
THE UNIVERSITY OF CALGARY

An Adaptive Local Scaling Function Representation

by

Bryan Quaife

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

August, 2006

© Bryan Quaife 2006

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a dissertation entitled "An Adaptive Local Scaling

Function Representation" submitted by Bryan Quaife in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE.

Supervisor, iDr. A.F. Ware
Department of Mathematics and
Statistics

Dr. L.P. Bos
Department of Mathematics and
Statistics

Dr. F.F. Samavati
Department of Computer Science

AIt2 t 11)2006

Date

11

Abstract

Wavelet analysis is one of many methods to represent arbitrary elements from a sub-

space of square-integrable functions. One of the benefits of using this representation

comes from the locality of the wavelets. This allows one the flexibility to generalize

to an adaptive grid with very little extra effort.

This thesis will examine how we can construct a representation called an adap-

tive local scaling function representation. This requires an investigation of how to

approximate scaling function coefficients and how to predict an appropriate grid. At

this point, the adaptive projection can be formed.

Applications of a local scaling function representation will be considered and

some generalizations will be mentioned.

111

Acknowledgements

First, I need to thank my supervisor Dr. A.F. Ware for his advice and patience

with my research. I have learned a lot of Mathematics from him over the previous

two years. I must also thank the many faculty members who assisted me with my

research, taught me courses and offered encouragement during my Master's program.

Next, my family who have always supported me to pursue my dreams, especially

my parents who reminded me that I should go to school as long as I want.

Finally and most importantly is my fiance Lindsey. She has waited patiently for

me many nights when I worked late on my research, and has signed up to do it all

over again.

iv

Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Table of Contents v

1 Introduction 1

2 Preliminaries 5
2.1 Notation 5
2.2 Function Spaces 6

2.2.1 L Spaces 7
2.2.2 1" Spaces 8
2.2.3 Sobolev Spaces 10
2.2.4 Besov Spaces 11

3 Wavelet Setting 15
3.1 Multiresolution Analysis 16
3.2 The Refinement Equation 21

3.2.1 Filter Conditions 23
3.3 The Biorthogonal Case 27
3.4 Point Evaluation of q and 5 33
3.5 Polynomial Regularity 36
3.6 Classical Setting 38
3.7 Approximation Properties 40

4 Quasi-Interpolants 44
4.1 Design of Fröhlich and Schneider 44
4.2 Definition of a Quasi-Interpolant 46
4.3 Design of Piessens and Sweldens 50
4.4 Design of Ware 57

4.4.1 Design 57
4.4.2 Construction 60
4.4.3 Lifting 67
4.4.4 Error Bounds 69

4.5 Aliasing 72

V

4.6 Design of Verlinden and Haegemans 76

5 Adaptive Representations 78
5.1 Local Scaling Function Representations 79
5.2 Prediction 83

5.2.1 Local Error Functions 84
5.2.2 Oracles 87
5.2.3 Norm Equivalences 90
5.2.4 Oracle Error 93

5.3 The DSX Algorithm 98
5.3.1 The Iteration 98
5.3.2 The DSX Algorithm with the Discrete Dual 101

5.4 Numerical Experiment 104

6 Applications li_i.
6.1 Point Evaluation 111
6.2 Approximating a Derivative 116
6.3 Approximating an Integral 121
6.4 Other Applications 127

6.4.1 Compression 128
6.4.2 Denoising 128
6.4.3 Differential Equations 129
6.4.4 Working at the Compressed Level 130

6.5 Generalizations 131
6.5.1 Higher Dimensions 131
6.5.2 Non Shift-Invariant Spaces 131

7 Conclusions 133

Bibliography 135

vi

List of Tables

3.1 Polynomial regularity of different multiresolutions 39

4.1 Condition numbers for certain Vandermonde systems 55

5.1 Different partitions of the domain of the function 105
5.2 L2 (2) error of some different representations 110

6.1 Coefficients in the adaptive local scaling function representation . 123

vii

List of Figures

3.1 Daubechies second scaling function and wavelet function 27
3.2 Bior3.3 scaling function 0 and wavelet function - 31
3.3 Bior3.3 dual scaling function q and dual wavelet function o- 32

4.1 f(x) with the sample points 73
4.2 Real and imaginary axis of the Fourier transform 75
4.3 sin(10rx) with the sample points 75

5.1 A function with large local Besov norms 105
5.2 6 = 10-1 and maxiter=4 (top) maxiter =8 (bottom) 106
5.3 6 iO and maxiter=4 (top) maxiter =8 (bottom) 106
5.4 A close up of € = iO and maxiter=4 (top) maxiter=8 (bottom) 106
5.5 fapprox(x) and error (x) for 6 = 10-1 and maxiter=4 108
5.6 fapprox(x) and error (x) for € = 10_i and maxiter=8 108
5.7 Ea.pprox(x) and error (x) for € = iü and maxiter=4 108
5.8 fapprox(x) and error (x) for 6 = iO and maxiter=8 109

6.1 Derivative of f(x). 119
6.2 Forward-difference operator acting on Pf. 119
6.3 Three-point operator acting on Pf 120
6.4 Five-point operator acting on Pf 120
6.5 Approximation of an integral 125
6.6 Error in an integral 126

vii'

Chapter 1

Introduction

Representing functions in an optimal manner is a problem that can be studied from

different angles. One of the earliest more sophisticated methods of representing a

function was accomplished by Fourier when he developed what we now call Fourier

analysis. However, function representation using techniques of Fourier analysis gives

a non-localized approximation.

A more recent method of representing functions that is local uses techniques of

wavelet analysis. There is still a lot of work to be done in wavelet analysis in order

to understand it at the level we understand Fourier analysis, but there are promising

results coming out of wavelet analysis.

A thorough comparison of Fourier analysis and wavelet analysis is summarized

by Gilbert Strang in [22]. The paper was published in 1993 when wavelets were

relatively new, yet he does a nice comparison of the benefits of each technique for

constructing representations of functions.

Cohen gives a nice historical summary of ideas leading up to wavelet analysis in

[7]. The first record of a wavelet was accomplished by Haar in his Ph.D. dissertation

in 1909. Throughout the next 80 years, there were hints of wavelet analysis coming

from time-frequency and time-scale analysis, harmonic analysis, approximation the-

ory and multiresolution image processing. However, it was not until the late 1980s

that the first two fundamental results of wavelet analysis were established.

One of the most appealing and important properties of wavelet analysis is the

1

2

fact that adaptivity is relatively easy to implement. In other words, the distance

between any two points in the partition of a domain need not be fixed. The sim-

plicity in adaptivity is inherited from the locality of wavelets. The importance of

adaptivity is that it allows us to refine our grid in problematic regions while leaving

a coarser grid in well-behaved regions. This means that we can distribute the error

in our representation evenly throughout the entire domain.

As this thesis is concerned with representing compactly supported functions on

an adaptive grid, there is a large computational component to it. Thus, we will

always be concerned with the computational cost of algorithms. After looking at re-

sults, illustrations taken from Matlab at times will be given in order to demonstrate

some of the results we will be proving.

In Chapter 2, we will look at some necessary preliminary results. As notation is

heavy in this thesis, a list of notation is given in this chapter. As well, we will look

at some function spaces that are crucial to studying wavelet analysis. These spaces

will become important when we look at sequences of approximations and when we

decide how to partition domains of functions.

Chapter 3 will introduce the wavelet setting. A thorough construction will not

be considered as we will only require certain results and definitions. References to

more detailed constructions of wavelet analysis will also be given in this chapter. We

will look at some computational aspects of wavelet analysis and finally, some error

bounds will be stated without proof.

Chapter 4 will be devoted to methods of approximating the necessary coefficients

for constructing representations of functions. A brief description of one method

of approximating these coefficients will be given, and then we will move on to

3

the major result of this chapter. That is, we will look at how to define a quasi-

interpolation scheme and properties following from the definition. Two examples of

quasi-interpolation schemes, along with error bounds, will be given. A problematic

consequence of quasi-interpolants will be considered and we will see that it is in

some sense unavoidable. Finally, an iterative technique that decreases the error in

the approximations will be discussed.

In Chapter 5, we will consider two representations of a function in the wavelet

setting. As these representations are identical up to an invertible linear transfor-

mation, we will only study one of the representations in depth. More specifically,

we will study local scaling function representations. In this chapter, the notion of

adaptive grids will be introduced. Constructing an adaptive local scaling function

representation asks the questions of how to decide on an adaptive grid to project

the function on to, and how to construct the projection on to the adaptive grid.

Both these questions will be answered by the DSX algorithm. We will then show

how this algorithm can be simplified by selecting an appropriate quasi-interpolation

scheme. As well, throughout the chapter, some necessary assumptions will be stated

and justified. This chapter contains the main contribution of this thesis. Namely,

the synthesis of the DSX algorithm and an appropriate quasi-interpolant.

Chapter 6 looks at some applications of adaptive local scaling function represen-

tations. Some of the simpler results such as numerical differentiation and numerical

integration of real-valued functions are based on performing point evaluation. Thus,

point evaluation will be looked at in depth. As well, some of the classical applica-

tions of wavelet analysis will be briefly discussed in this setting. Finally, possible

generalizations of this thesis will be stated.

4

Concluding the thesis, a summary of results will be given in Chapter 7.

Chapter 2

Preliminaries

2.1 Notation

Unfortunately, this thesis is quite heavy in notation. This section gives a summary

of some of the notation that will be used.

R the space of real numbers.

I If lix the norm of the vector f in the vector space X.

ess sup If (x) I the essential supremum of If (x) I.
xER

(f, 9)L2(R) the usual inner product on

N the space of non-negative integers.

(x, y)12(R) the usual inner product on 12(R).

D the weak differential operator.

f(i) the i1h weak derivative of f.

the th forward difference operator in the direction h.

span X the space of all finite linear combinations of elements of X.

the norm closure of X.

Z the space of integers.

X Y the direct sum of the vector spaces X and Y.

X I Y every element of X is orthogonal to every element of Y.

A an ordered pair containing the scale j and shift k.

Al the scale j of A.

5

6

the Kronecker delta of x and y.

Xx the characteristic function of the set X.

A ® B the Kronecker tensor product of A and B.

lid the space of polynomials of degree less than or equal to d.

x ,5 y x < ky where k is independent of x and y.

x xy and y,x.

supp f the set of real numbers x where f(x) 0.

J(w) the Fourier transform of f evaluated at w.

fix the function f restricted to the set X.

Mi the j1h continuous moment of .

Mi the j1h discrete moment of hk.

() n choose k.

ni the j1h discrete moment of 9k-

IXI the Lebesgue measure of the set X.

C the space of complex numers.

A the kth coefficient of the discrete Fourier transform of f(xk).

T* the adjoint operator of the operator T.

Al the counting measure of the set A.

wA the support of .

2.2 Function Spaces

Function spaces are linear spaces where the elements are functions. Addition and

scalar multiplication are defined in the obvious manner. Some function spaces arise

7

more naturally than others in wavelet analysis. All of our function spaces, except for

one, will be equivalence classes of functions where f is equivalent to g if f(x) = g(x)

almost everywhere. That is, two functions are equivalent if they agree everywhere

except for on a set of Lebesgue measure zero.

We will only be considering function spaces that are equipped with a norm.

Thus, the notion of a Cauchy sequence can be defined. A Banach space is defined

as a normed function space such that every Cauchy sequence converges inside the

function space. A special case of a Banach space is a Hilbert space. A Hilbert space

is simply a Banach space whose norm is induced by an inner product in the usual

manner. Thus we can define orthogonality and we have intuitive projections in a

Hubert space.

This thesis is only concerned in real-valued functions. That is, we are only

considering functions that map R to R.

2.2.1 L Spaces

A real-valued function f R - R is said to be in the space L, where p is an integer

and 1 < p < oo, if the Lebesgue integral

is finite. If f E L(R), the norm of f is defined as
1/p

If IILp := fR If i)
The space L (R) is the space of real-valued functions f : R - R such that the

quantity

ess sup If(x)I
ER

8

is finite. Above, ess sup denotes the essential supremum which is the infimum over

sets of measure zero of the supremum. In this case, the norm of f is defined as

If llLoo(IR) ess sup If(x)I.
aEll

L (R) is the space of real-valued functions that are bounded almost everywhere.

For 1 <p oo, it can be shown that L(R) is a Banach space. So, discussing

the convergence of a sequence of approximations in L(R) makes sense. The space

L2 (R), called the space of square-integrable functions, is a Hubert space equipped

with the inner product

(f,g)L2(R) ff.
If it is clear that f, g E L2 (JR), then we will simply write

(f, 9) = (f,g)z,2a.

At times, we will also write

= L(R).

The only L space that we will be considering is L2 (R).

2.2.2 1P Spaces

1P(R) is the discrete case of L(R) spaces. They are the only function space that we

will consider that do not require equivalence classes. A real sequence,

x= (x1,x2)

indexed over N, is said to be in l°(1F) (where p is an integer satisfying 1 < p < oo) if

9

is finite.

At times, we will have a sequence indexed over a partially ordered set other then

N. However, the properties of these sequences will be clear in the context. Note that

if x E IP(R), assuming that x is indexed over N, we have that

lim x = 0.
fl-*OO

If X E l (R), the norm of x is defined as

/ \1/p

IIXllP(R) := (nErq ixi)

In the case of p = oo, we say that x E l°°(R) if

sup IxI
nEN

is finite, and its norm is given by

IIxlll00(R) := sup IxI.
nEN

Thus, l°°(R) is the space of bounded sequences.

1P(R) is a Banach space for all 1 ≤ P, ≤ co and the case of p = 2 is a Hilbert

space. The inner product on 12(R) is given by

(x) y)12(R) :=

nEN

Again, if it is clear that x, y E 12(R), then we will simply write

(X) Y) = (x,y)12(R).

Also, at times we will write

1P = F(R).

10

2.2.3 Sobolev Spaces

If f E Li,, there are no restrictions on the derivatives of f. So, a subspace of L

can be constructed by putting conditions not only on the function, but also on its

derivatives in the sense of distributions. A function f is in some Sobolev space if f

and some of its weak derivatives are all in some L space. There is a nice relationship,

as we will see, between Sobolev norms and wavelet analysis.

Let Df denote the weak derivative of order a of f. Let s be a positive integer

and p be a positive integer or infinity. Then a Sobolev space of order s is denoted

by W(R) and is equipped with the norm

If II() := , IID fII ().
O<c<s

The elements of W(R) are real-valued functions such that the above norm is finite.

The special case when p = 2 is denoted by H8(R). That is,

H8(i) := W(1E).

Again, for any p and any s, W(R) is a Banach space. So discussing convergence

of approximations in these spaces make sense as well. H8(R) is a Hilbert space if we

define the inner product

(f, g)Hs(R) := (f, g)L2(R) +
i=1

where f(i) is the i1h weak derivative of f. In this thesis, we will only be considering

the Sobolev spaces H(R).

It should be noted that the restriction that s E N is unnecessary. s can be

any positive real number and we can still define the Sobolev space by introducing

11

fractional derivatives. These spaces will be very briefly considered, but we really

only require that they are Banach spaces and that if s1 > 82, then

H81 (R) C H32 (IR).

2.2.4 Besov Spaces

A Sobolev space has two parameters that can be adjusted to change what our function

space looks like. More specifically, we can change the values of p and S. We can

think of p and s as dials that can be turned in order to adjust the smoothness of the

functions that live in the space. Besov spaces introduce one more parameter. The

three parameters are classically denoted by p, q and s. The value of p corresponds

to the L and jP norms that we will be considering. s corresponds to the order of

smoothness, and q allows us to fine tune the order of smoothness. In order to define

Besov spaces, we will need a series of definitions.

Definition 2.2.1 The nth forward difference operator in the direction of some real

number h is denoted by An h and is defined recursively by

if (x) = f(x+h)—f(x)

Lf(x) = zt'f(x).

Definition 2.2.2 Let n be a positive integer, Q C R and h be a real number. Con-

sider the subset of f defined by

For t> 0, the standard L moduli of continuity of f is defined as

SUP IIL4f IhI≤t IILP(cfl,h).

12

Definition 2.2.3 Let p, q be positive integers or infinity, s > 0 and fix any n> s.

The Besov semi-norm I is defined as

q '- ' -,qsj (ry-j (')'q
J B(L,(cZ)) WflJ, ''")p

J=O

and the Besov norm is defined as

If III (n) + If Iq

A function f is said to be in the Besov space B(L()) if the above norm is finite.

Note that the value of n was picked arbitrarily. However, it is shown in [7] that

if n1 > s and n2 > s, then

00 00

28w 1(f, 2, I)p r' E 2' sj w 2(f, 2,
j=O j=O

That is, the two semi-norms are equivalent. The notion of equivalent semi-norms

means that

C

00

j=O

(f, 2-i) c)p :≤

00

:7=0

2$2w2(f, 2, c2) ≤ C2
00

j=0

2 8iw1(f) 2_i ,

where C1 and C2 are independent of f. Thus,

IIfIIBL

is not well-defined, but the elements of B(L) are well-defined. The importance of

equivalent norms will be considered in the next chapter. Also, we have that [7]

and

B 1(L) 9 B,,2 (L if q1 ≤ q2,

B(L) 9 B(L), if 8 1 ≥ 82,

13

regardless of the values of q1 and q2. This verifies that .s is the order of smoothness

and q allows for fine tuning to the order of smoothness. As well, if s is not an integer,

it is also shown in [7] that

W) = Bps (L(1I)),

so that

= B(L2()).

Now, it turns out that, B,' (L,) is not always a norm, but rather is a quasi-norm,

i.e. a map that satisfies

Mf + gIlB(L) ≤ C(IIfIIB(L) + IIgIIB(L))

II! + gI" (L) <- IIfII' + 119 IIB(L)' IB

for all f, g E B(L), where C and are independent of f and g. However, every

Cauchy sequence in the Besov space converges inside the Besov space with respect to

this quasi-norm. So, we have what is called a quasi-Banach space. The generalization

to quasi-norms and quasi-Banach spaces will not pose a problem as we will in some

sense be neglecting independent constants in our inequalities. However, we only lose

the norm if p, q < 1 which are spaces that we will not be considering.

Besov spaces are very natural in wavelet analysis because the Besov norm of a

function, as we shall see, is equivalent to a sum of scaled norms of sequences of

wavelet coefficients. Thus the wavelet coefficients give us an indication as to the

Besov norm of the function. This equivalence will become important when we need

to calculate local Besov norms of functions as computing these norms from their

definition is highly non-trivial.

We need one final definition regarding any normed function space.

14

Definition 2.2.4 Let X be a function space, then

7 := {x I There is a Cauchy sequence (x) E X such that x -+ x}.

Note that if X is any normed function space, then X is a Banach space.

Chapter 3

Wavelet Setting

Some of the ideas necessary for wavelet analysis have been around for centuries. For

instance, the notion of Riesz basis and Gaussian quadrature formulae. However, the

late twentieth century laid out most of the ground work. Wavelet analysis, as it is

understood today, began in the late 1980s. First, in 1988, Daubechies constructed

the first compactly supported orthogonal wavelets with arbitrary sn1.00thness [10].

Then, in 1989, Mallat defined the multiresolution analysis, or the MRA [17]. Since

then, there have been many developments and applications arising from wavelet anal-

ysis.

One of the most fundamental developments in wavelet analysis was the construc-

tion of biorthogonal wavelets. Biorthogonal wavelets allow us to capture symme-

try when we are considering approximations. As well, some functions arising from

biorthogonal wavelets have a simple closed form expression. As we will be approx-

imating the inner product of an arbitrary function against functions arising from

wavelet analysis, this allows us to calculate the error between true values and ap-

proximated values.

Another more recent development is lifting. This was first introduced by Wim

Sweldens and Ingrid Daubechies in [12]. It is a method to construct new wavelets

out of old wavelets in a computationally simple manner. In fact, Sweldens and

Daubechies proved that all wavelets can be lifted with finitely many steps from a

trivial wavelet called the lazy wavelet. This plays an important role when we look at

15

16

the quasi-interpolant designed by Antony Ware [25]. It will be shown that given a

quadrature formula satisfying certain properties, we can lift it to form a new quadra-

ture formula with the same properties. Furthermore, lifting the quadrature formula

is done in the same manner that Sweldens and Daubechies lifted wavelets.

Some applications of wavelets are given in [18]. These include compression [21],

denoising [19], differential equations [4] and computer graphics [13]. We will look at

these applications briefly in a later chapter.

Our main concern for now is to outline some definitions and look at some of the

theory and properties of wavelet analysis. The objective is to use this theory to form

an efficient representation of an arbitrary element of some appropriate subspace of

square-integrable functions.

3.1 Multiresolution Analysis

The multiresolution analysis introduced by Mallat in 1989 [17] is one of the corner-

stones of wavelet analysis . It is only one of many ways to consider wavelet analysis,

but it will be a very convenient way to consider it in this thesis. I am only going to

define a multiresolution briefly and state without proof some of its consequences. A

detailed construction can be found in [7] or in [17].

Let (Vj)jz be a sequence of vector spaces contained in L2 (R) satisfying:

1. VjCVj 1 for all jEZ.

2. There is a function qS(.) E V0 such that

{(.—k)JkEZ}.

17

is a Riesz basis of V0.

3. flV={o} and U Vj is dense inL2(R).
jE7L jEZ

4. f(.) E Vj if f(2.) E V 1.

The notion of U Vj being dense in L2(R) means that
.IEZ

U Vj =L2R.
.IEZ

A sequence satisfying the above four conditions is said to be a multiresolution

or a multiresolution analysis of £2 (R). Multiresolutions of different spaces can be

formed, however we will only be concerned with multiresolutions of £2 (R). Once we

have a multiresolution, we can define another sequence of vector spaces (W) jEZ by

v;Jw.

Here, X Y denotes the vector space

{x + y I x E X, y E Y},

and X I Y means that for all x E X and for all y E Y,

(x, y) = 0.

So, W is the orthogonal complement of Vj in V. Then, there is another function

satisfying

Wo=span{'?J'(.—k)kEZ}.

18

As well, Wj satisfies

W I Wk for all j k

EBwj = L, (R).
jEZ

The functions 0 and 0 are called the scaling function and wavelet function re-

spectively. Note that 0 is not uniquely defined as we have not normalized it. The

convention is to let

Now, it is shown in [7] that if the infinite union of the all the elements of the

multiresolution is dense in £2 (R), then

(x—k)=1.
kZ

Thus, we have that

1EV0.

Since V0 I WO, this gives us that

= 0

= 0.

Definition 3.1.1 The shifted and scaled version of 0 and 0 are given by

= 1'j,k() := . —k)

and

A) = := • —k).

19

Here, we are using the standard notation

A=(j,k).

We also define I). I := j if A = (j, k) for any k E Z.

Now, a number is said to be a dyadic number if it has a finite binary expansion.

That is, it can be written as a finite sum of terms of the form 2 where i E Z. Then,

Definition 3.1.1 indicates that scaling and wavelet functions are understood at any

dyadic number. We will see how to evaluate the scaling and wavelet functions on

a dyadic grid later. This is important as understanding the scaling and wavelet

functions at all dyadic numbers is enough to understand the scaling and wavelet

functions on all of R. This follows if we assume that the scaling and wavelet functions

are continuous and if we use the fact that the dyadic numbers are dense in R. That

is, if D denotes the space of dyadic numbers, then

D=R.

Now, Property 4 and Property 2 of the multiresolution give us that

Vj = span{qj,k I k E Z}

= span{q5j JAI =j},

and similarly for the wavelet spaces,

14<1 = span{'j,k I k E Z}

= span{IIAl=j}.

20

In this setting we are going to assume that 0 is orthonormal with respect to its

integer translates. That is,

11 k=0
((. - k), q5(.)) := 8k,o =

10 k0
(3.1)

As well, we will assume that 0 is orthonormal with respect to its integer translates.

That is,

- k),'?'(.)) = (3.2)

Now L2(R) is a Hubert space so projecting on to subspaces of L2(R) is quite

natural if we have a basis of the subspace. As we do have a basis of V and W, for

any f E L2(R), we can define projections on to Vj and W as

Pj : f(f, Ox) x
IAI=j

Qj f-• E (f, Ox) .
I\l=i

Then, by the definition of the multiresolution analysis, for any f E L2(R) and for

any j E Z

P3f+)Qkf=f (3.3)
k≥j

almost everywhere. The above convergence in L2(R) is actually in the weak sense,

but this detail will not be considered. In other words, we will call weak convergence

simply convergence.

21

Rearranging Equation (3.3) and taking norms, we have that

II.Fjf - fIL2(= 'Qkf

L2(i)

so that all the error in Pjf - f is contained in the wavelet spaces at levels greater

than or equal to j. As Vi is tending towards L2(R), for any f E L2(R) and any 6> 0,

there is an integer j such that

IIFf - fIIL2R <6.

Therefore, as we let j increase, Pjf becomes a better and better approximation of

f. This fact is what will later motivate the construction of the local scaling function

representation.

3.2 The Refinement Equation

For most multiresolutions, the scaling and wavelet functions have no closed form

expression. However, we do need a method to uniquely represent these functions.

Property 1 of the multiresolution indicates that as 0 E Vo, we have E V1. So, we

can write 0 in terms of any basis of V1. In particular, we can write

q(x) = hkcb(2x— k) (3.4)
kEZ

where hk E R for all k E Z. By a similar argument, we can write 'b as

(x) = \/gk(2x - k) (3.5)
kEZ

where g E R for all k E Z. Equations (3.4) and (3.5) are called the refinement

equations or the two-scale relations of the multiresolution. We will see that the

22

sequences (hk) and (gj) are extremely powerful in the sense that in a lot of instances,

they are enough to solve the task at hand. To solve for the coefficients hk and 9k, as

q, b E V1, we can write

(.), q51,k())1,k(x)
kE7Z

('(.), 01,k())1,k(X).
kZ

Writing 1,k(x) = V2-0(2x - we have that

(x) = 2 q(2. —k))cb(2x - k) (3.6)
kEZ

(x) = 2)((.), q5(2. —k))q(2x - k). (3.7)
kEZ

Comparing (3.4) to (3.6) and (3.5) to (3.7), we have that

giving us that

2((.), (2. —k)) =

2((.), q!(2. .k)) =

hk = \/(.), (2. —k))

9k

The above construction relies heavily on linear independence of the set

{AI IAI=i}

which is not hard to see as we are simply shifting 2j/2 0(2i.) by k where k E Z.

Note that, if 0 and ' have compact support, the above construction gives us that

23

the sequences (hk)kEz and (gk)kEz have all but finitely many zero entries. In other

words, if 0 and '' have compact support, then (hk)and (gj) can be considered as

finite sequences, and thus we understand q and 0 while only using a finite amount of

memory. In this thesis, we will always assume that q and 0 have compact support.

The sequences (hk)kEz and (gk)k€z are called the filters or masks of the scaling

function and wavelet function respectively.

3.2.1 Filter Conditions

We have demanded several conditions on 0 and '. These conditions impose condi-

tions on the filters hk and A. Here, we are going to derive some of these conditions.

First, we have the orthonormality condition

((.), (. - 1)) =

Then, using the refinement equation, we have that

2 hk1 (2. —k1), E hk2(2. —21 - = 51,0.

kiEZ k2EZ

Since we are assuming that the sums are finite, we can interchange the inner product

and the sum. Thus, we have

2 hki E hk2 (çb(2 . .k1), 0(2. —21 - k2)) = 5o.
kieZ k2EZ

A substitution gives us

51,0 = hi12 (q(. - k1), (. - 21 - k2))
k1eZ k2EZ

= hk2 8k1 ,21+k2
kiEZ k2EZ

=

kEZ

24

Another condition that we required was that the scaling function integrates to 1.

Again, using the refinement equation

1=f(x)dx = fhk (2x_k)dx
kEZ

So,

= hkf(2x_k)dx
kEZ

= hkf(x)dx
kEZ

1

kEZ

V kEZ

hk.

To derive conditions for 9k, first recall that we have orthonormality in the integer

translates. This condition is identical to the orthonormality with respect to the

integer translates of q. That is,

61,0 = (V) 0, '(. - 1)) = 2 E 9k1 E 9k2(0(2 —ki)q(2. —21— k2))
k1eZ k2e7Z

- k1), q(. — 21 — k2))
k, (=-Z k2EZ

9k1 E9k2 6k1,21+k2

k1EZ k2eZ

9k+219k

kEZ

25

Next, using the fact that V0 I WO, we have that for all 1 E Z

o

12

k1E7Z k2E7Z

gkI E hi42 (çb(. - k1), q(. — 21 — k2))
kiE7L k2E7Z

gk1 1: hk2Jkl,k,+21
k1 E7 k2EZ

gk2lhk.

kE7L

Finally, recalling that

fR
the refinement equation gives us that

o = fb(x)dx

= f V2- 1: 9k 0 (2x — k) dx

= \gkfR q(2x_k)dx
kEZ

= > gk f(x)dx
kEZ

2 E gk•
kE7Z

So,

gk = 0.
kEZ

26

To summarize, the filters of an orthogonal wavelet system must satisfy

>hk = (3.8)
ke7L

9k = 0 (3.9)
kEZ

= J1,O (3.10)
kEZ

9k+219k = 51,0
kEZ

9k+21hk = 0 (3.12)
kEZ

for all 1 E Z. It is shown in [20] that if we are given two finite sequences (hk) and

(9k) satisfying (3.8)-(3.12), and if we assume that q and have compact support,

then the refinement equations completely determine 0 and 0 up to a scalar multiple.

So, after we normalize q such that

we have unique solutions to (3,4) and (3.5).

Example The following example is one of the most famous scaling function wavelet

function pairs. It was one of the first constructions of a compactly supported orthog-

onal wavelet system. The filters below are shown in [20] to generate a multiresolution

of L2 (R).

I 11'
h0, h1, h2, h3) = 1+\/, 3+', 3— V's, i — /

90, 91, 92, 93) 4\/ — 1+y', 3— V's, —3—v's, 1+v'

These are Daubechies' second scaling and wavelet functions which were first con-

structed in 1988. The graphs of the scaling and wavelet functions are plotted in

27

1.4

1.2

0.8

0.6

04

0.2

0

-0.2

0.4'
0 0.5 1.5 2 2.5

1.5

0.5

-0.6'

0.5 1.5 2 2.5

Figure 3.1: Daubechies second scaling function and wavelet function

3

Figure 3.1. There are no analytic expressions for the scaling and wavelet functions.

However, using only the filters, we will see that we can calculate the function value

at any dyadic number. If we then assume that the scaling function and wavelet

function are continuous, we can calculate the function values at any real number as

accurately as we please.

3.3 The Biorthogonal Case

Orthogonal wavelets do have nice properties, but there is an important generaliza-

tion of these functions. Biorthogonal wavelets generalize orthogonal wavelets and

were first introduced in [1] by Cohen, Daubechies and Feauveau. Instead of one

multiresolution analysis, we have two. That is, there are two sequences and

f ViliEz both satisfying all the properties of a multiresolution as defined in Section

3.1. As well, we can define all the orthogonal complement spaces W, W exactly the

same as before. With these spaces come a pair of scaling functions and a pair of

28

wavelet functions traditionally denoted by 0, q, , b. The function is sometimes

called a dual function of 0, and is called a dual function of All four of them

can be shifted and scaled exactly the same as in Definition 3.1.1. Instead of the

orthogonality properties (3.1) and (3.2), we now have the biorthogonality properties

- k),

- k),b(.)) =

6k,O (3.13)

(3.14)

If we define the projections on to the different levels of the multiresolution

by

then for any f E L2(R) and any j E Z,

Pjf -F > Qkf = f

k≥j

29

and

f3f+)kf = f

k≥j

almost everywhere. Rearranging and taking norms we have that

II'f - fllL2o =

ILif - fIIL2cR =

L2(R)

k≥j L2(R)

So again, as we increase j, we get better and better approximations of f from Pjf

or Pjf.

We also have refinement equations, but now there are four of them. They are

O(x) = h,q(2x - k)
kEZ

b(x) = V' 9kcb(2Xk)
kEZ

= \/hk(2X—k)
kEZ

= v'gk (2x—k).
kEZ

The filters hk, 9k, hk, gk contain all the information necessary to derive the scaling

functions and the wavelet functions up to scalar multiplication. However, we nor-

malize everything again such that

Conditions on the four filters are necessary to impose the biorthogonality condi-

tions. The formulations of these conditions are nearly identical to the formulation

30

of the conditions in the orthogonal case. If hk, Ilk, 9k, gk

functions that form a biorthogonal wavelet system, then

kEZ

kEZ

>gk =0

ICE7L

gk=o

kEZ

= 51,0

kEZ

= 51,0

k€Z

9k+2ik = 51,0

keZ

9k+2i9k = 51,0

kEZ

0
kEZ

T, hk+219k = 0.
k€7Z

form scaling and wavelet

Example The following example comes from the B-splines. It is the wavelet system

having the third B-spline and its third dual function as its scaling functions. We use

the Matlab notation Bior3.3 for the third B-spline wavelet system with its third dual

function. The filters are given by [11]

(h_1, h0, Il1, Il2) = (1, 3, 3, 14 V2-)

(h.. 3, h.2, h_1, hO, h1, 112, 113 h4)

31

= (—7, 45, 45, —7, —9, 3)

9-3, 9-2, 9-1, 90, 91, 92, 93, 94)

1
= (3, 9, —7, —45, 45, 7, —9) —3)

I 11
9-i, go, gi, 92) = —1, 3, —3, 1

The scaling and wavelet functions are plotted in Figure 3.2 and the dual scaling

and dual wavelet functions are plotted in Figure 3.3.

0.0

0,7

0.0

0.6

0,4

0.3

0.2

0.1

23 -2 -1 0 2 3 4

0.6

0.6

0.4 -

0.2 -

0

-0.6

-0.0

-!3 -2 -1 0 2 3 4

Figure 3.2: Bior3.3 scaling function q and wavelet function

32

Figure 3.3: Bior3.3 dual scaling function q and dual wavelet function b

In this case, the scaling function 0 does have a closed form expression. It is the

convolution of the characteristic function on [0, 1) with itself three times and then

shifted to be centered at 1/2. That is,

q5(x) = X[o,i) * X[o,i) * X[O,1)(X + 1),

where the characteristic function Xx is defined as

Ii XEX
Xx(X) :=

0 xX

As 0 has a closed form expression, so does 0 as it is a finite sum of scaled and shifted

versions of 0. However, the dual functions are again only understood at the dyadic

numbers. As seen before though, assuming continuity, this is enough to evaluate the

dual functions at any real number as accurate as we please.

33

3.4 Point Evaluation of q and b

We have been mentioning that we can evaluate q(x) and '?11'(x) for any dyadic value

of x. However, we have not yet seen how to actually do this. We are going to assume

that 0 is non-zero only on the interval [0, n]. Thus, hk 0 only when k ≥ 0 and

k < n. Using the refinement equation, if 1 E Z with 1 ≥ 0 and 1 ≤ n - 1, then

çb(l) =

=v,

keZ

kEZ

hkcb(21 - k)

h21_kq(k).

This indicates that the vector of integer values

is an eigenvector with eigenvalue one of

h0 0 0 0 0

h2 h1 h0 0 0

0 0 0 ... hn h_1

Then, it can be shown that we must normalize the vector of integer values such that

the sum of its values is one. As well, by continuity we have that q(n) = 0. Next, if

34

1 = i/2 with i odd and 1 is a number between 0 and n, then

This indicates that

where

0(1/2)

(3/2)

q(n—l/2)

kEZ

k€7Z

k€Z

hkcb(21 - k)

hkcb(i — k)

h_kcb(k).

=H1

(0)

h1 h0 0 0 •.. 0 0

h3 h2 h1 h0 0 0

0 0 0 0 0 h

In order to solve for the quarter integers the refinement equation gives us

=H2

q(n—l/4) -

(3/2)

q5(n-1/2) -

35

where 112 is the matrix

H2 = V2—

ho 0 0 0 0

h1 h0 0 0 0

h2 h1 h0 0 0

0 0 0 ••• h h,_1

0 h 000...

From here, it is not hard to show that for all j ≥ 3,

=H

where

,4j' 1

l
A 3
/i% 2i-

10

01

Here, A 0 B denotes the Kronecker tensor product of the matrices A and B. Now

that we have a method to evaluate the scaling function at any dyadic value, the

refinement equation

'I'(x) = V2 Ygkq5(2x - k)
kEZ

can be used to evaluate '?b(x) at any dyadic value.

The construction above is a very stable method of evaluating function values of

and at dyadic values. However, Matlab does have a built in function called

wavefun that does exactly what we have described above.

36

3.5 Polynomial Regularity

Now that we have described orthogonal multiresolutions and a biorthogonal mul-

tiresolutions, we need to look at an important property of multiresolutions that is

inherited from properties of the scaling and wavelet functions. As stated earlier, the

function 1 is in V0 for any multiresolution, and thus any constant function is in V0.

Now, it is natural to ask ourselves if there are spaces of higher degree polynomials

contained in a multiresolution. It turns out that in many multiresolutions, this is

the case.

Definition 3.5.1 Suppose that 0, , q., L' generate a biorthogonal wavelet system.

The multiresolution V is said to have polynomial regularity d if

fR
x,b(x)dx = 0 for all p = 0,. . . , d. (3.15)

In general, we are interested in the maximum polynomial regularity. That is (8. .15)

holds and

JR xP+ 'i](x)dx 0 0.
The next theorem ties this definition to the question that we just asked ourselves.

However, we first need one more definition.

Definition 3.5.2

fld:—_{aixaiEJR i__0...d}

is the space of real polynomials of degree less than or equal to d.

Theorem 3.5.3 Let 0, , , b generate a multiresolution. Then, Vj has polynomial

regularity d if for all f E 11d, P0f = f. In other words, Vj has polynomial regularity

d if 'Id C V0.

37

Proof Suppose fR xPib(x)dx 0 p= 01 . . . , d. Let f E 11d• Then, we know that

f= E (f,)+ E(f,b).
IXI=O IAI≥O

Looking at the coefficients in the second sum, we have that

(f, b) f(x)2'2 (2x - k)dx

= 2j12 f (x + k) (x)dx.

Since the polynomial f() has the same degree as f(x), we have that

(f,'j,k) = 0.

Then, substituting this into (3.16), we have

1= E (f ox
I?I=O

So,

fEV0 P0f=f.

For the converse, suppose f =

that a basis of 11d is

(3.16)

(f,)q for all f E 11d' Then, using the fact

{xO,xl, ... ,xd},

we may assume that f is a monomial of degree less than or equal to d. Say f(x) = Xn

where 0 ≤ n ≤ d. Then,

= 0
IAI≥O

(xTh,A)=O where lAI= 0

f9(x)=0 p=0, ... ,d.
So, V has polynomial regularity d.

38

0

We proved at the start of this section that every multiresolution has polynomial

regularity O. We now have a theorem that tells us exactly when we have higher

polynomial regularity. However, in order to apply this theorem, we have to evaluate

f xPb(x)dx. We will see in Corollary 4.3.3 in the next chapter that we can evaluate
this integral with no error using only the filters h, h, g, . The notion of polynomial

regularity will become important when we define the polynomial regularity of a quasi-

interpolation scheme. As well, the classical Strang-Fix condition can be shown to be

equivalent to the notion of polynomial regularity as described in [7].

Example Table 3.1 gives the maximum polynomial regularity of different orthogonal

and biorthogonal wavelet systems. First, we examine Daubechies' N1h multiresolu-

tion (denoted by dbN for some N), and then the multiresolution given by the 3

B-spline with two different dual functions (denoted by Bior3.N where N denotes the

dual function). Finally, we look at the polynomial regularity of the Coiflets (de-

noted by CoifN). The Coifiet multiresolution was designed specifically to give the

multiresolution maximal polynomial regularity based on the size of the filter.

3.6 Classical Setting

This section introduces some of the classical notation of wavelet analysis that makes

some of the results that we will prove later easier to read and understand. It also

allows us to give a nice summary of the wavelet setting. Some of the results from

this section are proven in [7] and others were proved earlier in this chapter.

Let , , , be scaling functions and wavelet functions generating a biorthogonal

39

Wavelet Multiresolution Polynomial Regularity

db2 Primal 1
db3 Primal 2
dbN Primal N-i

Bior3. 1 Primal 2
Bior3. 1 Dual 0
Bior3.7 Dual 7

Coifi Primal 1
Coif3 Primal 5
CoifN Primal 2N-i

Table 3.1: Polynomial regularity of different multiresolutions

wavelet system. The filter for the scaling functions will be indexed by

hl,k :=

ht,k := hi-

2k-Then, the biorthogonality conditions of h indicate that

=

kEZ

For the wavelet functions, we have

gl,k = gt-2k

91,k = j1-2k-

Then, the remaining biorthogonality conditions give us that

911,kgl2,k =

kEZ

40

and

>
kEZ

hI1
keZ

=0

=0.

In fact, it can be shown [7] that the biorthogonality condition tells us exactly

what the dual filters are. More specifically, it is shown that

= (_j.)kglk

9k =

The properties of the filters in the orthogonal setting are also summarized by

these equations. Since h = h and g = in the orthogonal case, we have that

9k =

3.7 Approximation Properties

As discussed earlier, some function spaces arise naturally in wavelet analysis. To see

this, suppose we have a biorthogonal wavelet system. Then, for any jo E Z and any

f E L2(R), we have that

f = (f,c)c+ E (f 0,\ and
IAIio PI≥io

f = (f,)+ f,bA).
IAI'io IAI≥io

41

For ease of notation, define

Then, we have that

f=

f=

CA

dA

C

dA

cq5>, +
IAI=io PI≥io

:: C.
IAIio IAI≥io

and

It turns out that we can not get strict inequality in approximations, but we can get

inequalities that are nearly strict.

Definition 3.7.1 Suppose that a and b are quantities that depend in some way on

a set of parameters P. We say that a is less than or similar to b if a is less than or

equal to some constant k times b, where k is independent of any of the parameters

in P. We write

a< b.

If we have that a $ b and b < a, we write

ab.

In this sense, we can say that two norms (or seminorms) . and on a

linear space X are equivalent if for all x E X, we have that

42

It is a well-known [8] that if we have two equivalent norms on a linear space, then

they induce the same topology. This means that a sequence converges with respect to

I II if the same sequence converges with respect to

Now, it is known [7] that if f E H8(R) for some s > 1/2 and V0 has polynomial

regularity p for some p ≥ s - 1, then

IdAl 5 2_IAI3IIfIIHs(supp). (3.17)

Above, we are taking the standard definition of the support of f as

supp f := {x I f(x) O}.

From (3.17), it is shown that

If - PjfIlL2 1.0 2IIfIIHs(). (3.18)

These inequalities will not be heavily used in this thesis, but they are playing a

major role in the background. More specifically, we are going to be trying to make

the coefficients d,, less than some tolerance. Equation (3.17) indicates that this is

equivalent to forcing the local Sobolev norms of f to zero. As well, (3.18) says that

forcing dA to zero for all A will force the L2(1R) error of Pjf - f to zero.

A more important norm relation for this thesis relates the Besov norm of f to a

series of scaled norms of the coefficients dA. It is shown in [9] that

Iq If II(L(R)) 2jq(s+1/21/p) (Ii IdAIP) q/p (3.19)

43

As we are considering the case p = 2, we have

IIfIIq B (L2 (R))
2jqs

j \IAI=i

= E
2jqs (jj(d;k)j,\j=jjjj12
)

However, it will become important that we retain the more general equivalence (3.19).

Now that we have motivated the importance of estimating the coefficients CA and

we need to look at how to approximate them. This is the task of the next chapter.

Chapter 4

Quasi-Interpolants

The goal of this thesis is to use the scaling functions

{IEA},

where A is some finite index set, in order to represent some function f accurately in

an efficient manner. In order to construct this representation, we have to evaluate

the inner product (f, q). There are a few special cases when the inner product

can be evaluated exactly, however this is generally impossible. So, a method of

approximation is in store. One of the most promising methods of approximating this

is using what is called a quasi-interpolation scheme. The quasi-interpolants that we

will be considering are in fact Newton-Cotes formulae. Quasi-interpolants have had a

lot of success in the wavelet setting and thus we will be using them for the remainder

of this thesis. However, this is by far not the only method of approximating For

example, there is the following technique.

4.1 Design of Fröhlich and Schneider

The design of Jochen Fröhlich and Kai Schneider is discussed in [14]. Their method

of approximating (f, q5A) is based on using a cardinal Lagrange function Si E V. Si

44

45

must satisfy

SJ (i) = 5i3O

VJ =sPan{SJ,k=SJ (x Tj _)

(4.1)

kEZ}. (4.2)

If we are in the case of an interpolating scaling function, that is

q(i) = 8i3O for all i E Z,

then the scaling function 0 will satisfy (4.1) and (4.2). However, the idea is to find

a function that is easier to work with than 0 and exists for any multiresolution.

Fröhlich and Schneider show that another cardinal Lagrange function can be defined

by

S(w)
((w))

=

where {b(x - k)}kEz is any Riesz basis of V0. Here, b denotes the Fourier transform

of b. Once a cardinal Lagrange function Sj E Vi is fabricated, an approximation

fj(x) Pjf(x) can be written as

fJ(x)_f()SJ (x_).
kEZ

Once we have this representation, we would like to calculate the coefficients nec-

essary to write fj as

fJ= ≥_
IAI=J

To establish the coefficient c,\, we need

(fj, j,t) = i f () (Sj ;) , qJ,i)
kEZ

>1f (j) (SJ(.),cbj,l_k).
kEZ

46

This indicates that

= i f (Tj) (Si, J,1-k)J,1

LEZ kE7Z

The problem with this method are that the cardinal Lagrange functions may be

very difficult to compute as numerous Fourier and inverse Fourier transforms must

be computed. Ideally, we would like a design that is not only accurate and easy to

work with, but easy to compute.

4.2 Definition of a Quasi-Interpolant

Before we can define and construct a quasi-interpolant, we need some general defi-

nitions concerning linear operators and linear functionals.

Definition 4.2.1 (a) A linear operator £ £(f) -+ L(f) is said to be local if

there exists a compact set M such that

fI+M = 0 =' £f (x) = 0.

for all xEf.

(b) A linear functional C: - R is said to be local if there exists a compact

set M such that

fIM = 0 c(f) = 0.

In this case, we call M the support of c.

In Definition 4.2.1, fIM indicates the restricted function

I XEM
fIM(x) f(x)=

10 xM

47

Definition 4.2.1 indicates that if L is a local linear operator with support M and

f E L,,(f), then Lf(x) only depends on values f(y) where y E x+M. Consequently,

local linear operators are computationally easy to work with. A similar kind of

intuition holds for local linear functionals. As an example of a local linear operator,

consider

L: L2(R) - L2(R)

defined by

fX+1 f (y)dy.
Then, L is a local linear operator with compact support M = [0, 1].

Definition 4.2.2 Let Q be some linear operator that is defined on polynomials.

Then, Q is said to have polynomial regularity in if all polynomials of degree less

than or equal to m are fixed points of Q, but polynomials of degree m + 1 are not

fixed by Q.

Recalling that for a multiresolution, we have that Vj C L2 (11) for all j E Z, we are

prepared to define a quasi-interpolation scheme.

Definition 4.2.3 Let Qj be a collection of linear operators satisfying:

(a) Q : L() -+ Vj for all E Z.

(b) Qj preserves polynomials of degree less than or equal to m for some in E N. That

is, Qj has polynomial regularity m.

(c) Qj is local as in Definition 4.2.1 and is uniformly bounded in the sense that there

is a constant CQ and a compact set K such that for all U ç c≥,

MQjfIIL(U) CQlfIIL(u+2-iK).

48

Then the collection of linear operators Qj is said to form a quasi-interpolation

scheme.

It is shown in [5] that the locality of Qj assures us that for all x € 0, Qf(x) depends

only on the values f(y) where Ix -yl It is also easy to show that we can make

the constant in this inequality the size of the support of 0. So, a quasi-interpolation

scheme is a sequence of uniformly bounded linear operators that are guaranteed

to approximate a class of polynomials exactly, and they only require a few points

to do so. As wavelet approximations are uniformly bounded and have polynomial

exactness, this indicates that quasi-interpolants give accurate approximations to

Pjf= E (f,)Ox,
IAI=i

and that this approximation is computationally easy to construct. In fact, it is shown

in [5] that the quasi-interpolant gives the same order of local error as the nearest

polynomial of degree less than or equal to m, where m is the polynomial regularity

of the quasi-interpolant.

Since Qj is a linear operator on to Vj, and {qf PI = j} spans V, there are

unique linear functionals q, such that

Qif = qA(f)c&\.
kl=i

It is shown in [5] that if the linear functionals q,., are local and uniformly bounded

for all I)i j, then we are guaranteed that Qj is a local uniformly bounded linear

operator.

We are going to build our quasi-interpolants with linear functionals that can all

49

be derived from the single linear functional

q(f) = wf(xj) (4.3)

where wi E R are weights and xi E R are nodes or sample points. Here, we are

letting q(f) be a Newton-Cotes quadrature formulae. Note that if all the non-zero

weights wi are in some compact set M, then q is local with support M. Now, recall

that the task of q\ (f) is to approximate (f, q5,). To see that, we can approximate

this with a single linear functional, note that

where

fID f()2/2 (2x - k)dx
J

- 2/2f /x+k\
JR 2i) (x)dx

=

f,\ (x) := 2_i12f (2i)
Then we want the quasi-interpolation scheme that we are going to use to approximate

Pjf to be of the form

Qjf = > q(f)q5 = q(f)q. (4.4)
IAI=i IAI=i

If all the weights wi are finite, we are guaranteed that the quasi-interpolants are

uniformly bounded, at least with respect to 11 . IlL(R)• Then, the only remaining

difficulty is finding appropriate weights and sample points to guarantee polynomial

regularity.

Below are two constructions of quasi-interpolation schemes of the form (4.4). The

first is probably the most popular and well-known quasi-interpolant. The second

50

example is not so well-known, but it does have some nice properties that we will be

taking advantage of.

4.3 Design of Piessens and Sweldens

The design of Robert Piessens and Wim Sweldens is described in detail in [23]. The

idea is to guarantee ourselves polynomial regularity while using as few sample points

as possible. Writing Equation (4.3) with xi = i gives a quadrature formulae of the

form

q(f) = wf(i). (4.5)

The goal is to show that we can find finitely many non-zero wi such that (4.5) defines

a quasi-interpolation scheme.

Assuming that f has enough derivatives, we can approximate f by a truncated

Taylor series expansion about zero. That is,

0) (n)
f(x) xi

i=O

for some N E N. Then, we can approximate the coefficients c, by

i=O

This suggests that a possible quasi-interpolant would be designed if we imposed that

q(x) = (x, (x)) (4.6)

for all i = 0,. . . , N. Then, QIAI will have polynomial regularity N by brute force

construction. As discussed above, if the linear functionals q\ are local and uniformly

bounded, this is enough to guarantee that QIAI is local and uniformly bounded. First,

51

q will be uniformly bounded if the weights wi are bounded and we will see that this

is the case. Secondly, we will see that q is local and that the support of q>, can be

given the same support as

Before we can prove that we do in fact have quasi-interpolation scheme, we need

to show that we can evaluate the right hand side of (4.6). This defines the continuous

moments which can be computed exactly using the two-scale relationship.

Definition 4.3.1 For any scaling function 0 with filter (hk)kEz and for any n E N,

:= fR X n O(x)dx

Mn :=

kEZ

are the continuous moments of 0 and discrete moments of (hk)kEz respectively. Sim-

ilar definitions hold for M and

Theorem 4.3.2 M can be computed with no error.

Proof We will prove this by strong induction. The base case is true since

Mo = f O(x)dx = 1.

52

Suppose that we have computed the values of M0, . . . , M,_1 with no error. Then,

M. f
v'fxThhkcó(2x - k)dx

k

2 1: (2

-- f () x1k 1hk (x)dx
2n+1 k j=

n

2' 1 1) 1=0 m_jMj

(n-i

= 1: 11()mmMi+moMn)
1=0

Rearranging for M, we have that

-\/2- M (i)' n-i = 2 + 1mO (n)
1=0

m..jM1.

Now, assuming compact support of 0, mn will be a finite sequence. Thus,

(4.7)

Mn can

be computed exactly for all n E N, and then the result is proved. 0

Theorem 4.3.2 tells us that we can evaluate as many continuous moments as we want,

and the proof gives a recursive formula to evaluate them. The Theorem also indicates

that the continuous moments can be evaluated using only the discrete moments.

On a side note, recall that in the Chapter 3 we were interested in computing

f xP.ily(x) in order to calculate the polynomial regularity of a multiresolution.

Corollary 4.3.3 The values of f P() can be computed exactly.

53

Proof

f fx/9kcb(2x - k)dx
kEZ

V2 E - k)dx
kEZ

2
kEZ

2P+1
kEZ

I (x±k))d
f T P (P1) x'kP-10(x)dx

1=0

() k1g f x1(x)dx.
1=0 kEZ

Defining the discrete moments of 9k by

kEZ

we have that

fxP(x)dx = ()_1.r1. (4.8)

By the previous theorem, and the fact that 9k has finitely many non-zero terms, we

can evaluate (4.8) with no error. Thus, we can calculate the polynomial regularity

of any multiresolution using only the filters h and g.

0

Now that we have the moments of q5, in order to solve for the weights of the linear

functional q, we have to solve the system

q(xm) = = (4.9)

54

where n = 0,. . . , N. If supp = [a, b], we can force q to be local with support [a, b]

if all sample points are inside [a, b]. Thus we have a linear system of N + 1 equations

and b - a + 1 unknowns. So, to have any chance at having a unique solution, we

should let N = b - a. That is, we have the system

Wa + Wa+1 + + W_ + Wb =

awa+(a+1)wa+i+..•+(b— l)wb_1+bwb = M1

aNwa+(a+ l)NWa+i +'+(b 1)Nwb_l +b"wb = MN.

This is a Vandermonde system, and it is shown [15] that a Vandermonde system has

a unique solution if and only if the coefficients in the second row are unique. This is

the case in the above construction as our second row contains all the integers from

a to b exactly once. Thus we are guaranteed a solution to (4.6). This also indicates

that the linear functional q is uniformly bounded if M is finite for all m. So, the

design of Sweldens and Piessens is in fact a quasi-interpolation scheme if we can

show that Q : - V. However, this is clear as

Qif = ;L; q(fA)cb,
IAI=i

and E V for all) with I) j. As well, Qj has polynomial regularity N =

I supp 01 where IXI denotes the Lebesgue measure of X.

However, conditioning is a problem. In general, as the size of the support of

the scaling function increases, so does the condition number of the linear system.

Consider the case where the support of starts at 0. Then, in order to establish

55

polynomial regularity N, we need to invert the N + 1 x N + 1 matrix

111 1

012 N

014 N2

012N ... NN

This is the Vandermonde matrix (aij where

00 I.

The condition numbers of this matrix for the first few N are given in Table 4.1.

Since the condition number of the system increases rapidly as N increases, we see

N Condition Number
2 2.618
3 13.193
4 154.457
5 2592.886

Table 4.1: Condition numbers for certain Vandermonde systems

that finding the solution becomes very difficult as N increases.

Example Consider computing the quasi-interpolation scheme of Piessens and Sweldens

for Daubechies' second scaling function which is given by the filter

(h0, h1, h2, h3) 1+, 3+, 3—, 1 — V3) -

56

Then, in order to establish locality, the quasi-interpolant scheme is based on the

linear functional
3

q(f) => ;f(i).
i=O

Using Equation (4.7), the first four continuous moments are

MO

=

M3 - - (189-107v')28 -

Then, the weights of our linear functionals satisfy the linear equation

1111

0123

0149

1 8 27

Solving this system,

wo

Wi

W2

W3

M O

M3

to0

w1 21+19\/

W2 56 21-19'

ws - 7-3/ -

To illustrate the accuracy of this quasi-interpolant, we know that

(q, q'O,k) = 6k,O

since 0 is orthogonal. Using the quasi-interpolant, we have that

q(q o,1(x)) = q(çb(x - 1)) =
i=0

- 1) 0.0778.

57

This quasi-interpolant works well if the size of the masks are not too big, and if we

are going to be approximating functions that can locally be approximated well by

polynomials of low degree.

Now, suppose that we are operating this quasi-interpolation scheme on a function

f, and it turns out that f E Vj for some j E Z. Unless it was the case that f was

also a polynomial of degree less than or equal to the polynomial regularity of the

quasi-interpolant, the above design would not pick up the fact that f E V. In other

words, Qf f. However, as we are projecting on to Vj, it would be nice if our quasi-

interpolant Qj was exact for all elements of V. This motivates the quasi-interpolant

introduced in the next section.

4.4 Design of Ware

The quasi-interpolation scheme designed by Antony Ware is the quasi-interpolant

we will be using when we look at adaptive methods of approximating functions. A

more detailed construction of the quasi-interpolant is described in [25].

4.4.1 Design

Definition 4.4.1 Fix some j and define a linear operator on to level j of the mul-

tiresolution by

Pf
IAI=i

where O, are linear functionals to be determined.

(4.10)

58

Consider a Newton-Cotes quadrature formula that is sampled at the integers and

half integers. That is, the linear functional is of the form

wf(i/2),

and then as before,

0)(f) = 0(fA).

Bearing in mind the biorthogonality condition

- k)) =

a good choice for the linear functional 0 would be one satisfying

0(0(. - k)) = w(i/2 - k) = 50,k.

Then, the family of linear functionals is

Oj,k(f) = 2—j/2 > wf(2(i/2 + k)). (4.12)

Now, we need to show that solutions of (4.11) exist and that these solutions have

finitely many non-zero w,. This will be discussed when we look at the construction

of the linear functional 0. As well, we need the linear operators to form a quasi-

interpolation scheme as described in Definition 4.2.3.

(4.11)

Claim 4.4.2 The collection of linear operators P, as defined by (4.10) and (4.12),

fm -rib a quasi-interpolation scheme.

Proof We have three condition in Definition 4.2.3 that need to be satisfied. Condi-

tion (a) is that for each j, Pj maps to level j of the multiresolution. This is obvious

59

for all f E L2 (11) since

PI=i

and q Vj for all JAI = i.

To establish that we have polynomial regularity for some m E N, recall that

multiresolutions always come equipped with some level of polynomial regularity.

That is, for any multiresolution, there is a positive integer m such that for all f G fl

P0f=f. (4.13)

Now, pick some A' with JYJ = 0. Then, operating Oxi on both sides of (4.13) indicates

that

Ow (f =

IAI=O

=

where the last equality comes from the design of O,'. So, if f E V0,

'60 f=

IAI=O

=

IAI=O
= P0f=f.

So the collection of linear operators .E have polynomial regularity, and their polyno-

mial regularity is the same as the maximum polynomial regularity of the multireso-

lution.

To establish a uniform bound and locality of the linear operators P, again we

only require that O, is local and uniformly bounded. As in the last section, it is

60

sufficient to show that there are finitely many non-zero weights that are all bounded.

We will see this is the case when we look at the construction of °A in the subsequent

section.

Now, Pj actually has a property that is quite a bit stronger than polynomial regu-

larity. We have that

1jf=Pjf

for all f E V1. The design of Piessens and Sweldens only had that

Pf=Pf

for all f E V film for some m E N. This result concerning the design of Ware will be

crucial when we consider adaptive representations. Moreover, this quasi-interpolant

gives a tighter upper bound than the quasi-interpolant of Sweldens and Piessens.

The design of Ware bounds the local errors of .Pf - f in terms of nearest local

elements in Vj where as the design of Piessens and Sweldens bounds the local errors

in terms of the nearest local elements in Elm.

4.4.2 Construction

We now know what properties we want 0 to satisfy, and we have some results that

follow from these properties. However, we have not yet seen how to construct 0, or

if it is even possible. Two questions regarding the design are whether there are finite

solutions and if solutions do exist, whether they are unique. To answer the first

question, we will show exactly how to solve for the weights wi so that they satisfy

61

(4.11). At this point, it will become apparent that if a solution does exist, it is not

unique.

Definition 4.4.3 Suppose that there is a sequence (wi) satisfying (4.11). Then, we

call (wi) a discrete dual of q.

First, note that (4.11) contains infinitely many equations, one for each integer k.

However, each equation has a finite number of variables w, as the support of the

scaling function is finite. Suppose that our scaling function 0 satisfies

supp qI = N,

where N is some positive integer with N ≥ 2. It is shown in [25] that a possible

discrete dual exists with 2N - 3 non-zero entries. We will see by example that

calculating the weights of this discrete dual is equivalent to inverting a very special

kind of matrix. Below, we will construct discrete duals of the third B-spline.

Example Consider the third B-spline defined by the the filter

(h_1, h0, h2 4,/2- (1, , ,

Using the refinement equation, we can find the function values of the scaling function

at the integer and half integer values. They are

0

1/8

1/2

3/4

1/2

1/8

62

As N = 3, we are looking for three non-zero weights. Equation (4.11) indicates that

three different discrete duals are solutions to

w

w

W

where

W2

W-1

wo

wo

Wi

W2

W2

W3

W4

0

0

1

0

1

0

1

0

0

(1) 0(3/2) 0

0(0) (1/2) 0(1)

(-1) q(-1/2) 0(0)

So, we have that any column of the inverse matrix of W is a solution to (4.11). As

q(—l) = 0, we see that

0(1) 0(3/2) 0

W = (0) 0(1/2) q(l)

- 0 (-1/2) 0(0) -

By doing one row echelon step, namely a column swap, we can define the matrix

W =
(1) 0 0(3/2)

(0) (1) 0(1/2)

0 (0) (-1/2)

63

Now, define the two polynomials

Pe(z) = q(1)z+çb(0)z= (4.14)

p°(z) = q(3/2)z + 0(1/2) + q(-1/2)z' = q(i + 1/2)z. (4.15)

Definition 4.4.4 Let p, q be two polynomials. Say that

p(z) =

q(z) =

First, p(z) and q(z) can be written as

ni

i=O

i=O

nl

izi

izi.

P(Z) = pnifl(za1)
i=1

q(z) = q2fJ(z—,81),

where aj, ,8 E C for all i = 1,... , n1 and j = 1,•.. , n2. Then, the resultant p(p, q)

is defined to be
Thi fl2

q .- pflni 2q flj2 III H(i

i=1 i=1

As well, the Sylvester matrix of p and q is defined to be the (ni + n2) x (n1 + n2)

64

matrix given by

Pm1 Pni-i PO 0 0 0

0 pm1 Pmi_i P0 0 0

8=
o o 0 Pmi Pm1-1 P0

qm2 qm2 _-1 •.. q0 0 0 ... 0

o qm2 qm2-1 •.. q0 0 ... 0

0 0 ••• 0 qn2 qm2-j •.. q0

Now, the determinant of the Sylvester matrix is equal to the resultant of the two

polynomials [3]. So, the Sylvester matrix is invertible if and only if p and q have no

common zeros.

Now, note that if we multiply (4.15) by z, then the Sylvester matrix of the

polynomial given in (4.14) and this new polynomial is exactly the transpose of T'17.

The fact that we can find the discrete dual by inverting a Sylvester matrix turns

out to always be the case. That is, we have the following algorithm for constructing

discrete duals.

1. Find the function values of the scaling function at integer and half integer

values.

2. Construct the two Laurent polynomials.

(i + 1/2)z.

65

3. Construct the transpose of the Sylvester matrix of pe and p°. Call it W.

4. If possible, invert W.

5. Choose any column T,/_1.

6. Interlace the top half and the bottom half of the column to form the discrete

dual in the correct order.

7. Decide the index of the first significant weight w.

In Step 6, the columns are interlaced using the fact that the top half of the columns

contain the weights at the even indices in sequential order and the bottom half

contain the weights at the odd indices in sequential order. This essentially is undoing

the row echelon step that carried W to W. Although this algorithm is very easy to

program, there are two major obstacles.

First, we have the problem of deciding which one of the columns to select as the

discrete dual. It was proposed in [25] that the discrete dual with the smallest 12 norm

should be used. This will hopefully in turn help control the error in OA(f) - CA-

The second problem comes from Step 4 in the algorithm. This matrix could

not be invertible or could be quite ill-conditioned. From experience though, if W is

invertible, for scaling functions with relatively small support, the condition number

is not too large.

One last thing to note is that in Step 3, we are implicitly assuming that q(x) = 0

if x < 0. This is of course not the case in general. If it happens to be the case

that q5(x) 0 0 for some x < 0, then pe(Z) and p0(z) are no longer polynomials but

rather Laurent polynomials. However, we can simply multiply pe(z) and p0(z) by a

66

large enough power of z. This will create two polynomials with only positive powers.

Then, after proceeding through the remainder of the algorithm, this shift can be

corrected in Step 7.

So, if a discrete dual does exist, we see by construction that we are guaranteed

that the linear functionals are local, as the sum is finite, and uniformly bounded, as

the weights are finite.

Concerning the existence of a solution remains an open problem. As we have

seen, the existence of the solution is equivalent to the resultant of two polynomials

being nonzero, and the resultant of two polynomials is zero if and only if they share

a common root. So, we would be guaranteed a solution if we could show that pc(z)

and p°(z) have no common zeros. Attempts were made in [26] to show that this is

the case for all scaling functions. Although existence is not guaranteed, for all the

examples we will be considering, discrete duals do exist.

In the previous example, the three discrete duals are

W2

W3

W4

5/2

—2

1/2

wo

Wi

W2

—1/2

2

—1/2

W_2

W-1

WO

1/2

—2

5/2

So, using the decision method described above in order to select a discrete dual, we

would use the linear functionals

where

0j,k(f) =

i=O

wf(2(i/2 + k)),

(- 2
1)2)— 1) . (wo,wi)w2) =

67

4.4.3 Lifting

Lifting was first introduced by Wim Sweldens and Ingrid Daubechies in [12]. It is

a method of constructing new wavelets from existing ones. It is shown in [25] that

new discrete duals can be formed out of old discrete duals in a similar manner. Let

be some scaling function and define

i

q(i + 1/2)zt.

Then, satisfying (4.11) is in fact equivalent to finding Laurent polynomials w e(z)

and w°(z) such that

we(1/z)pe(z) + w°(1/z)p°(z) = 1. (4.16)

It turns out that Laurent polynomials we(z) and W0(Z) can be formed to satisfy

(4.16) if and only if pe(z) and p°(z) share no common zeros. This verifies our claim

that the Sylvester matrix of pe(z) and p°(z) being invertible is enough to guarantee

the existence of discrete duals. Once (4.16) is satisfied, the discrete dual can be read

off as the coefficients of the Laurent polynomial

Finally, define

W(Z) := we(z2) + zw°(z2) as

P (z) = p c (Z2)+zpo (Z2)

q5(i/2)z.

68

Then, the lifting step is that for any Laurent polynomial s, the coefficients of ii'(z)

form a new discrete dual where

(z) := w(z) + zs(z2)p(-1/z). (4.17)

Example Consider the third B-spline. We have that

Pe(z) = l/2+l/2z

PO(z) = 1/8z' + 3/4 + l/8z.

A discrete dual is given by the Laurent polynomial

w(z) = 5/2z2 - 22 + 1/2z4.

Now, let s(z) = 4z. Then, using s to construct a new discrete dual as in (4.17), we

have that

= 5/2z2 - 2Z3 +1/2Z4 + z4z2(-1/8z + 1/2 - 3/4z' + 1/2z 2 - 1/8z 3).

After expanding and simplifying, we get the new discrete dual

'th(z) = —1/2 + 2z - 1/2z2.

We can continue in this manner to establish yet another discrete dual. For instance,

if we let s(z) = —(1 + z), we get the new discrete dual
49

(w_2) w_1, w0, w1, w2, w3, w4) = (23, —92,63,208,63, —92,23)
196

This discrete dual is extremely important as it is known [2] that it has the smallest

12 norm. This helps control our errors if we are going to be using the discrete dual

69

multiple times.

To see that lifting does yield a new discrete dual, we will assume that Equa-

tion (4.16) is enough to ensure that we have a discrete dual. Using (4.17) and the

definitions of w(z) and p(z),

(z)

Thus,

= we(z2) + zw°(z2) + zs(z2)(pe(1/z2) - z_1p0(1/z2))

= (w e(z2) - s(z2)p0(1/z2)) + z(w°(z2) + s(z2)pe(l/z2))

= zi(z2)+ziö°(z2).

= we(z) - s(z)p°(l/z)

= w°(z) + .s(z)pe(1/z).

Substituting the above equations into (4.16), we get

ii(l/z)pe(z) + Z°(1/z)p°(z)

= (w e(1/z) - s(l/z)po(z))pe(z) + (w 0(1/z) + s(1/z)pe(z))po(z)

= we(1/z)pe(z) + w°(1/z)p°(z) = 1.

Thus, the coefficients of th(z) form a discrete dual.

4.4.4 Error Bounds

The discrete dual gives us a quasi-interpolation scheme with some very nice error

bounds. We will examine some of them here. First, we need a method to project on

to the wavelet spaces Wj in a similar manner as our projection on to V1. Consider

70

a multiresolution with the filters h, h, g, . Working backwards, the goal is to find a

linear functional satisfying the "biorthogonality" condition

j,k('/'j,t)

To establish this linear functional, we will use the notation of the classical setting.

That is,

5k,1 =

= L 9',lThc',kOj+1,k'@I'j+1,')

gk',k0j+1,k' (gi',ij+i,i')

9W,k9j+1,k'

gk',k0j+1,k' (E gl' Oj+1,11+21

gk',kj+1,k' (''j,)

e,k (?/',i).

So, a projection on to Wj can be defined asQjf

A (fth
IAI=,

where

j,k(f) gk',k9j+1,k' (f).

71

Now, recall that we denoted the true projection coefficients by

CA =

dA = (f,x).

Then, for any f E

f=L c+ LdAA.

IAl=i IAI≥i

If JAI =j,then

0,\ (f = cIO)(q5,') +
IA'l=i IA'I≥i

= CA + dy °A (A').
IVI≥i

It can also shown in a similar manner as above that if JAI ≥ j, then

(4.18)

eA(f) = dA + dA'eA(A'). (4.19)
IA'I>IAI

So the error between the exact coefficient and the approximated coefficient can be

expanded in terms of wavelet coefficients at higher levels.

When we look at adaptive projections, we are going to be considering the l' norm

) 1/p

where Tj C {A

(
\AETI

(4.20)

JAI = j} is some finite index set. Equation (4.19) suggests that

if the wavelet coefficients of f at levels greater than j decay rapidly, then a good

approximation to (4.20) is given by

(IA(f)IP)"
AET

72

We will look at this in more detail when we design methods to produce adaptive

representations of approximations.

4.5 Aliasing

Aliasing is a problem that arises when performing any kind of approximation using

discrete samples. It is unavoidable, but the risk of its occurrence can be reduced in

certain circumstances. Aliasing occurs because if ty is any linear functional based on

discrete samples, and f(x1) = g(xi) for all sample points xi of 'y, then

.7(f) = .7(g).

Example Consider the function

l0Ox x E [0, 1/4)

50 - l0Ox x E [1/4,1/2)

0 x[0,1/2)

A plot of the function along with sample points is given in Figure 4.1. Consider

the scaling function given by the third B-spline. Then, the true value of cA, where

A = (0, 0), is

fR

q(x)f(x)dx 4.2318.

However, if we use a discrete dual supported at the half integers,

9o,o(f) = wof(0) + wif(1/2) + w2f(1)

= —1/2.0+2.0-1/2.0

=0.

73

30

25 -

20 -

10 -

-05 0
x

0.5

Figure 4.1: f(x) with the sample points

This occurred because f(x) = 0 at all the sampling points and thus

= 0,\ (0) = 0.

Recall that (4.18) gives us that

So, in the above example, we have that

dO('b).
IA'I≥i

dO(i) = 4.2318.
IA'I≥O

That is, the true coefficient cA actually lives entirely in levels of the approximation

greater than or equal to 0.

One way to reduce the risk of aliasing is to know where there may be aliasing error,

and then adjust the problem appropriately. For instance, if we had known of the

spike before hand in the above example, we could of refined the grid around the spike

74

to be sure that the linear functional sampled at a non-zero point. If we are dealing

with a band-limited function, this problem can also be attacked by being sure that

we are sampling more frequently than the Nyquist frequency.

The phenomenon of aliasing can also occur in Fourier analysis.

Definition 4.5.1 Let f be some function with compact support on [0, 1]. The Fourier

transform and the discrete Fourier transform are given by

fo
l

f(k) = f(x)e2dx
fk = f(xj)e_271 5

respectively.

The discrete Fourier transform can be thought of as a method of approximating the

continuous Fourier transform. In fact, it is shown in [16] that for an N E N we have

that

fk=

Example

jEZ

J(jN + k) = J(k) +
jo

J(jN + k). (4.21)

I sin(10rx) x E [0,1]

0 x[0,1]

The plots of the real and imaginary parts of f(x) are plotted in Figure 4.2. However,

if we consider the discrete Fourier transform of f with

x = where j=0,...,10,
10

we get

sin irj)e_2u/cuh10

75

0.4

0.3

0.2

- 0.1

-0.2

-03

-5 ID

0.0

0.4

0.2

r-02

-0.4

-0.0

10

Figure 4.2: Real and imaginary axis of the Fourier transform

The plot of f(x) along with the sample points are in Figure 4.3. Now, letting N = 11

0.8 -

0.6 -

0.4 -

0.2 -

0-

-0.2-

-0.4-

-0.6-

-0.8 -

-1

- 0 2
'I,

0 0.2 0.4 0.6 0.8
'C

12

Figure 4.3: sin(lOirx) with the sample points

in (4.21), we have that

!k=f(k)+f(k+ 11J).
jO

Since fk = 0, we have that the entire Fourier transform lives in levels different then

the one given by the sample xj f. Again, we could use the Nyquist frequency to
be sure to avoid aliasing.

76

4.6 Design of Verlinden and Haegemans

This final design is not a quasi-interpolation scheme, but rather a technique to de-

crease the error between Qjf and Pjf where Qj is any quasi-interpolation scheme.

In [24], Verlinden and Haegemans discuss how to construct a sequence of approx-

imations that converge rapidly to the inner product we are trying to approximate.

This design requires us having a quasi-interpolation scheme before hand. Suppose

we have a multiresolution defined by q, 0, ', b and (hk) is the filter of 0. Then, 0 is

the unique compactly supported fixed point of the linear operator

(Tg)(x) = hkg(2x -

with 0 normalized by f q = 1. Next, suppose we have any quasi-interpolation scheme

q(f) = wf(x)

which approximates cA with some polynomial regularity m. The design of Sweldens

and Piessens, or the design of Ware would both be a suitable choice for q. Then,

they show in [24] that the sequence

q ((T*)flf)

converges to c,\. Above, (T*)flf denotes the adjoint operator of Toperated n times

on f. It is shown that the convergence satisfies

q((T*)nf) - (f,)I < 1
2(m+1)m

This technique works quite well, and they even discuss how to increase the conver-

gence using Richardson extrapolation. The adjoint operator T* is relatively simple,

77

however it gets to be expensive to work with, especially when we want to compute

(T*)Thf for large n.

Chapter 5

Adaptive Representations

We have now seen how we can accurately approximate c,\ and dA using a quasi-

interpolation scheme. Thus, we can approximate

Pjf = cçb,', by qA(f)q'A.
IAI=i

However, this may not be a very practical method of approximation. Suppose that

we are trying to approximate a function with different types of qualitative properties

in different regions. In the wavelet setting, this amounts to sections of the function

needing to be represented in different levels of the multiresolution. That is, some

sections can be represented in V1 with some tolerance e, where as another section

may need to represented in Vj2 where j2 > j in order to ensure that the error in

this second section is also of order e. The sections requiring this finer grid could

include spikes, discontinuities, regions of high oscillation or even unwanted noise in

the function. We will be classifying a region as needing to be refined if a scaled

version of the local Besov norm in this region is large.

First we need to form a partition of the domain of our function that distributes

the local errors evenly across the domain. Once we have a partition of the domain,

we have to discuss how to project on to an adaptive, or non-uniformly spaced grid.

78

79

5.1 Local Scaling Function Representations

The structure of the multiresolution makes wavelet analysis an appealing method

of approximating functions. By moving up the multiresolution, we can in theory

construct an approximation of any square-integrable function as accurately as we

please. However, there are different methods to representing a real-valued function

in a wavelet setting.

The most common method is to use the discrete wavelet transform introduced

by Mallat in 1989 in [17]. This algorithm uses the scaling function at a base level,

and wavelet functions at higher levels to project a function on to some level of the

multiresolution higher than the base level.

Suppose we have some square-integrable function f. Pick a base level jo of the

multiresolution and compute Pjj E V. If the error between the projection and the

true function is too large, then compute Q0f E Wj, Then, the projection Pj0 + Qj,

is a projection on to

V0eW 0.

Since

Wj0 I V0 and

=

F0 + QjO is the projection on to +i. That is, we now have the projection

Fjo+if = (f,

80

written as

(f, A)1A + E (f,
Aljo IAI=io

Continuing in this manner, we can form the projection operator

] + Q0 + Qi0+i + • - + QJ-2 + Qi-1

which projects f on to

3=30

By the same argument as above, this is simply a projection on to V.

Another way to see this is by noting that Qj = - Pj. Then,

.1-1 J-1

F0f+Qf = Fiaf+>(Pj+if—Pjf)
j=jo j=jo

= Pj0f+Pj0+if—Pj0f+..+Pjf—Pi-if

= Pjf.

Now, we have two representations

Pi = cq
IAI=J

Pjf = c + d.
IAIio i=io IAI=i

In order to change between the two representations, we can use the discrete wavelet

transform. This is an invertible linear transformation that calculates the coefficients

of the scaling functions at level J using scaling function coefficients at the base level,

and wavelet coefficients at levels between j0 and J - 1, The transformation relies on

the refinement equation along with the biorthogonality conditions. A more detailed

81

outline of the transformation can be found in [6].

At this point, the classical method of making the approximation adaptive is to

let insignificant values d\ be 0. That is, we would pick some tolerance 6 > 0 and if

dA > e, we would leave dA unchanged and if dA ≤ €, we would let d = 0.

This kind of approximation is built on a multi-layer grid. That is, if we wanted

to evaluate the approximation at a single point x, we would have to evaluate

Jj0f(x), Q 0f(x),. .. . Qj.f(x).

An alternative method is to partition the domain and project each region on to

an appropriate level of the multiresolution. This is a nearly single-layer method of

approximation that does not use the wavelet functions in the representation. It is

only nearly single-layer as near the boundary points of the partition, there may be

interaction with scaling functions at several different levels.

In order to construct the approximation, consider the general algorithm below.

1. Project f on to some base level j0 of the multiresolution to get an approxima-

tion Pj0 f. Let P

2. Find all regions where there is large error in Pf - f and refine the grid to one

level higher in these regions.

3. Project the refined area on to one level higher of the multiresolution.

4. Bring these two projections together appropriately to build a new projection

on to a direct sum of elements of the multiresolution. Call this new projection

P.

82

5. Goto Step 2.

In order to make this algorithm terminate, we build two stops into the algorithm. One

is if the error in the representation is less than some predetermined tolerance E. The

second is if we have performed some predetermined maximum number of iterations

denoted by maxiter. In theory, the stop maxiter would be eliminated, but in

order to keep computational costs quite small, it will be introduced in the numerical

examples yet to come. The result after running the algorithm is a representation

Pf of f using only the scaling function on an adaptive grid. That is, we have an

adaptive local scaling function representation.

In order to simplify this algorithm, we want to eliminate step 2 in the above

algorithm. To do this, we want a technique such that for all e > 0, we can determine

a partition A of the domain) before constructing P such that we are guaranteed

that

IIPAf — fIIL2e

where PA is a projection on to the grid determined by A. Then, we do not have to

repetitively look for subsets of f that contain large error in Pf - f. Creating this

partition will be the role of the prediction.

Now, since Vj C V, we have that there is a J E Z such that Pf E Vj. However,

we have constructed P such that restrictions of Pf are in subspaces of Vj. That is,

there are subsets I of such that

Pf 11 EVj
I

83

for some j < J. The fact that there are restrictions of Pf that are in a subspace of

Vj is what makes the algorithm more practical than if we were simply to compute

Pjf= 2(f,A)'A.
IAI=J

More specifically, we will see that point evaluation of Pf is considerably simpler

than point evaluation of Pjf. The approximation described above is very similar to

the classical approximation of f expressed as

0f+Qf.
j=jo

With help from the discrete wavelet transform, both algorithms result in an approx-

imation Pf that can be written as a sum of scalar multiples of scaling functions at

level J. As the next algorithm constructs a local scaling function representation, it

is the representation we will be considering. Then, if desired, the discrete wavelet

transform could be implemented in order to write Pf as an element of

vjo ED G wj.
j=jo

5.2 Prediction

Let f be some compactly supported function with support . The role of the pre-

diction is to determine a partition of Q such that

IlPAf - fIIL2c < E J

where PA is some projection operator to be determined. The first step to predicting

the partition is finding a method to determine where error may exist in a local scaling

function representation. Following [9], we make use of local error functions.

84

5.2.1 Local Error Functions

A local error function E maps subsets of Q to the positive real numbers. Error

functions must satisfy

0 1 C 02 => E(01) ≤ E(02)

and

E(01) -+ 0 as diam(01) - p 0

whenever D, 02 C Q are subsets of Q. We want an error function that will capture

the qualitative properties of our function in subsets of Q. In our setting, the error

function E should map subsets D,\ of Q to real numbers that correspond to the error

in D,\ of a local scaling function representation. Above, D denotes the interval

0)D(j,k)2 3(D+k)

where 0 is the support of the mother scaling function 0.

Then, given e > 0, the role of the error function is to form a partition consisting

of subsets °A, indexed by A E A6, such that

= U°
I% fl DALI 0 for all A, 1uA6, p, and

(AEA,

1/P

E(DAY' < (5.1)

Note that satisfying (5.1) means that the IP norm of the sequence E(DA), where A

runs through A6, is of order less than e.

Now, suppose that r > (s + 1/p)' for some 1 ≤ p ≤ 00, s > 1/2 and f E

B(L(f)) for some q < r. The assumption that s > 1/2 is standard to assume

85

when performing point evaluation and this is crucial as we are working with discrete

samples. Then, it is shown in [9] that

E(f, O) := 2PI(s+h/ph/r) IIfIIB-Lo (5.2)

defines an error function. It is also shown that, for all e > 0, there is a partition A6

such that E(f, Ox) satisfies (5.1). Above, D is the interval O,, with some additional

points near the boundary of O,. We will need these extra points because when we

project a function on to O,, the support of the approximation will generally extend

past Ox. This overspill of O,\ will introduce error that needs to be accounted for. In

fact, it is shown in [5] that O can be any interval satisfying

diam(0) ;$ 211

What we want now is a local scaling function representation whose L error in

has the same order as the 1P norm of the sequence

Also, we want to do this in such a way that that the number of points in the partition

is not too large.

To prove that such a representation exists, we can use a result from [9] that states

that, with the above choice of error function, and for any N E N, there is a partition

set A of Q such that JAI = N and

6(A) ≤ CN 8IIfllB(L -z)), (5.3)

86

where C is independent of N and f. Above, JAI denotes the counting measure of

A. This means that, given any tolerance €> 0, we can find a finite partition of the

domain such that

As well, (5.3) indicates that to decrease the error we should increase N. This verifies

our intuition that increasing the number of points in the partition decreases the size

of

Definition 5.2.1 For any partition set A, and any map PA which maps a subspace

Lp on to some level of a multiresolution, PA is said to be B-admissible if

IIPAf - flIL() E(D,) for all ,\ E A.

Now, if we construct our partition such that 6(A) < e, and if PA is an E-admissible

operator, we have that

llPAf - fll,(c≥) = IPA! - fIlP(oA)
AEA

S E(o.
AEA

Then, taking each side to the power of l/p, we get

i/p

IlPAf - fllL (E(D)P) <6

AEA

This indicates that an E-admissible operator, along with a properly partitioned grid,

gives a good adaptive local scaling function representation in the sense that we can

make it as accurate as we desire. However, we would like PA to possess similar

conditions to those of the non-adaptive projections. More specifically, we would like

PA to be local in some sense and preserve a class of polynomials.

87

Definition 5.2.2 Let PA be an adaptive projection operator. Then, PA is said to be

a quasi-interpolant if

(a) PA has polynomial regularity m where m E N. That is, PA fixes all polynomials

of degree less than m.

(b) PA is local with respect to A. That is, if U is contained in

U DA,
AEA
IAI=i

for some j, then

PAflu = PA(Xu+2-iKf)Iu,

where K is some compact set. We will see later that we can make PA local with K

being the compact set making P local.

The preservation of polynomials is important as it gives us similar error bounds of

IIPAf - fML2

as in the non-adaptive case. That is, local errors are bounded in terms of the nearest

local polynomial. The locality will make PA computationally easy to work with in

the same sense as the non-adaptive case. Thus, our goal is to construct an operator

PA which is an E-admissible adaptive quasi-interpolation operator. This will be the

role of the iteration.

5.2.2 Oracles

We have discussed how we want the errors in our partition to be distributed. How-

ever, we have not formally shown how to construct a partition using the error func-

88

tion. That is, we need to examine how to form A such that it satisfies (5.3). This is

the job of the oracle. In general, it performs the following steps.

1. Choose an initial partition of the domain.

2. Search the partition for regions that may contain large local error using the

local error function.

3. Refine the partition in these regions.

4. Goto Step 2.

Recall that our error function measures the error in terms of scaled local Besov

norms. Thus, we are creating a partition that controls the local Besov norms. Since

we are in the wavelet setting, it is convenient to partition the domain on a dyadic

grid. So, the oracle that we will be considering performs Step 3 by adding a new

point to the partition exactly in the middle of the region under consideration. Then,

if our initial partition only contains dyadic points, we are guaranteed that our final

partition will only contain dyadic points.

Step 2 is where the local error function comes into play. If we are considering

some region IJ, then we can determine if E(f,) <e or if E(f, DA) > e. By design

of the multiresolution, we can run the oracle until we have a partition such that

every region has error less than e. We have also introduced the additional parameter

that we called maxiter. As the oracle can be computationally expensive, it makes

sure that the oracle does no more than maxiter iterations.

Recall that we actually required that

IIPAf - fjlL() r< ep(A) 5 6 (5.4)

89

where 6(A) is defined in (5.1). However, we have imposed that

E(DA) <6 for all A E A.

This would be sufficient to satisfy (5.4) if p = oo, but for p oo, a more complicated

oracle would have to be designed. However, we do have the one way implication

fp(A),6E(DA).6 for all AEA,

and we are guaranteed that a finite partition satisfying (5.4) does exist, and thus the

difference between the statements
/ \l/P

E()i') <AEA

and

E(DA)<e for all AEA

shall be ignored. If this does pose a problem, we can simply restrict ourselves to

functions whose domain can be partitioned such that

E(D) $, 6 for all AEAand

IAI≤M

for some M E N. Then, we would have the two way implication

6 E(DA) 6 for all A E A. fl-I

However, it should be noted that it is possible to implement (5.4). We could continu-

ously refine the partition in the interval containing the largest value in the local error

function and then check if (5.4) is satisfied. However, this is expensive and thus we

will not be implementing it. Now, in order to calculate an accurate approximation

to E(f, IA), we need some norm equivalences.

90

5.2.3 Norm Equivalences

As Besov norms are computationally difficult to evaluate, we need to take advantage

of some norm equivalences discussed earlier. Recall that we have the equivalence

from [9]

2' -"
i \IAI=i

where q ≤ p and we will assume that s > 1/2. In order to look at this norm

(5.5)

equivalence at a local level, we need to introduce another index set.

Definition 5.2.3 Let D be a superset of EJ as described earlier. Then the set of

significant wavelet coefficients is

CIA:={II=jandIw,LflDjO}

where j e Z.

Then, restricting ourselves to D, (5.5) indicates that

If II(L(o)) 2jq(s+1/2-1/p) (
j AEV

Now, we are interested in bounds of the error function E(f, DA) where

E(f, D) = 2—IAIq(s+1/p-1/r) 11 f IIq

(5.6)

91

Considering the case r = p, if s> 0 (which we have assumed), we have that

/ \q/p

E(f, o) 2jq(s+1/2-1/p) (.j p
I I

3
/ \q/p

= 2-11q.s21Aq(s+h/2—h/p) Id IP) + E 2— JA' qs2jq(s+1/2-1/p) Id ,,JP

j54 11\1 AE(j

q/p q/p

= 2lAIq(h/2-1/p) (iI Id + 2qs(j—)2jq(1/2-1/p) (j4ECj\ Ide)
AI

Now, if we assume that the error is almost all local to level JAI in the sense that
q \ q/p /p

2qs(i—IAI)2jq(h/2—h/p) Id < 2lAIq(1/2-1/p) i

iII VLEC))
then

q/p

E(f, 0,\)q < 2IIq(1/2-1/p) Id
r-11 IL)

Thus, a bound for our error function is

i/p

E(f, DA) 21A1(h/21/p) IdI

)
(5.7)

The assumption that the error is local to the current level will follow if our

function behaves well in the sense that the wavelet coefficients decay appropriately

and thus the local Besov norms behave appropriately. This may not always be the

case as in the scenario we looked at earlier when we considered aliasing error. If we

did want to decrease our risk of aliasing error, we could use a bound such as

E(f, D) < 25q(s+i/2—i/p) (Id q/p
jEr IL)

92

where r is some appropriate finite subset of Z. This is the idea of a halo as we are

considering wavelet coefficients at levels near the current level in order to be sure

that aliasing is avoided. However, this would make running the oracle a lot more

expensive. Thus, we will assume that aliasing will not introduce too much error and

so an appropriate bound for E(f, D) is given by (5.7). As well, the upper bound in

(5.7) will be called E(f, DA). That is, our new error function is defined as

E(f, D) := 21'\1 (1/2-1/p) (I1AILI I

)

1/p

To see that E is an error function, we first have to assume that p = 1 or p = 2

to assure ourselves that (1/2 - l/p) ≤ 0. This does not pose a problem as we are

assuming that p = 2 throughout this thesis. Now, if DM C 0 A2, then 1A11 > A21. As

well, the significant wavelet coefficients of D) i will be smaller (about half the size)

of the significant wavelet coefficients of DA2. Thus,

E(f, D) = 21XiR1/2-1/p) II

= E(f,DA2).

This is still not quite the error function that we are going to be using. Since we

can not compute d exactly, we need to approximate it. The discrete dual will later

come into play, and thus d will be approximated by f). That is, we will use the

93

error function
/ \ 1/P

E*(f, DA) 21'X1 (1/2-1/p) l(f)I

It will not always be the case that E* is an error function as it depends on discrete

samples of the function. However, (f) is the only approximation that we have for

d. As well, based on numerical experiments, using E* has always picked up areas

of large local Besov norm if the aliasing error is small. So, we will treat E* as an

error function. That is, we will use E* as the essential function in the oracle.

5.2.4 Oracle Error

Now, we would like to justify our substitution of E(f, DA) with E*(f, DA). Recall

that we have the aliasing condition (4.19)

(f) = d + E dA'eA(').
IA'I>IAI

So,

1e,\(f) - dAI = dA' ('A')

IA'I>I)I

d(b)')
i>IAI I.VJi

(/ \1/P (11\11=i IdA'I I('A')I') (5.8)
i>IAl \IA'I=i J J

where p and p' satisfy i/p + i/p' = 1. The last inequality is Holder's inequality.

Now, the term A('/') involves a fixed number of non-zero entries at any level IA'I of

the multiresolution since it is a discrete sample of a compactly supported function.

It is shown in [25] that this number is bounded independently of I A I and JY J, and the

94

entry itself is also independent of JAI and IA'I apart from a scaling factor of

Also, we can consider both sums as finite as there are only finitely many A' such that

0. Thus, the above argument and (5.8) gives us

IA(f) — dXl < 2i-IAIT

i>l'I

Then, it turns out that

• A
and thus (5.9) give us

/

d

I1LIi
\eA'o

I=i and e)0} cci,

IeA(f)dAl 22 (
j>11\1

i/p

(5.9)

(5.10)

One assumption we have to make is that the upper bound we have for the local

Besov norms in (5.6) is in fact a norm equivalence. That is

q/p

IIfII BI p
(L(o)) 2jq1/21/p) •J: d (5.11)

i pE' /

This assumption is valid for well-behaved functions as the only time it may not hold

is if the wavelet coefficients do not decay fast enough near the boundary of EJ.

However, we have at some level assumed that this is not the case by demanding that

f E B(L(D)).

Then, with the assumption (5.11), we can deduce that

q/p (IdIP) <11f11
i>IAI ' B(L(D))

(5.12)

95

Now, recall that we are working in the case p = 2, however p = 1 would work in the

construction below. First,

= 21'\1 (1/2- 1/p) (11 111 - 11 (•I'W)"('1\1 111P)

II (ci,., - (f)),.pi Ili'. (5.13)

by the triangle inequality. Then, rewriting (5.13) as a sum and substituting (5.10)

into the upper bound,

= 21'\1 (1/2-1/p) -

21 '\1(1/'1p (i: 2' (1zECj1 i>IiLI

IpI As = IA for all the sums, we can write (5.14) as

IP

= 211(h/2h/p)21A1/2 ((2j/2 (Id -t E Cj,) 1/P) ') 1/P
= 21'\1/p ((j/2 IdI

VLEiAI \i>IitI (-Y%j

Thus, we have that

IE(f, DA) - E*(f, o)1P 211 2j/2 ([LEj>'1 j>IitI

96

Now, consider the term

/ \ 1/P

2' d7l
i>I1LI

= E 2—j(s—h/p)2j(s+h/2-11p)

i>II

/ \ 1IP

Id-11P

1/q' (MIZI ≤ (2'(8 h1P)) 2jq(s+1/2—h/p) Id)
\i>

where 1/q + 1/q' = 1. Then, using (5.12), we have

21 lip Id IP <lIfllBL (2_iq1(s_1IP)) 1/q'
I (,YECJi>Ii>II

Now, consider the term

(5.16)

j>I1LI

This is a geometric series and is guaranteed to converge if q' > 0 and s > 1/p. We

are usually only interested in the case p = 2; in this case the condition reduces to

s> 1/2 which we assumed earlier. Now, the series converges to

2—(s—h/p)q'(IiI+1) 2q'(s—l/p) 2—q'(s—l/p) ILl

q'(8-1/p) - 1 = q'(s—l/p) -

Then, substituting (5.17) into (5.16), we have

2i/2 (

i>I)I

/ 21'(hiP)1IL1) IM
fl-I<iIfiiBLo q'(s-1/p) -

(5.17)

(5.18)

97

Then, substituting (5.18) into (5.15)

IE(f, DA) - E*(f, DA)IP < 2'1

= 21\1

211I('/) p

- 1)1/q') 'If II(L(o)) ((2q'(s-11P)

2_11P(8_ 1/p)

p
 p
(2'(s_1/P) - 1)PI' J

The last equality holds as JAI = JAI for all the terms in the sum. As the sum is

independent of p and (j, is a finite set where the size of the set depends only on the

size of the scaling function, we have

E(f, DA) - E*(f, 0,)1P (2q1(3_1/P) - 1)P/' If IIB(LP(D))

Taking each side to the power of l/p, we have

IE(f, D) - E*(f, o) 1 < (2'(-/) - 1)liq' If IIB(Lp())

As the denominator only depends on p, q, s, i.e. it is independent of f and A, we

have that

IE(f, DA) - E*(f, EA)I C2IAI3IIfIIB(LP())

where C is independent of f and A. That is

IE(f, DA) - E*(f, DA)J < 2_IAI8IIflIr•l B(L(o)).

This indicates that the error in substituting the error function E(f, D,\) with E*(f, DA)

depends on the local Besov norm of f and decreases as IAI increases. This justifies

the substitution if we are dealing with functions with moderate Besov norms, or if

IAI is large.

Thus from now on, when we compute partitions of domains, we will use the error

function E*(f, IJ)•

98

5.3 The DSX Algorithm

The DSX algorithm is one way to construct an adaptive local scaling function rep-

resentation. It was first introduced by Wolfgang Dahmen, Reinhold Schneider and

Yuesheng Xu in [9]. They designed the algorithm to project non-linear composi-

tions of functions on to an adaptive grid. The major step that the authors did not

consider was how to actually compute the local scaling function representation, i.e.

they only looked at the algorithm from a theoretical point of view and never ac-

tually computed the representation. Thus, we are going to look in detail at how

to construct the adaptive local scaling function representation. The algorithm has

four main steps, but we only require two of them: the prediction and the iteration.

We have discussed the prediction as well as some necessary assumptions and norm

equivalences that we require. Now, we are ready to consider the iteration and look

at its simplifications.

5.3.1 The Iteration

Suppose that we have predicted a partition set A of the domain ft The following

notation needs to be introduced.

jo := min lAl and J:= max JAI
AEA AEA

are the coarsest and finest levels respectively of the partition set A.

Aj:={AEAlAj=j}

is the index set of the intervals partitioned at level j.

c2:= UDA
AeA

99

is the union of all the intervals from level j. The set of significant indices is given by

{A

where

IAI=i and lwfl Qi IO}

:= supp O'\ -

Now, define the projection on to level j as

P3f:= >q(f),
AETj

(5.19)

where q is some non-adaptive quasi-interpolation scheme with polynomial regularity

m. Earlier, we denoted by Fj the map

IAI=i

However, Pj will be defined as in (5.19) from now on. We should note that Tj is the

smallest set such that for all x E Qj , we have

q(f)çb(x) = q(f)çb(x).
AGYj JAI=j

Recall that we are trying to build an adaptive quasi-interpolation scheme in a

recursive manner. Let PAJO := Fj0 be the initial projection and PA := PA,J be the

final projection. The recursive formula is

PA,f := PA,-1f + Pjf
AET3

(PA, 1, q.)q'x. (5.20)

This iteration is designed by simply adding up the single level projections at all the

levels between jo and J, and then subtracting off the overlap of the levels which in

100

some sense we have counted twice.

Now, let m be the polynomial regularity of the non-adaptive quasi-interpolant

Pj. Then, it is shown in [5] that PA is E-admissible, has polynomial regularity m

and is local in the sense that if U C Ij, then

PAfIu = PA(Xu+2-i+Kf)Iu

where K is the compact set making Pj local as in Definition 4.2.1(a). So, PA is

exactly what we were looking for and thus PA also satisfies [9]

IIPAf - fIIL2Coi inf Ir - fIIL2Co for all A E A
PEIIm

The difficulty in performing the iterative step (5.20) is that it is very expensive to

compute

(PA,j..lf, A).

To see that this correction term can be evaluated exactly, first note that

PA,j_lf E V 1.

So, there is an expansion of PA,-1f of the form

PA,j_1! = c.
II=i-1

Then,

(PA,_1f,A) =

II=i-1

Thus, we really only need to be able to evaluate

f(x)(2x -

[L

101

Using the refinement equation, we have

f(x)(2x - k)dx = f V2_ EhjO(2x - 1)•(2x - k)dx

2

= -hk.

hif(x_ l)(x— k)dx

Even though implementing the refinement and duality equations is relatively simple,

performing the change of basis requires applying the refinement equation multiple

times. Thus, we would like a method to avoid having to implement this change of

basis. As we will see, we can do this if we carefully select our quasi-interpolation

scheme.

5.3.2 The DSX Algorithm with the Discrete Dual

It turns out that the discrete dual introduced by Ware can evaluate the correction

term efficiently. Suppose we use a discrete dual in the quasi-interpolant for the DSX

algorithm. That is,

Pjf = > j 9 (f)x•
AET

Recall that if f E 1/i, then (f, q) = OA(f). Now, the problematic term is

(PA,-1f,

As PA,jlf is in the space

102

we can use the discrete dual in order to compute the correction term. In other words,

if IAI =j,then

eA(PA,_1f) = (PA,j._lf, qA).

So, the DSX algorithm when using the quasi-interpolation scheme of Ware sim-

plifies as

Pjf =
AET

PAJQ =

PA,J

PAJf = PA,_1f+Pjf—Pj(PA,..lf).

Then, writing (5.21) in the summation notation, we have

PA,jf = PAJ....lf + -

ATj

(5.21)

= PA,j_1f + E OA(f - PA,1f)qA. (5.22)
AETJ

The iterative step (5.22) is also easy to program and we no longer require a change

of basis.

In fact, if we use the discrete dual, the operators PA,j take on an interesting form.

For the sake of simplicity, suppose that jo = 0. The more general case can easily be

seen from this case. From (5.21), we have that

PA,f = PA,jlf + Pj(f - PA,1f).

103

Thus,

PA,if = PA,of+Pl(f—PA,of)

= P0f+P1(f—P0f)

= (Pi +P0)f—P1P0f.

Going up one more level, it is not hard to see that

PA,2f = (P2 + P1 + Po)f - (P1P0 + P2P0 + P2P1)f + P2P1Pof.

Then, we can predict the form of PA,j where j is an integer between jo and J.

Theorem 5.3.1

j+1

PA,jf = (P P1)f,
n=1

where i+i . . . , i1 are integers between 0 and j.

Proof Throughout the proof, we will always assume that i,. . . , i. are integers

between 0 and j. The result will be shown by induction. The base case is done

above. Next, suppose that

j+1

Then,

PA,j+1

PA,jf = (_i)Th+1 E (pin ... P,1)f.
n=1

= PA,j + F 1 (f - PA,)
j+1

= (_i)Th+1 (Ph .. .P 1)f+

n=1

j+1

n=1

(_1)n4.1 (P+1P ... P1)f.

104

Realizing that the last sum introduces all the new combinations of the projections,

we have that
j+2

PA,j+lf =
n=1

(—l)'

0

This form of the adaptive local scaling function representation will play a role when

we consider point evaluation of the representation.

Before an example is considered, a note regarding the complexity of the DSX

algorithm should be mentioned. It is shown in [9] that the DSX algorithm has

complexity 0 (IAI)

5.4 Numerical Experiment

Now that we have seen results of the local scaling function representation, we can look

at some numerical examples. First, we will simply look at some partitions formed

by different values of e and maxiter using the discrete dual. Then, we will use the

discrete dual to construct the actual adaptive local scaling function representation

and consider the error in the representation.

Example Consider the function

1(x) = { sin(x) x E [0,1] U [5,6]

0 x[0,1]U[5,6]

At x = 0, 1, 5,6 the first derivative has a jump discontinuity. Thus, we expect the

local Besov norms in the intervals containing these points to be large. This would

increase the value of the error function, forcing the oracle to refine the grid in these

105

0.8-

0.6

0.4 -

0.2 -

0

-0.2-

1f
7

x

Figure 5.1: A function with large local Besov norms

regions. A plot of the function is in Figure 5.1.

Using different values for e and maxiter, the oracle was iterated on [-1, 7] initially

partitioned at the half integers. The results are summarized along with the number

of points in the partition in Table 5.1. Figures 5.2 and 5.3 contain the plots of the

6 maxiter JAI
10_i 4 24
10' 8 24
iO 4 76
10-1 8 116

Table 5.1: Different partitions of the domain of the function

different partitions. Then Figure 5.4 is the same plots as Figure 5.3, just zoomed in

to illustrate that more points have been added around x = 0.

106

1

0

-1
-1
1

>E x x x x x x x x x x x x x)< X XXXXXXXx<

0

0 1 2 3 4 5 6 7

> x x x x x x x x x x
I I

x x x x >< xxxxxxxx•<

0 1 2 3 4 5 6 7

Figure 5.2: e = 10_' and maxiter=4 (top) maxiter =8 (bottom)

1

0

-1
-1
1

X x=wWxMMMWxxx >()< >(X X X X)<) *X>*<XXX -

I I

0

0 1 2 3 4 5 6 7

X X>=VWx>MMMMxxx X X X X

I I I I

x >< x x>=WMxxMMvMxxx -

0 1 2 3 4 5 6 7

Figure 5.3: e= iO and maxiter=4 (top) maxiter =8 (bottom)

1

0

-1

1

0

-1

x x x x x x

-0.1 -0.05 0 0.05 0.1

x x x xxxxxxxxx x x)<)<)< x

-0.1 -0.05 0 0.05 0.1

Figure 5.4: A close up of e = iO and maxiter=4 (top) maxiter=8 (bottom)

Note that for the case of € = 1Q_1, no new points were added to the partition

when maxiter was increased from 4 to 8. This is because the error function in

each subset of [-1, 7] after four iterations was already less than €. Iri fact, for this

107

example, after the oracle has operated once on the domain, a sufficient partition is

found. However, for the case of € = iO, more points were added to the partition,

and as expected they were concentrated around the points x = 0, 1, 5, 6. As well, in

this case, a sufficient partition was formed after the oracle operated seven times on

the domain. In the above example, a discrete dual of the third B-spline was used.

Finally, we should note that this could have had a large contribution of aliasing

error. If the initial partition had been at only integer values, the oracle would have

done nothing as the function values at all the partition points would have been zero.

Thus, it was crucial that the initial partition was at the half integers.

Now that we have seen some partitions of the domain, we are ready to form the

actual adaptive representation.

Example Again, consider the example

with the domain

= { sin(x) x E [0,1] U [5,6]

0 x[0,1]U[5,6]

c= [-1,7].

After forming the partition for different values of € and maxiter and then calculating

the adaptive local scaling function representation using the DSX algorithm with

the discrete dual, the resulting approximations along with the errors are plotted in

Figures 5.5, 5.6, 5.7 and 5.8. The notation fapprox (x) denotes the adaptive local

scaling function representation and

error (x) := If (x) - fapprox(x) I

108

0.25

0.5-

0

—0.5-

-1
0 2 4

0.2-

.2.0.15 -

0.05•

2 4

Figure 5.5: fapprox(x) and error (x) for 6 = 10-1 and maxiter=4

0.5

—0.5

—1
0 2 4

0.25

0.2-

.2.0.15

0.05.

2
x x

6

Figure 5.6: fapprox(x) and error (x) for 10_i and maxiter=8

2
0.

0.5-

-0.5-

0 2 4 6

0.025

0.02

.2.0.015
0

0.01

0.005

0
0 2

x
4 6

Figure 5.7: fapprox(x) and error (x) for 6 = i0 and maxiter=4

109

0.5

-0.5

-1
0 2 4 6

3

0
0 2 4 6

Figure 5.8: fapprox(x) and error (x) for € = 10-1 and maxiter=8

As before when € = 10_i, the sufficient partition is determined by level four. This

is why the error between maxiter=4 and maxiter=8 has not changed. Also, recall

the definition of an E-admissible operator. The idea is to force all the local errors

to be of order less than €. When looking at the plots of the error, it can be seen

that this is the case. Also, as expected, the error as well as the partition points are

concentrated around the singularities x = 0, 1, 5, 6.

Now, it is shown in [9] that the constant of proportionality depends on the Besov

norm of the function being represented. So, it appears in our case that the Besov

norm is somewhere around three. However, evaluating Besov norms is highly non-

trivial and it could be the case that the constant of proportionality would increase

if we considered a smaller value of € than iO.

Table 5.2 is a summary of numerical estimates of the L2() error of the approx-

imations for the different values of € and maxiter.

110

€ maxiter
10_i 4 5.9939 x 10
10_i 8 5.9339 x 1O
10 4 2.4951 x 1O
i0 8 1.4841 x 1O

Table 5.2: L2 (Q) error of some different representations

Recalling the bound from (5.3), it should be the case that ri_S is related to the

error. We can see that this is the case if .s = 1 as

5.9939x 1O < 1/240.0417

2.4951 x 10 < 1/76 0.0132

1.4841 x 10 < 1/116 0.0086.

The above example was selected for simplicity and ease of interpretation. How-

ever, the function has some specific symmetries which indicates that more demanding

tests should be the subject of future investigation.

Chapter 6

Applications

There are many applications from areas such as Physics and Engineering that lo-

cal scaling function representations can be applied to. In general, performing even

the simplest tasks on a complicated function can be computationally difficult. An

adaptive local scaling function representation gives us an alternative representation

of complicated functions. Since scaling functions have some nice properties, these

can be taken advantage of when performing these tasks.

As the DSX algorithm along with the discrete dual is tomputationally simple,

Matlab code has been written in order to form all of the plots that will be considered

in this chapter as well as plots from the previous chapter.

6.1 Point Evaluation

In order to look at almost any property of a function, we need to be able to perform

point evaluation. In our case, we are interested in doing point evaluation efficiently.

In other words, if we only want to evaluate our approximation at one point, we do

not want to have to build the entire approximation.

Let Q C R and f : Q - R. Let A be a partition set of 0, and let j0 and J be the

coarsest and finest levels of A respectively. Then, we have the single-level projections

given by

Pjf := 9A(f)q5.
AETj

111

112

Recall that the iterative step of the DSX algorithm simplifies as

PA,jOf = Jj0f

PAJf = PA,jlf +
AET

OA(f - PA,_.1f)q5A

PA! = PA,Jf.

Now, let x E f2 be some point at which we are interested in evaluating

PAf(x).

As A is a partition set of 0, we know that there is an integer j between jo and J

such that x E fZ. Consider the following algorithm.

1ev - j

for i=j,...,J

S,.:={AETi xEw}

if S"j 0

1ev - i

end

end

Note that the algorithm returns an integer 1ev with 1ev ≤ J. Then, we have the

following result.

Theorem 6.1.1 PAf(x) = PA,jevf(X).

Proof If x 0 w,\, then qA(x) = 0, so if x 0 w,\ for all A E T, then q(x) = 0 for all

A E T, so that if this is the case,

OA(f - PA,jlf)qA(x) = 0.
AET3

113

Then,

PA,f(x) = PA,-1f(x) + E O(f - PA,_1f)qA(x)
AET3

= PA,_lf(x). (6.1)

The design of the above algorithm picks the largest level i such that

X E 0,

and calls it 1ev. Thus, (6.1) indicates that

PAf(x) = PA,J_lf(x) = ... = Pt,ievf(X).

The importance of Theorem 6.1.1 is that we do not need to build the entire iteration

in order to evaluate the approximation at a point. This would be extremely important

if the point of evaluation x only requires us to go up a few levels of a rather large

iteration.

Now, there are restrictions we can impose on our partition in order to simplify

point evaluation. First, suppose that our partition is formed so that if A, E A form

two neighboring intervals, then

IIAI-IuII≤1.

That is, two neighboring intervals never differ by more than one level. Now, suppose

that for all x E ≤,

S,=O for alli<j-1andforalli>j+1, (6.2)

114

where x E 2j. Then, the single-level projections P,f for all i <j - 1 and i > j + 1

satisfy

Pf(x)=O.

In other words, if the condition given in (6.2) is imposed, the only projections that af-

fect the value of PAf(x) are Pj.if, Fjf, Fj+if. So, using Theorem 5.3.1 and Theorem

6.1.1, we have that

PAf(x) = PAlevf(X)

= PA,j+lf(x)

= (P +1 + Pi + Fj..i)f(x) - (1 1P 1 + Pj+iPji

+Pj+iFj)f(x) + Pj+iFiFiif(x). (6.3)

Now, in order to impose (6.2), we need to impose that for all j and for all A E T

Iwfl'c kl=O for all k7/j-1,j,j+1.

This can be achieved by making sure that, for any j, there are enough adjacent

intervals at level j before there is a jump in levels. The number of adjacent intervals,

as we will see, depends only on the support of the scaling function. This condition is

described in [9], and a partition that satisfies it is called M-graded where M is some

positive integer. More specifically, a partition is said to be M-graded if after there

is a jump between two levels, there are M intervals at this new level before the next

jump.

Now, we have constructed partitions that are not necessarily M-graded and may

not even jump only one level when changing levels. However, a program could be

115

written that takes any partition set of a domain and maps it to the smallest M-

graded partition set containing the original partition set. In fact, it is shown in [9]

that for any partition set A and any M E N, there is an Mgraded partition set A

such that

A CA and JAI Al. rl

Thus, we can always refine our partition to an M-graded partition without adding

too many new points to the partition.

In order to choose a value of M to guarantee ourselves that an M-graded partition

will simplify point evaluation as described in (6.3), we need the following theorem.

Theorem 6.1.2 If M ≥ 2(n - 1) where n is the size of the support of the scaling

function 0, then we are guaranteed that the point evaluation simplifies as in (6.3).

Proof We will only prove the result in the simplest case. The more general case

will become apparent from this case. Suppose that our scaling function has support

[0, n], and thus

SUPP q,k = [2k, 2(n + k)].

Suppose that we have an interval at level j of the form [0, 2] and furthermore,

suppose we want to move to level j + 1 in the next interval. Now, the values k in T

that intersect with the interval [0, 2] on a set not of measure zero are

Thus, the support of the approximation at this level will extend to the right until

the point 2n. Thus, we need level j + 1 to cover the entire interval

[2_i, 23n].

116

As the measure of this interval is 2-i (n - 1), and the length of intervals at level j + 1

are 2(j+1), a counting argument indicates that the number of intervals of level j + 1

before another jump must be at least

2(n - 1)
 2-(i') =2(n-1).

D

Thus, for Daubechies' second scaling function, in order to simplify the point evalu-

ation as described above, our partition must be M-graded where M ≥ 2(3 - 1) = 4.

The nice result is that M is independent of j.

6.2 Approximating a Derivative

Now that we can represent subsets of L2 (R) as a local scaling function representation,

we can look at derivatives. More specifically, we can approximate the derivative of f

by looking at the derivative of a local scaling function representation of f. Suppose

that we have some function f in an appropriate Besov space. Representing f as a

local scaling function, we have an approximation of the form

PAf=
i=io PI=i

Let x be some point where we are interested in the derivative of f. Then, assuming

that has a derivative at x for all significant A, we can estimate Df(x) by

DPAf(x) = c.\Dq \ (x),
i=io IAI=i

117

where D is the derivative operator. To ease notation, consider using the variables j

and k. That is,

DPA(x)f =

i=io kEZ

i=io kEZ

i=io kEZ

2/
j=jo

j,kDcb,k(X)

,kD(212ct(2x - k))

j,k23uI25(23X - k)

- k).
kEZ

Example A scaling function that has one continuous derivative is the third B-spline.

Suppose we are trying to differentiate the function

AX) = { sinx x E [0,1] U [5,6]

0 x[0,1]U[5,6]
(6.4)

at the point x = 1/4. Then, using the parameters 6 = .01 and maxiter=3, we get

an approximation of f

PAf = 2j/2 E c,kq(2x - k).
j=3 kEZ

Taking the derivatives of each side and using the fact that all the sums are finite, we

have that

DPAf =E 2 3j/2 23j/2 c,kD(2x - k).
j=3 kEZ

Letting x = 1/4, we get that

DPAf(1/4) = 1.2814.

118

Evaluating the true derivative, we get that

f'(1/4) = 2.2214.

So, in this example, we see quit a bit of error. This is because we only found a

representation in V4. The error could be decreased by moving to a higher multires-

olution. However, this becomes computationally expensive and cumbersome.

A more practical method of approximating a derivative would be to use a numerical

technique of differentiation on a local scaling function representation PAf of f. The

Matlab code is able to numerically differentiate the local scaling function represen-

tation using:

The forward-difference formula,

f'(xo) f(xo + h) - f(xo)
h

The backward-difference formula,

f(xo) - f(xo - h)
f'(xo) h

The three-point formula,

f (xo + h) — f (xo — h)
f'(xo) 2h

The five-point formula,

f'(xo) (f(xo - 2h) - 8f(xo - h) + 8f(xo + h) - f(xo + 2h).

Numerical differentiation relies on being able to do point evaluation. However,

we have already looked at how to do this in an efficient manner in a previous section.

119

Below are plots of the derivative of

sin(irx) x E [0, 1] U [5,6]

0 x[0,1]U[5,6]

using the forward-difference formula, three-point formula and five-point formula. As

well, there is a plot of the true derivative of f. Below, I am denoting the adaptive

local scaling function representation of f by Pf.

3

2

-3

0 2 4 6

Figure 6,1: Derivative of f(x).

0

-1 0 2 3 4 5

x

6 7

Figure 6.2: Forward-difference operator acting on Pf.

120

3

a
00
a-
)1)

-1

I-

-2

-3

x

Figure 6.3: Three-point operator acting on P

0 1 2 3 4

>1

5 6 7

Figure 6.4: Five-point operator acting on Pf.

Now, we have not really taken full advantage of the adaptivity when considering

numerical differentiation. In order to do this, we should not be partitioning the do-

main any finer than the oracle does (or at least only partitioning when it is absolutely

necessary). Then, numerical differentiation at some point x would only depend on

the interval °A containing x and the step size h would be the measure of D. At this

point, the differentiation is truly adaptive.

121

6.3 Approximating an Integral

Consider some compactly supported function f with appropriate Besov norms. Let

l be the support of f. Suppose we are interested in approximating

Instead of integrating f, we can integrate PAf. That is, we simply try to approximate

JR f with JR PAf -
Now, PAf is a representation of fin V0 . . . Vi. Writing PAf as

PA = E CA OX

we have

(6.5)

PAf=f
IAI 7o

Since everything has compact support, the sum is guaranteed to be finite. So, we

can interchange the integral and the summation to get

fPAf= cAf5A.
IAI=ao

Recall that the scaling function has the property

fR O(x)dx = 1.

Thus, we have that

fR cb,k(x) = fR 21 (2x -

= 23/22_a fR (x)dx

= 2_312.

(6.6)

122

This means that for any A,

JR

=

Substituting this into (6.6), we have that

fR PAf = >2_312 (6.7)
j=jo IAI=i

That is, the integral of PAf is simply a scaled sum of the coefficients in the expansion

given by (6.5).

Example Consider the function

I sin(rx) x E [0,1]

10 x[0,1]

In this example, we are using Daubechies' second scaling function on the domain

[-1, 2]. To keep things simple, the case of e = 1e' and maxiter=2 with an initial

partition at the half integers is considered. The non-zero coefficients at the two

different levels are given in Table 6.1. Summing up the coefficient from level 2 and

level 3, we get

CA

IAI=2
1.2603

c, = 0.0136.
IAI=3

Then, scaling these values and summing them according to (6.7), we get that

fR PAf 0.6350.

The actual value of the integral is

L sin(irx)dx = 0.6366.
Il.

123

k C2,k

0
1
2
3

0.2319
0.4652
0.4260
0.1372

k C3,k

0
1
2
3
4
5
6
7
8
9
10

-0.0227
0.0178
0.0268
-0.0100
0.0286
-0.0153
0.0142
-0.0117
-0.0313
0.0166
0.00036

Table 6.1: Coefficients in the adaptive local scaling function representation

Here we have only considered approximating the integral of f over its entire domain.

If we wanted to look at integrals over subsets of the domain of f, things become more

difficult. Even though scaling functions are local, there would be scaling functions

that would straddle the integration limits. If this is the case, we would need a method

to integrate a scaling function over only part of its domain.

Another technique would be to use numerical integration. As we know how to do

point evaluation, techniques such as Simpson's rule or the trapezoid rule are easily

implemented.

Suppose we have some function f whose definite integrals we are interested in.

Now, define the function

F(t) := f-00 f(x)dx.
F is good enough for evaluating any definite integral as

fb f(x)dx = F(b) -

124

From a numerical point of view, we first have to pick some step size At. Then, we

can use the recursive formula

p foo t pJ f(x)dx = f(x)dx+ f(x)dx
—00 t

f f(x)dx + Lt (f(t + t) + 1(t)).

Above, we have used the trapezoid rule to numerically integrate. Then, using the

notation F(t), we have

F(t + At) F(t) + At (f (t + At) + 1(t)) (6.8)

F(a) = 0 (6.9)

where a is the left boundary of the support of f. We should note that all the error

in this algorithm is accumulated as we iterate. Thus, one should take caution when

observing results for this iteration.

Now, all we have to do is replace f with some adaptive local scaling function

representation Pf of f. That is, we define

G(t) := JO Pf(x)dx,
and use the recursive formula

G(a) = 0

G(t + At) = G(t) + At (Pf(t + At) + P1 (t))

Example Consider the function

f(x) = { sin(x) x e [0,1] U [5,6]

0 x[0,1]u[5,6]

125

In this example, as f(x) = 0 for all x ≤ 0, we do not have to integrate all the way

to —oo. That is, we define F and C as

JO

t

F(t) = f(x)dx

ft

G(t) = I Pf(x)dx.
Jo

It is easy to see that F can be written as

fo

t

F(t) = f(x)dx

1—cos(irx)
XE [O,1]u[5,6]

It

XE (1,5)
It

0 xE(6,00)

Below, Daubechies' second scaling function with € = 1e 4 and maxiter=6 is used

to form an adaptive local scaling function representation of f. After iterating G(t)

in the recursive formula (6.8) with initial condition (6.9) and step size /t = 2-i, a

plot of G(t) was formed and is given in Figure 6.5.

0.7

0.6 -

0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0 1 2 3 4 5 6 7

Figure 6.5: Approximation of an integral

126

8

0 1 2 3 4 5 6 7

Figure 6.6: Error in an integral

The error in G is given in Figure 6.6. Using the 12 error to approximate the L2

error, we also have that

IIF(t) - G(t)IIL2() 0.1779.

Again, we have not taken full advantage of the adaptivity in the representation.

Ideally, we should approximate f f(x)dx as follows. First, write each interval O, as

= [aA, bA]

Now, the interval of interest [a, b] can be written as

[a, b] = [a, aA1] U [aA1, bA1] U . . . U [a, bAa] U [b.\ , b]

where with i = 1,•• , m are all the intervals from the partition entirely contained

in [a, b]. Then, we approximate f f(x)dx by
f b

fa
fa

b

PAf(x)dx

aA1 pb

PAf(x)dx+J PAf(x)dx+
fbA

J PAf(x)dx

127

where we use some type of numerical integration. In this case, I am going to use the

trapezoid rule so that

fb f(x)dx a 1 — a(pf() + PAf(a)) + b —bAa (PAf(b) ± PAl (bAn))

+ b (PAf(b) + PAf(a))
i=1

- a1 - a (PAf (a.\,) a(pf() + PAf(a)) + b —bAa (PAf(b) + PAl (bAj)
- 2

+ (Pf(b) + PAl (ax)).
i=1

Example Consider the same example as above, but this time we are going to use

(6.10)

the adaptivity to evaluate

where

I
 I f (x)dx

AX) = { sin(irx) x E [0,1]

0 x[0,1]

Now, using Daubechies' second scaling function, e = le-4 and maxiter=6, we get a

local scaling function representation of f. Then, approximating the integral accord-

ing to (6.10) we get

J 1 f(x)dx 0.6376.

Again, the true value of the integral was

10
f(x)dx= 0.6366.

11

6.4 Other Applications

Here we will briefly consider some of the classical applications of wavelet analysis.

A more detailed summary is given in [18].

128

6.4.1 Compression

The goal of compression is to store information while using as little data as possible.

Say that we have information stored as a real-valued function f. Then, a non-

linear approximation approach is to decompose f into some basis elements, and then

disregard all the coefficients except for the largest N. Since we have eliminated

some coefficients, this step loses some of the information stored in f. So, perfect

reconstruction is not possible.

In the context of local scaling function representations, the oracle decides on a

basis based on local Besov norms of f. Once we have all the coefficients, we store the

N largest coefficients and the scale and shift of the coefficients. Then, our compressed

signal becomes

PNf = 0Ai
i=1

Another technique is to choose some tolerance 6 > 0. Then, we disregard all coeffi-

cients that after being scaled appropriately are less than 6.

6.4.2 Denoising

Denoising is very similar to compression. In general, a compression scheme is per-

formed, and then the compressed signal is reconstructed. The algorithm works if the

noise is poorly approximated by wavelets.

In our setting, we have to assume that noise is poorly approximated by coarse

scaling functions or that the noise is quite high in the multiresolution. Then, after

we decompose a noisy signal f as an adaptive local scaling function representation,

we simply pick the largest N coefficients, and let the rest of them be 0. Then,

129

we reconstruct a new signal with these new coefficients and hope that some of the

noise has been eliminated while not losing the general shape of the function. Again,

one can also disregard all the coefficients that after being scaled are less than some

predetermined tolerance.

6.4.3 Differential Equations

Techniques of wavelet analysis have been used in differential equations to study

different types of problems. Wavelets are a good technique for studying differential

equations that exhibit qualitative properties such as spikes, jumps or corners. As

we have only been considering real valued functions, we have to restrict ourselves

to one-dimensional differential equations. That is, we can only consider ordinary

differential equations.

Consider a one-dimensional boundary value problem on the interval [0, 1] given

by

U" (t) = f(t,u,u')

U(0) = u(1) = 0.

(6.11)

A Galerkin method assumes that we can find an approximation to the solution

u(t) v(t) =
N

i=1

where (v (t))Y 1 are a linearly independent set whose span is close to the solution of

(6.11). In our setting, a good choice would be a collection of scaling functions from

multiple levels of a multiresolution. Then, the task is to minimize

E(v) := v"(t) - f(t,v,v').

130

Minimizing this function is another problem in itself. We would require some method

such as a least squares method to minimize the error. However, minimizing the error

function E(v) relies on efficient point evaluation.

A more complicated algorithm that one might be interested in is a one dimen-

sional time dependent partial differential equation. For example, we may have a

partial differential equation of the form

Ut = f(u,u)

u(x, 0) = g(x).

After discretizing the partial differential equation, one might be interested in

moving up one time step. That is, given u(x, to), find u(x, to + Lit). This task is not

easy in the local scaling function representation setting, at least without constructing

a scaling function representation from scratch each time we move up one time step.

Even the task of finding a sufficient partition of u(x, to + t) based on the partition

of u(x, t0) is very difficult.

6.4.4 Working at the Compressed Level

There are instances where necessary manipulations to a function can be performed

at a compressed level. This becomes important when we are working with a function

containing a large amount of data.

Consider the possibility that we could compress the images of an animation as

local scaling function representations. Then, we could compress the images such that

they are 1/n times the size of the uncompressed image for some n ≥ 1. If we could

perform some necessary manipulation at this compressed level, we could perform it

131

n times as fast. By Moore's Law, this is equivalent to waiting 1og2(n) years for the

computer speed to increase m fold.

6.5 Generalizations

There are many generalizations of all these results that could be looked at.

6.5.1 Higher Dimensions

We have only considered real-valued functions f : R - R. A generalization could

be built if we built the theory for functions f :R4 - R. This requires scaling

functions in higher dimensions. One of the simplest ways of constructing these is

to appropriate tensor products of the multiresolution with itself ri times. Scaling

functions and wavelet functions can be defined for this new multiresolution, using the

tensor product of the scaling and wavelet functions. Then, we are ready to do all

the work we have considered in this thesis in higher dimensional spaces.

An important application comes from multiresolutions of L2(I 2). An image can

be considered as a compactly supported function f : R2 - R. That is, it is a map

which takes a position (x, y) and maps it to a number associated to the colour bit at

(x, y). Wavelet analysis is particularly useful in this setting as pictures may exhibit

rapid changes in colour which could create large local Besov norms of f in this region.

6.5.2 Non Shift-Invariant Spaces

Wavelet analysis has many of its nice properties because in order to understand

the entire multiresolution, we really only need to understand one function in V0.

This comes from the shifting and scaling properties of the multiresolution. However,

132

there are ways to decompose L2 (R) in a non shift-invariant setting. This leads to

the question of how the above theory could be generalized in this setting. Except

for acknowledging that it is a problem, it shall not be discussed any further in this

thesis.

Chapter 7

Conclusions

Wavelet analysis is one of many methods to approximate a large class of functions

to any desired tolerance. The locality of scaling and wavelet functions allows one

to control the error at a local level. Thus, we can distribute the error evenly in an

adaptive local scaling function representation.

The first obstacle in creating a local scaling function representation was calcu-

lating the scaling and wavelet function coefficients. It is known that in general,

these coefficients can not be evaluated exactly. We have looked at some different

techniques of approximating the coefficients as well as a method to help increase the

convergence of the approximation to the true coefficients.

Once we were able to accurately approximate the necessary coefficients, we needed

a method to create an adaptive projection. We have used the DSX algorithm to cre-

ate these adaptive representations. The DSX algorithm had two major steps that

we had to consider.

First, there was the problem of constructing an appropriate partition of the do-

main of the function we were representing. An error function that was defined in

terms of scaled local Besov norms was used to determine this partition. Once a par-

tition was constructed, we needed to calculate the actual projection. The iteration

in the DSX algorithm is designed for this task, except that it is computationally

difficult to work with. However, we saw that if we pick the proper quasi-interpolant,

the iteration was greatly simplified.

133

134

Once we had the adaptive local scaling function representation, we considered

different applications of this representation. We found that point evaluation was

reasonably simple, and that if we had appropriate conditions on the partition, point

evaluation became extremely simple. Once point evaluation was considered, we were

able to look at numerical differentiation and numerical integration. A brief descrip-

tion of some of the classical applications of wavelet analysis was also given. As well,

a few generalizations of the ideas discussed in this thesis were mentioned.

In summary, we have seen how to accurately create an adaptive representation

of any appropriate function with little effort. The overall algorithm that we have

described is self-sufficient in the sense that the algorithm determines everything from

the grid to the projection. Many applications and generalizations regarding these

representations exist, and thus there are a lot of areas ripe for further investigation.

Bibliography

[1] J.C. Feauveau A. Cohen, I. Daubechies. Biorthogonal bases of compactly sup-

ported wavelets. Comm. Pure and Appi. Math., 45:485-560, 1992.

[2] R. Bartels and F. Samavati. Reversing subdivision rules: Lo-

cal linear conditions and observations on inner products. cite-

seer. csail. mit.edu/bartels99reversing.html, 2000.

[3] B. Beckermann and G. Labahn. A fast and numerically stable euclidean-like

algorithm for detecting relatively prime numerical polynomials, Jan 1998.

[4] G. Beylkin. On wavelet-based algorithms for solving differential equations. In

Wavelets: mathematics and applications, Stud. Adv. Math., pages 449-466.

CRC, Boca Raton, FL, 1994.

[5] K. Bittner and K. Urban. Adaptive wavelet methods using semiorthogonal

spline wavelets: Sparse evaluation of nonlinear functions. Preprint, Universitt

Ulm, 2004.
\

[6] C.K. Chui. An Introduction to Wavelets. Academic Press, San Diego, 1992.

[7] Albert Cohen. Numerical Analysis of Wavelet Methods. North-Holland, 2003.

[8] John Conway. A Course in Functional Analysis. Springer, 1990.

[9] Wolfgang Dahmen, Reinhold Schneider, and Yuesheng Xu. Nonlinear function-

als of wavelet expansions—adaptive reconstruction and fast evaluation. Numer.

Math., 86:49-101, 2000.

135

136

[10] Ingrid Daubechies. Orthonormal bases of compactly supported wavelets.

Comm. Pure and Appl. Math., 41:909-996, 1988.

[11] Ingrid Daubechies. Ten Lectures on Wavelets, volume 61 of CBMS-NSF Refional

Conference Series in Applied Mathematics. Society for Industrial and Applied

Mathematics, Philadelphia, 1992.

[12] Ingrid Daubechies and Wim Sweldens. Factoring wavelet transforms into lifting

steps. Technical report, Bell Laboratories, Lucent Technologies, 1996.

[13] Anthony D. DeRose Eric J. Stollnitz and David H. Salesin. Wavelets for Com-

puter Graphics: Theory and Applications. Morgan Kaufmann Publishers, San

Fransisco, 1996.

[14] Jochen Fröhlich and Kai Schneider. An adaptive wavelet-vaguelette algorithm

for the solution of PDEs. Journal of Computational Physics, 140(2):174-190,

1997.

[15] Charles F. Van Loan Gene H. Golub. Matrix Computations. The John Hopkins

University Press, 1996.

[16] Christopher Jekeli. Spherical harmonic analysis, aliasing, and filtering. Journal

of Geodesy, 70:214-223, 1996.

[17] Stephane G. Mallat. Multiresolution approximations and wavelet orthonormal

bases of L2(R). Transactions of the American Mathematical Society, 315(1),

September 1989.

137

[18] Maria Cristina Pereyra and Martin J. Mohienkamp.

Wavelets, their friends, and what they can do for you.

http://www.math.ohiou.edu/ mjm/20044/PASIII/waveletPASlll.pdf, 2004.

[19] Guanzhong Dai Quan Pan, Lei Zhang and Hongai Zhang. Two denoising meth-

ods by wavelet transform. IEEE Transactions on Signal Processing, 47:3401-

3406, December 1999.

[20] H. Resnikoff and Jr. R. Wells. Wavelet Analysis. The Scalable Structure of

Information. Springer-Verlag New York Inc., 1998.

[21] Khalid Sayood. Introduction to Data Compression. Academic Press, San Diego,

1996.

[22] Gilbert Strang. Wavelet transforms versus fourier tranforms. Bulletin of the

American Mathematical Society, 28:208-305, April 1993.

[23] Wim Sweldens and Robert Piessens. Quadrature formulae and asymptotic error

expansions for wavelet approximations of smooth functions. SIAM J. Numer.

Anal., 31(4):1240-1264, 1994.

[24] Pierre Verlinden and Ann Haegemans. An asymptotic expansion in wavelet

analysis and its application to accurate numerical wavelet decomposition. Nu-

mer. Algorithms, 2(3-4):287--298, 1992.

[25] Antony Ware. Finite discrete projections onto wavelet spaces. Working paper.

[26] Antony Ware. Proving that discrete duals can be constructed ... Working paper.

