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ABSTRACT

The use of computers for the recognition 6f handwritten characters is one of the main
trends in office automation. The most troublesome problem is the great variation
among characters. Most of the published structural character recognition algorithms
depend on qualitative curve feature extraction and a predescribed model. Failures
may occur when they are applied for the recognition of unconstrained handwritten
characters. This thesis presents a new approach for handwritten numeral recognition.
A both qualitative and quantitative feature extraction technique, an adaptive struc-
tural classification algorithm and an iterative spur removal strategy are proposed. A
prototype recognition system has been implemented. For the isolated handwritten
numerals in the Standard Handwritten Character Database, a recognition rate of 98%

with 0% rejection rate has been achieved.
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CHAPTER 1
INTRODUCTION

1.1 MOTIVATION

Computer approaches for handwritten numeral recognition are widely used in office
automation and.ma,ny engineering applications. In post offices, tons of mail have to
be classified by hand every day. A computer aided postal code recognition techniques
can significantly reduce mail processing time. In tax offices, millions of tax forms are
processed each year. The use of computer handwritten recognition could save the
manpower currently required to process tax forms. Other applications can be found

in banks, libraries, and even in helping visually impaired people.

Compared with machine printed character recognition, the problem of handwrit-
ten character recognition is more difficult because of the irregularity of handprinted
characters. The differences in writing habits, tools and conditions result in a hand-
written character with many variations in style, scale, thickness of stroke and noise
on the image. A character may be written in many different ways. At the same
time, different written characters may look so similar that people make mistakes in

recognition.

The purpose of this thesis is to investigate the problem of automatic handwrit-
ten numeral recognition. A new high accuracy handwritten numerical recognition

approach is proposed. The significant aspects of the study include:

(a) development of a new approach of accurate structural feature representation and

extraction,



(b) proposal of an approach for pre-classification and the corresponding neural net-
works for the adaptive and non-parametric recognition of hand-written numerals,

and

(c) presentation of a new technique of iterative spur removal to improve the recog-

nition accuracy.

1.2 REVIEW

The problem of automatic character recognition has been extensively a,ttémpted
for many years. Various approaches have been explored. An early attempt was
implemented by Grimsdale et al in 1958 [34]. In their method, the input character
patterns were described in terms of the length and slope of straight line segments and
the length and curvature of curved segments. The patterns were then compared with
those of the pre-stored prototypes to reach a proper decision about the identity of

the input character.

Eden [21] proposed the analysis-by-synthesis method. He claimed that all Latin
characters can be formed by 4 strokes, namely, hump, bar, hook and loop. Based
on this idea, Cox et al [17] presented two main groups of grammar-like rules to
deal with the variability in the type fonts. Yoshida and Eden [89] then proposed a
generative process to extract a stroke sequence from the input pattern and used a

look-up dictionary of strokes to effect the recognition.

A split-and-merge algorithm for the polygonal approximation of a character for
numeral recognition was suggested by Pavlidis and Ali [66]. Feng and Pavlidis [26]
utilized a feature generation technique for syntactic pattern recognition by approxi-
mating character boundaries with polygons and then decomposing the polygons based

on the concavity.

Shridhar and Badrelin [75] presented a two-stage character recognition algorithm

which used Fourier and topological descriptors in the recognition of numerals. Later



on, they applied a new set of topological features derived from a global description of
the character. The recognition system they developed includes a syntactic classifier

to analyze the topological structure of the patterns.

A system for classification by relaxation matching of handwritten zip-code numbers
was described by Lam and Suen [51]. The system comprised of a feature extractor,
a structural classifier, and a relaxation classifier. The feature extractor decomposed
the skeléton of the character into geometrical primitives. The structural classifier
identified the majority of the samples. The relaxation claésiﬁer then classified the
rest of the data. Baptist and Kulkarni [4] employed a multilevel approach to process

the visual information and recognize handwritten characters.

A pattern description and generation method for structural characters was re-
ported by Nagahashi and Nakatsuyama [62] in which a character was regarded as a
composite pattern consisting of several simpler subpatterns and described in terms of

the subpatterns using three kinds of positional relationships among them.

Although handwritten character recognition has been studied extensively, none of
the algorithms mentioned above gives a description of character structure in detail.
Also, a threshold based noise spur removal strategy has been widely used in those
algorithms. This noise spur removal method removes strokes shorter than a threshold.

Thus failure may occur when:

1. different characters have a similar structure,

2. noise spurs are longer than the threshold, and

3. meaningful strokes are shorter than the threshold.

This thesis reports a new quantitative structure description to represent the struc-

ture of characters so that minor differences between similar characters can be de-

tected. The iterative spur removal strategy interacts between the feature extraction



and recognition stages, just as a human being does. Spurs are removed not on the
bases of any threshold, but on the current available knowledge of the character to
be recognized. By doing so, most of the problems introduced by threshold based

algorithms can thus be resolved.

1.3 THE ORGANIZATION OF THE THESIS

This thesis is organized as follows.

Chapter 2 gives a general review of handwritten recognition techniques, with em-
phasis on the structural methods. The basic principle of the structural methods,
the representative algorithms, and a comparison of various handwritten recognition

techniques are included.

Chapter 3 pays a special attention to the structural recognition methods. A sur-
vey of the currently used methods of smoothing, thinning, feature extraction, and

matching is presented.

Chapter 4 presents the general description of a new high accuracy recognition
algorithm. The quantitative feature description and extraction, adaptive structure

classification and iterative spur removal are introduced separately.

Chapter 5 describes the implementation of the new handwritten character recog-

nition system.

Chapter 6 contains a summary of this research.



CHAPTER 2

HANDWRITTEN CHARACTER RECOGNITION

There are many algorithms for handwritten character recognition. Generally, these
algorithms can be classified into three categories: structural, statistical, and neural

network based methods.

2.1 STRUCTURAL METHODS

A structural method, i.e. a syntactic, linguistic, grammatical method, is one of
the major methods used for handwritten character recognition. A structural method
defines a set of elementary forms of which a character is composed. A character is

represented by the elementary forms and the way they are assembled.

The simplest structural descriptions of a pattern consist of ordered sequences of
elementary components, an indication of the presence or absence of a component,
and an indica,tibn of the relative positions of the components. A comparison of two
such descriptions provides a measurement of the extent to which the corresponding
patterns resemble each other and, consequently, is a method for recognition. Usually,
a finite set of letters, or alphabet, is used to represent a finite set of elements. The
relationship between elements is represented by simple juxtaposition or the concate-

nation of these letters, i.e., a string. For example, if we have an alphabet:

X = {a,b,c} (2.1)



then a string on X:

T = “cabbc” (2.2)
can be a structural representation of a certain pattern.

After the elements and their relationship are extracted from a character and are
represented as a string, the similarities or the distances between the extracted string
and those pre-classified and stored in a data-base are calculated. The category with
which the extracted string is the most similar is considered to be the category for the

string and therefore the result of the recognition.

Fig. 2.1 shows a simple example of the concept of the structural pattern recog-
nition. Suppose we expect to characterize two families of shapes among a set of
black and white images: equilateral triangles and squares, respectively. By tracing a

contour, it can be seen that the triangle in Fig. 2.1 can be characterized as follows:

l l

Figure 2.1. An example of the structural method.

Starting from the left bottom corner, the boundary consists of a horizontal segment
of length [ followed by an oblique segment of length equal to ! followed by another
oblique segment of length equal to ! whose end-point is the starting point of the first
segment. If the straight line segment with length ! can be defined as letter “a,” then

the triangle can be expressed as string “aaa.”



A similar description can also be given for the square shown in Fig. 2.1, and it is

“aaaa.”

These two strings can be stored in a data base. When an unknown pattern is
encountered, its string expression is extracted and compared with those pre-stored in
the data base. The result of the comparison tells what kind of shape the input pattern

is. In practice, more complex string expressions and more sophisticated classification

algorithms are employed.

2.2 STATISTICAL METHODS

Another classical method for pattern recognition is based on the statistical study.
of measurements made on the objects to be recognized. As a result of studying the
distribution of these measurements in a metric space and the statistical properties
of the classes, a decision on recognition can be taken. Such methods are usually
based on hypotheses, explicitly stated or not, concerning the statistical deséription of

families of related objects in the representation.

Tt is assumed in this approach that the measurements can be expressed as a vector
X = (21, ..., o) in the space R". Assuming a teaching set is available, i.e., a set of
vectors for which the classes to which they belong are known, the problem can then
be stated as follows: given an unknown vector obtained as a result of measurements
on some pattern, find a class to which the pattern should be assigned. A sample
problem is given in Fig. 2.2. The question is: does the point X = {x1,x2} belong to

class 1, class 2, or class 37

To solve the problem, first, consider the process of learning from a teaching set. The
situation described here is an idealized one. It is assumed that we know in advance
the number of classes and the decision that certain points — those of the teaching set
— belong to certain classes. Practical problems can not always be expressed so neatly.

The classes that might be thought, from observation, to be the most ‘natural,” may
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Figure 2.2. An example of the statistical method.

turn out to be ill suited to the chosen representation space. They may overlap or
provide a poor description of the teaching set. Fully or partly automated learning
methods may prove to be of help in redefining these classes so as to improve the

situation, and here pattern recognition has benefited from research on data analysis.

After the question of learning has been settled, we return to the problem of ar-
riving at a decision. There are two major types of methods, called non-parametric
methods and parametric methods, respectively. A non-parametric method defines
the boundaries of the different classes in the representation space so that a series of
simple tests are sufficient to assign an unknown point to one of these classes. The
p'a,rametric method constructs a model (e.g. Gaussian) for the distribution of the

points of each class and on this basis decides to which class the unknown point has

the greatest probability of belonging.

A simple non-parametric method involves finding the hyperplanes that give the
‘best’ separation of the classes in the teaching set. The decision process is then simpli-
fied to calculating a series of scalar products. This method is called linear separation.
Much work has been done on determinating the equations of the hyperplanes and

also on evaluating the theoretical probabilities of the errors resulting from the use of



the method. Another non-parametric method is called nearest neighbors method, in
which the unknown point is assigned to the class of its nearest neighbor in the teach-
ing set. This method gives good results statistically but often requires long times for

calculation. Various methods have been proposed for speeding up the process.

In a parametric method, assumptions concerning the statistical properties of the
classes are made to minimize the mean errors of a classification. The decision can be
optimal if these assumptions hold for the teaching set as well as for the representation

space.

2.3 NEURAL NET CLASSIFIERS

Artificial neural net (ANN) models or simply “neural nets” go by many names
such as connectionist models, parallel distributed processing models, and neuromor-
phic systems. Whatever the name, all these models attempt to achieve good perfor-
mance via a dense interconnection of simple computational elements. In this respect,
an artificial neural net structure is based on the present understanding of biological
nervous systems. Neural net models have great potential in areas such as image recog-
nition where many hypotheses are pursued in parallel, and high computation rates
are required. Instead of performing a program of instructions sequentially as is done
in a von Neumann computers, neural net models explore many competing hypothe-
ses simultaneously using massively parallel nets composed of many computational

elements connected by links with variable weights.
A neural network has several features:
Learning

ANNs can modify their behavior in response to their environment - learn from
experience. It is here that the neural nets can perform functions beyond the capacity
of rule based, conventional systems. In understanding handwriting, the problem with

conventional approaches is either that the rules are difficult to find, or that the number
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of rules becomes large. This makes the learning ability the most attractive feature of

ANNSs.
Generalization

Once trained, an ANN’s response can be insensitive to the minor variations in its
input. This ability to see the pattern despite noise and distortion is vital to pattern
recognition in a real-world environment. This inherent ability to generalize is due to

the structure of ANNs rather than any program, hypothesis, or threshold.
Applicability

ANNs are computationally complete. That is, given an appropriate neural net
and training, there is no computational task that cannot be performed by neural
nets. Therefore, they become the preferred techniques for a large class of pattern

recognition tasks that conventional computers do poorly.

Neural networks have been recently applied to the character recognition prob-
lem. Burr [12] used back-propagation networks to recognize the shadow code of hand
printed digits. Cun et al [18] employed the same network to match input digits with
49 pre-stored templates. A goal seeking neurons were applied to classify vector pat-
terns by Filho [27]. Guyon [36] used a multi-layer, feed-forward network for on-line

character recognition.

2.4 DISCUSSION

The structural approach is concerned more with the intrinsic characteristics of a
pattern rather than with its metric properties. This feature is significant in handwrit-
ten character recognition. Due to different writing styles, the images of a character
could be variable. These variations cause difficulties with statistical methods based
on metric features of characters. However, the basic structures of the elements and
their interconnections in a character do not change much. It is the structure which

represents the primary, intrinsic and natural information of a character.
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The use of formal language-theoretic models to represent patterns is the main
drawback of the structural approach [31]. Patterns are natural entities which cannot
strictly obey the mathematical constraints set by formal language theory. Imposing a
strict rule on the pattern structure is not particularly applicable to character recogni-
tion, where the interclass variations are infinite. Furthermore, structural approaches
do not pay much attention to feature extraction but are sensitive to spur noises which

introduce irregular variations into the structure.

The statistical approach has a solid and general mathematical foundation and
has been successfully applied to machine-printed character recognition. However,
the statistical aL.pproach has the disadvantage of ignoring the varied nature of the
measurements made on the patterns and treating them all in an abstract manner. As
a result, structural information about the inter—connections in complex handwritten

characters cannot be handled efficiently by statistical pattern recognition techniques.

ANNSs have an intrinsic ability to adapt to the various deformations in handwritten
characters. ANNs store the learned knowledge distributively by weights instead of
rules. No regulation base and matching algorithm is required. Since most ANNs are
analog, they are more suitable to the continuous variation of handwritten character
than the classical discrete string representation. However, most ANNs learn using
images of characters and this implies that large networks are required [18]. Long
training and recognition time and poor convergence are characteristics of large net-
works. Image based recognition also introduces limitations in recognizing characters

with large variations and deformations.

2.5 SUMMARY

Compared to the statistical approach, the structural method concentrates more on
the intrinsic and natural features of a character rather than operating on the metric

features only. This property of the structural approach makes it more suitable than
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the statistical approach, especially for handwriting recognition. The drawbacks of
the structural approach are its language model representation of the character struc-
ture, its feature description and extraction, and its sensitivity to spur noise. Neural
networks are adaptive, distributive and analog. These features of neural networks

provide compensation for the drawbacks of the structural approach.

The combination of structural recognition and neural network will take advantage
of both methods. The structural information of handwritten numerals can be repre-
sented and classified. Complex rule building and matching are eliminated, and small
neural networks can be expected. Adaptation and learning a,bilities are improved.
The combination of the structural approach and the neural network is a ;.n'omising

direction for handwritten character recognition.
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CHAPTER 3

STRUCTURAL HANDWRITTEN RECOGNITION

Structural handwriting recognition is usually divided into four steps: smoothing,

thinning, feature extracting, and matching. The system structure is shown in Fig. 3.1.

3.1 SMOOTHING

Feature extraction or shape measurement in character recognition can be mislead-
ing if the images are not preprocessed. Noise-contaminated character images produce
extra spurs, dots, and holes in their thinned images and may result in mislabeling
by the recognition logic. Hence an image preprocessing or smoothing process is usu-
ally included in structural recognition systems. A noise-contaminated image and a

thinned image are shown in Fig. 3.2 and Fig. 3.3.

3.1.1 ANALYSIS OF NOISE

Noises in the raster scanned images can be classified into the following six types

(refer to Fig. 3.2):

Type 1: Linear artifact. This kind of noise introduces artifacts of various lengths in

different directions, and will produce false branches during a thinning process.

Type 2: Isolated dot. This kind of noise usually arises from stains or dirt on the
analog input or is caused by pen-up at the end of a stroke. Extra false strokes

will be produced in the thinning process by such dots.
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Type 3: Artificial hole. The size of the hole can be single or multiple pixel dropouts.

This kind of noise will mislead a thinning procedure. .
Type 4: Rough edge. Such an edge results in irregularity in a character contour.

Type 5: Broken stroke. The gap between broken parts of a stroke can be of various

sizes.

Type 6: False corner. This noise will cause false end points and branches in thinning.

The above noises can be further grouped into two basic classes: black noise and
white noise. The black noise consist of the extra black dots or branches on the image.
Black noise will bring in extra points, strokes and rough edges, as shown in Fig. 3.3.
In the case of black noise, some extra black image points need to be erased. Type 1,
type 2 and type 6 noises belong to the black noise. White noise is the extra white
dots or missing black pixels in the image. White noise will introduce broken strokes,
artificial holes and rough edges, as shown in Fig. 3.3. In the case of white noise,
some blank spaces need to be filled in. Type 3 and type 5 belong to the white noise

category. Type 4 noise can belong to both classes.

3.1.2 SMOOTHING ALGORITHM

The smoothing method used by Brown et al [11] is a single pass, moving average
(low-pass filter). This filter is nonrecursive. If more than half of the pixelsin a (2k+1)
by (2k + 1) window centered on the pixel in question are black, the centered pixel is
marked black; otherwise, it is marked as a white point. The problem in using this
smoothing method is essentially related to the determination of the proper window
size. If the window is too small, there may be too much smoothing. The window size

(the value of k) is usually determined by users.
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3.2 THINNING

To extract the structural feature of a handwritten symbol, a thinning pro'cess is
necessary to thin the numeral image toward a skeleton form. The thinning process
removes points or layers of outline from a pattern until all the lines or curves are of
unit width, i.e., a single pixel wide. The resulting set of lines and curves is called the

skeleton of the object.

3.2.1 REQUIREMENTS FOR THINNING

The essential characteristics of a skeleton can be summarized as follows:

1. Connectivity should be preserved. If the object is connected, the resulting skele-
ton should also be connected. If the initial background is connected, the back-
_ ground resulting from thinning should also be connected. The points which
can affect the conhectivity of the pattern to be thinned are usually called break

points.

2. Excessive erosion should be prevented. The end points of a skeleton should be
detected so that the length of a line or curve that represents a true feature of

the object is not shortened excessively.

3. The skeleton should be immune to small perturbations in the outline of an object.
Noise, or small convexities, which do not belong to a skeleton, will very often

result in a tail after thinning. The length of these tails should be minimized.

3.2.2 PARALLEL AND SEQUENTIAL THINNING ALGORITHMS

Most thinning algorithms are iterative. In each iteration (or pass), the edge points
of a pattern to be thinned are examined against a set of criteria to decide whether

the edge points should be removed or not. These algorithms were classified as par-
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allel algorithms or sequential algorithms by Rosenfield et al [70] [79]. In a parallel
algorithm, only the result obtained from the previous iteration affects the decision to
remove a point in the current iteration, making it suitable for processing by parallel
hardware such as array processors. A sequential algorithm uses the result obtained
from the previous pass and the results obtained so far in the current pass to process
the current pixel. Thus at any point in an iteration, a number of pixels has already

been processed. These results can be used immediately to process the following pixels.

3.2.2.1 PARALLEL THINNING ALGORITHMS

Parallel thinning algorithms differ in the way they handle the break points and the
end points. The break points and end points are called safe points. Some algorithms
[61] test safe points by examining a set of windows for a given edge point situation,
while others [90] test safe points by checking the number of white/black transitions

when the eight neighbors are traversed and by counting the number of black neighbors.

In some parallel algorithms [53], a 2-pixel wide line will be completely removed,
since at the beginning of the pass points on both sides of the line will not break
the connectivity of the pattern if they are examined independently. If both sides are
examined in parallel using the results from the previous pass, they will be removed
simultaneously because the result of re;moving one side of a line is unknown to the

other side during the same pass.

The time complexity of a parallel algorithm implemented on a sequential computer

consists of three components:

1. In every pass and in every subiteration, each pixel in the bitmap has to be exam-
ined once to identify the dark pixels. The number of operations is proportional

to the area of the bitmap.

2. Every black pixel has to be examined for edge points. The number of operations
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is proportional to the area of the objects in every pass.

3. The number of passes is related to the “thickness” of the object.

3.2.2.2 SEQUENTIAL THINNING ALGORITHMS

The sequential technique is an alternative to parallel methods. Less memory is
required in sequential algorithms. Besides, it is generally believed that a sequential
algorithm is faster than a parallel algorithm implemented on a sequential computer
[70]. The time complexity of sequential algorithms still depends on the size of the
bitmap. However, a significant reduction in time complexity can be achieved by
examining only those points that belong to the outline of an object. Xu and Wang
[88] introduced the idea of contour generation, which was demonstrated to be superior

to many thinning algorithms.

Among sequential algorithms, the contour tracing technique was introduced to
deal with nearly thinned objects or thick objects. In this case the contour describing

the edge of an object is traced in each iteration.

3.3 FEATURE EXTRACTION

Past research on a human’s pattern recognition skill shows that human pattern
recognition consists of two major procedures: perception and cognition. Both pro-
cedures play important roles in human image pattern recognition and directly affect

the result of the recognition.

In the perception step, people extract features of the image they are looking at
such as the special points, edges, length, direction, curvature of curved segments,
etc. This procedure corresponds to the feature extraction procedure in a pattern
recognition program. However, a human being has an ability far superor to that of a
computer program in perception. A five-year-old child can recognize more things, in

a more precise way, from a more complicated scene than any program, even if it does
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not know what the object it is looking at is.

In the second procedure, i.e., cognition, people use the information acquired in
the first procedure to classify the object they are trying to recognize. Feedback is

provided to the first procedure to ensure optimum classification.

Following the above principles, most of the current handprint optical character
recognition (OCR) algorithms employ bbth perception and cognition procedures to
recognize handwritten characters. Glenn Baptista and K.M. Kulkarni [4] proposed a
method which extracted terminal points, intersection points, bend pointé (threshold
based method) and line/curve features (mean square error threshold method) and
then employed a structural (syntax) approach to recognize the handwritten numerals.
R.M. Brown, T.H. Fay and C.L. Walker [11] used only closed/unclosed segments
and a tree structure classifier using the above segment information and project sum
information for characters with the same segment information [11], in their recognition
method. The approach proposed by F.H. Cheng et al [15] used the middle point of a
stroke to define its 1bcation, and the orientation of a stroke to define its shape, and

then used fuzzy logic to calculate the similarity of strokes.

As one can see from the above discussion, most algorithms pay much attention to
the cognition procedure, i.e., the classification algorithms, but the perception proce-
dures are relatively less sophisticated. Only a simple description of segment features
such as closed/unclosed segments [11], and line/curved segment [4] are given. The def-
initions of curves are mostly based on pre-set thresholds on which strong assumptions

of the probability distribution of curves are made.

For machine printed or formally handprinted characters, the above descriptions
and assumptions work well and a high recognition rate can be expected, since writing
styles are relatively similar and predictable. However, for handprinted characters
with a large variety of writing styles, no strokes are identical even if they are written

by the same hand. No definite assumptions can be made for handwritten numerals.
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Simple descriptions of strokes do not work as well as they do for machine printed
characters. The recognition rates are not as high as claimed, and recognition failures

occur for characters with similar shape or stroke, as shown in Fig. 3.4.

77 239 $P 066

1 7 2 3 4 9 0 6

Figure 3.4. Examples of similar handprints.

A human being has a far greater ability for recognition than computer programs.
Studying and imitating how human beings recognize is an important way to improve
the performance of computer programs. When correctly extracted features are given,
as in the cases of printed character recognition, a computer program can work almost
as well as any human béing does. However, in the cases of real handwriting recogni-
tion, the rate of computer recognition drops rapidly while the rate of a human being
remains high. It shows that a human being has much greater ability in perception
than a computer program. A human being can still extract features correctly while
a computer fails, but the ability of cognition are almost the same. One can easily
notice that a human being makes a more precise description on strokes than most al-
gorithms currently do and a human being also has interaction between perception and
cognition to give the possibility of adjusting and correcting, while most algorithms

do not.

The following chapters of this thesis propose a new approach for recognition which
gives a more precise stroke description, interacts between perception and cognition,
and recognizes through learning and memorizing, like 2 human being does. This

approach provides adaptivity over a large range of writing styles.
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3.4 MATCHING

Matching is the final step in structural recognition. The extracted features of the
unknown character are compared with the features of pre-stored standard charac-
ters. The standard character which has the closest match to the input character is

considered as the result of the recognition.

String matching techniques are employed by most researchers. Baptista [4] devel-
oped a table of 114 strings for 10 numerals. The feature string of an input character

is compared with each of the strings in the table to get the closest matching.

Lam and Suen[51] used a relaxation matching techniques for string matching. In
their method, the feature of each segment or substring of a template was matched
against the features of each segment of an input pattern. The likelihood of the
match was based on the proximity of the features, and the initial probabilify of this
match was defined by this local information. The initial probability was then revised
according to the similarity of the context in which each segment appears. Contextual

information was used to determine the closeness of the match.

A decision tree is also employed to implement the recognition process. Brown, Fay
and Walker [11] developed a binary tree, namely, the Pattern Analysis Language tree,
to analyze the structure of a character. The numbers of points and segment features

were used to build up the tree.
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CHAPTER 4

A NEW HIGH ACCURACY RECOGNITION
ALGORITHM

4.1 INTRODUCTION

In this research, an accurate and adaptive structural recognition method is devel-
oped. It uses structural information to represent the primary, intrinsic and natural

properties of a pattern. This algorithm has the following features:

1. Accurate Feature Extraction

In many cases of handwritten character recognition, the differences between fea-
tures or characters are tiny but critical. Qualitative feature description and
extraction, like polygon approximation, is usually not detailed enough to detect
such differences, and results in an increase in the rejection or failure rate of the
recognition. To overcome this drawback of the structural recognition method,
a new approach for describing and extracting features qualitatively as well as

quantitatively is developed in this study.

2. Neural Network Classifier

In this study, neural network classifiers are employed to replace the classical
language theory classifier used in structural pattern recognition. Compared with

the language theory classifier, a neural net has the following properties:

e Quantitative.
A back-propagation neural network is a determinate classifier in an N di-

mensional continuous space. This space can be divided into an arbitrary
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number of sub-spaces with any size and shape. Therefore, an N dimensional
structure vector of real numbers can be precisely clustered into the sub-space
to what it belongs. The language theory classifier deals with a qualitative
discrete string representation which is not precise enough for the continuous

variations in handwritten characters.

o Forthright.
the neural network approach is a non-algorithm method. Neither a reason-
ing, matching, and searching programs nor any kind of data-base requires
construction. After proper training, the results of recognition can be ob-
tained from the output nodes when a structure vector is entered into the

input nodes.

¢ Adaptive.
An neural networks are adaptive to different styles and distortions of charac-

ters with training. No modification of the data-base or algorithm is required.

3. Iterative Spur Removal

Spur noises have been a persistent problem for those structural character recog-
nition methods which depend on a thin-line representation generated from a
raster image [11]. Spur noises bring in extra branches, dots, and curves into the

structure of a character. They may appear to be meaningful segments.

One approach for spur removal assumes that all spurs are shorter than a
certain threshold. Another approach [11] assumes that spurs occur only in certain
areas. Therefore the methods remove all segments shorter than a threshold level

and/or those which are located in a certain area before recognition.

However, these assumptions have some drawbacks. In handwritten character
recognition, the spurs may be longer than the pre-set thresholds, the meaningful

segments may be shorter than the threshold, and spurs could appear anywhere
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outside the assumed area. In such cases, either spurs remain untouched or some

meaningful segments are removed.

The spur removal approach developed in this work is an iterative approach.
It is an imitation of the human recognition process, with interaction between
the recognition and the feature extraction. Firstly, the extracted feature of a
character is sent for recognition. When the result of the recognition is not satis-
fied, which means spurs exist, the most likely spur is removed by a spur removal
process. Then the character is sent back for re-extraction and re-recognition.

The process ends when a satisfactory recognition is obtained.

By thisrmethod, no assumption about threshold and/or the area of the spur

is required and problems due to such assumptions can be avoided.

4.2 ACCURATE FEATURE EXTRACTION

After the image preprocessing process, the thin-line or skeleton figure representa-
tion of the original raster image of the input character is obtained. This thin-line
representation is in chain-code format. Then, this image is organized to give it the

necessary “stroke structure” for further processing.

The subsequent processing performed on this thin-line image increases its infor-
mation density content by organizing the image points into a feature list. On the
basis of these generated list structures, a complete “stroke structure” of a character

can be constructed.

. Two kinds of features, namely, point features and segment features are employed

in this approach.

4.2.1 POINT FEATURE

Feature points are divided into three categories:
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TYPE 1: Terminal Point. A pixel on a segment which is adjacent to only one other

pixel is called a terminal point (Point 1 and point 4 in Fig. 4.1).

TYPE 2: Clircle Point. A pixel with three distinct neighbors and which is passed

twice by the outer contour is called a circle point (Point 3 in Fig. 4.1).

TYPE 3: Fork Point. A pixel which is the neighbor of three other pixels and is passed

three times by the outer contour is called a fork point (Point 2 in Fig.4.1).

A feature point together with its position in a character is called point feature.

Corner is a rather vague concept in character recognition because it depends on
the éize and style of each character. Thus, no clear definition has been given [46].
A corner is often detected by a pre-set threshold, which is avoided in this approach.
The corner point used in [4] is not defined as a feature point here. Thus, the massive
computation cost and the mistakes introduced by a corner detection process can be
avoided. Instead, the property of a corner is well represented by the segment features

as discussed in the next section.

3 4

Figure 4.1. An illustration of different feature points.

The accurate structural feature description proposed above is unique and contin-
uous to the description of continuous variations in handprinted characters through
both qualitative and quantitative analyses. Combined with a back-propagation neu-
ral network for feature extraction, the whole feature extraction process can describe

and classify the feature of a character precisely. By means of this description, features
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which can not be detected or classified by other methods, such as polygon approxima-

tion, and corner detection, can be defined and classified. Furthermore, no threshold

for the classification is required.

4.2.2 SEGMENT FEATURE

A set of pixels bounded at both ends by a terminal point, a fork point or a circle
point is called a segment or a stroke. The shape of a stroke between two feature
points is called a “segment feature”. A segment feature is a very important feature in
character recognition. Generally speaking, the rate of handprint recognition depends
on the rate of stroke recognition because a stroke méy have hundreds of variations.
On the other hand, the difference in shape between different strokes may be trivial
but vital, as shown in Fig. 3.4 [18]. In such a situation, obviously any assumption
abgl}t a particular parametrical probability density function is highly dubious. It is
almost impossible to find the actual distribution of any measurement without guessing

something. Based on the above observations, we have the following points:

o The representation of a segment feature should be not only qualitative but also
quantitative[15], i.e., the description of a stroke has to be sufficiently precise to

differentiate the tiny differences in shape from other strokes.

o The stroke classifier should be robust to tolerate noise and variation of writing

styles and sensitive to differentiate different strokes with similar shapes.

¢ A nonparametric method, assuming no particular function, should be used.

In this research, an approach to precisely describe a segment has been developed.

A classification network has been built and trained to achieve the above goals.
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4.2.2.1 CHAIN-CODE REPRESENTATION

To process a curve segment, one needs to represent the image of the curve with a
data structure which can be easily stored and accessed. Chain code representation

can be used to represent a curve.

A chain code representation of a curve segment is a sequence of directions in which
the curve is traversed pixel by pixel. A chain code representation contains complete
s]:lape and scale information of a curve. Thus the curve can be fully recovered from its
chain code representation. This chain code is represented by a linear data structure

and can be easily stored and accessed.

The direction to the west is defined as “0,” the direction to the southwest as “1,”

the direction to the south as “2,” and so on, as shown in Fig. 4.2.

2
3 4 1
4 - » 0
5 7
6

Figure 4.2. An illustration of chain code.

To generate a chain code representation of a curve, the pixel on one end of the
curve is taken as a start point. From the start point to the next point on the curve,
a direction can be obtained. This direction is recorded as the first element of the

chain code representation. From the next point to the following point on the contour,
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another direction can be obtained. This direction is recorded as the second element
of the chain code representation. This process is continued until the whole curve has

been traversed.

An example of generating the chain code representation of a curve “2” is shown in

Fig. 4.3.

start point

end point

Figure 4.3. An illustration of chain code generation.

The generated chain code representation for the above numeral “2” is:

21100077666555555560000000.

4.2.2.2 CURVATURE SEQUENCE REPRESENTATION

The chain code representation of a curve segment is rotation dependent. If the
curve tilts a bit, its chain codes change completely. This characteristics of the chain
code is not ideal for the repreéentation of shape information of a curve. To elimi-
nate the rotation dependency, the curvature sequence representation is often used to

describe the shape of a stroke.

A curvature is the difference in directions of two adjacent chain segments. The

curvature sequence is obtained as follows: starting from the first chain segment s; at
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one end of the stroke, if the direction of the next segment turns left k x 45° from
the direction of the previous segment, the curvature at the turn point is k; if it turns

right kx 45°; the curvature is -k, that is:

¢ = Siy1 — Si;
if (¢ < =3) ¢; =¢; + 8;
else if (¢; > 4) ¢; = ¢; — §;
where,
¢; is the 7th element of the curvature sequence,
s; is the 1th element of the chain code sequence (7 = 1,2,3,..., n-1), and

n is the number of chain segments on the stroke.

An example of generating an element of a curvature sequence is shown in Fig. 4.4.

Figure 4.4. An illustration of generating a curvature sequence representation.

An example of a curvature sequence is shown in Fig. 4.5.

4.2.2.3 COMPACT CURVATURE SEQUENCE REPRESENTATION

A curvature sequence can describe the shape of a curve precisely, independent

of rotation and translation of the curve. However, a curvature sequence is scale
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start point

end point
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(a) Curvature sequence generation
for a numeral "2"

-10-100-10-100-100000012000000

(b) Curvature sequence representation
of the numeral "2" in (a)

. Pigure 4.5. An illustration of a curvature sequence representation.
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dependent. When the scale of a curve changes, its curvature sequence representation
changes correspondingly. Besides, the curvature sequence of a curve is usually very

long. Its length equals the length of the curve minus 2, ranging from 1 to above 160.

A new representation of segment feature — compact curvature sequence is proposed

in this research. The new representation is based on the following observations:

1. only the turning points on a curve carry the basic shape information of the curve.
If the position of turning points and the extent of the turning are known, a curve

can be precisely described.

2. the non-turning points provide the position information of the turning points.

To generate a compact curvature sequence, the following operations are put on the

curvature sequence of a curve:

e All elements with absolute value |k| >1 are extended to k elements with absolute
value equal to 1 for normalization. After this operation, the curvature sequence

in Fig. 4.5 will change from
-10-100-10-100-100000012000000
to
-10-100-10-100-1000000111000000.

o The curvature sequence is compacted by removing all elements whose value is
zero. All non-zero elements are moved forward to fill the position left by zero

elements. The above sequence will change to

-1-1-1-1-1111.
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Every element with a non-zero value is multiplied by a weight equal to the
distance from the element to the nearest end of the stroke divided by the length
of the stroke. Since the length of the curve “2” in Fig. 4.5 is 27, the above

curvature sequence will change to

-1 -3 -6-8-118 7 7

27 27 27 27 27 27 27 27

Shift up the values of all elements by +0.5. The range of the values of all elements

is changed to [0.0, 1.0] to meet the requirement of the classification network.

The resultant curvature sequence representation of the shape of a stroke is then

ready for classification and it has the following features:

precise: This representation is not only qualitative but also quantitative. Every

stroke has its unique and precise representation.

complete: This representation contains the complete shape information of a
stroke. The shape of stroke can be completely recovered through this repre-

sentation.

compact: Since only turning points on a curve are recorded in this sequence,
the sequence is relatively short. No matter how long it is, the most complex
stroke takes only 10 digits for its representation which is suitable for stroke

representation and classification.

unified: length of the stroke. All the values of the representation are between

0.0 and 1.0, which is suitable for processing in the classification stage.

independent: Only shape information is kept in this sequence. The representa-

tion is independent of translation, rotation and scale of a curve segment.
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4.2.3 DATA STRUCTURE FOR FEATURES

All the features extracted so far are stored in vectors or matrices for easy access
to the following classification process. The feature points are numbered according to
their order of appearance in the chain of a thinned character. Their coordinates are
stored in two vectors, POINT X and POINT.Y. Then these numbers are stored in a
vector POINT_CHAIN according to their order in the chain:

POINT_CHAIN = (feature_point, feature_point, feature_point, - --) (4.1)

The type of each feature point in vector POINT_CHAIN is also stored into a vector
called POINT_TYPE:

POINT_TYPE = (point_type, point_type, point_type, - - -). (4.2)

The curve features are stored in matrices. The length of each curve segment is in
a matrix called CURVE_LENGTH. The row number 7 and column number j of the
matrix are the numbers of feature points, and the content of the matrix is the length

of the curve segment from feature point 7 to feature point j.

The CURVE LENGTH matrix of the character in Fig 4.1 is

Loo Lor ... Lo
CURVE.LENGTH = | f10 fu -+ I (4.3)
LnO Lnl Lnn
And the corresponding CURVE_TYPE mafrix is
Too Tor --- Ton
CURVE.TYPE = | 110 Tu -+ Tin (4.4)

Two T ... Thn
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where, L;; is the length of curve from feature point 7 to feature point j, Tj; is the
type of curve from feature point 7 to feature point j (3,5 =1, 2,3, ..., n), and n is

the number of feature points.

All the elements of the curve chain are replaced by the corresponding elements of
the curvature sequence. The first element of the curvature sequence is the direction

of the curve segment.

4.2.4 STROKE CLASSIFICATION

Based on the analysis of handprinted numerals, it can be seen that all strokes can

be clustered into 7 basic classes as shown in Fig. 4.6.

O/23>5C

Figure 4.6. Basic strokes of handprinted numerals and the corresponding codes.

Each numeral is composed of the basic strokes. All strokes of numerals are classified
through a multi-layer perceptron network trained with the error back-propagation

algorithm.

4.3 A NEURAL NETWORK CLASSIFIER

The task of a classifier is to classify the structural information extracted above into
a proper category. The structural information of a character is firstly represented by

a structure vector. Then the structure vector is classified by a set of neural networks.
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4.3.1 STRUCTURE VECTOR

Qualitative structural features of a character can be represented by the type of
feature points, the type of strokes between feature points, and the relationship among

them.

Quantitative structural information is included in scale, stroke length, relative

position of feature points, etc.

The segment features and point features of a character are combined into a single

structure vector as follows:

structure vector = (z.scale,y_scale,
z1, Y1, stroke.type;, stroke_length,,

Tg, Yo, stroke_type,, stroke_lengthq, ---) (4.5)
where:

z_scale, y_scale — the normalized x and y scales of the numeral by dividing the x

and y sizes of the numeral by preset maximum values

z;, y; — the relative ¢ and y coordinates of feature point 7 divided by its z and y

sizes respectively for normalization

stroke_type — the normalized stroke type code obtained through the stroke classi-

fication network

stroke_length — the normalized length of the stroke by the size of the numeral.

This structure vector contains both qualitative and quantitative structural infor-

mation. It has the following properties:

e it provides a precise description of a character, and
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e it contains complete information of a character so that the character can be fully

recovered from its structure vector.

Due to the above advantages of the new structure vector, better recognition results

can be achieved.

4.3.2 CLASSIFICATION

For the classification of structure vectors, multilayer feed forward neural networks

are applied.

The structure vectors are fed directly to the neural network. Since a structure vec-
tor is relatively small compared to its image matrix, the network required for structure
vector classification is much smaller than that for image matrix classification. The

time of training and classification can be reduced significantly.

To further reduce the time of training and classification, to improve the convergence
of the network, and to obtain a higher recognition rate, the structure vectors are
divided into several groups according to their primary structure information, i.e.,

type code.

Type code is a three digital decimal number. It contains the basic information of a
character such as the number of terminal points, fork points, and circle points. This

information can be used to preclassify the structure vector of the character.
The type code is defined as follows:
type code = number of cross_points x 100 +

number of fork points x 10 +

number of terminal points. (4.6)

From the type code of a character, the basic structural information can be obtained.

For instance, the type code of the numeral “2” in Fig. 4.7 is “112”. From the type
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3 4

Figure 4.7. The type code of a character.

code “112,” it can be deduced that there are 1 fork point, 1 circle point, and 2 terminal

points in this character.

For handwritten numerals, the number of their type code is limited. Only 12 type
codes are reasonable. These possible type codes are 000, 002, 011, 020, 022, 031, 033,
103, 105, 112, 123, 204. Any other type codes than those above would be considered

as noisy characters.

After being preclassified by its type code, the structure vector of a handwritten
numeral is input into a multilayer feed forward neural network for classification. The

corresponding output of the network indicates the recognition result of the numeral.

Compared with classical language model classification methods, the neural net-
works operate by means of distributed processing rather than reasoning, and no rules
and regulations are required for classification and learning. Therefore, a neural net-
work can be easily trained to adapt to various characters written in different styles

and conditions.

A multilayer perceptron is a kind of continuous neural network which can operate
on continuous variables in real number space. This continuity makes a multilayer per-
ceptron superior to the classical method in solving the continuous variation problem
of handwritten recognition. In general, any difference between different characters

can be detected and described by this neural network.

Compared with neural networks applied in matrix processing methods, the neural

networks presented in this study have a much smaller size. Since only the structure
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vector rather than the whole image matrix needs to be processed, the number of
neurons ranges from 50 to 70 for structure vector classification as compared to 300 to
1000 for image classification. Hence, training and classification time can be reduced

and better convergence and higher recognition rates can be obtained.

Because normalization is performed only on the structure vector instead of the
whole image, the time consuming alignment, rotation and translation operations on
the image are no longer required. However, better adaptation to the variations of

characters is provided by the structure vector classification.

4.4 ITERATIVE SPUR REMOVAL

When the input numeral does not fit any one of the 12 classes, and it is not a
single meaningless stroke, it is regarded as a character with noise. The numeral with
noise is returned to the feature extraction step to remove noise and to re-extract its

features.

Handwritten characters Ama,y have noise on them. A thinning process can also
produce extra strokes which make the structure of a character different from the one
it is supposed to be. Those extra strokes which make the structure of a character
abnormal are regarded as spurs and spurs produce difficulties in recognition if they

are not dealt with properly.

Few rules on writing styles can be applied because of individual differences. It is
almost impossible to set up a threshold to remove noise since the important stroke in

one numeral is sometimes much smaller than the noise in other numerals.

Furthermore, human beings dg not remove noise in visual patterns by threshold
logic. Instead, there is an interaction between perception and cognition. In our ap-
proach, we built uf) an interactive channel between the stroke classification network
and the recognition networks through iterative filtering and refinement. The numeral

with noise is sent back to the feature extraction step. The shortest stroke in this char-
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acter is considered likely to be noise. The shortest stroke and its associated feature
points are removed, the related strokes are re-extracted, and the feature storages are
modified. After this the numeral is sent back to the recognition step once more. The

process ends when all noise is removed.

Most of the published algorithms [4] [15] [42] [46] do not consider the effect of spurs.
The input characters are assumed ideal, i.e., the structures are invariable, except with
changes in shape, scale, slope, etc. No spurs caused by thinning and image noise
are included. Loisia Lam’s [51] method simpiy removes all short segments, i.e., all
segments whose lengths are under a certain threshold are assumed to be spurs and are
removed. R.M. Brown [11] reported that all spurs occur only in a certain area of the
character called the “feasible region” which is the combination of the lower 25%, the
upper 70% of the height, and the left 30% of the width of a character. The exceptions
for this rule are the middle segment of the numeral “3” and the right segment of the
numeral “4.” The other rule for spur definition is that a spur must be the shortest

one of the three branches of a “Y” intersection, as shown in Fig. 4.8.

Figure 4.8. Brown’s feasible region for spurs (shaded area).

The above assumptions about spurs are not applicable in the following frequently

occurring situations in handwritten numerals:
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e Spurs may not be short (see Fig. 4.9).

ZEN A

0 0 6 4

Figure 4.9. An illustration of long spurs.

e Strokes may be short(see Fig. 4.10).

B S © D B

2 2 2 4 2 9

Figure 4.10. An illustration of short strokes.

e Spurs could be in any area, not necessarily in only certain areas (see Fig. 4.11).

¢ Spurs could be on any parts of a character, not necessarily in a “Y” intersection.

The method of spur removal described in the following section is called most proba-
ble spur method. By this method, the shortest branch of a character with an abnormal
structure is erased. The procedure is iterated until all the spurs are removed. This

method is based on the assumpfion that the spur is always the shortest branch of a
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Figure 4.11. Spurs in random positions.

character with abnormal structure. Because spurs may be produced by a thinning
process or a noisy image, they might not be shorter than a threshold, but they are
relatively shorter than other meaningful strokes. If there are some strokes which are
shorter than spurs on the same character, the strokes can be usually ignored without

much effect on recognition.

The input character is first sent to the recognition process. If the result shows that
the structure of this character is abnormal, the shortest branch is detected and re-
moved by the spur removal process. The character is then sent back to the recognition

process, and so on, until the character is recognized.

The major differences between this method and other spur removal methods men-

tioned above are:

o The concept of this method is that the spurs are shorter than strokes.

e No threshold is used for spur removal. This solves the conflict between short

strokes.

4.5 THE SYSTEM STRUCTURE

The system structure is shown in Fig. 4.12. It consists of the following five
components, namely, smoothing, thinning, feature extraction, classification and spur

removal. After the raster image of a character is entered, smoothing is performed
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to remove black and white noise and to smooth the rough edges of the image. In
the thinning process, the raster image of the character is shrunk to a skeleton, which
represents the structure of the character. The skeleton of the character is analyzed
in the feature extraction process. A feature vector is formed in this stage as a value
representation of the structure. The structure vector is then classified by several
neural networks according to its structure code in the recognition process. If no
satisfactory result is obtained, the spur removal process is applied to remove the
most likely spur. The character is fed back to the feature extraction process for

re-extraction and re-recognization, until a satisfactory result is obtained.
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Figure 4.12. The system structure of an accurate handwritten numeral recognition.
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CHAPTER 5

IMPLEMENTATION

In this chapter, experimental data for testing and training are introduced and the

approaches proposed in Chapter 4 are implemented.

5.1 INPUT DATA

The experimental data used in this research for training and testing is from the
U.S. NIST (National Institute of Standards and Technology) handprinted character
database. The database consists of 2100 pages of bilevel (i.e. black and white) image
da£a of hand printed numerals and text with over 1,000,000 cha,rac_ters. The data was
collected from 2100 individuals distributed across the United States with a sampling

roughly proportional to population density [86].

5.1.1 SAMPLE CHARACTERS

Each of the 2100 samples consists of an image of a handprinting sample form. The
data collected on the form is located in 34 boxes. In addition to the primary image,
the database contains isolated images of 33 of £hese boxes. A sample form is shown
in Fig. 5.1. The forms have been scanned at a resolution of 300 pixels/inch. The

total image database consists of 3 Gigabytes of image data with 273,000 numerals.

The numerical samples can be divided into two types of samples: three boxes of the

ten individual digits and twenty-five boxes of numbers, five boxes each of two, three,



46

HANDWRITING SAMPLE FORM

- DATE CITY ST;\TE ZIP
0?/0&/27 [ rl,  #FSe d

This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers
and letters. Please print the following characters in the boxes that appear below.

0123456789 0123456789 0123456789
0123456799 OlIA3NSC78F B/2 346787
86 506 8941 95304 891405
g6 Sob 894/ 9530 # IF 1465
521 5407 60170 689547 - 98
g7 | SYo7 60170 6895Y7 58
6081 77132 314200 78 484
608/ 77132 3,4 2 00 78 134
93847 256369 63 224 6902
93347 256367 ' 63 22¢ 6902
551339 18 722 5798 21313
551379 75 722z 79§ 2/3/3

bgvxujdyohsmtfcwqiakrespln
byvxujdyohsmrfewqiakrez ph
FSHKDXTEZRQMLABGVIYPUCOJIWN

FSHRDRTEZRAMLABEV I YpucoywN

Please print the following text in the box below: . :

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty to
ourselves and our posterity, do ordain and establish this CONSTTTUTION for the United States of America.

NVe $he People of the United StTates, rn ordep T+ orm mrmare
e P 2

etfecr Uvion, e3TabLiat Sustice, rn3ure domestic
'CI‘ﬁN7U;//'( ’ Ff‘.d\/l& ‘or. The Qorimon’ e‘r'e..nse,/ ’94!.6/?67_‘{ the
$eneral Zde-/v"a,&g and secwre the Blessinds’ of L./Aertl Zo
suRsSelves wnd ou&,Posten}?’,'o/o 0@069'/0 and establis

This OONSTITUTION Tosr’/Tht Uwited Stetes of

Figure 5.1. An illustration of a sample form.
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four, five and six digit numbers. The numerical samples are uniformly distributed

with 26,000 samples for each digit.

5.1.2 DATA COLLECTION

The original form was generated on a laser printer with fifty variations. Each
variant has different number and alphabet sequences selected at random. The laser

printed forms were reproduced by photocopying for mail distribution to the writers.

' The handprinting sample was obtained from a selection of field data collection
staff of the Bureau of the Census with a geographic sampling corresponding to the
population density of the United States. No effort was made to sample based on

education, or occupation, etc.

5.1.3 CHARACTERISTICS OF THE DATA

No restriction on the writing implements was used in the sample. The range of
implements used ranged from wide, felt-tipped pens to hard, sharp-pointed pencils.

This results in images with a wide variety of line types.

The size of characters varies from 3mm high to 7mm high, with average size of

4.5mm high. The size of large characters is constrained by the box height of 7.5mm.

The range of characters and spatial placement of those characters is broad enough

to present a very difficult challenge to image recognition systems [86].

5.2 IMAGE PREPROCESSING

The image preprocessing consists of two major processes: smoothing and thinning.
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5.2.1 SMOOTHING

The smoothing method used in this study is a rﬁorphogra,phical low pass filter.
This low-pass filter is implemented by the expansion and erosion functions in mor-
phography. The expansion and erosion functions are referred to as filling and erasing
operations in this work for clarity. The filling operation fills or removes the white

noise, while the erasing operation removes the black noise.

The filling operation in one direction is implemented by moving the whole image
by one pixel in the demanded direction and executing an “OR” function between the
original image and the moved image; then moving the resultant image back by one
pixel and executing an “AND” function between the resultant image and the moved
result image, i.e.,

A=A+ MOVE(4) | (5.1)

A=A xMOVE™(4) (5.2)
where,

A — Image being processed.

MOVE() — Move image in one given direction by one pixel.

MOVE™!() — Move image in the opposite direction of MOVE by one pixel.
+ — Pixel by pixel “OR.”

x — Pixel by pixel “AND.”

To remove noise in all directions, the movement should be in all directions. The

actual filling algorithm takes the following forms:

1. Removing white noise in the horizontal direction:

A=A+ LEFT(A), (5.3)
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A=A x RIGHT(A). (5.4)
2. Removing white noise in the vertical direction:
A=A+ TUP(A), (5.5)
A=A xDOWN(A). (5.6)
3. Removing white noise in the 45° direction:
A=A+ UPRIGHT(A), (5.7)
A=A xDOWNLEFT(A). (5.8)
4. Removing white noise in the 135° direction:
A=A+ UPLEFT(A4), (5.9)

A=A x DOWNRIGHT(A). (5.10)

The filling algorithm expands the image and then shrinks it in all directions. After

this operation, white noise with unit width can be removed.

To remove black noise, an erasing algorithm is employed. Erasing is the opposite
operation of filling. It shrinks the image first and then expands it in all directions. It

can remove all black noise with sizes similar to that above.

1. Removing black noise in the horizontal direction:
A=A xLEFT(A), (5.11)
A=A+ RIGHT(A). (5.12)
2. Removing black noise in the vertical direction:
A=AxUP(A), (5.13)

A= A+DOWN(A). (5.14)
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3. Remoying black noise in the 45° direction:
A=A x UPRIGHT(A), (5.15)
A=A+ DOWNLEFT(A). (5.16)
4. Removing black noise in the 135° direction:
A=A x UPLEFT(A), (5.17)

A=A+ DOWNRIGHT(A). (5.18)

The filling a,.nd erasing operations are VLSI oriented algorithms. They can be
implemented by current VLSI technology in a single chip. The other feature of these
algorithms is that they both operate in a fully parallel style so that a high computing

speed can be expected.

After smoothing, the box frame around the figures is detected by row/column
histogram analysis and then removed. The original image and the smoothed image

are shown in Fig. 5.2. and Fig. 5.3.

5.2.2 THINNING BY CONTOUR GENERATION

In both parallel and contour tracing techniques, pixels are removed from the con-
tours without knowing what is going to remain in the object. "The result is that
either all the pixels will have been removed or, to prevent this from happening, a

non-unit-width skeleton will remain after final iteration.

The thinning algorithm employed in this research, thinning by contour generation,
was developed by Kwok [50]. The feature of this algorithm is that it considers the
previous results obtained for processing the current pixel. If a pixel is to be removed,
the new contour, which will be exposed to the background can be computed. Thus,

when the current contour is traversed, a section of the new contour is generated for



Figure 5.2. An illustration of an original image.
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Figure 5.3. An illustration of a smoothed image.
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every pixel in the current contour visited. The section is checked for break points
and this information is available when subsequences are visited. At the end of the
iteration, a new contour will be available for the next iteration without having to

remove the old one.

At any time, the algorithm will have complete knowledge of what remains of the
object when the current contour is removed. Thinning is completed when there are

no nonsafe points in any of the new contours.

5.2.2.1 CONTOUR GENERATION

The contour generation is implemented by shrinking the object in all four directions
by one pixel. The completed object is one pixel smaller than the original object. By
“ANDing” the original image and the negative of the shrunken image, we can have a

one pixel wide contour generated. In the following discussion, we have:

A — an image being processed.

RIGHT() — move the image to the right by one pixel.
LEFT() — move the image to the left by one pixel.

+ — pixel by pixel “OR” operation.

x — pixel by pixel “AND” operation.

A — a negative image of image A.

B — am image buffer.

The detailed operations are as, follows:

B =4, , (5.19)
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A= Ax RIGHT(A), (5.20)
A= A xLEFT(A), | (5.21)
A= A xUP(4), (5.22)
A= Ax DOWN(A), (5.23)
A=BxA (5.24)

Following Fig. 5.3, the result of contour generation is shown in Fig. 5.4.

56 &5

Figure 5.4. An illustration of contour generation.

5.2.2.2 CHAIN-CODE GENERATION

To generate a chain code representation of a contour, the pixei on the top and
left corner of the contour is taken as a start point. The last point on the contour
traversed is called a end point. The end point is'adja,cent to the start point. The
direction on the end point to the start point is the last direction element of the chain

code representation.

The direction of the traversing is decided by the Left Hand Rule, i.e., when travers-
ing through the contour, the object is always on the left hand of the traverse, as shown

in Fig. 5.5.
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Figure 5.5. An illustration of directions of contour traversing.

5.2.2.3 THINNING BY CONTOUR GENERATION

Using the chain-codes, the outline is plotted on a bitmap B with all the pixels
having a value of zero. Every pixel visited will have its value increased by one. A
pixel visited more than once will have a value greater than one and is therefore a

break point.

After plotting the first contour on B, the algorithm goes though a number of
iterations. The iteration terminates for a particular contour when there are no more
nonsafe points in that contour. When the operation is completed, the skeleton is

formed in B and a chain-code describing the skeleton is also available.

At any point in an iteration, a section of the new contour is generated to corre-
spond to the pixel p; under consideration. Two direction vectors, dir;_; and dir; are
maintained. The zy coordinates of p; are updated from the zy coordinates of p;_,
using dir;_1. A look up table (Table 5.1) is used that gives the offsets needed for each

of the 8 directions.

A flag p;_;_safe is kept to show whether the previous pixel p; is a safe point or not.
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The current pixel p; is checked for safe point by examining its value in the bitmap B.
With this information, a unique section of the new contour. can be generated. The
new contour includes all the safe points uncovered so far as well as the dark points
which are neighbors of the current outline. After the final iteration, all of the points
on the new contour are safe points and the skeleton is thus obtained. The result of

the thinned image is illustrated in Fig. 5.6.

5.3 AN ACCURATE FEATURE EXTRACTION

5.3.1 STROKE CLASSIFICATION

Seven basic strokes are extracted from a training set. These strokes are trans-
formed from their chain code expressions to compacted curvature sequence represen-

tation. The basic strokes and their compacted curvature sequence representations are

illustrated in Fig. 5.7 ~ Fig. 5.13.

From Fig. 5.7 to Fig. 5.13, it can be seen that the compacted curvature sequences
reflect the complete structural information of the strokes. The shape of a stroke is
known from the distribution of its compacted curvature sequence. The direction of
the bending is reflected by values below or above 0.5. Other detailed information is

reflected by the absolute values of the sequence.

56 &5

Figure 5.6. A thinned image after smoothing.



P is a safe point. Pi1  is not a safe point.
dir; - dir, dir; &1 | dir; &1 | dir; &1 '} dir; &1 dir; &1 dir, &1 | dir; &1 | dir; &1
— =0 = =0 = =0 - = 1=0
0 dins1 | L g gp | 43 dir, dir, dir+2 | dir,+1
dir; dir; +1
1 dir; dir; dir; +2 dir; +1 none dir;, dir; +1
2 none dir; +7 dir; +1 none none delete p,;
3- 4 dir.'.) p,' itself . d". +4 P; jtself
] ”Zf-‘ *3 Z{" :g dir,, dir, +3
ir,, ir,; ) .
dir, dir; +1 diry dir; +1
dir;+2 | dir;+2 dir; +4 dir; +3 di dir;, dir+2 dir; +3
A -
7 dir,, dir, dir+2 | dir,+1 Vit dir, i dir, +1
chain code contour point chain code contour point
elements direction w.r.t. 2; elements direction w.r.t. 2;

Table 5.1. A summary of chain code elements and the generated contour points.
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(b) Graphical illustration of compact curvature
sequences of stroke 0 in (a).

Figure 5.7. The basic stroke 0 and its compacted curvature sequence representation.
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(a) Samples of stroke 1
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(b) Graphical illustration of compact curvature
sequences of stroke 1 in (a).

Figure 5.8. The basic stroke 1 and its compacted curvature sequence representation.
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(b) Graphical illustration of compact curvature
sequences of stroke 2 in (a).
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Figure 5.9. The basic stroke 2 and its compacted curvature sequence representation.
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(b) Graphical illustration of compact curvature
sequences of stroke 3 in (a).

Figure 5.10. The basic stroke 3 and its compacted curvature sequence representation.
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(b) Graphical illustration of compact curvature
sequences of stroke 4 in (a).

Figure 5.11. The basic stroke 4 and its compacted curvature sequence representation.
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(a) Samples of stroke 5
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(b) Graphical illustration of compact curvature
sequences of stroke 5 in (a).

Figure 5.12. The basic stroke 5 and its compacted curvature sequence representation.
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(a) Samples of stroke 6
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(b) Graphical illustration of compact curvature
sequences of stroke 6 in (a).

Figure 5.13. The basic stroke 6 and its compacted curvature sequence representation.
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These compacted curvature sequences are input into a stroke classification neural
network for classification. The type of a stroke is represented by the number of the
highest output plus the value of that highest output. For instance, if a compacted
curvature sequence is put into the stroke ciassiﬁcation network and the output node
4 has the highest value of 0.876, the type of the stroke to be classified is represented
by 4.876.

5.3.2 CONFIGURATION OF THE STROKE CLASSIFICATION NET-
WORK

The neural network for stroke classification has 10 input nodes, 10 hidden nodes,
and 7 output nodes, as shown in Fig. 5.14. The weights of the net are initialized with

random values between -0.5 and +0.5 using a uniform distribution before training.

There are 10 x 10 free weights from the input layer to the hidden layer plus 10
thresholds, and 10 x 7 weights from the hidden layer to the output layer plus 7
thresholds. Thus, the total number of free weights to be trained is 187. The number

of hidden units is obtained by testing.

5.3.3 TRAINING OF THE STROKE CLASSIFICATION NETWORK

The training set contains 200 strokes and it takes 210 iterations to train the neural
network. The maximum system error is 0.005 while the rate of recognition on the

training set is 100%. On a test set of another 100 strokes, the recognition rate is also

100%.

The training process and system error of the stroke classification neural network

are shown in Table 5.2 and Fig. 5.15.
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Figure 5.14. The structure of a recognition network.



Training Iterations System Errors
20 0.244273
40 0.153109
60 0.100899
80 0.089203
100 0.067819
120 0.075133
140 0.035044
160 0.040885
180 0.044194
200 0.007916
220 0.002133
240 0.001485
260 0.001179
280 0.000994

Table 5.2. Training - system error of stroke classification.

System Error

0 1 1 i 1 3
50 100 150 200 250
Number of Training Iterations

Figure 5.15. Training errors of stroke classification neural network.
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54 AN ADAPTIVE STRUCTURE CLASSIFICATION

The whole recognition net is split up into 12 subnets, one for each type code (see
section 4.3.2). Each subnet has 27 input nodes, 15 first hidden layer nodes, 15 second
hidden layer nodes, and 15 output nodes. The training set for the subnets is about
1,000 handwritten numerals. The average training process for those subnets takes a

few minutes. The average recognition process takes 855 floating point multiplications.

The structure of each subnet is shown in Fig. 5.14. The number of input nodes of
each subnet is equal to the length of the structure vector of that subnet. The number
of both hidden layers is adjustable according to the distribution of the structure
vectors and the divisions required in the feature space. This number is finally decided

through experiment.

The output layer contain 13 nodes. Nodes 0 ~ 9 are for numeral “0” ~ “9.” Nodes

11 and 12 are for special characters “-” and “/,” respectively. Node 10 is for noise.

'Due to different writing conditions and styles, some handwritten characters may
have abnormal structures as shown in Fig. 5.16. Even a thinning process produces
some extra strokes which make the structure of the character much different from
the one it supposed to represent (see Fig. 5.16). Those extra strokes which make
the structure of a character abnormal are considered to be noise. The noise produces

misleading results in the recognition process if it is not handled properly.

Since the training set and testing set are large, the training and recognition pro-
cesses of the recognition network take hours and the convergence rates are poor. It is
efficient to split the whole recognition network into a number of smaller subnetworks.
Numerals are pre-classified by their type codes and are sent to these subnetworks.
Since the sizes of subnetworks can be much smaller than the whole network, the sub-
networks not only speed up the training and recognition processes significantly, but

also converge in really all cases.
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5.4.1 DISCUSSION

The structure of a handwritten numeral is represented by a real number structure
vector. According to the type code, the structure vector is classified by one of several
3 layer back-propagation neural networks. Less training time and better convergence

are achieved because of the small size of each neural network.

By using the structure vector and classification neural networks, a recognition rate

of 98% is obtained.

5.5 AN EXAMPLE OF RECOGNITION

An example is given in this section to illustrate the recognition process.

Original image:

The original input image is shown in Fig. 5.17.

Figure 5.17. An original input image.

Step 1: Image processing.
Random noise on the original image is removed by filling and erasing operations.

The resultant image is shown in Fig. 5.18.
Step 2: Thinning,.
The processed image is shrinked to a skeleton using the Thinning by Contour

Generation thinning algorithm. The resultant image is shown in Fig. 5.19.

Step 3: Feature extraction.

Segments between feature points are represented by compact curvature sequences



Figure 5.18. The image after processing.

Figure 5.19. The thinned image.

70
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and classified by a neural network. Point features are also extracted as shown in
Fig. 5.20. Since there is 1 fork point, 0 circle point and 3 terminal points, the
type code of this character is “103”. Feature points 1, 3, 4 are terminal points,

marked by crosses. Point 2 is a fork point, marked by a square.

3

Figure 5.20. The illustration of feature extraction.

The segment and point features are stored in point-type vector, curve-type and

curve-length arrays.

POINT.TYPE = (1, 3, 1, 1,). (5.25)

0.0 1.8 0.0 0.0
1.8 0.0 6.7 1.9
CURVE_TYPE = 0.0 47 0.0 0.0 | (5.26)

0.0 1.9 0.0 0.0

CURVE_LENGTH = (5.27)

O O 0o

Step 4: Recognition.
At this stage, a structure vector of the numeral to be recognized is formed and

classified by the neural network corresponding to type code “103”.

The output of the recognition neural network is:

output = (0.29,0.30,0.20,0.11,0.25,0.17,0.13,0.23,0.30,0.23, 0.92, 0.13, 0.23)
(5.28)
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Step 5: Iterative spur removal.
The 10th output node of the recognition neural network has the highest output
value 0.92, which means there exists a spur on the numeral. The shortest branch
and the relevant fork point are removed from the numeral. The numeral is then
sent back to the feature extraction stage. Fig. 5.21 shows the result of spur

removal.

-

™

Figure 5.21. The numeral after spur removal.

Step 6: Feature extraction.

Segment and point features are extracted again from the spur removed numeral.

Fig. 5.22 shows the re-extracted feature points.

_—_-+

Figure 5.22. The feature extraction for the spur removed image.

The new type code of the numeral is “002”. The segment and point features are

stored in point-type vector, curve-type and curve-length arrays.

POINT_TYPE = (1, 1). (5.29)
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0.0 2.9

CURVE_TYPE = [2'8 00 ] (5.30)
0 55

CURVELENGTH = | . °/ (5.31)

Step 7: Recognition.
A new structure vector of the spur removed numeral is formed and classified by

the recognition network for type code “002”.

The output of the recognition neural network is:

output = (0.29, 0.31, 0.93, 0.15, 0.25, 0.17, 0.13, 0.23, 0.33, 0.27, 0.11, 0.13, 0.23)

(5.32)

The 2nd output of the recognition network has the highest value 0.93, which

indicates that the digit “2” is the most likely result of the recognition.

5.6 SUMMARY

In this chapter, an accurate feature extraction method, an adaptive structure
classification method, and an iterative spur removal method are implemented. The
structure of a handwritten numeral is precisely described by the structure vector. The
structure vector is then classified by one of several back-propagation neural networks.
The continuous variations on strokes and structure of a handwritten character can be
well described and detected. Training time and system convergence are improved by
type code pre-classification. Spurs are removed by interaction between recognition

and feature extraction.

The overall performance of 98% recognition rate and 0% rejection rate are achieved
for this handwritten numeral recognition system. The results of the recognition pro-

cess are given in Fig. 5.23.
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Recognition result: 3 7 1 Z 3

Figure 5.23. An illustration of recognition results.
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CHAPTER 6

CONCLUSIONS

OCR is an old but relevant topic. Many algorithms have been developed. However,
not much attention has been devoted to feature extraction, an important aspect of
the human visual process. Features are typically not quantitative but qualitative,

which is the reason for failures [42].

In our approach to handwritten numeral recognition, features in the handwritten
numerals are described not only qualitatively but also quantitatively. The feature
description can detect tiny differences between similar but different characters. When
combined with a multilayer perceptron neural network, errors in feature extraction

can be eliminated and a high success rate of final recognition can be achieved.

In addition, a neural classifier with interactive noise-removal is presented. It sim-
ulates the human visual recognition process and works effectively. The interactive
noise-removing technique results in a zero rejection rate as compared to about 5 to

10% in the other systems.
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