Introduction

How can teachers tell who is the brightest kid in the class? Even before the first test results are
in, they will have a good idea who the gifted students are by their performance in class. Not only do
they answer questions well, but they tend to pose questions frequently and skillfully. By asking
questions, good students take greater advantage of their best resource, namely the teacher. Active
learners are curious.

Systems for machine leaming can also benefit from curiosity. A cardinal advantage which is
gained by enabling systems to formulate examples or test cases on its own is that the properties of the
examples can be controlled. It is well known that the manner in which examples are selected can
effect the style and efficiency of leamning (eg Rissland, 1988). In many cases the order of presentation
of examples determines whether a concept can be leamed or not (eg Gold, 1967); in others (eg version
space) it does not govern learnability as such but does have an enormous influence on the amount of
searching required.

A striking defect of current machine leaming systems is that their teacher must be well aware of
the intemnal representations used to guide them towards successful performance — which makes
interacting with them more like programming than teaching (Witten & MacDonald, 1987). For
example, the notion of ‘‘near miss”’ is relative to the internal representation used: a near miss for one
representation might be a far miss for another, and vice versa. Question-asking helps to decouple the
teacher from the intemals of the leamning system. The machine is in the best position to determine
what might constitute a near miss or near hit relative to the representation it is using.

For people, one important result of transferring initiative from teacher to learner is that it shifts
responsibility for understanding what the example ‘‘means’ in the current context from leamer to
teacher. When the teacher chooses an example, the leamner may be at a loss to interpret what is meant
by it. Being more knowledgeable, the teacher is presumably in a better position to interpret the
student’s chosen example, perhaps using it to pinpoint errors in his conception. Analogously, in the
machine leaming situation a teacher-chosen example may only be interpretable at the cost of an
inordinate amount of search. Conversely, a system-chosen example may exhibit a misconception that
needs to be corrected. However, it is difficult to exploit this in machine learning, for without the rich
texture of natural-language communication we cannot move up to the meta-level to discuss the
appropriateness (or otherwise) of an example.

A final potential advantage of student-directed dialogue is that it admits the possibility of
challenging the accuracy of input, perhaps allowing mistakes made by the teacher to be corrected.
Again, this is not exploitable by current systems since they do not represent or reason about the
veracity of their sources of information (other than perhaps on a purely statistical basis).

Question-asking is likely to prove to be a powerful technique in both similarity- and
explanation-based learning. For similarity-based leamners, questions can be used to

S 1a. expose inadequacies in the representation language (eg inappropriate bias, Utgoff, 1986)

S 1b. challenge the accuracy of the information given

S 2. assist with the testing of hypotheses

S 3. debug concepts by asking questions to track down apparent inconsistencies caused by over-
and under-generalizations (eg Shapiro, 1983; Lloyd, 1986).



For explanation-based leamners, questions can be used to

E 1. clarify goals

E 2. assist in completing solution traces, either to compensate for a weak domain theory (Pazzani,
1987) or to expedite the proof process (DeJong & Mooney, 1986).

E 3. help to define operationality criteria on the fly

E 4. validate generalizations before storing them as part of the domain theory.

The thumbnail sketches of similarity- and explanation-based learning in Figure 1 indicate where each
of these opportunities arise.

This paper addresses the issue of hypothesis-testing for similarity-based learners only (S 2
above), although it is relevant to the problem of validating generalizations for explanation-based
learners (E 4). A similarity-based leamer can formulate alternative hypotheses about the concept to be
learned and use questions to verify or refute these hypotheses. By asking questions, the information
the system deals with can be restricted to what can be used effectively at the time, avoiding the
encumbrances of unwieldy searches and large data structures.

The next section reviews strategies for determining what question to pose next. Following that
we focus on an economical technique called conservative selection. This strategy is exemplified by the
MARVIN system (Sammut & Banerji, 1983, 1986) which, when given by the teacher an example of a
concept, investigates alternative descriptions for it. Following that a serious problem with
straightforward hypothesis-testing procedures is identified: namely that when the concept network is
not a strict hierarchy, misleading questions may be formulated. Finally we show how the problem can
be solved by detecting when subgoals should be created, and attacking these subgoals by recursively
invoking the conservative-selection hypothesis-testing mechanism. The resulting algorithm is
implemented in a system called ALVIN, in which a single seed example of a concept, supplied by the
teacher, can spawn a whole battery of questions that may provoke a far-reaching investigation of other
concepts.

Picking questions to ask

We adopt the standard ‘‘generalization as search’’ paradigm for concept leaming (Mitchell,
1982). The object is to locate a concept description within a generalization lattice of alternative
descriptions, on the basis of examples classified as positive or negative by a teacher. Nommally the
teacher also selects the examples, but we allow the leaming system to choose them itself and present
them for classification.

Within this framework, there are four basic strategies for selecting examples: randomly, by
halving, by factoring, and by conservative selection.

Choosing examples at random is certainly the simplest, but not usually the most helpful, strategy.
Indeed, Van Lehn (1983) has formalized the notion of a sympathetic teacher in terms of *‘felicity
conditions™, constraints imposed on or satisfied by a teacher that make learning better than from
random examples. However, it is worth noting that any better method, and the whole idea of felicity
conditions, implicitly assumes that teacher and student have something in common in terms of how
they represent the problem — or at least, that the teacher can see into the student’s mind and determine
how best to select examples to help him home in on the desired concept. In order to teach people



effectively, one must know something about what they bring to the problem in terms of background
knowledge and experience. Equally, to satisfy felicity conditions one must make assumptions about
the operation of the leamer. This is a good argument for having the system select examples itself.

Suppose a learner contains an explicit representation of the set of descriptions from which the
desired concept must be chosen, the so-called ‘version space’’ for the concept. Each new example
causes the version space to shrink (or remain the same). An efficient strategy, in terms of the number
of examples required, is to use each one to cut the version space in half. In other words, one should
pick the description whose refutation or verification results in a half-sized version space (Genesereth &
Nilsson, 1987). If descriptions are equally likely a priori, this strategy will minimize the number of
examples required before the desired concept description is identified uniquely. More generally, if the
a priori distribution is known, one should select each example to maximize the expected information
contributed by its classification.

One objection to this strategy is the computational burden of identifying examples which
maximize the expected information. In the worst case, every conceivable example must be evaluated
with respect to every possible concept description. A second objection is that the examples chosen
bear no relationship to each other; the sequence seems to the teacher to be disjointed, unmotivated.
For example, Shapiro (1983) used the same idea of binary chopping to narrow down the location of
bugs in logic programs; it has been observed (eg by Lloyd, 1986) that this leads to the user being
posed a series of questions that seem to be entirely unrelated. This can be disconcerting, and certainly
does not resemble the normal problem-solving behavior of people.

The third approach, factoring, breaks the version space into sub-version spaces by independent
attributes and applies halving to each of the sub-spaces (Subramanian & Feigenbaum, 1986). This is
much more efficient than the general halving method, but still suffers from the drawback of
disjointedness. Furthermore, to reap the full benefit examples must be classified by attribute rather
than as an overall yes/no decision. This is often infeasible. Moreover, the method is only possible
when the concept to be leamed can be factored into independent parts. Most problems cannot be
decomposed in this way.

The final approach, conservative selection, uses local, directed search to explore the
generalization space. Starting with a positive seed example, it climbs one level of the generalization
lattice, selects that concept as its current hypothesis, and generates an instance that tests this
hypothesis. In effect this follows the ‘‘near miss” strategy popularized by Winston (1975) by
selecting a new example which differs in just one way from the seed. However, it is stronger in that
the new example is guaranteed to differ by a minimal amount. Depending on the teacher’s
classification of this example, the system continues to generalize or secks to specialize the current
hypothesis. Thus it follows a path through the generalization lattice, step by step, until it arrives at the
target concept description. The next step at each stage is guided by the teacher’s response to the
previously-generated example.

The method of conservative selection is explained in more detail below. Although it generally
requires more examples than the halving or factoring approaches (grows linearly rather than
logarithmically in the number of possible hypotheses), its operation is more perspicuous. It generates a
sequence of examples that indicate to the teacher where it is heading. It avoids large inductive leaps
by making steady progress at a local level. It does not rely on special properties of the generalization
space (as factoring does). Finally, it is computationally feasible (as opposed to halving and factoring)
since generating the next hypothesis is a constant-time operation.



The use of conservative selection

Given a positive example to use as a starting point, the method of conservative selection creates
a sequence of examples that lead it towards a unique description for the concept. It accomplishes this
by formulating a series of hypotheses about the target description, and finding examples to test each
one. We describe each half of this generate-and-test methodology in turn.

Generating candidate hypotheses. At any time, the system has a description called the
currently accepted description. This is modified little by little until it converges on the target concept.
Generalization and specialization are the two means by which the currently accepted description can be
modified. To begin, it is initialized to be the seed example.

All one-step generalizations of the currently accepted description are explored in turn. If no
more are left, that description itself must be the target concept. Otherwise, the next generalization is
selected — call this the current hypothesis — to see whether it can replace the current description. It
is tested by generating examples and presenting them to the teacher (see next subsection). If it passes,
it replaces the currently accepted description and generalization continues. Otherwise alternative
specializations of the current hypothesis are explored in tumn in case it is a simple overgeneralization.
A specialization of a hypothesis is just a restriction of the values of the attributes in the concept
description, and can be created by adding an attribute-constraining relation to the hypothesized concept
descriptiont. Each specialization is tested by generating and presenting examples. If any one passes
the test, the specialization replaces the currently accepted description and generalization continues. If
none do, the current hypothesis is abandoned and another is selected. If none remain, the currently
accepted description must be the target.

For example, suppose the concepts of bird, flightless bird and aerial bird depicted in Figure 2a
have already been learned. To teach that birds are examples of animals, the teacher might present
penguin as an example. The hypothesis generated is the next concept higher up the hierarchy, namely
flightless bird. When this is verified, it will climb up once more and choose bird as the next
hypothesis to test. Once that is verified, no more climbing can be done and so bird is identified as the
target concept.

Testing hypotheses. When a new hypothesis is entertained, it can be tested either directly or
indirectly. For the former, the teacher is asked about the hypothesis itself. For example, suppose
swallow is presented and the hypothesis becomes bird. Then a direct question is ‘‘Are all birds
members of the target concept?”’ Indirect questioning involves presenting an example of the concept;
for example ‘‘Is a robin an example of the target concept?”’ Both types are useful. If the teacher is
prepared to answer direct questions, the outcome is more reliable because no inference is involved.
Moreover, formulating such questions is easy: it merely involves massaging the internal representation
of the hypothesis to make it palatable for the teacher.

Generating indirect questions is harder. It is necessary to take the current hypothesis and
produce an object which satisfies the following conditions:

T Conservative selection can handle non-factorizable version spaces because of its ability to produce specializations in-
volving non-independent attributes.



Condition 1 It must be covered by the hypothesis (and thus be an example of it);
Condition 2 It must not be covered by the currently accepted description.

For example, suppose that the currently accepted description is flightless birds and the hypothesis is
bird as above. Then animals like bat, trout and whale would fail the first criterion since they are not
birds, while chicken would fail the second since it is a flightless bird. An object which satisfies both
criteria, for example kingfisher, is called a crucial object.

Once found, a crucial object is presented to the teacher to ascertain whether it belongs to the
target concept. If it does, the current hypothesis becomes the currently accepted description, and
generalization continues. If not, attempts are made to specialize the current hypothesis.

Synthesizing crucial objects can be expensive. If the generalization structure is a lattice rather
than a tree, some complications emerge which are taken up in the next two sections. Also, the
acceptance by the teacher of a crucial object does not guarantee correctness of the current hypothesis,
for it may be that the object accidentally satisfies an as-yet-untaught concept. Consequently the use of
direct questioning is surer, but more demanding of the teacher since it involves communicating a node
of the leamer’s internal generalization language.

MARVIN: an implementation of conservative selection. An early concept leaming
system which addressed the problem of formulating questions is MARVIN (Sammut & Banerji, 1983,
1986). This system has several interesting features. First, it represents concepts using Horn-clause
logic. Although originally implemented in Pascal, it has been reconstructed in Prolog, a logic
programming language based on Hom clauses (Krawchuk, 1987). This version creates actual Prolog
clauses and executes them later in the learning process to classify examples. In this sense, it performs
inductive program synthesis.

Second, MARVIN immediately adds the concepts it leamns to its representation language. Hence
previously-leamed concepts can be used in the descriptions of new ones. The idea of having
generalization languages that grow with time — allowing leaming to be sustained — was perhaps the
main impetus behind the research.

Third, MARVIN can leam concepts comprising several disjuncts, which, following standard
Prolog terminology, we call ‘‘clauses’. Each is leaned independently; by naming them the same the
teacher can build up a complex disjunctive concept clause by clause. As each clause is completed it
immediately becomes part of the description language. This simple trick makes it possible to learn
recursive concepts by teaching the base case first as one clause; it will then be evaluated for inclusion
in the description of new clauses just like any other concept. The system is capable of leaming
recursive procedures for such problems as sorting and list manipulation.

Finally, and most germane to our present topic, MARVIN uses conservative selection to generate
examples. To create a crucial object it executes the relevant Prolog concept to obtain an object
covered by it, and performs appropriate tests to ensure that the object is crucial.



Misleading questions: the problem with tangled hierarchies

Playing the ‘‘twenty questions’’ game can be frustrating. Sometimes one’s current hypothesis is
sustained over several consecutive questions, earning steadily increased confidence, only to be
demolished by an unexpected answer. Machine learning systems which ask questions can bark up the
wrong tree in just the same way. Unlike people, however, they have no way of getting back on track
when this happens.

The problem occurs if the hypothesis-testing mechanism implicitly assumes that concepts form a
strict hierarchy when they do not. The definition of crucial object given above makes this assumption
(as does MARVIN). It is possible to modify the mechanism to make it work correctly by strengthening
the notion of crucial object; we do so in the next section. Another tack is to circumvent the difficulty
by insisting on hierarchically-structured concept networks; here we show just how unnatural this makes
the teaching process.

Hierarchical structuring means that concepts are arranged as a tree rooted at the most general
one, with actual domain objects at the leaves. For example, Figure 2a shows some examples of the
general concept bird, classified into flightless and aerial birds. This structure quickly becomes
untenable when we add other attributes. For example, to include the idea of swimming birds while
retaining hierarchy requires that the classes swimming flightless birds and swimming aerial birds be
identified (Figure 2b). The non-hierarchical, attribute-oriented, representation in Figure 2¢ seems much
more natural. In practice, concept networks are likely to combine both hierarchical and attribute-like
structuring (eg Figure 3).

Practical incarnations of this hypothesis-testing mechanism have assumed a benevolent teacher
who is capable of imparting concepts in an order which maintains the tree structure. To do so requires
advance planning of the concepts to be taught, and the order in which they will be taught. For
example, it is impossible to add the swimming bird category to the concept structure in Figure 2a.
This places a very considerable burden on the teacher, who might be forgiven for complaining that the
task is more like programming than teaching!

What goes wrong if we use the hypothesis-testing method, as outlined above, in non-hierarchical
domains? To illustrate the problem, suppose the object trout in Figure 3 has been presented and the
current hypothesis is fish. Under the rules presented so far, flying fish might be chosen as an object to
test. If it is verified, we would assume that it belongs to the target concept by virtue of being a fish.
However, the teacher might have verified it not because it is a fish, but because it is a fiyer.

Asking better questions
In order to improve the method it is necessary to suppress misleading questions by trying to
avoid presenting objects which support multiple interpretations. To do this, another condition is added

to those which characterize crucial objects:

Condition 3 If the object satisfies the target concept, it can do so only because it belongs to the
current hypothesis.

For example, again suppose the object trout in Figure 3 has been presented and the current hypothesis
is fish. Then cod is a crucial object, while flying fish is not since it could be in the target concept by



virtue of being a flyer rather than a fish (say the target concept was one that included all flyers, and, as
an exception, the trouf). Sometimes no crucial objects exist. We define a significant object as one
which satisfies the first two conditions but not the third. For example, suppose the currently accepted
description is fish and the hypothesis is swimmer. Then penguin, kingfisher, whale and man are all
significant, but not crucial, objects.

Most often, the question-asking algorithm proceeds as before with the strengthened notion of
crucial object. However, if no crucial object exists, a significant object is chosen. If the teacher
denies that it is an example of the intended concept, the hypothesis is refuted and specialization is
attempted as before. However, if it is declared to be an example, it is necessary to ascertain whether
this is because it belongs to the current hypothesis or a competing one.

For example, if the significant object penguin is used as a test (in the case above) and the teacher
declares it to be positive, we must determine whether that is because it is a bird or flightless bird rather
than a swimmer. To decide this, the conservative-selection algorithm is applied to the subdomain
including the flightless bird and bird hypotheses (but not swimmer). Here it is profitable to employ
conservative selection rather than factoring or halving since normally all hypotheses in this subdomain
can be quickly rejected. To do so, each maximally specific hypothesis above the significant object is
tested to see if it is refuted. The conservative selection method produces exactly these hypotheses, and
saves searching through all the more general ones as the factoring and halving methods would do.

Learning two-leggedness: an example of ALVIN

Conservative selection with improved hypothesis testing has been implemented in a system called
ALVIN which leams concepts by asking questions, and can cope with non-hierarchical domains. Like
MARVIN, it represents concepts as Prolog clauses; executes them to classify examples; allows leaming
to be sustained by augmenting its description language with newly-leamned concepts; and can learn
concepts comprising several disjuncts, including recursive ones. To convey the flavor of interacting
with ALVIN, we consider teaching in the domain of Figure 3 the concept of two-leggedness enjoyed by
man, bat, and all birds. The desired Prolog representation is

two-legged(A) :— bird(A).
two-legged(A) -~ eq(A, man).
two-legged(A) - eq(A, bat).

Begin by supplying a positive example of two-leggedness, say man. This could be a positive
example for several reasons:
it is a mammal
it is a swimmer

it is a flyer

or perhaps some combination of these:



it is a mammal that swims

it is a mammal that swims and flys
it is a mammal that flys

it is any animal that swims and flys

or perhaps just by virtue of being a man. First, ALVIN hypothesizes that all mammals are two-legged.
To test this it must ask about whale, flying squirrel or bat. Although all are significant objects, none is
a crucial object. For example, if whale tumns out to be two-legged, it might be because only swimming
mammals are, not because all mammals are. Aliernatively, it might be because all swimmers are two-
legged.

Suppose whale is selected anyway. As it happens, the teacher declares it is not mo-legged, and
it follows that the current hypothesis (mammal) is too general. After every negative example ALVIN
tries to specialize its current hypothesis; in this case to swimming mammals. This is ruled out by
whale as well (all the teacher’s classifications are stored for possible future use). Consequently
specialization continues, to flying and swimming mammals.

Since man is the sole object covered by this hypothesis, it is rejected. ALVIN retains the most
specialized version of a hypothesis so that generalization is conservative. For example, in the future a
new flying, swimming mammal might be encountered; and because of this policy it will not be
automatically assumed to be two-legged. (If the teacher wanted it to be, it would have to be taught
explicitly.)

The next hypothesis entertained is flying mammals. Flying squirrel and bat are both crucial
objects. Suppose the former is chosen and classified by the teacher as negative. The current
hypothesis is further specialized to swimming and flying mammals which, since man is the only
example, is rejected. It cannot be specialized any further, meaning that that two-leggedness is
independent of whether an object is a mammal.

Two alternative generalization branches remain. One, swimmer, is ruled out by the whale, as
also is the more specialized swimming mammal. Swimming and flying mammal is also ruled out as
before. However, the swimming and flying animal hypothesis cannot be eliminated so easily. In
investigating it, kingfisher and flying fish are significant objects. The former is chosen (arbitrarily), and
the teacher declares it to be two-legged. But why? Is it because kingfishers swim and fly? Or
because they are aerial birds or simply birds? The last two possibilities must be checked before one
can conclude that all animals that fly and swim are two-legged.

Do all aerial birds have two legs? Robin and swallow are not crucial objects a priori because
they fly. However, since the flyer hypothesis was eliminated earlier, they are now crucial objects.
Choosing the former, ALVIN finds that it also is mwo-legged. What about all birds? Ostrich and
chicken are crucial objects. The teacher reports that the former is two-legged. Therefore kingfisher is
an example by virtue of being a bird, and not necessarily because it swims and flys. This fact is
stored as the first disjunct of the concept representation given above.

However, ALVIN does not rest there, but continues to investigate exactly why man is a positive
example. It still might be that all flying and swimming animals are two-legged. Seeking evidence
against this hypothesis, the next significant object is flying fish. Since the teacher denies that it is two-
legged, it follows that not all fish are two-legged. It also rules out the fying and swimming animal
hypothesis. However, that hypothesis can be specialized to flying and swimming mammal — we have



encountered this one three times before and will see it twice more. In each case it is refuted for the
same reason. In general, when ALVIN encounters a hypothesis more than once, it is refuted just as it
was on its first appearance. It is not necessary to store previously-seen hypotheses; remembering
previously-seen objects is sufficient.

There is one remaining generalization leg to consider: do all animals that fly have two legs?
This is eliminated by the flying squirrel. The squirrel also rules out the specialization to flying
mammals, and the flying and swimming mammal hypothesis is rejected as before. The other possible
specialization of flyer, namely flying and swimming animal, is refuted by the flying fish.

Where does this leave us? All that remains is the possibility that man is two-legged purely by
virtue of being a man. This constitutes the second disjunct of the concept representation given above.
Altogether, it took seven examples to reach this conclusion:

man positive  (supplied by teacher)
whale negative

flying squirrel  negative

kingfisher positive

robin positive

ostrich positive

flying fish negative.

However, ALVIN not only concluded that man is two-legged, but that all birds are too! Next, the
teacher will give bat as an example. Meanwhile, several positive and negative examples have been
accumulated. Using these, no more questions need to be asked to decide that bat, like man, is a
special case of two-leggedness, giving the third and final disjunct of the concept.

Conclusion

We have briefly reviewed the process of formulating questions by similarity-based learners, and
focussed on one particular method, conservative selection. While it can be applied straightforwardly in
hierarchically-structured domains (and Sammut’s MARVIN is an example), the issues involved in
general partial orders are more complex. We have illustrated the operation of our implementation,
ALVIN, on a particular example because this seems more perspicuous than a formal definition.

We conclude by relating these algorithms to the version-space approach (Mitchell, 1982).
MARVIN maintains a version space with a single item in its S set (the specialization boundary), which
corresponds to the currently accepted generalization. It considers all hypotheses which generalize this
item (not just those below the G boundary). In effect, the algorithm is a way of exploring the effect
of moving the S boundary one level at a time. However, the significant innovation of naming new
concepts and adding them immediately to the description language provides a great deal of leverage to
the basic generalization process. It allows complex concepts to be constructed from simpler ones; a
limited capability for representing disjunctive concepts; and the ability to leam recursive constructs.

Although ALVIN is more complex, it can be viewed as a MARVIN-like mechanism that spawns
new version spaces when necessary. Although at any given point it may have created several spaces,
it only works on the most recently activated one. However, communication is achieved between
spaces because all objects seen are remembered globally.



-10 -

Thus the conservative-selection method for formulating questions can be characterized in terms
of a well-defined theoretical basis. As it stands, however, it is very inefficient — even more so than
the version space method itself. The right question now is how to combine this hypothesis-testing
approach to selecting examples with more sophisticated leaming strategies like explanation- and case-
based reasoning.
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