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Abstract

This project aims to develop a specialized processor that is optimized for power and algorithm

efficiency. The optimization would be targeted for a path-planning algorithm for micro-

robots such as insect-bots, UAVs (unmanned aerial vehicles) and for nano-medicine.

This processor would provide a computation platform that is smaller, lighter and more

power efficient than conventional general-purpose processors to allow these micro-bots to

reach a high level of intelligence. These micro-bots would then be able to navigate themselves

to their destination, and perform simple tasks and data processing.

To achieve this goal, the processor was designed using a custom computing architecture

implemented in RTL, then synthesized and detailed designed to layouts that are then fabri-

cated into a physical processor. The processor design target was to operate at 100kHz, while

consuming only tens of microwatts and weighing only milligrams.
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Chapter 1

INTRODUCTION

1.1 Motivation

This project aims to develop a specialized processor intended to provide adequate computa-

tional resources for mobile micro-robots (for example, insect-bots) with severely constrained

weight and power allowances. The processor considered in this thesis adapts the so-called

MIPS architecture outlined briefly in Section 1.2.3. In terms of emerging technical parlance

the broader context of the work described herein is that of the “conservation core”, a term

referring to specialized processors intended to minimize the power consumption of specific

tasks [1]. Such cores are intended to serve as the constituents of a larger computing system

that, as a whole, achieve a complex functional behaviour with minimal power requirements.

The specialization of the processor discussed in this thesis is for autonomous navigation,

its purpose is to implement a controller capable of calculating a path that a robot can fol-

low towards some physical target. The sensory information about the environment and the

robot’s state are assumed to be given. The circuitry needed to actuate the machine is not

considered. Of course, a controller capable of carrying out such path planning calculations

can be generalized to handle a larger set of problems as long as those problems can be for-

mulated in an appropriate goal-seeking manner. For example, other potential applications in

addition to insect-bots include unmanned aerial vehicles (UAVs), devices for nano-medicine

and situations wherein non-computationally intensive applications require low weight, size

and power. In general, it seems that the research community itself has expanded its view of

planning to coincide with the pursuit of automated problem solving techniques in general [2].

An example of a micro-robot platform is the robotic fly described in [3]. A photograph

of this robot is shown in Fig. 1.1. In this case the design measures roughly 2 cm between
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Figure 1.1: A “micro-UAV” in the form of a robot fly [3].

wingtips and is expected to weigh in the range of 120 mg. Only 12 mg of this design are set

aside for the electronics which is about the weight of a 4×4 mm2 silicon chip. Accounting for

packaging, pads, as well as power supply circuitry, signal conditioning, driving circuitry, and

memory perhaps only a 1×1 mm2 area would be available for the raw compute circuitry of the

proposed robot fly. A rough analysis of Intel CMOS microprocessor technology over the last

20 years indicates a transistor density of roughly 5×10−3 transistors per chip area normalized

to the square of the minimum MOSFET gate length L2
gmin for a particular technology. For

example, a 130-nm Intel CMOS technology used in the context of a microprocessor fits about

5×10−3/(130×10−6)2 ≈ 3×106 transistors/mm2. This number of transistors is slightly less

than the amount used by the 0.8-µm Pentium chip released in 1993 [4]. Thus, it would seem

that even this challenging micro-robot example may leave enough space for the realization

of an adequate computer (at least for primitive operations).

Because of the limited weight and size capacity (by definition) of micro-robots, they also

have very limited access to power with which to achieve an acceptable level of computational

intelligence. For example, to maintain hover, the robot fly outlined in [3] requires approxi-

2



mately 5 mW. A Pentium processor allowed to run at 10 MHz requires roughly 1000× this

power level. Thus although a seemingly reasonable transistor count may be achievable for

even an extreme contemporary example of micro-robotics, power consumption looms as a

potentially challenging problem.

At 10-MHz clock speeds the Pentium can operate at roughly 20 million instructions per

second (MIPS). Based on Moravec’s approximation of 50,000 MIPS/g of biological neural

matter [5], the suitability of a Pentium for calculations capable of emulating an animal’s

(admittedly complex) behaviour seems limited as this microprocessor achieves roughly 100

MIPS/g. Accounting for power (again, about 5 W for the 10-MHz Pentium circa 1993) the

Pentium achieves 26 MIPS/mg/W, a measure we will refer to as cognitive efficiency. For

comparison, a honeybee with a 20 mg neural component and a metabolic rate of roughly 10

mW manages an approximate computational output of 1000 MIPS and a cognitive efficiency

of 5000 MIPS/mg/W.

Much better cognitive efficiencies from processor technologies are possible. For example

in [6] 24,200 MIPS/mg/W of cognitive efficiency was achieved in a custom designed 0.25-µm

CMOS processor. The architecture uses a number of simplifications (e.g. no pipelining),

controls (e.g. clock gating) plus low supply voltage (1.0 V) and low frequency of operation

(100-kHz) to achieve its performance. Of course this also limits its peak output to only 0.5

MIPS. Clearly achieving both peak and efficient performance is a challenging objective.

1.2 Background

This work uses a Lyapunov-based non-linear path-planning algorithm, a MIPS architecture,

and the results of [7, 8, 9, 10] as the theoretical and functional components underpinning

the presented CMOS processor. Results reported in previous work on this algorithm that

are critical to the design presented in this thesis have been retested and verified.

3
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Figure 1.2: A feedback representation of a robot path planner.

1.2.1 Nonlinear Path Planning Algorithm

The algorithm that this processor is optimized for is a Lyapunov-based non-linear path-

planner [7]. The robot motion induced by this controller1 looks similar to the movement

generally ascribed to insects and hence is sometimes referred to as insect-like in its charac-

teristics [10]. The goal of this approach however was not to necessarily produce an insect-like

locomotion, but rather to develop a more flexible and scalable means of autonomous prob-

lem solving that simultaneously promised an efficient hardware implementation. A thorough

justification of this point is beyond the scope of this thesis (which is focused on a suitable

translation of the idea into integrated circuit form), but is detailed in [7, 8, 9, 10].

The path-planning idea implemented in this thesis abstracts the search problem to a

feedback mechanism as illustrated in Fig. 1.2. In control system terms, this picture represents

a scenario wherein we seek to produce an output, y, from some entity (a plant), P , that

matches an input φ. The output y produced by P is a result of the stimulus, v, that P

receives. This stimulus is (partly) generated by a controller, C, in the form of the signal u.

In turn, u is the response of C to the difference, φ− y. In any realistic situation we need to

account for the presence of disturbances, d, beyond our direct control and this is shown in

Fig. 1.2 as well. For each y produced, C adjusts u, in the best way it can to minimize |φ−y|
1In this thesis we use the terms controller and path-planner interchangeably.
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(or perhaps some more sophisticated measure of distance between two vector signals).

In the path-planning context P represents an aspect of the robot and the environment

within which it operates. For example P could be as simple as a differential steering mech-

anism operating on a floor with some coefficient of friction. The input, v, to P could be

the differential steering commands consisting of some signals proportional to the intended

translational and rotational velocity desired of the device. The “environmental” output, y,

could be a measure of the device’s location and orientation. Similarly, φ, could be a measure

of the goal’s location in terms of Cartesian coordinates. When y and φ match or are “close”

to some suitable degree the machine’s goal has been reached and its problem is considered

“solved”.

The reader may be able to imagine that such a scheme has the potential to scale towards

more sophisticated levels of operation. One approach is to nest feedback models into a

recursive hierarchical pattern as illustrated in Fig. 1.3. Herein, the system is split into

three levels with some ostensibly complex goal defined by φ3 fed in at the top level and

achieved through the combined operation of lower-level behaviours. Such a scheme follows

the controller hierarchy imagined by Brooks 20 years ago, a proposal that launched significant

activity into reactive robotics [11], a contrast to the deliberative systems characteristics of

classical artificial intelligence approaches.

The computational heart of the robot is located within C. In the Lyapunov-based al-

gorithm under consideration, this block is simply a nonlinear ordinary differential equation

solver implementing a state-space description of the machine’s path planning ability. In

general, its function can be expressed with

u̇ = Au+Be (1.1)

where e is the error value generated by φ− y. The lower case symbols used in (1.1) are

simply vector versions of those presented in Fig. 1.2. The matrices A and B effectively

describe the system (the robot and its environment), their derivation is the purview of
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Figure 1.3: An oblique view of the feedback mechanism applied recursively to handle more
sophisticated operations.

nonlinear control theory as outlined in [7]. We now briefly elaborate on the implications of

achieving this manner of controller.

The state-space formalism for generating commands for mobile robots (i.e. the control

signal, u) obviously differs from the classical scripting technique that relies on such constructs

as if-then. In some sense, we can think of this as another programming language, albeit one

“compiled” by the techniques of nonlinear control theory which are responsible for finding

the appropriate expressions for A and B while working under the constraints imposed by

P , d (see Fig. 1.2) and the type of convergence desired between y and φ. In the particular

algorithm under consideration in this thesis the so-called Lyapunov synthesis technique was

employed in conjunction with the backstepping approach [12] to obtain A and B.

Considerations of the nonlinear methods behind the details of (1.1) are (far) beyond

the scope of this thesis. In short, the Lyapunov technique serves as an efficient means of

deciding on the stability of a dynamical system. This stems from the fact that it needs

only to solve for a scalar description of the system rather than its full set of differential

6



equation expressions. Run “backwards”, the Lyapunov analysis approach can serve as a

means of synthesis, by deciding what parameters are required to achieve stability (i.e. to

have y ultimately approach φ and achieve a solution). The backstepping approach is a

means of retaining the solution derived from the Lyapunov synthesis while including extra

filtering into the system to fine-tune the machine’s response. These actions don’t change

the structure of (1.1), but they do modify the final expressions for A and B. As mentioned

however, this part of the system design is not the concern of this thesis. Rather the focus is

on presenting an IC realization of the algorithm that is compact, power efficient, scalable,

and capable of supporting a suitable array of A and B as called upon by a variety of plants

and nonlinear derivation schemes.

In its base implementation, the algorithm uses 25 matrix multiplications and some non-

linear functions to generate a new vector that instructs the robot to adjust its direction

and speed. The algorithm assumes knowledge of its current position and location of its

destination. Using sensors, it detects obstacles in proximity and finds ways to navigate

around those obstacles towards its destination. Tested in [8, 9, 10], the algorithm proves to

be effective in obstacle avoidance, navigating to a destination, and is scalable and “light-

weight” in terms of its power and computational requirements. It can be made to perform

coarse calculations or more precise path calculations using bigger matrices; navigate in a

2-dimensional vector environment or possibly a 3-dimensional vector space; or it can be

designed to run recursively for bigger applications. As already indicated, the work in this

thesis is not only designed to run this algorithm efficiently, but is also designed to be flexible

and scalable to take full benefit of the potential advantages of this approach.

1.2.2 Previous Work

A contribution to the general area of low-power micro-robot IC design in the form of a sim-

plified microprocessor [6] has been outlined above. In the context of the particular algorithm

under consideration in this thesis, a mixed-signal processor (i.e. a combination of analog and
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digital parts) has been designed by Mihir Naik [8]. The mixed-signal implementation differs

from the one presented in this thesis in that it is less flexible and possibly consumes less

power (a thorough system-wide power analysis was not provided in [8]). It uses an analog

multiplier, a digital controller and three separate memory blocks to execute the hard-coded

path-planning algorithm (see page 36 of [8] for a block diagram). By attempting to com-

press the potentially power hungry multiplier realization into a specialized analog component

such a mixed-signal approach suggests the possibility of very low power operation. However,

workload distribution is best done by digital circuitry and the need to interface the analog

and digital portions of a mixed-signal system require data conversion blocks which start to

compromise the power savings. Still, [8] serves as a special-purpose path-planner and an IC-

design proof of concept where the application of a Lyapunov-based path-planning algorithm

can achieve exceptionally low power.

1.2.3 The MIPS Instruction Set Architecture

When a program gets compiled, the compiler converts a high-level programming language

(e.g. C++) into assembly instructions, in which, each instruction represents a simple ele-

mentary task defined by the architecture. Each of these instructions directly corresponds to

a 32-bit machine code2 which a processor can read and execute.

MIPS, short for Microprocessor without Interlocked Pipeline Stages, is a computing ar-

chitecture, which defines an instruction set designed to execute complex software using basic

commands. Baseline versions of this architecture, MIPS32 and MIPS64, are published by

MIPS Technologies Inc. [14] Other popular architectures include IA-32, IA-64, SPARC, Pow-

erPC, etc. MIPS is one of the most common architectures found in embedded applications

and is one of the best known examples of the Reduced Instruction Set Computers (RISC)

class of architectures.

2Machine code word size typically varies between 8 and 64-bits depending on the microprocessor. Gen-
erally, most embedded processors favour a 32-bit design [13].
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In a RISC instruction set architecture, each instruction carries out a simple task and

instructions are fixed-length. The technique began to gain support in the computing field

in the 70’s with the work of John Cocke at IBM but is most commonly attributed to the

efforts of David Patterson (University of California Berkeley) and John Hennessy (Stanford

University) to construct efficiently pipelined machines. In fact, MIPS was a direct outgrowth

of the Stanford efforts into RISC. Besides MIPS the ARM (Advanced RISC Machines)

architecture is another extremely popular example of this design approach. Because of the

simpler tasks and fixed-length instructions, RISC architectures allow the processor design

to be simpler, more efficient, and amenable to scaling and customization. For embedded

designs, the RISC approach is by far the dominant paradigm [15].

Each of the MIPS instructions is 32 bits in length, where the first 6 bits represent the

op-code field that defines the type of instruction being processed [16]. Shown in Fig. 1.4

are the three most common types of instructions expressed in terms of their key constituent

fields.

R-type instructions operate on three operands each read from or written to one of three

registers in the processor’s register file (or register set). The variables, rs, rt, and rd, denote

the address of the register within the register file where each of the operands referenced by

the instruction are located or are to be placed.

I-type instructions also operate on three operands. Two of these are again associated

with locations (rs and rt) in the register file and a third, an immediate value is contained

directly in the instruction itself.

J-type instructions operate with a 26-bit immediate field. As with I-type commands,

immediate values are defined within the instruction, which could be 16 bits or 26 bits and

be used for additions, comparisons or defining addresses. As noted, register locations are

defined using 5 bit addresses (see Fig. 1.4) in the instruction and hence provide up to 25 = 32

register locations for instructions to operate on.
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Figure 1.4: MIPS instruction structure

Finally, in addition to the op-code, there are the sa and funct fields that define more

specific tasks for R-type instructions [4].

1.3 Thesis Contributions

This thesis presents a different approach to low-power IC computing specifically optimized

for the non-linear path-planning algorithm introduced in [7]. As noted above an IC design

of this algorithm was also presented in [8] (although not fabricated). As opposed to [8], the

sub-threshold processor presented in this report is very flexible in accommodating changes

in the algorithm, tuning for different environments, and tuning the data processing. Using

the MIPS architecture as its foundation, unnecessary functionalities are removed while new

functionalities are added to support and improve the efficiency of the algorithm. Paired

with a custom designed SRAM (static random access memory), this processor is capable of

caching used instructions while providing expandability to accommodate a bigger and more

complex variation of the algorithm by using cache as data memory.

The non-linear path-planning algorithm used, proven in [9, 10] to behave with exceptional

stability while processing a signal corrupted by high levels of noise (e.g. from the sensor

inputs), has been re-tested in this work to verify that it navigates to a destination around

obstacle(s). The algorithm has then been simplified and broken down into machine code

for a custom architecture presented in this thesis using a custom built assembler (without

changing the algorithm itself).

After carefully examining the algorithm for repeated patterns and instructions, the archi-
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tecture presented in this thesis was optimized to run these patterns efficiently. This includes

careful selection and design of the architecture and micro-architecture. The architecture is

similar to MIPS, but much simpler with support for only elementary instructions necessary

for the algorithm. Additional support for multiply-and-add and several non-linear functions

has been added in order to run the algorithm as well as to provide support for possible

variations in the algorithm. Memory space has also been modified to work with the custom

designed memory system with cache controller, cache memory, external flash, sensor inputs,

and motor outputs. The memory system designed is a significant part of this thesis as it is

critical for such flexibility and expandability.

Micro-architecture, another significant part of the work in this thesis included the design

of an efficient ALU that can execute all the instructions in this architecture, and ways

of executing non-linear functions efficiently and reliably. Micro-architecture design greatly

influences the power efficiency, reliability and computational power of the processor.

With all the above parts depending upon each other, it was critical that they all work

in sync and are optimally designed to work with one another. This thesis presents the full

design from algorithm to transistor, with two iterations of the design fabricated in a 130-

nm and a 90-nm CMOS technology. Simulation results as well as test results show that

the design is further scalable to variable complexity of the algorithm and also scalable to

different (more advanced) technologies.

In comparison to a general purpose processor, the processor presented in this thesis

consumes less space, less power and weighs less. Hence making it exceptionally suitable for

small robots (micro-bots) that require navigation capability and light computational needs.

1.4 Thesis Outline

This thesis will explain the different hierarchies of design and the results. The following

Chapters are organized as follows:
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• Chapter 2: How the methodologies were selected and developed along with

the proposed architecture.

• Chapter 3: Implementation details of the processor and each of its customized

components to achieve the proposed functionality.

• Chapter 4: How the processor was integrated into the full chip and fabricated

in different technologies.

• Chapter 5: The simulation results of each component and the full design. Also,

the test results of the fabricated chips.

• Chapter 6: Reflect on the results of the chips, summary of accomplishments

in this work, and how the design can be further improved.
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Chapter 2

METHODOLOGIES

The planning algorithm’s implementation in silicon followed a design methodology consisting

of three main steps. These were carried out in an iterative fashion and consisted of: 1.)

the translation of the algorithm into a form optimized for execution on a low-power von

Neumann machine, 2.) the design of a suitable computational instruction set architecture

for the algorithm, 3.) the design of the physical (transistor-based) make-up of the computing

machine. These steps are elaborated in the following sections of this chapter.

2.1 Planning Algorithm Translation

The translation of the algorithm into a form suitable for a low-power von Neumann ma-

chine consisted of three main elements. The simplification of the core algorithm’s computa-

tions, the customization of the algorithm to the needs of an instruction-based machine and

simulation-driven verification of the resulting machine-level program.

2.1.1 Simplification

The Lyapunov-based non-linear path-planning algorithm implemented in this work includes

25 matrix multiplications, 4 non-linear functions, 12 addition/subtractions and an inverse.

A summary of the functions executed as part of this algorithm is given in Appendix A.1.

All of these operations can be either reduced, simplified or pre-calculated.

For example, the inverse can be pre-calculated, all multiplications by 0 or 1 can be

eliminated, and some calculated values such as BtP (outlined in Appendix A.1) can be

saved and reused in future calculations. Also, because of the inherent characteristics of this

algorithm, there are many repeating values within the matrices all of which can be reduced
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when broken down into elementary functions.

Using this method and a customized computing architecture, the 40 line MATLAB code

(executing 61 calculations) capable of describing the controller (see Appendix A.2 for a copy

of the controller MATLAB code) can be translated into 110 lines of assembly instructions

as shown in Appendix A.3. Given that the MATLAB code consists of non-linear functions

and matrix arithmetic, 110 lines of assembly instructions represent a significant reduction

in complexity. By comparison, the mixed-mode architectural formulation of this controller

presented in [8] implemented the algorithm with a state machine consisting of roughly 200

states.

2.1.2 Customization

One of the benefits of the algorithm employed for the implementation of the path planning

function is the constancy of its structure. That is, the scale and numerical settings of the ap-

proach adapt to problem details, but the form of the algorithm (i.e. the calculations required

of the Lyapunov and backstepping schemes and their sequence) remains constant. This prop-

erty made it practical to manually identify the computational optimizations applicable to

the MATLAB code (as noted in the previous section) and then to manually implement these

in machine instructions for the custom processor (a discussion of the core’s instruction set

appears below). For the realization of larger problems (e.g. planning over a number of be-

havioural levels like physical location search, resource gathering, group behaviour, etc.) a

custom compiler may be a useful tool.

Following manual translation to assembly code an assembler written in Perl (Appendix B.2),

was used to convert the assembly code to machine code and/or a verilog memory block. This

assembler has proven to be very useful as test programs are much easier to write in assembly

than machine code, and also, assembly is signficantly easier to debug.

In addition to the algorithm itself, the simulator (written in MATLAB/Simulink) has

also been modified to enhance the testing phase of the project. It has been made more
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Figure 2.1: Original model of the path planning simulation [9].

organized, easier to read, has data recording capability on all the important variables, and

has maximum/minimum limits on the motor for a more realistic simulation. Also, a clock has

been added to the controller that runs each instruction sequentially (rather than a full loop

each time within which each calculation is completed). As an additional feature, the revised

simulator displays the simulated path in real-time so it is no longer necessary to wait for the

entire simulation to complete. For easy comparison, the original Simulink model presented

in [9] is shown in Fig. 2.1, and the new one is shown in Fig. 2.2. Please see Chapter 5.1 for

more details on the MATLAB simulation.

2.1.3 Verification

As a final verification step before the main hardware design, the modified algorithm in

machine code (see Appendix A.4) was put through a MATLAB simulated processor (see

Appendix B.1), that runs through the full path planning simulation the same way [8] and

[10] did.

A typical output of the simulation is shown in Fig. 2.3. The graph represents a 2-D

map of the simulation environment, where the x’s represent obstacles and the line represents
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Figure 2.2: New Simulink model of the path planning simulation.

the calculated navigation path of the robot from coordinate (0,0) to (10,10). This result

matches the prediction made using the original MATLAB description of the algorithm and

demonstrates that after all the computational simplifications and modifications applied to

it the algorithm still works to navigate to destination and avoid obstacles. There are more

details regarding the simulation in Chapter 5.1.

2.2 Architecture

The architecture1 of the processor described in this thesis is the result of many assessments

and iterative design choices that took into account different methodologies useful for the

achievement of flexibility, expandability and power. While Chapter 3 discusses the memory

and microarchitecture components more closely, this section primarily describes the instruc-

tion set architecture of a modified-MIPS system and the constraints that shaped it.

For the reader’s reference a schematic of the microarchitecture used for the processor is

1Following generally used contemporary terminology, we use “architecture” as an overarching term cov-
ering instruction set, organization, and hardware components of a computing system. As noted in [17] the
term took on such a general flavour with the increasing integration of computers within one semiconductor
substrate and should be distinguished from the more specific “instruction set architecture” and ”microarchi-
tecture” designations.
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shown in Fig. 3.1. The design conforms to the classic von Neumann arrangement and is

coarsely partitioned into a control module (Controller plus ALU Control blocks in Fig. 3.1)

and a datapath module (the remaining assortment of blocks in Fig. 3.1), a very common

means of partitioning digital systems [17]. The datapath is responsible for carrying out oper-

ations on the input data while the control determines the sequence in which these operations

are executed.

2.2.1 Digital vs. Analog

The first choice in architectural design was actually quite a primal one: a decision between

an analog or a digital realization of the computer. The choice for a digital implementa-

tion and the decision to apply it towards a modified-MIPS system was made to achieve

a larger degree of operational flexibility. In its application of general control theory tech-

niques, the path-planning algorithm proposed in [7] is inherently capable of addressing many

different environments and problem settings; it’s potential for scaling to more complex and

higher-dimensional problems in a recursive fashion, although not yet rigorously proven, shows

promise through earlier case studies [10]. It was obviously incumbent on the implementa-

tion to somehow preserve this inherent capability within the physical constraints posed by

micro-robotic systems.

In initial attempts at implementing the path planning algorithm an analog approach

was followed [8]. Indeed, such a realization was an initial motivation for the design of the

algorithm itself given the general performance advantages of analog systems for processing

algorithms sufficiently narrow in scope (e.g. high-frequency amplification as a simple form

of signal processing). In [8] the approach was hard-coded to reduce area and took advantage

of the algorithm’s resistance to noise to reduce power consumption.

However this approach greatly constrained its ability to address a wider array of prob-

lems. Thus, despite the repetitive calculations required by the algorithm, enough potential

for scaling exists to make an analog realization quite restrictive. A digital implementation,
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Figure 2.4: Schematic of the modified-MIPS processor design.
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though not as small, can take the algorithm to its full potential in flexibility and expandabil-

ity, and still achieve small size and lower power in comparison to general purpose processors.

2.2.2 Multicycle Processor

The modified-MIPS processor uses a multicycle microarchitecture (Fig. 3.1) to minimize

space and complexity [4]. A multicycle microarchitecture refers to a processor arrangement

wherein instruction execution is dissected into multiple steps depending on the instruction.

This dissection is not used to achieve any form of parallelism as would be the case in a

pipelined processor, but rather allows the computer to allocate an optimum number of cycles

per instruction each of which are still executed without overlap.

While a pipelined system can boost the performance of the processor and allow higher

clock speeds, such capability is not immediately necessary for running the path-planning

algorithm under consideration. Since the algorithm is intended to operate directly on real-

time sensor data that in general rarely encounters dynamics exceeding roughly 100 Hz, its 100

instruction execution cycle would seem as not too great a demand on computing resources,

especially for nanoscale CMOS technologies. For these reasons this work chose to err on the

side of simplicity and did not deeply consider a pipelined implementation. Still, it may be

the case that a pipelined microarchitecture presents an even more efficient means of utilizing

computing resource. This may especially be so given the lower incidence of control hazards

for the Lyapunov-based planning approach.

A single cycle microarchitecture allows similar performance using a lower clock speed, but

to complete each instruction in a single clock, much more hardware is required. In the case of

this multicycle architecture, only one shared memory is used and only one ALU (arithmetic

logic unit) is needed for all the calculations. This minimizes the size of the processor as well

as its power consumption.
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2.2.3 Word-Addressable Memory

Since most of the memory access consists of instruction fetches, where each instruction is

a word, the processor uses word-addressable memory. This simplifies the memory access

and expands the address space. There is a memory controller (discussed in greater detail

in Chapter 3.2) where the word-addressable memory is translated to byte-addressable for

greater compatibility with external memory and to reduce the number of pins on the chip.

2.2.4 Instruction Set Architecture

The modified-MIPS processor takes instructions and variables from a reprogrammable mem-

ory, like all general-purpose processors. As with the majority of processors today the design

employs a three-address instruction scheme, that allows it to explicitly reference the locations

of up to three operands in one instruction. This scheme is preferred by many compilers that

employ a three-address intermediate representation and hence map very easily to a similarly

structured instruction set [18].

Further, the design employs a register-to-register arrangement that only allows one mem-

ory address directly to main memory within an instruction (these being the load or a store

instructions) and otherwise allows instructions to only access operands directly within a reg-

ister file. For the obvious reason of reducing the number of (resource intensive) accesses to

main memory this paradigm has been dominant for RISC architectures released since the

1980’s. For the purpose of studying a design with maximum flexibility the 32-register file

size common to standard MIPS has been retained in the modified-MIPS processor.

When main memory reads are required, to save power and boost performance, the pro-

cessor reads instructions from the reprogrammable external memory and caches everything

in its internal SRAM (Static Random Access Memory) upon first execution. Therefore, after

the first loop of the algorithm, the processor would rarely, if ever, access the external mem-

ory. Once again, this ability to localize execution over many instructions is a fundamental
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property of the underlying algorithm being implemented.

The full instruction set shown in Table 2.1 is modified from a standard MIPS processor.

With more than 60% of the original instructions stripped away (i.e. 40 out of 63) the design

underwent a significant alteration. This optimization saves instruction memory by reducing

the instruction count by 57%. The reduction in instruction count not only reduces memory

usage, it also makes the entire processor more efficient because it needs to fetch and decode

less instructions.

The new architecture provides added support for 16 trigonometric functions which allow

ready means of implementing spatial rotation calculations as well as the type of saturating

and pulse functions utilized by the algorithm’s so-called sliding-mode control strategy (again,

not detailed in this thesis) [19] to regulate the system based on gross variable measures (e.g.

controlling the dynamics of state variables using sign values rather than actual magnitudes).

As discussed in Chapter 3 the functions are computed using a look-up-table for which the

rs setting denotes either a periodic function (rs = π) or an aperiodic one (rs = 0).

Naturally, with the load word (lw) and store word (sw) commands, the instruction set

retains the ability to exchange information between the datapath registers and main mem-

ory. Besides enabling the feeding of instructions through the processor these commands are

a critical component to scaling. They allow the storage of the state-variables in one layer of

a multi-tiered control hierarchy as discussed in Chapter 1 while processing the calculations

native to another layer. Such flexibility is a well known advantage of stored-program ma-

chines. In its present incarnation, the implemented processor allows for the storage of 256

variables in its cache.

To further the flexibility of the system, the custom architecture retained branch (beq) and

jump (j) instructions. Such functions readily allow the algorithm to access alternate routines

in the stack and hence give the controller the ability to efficiently operate over different

levels of hierarchy running potentially alternate versions of the controller (e.g. systems
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Table 2.1: Supported Instruction List for the Modified-MIPS Processor

R-type, (op = 000000)
Instruction Opcode/Function Operation
sll 000000 rd = rt << sa
srl 000010 rd = rt >>> sa
sra 000011 rd = rt >> sa
mfhi 010000 rd = {rs ∗ rt}[63 : 32] loads previous result, does not calculate
mflo 010010 rd = {rs ∗ rt}[31 : 0] loads previous result, does not calculate
mult 011000 rd = {rs ∗ rt}[52 : 21]
multu 011001 rd = unsigned{rs ∗ rt}[52 : 21]
multa 011100 rd = rd+ {rs ∗ rt}[52 : 21]
add 100000 rd = rs+ rt
sub 100010 rd = rt− rs
and 100100 rd = rs&rt
or 100101 rd = rs|rt
slt 101010 rd = (rs < rt)
cos 110001 rd = cos(rt), rs = π
cosh 110101 rd = cosh(rt), rs = 0
ncos 111001 rd = −cos(rt), rs = π
ncosh 111101 rd = −cosh(rt), rs = 0
sin 110000 rd = sin(rt), rs = π
sinh 110100 rd = sinh(rt), rs = 0
nsin 111000 rd = −sin(rt), rs = π
nsinh 111100 rd = −sinh(rt), rs = 0
sec 110011 rd = sec(rt), rs = π
sech 110111 rd = sech(rt), rs = 0
nsec 111011 rd = −sec(rt), rs = π
nsech 111111 rd = −sech(rt), rs = 0
csc 110010 rd = csc(rt), rs = π
csch 110110 rd = csch(rt), rs = 0
ncsc 111010 rd = −csc(rt), rs = π
ncsch 111110 rd = −csch(rt), rs = 0
I-type, (op != 000000, 00001x, 0100xx)
addi 001000 rt = rs+ immediate
andi 001100 rt = rs&immediate
ori 001101 rt = rs|immediate
slti 001010 rt = (rs < immediate)
beq 000100 if(rs = rt), PC + immediate
lw 100011 rt = memory(rs+ immediate)
sw 101011 memory(rs+ immediate) = rt
J-type, (op != 00001x)
j 000010 PC = immediate

23



derived using an alternate Lyapunov candidate, or differing gain functions in a sliding-

mode calculation or even employing entirely new control strategies). Should a multi-level

implementation of the algorithm be sought, this is an obvious means of supporting such

requirements.

At the same time, the custom implementation removed some convenient, but not essential

MIPS instructions related to procedure calls and routines. These would be the jump and link

(jal) and jump register (jr) commands. Their absence requires the programmer to explicitly

specify and store addresses. It is precisely the minimal dependance on conditionals of the

planning algorithm in question that minimizes the inconvenience associated with the removal

of these instructions.

In addition to the memory, conditional, and non-linear trigonometric function support

special instructions for multiplication operations was included. In particular the multa

(multiply-and-accumulate) function was added to the instruction set and the mult (multiply)

functions was modified. This was done because the algorithm depends heavily on multiply

and add instructions as a result of the matrix multiplications it regularly invokes.

The mult function was modified such that it automatically shifts and saves the result into

a destination register, and the multa function shifts and adds the result to the destination reg-

ister. In the MIPS32 instruction set architecture [14], the multiply and multiply-accumulate

functions require additional instructions to fetch the resultant higher-order and lower-order

product bits and manually shift the result to the correct place followed by saving or adding

the result into some user selected destination register of the register file. These extra steps

are a result of the fact that a separate multiplication unit, outside the pipelined datapath,

is assumed in the MIPS32 architecture [15]. As such, the standard MIPS architecture al-

lows multiplication functions to be carried out in parallel with other instructions being fed

through the pipelined datapath. However, this requires extra instructions to seamlessly rein-

tegrate the result of the multiplication, which is effectively asynchronous with the central
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processor, into the main datapath.

No such limitations need be imposed on the customized processor under considera-

tion here, especially since any issues with hazards or interlocks are avoided by foregoing

a pipelined approach for the multicycle implementation. Thus, completely self-contained

multiplication functions have been implemented for the planning processor. As a result,

every time the mult instruction is used, only one instruction is executed (instead of a se-

quence of five as required by the standard MIPS32 architecture), and every time the multa

instruction is used, only one instruction is executed (instead of six).

Of course standard arithmetic, logical, and shift functions are retained as well. These

include addition (add), subtraction (sub), logical and (and), logical or (or), set on less than

(slt), shift left logical (sll, left shifts that fill the least significant bits with zero), shift

right logical (srl, right shifts that fill the most significant bits with zero) and shift right

arithmetic (sra, right shifts that preserve the sign bit).

In summary, with the above modifications, simulations indicate that the processor can

be expected to operate at up to 1.25 million-instructions-per-second (MIPS) from a 400-mV

supply and up to 12 MIPS from a 1-V supply. Fig. 2.5 graphs the data for two versions of

the operation, one where instructions are fetched from the cache and one where they are

fetched from external memory. Nine extra clock cycles are needed for an external instruction

fetch obviously reducing the computational performance of the processor in this case.

The MIPS performance numbers of Fig. 2.5 were extracted based on the worst case

delay through the processor. In this design, the worst case delay was that experienced by

the progress of the multiplication functions through the ALU. Using the Synopsys
R©

Design

Compiler, a digital circuit synthesizer, it was determined that the delay through the ALU was

equivalent to 132 fanout-of-4 (FO4) inverter delays. This effectively determines the minimum

clock period (in a single-edge clocking scheme) required to process the instructions inside

the processor. Alternatively, it is a statement on the maximum clock frequency sustainable
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Figure 2.5: Expected processor performance at different voltage levels. The dashed and solid
curves refer to instruction fetching from the cache and external memory respectively.

by the design.

The ALU delay was extracted using the 90-nm CMOS standard cell library available from

the Taiwan Semiconductor Manufacturing Corporation (TSMC). One of the silicon versions

of this design was ultimately fabricated in this CMOS technology. The actual inverter FO4

delay as a function of the supply voltage, VDD, was determined using the Spectre circuit

simulator available from Cadence
R©

. At VDD = 400 mV the FO4 delay was about 180 ps

(implying a maximum clock frequency of 42 MHz). These results are discussed further in

the following section 2.3.

With a maximum clocking frequency established it only remained to calculate the average

number of cycles per instruction (CPI) to attain a MIPS performance estimate. The CPI

is calculated by finding the weighted average of the clock cycles needed to complete an

iteration of the Lyapunov algorithm. The weighting is based on the type of instruction and

the number of times that instruction occurs during an iteration. For this design the average
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CPI was 19.3 for the cache-based operation and 27.7 for a processor operating from external

memory. Finally, dividing the processor’s operational clocking frequency of 100 kHz by the

CPI led to the approximate MIPS performance curves shown in Fig. 2.5.

2.3 Sub-threshold Transistors

Due to its suitability for low-power digital operation (i.e. high density of interconnect and rel-

atively low parasitic leakage current) a complementary metal-oxide-semiconductor (CMOS)

technology was the obvious choice for processor implementation. Further, running the CMOS

devices at voltages below the device’s threshold voltage (i.e. the voltage at which a fully

inverted channel is formed under the gate of the transistor and the MOSFET switch is

generally considered “closed”) can help achieve even lower power operation [20].

MOS transistors made to operate in such a fashion are noted as operating in the “sub-

threshold” regime. It is a technique that was first indirectly employed in wristwatch applica-

tions over 40 years ago where attempts to operate MOS transistors as “normally” as possible

under low supply voltage effectively implemented sub-threshold operation [21, 22]. The tech-

nique was more clearly articulated shortly thereafter by Swanson and Meindl [23, 24] and

has been steadily but slowly gaining more relevance in general purpose computing over the

last 20 years [25, 26]. Devices made to operate in this mode are also referred to as being in

weak inversion, a reference to the relatively small amount of mobile charge introduced for

the purpose of current conduction through the transistor. Devices operating above threshold

are said to be strongly inverted.

Although they can achieve substantially lower operating power levels, sub-threshold cir-

cuits suffer from long delays relative to their strongly inverted counterparts (because they

conduct less current and hence require more time to charge up a given capacitance to a

given voltage) and are sensitive to noise. In Fig. 2.6, Spectre simulations of inverter delay

as a function of supply voltage (VDD) make it clear that voltages below 300 mV increase the
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Figure 2.6: Voltage scaling delay in TSMC’s 90-nm standard cell digital library inverter
circuit (FO = 4).

delay exponentially. Fig. 2.7 is the same graph in log scale, where the extreme values are

shown more clearly. Generally speaking, the ideal operating voltage for low power and speed

balance (i.e. minimum energy per operation) is determined by an ideal balance of leakage

and dynamic power as discussed below [27].

In [28], contemporary viewpoints on the ideal operating voltage for digital CMOS circuits

are discussed. Regular, above-threshold, operating voltages are wasteful and consume high

active dynamic power, PACT . The dynamic power refers to the power lost in charging and

discharging digital circuits during information transfer from one block to the next. For

CMOS this is generally expressed with

PACT = α · C · V 2
DD · fclk (2.1)

where C refers to the capacitance being charged and discharged by a digital circuit, VDD

is the supply voltage of the digital circuit (and hence the maximum voltage to which the

capacitive load is charged), fclk is the underlying clock frequency to which information flow
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Figure 2.7: Voltage scaling delay in TSMC’s 90-nm standard cell digital library inverter
circuit (FO = 4).

through the digital system is subject and α is the proportion of the clock’s transitions during

which the digital circuit is actually made to charge a capacitance.

As VDD and fclk are lowered PACT can obviously drop substantially. As the dynamic

power drops, another loss component, the static leakage power, PLEAK , starts to become

an important power contributor to account for. PLEAK is simply the power consumed by

a digital circuit when it is not switching. Ideally it should be zero for CMOS, but current,

ILEAK , leaks through the circuit from VDD to ground and hence induces the power drain

PLEAK = ILEAK · VDD. (2.2)

As VDD is reduced therefore increasing delay and reducing fclk the amount of time needed

to complete a whole calculation increases, thus draining more energy due to leakage in the

interim. As already shown in Fig. 2.6 the delay of a digital circuit increases exponentially

as VDD drops performance deep into sub-threshold.

Fig. 2.8 clearly demonstrates the tradeoff between the active and static consumption
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Figure 2.8: Dynamic and static energy/cycle tradeoff in a 65-nm CMOS ALU [28].

elements, by sketching the average energy consumed per cycle of a 65-nm CMOS ALU as a

function of VDD. As shown therein, an optimum energy per cycle performance is reached at

VDD ≈ 400 mV.

Fig. 2.9 further shows the minimum energy point in different technologies. It is apparent

that this minimum energy point exists in different technologies around similar voltages, and

most papers in low power digital circuits or SRAM designs operate in this voltage range.

Since the path-planning algorithm has a very low computing performance requirement, the

operating voltage can be reduced to the minimum energy point to reduce the power con-

sumption by an order of magnitude.

In light of these studies plus the desire to implement an optimal power solution, a mini-

mum supply of 400-mV was targeted for the processor in question and hence near-threshold

operation adopted as a suitable design choice.
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Figure 2.9: Total energy/cycle consumption as a function of VDD for various CMOS tech-
nology generations [28].
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Chapter 3

PROCESSOR & MEMORIES

The modified-MIPS processor was built according to methods discussed in Chapter 2. In

the sections below, the implementation of the processor, the memory, specialized command

implementation, analog components and test are discussed in further detail. In Figure 3.1,

the schematic of the processor is shown without the test circuits, analog components, and

external connections. This illustrated the relation between the core components, and how

they interact. The full Verilog code for this work is included in Appendix D for reference.

3.1 Arithmetic Logic Unit

The Arithmetic Logic Unit (ALU) was designed to be small and power efficient. To achieve

this, the ALU was made using a minimum number of components while retaining all the

required functionality. Multiplications and additions are both done serially, using a 32-bit

ripple adder, a 32-bit register (for the multiplier operand) and a 64-bit loop shift register (also

called a rotator and used for the multiplicand and product operands). The direct integration

of the multiplication function with the processor’s datapath is a break from the traditional

MIPS arrangement which does not merge this block directly with the main pipeline. The

reason for this choice in the standard MIPS design was due to the excessive interruption that

such a long-delay unit would cause to a pipeline, a problem not encountered in the multi-

cycle design under consideration here [15]. Together with some combinational logic and

multiplexers, the ALU is capable of executing: addition, subtraction, signed and unsigned

multiplication, logical shifts and arithmetic shifts, modulus, AND, OR, and SLT.

The ALU controller (i.e. the ALU Control block in Fig. 3.1) has also been heavily modified

from the simple combinational decoder considered in typical MIPS systems [4, 16] to a custom

32



1
1s
e
l

D
a
t
a
1

A
D

R

Lresult

nextPC

C
a
ch

e
C

o
n
tr

o
ll
er

W
r
it
e
D

a
t
a

Column Adr

Row Adr

Write Data

Read Data

C
a
ch

e
M

em
o
ry

IRwrite

memdata

E
N

R
E

G

instr

R
E

G

RegDst

MemtoReg

in
s
t
r
[2

5
:2

1
]

in
s
t
r
[2

0
:1

6
]

in
s
t
r
[1

5
:1

1
]

in
s
t
r
[2

0
:1

6
]

in
s
t
r
[1

5
:1

1
]

m
e
m

d
a
t
a

Lresult

s
e
l

0 1

s
e
l

s
e
l

0 1

0 1 in
s
t
r
[1

5
:0

=
IM

M

in
s
t
r
[3

:0
]
=

t
r
ig

s
e
le

c
t

W
r
it
e
D

a
t
a

L
r
e
s
u
lt

n
e
x
t
P
C

in
s
t
r
[2

5
:0

]
=

t
a
r
g
e
t

extend

=
z
e
r
o

ALUresult

W
r
it
e

E
n
a
b
le

A
1

A
2

W
r
it
e

A
d
d
r
e
s
s

W
r
it
e

D
a
t
a

D
a
t
a
2

R
eg

is
te

r
F

il
e

s
e
l

0 1

ALUout

ALUSrcA

ALUSrcB

PC

s
e
l

0 1

0
0

0
1

1
0

0
x
0
0
0
1

A
L
U
o
u
t

d
o
n
e

in
s
t
r
[1

0
:0

]

A
L

U
C

o
n
tr

o
l

ModCount

LUTen

ALUControl

ALUinit

Sign

ALUen

ALUControl

A B

A
L

U

in
s
t
r
[3

:0
]
=

t
r
ig

s
e
le

c
tL

U
T

A
L
U
o
u
tL
U
T
o
u
t

A
L
U
o
u
t

s
r
c
1

s
r
c
2

R
E

G

R
E

G

s
e
l

0 1

LUTen

r
e
s
u
lt

L
r
e
s
u
lt

instr[25:0] = target0PC[31:26]

PCSource

s
e
l

nextPC

0
0

0
1

1
0

1
1

P
C
e
n

Io
r
D

C
o
n
tr

o
ll
er

P
C
S
o
u
r
c
e

d
o
n
e

in
s
t
r
{
[3

1
:2

5
],
[5

:0
]}

A
L
U
S
r
c
B

A
L
U
S
r
c
A

M
u
lt
a

r
o
u
t
e

z
e
r
o

R
e
g
W

r
it
e

R
e
g
D

s
t

M
e
m

t
o
R
e
g

IR
w
r
it
e

r/w

Halt

MeMen

IorD

PCen

P
C

E
N

R
E

G
0 1

s
e
l

Figure 3.1: Schematic of the modified-MIPS processor design.
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state-machine. This allows components in the ALU to be reused for different purposes.

The ALU Control generates a 4-bit signal that gives the ALU its broad functionalities by

activating different parts of the ALU or by sequencing through a series of different functions

(e.g. multiplication requires three different operations to complete).

Fig. 3.2 illustrates the schematic of the ALU and the control signals needed for each

function. The ALU Control works like a second stage instruction decode (following the core

Controller in Fig. 3.1) where, in the initial state, it decodes all the instructions and initiates

the multi-cycle instruction processing through the datapath’s combinational logic.

In a standard single-cycle calculation, the processor would take the result from the ALU

and proceed to subsequent actions without interruption. In a multi-cycle calculation, the

ALU Control block cycles the ALU through the appropriate sequence of calculations, while

pausing all other processor datapath operations until the calculation is complete. The full

Verilog implementations of the ALU Control and the ALU itself are given in Appendix C.2

and are contained in modules alucontrol and alu.

The significance of this ALU is that multiplication support only requires the inclusion of

a 64-bit register within the datapath, and that it can carry out both signed and unsigned

multiplication. The inclusion of such a register is not in itself a compromise relative to

the standard MIPS architecture, which effectively accommodated such a structure by the

inclusion of two extra 32-bit registers for storing the multiplier’s product [14].

Although signed multiplication could be accomplished using a series of comparisons,

inversions and unsigned multiplications, native (i.e. direct) hardware support for such a

sequence of operations is much more difficult. Eq. (3.1) shows the arithmetic for unsigned

multiplications. In comparison, the modified Baugh-Wooley signed multiplication arithmetic

shown in (3.2) includes the irregularities of additional constants and some inversions [29]. The

ALU Control block routes input signals and intermediate signals through different existing

components (shifter, inverters, multiplexers, etc.) to accomplish this intricate task, a clear
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motivation for a state-machine realization of such a block as discussed above. The 32-bit

ripple adder and the 64-bit register then work together as an accumulator to complete the

serial multiplication.

a7 a6 a5 a4 a3 a2 a1 a0

× b7 b6 b5 b4 b3 b2 b1 b0

a0b7 a0b6 a0b5 a0b4 a0b3 a0b2 a0b1 a0b0

a1b7 a1b6 a1b5 a1b4 a1b3 a1b2 a1b1 a1b0

a2b7 a2b6 a2b5 a2b4 a2b3 a2b2 a2b1 a2b0

a3b7 a3b6 a3b5 a3b4 a3b3 a3b2 a3b1 a3b0

a4b7 a4b6 a4b5 a4b4 a4b3 a4b2 a4b1 a4b0

a5b7 a5b6 a5b5 a5b4 a5b3 a5b2 a5b1 a5b0

a6b7 a6b6 a6b5 a6b4 a6b3 a6b2 a6b1 a6b0

a7b7 a7b6 a7b5 a7b4 a7b3 a7b2 a7b1 a7b0

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

(3.1)

a7 a6 a5 a4 a3 a2 a1 a0

× b7 b6 b5 b4 b3 b2 b1 b0

1 a0b7 a0b6 a0b5 a0b4 a0b3 a0b2 a0b1 a0b0

a1b7 a1b6 a1b5 a1b4 a1b3 a1b2 a1b1 a1b0

a2b7 a2b6 a2b5 a2b4 a2b3 a2b2 a2b1 a2b0

a3b7 a3b6 a3b5 a3b4 a3b3 a3b2 a3b1 a3b0

a4b7 a4b6 a4b5 a4b4 a4b3 a4b2 a4b1 a4b0

a5b7 a5b6 a5b5 a5b4 a5b3 a5b2 a5b1 a5b0

a6b7 a6b6 a6b5 a6b4 a6b3 a6b2 a6b1 a6b0

1 a7b7 a7b6 a7b5 a7b4 a7b3 a7b2 a7b1 a7b0

s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

(3.2)
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In greater detail, in the first stage of the multiplication sequence, the 64-bit register is cleared

and initialized to 0x0000 0000 0000 0000 for unsigned or 0x0000 0000 8000 0001 for signed

multiplication. This accounts for the two constants that will later appear in partial product

accumulations [i.e. the 1s in the partial product sequence of (3.2)]. The 64-bit register

is a loop shift register (i.e. a rotator) that rotates right, incrementally pushing out the

multiplicand (to the right) as it constructs the product bit-by-bit (in the 64-bit loop shift

register). Therefore, the adder has continual access to the 32 most significant bits of the

intermediate products as input and, after 32 calculations, results in the final product are

correctly positioned within the 64-bit register. Constants are loaded automatically when

the calculation loops around to the most significant bit (MSB). Using the loop shift register

eliminates the need for a huge 32-bit by 32-input multiplexer.

Also, in the top-right corner of Fig. 3.2, input A gets loaded into the 32-bit shifter (that

also doubles as a means of realizing arithmetic and logical shift operations), where input A

is shifted right, and the LSB of the output will sequence from ALSB to AMSB for each step

of the multiplication. With the addition of some small logic, multiplexers and the existing

32-bit inverter, the ALU controller is capable of making appropriate inversions when needed

for signed multiplications.

3.2 Static Random Access Memory (SRAM)

Many research papers have explored implementations of sub-threshold SRAM cells. Many of

these, however, have not been implemented into a usable memory block complete with control

circuits, and lack consideration of the control circuit’s complexity. Reports with fully realized

memory structures that seemed suitable for integration into the modified-MIPS processor

included [30, 31, 32]. The method described in [32] was adopted for this work because of its

promising result and complete design. It offers better read and write margins because of the
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virtual VDD (V VDD) and the pull-up transistor in the read (output) circuit.

Figure 3.3 shows the schematic for the single-bit 10T (10 transistor) SRAM cell. It

consists of a double inverter loop (transistors M1-M4) for storing the information whose

power supply connection, V VDD, is made to float briefly during write operations. Disengaging

the supply in this way prevents the PMOS pull-up transistors in the inverter loop from

opposing a write through the access transistors (M5 and M6) which conduct write signals

through the bit lines (BL) when they (the access transistors) are engaged by a high word

line signal, WL. This greatly improves the write margin (i.e. the minimum amount of noise

voltage required to prevent an access transistor from overpowering a pull-up transistor) of

the cell because the write signal can drive over the stored signal (now with weak floating

voltage) more easily.

The reader will notice that the read network (transistors M7-M10) employs a separate,

isolated (via M7-M9), read bit line rBL. This buffer circuit is necessary to prevent the

possibility of the read signal overpowering the cell’s contents as maintained by M1-M4,

especially at low operating voltage levels.

In the cell’s read circuitry, both a pull-up (M7) and a pull-down transistor (M8) are used

although only M8 serves to implement the reading operation as rBL is pre-charged (thus

negating the effect of a pull-up). However M7 does serve to reduce leakage, an important

consideration for sub-threshold operation. When the gate voltage of M7 is low the transistor

charges up the source of M10, reducing its leakage current and hence load on rBL. Even

when the gate voltage of M7 is high, the leakage through it is prevented from sinking to

ground by M9 and hence tends to raise the source of M10 again attenuating its leakage load

on rBL.

Next, Fig. 3.4 shows the schematic of a word line control that controls the V VDD in

response to a word-line input WLin. The circuit simply implements an OR logic function

that only engages the floating supply through an activation PMOS transistor when both
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Figure 3.3: 10-transistor (10T) SRAM cell.
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Figure 3.4: Word line control circuit.

WLin and RST are low. During this setting the SRAM cell obviously retains the stored

data. When WLin goes high, WLout follows thus turning on the access transistors for a

write while simultaneously disconnecting the SRAM cell from VDD (i.e. V VDD goes low).

The RST pin is intended to allow the SRAM to be initialized to a known state.

Fig. 3.5 shows the block diagram for a single SRAM word-line, with a representation

of the word-line controller given by the block on the left and a 36-cell instantiation of the

SRAM cell represented by the block on the right (bit<35:0>). The word-line consists of the

stored 32-bit word as well as 4 extra condition bits (described below).

Thirty-two words are then cascaded together in rows to produce a 32-word block that

connects to a memory I/O controller (discussed below) that regulates the connection between

the processor and activities in the SRAM. The schematic of the signal conditioning circuitry

between the memory controller and the core SRAM circuitry is shown in Fig. 3.6.
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Figure 3.5: 36-bit word line arrangement.

Figure 3.6: 32-word block signal conditioner.
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The signal conditioning circuitry consists of buffers, line sense, line pre-charge, and block

enable signals. The rowWLout line activates the word to be written to in the memory block

(i.e. it turns on the access transistors M5 and M6 of Fig. 3.3 in each SRAM cell of the word

of interest), while the rowrWLout activates the read circuitry (i.e. the rWL line in Fig. 3.3)

of each cell. The write bit lines are pre-charged with set with BLbuf and nBLbuf while the

read bit line is precharged with rBLout.

Fig. 3.7 shows a schematic of the SRAM memory arrangement. It is folded into 8 columns

(although the schematic in Fig. 3.7 arranges the 32-word memory blocks in a row format,

these constituents are physically arranged as columns in the chip layout) of 32-word blocks.

A column is selected for write with the signal colWL and a column is selected for read

with colrWL. The signal’s rowWL and rowrWL engage the write and read word lines,

respectively, in the selected columns (i.e. the signals are shared between the 8 memory

blocks). The signal BL provides the command to pre-charge the write bit lines in the

selected column.

The 1-kB SRAM (32 bit words × 32 rows × 8 columns) consumes a significant amount

of chip space due to the high transistor count and the large amount of wiring. Therefore

consideration of the physical layout was a very important part in designing the SRAM.

The most important layout consideration was how each component would be connected

to each other, preferably by grid placement of the component rather than individual wiring.

The dimensions of each cell, the placement of each transistor, direction of each wire and

spacing of metal rails were all important contributing factors.

Fig. 3.8 shows the hand layout settled on for a 10T SRAM cell where by simply placing

cells side by side, top to top and bottom to bottom, results in an elegantly designed SRAM

array that has minimum spacing between cells and requires no additional internal wiring.

The dimensions of a single 10T cell are 2.6×2.635 µm2.

Similarly, the signal conditioner for each 32-word SRAM block must must be pitch
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Figure 3.7: Schematic of the Full 1-kByte SRAM.
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Figure 3.8: Layout of the 10T SRAM cell using TSMC 90-nm technology.

matched to the core memory as well for an effective on-chip arrangement. Relative to the

SRAM call, the signal conditioner contains many more signals that must be wired and uses

a broader variety of different digital standard cells. Adequately laying out this component,

proved to be a more challenging task because of the varying cell widths of the myriad con-

stituent circuits used and the large amount of signals being funnelled through the signal

conditioner.

Fig. 3.9 shows the layout of the signal conditioning circuit (which would be placed at

the bottom of an SRAM block). The design dimensions are 10.08×100.86 µm2. The long

horizontal row shown in Fig. 3.9 consists of four rows of standard cell digital circuits each of

which span the whole 100.86 µm length of the design. The relative location of key signalling

ports in the signal conditioner are labelled in Fig. 3.9.

Along the left side of each 32-word SRAM block, there is a column of 32 word line control

circuits (see Fig. 3.4 for a schematic of each control circuit). Fig. 3.10 shows all of the control

circuits around the SRAM block together with the signal conditioner, word line control and
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Figure 3.9: WL and rWL Buffers (left 1/4); BL rBL read/write logic (right 3/4), in TSMC
90-nm CMOS.

wiring.

Finally, Fig. 3.11 shows the complete 32-word SRAM block, and Fig. 3.12 shows the entire

SRAM built with 8 32-word blocks measuring 845×141 µm2, at density of 465 µm2/word.

To verify this final design, SPICE simulations that read and write to random SRAM

blocks were used to make sure that the circuitry behaves as expected. Also, a Verilog netlist

was extracted and a full verilog simulation was run with the memory controller and the

processor. (see Appendix C.6 for the Verilog netlist )

3.3 Memory System

The memory architecture design is driven by considerations of the MIPS processor, SRAM,

and algorithm’s expandability. Between the MIPS processor, SRAM and external memory

(or memories) and/or I/O(s), is the cache controller (see Fig. 3.1). After all the memory

components and operations are defined, the cache controller connects them together and lets

them operate independently. From the processor’s perspective, the cache controller and all

the memory elements and memory-mapped I/O connected to it are seen as a single unit.

Simultaneously each memory element (internal and external) and I/O also see themselves

as independently operating components. In the subsections below, the realization of each
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Figure 3.10: All of the SRAM control circuits for a 32-word block in TSMC 90-nm CMOS.
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Figure 3.11: Layout view of a 32-word SRAM block in TSMC 90-nm CMOS.
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Figure 3.12: Full layout of the 256-word SRAM in TSMC 90-nm CMOS.

memory component and the cache controller are discussed in more detail.

3.3.1 Memory Organization

The modified MIPS processor is geared to use a 16-bit address space. This matches the

size of the immediate field present in the lw (load word) and sw (save word) instructions.

A base addressing procedure is used to access main memory. The 16-bit address can be

used to access up to 64 kB of memory space (of which 1 kB is implemented in the 256

word SRAM cache described in section 3.2). This provides more than sufficient address

space for instructions, data and I/Os required for the path-planning algorithm. In fact, for

the purpose of running the algorithm used in this thesis (2×2 vectors), 440 bytes would be

sufficient and can thus fit entirely in the cache, a circumstance that bears influence on its

design as discussed in section 3.3.2. The 16 address bits allotted in this design simply allow

the processor to be scalable to a much larger algorithm of higher complexity using existing

hardware.

Also, the memory structure is made word addressable only (in contrast to a byte address-

able realization) because all of the instructions and data are 32 bits and there is no direct

need to address byte-wide sub-components of these instructions. Further, by increasing the

data bus width between the memory controller and processor such that only word-sized seg-

ments are exchanged (unlike standard MIPS which moves words in byte-sized segments over

a byte-sized bus), memory accesses become four times faster compared to byte addressable

memory, and require a lower number of instructions. Given the local nature of this exchange

(i.e. the word addressing is confined entirely to the chip, between the processor and the
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Source Source 8-bit address Byte select
select 1 select 2

Figure 3.13: 16-bit memory address structure.

cache) the area penalty is minimal.

Shown in Fig. 3.13, is the 16-bit address interpretation. The 2 least significant address

bits effectively describe the location of bytes in each word. Since the processor is designed to

interact with the cache on a word-by-word basis, these two bits are obviously not considered

in the cache. However, they remain a part of the addressing scheme to allow broader flexi-

bility in corresponding with external memory and I/Os which may only be byte addressable.

The remaining fields of the 16-bit memory address structure are elaborated on in the

following sub-section. In short, the Source select 2 field represent the cache “tag”, allowing

the processor to correctly identify data in the cache by its absolute main memory address.

Source select 1 is employed to allow the processor to communicate with external memory

and memory-mapped I/O.

3.3.2 Caching Scheme

The caching scheme refers to how the 256-word, 1-kB cache memory is to be used. Key

actions related to its use include: when and what data is to be written into the cache, when

that data should be over-written, and when to read from the cache instead of using external

memory.

The capacity of the cache memory is sufficient to contain the entire algorithm (which, as

mentioned above, occupies only 440 bytes in its current form). Further, in its current form,

the algorithm’s variables can be (and are) entirely retained and operated on in the processor’s

register file during execution with no need for data fetch. Thus, having a cache memory large

enough to store the entire algorithm can significantly reduce power consumption as it could

completely eliminate the need for external memory access (slow and power consuming) after
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each instruction has been executed.

The relatively large cache size also simplifies its design. Since the program fits entirely

within the cache no conflicts can occur in the course of a memory access from the processor

and the information stored in the cache. Thus a single block (i.e. direct mapped) cache orga-

nization can be employed. This provides an immediate savings in complexity and power as

the control circuitry normally needed to manage associative cache structures is not required.

Thus, since the cache block size, b, is just set to unity the number of sets in the cache,

S, is equal to the cache capacity, C which refers to the number of words (256) stored in it.

As a result the 256 cache sets are referenced by the 8-bit set field in the address structure of

Fig. 3.13.

To further reduce hardware requirements, the address tag field (i.e. the Source select 2

in Fig. 3.13) is set to only two bits. This 2-bit tag thus allows the 1-kB cache to reference

up to 4 kB from main memory. Addresses after 0x0FFF (i.e. with SourceSelect1 > 0) will

never be cached by the processor in order to reduce possible conflicts in larger algorithms

and to avoid caching I/Os. This does not affect the total addressing space, just the “cache-

able addressing space”. That is, the processor is still allowed to operate with a 64-kB main

memory structure, but will attempt to cache data addressed between 0x0000 and 0x0FFF of

main memory; data addressed outside this range will be communicated between the processor

and one of external memory or some choice of I/O (as determined by some corresponding

Source Select 1 code). Therefore, this limitation does not impact the processors scalability

to the algorithm since the entire cache space is still available and the non-cacheable address

space remains accessible for external memory modules and I/Os.

Further modifications from the traditional caching scheme in the modified MIPS include

a replacement of the standard “dirty bit” indicator with a “variable bit”. The dirty bit (or

“used bit”) is a conditional bit stored for each set of data in the cache. It indicates that the

data within the cache has been changed since last being loaded from the cache and hence
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should be written back to external memory before being overwritten with any other content

to keep all memory stores consistent [4]. Such functionality is not required in the case of the

path-planning algorithm because all variables are contained inside the algorithm instructions,

and write operations to cache memory are unnecessary (write to external memory function

still exists).

In the case of the 2×2 vector algorithm, the 32 registers available in the processor are

more than sufficient to contain all intermediate variables. However, if a larger algorithm

needs extra variable space, the cache memory can be used and this is where the “variable

bit” comes in. The entire cache (up to 1024 bytes) is available for variable space if needed. To

use the cache as variable space, the processor simply uses the sw instruction to an available

address (use different tag from instruction if there is a conflict); the variable will be saved and

be accessible later. The sw instruction will automatically activate the variable bit indicating

that a variable was stored and should not be over written as instruction memory cache.

The cache memory is organized as shown in Fig. 3.14. The valid bit, variable bit and tag

bits are invisible to the processor, and are read by the cache controller to determine whether

to use the data from cache memory or not. The tag component acts as an extension to the

address (address bits 9 and 10) to ensure that it is the correct data. If the data is both valid

and correct, the cache controller gives the 32-bit data to the processor (i.e. if the cache was

invoked using a lw instruction), and if not, it seeks the original data from external memory.

If an external memory is accessed within the cache-able address range (again cache-able

addresses exist in the range 0x0000 and 0x0FFF), the cache controller saves this data to the

SRAM cache if it isn’t occupied by variable data.

An efficient way to use this cache is to have instructions use the lowest address (0x0000)

to higher addresses and vice versa for variable memory. In the ideal case, there would be

sufficient memory such that instruction cache memory and variable memory never overlap.

If they do happen to overlap however (in cache memory with a different tag, actual 16-bit
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Figure 3.14: Structure of the cache memory.

memory address should never overlap), variables will take precedence and future instruction

accesses from such address will be fetched externally.

3.3.3 Cache Controller

The cache controller manages interactions between cache memory, external memory(ies),

external I/Os and the processor as described in previous sections. To do so, it is an one-

hot state machine that sends out control signals to every component it is connected to. It

controls different address lines, data buses, read/write operations, it determines the validity

of the data, and it is able to halt the processor when waiting for memory access.

Fig. 3.15 is a state diagram that illustrates the operations of the cache controller. To

simplify the diagram, each state is named by the operation(s) it carries out, rather than

providing a whole list of its control signals. For more detail, see Appendix C.3 for the Verilog

implementation of the cache controller. When the cache controller receives a read/write

operation from the processor, it exits the Stand By state and halts the processor. Then, it

carries out the read/write operation using the correct component(s), caches the data and/or

prepares data for the processor where appropriate, then resumes processor operation before

returning to the Stand By state.
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Figure 3.15: Cache controller states

It is important to note that most memory modules have 8-bit data buses and are byte-

addressable. Because of this and the pin count consideration, the cache controller assumes

that all the external components and analog components are 8 bits and are byte-addressable.

The cache controller manages these byte-addressable components by latching each byte sep-

arately (8-bits/2-clocks), while word-addressable components such as the SRAM and the

processor receive the entire 36-bit and 32-bit data in 2 clocks. Since the components will

be using low voltages there are possible speed compatibility problems with external com-

ponents. To address this, the cache controller generates a signal exclk that’s half of the

processor clock speed, and toggles when data is ready.

Although it is troublesome to manage both byte-addressable and word-addressable com-

ponents, the SRAM and the processor are made to be word-addressable for better efficiency,

and byte-addressable components are rarely accessed after the first loop. Each instruction

would be cached upon first execution, therefore, access to external memory should be rare

if any, after the first loop of the algorithm (out of thousands of loops).
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3.4 Look-Up-Table (LUT)

The Look-Up-Table (LUT) is also a major modification specific to this processor. It acts as

a second-stage ALU, where it takes the result of the ALU to a pre-mapped table that con-

tains results for certain non-linear functions. In the case of this path-planning algorithm, it

requires low-precision non-linear functions including trigonometric and hyperbolic functions.

As an example, Fig. 3.16 is the LUT output vs. input compared with the real values for

a sine function. Using only a 12-element LUT, the sine function could be calculated over

the full processor’s range (32-bit fixed precision). The processor uses the ALU to perform

a modulus-π function. During the serial modulus calculation, there is an internal counter

that keeps count of which of the 4 quadrants the input is at. The quadrant determines if the

LUT values should be reversed, and if the output should be negated. The modulus output

is then sent to the LUT and an output is produced.

Similar to the sine function, all the trigonometric functions are periodic and repeat values

from 0 to π/2, some times in reversed order, and sometimes negated. Further, tangent is

not required because it can be obtained by multiplying sine and secant. By utilizing 4 low-

precision LUTs for sin, cos, sec, csc, results of all trigonometric functions including tan and

cot and the negation of each function could be obtained.

Using similar techniques for hyperbolic functions, and and by truncating extreme values,

sinh, cosh, tanh, csch, sech, coth, −sinh, −cosh, −tanh, −csch, −sech and −coth could

also be calculated.

The quantization noise produced by the LUT, shown in Fig. 3.16, would be similar for all

LUT functions. Such precision is more than sufficient for the path-planning algorithm, and

the broad support for all the trigonometry and hyperbolic functions would provide flexibility

for all possible variations of the algorithm. The outputs of all the LUT functions could be

found in section 5.2.2 and the verilog implementation in Appendix C.5.

The above operations are all done automatically by the processor. As a user, LUT
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Figure 3.16: Comparison of LUT outputs vs Real values of sin(x)

functions are simply executed by an R-type instruction like all other arithmetic functions.

The function code 11X3X2X1X0 would be decoded as an LUT instruction, where X0 selects

whether it is a sine or cosine, X1 inverts the output, X2 represents hyperbolic functions and

X3 negates the output. Each LUT function and their respective function code is shown in

table 3.1

3.5 Analog Components

The 90-nm CMOS design of the modified-MIPS processor included analog-to-digital (A/D)

and digital-to-analog (D/A) converters (i.e. ADC and DAC) contributed by Zhixing Zhao

and Arshan Naji respectively. The placement of the data converters within the processor

is indicated in Fig. 3.17. Two versions of the DAC are included to simultaneously produce

signals for both the translational and rotational motion of the robot. For convenience these

units are interfaced with the MIPS processor through a test block which is discussed in

section 3.6.

A schematic of the ADC architecture is shown in Fig. 3.18. The design adheres to a

successive-approximation (SAR) structure, an approach well know for its ability to operate
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Figure 3.17: The system arrangement including the location of the data converters.
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Table 3.1: LUT function codes
Function Code [5:0] LUT operation

110000 output = sin(input)
110001 output = cos(input)
110010 output = csc(input)
110011 output = sec(input)
110100 output = sinh(input)
110101 output = cosh(input)
110110 output = csch(input)
110111 output = sech(input)
111000 output = −sin(input)
111001 output = −cos(input)
111010 output = −csc(input)
111011 output = −sec(input)
111100 output = −sinh(input)
111101 output = −cosh(input)
111110 output = −csch(input)
111111 output = −sech(input)

with low-power consumption (albeit low to moderate speed) [33]. It follows the specific

implementation details reported in [34] and is designed to achieve a resolution of 8 bits.

The basic idea of the SAR structure is to obtain the digital representation of a sample

(from a sample-and-hold, S&H, block) one bit at a time, from the MSB to the LSB, by

asking the hardware to determine whether the sample is above or below half the available

signal. In this way an N -bit representation can be obtain in N steps.

A typical SAR ADC implementation employs a comparator to decide on the relative value

Figure 3.18: Architecture of the successive-approximation ADC. From [34].
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Figure 3.19: Architecture of the DAC.

of a signal and digital logic to decide on the bit whose value is determined by the comparator’s

action. Based on this information the digital logic creates an offset word that is converted to

an analog signal by a simple DAC which then offsets the net value of the sample (appearing

after a summing circuit) that’s fed into the comparator for the determination of the ensuing

bit. In the design, the comparator clock signal is generated inside the ADC, which is not

synchronized to the system clock. This asynchronous clock simplifies the circuit design and

saves the power consumption.

For the DAC design pictured in Fig. 3.19, a capacitive-ladder architecture is used to

realize an 8-bit converter. In this case the current funnelled through the switches on the

left is integrated by the weighted capacitive elements to achieve a binary summation that

produces a net analog voltage proportional to the magnitude of the digital input signal,

[B0 . . . B1]. The unity gain buffer, buffers the capacitor’s output such that the operation of

the capacitive elements is not degraded by the load being driven. As with any functioning

8-bit DAC the relationship between the output voltage and the binary setting is

Vout =
B0

28
+
B1

27
+ . . .+

B7

21
. (3.3)

The advantage of this topology over binary weighted capacitors is in its substantial
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Figure 3.20: Layout of the successive-approximation ADC.

savings in layout area requirement. The switches on the left side of the schematic in Fig. 3.19

provide a path to ground for the floating nodes of the capacitors. After a couple of cycles,

and depending on the frequency of operation, this circuit must reset to avoid accumulation

of extra charges on the floating nodes of the capacitor. A reset means all the inputs must

be zero and switches have to ground all the floating nodes.

Layouts of the ADC and DAC in 90-nm CMOS are shown in Figs. 3.20 and 3.21,

respectively. The ADC layout measures 200×245 µm2 while the DAC layout measures

264×226 µm2.

3.6 Test Circuits

Most fabricated digital circuits require some sort of test circuitry. Because of the complexity

of digital circuits, it is extremely difficult to debug without a well-designed test circuit [35].
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Figure 3.21: Layout of the binary capacitive weighted DAC.
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Such test circuits usually consist of scan chains where test data are read serially from a test

pin that replaces selected internal signal(s) and/or pins while the output is observed. To do

so, the test structure consists of a series of registers to propagate the serial input and some

latches at the target signals to isolate and re-route the signal. Similarly, to read an internal

signal, latches reroute the signal to be loaded into the register chain, and the sequence

outputs to an output pin serially. Read/write scan chains allows the tester to sample and/or

replace an internal signal while the processor is running.

In this work, the test circuit design also included component isolation and bypass in ad-

dition to read/write scan chains. Component isolation allows each component to be tested

individually. This includes the processor, SRAM, and both the A/D and D/A converters.

The component isolation feature is especially important for a design this complex so that

faults can be identified. The component bypass function is just as important so the poten-

tially faulty component could be bypassed while the rest of the circuits are being tested.

This cooperative work also required careful component isolation so that each designer

could test their own component(s). Cooperative work may also be more error-prone, hence

the importance of the component bypass feature as well. To further improve the reliability

and testability of this project, each major component has its dedicated power and ground

pads to be connected externally.

Implementation detail could be found in Appendix C.4.
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Chapter 4

FULL CHIP INTEGRATION

The work in this thesis led to the fabrication of two processor designs in silicon, one in IBM’s

130-nm mixed-mode CMOS technology and the other in TSMC’s 90-nm CMOS technology.

Both submissions included months of Verilog coding, simulations, synthesis, and layout. In

the sections below, Section 4.1 focuses on the entire design flow while Section 4.2 focuses

on the enhancements and differences made in the TSMC 90-nm design which followed the

processor’s initial implementation in IBM’s process.

4.1 IBM 130-nm CMOS Technology

The first instantiation of this chip was fabricated by IBM using its p13 technology (formally

known as its 0.13-µm or 130-nm CMOS technology). Table 4.1 includes the fabrication

details of this submission.

Table 4.1: IBM P13 Fabrication Detail
Design Run 1201CG
Design Name ICGCYSUP
Exact Dimensions 2.42 mm × 2.42 mm
Principal Designer Ryan Wu
Sponsorships Dr. Sebastian Magierowski

Dr. Jim Haslett
CMC Microsystems

The simplified design flow demonstrated in Fig. 4.1 shows only the critical parts of the de-

sign; understandably, there was a substantial amount of simulation and verification involved

during and after each step. This work relied heavily on the IC design software available from

Cadence
R©

and Synopsys
R©

and the flow employed many of their tools including: Synop-

sys Compiler, SOC Encounter, Virtuoso Schematic, Virtuoso Layout, Virtuoso Layout-XL,
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Figure 4.1: Design flow for VLSI Circuits using Synopsys
R©

and Cadence
R©

toolsets.

Virtuoso Chip Assembly Router (VCAR), Calibre DRC/LVS, Assura DRC/LVS, Analog En-

vironment, NC-Verilog, PSPICE, HSPICE, etc. Though troublesome, this distributed tool

set is presently the de-facto industry standard design flow used in VLSI design and is similar

to the ones described in [36] and [37].

There were many optimization parameters in the compilation and synthesis process that

required careful tuning. It is important to note that these parameters contribute to the

final size, power and performance of the chip. In addition, because of some incompatibilities

between the tools, configurations of the tools were also critical. The scripts for setting up

and running the tools are attached in appendices B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11
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and B.12. However, test scripts and benchmark source codes are not included because the

specific implementation detail does not contribute to the final design.

Shown in Fig. 4.2 is the final layout of the chip in p13 technology. The very thin ring with

beveled corners around the chip is the guard ring that prevents unwanted static discharge

and cracks during fabrication. The thick square ring of circuits are the 64 I/O pads that

supply multiple power levels, multiple grounds, and input/output connections to the core.

Along the top of the core is the 256-word SRAM, and the block in the centre is the processor

with the test circuits to its left. It is apparent that the size of the chip is limited by the

number of pads used (so-called pad-limited design), and there is plenty of unused space inside

the pad ring. Therefore, all the optimization parameters during synthesis were for power

optimization rather than size. It is also why the design tried to minimize the number of

pads.

4.2 TSMC 90-nm Technology

The second chip included a lot more features and improvements over the p13 implementation.

Considering the technology alone, 90 nm CMOS naturally provides less delay (i.e. faster

switches) and less dynamic power consumption (lower device capacitance to charge). This

means that with the same design and performance requirement, the chip in 90-nm technology

would operate more reliably while consuming less power. The chip area used was 40%

smaller, despite the mass number of pins and the increased number of functionalities and

components. In other words, the decrease in chip size was largely due to the more efficient

design in addition to the smaller technology. This is demonstrated clearly when comparing

the size of SRAM to the size of the MIPS processor. Table 4.2 includes the fabrication detail

and in Fig. 4.3 is the final layout.

It is visible that both the MIPS core and the SRAM are significantly smaller than the

previous design. The new features include analog component support in the memory con-

64



Figure 4.2: Final layout of the IBM p13 chip (without metal fill).
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Table 4.2: TSMC 90-nm Fabrication Detail
Design Run 1201CR
Design Name ICRCYSUP
Exact Dimensions 2.08 mm × 1.73 mm
Principal Designer Ryan Wu
Other Contributors Zhixing Zhao

Arshan Naji
Sponsorships Dr. Sebastian Magierowski

Dr. Jim Haslett
CMC Microsystems

troller and higher testability to handle extra components. The 2 D/A converters located to

the left of the processor, and the A/D converter placed below the processor are also new.

Similar to the previous chip, the size is limited by the number of I/O pads. It is also visible

in Fig. 4.3 that most of the pads have ESD protection and buffers to protect the chip (the

thin strips of circuits attached directly to the pads), as well as to increase performance.

Hidden inside the processor, are 2-stage buffers to help step the voltage up and down. These

are the major differences between the p13 chip and the 90-nm chip.

The design process also differs slightly in that it is more automated with higher levels of

optimization. Every single step of synthesis is automated by scripts allowing more detailed

tuning and modifications.

4.2.1 ADC and DAC Integration

This is another step towards full integration of a robotics controller. It shows that the

architecture developed in this work is capable of accommodating further integration and is

flexible to potential modifications.

Each of these analog components has an 8-bit digital interface to the memory controller.

The ADC serves as the analog input to the processor; assuming that the robot’s sensor has

an analog output, the processor will be able to read its analog signal and determine the

correct path. Also, the ADC has a 4-to-1 analog multiplexer attached to it that allows it

to sample 4 different analog signals (or from 4 different sensors). The 2 DACs would be
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Figure 4.3: Final layout of the TSMC 90-nm chip (without metal fill).
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used for the 2 analog output for motor control. Assuming that the motor controller takes

an analog input, these outputs would represent the robot’s speed and rotation.

The analog components were designed by Zhixing Zhao and Arshan Naji at the Uni-

versity of Calgary. Between the processor and these analog components, there are 2-stage

buffers to step between different voltage levels as well as to isolate interference. Testability

functions included here are component isolation and bypass so that the analog-to-digital

converter (ADC) and digital-to-analog converters (DAC) could be tested independently and

be bypassed if they fail.

Similar to the other components in this project, these analog components each have their

dedicated power and ground supply for independent power measurements, and for device

isolation purposes.
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Chapter 5

SIMULATIONS AND TEST RESULTS

Divided into five sections here, are summaries of the major tests used to verify the function-

ality of the final design of this work. Although the implementation details for verification

are not included here because they are very lengthy and these specifics do not contribute

to the final design of this work, its process is important to prove the validity of this work.

Included in the following sections are the steps taken to test the algorithm, analog circuits,

digital circuits and the final simulation.

5.1 MATLAB Simulations

In addition to Fig. 2.3 which demonstrated successful navigation around a multi-obstacle

course, Fig. 5.1 summarizes the results of a different verification test for the algorithm that

utilized only a single-obstacle test scenario. In both cases, the modified (optimized) algorithm

with additive quantization noise resulted in nearly identical paths compared to the original

algorithm result shown in Fig. 5.3.

With several more test scenarios and comparisons to the original algorithm, each stage

of algorithm modification was tested. The final algorithm in machine code (Appendix A.4)

was tested using a processor emulated in MATLAB that translates each instruction into a

mathematical command. Within the emulator the range and domain of all calculations in

the algorithm is limited to [-1024, 1023] with data employing Q21 format (more specifically

Q11.21 format) in alignment with the fixed-precision characteristics [38] of the modified-

MIPS hardware. This system is represented in Fig. 5.2 as a block diagram.

Using the final product, a full simulation run was recorded. The recording included all

inputs, outputs and register values, and was later used for circuit verification.
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Figure 5.1: Result of translated algorithm (finite arithmetic, machine commands, etc.) sim-
ulation in Simulink .

5.2 Verilog Simulations

The Verilog level simulation spans from the initial design stage to the verification of the final

processor design and a full FPGA implementation. This includes all of the digital circuits,

SRAM, dummy analog components and all their interconnects.

5.2.1 Core Simulations

“Core Simulations” here represent simulations of the digital (synthesized) components at

their top level, called the “core”. The core includes the MIPS processor and the test circuits.

To test this, several different test algorithms were used to verify the correctness of the core’s

output in different scenarios. Together, these tests covered the entire list of supported

instructions and all of the test circuit functionalities.

These tests consist of creating a Verilog test bench that triggers a pre-defined series

of inputs, then comparing the outputs and relevant intermediate signals. As an example,
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Figure 5.2: Block diagram of the MATLAB simulation.
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Figure 5.3: Result of the original algorithm simulation in Simulink.

Figure 5.4: Results of the I/O test bench using NC Verilog.

Fig. 5.4 is the result of a test bench that tests the read/write functions of the processor

with external addresses, add and shift arithmetic, and the switch for SRAM bypass. All

intermediate values demonstrate that correct values are being loaded, saved and calculated,

and that there is a significant speed increase about halfway into the simulation, when bypass

is turned off.
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Figure 5.5: Look-Up-Table outputs of a sine function.

5.2.2 Look-Up-Table Simulations

Tests for the look-up-table were a bit more interesting. Because there were a vast amount

of possible inputs to test in order to verify the shape of the waveform, it is impossible to

toggle each input and record each output individually. Instead, a short test algorithm was

used, that automatically increments the input (using the add function of the processor) over

a period of time. All the intermediate outputs are recorded, and the useful parts are then

extracted using a PERL script.

Shown in figure 5.5 is a great demonstration of the sine function produced by the look-

up-table compared to the real sine wave. Limited by the range of the fixed decimal system

employed by this processor, the input and output values are limited within [-1024, 1023].

Figs. 5.6 and 5.7 further show the output of a negative hyperbolic-sine and a hyperbolic-

secant function respectively. Similarly, all variations of non-linear functions are simulated

and graphed to verify their accuracy and precision.

The full results of every look-up-table function are listed in Appendix D.1.
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Figure 5.6: Look-Up-Table outputs of a negative hyperbolic-sine function

Figure 5.7: Look-Up-Table outputs of a hyperbolic-secant function
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5.2.3 Final Verification in Verilog

Although the automatic place & route tools available from Cadence and Synopsys are ex-

tremely convenient compared to drawing a design that consists of hundreds of thousands

of transistors, they occasionally create errors that are extremely difficult to debug. These

errors include missing VIAs, missing connections and shorting wires during routing and ex-

port/imports between programs. Other errors are more common and they come in vast

quantities. These errors are specific to the technology and include special-case area limi-

tations, inter-components bus wire spacings, thick wire spacings, inter-layer rules, antenna

rules, and density rules.

This final verification (after DRC — the “design rule check” — and LVS — the “layout

vs. shematic” check) is extremely important in order to make sure that all the internal

connections and logic are still correct. Because of the design complexity, it runs very slowly.

Therefore, an efficient test that accurately captures the operation of the design is important.

In this test, dummy components made of registers are used to simulate the latched

input/outputs of analog parts. The full netlist of the processor, test circuits, and SRAM are

extracted from the layout. Then, using the libraries’ Verilog definitions, a full simulation was

run with the actual algorithm. The inputs of this simulation are from the recorded MATLAB

simulation, and all intermediate and final results are compared against the MATLAB results.

5.3 Analog Design Environment (ADE)

The Analog Design Environment (ADE) from the Cadence tool suite was used to test the

operation of smaller components with simple behaviours. ADE is a graphically-driven front-

end for Spectre, a SPICE-like integrated circuit simulator also within the Cadence tool suite.

Among the things studied using ADE were the electrical characteristics of a single-bit 10T

SRAM cell and the row-reset module for the SRAM. Spectre (using physics-based BSIM4

MOS device model) provides much more detailed electrical performance results compared to
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Figure 5.8: Single-Bit SRAM cell test setup

Verilog, and is necessary for the simulated evaluation of non-digital components.

Taking the single bit SRAM cell for example, we have a 7 port (including power) structure

to characterize. Shown in Fig. 5.8 is the test setup, where the centre block is the device-

under-test (DUT), the SRAM cell. All input ports are toggled using pulse generators and the

output is loaded with expected components for leakage, parasitics and pre-charge. This is the

most detailed analog verification in this work because the chip will be expected to operate

at 100 kHz or within the low frequency (LF) range of 30 - 300 kHz. The circuit response in

the higher frequency range is irrelevant and not considered. Also, voltage sources and the

operating environment are assumed to be ideal in order to eliminated further complications.

Fig. 5.9 shows the results of the read/write test that demonstrate the 10T design can

successfully store information from a 400-mV power supply and that the stored information

can be reliably read. The 5 rows of signals from top to bottom are bit line (BL), word

line (WL), stored bit, read word line (rWL) and the read bit line (rBL). In the centre

row, the stored bit is toggled repeatedly, and exemplifies a very clean and fast response to

write operations. The read bit line (bottom row), shows a longer delay because of the large

parasitics of the long line shared between multiple cells. Nevertheless, because of the signal

isolation in the 10T design and the line recharge, the output produced was very accurate.
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Figure 5.9: Single-Bit SRAM cell test simulation results.

5.4 SPICE

An automated (using scripts) test using HSPICE (from the Synopsys tool suite) was con-

ducted during different design stages of the SRAM. Although Spectre could also be used

for these simulations, the HSPICE interface proved more convenient for this task. As with

Spectre, the HSPICE simulations utilized physics-based BSIM4 models of the transistors.

The SRAM tests included verifications of the row controller, column controller, 10T cell,

the word row, the 32-word block and the entire 256-word SRAM. Like the ADE tests, the

SPICE script toggles various input signals and verifies the outputs against the expected

output after a defined delay time. Because of the exponential increase in design complexity,

ADE simulations were no longer suitable, and the detailed analog response was less im-

portant. HSPICE became the choice of tool for analog simulation for these more complex

circuits.

In the case of the 256-word SRAM simulation, it was a 48 step input sequence that reads
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and writes to same addresses, different addresses, adjacent addresses and addresses in dif-

ferent blocks. The output is then compared to the expected output to produce an error file

for debugging. In the final design, the error file contained 0 errors. This simulation demon-

strates that under the assumed conditions, the analog behaviour of the SRAM produced

correct logic, the design is valid, and that the connections are correct.

5.5 FPGA Tests

To validate the actual operation of the entire design, several tests were performed on the

FPGA that include the exact designs used for fabrication. The FPGAs used included the

Xilinx Virtex 2, Spartan 6 and Virtex 6. Each board had different functionality and availabil-

ity, hence several different boards were used. To start off, each component was individually

tested on the Virtex 2 (the Virtex 2 board had a large number of I/Os, but small amount

of memory), where it was possible to trigger and probe each signal of interest separately.

These components included the simulated external memory, SRAM, MIPS processor, LUTs

and the ALU.

Bigger tests that included the entire design were run on the Spartan 6 board that had

bigger memory space to fit the entire design. The Spartan 6 board has very limited I/O’s,

and therefore, only a few results could be checked. Because the entire processor was used,

the only required inputs are the reset and clock signals, while the test bench is saved in

the simulated external memory. The tests included functionality verifications that check the

operation of different instructions and test functions.

Lastly, using the Virtex 6 board, a real-time simulation of the entire design was checked

using the onboard LCD to constantly display internal register data. Using the push buttons

as data and instruction triggers, and the pre-recorded MATLAB simulation as simulation

data, the entire algorithm was executed using the processor on the FPGA. Then, using

the LCD display, the register data were verified after each instruction with the final result
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matching the recorded MATLAB simulation. This, at the very least serves as a proof of

concept validation of the design in a hardware instantiation.

5.6 Detailed Final Simulation

In this final test, it is already known that the design works and that its internal interconnect

and logic functions are both correct. The purpose of this test is to obtain some data regarding

its actual analog operation and power consumption.

Since the p13 project used a black box library that doesn’t allow simulation, only the

90-nm project could be tested for this part. Using numerous pulse generators, a short series

of instructions are generated to initiate a multiply operation, and the processor’s operations

are monitored in Analog Design Environment. It generated the correct logic results as

expected, and had power consumption within expectation. Fig. 5.10 illustratrates the power

consumption curve showing the decrease in power as the operating voltage is scaled down.

Also, at the target operating range of around 400 mV to 500 mV, the power consumption was

approximately 10 µW, which is orders of magnitudes lower than off-the-shelf general purpose

processors, while also being small, light, and versatile. Comparing processing throughput in

millions of instructions per second to power and weight (accounting for the full 2.08 × 1.73

mm2 chip area) simulations indicate that this processor can achieve approximately 35,000

MIPS/mg/W. This exceeds (by 44%) the cognitive efficiency reported in [6] with twice the

peak MIPS potential (1 MIPS vs. 0.5 MIPS). Further the present design includes 4x more on-

chip memory, plus the space to include three data converters capable of producing two analog

outputs and handle four analog inputs (the power consumption of the analog components is

not included in accessing the cognitive efficiency).

Fig. 5.11 shows the schematics of this test setup, where, on the right-hand-side, is placed

the MIPS processor. And to its left, are the pulse generators and the VDD voltage supply.

While having frequency and VDD as simulation variables, the power consumption at 100-
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Figure 5.10: Power simulation of the 90-nm chip in operation at 100 kHz.

Figure 5.11: Schematic of the power simulation for the 90-nm chip.

kHz and various VDDs is obtained. Due to the complexity of the MIPS design in this analog

simulation, each data point takes 1 to 3 days to obtain. Therefore, only a few data points

are used in figure 5.10 to represent the curve.

5.7 Testing

The actual physical testing done to support this thesis is limited due to the constraints in time

and test complexity. However, the complete simulations and FPGA tests sufficiently show

the success of this project, and demonstrates the benefits of a customized ASIC for path-
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Figure 5.12: ICRCYSUP Chip’s Processor Power Consumption vs. Supply Voltage

planning purpose in achieving superior power, weight and size when compared to general-

purpose counter-parts. Figure 5.12, is the actual power measurement on the ICRCYSUP

(90nm) chip, where the power consumption curve matches the simulation result very closely.

This result was achieved using the Xilinx Vertex-II Pro FPGA board as a pattern gen-

erator, AD8001 600MHz amplifiers to step the voltage down from the FPGA to the chip

(and vice versa). The processor is powered using an Agilent 66321B power supply that is

able the measure the current draw to ±2.5µA precision. Other components on the chip and

the amplifier array are powered separately using other power supplies. Figure 5.13 shows

the general setup for this test, where to the left, are verification equipments to read the

outputs as well as to verify and fine-tune the inputs. Beside them, are two power supplies

that powers components that are not being measured. In the middle, is the FPGA (signal

generator), the chip (device-under-test), the amplifier array and all the wiring the route sig-

nals between them. On the right side, is the most important component, which is the power

supply that powers the processor and measures its power consumption. The Agilent 66321B

power supply is being controlled by MatLab through GPIB interface so that it’s voltage can

be adjusted in thousands of small increments, while taking dozens of measurements at each

voltage to produce figure 5.12.
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Figure 5.13: Hardware Measurement Test Setup
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Chapter 6

CONCLUSION

6.1 Accomplishments

This work has served as a proof of concept CMOS IC implementation of a control algorithm

for autonomous system navigation. It considered a unique (and previously described) means

of robot navigation embracing control theory and constructed a special purpose silicon pro-

cessor capable of running it efficiently (i.e. with low power consumption). The algorithm

itself presents a means of achieving superior autonomous problem solving ability with min-

imal need for control flow statements. This suggests the possibility of implementation in a

small, low-power machine applicable to physically small agents (e.g. micro-robots).

The realization of this processor required the application of a substantial number of ideas.

These included:

1. The translation of the algorithm’s operations into a form optimized for digital

machine calculation.

2. The verification of the algorithm in a fixed-point arithmetic context.

3. The design of an instruction-set architecture suitable for the efficient imple-

mentation of the algorithm with the functionality and the capacity to scale to

“bigger” navigation problems.

4. The design of a micro-architecture suitable for the algorithm and the context

in which it is expected to run (i.e. real-time navigation of “small” machines).

5. The customization of the processor’s datapath (ALU optimization for matrix

manipulation, efficient arithmetic decoding, etc.).
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6. The design of a suitable memory scheme (caching, memory mapped I/O, etc.).

7. The inclusion of mixed-signal components for interface to sensing and actua-

tion components.

8. The design of on-chip test hardware.

9. Physical integrated circuit design of sub-threshold logic and on-chip cache

including custom hand layout.

10. The realization of a simple assembler.

11. The application of a sophisticated VLSI integration methodology using a cus-

tomized design flow working over a number of disparate IC design tools. This

flow further allows the design to be readily translated to more advanced CMOS

technologies.

12. Design test and verification over a number of levels of abstration (high-level

programming language, hardware description language, charge-level circuit

simulation, FPGA verification).

The size and weight achieved in the 90-nm CMOS chip are 2.08 × 1.73 mm2 and 2.86 mg,

respectively. The simulated power consumption of this machine is 10 µW from a 400-mV

supply with an estimated computational speed of 1 MIPS leading to a cognitive efficiency of

35,000 MIPS/mg/W. A better than 40% improvement over the state-of-the-art [6].

6.2 Future Work

This work has demonstrated the potential advantages and viability of having a low-power

optimized processor for robotics path-planning. From here, there are numerous advance-

ments that could be explored. In the following sections are outlined some major topics

worth further investigation.
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6.2.1 Customized Library

The chip in this work was constructed using the standard cell CMOS library targeted to

operate at regular voltages (1.0 V to 1.2 V). This decision was to minimize the risk of a

customized library failing, and to speed up the design process.

A chip re-synthesized using a customized standard cell CMOS library could be expected

to have lower minimum operating voltage, higher operating frequency and, most importantly,

more energy efficient behaviour.

A library customized for sub-threshold operation should have all the multi-level combina-

tional gates and transmission gates removed from the library because they cause significant

delays in sub-threshold operation. Also, sub-threshold characterization of the library is nec-

essary for the synthesizer to optimize the design more efficiently for the targeted operating

voltage. There could also be some optimization in transistor sizing and ratioeing for optimal,

symmetric logic.

6.2.2 Dynamic Tuning

To further reduce energy consumption, several dynamic tuning methods could be employed.

These methods include voltage stepping, frequency stepping and sleep mode, and they are

often used in modern processors.

Voltage stepping and frequency stepping are the most common methods to reduce power

while retaining the capability of high computing performance. This has been proven to be

effective in sub-threshold as well in [39]. During times that require higher computing power,

the VDD is raised to allow higher operating frequency; and when the processor is doing less

work, VDD and frequency can be reduced.

Sleep mode is to reduce the voltage and frequency to its lowest state while retaining

necessary data. This requires a software trigger or some intelligent detection, and it is less

effective because the chip is already running at a very low voltage. However, it would be
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useful to temporarily cut off power to large components such as LUTs when they are not

used.

6.2.3 Integration

While a low power processor could increase robotics intelligence and decrease payload, a

higher level of integration has similar benefits. Although it makes the resulting design less

flexible, it could further reduce size, weight and power. The integration of the A/D converter

and D/A converters are an example of this. Future integrations could include flash memories,

sensors, voltage dividers, voltage controllers, and even an energy source.

6.2.4 Architecture

The relatively short time horizon for this Master’s research work, forced a quick convergence

on the question of micro-architecture. However a number of opportunities exist for enhance-

ments. An immediate possibility is the employment of a pipelined machine. Given the nature

of the algorithm employed the overhead normally encountered in dealing with hazards should

be minimal. As a result, the machine should be able to operate at progressively slower clocks

as the number of stages is boosted.
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Appendix A

Algorithms

A.1 Original Algorithm

The key components of the path planning control algorithm and their transformations are

shown below. The inputs to the controller consist of its estimated distance and orientation

relative to the goal target, rt and θt, respectively. Also required is the robot’s measure of

its distance and orientation from the nearest obstacle or obstacles, dr and dθ, respectively.

The elements of ζ are the state variables of a state-space filter preceding the controller.

As indicated below, only a 4-state filter was used in this specific example, although larger

state-spaces can be used if the application demands it. The purpose of this preceding filter

is to smooth-out the response of the machine. Including the filter complicates the design

of the Lyapunov controller itself however. Fortunately, a technique known as backstepping

allows these two components to be introduced separately. The expressions below include

the equations for the combined Lyapunov and backtsepping technique. They culminate in

the expression for the desired translational and rotational velocity (ur and uθ, respectively)

commands needed to get the robot to its target.

input =

[
θt rt ζ1 ζ2 ζ3 ζ4 dr dθ

]T
η =

[
rt θt

]T
ζ =

[
ζ1 ζ2 ζ3 ζ4

]T

B1η =

− cos θt 0

sin θt/rt 1
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d =

 rand(1) · 0.1

rand(1) · π/20


k = 1

k1 = 0.1

k2 = 0.1

dmax = 1

ζ̇ =



−14 −100 0 0

1 0 0 0

0 0 −14 −100

0 0 1 0


· ζ +



1 0

0 0

0 1

0 0


· (−η + d)

BtP =



1 0

0 0

0 1

0 0



T

·



0.0361 0.0050 0 0

0.0050 3.6771 0 0

0 0 0.0361 0.0050

0 0 0.0050 3.6771



T

BtPz =



1 0

0 0

0 1

0 0



T

·



0.0361 0.0050 0 0

0.0050 3.6771 0 0

0 0 0.0361 0.0050

0 0 0.0050 3.6771



T

· ζ

BtPzd =



1 0

0 0

0 1

0 0



T

·



0.0361 0.0050 0 0

0.0050 3.6771 0 0

0 0 0.0361 0.0050

0 0 0.0050 3.6771



T

· ζ̇

j = sech((BtPz)2) ·BtPzd

η̇d = k1 ·BtPzd− j

ηd = k1 ·BtPz − tanh(BtPz) =

[
αr αθ

]T
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ε = η − ηd

dist =

[
dr dθ

]T
u =

[
ur uθ

]T
= B1η

−1 · (BtPz − k2ε+ η̇d) + dist

output =

[
αr αθ ur uθ

]T

A.2 Original Algorithm in Matlab

A MATLAB script implementing the controller calculations outlined above is shown below.

function uout = Controller (input);

global zeta;

theta_t = input(1); %---- The robot’s relative angle to the target.

r_t = input(2); %---- The robot’s relative distance to the target.

zeta = input(3:6); %-- The smoothing filter’s state variables.

d_r = input(7); %---- The robot’s relative distance to obstacles.

d_theta = input(8); %---- The robot’s relative angle to obstacles.

global eta;

eta = [r_t; theta_t];

global B P A;

k = 1; %--------------- Gain factor.

k_1 = 0.1; %------------- Gain factor.

k_2 = 0.1; %------------- Gain factor.

inv_B_1eta = [-1/cos(theta_t) 0;sin(theta_t)/(cos(theta_t)*r_t) 1]; %----

%------------------------ Inverse of polar-velocity to polar-differential-location

%------------------------ transformation matrix.

global C;

global zetadot

d = [(rand(1)*0.1);(rand(1)*0.1*pi/2)]; %----- Model of unpredictable sensory

%--------------------------------------------------- disturbances

zetadot = (A*zeta) + (B*(-eta+d)) ; %--------------- Filter state-variable

%--------------------------------------------------- differential

BtP = B’*P’;

BtPz = BtP*zeta;

BtPzd = BtP*zetadot;

dmax = 1;

global eta_d eta_ddot;

j1 = (sech(BtPz(1))^2)*BtPzd(1);

j2 = (sech(BtPz(2))^2)*BtPzd(2);

j = [j1;j2];

eta_ddot = k_1*B’*P’*zetadot-(dmax*j);

eta_d = k_1*B’*P’*zeta-(dmax*tanh(B’*P’*zeta));

alpha_r = eta_d(1);

alpha_theta = eta_d(2);

global epsilon epsilon_array;

epsilon = eta - eta_d;

epsilon_size = size(epsilon_array);

epsilon_array(epsilon_size(1)+1,1) = epsilon(1);

epsilon_array(epsilon_size(1)+1,2) = epsilon(2);

dist = [d_r ;d_theta]; %------------------------- Robot’s polar distance to

%--------------------------------------------------- obstacles

u = inv_B_1eta * ( (B’*P*zeta) - (k_2*epsilon) + eta_ddot );

u = u+dist; %--------------------------------- Robot’s motion polar velocity

%--------------------------------------------------- commands.

u_r = u(1);
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u_theta = u(2);

uout=[alpha_r alpha_theta u_r u_theta];

A.3 Algorithm in Assembly Language

The assembly language implementation of the controller algorithm is shown below.

0x0000 addi $k0 $0 0032 #k0 = pi/2
0x0001 sll $k0 $k0 000F
0x0002 addi $k0 $k0 21fb
0x0003 sll $k0 $k0 0001

0x0004 lw $a0 $0(00FC) #load inputs
0x0005 lw $a1 $0(00FD)
0x0006 lw $a6 $0(00FE)
0x0007 lw $a7 $0(00FF)

0x0008 addi $t0 $0 FE40 #t0 = -14
0x0009 sll $t0 $t0 0010

0x000A addi $t1 $0 0C80 #t1 = 100
0x000B sll $t1 $t1 0010

0x000C addi $t2 $0 0020 #t2 = 1
0x000D sll $t2 $t2 0010

0x000E addi $t3 $0 0001 #t3 = 0.0361
0x000F sll $t3 $t3 0010
0x0010 addi $t3 $t3 27BB

0x0011 addi $t4 $0 28F6 #t4 = 0.005

0x0012 sec $s0 $k0 $a0 #s0 = sec(a0)

0x0013 add $s1 $0 $0 #s1 = 0

0x0014 sin $t5 $k0 $a0 #t5 = sin(a0)
0x0015 mult $t5 $s0 $t5 #t5 = sin(a0) * sec(a0) = tan(a0)

0x0016 sub $s0 $0 $s0 #s0 = -sec(a0)

0x0017 add $s2 $t5 $0 #s2 = t5/a1 (replaced with binary shifts)
0x0018 add $t6 $a1 $0
0x0019 srl $t6 $t6 0010
0x001A sll $s2 $s2 0004 #(*64) *4
0x001B beq $t6 $0 0026
0x001C srl $t6 $t6 0001 #(*32) *4
0x001D srl $s2 $s2 0001
0x001E beq $t6 $0 0023
0x001F srl $t6 $t6 0001 #(*16) *2
0x0020 srl $s2 $s2 0001
0x0021 beq $t6 $0 0020
0x0022 srl $t6 $t6 0001 #(*8) *2
0x0023 srl $s2 $s2 0001
0x0024 beq $t6 $0 0017
0x0025 srl $t6 $t6 0001 #(*4)
0x0026 srl $s2 $s2 0001
0x0027 beq $t6 $0 0014
0x0028 srl $t6 $t6 0001 #(*2)
0x0029 srl $s2 $s2 0001
0x002A beq $t6 $0 0011
0x002B srl $t6 $t6 0001 #(1)
0x002C srl $s2 $s2 0001
0x002D beq $t6 $0 0008
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0x002E srl $t6 $t6 0001 #(/2)
0x002F srl $s2 $s2 0001
0x0031 beq $t6 $0 0005
0x0032 srl $t6 $t6 0001 #(/4)
0x0033 srl $s2 $s2 0001
0x0034 beq $t6 $0 0002
0x0035 srl $t6 $t6 0001 #(/8)
0x0036 srl $s2 $s2 0001

0x0037 add $s3 $t2 $0 #s3 = 1

0x0038 mult $s4 $t0 $a2 #s4 = t0*a2 + t1*a3 + t2*a1
0x0039 multa $s4 $t1 $a3
0x003A multa $s4 $t2 $a1

0x003B mult $s5 $t2 $a2 #s5 = t2*a2

0x003C mult $s6 $t0 $a4 #s6 = t0*a4 + t1*a5 + t2*a0
0x003D multa $s6 $t1 $a5
0x003E multa $s6 $t2 $a0

0x003F mult $s7 $t2 $a4 #s7 = t2*a4

0x0040 mult $t5 $t3 $a2 #t5 = t3*a2 + t4*a3
0x0041 multa $t5 $t4 $a3

0x0042 mult $t6 $t3 $a4 #t6 = t3*a4 + t4*a5
0x0043 multa $t6 $t4 $a5

0x0044 mult $s4 $t3 $s4 #s4 = t3*s4 + t4*s5
0x0045 multa $s4 $t4 $s5

0x0046 mult $s5 $t3 $s6 #s5 = t3*s6 + t4*s7
0x0047 multa $s5 $t4 $s7

0x0048 sech $t0 $0 $t5 #t0 = sech(t5)

0x0049 mult $t0 $t0 $t0 #t0 = t0*t0

0x004A mult $t1 $t0 $s4 #t1 = t0*s4

0x004B sech $t0 $0 $t6 #t0 = sech(t6)

0x004C mult $t0 $t0 $t0 #t0 = t0*t0

0x004D mult $t2 $t0 $s5 #t2 = t0*s5

0x004E addi $t0 $0 0004 #t0 = k1(0.125)
0x004F sll $t0 $t0 0010

0x0050 mult $s6 $t0 $s4 #s6 = t0*s4-t1
0x0051 sub $s6 $s6 $t1

0x0052 mult $s7 $t0 $s5 #s7 = t0*s5-t2
0x0053 sub $s7 $s7 $t2

0x0054 sinh $t7 $0 $t5 #t7 = tanh(t5)
0x0055 sech $t3 $0 $t5
0x0056 mult $t7 $t7 $t3

0x0057 sub $t1 $t5 $t7 #t1 = t5-t7

0x0058 mult $t1 $t1 $t0 #t1 = t1*t0 (t0 = k1)

0x0059 sinh $t7 $0 $t6 #t7 = tanh(t6)
0x005A sech $t3 $0 $t6
0x005B mult $t7 $t7 $t3
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0x005C sub $t2 $t6 $t7 #t2 = t6-t7

0x005D mult $t2 $t2 $t0 #t2 = t2*t0 (t0 = k1)

0x005E sub $t3 $a1 $t1 #t3 = (a1-t1)*t0
0x005F mult $t3 $t3 $t0

0x0060 sub $t4 $a0 $t2 #t4 = (a0-t2)*t0
0x0061 mult $t4 $t4 $t0

0x0062 sub $t1 $t5 $t3 #t1 = t5-t3+s6
0x0063 add $t1 $t1 $s6

0x0064 sub $t2 $t6 $t4 #t2 = t6-t4+s7
0x0065 add $t2 $t2 $s7

0x0066 mult $v0 $s0 $t1 #v0 = s0*t1 + s1*t2 + a6
0x0067 multa $v0 $s1 $t2
0x0068 add $v0 $v0 $a6

0x0069 mult $v1 $s2 $t1 #v1 = s2*t1 + s3*t2 + a7
0x006A multa $v1 $s3 $t2
0x006B add $v1 $v1 $a7

0x006C sw $v0 $0(00FA)
0x006D sw $v1 $0(00FB)

0x006E j 4

A.4 Algorithm in Machine Code

The machine code description of the controller algorithm is shown below.

00100000000111000000000000110010

00000000000111001110001111000000

00100011100111000010000111111011

00000000000111001110000001000000

10001100000001000000000011111100

10001100000001010000000011111101

10001100000010100000000011111110

10001100000010110000000011111111

00100000000011001111111001000000

00000000000011000110010000000000

00100000000011010000110010000000

00000000000011010110110000000000

00100000000011100000000000100000

00000000000011100111010000000000

00100000000011110000000000000001

00000000000011110111110000000000

00100001111011110010011110111011

00100000000100000010100011110110

00000011100001001010000000110011

00000000000000001010100000100000

00000011100001001000100000110000

00000010100100011000100000011000

00000010100000001010000000100010

00000010001000001011000000100000

00000000101000001001000000100000

00000000000100101001010000000010

00000000000101101011000100000000

00010010010000000000000000100110

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000100011

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000100000

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000010111

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000010100

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000010001

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000001000

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000000101

00000000000100101001000001000010

00000000000101101011000001000010

00010010010000000000000000000010

00000000000100101001000001000010

00000000000101101011000001000010

00000001110000001011100000100000

00000001100001101100000000011000

00000001101001111100000000011100

00000001110001011100000000011100

00000001110001101100100000011000

00000001100010001101000000011000

00000001101010011101000000011100

00000001110001001101000000011100

00000001110010001101100000011000

00000001111001101000100000011000

00000010000001111000100000011100

00000001111010001001000000011000

00000010000010011001000000011100

00000001111110001100000000011000

00000010000110011100000000011100

00000001111110101100100000011000

00000010000110111100100000011100

00000000000100010110000000110111

00000001100011000110000000011000

00000001100110000110100000011000

00000000000100100110000000110111

00000001100011000110000000011000

00000001100110010111000000011000

00100000000011000000000000000100

00000000000011000110010000000000

00000001100110001101000000011000

00000001101110101101000000100010

00000001100110011101100000011000

00000001110110111101100000100010

00000000000100011001100000110100

00000000000100010111100000110111

00000010011011111001100000011000

00000010011100010110100000100010

00000001101011000110100000011000

00000000000100101001100000110100

00000000000100100111100000110111

00000010011011111001100000011000

00000010011100100111000000100010

00000001110011000111000000011000

00000001101001010111100000100010

00000001111011000111100000011000

00000001110001001000000000100010

00000010000011001000000000011000

00000001111100010110100000100010

00000001101110100110100000100000

00000010000100100111000000100010

00000001110110110111000000100000

00000010100011010001000000011000

00000010101011100001000000011100

00000000010010100001000000100000

00000010110011010001100000011000

00000010111011100001100000011100

00000000011010110001100000100000

10101100000000100000000011111010

10101100000000110000000011111011

00001000000000000000000000000100
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A.5 Machine Code in Verilog Byte-Addressable Memory

external_memory[0] <= 8’b00110010;

external_memory[1] <= 8’b00000000;

external_memory[2] <= 8’b00011100;

external_memory[3] <= 8’b00100000;

external_memory[4] <= 8’b11000000;

external_memory[5] <= 8’b11100011;

external_memory[6] <= 8’b00011100;

external_memory[7] <= 8’b00000000;

external_memory[8] <= 8’b11111011;

external_memory[9] <= 8’b00100001;

external_memory[10] <= 8’b10011100;

external_memory[11] <= 8’b00100011;

external_memory[12] <= 8’b01000000;

external_memory[13] <= 8’b11100000;

external_memory[14] <= 8’b00011100;

external_memory[15] <= 8’b00000000;

external_memory[16] <= 8’b11111100;

external_memory[17] <= 8’b00000000;

external_memory[18] <= 8’b00000100;

external_memory[19] <= 8’b10001100;

external_memory[20] <= 8’b11111101;

external_memory[21] <= 8’b00000000;

external_memory[22] <= 8’b00000101;

external_memory[23] <= 8’b10001100;

external_memory[24] <= 8’b11111110;

external_memory[25] <= 8’b00000000;

external_memory[26] <= 8’b00001010;

external_memory[27] <= 8’b10001100;

external_memory[28] <= 8’b11111111;

external_memory[29] <= 8’b00000000;

external_memory[30] <= 8’b00001011;

external_memory[31] <= 8’b10001100;

external_memory[32] <= 8’b01000000;

external_memory[33] <= 8’b11111110;

external_memory[34] <= 8’b00001100;

external_memory[35] <= 8’b00100000;

external_memory[36] <= 8’b00000000;

external_memory[37] <= 8’b01100100;

external_memory[38] <= 8’b00001100;

external_memory[39] <= 8’b00000000;

external_memory[40] <= 8’b10000000;

external_memory[41] <= 8’b00001100;

external_memory[42] <= 8’b00001101;

external_memory[43] <= 8’b00100000;

external_memory[44] <= 8’b00000000;

external_memory[45] <= 8’b01101100;

external_memory[46] <= 8’b00001101;

external_memory[47] <= 8’b00000000;

external_memory[48] <= 8’b00100000;

external_memory[49] <= 8’b00000000;

external_memory[50] <= 8’b00001110;

external_memory[51] <= 8’b00100000;

external_memory[52] <= 8’b00000000;

external_memory[53] <= 8’b01110100;

external_memory[54] <= 8’b00001110;

external_memory[55] <= 8’b00000000;

external_memory[56] <= 8’b00000001;

external_memory[57] <= 8’b00000000;

external_memory[58] <= 8’b00001111;

external_memory[59] <= 8’b00100000;

external_memory[60] <= 8’b00000000;

external_memory[61] <= 8’b01111100;

external_memory[62] <= 8’b00001111;

external_memory[63] <= 8’b00000000;

external_memory[64] <= 8’b10111011;

external_memory[65] <= 8’b00100111;

external_memory[66] <= 8’b11101111;

external_memory[67] <= 8’b00100001;

external_memory[68] <= 8’b11110110;

external_memory[69] <= 8’b00101000;

external_memory[70] <= 8’b00010000;

external_memory[71] <= 8’b00100000;

external_memory[72] <= 8’b00110011;

external_memory[73] <= 8’b10100000;

external_memory[74] <= 8’b10000100;

external_memory[75] <= 8’b00000011;

external_memory[76] <= 8’b00100000;

external_memory[77] <= 8’b10101000;

external_memory[78] <= 8’b00000000;

external_memory[79] <= 8’b00000000;

external_memory[80] <= 8’b00110000;

external_memory[81] <= 8’b10001000;

external_memory[82] <= 8’b10000100;

external_memory[83] <= 8’b00000011;

external_memory[84] <= 8’b00011000;

external_memory[85] <= 8’b10001000;

external_memory[86] <= 8’b10010001;

external_memory[87] <= 8’b00000010;

external_memory[88] <= 8’b00100010;

external_memory[89] <= 8’b10100000;

external_memory[90] <= 8’b10000000;

external_memory[91] <= 8’b00000010;

external_memory[92] <= 8’b00100000;

external_memory[93] <= 8’b10110000;

external_memory[94] <= 8’b00100000;

external_memory[95] <= 8’b00000010;

external_memory[96] <= 8’b00100000;

external_memory[97] <= 8’b10010000;

external_memory[98] <= 8’b10100000;

external_memory[99] <= 8’b00000000;

external_memory[100] <= 8’b00000010;

external_memory[101] <= 8’b10010100;

external_memory[102] <= 8’b00010010;

external_memory[103] <= 8’b00000000;

external_memory[104] <= 8’b00000000;

external_memory[105] <= 8’b10110001;

external_memory[106] <= 8’b00010110;

external_memory[107] <= 8’b00000000;

external_memory[108] <= 8’b00100110;

external_memory[109] <= 8’b00000000;

external_memory[110] <= 8’b01000000;

external_memory[111] <= 8’b00010010;

external_memory[112] <= 8’b01000010;

external_memory[113] <= 8’b10010000;

external_memory[114] <= 8’b00010010;

external_memory[115] <= 8’b00000000;

external_memory[116] <= 8’b01000010;

external_memory[117] <= 8’b10110000;

external_memory[118] <= 8’b00010110;

external_memory[119] <= 8’b00000000;

external_memory[120] <= 8’b00100011;

external_memory[121] <= 8’b00000000;

external_memory[122] <= 8’b01000000;

external_memory[123] <= 8’b00010010;

external_memory[124] <= 8’b01000010;

external_memory[125] <= 8’b10010000;

external_memory[126] <= 8’b00010010;

external_memory[127] <= 8’b00000000;

external_memory[128] <= 8’b01000010;

external_memory[129] <= 8’b10110000;

external_memory[130] <= 8’b00010110;

external_memory[131] <= 8’b00000000;

external_memory[132] <= 8’b00100000;

external_memory[133] <= 8’b00000000;

external_memory[134] <= 8’b01000000;

external_memory[135] <= 8’b00010010;

external_memory[136] <= 8’b01000010;

external_memory[137] <= 8’b10010000;

external_memory[138] <= 8’b00010010;

external_memory[139] <= 8’b00000000;

external_memory[140] <= 8’b01000010;

external_memory[141] <= 8’b10110000;

external_memory[142] <= 8’b00010110;

external_memory[143] <= 8’b00000000;

external_memory[144] <= 8’b00010111;

external_memory[145] <= 8’b00000000;

external_memory[146] <= 8’b01000000;

external_memory[147] <= 8’b00010010;

external_memory[148] <= 8’b01000010;

external_memory[149] <= 8’b10010000;

external_memory[150] <= 8’b00010010;

external_memory[151] <= 8’b00000000;

external_memory[152] <= 8’b01000010;

external_memory[153] <= 8’b10110000;

external_memory[154] <= 8’b00010110;

external_memory[155] <= 8’b00000000;

external_memory[156] <= 8’b00010100;

external_memory[157] <= 8’b00000000;

external_memory[158] <= 8’b01000000;

external_memory[159] <= 8’b00010010;

external_memory[160] <= 8’b01000010;

external_memory[161] <= 8’b10010000;

external_memory[162] <= 8’b00010010;

external_memory[163] <= 8’b00000000;

external_memory[164] <= 8’b01000010;

external_memory[165] <= 8’b10110000;

external_memory[166] <= 8’b00010110;

external_memory[167] <= 8’b00000000;

external_memory[168] <= 8’b00010001;

external_memory[169] <= 8’b00000000;

external_memory[170] <= 8’b01000000;

external_memory[171] <= 8’b00010010;

external_memory[172] <= 8’b01000010;

external_memory[173] <= 8’b10010000;

external_memory[174] <= 8’b00010010;

external_memory[175] <= 8’b00000000;

external_memory[176] <= 8’b01000010;

external_memory[177] <= 8’b10110000;

external_memory[178] <= 8’b00010110;

external_memory[179] <= 8’b00000000;

external_memory[180] <= 8’b00001000;

external_memory[181] <= 8’b00000000;

external_memory[182] <= 8’b01000000;

external_memory[183] <= 8’b00010010;

external_memory[184] <= 8’b01000010;

external_memory[185] <= 8’b10010000;

external_memory[186] <= 8’b00010010;

external_memory[187] <= 8’b00000000;

external_memory[188] <= 8’b01000010;

external_memory[189] <= 8’b10110000;

external_memory[190] <= 8’b00010110;

external_memory[191] <= 8’b00000000;

external_memory[192] <= 8’b00000101;

external_memory[193] <= 8’b00000000;

external_memory[194] <= 8’b01000000;

external_memory[195] <= 8’b00010010;

external_memory[196] <= 8’b01000010;

external_memory[197] <= 8’b10010000;

external_memory[198] <= 8’b00010010;

external_memory[199] <= 8’b00000000;

external_memory[200] <= 8’b01000010;

external_memory[201] <= 8’b10110000;

external_memory[202] <= 8’b00010110;

external_memory[203] <= 8’b00000000;

external_memory[204] <= 8’b00000010;

external_memory[205] <= 8’b00000000;

external_memory[206] <= 8’b01000000;

external_memory[207] <= 8’b00010010;

external_memory[208] <= 8’b01000010;

external_memory[209] <= 8’b10010000;

external_memory[210] <= 8’b00010010;

external_memory[211] <= 8’b00000000;

external_memory[212] <= 8’b01000010;

external_memory[213] <= 8’b10110000;

external_memory[214] <= 8’b00010110;

external_memory[215] <= 8’b00000000;

external_memory[216] <= 8’b00100000;

external_memory[217] <= 8’b10111000;

external_memory[218] <= 8’b11000000;

external_memory[219] <= 8’b00000001;

external_memory[220] <= 8’b00011000;

external_memory[221] <= 8’b11000000;

external_memory[222] <= 8’b10000110;

external_memory[223] <= 8’b00000001;

external_memory[224] <= 8’b00011100;

external_memory[225] <= 8’b11000000;

external_memory[226] <= 8’b10100111;

external_memory[227] <= 8’b00000001;

external_memory[228] <= 8’b00011100;

external_memory[229] <= 8’b11000000;

external_memory[230] <= 8’b11000101;

external_memory[231] <= 8’b00000001;

external_memory[232] <= 8’b00011000;

external_memory[233] <= 8’b11001000;

external_memory[234] <= 8’b11000110;

external_memory[235] <= 8’b00000001;

external_memory[236] <= 8’b00011000;

external_memory[237] <= 8’b11010000;

external_memory[238] <= 8’b10001000;

external_memory[239] <= 8’b00000001;

external_memory[240] <= 8’b00011100;

external_memory[241] <= 8’b11010000;

external_memory[242] <= 8’b10101001;

external_memory[243] <= 8’b00000001;

external_memory[244] <= 8’b00011100;

external_memory[245] <= 8’b11010000;

external_memory[246] <= 8’b11000100;

external_memory[247] <= 8’b00000001;

external_memory[248] <= 8’b00011000;

external_memory[249] <= 8’b11011000;

external_memory[250] <= 8’b11001000;

external_memory[251] <= 8’b00000001;

external_memory[252] <= 8’b00011000;

external_memory[253] <= 8’b10001000;

external_memory[254] <= 8’b11100110;

external_memory[255] <= 8’b00000001;

external_memory[256] <= 8’b00011100;

external_memory[257] <= 8’b10001000;

external_memory[258] <= 8’b00000111;

external_memory[259] <= 8’b00000010;

external_memory[260] <= 8’b00011000;
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external_memory[261] <= 8’b10010000;

external_memory[262] <= 8’b11101000;

external_memory[263] <= 8’b00000001;

external_memory[264] <= 8’b00011100;

external_memory[265] <= 8’b10010000;

external_memory[266] <= 8’b00001001;

external_memory[267] <= 8’b00000010;

external_memory[268] <= 8’b00011000;

external_memory[269] <= 8’b11000000;

external_memory[270] <= 8’b11111000;

external_memory[271] <= 8’b00000001;

external_memory[272] <= 8’b00011100;

external_memory[273] <= 8’b11000000;

external_memory[274] <= 8’b00011001;

external_memory[275] <= 8’b00000010;

external_memory[276] <= 8’b00011000;

external_memory[277] <= 8’b11001000;

external_memory[278] <= 8’b11111010;

external_memory[279] <= 8’b00000001;

external_memory[280] <= 8’b00011100;

external_memory[281] <= 8’b11001000;

external_memory[282] <= 8’b00011011;

external_memory[283] <= 8’b00000010;

external_memory[284] <= 8’b00110111;

external_memory[285] <= 8’b01100000;

external_memory[286] <= 8’b00010001;

external_memory[287] <= 8’b00000000;

external_memory[288] <= 8’b00011000;

external_memory[289] <= 8’b01100000;

external_memory[290] <= 8’b10001100;

external_memory[291] <= 8’b00000001;

external_memory[292] <= 8’b00011000;

external_memory[293] <= 8’b01101000;

external_memory[294] <= 8’b10011000;

external_memory[295] <= 8’b00000001;

external_memory[296] <= 8’b00110111;

external_memory[297] <= 8’b01100000;

external_memory[298] <= 8’b00010010;

external_memory[299] <= 8’b00000000;

external_memory[300] <= 8’b00011000;

external_memory[301] <= 8’b01100000;

external_memory[302] <= 8’b10001100;

external_memory[303] <= 8’b00000001;

external_memory[304] <= 8’b00011000;

external_memory[305] <= 8’b01110000;

external_memory[306] <= 8’b10011001;

external_memory[307] <= 8’b00000001;

external_memory[308] <= 8’b00000100;

external_memory[309] <= 8’b00000000;

external_memory[310] <= 8’b00001100;

external_memory[311] <= 8’b00100000;

external_memory[312] <= 8’b00000000;

external_memory[313] <= 8’b01100100;

external_memory[314] <= 8’b00001100;

external_memory[315] <= 8’b00000000;

external_memory[316] <= 8’b00011000;

external_memory[317] <= 8’b11010000;

external_memory[318] <= 8’b10011000;

external_memory[319] <= 8’b00000001;

external_memory[320] <= 8’b00100010;

external_memory[321] <= 8’b11010000;

external_memory[322] <= 8’b10111010;

external_memory[323] <= 8’b00000001;

external_memory[324] <= 8’b00011000;

external_memory[325] <= 8’b11011000;

external_memory[326] <= 8’b10011001;

external_memory[327] <= 8’b00000001;

external_memory[328] <= 8’b00100010;

external_memory[329] <= 8’b11011000;

external_memory[330] <= 8’b11011011;

external_memory[331] <= 8’b00000001;

external_memory[332] <= 8’b00110100;

external_memory[333] <= 8’b10011000;

external_memory[334] <= 8’b00010001;

external_memory[335] <= 8’b00000000;

external_memory[336] <= 8’b00110111;

external_memory[337] <= 8’b01111000;

external_memory[338] <= 8’b00010001;

external_memory[339] <= 8’b00000000;

external_memory[340] <= 8’b00011000;

external_memory[341] <= 8’b10011000;

external_memory[342] <= 8’b01101111;

external_memory[343] <= 8’b00000010;

external_memory[344] <= 8’b00100010;

external_memory[345] <= 8’b01101000;

external_memory[346] <= 8’b01110001;

external_memory[347] <= 8’b00000010;

external_memory[348] <= 8’b00011000;

external_memory[349] <= 8’b01101000;

external_memory[350] <= 8’b10101100;

external_memory[351] <= 8’b00000001;

external_memory[352] <= 8’b00110100;

external_memory[353] <= 8’b10011000;

external_memory[354] <= 8’b00010010;

external_memory[355] <= 8’b00000000;

external_memory[356] <= 8’b00110111;

external_memory[357] <= 8’b01111000;

external_memory[358] <= 8’b00010010;

external_memory[359] <= 8’b00000000;

external_memory[360] <= 8’b00011000;

external_memory[361] <= 8’b10011000;

external_memory[362] <= 8’b01101111;

external_memory[363] <= 8’b00000010;

external_memory[364] <= 8’b00100010;

external_memory[365] <= 8’b01110000;

external_memory[366] <= 8’b01110010;

external_memory[367] <= 8’b00000010;

external_memory[368] <= 8’b00011000;

external_memory[369] <= 8’b01110000;

external_memory[370] <= 8’b11001100;

external_memory[371] <= 8’b00000001;

external_memory[372] <= 8’b00100010;

external_memory[373] <= 8’b01111000;

external_memory[374] <= 8’b10100101;

external_memory[375] <= 8’b00000001;

external_memory[376] <= 8’b00011000;

external_memory[377] <= 8’b01111000;

external_memory[378] <= 8’b11101100;

external_memory[379] <= 8’b00000001;

external_memory[380] <= 8’b00100010;

external_memory[381] <= 8’b10000000;

external_memory[382] <= 8’b11000100;

external_memory[383] <= 8’b00000001;

external_memory[384] <= 8’b00011000;

external_memory[385] <= 8’b10000000;

external_memory[386] <= 8’b00001100;

external_memory[387] <= 8’b00000010;

external_memory[388] <= 8’b00100010;

external_memory[389] <= 8’b01101000;

external_memory[390] <= 8’b11110001;

external_memory[391] <= 8’b00000001;

external_memory[392] <= 8’b00100000;

external_memory[393] <= 8’b01101000;

external_memory[394] <= 8’b10111010;

external_memory[395] <= 8’b00000001;

external_memory[396] <= 8’b00100010;

external_memory[397] <= 8’b01110000;

external_memory[398] <= 8’b00010010;

external_memory[399] <= 8’b00000010;

external_memory[400] <= 8’b00100000;

external_memory[401] <= 8’b01110000;

external_memory[402] <= 8’b11011011;

external_memory[403] <= 8’b00000001;

external_memory[404] <= 8’b00011000;

external_memory[405] <= 8’b00010000;

external_memory[406] <= 8’b10001101;

external_memory[407] <= 8’b00000010;

external_memory[408] <= 8’b00011100;

external_memory[409] <= 8’b00010000;

external_memory[410] <= 8’b10101110;

external_memory[411] <= 8’b00000010;

external_memory[412] <= 8’b00100000;

external_memory[413] <= 8’b00010000;

external_memory[414] <= 8’b01001010;

external_memory[415] <= 8’b00000000;

external_memory[416] <= 8’b00011000;

external_memory[417] <= 8’b00011000;

external_memory[418] <= 8’b11001101;

external_memory[419] <= 8’b00000010;

external_memory[420] <= 8’b00011100;

external_memory[421] <= 8’b00011000;

external_memory[422] <= 8’b11101110;

external_memory[423] <= 8’b00000010;

external_memory[424] <= 8’b00100000;

external_memory[425] <= 8’b00011000;

external_memory[426] <= 8’b01101011;

external_memory[427] <= 8’b00000000;

external_memory[428] <= 8’b11111010;

external_memory[429] <= 8’b00000000;

external_memory[430] <= 8’b00000010;

external_memory[431] <= 8’b10101100;

external_memory[432] <= 8’b11111011;

external_memory[433] <= 8’b00000000;

external_memory[434] <= 8’b00000011;

external_memory[435] <= 8’b10101100;

external_memory[436] <= 8’b00000100;

external_memory[437] <= 8’b00000000;

external_memory[438] <= 8’b00000000;

external_memory[439] <= 8’b00001000;
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Appendix B

Scripts and Programs

B.1 MATLAB Processor

function uout = Controller (input)

global memory reg regfile;

global accumulator i_addr clk pclk;

p1 = 10;

p2 = 21;

clk = input(9);

%input arguments to the function

a0 = qno(input(1) ,2,5);%theta_t

a1 = qno(input(2) ,2,5);%r_t

a2 = 0;%qno(input(3) ,0,7);%zeta(1)

a3 = 0;%qno(input(4) ,0,7);%zeta(2)

a4 = 0;%qno(input(5) ,0,7);%zeta(3)

a5 = 0;%qno(input(6) ,0,7);%zeta(4)

a6 = qno(input(7) ,3,4);%d_r

a7 = qno(input(8) ,3,4);%d_theta

reg(5) = a0*2^21;

reg(6) = a1*2^21;

reg(7) = a2*2^21;

reg(8) = a3*2^21;

reg(9) = a4*2^21;

reg(10) = a5*2^21;

reg(11) = a6*2^21;

reg(12) = a7*2^21;

% bin2dec(mem(100,0,’read’))

% bin2dec(condense(memory(101,:)))

% bin2dec(condense(memory(102,:)))

% bin2dec(condense(memory(103,:)))

% bin2dec(condense(memory(104,:)))

% bin2dec(condense(memory(105,:)))

% bin2dec(condense(memory(106,:)))

% bin2dec(condense(memory(107,:)))

if (clk && ~pclk)

%i = 0;

%while i_addr <= 107

%i = i+1;

%fetch instruction

instruction = condense(memory(i_addr,:));

%PC increment

i_addr = mod(i_addr,99)+1;

%decode

op = instruction(1:6);

rs = bin2dec(instruction(7:11));

rt = bin2dec(instruction(12:16));

rd = bin2dec(instruction(17:21));

shamt = bin2dec(instruction(22:26));

funct = instruction(27:32);

imm = b2d(instruction(17:32));

%decimal calculation with 2^21 offset

switch op

%R-Type

case ’000000’ %op, rs, rt, rd, sa func

switch funct

case ’100000’ %add

reg(rd) = reg(rs) + reg(rt);

case ’100010’ %sub

reg(rd) = reg(rs) - reg(rt);

case ’011000’ %mult

reg(rd) = reg(rs) * reg(rt)/2^21;

case ’011100’ %multa

reg(rd) = reg(rd) + (reg(rs) * reg(rt)/2^21);

case ’000000’ %sll

reg(rd) = reg(rt) * 2^shamt;

case ’000010’ %srl

reg(rd) = fix(reg(rt) / 2^shamt);

case ’110000’%sin

reg(rd) = LUT_sin(reg(rt));

case ’110001’%cos

reg(rd) = LUT_cos(reg(rt));

case ’110010’%csc = 1/sin

reg(rd) = LUT_csc(reg(rt));

case ’110011’%sec = 1/cos

reg(rd) = LUT_sec(reg(rt));

case ’110100’%sinh

reg(rd) = LUT_sinh(reg(rt));

case ’110101’%cosh

reg(rd) = LUT_cosh(reg(rt));

case ’110110’%csch = 1/sinh

reg(rd) = LUT_csch(reg(rt));

case ’110111’%sech = 1/cosh

reg(rd) = LUT_sech(reg(rt));

case ’111000’%

reg(rd) = -LUT_sin(reg(rt));

case ’111001’%

reg(rd) = -LUT_cos(reg(rt));

case ’111010’%

reg(rd) = -LUT_csc(reg(rt));

case ’111011’%

reg(rd) = -LUT_sec(reg(rt));

case ’111100’%

reg(rd) = -LUT_sinh(reg(rt));

case ’111101’%

reg(rd) = -LUT_cosh(reg(rt));

case ’111110’%

reg(rd) = -LUT_csch(reg(rt));

case ’111111’%

reg(rd) = -LUT_sech(reg(rt));

end

%I-Type

case ’001000’ %addi

reg(rt) = reg(rs) + imm;

case ’000100’ %beq

if reg(rs) == reg(rt)

i_addr = i_addr+imm;

end

end

end

clc;

v0 = qno(bin2dec1021(dec2bin1021(reg(3)/2^21)),1,6);

v1 = qno(bin2dec1021(dec2bin1021(reg(4)/2^21)),2,5);

regindex = size(regfile);

regindex = regindex(1,1);

regfile(regindex+1,:) = reg;

uout=[v0 v1];

pclk = clk;

B.2 Perl Assembler

#!/usr/local/bin/perl
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%funct = ( "add" => "100000",

"and" => "100100",

"or" => "100101",

"mult" => "011000",

"multu" => "011001",

"multa" => "011100",

"mfhi" => "010000",

"mflo" => "010010",

"sll" => "000000",

"srl" => "000010",

"sra" => "000011",

"addi" => "000000",

"sub" => "100010",

"sin" => "110000",

"cos" => "110001",

"csc" => "110010",

"sec" => "110011",

"sinh" => "110100",

"cosh" => "110101",

"csch" => "110110",

"sech" => "110111",

"nsin" => "111000",

"ncos" => "111001",

"ncsc" => "111010",

"nsec" => "111011",

"nsinh" => "111100",

"ncosh" => "111101",

"ncsch" => "111110",

"nsech" => "111111",

"beq" => "000000",

"lw" => "000000",

"sw" => "000000",

"j" => "000000");

%opcode = ( "add" => "000000",

"and" => "000000",

"or" => "000000",

"mult" => "000000",

"multu" => "000000",

"multa" => "000000",

"mfhi" => "000000",

"mflo" => "000000",

"sll" => "000000",

"srl" => "000000",

"sra" => "000000",

"addi" => "001000",

"sub" => "000000",

"sin" => "000000",

"cos" => "000000",

"csc" => "000000",

"sec" => "000000",

"sinh" => "000000",

"cosh" => "000000",

"csch" => "000000",

"sech" => "000000",

"nsin" => "000000",

"ncos" => "000000",

"ncsc" => "000000",

"nsec" => "000000",

"nsinh" => "000000",

"ncosh" => "000000",

"ncsch" => "000000",

"nsech" => "000000",

"beq" => "000100",

"lw" => "100011",

"sw" => "101011",

"j" => "000010");

%reg = ( "\$0" => "00000",

"\$1" => "00001",

"\$2" => "00010",

"\$3" => "00011",

"\$4" => "00100",

"\$5" => "00101",

"\$6" => "00110",

"\$7" => "00111",

"\$8" => "01000",

"\$9" => "01001",

"\$10" => "01010",

"\$11" => "01011",

"\$12" => "01100",

"\$13" => "01101",

"\$14" => "01110",

"\$15" => "01111",

"\$16" => "10000",

"\$17" => "10001",
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"\$18" => "10010",

"\$19" => "10011",

"\$20" => "10100",

"\$21" => "10101",

"\$22" => "10110",

"\$23" => "10111",

"\$24" => "11000",

"\$25" => "11001",

"\$26" => "11010",

"\$27" => "11011",

"\$28" => "11100",

"\$29" => "11101",

"\$30" => "11110",

"\$31" => "11111",

"\$at" => "00001",

"\$v0" => "00010",

"\$v1" => "00011",

"\$a0" => "00100",

"\$a1" => "00101",

"\$a2" => "00110",

"\$a3" => "00111",

"\$a4" => "01000",

"\$a5" => "01001",

"\$a6" => "01010",

"\$a7" => "01011",

"\$t0" => "01100",

"\$t1" => "01101",

"\$t2" => "01110",

"\$t3" => "01111",

"\$t4" => "10000",

"\$t5" => "10001",

"\$t6" => "10010",

"\$t7" => "10011",

"\$s0" => "10100",

"\$s1" => "10101",

"\$s2" => "10110",

"\$s3" => "10111",

"\$s4" => "11000",

"\$s5" => "11001",

"\$s6" => "11010",

"\$s7" => "11011",

"\$k0" => "11100",

"\$k1" => "11101",

"\$gp" => "11110",

"\$ra" => "11111");

open rFILE, "bench.txt" or die $!;

open wFILE, ">bench.tmp" or die $!;

while (my $line = <rFILE>) {

my @instruction = split(’ ’, $line);

if ($instruction[0]){

print wFILE "$opcode{$instruction[0]}";

if ($opcode{$instruction[0]} eq "001000"){

print wFILE "$reg{$instruction[2]}";

print wFILE "$reg{$instruction[1]}";

printf wFILE "%016b\n", hex($instruction[3]);

}

elsif ($opcode{$instruction[0]} eq "000100"){

print wFILE "$reg{$instruction[1]}";

print wFILE "$reg{$instruction[2]}";

printf wFILE "%016b\n", hex($instruction[3]);

}

elsif ($opcode{$instruction[0]} eq "000010"){

printf wFILE "00%024b\n", hex($instruction[1]);

}

elsif(($opcode{$instruction[0]} eq "100011") or ($opcode{$instruction[0]} eq "101011")){

@address = split(’\(’, $instruction[2]);

printf wFILE "$reg{$address[0]}";

printf wFILE "$reg{$instruction[1]}";

@address2 = split(’\)’, @address[1]);

printf wFILE "%016b\n", hex($address2[0]);

}

elsif ($opcode{$instruction[0]} eq "000000"){

if (($instruction[0] eq "add") or ($instruction[0] eq "and") or ($instruction[0] eq "or") or ($instruction[0] eq "sin") or ($instruction[0] eq "cos") or ($instruction[0] eq "sinh") or ($instruction[0] eq "cosh") or ($instruction[0] eq "csc") or ($instruction[0] eq "sec") or ($instruction[0] eq "csch") or ($instruction[0] eq "sech") or ($instruction[0] eq "nsin") or ($instruction[0] eq "ncos") or ($instruction[0] eq "nsinh") or ($instruction[0] eq "ncosh") or ($instruction[0] eq "ncsc") or ($instruction[0] eq "nsec") or ($instruction[0] eq "ncsch") or ($instruction[0] eq "nsech") or ($instruction[0] eq "mult") or ($instruction[0] eq "multa") or ($instruction[0] eq "multu")){

print wFILE "$reg{$instruction[2]}";

print wFILE "$reg{$instruction[3]}";

print wFILE "$reg{$instruction[1]}";

print wFILE "00000";

print wFILE "$funct{$instruction[0]}\n";

}

elsif ($instruction[0] eq"sub"){

print wFILE "$reg{$instruction[3]}";

print wFILE "$reg{$instruction[2]}";

print wFILE "$reg{$instruction[1]}";

print wFILE "00000";

print wFILE "$funct{$instruction[0]}\n";

}

elsif (($instruction[0] eq "sll") or ($instruction[0] eq "srl") or ($instruction[0] eq "sra")){

print wFILE "00000";
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print wFILE "$reg{$instruction[2]}";

print wFILE "$reg{$instruction[1]}";

printf wFILE "%05b", hex($instruction[3]);

print wFILE "$funct{$instruction[0]}\n";

}

elsif (($instruction[0] eq "mfhi") or ($instruction[0] eq "mflo")){

print wFILE "00000";

print wFILE "00000";

print wFILE "$reg{$instruction[1]}";

print wFILE "00000";

print wFILE "$funct{$instruction[0]}\n";

}

}

}

}

close(wFILE);

close(rFILE);

open rFILE, "bench.tmp" or die $!;

open wFILE, ">bench.dat" or die $!;

while (my $line = <rFILE>) {

my @instruction = split(undef,$line);

# print "$line";

my $dec = @instruction[24]*8 + @instruction[25]*4 + @instruction[26]*2 + @instruction[27]*1;

printf wFILE "%x",$dec;

$dec = @instruction[28]*8 + @instruction[29]*4 + @instruction[30]*2 + @instruction[31]*1;

printf wFILE "%x\n",$dec;

my $dec = @instruction[16]*8 + @instruction[17]*4 + @instruction[18]*2 + @instruction[19]*1;

printf wFILE "%x",$dec;

$dec = @instruction[20]*8 + @instruction[21]*4 + @instruction[22]*2 + @instruction[23]*1;

printf wFILE "%x\n",$dec;

my $dec = @instruction[8]*8 + @instruction[9]*4 + @instruction[10]*2 + @instruction[11]*1;

printf wFILE "%x",$dec;

$dec = @instruction[12]*8 + @instruction[13]*4 + @instruction[14]*2 + @instruction[15]*1;

printf wFILE "%x\n",$dec;

my $dec = @instruction[0]*8 + @instruction[1]*4 + @instruction[2]*2 + @instruction[3]*1;

printf wFILE "%x",$dec;

$dec = @instruction[4]*8 + @instruction[5]*4 + @instruction[6]*2 + @instruction[7]*1;

printf wFILE "%x\n",$dec;

}

close(wFILE);

close(rFILE);

open rFILE, "bench.tmp" or die $!;

open wFILE, ">bench.data" or die $!;

$adr = 0;

while (my $line = <rFILE>) {

my @instruction = split(undef,$line);

print "$line";

print wFILE " external_memory[$adr] <= 8’b";

printf wFILE "%i%i%i%i",@instruction[24],@instruction[25],@instruction[26],@instruction[27];

printf wFILE "%i%i%i%i;\n",@instruction[28],@instruction[29],@instruction[30],@instruction[31];

$adr = $adr + 1;

print wFILE " external_memory[$adr] <= 8’b";

printf wFILE "%i%i%i%i",@instruction[16],@instruction[17],@instruction[18],@instruction[19];

printf wFILE "%i%i%i%i;\n",@instruction[20],@instruction[21],@instruction[22],@instruction[23];

$adr = $adr + 1;

print wFILE " external_memory[$adr] <= 8’b";

printf wFILE "%i%i%i%i",@instruction[8],@instruction[9],@instruction[10],@instruction[11];

printf wFILE "%i%i%i%i;\n",@instruction[12],@instruction[13],@instruction[14],@instruction[15];

$adr = $adr + 1;

print wFILE " external_memory[$adr] <= 8’b";

printf wFILE "%i%i%i%i",@instruction[0],@instruction[1],@instruction[2],@instruction[3];

printf wFILE "%i%i%i%i;\n",@instruction[4],@instruction[5],@instruction[6],@instruction[7];

$adr = $adr + 1;

}

close(wFILE);

close(rFILE);

B.3 Synopsys Compiler Script

#*************************************************

#* By: Ryan Wu University of Calgary *

#* Modified from: Erik Brunvand *

#* syn-script *

#*************************************************

#Environment Setup (.sysnopsys_dc.setup content)

set companpy {University of Calgary}

set designer {Ryan Wu}
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set SynopsysInstall [getenv "SYNOPSYS"]

define_design_lib WORK -path ./WORK

###############################################################################

#Design specific Parameters

###############################################################################

set myFiles [list ./NC_Verilog/lut.v ./NC_Verilog/mips.v ./NC_Verilog/memcontrol.v ./NC_Verilog/core.v ./NC_Verilog/dft.v];# all HDL files

set fileFormat verilog; # verilog or VHDL

set basename mips; # Top level module name

set myClk clk; # The name of your clk

set virtual 0; # 1 if virtual clock (for design w/ no clk), 0 if real clock

#*****Timing and loading information*******************************************

set myPeriod_ns 100; # desired clock period in ns (sets speed goal)

set myInDelay_ns 0.25; # delay from clock to input valid

set myOutDelay_ns 0.25; # delay from clock to output valid

set myInputBuf INVX4TF; # name of the cell driving the inputs

set myLoadLibrary scx3_cmos8rf_rvt_tt_1p2v_25c; # name of the library the cell comes from

set myLoadPin A; # name of pin that the outputs drive

set myDrivePin Y; # name of the that drives the inputs

#******Control the writing of result files*************************************

set runname struct; #name appended to output files

#the following control which output files you want. They should be set to 1 if you want the file, 0 if not

set write_v 1; # compiled structural Verilog file

set write_ddc 1; # compiled file in ddc format

set write_sdf 0; # sdf file for back-annotated timing sum

set write_sdc 1; # sdc time constraint file for place and route

set write_rep 1; # report file for compilation

set write_pow 1; # report file for power generation

#*****compiler switches********************************************************

set useUltra 1; # 1 for compile_ultra, 0 for compile

#mapEffort, use Ungroup are for non-ultra compile

set mapEffort1 medium; # First pass - low, medium, or high

set mapEffort2 medium; # second pass - low, medium or high

set useUngroup 1; # 0, if no flatten, 1 if flatten

###############################################################################

# Set some system-level things #

# #

# Your library path may be empty if your library will be in #

# your synthesis directory because "." is already on the path #

###############################################################################

set search_path [list . \

./NC_Verilog \

[format "%s%s" $SynopsysInstall /libraries/syn] \

[format "%s%s" $SynopsysInstall /dw/sim_ver] \

]

#Target library list should include all target .db files

#Library names separated by spaces if more than one

set target_library [list ./TECH/scx3_cmos8rf_rvt_tt_1p2v_25c.db]

set synthetic_library [list dw_foundation.sldb]

set symbol_library [list generic.sdb]

set link_library [concat \

[concat "*" $target_library] $synthetic_library]
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###############################################################################

# Below here should not be changed.... #

###############################################################################

#analyse and elaborate the files

analyze -format $fileFormat -lib WORK $myFiles

elaborate $basename -lib WORK -update

current_design $basename

# The link command makes sure that all the required design

#parts are linked together

# The uniquify command makes unique copies of replicated

#modules

link

uniquify

# now you can create clocks for the design

#and set other constraints

if { $virtual == 0 } {

create_clock -period $myPeriod_ns $myClk

} else {

create_clock -period $myPeriod_ns -name $myClk

}

# Set the driving cell for all inputs except the clock

# The clock has infinite drive by default. This is usually

# what you want for synthesis because you will use other

#tools (like SOC Encounter) to build the clock tree

# (or define it by hand)

if { $virtual == 0 } {

set_driving_cell -library $myLoadLibrary -lib_cell $myInputBuf -pin $myDrivePin [all_inputs] \

} else {

set_driving_cell -library $myLoadLibrary -lib_cell $myInputBuf -pin $myDrivePin \

[remove_from_collection [all_inputs] $myClk]

}

#set the input and output delay relative to myClk

if { $virtual == 0 } {

set_input_delay $myInDelay_ns -clock $myClk [all_inputs] \

} else {

set_input_delay $myInDelay_ns -clock $myClk \

[remove_from_collection [all_inputs] $myClk]

}

set_output_delay $myOutDelay_ns -clock $myClk [all_outputs]

#set the load of the circuit outputs in terms of load

#of the next cell that they will drive, also try to fix

#hold time issues

set_load [load_of [format "%s%s%s%s%s" $myLoadLibrary "/" $myInputBuf "/" $myLoadPin]] [all_outputs]

set_fix_hold $myClk

#This command will fix the problem of having assign statements left in your structural file

# But, it will insert pairs of inverters for feedthroughs!

set_fix_multiple_port_nets -all -buffer_constants

#now compile the design with given mapping effort

#and do a second compile with incremental mapping

# or use the the compile_ultra meta-command

if { $useUltra == 1 } {

compile_ultra

} else {

if { $useUngroup == 1 } {

compile -ungroup_all -map_effort $mapEffort1 #The instruction in the book is ungoup_all; typo?

compile -incremental_mapping -map_effort $mapEffort2

} else {

compile -map_effort $mapEfffort1
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compile -incremental_mapping -map_effort $mapEffort2

}

}

#

check_design

report_constraint -all_violators

###############################################################################

# now write out the results #

###############################################################################

set filebase [format "%s%s" [format "%s%s" $basename "_"] $runname]

# structural (synthesised) file as verilog

if { $write_v == 1 } {

set filename [format "%s%s" $filebase ".v"]

write -format verilog -hierarchy -output $filename

redirect change_names \

{ change_names -rules verilog -hierarchy -verbose }

write -format verilog -hierarchy -output [format "%s%s" $filebase ".sdf"]

}

# write out the sdf file for back-annotated verilog sim

# This file can be large!

if { $write_sdf == 1 } {

set filename [format "%s%s" $filebase ".sdf"]

write_sdf -version 1.0 $filename

}

# This is the timings constraints file generated from the

# conditions above -used in the place and route program

if { $write_sdc == 1 } {

set filename [format "%s%s" $filebase ".sdc"]

write_sdc $filename

}

# synopsys database format in case you want to read this

# synthesized result back in to synopsys later in XG mode (ddc format)

if { $write_ddc == 1 } {

set filename [format "%s%s" $filebase ".ddc"]

write -format ddc -hierarchy -o $filename

}

# report on the results from synthesis

# note that > makes a new file and >> appends to a file

if { $write_rep == 1} {

set filename [format "%s%s" $filebase ".rep"]

redirect $filename { report_timing }

redirect -append $filename {report_area }

}

# report the power estimate from synthesis

if { $write_pow == 1 } {

set filename [format "%s%s" $filebase ".pow"]

redirect $filename { report_power }

}

quit
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B.4 Encounter Top-Level Command Script

#######################################################

# Encounter Top-Level Script for Layout Synthesis #

# By: Ryan Wu #

# Modified from Erik Brunvand #

#######################################################

# set the BASENAME for the config files. This will also

# be used for the .lib, .lef, .v, and .spef files

# that are generated by this script

set BASENAME "mips"

set PROCESS 130;

# set the name of the filler cells - you don’t need a list

# if you only have one

set fillerCells [list FILL8TF FILL64TF FILL4TF FILL32TF FILL2TF FILL1TF FILL16TF]

# choose numbers that make sense for you

set usepct 0.50 ;# percent utilization in placing cells

set rowgap 3 ;# gap between pairs of std cell rows

set aspect 0.5 ;# aspect ratio of overall cell (1.0 is square)

# less than 1.0 is landscape, greater than 1.0 is portrait

#############################################################

# You may not have to change things below this line - but check!

#############################################################

set clockBufName <INVX1TF> ;# Footprint of inverter in .lib file

# Set some values that define the power rings and stripes.

# use these defaults, or choose your own.

# Note that all these numbers should be divisible by 3 so

# that they fit on the lambda grid

set pwidth 15 ;# power rail width

set pspace 3 ;# power rail space

set swidth 6 ;# power stripe width

set sspace 2 ;# power stripe spacing

set sset 7 ;# number of power stripe

set soffset 60 ;# power stripe offset to first stripe

set coregap 39.0 ;# gap between the core and the power rails

# Import design and floorplan

# If the config file is not named $BASENAME.conf, edit this line.

loadConfig $BASENAME.conf 0

commitConfig

# source the files that operate on the circuit

source fplan.tcl ;# create the floorplan (might be done by hand...)

win

source pplan.tcl ;# create the power rings and stripes

win

source place.tcl ;# Place the cells and optimize (pre-CTS)

win

source cts.tcl ;# Create the clock tree, and optimize (post-CTS)

win

source route.tcl ;# Route the design using nanoRoute

win

source verify.tcl ;# Verify the design and produce output files

#exit

B.5 Layout Synthesis Configurations

################################################

# MIPS Synthesis Configuration file #
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# By: Ryan Wu #

# Modifications from Erik Brunvand #

################################################

global rda_Input

#

#########################################################

# Here are the parts you need to update for your design

#########################################################

#

# Your input is structural verilog. Set the top module name

# and also give the .sdc file you used in synthesis for the

# clock timing constraints.

set rda_Input(ui_netlist) {mips_struct.v}

set rda_Input(ui_topcell) {mips}

set rda_Input(ui_timingcon_file) {mips_struct.sdc}

set rda_Input(ui_io_file) {mips.io}

#

# Leave min and max empty if you have only one timing library

# (space-separated if you have more than one)

set rda_Input(ui_timelib) {./TECH/scx3_cmos8rf_rvt_tt_1p2v_25c.lib ./TECH/iogpil_cmrf8sf_rvt_tt_1p2v_2p5v_25c.lib}

set rda_Input(ui_timelib,min) {./TECH/scx3_cmos8rf_rvt_ff_1p65v_125c.lib ./TECH/iogpil_cmrf8sf_rvt_ff_1p65v_2p7v_125c.lib}

set rda_Input(ui_timelib,max) {./TECH/scx3_cmos8rf_rvt_ss_1p08v_m55c.lib ./TECH/iogpil_cmrf8sf_rvt_ss_1p08v_2p3v_m55c.lib}

#

# Set the name of your lef file or files

# (space-separated if you have more than one).

set rda_Input(ui_leffile) {./TECH/ibm13_8lm_2thick_3rf_tech.lef ./TECH/ibm13rfrvt_macros.lef ./TECH/iogpil_cmrf8sf_rvt_M2_3_3.lef}

#

# Include the footprints of your cells that fit these uses. Delay

# can be an inverter or a buffer. Leave buf blank if you don’t

# have a non-inverting buffer. These are the "footprints" in

# the .lib file, not the cell names.

#buf/inv are now automatically identified, use "loadFootPrint" command to override

##set rda_Input(ui_buf_footprint) {BUFX2TF}

##set rda_Input(ui_delay_footprint) {DLY1X1TF}

##set rda_Input(ui_inv_footprint) {INVX1TF}

##set rda_Input(ui_cts_cell_footprint) {}

#

#########################################################

# You might want to set core utilization and core_to spacing

# or you can leave these defaults...

#########################################################

#

set rda_Input(ui_core_util) {0.5}

set rda_Input(ui_core_to_left) {30.0}

set rda_Input(ui_core_to_right) {30.0}

set rda_Input(ui_core_to_top) {30.0}

set rda_Input(ui_core_to_bottom) {30.0}

#

#########################################################

# Below here you should be able to leave alone...

#########################################################

set rda_Input(import_mode) {-treatUndefinedCellAsBbox 0 -keepEmptyModule 1 }

set rda_Input(ui_netlisttype) {Verilog}

set rda_Input(ui_settop) {1}

set rda_Input(ui_core_cntl) {aspect}

set rda_Input(ui_aspect_ratio) {0.4}

set rda_Input(ui_isVerTrackHalfPitch) {1}

set rda_Input(ui_ioOri) {R180}

set rda_Input(ui_delay_limit) {1000}

set rda_Input(ui_net_delay) {1000.0ps}

set rda_Input(ui_net_load) {0.5pf}

set rda_Input(ui_in_tran_delay) {120.0ps}

set rda_Input(ui_defcap_scale) {1.0}

set rda_Input(ui_detcap_scale) {1.0}

set rda_Input(ui_xcap_scale) {1.0}

set rda_Input(ui_preRoute_res) {1.0}

set rda_Input(ui_postRoute_res) {1.0}

set rda_Input(ui_shr_scale) {1.0}
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set rda_Input(ui_time_unit) {none}

set rda_Input(flip_first) {1}

set rda_Input(double_back) {1}

set rda_Input(assign_buffer) {1}

set rda_Input(ui_pwrnet) {VDD}

set rda_Input(ui_gndnet) {VSS}

set rda_Input(ui_pg_connections) [list \

{PIN:VSS:} \

{PIN:VDD:} \

{NET:VSS:} \

{NET:VDD:} \

{TIEHI::} \

{TIELO::} \

]

set rda_Input(PIN:VSS:) {VSS}

set rda_Input(PIN:VDD:) {VDD}

set rda_Input(NET:VSS:) {VSS}

set rda_Input(NET:VDD:) {VDD}

set rda_Input(TIEHI::) {VDD}

set rda_Input(TIELO::) {VSS}

B.6 Synthesis Pin Placement

#Pin Assignments and Placement for Synthesis

#By Ryan Wu, Feb. 2011

# W = West|Left, bottom to top

#

# E = East|right, bottom to top

#

# N = North|top, left to right

#

# S = South|bottom, left to right

#

Pin: clk W

Pin: reset W

Pin: rw W

Pin: ex_clk W

Pin: ex_MEMon W

Pin: ram_bypass W

Pin: exdatain[0] S

Pin: exdatain[1] S

Pin: exdatain[2] S

Pin: exdatain[3] S

Pin: exdatain[4] S

Pin: exdatain[5] S

Pin: exdatain[6] S

Pin: exdatain[7] S

Pin: exdataout[0] S

Pin: exdataout[1] S

Pin: exdataout[2] S

Pin: exdataout[3] S

Pin: exdataout[4] S

Pin: exdataout[5] S

Pin: exdataout[6] S

Pin: exdataout[7] S

Pin: test1[0] E

Pin: test1[1] E

Pin: test1[2] E

Pin: test1[3] E

Pin: test1[4] E

Pin: test1[5] E

Pin: test1[6] E

Pin: test1[7] E

Pin: test1[8] E

Pin: test1[9] E

Pin: test1[10] E

Pin: test1[11] E

Pin: test1[12] E

Pin: test1[13] E

Pin: test1[14] E

Pin: test1[15] E

Pin: test1[16] E

Pin: test1[17] E

Pin: test1[18] E

Pin: test1[19] E

Pin: test1[20] E

Pin: test1[21] E

Pin: test1[22] E

Pin: test1[23] E

Pin: test1[24] E

Pin: test1[25] E

Pin: test1[26] E

Pin: test1[27] E

Pin: test1[28] E

Pin: test1[29] E

Pin: test1[30] E

Pin: test1[31] E

Pin: test2[0] E

Pin: test2[1] E

Pin: test2[2] E

Pin: test2[3] E

Pin: test2[4] E

Pin: test2[5] E

Pin: test2[6] E

Pin: test2[7] E

Pin: test2[8] E

Pin: test2[9] E

Pin: test2[10] E

Pin: test2[11] E

Pin: test2[12] E

Pin: test2[13] E

Pin: test2[14] E

Pin: test2[15] E

Pin: test2[16] E

Pin: test2[17] E

Pin: test2[18] E

Pin: test2[19] E

Pin: test2[20] E

Pin: test2[21] E

Pin: test2[22] E

Pin: test2[23] E

Pin: test2[24] E

Pin: test2[25] E

Pin: test2[26] E

Pin: test2[27] E

Pin: test2[28] E

Pin: test2[29] E

Pin: test2[30] E

Pin: test2[31] E

Pin: test3[0] E

Pin: test3[1] E

Pin: test3[2] E

Pin: test3[3] E

Pin: test3[4] E

Pin: test3[5] E

Pin: test3[6] E

Pin: test3[7] E

Pin: test3[8] E

Pin: test3[9] E

Pin: test3[10] E

Pin: test3[11] E

Pin: test3[12] E

Pin: test3[13] E

Pin: test3[14] E

Pin: test3[15] E

Pin: colWL[0] N

Pin: colrWL[0] N

Pin: rowrWL[0] N

Pin: rowWL[0] N
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Pin: rowrWL[1] N

Pin: rowWL[1] N

Pin: rowrWL[2] N

Pin: rowWL[2] N

Pin: rowrWL[3] N

Pin: rowWL[3] N

Pin: rowrWL[4] N

Pin: rowWL[4] N

Pin: rowrWL[5] N

Pin: rowWL[5] N

Pin: rowrWL[6] N

Pin: rowWL[6] N

Pin: rowrWL[7] N

Pin: rowWL[7] N

Pin: rowrWL[8] N

Pin: rowWL[8] N

Pin: rowrWL[9] N

Pin: rowWL[9] N

Pin: rowrWL[10] N

Pin: rowWL[10] N

Pin: rowrWL[11] N

Pin: rowWL[11] N

Pin: rowrWL[12] N

Pin: rowWL[12] N

Pin: rowrWL[13] N

Pin: rowWL[13] N

Pin: rowrWL[14] N

Pin: rowWL[14] N

Pin: rowrWL[15] N

Pin: rowWL[15] N

Pin: rowrWL[16] N

Pin: rowWL[16] N

Pin: rowrWL[17] N

Pin: rowWL[17] N

Pin: rowrWL[18] N

Pin: rowWL[18] N

Pin: rowrWL[19] N

Pin: rowWL[19] N

Pin: rowrWL[20] N

Pin: rowWL[20] N

Pin: rowrWL[21] N

Pin: rowWL[21] N

Pin: rowrWL[22] N

Pin: rowWL[22] N

Pin: rowrWL[23] N

Pin: rowWL[23] N

Pin: rowrWL[24] N

Pin: rowWL[24] N

Pin: rowrWL[25] N

Pin: rowWL[25] N

Pin: rowrWL[26] N

Pin: rowWL[26] N

Pin: rowrWL[27] N

Pin: rowWL[27] N

Pin: rowrWL[28] N

Pin: rowWL[28] N

Pin: rowrWL[29] N

Pin: rowWL[29] N

Pin: rowrWL[30] N

Pin: rowWL[30] N

Pin: rowrWL[31] N

Pin: rowWL[31] N

Pin: cacheout[0] N

Pin: cacheout[18] N

Pin: cacheout[1] N

Pin: cacheout[19] N

Pin: cacheout[2] N

Pin: cacheout[20] N

Pin: cacheout[3] N

Pin: cacheout[21] N

Pin: cacheout[4] N

Pin: cacheout[22] N

Pin: cacheout[5] N

Pin: cacheout[23] N

Pin: cacheout[6] N

Pin: cacheout[24] N

Pin: cacheout[7] N

Pin: cacheout[25] N

Pin: cacheout[8] N

Pin: cacheout[26] N

Pin: cacheout[9] N

Pin: cacheout[27] N

Pin: cacheout[10] N

Pin: cacheout[28] N

Pin: cacheout[11] N

Pin: cacheout[29] N

Pin: cacheout[12] N

Pin: cacheout[30] N

Pin: cacheout[13] N

Pin: cacheout[31] N

Pin: cacheout[14] N

Pin: cacheout[32] N

Pin: cacheout[15] N

Pin: cacheout[33] N

Pin: cacheout[16] N

Pin: cacheout[34] N

Pin: cacheout[17] N

Pin: cacheout[35] N

Pin: cachein0[0] N

Pin: cachein0[18] N

Pin: cachein0[1] N

Pin: cachein0[19] N

Pin: cachein0[2] N

Pin: cachein0[20] N

Pin: cachein0[3] N

Pin: cachein0[21] N

Pin: cachein0[4] N

Pin: cachein0[22] N

Pin: cachein0[5] N

Pin: cachein0[23] N

Pin: cachein0[6] N

Pin: cachein0[24] N

Pin: cachein0[7] N

Pin: cachein0[25] N

Pin: cachein0[8] N

Pin: cachein0[26] N

Pin: cachein0[9] N

Pin: cachein0[27] N

Pin: cachein0[10] N

Pin: cachein0[28] N

Pin: cachein0[11] N

Pin: cachein0[29] N

Pin: cachein0[12] N

Pin: cachein0[30] N

Pin: cachein0[13] N

Pin: cachein0[31] N

Pin: cachein0[14] N

Pin: cachein0[32] N

Pin: cachein0[15] N

Pin: cachein0[33] N

Pin: cachein0[16] N

Pin: cachein0[34] N

Pin: cachein0[17] N

Pin: cachein0[35] N

Pin: colWL[1] N

Pin: colrWL[1] N

Pin: cachein1[0] N

Pin: cachein1[18] N

Pin: cachein1[1] N

Pin: cachein1[19] N

Pin: cachein1[2] N

Pin: cachein1[20] N

Pin: cachein1[3] N

Pin: cachein1[21] N

Pin: cachein1[4] N

Pin: cachein1[22] N

Pin: cachein1[5] N

Pin: cachein1[23] N

Pin: cachein1[6] N

Pin: cachein1[24] N

Pin: cachein1[7] N

Pin: cachein1[25] N

Pin: cachein1[8] N

Pin: cachein1[26] N

Pin: cachein1[9] N

Pin: cachein1[27] N

Pin: cachein1[10] N

Pin: cachein1[28] N

Pin: cachein1[11] N

Pin: cachein1[29] N

Pin: cachein1[12] N

Pin: cachein1[30] N

Pin: cachein1[13] N

Pin: cachein1[31] N

Pin: cachein1[14] N

Pin: cachein1[32] N

Pin: cachein1[15] N

Pin: cachein1[33] N

Pin: cachein1[16] N

Pin: cachein1[34] N

Pin: cachein1[17] N

Pin: cachein1[35] N

Pin: colWL[2] N

Pin: colrWL[2] N

Pin: cachein2[0] N

Pin: cachein2[18] N

Pin: cachein2[1] N

Pin: cachein2[19] N

Pin: cachein2[2] N

Pin: cachein2[20] N

Pin: cachein2[3] N

Pin: cachein2[21] N

Pin: cachein2[4] N

Pin: cachein2[22] N

Pin: cachein2[5] N

Pin: cachein2[23] N

Pin: cachein2[6] N

Pin: cachein2[24] N

Pin: cachein2[7] N

Pin: cachein2[25] N

Pin: cachein2[8] N

Pin: cachein2[26] N

Pin: cachein2[9] N

Pin: cachein2[27] N

Pin: cachein2[10] N

Pin: cachein2[28] N

Pin: cachein2[11] N

Pin: cachein2[29] N

Pin: cachein2[12] N

Pin: cachein2[30] N
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Pin: cachein2[13] N

Pin: cachein2[31] N

Pin: cachein2[14] N

Pin: cachein2[32] N

Pin: cachein2[15] N

Pin: cachein2[33] N

Pin: cachein2[16] N

Pin: cachein2[34] N

Pin: cachein2[17] N

Pin: cachein2[35] N

Pin: colWL[3] N

Pin: colrWL[3] N

Pin: cachein3[0] N

Pin: cachein3[18] N

Pin: cachein3[1] N

Pin: cachein3[19] N

Pin: cachein3[2] N

Pin: cachein3[20] N

Pin: cachein3[3] N

Pin: cachein3[21] N

Pin: cachein3[4] N

Pin: cachein3[22] N

Pin: cachein3[5] N

Pin: cachein3[23] N

Pin: cachein3[6] N

Pin: cachein3[24] N

Pin: cachein3[7] N

Pin: cachein3[25] N

Pin: cachein3[8] N

Pin: cachein3[26] N

Pin: cachein3[9] N

Pin: cachein3[27] N

Pin: cachein3[10] N

Pin: cachein3[28] N

Pin: cachein3[11] N

Pin: cachein3[29] N

Pin: cachein3[12] N

Pin: cachein3[30] N

Pin: cachein3[13] N

Pin: cachein3[31] N

Pin: cachein3[14] N

Pin: cachein3[32] N

Pin: cachein3[15] N

Pin: cachein3[33] N

Pin: cachein3[16] N

Pin: cachein3[34] N

Pin: cachein3[17] N

Pin: cachein3[35] N

Pin: colWL[4] N

Pin: colrWL[4] N

Pin: cachein4[0] N

Pin: cachein4[18] N

Pin: cachein4[1] N

Pin: cachein4[19] N

Pin: cachein4[2] N

Pin: cachein4[20] N

Pin: cachein4[3] N

Pin: cachein4[21] N

Pin: cachein4[4] N

Pin: cachein4[22] N

Pin: cachein4[5] N

Pin: cachein4[23] N

Pin: cachein4[6] N

Pin: cachein4[24] N

Pin: cachein4[7] N

Pin: cachein4[25] N

Pin: cachein4[8] N

Pin: cachein4[26] N

Pin: cachein4[9] N

Pin: cachein4[27] N

Pin: cachein4[10] N

Pin: cachein4[28] N

Pin: cachein4[11] N

Pin: cachein4[29] N

Pin: cachein4[12] N

Pin: cachein4[30] N

Pin: cachein4[13] N

Pin: cachein4[31] N

Pin: cachein4[14] N

Pin: cachein4[32] N

Pin: cachein4[15] N

Pin: cachein4[33] N

Pin: cachein4[16] N

Pin: cachein4[34] N

Pin: cachein4[17] N

Pin: cachein4[35] N

Pin: colWL[5] N

Pin: colrWL[5] N

Pin: cachein5[0] N

Pin: cachein5[18] N

Pin: cachein5[1] N

Pin: cachein5[19] N

Pin: cachein5[2] N

Pin: cachein5[20] N

Pin: cachein5[3] N

Pin: cachein5[21] N

Pin: cachein5[4] N

Pin: cachein5[22] N

Pin: cachein5[5] N

Pin: cachein5[23] N

Pin: cachein5[6] N

Pin: cachein5[24] N

Pin: cachein5[7] N

Pin: cachein5[25] N

Pin: cachein5[8] N

Pin: cachein5[26] N

Pin: cachein5[9] N

Pin: cachein5[27] N

Pin: cachein5[10] N

Pin: cachein5[28] N

Pin: cachein5[11] N

Pin: cachein5[29] N

Pin: cachein5[12] N

Pin: cachein5[30] N

Pin: cachein5[13] N

Pin: cachein5[31] N

Pin: cachein5[14] N

Pin: cachein5[32] N

Pin: cachein5[15] N

Pin: cachein5[33] N

Pin: cachein5[16] N

Pin: cachein5[34] N

Pin: cachein5[17] N

Pin: cachein5[35] N

Pin: colWL[6] N

Pin: colrWL[6] N

Pin: cachein6[0] N

Pin: cachein6[18] N

Pin: cachein6[1] N

Pin: cachein6[19] N

Pin: cachein6[2] N

Pin: cachein6[20] N

Pin: cachein6[3] N

Pin: cachein6[21] N

Pin: cachein6[4] N

Pin: cachein6[22] N

Pin: cachein6[5] N

Pin: cachein6[23] N

Pin: cachein6[6] N

Pin: cachein6[24] N

Pin: cachein6[7] N

Pin: cachein6[25] N

Pin: cachein6[8] N

Pin: cachein6[26] N

Pin: cachein6[9] N

Pin: cachein6[27] N

Pin: cachein6[10] N

Pin: cachein6[28] N

Pin: cachein6[11] N

Pin: cachein6[29] N

Pin: cachein6[12] N

Pin: cachein6[30] N

Pin: cachein6[13] N

Pin: cachein6[31] N

Pin: cachein6[14] N

Pin: cachein6[32] N

Pin: cachein6[15] N

Pin: cachein6[33] N

Pin: cachein6[16] N

Pin: cachein6[34] N

Pin: cachein6[17] N

Pin: cachein6[35] N

Pin: colWL[7] N

Pin: colrWL[7] N

Pin: cachein7[0] N

Pin: cachein7[18] N

Pin: cachein7[1] N

Pin: cachein7[19] N

Pin: cachein7[2] N

Pin: cachein7[20] N

Pin: cachein7[3] N

Pin: cachein7[21] N

Pin: cachein7[4] N

Pin: cachein7[22] N

Pin: cachein7[5] N

Pin: cachein7[23] N

Pin: cachein7[6] N

Pin: cachein7[24] N

Pin: cachein7[7] N

Pin: cachein7[25] N

Pin: cachein7[8] N

Pin: cachein7[26] N

Pin: cachein7[9] N

Pin: cachein7[27] N

Pin: cachein7[10] N

Pin: cachein7[28] N

Pin: cachein7[11] N

Pin: cachein7[29] N

Pin: cachein7[12] N

Pin: cachein7[30] N

Pin: cachein7[13] N

Pin: cachein7[31] N

Pin: cachein7[14] N

Pin: cachein7[32] N

Pin: cachein7[15] N

Pin: cachein7[33] N

Pin: cachein7[16] N

Pin: cachein7[34] N

Pin: cachein7[17] N

Pin: cachein7[35] N
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B.7 Floor Planning

#######################################################

# Layout Floorplanning (density,aspect ratio,spacing)#

# By: Ryan Wu #

# Modified from Erik Brunvand #

#######################################################

puts "-------------Floorplanning---------------"

#

# Make a floorplan - this works fine for projects that are all

# standard cells and include no blocks that need hand placement...

setDrawView fplan

setFPlanRowSpacingAndType $rowgap 2

floorPlan -site IBM13SITE -r $aspect $usepct $coregap $coregap $coregap $coregap

#setRoutingStyle -top -style m

fit

#

# Save design so far

saveDesign ${BASENAME}_fplan.enc

saveFPlan ${BASENAME}.fp

puts "--------------Floorplanning done-----------"

B.8 Power Planning

#######################################################

# Power Rings and Power Rails #

# By: Ryan Wu #

# Modified from Erik Brunvand #

#######################################################

puts "-------------Power Planning----------------"

puts "-------Making power rings------------------"

#

# Make power and ground rings

# $pwidth microns wide with $pspace spacing between them

# and centered in the channel

addRing -spacing_bottom $pspace -width_left $pwidth -width_bottom $pwidth \

-width_top $pwidth -spacing_top $pspace -layer_bottom M1 -center 1 \

-stacked_via_top_layer MA -width_right $pwidth -around core \

-jog_distance $pspace -offset_bottom $pspace -layer_top M1 \

-threshold $pspace -offset_left $pspace -spacing_right $pspace \

-spacing_left $pspace -offset_right $pspace -offset_top $pspace \

-layer_right M2 -nets {VSS VDD } -stacked_via_bottom_layer M1 \

-layer_left M2

#

puts "------making power stripes-----------------"

#

# Make Power Stripes. This step is optional. If you keep it in remember to

# check the stripe spacing (set-to-set-distance = $sspace)

# and stripe offset (xleft-offset = $soffset))

addStripe -block_ring_top_layer_limit M3 -max_same_layer_jog_length 8.0 \

-snap_wire_center_to_grid Grid -padcore_ring_bottom_layer_limit M1 \

-number_of_sets $sset -stacked_via_top_layer MA \

-padcore_ring_top_layer_limit M3 -spacing $sspace -xleft_offset $soffset -xright_offset $soffset \

-merge_stripes_value 0.2 -layer M2 -block_ring_bottom_layer_limit M1 \

-width $swidth -nets {VSS VDD } -stacked_via_bottom_layer M1

# Save the design so far

saveDesign ${BASENAME}_pplan.enc

puts "-------------Power Planning done---------"
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B.9 Cell Placement

#######################################################

# Standard Cell Placement #

# By: Ryan Wu #

# Modified from Erik Brunvand #

#######################################################

puts "----------Placing Cells-----------"

# Place the standard cells

setPlaceMode -timingdriven 1 -reorderScan 1 -congEffort high -doCongOpt 0 -ModulePlan 1 -modulePlan 1 \

-doCongOpt 1 -clkGateAware 1 -maxRouteLayer 3

# Only turn the optimizations in if needed. We’ll do more optimization later

setDesignMode -process ${PROCESS}

#this is the one that takes a long time

placeDesign -inPlaceOpt -prePlaceOpt

#placeDesign

setDrawView place

# Now run the first optimization step - pre-CTS (Clock Tree Synthesis)

# in-place optimization.

setOptMode -yieldEffort none

setOptMode -effort high

setOptMode -leakagePowerEffort high

setOptMode -dynamicPowerEffort high

setOptMode -maxDensity 0.65

setOptMode -drcMargin 0.0

setOptMode -holdTargetSlack 0.0 -setupTargetSlack 0.0

setOptMode -simplifyNetlist false

clearClockDomains

#setClockDomains -all is not supported in common timing enginer (CTE)

setClockDomains -all

setOptMode -usefulSkew false

optDesign -preCTS -drv \

-outDir ${BASENAME}_reports/preCTSOptTimingReports

# Save the design so far

saveDesign ${BASENAME}_placed.enc

puts "-------------Done Placing Cells-----"

B.10 Clock-Tree Synthesis

#######################################################

# Clock Tree Synthesis #

# By: Ryan Wu #

# Modified from Erik Brunvand #

#######################################################

puts "--------Clock Tree Synthesis-------"

# Create the clock tree spec from the .sdc file

#createClockTreeSpec -output $BASENAME.ctstch -invFootprint $clockBufName

specifyClockTree -file Clock.ctstch

# Use -useCTSRouteGuide to use routing guide during CTS.

setCTSMode -routeGuide true

# Set routeClkNet to use Nanoroute during CTS.

setCTSMode -routeClkNet true

setCTSMode -synthLatencyEffort high

setCTSMode -opt true

setCTSMode -optAddBuffer true
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setCTSMode -optArea true

setCTSMode -optLatency true

setCTSMode -optLatencyMoveGate true

setCTSMode -postCTSCloningForTNS true

setCTSMode -powerAware true

setCTSMode -traceDPinAsLeaf false

setCTSMode -traceIoPinAsLeaf false

# Perform clocktree synthesis

clockDesign -specFile Clock.ctstch -outDir ${BASENAME}_clock_reports

# Run the second optimization - post-CTS

setOptMode -yieldEffort none

setOptMode -effort high

setOptMode -leakagePowerEffort high

setOptMode -dynamicPowerEffort high

setOptMode -maxDensity 0.8

setOptMode -drcMargin 0.0

setOptMode -holdTargetSlack 0.0 -setupTargetSlack 0.0

setOptMode -simplifyNetlist false

clearClockDomains

setClockDomains -all

setOptMode -usefulSkew false

optDesign -postCTS -drv \

-outDir ${BASENAME}_reports/postCTSOpt

# Save the design so far

saveDesign ${BASENAME}_cts.enc

puts "---------Clock Tree Synthesis done----"

B.11 Routing

B.12 Verification

#######################################################

# Geometry and Connectivity Verification #

# By: Ryan Wu #

# Modified from Erik Brunvand #

#######################################################

puts "----------Verifying and File Output-------------"

#

# Verify the connectivity and geometry

verifyConnectivity -type regular -error 50 -warning 50 \

-report ${BASENAME}_Conn_regular.rpt

verifyGeometry -report ${BASENAME}_Geom.rpt

puts "------------------Metal Fill--------------------"

puts "----------Output ${BASENAME}.def file------------"

# Export the DEF, v, spef, sdf, lef, and lib files

global dbgLefDefOutVersion

set dbgLefDefOutVersion 5.5

defOut -floorplan -netlist -routing $BASENAME.def

saveDesign ${BASENAME}_done.enc -def

puts "----------Output ${BASENAME}_soc.v file---------"

saveNetlist [format "%s_soc.v" $BASENAME]

puts "--------Save models for hierarchical flow------"

saveModel -dir ${BASENAME}_hier_data
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extractRC -outfile $BASENAME.cap

rcOut -spef $BASENAME.spef

write_sdf -ideal_clock_network $BASENAME.sdf

do_extract_model -blackbox_2d -force ${BASENAME}_soc.lib

# Generate timing model for PrimeTime

writeTimingCon -filename ${BASENAME}_done

puts "------------Verify and file output done------"
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Appendix C

Verilog Codes

C.1 Core

//-------------------------------------------------------

// Chip core interconnects

//

// By: Ryan Wu, University of Calgary

// Last Modified: April 30, 2012

//

// This component specifies the interconnects between all

// the internal components within the core, which includes

// the MIPS process, SRAM, test circuits,

// and some analog components.

//-------------------------------------------------------

// top level design includes both mips processor and memory

module core (clk, reset, ex_clk, write, read, eaddress, exMEMon, exdataout, exdatain, test_clk, test_en, test_load, test_sel, test_out1, test_out2);

supply1 RAM_VDD;

supply0 RAM_GND;

input clk, reset;

output ex_clk, write, read, exMEMon;

output [7:0] exdataout;

input [7:0] exdatain;

output [15:0] eaddress;

input test_clk, test_en, test_load;

input [3:0] test_sel;

output test_out1, test_out2;

wire MEMbp, ADCen;

wire [2:0] ADCsel;

wire [7:0] colWL, colrWL, mipsDAC1, mipsDAC2, mipsADC, DAC1out, DAC2out, ADCin, mipsdatain, mipsdataout;

wire [31:0] rowWL, rowrWL, test1, test2;

wire [15:0] test3;

wire [35:0] cacheout, cachein0, cachein1, cachein2, cachein3, cachein4, cachein5, cachein6, cachein7;

// instantiate the mips processor

mips mips(clk, reset, mipsdatain, cachein0, cachein1, cachein2, cachein3, cachein4, cachein5, cachein6, cachein7, write, read, ex_clk, exMEMon, cacheout, eaddress, rowrWL, rowWL, colrWL, colWL, mipsdataout, mipsDAC1, mipsDAC2, mipsADC, MEMbp, ADCsel, test1, test2, test3, ADCen);

dft dft(test_clk, test_load, test_en, test_out1, test_out2, test_sel, test1, test2, test3, cachein0, cachein1, cachein2, cachein3, cachein4, cachein5, cachein6, cachein7, cacheout, rowWL, rowrWL, colWL, colrWL, MEMbp, mipsdataout, exdatain, mipsDAC1, mipsDAC2, ADCin, mipsdatain, exdataout, DAC1out, DAC2out, mipsADC);

// SRAM Cache Controller

// memcontrol cache_controller(clk, reset, write, memen, adr, writedata, exdatain, cachein0, cachein1, cachein2, cachein3, cachein4, cachein5, cachein6, cachein7, halt, ex_clk, exMEMon, eaddress, rowrWL, rowWL, colrWL, colWL,memdata, exdataout, cacheout);

// SRAM 256W (1024 Bytes)
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RAM_256W_schematic cache(cachein0, cachein1, cachein2, cachein3, cachein4, cachein5, cachein6, cachein7, RAM_GND, RAM_VDD, cacheout, reset, colWL, colrWL, rowWL, rowrWL);

ana_mux4 MUX(vin, ADCsel[1:0], vout);

a2d_ideal ADC(vin, clk, ADCen, ADCin);

dac_8bit_ideal DAC1(DAC1out, vout);

dac_8bit_ideal DAC2(DAC2out, vout);

endmodule

C.2 MIPS

//-------------------------------------------------------

// MIPS processor

//

// By: Ryan Wu (Modified from "simple MIPS" by Erik Brunvand)

// Last Modified: April 30, 2012

//

// This is the full modified-MIPS processor design used for

// the final synthesis and fabricated in TSMC90nm

//-------------------------------------------------------

// simplified MIPS processor

// Top level module

module mips #(parameter WIDTH = 32, REGBITS = 5)

(input clk, reset,

input [7:0] mipsdatain,

input [35:0] cachein0, cachein1, cachein2, cachein3, cachein4, cachein5, cachein6, cachein7,

output rw, nrw, ex_clk,exMEMon,

output [35:0] cacheout,

output [15:0] eaddress,

output [31:0] rowrWL, rowWL,

output [7:0] colrWL, colWL,

output [7:0] mipsdataout, mipsDAC1, mipsDAC2,

input [7:0] mipsADC,

input ram_bypass,

output [2:0] ADCsel,

output [31:0] test1, test2,

output [15:0] test3,

output ADCen,

input VDD, GND);

wire [31:0] instr, LUT_out, ALU_out, src1, src2, memdata, adr, writedata;

wire [3:0] alucont;

wire [1:0] aluop,pcsrc,alusrcb, modcount;

wire zero, alusrca, memtoreg, iord, pcen, regwrite, regdst, aluinit, aluen, done,

sign, luten, multa_route, irwrite, halt, memen;

controller cont(clk, reset, instr[31:26], instr[5:0], zero, done, halt, memen, rw,

alusrca, memtoreg, iord, pcen, multa_route, regwrite, regdst,

irwrite, pcsrc, alusrcb, aluop);

alucontrol ac(clk, reset, sign, aluop, instr[5:0], instr[10:6], alucont[3:0], modcount, done, aluinit, aluen, luten);
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alu #(WIDTH) alunit(clk, aluinit, aluen, src2, src1, alucont, sign, ALU_out);

lutcontrol trig_luts(luten, instr[3:0], modcount, ALU_out, LUT_out);

datapath #(WIDTH, REGBITS)

dp(clk, reset, memdata, ALU_out, LUT_out, alusrca, memtoreg, iord, luten,

irwrite, pcen, multa_route, regwrite, regdst, pcsrc, alusrcb,

zero, instr, adr, writedata, src1, src2);

assign nrw = ~rw;

assign test1 = writedata;

assign test2 = memdata;

assign test3 = adr[15:0];

// SRAM Cache Controller

memcontrol cache_controller(clk, reset, ram_bypass, rw, memen, adr[15:0], writedata, mipsdatain, mipsADC, cachein0, cachein1, cachein2, cachein3, cachein4, cachein5, cachein6, cachein7, halt, ex_clk, exMEMon, eaddress, rowrWL, rowWL, colrWL, colWL,memdata, mipsdataout, mipsDAC1, mipsDAC2, ADCsel, cacheout, ADCen);

endmodule

// Finite state machine controller

module controller(input clk, reset,

input [5:0] op, funct,

input zero, done, halt,

output memen,

output reg memwrite, alusrca, memtoreg, iord,

output pcen, multa_route,

output reg regwrite, regdst, irwrite,

output reg [1:0] pcsource, alusrcb, aluop);

parameter FETCH = 4’b0000;

parameter DECODE = 4’b0001;

parameter MEMADR = 4’b0010;

parameter MEMRD = 4’b0011;

parameter MEMWRB = 4’b0100;

parameter MEMWR = 4’b0101;

parameter RTYPEEX = 4’b0110;

parameter ALUWRB = 4’b0111;

parameter BEQEX = 4’b1000;

parameter ADDIEX = 4’b1001;

parameter ADDIWR = 4’b1010;

parameter JUMP = 4’b1011;

parameter OVFLOW = 4’b1101;

parameter UNDEF = 4’b1100;

parameter FETCHw = 4’b1110;

parameter MULTAEX = 4’b1111;

parameter LW = 6’b100011;

parameter SW = 6’b101011;

parameter RTYPE = 6’b0;
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parameter ADDI = 6’b001000;

parameter BEQ = 6’b000100;

parameter J = 6’b000010;

reg [3:0] state, nextstate;

reg pcwrite, branch, memread;

assign memen = memread | memwrite;

// state register

always @(posedge clk)

if(reset) state <= FETCH;

else state <= nextstate;

// next state logic

always @(*)

begin

case(state)

FETCH: begin

if (~halt)

nextstate <= FETCHw;

else

nextstate <= FETCH;

end

FETCHw: nextstate <= DECODE;

DECODE: case(op)

LW: nextstate <= MEMADR;

SW: nextstate <= MEMADR;

RTYPE: nextstate <= RTYPEEX;

BEQ: nextstate <= BEQEX;

J: nextstate <= JUMP;

ADDI: nextstate <= ADDIEX;

default: nextstate <= UNDEF; // should never happen

endcase

MEMADR: case(op)

LW: nextstate <= MEMRD;

SW: nextstate <= MEMWR;

default: nextstate <= UNDEF; // should never happen

endcase

MEMRD: begin

if (~halt)

nextstate <= MEMWRB;

else

nextstate <= MEMRD;

end

MEMWR: begin

if (~halt)

nextstate <= FETCH;

else

nextstate <= MEMWR;

end

MEMWRB: nextstate <= FETCH;

RTYPEEX: begin
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if (done) begin

if (multa_route)

nextstate <= MULTAEX;

else

nextstate <= ALUWRB;

end

else nextstate <= RTYPEEX;

end

MULTAEX: nextstate <= ALUWRB;

ALUWRB: nextstate <= FETCH;

ADDIEX: nextstate <= ADDIWR;

ADDIWR: nextstate <= FETCH;

BEQEX: nextstate <= FETCH;

JUMP: nextstate <= FETCH;

OVFLOW: nextstate <= FETCH;

UNDEF: nextstate <= FETCH;

default: nextstate <= FETCH; // should never happen

endcase

end

assign multa_route = done & ~state[3] & state[2] & state[1] & ~state[0] &

~funct[5] & funct[4] & funct[3] & funct[2] & ~funct[1] & ~funct[0];

always @(*)

begin

// set all outputs to zero, then conditionally assert

// just the appropriate ones

irwrite <= 1’b0;

pcwrite <= 0; branch <= 0;

regwrite <= 0; regdst <= 0;

memread <= 0; memwrite <= 0;

alusrca <= 0; alusrcb <= 2’b00; aluop <= 2’b00;

pcsource <= 2’b00;

iord <= 0; memtoreg <= 0;

case(state)

FETCH:

begin

memread <= 1; //activate memcontroller

iord <= 0; //Select PC Register

alusrca <= 0; //Source A = PC

alusrcb <= 2’b01; //Source B = 4

aluop <= 2’b00; //A + B = next fetch address

pcsource <= 2’b00; //PC Source = PC + 4

end

FETCHw:

begin

iord <= 0; //Select PC Register

alusrca <= 0; //Source A = PC

alusrcb <= 2’b01; //Source B = 4

aluop <= 2’b00; //A + B = next fetch address

pcsource <= 2’b00; //PC Source = PC + 4

irwrite <= 1; //update instruction reg

pcwrite <= 1; //update PC Register for next fetch

end
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DECODE:

begin

alusrca <= 0; //Source A = PC

alusrcb <= 2’b11; //Source B = Sign extended Imm

aluop <= 2’b00; //A + B = branch precalculation

end

MEMADR:

begin

alusrca <= 1; //Source A = Register 1

alusrcb <= 2’b10; //Source B = Sign extended Imm

aluop <= 2’b00; //A + B = Memory Address

end

MEMRD:

begin

memread <= 1; //activate memcontroller

iord <= 1; //calculated memory address

end

MEMWRB:

begin

regdst <= 0; //set reg writeback address to $rs

regwrite <= 1; //enable reg writeback

memtoreg <= 1; //select memory data for writeback

end

MEMWR:

begin

memwrite <= 1; //enable memory write

iord <= 1; //select MEMADR calculated address

end

RTYPEEX:

begin

alusrca <= 1; //Source A = Register 1

alusrcb <= 2’b00; //Source B = Register 2

aluop <= 2’b10; //op determined by funct

end

MULTAEX:

begin

alusrca <= 1; //Source A = Register 1

alusrcb <= 2’b00; //Source B = Register 2

aluop <= 2’b00; //add

end

ALUWRB:

begin

regdst <= 1; //set reg writeback address to $rd

regwrite <= 1; //enable reg writeback

memtoreg <= 0; //select ALU result for writeback

end

ADDIEX:

begin

alusrca <= 1; //Source A = Register 1

alusrcb <= 2’b10; //Source B = sign extended Imm

aluop <= 2’b00; //A + B

end

ADDIWR:
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begin

regdst <= 0; //Select $rt for write back address

regwrite <= 1; //Enable register write back

memtoreg <= 0; //select ALU result for writeback

end

BEQEX:

begin

alusrca <= 1; //Source A = Register 1

alusrcb <= 2’b00;//Source B = Register 2

aluop <= 2’b01;//A-B

branch <= 1; //Enable branch if 0

pcsource <= 2’b01;

end

JUMP:

begin

pcwrite <= 1; //Update PC Register

pcsource <= 2’b10; //Select Jump Address

end

endcase

end

assign pcen = pcwrite | (branch & zero); // program counter enable

endmodule

// Datapath, including register file, ALU, muxes, and other registers

module datapath #(parameter WIDTH = 32, REGBITS = 5)

(input clk, reset,

input [WIDTH-1:0] memdata, aluout, lutout0,

input alusrca, memtoreg, iord, luten,irwrite,

input pcen, multa_route, regwrite, regdst,

input [1:0] pcsource, alusrcb,

output zero,

output [31:0] instr,

output [WIDTH-1:0] adr, writedata, src1, src2);

wire [REGBITS-1:0] readaddr1, readaddr2, wa;

wire [WIDTH-1:0] pc, nextpc, md, readdata1, readdata2, wd, a, result, Lresult,

IMM, IMMx4, data1;

assign IMM = {{16{instr[15]}},instr[15:0]};

assign IMMx4 = {IMM[29:0],2’b00};

// register file address fields

assign readaddr1 = instr[REGBITS+20:21];

mux2 #(REGBITS) RegWrite_MUX(instr[REGBITS+15:16],

instr[REGBITS+10:11], regdst, wa);

// independent of bit width, load instruction into four

// 32-bit registers over four cycles

dffen #(32) Instruction_reg(clk, irwrite, memdata[31:0], instr[31:0]);

// datapath

dffenr #(WIDTH) pc_reg(clk, reset, pcen, nextpc, pc);

dff #(WIDTH) mem2reg_reg(clk, memdata, md);

dff #(WIDTH) regout1_reg(clk, data1, a);
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dff #(WIDTH) regout2_reg(clk, readdata2, writedata);

dff #(WIDTH) result_reg(clk, result, Lresult);

mux2 #(WIDTH) addr_src(pc, Lresult, iord, adr);

mux2 #(WIDTH) srcAmux(pc, a, alusrca, src1);

mux4 #(WIDTH) srcBmux(writedata, {29’b0,3’b001}, IMM,

IMM, alusrcb, src2);

mux4 #(WIDTH) pcmux(result, Lresult, {pc[31:26],instr[25:0]}, 32’b0,

pcsource, nextpc);

mux2 #(WIDTH) write2regmux(Lresult, md, memtoreg, wd);

mux2 #(WIDTH) outselect(aluout, lutout0, luten, result);

//multa route

mux2 #(WIDTH) reg1_out(readdata1,aluout,multa_route,data1);

mux2 #(REGBITS) reg2_src(instr[REGBITS+15:16],instr[15:11],multa_route,readaddr2);

registers #(WIDTH,REGBITS) reg32(clk, reset, regwrite, wd, readaddr1, readaddr2, wa, readdata1, readdata2);

//alu #(WIDTH) alunit(clk, aluinit, aluen, src1, src2, alucont, sign, aluresult);

zerodetect #(WIDTH) zd(result, zero);

endmodule

module alucontrol #(parameter WIDTH = 32)

(input clk, reset, sign,

input [1:0] aluop,

input [5:0] funct,

input [4:0] shamt,

output reg [3:0] alucont,

output [1:0] modcount,

output reg done, init, en, luten);

reg [2:0] state,nstate;

reg [4:0] load;

wire complete;

reg [1:0] count_in;

wire [1:0] count_out;

always @(posedge clk)

if (reset) state <= 3’b000;

else state <= nstate;

always @(*)

begin

nstate <= 3’b000;

init <= 0;

done <= 1;

en <= 0;

load <= 0;

luten <= 0;

case(aluop)

2’b00: alucont <= 4’b0010; // add for lb/sb

2’b01: alucont <= 4’b0110; // sub (for beq)

default: case (state) // R-Type instructions

3’b000: begin //state 1: single clk func / init for multi-clk

case(funct)

6’b100100: alucont <= 4’b0000; // A & B
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6’b100101: alucont <= 4’b0001; // A | B

6’b100000: alucont <= 4’b0010; // A + B

// 4’b0100; // A & ~B

// 4’b0101; // A | ~B

6’b100010: alucont <= 4’b0110; // A - B

6’b101010: alucont <= 4’b0111; // slt

6’b010000: alucont <= 4’b1010; // mfhi

6’b010010: alucont <= 4’b1011; // mflo

6’b011000: begin

alucont <= 4’b1010; // mult init

nstate <= 3’b001;

load <= 5’b11111;

init <= 1;

done <= 0;

end

6’b011100: begin

alucont <= 4’b1010; // multa init

nstate <= 3’b001;

load <= 5’b11111;

init <= 1;

done <= 0;

end

6’b011001: begin

alucont <= 4’b1000; // multu init

nstate <= 3’b01;

load <= 5’b11111;

init <= 1;

done <= 0;

end

6’b000000: begin

alucont <= 4’b0000; // sll load

nstate <= 3’b001;

load <= shamt;

init <= 1;

done <= 0;

end

6’b000010: begin

alucont <= 4’b0000; // srl load

nstate <= 3’b001;

load <= shamt;

init <= 1;

done <= 0;

end

6’b000011: begin

alucont <= 4’b0000; // sra load

nstate <= 3’b001;

load <= shamt;

init <= 1;

done <= 0;

end

6’b110100: begin

alucont <= 4’b0010; // sinh

luten <= 1’b1;

end
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6’b110101: begin

alucont <= 4’b0010; // cosh

luten <= 1’b1;

end

6’b110110: begin

alucont <= 4’b0010; // csch

luten <= 1’b1;

end

6’b110111: begin

alucont <= 4’b0010; // sech

luten <= 1’b1;

end

6’b111100: begin

alucont <= 4’b0010; // -sinh

luten <= 1’b1;

end

6’b111101: begin

alucont <= 4’b0010; // -cosh

luten <= 1’b1;

end

6’b111110: begin

alucont <= 4’b0010; // -csch

luten <= 1’b1;

end

6’b111111: begin

alucont <= 4’b0010; // -sech

luten <= 1’b1;

end

default: begin // mod, or periodic functions

alucont <= 4’b1000; // LUT_sin (clear 64bit reg)

init <= 1;

nstate <= 3’b100;

done <= 0;

end

endcase

en <= 0;

end

3’b001: begin // loop calculation terminated by counter

en <= 1;

done <= 0;

init <= 0;

alucont[1] <= funct[4] ^ funct[0];

alucont[0] <= funct[4] ~^ funct[1];

if (complete) nstate <= 3’b010;

else nstate <= 3’b001;

end

3’b010: begin // set up for last multiply operation

case (funct)

6’b011000: begin

alucont <= 4’b1110;

nstate <= 3’b011;

en <= 1;

end
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6’b011100: begin

alucont <= 4’b1110;

nstate <= 3’b011;

en <= 1;

end

6’b011001: begin

alucont <= 4’b1000;

nstate <= 3’b011;

en <= 1;

end

default: begin

alucont <= 4’b1000; //out select for shift

nstate <= 3’b000;

end

endcase

done <= ~funct[4];

end

3’b011: begin

alucont <= 4’b1001; //scaled out

nstate <= 3’b000;

done <= 1’b1;

end

3’b100: begin //load inputA to 64-bit reg

alucont <= 4’b1001;

nstate <= 3’b101;

en <= 1;

done <= 0;

count_in <= {1’b0,funct[0]} + 2’b11;

end

3’b101: begin //A-B loop until negative

alucont <= 4’b0101;

en <= 1;

done <= 0;

count_in <= count_out + 2’b01;

if (sign) nstate <= 3’b110;

else nstate <= 3’b101;

end

3’b110: begin

alucont <= 4’b0001; //A+B loop until positive

en <= 1;

done <= 0;

count_in <= count_out + 2’b11;

if (~sign) nstate <= 3’b111;

else nstate <= 3’b110;

end

3’b111: begin

alucont <= 4’b1010; //64-bit-High out

done <= 1’b1;

nstate <= 3’b000;

luten <= 1’b1;

end

endcase

endcase

end
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downcounter #(5) mul_sh_count(clk, init, load, complete);

dffenr #(2) mod_counter(clk, reset, en, count_in,count_out);

assign modcount = count_out;

endmodule

module alu #(parameter WIDTH = 32)

(input clk, init, en,

input [WIDTH-1:0] a, b,

input [3:0] alucont,

output sign,

output reg [WIDTH-1:0] result);

wire [WIDTH-1:0] a2,b2,b3,b4,shift_out, r_and, r_or, slt;

wire [WIDTH:0] sum;

wire [WIDTH*2-1:0] loopreg_out;

assign a2 = ((alucont[3] ^ alucont[0]) & ~(~alucont[3]&alucont[2]&alucont[1]&alucont[0])) ? loopreg_out[WIDTH*2-1:WIDTH]:a;

assign b2[WIDTH-1] = alucont[1] ^ ((alucont[0]^shift_out[0]) & b[WIDTH-1]);

assign b2[WIDTH-2:0] = {(WIDTH-1){(alucont[0]^shift_out[0])}} & b[WIDTH-2:0];

assign b3 = alucont[3] ? b2:b;

assign b4 = alucont[2] ? ~b3:b3;

assign r_and = a & b4;

assign r_or = a | b4;

assign sum = a2 + b4 + (~alucont[3] & alucont[2]);

assign slt = {WIDTH{sum[WIDTH-1]}};

assign sign = sum[WIDTH-1];

shiftLR #(WIDTH) shifter(clk, init, ~init, alucont[1], alucont[0], a, shift_out);

loopshiftright #(WIDTH*2) loopreg(clk, init, en, alucont[1], alucont[0], sum, loopreg_out);

always@(*)

case({alucont[3],alucont[1:0]})

3’b000: result <= r_and;

3’b001: result <= r_or;

3’b010: result <= sum[WIDTH-1:0];

3’b011: result <= slt;

3’b100: result <= shift_out;

3’b101: result <= loopreg_out[52:21];

3’b110: result <= loopreg_out[WIDTH*2-1:WIDTH];

3’b111: result <= loopreg_out[WIDTH-1:0];

endcase

endmodule

module loopshiftright #(parameter WIDTH = 64)

(input clk, reset, en, load, shift,

input [WIDTH/2:0] data_in,

output [WIDTH-1:0] data_out);

wire [WIDTH-1:0] d;

wire sum;

dffenrL #(2) init_to_load(clk, reset,en,load,{d[WIDTH/2-1],d[0]},{data_out[WIDTH/2-1],data_out[0]});

dffenr #(WIDTH-2) init_to_0(clk, reset,en,{d[WIDTH-1:WIDTH/2],d[WIDTH/2-2:1]},{data_out[WIDTH-1:WIDTH/2],data_out[WIDTH/2-2:1]});
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assign sum = data_in[WIDTH/2] ^ data_out[0];

assign d[WIDTH/2-2:0] = data_out[WIDTH/2-1:1];

assign d[WIDTH-1:WIDTH/2-1] = shift ? {data_in[WIDTH/2-1:0], 1’b0}:{sum,data_in[WIDTH/2-1:0]};

endmodule

module counter #(parameter WIDTH = 8)

(input clk, reset, en,

output reg [WIDTH-1:0] count);

always@(posedge clk)

if (reset) count <= 0;

else if (en) count <= count + 1;

endmodule

module downcounter #(parameter WIDTH = 8)

(input clk, load,

input [WIDTH-1:0] val,

output one);

reg [WIDTH-1:0] count;

assign one = (~|count[WIDTH-1:1]) & count[0];

always@(posedge clk)

if (load) count <= val;

else count <= count - 1;

endmodule

module shiftLR #(parameter WIDTH = 8)

(input clk, load, en, ar, lr,

input [WIDTH-1:0] data_in,

output reg [WIDTH-1:0] data_out);

always @(posedge clk)

if (load) data_out <= data_in;

else if (en)

begin

if (lr)

begin

data_out[WIDTH-1:1] <= data_out[WIDTH-2:0];

data_out[0] <= 1’b0;

end

else if (ar)

begin

data_out[WIDTH-2:0] <= data_out[WIDTH-1:1];

data_out[WIDTH-1] <= data_out[WIDTH-1];

end

else

begin

data_out[WIDTH-2:0] <= data_out[WIDTH-1:1];

data_out[WIDTH-1] <= 1’b0;

end

end

endmodule
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module registers #(parameter D_WIDTH = 32, A_WIDTH = 5)

(input clk,reset,write_en,

input [D_WIDTH-1:0] write_data,

input [A_WIDTH-1:0] ra1, ra2, wa,

output [D_WIDTH-1:0] rd1, rd2);

wire [31:0] enable;

wire [32*32-1:0] q;

demux32 #(1) writeselect(write_en, wa, enable[0], enable[1], enable[2], enable[3],

enable[4 ], enable[5 ], enable[6 ], enable[7 ], enable[8 ],

enable[9 ], enable[10], enable[11], enable[12], enable[13],

enable[14], enable[15], enable[16], enable[17], enable[18],

enable[19], enable[20], enable[21], enable[22], enable[23],

enable[24], enable[25], enable[26], enable[27], enable[28],

enable[29], enable[30], enable[31]);

mux32 #(32) out1select(q[32*1 -1:32*0 ],q[32*2 -1:32*1 ],q[32*3 -1:32*2 ],q[32*4 -1:32*3 ],

q[32*5 -1:32*4 ],q[32*6 -1:32*5 ],q[32*7 -1:32*6 ],q[32*8 -1:32*7 ],

q[32*9 -1:32*8 ],q[32*10-1:32*9 ],q[32*11-1:32*10],q[32*12-1:32*11],

q[32*13-1:32*12],q[32*14-1:32*13],q[32*15-1:32*14],q[32*16-1:32*15],

q[32*17-1:32*16],q[32*18-1:32*17],q[32*19-1:32*18],q[32*20-1:32*19],

q[32*21-1:32*20],q[32*22-1:32*21],q[32*23-1:32*22],q[32*24-1:32*23],

q[32*25-1:32*24],q[32*26-1:32*25],q[32*27-1:32*26],q[32*28-1:32*27],

q[32*29-1:32*28],q[32*30-1:32*29],q[32*31-1:32*30],q[32*32-1:32*31],

ra1, rd1);

mux32 #(32) out2select(q[32*1 -1:32*0 ],q[32*2 -1:32*1 ],q[32*3 -1:32*2 ],q[32*4 -1:32*3 ],

q[32*5 -1:32*4 ],q[32*6 -1:32*5 ],q[32*7 -1:32*6 ],q[32*8 -1:32*7 ],

q[32*9 -1:32*8 ],q[32*10-1:32*9 ],q[32*11-1:32*10],q[32*12-1:32*11],

q[32*13-1:32*12],q[32*14-1:32*13],q[32*15-1:32*14],q[32*16-1:32*15],

q[32*17-1:32*16],q[32*18-1:32*17],q[32*19-1:32*18],q[32*20-1:32*19],

q[32*21-1:32*20],q[32*22-1:32*21],q[32*23-1:32*22],q[32*24-1:32*23],

q[32*25-1:32*24],q[32*26-1:32*25],q[32*27-1:32*26],q[32*28-1:32*27],

q[32*29-1:32*28],q[32*30-1:32*29],q[32*31-1:32*30],q[32*32-1:32*31],

ra2, rd2);

genvar i;

generate for (i=0; i<32; i=i+1)

begin: inst

dffenr #(32) register(.clk(clk), .reset(reset), .en(enable[i]), .d(write_data), .q(q[32*(i+1)-1:32*i]));

end

endgenerate

endmodule

module zerodetect #(parameter WIDTH = 8)

(input [WIDTH-1:0] a,

output y);

assign y = (a==0);

endmodule

module dff #(parameter WIDTH = 8)

(input clk,

input [WIDTH-1:0] d,

output reg [WIDTH-1:0] q);
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always @(posedge clk)

q <= d;

endmodule

module dffen #(parameter WIDTH = 8)

(input clk, en,

input [WIDTH-1:0] d,

output reg [WIDTH-1:0] q);

always @(posedge clk)

if (en) q <= d;

endmodule

module dffr #(parameter WIDTH = 8)

(input clk, reset, en,

input [WIDTH-1:0] d,

output reg [WIDTH-1:0] q);

always @(posedge clk)

if (reset) q <= 0;

else q <= d;

endmodule

module dffenr #(parameter WIDTH = 8)

(input clk, reset, en,

input [WIDTH-1:0] d,

output reg [WIDTH-1:0] q);

always @(posedge clk)

if (reset) q <= 0;

else if (en) q <= d;

endmodule

module dffenrL #(parameter WIDTH = 8)

(input clk, reset,en,load,

input [WIDTH-1:0] d,

output reg [WIDTH-1:0] q);

always @(posedge clk)

if (reset) q <= {WIDTH{load}};

else if (en) q <= d;

endmodule

module mux2 #(parameter WIDTH = 8)

(input [WIDTH-1:0] in0, in1,

input sel,

output [WIDTH-1:0] y);

assign y = sel ? in1 : in0;

endmodule

module mux4 #(parameter WIDTH = 8)

(input [WIDTH-1:0] in0, in1, in2, in3,

input [1:0] sel,

output reg [WIDTH-1:0] y);

always @(*)

case(sel)

2’b00: y <= in0;

2’b01: y <= in1;

2’b10: y <= in2;
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2’b11: y <= in3;

endcase

endmodule

module mux32 #(parameter WIDTH = 32)

(input [WIDTH-1:0] in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10,

in11, in12, in13, in14, in15, in16, in17, in18, in19,

in20, in21, in22, in23, in24, in25, in26, in27, in28,

in29, in30, in31,

input [4:0] sel,

output reg [WIDTH-1:0] y);

always @(*)

case(sel)

5’b00000: y<=in0;

5’b00001: y<=in1;

5’b00010: y<=in2;

5’b00011: y<=in3;

5’b00100: y<=in4;

5’b00101: y<=in5;

5’b00110: y<=in6;

5’b00111: y<=in7;

5’b01000: y<=in8;

5’b01001: y<=in9;

5’b01010: y<=in10;

5’b01011: y<=in11;

5’b01100: y<=in12;

5’b01101: y<=in13;

5’b01110: y<=in14;

5’b01111: y<=in15;

5’b10000: y<=in16;

5’b10001: y<=in17;

5’b10010: y<=in18;

5’b10011: y<=in19;

5’b10100: y<=in20;

5’b10101: y<=in21;

5’b10110: y<=in22;

5’b10111: y<=in23;

5’b11000: y<=in24;

5’b11001: y<=in25;

5’b11010: y<=in26;

5’b11011: y<=in27;

5’b11100: y<=in28;

5’b11101: y<=in29;

5’b11110: y<=in30;

5’b11111: y<=in31;

endcase

endmodule

module demux32 #(parameter WIDTH = 1)

(input [WIDTH-1:0] in,

input [4:0] sel,

output reg [WIDTH-1:0] out0, out1, out2, out3, out4, out5, out6, out7,

output reg [WIDTH-1:0] out8, out9, out10, out11, out12, out13, out14, out15,

output reg [WIDTH-1:0] out16, out17, out18, out19, out20, out21, out22, out23,
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output reg [WIDTH-1:0] out24, out25, out26, out27, out28, out29, out30, out31);

always @(*)

begin

if (sel == 5’b00000) out0 <= in;

else out0 <= 0;

if (sel == 5’b00001) out1 <= in;

else out1 <= 0;

if (sel == 5’b00010) out2 <= in;

else out2 <= 0;

if (sel == 5’b00011) out3 <= in;

else out3 <= 0;

if (sel == 5’b00100) out4 <= in;

else out4 <= 0;

if (sel == 5’b00101) out5 <= in;

else out5 <= 0;

if (sel == 5’b00110) out6 <= in;

else out6 <= 0;

if (sel == 5’b00111) out7 <= in;

else out7 <= 0;

if (sel == 5’b01000) out8 <= in;

else out8 <= 0;

if (sel == 5’b01001) out9 <= in;

else out9 <= 0;

if (sel == 5’b01010) out10 <= in;

else out10 <= 0;

if (sel == 5’b01011) out11 <= in;

else out11 <= 0;

if (sel == 5’b01100) out12 <= in;

else out12 <= 0;

if (sel == 5’b01101) out13 <= in;

else out13 <= 0;

if (sel == 5’b01110) out14 <= in;

else out14 <= 0;

if (sel == 5’b01111) out15 <= in;

else out15 <= 0;

if (sel == 5’b10000) out16 <= in;

else out16 <= 0;

if (sel == 5’b10001) out17 <= in;

else out17 <= 0;

if (sel == 5’b10010) out18 <= in;

else out18 <= 0;

if (sel == 5’b10011) out19 <= in;

else out19 <= 0;

if (sel == 5’b10100) out20 <= in;

else out20 <= 0;

if (sel == 5’b10101) out21 <= in;

else out21 <= 0;

if (sel == 5’b10110) out22 <= in;

else out22 <= 0;

if (sel == 5’b10111) out23 <= in;

else out23 <= 0;

if (sel == 5’b11000) out24 <= in;

else out24 <= 0;

if (sel == 5’b11001) out25 <= in;
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else out25 <= 0;

if (sel == 5’b11010) out26 <= in;

else out26 <= 0;

if (sel == 5’b11011) out27 <= in;

else out27 <= 0;

if (sel == 5’b11100) out28 <= in;

else out28 <= 0;

if (sel == 5’b11101) out29 <= in;

else out29 <= 0;

if (sel == 5’b11110) out30 <= in;

else out30 <= 0;

if (sel == 5’b11111) out31 <= in;

else out31 <= 0;

end

endmodule

C.3 Memory Controller

//-----------------------------------------------

// Cache Controller

//

// By: Ryan Wu, University of Calgary

// Last Modified: April 30, 2012

//

// This component manages all the data and controls

// between the MIPS processor, SRAM, and external

// memory and I/O components. It has additional

// support for ADC and DACs for 90nm fabrication.

//-----------------------------------------------

module memcontrol #(parameter UWIDTH=16, MWIDTH=8, EWIDTH=16)

(input clk, reset, ram_bypass, write, en,

input [UWIDTH-1:0] uaddress, //uController address

input [31:0] udatain,

input [7:0] exdatain, ADC,

input [35:0] cachein0,cachein1,cachein2,cachein3,cachein4,cachein5,cachein6,cachein7,

output halt, ex_clk, exMEMon,

output [EWIDTH-1:0] eaddress, //External memory address

output reg [31:0] rowrWL, rowWL, //Cache memory row address

output reg [7:0] colrWL, colWL, //Cache memory colume address

output [31:0] udataout,

output [7:0] exdataout,

output reg [7:0] DAC1, DAC2,

output reg [2:0] ADCsel,

output reg [35:0] cacheout,

output ADCen);

wire validbit, databit, Lclk, Len1, Len2, Len3, Len4, hit, valid, WL, rWL;

wire [1:0] tag;

wire [2:0] count;

wire [7:0] d1, d2, d3, d4, q1, q2, q3, q4, exdataout1, exdataout2;

wire [MWIDTH-1:0] maddress;
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reg [35:0] cachein;

reg [15:0] luaddress;

reg data;

reg [7:0] ADCreg;

reg STANDBY, CHECKHIT, CHECKHITw, write2cache, exMEM, READY, DACnADC;

always @(posedge clk) begin

STANDBY <= reset | READY | (STANDBY & ~en);

READY <= ((CHECKHITw & hit & valid) | (exMEM & (&count) & (data | write | (|luaddress[13:10]))) | write2cache | DACnADC) & ~reset;

CHECKHIT <= STANDBY & en & ~write & ~|uaddress[13:10] & ~|uaddress[15:14] & ~reset;

CHECKHITw <= CHECKHIT & ~reset;

exMEM <= ((CHECKHITw & (~hit | ~valid)) | (STANDBY & en & |uaddress[13:10] & ~luaddress[15:14]) | (exMEM & ~&count)) & ~reset;

write2cache <= ((&count & exMEM & ~write & ~data) | (STANDBY & en & write)) & (~|luaddress[13:10]) & ~|luaddress[15:14] & ~reset;

DACnADC <= STANDBY & en & |uaddress[15:14] & ~reset;

end

always @(*)

if (DACnADC) begin

case (luaddress[15:14])

2’b01: DAC1 <= udatain[7:0];

2’b10: DAC2 <= udatain[7:0];

2’b11: ADCreg <= ADC;

endcase

end

always @(*)

if (&luaddress[15:14])

ADCsel = luaddress[2:0];

always @(negedge STANDBY)

// if (en & STANDBY)

luaddress <= uaddress;

always @(*) begin

case (maddress[7:5])

3’b000: cachein <= cachein0;

3’b001: cachein <= cachein1;

3’b010: cachein <= cachein2;

3’b011: cachein <= cachein3;

3’b100: cachein <= cachein4;

3’b101: cachein <= cachein5;

3’b110: cachein <= cachein6;

3’b111: cachein <= cachein7;

endcase

end

always @(posedge Lclk)

if (rWL)

data <= cachein[34];

always @(*) begin

if (WL)

case (maddress[7:5])
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3’b000: colWL <= 8’b00000001;

3’b001: colWL <= 8’b00000010;

3’b010: colWL <= 8’b00000100;

3’b011: colWL <= 8’b00001000;

3’b100: colWL <= 8’b00010000;

3’b101: colWL <= 8’b00100000;

3’b110: colWL <= 8’b01000000;

3’b111: colWL <= 8’b10000000;

endcase

else

colWL <= 8’b00000000;

end

always @(*) begin

if (rWL)

case (maddress[7:5])

3’b000: colrWL <= 8’b00000001;

3’b001: colrWL <= 8’b00000010;

3’b010: colrWL <= 8’b00000100;

3’b011: colrWL <= 8’b00001000;

3’b100: colrWL <= 8’b00010000;

3’b101: colrWL <= 8’b00100000;

3’b110: colrWL <= 8’b01000000;

3’b111: colrWL <= 8’b10000000;

endcase

else

colrWL <= 8’b11111111;

end

always @(*) begin

if (WL)

case (maddress[4:0])

5’b00000: rowWL <= 32’b00000000000000000000000000000001;

5’b00001: rowWL <= 32’b00000000000000000000000000000010;

5’b00010: rowWL <= 32’b00000000000000000000000000000100;

5’b00011: rowWL <= 32’b00000000000000000000000000001000;

5’b00100: rowWL <= 32’b00000000000000000000000000010000;

5’b00101: rowWL <= 32’b00000000000000000000000000100000;

5’b00110: rowWL <= 32’b00000000000000000000000001000000;

5’b00111: rowWL <= 32’b00000000000000000000000010000000;

5’b01000: rowWL <= 32’b00000000000000000000000100000000;

5’b01001: rowWL <= 32’b00000000000000000000001000000000;

5’b01010: rowWL <= 32’b00000000000000000000010000000000;

5’b01011: rowWL <= 32’b00000000000000000000100000000000;

5’b01100: rowWL <= 32’b00000000000000000001000000000000;

5’b01101: rowWL <= 32’b00000000000000000010000000000000;

5’b01110: rowWL <= 32’b00000000000000000100000000000000;

5’b01111: rowWL <= 32’b00000000000000001000000000000000;

5’b10000: rowWL <= 32’b00000000000000010000000000000000;

5’b10001: rowWL <= 32’b00000000000000100000000000000000;

5’b10010: rowWL <= 32’b00000000000001000000000000000000;

5’b10011: rowWL <= 32’b00000000000010000000000000000000;

5’b10100: rowWL <= 32’b00000000000100000000000000000000;

5’b10101: rowWL <= 32’b00000000001000000000000000000000;

5’b10110: rowWL <= 32’b00000000010000000000000000000000;

5’b10111: rowWL <= 32’b00000000100000000000000000000000;
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5’b11000: rowWL <= 32’b00000001000000000000000000000000;

5’b11001: rowWL <= 32’b00000010000000000000000000000000;

5’b11010: rowWL <= 32’b00000100000000000000000000000000;

5’b11011: rowWL <= 32’b00001000000000000000000000000000;

5’b11100: rowWL <= 32’b00010000000000000000000000000000;

5’b11101: rowWL <= 32’b00100000000000000000000000000000;

5’b11110: rowWL <= 32’b01000000000000000000000000000000;

5’b11111: rowWL <= 32’b10000000000000000000000000000000;

endcase

else

rowWL <= 32’b00000000000000000000000000000000;

end

always @(*) begin

if (rWL)

case (maddress[4:0])

5’b00000: rowrWL <= 32’b00000000000000000000000000000001;

5’b00001: rowrWL <= 32’b00000000000000000000000000000010;

5’b00010: rowrWL <= 32’b00000000000000000000000000000100;

5’b00011: rowrWL <= 32’b00000000000000000000000000001000;

5’b00100: rowrWL <= 32’b00000000000000000000000000010000;

5’b00101: rowrWL <= 32’b00000000000000000000000000100000;

5’b00110: rowrWL <= 32’b00000000000000000000000001000000;

5’b00111: rowrWL <= 32’b00000000000000000000000010000000;

5’b01000: rowrWL <= 32’b00000000000000000000000100000000;

5’b01001: rowrWL <= 32’b00000000000000000000001000000000;

5’b01010: rowrWL <= 32’b00000000000000000000010000000000;

5’b01011: rowrWL <= 32’b00000000000000000000100000000000;

5’b01100: rowrWL <= 32’b00000000000000000001000000000000;

5’b01101: rowrWL <= 32’b00000000000000000010000000000000;

5’b01110: rowrWL <= 32’b00000000000000000100000000000000;

5’b01111: rowrWL <= 32’b00000000000000001000000000000000;

5’b10000: rowrWL <= 32’b00000000000000010000000000000000;

5’b10001: rowrWL <= 32’b00000000000000100000000000000000;

5’b10010: rowrWL <= 32’b00000000000001000000000000000000;

5’b10011: rowrWL <= 32’b00000000000010000000000000000000;

5’b10100: rowrWL <= 32’b00000000000100000000000000000000;

5’b10101: rowrWL <= 32’b00000000001000000000000000000000;

5’b10110: rowrWL <= 32’b00000000010000000000000000000000;

5’b10111: rowrWL <= 32’b00000000100000000000000000000000;

5’b11000: rowrWL <= 32’b00000001000000000000000000000000;

5’b11001: rowrWL <= 32’b00000010000000000000000000000000;

5’b11010: rowrWL <= 32’b00000100000000000000000000000000;

5’b11011: rowrWL <= 32’b00001000000000000000000000000000;

5’b11100: rowrWL <= 32’b00010000000000000000000000000000;

5’b11101: rowrWL <= 32’b00100000000000000000000000000000;

5’b11110: rowrWL <= 32’b01000000000000000000000000000000;

5’b11111: rowrWL <= 32’b10000000000000000000000000000000;

endcase

else

rowrWL <= 32’b00000000000000000000000000000000;

end

always @(*) begin

if (reset)

135



cacheout <= 36’b000000000000000000000000000000000000;

else begin

cacheout[35:32] <= {1’b1, write, tag[1:0]};

if (write)

cacheout[31:0] <= udatain;

else

cacheout[31:0] <= {q4,q3,q2,q1};

end

end

cachecounter exMEMcontrol(clk, (CHECKHITw | reset), exMEM, count);

dffenr #(8) MEMDataDFF1(Lclk, reset, Len1, d1, q1);

dffenr #(8) MEMDataDFF2(Lclk, reset, Len2, d2, q2);

dffenr #(8) MEMDataDFF3(Lclk, reset, Len3, d3, q3);

dffenr #(8) MEMDataDFF4(Lclk, reset, Len4, d4, q4);

assign databit = write;

assign validbit = write2cache;

assign halt = ~READY;

assign Lclk = (exMEM) ? count[0] : (CHECKHITw);

assign udataout[31:0]= (&luaddress[15:14]) ? {{24{ADCreg[7]}},ADCreg} : {q4,q3,q2,q1};

assign d1 = (exMEM) ? exdatain : cachein[7:0];

assign d2 = (exMEM) ? exdatain : cachein[15:8];

assign d3 = (exMEM) ? exdatain : cachein[23:16];

assign d4 = (exMEM) ? exdatain : cachein[31:24];

assign Len1 = CHECKHIT | CHECKHITw | (~count[2] & ~count[1]);

assign Len2 = CHECKHIT | CHECKHITw | (~count[2] & count[1]);

assign Len3 = CHECKHIT | CHECKHITw | ( count[2] & ~count[1]);

assign Len4 = CHECKHIT | CHECKHITw | ( count[2] & count[1]);

assign valid = cachein[35] & ~ram_bypass;

assign hit = (cachein[33] ~^ luaddress[9]) & (cachein[32] ~^ luaddress[8]);

assign rWL = CHECKHIT | CHECKHITw;

assign WL = write2cache;

assign eaddress[15:2]= luaddress[13:0];

assign eaddress[1:0] = count[2:1];

assign ex_clk = count[0];

assign maddress[7:0] = luaddress[7:0];

assign tag[1:0] = luaddress[9:8];

assign ADCen = &uaddress[15:14] | (en & &luaddress[15:14]) | DACnADC;

assign exdataout1 = count[1] ? udatain[15:8] : udatain[7:0];

assign exdataout2 = count[1] ? udatain[31:24]: udatain[23:16];

assign exdataout = count[2] ? exdataout2 : exdataout1;

assign exMEMon = exMEM;

endmodule

module cachecounter (input clk, reset, en,

output [2:0] count);

wire [2:0] a, b, d, q, sum, carry;
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assign d[2:0] = sum[2:0];

assign a[2:0] = q[2:0];

assign b[2:0] = {carry[1:0],1’b1};

halfadder b0(a[0], b[0], sum[0], carry[0]);

halfadder b1(a[1], b[1], sum[1], carry[1]);

halfadder b2(a[2], b[2], sum[2], carry[2]);

dffenr #(3) outlatch(clk, reset, en, d, q);

assign count = q;

endmodule

module halfadder (input a, b,

output sum, carry);

wire nor1, nand1;

assign nor1 = ~(a | b);

assign nand1 = ~(a & b);

assign carry = ~nand1;

assign sum = ~(carry | nor1);

endmodule

C.4 Test Signal Routing

//-----------------------------------------------

// Test Circuit

//

// By: Ryan Wu, University of Calgary

// Last Modified: April 30, 2012

//

// Test module that samples different signals and

// isolates components for testing. Additional

// features include SRAM bypass, ADC bypass, DAC

// bypass, ADC/DAC overwrite and isolation.

//

// Requires 8 digital inputs, 2 digital outputs

//-----------------------------------------------

/* out1 out2

sel = 0000:

sel = 0001: rdata rdata

sel = 0010: adr ADC

sel = 0011: DAC1 DAC2

sel = 0100: cachein0 cachein1

sel = 0101: cachein2 cachein3

sel = 0110: cachein4 cachein5

sel = 0111: cachein6 cachein7

sel = 1000: rowWL rowrWL

sel = 1001: colWL colrWL

sel = 1010: cacheout cacheout

sel = 1011: cache memory bypass

sel = 1100: ADC bypass

sel = 1101: DAC bypass

sel = 1110: ADC through

sel = 1111: DAC through

*/

module dft (input clk, load, en,

output reg out1, out2,

input [3:0] sel,

input [31:0] wdata, rdata,

input [15:0] adr,

input [35:0] cachein0, cachein1, cachein2, cachein3,

cachein4, cachein5, cachein6, cachein7, cacheout,

input [31:0] rowWL, rowrWL,

input [7:0] colWL, colrWL,

output MEMbp,

input [7:0] mipsdataout, exdatain, mipsDAC1, mipsDAC2, ADCin,
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output reg [7:0] mipsdatain, exdataout, DAC1out, DAC2out, mipsADC,

input GND, VDD

);

reg [6:0] count;

reg [7:0] testarray;

reg [63:0] outarray1, outarray2;

assign MEMbp = sel[3] & ~sel[2] & sel[1] & sel[0];

always @(*) begin

case (sel)

4’b1100: begin

mipsADC <= testarray;

exdataout <= mipsdataout;

mipsdatain <= exdatain;

DAC1out <= mipsDAC1;

DAC2out <= mipsDAC2;

end

4’b1101: begin

DAC1out <= exdatain;

exdataout <= mipsdataout;

mipsdatain <= exdatain;

mipsADC <= ADCin;

DAC2out <= mipsDAC2;

end

4’b1110: begin

DAC2out <= exdatain;

exdataout <= mipsdataout;

mipsdatain <= exdatain;

mipsADC <= ADCin;

DAC1out <= mipsDAC1;

end

4’b1111: begin

exdataout <= ADCin;

mipsdatain <= exdatain;

mipsADC <= ADCin;

DAC1out <= mipsDAC1;

DAC2out <= mipsDAC2;

end

default: begin

exdataout <= mipsdataout;

mipsdatain <= exdatain;

mipsADC <= ADCin;

DAC1out <= mipsDAC1;

DAC2out <= mipsDAC2;

end

endcase

end

always @(posedge load)

testarray <= exdatain;

always @(posedge clk) begin

if (load)

count <= 0;

else

count <= count + 1;

end

always @(*)

case (sel)

//4’b0000:

4’b0001: begin

outarray1 <= {32’b0,wdata};

outarray2 <= {32’b0,rdata};

end

4’b0010: begin

outarray1 <= {48’b0,adr};

outarray2 <= {56’b0,ADCin};

end

4’b0011: begin

outarray1 <= {56’b0,DAC1out};

outarray2 <= {56’b0,DAC2out};

end

5’b0100: begin

outarray1 <= {28’b0,cachein0};

outarray2 <= {28’b0,cachein1};

end

5’b0101: begin

outarray1 <= {28’b0,cachein2};

outarray2 <= {28’b0,cachein3};

end

5’b0110: begin

outarray1 <= {28’b0,cachein4};

outarray2 <= {28’b0,cachein5};

end

5’b0111: begin

outarray1 <= {28’b0,cachein6};

outarray2 <= {28’b0,cachein7};

end

5’b1000: begin

outarray1 <= {32’b0,rowWL};

outarray2 <= {32’b0,rowrWL};

end

5’b1001: begin

outarray1 <= {56’b0,colWL};

outarray2 <= {56’b0,colrWL};

end

5’b1010: begin

outarray1 <= {28’b0,cacheout};

outarray2 <= {28’b0,cacheout};

end

default: begin

outarray1 <= 0;

outarray2 <= 0;

end
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endcase

always @(*)

case (count)

0: begin

out1 <= outarray1[0];

out2 <= outarray2[0];

end

1: begin

out1 <= outarray1[1];

out2 <= outarray2[1];

end

2: begin

out1 <= outarray1[2];

out2 <= outarray2[2];

end

3: begin

out1 <= outarray1[3];

out2 <= outarray2[3];

end

4: begin

out1 <= outarray1[4];

out2 <= outarray2[4];

end

5: begin

out1 <= outarray1[5];

out2 <= outarray2[5];

end

6: begin

out1 <= outarray1[6];

out2 <= outarray2[6];

end

7: begin

out1 <= outarray1[7];

out2 <= outarray2[7];

end

8: begin

out1 <= outarray1[8];

out2 <= outarray2[8];

end

9: begin

out1 <= outarray1[9];

out2 <= outarray2[9];

end

10: begin

out1 <= outarray1[10];

out2 <= outarray2[10];

end

11: begin

out1 <= outarray1[11];

out2 <= outarray2[11];

end

12: begin

out1 <= outarray1[12];

out2 <= outarray2[12];

end

13: begin

out1 <= outarray1[13];

out2 <= outarray2[13];

end

14: begin

out1 <= outarray1[14];

out2 <= outarray2[14];

end

15: begin

out1 <= outarray1[15];

out2 <= outarray2[15];

end

16: begin

out1 <= outarray1[16];

out2 <= outarray2[16];

end

17: begin

out1 <= outarray1[17];

out2 <= outarray2[17];

end

18: begin

out1 <= outarray1[18];

out2 <= outarray2[18];

end

19: begin

out1 <= outarray1[19];

out2 <= outarray2[19];

end

20: begin

out1 <= outarray1[20];

out2 <= outarray2[20];

end

21: begin

out1 <= outarray1[21];

out2 <= outarray2[21];

end

22: begin

out1 <= outarray1[22];

out2 <= outarray2[22];

end

23: begin

out1 <= outarray1[23];

out2 <= outarray2[23];

end

24: begin

out1 <= outarray1[24];

out2 <= outarray2[24];

end

25: begin

out1 <= outarray1[25];

out2 <= outarray2[25];

end
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26: begin

out1 <= outarray1[26];

out2 <= outarray2[26];

end

27: begin

out1 <= outarray1[27];

out2 <= outarray2[27];

end

28: begin

out1 <= outarray1[28];

out2 <= outarray2[28];

end

29: begin

out1 <= outarray1[29];

out2 <= outarray2[29];

end

30: begin

out1 <= outarray1[30];

out2 <= outarray2[30];

end

31: begin

out1 <= outarray1[31];

out2 <= outarray2[31];

end

32: begin

out1 <= outarray1[32];

out2 <= outarray2[32];

end

33: begin

out1 <= outarray1[33];

out2 <= outarray2[33];

end

34: begin

out1 <= outarray1[34];

out2 <= outarray2[34];

end

35: begin

out1 <= outarray1[35];

out2 <= outarray2[35];

end

36: begin

out1 <= outarray1[36];

out2 <= outarray2[36];

end

37: begin

out1 <= outarray1[37];

out2 <= outarray2[37];

end

38: begin

out1 <= outarray1[38];

out2 <= outarray2[38];

end

39: begin

out1 <= outarray1[39];

out2 <= outarray2[39];

end

40: begin

out1 <= outarray1[40];

out2 <= outarray2[40];

end

41: begin

out1 <= outarray1[41];

out2 <= outarray2[41];

end

42: begin

out1 <= outarray1[42];

out2 <= outarray2[42];

end

43: begin

out1 <= outarray1[43];

out2 <= outarray2[43];

end

44: begin

out1 <= outarray1[44];

out2 <= outarray2[44];

end

45: begin

out1 <= outarray1[45];

out2 <= outarray2[45];

end

46: begin

out1 <= outarray1[46];

out2 <= outarray2[46];

end

47: begin

out1 <= outarray1[47];

out2 <= outarray2[47];

end

48: begin

out1 <= outarray1[48];

out2 <= outarray2[48];

end

49: begin

out1 <= outarray1[49];

out2 <= outarray2[49];

end

50: begin

out1 <= outarray1[50];

out2 <= outarray2[50];

end

51: begin

out1 <= outarray1[51];

out2 <= outarray2[51];

end

52: begin

out1 <= outarray1[52];

out2 <= outarray2[52];

end
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53: begin

out1 <= outarray1[53];

out2 <= outarray2[53];

end

54: begin

out1 <= outarray1[54];

out2 <= outarray2[54];

end

55: begin

out1 <= outarray1[55];

out2 <= outarray2[55];

end

56: begin

out1 <= outarray1[56];

out2 <= outarray2[56];

end

57: begin

out1 <= outarray1[57];

out2 <= outarray2[57];

end

58: begin

out1 <= outarray1[58];

out2 <= outarray2[58];

end

59: begin

out1 <= outarray1[59];

out2 <= outarray2[59];

end

60: begin

out1 <= outarray1[60];

out2 <= outarray2[60];

end

61: begin

out1 <= outarray1[61];

out2 <= outarray2[61];

end

62: begin

out1 <= outarray1[62];

out2 <= outarray2[62];

end

63: begin

out1 <= outarray1[63];

out2 <= outarray2[63];

end

endcase

endmodule

C.5 Look-up Tables

//-----------------------------------------------

// Look-Up-Table for Non-Linear Functions

//

// By: Ryan Wu, University of Calgary

// Last Modified: April 30, 2012

//

// This LUT supports non-linear functions including

// cos, sin, sec, csc, cosh, sinh, sech, csch, and

// the 2’s complement for each result. The precision

// of the output is tuned to the lowest requirement

// (still with optimal performance) for the path-

// planning-algorithm.

//-----------------------------------------------

module lutcontrol(input en,

input [3 :0] sel, // neg/hyp/inv/cos

input [1 :0] count,

input [31:0] data_in,

output [31:0] data_out);

wire sin_en, csc_en, sinh_en, csch_en, cosh_en, sech_en, rev, neg, zero;

wire [14:0] in1;

reg [1:0] in3;

reg [4:0] in2;

reg [3:0] LUTin;
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wire [15:0] SINout, CSCout, Hout, CSCHout, SECHout, out2;

reg [15:0] LUTout;

assign sin_en = (~|sel[2:1]) & en;

assign csc_en = (~sel[2] & sel[1]) & en;

assign sinh_en = ( sel[2] & ~sel[1] & ~sel[0]) & en;

assign cosh_en = ( sel[2] & ~sel[1] & sel[0]) & en;

assign csch_en = ( sel[2] & sel[1] & ~sel[0]) & en;

assign sech_en = ( sel[2] & sel[1] & sel[0]) & en;

assign in1 = data_in[31] ? ~data_in[31:17]:data_in[31:17];

assign rev = (sin_en | csc_en) ? count[0]:1’b0;

assign neg = (sin_en | csc_en) ? (count[1] ^ sel[3]):(((sinh_en | csch_en) & data_in[31]) ^ sel[3]);

always @(*)

if (en) begin

if (sin_en | csc_en) begin //periodic functions

in2 <= in1[4:0];

in3 <= 0;

end

else begin //hyperbolic functions

in2 <= in1[14:7] ? 5’b11111:in1[4:0];

in3 <= in1[14:7] ? 2’b11 :in1[6:5];//max cap2

end

end

else in2 <= 4’b0000;

always @(*)

if (rev)

case (in2[4:1])

4’b0000: LUTin <= 4’b1100;

4’b0001: LUTin <= 4’b1011;

4’b0010: LUTin <= 4’b1010;

4’b0011: LUTin <= 4’b1001;

4’b0100: LUTin <= 4’b1000;

4’b0101: LUTin <= 4’b0111;

4’b0110: LUTin <= 4’b0110;

4’b0111: LUTin <= 4’b0101;

4’b1000: LUTin <= 4’b0100;

4’b1001: LUTin <= 4’b0011;

4’b1010: LUTin <= 4’b0010;

4’b1011: LUTin <= 4’b0001;

4’b1100: LUTin <= 4’b0000;

default: LUTin <= 0;

endcase

else LUTin <= in2[4:1];

assign SINout[15:6] = 0;

assign CSCout[15:9] = 0;

assign Hout[15 ] = 0;

assign Hout[ 2:0] = 0;

assign SECHout[15:6] = 0;

assign CSCHout[15:11]= 0;
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assign CSCHout[2:0] = 0;

assign SECHout[10:6]= 5’b00000;

lut_sin sin_table(sin_en, LUTin, SINout[5:0]);

lut_csc csc_table(csc_en, LUTin, CSCout[8:0]);

lut_sinhcosh hype_table(sinh_en, cosh_en, {in3,in2[4:2]}, Hout[14:3]);

lut_csch csch_table(csch_en, {in3,in2}, CSCHout[10:3]);

lut_sech sech_table(sech_en, {in3,in2[4:1]}, SECHout[5:0]);

always @(*)

case (sel[2:0])

3’b000: LUTout <= SINout;

3’b001: LUTout <= SINout;

3’b010: LUTout <= CSCout;

3’b011: LUTout <= CSCout;

3’b100: LUTout <= Hout;

3’b101: LUTout <= Hout;

3’b110: LUTout <= CSCHout;

3’b111: LUTout <= SECHout;

endcase

assign zero = ~|LUTout;

assign data_out[31:16] = (neg & ~zero) ? ~LUTout:LUTout;

assign data_out[15:0 ] = {16{LUTout[15]}};

endmodule

module lut_sin (input en,

input [3:0] in,

output reg [5:0] out);

always @(*)

if (en)

case (in[3:0])//1,5

4’b0000: out <= 6’b000000;

4’b0001: out <= 6’b000110;

4’b0010: out <= 6’b001010;

4’b0011: out <= 6’b001101;

4’b0100: out <= 6’b010001;

4’b0101: out <= 6’b010100;

4’b0110: out <= 6’b010111;

4’b0111: out <= 6’b011010;

4’b1000: out <= 6’b011100;

4’b1001: out <= 6’b011110;

4’b1010: out <= 6’b011111;

4’b1011: out <= 6’b100000;

4’b1100: out <= 6’b100000;

default: out <= 6’b000000; //should never happen

endcase

else out <= 0;

endmodule

module lut_csc (input en,

input [3:0] in,
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output reg [8:0] out);

always @(*)

if (en)

case (in[3:0])//4,5

4’b0000: out <= 9’b111111111;

4’b0001: out <= 9’b011100000;

4’b0010: out <= 9’b010000000;

4’b0011: out <= 9’b001010110;

4’b0100: out <= 9’b001000000;

4’b0101: out <= 9’b000110110;

4’b0110: out <= 9’b000101110;

4’b0111: out <= 9’b000101010;

4’b1000: out <= 9’b000100101;

4’b1001: out <= 9’b000100011;

4’b1010: out <= 9’b000100001;

4’b1011: out <= 9’b000100001;

4’b1100: out <= 9’b000100000;

default: out <= 9’b000000000;

endcase

else out <= 0;

endmodule

module lut_sinhcosh(input sinh, cosh,

input [4:0] in,

output reg [11:0] out);

always @(*)

if (sinh|cosh) begin

if (~in[4]) begin

if (sinh)

case (in[3:0])//5,2

4’b0000: out[6:0] <= 7’b0000000;

4’b0001: out[6:0] <= 7’b0000001;

4’b0010: out[6:0] <= 7’b0000010;

4’b0011: out[6:0] <= 7’b0000100;

4’b0100: out[6:0] <= 7’b0000101;

4’b0101: out[6:0] <= 7’b0000111;

4’b0110: out[6:0] <= 7’b0001001;

4’b0111: out[6:0] <= 7’b0001100;

4’b1000: out[6:0] <= 7’b0010000;

4’b1001: out[6:0] <= 7’b0010101;

4’b1010: out[6:0] <= 7’b0011011;

4’b1011: out[6:0] <= 7’b0100011;

4’b1100: out[6:0] <= 7’b0101100;

4’b1101: out[6:0] <= 7’b0111010;

4’b1110: out[6:0] <= 7’b1001010;

4’b1111: out[6:0] <= 7’b1011111;

endcase

else if (cosh)

case (in[3:0])

4’b0000: out[6:0] <= 7’b0000100;

4’b0001: out[6:0] <= 7’b0000100;

4’b0010: out[6:0] <= 7’b0000101;

4’b0011: out[6:0] <= 7’b0000101;

4’b0100: out[6:0] <= 7’b0000110;
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4’b0101: out[6:0] <= 7’b0001000;

4’b0110: out[6:0] <= 7’b0001010;

4’b0111: out[6:0] <= 7’b0001101;

4’b1000: out[6:0] <= 7’b0010001;

4’b1001: out[6:0] <= 7’b0010110;

4’b1010: out[6:0] <= 7’b0011100;

4’b1011: out[6:0] <= 7’b0100011;

4’b1100: out[6:0] <= 7’b0101101;

4’b1101: out[6:0] <= 7’b0111001;

4’b1110: out[6:0] <= 7’b1001011;

4’b1111: out[6:0] <= 7’b1100000;

endcase

out[11:7] <= 0;

end

else begin

case (in[3:0])

4’b0000: out[11:5] <= 7’b0000011;

4’b0001: out[11:5] <= 7’b0000100;

4’b0010: out[11:5] <= 7’b0000101;

4’b0011: out[11:5] <= 7’b0000111;

4’b0100: out[11:5] <= 7’b0001001;

4’b0101: out[11:5] <= 7’b0001100;

4’b0110: out[11:5] <= 7’b0010000;

4’b0111: out[11:5] <= 7’b0010101;

4’b1000: out[11:5] <= 7’b0011011;

4’b1001: out[11:5] <= 7’b0100011;

4’b1010: out[11:5] <= 7’b0101101;

4’b1011: out[11:5] <= 7’b0111101;

4’b1100: out[11:5] <= 7’b1001011;

4’b1101: out[11:5] <= 7’b1100000;

4’b1110: out[11:5] <= 7’b1111001;

4’b1111: out[11:5] <= 7’b1111111;

endcase

out[4:0] <= 5’b11111;

end

end

else

out <= 0;

endmodule

module lut_sech(input en,

input [5:0] in,

output reg [5:0] out);

always @(*)

if (en & ~in[5])

case (in[4:1])//1,5

4’b0000: out <= 6’b100000;

4’b0001: out <= 6’b011110;

4’b0010: out <= 6’b011011;

4’b0011: out <= 6’b010111;

4’b0100: out <= 6’b010011;

4’b0101: out <= 6’b010000;
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4’b0110: out <= 6’b001100;

4’b0111: out <= 6’b001010;

4’b1000: out <= 6’b001000;

4’b1001: out <= 6’b000110;

4’b1010: out <= 6’b000101;

4’b1011: out <= 6’b000100;

4’b1100: out <= 6’b000011;

4’b1101: out <= 6’b000010;

4’b1110: out <= 6’b000010;

4’b1111: out <= 6’b000000;

endcase

else out <= 0;

endmodule

module lut_csch(input en,

input [6:0] in,

output reg [7:0] out);

always @(*)

if (en & ~|in[6:4])

case (in[3:0])//7,1

4’b0000: out <= 8’b11111111;

4’b0001: out <= 8’b00101000;

4’b0010: out <= 8’b00011001;

4’b0011: out <= 8’b00010010;

4’b0100: out <= 8’b00001110;

4’b0101: out <= 8’b00001011;

4’b0110: out <= 8’b00001010;

4’b0111: out <= 8’b00001001;

4’b1000: out <= 8’b00001000;

4’b1001: out <= 8’b00000111;

4’b1010: out <= 8’b00000110;

4’b1011: out <= 8’b00000101;

4’b1100: out <= 8’b00000101;

4’b1101: out <= 8’b00000101;

4’b1110: out <= 8’b00000100;

4’b1111: out <= 8’b00000100;

endcase

else if (en & ~|in[6:5])

case (in[3:2])

2’b00: out <= 8’b00000011;

2’b01: out <= 8’b00000010;

2’b10: out <= 8’b00000001;

2’b11: out <= 8’b00000000;

endcase

else out <= 0;

endmodule

C.6 Memory
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//----------------------------------------------------------

// External Memory + Cache

//

// By: Ryan Wu, University of Calgary

// Last Modified: April 30, 2012

//

// Behavioural external memory is built for simulation

// purpose, where it is a word-addressable memory connected

// external to the chip.

// Cache (SRAM) structural code here is the extracted net

// list from Virtuoso, to verify it’s operation and

// compatibility in simulation.

//----------------------------------------------------------

module exmem #(parameter WIDTH = 8, RAM_ADDR_BITS = 10)

(input clk, en, memwrite,

input [RAM_ADDR_BITS-1:0] adr,

input [WIDTH-1:0] writedata,

output reg [WIDTH-1:0] memdata

);

reg [WIDTH-1:0] external_memory [(2**RAM_ADDR_BITS)-1:0];

// The following $readmemh statement initializes the RAM contents

// via an external file (use $readmemb for binary data). The fib.dat

// file is a list of bytes, one per line, starting at address 0.

initial $readmemh("bench.dat", external_memory);

// The behavioral description of the RAM - note clocked behavior

always @(*)//negedge clk)

if (en) begin

if (memwrite)

external_memory[adr] <= writedata;

memdata <= external_memory[adr];

end

endmodule

module xINVD1 ( ZN, VDD, VSS, I );

output ZN;

inout VDD, VSS;

input I;

specify

specparam CDS_LIBNAME = "tcbn90ghp";

specparam CDS_CELLNAME = "INVD1";

specparam CDS_VIEWNAME = "schematic";

endspecify

nch Inst_0 ( .D(ZN), .B(VSS), .G(I), .S(VSS));

pch Inst_1 ( .D(ZN), .B(VDD), .G(I), .S(VDD));

endmodule

module RAM_256W_schematic ( rBL0, rBL1, rBL2, rBL3, rBL4, rBL5, rBL6,

rBL7, GND, RAM_VDD, BL, RST, colWL, colrWL, rowWL, rowrWL );

inout GND, RAM_VDD;

input RST;

output [35:0] rBL6;

output [35:0] rBL1;

output [35:0] rBL2;

output [35:0] rBL3;

output [35:0] rBL5;

output [35:0] rBL0;

output [35:0] rBL7;

output [35:0] rBL4;

input [7:0] colWL;

input [7:0] colrWL;

input [31:0] rowWL;

input [35:0] BL;

input [31:0] rowrWL;

// Buses in the design

wire [0:35] net239;

wire [0:31] net134;

wire [0:35] net266;

wire [0:35] net203;

wire [0:35] net137;

wire [0:35] net248;

wire [0:35] net221;

wire [0:31] net200;

wire [0:35] net212;

wire [0:35] net138;

wire [0:31] net194;

wire [7:0] rWL;

wire [0:35] net230;

wire [0:35] net257;
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wire [7:0] WL;

wire [0:31] net190;

specify

specparam CDS_LIBNAME = "RAM";

specparam CDS_CELLNAME = "256W";

specparam CDS_VIEWNAME = "schematic";

endspecify

xINVD2 I35_31_ ( net200[0], RAM_VDD, GND, net190[0]);

xINVD2 I35_30_ ( net200[1], RAM_VDD, GND, net190[1]);

xINVD2 I35_29_ ( net200[2], RAM_VDD, GND, net190[2]);

xINVD2 I35_28_ ( net200[3], RAM_VDD, GND, net190[3]);

xINVD2 I35_27_ ( net200[4], RAM_VDD, GND, net190[4]);

xINVD2 I35_26_ ( net200[5], RAM_VDD, GND, net190[5]);

xINVD2 I35_25_ ( net200[6], RAM_VDD, GND, net190[6]);

xINVD2 I35_24_ ( net200[7], RAM_VDD, GND, net190[7]);

xINVD2 I35_23_ ( net200[8], RAM_VDD, GND, net190[8]);

xINVD2 I35_22_ ( net200[9], RAM_VDD, GND, net190[9]);

xINVD2 I35_21_ ( net200[10], RAM_VDD, GND, net190[10]);

xINVD2 I35_20_ ( net200[11], RAM_VDD, GND, net190[11]);

xINVD2 I35_19_ ( net200[12], RAM_VDD, GND, net190[12]);

xINVD2 I35_18_ ( net200[13], RAM_VDD, GND, net190[13]);

xINVD2 I35_17_ ( net200[14], RAM_VDD, GND, net190[14]);

xINVD2 I35_16_ ( net200[15], RAM_VDD, GND, net190[15]);

xINVD2 I35_15_ ( net200[16], RAM_VDD, GND, net190[16]);

xINVD2 I35_14_ ( net200[17], RAM_VDD, GND, net190[17]);

xINVD2 I35_13_ ( net200[18], RAM_VDD, GND, net190[18]);

xINVD2 I35_12_ ( net200[19], RAM_VDD, GND, net190[19]);

xINVD2 I35_11_ ( net200[20], RAM_VDD, GND, net190[20]);

xINVD2 I35_10_ ( net200[21], RAM_VDD, GND, net190[21]);

xINVD2 I35_9_ ( net200[22], RAM_VDD, GND, net190[22]);

xINVD2 I35_8_ ( net200[23], RAM_VDD, GND, net190[23]);

xINVD2 I35_7_ ( net200[24], RAM_VDD, GND, net190[24]);

xINVD2 I35_6_ ( net200[25], RAM_VDD, GND, net190[25]);

xINVD2 I35_5_ ( net200[26], RAM_VDD, GND, net190[26]);

xINVD2 I35_4_ ( net200[27], RAM_VDD, GND, net190[27]);

xINVD2 I35_3_ ( net200[28], RAM_VDD, GND, net190[28]);

xINVD2 I35_2_ ( net200[29], RAM_VDD, GND, net190[29]);

xINVD2 I35_1_ ( net200[30], RAM_VDD, GND, net190[30]);

xINVD2 I35_0_ ( net200[31], RAM_VDD, GND, net190[31]);

xINVD2 I36_31_ ( net134[0], RAM_VDD, GND, net194[0]);

xINVD2 I36_30_ ( net134[1], RAM_VDD, GND, net194[1]);

xINVD2 I36_29_ ( net134[2], RAM_VDD, GND, net194[2]);

xINVD2 I36_28_ ( net134[3], RAM_VDD, GND, net194[3]);

xINVD2 I36_27_ ( net134[4], RAM_VDD, GND, net194[4]);

xINVD2 I36_26_ ( net134[5], RAM_VDD, GND, net194[5]);

xINVD2 I36_25_ ( net134[6], RAM_VDD, GND, net194[6]);

xINVD2 I36_24_ ( net134[7], RAM_VDD, GND, net194[7]);

xINVD2 I36_23_ ( net134[8], RAM_VDD, GND, net194[8]);

xINVD2 I36_22_ ( net134[9], RAM_VDD, GND, net194[9]);

xINVD2 I36_21_ ( net134[10], RAM_VDD, GND, net194[10]);

xINVD2 I36_20_ ( net134[11], RAM_VDD, GND, net194[11]);

xINVD2 I36_19_ ( net134[12], RAM_VDD, GND, net194[12]);

xINVD2 I36_18_ ( net134[13], RAM_VDD, GND, net194[13]);

xINVD2 I36_17_ ( net134[14], RAM_VDD, GND, net194[14]);

xINVD2 I36_16_ ( net134[15], RAM_VDD, GND, net194[15]);

xINVD2 I36_15_ ( net134[16], RAM_VDD, GND, net194[16]);

xINVD2 I36_14_ ( net134[17], RAM_VDD, GND, net194[17]);

xINVD2 I36_13_ ( net134[18], RAM_VDD, GND, net194[18]);

xINVD2 I36_12_ ( net134[19], RAM_VDD, GND, net194[19]);

xINVD2 I36_11_ ( net134[20], RAM_VDD, GND, net194[20]);

xINVD2 I36_10_ ( net134[21], RAM_VDD, GND, net194[21]);

xINVD2 I36_9_ ( net134[22], RAM_VDD, GND, net194[22]);

xINVD2 I36_8_ ( net134[23], RAM_VDD, GND, net194[23]);

xINVD2 I36_7_ ( net134[24], RAM_VDD, GND, net194[24]);

xINVD2 I36_6_ ( net134[25], RAM_VDD, GND, net194[25]);

xINVD2 I36_5_ ( net134[26], RAM_VDD, GND, net194[26]);

xINVD2 I36_4_ ( net134[27], RAM_VDD, GND, net194[27]);

xINVD2 I36_3_ ( net134[28], RAM_VDD, GND, net194[28]);

xINVD2 I36_2_ ( net134[29], RAM_VDD, GND, net194[29]);

xINVD2 I36_1_ ( net134[30], RAM_VDD, GND, net194[30]);

xINVD2 I36_0_ ( net134[31], RAM_VDD, GND, net194[31]);

xINVD2 I34_35_ ( net138[0], RAM_VDD, GND, net137[0]);

xINVD2 I34_34_ ( net138[1], RAM_VDD, GND, net137[1]);

xINVD2 I34_33_ ( net138[2], RAM_VDD, GND, net137[2]);

xINVD2 I34_32_ ( net138[3], RAM_VDD, GND, net137[3]);

xINVD2 I34_31_ ( net138[4], RAM_VDD, GND, net137[4]);

xINVD2 I34_30_ ( net138[5], RAM_VDD, GND, net137[5]);

xINVD2 I34_29_ ( net138[6], RAM_VDD, GND, net137[6]);

xINVD2 I34_28_ ( net138[7], RAM_VDD, GND, net137[7]);

xINVD2 I34_27_ ( net138[8], RAM_VDD, GND, net137[8]);

xINVD2 I34_26_ ( net138[9], RAM_VDD, GND, net137[9]);

xINVD2 I34_25_ ( net138[10], RAM_VDD, GND, net137[10]);

xINVD2 I34_24_ ( net138[11], RAM_VDD, GND, net137[11]);

xINVD2 I34_23_ ( net138[12], RAM_VDD, GND, net137[12]);

xINVD2 I34_22_ ( net138[13], RAM_VDD, GND, net137[13]);

xINVD2 I34_21_ ( net138[14], RAM_VDD, GND, net137[14]);

xINVD2 I34_20_ ( net138[15], RAM_VDD, GND, net137[15]);

xINVD2 I34_19_ ( net138[16], RAM_VDD, GND, net137[16]);

xINVD2 I34_18_ ( net138[17], RAM_VDD, GND, net137[17]);

xINVD2 I34_17_ ( net138[18], RAM_VDD, GND, net137[18]);

xINVD2 I34_16_ ( net138[19], RAM_VDD, GND, net137[19]);

xINVD2 I34_15_ ( net138[20], RAM_VDD, GND, net137[20]);

xINVD2 I34_14_ ( net138[21], RAM_VDD, GND, net137[21]);

xINVD2 I34_13_ ( net138[22], RAM_VDD, GND, net137[22]);

xINVD2 I34_12_ ( net138[23], RAM_VDD, GND, net137[23]);

xINVD2 I34_11_ ( net138[24], RAM_VDD, GND, net137[24]);

xINVD2 I34_10_ ( net138[25], RAM_VDD, GND, net137[25]);

xINVD2 I34_9_ ( net138[26], RAM_VDD, GND, net137[26]);

xINVD2 I34_8_ ( net138[27], RAM_VDD, GND, net137[27]);

xINVD2 I34_7_ ( net138[28], RAM_VDD, GND, net137[28]);

xINVD2 I34_6_ ( net138[29], RAM_VDD, GND, net137[29]);

xINVD2 I34_5_ ( net138[30], RAM_VDD, GND, net137[30]);

xINVD2 I34_4_ ( net138[31], RAM_VDD, GND, net137[31]);
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xINVD2 I34_3_ ( net138[32], RAM_VDD, GND, net137[32]);

xINVD2 I34_2_ ( net138[33], RAM_VDD, GND, net137[33]);

xINVD2 I34_1_ ( net138[34], RAM_VDD, GND, net137[34]);

xINVD2 I34_0_ ( net138[35], RAM_VDD, GND, net137[35]);

xINVD1 I40_35_ ( rBL3[35], RAM_VDD, GND, net230[0]);

xINVD1 I40_34_ ( rBL3[34], RAM_VDD, GND, net230[1]);

xINVD1 I40_33_ ( rBL3[33], RAM_VDD, GND, net230[2]);

xINVD1 I40_32_ ( rBL3[32], RAM_VDD, GND, net230[3]);

xINVD1 I40_31_ ( rBL3[31], RAM_VDD, GND, net230[4]);

xINVD1 I40_30_ ( rBL3[30], RAM_VDD, GND, net230[5]);

xINVD1 I40_29_ ( rBL3[29], RAM_VDD, GND, net230[6]);

xINVD1 I40_28_ ( rBL3[28], RAM_VDD, GND, net230[7]);

xINVD1 I40_27_ ( rBL3[27], RAM_VDD, GND, net230[8]);

xINVD1 I40_26_ ( rBL3[26], RAM_VDD, GND, net230[9]);

xINVD1 I40_25_ ( rBL3[25], RAM_VDD, GND, net230[10]);

xINVD1 I40_24_ ( rBL3[24], RAM_VDD, GND, net230[11]);

xINVD1 I40_23_ ( rBL3[23], RAM_VDD, GND, net230[12]);

xINVD1 I40_22_ ( rBL3[22], RAM_VDD, GND, net230[13]);

xINVD1 I40_21_ ( rBL3[21], RAM_VDD, GND, net230[14]);

xINVD1 I40_20_ ( rBL3[20], RAM_VDD, GND, net230[15]);

xINVD1 I40_19_ ( rBL3[19], RAM_VDD, GND, net230[16]);

xINVD1 I40_18_ ( rBL3[18], RAM_VDD, GND, net230[17]);

xINVD1 I40_17_ ( rBL3[17], RAM_VDD, GND, net230[18]);

xINVD1 I40_16_ ( rBL3[16], RAM_VDD, GND, net230[19]);

xINVD1 I40_15_ ( rBL3[15], RAM_VDD, GND, net230[20]);

xINVD1 I40_14_ ( rBL3[14], RAM_VDD, GND, net230[21]);

xINVD1 I40_13_ ( rBL3[13], RAM_VDD, GND, net230[22]);

xINVD1 I40_12_ ( rBL3[12], RAM_VDD, GND, net230[23]);

xINVD1 I40_11_ ( rBL3[11], RAM_VDD, GND, net230[24]);

xINVD1 I40_10_ ( rBL3[10], RAM_VDD, GND, net230[25]);

xINVD1 I40_9_ ( rBL3[9], RAM_VDD, GND, net230[26]);

xINVD1 I40_8_ ( rBL3[8], RAM_VDD, GND, net230[27]);

xINVD1 I40_7_ ( rBL3[7], RAM_VDD, GND, net230[28]);

xINVD1 I40_6_ ( rBL3[6], RAM_VDD, GND, net230[29]);

xINVD1 I40_5_ ( rBL3[5], RAM_VDD, GND, net230[30]);

xINVD1 I40_4_ ( rBL3[4], RAM_VDD, GND, net230[31]);

xINVD1 I40_3_ ( rBL3[3], RAM_VDD, GND, net230[32]);

xINVD1 I40_2_ ( rBL3[2], RAM_VDD, GND, net230[33]);

xINVD1 I40_1_ ( rBL3[1], RAM_VDD, GND, net230[34]);

xINVD1 I40_0_ ( rBL3[0], RAM_VDD, GND, net230[35]);

xINVD1 I39_35_ ( rBL4[35], RAM_VDD, GND, net239[0]);

xINVD1 I39_34_ ( rBL4[34], RAM_VDD, GND, net239[1]);

xINVD1 I39_33_ ( rBL4[33], RAM_VDD, GND, net239[2]);

xINVD1 I39_32_ ( rBL4[32], RAM_VDD, GND, net239[3]);

xINVD1 I39_31_ ( rBL4[31], RAM_VDD, GND, net239[4]);

xINVD1 I39_30_ ( rBL4[30], RAM_VDD, GND, net239[5]);

xINVD1 I39_29_ ( rBL4[29], RAM_VDD, GND, net239[6]);

xINVD1 I39_28_ ( rBL4[28], RAM_VDD, GND, net239[7]);

xINVD1 I39_27_ ( rBL4[27], RAM_VDD, GND, net239[8]);

xINVD1 I39_26_ ( rBL4[26], RAM_VDD, GND, net239[9]);

xINVD1 I39_25_ ( rBL4[25], RAM_VDD, GND, net239[10]);

xINVD1 I39_24_ ( rBL4[24], RAM_VDD, GND, net239[11]);

xINVD1 I39_23_ ( rBL4[23], RAM_VDD, GND, net239[12]);

xINVD1 I39_22_ ( rBL4[22], RAM_VDD, GND, net239[13]);

xINVD1 I39_21_ ( rBL4[21], RAM_VDD, GND, net239[14]);

xINVD1 I39_20_ ( rBL4[20], RAM_VDD, GND, net239[15]);

xINVD1 I39_19_ ( rBL4[19], RAM_VDD, GND, net239[16]);

xINVD1 I39_18_ ( rBL4[18], RAM_VDD, GND, net239[17]);

xINVD1 I39_17_ ( rBL4[17], RAM_VDD, GND, net239[18]);

xINVD1 I39_16_ ( rBL4[16], RAM_VDD, GND, net239[19]);

xINVD1 I39_15_ ( rBL4[15], RAM_VDD, GND, net239[20]);

xINVD1 I39_14_ ( rBL4[14], RAM_VDD, GND, net239[21]);

xINVD1 I39_13_ ( rBL4[13], RAM_VDD, GND, net239[22]);

xINVD1 I39_12_ ( rBL4[12], RAM_VDD, GND, net239[23]);

xINVD1 I39_11_ ( rBL4[11], RAM_VDD, GND, net239[24]);

xINVD1 I39_10_ ( rBL4[10], RAM_VDD, GND, net239[25]);

xINVD1 I39_9_ ( rBL4[9], RAM_VDD, GND, net239[26]);

xINVD1 I39_8_ ( rBL4[8], RAM_VDD, GND, net239[27]);

xINVD1 I39_7_ ( rBL4[7], RAM_VDD, GND, net239[28]);

xINVD1 I39_6_ ( rBL4[6], RAM_VDD, GND, net239[29]);

xINVD1 I39_5_ ( rBL4[5], RAM_VDD, GND, net239[30]);

xINVD1 I39_4_ ( rBL4[4], RAM_VDD, GND, net239[31]);

xINVD1 I39_3_ ( rBL4[3], RAM_VDD, GND, net239[32]);

xINVD1 I39_2_ ( rBL4[2], RAM_VDD, GND, net239[33]);

xINVD1 I39_1_ ( rBL4[1], RAM_VDD, GND, net239[34]);

xINVD1 I39_0_ ( rBL4[0], RAM_VDD, GND, net239[35]);

xINVD1 I37_35_ ( rBL6[35], RAM_VDD, GND, net257[0]);

xINVD1 I37_34_ ( rBL6[34], RAM_VDD, GND, net257[1]);

xINVD1 I37_33_ ( rBL6[33], RAM_VDD, GND, net257[2]);

xINVD1 I37_32_ ( rBL6[32], RAM_VDD, GND, net257[3]);

xINVD1 I37_31_ ( rBL6[31], RAM_VDD, GND, net257[4]);

xINVD1 I37_30_ ( rBL6[30], RAM_VDD, GND, net257[5]);

xINVD1 I37_29_ ( rBL6[29], RAM_VDD, GND, net257[6]);

xINVD1 I37_28_ ( rBL6[28], RAM_VDD, GND, net257[7]);

xINVD1 I37_27_ ( rBL6[27], RAM_VDD, GND, net257[8]);

xINVD1 I37_26_ ( rBL6[26], RAM_VDD, GND, net257[9]);

xINVD1 I37_25_ ( rBL6[25], RAM_VDD, GND, net257[10]);

xINVD1 I37_24_ ( rBL6[24], RAM_VDD, GND, net257[11]);

xINVD1 I37_23_ ( rBL6[23], RAM_VDD, GND, net257[12]);

xINVD1 I37_22_ ( rBL6[22], RAM_VDD, GND, net257[13]);

xINVD1 I37_21_ ( rBL6[21], RAM_VDD, GND, net257[14]);

xINVD1 I37_20_ ( rBL6[20], RAM_VDD, GND, net257[15]);

xINVD1 I37_19_ ( rBL6[19], RAM_VDD, GND, net257[16]);

xINVD1 I37_18_ ( rBL6[18], RAM_VDD, GND, net257[17]);

xINVD1 I37_17_ ( rBL6[17], RAM_VDD, GND, net257[18]);

xINVD1 I37_16_ ( rBL6[16], RAM_VDD, GND, net257[19]);

xINVD1 I37_15_ ( rBL6[15], RAM_VDD, GND, net257[20]);

xINVD1 I37_14_ ( rBL6[14], RAM_VDD, GND, net257[21]);

xINVD1 I37_13_ ( rBL6[13], RAM_VDD, GND, net257[22]);

xINVD1 I37_12_ ( rBL6[12], RAM_VDD, GND, net257[23]);

xINVD1 I37_11_ ( rBL6[11], RAM_VDD, GND, net257[24]);

xINVD1 I37_10_ ( rBL6[10], RAM_VDD, GND, net257[25]);

xINVD1 I37_9_ ( rBL6[9], RAM_VDD, GND, net257[26]);

xINVD1 I37_8_ ( rBL6[8], RAM_VDD, GND, net257[27]);

xINVD1 I37_7_ ( rBL6[7], RAM_VDD, GND, net257[28]);

xINVD1 I37_6_ ( rBL6[6], RAM_VDD, GND, net257[29]);

xINVD1 I37_5_ ( rBL6[5], RAM_VDD, GND, net257[30]);

xINVD1 I37_4_ ( rBL6[4], RAM_VDD, GND, net257[31]);
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xINVD1 I37_3_ ( rBL6[3], RAM_VDD, GND, net257[32]);

xINVD1 I37_2_ ( rBL6[2], RAM_VDD, GND, net257[33]);

xINVD1 I37_1_ ( rBL6[1], RAM_VDD, GND, net257[34]);

xINVD1 I37_0_ ( rBL6[0], RAM_VDD, GND, net257[35]);

xINVD1 I12_7_ ( rWL[7], RAM_VDD, GND, colrWL[7]);

xINVD1 I12_6_ ( rWL[6], RAM_VDD, GND, colrWL[6]);

xINVD1 I12_5_ ( rWL[5], RAM_VDD, GND, colrWL[5]);

xINVD1 I12_4_ ( rWL[4], RAM_VDD, GND, colrWL[4]);

xINVD1 I12_3_ ( rWL[3], RAM_VDD, GND, colrWL[3]);

xINVD1 I12_2_ ( rWL[2], RAM_VDD, GND, colrWL[2]);

xINVD1 I12_1_ ( rWL[1], RAM_VDD, GND, colrWL[1]);

xINVD1 I12_0_ ( rWL[0], RAM_VDD, GND, colrWL[0]);

xINVD1 I10_7_ ( WL[7], RAM_VDD, GND, colWL[7]);

xINVD1 I10_6_ ( WL[6], RAM_VDD, GND, colWL[6]);

xINVD1 I10_5_ ( WL[5], RAM_VDD, GND, colWL[5]);

xINVD1 I10_4_ ( WL[4], RAM_VDD, GND, colWL[4]);

xINVD1 I10_3_ ( WL[3], RAM_VDD, GND, colWL[3]);

xINVD1 I10_2_ ( WL[2], RAM_VDD, GND, colWL[2]);

xINVD1 I10_1_ ( WL[1], RAM_VDD, GND, colWL[1]);

xINVD1 I10_0_ ( WL[0], RAM_VDD, GND, colWL[0]);

xINVD1 I23_35_ ( rBL7[35], RAM_VDD, GND, net266[0]);

xINVD1 I23_34_ ( rBL7[34], RAM_VDD, GND, net266[1]);

xINVD1 I23_33_ ( rBL7[33], RAM_VDD, GND, net266[2]);

xINVD1 I23_32_ ( rBL7[32], RAM_VDD, GND, net266[3]);

xINVD1 I23_31_ ( rBL7[31], RAM_VDD, GND, net266[4]);

xINVD1 I23_30_ ( rBL7[30], RAM_VDD, GND, net266[5]);

xINVD1 I23_29_ ( rBL7[29], RAM_VDD, GND, net266[6]);

xINVD1 I23_28_ ( rBL7[28], RAM_VDD, GND, net266[7]);

xINVD1 I23_27_ ( rBL7[27], RAM_VDD, GND, net266[8]);

xINVD1 I23_26_ ( rBL7[26], RAM_VDD, GND, net266[9]);

xINVD1 I23_25_ ( rBL7[25], RAM_VDD, GND, net266[10]);

xINVD1 I23_24_ ( rBL7[24], RAM_VDD, GND, net266[11]);

xINVD1 I23_23_ ( rBL7[23], RAM_VDD, GND, net266[12]);

xINVD1 I23_22_ ( rBL7[22], RAM_VDD, GND, net266[13]);

xINVD1 I23_21_ ( rBL7[21], RAM_VDD, GND, net266[14]);

xINVD1 I23_20_ ( rBL7[20], RAM_VDD, GND, net266[15]);

xINVD1 I23_19_ ( rBL7[19], RAM_VDD, GND, net266[16]);

xINVD1 I23_18_ ( rBL7[18], RAM_VDD, GND, net266[17]);

xINVD1 I23_17_ ( rBL7[17], RAM_VDD, GND, net266[18]);

xINVD1 I23_16_ ( rBL7[16], RAM_VDD, GND, net266[19]);

xINVD1 I23_15_ ( rBL7[15], RAM_VDD, GND, net266[20]);

xINVD1 I23_14_ ( rBL7[14], RAM_VDD, GND, net266[21]);

xINVD1 I23_13_ ( rBL7[13], RAM_VDD, GND, net266[22]);

xINVD1 I23_12_ ( rBL7[12], RAM_VDD, GND, net266[23]);

xINVD1 I23_11_ ( rBL7[11], RAM_VDD, GND, net266[24]);

xINVD1 I23_10_ ( rBL7[10], RAM_VDD, GND, net266[25]);

xINVD1 I23_9_ ( rBL7[9], RAM_VDD, GND, net266[26]);

xINVD1 I23_8_ ( rBL7[8], RAM_VDD, GND, net266[27]);

xINVD1 I23_7_ ( rBL7[7], RAM_VDD, GND, net266[28]);

xINVD1 I23_6_ ( rBL7[6], RAM_VDD, GND, net266[29]);

xINVD1 I23_5_ ( rBL7[5], RAM_VDD, GND, net266[30]);

xINVD1 I23_4_ ( rBL7[4], RAM_VDD, GND, net266[31]);

xINVD1 I23_3_ ( rBL7[3], RAM_VDD, GND, net266[32]);

xINVD1 I23_2_ ( rBL7[2], RAM_VDD, GND, net266[33]);

xINVD1 I23_1_ ( rBL7[1], RAM_VDD, GND, net266[34]);

xINVD1 I23_0_ ( rBL7[0], RAM_VDD, GND, net266[35]);

xINVD1 I43_35_ ( rBL0[35], RAM_VDD, GND, net203[0]);

xINVD1 I43_34_ ( rBL0[34], RAM_VDD, GND, net203[1]);

xINVD1 I43_33_ ( rBL0[33], RAM_VDD, GND, net203[2]);

xINVD1 I43_32_ ( rBL0[32], RAM_VDD, GND, net203[3]);

xINVD1 I43_31_ ( rBL0[31], RAM_VDD, GND, net203[4]);

xINVD1 I43_30_ ( rBL0[30], RAM_VDD, GND, net203[5]);

xINVD1 I43_29_ ( rBL0[29], RAM_VDD, GND, net203[6]);

xINVD1 I43_28_ ( rBL0[28], RAM_VDD, GND, net203[7]);

xINVD1 I43_27_ ( rBL0[27], RAM_VDD, GND, net203[8]);

xINVD1 I43_26_ ( rBL0[26], RAM_VDD, GND, net203[9]);

xINVD1 I43_25_ ( rBL0[25], RAM_VDD, GND, net203[10]);

xINVD1 I43_24_ ( rBL0[24], RAM_VDD, GND, net203[11]);

xINVD1 I43_23_ ( rBL0[23], RAM_VDD, GND, net203[12]);

xINVD1 I43_22_ ( rBL0[22], RAM_VDD, GND, net203[13]);

xINVD1 I43_21_ ( rBL0[21], RAM_VDD, GND, net203[14]);

xINVD1 I43_20_ ( rBL0[20], RAM_VDD, GND, net203[15]);

xINVD1 I43_19_ ( rBL0[19], RAM_VDD, GND, net203[16]);

xINVD1 I43_18_ ( rBL0[18], RAM_VDD, GND, net203[17]);

xINVD1 I43_17_ ( rBL0[17], RAM_VDD, GND, net203[18]);

xINVD1 I43_16_ ( rBL0[16], RAM_VDD, GND, net203[19]);

xINVD1 I43_15_ ( rBL0[15], RAM_VDD, GND, net203[20]);

xINVD1 I43_14_ ( rBL0[14], RAM_VDD, GND, net203[21]);

xINVD1 I43_13_ ( rBL0[13], RAM_VDD, GND, net203[22]);

xINVD1 I43_12_ ( rBL0[12], RAM_VDD, GND, net203[23]);

xINVD1 I43_11_ ( rBL0[11], RAM_VDD, GND, net203[24]);

xINVD1 I43_10_ ( rBL0[10], RAM_VDD, GND, net203[25]);

xINVD1 I43_9_ ( rBL0[9], RAM_VDD, GND, net203[26]);

xINVD1 I43_8_ ( rBL0[8], RAM_VDD, GND, net203[27]);

xINVD1 I43_7_ ( rBL0[7], RAM_VDD, GND, net203[28]);

xINVD1 I43_6_ ( rBL0[6], RAM_VDD, GND, net203[29]);

xINVD1 I43_5_ ( rBL0[5], RAM_VDD, GND, net203[30]);

xINVD1 I43_4_ ( rBL0[4], RAM_VDD, GND, net203[31]);

xINVD1 I43_3_ ( rBL0[3], RAM_VDD, GND, net203[32]);

xINVD1 I43_2_ ( rBL0[2], RAM_VDD, GND, net203[33]);

xINVD1 I43_1_ ( rBL0[1], RAM_VDD, GND, net203[34]);

xINVD1 I43_0_ ( rBL0[0], RAM_VDD, GND, net203[35]);

xINVD1 I41_35_ ( rBL2[35], RAM_VDD, GND, net221[0]);

xINVD1 I41_34_ ( rBL2[34], RAM_VDD, GND, net221[1]);

xINVD1 I41_33_ ( rBL2[33], RAM_VDD, GND, net221[2]);

xINVD1 I41_32_ ( rBL2[32], RAM_VDD, GND, net221[3]);

xINVD1 I41_31_ ( rBL2[31], RAM_VDD, GND, net221[4]);

xINVD1 I41_30_ ( rBL2[30], RAM_VDD, GND, net221[5]);

xINVD1 I41_29_ ( rBL2[29], RAM_VDD, GND, net221[6]);

xINVD1 I41_28_ ( rBL2[28], RAM_VDD, GND, net221[7]);

xINVD1 I41_27_ ( rBL2[27], RAM_VDD, GND, net221[8]);

xINVD1 I41_26_ ( rBL2[26], RAM_VDD, GND, net221[9]);

xINVD1 I41_25_ ( rBL2[25], RAM_VDD, GND, net221[10]);

xINVD1 I41_24_ ( rBL2[24], RAM_VDD, GND, net221[11]);

xINVD1 I41_23_ ( rBL2[23], RAM_VDD, GND, net221[12]);

xINVD1 I41_22_ ( rBL2[22], RAM_VDD, GND, net221[13]);

xINVD1 I41_21_ ( rBL2[21], RAM_VDD, GND, net221[14]);

xINVD1 I41_20_ ( rBL2[20], RAM_VDD, GND, net221[15]);
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xINVD1 I41_19_ ( rBL2[19], RAM_VDD, GND, net221[16]);

xINVD1 I41_18_ ( rBL2[18], RAM_VDD, GND, net221[17]);

xINVD1 I41_17_ ( rBL2[17], RAM_VDD, GND, net221[18]);

xINVD1 I41_16_ ( rBL2[16], RAM_VDD, GND, net221[19]);

xINVD1 I41_15_ ( rBL2[15], RAM_VDD, GND, net221[20]);

xINVD1 I41_14_ ( rBL2[14], RAM_VDD, GND, net221[21]);

xINVD1 I41_13_ ( rBL2[13], RAM_VDD, GND, net221[22]);

xINVD1 I41_12_ ( rBL2[12], RAM_VDD, GND, net221[23]);

xINVD1 I41_11_ ( rBL2[11], RAM_VDD, GND, net221[24]);

xINVD1 I41_10_ ( rBL2[10], RAM_VDD, GND, net221[25]);

xINVD1 I41_9_ ( rBL2[9], RAM_VDD, GND, net221[26]);

xINVD1 I41_8_ ( rBL2[8], RAM_VDD, GND, net221[27]);

xINVD1 I41_7_ ( rBL2[7], RAM_VDD, GND, net221[28]);

xINVD1 I41_6_ ( rBL2[6], RAM_VDD, GND, net221[29]);

xINVD1 I41_5_ ( rBL2[5], RAM_VDD, GND, net221[30]);

xINVD1 I41_4_ ( rBL2[4], RAM_VDD, GND, net221[31]);

xINVD1 I41_3_ ( rBL2[3], RAM_VDD, GND, net221[32]);

xINVD1 I41_2_ ( rBL2[2], RAM_VDD, GND, net221[33]);

xINVD1 I41_1_ ( rBL2[1], RAM_VDD, GND, net221[34]);

xINVD1 I41_0_ ( rBL2[0], RAM_VDD, GND, net221[35]);

xINVD1 I38_35_ ( rBL5[35], RAM_VDD, GND, net248[0]);

xINVD1 I38_34_ ( rBL5[34], RAM_VDD, GND, net248[1]);

xINVD1 I38_33_ ( rBL5[33], RAM_VDD, GND, net248[2]);

xINVD1 I38_32_ ( rBL5[32], RAM_VDD, GND, net248[3]);

xINVD1 I38_31_ ( rBL5[31], RAM_VDD, GND, net248[4]);

xINVD1 I38_30_ ( rBL5[30], RAM_VDD, GND, net248[5]);

xINVD1 I38_29_ ( rBL5[29], RAM_VDD, GND, net248[6]);

xINVD1 I38_28_ ( rBL5[28], RAM_VDD, GND, net248[7]);

xINVD1 I38_27_ ( rBL5[27], RAM_VDD, GND, net248[8]);

xINVD1 I38_26_ ( rBL5[26], RAM_VDD, GND, net248[9]);

xINVD1 I38_25_ ( rBL5[25], RAM_VDD, GND, net248[10]);

xINVD1 I38_24_ ( rBL5[24], RAM_VDD, GND, net248[11]);

xINVD1 I38_23_ ( rBL5[23], RAM_VDD, GND, net248[12]);

xINVD1 I38_22_ ( rBL5[22], RAM_VDD, GND, net248[13]);

xINVD1 I38_21_ ( rBL5[21], RAM_VDD, GND, net248[14]);

xINVD1 I38_20_ ( rBL5[20], RAM_VDD, GND, net248[15]);

xINVD1 I38_19_ ( rBL5[19], RAM_VDD, GND, net248[16]);

xINVD1 I38_18_ ( rBL5[18], RAM_VDD, GND, net248[17]);

xINVD1 I38_17_ ( rBL5[17], RAM_VDD, GND, net248[18]);

xINVD1 I38_16_ ( rBL5[16], RAM_VDD, GND, net248[19]);

xINVD1 I38_15_ ( rBL5[15], RAM_VDD, GND, net248[20]);

xINVD1 I38_14_ ( rBL5[14], RAM_VDD, GND, net248[21]);

xINVD1 I38_13_ ( rBL5[13], RAM_VDD, GND, net248[22]);

xINVD1 I38_12_ ( rBL5[12], RAM_VDD, GND, net248[23]);

xINVD1 I38_11_ ( rBL5[11], RAM_VDD, GND, net248[24]);

xINVD1 I38_10_ ( rBL5[10], RAM_VDD, GND, net248[25]);

xINVD1 I38_9_ ( rBL5[9], RAM_VDD, GND, net248[26]);

xINVD1 I38_8_ ( rBL5[8], RAM_VDD, GND, net248[27]);

xINVD1 I38_7_ ( rBL5[7], RAM_VDD, GND, net248[28]);

xINVD1 I38_6_ ( rBL5[6], RAM_VDD, GND, net248[29]);

xINVD1 I38_5_ ( rBL5[5], RAM_VDD, GND, net248[30]);

xINVD1 I38_4_ ( rBL5[4], RAM_VDD, GND, net248[31]);

xINVD1 I38_3_ ( rBL5[3], RAM_VDD, GND, net248[32]);

xINVD1 I38_2_ ( rBL5[2], RAM_VDD, GND, net248[33]);

xINVD1 I38_1_ ( rBL5[1], RAM_VDD, GND, net248[34]);

xINVD1 I38_0_ ( rBL5[0], RAM_VDD, GND, net248[35]);

xINVD1 I42_35_ ( rBL1[35], RAM_VDD, GND, net212[0]);

xINVD1 I42_34_ ( rBL1[34], RAM_VDD, GND, net212[1]);

xINVD1 I42_33_ ( rBL1[33], RAM_VDD, GND, net212[2]);

xINVD1 I42_32_ ( rBL1[32], RAM_VDD, GND, net212[3]);

xINVD1 I42_31_ ( rBL1[31], RAM_VDD, GND, net212[4]);

xINVD1 I42_30_ ( rBL1[30], RAM_VDD, GND, net212[5]);

xINVD1 I42_29_ ( rBL1[29], RAM_VDD, GND, net212[6]);

xINVD1 I42_28_ ( rBL1[28], RAM_VDD, GND, net212[7]);

xINVD1 I42_27_ ( rBL1[27], RAM_VDD, GND, net212[8]);

xINVD1 I42_26_ ( rBL1[26], RAM_VDD, GND, net212[9]);

xINVD1 I42_25_ ( rBL1[25], RAM_VDD, GND, net212[10]);

xINVD1 I42_24_ ( rBL1[24], RAM_VDD, GND, net212[11]);

xINVD1 I42_23_ ( rBL1[23], RAM_VDD, GND, net212[12]);

xINVD1 I42_22_ ( rBL1[22], RAM_VDD, GND, net212[13]);

xINVD1 I42_21_ ( rBL1[21], RAM_VDD, GND, net212[14]);

xINVD1 I42_20_ ( rBL1[20], RAM_VDD, GND, net212[15]);

xINVD1 I42_19_ ( rBL1[19], RAM_VDD, GND, net212[16]);

xINVD1 I42_18_ ( rBL1[18], RAM_VDD, GND, net212[17]);

xINVD1 I42_17_ ( rBL1[17], RAM_VDD, GND, net212[18]);

xINVD1 I42_16_ ( rBL1[16], RAM_VDD, GND, net212[19]);

xINVD1 I42_15_ ( rBL1[15], RAM_VDD, GND, net212[20]);

xINVD1 I42_14_ ( rBL1[14], RAM_VDD, GND, net212[21]);

xINVD1 I42_13_ ( rBL1[13], RAM_VDD, GND, net212[22]);

xINVD1 I42_12_ ( rBL1[12], RAM_VDD, GND, net212[23]);

xINVD1 I42_11_ ( rBL1[11], RAM_VDD, GND, net212[24]);

xINVD1 I42_10_ ( rBL1[10], RAM_VDD, GND, net212[25]);

xINVD1 I42_9_ ( rBL1[9], RAM_VDD, GND, net212[26]);

xINVD1 I42_8_ ( rBL1[8], RAM_VDD, GND, net212[27]);

xINVD1 I42_7_ ( rBL1[7], RAM_VDD, GND, net212[28]);

xINVD1 I42_6_ ( rBL1[6], RAM_VDD, GND, net212[29]);

xINVD1 I42_5_ ( rBL1[5], RAM_VDD, GND, net212[30]);

xINVD1 I42_4_ ( rBL1[4], RAM_VDD, GND, net212[31]);

xINVD1 I42_3_ ( rBL1[3], RAM_VDD, GND, net212[32]);

xINVD1 I42_2_ ( rBL1[2], RAM_VDD, GND, net212[33]);

xINVD1 I42_1_ ( rBL1[1], RAM_VDD, GND, net212[34]);

xINVD1 I42_0_ ( rBL1[0], RAM_VDD, GND, net212[35]);

xBUFFD1 I14 ( RSTbuf, RAM_VDD, GND, RST);

xBUFFD1 I31_35_ ( net137[0], RAM_VDD, GND, BL[35]);

xBUFFD1 I31_34_ ( net137[1], RAM_VDD, GND, BL[34]);

xBUFFD1 I31_33_ ( net137[2], RAM_VDD, GND, BL[33]);

xBUFFD1 I31_32_ ( net137[3], RAM_VDD, GND, BL[32]);

xBUFFD1 I31_31_ ( net137[4], RAM_VDD, GND, BL[31]);

xBUFFD1 I31_30_ ( net137[5], RAM_VDD, GND, BL[30]);

xBUFFD1 I31_29_ ( net137[6], RAM_VDD, GND, BL[29]);

xBUFFD1 I31_28_ ( net137[7], RAM_VDD, GND, BL[28]);

xBUFFD1 I31_27_ ( net137[8], RAM_VDD, GND, BL[27]);

xBUFFD1 I31_26_ ( net137[9], RAM_VDD, GND, BL[26]);

xBUFFD1 I31_25_ ( net137[10], RAM_VDD, GND, BL[25]);

xBUFFD1 I31_24_ ( net137[11], RAM_VDD, GND, BL[24]);

xBUFFD1 I31_23_ ( net137[12], RAM_VDD, GND, BL[23]);

xBUFFD1 I31_22_ ( net137[13], RAM_VDD, GND, BL[22]);

xBUFFD1 I31_21_ ( net137[14], RAM_VDD, GND, BL[21]);
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xBUFFD1 I31_20_ ( net137[15], RAM_VDD, GND, BL[20]);

xBUFFD1 I31_19_ ( net137[16], RAM_VDD, GND, BL[19]);

xBUFFD1 I31_18_ ( net137[17], RAM_VDD, GND, BL[18]);

xBUFFD1 I31_17_ ( net137[18], RAM_VDD, GND, BL[17]);

xBUFFD1 I31_16_ ( net137[19], RAM_VDD, GND, BL[16]);

xBUFFD1 I31_15_ ( net137[20], RAM_VDD, GND, BL[15]);

xBUFFD1 I31_14_ ( net137[21], RAM_VDD, GND, BL[14]);

xBUFFD1 I31_13_ ( net137[22], RAM_VDD, GND, BL[13]);

xBUFFD1 I31_12_ ( net137[23], RAM_VDD, GND, BL[12]);

xBUFFD1 I31_11_ ( net137[24], RAM_VDD, GND, BL[11]);

xBUFFD1 I31_10_ ( net137[25], RAM_VDD, GND, BL[10]);

xBUFFD1 I31_9_ ( net137[26], RAM_VDD, GND, BL[9]);

xBUFFD1 I31_8_ ( net137[27], RAM_VDD, GND, BL[8]);

xBUFFD1 I31_7_ ( net137[28], RAM_VDD, GND, BL[7]);

xBUFFD1 I31_6_ ( net137[29], RAM_VDD, GND, BL[6]);

xBUFFD1 I31_5_ ( net137[30], RAM_VDD, GND, BL[5]);

xBUFFD1 I31_4_ ( net137[31], RAM_VDD, GND, BL[4]);

xBUFFD1 I31_3_ ( net137[32], RAM_VDD, GND, BL[3]);

xBUFFD1 I31_2_ ( net137[33], RAM_VDD, GND, BL[2]);

xBUFFD1 I31_1_ ( net137[34], RAM_VDD, GND, BL[1]);

xBUFFD1 I31_0_ ( net137[35], RAM_VDD, GND, BL[0]);

xBUFFD1 I32_31_ ( net190[0], RAM_VDD, GND, rowWL[31]);

xBUFFD1 I32_30_ ( net190[1], RAM_VDD, GND, rowWL[30]);

xBUFFD1 I32_29_ ( net190[2], RAM_VDD, GND, rowWL[29]);

xBUFFD1 I32_28_ ( net190[3], RAM_VDD, GND, rowWL[28]);

xBUFFD1 I32_27_ ( net190[4], RAM_VDD, GND, rowWL[27]);

xBUFFD1 I32_26_ ( net190[5], RAM_VDD, GND, rowWL[26]);

xBUFFD1 I32_25_ ( net190[6], RAM_VDD, GND, rowWL[25]);

xBUFFD1 I32_24_ ( net190[7], RAM_VDD, GND, rowWL[24]);

xBUFFD1 I32_23_ ( net190[8], RAM_VDD, GND, rowWL[23]);

xBUFFD1 I32_22_ ( net190[9], RAM_VDD, GND, rowWL[22]);

xBUFFD1 I32_21_ ( net190[10], RAM_VDD, GND, rowWL[21]);

xBUFFD1 I32_20_ ( net190[11], RAM_VDD, GND, rowWL[20]);

xBUFFD1 I32_19_ ( net190[12], RAM_VDD, GND, rowWL[19]);

xBUFFD1 I32_18_ ( net190[13], RAM_VDD, GND, rowWL[18]);

xBUFFD1 I32_17_ ( net190[14], RAM_VDD, GND, rowWL[17]);

xBUFFD1 I32_16_ ( net190[15], RAM_VDD, GND, rowWL[16]);

xBUFFD1 I32_15_ ( net190[16], RAM_VDD, GND, rowWL[15]);

xBUFFD1 I32_14_ ( net190[17], RAM_VDD, GND, rowWL[14]);

xBUFFD1 I32_13_ ( net190[18], RAM_VDD, GND, rowWL[13]);

xBUFFD1 I32_12_ ( net190[19], RAM_VDD, GND, rowWL[12]);

xBUFFD1 I32_11_ ( net190[20], RAM_VDD, GND, rowWL[11]);

xBUFFD1 I32_10_ ( net190[21], RAM_VDD, GND, rowWL[10]);

xBUFFD1 I32_9_ ( net190[22], RAM_VDD, GND, rowWL[9]);

xBUFFD1 I32_8_ ( net190[23], RAM_VDD, GND, rowWL[8]);

xBUFFD1 I32_7_ ( net190[24], RAM_VDD, GND, rowWL[7]);

xBUFFD1 I32_6_ ( net190[25], RAM_VDD, GND, rowWL[6]);

xBUFFD1 I32_5_ ( net190[26], RAM_VDD, GND, rowWL[5]);

xBUFFD1 I32_4_ ( net190[27], RAM_VDD, GND, rowWL[4]);

xBUFFD1 I32_3_ ( net190[28], RAM_VDD, GND, rowWL[3]);

xBUFFD1 I32_2_ ( net190[29], RAM_VDD, GND, rowWL[2]);

xBUFFD1 I32_1_ ( net190[30], RAM_VDD, GND, rowWL[1]);

xBUFFD1 I32_0_ ( net190[31], RAM_VDD, GND, rowWL[0]);

xBUFFD1 I33_31_ ( net194[0], RAM_VDD, GND, rowrWL[31]);

xBUFFD1 I33_30_ ( net194[1], RAM_VDD, GND, rowrWL[30]);

xBUFFD1 I33_29_ ( net194[2], RAM_VDD, GND, rowrWL[29]);

xBUFFD1 I33_28_ ( net194[3], RAM_VDD, GND, rowrWL[28]);

xBUFFD1 I33_27_ ( net194[4], RAM_VDD, GND, rowrWL[27]);

xBUFFD1 I33_26_ ( net194[5], RAM_VDD, GND, rowrWL[26]);

xBUFFD1 I33_25_ ( net194[6], RAM_VDD, GND, rowrWL[25]);

xBUFFD1 I33_24_ ( net194[7], RAM_VDD, GND, rowrWL[24]);

xBUFFD1 I33_23_ ( net194[8], RAM_VDD, GND, rowrWL[23]);

xBUFFD1 I33_22_ ( net194[9], RAM_VDD, GND, rowrWL[22]);

xBUFFD1 I33_21_ ( net194[10], RAM_VDD, GND, rowrWL[21]);

xBUFFD1 I33_20_ ( net194[11], RAM_VDD, GND, rowrWL[20]);

xBUFFD1 I33_19_ ( net194[12], RAM_VDD, GND, rowrWL[19]);

xBUFFD1 I33_18_ ( net194[13], RAM_VDD, GND, rowrWL[18]);

xBUFFD1 I33_17_ ( net194[14], RAM_VDD, GND, rowrWL[17]);

xBUFFD1 I33_16_ ( net194[15], RAM_VDD, GND, rowrWL[16]);

xBUFFD1 I33_15_ ( net194[16], RAM_VDD, GND, rowrWL[15]);

xBUFFD1 I33_14_ ( net194[17], RAM_VDD, GND, rowrWL[14]);

xBUFFD1 I33_13_ ( net194[18], RAM_VDD, GND, rowrWL[13]);

xBUFFD1 I33_12_ ( net194[19], RAM_VDD, GND, rowrWL[12]);

xBUFFD1 I33_11_ ( net194[20], RAM_VDD, GND, rowrWL[11]);

xBUFFD1 I33_10_ ( net194[21], RAM_VDD, GND, rowrWL[10]);

xBUFFD1 I33_9_ ( net194[22], RAM_VDD, GND, rowrWL[9]);

xBUFFD1 I33_8_ ( net194[23], RAM_VDD, GND, rowrWL[8]);

xBUFFD1 I33_7_ ( net194[24], RAM_VDD, GND, rowrWL[7]);

xBUFFD1 I33_6_ ( net194[25], RAM_VDD, GND, rowrWL[6]);

xBUFFD1 I33_5_ ( net194[26], RAM_VDD, GND, rowrWL[5]);

xBUFFD1 I33_4_ ( net194[27], RAM_VDD, GND, rowrWL[4]);

xBUFFD1 I33_3_ ( net194[28], RAM_VDD, GND, rowrWL[3]);

xBUFFD1 I33_2_ ( net194[29], RAM_VDD, GND, rowrWL[2]);

xBUFFD1 I33_1_ ( net194[30], RAM_VDD, GND, rowrWL[1]);

xBUFFD1 I33_0_ ( net194[31], RAM_VDD, GND, rowrWL[0]);

RAM_32W_schematic I8 ( net203[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[0], rWL[0], net200[0:31], net134[0:31]);

RAM_32W_schematic I7 ( net212[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[1], rWL[1], net200[0:31], net134[0:31]);

RAM_32W_schematic I6 ( net221[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[2], rWL[2], net200[0:31], net134[0:31]);

RAM_32W_schematic I5 ( net230[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[3], rWL[3], net200[0:31], net134[0:31]);

RAM_32W_schematic I4 ( net239[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[4], rWL[4], net200[0:31], net134[0:31]);

RAM_32W_schematic I3 ( net248[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[5], rWL[5], net200[0:31], net134[0:31]);

RAM_32W_schematic I2 ( net257[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[6], rWL[6], net200[0:31], net134[0:31]);

RAM_32W_schematic I0 ( net266[0:35], GND, RAM_VDD, net138[0:35],

RSTbuf, WL[7], rWL[7], net200[0:31], net134[0:31]);

endmodule

module RAM_32W_schematic ( rBLout, GND, RAM_VDD, BLin, RST, WL, rWL,

rowWL, rowrWL );

inout GND, RAM_VDD;
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input RST, WL, rWL;

output [35:0] rBLout;

input [31:0] rowrWL;

input [35:0] BLin;

input [31:0] rowWL;

// Buses in the design

wire [35:0] BLbuf;

wire [35:0] nBLbuf;

wire [35:0] rBLi;

wire [31:0] rowrWLout;

wire [31:0] rowWLout;

specify

specparam CDS_LIBNAME = "RAM";

specparam CDS_CELLNAME = "32W";

specparam CDS_VIEWNAME = "schematic";

endspecify

word I21 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[22],

nBLbuf[35:0], rowrWLout[22]);

word I22 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[18],

nBLbuf[35:0], rowrWLout[18]);

word I23 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[26],

nBLbuf[35:0], rowrWLout[26]);

word I24 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[30],

nBLbuf[35:0], rowrWLout[30]);

word I25 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[21],

nBLbuf[35:0], rowrWLout[21]);

word I26 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[17],

nBLbuf[35:0], rowrWLout[17]);

word I27 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[25],

nBLbuf[35:0], rowrWLout[25]);

word I28 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[29],

nBLbuf[35:0], rowrWLout[29]);

word I29 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[20],

nBLbuf[35:0], rowrWLout[20]);

word I30 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[16],

nBLbuf[35:0], rowrWLout[16]);

word I31 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[24],

nBLbuf[35:0], rowrWLout[24]);

word I32 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[28],

nBLbuf[35:0], rowrWLout[28]);

word I19 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[23],

nBLbuf[35:0], rowrWLout[23]);

word I20 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[19],

nBLbuf[35:0], rowrWLout[19]);

word I18 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[27],

nBLbuf[35:0], rowrWLout[27]);

word I33 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[12],

nBLbuf[35:0], rowrWLout[12]);

word I34 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[8],

nBLbuf[35:0], rowrWLout[8]);

word I35 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[0],

nBLbuf[35:0], rowrWLout[0]);

word I36 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[4],

nBLbuf[35:0], rowrWLout[4]);

word I37 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[13],

nBLbuf[35:0], rowrWLout[13]);

word I38 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[9],

nBLbuf[35:0], rowrWLout[9]);

word I39 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[1],

nBLbuf[35:0], rowrWLout[1]);

word I40 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[5],

nBLbuf[35:0], rowrWLout[5]);

word I41 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[14],

nBLbuf[35:0], rowrWLout[14]);

word I42 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[10],

nBLbuf[35:0], rowrWLout[10]);

word I43 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[2],

nBLbuf[35:0], rowrWLout[2]);

word I44 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[6],

nBLbuf[35:0], rowrWLout[6]);

word I45 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[7],

nBLbuf[35:0], rowrWLout[7]);

word I46 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[3],

nBLbuf[35:0], rowrWLout[3]);

word I47 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[11],

nBLbuf[35:0], rowrWLout[11]);

word I48 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[15],

nBLbuf[35:0], rowrWLout[15]);

word I2 ( GND, RAM_VDD, rBLi[35:0], BLbuf[35:0], RSTout, rowWLout[31],

nBLbuf[35:0], rowrWLout[31]);

RAMIO I1 ( BLbuf[35:0], RSTout, nBLbuf[35:0], rBLout[35:0],

rowWLout[31:0], rowrWLout[31:0], GND, RAM_VDD, rBLi[35:0],

BLin[35:0], RST, WL, rWL, rowWL[31:0], rowrWL[31:0]);

endmodule

module RAMIO ( BLbuf, RSTout, nBLbuf, rBLout, rowWLout, rowrWLout, GND,

RAM_VDD, rBLi, BLin, RST, WL, rWL, rowWL, rowrWL );

output RSTout;

inout GND, RAM_VDD;

input RST, WL, rWL;

output [35:0] rBLout;

output [35:0] nBLbuf;

output [31:0] rowWLout;

output [31:0] rowrWLout;
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output [35:0] BLbuf;

inout [35:0] rBLi;

input [31:0] rowrWL;

input [35:0] BLin;

input [31:0] rowWL;

// Buses in the design

wire [0:31] net084;

wire [0:35] net73;

specify

specparam CDS_LIBNAME = "RAM";

specparam CDS_CELLNAME = "RAMIO";

specparam CDS_VIEWNAME = "schematic";

endspecify

xBUFFD3 I13 ( net48, RAM_VDD, GND, WL);

xBUFFD3 I11 ( RSTout, RAM_VDD, GND, RST);

xBUFFD3 I4 ( net59, RAM_VDD, GND, rWL);

xBUFFD2 rowrWLbuf_31_ ( rowrWLout[31], RAM_VDD, GND, net084[0]);

xBUFFD2 rowrWLbuf_30_ ( rowrWLout[30], RAM_VDD, GND, net084[1]);

xBUFFD2 rowrWLbuf_29_ ( rowrWLout[29], RAM_VDD, GND, net084[2]);

xBUFFD2 rowrWLbuf_28_ ( rowrWLout[28], RAM_VDD, GND, net084[3]);

xBUFFD2 rowrWLbuf_27_ ( rowrWLout[27], RAM_VDD, GND, net084[4]);

xBUFFD2 rowrWLbuf_26_ ( rowrWLout[26], RAM_VDD, GND, net084[5]);

xBUFFD2 rowrWLbuf_25_ ( rowrWLout[25], RAM_VDD, GND, net084[6]);

xBUFFD2 rowrWLbuf_24_ ( rowrWLout[24], RAM_VDD, GND, net084[7]);

xBUFFD2 rowrWLbuf_23_ ( rowrWLout[23], RAM_VDD, GND, net084[8]);

xBUFFD2 rowrWLbuf_22_ ( rowrWLout[22], RAM_VDD, GND, net084[9]);

xBUFFD2 rowrWLbuf_21_ ( rowrWLout[21], RAM_VDD, GND, net084[10]);

xBUFFD2 rowrWLbuf_20_ ( rowrWLout[20], RAM_VDD, GND, net084[11]);

xBUFFD2 rowrWLbuf_19_ ( rowrWLout[19], RAM_VDD, GND, net084[12]);

xBUFFD2 rowrWLbuf_18_ ( rowrWLout[18], RAM_VDD, GND, net084[13]);

xBUFFD2 rowrWLbuf_17_ ( rowrWLout[17], RAM_VDD, GND, net084[14]);

xBUFFD2 rowrWLbuf_16_ ( rowrWLout[16], RAM_VDD, GND, net084[15]);

xBUFFD2 rowrWLbuf_15_ ( rowrWLout[15], RAM_VDD, GND, net084[16]);

xBUFFD2 rowrWLbuf_14_ ( rowrWLout[14], RAM_VDD, GND, net084[17]);

xBUFFD2 rowrWLbuf_13_ ( rowrWLout[13], RAM_VDD, GND, net084[18]);

xBUFFD2 rowrWLbuf_12_ ( rowrWLout[12], RAM_VDD, GND, net084[19]);

xBUFFD2 rowrWLbuf_11_ ( rowrWLout[11], RAM_VDD, GND, net084[20]);

xBUFFD2 rowrWLbuf_10_ ( rowrWLout[10], RAM_VDD, GND, net084[21]);

xBUFFD2 rowrWLbuf_9_ ( rowrWLout[9], RAM_VDD, GND, net084[22]);

xBUFFD2 rowrWLbuf_8_ ( rowrWLout[8], RAM_VDD, GND, net084[23]);

xBUFFD2 rowrWLbuf_7_ ( rowrWLout[7], RAM_VDD, GND, net084[24]);

xBUFFD2 rowrWLbuf_6_ ( rowrWLout[6], RAM_VDD, GND, net084[25]);

xBUFFD2 rowrWLbuf_5_ ( rowrWLout[5], RAM_VDD, GND, net084[26]);

xBUFFD2 rowrWLbuf_4_ ( rowrWLout[4], RAM_VDD, GND, net084[27]);

xBUFFD2 rowrWLbuf_3_ ( rowrWLout[3], RAM_VDD, GND, net084[28]);

xBUFFD2 rowrWLbuf_2_ ( rowrWLout[2], RAM_VDD, GND, net084[29]);

xBUFFD2 rowrWLbuf_1_ ( rowrWLout[1], RAM_VDD, GND, net084[30]);

xBUFFD2 rowrWLbuf_0_ ( rowrWLout[0], RAM_VDD, GND, net084[31]);

xBUFFD2 BLbuffer_35_ ( BLbuf[35], RAM_VDD, GND, net73[0]);

xBUFFD2 BLbuffer_34_ ( BLbuf[34], RAM_VDD, GND, net73[1]);

xBUFFD2 BLbuffer_33_ ( BLbuf[33], RAM_VDD, GND, net73[2]);

xBUFFD2 BLbuffer_32_ ( BLbuf[32], RAM_VDD, GND, net73[3]);

xBUFFD2 BLbuffer_31_ ( BLbuf[31], RAM_VDD, GND, net73[4]);

xBUFFD2 BLbuffer_30_ ( BLbuf[30], RAM_VDD, GND, net73[5]);

xBUFFD2 BLbuffer_29_ ( BLbuf[29], RAM_VDD, GND, net73[6]);

xBUFFD2 BLbuffer_28_ ( BLbuf[28], RAM_VDD, GND, net73[7]);

xBUFFD2 BLbuffer_27_ ( BLbuf[27], RAM_VDD, GND, net73[8]);

xBUFFD2 BLbuffer_26_ ( BLbuf[26], RAM_VDD, GND, net73[9]);

xBUFFD2 BLbuffer_25_ ( BLbuf[25], RAM_VDD, GND, net73[10]);

xBUFFD2 BLbuffer_24_ ( BLbuf[24], RAM_VDD, GND, net73[11]);

xBUFFD2 BLbuffer_23_ ( BLbuf[23], RAM_VDD, GND, net73[12]);

xBUFFD2 BLbuffer_22_ ( BLbuf[22], RAM_VDD, GND, net73[13]);

xBUFFD2 BLbuffer_21_ ( BLbuf[21], RAM_VDD, GND, net73[14]);

xBUFFD2 BLbuffer_20_ ( BLbuf[20], RAM_VDD, GND, net73[15]);

xBUFFD2 BLbuffer_19_ ( BLbuf[19], RAM_VDD, GND, net73[16]);

xBUFFD2 BLbuffer_18_ ( BLbuf[18], RAM_VDD, GND, net73[17]);

xBUFFD2 BLbuffer_17_ ( BLbuf[17], RAM_VDD, GND, net73[18]);

xBUFFD2 BLbuffer_16_ ( BLbuf[16], RAM_VDD, GND, net73[19]);

xBUFFD2 BLbuffer_15_ ( BLbuf[15], RAM_VDD, GND, net73[20]);

xBUFFD2 BLbuffer_14_ ( BLbuf[14], RAM_VDD, GND, net73[21]);

xBUFFD2 BLbuffer_13_ ( BLbuf[13], RAM_VDD, GND, net73[22]);

xBUFFD2 BLbuffer_12_ ( BLbuf[12], RAM_VDD, GND, net73[23]);

xBUFFD2 BLbuffer_11_ ( BLbuf[11], RAM_VDD, GND, net73[24]);

xBUFFD2 BLbuffer_10_ ( BLbuf[10], RAM_VDD, GND, net73[25]);

xBUFFD2 BLbuffer_9_ ( BLbuf[9], RAM_VDD, GND, net73[26]);

xBUFFD2 BLbuffer_8_ ( BLbuf[8], RAM_VDD, GND, net73[27]);

xBUFFD2 BLbuffer_7_ ( BLbuf[7], RAM_VDD, GND, net73[28]);

xBUFFD2 BLbuffer_6_ ( BLbuf[6], RAM_VDD, GND, net73[29]);

xBUFFD2 BLbuffer_5_ ( BLbuf[5], RAM_VDD, GND, net73[30]);

xBUFFD2 BLbuffer_4_ ( BLbuf[4], RAM_VDD, GND, net73[31]);

xBUFFD2 BLbuffer_3_ ( BLbuf[3], RAM_VDD, GND, net73[32]);

xBUFFD2 BLbuffer_2_ ( BLbuf[2], RAM_VDD, GND, net73[33]);

xBUFFD2 BLbuffer_1_ ( BLbuf[1], RAM_VDD, GND, net73[34]);

xBUFFD2 BLbuffer_0_ ( BLbuf[0], RAM_VDD, GND, net73[35]);

xINVD2 I9 ( net63, RAM_VDD, GND, net59);

xINVD2 BLinv_35_ ( nBLbuf[35], RAM_VDD, GND, net73[0]);

xINVD2 BLinv_34_ ( nBLbuf[34], RAM_VDD, GND, net73[1]);

xINVD2 BLinv_33_ ( nBLbuf[33], RAM_VDD, GND, net73[2]);

xINVD2 BLinv_32_ ( nBLbuf[32], RAM_VDD, GND, net73[3]);

xINVD2 BLinv_31_ ( nBLbuf[31], RAM_VDD, GND, net73[4]);

xINVD2 BLinv_30_ ( nBLbuf[30], RAM_VDD, GND, net73[5]);

xINVD2 BLinv_29_ ( nBLbuf[29], RAM_VDD, GND, net73[6]);

xINVD2 BLinv_28_ ( nBLbuf[28], RAM_VDD, GND, net73[7]);

xINVD2 BLinv_27_ ( nBLbuf[27], RAM_VDD, GND, net73[8]);

xINVD2 BLinv_26_ ( nBLbuf[26], RAM_VDD, GND, net73[9]);

xINVD2 BLinv_25_ ( nBLbuf[25], RAM_VDD, GND, net73[10]);

xINVD2 BLinv_24_ ( nBLbuf[24], RAM_VDD, GND, net73[11]);

xINVD2 BLinv_23_ ( nBLbuf[23], RAM_VDD, GND, net73[12]);

xINVD2 BLinv_22_ ( nBLbuf[22], RAM_VDD, GND, net73[13]);

xINVD2 BLinv_21_ ( nBLbuf[21], RAM_VDD, GND, net73[14]);
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xINVD2 BLinv_20_ ( nBLbuf[20], RAM_VDD, GND, net73[15]);

xINVD2 BLinv_19_ ( nBLbuf[19], RAM_VDD, GND, net73[16]);

xINVD2 BLinv_18_ ( nBLbuf[18], RAM_VDD, GND, net73[17]);

xINVD2 BLinv_17_ ( nBLbuf[17], RAM_VDD, GND, net73[18]);

xINVD2 BLinv_16_ ( nBLbuf[16], RAM_VDD, GND, net73[19]);

xINVD2 BLinv_15_ ( nBLbuf[15], RAM_VDD, GND, net73[20]);

xINVD2 BLinv_14_ ( nBLbuf[14], RAM_VDD, GND, net73[21]);

xINVD2 BLinv_13_ ( nBLbuf[13], RAM_VDD, GND, net73[22]);

xINVD2 BLinv_12_ ( nBLbuf[12], RAM_VDD, GND, net73[23]);

xINVD2 BLinv_11_ ( nBLbuf[11], RAM_VDD, GND, net73[24]);

xINVD2 BLinv_10_ ( nBLbuf[10], RAM_VDD, GND, net73[25]);

xINVD2 BLinv_9_ ( nBLbuf[9], RAM_VDD, GND, net73[26]);

xINVD2 BLinv_8_ ( nBLbuf[8], RAM_VDD, GND, net73[27]);

xINVD2 BLinv_7_ ( nBLbuf[7], RAM_VDD, GND, net73[28]);

xINVD2 BLinv_6_ ( nBLbuf[6], RAM_VDD, GND, net73[29]);

xINVD2 BLinv_5_ ( nBLbuf[5], RAM_VDD, GND, net73[30]);

xINVD2 BLinv_4_ ( nBLbuf[4], RAM_VDD, GND, net73[31]);

xINVD2 BLinv_3_ ( nBLbuf[3], RAM_VDD, GND, net73[32]);

xINVD2 BLinv_2_ ( nBLbuf[2], RAM_VDD, GND, net73[33]);

xINVD2 BLinv_1_ ( nBLbuf[1], RAM_VDD, GND, net73[34]);

xINVD2 BLinv_0_ ( nBLbuf[0], RAM_VDD, GND, net73[35]);

xNR3D0 BLnor_35_ ( net73[0], RAM_VDD, GND, BLin[35], net48, RSTout);

xNR3D0 BLnor_34_ ( net73[1], RAM_VDD, GND, BLin[34], net48, RSTout);

xNR3D0 BLnor_33_ ( net73[2], RAM_VDD, GND, BLin[33], net48, RSTout);

xNR3D0 BLnor_32_ ( net73[3], RAM_VDD, GND, BLin[32], net48, RSTout);

xNR3D0 BLnor_31_ ( net73[4], RAM_VDD, GND, BLin[31], net48, RSTout);

xNR3D0 BLnor_30_ ( net73[5], RAM_VDD, GND, BLin[30], net48, RSTout);

xNR3D0 BLnor_29_ ( net73[6], RAM_VDD, GND, BLin[29], net48, RSTout);

xNR3D0 BLnor_28_ ( net73[7], RAM_VDD, GND, BLin[28], net48, RSTout);

xNR3D0 BLnor_27_ ( net73[8], RAM_VDD, GND, BLin[27], net48, RSTout);

xNR3D0 BLnor_26_ ( net73[9], RAM_VDD, GND, BLin[26], net48, RSTout);

xNR3D0 BLnor_25_ ( net73[10], RAM_VDD, GND, BLin[25], net48, RSTout);

xNR3D0 BLnor_24_ ( net73[11], RAM_VDD, GND, BLin[24], net48, RSTout);

xNR3D0 BLnor_23_ ( net73[12], RAM_VDD, GND, BLin[23], net48, RSTout);

xNR3D0 BLnor_22_ ( net73[13], RAM_VDD, GND, BLin[22], net48, RSTout);

xNR3D0 BLnor_21_ ( net73[14], RAM_VDD, GND, BLin[21], net48, RSTout);

xNR3D0 BLnor_20_ ( net73[15], RAM_VDD, GND, BLin[20], net48, RSTout);

xNR3D0 BLnor_19_ ( net73[16], RAM_VDD, GND, BLin[19], net48, RSTout);

xNR3D0 BLnor_18_ ( net73[17], RAM_VDD, GND, BLin[18], net48, RSTout);

xNR3D0 BLnor_17_ ( net73[18], RAM_VDD, GND, BLin[17], net48, RSTout);

xNR3D0 BLnor_16_ ( net73[19], RAM_VDD, GND, BLin[16], net48, RSTout);

xNR3D0 BLnor_15_ ( net73[20], RAM_VDD, GND, BLin[15], net48, RSTout);

xNR3D0 BLnor_14_ ( net73[21], RAM_VDD, GND, BLin[14], net48, RSTout);

xNR3D0 BLnor_13_ ( net73[22], RAM_VDD, GND, BLin[13], net48, RSTout);

xNR3D0 BLnor_12_ ( net73[23], RAM_VDD, GND, BLin[12], net48, RSTout);

xNR3D0 BLnor_11_ ( net73[24], RAM_VDD, GND, BLin[11], net48, RSTout);

xNR3D0 BLnor_10_ ( net73[25], RAM_VDD, GND, BLin[10], net48, RSTout);

xNR3D0 BLnor_9_ ( net73[26], RAM_VDD, GND, BLin[9], net48, RSTout);

xNR3D0 BLnor_8_ ( net73[27], RAM_VDD, GND, BLin[8], net48, RSTout);

xNR3D0 BLnor_7_ ( net73[28], RAM_VDD, GND, BLin[7], net48, RSTout);

xNR3D0 BLnor_6_ ( net73[29], RAM_VDD, GND, BLin[6], net48, RSTout);

xNR3D0 BLnor_5_ ( net73[30], RAM_VDD, GND, BLin[5], net48, RSTout);

xNR3D0 BLnor_4_ ( net73[31], RAM_VDD, GND, BLin[4], net48, RSTout);

xNR3D0 BLnor_3_ ( net73[32], RAM_VDD, GND, BLin[3], net48, RSTout);

xNR3D0 BLnor_2_ ( net73[33], RAM_VDD, GND, BLin[2], net48, RSTout);

xNR3D0 BLnor_1_ ( net73[34], RAM_VDD, GND, BLin[1], net48, RSTout);

xNR3D0 BLnor_0_ ( net73[35], RAM_VDD, GND, BLin[0], net48, RSTout);

xNR2D0 rWLnor_31_ ( net084[0], RAM_VDD, GND, rowrWL[31], net59);

xNR2D0 rWLnor_30_ ( net084[1], RAM_VDD, GND, rowrWL[30], net59);

xNR2D0 rWLnor_29_ ( net084[2], RAM_VDD, GND, rowrWL[29], net59);

xNR2D0 rWLnor_28_ ( net084[3], RAM_VDD, GND, rowrWL[28], net59);

xNR2D0 rWLnor_27_ ( net084[4], RAM_VDD, GND, rowrWL[27], net59);

xNR2D0 rWLnor_26_ ( net084[5], RAM_VDD, GND, rowrWL[26], net59);

xNR2D0 rWLnor_25_ ( net084[6], RAM_VDD, GND, rowrWL[25], net59);

xNR2D0 rWLnor_24_ ( net084[7], RAM_VDD, GND, rowrWL[24], net59);

xNR2D0 rWLnor_23_ ( net084[8], RAM_VDD, GND, rowrWL[23], net59);

xNR2D0 rWLnor_22_ ( net084[9], RAM_VDD, GND, rowrWL[22], net59);

xNR2D0 rWLnor_21_ ( net084[10], RAM_VDD, GND, rowrWL[21], net59);

xNR2D0 rWLnor_20_ ( net084[11], RAM_VDD, GND, rowrWL[20], net59);

xNR2D0 rWLnor_19_ ( net084[12], RAM_VDD, GND, rowrWL[19], net59);

xNR2D0 rWLnor_18_ ( net084[13], RAM_VDD, GND, rowrWL[18], net59);

xNR2D0 rWLnor_17_ ( net084[14], RAM_VDD, GND, rowrWL[17], net59);

xNR2D0 rWLnor_16_ ( net084[15], RAM_VDD, GND, rowrWL[16], net59);

xNR2D0 rWLnor_15_ ( net084[16], RAM_VDD, GND, rowrWL[15], net59);

xNR2D0 rWLnor_14_ ( net084[17], RAM_VDD, GND, rowrWL[14], net59);

xNR2D0 rWLnor_13_ ( net084[18], RAM_VDD, GND, rowrWL[13], net59);

xNR2D0 rWLnor_12_ ( net084[19], RAM_VDD, GND, rowrWL[12], net59);

xNR2D0 rWLnor_11_ ( net084[20], RAM_VDD, GND, rowrWL[11], net59);

xNR2D0 rWLnor_10_ ( net084[21], RAM_VDD, GND, rowrWL[10], net59);

xNR2D0 rWLnor_9_ ( net084[22], RAM_VDD, GND, rowrWL[9], net59);

xNR2D0 rWLnor_8_ ( net084[23], RAM_VDD, GND, rowrWL[8], net59);

xNR2D0 rWLnor_7_ ( net084[24], RAM_VDD, GND, rowrWL[7], net59);

xNR2D0 rWLnor_6_ ( net084[25], RAM_VDD, GND, rowrWL[6], net59);

xNR2D0 rWLnor_5_ ( net084[26], RAM_VDD, GND, rowrWL[5], net59);

xNR2D0 rWLnor_4_ ( net084[27], RAM_VDD, GND, rowrWL[4], net59);

xNR2D0 rWLnor_3_ ( net084[28], RAM_VDD, GND, rowrWL[3], net59);

xNR2D0 rWLnor_2_ ( net084[29], RAM_VDD, GND, rowrWL[2], net59);

xNR2D0 rWLnor_1_ ( net084[30], RAM_VDD, GND, rowrWL[1], net59);

xNR2D0 rWLnor_0_ ( net084[31], RAM_VDD, GND, rowrWL[0], net59);

xNR2D0 WLnor_31_ ( rowWLout[31], RAM_VDD, GND, rowWL[31], net48);

xNR2D0 WLnor_30_ ( rowWLout[30], RAM_VDD, GND, rowWL[30], net48);

xNR2D0 WLnor_29_ ( rowWLout[29], RAM_VDD, GND, rowWL[29], net48);

xNR2D0 WLnor_28_ ( rowWLout[28], RAM_VDD, GND, rowWL[28], net48);

xNR2D0 WLnor_27_ ( rowWLout[27], RAM_VDD, GND, rowWL[27], net48);

xNR2D0 WLnor_26_ ( rowWLout[26], RAM_VDD, GND, rowWL[26], net48);

xNR2D0 WLnor_25_ ( rowWLout[25], RAM_VDD, GND, rowWL[25], net48);

xNR2D0 WLnor_24_ ( rowWLout[24], RAM_VDD, GND, rowWL[24], net48);

xNR2D0 WLnor_23_ ( rowWLout[23], RAM_VDD, GND, rowWL[23], net48);

xNR2D0 WLnor_22_ ( rowWLout[22], RAM_VDD, GND, rowWL[22], net48);

xNR2D0 WLnor_21_ ( rowWLout[21], RAM_VDD, GND, rowWL[21], net48);

xNR2D0 WLnor_20_ ( rowWLout[20], RAM_VDD, GND, rowWL[20], net48);

xNR2D0 WLnor_19_ ( rowWLout[19], RAM_VDD, GND, rowWL[19], net48);

xNR2D0 WLnor_18_ ( rowWLout[18], RAM_VDD, GND, rowWL[18], net48);

xNR2D0 WLnor_17_ ( rowWLout[17], RAM_VDD, GND, rowWL[17], net48);

xNR2D0 WLnor_16_ ( rowWLout[16], RAM_VDD, GND, rowWL[16], net48);

xNR2D0 WLnor_15_ ( rowWLout[15], RAM_VDD, GND, rowWL[15], net48);

xNR2D0 WLnor_14_ ( rowWLout[14], RAM_VDD, GND, rowWL[14], net48);

xNR2D0 WLnor_13_ ( rowWLout[13], RAM_VDD, GND, rowWL[13], net48);
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xNR2D0 WLnor_12_ ( rowWLout[12], RAM_VDD, GND, rowWL[12], net48);

xNR2D0 WLnor_11_ ( rowWLout[11], RAM_VDD, GND, rowWL[11], net48);

xNR2D0 WLnor_10_ ( rowWLout[10], RAM_VDD, GND, rowWL[10], net48);

xNR2D0 WLnor_9_ ( rowWLout[9], RAM_VDD, GND, rowWL[9], net48);

xNR2D0 WLnor_8_ ( rowWLout[8], RAM_VDD, GND, rowWL[8], net48);

xNR2D0 WLnor_7_ ( rowWLout[7], RAM_VDD, GND, rowWL[7], net48);

xNR2D0 WLnor_6_ ( rowWLout[6], RAM_VDD, GND, rowWL[6], net48);

xNR2D0 WLnor_5_ ( rowWLout[5], RAM_VDD, GND, rowWL[5], net48);

xNR2D0 WLnor_4_ ( rowWLout[4], RAM_VDD, GND, rowWL[4], net48);

xNR2D0 WLnor_3_ ( rowWLout[3], RAM_VDD, GND, rowWL[3], net48);

xNR2D0 WLnor_2_ ( rowWLout[2], RAM_VDD, GND, rowWL[2], net48);

xNR2D0 WLnor_1_ ( rowWLout[1], RAM_VDD, GND, rowWL[1], net48);

xNR2D0 WLnor_0_ ( rowWLout[0], RAM_VDD, GND, rowWL[0], net48);

charge_inv charge_inv_35_ ( rBLout[35], GND, RAM_VDD, rBLi[35], net63);

charge_inv charge_inv_34_ ( rBLout[34], GND, RAM_VDD, rBLi[34], net63);

charge_inv charge_inv_33_ ( rBLout[33], GND, RAM_VDD, rBLi[33], net63);

charge_inv charge_inv_32_ ( rBLout[32], GND, RAM_VDD, rBLi[32], net63);

charge_inv charge_inv_31_ ( rBLout[31], GND, RAM_VDD, rBLi[31], net63);

charge_inv charge_inv_30_ ( rBLout[30], GND, RAM_VDD, rBLi[30], net63);

charge_inv charge_inv_29_ ( rBLout[29], GND, RAM_VDD, rBLi[29], net63);

charge_inv charge_inv_28_ ( rBLout[28], GND, RAM_VDD, rBLi[28], net63);

charge_inv charge_inv_27_ ( rBLout[27], GND, RAM_VDD, rBLi[27], net63);

charge_inv charge_inv_26_ ( rBLout[26], GND, RAM_VDD, rBLi[26], net63);

charge_inv charge_inv_25_ ( rBLout[25], GND, RAM_VDD, rBLi[25], net63);

charge_inv charge_inv_24_ ( rBLout[24], GND, RAM_VDD, rBLi[24], net63);

charge_inv charge_inv_23_ ( rBLout[23], GND, RAM_VDD, rBLi[23], net63);

charge_inv charge_inv_22_ ( rBLout[22], GND, RAM_VDD, rBLi[22], net63);

charge_inv charge_inv_21_ ( rBLout[21], GND, RAM_VDD, rBLi[21], net63);

charge_inv charge_inv_20_ ( rBLout[20], GND, RAM_VDD, rBLi[20], net63);

charge_inv charge_inv_19_ ( rBLout[19], GND, RAM_VDD, rBLi[19], net63);

charge_inv charge_inv_18_ ( rBLout[18], GND, RAM_VDD, rBLi[18], net63);

charge_inv charge_inv_17_ ( rBLout[17], GND, RAM_VDD, rBLi[17], net63);

charge_inv charge_inv_16_ ( rBLout[16], GND, RAM_VDD, rBLi[16], net63);

charge_inv charge_inv_15_ ( rBLout[15], GND, RAM_VDD, rBLi[15], net63);

charge_inv charge_inv_14_ ( rBLout[14], GND, RAM_VDD, rBLi[14], net63);

charge_inv charge_inv_13_ ( rBLout[13], GND, RAM_VDD, rBLi[13], net63);

charge_inv charge_inv_12_ ( rBLout[12], GND, RAM_VDD, rBLi[12], net63);

charge_inv charge_inv_11_ ( rBLout[11], GND, RAM_VDD, rBLi[11], net63);

charge_inv charge_inv_10_ ( rBLout[10], GND, RAM_VDD, rBLi[10], net63);

charge_inv charge_inv_9_ ( rBLout[9], GND, RAM_VDD, rBLi[9], net63);

charge_inv charge_inv_8_ ( rBLout[8], GND, RAM_VDD, rBLi[8], net63);

charge_inv charge_inv_7_ ( rBLout[7], GND, RAM_VDD, rBLi[7], net63);

charge_inv charge_inv_6_ ( rBLout[6], GND, RAM_VDD, rBLi[6], net63);

charge_inv charge_inv_5_ ( rBLout[5], GND, RAM_VDD, rBLi[5], net63);

charge_inv charge_inv_4_ ( rBLout[4], GND, RAM_VDD, rBLi[4], net63);

charge_inv charge_inv_3_ ( rBLout[3], GND, RAM_VDD, rBLi[3], net63);

charge_inv charge_inv_2_ ( rBLout[2], GND, RAM_VDD, rBLi[2], net63);

charge_inv charge_inv_1_ ( rBLout[1], GND, RAM_VDD, rBLi[1], net63);

charge_inv charge_inv_0_ ( rBLout[0], GND, RAM_VDD, rBLi[0], net63);

endmodule

module charge_inv ( rBLout, GND, RAM_VDD, rBL, rWL );

output rBLout;

inout GND, RAM_VDD, rBL;

input rWL;

specify

specparam CDS_LIBNAME = "RAM";

specparam CDS_CELLNAME = "charge_inv";

specparam CDS_VIEWNAME = "schematic";

endspecify

pch M4 ( .D(rBL), .B(RAM_VDD), .G(rWL), .S(RAM_VDD));

pch M2 ( .D(rBLout), .B(RAM_VDD), .G(rBL), .S(RAM_VDD));

nch M0 ( .D(rBLout), .B(GND), .G(rBL), .S(GND));

endmodule

module xNR2D0 ( ZN, VDD, VSS, A1, A2 );

output ZN;

inout VDD, VSS;

input A1, A2;

specify

specparam CDS_LIBNAME = "tcbn90ghp";

specparam CDS_CELLNAME = "NR2D0";

specparam CDS_VIEWNAME = "schematic";

endspecify

nch Inst_0 ( .D(ZN), .B(VSS), .G(A1), .S(VSS));

nch Inst_1 ( .D(ZN), .B(VSS), .G(A2), .S(VSS));

pch Inst_2 ( .D(ZN), .B(VDD), .G(A1), .S(net13));

pch Inst_3 ( .D(net13), .B(VDD), .G(A2), .S(VDD));

endmodule

module xNR3D0 ( ZN, VDD, VSS, A1, A2, A3 );

output ZN;

inout VDD, VSS;

input A1, A2, A3;

specify

specparam CDS_LIBNAME = "tcbn90ghp";

specparam CDS_CELLNAME = "NR3D0";

specparam CDS_VIEWNAME = "schematic";

endspecify

nch M_u4 ( .D(ZN), .B(VSS), .G(A3), .S(VSS));

nch MI2 ( .D(ZN), .B(VSS), .G(A2), .S(VSS));

nch MI3 ( .D(ZN), .B(VSS), .G(A1), .S(VSS));

pch MI0 ( .D(net13), .B(VDD), .G(A2), .S(net17));
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pch M_u1 ( .D(net17), .B(VDD), .G(A3), .S(VDD));

pch MI1 ( .D(ZN), .B(VDD), .G(A1), .S(net13));

endmodule

module xBUFFD2 ( Z, VDD, VSS, I );

output Z;

inout VDD, VSS;

input I;

specify

specparam CDS_LIBNAME = "tcbn90ghp";

specparam CDS_CELLNAME = "BUFFD2";

specparam CDS_VIEWNAME = "schematic";

endspecify

pch Inst_0 ( .D(net11), .B(VDD), .G(I), .S(VDD));

pch Inst_1 ( .D(Z), .B(VDD), .G(net11), .S(VDD));

pch Inst_2 ( .D(Z), .B(VDD), .G(net11), .S(VDD));

nch Inst_3 ( .D(Z), .B(VSS), .G(net11), .S(VSS));

nch Inst_4 ( .D(net11), .B(VSS), .G(I), .S(VSS));

nch Inst_5 ( .D(Z), .B(VSS), .G(net11), .S(VSS));

endmodule

module xBUFFD3 ( Z, VDD, VSS, I );

output Z;

inout VDD, VSS;

input I;

specify

specparam CDS_LIBNAME = "tcbn90ghp";

specparam CDS_CELLNAME = "BUFFD3";

specparam CDS_VIEWNAME = "schematic";

endspecify

pch Inst_0 ( .D(net11), .B(VDD), .G(I), .S(VDD));

pch Inst_1 ( .D(Z), .B(VDD), .G(net11), .S(VDD));

pch Inst_2 ( .D(Z), .B(VDD), .G(net11), .S(VDD));

pch Inst_3 ( .D(Z), .B(VDD), .G(net11), .S(VDD));

nch Inst_4 ( .D(Z), .B(VSS), .G(net11), .S(VSS));

nch Inst_5 ( .D(net11), .B(VSS), .G(I), .S(VSS));

nch Inst_6 ( .D(Z), .B(VSS), .G(net11), .S(VSS));

nch Inst_7 ( .D(Z), .B(VSS), .G(net11), .S(VSS));

endmodule

module word ( GND, RAM_VDD, rBL, BL, RST, WL, nBL, rWL );

inout GND, RAM_VDD;

input RST, WL, rWL;

inout [35:0] rBL;

input [35:0] BL;

input [35:0] nBL;

specify

specparam CDS_LIBNAME = "RAM";

specparam CDS_CELLNAME = "word";

specparam CDS_VIEWNAME = "schematic";

endspecify

reset I1 ( net20, GND, RAM_VDD, net22, RST, WL);

bitcell bit_35_ ( GND, net22, rBL[35], BL[35], net20, nBL[35], rWL);

bitcell bit_34_ ( GND, net22, rBL[34], BL[34], net20, nBL[34], rWL);

bitcell bit_33_ ( GND, net22, rBL[33], BL[33], net20, nBL[33], rWL);

bitcell bit_32_ ( GND, net22, rBL[32], BL[32], net20, nBL[32], rWL);

bitcell bit_31_ ( GND, net22, rBL[31], BL[31], net20, nBL[31], rWL);

bitcell bit_30_ ( GND, net22, rBL[30], BL[30], net20, nBL[30], rWL);

bitcell bit_29_ ( GND, net22, rBL[29], BL[29], net20, nBL[29], rWL);

bitcell bit_28_ ( GND, net22, rBL[28], BL[28], net20, nBL[28], rWL);

bitcell bit_27_ ( GND, net22, rBL[27], BL[27], net20, nBL[27], rWL);

bitcell bit_26_ ( GND, net22, rBL[26], BL[26], net20, nBL[26], rWL);

bitcell bit_25_ ( GND, net22, rBL[25], BL[25], net20, nBL[25], rWL);

bitcell bit_24_ ( GND, net22, rBL[24], BL[24], net20, nBL[24], rWL);

bitcell bit_23_ ( GND, net22, rBL[23], BL[23], net20, nBL[23], rWL);

bitcell bit_22_ ( GND, net22, rBL[22], BL[22], net20, nBL[22], rWL);

bitcell bit_21_ ( GND, net22, rBL[21], BL[21], net20, nBL[21], rWL);

bitcell bit_20_ ( GND, net22, rBL[20], BL[20], net20, nBL[20], rWL);

bitcell bit_19_ ( GND, net22, rBL[19], BL[19], net20, nBL[19], rWL);

bitcell bit_18_ ( GND, net22, rBL[18], BL[18], net20, nBL[18], rWL);

bitcell bit_17_ ( GND, net22, rBL[17], BL[17], net20, nBL[17], rWL);

bitcell bit_16_ ( GND, net22, rBL[16], BL[16], net20, nBL[16], rWL);

bitcell bit_15_ ( GND, net22, rBL[15], BL[15], net20, nBL[15], rWL);

bitcell bit_14_ ( GND, net22, rBL[14], BL[14], net20, nBL[14], rWL);

bitcell bit_13_ ( GND, net22, rBL[13], BL[13], net20, nBL[13], rWL);

bitcell bit_12_ ( GND, net22, rBL[12], BL[12], net20, nBL[12], rWL);

bitcell bit_11_ ( GND, net22, rBL[11], BL[11], net20, nBL[11], rWL);

bitcell bit_10_ ( GND, net22, rBL[10], BL[10], net20, nBL[10], rWL);

bitcell bit_9_ ( GND, net22, rBL[9], BL[9], net20, nBL[9], rWL);

bitcell bit_8_ ( GND, net22, rBL[8], BL[8], net20, nBL[8], rWL);

bitcell bit_7_ ( GND, net22, rBL[7], BL[7], net20, nBL[7], rWL);

bitcell bit_6_ ( GND, net22, rBL[6], BL[6], net20, nBL[6], rWL);

bitcell bit_5_ ( GND, net22, rBL[5], BL[5], net20, nBL[5], rWL);

bitcell bit_4_ ( GND, net22, rBL[4], BL[4], net20, nBL[4], rWL);

bitcell bit_3_ ( GND, net22, rBL[3], BL[3], net20, nBL[3], rWL);

bitcell bit_2_ ( GND, net22, rBL[2], BL[2], net20, nBL[2], rWL);

bitcell bit_1_ ( GND, net22, rBL[1], BL[1], net20, nBL[1], rWL);

bitcell bit_0_ ( GND, net22, rBL[0], BL[0], net20, nBL[0], rWL);

endmodule

module bitcell ( GND, VVDD, rBL, BL, WL, nBL, rWL );

input GND, VVDD;
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output rBL;

input BL, WL, nBL, rWL;

reg store;

specify

specparam CDS_LIBNAME = "RAM";

specparam CDS_CELLNAME = "bitcell";

specparam CDS_VIEWNAME = "schematic";

endspecify

/*

pch M12 ( .D(net24), .B(VVDD), .G(net44), .S(VVDD));

pch M15 ( .D(net055), .B(VVDD), .G(net44), .S(VVDD));

pch M11 ( .D(net44), .B(VVDD), .G(net24), .S(VVDD));

nch M14 ( .D(nBL), .B(GND), .G(WL), .S(net44));

nch M13 ( .D(net24), .B(GND), .G(WL), .S(BL));

nch M16 ( .D(net059), .B(GND), .G(net44), .S(GND));

nch M18 ( .D(rBL), .B(GND), .G(rWL), .S(net055));

nch M19 ( .D(net055), .B(GND), .G(rWL), .S(net059));

nch M3 ( .D(net24), .B(GND), .G(net44), .S(GND));

nch M0 ( .D(net44), .B(GND), .G(net24), .S(GND));

*/

always @(*)

if (WL)

store <= BL;

assign rBL = rWL ? store:1’bz;

endmodule

module reset ( WLout, GND, RAM_VDD, VVDD, RST, WLin );

output WLout;

inout GND, RAM_VDD, VVDD;

input RST, WLin;

specify

specparam CDS_LIBNAME = "RAM";

specparam CDS_CELLNAME = "reset";

specparam CDS_VIEWNAME = "schematic";

endspecify

pch M8 ( .D(net31), .B(RAM_VDD), .G(WLin), .S(net22));

pch M9 ( .D(WLout), .B(RAM_VDD), .G(net31), .S(RAM_VDD));

pch M7 ( .D(net22), .B(RAM_VDD), .G(RST), .S(RAM_VDD));

pch M10 ( .D(VVDD), .B(RAM_VDD), .G(WLout), .S(RAM_VDD));

nch M3 ( .D(WLout), .B(GND), .G(net31), .S(GND));

nch M1 ( .D(net31), .B(GND), .G(RST), .S(GND));

nch M0 ( .D(net31), .B(GND), .G(WLin), .S(GND));

endmodule

module xINVD2 ( ZN, VDD, VSS, I );

output ZN;

inout VDD, VSS;

input I;

specify

specparam CDS_LIBNAME = "tcbn90ghp";

specparam CDS_CELLNAME = "INVD2";

specparam CDS_VIEWNAME = "schematic";

endspecify

nch Inst_0 ( .D(ZN), .B(VSS), .G(I), .S(VSS));

pch Inst_1 ( .D(ZN), .B(VDD), .G(I), .S(VDD));

endmodule

module xBUFFD1 ( Z, VDD, VSS, I );

output Z;

inout VDD, VSS;

input I;

specify

specparam CDS_LIBNAME = "tcbn90ghp";

specparam CDS_CELLNAME = "BUFFD1";

specparam CDS_VIEWNAME = "schematic";

endspecify

nch Inst_0 ( .D(Z), .B(VSS), .G(net5), .S(VSS));

nch Inst_1 ( .D(net5), .B(VSS), .G(I), .S(VSS));

pch Inst_2 ( .D(Z), .B(VDD), .G(net5), .S(VDD));

pch Inst_3 ( .D(net5), .B(VDD), .G(I), .S(VDD));

endmodule

//*/

C.7 ADC Controller

//-------------------------------------------------------

// ADC Control Unit

//
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// By: Ryan Wu, University of Calgary

// Last Modified: April 30, 2012

//

// This component is added to chip late into the layout

// phase, hence has not been integrated into the Memory

// Controller. It is a decoder that controls the ADC’s

// inputs and outputs, and latches the digital signals.

//-------------------------------------------------------

‘timescale 1ns / 1ns

// top level design includes both mips processor and memory

module ADC_Control(load, select_in, select_out, digital_in, digital_out);

input load;

input [2:0] select_in;

output [7:0] select_out;

input [7:0] digital_in;

output reg [7:0] digital_out;

assign select_out[0] = ~|select_in[2:0];

assign select_out[1] = ~|select_in[2:1] & select_in[0];

assign select_out[2] = ~select_in[2] & select_in[1] & ~select_in[0];

assign select_out[3] = ~select_in[2] & &select_in[1:0];

assign select_out[4] = select_in[2] & ~|select_in[1:0];

assign select_out[5] = select_in[2] & ~select_in[1] & select_in[0];

assign select_out[6] = &select_in[2:1] & ~select_in[0];

assign select_out[7] = &select_in[2:0];

always @(posedge load)

digital_out <= digital_in;

endmodule

module ADCstate(input en, done,

output reg convert);

always @(posedge en, posedge done)

if (done)

convert <= 0;

else

convert <= 1;

endmodule
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Appendix D

Additional Supporting Material

D.1 Look-Up-Table Test Results
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Figure D.1: Look-Up-Table outputs of a sine function

Figure D.2: Look-Up-Table outputs of a cosine function
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Figure D.3: Look-Up-Table outputs of a cosecant function

Figure D.4: Look-Up-Table outputs of a secant function
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Figure D.5: Look-Up-Table outputs of a negative sine function

Figure D.6: Look-Up-Table outputs of a negative cosine function

163



Figure D.7: Look-Up-Table outputs of a negative cosecant function

Figure D.8: Look-Up-Table outputs of a negative secant function
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Figure D.9: Look-Up-Table outputs of a hyperbolic-sine function

Figure D.10: Look-Up-Table outputs of a hyperbolic-cosine function
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Figure D.11: Look-Up-Table outputs of a hyperbolic-cosecant function

Figure D.12: Look-Up-Table outputs of a hyperbolic-secant function
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Figure D.13: Look-Up-Table outputs of a negative hyperbolic-sine function

Figure D.14: Look-Up-Table outputs of a negative hyperbolic-cosine function
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Figure D.15: Look-Up-Table outputs of a negative hyperbolic-cosecant function

Figure D.16: Look-Up-Table outputs of a negative hyperbolic-secant function
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