations have been derived from the four boundary 

conditions along imperfect interfaces 1'o and F1. With ek and fk encapsulated in pk 

and q,, the 38 equations contain 38 unknown coefficients of ak, bk, ch, dk, ek and fk 

for 8 stress potentials. 

3.4 Homogeneous Imperfect Interfaces 

In this present research, we consider the homogeneous imperfect interface: namely, the 

normal (m) and tangential (n) spring-factor type interface parameters are constant 

along the interface r0 and F1. For convenience, let us introduce non-dimensional 

parameter M0 = 9'° Ro, M1 = +fl1 R1 characterizing the degree of damage along 

the interface. In this view, a very small value of M (say M = 0.01) represents 

complete debonding and a large value of M (say M = 100) corresponds to the case 

of perfect bonding condition. The other values between 0.01 and 100 are assumed to 

characterize the state of imperfect adhesion. 

Also, the uniform eigenstralns (e, e, e) prescribed in the inclusion and the dis-

placements induced by them are assumed zero since their effects on crack propagations 

under the Model I load are negligible. 

Substituting Pk and q, into (3.3) thru (3.21) and (3.24) thru (3.42) and deploying 

M0, and M1 into the equations we can write the following 38 coupled linear algebraic 
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equations (see Appendix 5 for detail calculations); 

0 - 24a6 + b4 - 4 1 e_4 + 10 
02 

(12+  / 12 
95 - 24g) f—i + T2 94 

(12 ( 12 
+\92_2494)f2+ (9i-

12 
+ W02 97f-3 + 

12 
- 2496) fo ± (93 - 24g5  

12 
2493) f + (go - 2492) 

0 = iSa5 + b3 - 31 + e0 7F2 
3 + (T 02-96 9o) f_3 

(6 + ( 
T02-95 - 1597) f-2 + (94 1596) f-1 + (93 - 1595) fo 

(6 
+ 92 - 1594) fi + 1 g, - 1593) f2 + (90 - 1592) f - 

(3.43) 

(3.44) 

0 = 8a4 + b2 - TO  + - 4e4 + (95 - 897 - 91) f-3 (3.45) 

+ (94 - 896 - -1-.) R6 T2 12 + (93 - 895) f1 + (92 - 894)fo 

+ ( T2• 0 0 g, - 893) fi + (I-go - 892) f2 - 891f3 - 

0 3a3 + W 02- -  e_ + - 3e3 + (_3g6 - p92) 

+ (_395 - 91 T f-2 + (_394 - 9o) f-i 

-393f0 - 392f1 - 391f2 - 390f3, 

0 = —2a1 + e1 + (294 + 92) 

+ (293 + ') f2 + (292 + 7F2 9o) f-i + 2gifo + 

(3.46) 

(3.47) 
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o = —2Rga2 + e_2 + Re2 + (2Rog5 + 2 91 f (3.48) 
Ro 

+ (2Rg4 + 9o) f-2 + 2Rg3f 1 + 2Rg2f0 + 2Rg1f1 + 2Rgof2, 

o = —3R0a3 + e_3 - + 3R0 c3 
24  

12  
+ (3Ro4g6 — 392 + 9o) f_ + (3Rg5 - 3gi) f-2 

+ (3Rg4 - 3go) f. + 3Rg3f0 + 3Rg2f1 + 3Rgif2 + 3Rg0f3, 

o = —4Ra4 + T02 -  4e. 2 + 2Re4 

+ (4Rg97 - 891) f_ + (4Rg6 - 8go) f-2 + 4Rg95f_1 

+4Rg94f0 + 4Rg93f1 + 4Rg2f2 + 4R' J3 + 4R6 f4, 

(3.49) 

(3.50) 

0 = —5Rga5 - 15e_3 - l5gof_3 + 5Rg7f_2 + 5Rg96f_1  

+sRg95f0 + 5R" fl + 5Rg93f2 + 5Rg2f3 + 5Rg1f4, 

0 - (4mo — no)+ 16 M0 (mo +no) Ito /2o) 

+(- (1 /21 1 
+ b4 + ( 

1-to Ro+ (mo -  no) (mo - no) 
(/c + 1)g7f_ + (/ 1 + 1)gf (mo + no) (mo + no) 

(m o - no) + (ma —no) + (ici + l)g5f  (ic1 + 1)g4f2 
-I (mo --no) m0 +no) 

+(mo -  no) 
( m0 + no ( + + (m -  no) 

) (mo + no) (ic1 + 1)92f4, 

(3.52) 
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o = (30 1 _ (mo — no) (i + KOL-) — 5(l — Ll) a5 
M0 (mo+no) 

/20 /20) 

+((1 1 16 — 
Yo •Ro 

+(ici + 1) -90f-3 + (mo — no) (ma (ici + 1)971_2 + 
(mo + no) (ma 

(mo - no) ,no — no)  
+ ('c'+ 1)g5f0+ (/ci+1)94f1+ 
(mo + no) (mo + no) 

(mo — no) (mo — no)  

+ (ttl+ 1)92f3+ (MI +1)91f4, 
(mo + no) (mo + no) 

o = (16_ (mo — no) (/2 
M0 (mo+no) /2o /2o I 

+((1 /2il 1 — _ Yo 0)+±)b2+ (MI +1)T06 2 e+ (mo +no) 1 1 (mo — no) + 1)e4 ('ci 

+ (mo — no) 
((mo + no) ('ci + 1)97 + ('ci + 1)) f-s 

(mo - no) 1 \ (mo - no) 
('ci + 1)96 + ('ci + 1)—go ) f-2 + ('ci + 1)g5f_ (mo + no) / (mo + no) 

+ (mo — no)  
('c'+ 1)gf + (mo no) ('ci + 1)g3f 

m0 + no) (mo + no) 
\ 

+ 

0 

(3.53) 

— no) 
('ci + 1)96f_1 +no) 

(mo — no)  
(ici + 1)93f2 

(mo + no) 

(3.54) 

vito — '0) (mo — no) (mo - no) 
('c1+1)92f2+ ('c+ 

(mo + no) (mo + no) 1)gf3 + (mo + no) ('c' + 1)90f4, 

- ( 1 — (mo_ no) ( 1 — M0 (mo /2o 1-to I 

+((1 /2il 11 — +)bl+('ci+1)_._e i 
Yo mo 04 2 

+ (mo _no) ( 1 ((mo—no) 

( /ci + 1)e3+t m0 + no) 2 \(mo + no) (XI + 1)96 + ('c' + 1)92) 

+ (mo — no) 
('c 

((mo + no) i + 1)g + ('c + 1) 1 91) 1-2 

G (mo — no)  + 1) Ro 
MI mo +no) +  94 + ('ci + 1)go) f-

(3.55) 

1-3 
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+ (mo - no) (mo - no) 
(ic1 + 1)93f0 + (n, + 1)92f1 (mo + no) (mo + no) 

(mo - no) 
+ 1 glf2 + ((M I + 1)9013, 

+( (ma - no) ) 
i ) (f (mo+no) 

= (_ (mo no) 11 . - 
T rlo— (mo +no)  i-i0 

—(1_i)bO+( 1± 1) 1 
Ito Ro TO 

((mo—no)  
(,c1 + 1)Rog5 + 

\(mo +no) 
(mo -  no) 

((mo + no) 
+  (,c + l)Rog4 + (ic + 1)_92) 1-2 

+ 
((mo - no) 

— (ic1 + 1)Rog3 + (' + 1) —) f—i (mo+no) 

((mo+no) (mo - no) + (ii + 1)R092 + (Ml + 1)_oRo ) A 

(m - no) +( o  (ici + 1)Rog1f, (mo - no) 
m0 + no) (mo + no) + (ici + 1)Rogof2, 

+ 

2(1_ 1u1)Ro)a2 _. 

1 (mo — no) 
—e0 + (' 
2 (mo +no) 

(' + 1)93) 1-3 
Ro 

(l+i' 1 )ao (3.56) 

+ 1)Ro e2 

(_4.i. - (mo—no) (1+ i1) (mo—no) (1— (mo+no) (mo+no) o 

M0 —(1+MOLL).Uo  - (1— ) ai 

mo@cl +1) 2mo(i i + 1)f + 2m0(ici +1)  
Ato 

+ (mo + no) e1 + (mo + no) (ma + no) 9312 

+ 2mo(i + l) f 2mo(i 1 +1) + 2mo(, 1 +1)  
—1+ i10 , (mo+no) (mo+no) 9 mo+no) gofi 

o = (mo—no) 
(mo + no) + icoLi)ao ( —4R - (mo—no)2 (1 - &)R2 ( mo (ma+no) Yo 0 

Po 
—(1+ ico')R Juo 

(mo - no) (1— i)b0 + (ma— no) (Ni + 1)eo + ( + 1)Re2 
(mo + no) yo (ma + no) 

a2 

(3.57) 

(3.58) 
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+ (( ma - no) 
(Ml + 1)93 + (Ki + 1)Rg5) f 

(mo+no) 

((ma - flu) 

+ 1)92 + ('6i + 1)R g4 + (mo + no) ' )f_2 

((mo -  no) 

(ma+no) )fi + (tc1 + 1)g c1 + (i + 1)R g3 + ((MO 

(ma - n o (Ki + l)g + (K1 + 1)R92) fo + (Ki + 1)Rg1f1 + (Ki + 1)Rgaf2, + no)) 

o = h To R (ma no) 3(1 - L  - (1+ Ko 1)R a3 (359) 
(mo +no) /10 1 

- (mo - no) (1— !i)Rb, + -  n0) (ic1 + 
(mo + no) /10 (ma + no) 

+(i, + 1)R 41 e3 + ((mo (mo - no)0-2  (,i + 1)g + ('ci + 1)R96) f+no) 

(mo - no) 

((mo + no) +  ('ci + 1)g, + (xi + 1)R95) f2 

(ma - no)  

((ma + no) + (ici + ')go + (r" + 1)R 94) fi + ('ci + 1)Rg3fo 

+(r.1 + 1)Rg2f, + (ic, + 1)Rgjf2 + (icr + 1)Rgof3, 

o = (-8R 6 -  (ma - flo) 4( - 1)R - (1+ 'coL )R) a4 (3.60) 
(mo+na) /10 /10 

- (ma - no) (1 - ! 2 _i)R4b (ma - no) 
(mo + no) /1a + (ma + no) 'c' + 1)e_2 

1)Rge4 + ((1 + 1)R0697 + (ma - no) (ma + no) + I)gl) f-3+ ((ri + 1)R (mo - no) ) f-2 + ('c, + 1)Rg5f, 

96 + (ic, + 1)ga 
(ma +no) 

+(, + 1)Rg4fo + (K' + 1)Rgg3f, + (' + 1)Rg92f2 

+(ic, + 1)Rg,f3 + ('c, + 1)Rg90f4, 
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0 

o = (-1oR - (mo - flo) 5( - - (1+ 'co i)R) a5 

(mo +no) io Po- (mo - no) (1 - (ma -  no) 1 
('c1 + 1)e_3 (mo + no) o + (mo + no) 

(mo - no) 
+ (ici + l)gof + (ici + 1)Rg7f_2 + (ici + 1)Rg6f_j (ma + no) 

+(ici + 1)Rg5fo + (ici + 1)Rg4f1 + (ic1 + 1)Rg3f2 

+('ci + 1)Rg2f3 + (ic1 + 1)Rgif4, 

- 4 1 2 
o = + T10-c4 +4 2e4 - e_4 

- h_4f0 - 
RIO RIO 

—h_7f3 - 
Til" R10 

- h_1f_3 - h 2f_2 

0h 5f1 RI - —h_6f2 I RIO 

o = +c3 + e3 + R  R8 (h_1 - h_7) f 
3 

— -h-6f3 - h_5f2 - h_4f1 - h— 
T18 R8  
3 13 —T,8  - h 1f 2 

I R 81 

(3.61) 

(3.62) 

(3.63) 

2 3 1 2 2 
C2 + e2 - e 2 + (T12-h.2 - h6) f (3.64) 

+(h 1_ h 5) f - h 4f2 —h 3f1 - h2f0 - h 1f 1, 

—B = +ci - e3 + T2 4 

-4f3 - h_3f2 

+ (_3h 1 - 
12 

- h_2f1 - 

W T 

h_5) f4 (3.65) 
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2A =d, + + (_3 + jF2 h_5) 14 + (2h_2 + f 

+ (2h-j: -l- h_3) f2 + h..2f1 + T 2 h-Ifo, 

(3.66) 

o -d2 + 1e2 + + (2Rh_2 + f (3.67) 
Ri 

+ (2Rh_l + h 5) 13+ h_4f2 + h_3f1 + h_2f0 + 6 2 

o = +3c1 - d3 + Re3 - + e_3 (3.68) 

12 (12 (12 + (h_7 + 3Rh 1 - 3h_5) 14+ 3h - _4) 13+ - 3h_3) 12 

12 ( 12 
+ T12 Ri 
(h_4 - 3h_2) Ii + 127F2 h_3 - 3h_1) fo + h_2f_1 + 

(R2 -8200 = +8c2 - d4 - 4e. 2 + + h - 8h 6) 14 (3.69) 

(20 20 + - 8h_5) 13+ (h_6 - 8h_4) 12+ (h_5 - 8h_3) Ii 

+ (20 
h_4 - 8h_2) 10+ (h_3 - 8h_1) f-i + h_2f_2 + 

15 15 0 = 15c3 - d5 - --e_3 + e....5 - 15h-7f4 (3.70) 

( ( 
+ 30 30 - 15h_6) 13+ - 15h_5) 12 

30 7 30 
+ (h_6 - 15h_4) f + (h_5 15h_3) fo 

30 (30 30 
+ (h_4 - 15h. 2) f-i + h_3 - lsh_l) 1-2 + h_2f_3 + 
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o (1 8 (mi-n1) ) 1 \ 

)C4 - M1R (mi+ ni) \ /12j /22  

- (k1 +1) h_8f4 (k1 +1) hW19 _7f - (k1 +1) h_6f2 

- (k1 +1) wig W19 W19  h_5f1 - (k1 ±1) h_4f0 - (k1 +1) h_3f_1 

- (k1 +1) 112f2 - (k1 +1) h_1f_3 - (k1 +1) 11 C_4, 

(3.71) 

o - (m + ni) \ 112 
7, T711 6 (mi - ni) ( - /21) + (i + ik2) I ) C3 (3.72) 

\ /1 

(m1 - ni)  ) _d5 - (lci + 1)1 (k1 + 'h7f4 
+( +ni) 112 R1 RI - RI 

(k1-i-1) h_6f3- - 2 (k+1)h f (k1+1) (ki+ 1)hf 
R R RI I h_4f1  

(ki+1)h 2! 1 (ki+1)h f-2, 

RI RI 

o - ( V , 7Fl,1 4 (m1 - ni) " - - +(1+  Lik2) ) c2 (3.73) 
- - (m + n1) 1121 R1 \ /22 

+ (m1 - n1) (i 11i 1 d (k1 +1)1 (k1 + 'h_6f4 (k1 +  
(mi+ni) R e....2—  R R 

(k1+1) (kl+1) h (ki -i-1)h 
- R h_4f2-  R f R -2f0 R  -if-1, 

((i /2i) 1 1 2'\B 
- - (1 2 (ml_. ni) (1/21\ 1 +(1+k W 
M1 R (m1  /12) f 112 2)  Ci 
(mi—ni)(111 1d (mi — ni) 

+( + ni) \ '\ (m1 + ni) (k1 +1) R1 e3 

(k1--1)1 ( (mi - ni) (k1+1)  
R + (mi + ni) (k1 R h_5) f 

- (k1 + 1 h-4J3 - (k1 ±  3f2 (k1 + 1h2f1 (k1 + 'h1f0 
RR R 

(3.74) 
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0::= (mi — ni) (1i d2 (mi — ni)  
(k1 + 1) R1e2 (3.75) (rni+ni) P2! 2(mi +ni) 

(k1 + 1) --e0 + 11 1 (MI _m1)(kl)Rh(1) 
R12 

+ (mi — ni) 1 ( (i+n1) R1 ) — (k1 -i-- 1)R1h_1—(k1+1)_h- 3 

- (k1 +1) - (k1 +1) 

4A 2m1A  (i + P1k) 2m1A - 

M1 (m,+ni) P2 (m1 +ni) \ P2) 

( 2 1 (1 P \ 1 (mi - ni) 
R1 ( - i) 1) d1 

\\ M 1 )mi+ni) \ P 2 I 

m1 (k1 + 1) 2m1 (k1 + 1)h f 2m1 (k1 + 1) 2m1 (k1 + 1) 
' 

(i-n1 + n1) (m, + ni) (m1 + rt1) h..2f3 (in1 + n1) 

4 1 (11_ci2_(ki+1)R31 e2 0 = (_+\ p2jR1) 

- (m1 - n1) (k +1) R1 e0 + (- (k1 + 1) R h. 2   
(m1 +ni) 

+ (_ (k1 +1) R h 1 ) 
(m1 - ni) (k + 
(mi + ni 1) R1h_3) f3 

- (in1 - n1)  
(k1 + 1) R1h_2f2 (mi - n1) (k1 + 1) R1h_1f1, (m1 +ni) (m1 +n1) 

(ml - n) (_ Li'\ BR 
12 

(mi+n1) \ P2) 

(6 + (m1 -  n1) (i + !ik2 - (i - L!)) 1 
(ml +n1) P2 1 

+(_6 1 + ( Pi 1 - - I - d3 
P2! .L (.ij - (m1 - n1)  

+ ( (k1 +1) Rh_1 (m1 + ni) - (in1 - n1) (m1 
h. 3f2 - (mi+ ni) (k1+i) (m1 

P2 

(Ic1 +1)Re3 (mi— ni) - - - (k1+ 
(m1 + n1) 1 e_1 

(m1 - ni)  
(Ic1 +1) h_5) f4 (m1 + n1) (Ic1 + 1) h_4f3 

- ni)  (Ic1 + 1) h_2f1 (in1 - n1) 
 (k1 + 1) h_1f0, +ni) (mi+ni) 

(3.76) 

(3.77) 

(k1 + 1) R1h_4) f4 

(3.78) 
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0 = (16   
+ (mi + n1) P2 1 \ P2)) ( 1 8 + ( - Li) ) d4 (m1 - n1) (k1 + 1)  

+ RM1 \ P2 2(m1 -1- ni) 
(mi - n1) (mi - n1) -, 

(-J-- \(kl+1)h_5f3 1 .1) fl-6J4 
(mi+ni) 

''''L r 

- -, (k1 + 1) h.. 3f1 
(m1 - ni) 

(m1 + n1) (k1 +1) h_4f2 (ml - ni) 
(m1 +m ') 

(m1 - ni) (ml - ni)  
 (k1+ - (k1 + 1) h_1f_1, (m1 + ni) 1) h 2f0 (m1 + n1) 

3o (m1_n1)(lP1k)(P) 
0 = +(+) P2 

\ P2) 10 

(mi - ni) (Ic1 + 'hf - (in1 - ni) (Ic1 + 'hf 
(m1 + ni) (m1 + ni) 

(m1 - n1) (Ic1 + 'h_3f0 (m1 - n1) (Ici +  
(in1 + ni) (in1 + n1) 

(mi - n1) (k1 + 'h..1f_2 (mi - n1) (Ic1 + 1) 
(mj.+n1) 2 (mi +ni) 

( '  + k) d5  ni)(k1 + 1h7f4 
P21 (m1 +n1) 

(3.79) 

(3.80) 

(m1 -  n1) (k1 + 'h_4f1 
(m1 +ni) 
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CHAPTER 4 
Numerical Analysis Results / Discussion 

4.1 Introduction 

In this chapter, the numerical analysis of 38 coupled linear algebraic equations derived 

in Chapter 3 is presented to determine the 38 unknown coefficients. The unknown co-

efficients vary according to mechanical properties of the composites such as Poisson's 

ratio and crack locations. Based on the resulting coefficients, stress intensity factors 

at the crack tips under Mode I are derived to investigate crack behaviour around the 

tips. Thus, this chapter first presents derivations of stress intensity factors at crack 

tips a and b in terms of the resulting coefficients of stress potentials. 

The equations of (3.43) thru (3.80) can be expressed in a matrix form such as 

{b} = [A] {x} where [A] is a 38 x 38 coefficient matrix, {b} corresponds to a load 

vector and {x} is the solution vector representing the resulting coefficients. Using 

MATLAB, the inverse matrix of [A] is calculated and the solution vector {x} is readily 

calculated by {x}=[A]' {b}. For the verification of the formulation, a comparison of 

the results corresponding to a three-phase model with the perfect interfaces reported 

in the literature is made. Finally, some numerical results such as effects of inclusion 

stiffness, interphase stiffness and crack length on cracking are addressed. 

4.2 Stress Fields around Crack Tips 

In many engineering applications, a study of the behaviour of materials under cer-

tain loads in the presence of material flaws such as internal voids, minor cracks and 

different materials embedded inside is quite important to prevent their failures. In 

particular, it is well known that failures associated with sudden crack propagation in 



63 

solid materials take place even at the fax lower than the failure limits of the stress. 

Eventually, to evaluate the effects of flaw size, fracture toughness and applied stress 

on material failures, the early frame works of fracture mechanics has been inten-

sively addressed and developed by Inglis, Griffith and Westergaard. One of the most 

dominant researchers in 1950s is G.R. Irwin leading the Naval Research Laboratory. 

He further developed the early works and introduced a new idea that stresses and 

displacements in the neighbourhood of crack tips could be characterized by a single 

constant, called the stress intensity factor (SIF). The stress'intensity factor represents 

the driving force to cause fracture in the vicinity of the crack tips. 

There are three types of loadings that a crack can experience: Mode I represents 

a crack opening deformation, Mode II an in-plane shear and Mode III an out-of-plane 

deformation. A system with a crack can undergo any one of these modes, or arbitrary 

combinations of two or three modes. However, Mode I is known as the most dominant 

failure scenario [38] compared to the other modes. Furthermore, under uniform remote 

tensile stress, a singularity-dominated zone is defined as a region where the singularity 

1// (r: distance from a crack tip) dominates the stress fields and the stress intensity 

factor in the zone defines the amplitude of the crack-tip singularity [57]. Thus, in this 

study, stress intensity factor under Mode I loading near crack tip a and b, namely 

within singularity dominated zone, is investigated. Also, it is assumed that there is 

no crack growth at the tips so that the Model I stress intensity factor K1 is smaller 

than the critical stress intensity factor Kic. 

Using the Cartesian form of (2.1), we can re-write it as 

+ ayy - 2 [w'(z) + T(Z-)] , (4.1) 
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o, - io cp'(z) + '(z) - ["(z) + 0 '(z)}. 

Subtracting the conjugate of (4.2) from (4.1) leads 

(4.2) 

0•yy - icr, = q'(z) + ço'(z) ± zcd'(z) + ''(z). (4.3) 

It is noted that Re(z) = Re (2) and Im(z) = - Im(2). Thus, we get the stress field 
from (4.2) and (4.3) as follows 

= Re [co' (_-) + ço'(z) - zço"(z) - 

cr = Re [co'(z) + ço'( + zço"(z) + 

cr, = Tm ko/(Z) + ço'(z) - zço"(z) - Twl. 

Let's express 1t(z) in terms of co(z) and X(z) by using (2.33). 

b1(z) - - d ; [—X(z) + (z) - zçoç (z)] 

jz) - c0'1 (Z) - zça''(z) - 

Taking conjugate of (4.5) gives 

= ço(2) - çoç(z) - çoç'(z) - x'(2). 

(4.4) 

(4.5) 

(4.6) 

Substituting (4.5) and (4.6) into (4.4), we get the stress fields in region 1 as follows 

= Re P', (z) - (2) + 2 (z) + ( - z) (z) + X'(2)J, (4.7) 

= Re [W' (z) + •pl (•) + [z W" (Z) — X, 
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Considering leading order terms of each stress potential shown on (4.7), the explicit 

expressions of the stress fields in the neighbourhood of the crack tips a are given as 

(See Appendix 6 for detail derivation) 

o_yy = 
1  / 5 Oi 1 50k" csifl - +sifl_) 

1  / 3 0 1 50k" 

1  /1 0 1 50k" 
\/Fj•1/i cos + cos 

[kak_h] +0(n), (4.8) 
m oo 

kfkak_1] +O 
00 [ko (r1), 

Lt00a u] +0(r1). 

where 21 = b - a and (z - a) = nie °1 (0 < 01 <2ir). 

Also, the stresses near crack tip b are determined in the following forms 

1  (5 02 1 502' r00 
=   cos_cos 7 -8 T) I kfbk1] +0(r2), 

Lk=-co 

o.xy 
1  (3 92 1 502" [=-00 

00 

cos + c8 8 Os —b—)  kfkb' 1j + 0 (r2), 

1  1 02 1 50[ 00 ] 
= \r (\ sin--+ sin 2T) [> kfkb1 j +0(r2) 

(4,9) 

where b -. a = 21 and (z - b) = r2e°2 ( ≤ °2 ≤ 7r)-

It should be noted that the remote loading term is not shown in (4.8) and (4.9) 

since the load is not directly applied to the crack in the matrix but transferred to 

the domain through imperfect interface F1 which alters the effect of the load on the 

crack. The undetermined coefficients fk play a dominant role in transferring the load 

from a infinite point to the crack tips through the interface and the square bracketed 

terms represent the influence of the imperfect bonding condition. 
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4.3 Stress Intensity Factor 

The normalized Mode I stress intensity factor in the vicinity of tips is defined as 

K1 

K1 W/o inclusion (4.10) 

where K1 = cr/ and K1 w10 inclusion = o/7. K1 represents Mode I stress in-

tensity factor in the intermediate matrix zone under uni-axial loading w hile K1 wi t) inclusion 

denotes the Mode I SIF for the same crack in the homogeneous matrix without an 

inclusion. It shows the pertubation in stress fields caused by mechanical properties 

of an inclusion, matrix, composite phase and imperfect interfaces. 

In view of (4.8), the normalized SIF at tip a where 01 is ir is 

K  1 
11fI 15/0 inclusion] at a 

v'  1 1  / 5 Oi 00 
= 0 / c sin+sin!) (k kfkz 1) +O(r?)} 

1 /00 1 (- 5 + ) L kfkz1) + 0 

(4.11) 

= - (-3f3a - 2f2a3 - f_1a 2 + fl + 212a + 3f3a2 + 4f4a3 + ... )  +O(ri). 

In the similar way, the normalized SIF at tip b where 02 is 0 is 

[Kr 15/0 inclusion] at 

\/  { 1  (5 02 1 02"\ 00 kfkz/c_l 

= 00 8 S - cos (k=-00 ) +0 (r) 
) 02=0 

1 1 5 1) ( kfkz 1) +0 (r) I 
= ;77: k=—oo 

K1 
(4.12) 
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3f-3b -4 - 2f-2b -3 - f1b2 + fl + 2f2b + 3f3b2 + 4f4b3 + ...) +0(r2). 

4.4 Numerical Results 

4.4.1 Verification of Formulae 

For convenience, the imperfect interface parameters m and n introduced in Chapter 

2 are expressed in the: terms of new dimensionless interface parameter M, defined by 

M0 = m20-I-no R0 on F0 and M1 m-j-n1 R1 on F0. As mentioned before, these para-

meters represent the effectiveness of the bonding at the interface in transferring load 

thru interface. A small value of M or m (say, 0.01) represents debonding between 

adjoining materials while a large value of M or m (say, 100) simulates the perfect 

bonding condition. The varying values of M , n and m from 0.01 to 100 correspond 

to intermediate states between perfect bonding and complete debonding. These fig-

ures just represent the relative degree of bonding deterioration at the interfaces, not 

absolute. 

The comparison method is to simulate the three phase perfect interface condition 

with a radial crack between the two interfaces as evaluated by Luo and Chen [48]. 

Taking M0 and M1 equal to 100, it is shown that the current formulation is in good 

agreement with those of Luo (see Figure 4.1). There are small differences in the actual 

values around interfaces and the differences seem to be from the number of unknown 

coefficients taken in the series expansions. Therefore, the good agreement with pub-

lished results of crack behaviour confirms the validity of the equations. Expansion of 

the terms from z4 to z5 represents the minimum of terms in this analysis. Addition 

of more terms makes the numerical results converge to the exact solution addressed 

by Luo and Chen. 
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4.4.2 Influence of Imperfect Interface Fo & r1 

The effect of an imperfect bonding condition at the inclusion-matrix and matrix-

composite interfaces on SIFs at crack tips is evaluated for stiffer inclusion and softer 

than the matrix phase composites (Figure 4.2 and Figure 4.3). With respect to the 

USC scheme, the softer composite phase results in mass damage in the surrounding 

matrix and inclusions outside the RVE. This case also represents the bonding medium 

that is stiffer than the matrix. In the case of a perfect bonding at the composite-

matrix interface (M1=100), the remote load is assumed to be fully transferred into 

the matrix and the inclusion-matrix interface. In Figure 4.2, it is clearly shown that 

the greater the degradation of the inclusion-matrix bonding r0, the higher the stress 

intensity factor at the crack tips in the vicinity of the interface; hence, the degen-

eration of the inclusion-matrix interface fixation accelerates propagation from both 

crack tips adjacent to the interface in both directions. It shall be noted that the 

influence of the deterioration plays a dominant role in increasing SIFs, not only near 

tip a but also distant tip b. Cracks located around the interface F0 easily propagate 

in both directions, deteriorating the integrity of the interface fixation, resulting in 

increased degradation, which accelerates the cracking process further. Another in-

teresting phenomenon is the existence of a stable zone associated with debonding in 

which the SIFs corresponding to debonding are lower than 'those of the initial per-

fect bonding condition. As the distance between a crack and the inclusion-matrix 

interface increases, the SIFs corresponding to the imperfect interfaces decrease up to 

a certain crack location and increase beyond the minimum point. The SIFs associ-

ated with the degraded bonding are lower within the zone and higher beyond this 

zone than those with perfect bonding. In addition, within the zone, the debonding 

of the matrix-inclusion interface suppresses matrix cracking. In the vicinity of the 
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matrix-composite interface, the influence of an imperfect matrix-inclusion interface 

increases SIFs at crack tip a and suppresses crack propagation at crack tip b. At 

the initial adhesion, when both interfaces are perfect, the stiff inclusion repels crack 

propagation from tip a and b around the inclusion-matrix interface and from tip a 

around the matrix-composite. It increases SIFs at crack tip b as the crack approaches 

the matrix-composite phase interface. 

With respect to the influence of the composite-matrix interface, as the fixation 

at the composite-matrix interface Ti deteriorates, the stable zone associated with 

debonding becomes wider and deeper, and the influence of both interfaces dimin-

ishes, since the load transferred into the matrixthru the matrix-composite interface 

decreases, Figure 4.3. The outer interface does not directly affect the crack propaga-

tion at tip a and b, but indirectly shifts the SIFs downward in conjunction with the 

influence of the inner matrix-inclusion interface. SIFs at both crack tips go to zero, 

regardless of crack locations, as the matrix becomes totally debonded (M1=O.Oi) from 

the composite phase, indicating no load is being transferred thru this interface (Figure 

4.4). The matrix-inclusion bonding condition is more critical for matrix cracking than 

matrix-composite adhesion quality. Liu and Kim addressed how imperfect bonding 

plays a dominant role in cracking outside an inclusion [27, 39]. Based on this work, it 

cah be concluded that loosened matrix-composite phase fixation affects crack prop-

agation outside the matrix, resulting in cracking or damage in the composite phase, 

namely altering the influence of neighbouring inclusions and the matrix. This type 

of cracking in the composite phase will be investigated in a future study. 
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4.4.3 Influence of Inclusion Stiffness po on Cracking 

Figure 4.5 shows the influence of inclusion stiffness and bonding at the matrix-

inclusion interface on SIFs of a crack fixed at d/Ro_-0.4 for a soft composite phase. 

SIFs at both crack tips dramatically increase when the matrix-inclusion interface 

fixation becomes imperfect, M0 close to zero. Stiffer inclusions lead to lower SIFs 

than compliant inclusions, although SIFs corresponding to stiff inclusions are still 

greater than 1. This phenomenon agrees with reported results that stiff inclusions 

repel cracks from the interface [27, 39]. Increasing inclusion stiffness beyond 25 times 

stiffer than the matrix, does not have a significant impact on suppressing crack prop-

agation. Thus, determining proper stiffness of inclusions, up to the critical ratio of 

inclusion to matrix stiffness, is recommended to discourage crack propagation. In 

cases involving a stiffer composite phase -2 times harder than the matrix— the overall 

behaviour of the SIFs are similar, however, their values are less than 1. Thus, a 

stiffer composite phase repels crack propagation in the matrix; keeping the composite 

phase harder than the matrix is the best way to suppress crack propagation. When 

the outer interface degenerates, all of the SIFs shift downward. This phenomenon is 

illustrated in Figure 4.3. 

4.4.4 Influence of Interphase Stiffness 1u1 on Cracking 

Figure 4.6 presents the effect of matrix stiffness and degeneration of the matrix-

inclusion fixation on cracking in the matrix. Similar to the results realized for inclusion 

stiffness, the deterioration of matrix-inclusion bonding accelerates matrix cracking in 

the vicinity of the interface. Contrary to the case of inclusion stiffness, the normalized 

SIF values increase as the stiffness of the matrix increases. Stiff matrix accelerates 

the cracking process in the matrix, while soft matrix suppresses crack propagation. 
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Comparing the magnitude of the changes in SIFs in Figure 4.6 with those in Figure 4.5, 

it can be seen that the ratio of matrix stiffness to the composite phase is more critical 

than that of the ratio between inclusions and the matrix. However, it should be noted 

that the soft matrix suppresses matrix cracking on itself, but may cause damage to 

the neighbouring matrix and inclusions in the vicinity of the matrix-composite phase 

interface. Thus, the advantages and disadvantages of the soft matrix properties should 

be weighed with regard to the total damage experienced by the inclusion-matrix-

composite phase system. SIFs corresponding to matrix softer than the composite 

phase shift downward much more readily than SIFs corresponding to hard matrix as 

the matrix-composite interface starts to loosen. The effect of the loosening of the 

outer interface is similar to the effects mentioned above; however, its influence on a 

soft matrix is stronger than on a hard matrix. 

4.4.5 Influence of Crack Length on Cracking 

Interactions between imperfect matrix-inclusion bonding, SIFs and the length of a 

crack fixed in the vicinity of the matrix-inclusion interface (d/R0_-0.4) are presented 

in Figure 4.7. SIFs at crack tip a dramatically increase when fixation is highly de-

generated: imperfection parameter M0 goes to zero. Under poor bonding conditions, 

namely for M0 < 5, the influence of the crack length on the propagation at tip a is 

not significant. However, with M0 > 10, the longer crack results in higher SIFs at 

tip a than the shorter crack; therefore, under certain conditions involving adhesion 

damage, longer cracks are more vulnerable to cracking than shorter cracks at tip a. 

On the contrary, the behaviour of crack tip b is quite different from cracks at tip 

a. A Shorter crack's SIFs at tip b corresponding to highly imperfect bonding, M0 

< 5, are dramatically higher than those of a longer crack. The location of a longer 
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crack's tip b is further away from the interface F.j than that of a shorter crack and the 

degeneration at the interface has less influence on a longer crack's tip b. Microcracks 

are more vulnerable to cracking at tip b. With M0> 10, the effect of crack length on 

the propagation at tip b diminishes. Consequently, as the initial perfect bonding is 

damaged, long cracks are more vulnerable to propagating at tip a than short cracks, 

the propagation would cause further damage to the interface, and beyond certain 

damage, namely M0 < 5, microcracks become more susceptible to proceeding from 

tip b than long cracks. 

4.4.6 The Stable Equilibrium Position 

The stable equilibrium position, called the trapping mechanism by Dundurs and Mura 

[13], is confirmed in this present work. As Luo and Chen [49] mentioned, the stable 

equilibrium position is more likely to occur in a three-phase model than a two-phase 

model and is dependent on material properties such as those addressed by Poisson's 

ratio. Luo and Chen explain that when an inclusion and a composite phase are 

stiffer than the matrix (1-tO = P2 = 1.25 * p) with vo = v2 = 0.2 & v1 = 0.4, the 

dislocation does not have a stable equilibrium position. A simulation of this case was 

conducted as part of this study and the findings agree with their results. Given the 

values of Poisson's ratio and stiffness, all the SIFs at tip a are greater than 1, which 

means that there is no stable equilibrium position. Around tip b, all of the SIFs are 

between 0.94 and 1.06. With the assumption that interfaces are perfectly bonded, 

Luo and Chen addressed how stable equilibrium positions exist for any combination 

of Poisson's ratios where mm (Po/Pi, p2//i1) > With Po = P2 = \/I*/2 and the 

same Poisson's ratio as in the previous case, SIFs at tip a corresponding to relatively 

good bonding quality (M0 = 100 & 10) and SIFs at tip b are less than 1, Figure 4.8. 
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These results show that there is a stable equilibrium position, which agrees with Luo 

and Chen's analysis. It is noted that the loosening of the inner interface is likely 

to decrease the range of the stable equilibrium position (M0 = 0.01 to 1). When 

ic = 122 = 3,a1, all the SIFs at tip a and b are less than 1. Thus, the interface damage 

and Poisson's ratio affect the trapping mechanism, but the stiffness of the composite 

phase and inclusion play a significant role in crack propagation. Luo and Chen did 

not identify the location of the stable equilibrium position within the intermediate 

region. However, in this study, the actual locations of the position are shown to be 

along the real axis. 

4.4.7 The Stable Zone 

Figures 4.9 and 4.10 show the effect of a stiffer composite phase on the stable zone 

associated with debonding. This new phenomenon called The Stable Zone is intro-

duced in section 4.4.2. All of the conditions in Figure 4.9 and Figure 4.10 are the 

same as those in Figure 4.2 and 4.3, except for the stiffness of the composite phase. 

Compared to Figure 4.2 and 4.3, the hard composite phase definitely suppresses the 

SIFs at tip a for both M1=100 and M1-5. The stable zone near tip a with a com-

pliant composite phase, as shown in Figure 4.2, does not take place for the stiffer 

composite phase shown in Figure 4.9. Regarding crack tip b, the stable zone does 

not take place with the soft composite phase (Figure 4.2). In Figure 4.9, shifting 

all the SIFs at tip b downward, the stiffer composite phase causes a stable zone to 

occur again. However, once the adhesion on the outer interface deteriorates (M1: 

from 100 to 5), the stable zone goes away (Figure 4.10). Figure 4.10 shows that the 

stiffer composite phase changes the stable zone, resulting in a more narrow zone for 

M=5. It is important to note that the stiffer composite phase decreases or removes 
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the effect of the zone and the debonding of the matrix-composite diminishes the effect 

of a stiff composite and causes the stable zone associated with debonding. Both the 

stiffness and the outer bonding condition M1 affect the existence and shape of the 

stable zone. Consequently, the outer interface bonding and the stiffness of the outer 

composite phase are leading factors in the development of a stable zone associated 

with debonding. 

It 



75 

2.5 

1.5 

C#) 

0.5 

Simulation of Perfect Interfaces 

Lu6 & Chen 

0  
o 5 10 15., 20 25 30 35 40 

Figure 4.1 Comparison with Luo's results with perfect interfaces along r0 and r1. 



76 

1.6' 

1.4 

I 

0.8  

0.5 I 

SIF @ "a" 

SIF @ "b"-

0.5 1 1.5 2 2.5 3' 

Figure 4.2 Influence of imperfect r0 with perfect r1 (M1 = 100). Normalized SIFs of 
crack tip "a" & "b" vs. crack locations. i0 = ,.t2 = 



77 

1.8 

1.6 
a 

- 

0.8 
0 0.5 

SIF'@ "a" 

vo v2=v i 1/3 
ji2t1 & jL2=O.5*j.t1 

I 1.5 

SIF @ 

M1 5 

2 

0,5  I I  

0 0,5 1 1.5 2 

d/R0 

-+- M0 0.O1 
-e-- M0 0.l 

M0=1 
MOO x_ 

-*-- M0=100 

2.5 

2.5 3 

3 

Figure 4.3 Influence of imperfect r0 with imperfect r1 (M1 = 5). Normalized SIFs 

of crack tip "a" & "b" vs. crack locations. u0 = 2u1, [L2 = O.541. 



78 

I 

0.5 

0 

-0.5 

SI1? @ "a" 

-I   
0 

I 

0.5 

-0.5 

v0vv1/3 f M1=O.O1 
.t0 2*p.1 & =O5*jt 

0.5 I 

-+- M0=0.01 

-H-- MO.1 

-a.-- M0=1 

--- M0 10 

-_. M0 I00 

1.5 

SIF@ "Jj" 

2 2.5 3 

0 0.5 1 1.5 

tl/R9 
2 

Figure 4.4 Debonding (M1 = 0.01) 

2.5 3. 



79 

1.8 

0 

1.4 

1.2 

1.25 
E 

1.2 -

! 

1.15 

. 0 0......a g  
............. 

10 20 30 40 50 60 70 80 90 100 

M O 

SIF @ "a" 

10 20 30 .40 50 60 70 80 90 100 

SIP @ "b" 

1.1 

1.05 
0 

Figure 4.5 Influence of stiffness of an inclusion. Normalized SIFs of crack tip "a" & 

vs. T0 imperfect parameter M0 at the fixed crack location. ,i2 = 0.5p, and 

d/R0 = 0.4. 



80 

SIF @ "a1" 

2 

60 70 80 90 100 

SIF @ "b" 
1.8-

016, 

13 0 0 00 a13 a 

0. 0 ¶ 0.? ? ?  
0 10 20 30 40 50 Ov 70 80 90 100 

0.8a 

Figure 4.6 Influence of stiffness of the matrix phase. Normalized SIFs of crack tip 

"a" vs.T0 imperfect parameter M0 at the fixed crack location. pto = 2y, and 

• d/Ro=0.4. 



81 

SIF @ "a" 

1.8 

10 15 20 25 30 35 40 45 

SIF . "b" 

.' 0.•, 

1.2 

1. 

tiirn i   , W.4....4 

0 5 10 15. 20 25 30 35 40 45 

Mb 

Figure 4.7 Influence of the crack length. Normalized SIFs of crack tip "a" vs. r0 

imperfect parameter M0 at the fixed crack location. yo = 2p, ,122 = and 

d/R0 = 0.4. 



82 

0.95 

0.9 

0.85  
0 

SIF @ 1!a 

0.95 

0.9 - 

0.85 

0.8  
0 0.5 1 

v0 vO.2 & v1 O.4 M=1OO 

0.5 I 1.5 

SIF . "b" 

2 

-0-- M0=0.01 

-a-- M0 0.1 

-a.- M1 
-u- M0=I0' 

-p- M0=100 

2.5 3 

1.5 2 2.5 3, 

Figure 4.8 Influence of imperfect r0 with perfect r1 (M1 = 100). Normalized SIFs of 

crack tip "a" & "b" vs. Crack locations. P0= 



83 

1.05 

I 

0.95 

4 0.9 

0.82 

0.8 

o0.78 

0.76 
4. 

0.74 

0.72 

0.7 

0.68  
0 

SIF @ "a" 
v0 v.,v1=j/3' 
j.t0=2t1 & 

.1  

-+- M=0.01 

-e-- M0 0;1 

-a-- M0 1 

-- M0=10 

.-- M0=I00 

0.5 1 1.5 

SIF @ "b" 

2 2.5 

Y, nVoOte 

0.5 11 1.5 

d/R0 
2 2.5 3 

Figure 4.9 Influence of stiffer composite phase on the stable zone (M1 = 100). 

= 2/2k, /22 = 2i1. 



84 

0.9 

0.85 

0.8 

JJ.75 
0.7 

0.65 

0.6 

0.55 
0 

SIF @ "a" 

0.65' 

0.55 

0,5 

0.5 I 

vorv2=v1 =1/3' M=5 
•to & 

1.5 

SIF . "b" 

2 

-0-- M0=0.01 
-s--
-.- M=1 

-M- M0=10 

.-*- M0=100 

2.5 3 

88 j 
888886 5 

0.45  
0 0.5 1 1.5 

d/R0 
2 2.5 3, 

Figure 4.10 Influence of stiffer composite phase on the stable zone (MI 5). 

1t0 2/ii, it2 2iti, 



85 

CHAPTER 5 

An Example of Application - Bone/Implant Modeling 

5.1 Introduction 

According to the National Hospital Discharge Survey of 2003, approximately 217,000 

and 402,000 patients in the U.S. underwent Total Hip Replacement (TJIR) and To-

tal Knee Replacement (TKR) operations, respectively, and $24.7 billion dollars were 

spent in hospitalization related to these replacement surgeries. In addition, there were 

36,000 revision hip replacements and 33,000 revision knee replacements. However, the 

revision rate of joint replacement is greater for those who are heavier or more active, 

such as young patients. Many surgeons and biomechanical scientists have asked the 

question whether femoral/tibial component fixation of total hip/knee arthroplasty 

shows better performance with or without bone cement and the answer is still quite 

controversial. With respect to fixation, performance of cemented prostheses was re-

ported to be better than that of cementless protheses [58]. However, some researchers 

have demonstrated no differences between these two techniques [59]. Currently, the 

cemented surgery is more widely performed and several mechanisms of debonding of 

cemented implants from bone have been suggested. 

Biologically, wear particles and debris from bone cement and implants spread into 

tissue within the vicinity of the interface and provoke osteolysis. Another important 

factor leading to debonding is the mechanical properties'of cement and cementing 

techniques used during surgery. Although the dramatic improvements made in ce-

menting techniques from the earlier hand-packed cementing to centrifugation and 

vacuum mixing have decreased the revision surgery rate [60, 61], poor mechanical 

properties of the bone cement and inadequate interdigitation adjacent to the bone 
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cement interface are still being addressed as primary failure factors initiating the 

aseptic loosening of cemented prosthetics [62, 63, 64]. In addition, variables such as a 

surgeon's experience, patient weight and implant type are also implicated as factors 

leading to poor mechanical properties in the mantle [65]. Through such a multi-

functional failure mechanism, the majority of popular cemented implants continue to 

migrate over time even though the fixation is perfect at the initial stage [58] and the 

loosening in the cement mantle is believed inevitable. 

Interdigitation between bone and cement in well-fixed cemented implants keeps 

its mechanical interlocking long after implantation [66]. Poor interdigitation or per-

meation at the cement-bone interface [67], and deteriorated resistance at the cement-

implant boundary, result in imperfect interface bonding. However, from the stand-

point of sliding motion, the strong interdigitation between the cement and cancellous 

bone prevents relative slip at the interface and provides strong mechanical interlock-

ing, which is referred to as a no-slip interface. The no-slip bonding enables shear 

loads to be sustained along the interface even when tractions fail in the normal di-

rection. This no-slip condition is of considerable practical interest and is suggested 

as an adequate model of cement-bone interface [68, 69]. In contrast, implant-cement 

interface is either smooth for polished implants or mechanically interlocked for rough 

surfaêe implants. The rough surface implants were introduced to provide mechanical 

interlocking over the whole interface and prevent the prosthesis from subsiding. It was 

reported that rough implants increased friction between cement and an implant and 

reduced its subsidence and the effects of debonding at the interface [70]. It is noted 

that this mechanical interlocking is not as strong as interlocking on .a cement-bone 

interface. In contrast to the longevity of cement-bone interdigitation, mechanical 

interlocking between a rough stem and cement vanishes once loosening of the stem 
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progresses. 

Of the many factors causing aseptic loosening, mechanical loading is the most 

commonly accepted as the leading failure factor [71, 72]. Repeated mechanical loads, 

in conjunction with other factors mentioned earlier, have resulted in the continuing 

migration in the cement mantle and finally loosening of prosthetic components. This 

multifunctional mechanism has attracted the attention of many researchers. The 

aseptic loosening of cemented implants is most frequently a long-term complication 

[73, 74]. To evaluate the influence of the loads, researchers have investigated the 

stress field in the region adjacent to the implant and cracking at the cement-bone 

and cement-implant interfaces under cyclic loads. 

With finite element analysis, interactions and relationships between stress magni-

tude in the cement mantle and failure have been reported [75]. However, experimental 

investigations have addressed how the predicted magnitude of the peak stress is not 

a dominant factor leading to clinical failure [76]. Damage accumulation theory was 

suggested as a failure scenario of joint replacement [77]. The propagation process of 

cracks in the cement mantle was investigated experimentally, and pre-load and load-

initiated ciacks have been reported to play a determinant role in progress of failure 

[78]. Furthermore, it has been demonstrated that failure of the cement mantle caused 

by radial cracks. in the mantle initiated loosening of cemented implants [79] and many 

radial cracks generated adjacent to the cement-implant interface were found by SEM 

micrographs after stem failure [70]. Also, the bonding conditions of cement-bone and 

cement-implant interfaces are believed to affect aseptic loosening. Deterioration of 

the interface condition between cancellous bone and implants is considered to be' a 

significant failure mechanism, which results in mechanical fracture and debonding of 

the prosthesis from the bone [80, 81, 82]. 
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The interface between an implant and the cement has also been attracting the 

attention of researchers. Different surface finishing techniques, designed to improve 

the strength and fixation at the interface, have been suggested [83]. Repeated cyclic 

stress imposed on artificial implants results in loosening between the prosthesis and 

the bone, and the development of load-initiated cracks in the vicinity of the cement-

bone interface [78]. Debonding and resistance of the cement-implant interface was 

investigated with respect to residual stress developed during cement curing [84]. A 

theoretical mechanical failure process of metal-cement interface, with respeát to the 

cohesive zone, was proposed [85]. Whether the cracks and debonding begin first from 

the cement-implant interface or from the cement mantle has not yet been clearly de-

termined [86, 87, 88]. Gharpuray developed a hypothesis that the initial cracks were 

emanating from the perfectly bonded interfaces, and consequently, they accelerated 

degradation of the prosthesis fixation, micro-motions between bone and implant, and 

bone resorption around the implant [71]. Oharpuray proposed a theoretical model 

to show cracking around a void and a circular elastic inclusion in the vicinity of the 

cement-implant interface and demonstrated how the cracking caused loosening of the 

fixation. A majority of this research has assumed perfect bonding in which displace-

ment compatibility at the cement-implant and cement bone interface holds. However, 

with respect to the unavoidable degradation of the fixation, this study demonstrates 

that the imperfectness of the interface resistance should be considered and the in-

evitable interaction between deterioration in the interface bonding quality and crack 

behaviours within the cement mantle, or local region adjacent to the interfaces, causes 

catastrophic failure of joint replacement arthroplasty. 

As addressed in Chapter 1, imperfect bonding between two materials with different 

mechanical properties has been known to be a dominant factor affecting crack propa-
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gation located outside the inclusion in the vicinity of the interface [27]. Furthermore, 

this thesis provides a general three-phase model, which considers imperfect bonding 

conditions along both interfaces. Thus, the proposed model is well suited to the bone 

cement cracking interacting with an implant and the bone matrix under damaged 

adhesion conditions along both boundaries. This research provides, 'for the first time, 

analytical rationale for the possible failure mechanism of a cemented implant sys-

tem in the full range of bone cement. This study addresses how the imperfectness 

of both the cement-bone and cement-implant interface simultaneously affects radial 

crack propagation in bone cement during the mechanical cracking process. Specifi-

cally, a no-slip condition on cement-bone and cement-stem interfaces are taken into 

account. The procedures addressed in the previous chapters are applied to this spe-

cific application. Thus, the imperfectness of the interfaces is modeled with interface 

parameters and the effect of the parameters on SIFs at crack tips is evaluated along 

a radial crack location from implant-cement interface to cement-bone interface. 

5.2 Formulation 

Figure 5.1 shows a simplified model of cemented joint arthroplasty. We consider a 

domain of R2, infinite in extent, containing an implant, bone cement PMMA and 

bone matrix with a radial crack in cement. The circular implant, with center at the 

origin of the coordinate system and radius of R0, occupies a region denoted by the 

domain S0 and the cement is also modeled as a circle with radius of R1 represented by 

the domain S1. The surrounding bone matrix is represented by S2. All the materials 

are assumed to be homogeneous and isotropic with shear moduli u0, A, and 122, 

respectively. Interfaces Fo and Fi are imperfect and represent implant-ceii'ient and 

cement-bone interface, respectively and the adhesion imperfectness in the radial and 
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the tangential direction is represented by the non-negative interface parameter m and 

n, respectively. All the notations, symbols and boundary conditions are same as ones 

specified in Chapter 2. 

5.3 Discussion 

The crack length is fixed as 1 = R0 and the other mechanical properties used during 

numerical calculation are shown in Table 5.1. Linear elastic fracture mechanics is 

applicable to brittle 'materials which do not have a considerable plastic zone near the 

crack tips. PMMA, the most common bone cement material, is an amorphous brittle 

material with very high mechanical strength. Thus, our approach to applying linear 

elastic fracture mechanics to this brittle PMMA is reasonable. Although the bone 

cement contains some inclusions introduced during its formation, such as beads and 

voids which cause less isotropic and homogeneous properties locally, the influences 

of the inclusions on cement properties are small and can be ignored. Therefore, the 

bone cement is considered isotropic and homogeneous. While the cement-implant 

interface is clearly shown physically, interface between cement and bone can not be 

simply defined, due to interdigitation and permeation. However, the simple model of 

the interfaces as a single layer is enough to give us insight into the cracking process 

initiated by imperfect bonding. Uniaxial compression is the most likely loading in 

bone cement; however, uniaxial tension' is occasionally applied to bone cement. As 

addressed by Gharpuray, the uniaxial compression case can also be obtained as the 

negative of the tension value [71]. 

The result of the no-slip conditions on both interfaces is shown on Figure 5.2. 

These conditions can be achieved by using rough surface implants. No-slip interfaces 

dramatically reduce the effects of loosening in the normal direction on SIFs at the 
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crack tips. Tractions in the tangential direction transfer to the cement and then to an 

implant through interfaces, and compensates for reduction of tractions in the normal 

direction. Thus, imperfect bonding in the normal direction has little influence on the 

SIFs at the crack tips. SIFs at tip a continuously increase as the crack approaches the 

outer interface. Since the outer bone matrix is much more compliant than cement, it 

attracts crack propagation and increases stress intensity in the vicinity of its interface. 

Similarly, SIFs at tip b have a maximum value near the outer bone cement interface. 

It is noticed that the stiff implant - 26 times the cement shear modulus - does not 

have a noticeable effect on the SIFs at both tips in the region adjacent to the cement-

implant interface, while the change in shear modulus across the cement-bone interface 

dramatically alters the magnitude of SIFs near the outer interface. The cement-bone 

interface is the first barrier which transforms the tractions initiated from remote 

loading conditions and has greater influence on crack behaviour than the cement-

implant interface. Preventing slip on the cement-implant interface results in very 

stable behaviour of tip b except at the region adjacent to the cement-bone interface. 

Figure 5.3 shows crack behaviour with no-slip and imperfect bonding in the normal 

direction on the cement-bone interface. This is a case in which a polished implant has 

been embedded into cement and the cement is interdigitated with cancellous bone. 

A rough implant can be modeled with this type of debonding, when bonding at 

the cement-implant interface deteriorates and mechanical interlocking in tangential 

direction is no longer sustained. The imperfect cement-implant interface attracts 

propagation at tip a and accelerates opening of crack tip bin the vicinity of the cement-

implant interface. As for tip a behaviour, debonding at the cement-implant interface 

causes higher SIFs than perfect bonding up to a certain point; beyond this point, the 

effect of the debonding decreases, since the crack is far from the interface. Soft bone 
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matrix attracts crack propagation at tip a as long as the cement-implant bonding 

is strong enough, and attracts propagation of cracks at tip b near the cement-bone 

interface at the initial perfect bonding. SIFs increase up to a critical point around 

the cement-bone interface as the degeneration of cement-implant bonding worsens. 

Debonding at the cement-implant interface results in failure of load transfer from 

the remote load to the implant. Thus, the SIFs at the tip close to the cement-bone 

interface dramatically decrease byond the critical point. The intereting behaviours 

at tip b are the existence of a suppression region where the normalized SIF is below 1 

At the initial stage, when integrity of the bonding is perfect, there is a stable region for 

crack tip b which disappears as the implant-cement interface starts to loosen. Thus, 

debonding at the cement-implant interface accelerates crack propagation at tip b and 

promotes crack opening at both tips in the region adjacent to the cement-implant 

interface. 

While the cement-cancellous bone interface has strong interdigitation and no-slip 

bonding, mechanical interlocking of the cement-implant interface in the tangential 

direction is weaker than interlocking of the cement-cancellous interface. Figure 5.4 

shows the effect of the weaker, no-slip cement-implant interface on crack behaviour. 

Parameter n in the tangential direction on the cement-implant interface is reduced 

to 10 to simulate the weakened no-slip bonding condition. The result shows that this 

is an intermediate stage between Figure 5.2 and .5.3. While cement-implant bonding 

in the normal direction degrades from 100 to 0.01, the constant bonding parameter 

m in the tangential direction continues to carry loads and reduces the effect of the 

degeneration of bonding. Overall SIFs are lower than those in Figure 5.3. 

The behaviours of crack tips near both interfaces are of considerable practical in-

terest, since crack propagation in the vicinity of the interfaces accelerates degradation 
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of interface bonding. The existence of mechanical interlocking in the tangential direc-

tion on the cement-implant interface reduces SIFs within the region adjacent to the 

interfaces. Specifically, it repels crack propagation near the cement-implant interface 

by decreasing the effect of imperfect bonding. One outstanding advantage of a no-slip 

cement-stem interface is that it prevents further progress of cement cracking from a 

good initial condition by maintaining the initial pattern of crack behaviour. Further-

more, from the standpoint of damage accumulation the6ry, a no-slip cement-stem 

interface suppresses overall SIFs in the cement mantle; hence, it decreases damage 

accumulation throughout the mantle. However, longevity and durability of a no-slip 

cement-implant interface is still questionable, since the rough implant's do not provide 

strong mechanical interlocking and can result in breaking of the interdigitation, in-

appropriate permeation and breaking debris. Further design features to prevent slip 

on the interface are required. 

In this present study, a titanium alloy implant is used during numerical calcula-

tions. Crack behaviours with stiffer alloys such as Cr/Co and stainless steel alloys 

produce similar results as those with titanium alloy. It is shown that changes in im-

plant properties do not have a substantial influence on crack propagation. A similar 

result was reached by a study that noted how the elastic modulus of an implant does 

not alter the load transfer mechanism between the cement and the prosthesis, since 

the elastic modulus of the implant material is much higher than that of the cement 

and bone [79]. 
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Material Poisson's Ratio, 1 Shear Modulus(GPa), j 

Titanium 0.3 41 

PMMA 0.3 1.54 

Bone 0.3 0.13 

Table 5.1 Properties of materials for orthopaedic arthroplasty 

Figure 5.1 Three-phase stem-cement-bone system. 
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CHAPTER 6 

Conclusions and Future Works 

6.1 Conclusions 

The most commonly used model of classical micromechanics is a two-phase single 

inclusion surrounded by an infinite elastic medium, called matrix phase, with perfect 

interface. This simple model has been providing insight into the interaction between 

cracking, or fracture mechanism, and an inclusion. However, since the presence of 

the interphase layer has been identified as a major parameter in altering stress fields 

around the inclusion, the study of the three-phase model, in which the interphase 

layer is considered, has become of practical and theoretical interest. Also, the three-

phase model is quite general and is applicable to the generalized self-consistent and 

implant/cement/bone system. Furthermore, many researchers have shown that per-

turbation in the stress fields around the inclusion is caused by interface bonding 

conditions, which draws attention to the importance of the imperfect bonding. They 

have also addressed how there are significant differences between previous perfect 

bonding and imperfect bonding in micromechanics. There are a few studies which 

consider the three-phase model with imperfect bonding along one interface. However, 

due to the cumbersome mathematical problems involved, there has been no research 

in the literature to address the imperfectness of both interfaces using the three-phase 

model. 

In this study, a semi-analytic solution to the interaction between a pre-exiting 

crack and a three-phase inclusion with imperfect bonding along both boundaries is 

presented. For the analytic approach, linear elasticity with complex variable tech-

niques and linear elastic fracture mechanics are applied to the system. Also, to 
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overcome the mathematical difficulties regarding imperfect interfaces, analytical con-

tinuations and series methods are employed. With the fundamental theories applied 

to the three-phase single inclusion system, the problem reduces to a boundary value 

problem. By solving 38 coupled linear algebraic equations numerically, unknown 

coefficients of stress potentials representing stress fields near crack tips have been 

determined. The coefficients reflect the effects of damaged interfaces, Poisson's ratio 

'and material stiffness on SIFs at each of the radial crack tips. An interpretation of 

the numerical results is provided in Chapter 4 and an analytical solution to the im-

plant/bone/cement system is presented as an application example in Chapter 5. For 

verification of the formulae derived in this dissertation, comparisons are drawn with 

corresponding cases published in the literature. 

New findings established through the numerical analysis results presented in Chap-

ter 4 are as follows: 

-. The proper stiffness of fibres as an inclusion must be determined. Benefit is seen up 

to a critical ratio of fibre to the matrix; increasing fibre stiffness beyond this critical 

ratio has little effect on crack propagation. Also, keeping the composite phase harder 

than the matrix is the best way to suppress crack propagation. 

-. Outer interface degeneration shifts all of the SIFs at both crack tips downward. 

-. Ratio of composite phase stiffness to matrix phase stiffness is more critical than 

the ratio for stiffness between inclusions and the matrix. SIFs corresponding to a 

softer than the matrix composite phase, shift downward more readily than those of a 

harder matrix, as the matrix-composite interface starts to loosen. 

-. Regarding crack lengths, longer cracks under certain damaged adhesion conditions 

are more vulnerable to cracking than short cracks at near tip a, while microcracks 

are more vulnerable to cracking at tip b. Consequently, as the initial perfect bonding 
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becomes damaged, long cracks are more vulnerable to propagating at tip a, and the 

propagation can result in further damage on the inner interface M0. Beyond certain 

damages, microcracks are more susceptible to proceeding from tip b. 

-. The stable equilibrium position, called the trapping mechanism by Dundurs and 

Mura, is known to be affected by other factors, such as the interface condition, Pois-

son's ratios and stiffness. In their analysis, they demonstrated that the stable equi-

librium position does not take place under certain conditions that lead to inner in-

terface loosening. Thus, the damage of interface, Poisson's ratio and stiffness play a 

pronounced role in the trapping mechanism. 

-. A new phenomenon, called the stable zone, which is associated with debonding, is 

introduced. In this zone, SIFs corresponding to debonding are lower than those of an 

initial perfect adhesion. This zone is affected by Poisson's ratio, material stiffness and 

crack location. The degradation of adhesion accelerates cracking overall; however, in 

a certain region, it depresses crack propagation. Stiffer composite phase decreases or 

removes the effect of the zone and the debonding of the matrix-composite diminishes 

the effect on the stable zone. 

Thus, cracking at the matrix is affected by various factors such as degree of imper-

fect interface bonding, crack length, mechanical properties of the matrix and inclu-

sion, and crack location. Of the parameters, the bonding condition along the inclusion 

and the matrix has a profound effect on the failure mechanism in the vicinity of the 

interface, regardless o'f other factors. 

In addition, Chapter 5 addresses how the mechanical interlocking in the tangential 

direction on the cement-stem interface substantially suppresses crack development 

throughout the cement mantle and debonding on the interface accelerates cement 

cracking in the vicinity of the implant. The design of special stems with strong 
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interdigitation, namely non-slip interface, is of practical importance. It is noted that 

changing implant materials does not have a substantial impact on crack propagation 

within the bone cement mantle. 

This research contributes to the understanding of the interaction between matrix 

cracking and homogeneously imperfect interfaces, and introduces a new phenom-

enon, called the stable zone, associated with debonding. In addition, the interaction 

between cement crack propagation and the influence of non-slip implant-cement in-

terface, namely rough implant interface, is explored and guidance for the design of 

implant is presented. 

6.2 Future Works 

This research deals with single inclusion embedded in an infinite homogeneous isotropic 

elastic medium that interacts with an external pre-existing crack and imperfect adhe-

sion interfaces. To further the knowledge gained through this dissertation, the author 

anticipates the following future works: 

-. The schematic study of the effect of inhomogeneous, imperfect bonding along both 

interfaces in the three-phase model. Homogeneous imperfection along the interfaces 

is an idealization of inhomogeneous bonding. Incorporating the inhomogeneous im-

perfect bonding case into the three-phase model will provide a more realistic solution. 

-. The schematic study of cracking within the outer infinite phase. Kim and Sudak [39] 

studied this matrix cracking in the three-phase model by employing inner imperfect 

interface only, which might underestimate the perturbation effect caused by the outer 

bonding condition. This future study, I believe, will provide helpful information 

regarding the bone damage process which is caused by damage to the implant/cement 

and cement/bone bonding. 
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The schematic study of interaction between two cracks within the intermediate 

matrix phase. In real life situations, there are many microcracks and voids in the 

intermediate layer, such as bone cements, and it is well known that the aggrega-

tion of the near cracks/voids causes catastrophic failures in implant arthroplasty and 

composite materials. The study of the behaviour of cracks interacting with each 

other under imperfect interface conditions will undoubtedly provide a foundation for 

exploring the relationships between crack aggregation and fracture mechanisms. 

Hence, deploying parameters governing fracture mechanisms, such as mechanical 

properties (stiffness and Poisson's ratio) and physical conditions (bonding condition, 

crack length and multiple cracks) in a micromechanics analysis, and working to un-

derstand the fracture mechanism analytically, will lead to the development of a foun-

dation through which failures in many engineering applications can be predicted and 

prevented. 
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APPENDIX 1 

Derivation of Boundary Condition ar0 

A1.1 Derivation of Equation (2.9) 

(crrr - = (mo 11u,11 - mo?4) - i (no IIuOI - nOu) (A1.1) 

IFuril + m0 Ho- in0 jUrli,j -  luoll + -- lluoli2 2 ) - (moi4 - inoi4) 

(••O- m f.n0 II n0iFurli + iiUrilj - (i- iuoii +i- liuoii) - (mou° - inoi4) 

\ \ 
+ IFuril - no IlUrii) + (i!ao-iluoii - im0 -i- fUfl) 

n0 m n0 
= ( IFuril Furl! + T Furl! + hurl!) - (mou - inou°) 

In0 m n m0 ' 

- (i juej - r luau + i-o- Noll + i- hue!!) (  m0—n0" 
= 2 ) hUrl! + (mo + no  2 ) hUrl - (mou - inou) 

+ (mo -- no) (mo + no) hue!! 
2 2 

(  m0 - no) iiu+iueii+ +no (mo  ) llUrU011 — (mou—inou), 

A1.2 Derivation of Equation (2.12) 

From equation (2.9). 

(rr 2 ,' 11u,   JU + iuoJ +  2 ) l!ur - iuojj - (mou° - ino'u) 

(AL2) 
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By taking the right-hand-side in (2.7), the left-hand-side of (A1.2) is 

(crrr - = (z) + o(•O) - zg(z) - 

By (2.1), 

Thus, 

6—iO 

Ur+U9 = - 2 [!co(z) - z'(z) - •(Z)] 

- --

!l U r + iuo!I = [Kiwi, (z) - zwil  - ii(Z)] z  

; - z(z) - 

Taking conjugate of (A1.4) leads to 

ew 
UrUO  

2 
z 

To-2tt PW(z) — 7-w'( 

Thus, 

z 
II'Lr - iuofl = pl Ir. (Z) — i(Z) - 

--  - [coo(z) - w(z) - 

(A1.3) 

(A1.4) 

(A1.5) 

(A1.6) 

(A1.7) 
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Substituting (Al.5), (Al .7) and (2.11) into (2.9), we can express the right-hand-side 

in the following form 

m0 -  no 11u, + + m ± n0 OUr - iuojj - (mu, - in0u) (A1.8) 
2 

m0 - noRo { [Kiwi, (Z) - zço1(z) -  Oil Wl 
2 2z 

- [rowo(z) - zço(z) - 
A o Oo(Z)j 

mo+no z 
2 2R0 

[Kiwil(z) 1 
_1 
;; -  

—m0Re1 - (7n0 +no)( 2 -  ie3)2 (m -  no) (62 +ie3)R  
2R0 2z2 

- mo—n0R0 { -L [kiwl,(z)_z() -;7()] 
- 2 Tz I R2) - (R2)] [koWo ZWO, 

mo + o Z J  (-R-) - (z) - (z)] 
+ 

2 2R0 - Po  [koT(R2) - (z) - 'o (z)] 
- (mo +no) (e2 - is)2 (mo -  no) (62 +zs)R —m0R0e1 2R0 2z2 0. 

Let's consider resultant forces expressed in (2.2) along a contour F0. The contour 

is a circle: namely, apoint "B" on the arc coincides with the starting point "A", 

which means the resultant force between "A" and "B" is zero. Let "A" be a reference 

point which is 0 and "B" any point along the circle. Thus, (2.2) is 

F+iF = —i [wo (z) + z(z) + O(z)]B = —i { 11 (z) + z 1(z) + 1i (z)], (A1.9) 

and 

—ço11 (z) + ço0(z) + zço(z) + 00(z), (Al.10) 
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—(R'\ —(R\ — \ (R —(R 

o') 
z + —coil (z) + ço (z) + zco'o + 'c'o 

Taking conjugate of (A1.10) leads to 

—ço11 (z) + coo(z) +co(z) + bo(z), (A1.11) 

By substituting (A1.1O) and (A1.11) into (A1.8), and then (A1.8) and (A1.3) into 

(2.9), we obtain an another notation of (2.9) in the following form 

co(z) + TO, •O (z) - Z, 0"( \Z) T2 0 (A1.12) 

- .R  + coo (z) + z (—Ra2) + (-R-a2))] } 
22z _.1. [kocoo (z) - z () - 

Oz)J 

(-R-Q2) - (- () + () +ço (z) + (z)z  

_-1- 1koTo (4) - ço (z) - Po (z)] 
2 2R0 

- (mo + no) (62 - i3)2 (mo - no) (062 + i3)R  
—moRoei 2R0 2z2 

Multiplying 4j to both side yields 

4A, [ co) ± - (12) coo -  zco(z) 
(m - iij) Ro { 
+(m+n)-

Ro { 

(A1.13) 

Ikicoii (z) + coii (z) - coo  z Ci) -TO Oi) I } 
-  (z) - zG () (R.2)] [koWo -  {()  TO 

+ _f - (:) - 'co (z) - 00 (z)] 

Wo (;) - (z) - 00 (z)] 
° L 

—4p1moR0e1 - 4[L1 
(mo + no) (62 - i63)2 - (mo -  no) (62 + iE3)RO. 

2R0 4/h1  2z2 

I 

} 
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By making arrangement of left-hand side for WI, and right-hand-side for Wo and 

we get (2.12) 

(R\ (mo - no) (ici +I) R0—ço11 (z) + (mo +no)(ic1 + 1)-j 

= 4i. WO'(z)+Tlo + ('0) - --W"0(Z) - 02-  + (mo - Ro no)(1 + Ico—)—ç00(z) 
/IG Z 

+(mo - no) (1 - Lii) IR —7- (R\110  + Eo   Ro 
o ()] 

+(mo+no)(1+oth).- Rg R0) + (mo + n.)(1 - 1) [ROO,O (z) +Po  00 (z)] 

+4moRo111e1 + 2111(mo + no)(2 - 3)2 + 2p, (mo - no) (62 + ies)R 
R0 Z2 0  

Er1. 
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APPENDIX 2 

Derivation of Boundary Condition or, 

A2.1 Derivation of equation (2.14) 

In the similar fashion of (2.9), the displacement jump condition (2.4)2 is 

- n-il - nl  11 
(rrr0)1 or 2   IIur +iuo +m1 fuiIur _iuo Ip . - 2 (A2.1) 

Let's consider stresses at region S2 in (2.13) and the left-hand-side of (A2.1) is 

(Orr' — i0r0)2 — ç4(z) + (1• _) - z(z) — 

The right-hand-side of (A2.1) can be expressed as follows 

Thus, 

  IIUr+ttOJJ+  2 !JU r ZUOJJ 2 

-   - (R2)] R2 ) I 

m'_n'R'{  -L [k 2W2 (Z) — ZW27  T2 
A2 z 

I — 2 2z - Ikii2 (z)_z() •;;()] 

+ 
m + ni z J (:) - (z) - 'P2 (z)] I 
2 2R1 - ii (R21) - 12 (z) - V12 (z) 

Al I J 

Z2 
ço(z) + () — z4(z) — 2(z) 

m—nR1 { Ik-2 2co2 (z) z (ç) -(c)] 
2z {k112 (z) - (RL) — ; (c)] 

(A2.2) 

(A2.3) 

(A2.4) 
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n z J [k2(ç) -(z)_2(z)] 
1 - Al [kj•72 (c) _2(Z)_12(Z)] } 

In addition, consider forces along the boundary r1, 

and 

Thus, 

F+iF = —i 

= -i 

W2 (z) + z 

[W2 (z) + () +'; 
IW12 (z) + () + (R2)] 

+() 12(Z)+ZW12() 
(±1 

(A2.5) 

(A2.6) 

z (R2) + 1212 () = 12 (z)-i- '2 (z) + ;:  () + ii;; ()(A2.7) 
i2 (z) +b12 (Z) = - (1Z ) + (-f) +2 2  (z) +2(Z). 

Substituting these equations into (A2.4) gives 

4z) + (&) - -'(P/2' (Z) - 
in -  nR1 I [k2W2 (z) - z 2 T2 (c) - (c)] 
2 2z RL) - I [k, W12 (--) + W12 (Z ) - W2 (Z ) - Z T2 ( Z2 -T2 (R21 )] Pi 

m+n z 
+ 2 2R1 

(A2.8) 

I -1. [k2 () - (z) - ''2 (z)] 

_[k1() +i( Z2 RI ) -7 2 (Z2 2 ) —(z) 02 W] I 
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Multiplying 4i2 to both sides leads to the following expression 

4/12 I(P 
Z2 0, (Z)] z) + (•2) - - 

R1 I k2co2(z)_z(c) m n) - T2 z () - - 
— (R2 [ z - _(R2L)] 

- ( z 11 k2T2 --L) — -5•0'2 (Z ) — '02 (Z) 

(A2.9) 

- 1-4'2 [k1T(72) +712 72 () -(ç) — co (z)— b2(z)] 

By making arrangement of the left-hand-side for 12 (z) and the right-hand-side 

for W2(z) and 2(z), we have 

(m_n)L(ki R1 0 Y2 +1) 7W12 (z) + (m R1 /1i 1) (;) (A2.10) 
= YI 

—/12 [c4(z) + (i) - zç4(z) - z)] 

+(m_n)1?1_1Al ) [Ri L T2 2 ()+( 1)] 

z i'R'\ + (m - n) (a + k2 --W2 (z /ia k . ) + (m + n) Ti ( ) k-;-) 
\/11 // 

+(m+m) (•- - 1) [(z) +(z)]/11  

Finally, by multiplying ' to both sides, we get (2.14) 

z (R 
(ml —ni)(ki+1)--- 1(.)+(mi+n1)(k1+1)_ 

- 4/1k [W'2(Z) + (R- 27) - z(z) - jb(z)] 
+(mi_ni)(1_&i [RI ()+(1)]. 

/121 

+(mi _ni)(l+!±1k2"\' 1 (i+i ) z(R /12 ) 7 2 (z) + (mi + n1)  1 ) 
z 
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+ (mi + ni) (1- &\ [Rlw' (z) + Z 02 (z)]. 
\ 1L2) 
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APPENDIX 3 

Stress Potentials 

A3.1 Coefficients A of F11 (z) (2.34) 

1  
F11 (z) = 

2i,/(z—a)(z—b) 2 
00 

(A3.1) 

>gkzk = 90 +g1z +92z2 +93z3 +g4z4 +g5z5 +gz6 +g7z7. 

Each term is expanded into Taylor series as follows 

(z — a) 

= (—a ± (—a) Z+ (-) (1) (—a) z2 

(_)_a 2 Z 

1 / 
+ , — (-i) [1*3*5*....*(2m_1)]_a) 2 zn 

(A3.2) 

00 1 (')' 
[1*3*5 *...*(2n_1)] 1 z n 

(—a) 
1 1   5  3  35 63  

— 1 + 3Z+ _,2 + 7z + 9z + 
(—a) 2 (—a) 8 (—a) 16 (-a) 128 (—a) 256 (—a) 2 

and 

(z — b) 

(_b)2 ±  (_) (—b) 2 Z + (_I) (_3)  (—b) 2 z2 

+ (-i) () (-i) (—b) 2 Z +... 

1  (/ 
+-i - )  [1*3*5*.,*(2m_ 1)](_b)tzTh+ 

(A3.3) 
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= (')' [1 *3*5* . * (2n - 1)] (—b) 63  

= 1 + 2 z+   z + 7 + 35 9 Z + 
(—b) 2 (—b) 8 (—b) 16 (—b) 128 (—b) 256 (—b) ii Z 

Consequently, (A3.1) is re-written as 

(A3.4) 

[ 1 + 1 -z2 + 
2(—a) 8(—a) 16(—a) 

L - +  35 9 4 63  
T28(--.)'2 256(—a) 

* { 5T 2(—b) 8(—b)2 16(—b) 
1 __ 2+ z rz3 J 

+ — 35 Z4 ___ 63  

128(—b) + 256(—b)I 

- 1 +(1 1 + 2:_i  + 1_ 1 3 1 \ 2 
- 2/ 4 7a M3 4 /zg') Z + i6 r) Z 

(T2 53 115 1v32 \/ 32/ \/Y 
32T) v 

(351 51 9 1 51 35 1'\ 

25663  112 Valbll 

+ 

1   L 35  1  

512 /a b 256 -VaW 

_i35  1  
' 512 -,/a9 b3 

/ 231 1 + 63  1   + 105  1  + 25 
2048 J TTä 1024 v4sb'1 2048 ,/a5 b9 512/Y7 J 6 

+  -•—a7p ) 7 

1 15  1  \ 
m 256v'ab 

63 1 
512 rrr 

105 1 + 63  1 231  1 
2N 1024 v'T 2048 V0 30 J 

1 3003 1 + 231 1 + 189 1 + 175 1 
+ 28672 4096 4096 /8jIT 4096 

+ 175  1  + 189  1  + .2i.  1   + 3003  1  
4096 v'ab 4096V'a11b5 4096 /a'b3 28672 V'a'b' 

=  2 3 4 90 + g1z + g2z + g3Z + 94z + gz5 + g6z6 + g7z7. 
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A3.2 Coefficients hk of F12 (z) (2.35) 

and 

F12 (Z) 
2/(z - a)(z - b) 2z\/(1 - )(1 - 

= 

k=1 

+ h 2z 2 + h_3z 3 + h_4z 4 + h_5z 5 

+h-6Z-6 + h_7z 7 + h_8z 8 

Each term is expanded into Taylor series 

) 

(A3.5) 

(a )_1 - - (A3.6) z 
'a' 2 

+ 

C  

() (1)- (;(a)3 

3(a\ 1 (1 

z 2 
' + ( i) (-) (1) (-1)  

+ ( -- [1*3*5* * (2n - 1)] (_1)n(_ ) (a)n 
\fl!J 2 Z 

00 
(1\ 1 a) n 

[1*3 *5 * •* (2n - 1)] ( 
n=O 

ii fa\ _3 a\ 5 \3 
+ (1)- ()+ (-1) 2- (') '± (a2z) 8 (_1)2 

16  
35'a 63 a-) + (-1)- 1 231 (a) 6 
)+ (256 \Z 1024 

429 (a\ 7 + (-1)-.21   6435 (a) 8,,, - 
2048 z 32768 z 

( - 1) z (A3.7) 

= (-1i+ (-i) (') ()'+ (it) (-i) (-U (-1) (b)2 
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+ (371) (-i) (_i3) (1) (-1Y ()3 
1 ( 1 1)2n+1 (b )n ... 

n (b n (!) ([1*3*s*...*(2_ 
n=O z) 

1 11(b'\ '3 b 
(-1) + (-1) — j + (-1)— 1 5  +(-1)— (b)' 

-z1 8 16 z 

1 35 b' 4 1 63 b\ 5 i 231 6 
+(-1) () + ----- (1 + (-1)— (b) 128 \ZJ 256\ZJ 1024 z 

i 429 (b) 7+  (-1) 1 6435 "b" 8 
+(-1)_---- 2048 Z 32768 \zj 

Consequently, (A3.5) is re-written as 

1 

2z 

* 

1 + (—i)— (a)2 + 3 
( i) F6 z 

(- ')- -35 - (:) + (_ 1) 63 (a 128 - 2 ; )5 + (_1—i (a)6 
1 1024 

+ (-1)- ! 429 (a7 +(_1)_ (a\8 
32768 z/ 

(-1) + (—i) () + (_I)—.13()2 + (-1) ()3 
16 z 

+ (-1)—.!35 (b)4 + (-1)—! 63 fb\5 + ( 1)_i-
2 ; •-56 - 1024 zi 

+(-') • .1 ()7 (_1)2 6435 (b)832768 

(A3.8) 
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(  1 i 231 a6 aSb 2h4 
++a4b2+a3b3+ 105 ._a 'L. + - 1024 512 

+52ab±—b ) z7 
1024 

1 429 a7 ± -1-a6b ± + a4b3 + --a3b4 ;i 2048 2048 2048 2048 

+ 189 a2b5 + 231 b6 ± --b7 
2048 1 2048 a 2048 

( h_z 1 + h-2 Z- 2 + h-3 Z- 3 + h_4z 4 + 

+h-6Z- 6 + h_7-Z 7 + h_8z 8 . ) 

A3.3 Coeffléjents Pk of c011 (z) and 01, (z) 

1  

2/(z - a)(z - b)Y + 

b1(z) -(z) +T(z) - zçt4(z). 

1 
Z8 

(2.32) 

(2.33) 

From (2.32), ça11 (z) corresponding to p1(z) in a domain Izi <a near a crack tip a 
is derived as follows 

(A3.9) 

= [go + g1z + g2z2 + 93Z3 + g4Z4 + 9sZ5 + gGZ6 + 97Z7] 

X ...f_z 4 + f_3z 3 + f_2z 2 + f_1z1 ± fo + f1z1 + f2z2 + f3__3 + f4z4...] 

, + [..e_4z 4 + e_3z 3 + e2z 2 + e_1z 1 + e0 + eiz' + e2z2 + e3z3 + e4z4...J 

(f097 + figo + f2g5 + fg4 + fjgj) z7 

+ (f-ig + fog6 + figs + f294 + f3g3 + f492) z6 

+ (f_2g7 + f_1g6 + fogs + fig + fg3 + fg + f491) Z5 

+ (f_397 + 12g6 + f_1g5 + AN + flg3 + f292 + fgi + fgo + 

+ (f-497 + 1396 + f_g5 + f-194 + fog3 + 1192 + f291 + f3g0 + e3) z3 



p7z7 +p6z6 +p5z5 +p4z4 +p3z3 +p2Z2 +piz'+p0 

+p_1z.-1 +p_2z-2 +p_3z-3 +p.-.4z-4. 
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1-496 + f-a + f_2g4 + 1-193 + 1092 + fii + 1290 + e2) z2 

f_495 + f_394 + f_g + f1g2 + fogi+ fio + ei) z1 

f_494 + f_3g3 + 1-292 + 1-191 + foo + z 

f_4g3 + f_g + f—gi + f—igo + ge_i) —1 

f—g + f_3g1 + f_2g0 +&2) z_2 

f-491 '+ f—ego + z 

1 
f-490 + •e-4) Z— 

Also, from (2.33), b11 (z) corresponding to ''1(z) in a domain Izi < a around a 
crack tip a is expressed as follows 

= —(z) + 

= - +_2z 2 +_1Z 1 +e +CiZ1.+2Z2 +C3Z3 +!4Z4...) 

+ P7 7 +z6 + 5z5 + 4z4 + 3z3 + 2z2 + 1z1 +p +1z— ' 

+.2z 2 + _3Z 3 + _z 4 

- (7P7Z7 + 6p6z6 + 5p5z5 + 4p4z4 + 3p3z3 + 2p2z2 +p1z1 - p_1z' 

—2P-2Z-2 - 3p 3z3 - 4P-4Z-4 
= —6p7z7— 5p6z6 —4p5z5 - ON +4)z4 - (2p +3)z3 (P2 +e2)z2 

—iiz' + (pa - e0) + (2i— z' + (3P-2 e 2) z 2 

(A3.10) 

) 
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+ (4p_3 - z + (5P - z4. 

A3.4 Coefficients qj of p12 (z) and 12 (z) 

From (2.32), p12 (z) corresponding to p1(z) in a domain IzI > b near a crack tipb 

takes the following form 

ç012(Z) 

h_1z' + h_2z 2 + h_3z 3 + h_4z 4 + h_5z 5 

+h-6Z- 6 + h_7z 7 + h_8z 8 

...f..4z 4 + f_3z 3 + f_2z 2 + f_1z' + A+ f1z1 

+f2z2 + f3z3 + f4z4... 

+ I + e_3z 3 + e_2z2 ± e_1z 1 + e0 + e1z1 

+e2z2 + e3z3 + e4Z4... 

] 
= (/_1f4 + 3) z3 + (h-2h+ h_1f3 + 

+ (h-3h + h_2f3 + h_1f2 + lei zi 

+ (h-4f4 + h_3f3 + h_2f2 + h_f1 + eo) zo 

+ (h_5f4 + h_4f3 + h_3f2 ± h_2f1 + h 1f0 + z 1 

+ (h-6h + h_5f3 + h_4f2 + h_3f1 + h_2f0 + h_1f 1 + z 2 

+ ( h_7f4 + h_6f3 + h_5f2 + h 4f1 + h_3f0 + h_2f_1 

+ 

+h-1f_2 + e_3 I 
(h_8f4 + h_7f3 + h_6f2 + h_5f1 + h_4f0 + h_3f_1 + h_2f_2 

z 

z-4 

(A3.11) 
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h_8f3 + h_7f2 + h_6f1 + h_5f0 + h_4f_1 + h 3f.. 2 + h_2f_3 

+h-1f_4 + €_ 

h...3f2 + h_7f1 + h_6f0 + h_5f_1 + h_4f_2 + h_3f_3 

+h-2f-4 + e_6 

= q3z3 + q2z2 + q1z1 + qo + q_1z' + q_2z 2 + q_3z 3 + q_4z 4 

+q-5Z- 5 + q_6z 6. 

) 
) 

From (2.33), l' 12 (z) corresponding to b1(z) in a domain 1z  > b near a crack tip b can 
be written in the following form 

12(Z) (A3.12) 

= - (._4z 4 +_3z 3 +_2Z2+._lZ_1 +o +iz' +e2z2 +3z3 +4z4...) 

+ 
q3z3 + q2z2 + q1z' + qo + q1z' + q_2z 2 + q_3z 3 + q_4z 4 

+q-5z 5 + q_6z 6 

- ( 3q3z3 + 2q2z2 + q1z' - q_1z' - 2q-2Z-2 - 3q-3Z- 3 4 q-4Z- 4 

• • —5q_5z - 6q-6Z-6 

+ 6q-5Z- 5 + (5q_41 4 - _4z 4) + (4q-3Z-3 - _3z 3) 

+ (3q-2z2 - ..'z 2) + (2q-1z1 - _1z 1) + (q - o) -  jlzl 

+ (-2z2 - q2z2) + (- 3z3 - 2qz3) - 4z4. 

) 
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APPENDIX 4 

General Algebraic Equations 

A4.1 Derivation of Equation (3.1) 

The traction continuation condition along the F (2.7) is 

coç1(z)--7 (;) zco.'1(z)- 011 (Z) = (z)+ () —zg(z)--b(z), (2.7) 
z 

and the respective stress components defined in Chapter 2 are 

W11(Z) = p7z7 +p6z6 +p5z5 +p4z4 +p3z3 +p2z2 

+P1Z1 +Po +P_iz' +P-2Z-2 +p_3z 3 +p_4z-4, 

= -6p7z7 - 5p6z6 - 4p5z5 - ON + e) z4 

- (2p + e3) z3 - (P2 + e2) z2 - e1z1 + (P0 - eo) 

+ (2p - e 1) z 1 + (3P-2 e 2) z 2 + (4p_ e_3) z 3 

+ (5p_j e_4) 2(, 

= ao + a1z + a2z2 + a3z3 + a4z4 + a5z5 + a6z6 + a7z7 + ... 

bkzk = b0 + b1z + b2z2 + b3z3 + b4z4 + b5z5 + b6z6 + b7z7 + 

Let's derive each item required to be substituted: 

ço 1(z) = 7p7z6 + 6pz5 + 5p5z4 + 4p4z3 + 3p3z2 + 2p2z' (A4.1) 

+pi - p_1z2 - 2P-2Z-3 - 3p_3z4 - 4P-4Z-', 
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/ p2 coii 
,10 

= 7] 7 (I)6+ 6P6 (J)5+5 (:•02 I)4+4P4 ( 02 )3 (A4.2) 

2 / 2 -3 
+33 (J2)2 + 2P2 (12) 1 (R - 2P-2 

+Pi P-i (-1 
\ZJ Z) 

2-5 
_3P-3 (L2) 4_ 4p_ () Ro 

= 7p7R 2z 6 + 6p6R °z 5 + 5p5Rz 4 + 4p4Rgz 3 + 3p3Rz 2 

P-i 2 2P-2 3 3p-3 4p_ 
+2p2Rz' +p - - _.fio_z - iF' -:ioz, 

z411 (z) = 42p7z6 + 30p6z5 + 20p5z4 + 12p4z3 + 6p3z2 + 2p2z (A4.3) 

+2p-1z 2 + 6P-2Z-3 + 12P-3Z-4 + 20p 4z 5, 

z2 
b.1 (z) 

0 

Z2 
p2 

/ —42p7z6 - 30p6z5 - 20p5__4 - 4(3p4 + e4) Z3 - 3(2p + e3) Z2 

—2 (P2 + e2) z1 -  Cl  - (2p_ - e....) z 2 - 2 (3P-2 - &..2) z 3 

—3 (4p - &3) z 4 - 4 (5p. - &..4) z 

42 ROI—p7z8 ffP6Z7 - :P5z 20 6 - (12p + 4e4) z5 - (6pa + 3e3) z4 

-- (2p2+2e2)z3— CZ2 - (2p- - 

— (6p...2 - 2e_2) z 1 - (12p - 36_3) z 2 - (2ORo• p. - 4e_4) z 3, 

(A4.4) 

/ 2 3 4 5 6 7/ 
ço0(z) (ao+aiz+a2z +a3z +a4z +a5z +a6z +a7z ) 

= 7a7z6 + 6a6z5 + 5a5z4 + 4a4z3 + 3a3z2 + 2a2z + a1, 

71 
0 (:•O) = 7R 2a7z 6 + 6R 0a6z 5 + 5Ra5z 4 + 4Ra4z 3 

(A4.5) 

(A4.6) 
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+3Ra3z 2 + 2Ra2z 1 +a1,. 

zçog(z) = z (7a7z6 + 6a6z5 + 5a5z4 + 4a4z3 + 3a3z2 + 2a2z + a1 

= 42a7z6 + 30a6z5 + 20a5z4 + 12a4z3 + 6a3z2 + 2a2z, 

z2 
= 

0 

), (A4.7) 

+ b3z3 + b4z4 + b5z5 + b6z6 + b7z7)' (A4.8) 

-biz 2 + -b2z + -b3z + -b4z + -b5z + -b6z + --b7z 
L0 

Thus, by substituting (A4.1) thru (A4.4) into (2.7), the L.H.S. of (2.7) becomes 

(12 —zço'1(z) Z 
z) T2 1 

(7p7z6 + 6p6z8 + 5p5z4 + 4p4z3 + 3p3z2 + 2p2z' +p1 - p_iz-2 - 2n 2Z-3 

—3p_3r4 - 4p_4z 5 

7p7R 2z 6 + 6p6R°z 5 + 5p5Rz 4 + 4p4Rz 3 + 3p3Rz 2 + 2p2Rz 1 

(A4.9) 

/ 

2p.2 3 3p_3 4 4p_4 
IT +pi - z2 -RO  - - 

42p726 + 3Opz5 + 2Opz4 + 12p4z3 + 6p3z2 + 2p2z + 2P_iz 2 + GP2Z 3 

+12p_3z 4 + 20P-4Z-5 

42 8 30 20 6 1 
- - p5z - (12p + 464) z5 - (6p + 363) 
- (2p2 + 262) z3 -  el T I Z2  - (2p_1 

-* (6p - 26_2) zl - j (12p_3 - 36 3) z 2 - * (20 - 46_4) z 3 

42 8 30 21p') 
= p7z + + (_35P7 + P5) z6 + ( (l2p + 4e4) - 24P6 4) 5 

(1 3p_3 •\ 
3 +(6p3+3e3)-15p5—  R )z +((2P2+2e2)_8p4 ---,)z 
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W 02- el ((2P_i_e_i)+2Pi) 

+ (2R 2 + (6p- - 26_2)) z 1 + ( (l2p - 3e_3) - 3p i + 3R 3) 

+ ( (2Op - 4e_4) - 8P-2 + 4R 4) z 3 + (5Rp5 15p 3) z 4 

+ (6R °p6 24p...4) z 5 + 7p7R 2z 6. 

Similarly, substituting (A4.5) thru (A5.8) into R.H.S. of (2.7) yields 

(z) + 02 (g ) - z(z) -z  

Z-2 

(A4.10) 

= (7a7z6 + 6a6z5 + 5a5v4 + 4a4z3 + 3a3z2 + 2a2z + ai) 

+ (7R 2a7z ° + 6R 0a6z 5 + 5Ra5z 4 + 4Ra4z 3 + 3Roa3z 2 + 2Ra2z' + ai) 

- (42a7z6 + 30a6z5 + 20a5z4 + 12a4z3 + 6a3z2 + 2a2z) 

- (b1z2 + b2z +W02 + b4z + b5z6 + + b7z8) 

= _b7z8 - + (_35a7 - b5) z6 + (_24a6 - b4) z5 

+ (_l5as - W 02-b3) z4 + (_8a4 - b2) z3 + (_3a3 - b1) z2 

+ (0) z + 2a1 + 7R'2a7z 6 + 6R'°a6z 5 + 5Ra5,r4 + 4Rga4z 3 

+3Ra3 2 + 2Ra2z 1. 

Thus, (2.7) is re-written in the following form 

42 8 30 ,  21 p7z + p6z + (_35P7 + P5) 6 

5 (W'02- 3p3 + W02 (12P4+4e4)_24P6 - ) z RIO + (6p3+3e3)L 15p5 

+(W 02- (2P2+2e2)_8P4 i2)z3+ ( -el _3p3_!)z2+(0)z 

(3.1) 
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+ (' (2p- I + 2,, 

+ ( (l2p_ - 3e_3) - 3P-i + 3R 3) z 2 

+ ( (2Op - 4e 4) - 8P-2 + 4R 4) z 3 + (5Rgp5 - 15p_3) z 4 

12 —6 + (6R0 + 10p6 7p7R0- 24p_4) z 5 z 

7 b 867 
= — 7z - b6z + (_35a7 - b5) z6 + (_24a6 - 

+ (_15a5 - W 02-b3) z4 + (_8a4 - b2) z3 + (_3a3 - bi) z2 + (0) z 

+2a1 + 2Ra2z' + 3Ra3z 2 + 4Rga4z 3 + 5Ra0. 5z4 + 6Rj°a6z 5 + 7R 2a7z 6. 

A4.2 Derivation of Equation (3.2) 

The displacement jump condition along the P0 (2.12) is 

R0 z (\\ 
(mo - no) (tci + 1)—ço11 (z) + (mo +no) (ici + 1)j 

= 4y, (z +TIO (), - z(z) - + (mo - + 
Ito 

+(mo - flü)(1 - Li) (R0 () (Ro )) Po \ 

+(mo + no)(1 + 'o)-- R 

+4moRo,a1e1 + 2ii1(mo ± no)(62 
Ro 

(2.12) 

coo (z) 

+ (mo + n )(1 - L1) (Ro(P ow + -b0 (z)) 
Yo \ Ro 

-  ie3)2 + 24t1(mo - no)(62 + ie3)R  

Let's derive each item required to be substituted: 

R0 
= Lo ( p7z7 +p6z6 +p5z5 +P4 4 P3z3 + 2z2 (A4.11) 

+Po +_ 1 1 +_22 +p_3Z_3 ) 
Rop7z6 + Rop6z5 + Rop5z4 + Rop4z3 ± Rop3z2 + Rop2z + Rop1 

+Rop0z' + Rop_1z 2 + Rop_2z 3 + Rop 3z 4 + Rop4z5, 
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/ p (Rz')7 ± p6 (Rz')6 + p5 (R-, ')5 

(R) -!--P4 (Rz')4 +3 (Rz')3 +p2 (Rgz')2 A4.12) 

R0 " z ' +pi (Rz') +po +p_ (Rz') 1 

\ +P-2 (Rz') 2 3 +_3 (Rz' +_4 (Rz') 4  

- p7R 3z° +p6R'z 5 +p5Rz 4 +p4Rz 3 +p3Rz 2 +p2Rgz 1 

+p1R0 + -poz + pjz2 + + W 07 p_3 + 

ço (z), (RI.) , zçd'(z), and (z) are derived in the previous condition (A4.5 thru 

A4.8). 

Ro 
(PO (z) = R0a0z 1 + R0a1 + R0a2z + R0a3z2 + R0a4z3 + R0a5z4 + R0a6z5 + R0a7z6, 

(A4.13) 

R0 (LO) = 7R 3a7i 6 + 6R'a6z 5 + 5Rga5z 4 + 4Ra4z 3 (A4.14) 

+3Ra3z 2 + 2Ra2z 1 + R0a1, 

2 R2)2 + 3 
RO  ) = Ro bo -• b, (-Rf2) + b2 b 

z z 7 +b4()4•bS()5+bG()6+b7()7) (A4.15) 

Roboz' + Rb1z 2 + Rb2z 3 + Rb3z 4 + Rb4z 5 + R'1b5z 6 

+Rj3b6z 7 + Rj5b7z 8, 

DQ2 
- .LI 

W-coo(---) O Z 
1 
—a0z + R0a1 + Ra2z' + Ra3z 2 
R0 

+Ra4z 3 + Rga5z 4 + R/j1a6z 5 + R 3a7z 6, 

(A4.16) 
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Roço(z) = 7R0a7z6 + 6R0a6z5 + 5R0a5z4 (A4.17) 

+4R0a4z3 + 3R0a3z2 + 2R0a2z + R0a1, 

jVo (z) - -b0z + kblz2 + —b2z + 

+kb4z5 + b5z6 + 1 bz + b7z8. 

(A4.18) 

Let's substitute (A4.11) and (A4.12) into L.H.S. of (2.12). Thus, L.H.S. of (2.12) is 

(mo - no)(1c1 + 1) 11 (z) + (mo + no) (ml + 1)—jT ( (A4.19) )  
/ 

Rop7z6 + Rop6z5 + Rop5z4 + Rop4z3 

= (mo - no)(/c1 +1) +R0p3z2 + Rop2z + R0p1 + Rop0z' 

+R0JJ_1 + Rop_2z 3 + Rop_3z 4 + Rop_4z 5 

/ p7R 3z 6 + p6R 1z 5 + p5Rz 4 + p4Rz 3 

+(mo + no)(Fci + 1) +p3Rz 2 +p2Rz—' +piR0 + poz 

\  lUp 4Z, 
R6 R6 

+p_z2 + + + 

(mo - no)(ic1 + 1)Rop7z6 

1 \ 
+ ((mo  - no)('i + 1)Rop6 + (mo + no) (Ici + l)P_4) z 

+ ((mo - no)( 1 + 1)Rop5 + (mo + no) (1 + 1)P_3) z 

+ ((mo - no)( 1 + 1)Rop4 + (mo + no) (1 + 1)P2) z 
0 

+ ((Mo - no) (, 1 + 1)Rop3 + (mo + no) (1c1 + l) 1 _i) z 
0 

• 
+ ((mo 

- no)(ici + 1)Rop2 + (mo + no) (/c1 +.l)---po ) z 
LLO J 

+2m0(ic1 + 1)Ropi 

+ ((mo - no) (ic1 + 1)Ropo + (mo + no) (ic1 + 1)Rp2) z' 

I 
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+ ((mo - no) (ici + l)Rop_1 + (mo + no) (1c1 + 1)Rp3) z 2 

+ ((mo + no) (Ic1 + 1)Rp4 + (mo - no) (1c1 + l)Rop_2) z 3 

+ ((mo + no) (Ic1 + 1)Rp5 + (mo - no)(t 1 + l)Rop 3) z 4 

+ ((mo - no)(/ci + 1)Rop_4 + (mo + no) (1c1-i- 1)R'p6) z 5 

+(mo +no) (K1 + l)R 3p7z 6. 

By deploying (A4.13) thru (A4.18) into (2.12), the R.H.S. of (2.12) becomes 

4i (40 (z + TO, (L2 ) - z(z) - 

Z2 /1 R0 
T2 00 mo no)(1+ico—)-4o0 z 

Ro 
+(mo - no) (I 1) (R0 (R2) + ()) (A4.20) 

/2 \ 

+(mo + no)(1 + Ko1)() + (mo + no)(1— Li) (&(z) + (z)) 
'to Yo 

+4moRo,u1e1+ 2it1(mo + no) (2 - ie3)2 + 2it1(mo - no) (62 +ie3)R  
R0 Z2 

—b7z8 - R. b6z7 + (_35a7 - b5) z6 + (_24a6 - b4) z5 

= + (-15a, - b3) z4 + (_8a4 - b2) z3 + (_3a3 - b1) z2 

4y, RO+ (0) z + 2a1 + 7R?j2a7z 6 + 6R°a6z 5 + 5Ra5z 4 

+4Rga4z-3 + 3Ra3z 2 + 2Ra2z' 

+(mo— no) (1-i--ic i. o.--) Roaoz' + R0a1 + R0a2z + R0a3z2 + R0a4z3 
Ao  

+R0a5z4 + R0a6z5 + R0a7z6 

/ 7R 3a7z° + 6R'a6z 5 + 5Rga5z 4 + 4Ra4z 3 

+3Ra3z 2 + 2Ra2z 1 + R0a1 + R0b0z 1 

+Rb1z 2 + Rb2z 3 + Rb3z 4 + Rgb4z 5 

+R'b5z 6 + R 3b6z 7 + R 5b7z 8 j 

\ 

'I 



140 

+(mo + no)(1 + III a0z + R0a1 + Rga2z' + Ra3z 2 + Ra4z 3 

I- +Ra5z 4 + R'a6z 5 + R 3a7z 6 

/ 7R0a7z6 + 6R0a6z5 + 5R0a5z4 + 4R0a4z3 " 

+(mo + no)(1 - i) +3Roa3z2 + 2R0a2z + R0a1 + kboz 

Yo Ro +b1 z2 + * b2z3 + b3z4 + *b4z5 

+b5z6 + bRo. 6z7 + *b7z8 / 
+4moRo i i + 2 1(mo + no)(62 -  ie3)2 + 2 1(mo no)(62 + ie3)R  

R0 z2 

= (_4i 1 b7 + (ma + no) (1 - z8 
Ro yo R0 / 

+ (-4/.qb6 + (mo + no) - 

/tO R0 + ((_a7 - *b5) + (mo - no) (I + 'o)Roa7 \\ go 6 

+7(mo + no) (I - Lil)Roa7 + (mo + no) - 1)go *b5) 

+ (4 i (-24a6 - *b4) + (ma - no)(1 + o)a6 

+6(mo + no)(1 - ')Roa6 + (ma + no)(1 - 1)b4) 

+ ( go Ro 
4 i (-15a5 - *bs) + (ma - no)(1 + 

+5(mo +no)(1— )Roa5 + (mo +no)(1 - 1)b3) 
Ito Ro 

+ ( (_a4 - R07 b2) + (ma - no) (I + go 3 o)Roa4 

+4(mo + no) - )Roa4 + (mo + no)  - 1 b 
go Ro 2 / 

+ ( (_3a3 - )+(mo - no)(I+r,,, /" )Roa3 ) Po 

1 \ 1 b + 2 l(mo+no)(52_jE3)  +3(mo +no)(1— )Roago, 3 + (mo +m0)( - 1 Ro 

+ ( (mo—no) (1+ico')Roa2+Po (mo+no) (1+ico&)-Laogo Ro 
z 

+(mo + no)(1 - /20)RO o + 2(mo +no)(1 - l)Roa2go 

z2 
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+( 
Po. 

8 1a1 + (mo - no)(1 + !co 1)Roai + Ro(mo - no) (I - -)a1 
/2 

+(mo + no)(1 + io)Roai + 4moRo1e1 + (mo + no)(1 - 1)Roai ) 
Po 

+ ( 8i1Ra2 + (mo - n0)(1 + o-')Roao + 2(mo - no)(1 - &)Ra2 
,U0 

• +(mo - no)(1 - 1)Robo + (mo + no) (I + o)Ra2Ito  ) 
12iiiRa3 + 3(mo - no) - L1.)R a3 + (in0 - n o)  - 1)Rb 

Po 

+(mo + no) (I + ico1)Rc3 + 2 1 (mo - no) (62 + ie3)R Po 0 

16 1Rga4 + 4(mo - no) - -)Ra4 + (mo - no) - -)RPo gb2 

+(mo + no) (I + ico)Ra4 
Yo 0 

Z-3 

( 2O 1Ra5 + 5(7-no - no)(1 - -)Ra5 + (mo - no)(1 - -)Rb3 '\ 
+1 0 ° iz 

+(mo+no)(1+,oi.)RasIAO  ) 
(24 iROa6 + 6(mo - no)(1 - )R'a6 + (mo - no - )R°b4 

+1 Iz 

+(mo+no)(1+,co?.1.)R1aePo 0 ) 
(28 iRà2a7 + 7(mo - no) - )R 3a7 + (mo - no)  - )R 1b5 

+1 Iz 

+(mo+ no) (1+icoL1 )ROM a7 ) 
+(mo _: no)(1 - I-t1)R 3b6z 7 + (mo - no) (1 - L.1)R5b7z_8. 

I t o Ito 

Consequently, (2.12) is expressed in terms of complex coefficients as follows 

(mo - no)( 1 + 1)Rop7z6 + ((mo - no)(Ki + 1)Rop6 +.(mo +no)( 1 + 1)P_4) z5 

+ ((mo - no)( 1 + l)Rop5 + (mo + no)( 1 + 1)P_3) : 

+ ((mo - no)( 1 + 1)Rop4 + (mo + no)( 1 + l) p_2 ) z 
O / 

+ ((mo - no) (ici + 1)Rop3 + (mo + no) (n, + l) -p' z 
(•Ø / 
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+ ((mo - no)(K1 + 1)Rop2 + (mo + no)(1 + i)kpo) z 

+2m0(ic1 + 1)Rop1 + [(ma - no) (/ci+ 1)Ropo + (mO +no)(fci-i- 1)Rp2] 

+ [(ma - no) (ic1 + 1)Rop_1 + (ma + no) (it1 + 1)Rp3] z 2 

+ [(ma + no)(iti + 1)Rp4 + (ma - no) (ic1 + 1)Rop...2] z 3 

+ [(ma + no) (ici + 1)Rp5 + (ma - no) (it1 + 1)Rop_3] z 4 

+ [(ma - no)(k1 + 1)Rop 4 + (ma + no) (ic1 + 1)Rj'p5} z 5 

+(mo + no) (ic + 1)R 3p7z° 

= (_4ii_! b7 + (ma + no) - L±)br) z8 
Yo 

+ (-4pl-L 6 + (ma + no) (1 - 

iao R0 ) 

+( 4 (-35a7 - RV, + (ma - no)(1 + o)RoaPto 7 

(1— +7(ma + no) (I - ')Roa7 + (ma + no) L1 Lb 

4it1 (_.24a6 - b4) + (ma - n,,) (I + io')Roa6 i 1 
+6(ma + no)(1 - -)Roa6 + (ma + no)(1 - L±L)_Lb 

i 

(_-ia5 - b3) + (ma - no)(1 + io 1)Roa 1 5 
z4 

+5(mo + no)(1 - )Roa5 + (ma + na)(1 - ')b ) 
go Ro 

+ ( (_8a4 - NOT b2) + (ma - no)(1 + o)Roa4 ) 3 

+4(ma+no)(1_ 1)Roa4-i-(mo+no)(1_&) 'b 2 ( 4 (_sa - R70 b1) + (ma - no) + o)Roa3 + 21(mO+flO)(2_eg) 

+3(mo + no)(1 - L1)Raa3 + (mo + no) - —11i)-Lb, 

Ro 

Ito 

)Z2 
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+ 

+ 8 1a1 + (ma - na)(1 + Ko )RYo aai + Ro(ma - no AO )(1 - )a1 

+(mo + no)(1 + o)Roai + 4moR01e1 + (ma + na)(1 - )Raai 
/to( Po 

8itiRa2 + (ma - na)(1 + o)Roao + 2(mo - no)(1 - )Ra2 —1 
+1 Iz 

- na)(1 - + (ma + no)(1 + a-)Ra2 ) 
(12üiRa3 + 3(ma - na)(1 - )Ra3 + (ma - no) (I - 2 

+1 0 iz 
+(mo + no)(1 + o')Ra3 + 2 1(ma —no) (62 + iE3)R ) 

(16 1Ra4 + 4(mo - no)(1 - 1)R a4 + (ma - no)  - )Rb2 
+1 0 ° iz 

+(mo + no) (I + 'co)Ra4Po ) 
(2O 1Ra5 + 5(mo - no)(1 - )Ra5 + (ma - na)(1 - )Rb3 _ +1 lz 

+(mo+ no) (1+io)Ra5Po 0 ) 
(24,2iR0as + 6(rno - na)(1 - + (mo - no)(1 - )Rb4 

+1 0 iz 

+(mo + no)(1 + 'o)R'a6Po 0 ) 
+ (28iR2a7 + 7(mo - no) (1 - )R 3a7 + (mo - no)(1 - )R'b5 ) —6 

( (ma - no)(1 + o)aa2 + (ma + na)(1 + xoLL -Lao 

+(ma+rta)(1 /-10 a - &)i_b + 2(ma + no)(1 - )Raa2 

+(mo + no) (I + 'co')R3Izo a7 

+(mo - na)(1 - 1'41)R b6 -7 + (ma - na)(1 - 
Pa I_to 

A4.3 Derivation of Equation (3.22) 

The traction continuation condition along the F1 (2.13) is 

co(z) +   z zco(z) - /4(z) = Pi2(Z) () - Z (P-12  - 0 '12 (Z) 
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(2.13) 

and the stress potentials associated with (2.13) are defined in Chapter 2 in the fol-

lowing form 

00 

W2(z) Az+> 

'b2(z) = Bz+> 
k=1 

CkZk = Az+c1z' +C2Z2+C3ZS+C4Z4+CSZ_5+cGz_6+c7z_7+cSz_8, 

dkz' = Bz+d1z' +d2z2+d3z3+d4z4+dsz_5+dGz_6+drz_7+d8z_a, 

ço12(z) = qz3 +q2z2 +q1z1 +qo +q_z'+q_2z2 +q-3Z- 3 +q_4z 4 +q_5Z +q_6z 6, 

12(z) = 7q_6z 6 + 6q_5z 5 + (5q_4 - z + (4q_3 - z 3 + (3q_2 - c_ 2) z 2 

+ (2q_1 - .') z 1 + (qo - o) - -g, Z1 + (- 2 - q2) z2 + (- - 2q3) z3 - 4z4. 

Let's derive the items on the R.H.S: 

W12(--) = 3q3z2+2qzlq1_.q..1z_2 2q_z3_3q_3z4_4q_4z_5_5q_5_6.q6_7 

(A4.21) 

( •2 
__7_ 1 

12 3q3 (Rz') 2 + 2q2 (R 2Z-1  + q1 - q_1 (R 2Z-1) 

—2q_2 (R  z') 3 - 3q_3 (Rz') 4 - 4q_4 (R z_1)S 

—öq_5 (Rz') 6 - 6q_ (Rz') 7 

1 2 
= 3q3Rz 2 + 2q2Rz ' + qi - q_1 z - 2q_2z -T16-  3q_3z 

1 
—4q_4 RIO z5 - 5q_sz6 - 6q-6 14 z 

(A4.22) 
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Z(Z) = —z ( 3q3z2 + 2q2z' + q1 - q_1z2 - 2q-2Z- 3 

- 4q-4Z- 5 - 5q 5z 6 - 6q-6Z 7 ), (A4.23) 

= —6q3z2 - 2q2z - 2q— 1Z-2 - 6q-2Z- 3 - 12q-3Z-4 - 20q-4z 5 

—30q_5z 6 - 42q.6z 7, 

z2 , z2 
= RI 

/ 7q-6Z- 6 + 6q-5z-5 + (5q_4 - e_4) z 4 

+ (4q_3 - e_3) z 3 + (3q_2 - 2) z 2 

+ (2q_1 - -) z' + (qo - o) - 1z1 

+ (- - q2) z2 + (— s - 2q3) z3 - e4z4 J 

/ —42q_6z 7 - 30q-5z-6 —4 (5q_ - e_4) z 

—3 (4q_3 - &..3) z 4 - 2 (3q_2 - e_2) z 3 

fr) - \ -2 - — q_1 - e 1)  

\. +2(_ë2_q2)z+3(_3_2q3)z2_44z3 j 
1 5 1 4 

42q_6 —z + 3Oq_5-z +4 (5q_4 c.4) -1 z-3 
L1 1 R2 

(A4.24) 

1 
+3 (4q_3 - e_3) z_2 + 2 (3q_2 - e 2) z' + (2q_iZ2 R2 - _i) 

- 2 (- - q2) - 3 (- - 2q3) + Z5. 2 
R2 W2-

Also, let's derive the items on the L.H.S: 

c4(z)= A - c1z2 - 2c2z 3 - 3c3z 4 - 4c4z5 - 5c5z - 6c6z 7 - 7c7z 8 - 8c5z 9, 

(A4.25) 

() = A - c1 (Rz1y2 - 2c2 (Rz')3 - 3c3 (Rz_1)4 (A4.26) 
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—4c4 (Rz')5 - Sc5 (Rz_1)6 - 6c6 (Rz') 7 

—7c7 (Rz')8 - 8c8 (Rz') 9 

1 2 2 3 4 5 
A -  - c2z3 - C3Z -  c4z5 

12 
1 1 1 1 1 

6 - 7 8 8 
TöC7Z - 

zgo(z) - 2c1z + 6c2z 3 + 12c3z 4 + 20c4z 5 (A4.27) 

+30c5z 6 + 42c6z 7 + 56c7z 8 + 72c8z °, 

Z2 Bz + d1z' + d2z 2 + d3z 3 + d4z 4 

= +d5_--1 + d5z 6 + d7z 7 + d8z 8 
(A4.28) 

= .!,B2 - - d2z1 - d3z2 - W 2 - - d5z-
- Tj 

d6z - d716 - 8 d z 7 
8 . 

Thus, by substituting (A4.25) thru (A4.28) into (2.13), the L.H.S. of (2.13) becomes 

2 

+ (L2) - z(z) - W2 2 z) (A4.29) 

= (A - c1z 2 - 2c2z3 - 3c3z4 - 4c4z5 - 5c5z - 6c6z7 - 7c7z8 - 8c8z 9) 

+ (A - - C2Z - 63Z -  Tflll - c5z6 

_jc6z7 - - 

- ( 2c1z + 6c2z 3 + 12c3z4 + 20c4z 5 + 30c5z 6 + 42c6z 7 

+56c7z 8 + 72c8z 9 

I 1D Z (2 1j1 - a2Z - -1 3i - _i -2 4 -3 
- I wfJ)  

5d5_,-4  6_i - -5 7J - -6 8_i -7 
Ryf\  -  

) 
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- - - 8 8 6 6 5 3 4 
-  - 

1 1  T —  12 - - c4z 1 T8 2 (--LCIZ2  2" (2A 1 '\ 2C2Z + - Bz) + + di) + d2z 
RI T2 

(-3c, 2 3 2" 3+ z + d3z_) + -8c2z + d4z 3 

+ (15C3z-4 + d5z_4) + (_24c4z-5 + d6z_5) 

+ (35c5z6 + d7z6) + (- 48C6z_7 + d8z_7) - 63c7z8 - 80c8z 9. 

Also, substituting (A4.21) thru (A4.24) into the R.H.S. of (2.13) yields 

'P1 Z2 
12 (Z) + 712 (.') - Zco12(Z) - T2 0'12 W 

( 3qz2 + 2q2z' + q1 - q_1z2 - 2q-2Z-3 - 3q-3Z-4 

-4q-4Z-5 - 5q-5z-6 - 6q-6Z-7 ) 
z 2 + q2 z' + qi - q_iq_2 z + 3q3R 2R z2 - 2 3 

-3q_3 z4 - 4q_4jz5 - 5q_sz6 - 6q_6z7) 

-6q3z2 - 2q2z - 2q1z2 - 6q-2Z-3 - 12q-3Z-4 - 20q-4Z- 5 

-30q_5z 6 - 42q-6Z-7 + 42q_6 z + 3Oq_5 z 

1  +4 (5q_4 - z 1 +3 (4q_3 - e..3) z'2 

1 1 
+2 (3q_2 - e 2) z_i + (2q_i - e_1) - +i 

-2 (-2 - q) z3 - 3 (- - 2q3) + 4 4 z 
RI I 

1 '\ = (_6q_6 14 z7) + (-5q-5 12 _,6) + (47e4 z5 - 4q_4 z5 
RI RI I ) 

(A4.30) 

+ (_3 (-b - 2q3) - 3q_3z4) + (_2 (- 2 - q2)z - 2q-2Z3 

(-j 
2+ -  q_iz + 3q3z2 - 6q3z2) + (2q2z' - 2q2z) 
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+ (qi + qi + (2q_i - _i) 2-) + (2q2R1z 1 +2 (3q_2  

+ (3q3R 4Z-2 - - 2q 1z 2 +3 (4q 3 z_2) 

+ (_2q_2z_3 +4 (5q_4 -) 6q-2Z-3) 

+ (-3q-3 4z_ + 30q-5 Z - 12q_3z_4) 

+ (_4q_4z_5 + 42q_6 z - 20q_4z_5) 

+ (._5q_sz_6 - 30q -5z-') + (-6q_6z7 - 42q_6z 7). 

Thus, (2.13) is determined solely in terms of the complex coefficients 

8  csz - 7 8 6 5 6 4 534 FIN 
- 1- - - c5z - c4z - c3z (3.22) 

11O 

+ (_ci - B) z2 + (2A + d1) + d2z' 

+ (_3c1 + d3) z 2 + (_8c + d4) z 3 + (_l5cs + d5) z_4 

+ (_24c4 + d 18 
6) + (_35c5 + d7) + (_48c1 R1 6 + d8) 7 

—63c'rz 8 - 80c8z 9 

/ 17'\ (-5q-, 1 / + z) + - 4q_4 ) z 
I T12 RIO 

+ (_3 (-3 - 2q3) - 3q_3 ) z4 + (2 (-2 - q2) - 2_2 ) z3 

+ ( 1 _q1TT +3q3 _ 6q3)z2+(2q22q2)z 

+ (q, + q1 + (2q_i - e_1) + (2 2 +2 (3q 2 - e_2) 
Ri) Ri) 

+ (3qsR - q_1 - 2q 1 +3 (4q_3 63) 
I ) 

+ (_2q_2 +4 (5q_4 - ) - 6_2) z3 

1 —1 
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+ (_3q_3 + 3Oq_5 - 12q_3) z 4 + (_4q_4 + 42q_6 - 20q_4) z 5 

+ (-5q5 - 30q_5) z + (-6q_5 - 42q_6) z 7. 

A4.4 Derivation of Equation (3.23) 

The displacement jump condition along the r1 (2.14) is 

(mi - n1) (k1 +1) L W12 (z) + (ml + n1) (k1 +1) (i) 

= L2 2 
—4y,(z + () - z4 (z) b(z)) 

+(mi_ni)(1_L±1) (()+i()) 

+ (mi - ni) (I + —k2 R, W2 (z) 
\ /2 ' Z 

7 '\z (R,) 
+(m1+n1fl1+_k2)_(_ 

+ (ml + fli) (1 ) (R1 (z) + 2 (z)). 

Let's derive the each items required to be substituted: 

(2.14) 

l2 (z) = q3z3 +q2z2 +q1z' +qo ±q_zlq_2z2 +q_3z 3 +q_4z 4 +q_5z +q_6z 6, 

(A4.31) 

—c012 (z) R1q3z2 + R1q2z + R1q1 + R1q0z' + R1q_1z 2 (A4.32) 

+R1q_2z 3 + R1q_3z 4 + R1q_4z 5 + R1q_5z 6 + Riq_6z7, 
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z 1) z 
T1 2 = 

/ q3(Rz_1)3+q2(R2 ' 
Z ) 

+qo + q_1 (R?z_1)1 + q-2 (R?z') 2 

+q_3 (RI + q_4 (RI  

+q_5 (RI  + q_.6 (Rz') 6 

1 
q3Rz 2 + q2Rz' + q1R1 + — q0z + q...iz2 

Ri 

+ q3z +q-4 z  + q_5z6 + 
1 RI T19 R" 13 

(A4.33) 

The first bracket (co(z) + (R2) - zç'(z) - in the R.H.S. of (2.14) is 

same as L.H.S. of (2.13), namely (A4.29). 

( A — c1z2 - -RIT R,  - 

R1 () 1 _c5z6 - - c7z8 - c3z C6Z 9 

1 2 3 34 
= R1A - 2 _ 

C2Z - - c4z 
R 3 51 RI Ri R9 

5 6 6 7 8 
_Fc5z - C6Z - j•-15 0 7Z -

R, (L2 

z 2 7 = 
R ( B(c)+d1()1+d2(!)2 
z (R 2 -3 + d4 (R12) -4 + d5 (R,2) -5 

BR 3Z-2 + + d2 z + d3z2 + d4T 3 R 5 qz + d5 z, 

) (A4.34) 

(A4.35) 

W2 (z) = AR, + R1c1z 2 + R1c2z 3 + R1c3z 4 + R1c4z 5, (A4.36) 

z (R 1 

-,, = AR1 + 7F3 + + + I T 15 T7 c-z5, (A4.37) 

Riço (z) = R1 (A - - 2c2z 3 — 3c3z 4 — 4c4z 5) ' (A4.38) 
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- AR, - R1c1z 2 - 2R1c2z3 - 3R1c3z4 - 4R1c4z 5, 

W ,-02 (Z) - 

Z z i 2 B--z + d1--z + d2--z 

+d3-z+c14_z-4+d5Lz--5 1 1 

= B--z +d1--- +d2--z -i-d3---z 2 +d4---z +d5--z. 
R, .11.1 .11.1 .111 ELi IL1 

By substituting (A4.31) and (A4.33) into (2.14), the L.H.S. of (2.14) takes the fol-

lowing form 

(MI - m) (k1 +1) ço (z) + (m + n 1 I 
i) (k1 +1) () 

/ \ 

+R1q_1z 2 + R1q_2z-3 + R1q_3z 4 

+R1q_4z 5 + R1q_5z 6 + R1q_6z 7 ,, 

/ q3Rz 2 + q2Rz' + q1R1 + qoz 
RI 

+ (mi + ni) (k1 + 1) +q_1 z2 + q_2  z3 + q_3 z4 

(mi —n1)(k1+i.) 

/ 
\ +q. 4 z5 + q_5z6 + q_6z7 / 

(m1 - n1) (Ici +1) R1q3z2 + (m1 - ni) (k1 +1) R1q2z 

+ (m1 - n1) (k1 +1) Riq1 + (m1 - n1) (k1 +1) R1q0z' 

+ (mi - n1) (k1 + 1) R1q_1z 2 

+ (m1 - n1) (k1 +1) R1q_2z 3 + (m1 - n1) (k1 +1) R1q_3z 4 

+ (mi - n1) (k1 + 1) R1q_4z 5 + (mi - ni) (k1 + 1) R1q5z 6 

+ (mi - ni) (k1 + 1) R1q_6z 7 
/ 

(A4.39) 

(A4.40) 



152 

/ (m1 +n1) (k1 + 1) q3Rz 2 + (m1 + ni) (k1 + 1) q2Rz' 

+ (m1 + n1) (k1 + 1) q1R1 + (m1 + n1) (k1 + 1) q0z 

+ + (m1 + n1) (k1 + 1) q_1z2 + (m1 + n1) (k1 + 1) q_2 z3 
Rf 

+ (m1 + n1) (k1 + 1) q_3 z4 + (m1 + n1) (k1 + 1) q-4 -1 Z5 
\ RTI 

+ (m1 + n) (k1 + 1) q_5fl-z6 + (m1 + n1) (k1 + 1) q_6jz7 

1 7 1 6 
= (m1 + n1) (k1 +1) q_6-13 z + (m1 + ni) (k1 +1) q_5 -z 

.LtJ 

+ (m1 + n1) (k1 +1) q_4 1 z5 + (m1 + ni) (k1 +1) q_3 1 z 4 
1 RI 

+(mi +fli) (k1 + 1)q_3 

+ ((mi - ni) (k1 +1) R1q3 + (m1 + ni) (k1 + 1) q_i) z2 

+ ((ml - ni) (k1 +1) R1q2 + (mi + ni) (k1 +1) o) z 

+2m1 (k1 + 1) R1q1 

+ ((m, - n1) (k1 + 1) R1q0 + (m1 + ni) (1c1 + 1) Rq2) z 1 

+ [(mi - n1) (k1 + 1) R1q_1 + (m1 + n1) (k1 + 1) Rq3] z 2 

+ (m1 - n1) (k1 + 1) R1q_2z 3 + (m1 - n1) (k1 ± 1) R1q_3z 4 

+ (m1 - n1) (lci + 1) R1q_4z 5 + (m1 - n1) (k1 + 1) R1qz 6 

+ (m1 - n1) (k1 + 1) Rjq_6z 7. 

Also, the R.H.S. of (2.14) is re-written as 

—4i (coz + 12 (•_) - zç4'(z) - 0'2 (Z) 

2)) 
1T (R1 

/22, ( 

+(mi - ni) (i + k2 R1 + k2 Z (R1)  \ 
/22 ,, T2(z)+(m1+n1) /22 )RiZ 

I 

(A4.41) 



153 

+ (m + ni) (1— & (R1 (z) + 2 (z)) 
'\ 1L) 

= 

/ 
_csz9 - R7l - - C5Z -  jc4z5 

— c3 M°3 +  

+(2A+ Wf Rf di) +d2z'+ 

+ (-8c2Z-3 + d4z_3) +Rf ( 
+ (-24c4Z-5 + d6z_5) + ( 

clz2 - Bz2Rf  

(_3c1z_2 + d3z 2 

—15c3z 4 + d5z 
Rf 

—35c5z 6 + 7 d7z 
Rf 

+ (-48c6Z-7 + d5z7) - 63c7 z8 - 80c8z 9 

+(mj —m1) 

+ (m1 - ni) (i + LLk2) (AR1 + R1c1z 2 + R1c2z 3 + R1c3z 4 + Ric4z 5) 

/ (R1A - ClZ2 - 2 Z3 

+ 

_T CaZ4 _ --9 C4 Z 

) 
) 

/ 

+(mj +n1) 

( ER 3Z-2 + di* + d2 z 

+d3 z2 + d4WR 7, z3 + d5 --V  / 

(i +11k2 (AR, +c1z2+c2z3+cSZ4+C4z5 
/12 J. T 31 W17- R9 

1• 

+ (ml +n) (1— mi 
) 

AR, - R1c1z'2 - 2R1c2z 3 

—3R1c3z4 - 4R1c4z 5 

+ i B*z2+d - -1 i+d2z 

+d3 *z 2 + d4 -z + d Ri 5 -z 4 / 
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t4/21 c8z + 4[L1c7z8 + 4p1rc6z + 41Lic5z6 + 4[L1 yc4z 

+4[L1 c3z4 + 4t1 c2z3 + 4t1 (clz2 + Bz2') 
/ 

(2A + d1) — 41d2z1 — (_3ciZ_2+ d3z_2) 

-4i (-Cz- + d4z3) - 4 1L1 (-15 3z-4 + d5z_4) 

4ii (-_24c4z5 + d6z_5) — 4 (-35c5Z-6 + d7z_6) 

411i (_48c6z 7 + d8z_7) + 4 163c7z 8 + 418Oc8z9 j 

/ (mi - ni) (i — ) PI BRz 2 + (m1 - n1) (i — ) (RIA + d1 ) \ 
/12 /12 

+(mi + — ni) (i — ) d2 z + (mi - ni) (i — i) (d3 1 2 - 1 c 2) 

+ (m1 - n1) (i — ) (d4P2 R7z3 — c2z3) 

+ (m1 - n1) (i_ ) (d5 I Z4 — c3z4) — (m1 — m1) (i - I)4 C4Z5 / 
' •/ £ 

/ (m1 - mi) (1+ k2) AR, + (mi — n1) (i + k2) R1c1z 2 
P2 P2  

+ + (m1 - n1) (i + -'- (n-.. — - &J 2) R1c3z 4 /22J "' -r 

+ (m1 - n1) (i + J.k2) R1c4z 5 J 

(m1 +n1) (i+ 1k AR ( 12 
P2) - - ' V l2 ) Cl 

+ + (ml +ni) (i +'k2) c2z3 +(mi +nj) (1+1k2) c3z4LU) A2 R, 

+ 

+ (mi + ni) (1+ a k2)c4z5 / 

) (mi + ni) (1 (ARI + di * ) + (m1 + n1) (i — d2k z' 
\ /1 

\ 

+ (m1 + ni) (i — Li / (d3*z_2 - Riciz_2) 
\ /12 

+ (mi + ni) (i — Li (d4j-z_3 - 2Ric2z 3) 
\ /1) 

+ (mi + n1) (i — -JUL (dsz_4 - 3Ric3z_4) 
\ /1) 

- (m1 +n1) (i - Pill) 4Ric4z 5+(mi +ni) (i_ 

-4 4 5 
- 1ilj c4z -(mi-n1) i_L1 5 ( /12)R 

B--z2 I 



- T)  (Iu + 'vi) - 

( gj 
2_z' + (lu - 'zu) + + 9-zlb:vz—) l7y•— 

( fl-zgo Tyc - zi9p) ( - T)  (Iu + 'vi) + 

_zCT ( 71 + (Iu - 'ui)+ + 

" 

- T) - T)  (Tu + 'vi) + 

I gj 
17/ ) ( S- T, 
+ ('u - 'vi) + + 

ZTOT&T Z SP) (6?1 
- - (tu + 'vi) + z'' (1-77 +1) (tu - 'vi) + 

(i1 
- ('u - 'vi) + ZSPL& + 71J7— 

'f /r1 
,_zTp (J-7 -  1)  ('u+ 'vi) + 

( 71 \ (i1 
_1) tu_Ivi)+ 

('+') (Y-77 _I)('u+'vi ()+tv  gr/ +I)(tu+Ivi)+ 

z7y (' + v) ' - z6p ( - (zu - 'vi) + 

( - ('u + 'vi) + + ('u + 'vi) + 

zj f vo(Z4 
I 

T 

gI 

\ /rI 
• (zi 119 _ Z,,' I iM) 
•  

12  / 1J 
(gz& + 'ii + + (Iu + 'vi) + 

T ) 7,6n1 

ZZO 

( )  

r zi21) ( _ \ ('u - 'vi) + 
3 

/r/ \ 
('u + 'vi) + (ZC0 i - - (Iu - 'vi) + 

?I \ 
z'rIj + 9zi + (Tu + 'vi) + 
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Thus, (2.14) is solely expressed in terms of the coefficients in the following form 

(mi + n1) (k1 + 1) q_ 1 7 1 -z + (m1 + n1) (k1 +1) q_5-z6 (3.23) 
19 R11 
1 

+ (mi + m1) (k1 + 1) q4z 5 + (mi + n1) (k1 + 1) q_3 1 yz 4 

+(mi +n1) (k1 + 1) q_ z3 1 

+ ((mi - ') (k1 + 1) R1q3 + (m1+ n1) (k1 +1) 
RI) 

+ ((mi - m1) (k1 + 1) R1q2 + (m1 + n1) (k1 +1) o) z + 2m1 (k1 +1) R1q1 

+ ((mi - n1) (k1 +1) R1qo + (m1 + ni) (k1 +1) Rq2) z 1 

+ ((mi m1) (k1 +1) R1q_1 + (mi + ni) (k1 + 1) Rq3) z 2 

+ (mi - n1) (k1 + 1) R1q_2z 3 + (m1 - n1) (k1 + 1) R1q_3z 4 

+ (m1 - ni) (k1 + 1) R1q_4z 5 + (mi - n1) (k1 + 1) R1q_5z° 

+ (mi - n1) (k1 + 1) R1q_6z 7 

(i_i (1+.i k2 1\ = (4/ l 4 c4_(mR10 i_ni) \ ) 4 c4+(ml+nl) 2 

I 

+ ( 4/_ t1' (i 3 + (mi - ni) - ,, (d5 
/22 - RTI C3) ) 

+ (mi +ni)(1+&k2)c3 
P2  

+ ( 4/2lc2+(ml—nl) (i_) (d4_c2) ) 3 

+ (mi +ni)(1+i1k2)c2 

+ (4Ai (c + + (mi - ni) (i_ ) (d3  

+ (mi +ni) (1+&k2)ci +(mi+ni)(1_&BL 
/12 /-2) RI 

+(mi—ni) 2 (1_Li)d 1 z 
/-2  

—4 +(mi+ni) (1+ Ll k2 AR, 
1 ) 112 ) 
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+ (mi + ni) (i - L1) (ARI + di 
P2 Ri 

+(mi_ ni) (1_i) (AR, + d,L) +(m1_ ni) (1+ 1k2 AR, 
Y2 i 112 ) 

+ (-4itid2 + (m1 + ni) (i - /±1) d2 _) 

/ - (_3c1 + *d3) + (mi - n1) (i - -ml) .BR 
P2 1 

+ + (mi - m) (i + 1k2) Ric, 

+ (mi + ni) - Al (d 1 - Rici) j P21  Rl 

411i (_8c2 + d4) + (m1 - m1) (i + k2) R1c2 
+ A2 Z-3 

+ (m1 + n1)  (d 1 - 2Ric2) ) 
P2J  Rl 

-411i (_15c3 + d5) + (ml - m1) (i + k2) R1c3 

+ + (mi +ni) 
P2/ \(1_& (d 5-L _3Rac3) )z 

+ ( - (_24c4 + d6) + (rn1 - n1) (i + k2) R1c4 
A2 5 

- (m1 + n1) 11_ 4R1c4 
P2) 
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APPENDIX 5 

38 Algebraic Equations 

(3.3) - (3.21) and (3.24) - (3.42) can be re-written as follows: 

Traction continuation along the F0 

1) z5 

12 4 
24a6 + T 2 b4 + e4 - 24Po + p4 - P-4 = 

2) z4 

15a5 + T02-b3 + T2 e3 - l5p + - P-3 0, 

3) z3 

8a4+b2+e2_8p4+p2_...p 2 o 

4) z2 

3a3+bl+e1_3p3__1 0, 

5) z° 

—2a1 - + 2Pi +W 02 T 02- P1 = 0, 

6) z 1 

—2Ra2 - e2 + 2Rp2 + P-2 = 0, 
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7) z 2 

—3Ra3 - r -3 + 3Rp3 - 3p_ +W 02 p_3 = 0, 

8)z 3 

—4R 20 ga4 - e_4 + 4Rgp4 - ,8P-2 +W 02 p-4 = 0, 

9) z 4 

—5Ra5 + 5Rp5 - 15P_3 = 0, 

Displacement jump along the F0 

10) z5 

0 = (mo - no)(Ii 1 + 1)Rop6 + (mo + no)(tc 1 + 1)p 4 

+ (96A, - (ma - no)(1 + 01)R0 - 6(mo + no)(1 - Li)R a6 
Ao An  

1 16\ 
+ (—(ma + no) (1 - +) 

11)z4 
14 

1 0 = (mo - no)(/c1 + 1)Rop5 + (mo + no)(tc1 + 

+ (60it1 - (mo - no)(1 + t01)R0 - 5(mo +no)(1 - L1)R0 a5 
Po /2 j 

+(_(mo+ no) ('—L±i) 1 12) 
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12) z3 

1 0 = (mo - no)( 1 + 1)Rop4 + (mo + no)(i 1 + 

+ (32/-tl - (mo - no) (1  + ,coi)Ro - 4(mo + no)(1 - a4 
Ito /2 ) 

+ (_(mo +no)(1 -  Al + I't, 12 ) b2, 

13) z2 

2/21(mo + no) (62 - ie3) 

R0 

= (mo - no) (icj + l)Rop3 + (mo +no)(1c1 + 1 

+ (12/21 - (mo - no)(1 + Ico1)Ro - 3(mo + no)(1 - )R0 a3 
/20 /20 1 

+ (—(mo + no) (I T  + 

14) z 

0 = (mo - no)(/ci + 1)Rop2 + (mo + no)(ic1 + 

+ (_(mo - no)(1 + IcoLl)Ro - 2(mo + no)(1 - ?1)Ro) a2 
Po 1-to 

—(mo +no)(1+Icoi)a0 - (mo + no) (1-

15) z° 

4moR0/2161 

2mo(ici+1)Rop1 

+ (-8/21 - (mo - no) (I + Ico)Ro - (mo - no) (I - 

—(me + no) (1±/co1)R,UO o - (mo +no)(1— Ro 
a1, 
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16) z 1 

o - (mo + no)(K1 + 1)Rp2 + (ma - no) (it1 + 1)Ropo 

+ (_8 1R - 2(mo - no)(1 - i)Rg - (mo + no)(1 + itoL1)R) a2 
Yo 1-to 0 

—(ma - no)(1 + lcoL1)Roao - (ma - no)(1 - 

luo 1'o 

17) z 2 

2 1(mo - no) (E2 + i3)R 

= (mo +no) (it1 + 1)Rp3 + (mo - no)(c1 + 1)Rop_1 

+ (_12i iR - 3(mo - no)(1 - L)R - (ma + no)(1 + itoL')R) a3 

—(ma - no) (I - 
'U0 

18) z 3 

o = (ma +na) (itj + 1)Rp4 + (ma - no) (ic1 + 1)Rap_2 

+ (_16'U1R - 4(ma - no) (I - L1)R - (ma + na)(1 + it•1)R07) a4 
Pto Po 

—f \11 m0 - no) (I ).L1aU2, 
1-to 

19) z 4 

0 = (ma + no) (it1 + 1)Rp5 + (mo - no) (it1 + 1)Rop_3 

+ (_20 iR - 5(mo - no)(1 - 1)Rg - (ma + no)(1 + ito 1)R a5 
Ao Po I 

—(ma - no) (I - 

'U0 . 

Traction continuation along the F1 
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20) z5 

0 = + 4eW12- 4 - 4q_4, 

21) z4 

0= C3+3e3+67q3_3.q3, 

22) z3 

0= c2+2e2+2q2_2q_2, 

23) z2 

—B = R T 4 T2 2 cl + - 3q3 - 

24) z° 

2A = —d1 - e_1 + 2q + 2q_, 

25) z 1 

0 = —d2 - 2e 2 + 2Rq2 + 6q_2, 

26) z 2 

0 = 3c1 - - 3e.3 + 3R, q3 - 3q_1 + 12q_3, 
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27) z 3 

0 = 8c2 - d4 - 4e_4 - 8q_2 + 20q_4, 

28) z 4 

0 15c3 - d5 - 15q_3 + 30q_5, 

Displacement jump along the r1 
29) z5 

(16 )(i' (1+L!k2"\ 1 0 = R'O - (mi /22) + (m1 + n1) 122 ) ) C4 

- (mi + n1) (k1 +1) 

30) z4 

(12 
0 = - (m1 - ni) (i - + (m1 + n1) ( + 1k2 1 

/22) A2 Ri 

+ (m1 - n1) (i - i) d5 - (m1 + n1) (k1 +1) 
122 RI 

31) z3 

0 ($ 
=Pi - (m1 - n1) (i - + (mi + n1) (i + i k2 ' ) C2 

1 1221 

+(mi—ni) (i_i 
122) d4 - (m1 +n1) (k1 + 1) 

32) z2 
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= (ii_(mi_ni)(i_L±i) 1 (1•L 1k2)_.)c1 
122 +(mi+n1) 122 

Lii) d3 - (mi - n1) (k1 +1) R1q3 - (m1 + m1) (k1 +1) 
/12 

+(mi—ni) 

33) z 

o (mi-n1) (i - Li  ) d2—(mi —ni) (k1 + 1)R1q2_(mi+n1) (k1 + 1)qo, 
122 

34) z0 

- (_8/1lA + 2m1 (i + 1k2 AR1 + 2m1 - ART) 
122 1 '\ /22) 

(- 4 R 2 L-1) ' + (ml — ni) (I d, 

—2m1 (k. + 1) R1q1, 

35) z 1 

0 (_121+(mi+ni)(1_&\.d2 
112) Ri) 

- (ml + n1) (k, + 1) Rq2 - (m1 - n1) (k1 + 1) R1q0, 

36) z 2 

—(mi— ni) G_&BR 
\ U) 

= (12/1i(mi_ni) 
\ 12 I 122) ) 

cl 

12 
+ (_Pi+(mi+ni) (i_L )d3 

122) R1 

- (mi + ni) (k1 + 1) Rq3 - (ml - ni) (k1 + 1) R1q_1, 
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37) z 3 

o = (+32y, + (m, — ni) (1 + L -k2) Ri — 2R, (m, +n1)(l_Li))c2 

( 16 Y2 Y2 

+ 2i +(mi+ni) IL1) 1 d4 - (mi —n1) (k1+ 1)R1q_2, —  

38) z 4 

o (+6o +(mi —n1) i +k2) R1— 3R1 (mi +ni) (i_ )) c3 
+1i+((— 20 (1_d5_(m1_ni)(ki+1)Riq3 mi+ni) /-2J Ri) 

Now Pk and q, are substituted into the above equations. 

P-4..6 are: 

P6 = (97/—i + 96/0 + 9s1i + 94/2 + 93/s + 92f4), 

Pg = (971-2 + 96/-i + 9sfo + 9411 + 93/2 + 92f3 + 91/4), 

P4 = (97f-3 + 96f-2 + 95f-1 +94fO+ 9311 + 92/2 + 91/3 + g0f4 + le4) 

P3 = (96/_3 +951-2+94/_i +93f0 +9211+9112+g0f3 + 77e3) 

P2 = (g5/_3 + 94f-2 + 93f-1 + gfo + glfl + 90/2 + I e2) 

Pi = (94/_3 +93/_2 +92/_l+9110 +gofi 

Po = (93f-3 + 92f-2 + gif—I + gofo + 2 eo) , 

P-i = (92f_3 + 91/-2 + go/-i + 

P-2 = (91/_3 + go/2 + 

(90/_3 + 
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P_4 - (_4). 

q_6..3 are: 

q3 = (h- I f4 + -1e3), 

q2 = 

qi= 

qo= 

q3 = 

(h_214 + h_1f + I e2 

(h-3 f4 + h_2f3 + h 1f2 + I el 

(h-4f4+h-3f3+h-2f2+ h_1f1 + •eo) 

(h_5f4 + h_4f3 + h_3f2 + h_2f1 + h_1f0 + 

(h_614 + h_5f3 + h_4f2 + h_3f1 + h_2f0 + h_1f_1 + 

(h-7f4+ h_6f3 + h_5f2 + h_4f1 + h_3f0 + h_2f_1 + h_1f_2 + 

(h_8f4 + h_7f3 + h_6f2 + h 6 f1 + h_j0 + h q_4 = _3f_1 + h_2 f_2 
I, 

1'6 ui. —1J e 3 r 1 

(h_8f3 + h_7f2 + h_6f1 + h_5f0 + h_4f_1 + h_3f_2 + h_2f_3 

I  1" 1. —iJ .L'-4 1- ii 

(h-8f2 + h_7f1 + h_j0 + h_5f_1 + h_4f_2 + h_3f_3 + h_2f_4 + e_6) 

Consequently, the first 9 equations from the traction continuation condition along r0 
namely, (3.43) thru (3.51) are; 

1)z5 

q5 = 

q_6 

4 4 1 10 12 12 
0 = 24a6 + b4 - e_4 + + g7f_3 + 
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+(g(12 12(p93 
5 2497  i—i + - 2496) fo +  - 24g5 f, 

+ ( 12  12 
W02-92 - 244) f2 + - 2493) f + W02 90 - 2492 f4, 

2) z4 

3) z3 

4) z2 

5) z0 

0 = 15a5 + 3 31 6 (6 3 '\ 

'0 '0 \"0 W 08-90) 
0 / 

/6 (76 /6 +( 
95 - 1597) f-2 + 94 —1596) f—i. + (93 15 s) fo 

/ 

+ 6 6 
(R 2 - U4) i -r - 1093)12± 9o— 1592) f - 1591f4, - . (Ro - •_ (Ro 

0 T6 T 6 ql 
/ 0 = 8a4 + 2 b2 - 1 e.. 2 + 3 62 - 4e4 + 2 95 - 897 - 

897 - 2 f Ro  02 

( 2 , 
qo -+ (T2 - 896 - 90) f-2 + -93 - 895) f—i + (;2 - 894) bi 

+ ( 2 i. - 93) /i. + - 892) f2 - 891f3 - 
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+ (293 + gi) f-2 + (292 + 9o) f-i + 2gif0 + 

6) z 1 

o = —2Ra2 + e 2 + Re2 + (2Rg5 + f_ 
RO 

+ (2R94 + 9o) fxtb -2 + 2Rg3f_1 + 2Rg2f0 + 2Rg1f1 + 2Rgof2, 

7) z 2 

4 3 3 41 
0 —3R 0a3 + T02-6-3 - + 3R0 e3 

+ (3R 12 96 + 9O) f-a + (3Rg5 - 3gi) f-2 

+ (3Rg4 - 3g0) f-i + 3Rg3f0 + 3Rg2f1 + 3Rg1f2 + 3Rogof3, 

8)z 3 

o = —4Ra4 + - 4e_2 + 2Re4 

+ (4Rgg7 - 8g) f- + (4R 96 - 8go) f-2 + 4Rg5f_1 

+4Rg94f0 + 4Rg3f1 + 4Rg92f2 + 4Rgif3 + 4Rg0f4, 

9) z 4 

0 = —5Ra5 - 15e_3 - 1590f 3 + 5Rg7f 2 + 5Rg6f_1 

+5Rg5f0 + 5Rg4f1 + 5Rg3f2 + 5Rg2f3 + 5Rg1f4. 

In addition, non-dimentional parameter M0 = 
"'° R0 is deployed into displace-

ment jump equations along the Fo. Thus, another 10 equations, such as (3.52) thru 
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(3.61) are; 

10) 

0 =96y, - (mo - no)(l + 'cOL')R0 6(mo + no)(l - 
Mo i ) 

R 16'\ + (—(mo + no) (I 
- + b4 ,u0  

+(mo + no) (1c1 + 1)e_4 

+(mo - no)('c1 + 1)Rog7f_1 + (mo - no) (/c1 + 1)Rog6f0 

+(mo - no) (Ici + 1)Rog5f1 + (mo - no) (ici + 1)R0g4f2 

+(ino - no)(/ci + 1)Rogaf3 + (mo - no)(/c, + 1)Rog2f4, 

0 = (48._ (mo _no) (1+ ILl)(11i)' a6 
Mo (mo +no) 110 /1 ) 

+((1 /21 81 
- + ) N + (MI + 1) e-4 

+ (mo - no) + 1)g7f_1 +, (ma - no) 
 ('ci + l)g6fo (mo + no) m0 + no) 

(mo - no) 
+ 1)g5f1 + (mo - no) 

('ci + 1)g4f2 +() ('cl (mo +no) 

(mo - no) (ma - no) 
(mo + no) 'c' + 1)g3f3 + (ma + no) ('c'+ 1)g2f4, 

11) z4 

0 = (60/L, — (mo - no)(I+noLl )Ro -5(mo +no)(1 — L')Ro a5 

+ (— (mo + no) (1_ -) go 
+1L) b3 

+(mo + no)('c1 + 1) yg  e_3 + (ma + no) ('c1 + 1) 7j07-90f-3 

+(mo - no)(ic1 + 1)Rog7f_2 + (mo - no)(ic1 + 1)Rog6f_1 

a6 

It 
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+(mo - no)(oc1 + 1)R0g5f0 + (mo - no)(/c1 + 1)Rog4f1 

+(mo - no) (ici + 1)R0g3f2 + (mo - no)(ic1 + 1)Rog2f3 + (mo - no) (m, + 1)R0g1f4, 

 (1 0 (30 1 (mo - no) +tco - 5(1 - 

M0 (mo + no) Ito Ito 

+(- (1 1ti 1 16 
0 8 Yo 2RO 

+(ici+1) 8 gof_ + (mo — no) (mo — ('c+ 1)g7f_2 + — ii0) 
(mo + no) (mo 

(mo + no) (ic1 
+ (mo — no) + 1)95 10 + (mo - no) 

(mo + no) 

1 + (mo + no) (mo + no) 3 + 

 (ic1 + 1)94f1 + 

(mo - no) (mo - no) (r., + 1)9114, (ic1 + 1)92 

12) z3 

+no) ('ci + 1)961_i 

(mo -  no) 

(mo+no)'c' + 1)9312Yo Yo 

o = (32/-il—(mo - no)(I+ rvo!±l-)Ro-4(7no+no)(1 - L')Ro) a4 

+ (_(mo + no) (1_ —) +i) b2 

+(mo + no) (m, + 1) 11 e_2 + (mo - na)(c1 + 1)Ro 1 e4 

+ ((mo - no)('c1 + 1)R0g7f_3 + (mo + no) ('c1 + 1)91f_3) 

+ ((mo - no)('c1 + 1)R0g6f_2 +.(mo + no) ('c1 + 1)9of_2) 

+(mo - no) (ic1 + 1)R0g5f_1 + (mo - no) (r.1 + 1)R0g4f0 
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+((1 u1 — —)_ 1 + 1 b (  + + 
1-to W06 2 _)2(Kl1) e+ (mo + no) 1 1 mo - no) + 1) e4 (ic 

(mo — no) 
((mo+ o) 

+ (ici + 1)97 + ('c' + 1)gi) f_ 

(mo - no) 1 (mo - no) 

((mo + no) / (mo + no) 
+  ('ci +1)96+  (Xi + 1)—go j f-2 + (ici+ 1)g5f 

(mo — no) 
+ ( (r., + 1)94fo + (mo — no) + 1)93f 

m0 + no) (mo no) 

+(mo — no)  ( ( + 1)f + (mo - no) + ')1f3 + (mo — no) 
m0 + no) (mo + no) (mo + no) (ic1 + l)gof, 

13) z2 = o]Ro  

o = (12 — (mo — no)(1 + 'coLl)R0 - 3(mo + n0)(1 - 1)Ro) a3 
Po Yo 

+ (_(mo + no)(1 - 1) + b1 + (mo + no) ('c1 + 
1 0) 0 

+(mo — no) (ici + 1)Roe3 

+ ((mo - no)('c1 + 1)Rog6f_3 + (mo +flo)('ci + 1)92f_3) 

+ ((mo — no)('c1 + 1)Rog5f_2 + (mo + no) ('c1 + 1)91f_2) 

+ ((mo_ no)('c1 + 1)Rog4f 1 + (mo + no)('c1 + 1) Ro of_i) 

+(mo - no) (ici + 1)Rog3fo + (mo — no)('c1 + 1)R0g2f1 

+(mo - no) (xi + 1)R0g1f2 + (mo — no) (icj + 1)R0g0f3, 

o - (6' (mo_ no) (,+) . (l \ —)) a3 — M (mo +no) ,LL0 

+((1 i1 12'\ 11 
- 

Ao 042 

+ (mo _no) 1 ((mo_no) 
('ci+1)—e3+   

m0 +no) 2 (mo + no) + 1)96 + ('ci + ( R4 92 f-3 
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- no)(ma + no)+( (mo (ici + 1)95 + (ici + 1)) f-2 

(mo - no) 

+ no+ ((mo  (r., + 1)94 + ('ci + 1)go) fi 

+ (mo - no) (mo - no) 

3f0 + ('ci + 1)9m0 +no) (mo +no) (Ml + 1)92f, 

+ (mo - no) (mo - no) 
( + 1)g,f2 + (ici + 1)g013, 
icrm0 + no) (mo + no) 

14) z 

o = + (_(m - no)(1 + 'co1)Ro - 2(mo +no)(1— 1)Ro) a2 
/10 /10 

/L1 
—(mo +no)(1+'co—) 1 —ao - (mo +no)(1— 

Yo /to Ro 

+(mo + no)(ici + 1)_eo + (mo - no)('ci + 1)Roe2 

+ ((mo - no) ('c, + 1)flog5f_3 + (mo + n0) ('c, + 1)93f_3) 

+ ((mo - no) (m, + 1)R0g4f_2 + (mo + no)('c1 + 1)g2f_2 
R0 ) 

+ ((mo, - no)('c1 + 1)R0g3f, + (mo + no) (r,,, + 1) Ro g,f, 
) 

+ ((o' - no)('c, + 1)Rog2fo + (mo + no)('c1 + 1)k9ofo) 

+(mo - no)('ci + 1)Rog1f, + (mo - no) (ici + 1)Rogof2, 

o ( (mo _ no) (l+ 1t1)R(/11)Ro  1 
)—ao (mo +no) /10 /10 1 /10 R0 

(1 p, 1 1 1 (mo — no) - bo+('c1+1)--e0+  R0 2 (mo + no) 1)Roe2 ('c,+  

mo —  no) 
+ ('ci + 1)Rog5 + (m, + 1)_ 3) f_3 
0 mo+no). Ro 
((mo - no)  

(r-1 + 1)Rog4 + ('ci + 1)g2) f-2 
\(mo -+-no) Ro 
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(m +no)'1 ' _i_ Ro ) f—i 
(mo — no) (k. 

+ ((mo - no) (1 + 1)Rog2 + (ici + i)go) fo 
'\(nm + no) 

+(mo._ no) (ma -  no) 
(ic1 + 1)Rogof2, (mo m0 + no) (mo + no) 

15) z° (4moRrj1e1 = 0) Po 140 

(_8 - (ma - no) (I + o)Ro - (mo - no) (I,— )Ro 
0 = Iai 

—(mo+no)(1+o&)R_ (mo +no)(1_.1)J ) 
+2m0(ic1 + 1)Roe1+ 2m0(ici + 1)Rog4f_3 + 2m0(ici + 1)Rog3f_2 

+2m0(ic1 + 1)Rog2f_1 + 2m0(ic1 + 1)Rogifo + 2m0(ic1 + 1)Rogof1, MID 4—L 

 (m o_no)(l+) (mo—no),1L ' a1 
0 = I (mo+no) (mo+no) Io 1• 

—(1+ MOLL) —(i—) ) 
+ 1) 2m0(ici + l) g4f3 + 2m0(Ki + 1 g3f 2 

(mo+ no) e1 +  (mo + no) (mo + no) 

2rn0(ici + 1) 2m0(ici + 1) + (ma + no) 2mo(i i + 1)• 
+ (mo + no) g2f - 1 + (mo+ no) ifo gofi, 

16) z' 

—8/t1R - 2(mo - no)(1 - 

0 = —(ma - nb)(1+ 

OYo 2 

02 3 

)Roao +  /to —(md +o)(1+ ko)Ra 

—(ma - no)(1 - !±i)R0b0 + (ma - no)(i 1 + 1)Ro eo 

+(mo + no) (ic1 + 1)Re2 + ( (ma - no)( 1 + 1)Rog3f_3 

+(mo + no)(Ki + 1)Rg5f_3 ) 

+ ((ma - no)( 1 ± 1)Rog2f_2 + (ma + no)( i + 1)Rgg4f_2) 
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+ ((mo - no)('ci + 1)Rogif_i + (mo + no)('ci + 1)Rg3 f_,) 

+ ((mo - no)(Fci + 1)R0g0f0 + (mo + no)('c1 + 1)Rg92f0) 

+(mo + no)(1c1 + 1)Rgifi + (mo + no) ('c1 + 1)Rg0f2, 

0 (mo+no) 12o 
= - (m - no) - (mo-no)2( 1 - (1 + 'co)ao + L±1)R \ 

(mo + no) 120 : (1+ 'co ')RPO  ) 
-  (mo -  no) (1 - + (mo - no) 

 ('ci + 1) (mo + no) (mo + no) + ('ci + 1)Re2 

((mo - no)( +  ( 
(mo +no) 'ci + 1)93 + ('ci + 1)R95) f_ 

((mo -  

+ ('c'+ 1)92 + ('ci + 1)Rg4) f-2 (mo + no) 

((mo - flu) 
+ ( (mo + no) 'ci + i)gi + ('ci + 1)R93) f—i 

((mo - no) + ('ci + 1)go + ('ci + 1)R92) fo + (xi + 1)Rgifi + ('ci + 1)Rg0f2, 
(mo + no) 

17) z 2 (2p, (mo 
- no)(62 + ie3)R - 0) 

0 = (-1212iR - 3(mo - no)(1 - 1)R - (mo + no)(1 + 'co 1)Ro5) a3 
ito 1-to 

—(mo - no) (I - 1)Rb1 + (mo - fl)('ci + 1)Roe_1 
120 

It 

+(mo +no)('ci + 1)R02 e3 + 
( (mo — no) ('cj + 1)R0g2f_3 ) 
+(mo + no)('ci + 1)Rg6f_3 

± ((mo - no) ('c1 + 1)Rogif_2 + (mo + no) ('ci + 1)Rg5f_2) 

+ ((mo - no)('ci + 1)Rogof_i ± (mo + no)('ci + 1)Rg4 f_i) 

+(mo + no)(ic1 + 1)Rg3f0 + (mo + fl)('ci + 1)Rg2fi 

+(mo + no)(/c, + 1)Rg1f2 + (mo + no) + 1)Rg0f3, 

a2 
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o = (_R4 - (mo - no) 3(l - - (1+ a3 
M0. ° (mo + no) mo Po I 

- (mo -  no) (1 i)R2b1 + (mo -  no) + 
(mo + no) /1 (mo + no) 

+(ici + 1)R e3 + ((mo -  no) 
('ci + 1)g2 + ('ci + 1)R96) f 

\(mo +no) 
((mo—no)  

+ ('ci + 1)g + ('ci + 1)R95 (mo + no) ) 1-2 

((mo - no)  
(xi + 1)go + ('ci + 1)R 4) f + (xi + 1)Rg3fo 

\(nzo +no) 

+(ici + 1)Rg2f1 + (r.1 + 1)Rg1f2 + (,c + 1)Rg0f3, 

18) z3 

o = (_16/1lR - 4(mo - n )( o 1 - 1)R - (ma + no) (1 + no )R & 
/10 /10 I a4 

—(mo - no)(1 - !±1)Rb2 + (mo - no)('c1 + 1)Roe_2 
/1 

+(mo +no)('c1+ 1)R e4 + ( (mo + no) ('ci+ 1) R 097  

+(mo - flO)('ci + 1)Rogif_3) 

+ ((ma +no)('c1 + 1)Rg6f_2 + (mo - no)('ci + 1)Rogof2) 

+(mo + no) (ic1 + 1)Rg5f_1 

+(mo + no) (/ci + 1)Rg4fo + (mo + no) ('ci + 1)Rg3f1 

+(mo - no)('c1 + 1)Rg2f2 + (ma + no) (/c1 + 1)Rgif3 

+(mo + flo)(/ci + 1)Rgof4, 

o = (_8R6 - (mo - no) 4(1 - )Rg - (1+ 'c0 1)R) a4 
Yo ° (mo +no) /10 /10 I 

- (mo - no) (1 - !:_i)R04b2 + (ma - no) 
(mo + no) /10 (mo + no) ('c+ 
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+(ici + 1)Re4 + + 1)Rg7 + (mo + no) (mo _no)( 1)) f 

+ ((Kl + 1)Rg6 + (mo -  no) ) f + (r-1 + 1)R95f_ (MI + 1)go 
(mo+no) 

+('c + 1)Rgg4f0 + ('ci + 1)Rg3f + ('c' + 1)Rg2f2 

+(x, + 1)Rgif3 + (ici + 1)Rggof4, 

19) z4 

o = (_2o/2lR - 5(mo - no)(1 - &)Rg - (mo + no)(1 + 'co1)Ro9) a5 

Yo to —(mo - no) (I - !1)Rb3 + (mo - no) + 1)Roe 3 
Yo 2 

+(mo - no) (ici + 1)R0g0f_5 + (mo + no)(/c1 + 1)Rgg7f_2 

+(mo + no)('ci + 1)Rg6f_1 + (mo + no)('c1 + 1)Rgg5f0 

+(mo + no)(/c1 + 1)Rg4f1 + (mo + no)('c1 + 1)Rg3f2 

+(mo + no)(ici + 1)Rg2f3 + (mo + no)( 'c1 + 1)Rgif4, 

o = (_10R8 - (mo -  no) 
5(1 - !±i)R8 —(1+ Ko!-1)R) (15 

jTo 0 (mo +no) /to /20 

- (mo - no) (1 - !.i)Rob3 (mo - no) 1 
(mo + no) /2o + ( mo+no) ('ci + 

(mo - no)  
1 + l)of_ + (Xi + 1)Rg7f_2,+ ('ci + 1)Rg6 fi 

(mo + 0)'c 

+(ici + 1)Rg5fo + ('ci + 1)Rg4f1 + (ic1 + 1)Rg3f2 

+(r.1 + 1)Rg2f3 + (,c + 1)Rg1f4. 

Other 9 equations, (3.62) thru (3.70) from the traction continuation condition 

along r, are; 



177 

20) z5 

4 1 
0 = +-c4+4e4 

10 1 

1 (h_8f4. + h 7f3 + h 6f2 + h_5f1 + h_4f0 
o.I I, 
1 k\ +h-3f—l+ h_2f_2 + h_1f.3 + C_4 J 

0 = +c4 + 4e4 - j Flo  - - 

RIO 

- h_4f0 - h_5f1 - h_6f2 

- 

21) z4 

3 1  1 
0 = +3 e3 + 6 (h-1f4 + 

11 T2 

+ h_6f3 + h 5f2 + h_4f1 + h_3f0 
I, 

1 +h_2f_i+h_if_2-i-e_3 / 

0 +c3 + T 12 + (h_1 - T 8 h-7 f4 

-6f3 -  h5f2 - h. 4f1 h_3f0 R 8  18 I 

h2f1 - h 1f2 - 
13 

R8 

22) z3 

0 = +c2 + 2e2 + 2 (h-2f4 + h_1f3 + e2) 
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1 ( h_6f4 + h. 5f3 + h_4f2 + h 3f1 

—2 +h_2fo+h_if_i+e_2 ), 
2 3 1 2 

0 = + :e2 - + (-h_2 - h_6) f 

+(h 1_ h 5) f - h4f2 —hW16- 3f1 - h2f0 - h 1f 1, 

23) z2 

—B = + 1 T4 
1 7F2 —3 (h_if4 + .e3) 

_ (h-5f4 + h_4f3 + h_3f2 + h_2f1 + h 1f0 + le-1) 

3 1 11 
—B = +c1 - + el - - e_i + (_3h_1 - h_5) fi 

1 
— 4f3 - h_3f2 - h_2f1 - 

1 

24) z0 

2A = _c1i —e 1 +2 (h_3f4 + h_2f3 + h_1f2 + ei) 

+2 (h-5f4+ h_4f3 + h_3f2 + h 2f1 + h_1f0 + le-1) 

2A = —d1 + e1 + (2h_3 + h_5) f + (2h_2 + h_4) f 

+ (2h 1 + 1i_3) f2 + h_2f1 + 
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25) z 1 

o = —d2 - 2e 2 + 2R (h-2h + h_1f3 + e2) 

+6 (h-6f4 + h 5f3 + h_4f2 + h_3f1 • h_2f0 + h 1f_1 + 

o —d2 + Re2 + + (2Rh_2 + 14 
Ri 

+ (2Rh_1 + 13+ h_4f2 + h_3f + h_2f0 + 

26) z 2 

o = +3c1 - d3 - 3_3 + 3R (h_114 + I T2 

-3 (h_514 + h_4f3 + h_3f2 + h_2f1 + h_1f0 + 

+12k (h_714 + h_6f3 + h_5f2 + h_4f1 + h_3f0 + h_2f_1 + h1f_2 + 3) 

o = +3c - d3 + Re3 - + T12 e_3 
Ri 12 

+ (12 4 12 12 h_7 + 3Rh_1 3h_5) 14+ (-h_6 - 3h_4) 13+ (h5 - 3h 3) 

+ (12 h_4 - 3h 2) fi + (h_3 - 3/i_i) fo + 12  + 12 

27) z 3 

0 = +8c2 - 4 d4 - 

—8 (h-6f4 + h_5f3 + h_4f2 + h_3f + h_2f0 + h_1f_1 + 

12 
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+20-! ( h_8f4 + h_7f3 + h 6f2 + h. 5f1 + h_4f0 + h_3f_1 ' 

R +h-2f-2 + h_1f_3 + e_4 

0 = +8c2 - d4 - 4e_2 + e_4 + 20 (h_8 - 

720 
+ (h_7 - 8h 5) f + (h_6 - 8h_4) 

(20 
+ - 8h...2) fo + RI (h_3 - 8h_1) 

28) z 4 

8h_6) f4 

f2+ (20 h_5_8h)fi 
20 On 

f-i + -5h_2f_2 + -h_1f_3, 
ILi 

h_7f4 + h 6f3 + h_5f2 + h_4f1 

0 = +15c3 - d5 - 15 ( +h-3f0 + h_2f_1 + h 1f_2 + e_ 

+30k (h_8f3 + h_7f2 + h_6f1 + h_5f0 + h_4f_1 
+h-3f-2 + h_2f_3 + h_1f_4 + 

0 = 15c3 - 15 d5 - 15 + - 15h-7h 

+ (3 0 30 
h_8 - 15h 6) + (h 7 - 15h_5) f2 

+ (3 0 30 
h_ - 15h_4) fi + (T2 h-5 - 15h_3) fo 

+ (30 30 h_4 15h_2) fi + (h_3 - 15h-l) f-2 

) 

+ RI 
h_2f_3 + 30 

Again, non-dimentional parameter M1 = R1 is deployed into displacement 

jump equations along the I'. Finally, the other 10 equations, (3.71) thru (3.80) are; 
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29) z5 

( 16 1 ' (1+.Lik2 0 - (mi ( 
ni) /22) + (mi + n1) /22 ) 1 ) c4 

h.8f4 + h_7f3 + h_6f2 + h.. 5f1 

- (m1 + n1) (k1 +1) ( +h 4f0 + h 3f 1 + h_2f_2 + h_1f3 + e_4 

o - ( 1 8 (ml -  ni) (1 - + (.+ L±1k2) I) C4 - MlR  (mi + ni) \ /22 
/22 

- (k1 +1) h_8f4 - (k1 +1) - (k1 +1) h_6f2 

- ( W 19 T19 

k1 +1) h_5f1 - (Ic1 +1) h_4f0 - (Ic1 +1) 

- (k1 +1)-h-2f-2 - (k1 +1) - (k1 +1) 11 
T 19 T19 R91 -2 

30) z4 

0 = (+1_ (mi _ni) (1_i)4Ty +(ml+ ni) (1+&k)i)c 
3 P2 I 

I A2 T17 

+ (mi — ni) (i_L) 45 
\. /-/ 

(m1 + ni) (Ic1 +1) ( h_7f4 + h_6f3 + h_5f2 + h_4f1 + h_3f0 

+h-2f_1 + h_1f_2 + 6_3 ) 
- ( 1 6 (m -  n) ( -+ (i + Lik2) k ) C3 

mi T17- - (m1 +ni) . /22 7 A2 
T I 

(k1-t-1)i (k1-j-1) +  (mi _ni) (i 1 d5 - 
(mi +n 1) -  RI e_3  RI h_il4 

- h_6f3 - (k1 + 1) (k1 + 'hf - (Ic1 + 1) (k1+ 'h_4f1  R h.3f0 
R RI 

- (k1-i-i) (k1 1) 
RI h_il_1 RI --  

) 
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31) z3 

o = (+1  8 n1) 2 Li" J 2 + (mj + n1) (i_ (1+k2)_j)c2 

+ (ml -n1) (i - Li) d4 
12 

1. (h_6f4 + h_5f3 + h_4f2 + h_3f1 - (ml -f- ni) (ki+1)_±. I 

+h-2f0 + h_1f 1 +e_2 )l 

 ( 1 4 (ml - fli) (- + (i + k2) ) C - Mj Ti, (mi+ni) /22/ 

+(mlni) ( /L1" 1 (k1 + 1)1 (k1 + ' h_6f4 (k1 +  
(m  ;;;j d4 - R - R5 R5 

+1)h i (Jci + 1) (k1 + 'hf - (k1-i- 'h..2f0 (kl R -f-- R h.4f2 - 

32) z2  Ll 
(-(mi+ni) (1_ j 1 _44)B 

(  +4/11 (m1 - ni)  + mi + ni) (1+ k2) ) Ci 
/22 

+(mi-ni) d3 -  (m1 -ni)(ki+1)R1 (h if4+e3) 

- (m1 + ni) (k1 +1) (h-5f4 + h_4f3 + h_3f2 + h 2f1 + h_1f0 + ) B 

(( i1 1 12 
- 

\ W C,1 2 - (mi -fli) (1- &) +i+ /21 k2)  

M1R (ml+ni) '\ /22/ 

(mi-ni) ( - 12i\ 1 (ml -n1) (k +1)Rie3 
(Mi  \ 
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(k1 + 1)1 / (m1 - n1) (k + 1)R1h_1 (k1 + 
R 2&4+( ) R h-5 f4 

(k1 +1) (k1 + 'h_3f2 (k1 + ' h_2f1 (k1 +  
R h_4f3-  R R 

33) z1 

o = +(mi_ ni) (1___ d92 T3 2-
[Li) 1 

(mi - n1) (k1 +1) (h-2f4 + h_1f3 + r2) 

(mi + ni) (k1 +1) _ (h-4f4 +h-3fl+h-2f2+h-,f,+ -'e,,),  

o = (m1 - n1) (i /2i) d2 (m1 - n1) (k1 +1) R1e2 
(mi+n1) 2(mi+ni) 

11 ( (mi-ni) -(ki+1)-1-2 eo+ - (mi-i-n1) (k1+1)Rih_2_(ki+1)_h_4)f4 R  

+ L  (m1 - ni) +1) R1h_1 - (k1 +1) h_3) f 
(m1 +ni) 

- (k1 +1) ---h_2f2 - (k1 +1) 
R1 

34) z0 

- (_8itiA + 2mi (i + 1k2) AR1 + 2m1 (i - ) AR1) 
/22 \ /22 

(4 

/22 R1 /22) Ri) 

-2m1 (k1 +1) R1 (h-3f4 + h_2f3 + h_1f2 + I el 

4A 2m1A  (I + -  2m1A  ( - /11 g - (m1 + n1) /22 ) (m1 + ni) /22) 

( 2 1 (i /2 \ 1 (m1 - n1)  /21 P2 '\ 1 
1) di = -+ R(mi+ni) 



184 

m1 (k1 +1) 2m1 (k1 +1) 2m1 (k1 + 'hf 2m1 (k1 +1) 
Cl - h 3 h_1f2, (mi+n1) (mi +ni) (m1  +n1)f4 - (m1 +ni) 

35) z 1 

) I ) d2 o (— i+ (mi + ni) (1_ A2 wi-±i 

- (m1 + ni) (k1 +1) R (h-2f4 + h_1f3 + 2) 

- (ml - n1) (k1 +1) R1 (h-4f4 + h_3f3 + h_2f2 + h_1f1 + 

o = (_ g + 2 R1 31 4 1 ( - Li) i) d2 - (k1 +1) Re2 

- (m1 -  n1) 1 ( (m1 - n1)  
(m1-- n1) (k1 +1) R1 e0 + - (k1 ±1) Rh_2 (m1 + n1) (k1 +1) Rlh4) f 

+ (_ (k +1) Rh_1 (m1 n1) (k1 +1) R1h_3) f 
-  (ni1 - ni) (m1 +n1) 

(k1 + 1) R1h_2f2 (mi - n1) (k1 + 1)R1h_1f1, (mi +n1) (m1 +n1) 

36) z 

- (m - i) (i - BR 

= +{12 l+(mi _ ni) (1+ik2)Rl_(mi+nl)(1_L)R]c1 

f 12 A2 J12 (i - d3 - (m1 + ni) (k1+1)R (h_if4 +e3) + LR' + (m1 +ni) ,a21 R1 

- (m1 - n1) (k1 + 1) R1 (h-5f4 + h_4f3 + h_3f2 + h_2f1 + h_1f0 + 
2 )' 

(mi — ni) (1—'±BR 
(mi+ni) \ ,u2) 
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( 6 + (mi — ni) (i) (i_ 
— 

= (mi+n1) /22)) H  c 

+( 6 1( [L1) 1) 

+ ( (k1 +1) Rh_1 - (m1 -  n1) (k1 +1) h 5) f 
(m1 -Fmi) 

- (m1 - ni) 
(m1 +n1) (k1 + 1) h. 3f2 - (m1 + (nz.i - ni) (k1 + 1) h_ 

37) z3 

(m1 - n1)  
(m1 + ni) (k1 +1) 

(m1 -  ni) 
(m1 + (k1 + 1) h 4f3 

(m1 - n 
2f1  1) (k1 -l-1)h_1f0, 

(m1 +n1) 

o = [+32 + (m1 - n1) (i + ?1k2i R1 - 2R1 (m1 + nj) (i - 
/12 1 

1 (1___l +{- 16 /1i+(mi+ni) \ /12 i1 d4 
R1j 

- (m - ni) (k1 +1) R1 ( h_6f4 + h_5f3 + h_4f2 + h_3f1 

+h....2f0 + h_1f_1 + -2 

0 (16 (mi_n1)(1+••lk2)- 2 
= i +() /22 (1_&)c2 

/12/ 

Al') 1 ) d4 (ml —ni)(/c1+1) 1-2(m1 - n1) (m1 - n1) 

 (k1 + 1) h_6f4   (k1 + 1) h_5f3 (m1 + n1) (m1 + n1) 

(m1 - ni) (mi - ni) 
(Ici + 1) h_4f2 (k1 + 1) h_3f1 (m1 +n1) (ni1 +ni) 

(m1 - ni) (m1 - n1) 
(k1 + 1) h 1f_1 (m1 + ni) (k1 +1) h 2f0 

(m1 +ni) 

38) z 4 

It 

o = (+60/1I+(m1_n1)(1+ik2)Rl_3Rl(mi+ni)(1/z1)) c 

+-pi+( 20 (_ /2i 1 d5— (mj — ni) (ki+1)Riq_3, (mi+ni) 
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0 (1+/ 1k2)3(1_!±i)) 3 
'\ /2 /22 

1 )d (mi — ni)(k1172- +1)  
_;J (ml -f-n1) 

 h_6f3 (m1 - ni) (Ic1 + 'h5f2. 
(m1 +ni) 

h- 3f0 (m1 - ni) (k1 + 'hf 
(mi--n1) 

h- f-  (ml—nl)(kl+1)  
2(mi+n1) C_3. 

4 

(m1 -  n1) (Ic1 + 'h_4f1 
(m1 +ni) 



187 

APPENDIX 6 

Stress Fields Around Crack Tips 

A6.1 Stress Field 

Stress fields are expressed in terms of stress potentials as follows 

Re {(z) - ) + 2wc(z) + ( - z) (z) + (4.7) 

= Re  

= 

Let's derive çoz) first. From (2.32) 

dfl 
- a)-12(z - b) -12 Y(z) + X(Z)] 

1 1 

:1. 
+(z - a) -121 (z - b)Y'(z) + X/(z) 

1(z—b)+(z—a) 1 2 24 (z - a)(z - b) Y(z) + (z - a)  (z - b)Y'(z) + X'(z) 

1  a+b-2z 1  

4 (z - a) (z - b) 2(z - a) (z - b)'21Y'(z) + X'(z). 

(A6.1) 

4 

Thus, 

(z) 

- d f+b_2z)(z_a)z_b)Y(z) 

dz [ +(z - a) —,21(z - b)Y'(z) + X'(z). 

= 

- (a + b - 2z) (z - a)-22(z - b)Y(z) + (a + b - 2z) (z - a) -22 (z - b)Y'(z) 

(A6.2) 
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a 2 2)-2 (z  - b)Y'(z) - - a)-' (z  - b)Y'(z) 

+(z - a)(z - b)Y"(z) + 

The 2nd and 3rd terms in (A6.2) turn out 

- (a + b - 2z) {(z - a)  (z - 2 2 + (z - a)  (z - b)J Y(z) (A6.3) 

= _(a+b_2z)_(z y(z) 
8 (z—a)2(z_b)2 

3 (a+b-2z)2 

The 4th, 5th and 6th terms are also re-written as 

Thus, 

(a + b -  2z) - (z - b) - (z - a) y1 (a + b - 2z) 3Y' 
(z). 

4(z—a)(z—b) 2(z—a)(z—b) (A6.4) 

b)22 8(z 
3(a+b-2z)2 () (A6.5) 

2(z—a)2(z—b)2 8(z—a)2(z—b)2 

(a + 
+ b— 2z) Y'(z) + 1Y"(z) + 
2(z—a)2(z-_b)2 2(z—a)2(z_b)2 2 

Since our aim is to determine the values of stress, potentials near crack tips, Y(z), 

Y'(z) and Y"(z) need to be determined near crack tip a and b. First let's determine 

the stress potential Y(z) in the neighbourhood of crack tip a as follows 

Y(z) = Y(a)+Y1(a)(z_a)+y11(a)(z_a)2+ 

+Y(a) (z - a) tm + 

(A6.6) 

Y(a) + Y/(a)rie°1 + Y1'(a)rei201 + + Y(a)remtm01 +..., 
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where (z - a) = r1e0' (0 ≤ O ≤ 2ir). Thus, 

Y(z) = Y(a) + Y '(a)rie °1 +..., (A6.7) 

Y'(z) = Y'(a) + Y"(a)rie°1... , (A6.8) 

Y/1 (z) = Y" (a) + Y"(a)rie°'... (A6.9) 

Substituting (A6.7) and (A6.8) into (A6.I) yields 

cc4(z) 11  (a+b-2z) 1  

L4 (z - a) (z - b) 2(z - a) (z - b) Y'(z) + X'(z)I (A6.1O) 
around z—a 

1 - (a - b) [Y(a) + Y'(a)re°'] + 1 {Y'(a) + Y"(a)rie°'J + X'(a) 

4 (riei01)(a - b) u'  (rieiO1 + )(a - 
1  —Y(a) 1 —Y'(a) 1  Y'(a) 

4(riei0i)(a_ b) + 4(riei01)(a_b) 2 (rie °i)(a—b) 

1 Y'(a)(riei01) .21 
2 (a — b) X / (a). 

Taking only leading-order items yields 

(z)  1 + Y'(a) 
= 4(riei0i)(a - b) 2(rieiO1)(a - 

1 Y'(a) 
= 4i • 

4 

(AG.11) 

Note that b> a so that 1/i and i = cos +isin Z = e. Therefore, 

4(z) = Y'(a) Y'(a) e(). (A6.12) 
- a = 

In addition, 

=  Y'(a) Y'(a) e(f). 

- 

(A6.13) 
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The exponential terms can be expressed with trigonometric functions in the following 

form 

- 01 
- 2 2 

cos I   j sin I   - - i cos 
) ) 

= cos 
2 ) + i sin ( 2 ) =sin 91 -- - i cos 01 

Substituting the above equation into (A6.12) and (A6.13) leads to 

cp'1(z) -  Y'(a) 7 
- 

—  Y'(a) 
- (sin Ll — i Cos 01 ). 

(A6.14) 

Note that Re (çoç (z)) = - Re (c (i)), which means gc (z) has multi-values at the crack 

face. Therefore, we need to define a new WI(5 ) value leading single valueness at the 

crack face. Now, let's consider a branch cut which gives us single valueness and makes 

1192 c0'1(z) single-valued function at the crack face. The branches of e 2 are e' 

and —i(O1_2n1r) Let's take c(92) for çoç(.) . From (6.13), coç() can be expressed 
as follows 

ço) = Y'(a) -  Y'(a)   1(21_ ' 
2 2 / (A6.15) 

- 4,/Fl \/b - a 

Y'(a) [Cos (2 3ir . oi 3ir'\4  /  ---- +z sin -- 
- 2 2 

Y'(a) 4/—  1 01 01 
= / sin + i cos 

Thus, at the branch, W (z) has a single value at the upper/lower (+/—) crack face 
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such as 

cp(z) =  Y'(a)  / 01 
sin--_ico4), 

co2) Y'(a) 1 
4/Nv'[ sin —_+i Cos i1. 

Next, '(z) is derived. In view of (4.7), (A6.5) is rewritten as 

(z - .) co(z) = (z 

(A6.16) 

(a+b-2z)  Y'(z ) 1 Y(z) 1 
2z—a)z—b) 2(z—a)z—b) I I + 5Y(z) + 1  

2(z—a)—b) Y"(z) + 
around z=a 

At z a, from (A6.7), (AG.8) and (A6.9) are 

(z — a) = rie O1 , 

Y(z) = Y(a)+Y'(a)riei° l, 

Y'(z) = Y'(a) and Y"(z) = Y"(a). 

In addition, 

r1 (co01 +i sin 01) - ri (cos 01 - i sin 0j) = 2r1i sin 01. 

Substituting above equations into (A6.17) yields 

= 2r1i sin 01 

(—a+b)Y'(a) Y(a)+Y'(a)rie°i  

2(riet01) (a—b) 2 2(rie201 ) (a—b) 
+ 3(_a+b)2{Y(a)+Y'(a)riciOl] 

8(rie°1)2 (a—b)'2 

+2r1i sin 01  Y"(a)1 1 +2r1i sin 01 
2(rie°')(a - b) 

(A6.17) 

(A6.18) 
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Note that Y(a) = 0 by definition. By taking leading order singularity only, we get 

—z)ço' - 
Y'(a) sin 01 Y'(a) sin 01 (A6.19) (z (z)  

4//b - aei 01 - 4..fti/b - a 

Now, let's check single valueness of (z - ') ç(z) at a branch cut. We choose 01 + 2ir 

first. 

= cos (3ir + - i sin (37+ = - cos 30 + i sin 30 = cos (37r+ 30' 

+ i sin (37r+ = -2 2  cos - i sin --. 

Note that Re (ço'(z)) = Re (()) and Tm (ç(z)) - Tm (ço(.)) and it has single 

value at the crack face. Thus, 

.)c(z) Y'(a) sin 01 / 30 (z— cos T+i sin T). 

Let's substitute (A6.16) and (A6.20) into (4.7)2 to define stress fields. 

(A6.20) 

ayy = Re {co(z) + ço) + (z - ) cq(z) - x'()] (A6.21) 

Y'(a)  01 Y'(a) 30 
sin + 4j/ sin01cos— - Re [X'(5)] 

a 

.Y'(a) 1 1 0 + sine 30l [ 2 sin -- - 1 cos --] + 0 
Note that 

1 01 1 30 
—sin --+ cos -- sin 01 

1 . sin + 01 IS .n -- /30k \ . 30k — i+01) 

1. 0 i 1(Sn 50 01 
= - sin2 2 -- +  T - sin 2) 
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1 S1 • fl - 5I 501 5 sin Oi 
----— 

Thus, 

Y'(a)  / 5 0 1 50k" 
o.1Jy sin--+_sin_8 2 ) +0(n). 

In view of (4.7), adding o, to o- leads to the expression 

Thus, 

(A6.22) 

+ c =2 Re [cOi (,z) + ço (z)]. (A6.23) 

Y'(a) 0 Y'(a)  / 5 0 1 501\ 

- V/ r -:- \/: - Sfl - + SIfl T) +0 (nj) 
Y'(a) 3 Ui 1 5011 

L Sifl__SiflTJ +0(n). (A6.24) 

Also, o, is given by 

cry IM ko'i (z) - () + 2 (z) + ( - z) c0'1' (Z) + X'()] (AG.25) 

Y'(a)  f 01 — 01 3011 
V' L coscos+2co4_sinoisin_j +0(n) 

4\/ It 

Y'(a)   f 1 01 1 50i1 
= ./F./b—a L Cos --+cos__j +0(n1). 

Consequently, the stress fields o,, axx and o-, near crack tip a have been deter-
mined as follows 

a.yy 

°•X33 

=  Y'(a)  ( 5 !1- 1 501 
- sin - + sin b — a 8 2 8 , ) + 0 ori), 

Y'(a)  ( 3 01 - 1 
b — a 8 2 sm T)+o(nl), 

sill 01 
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Y'(a) ( 1 O 1 5O 
cT = , cos_+cos__)+O(ri) 

In the similar way of (A6.6), the stress potential Y(z) near crack tip b can also be 

determined in the following form 

Y(z) = Y(b) +Y1(b)(z_b)+yh1(b)(z_b)2+... 

+-Y(b) (z - b) + 

(A6.27) 

Y(b) + Y'(b)r2ei°2 + Y1(b)rei202 + + !y(n)(b)rmein02 +..., 
n! 

where (z - b) = r2e92 (ir < 02 ≤ ir). And 

Y(z) = Y(b) + Y'(b)r2ei°2, (A6.28) 

Y'(z) = Y'(b) + Y"(b)r2e °2, (AG.29) 

Y"(z) = Y"(b) + Y"(b)r2 O2. (A6.30) 

Thus, 

r  (a+b-2z) 
(z) (z - a) (z - b)'21Y(z) + 2(z - a)-21(z -     b) Y'(z) + X1(Z) (A6.31) 

around z=b 
- 1 (b a) 

- 4 (b - a)(r2ei92)  {Y(b) + Y'(b) r2ei02J 

1  
+ 2(b - a)(r2ei02)4 {Y'(b) + Y"(b)r2ei°2J + 

Taking only leading-order items yields 

1  Y'(b)  1  Y'(b)  / 02 
(z) = = r çcos -- - i sin (A6.32) 
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In addition, 

/ 1.  Y'(b) 1  Y'(b)  7 0 02 
4 eb-a çCos +isin). (A6.33) 

Thus, the co'1(z) has single value at the crack face since Re [(z)] = Re [so)J and 
Im [ (z)J - Im Mi  

Similar to (A6.17) and (A6.18), 

(a+1.-2z)  
2(z-a) (z-b) {Y'(b) +Yh'(b)r2ei°2] 

2r2isin02 
2(z—a)(z—b)  [Y(b) + Y'(b)r2ei02J 

+ 3(a_2z)2  [Y(b) + Y'(b)r2ei°2J 
8(z—a) (z—b) 

+ 1  
2(z—a)(z—b) [Y"(b)] + X"(z) 

- -2isin92 
- 2(b - a) 21  Y'(b) +  2 (r2) isin02 Y11(b) 

-21 2(b_a)(ei02) 

2(r2)i sin 92  Y'(b) + 3 * 2i sin 02  

2(b - a) (&92) 8(b - a) (r2) (ei02) 

2(r2)i sin 02  Y"(b) + X"(z)2r2i sin 02. 
+2(b - a)'21W 02) 

Note that Y(b) = 0 by definition. By taking leading order singularity only, we get 

(z—.)ço'(z) = 
Y'(b)e  sin 02 - Y'(b)sin02 i(_92) 

- 4//b - a e 

Y'(b) 

(A6.34) 

around z=b 

(A6.35) 

By taking 02 + 2r, the single valueness of (z - ) ço(z) at a branch cut is obtained in 
the following expression 

ir 3 ir3 
- (02 + 2ir) = -. - 

( ir 3 •\ / ir 3 '\ 302 302 
2 2cos-..-02) _zsln (\-- _ 02) —S1fl—--+zcos_—, 
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cos 

Thus, 

(- 2 _o2) +i sin (_::_.022 2 ) = 
302 • 302 

- sin - j cos 

Y'(b) sin 02 ( sin 302 302 (z ) ço'1'(z) = - i cos --). (A6.36) 

By substituting (A6.32), (A6.33) and (A6.36) into (4.7), we get stress fields around 

crack tip b as follows 

Y'(b) /5 02 1 502\ 
COS - a cos --) +0 (ru), 

Y'(b) (3 02 1 502 
cos - + COS T ) +0 (r), 

Y'(b)  
1  ( a + Srn T502 ) +0 (r). 

The Y(z), (2.31) determined in Chapter 2 yields 

00 

(A6.37) 

Y(z) = fkz'' ...f_2z 2 + f_1z' + fo + f1z' + f2z2... , (A6.38) 
k=—oo00  

Y'(z) = :: kfkzk 1 = •• - 2f— 
k=-00 

Near the crack tip a and b, 

00 

Y'(a) = :i: kfkak_l, Y'(b) 
k=—oo 

00 

—00 

3 f_1z 2+O+fi+2f2z.... 

kfkbk_l. (AG.39) 

Finally, with (A6.39) and b - a = 21 substituted into (6.26), we have stress fields at 
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crack tips a in the following forms 

1 7 5 sin  01 1 sin  501 
-•/rj  

1  73 01 15o\ 
I--sin-- sin 

fl/Z\8 2 8 

1  / 1 01 1 50 
Cos + Cos 

00 
kfkak_1] +0(n), 

L000 0 kfkak_1] +0(n), 
[00 k=—oo kfka 4J +0(n), 

where (z - a) = r1e°1 (0 ≤ 01 ≤ 2ir). 

Also, the stresses, (A6.37) near crack tip b are determined as 

where (z - b) 

(4.8) 

1  /5 02 1 502 \r°° 
cos - cos ) Lk kfkb 1] +0 (r2), (4.9) I/r2 V2 

1  (3 02 1 502 [ 00 
cos + COS T) Lk kfkbk1J +0 (?2), 

1 (1 2 1 592[°° 
Sifl+SiflT) LkJ +0(r2), 

= r2&°2 (n- ≤ 02 ≤ ir). 


