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ABSTRACT 

Producing the sound of a large bell in an orchestral setting is 

considered to be one of the most significant unsolved problems of the 

percussionist. A real bell of the proper frequency range is too large to 

control in performance and too cumbersome to suspend or transport. 

The use of bell plates in place of actual bells has had limited success 

due to the difficulties encountered in producing accurate pitch, 

sufficient amplitude and a reasonable frequency response. This thesis 

is based on a novel, multidisciplinary approach which has resulted in 

the production of bell plates with marked improvement in the most 

problematic areas. The musical value of the research has been 

demonstrated by two bell plates designed to produce the sound of 

distant church bells in the final movement of Hector Berlioz's 

Symphonte Fantasttque. The plates were used in performances by both 

the Calgary Philharmonic and the Vancouver Symphony. 
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INTRODUCTION 

Since the age of Galileo, science and art have existed in "two 

solitudes", with little or no communication between them. Any 

information transfer which did take place tended to flow from science 

to the arts. Science was thought to have much to offer the arts but the 

arts were considered too subjective to be of any use in science. 

Science has become the language of the 20th century and is still seen 

to be the most credible source of knowledge. In discounting the arts 

as lacking objectivity, scientists have denied themselves access to an 

entire sphere of conceptual and analytical knowledge which has the 

potential to open doors to the solution of the many difficult problems 

facing science today. 

It is vital that science and art develop a more symbiotic 

relationship than that which currently exists. The centuries old rift 

between art and science must be closed and an atmosphere of mutual 

respect established before real advances in knowledge can be made. 

Science can only benefit from a full and equal partnership with the 

arts. Identifying and properly implementing the skills and knowledge 

that exist in the arts can bring about the solution of scientific 

problems which have previously defied solution. In addition, the 

knowledge gained from proper artistic input can often expose 

weaknesses in scientific theory and point the way to improvements in 

theory and practice. 

The opportunity to test the validity of this approach came in the 

form of a request from the percussionists of the Calgary Philharmonic 
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Orchestra to design metal plates which would imitate the sound of 

large church bells for a performance of Hector Berlioz's "Symphonic 

Fantastique". Given the vast amount of research involving the vibration 

of plates, the problem initially appeared to be a straightforward design 

task employing one of the many variations on the Rayleigh-Ritz 

Method. The results, however, were totally unsatisfactory. The sound 

of the plates produced using the theory bore little resemblance to the 

power and beauty of church bells and the plates were impossible to 

tune accurately. 

Further Investigation of the problem revealed apparently 

insurmountable problems in developing an accurate theoretical model. 

In fact the possibility of plates imitating bells had long ago been 

rejected by Helmholtz [1.0]. Still, the percussionists of the Calgary 

Philharmonic were convinced that this should be possible. The 

intuitive convictions of the musicians proved, in fact, to be correct, but 

not by using the usual scientific approach. The path to an effective 

solution lay in a careful study of the skills, knowledge and intuition of 

highly trained musicians and the proper implementation of these 

factors in seeking a better scientific model. 

The specific problem to be solved in this thesis is the prediction 

of the natural frequencies of a freely suspended plate. The original goal 

of identifying and using the "subjective" knowledge of musicians to 

compensate for an unworkable theoretical model and arrive at a 

successful solution has certainly been met, demonstrating the power 

and potential of a full and equal cooperation between artist and 

- scientist. The final model and the actual prototype were very 
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successful and were used in performances by the Calgary Philharmonic 

and the Vancouver Symphony. Combining art and science in this way 

has also raised new questions and pointed out many areas for further 

research. 
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CHAPTER 1 

HISTORICAL LITERATURE SURVEY 

The study of the acoustical/vibrational characteristics of metal 

plates has a particularly interesting place in the history of acoustics, 

vibration and music. Pythagoras may have been inspired to begin his 

numerical investigation of consonance, not by the vibration of a 

stretched string as is commonly thought, but (according to Boethius) 

through a chance encounter with blacksmiths pounding on metal 

plates. The different sizes of hammers used by the blacksmiths 

happened to produce a pleasing consonance of intervals. These sounds 

piqued the interest of Pythagoras. He then used a stretched string to 

develop his theory of tonal relationships which formed the basis of 

musical development in the western world [1.2]. 

Controversy developed through the centuries over the rigidity of 

Pythagoras' numerical relationships because of the musician's intuitive 

but unarticulated need for greater tonal flexibility. Eventually the 

conflict resulted in the development of several different methods of 

tuning such as tempered intonation and just intonation which enabled 

musicians to respond to the needs of new and more complex musical 

styles [1.31. This controversy also contained the seeds of the 

philosophical point of this thesis: When applying the numerical 

concepts of science to the intuitive world of the arts, proper 

communication between the scientist and the artist has the potential 

to propel analytical methods to new standards. 
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There is little record of further analytical descriptions of music 

until the 15th century when Benedetti [1.4] tried to relate musical 

pitch to the frequency of mechanically observed oscillations. This idea 

remained undeveloped until the 17th century when Vincenzo Galilei 

[1.5], Francis Bacon [1.6] and Johannes Kepler [1.7] independently 

began to study the mathematical nature of sound and vibration. The 

apparent applicability of mathematics to music has prompted nearly 

every significant scientist and mathematician from the founders of 

modern science to the present to try their hand at formulating the 

behaviour of vibrating bodies and the resulting acoustical phenomena 

[1.7a]. 

Especially significant in these early years of modern science are 

the attitudes of scientists to music and the arts in general. The first 

identifiable scientists in the modern sense were also musicians or 

artists. Francis Bacon was a philosopher while Vincenzo Galilei was a 

lutenist and composer who made substantial contributions to musical 

theory. Galileo Galilei (son of Vincenzo) was a lutenist as well. Kepler's 

musical fluency is evident in his Harmonices Mundi Librt V [1.7b]. 

Understanding both the needs of the artist and the mathematical 

restrictions of Pythagorean harmony, these men consulted musicians 

and craftsmen. This led them to discover new mathematical 

relationships which allowed men like Vincenzo Galileo and Gioseffo 

Zarlino [1.7c] to expand on the arithmetic relationships developed 

seventeen centuries before. 

As science and the arts gradually split into the separate 

disciplines of today, fewer of the immediate successors of the first 
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men of science saw any need to cultivate skill in the arts. The interest 

of science in vibration and acoustics became "purely scientific". 

Mersenne [1.101 began to relate frequency to the physical dimensions 

and the state of tension of the vibrating body. Hooke [1.111 affirmed 

the link between frequency and pitch using a rotating toothed wheel. 

Huygens began to formulate the concept of overtones and the idea that 

a body may vibrate with more than one frequency at the same time. 

Wallis took up the study of vibrational nodes [1.12] while Sauveur 

examined the phenomenon of beats and the different timbres of 

sounds having the same frequency. It was, in fact, Sauveur who coined 

the term 'acoustique' in 1700, separating the science of sound from 

the study of music. This coincided with the denigration of the work -of 

Rameau [1,14] and other musicians by scientists such as Fonatelle 

[1.13]. Now It was not only unnecessary to cultivate skill and 

knowledge in the arts, it was undesirable. Sauveur was known to have 

"neither voice nor ear" but relied on musicians and craftsmen to help 

him in his acoustic experiments [1. 13a] , 

Into this atmosphere of rift between science and the arts 

entered a very significant pair of scientists working in the middle of 

the 1700's. The work of Daniel Bernoulli and Leonhard Euler clearly 

showed the error of those scientists who choose to discount the value 

of the arts. Bernoulli had trained as an organist while Euler, perhaps 

because of a visual impairment, had little or no training in the arts. 

Bernoulli is often considered to be the founder of mathematical 

physics while Euler has the reputation of being the most prolific 

mathematician of all time. Both men applied their skills to the 
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problem of quantifying the phenomena of acoustics and vibration and 

shared the credit for developing a theory for the vibration of beams 

[1.15,1.16]. 

Euler, the mathematician, produced several works describing 

the mathematical nature of consonance and its effect on the evolution 

of scales and modes in music [1.16b]. Bernoulli, the 

musician/mathematical physicist, contributed to the analytical body of 

knowledge but maintained that there was more to musical sound than 

these simple relationships. He formulated the concept of sound as a 

superposition of many resonant modes of the same body and proposed 

the idea that the varying relative strengths of these modes were 

responsible for different qualities and timbres of tone. 

Although Euler (as well as d'Alembert) developed the 

differential equations of motion and the general field of mechanics, he 

was unable to prove or disprove Bernoulli's ideas about the. 

composition of sound. Verification of the concept of superposition 

would not come for another century although Fourier presented the 

same basic idea in relation to heat conduction. Euler was very critical 

of Fourier's work [1.17] and this was likely the reason that Fourier 

analysis was not developed until many years after Fourier died. The 

rejection by Euler of Fourier's ideas as well as Bernoulli's claim that 

Euler's view of musical relationships was too simplistic is a significant 

example of the rift between science and the arts resulting in an 

oversimplified analytical model of a physical phenomenon gaining 

acceptance in spite of the artistically influenced objection that the 

model does not address the true nature of reality. It took more than 
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one hundred years of research for science to catch up with Bernoulli's 

(and Fourier's) concept of the complexity of sound which very likely' 

stemmed from Bernoulli's expertise as a musician. 

As Bernoulli moved away from pure mathematics to 

experimental methods supported by mathematical theory, metal plates 

and beams again became important as experimental models for the 

study of the physics of vibrating beams and rods. The work of Bernoulli 

and Euler paved the way for Ernst Chladni (1787) to develop his well 

known Chiadni figures, formed by the migrations of sand on a vibrating 

brass plate to lines which were believed to represent the nodes of the 

modes of vibration [1.18]. Chiadni first used these plates to verify the 

Euler-Bernoulli beam theory. The popularity of his figures also opened 

the door for research into the correlation of nodal patterns with the 

frequency of vibration. Sophie Germain used the calculus of variations 

to develop a differential equation for the vibration of plates which was 

later completed by Lagrange [1. 18a]. 

As more complex relationships which could not be explained by 

the mathematical theories of the time were discovered, the role of 

careful observation became increasingly important. The need to 

accurately measure such parameters as the frequency and amplitude of 

vibration increased accordingly. The 19th century saw parallel 

research on the part of Faraday, Helmholtz and Rayleigh to understand 

the theoretical nature of sound and vibration as well as to develop 

more precise measurement devices to expose the physical actions of 

vibration bodies. Once again vibrating metal bars came to the fore as 

Scheibler developed a series of tuning forks in 1834 which permitted 
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the determination of frequency within 4 hz [1.19]. The frequency 

standard of A = 440 hz was adopted (ca. 1840) and further advances in 

measurement using tuning forks and sirens were developed by 

Helmholtz, Koenig [1.20] and Rayleigh [1.211. 

By the middle of the 19th century the interest in the 

development of acoustical theory and experimentation resulted in the 

production of the first major treatises on acoustics. Helmholtz's 1863 

work Die Lehre von den Tonemfindungen als Physiologische 

Grundlage für die Theorie der Musik was followed by Rayleigh's book 

The Theory of Sound in 1877. From these two works, stemmed the 

development of acoustics into the multi-faceted field that it is today. 

The significance of Helmholtz's work was in the coordination of 

scientific research in acoustics and perception with the musical 

theory, instruments and styles of the time. Helmholtz was able to look 

further into the importance of timbre and the detection of harmonics 

through his development of 'Helmholtz Resonators' and the 

refinement of Schreibler's Tonometer. While Helmholtz 

acknowledged the necessity of training the ear as a sound analyzer and 

was an amateur musician, his work is (by his own admission) 

restricted by his limited artistic development [1.22]. His references to 

the 'braying' of brass instruments [1.23] and the 'detestable' sound of 

hand bell choirs do indeed brand his musical tastes as undeveloped. 

While his artistically simplistic view of musical sound allowed 

Helmholtz to see more clearly the fundamentals of the physics of 

music and the perception of sound, he missed an important 

opportunity to affirm the importance of the skill and knowledge of the 
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artist in expanding this body of knowledge beyond its fundamental 

principles. The limitations of the scientific view of music were clearly 

recognized by the famous german critic Eduard Hanslick (a 

contemporary of Helmholtz) who stated that "science will never 

understand the complexity of the musical tone" [1.25] .Only recently 

has the usefulness and importance of the skill and perception of the 

artist begun to be recognized by scientists and then only by a few 

[1.24]. 

Helmholtz made a significant contribution to both science and 

the arts despite (or perhaps indicated by) the criticism from both 

sides that he had leaned too far toward the other. He also recognized 

the potential of trying to understand the perceptions of the artist but 

admitted that he was "too much of an amateur to be able to approach 

it" [1.25a]. 

In the area of plates, Helmholtz successfully identified the 

similarities and differences between bells and plates: "Both have 

inharmonic partials but bells have these partials spread out more than 

plates." [1.26]. Helmholtz was put off any further consideration of the 

similarities by the seeming inability of a plate to produce a sound 

which is not a jumble of "secondary tones (which) are so numerous. 

and nearly of the same pitch that most observers would probably fail to 

separate them satisfactorily" [1.27]. 

Rayleigh's Theory of Sound represents the first comprehensive 

theoretical development of the physics of sound. It is also the first 

successful attempt to develop an analytical method for determining 

the fundamental frequency of a vibrating plate. Rayleigh assumed that 



11 

the energy of vibration exists only as kinetic and/or potential energy. If 

damping is ignored there is no change in the total energy of vibration 

of a body. This concept established a theoretical basis for the analysis 

of the frequency of vibration which spawned most of the methods used 

today. Rayleigh used his method to predict the fundamental frequency 

of a freely suspended circular plate. 

Although Rayleigh's work provided the basis, it is actually Ritz's 

presentation of a paper in 1909 which generally receives the credit as 

the first real breakthrough in the analysis of a free-free metal plate 

[1.28]. Almost every method used to date acknowledges a debt to 

Ritz's addition to Rayleigh's method. Ritz expanded Rayleigh's method 

to include a better representation of the mode shapes of a vibrating 

plate. The mode shapes, together with the boundary conditions, 

permitted a reasonably accurate analytical method which would 

predict the harmonics as well as the fundamental frequency of a plate 

under any condition of support. Ritz's method serves to impose 

additional stiffness factors which result in a higher predicted 

frequency than actually occurs in practice. Ritz demonstrated the 

effectiveness of his method by analyzing a free-free square plate. 

The completely free plate is difficult to analyze because of the 

complicated boundary conditions which must be included to solve the 

equation of motion. Researchers much prefer a clamped or simply 

supported model which presents less formidable mathematical 

difficulties. In the twentieth century, freely suspended metal plate 

analysis seems to undergo a revival every ten or twenty years as a new 

variation of the Rayleigh-Ritz method surfaces and is then put aside as 
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its limitations are realized. In the 1930's, Mary Wailer as well as 

Andrade and Smith reworked Chiadni's research on nodal patterns 

and discovered that the Chladni figures did not show lines of zero 

amplitude but instead showed the condition of equilibrium between 

the acceleration of a point on a plate and the gravitational constant 

[1.29]. Nothing more happened until 1950 when Young [1.301 and 

Warburton [1.311 used Ritz's method and more sophisticated 

mathematics to extend the number of terms and therefore the number 

of modes and aspect ratios which could be used. In 1969, Leissa 

surveyed the research on the vibration of plates [1.321 and with the 

development of computer technology in the 1960's and 1970's 

presented the possibility of solving even more complex versions of the 

Rayleigh-Ritz method. Leissa used this technology to more precisely 

predict the behaviour of a great variety of aspect ratios and support 

conditions [1,33]. In 1980 Gorman presented an entire book on the 

free vibration of rectangular plates [1.341. In this work he develops an 

extension to the Rayleigh-Ritz method which uses superposition of 

support methods to achieve still greater accuracy. Gorman also 

identified several conditions related to high aspect ratio plates which 

are of fundamental importance in the study of bell plates. 

Since the introduction of the Rayleigh-Ritz method, extensive 

research has been done on the vibration of plates with the notable 

exception of the free-free plate. Every work which does address this 

condition does so with an apology for the lack of precision of the 

results. This indicates that there is much to be done in the analysis of 

the freely suspended plate. 
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CHAPTER 2 

MULTIDISCIPLINARY CONSIDERATIONS 

Research involving different disciplines within the same general 

area (eg. the sciences) requires the researcher to expand his or her 

knowledge and vocabulary in order to perform effectively. In bio-

mechanics, the engineer must learn physiology as well as the 

mechanics of materials. Once this expanded knowledge base has been 

mastered, the resulting research often proves valuable in both 

disciplines. 

Multidisciplinary research between entirely separate areas of 

knowledge (eg. science and art) involves a much more difficult barrier. 

Within the sciences or within the arts there exists a common 

knowledge base and a like-mindedness which facilitates interaction 

between two different sciences or two different arts. However, this 

common ground does not exist between science and art. Methods of 

education and performance evaluation are very different. The popular 

view has long been that science is objective while the arts are 

subjective. Science relies on logical process and method while the arts 

rely on intuition. Much has been said to challenge the posture of 

objectivity taken by science. However, the focus of this research is to 

explore the "subjective" or intuitive nature of the arts, to identify the 

skills and knowledge in a manner which the scientist can understand 

and to apply this knowledge to the solution of a problem which seems 

to defy objective analysis. 
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INTUITION 

With this goal in mind, the first step is to examine the phenomenon of 

intuition. While many great scientists willingly attribute their 

discoveries to a flash of intuition (regarded as the inexplicable gift of 

the genius), their ideas will not be accepted until rigorous quantitative 

analysis provides verification. The arts on the other hand, and 

particularly the high arts, are entirely driven by intuition. The 

movement from note to note or brush stroke to brush stroke is 

intuitively chosen from a myriad of possibilities. As the musical phrase 

or visual picture takes shape, the process has become so complex and 

intricate that a quantitative analysis or representation is impossible. 

The arts must exist solely on the strength of an intuitive result which 

cannot be quantitatively validated, thus the perception of the arts as 

"subjective" and therefore of little use in science. 

Intuition without quantitative analysis is viewed by science to be 

subjective, illogical and devoid of credibility in a research 

environment. This implies that the artist, who relies heavily on highly 

developed intuition, is also subjective, illogical and devoid of 

credibility in a research environment. Recently, intuition has been the 

subject of studies by several leading researchers in the field of 

psychology [2.1, 2.2, 2.31. Within even the last two or three years there 

has been a significant shift in the scientific view of the process and 

validity of intuition. Rather than being seen as an inexplicable personal 

gift, intuition is becoming validated as the predictable product of 

training and practice. Intuition is not a gift but a learned skill 
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requiring hundreds and thousands of hours of learning and 

experience. The problem with intuition is that it seems to by-pass the 

logical, methodical scientific process. A person with highly developed 

intuition seems to jump inexplicably to the answer, leaving those less 

experienced with the problem to wonder at the seeming lack of 

logical thought and to question the credibility of the answer. 

University of Pittsburgh Professor of Psychology Robert Glaser 

maintains that "the performance of highly competent individuals 

indicates the possession of, rapid access to, and effective utilization of 

an organized body of conceptual and procedural knowledge" [2.4]. The 

knowledge base of a highly skilled person allows that person to quickly 

see patterns rather than individual steps or components. It is the 

rapidity of this pattern recognition which seems, to the non-expert, to 

defy a logical step-by-step progression. 

Pattern recognition is one of the fundamental skills of the highly 

trained musician as well as the scientist. This is one of the reasons 

why the training of a musician is such a long and difficult process [2.51. 

As well as developing the physical or fine motor skills to perform on a 

musical instrument, the musician must also, over time, develop a 

unique set of 'aural templates', specific to his instrument, with which 

to control tone quality, pitch and rhythm. To the musically unskilled 

scientist or amateur musician, the results of these unseen skills and 

processes are assumed to be the 'gift or talent' of the artist. 

To relate this idea to the problem at hand, consider the 

orchestral percussionist, the church bell and the free vibration of a 

freely suspended metal plate. 
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THE PERCUSSIONIST 

A percussion instrument is, by definition, struck and usually left 

to vibrate naturally (no forcing function). The percussionist does not 

control the sound once the vibration is set in motion. This means that 

the instrument itself possesses a quality of natural resonance or timbre 

that can be selected but not acted upon by the percussionist. It is the 

job of the percussionist to constantly seek out new and better 

sounding instruments. As a result, the skilled percussionist has a very 

highly developed sense of timbre stemming from the constant 

refinement of the aural templates against which the tone quality of all 

his instruments is measured. In addition, the percussionist and 

particularly the tympanist must be able to hear the pitch of 

instruments, like the tympani, which often have a very complex and 

inharmonic frequency response [2.6]. A string player or brass player, 

for example, has not developed the same auraltemplates and is usually 

unable to tune tympani because of the confusing harmonic content. 

CHURCH BELLS 

The sound of church bells is unmistakable due to their size, 

shape and material which have evolved throughout the centuries [2.7]. 

At the same time, each bell sounds different from every other bell. It 

seems reasonable to say that different listeners will prefer different 

bells, but there will be no doubt that all are bells. The choice of bell is 

subjective but the acoustical behaviour of all bells is constant 

(objective). When comparing the skills and experience (aural 

templates) of the percussionist to an untrained person, it can be seen 

that the borderline between the subjective (good or bad) and the 
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objective (bell or not bell) will shift. The years of experience or data 

gathering of the percussionist will permit a much more refined 

categorization of bell sounds. For example, is it a Chinese bell or a 

South American bell? Is It a thin bell or a thick bell? At a much finer 

level, is it a wedding bell or a funeral bell? The percussionist has a vast 

amount of experience and expertise which allows him to differentiate 

between bell sounds in a way that will appear to the untrained person 

to be intuitive and subjective but which is, in fact, objective and 

definable. 

METAL PLATES 

Given that the percussionist possesses the experience and 

expertise necessary to critique an experimental bell sound, the 

scientist must now ask the question "Is the musically trained ear 

superior to a sound analyzer when comparing the sound of a church 

bell to the sound of a suspended metal plate?" Tests with very good 

and very poor brass instruments have shown that an'FFT sound 

analyzer, being a mathematically averaging computer, cannot 

differentiate between subtle tone quality differences easily heard by 

even an untrained ear. If the desired result is not just a bell-like sound 

but a distant, eery bell sound calling the witches from their revel, (as 

in Symphonie Fantastique) the trained ear is, at the moment, the only 

choice. In addition, the ability of the percussionist to pick out the 

dominant pitch from a harmonically confusing frequency response can 

be very useful in tuning the bell plates. Once the proper sound is 

found, the sound analyzer can be invaluable in identifying the most 



18 

important aspects of the sound which can then be analyzed 

mathematically. 

SCIENTIFIC CONSIDERATIONS IN DEALING WITH MUSICAL 

PROBLEMS 

Having established the potential usefulness of the artist, it is now 

necessary to clearly define the areas of expertise required and the 

areas of limitations of both the scientist and the artist. The basic 

premise is that the goal of the research must be a musically credible 

result. This goal will be best realized by using the tools of the scientist, 

which are well documented but only approximate analytical methods, 

together with the skills of the artist, which are poorly documented or 

understood but able to cope with an enormous complexity of sensory 

input. The scientist must be aware that a high degree of complexity 

must be carried through the analysis in spite of the temptation to 

simplify the problem. For example, a simpler support method for a 

metal plate will allow a better analytic result, but the sound will be 

musically unacceptable. The artist is very skilled at producing sound 

and critiquing the quality of that sound but the scientist has the 

analytical tools for identifying and manipulating the useful properties 

of a musical instrument while minimizing the acoustically undesirable 

elements. 
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CHAPTER 3 

A STUDY OF THE MUSICALLY TRAINED EAR AND ITS POTENTIAL FOR 

APPLICATION OUTSIDE OF THE MUSICAL SPHERE 

The training of a professional musician spans a period of ten to 

twenty years, from childhood well into adult life. The focus of this 

training is on the musical development of the auditory system as well 

as the coordination of the motor skills necessary to perform on a 

particular musical instrument. In spite of this long and intensive 

training period, the musician often functions no better than average in 

clinical auditory testing [3. i]. In the areas where musicians perform 

better than average, a minimum of training will bring a non-musician 

up to the same level. However, to assume that the auditory system of 

the musician functions no better than normal is to ignore the 

overwhelming empirical evidence to the contrary. It is more 

reasonable to say that the auditory skills of the trained ear have not yet 

been clearly identified. The purpose of this chapter is to shed some 

light on the problem of identifying the unique qualities of the trained 

auditory system and to examine the possibility of adapting these skills 

to use outside of the musical sphere. 

MUSIC: "The science or art of ordering tones 
or sounds in succession, in combination and in 
temporal relationships to produce a composition 
having unity and continuity." [Webster's New 
Collegiate Dictionary]. 

To transform Webster's definition of music into a form more 

suitable for psycho-acoustical analysis, musical sound could be defined 
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as pleasing sounds which possess the elements of pitch, timbre, 

duration and loudness in a temporal setting. If sound is the language of 

music, then the musician must be expert at controlling the elements 

of musical sound. This study is restricted to consideration of the 

classically trained orchestral musician as this field of music requires 

the most extensive training. 

TRAINING 

Every serious student of music receives ear training in order to 

recognize the fundamental pitch relationships of harmony and melody. 

Over time these relationships have become increasingly complex. 

Early music consisted only of melody with no harmonic 

accompaniment [3.2]. Two or more voices sang in unison. The 

different frequency ranges of individual voices eventually necessitated 

the use of the octave. The incorporation of more than one pitch 

(harmony) began with the introduction of the vocal or instrumental 

drone. Accidental harmonies resulted and the harmonic interval of the 

fifth was the first to gain acceptance. From a frequency perspective, 

harmony progressed from accepting only unison or the octave to 

accepting fractional relationships such as the fifth (frequency ratio = 

3/2) and the fourth (4/3). The melodic and harmonic structures we 

use today began from these basic concepts. 

The student of music must go through the same process of 

development, learning to recognize, produce and appreciate the 

musically appropriate pitch relationships [3.3]. 

Up to this point, the training of the musical ear is common to all 

classically trained musicians. An advanced student must now begin to 
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examine the quality of sounds and phrases specific to his instrument 

rather than just the correctness of pitch and rhythmic relationships. A 

sense of timbre is coupled with fine adjustments in pitch, rhythm and 

loudness to produce the eloquent aural shading typical of the fully 

developed artist. However, each family of musical instruments requires 

the development of aural skills which are unique to that family. The 

pianist, for example, has little control over the piano string once it has 

been struck. A violinist, on the other hand, can continuously alter the 

pitch, timbre, duration and amplitude of any given note. Therefore, 

the pianist must be very adept at balancing the loudness and timing of 

the beginning of each note or chord but cannot influence the actual 

tone of the note once it has been sounded; The violinist is, in addition, 

concerned with developing control of the tone and pitch of individual 

notes. The variables which require adjustment by the performer 

depend on the type of instrument. A summary of these variables is 

presented in Table 3.1. Any attempt to determine the nature of the 

aural skills of a musician must take this into account. 

Table 3.1 exposes the distinct acoustical demands of the various 

orchestral instruments. Obviously, a double bass player must focus on 

the opposite end of the frequency scale from the flutist. On a more 

subtle level, the harpist has more control over the initial response of a 

note than the pianist because the strings are plucked with the fingers 

rather than struck by mechanical hammers. Although the instruments 

are very similar, the harpist must develop an extra dimension in the 

use of the auditory system in order to exert sufficient control over the 

instrument. An instrument like the violin permits and requires total 
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control over the pitch. The violinist must therefore develop a very fine 

pitch sense. Such a high level of pitch recognition is not as critical for 

the brass player who is assisted in playing the correct pitch by the 

natural harmonic series of an open pipe [3.4]. The table shows that, 

while all musicians have the same level of basic ear training, the 

advanced player must develop special skills related to his particular 

instrument. This is an important consideration when choosing 

musicians for the purpose of applying their skills outside of the 

musical sphere. A tuba player will not be as effective in a high 

frequency problem as a flute player. 

PHYSIOLOGY 

Having established the range of acoustical variables which the 

musician must be able to control, the next step is to examine the 

auditory system to isolate any factors which may contribute to musical 

training. 

The ear is considered to be a passive sensing device. Unlike a 

muscle, exercise will not increase stamina, sensitivity or reaction 

time. However, it cannot be said that all ears are therefore identical. 

Statistically, there is a range in the effectiveness of different systems 

from totally deaf to hypersensitive. Auditory systems capable of a high 

level of training will be those systems without defects. In general it 

can be said that if an auditory system has a normal physical makeup, it 

has the potential for musical training and once trained that same 

system will not differ in any physical sense from the untrained system. 

While musicians may possess auditory systems free of 

developmental defects, damage to those systems is an occupational 
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hazard in the music industry [3.5]. It is interesting to note that, 

although hearing damage is common amongst musicians, it often does 

not prevent the musician from performing properly. This presents two 

important considerations. Musicians are able to compensate for the 

loss by shifting the focus from the primary sensing mechanism to a 

secondary mechanism [3.6]. For example, under conditions of 

extremely loud music in an orchestra, players are able to maintain the 

proper pitch through the physical sensation of the vibration of the 

instrument. In addition, successful performance in spite of hearing 

damage indicates that the skill of the musician is located at a higher 

processing level of the central nervous system than that of sensation. 

The psychology of hearing deals mostly with judging the quality 

of a sound with respect to pitch, timbre and loudness [3.10]. A paper 

by McAdams [3.11] refers to the concept of "harmonic template 

matching" to explain the psychological development of hearing in 

musicians. The concept of harmonic template matching could be 

described as the memorization by each musician of a vast series of 

tonal qualities. For any given musical condition of style, harmony, 

melody, emotional and structural function, the accomplished artist can 

draw on this collection of templates, The incoming sound can then be 

compared to that of the appropriate template in the mind of the 

performer and feedback adjustments are made to bring the actual 

sound in line with the conceived sound. The development of these 

templates is a long process involving extensive exposure and trial and 

error. 
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As stated earlier, it is not enough merely to recognize musically 

appropriate sounds. A musician must develop the psycho-motor 

control to produce the desired sound. What form this development 

will take depends on the demands of the particular instrument. For 

the pianist, a fine sense of touch and timing between the ear and the 

fingers is essential. For the brass player, the coordination of the ear 

with the tongue, lips and fingers is required. String players need a fine 

spatial sense on the fingerboard combined with an even pressure and 

motion in the bow arm. To this point, isolating the various skills of the 

musician related to the auditory system has exposed aural skills which 

(with the exception of quality judgement) can quickly be taught to a 

subject with no musical ear training. The unique abilities of the 

musician surface in the coordination of these skills during 

performance where countless complex acoustical adjustments must be 

made quickly and continuously. This dynamic sensory-psycho-motor 

coordination involves every level of the auditory system. Most of the 

higher levels of functioning are poorly understood and difficult to 

access. 

Until recently, study of the auditory system has been through 

static, single tone stimuli which do not address the dynamic nature of 

music and the musician. Static testing removes the musician from his 

sphere of expertise. Every performer has experienced the drastic 

reduction in control and quality which occurs when attempting to 

produce a sound such as the constant repetition of a single tone in a 

non-musical setting. Given the need for dynamic functioning, it is not 

surprising that musicians do not perform any better than average in 
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aural testing. Until the auditory system is better understood and 

dynamic testing methods are developed, the unique qualities of the 

musically trained ear will continue to defy analysis. 

NON-MUSICAL APPLICATION OF THE TRAINED EAR 

There is a significant potential in uniting the skills of the 

scientist and the artist in the field of acoustics and vibration. The 

overriding problem in such an endeavour lies in the fact that the artist 

strives to control complexity and randomness while the scientist 

wants to reduce the problem to its basic principles. In order for the 

scientist to work successfully with the artist, the scientist must adapt 

to the need for dynamic licence while the artist must recognize the 

need for consistency. Given the fundamental conflict and the lack of 

precise knowledge regarding the functioning of the trained ear, a 

productive union of the scientist and the artist will be difficult to 

achieve. However, a few ground rules could pave the way for a 

successful ensemble. 

The restrictions of each type of instrument dictate the skills 

which will be developed by the musician. The musician should be 

matched to the problem using information such as that presented in 

Table 3.1. Again, it would not be productive to involve a double bass 

player in a high frequency problem. 

It is essential to allow the artist to work with the proper tools. 

Electronically produced, poor quality sound in a static environment 

will not tap the skills of the artist. Music performed on real 

instruments will involve the musician at the most productive level. 
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Real music reproduced by high quality electronics might be effective 

and would supply a degree of consistency. 

Communication between the scientist and the artist is the most 

important and the most frustrating aspect for both parties. The 

subjective interpretation of the artist must be reconciled with the 

scientist's need for concise, factual and consistent data. This can only 

be achieved in an atmosphere of mutual respect. 

The incorporation of these basic guidelines could facilitate the 

use of the musician in solving problems outside the musical world. The 

most potentially successful applications of this concept are in the area 

of room acoustics and musical instrument building. Other 'applications 

may surface as the concept becomes better developed. 
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TABLE 3.1 

MUSICAL INSTRUMENT CONTROL CHART 

IN STRUM 
ENT 

FREQ. 
RANGE (HZ) 

VARIABLES AND CONTROL OF VARIABLES 
(Total Control=, Good= I, Poor= I, No Control= I) 

Attack Decay Ampi. Freq. Timbre 

Single Mult. 

Piano 274 186 I I I I I I 

Violin 1962093 I I I I I I 

Viola 1301046 I I I I I I 

Cello 65659 I 0 0 I I I 

Bass 41246 I I I I I I 

Oboe 2331396 I I I I I I 

Bassoon 58622 I I I I I I 

Clarinet 146_..j658 I U I I I I 

Flute 261__2043 I U U I I I 

Trumpet 174__932 I U U I I I 

Trombone 82466 I I I I I I 

French 61698 I I I I I I 
Hn 

Tuba 41311 I 1 I I I I 

Tympani 87 ---- 174 I I I I I I 

Marimba 1302793 I I I I I I 

Harp 32__3 176 I I I I I I 

Drums white or I I I I I I 
pink 
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CHAPTER 4 

THE THEORY OF THE VIBRATION OF PLATES 

The governing differential equation for the free vibration of a 

thin plate undergoing small amplitude vibration is: 

a4w(x,y) 2a4W(x,y) a4W(x,y) Co  
X4 + 22 + - D W(x,y) = 0 

where 

x = distance along plate width 

y = distance along plate length 

W(x,y) = transverse displacement of the plate 

p = mass per unit area of the plate 
Eh  

12(1-D 

E = Young's Modulus of elasticity 

h = plate thickness 

= Poisson's ratio 

Co = frequency of plate vibration in radians per second 

Equation (1) is based on the simplifying assumptions: 

(a) The thickness of the plate is small compared with other 

dimensions. 

(b) No strain is suffered by the middle surface. 

(c) A line normal to the middle surface remains straight and 

normal after deformation. 

(d) Load is normal to the surface (if there is a load). 

(1) 



29 

(e) Deflections are small in comparison with the thickness of the 

plate. 

(f) The plate material is linearly elastic. 

Exact solutions for equation (1) with appropriate boundary 

conditions are very difficult to come by, particularly for the freely 

suspended plate. However, approximate methods do exist which can 

give good results for the prediction of the natural frequencies of 

vibration (con, n = 1,2,3.....) for a given plate which obeys the initial 

assumptions.The prediction of the natural frequencies of vibration of a 

freely suspended rectangular plate is the focus of this thesis. We can, 

therefore, restrict the analysis to examining the available methods for 

determining these natural frequencies. 

The additional requirement that the sound of the vibrating plate 

must be an approximation of the sound of a large church bell will lead 

to a very complex version of equation (1) which would have to model 

the structural damping of the modes of vibration as well as the strike 

of the mallet. Rather than attempt to develop or solve a model of this 

degree of difficulty, the existing approximate methods will be 

examined in order to extract the features which, when coordinated 

with the knowledge of competent musicians, can be used to develop a 

simpler model. 

The methods available for the approximation of co under various 

conditions of support stem from the Rayleigh-Ritz method first 

introduced in 1909 as a modification of an earlier method developed 

by Lord Rayleigh [4.2]. 
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RAYLEIGH-RITZ METHOD: 

Rayleigh's original method was based on the assumption that the 

energy in a body vibrating as a conservative system would be entirely 

due to the kinetic energy of motion (U) and, in the case of a plate, the 

elastic potential energy of bending M. If a suitable mode shape W(x,y) 

is assumed and the total amount of energy is considered to be a 

constant, the frequencies of vibration of the body can be determined. 

Ritz improved the representation of the mode shape by incorporating 

a series of functions, all of which conform to the boundary conditions. 

From Timoshenko [4.3], consider a segment of a plate of uniform 

thickness h. 

Fig. 4.1 A Plate Element 

And, using the following well known relationships: 

Eli = - (Uij , u,1) (2) 

=2Gej 
+ kkij (3) 

where 
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- (1+D)(1-2'u) 

= Kronecker's Delta 

aij = stress components (plane stress only) 

strain components 

G -  E 2(1+D) (the shear modulus of elasticity) 

The potential energy of the shaded strip in Fig. 1 can be represented 

by, 

CxxYx 
dV = ( 2 + 2 + dx dy dz 

where 

= shear stress in the x,y plane at level z 

Substituting equations (2) and (3) into (4) yields: 

(4) 

Ez2 2 r(aw a2ww 1 
dV = 2(1)2Lax2) + ' + ) + 2(1-D)( 2 jdx dy dz 

(5) 

For a plate of constant thickness h the total potential energy is 

D C 1i'a2w ia2w, 
V = - J ftax2 + ay2 f + 2D1ax2 ay2 J + 2 (l 1))axayJjdx dy 

(6) 

where 
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D Eh  - 

12(1_02) 

and the kinetic energy will be 

U =ph JJ()2dxd (7) 

In a vibrating body displacement must be a function which changes in 

time and space [W = W(x,y,t)J while obeying the boundary conditions 

imposed by the support method. 

If we assume that 

W=W0 Cos cot (8) 

where W0 is a function of x and y describing the modes of vibration, 

from equations (6) and (8) the potential energy will be a maximum 

when W = W0. 

I, 

D 
Vm= 2 

I, 

f[(aw0' (72 I 
0 xdy D1 2 - dax +2 J+ 2(1 D) x  

The kinetic energy will be a maximum for 

which gives 

aw 
--= 0)W0 

(9) 

(10) 

Um=Phco2jJ wo2dXdy (11) 
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From equations (12) and (14), knowing that Vm = Um for 

synchronous motion of a conservative system: 

/1 

D 
2 

.1 

J [ra2X• (a2w 0 a2w0a2w0' ,'2-  2 
j" I  221 211 Lax J+2(1D)axdxdy 

V ff(wo2dxdY) 

(12) 

It is difficult to establish exactly where Rayleigh's method ends 

and Ritz's method begins but the dividing line could be assumed to be 

that Rayleigh's method relies on a single term to describe the mode 

shape and satisfy the boundary conditions. This single term gives 

reasonably accurate results for simple systems such as the simply 

supported plate. However, for more complex conditions such as the 

freely suspended plate, the expressions which obey the boundary 

conditions: 

a2w(x,y) a2W(x,y) - 

ax2 +1.) 

a3w(x,y) a3W(x,y)  
ay3 + (2-D) ayax2 - 

a2W(x,y) a2W(x,y)  
ay2 +1) ax2 -o 

a3W(x,y) (2D)aW(xY) o 
ax3 + axay2 

(13) 

are very difficult to formulate and a better approximation of the mode 

shape is required. 
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Ritz's method,an extension of Rayleigh's method, was developed 

to deal with the more complicated support conditions and has 

dominated this type of analysis since it was first presented in 1909. 

Using Ritz's extension to Rayleigh's method, W 0 can be presented in 

the form of a series 

W 0 = a1a (x,y) + a20c2 (x,y) + a3cx3 (x,y) +. 

(14) 

where a (x,y) are suitable functions which satisfy the boundary 

conditions: 

a2 

ax2 ay2 

a2a a2 

-0 ay2 -0 

a3cx a3( a3a 
+ (2)ayax2 0 ax3 + (2D )a 2  0 

The series approximation for W0 will take the form 

W 0 = V ja.n X(x)Y(y) 

(15) 

(16) 

Substituting eq. (14) into (12) will produce an equation which is 

linear with respect to the coefficients am .. These coefficients are the 

only unknowns and must be calculated to give a minimum value for 

equation (12). This will result in a system of equations of the type: 

I' 

a  

aa1 

1 

I lra2 w 0\ (a2w a2w0a2w0a2wI 0221 2J x y  ax +2(1D)axj2 hwo2] dx dy =0 I 2 + 

(18) 
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Equating the determinant to zero will give the approximate values for 

the natural frequencies of vibration. 

The choice of the characteristic functions for X(x) and Y(V) is the 

essential difference between the many variations on the Rayleigh-Ritz 

method. Two common choices are to model the deflections X(x) and 

Y(y) with either beam functions or a Fourier series. 

CHARACTERISTIC FUNCTION MODELLED AS A SERIES OF BEAM 

FUNCTIONS. 

The derivation of the shape functions of a vibrating beam is presented 

here in detail because of its usefulness in future developments. From 

Timoshenko [4.3]: 

Modelling a beam of rectangular cross section lying along the x-

axis with transverse deflection in the y direction as a result of 

vibration: 

z 

4  

4  
1 

Fig. 4.2 

Fig. 4.2 Analytical Model For A Beam 

X 
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Under the effects of vibration, the element dx will be subjected to 

internal and external forces as shown in the following free body 

diagram: 

Fig. 4.3 

C 

MCI 

dx 
4 'I C+(aclax)dx 

I  'F 
Adx(awat) 

M + (Max)dx 

Fig. 4.3 Free Body Diagram Of A Beam Element 

Where 

C = shear force 

M = bending moment 

A = cross sectional area of the beam 

pA dx = mass of element dx 

For a beam vibrating transversely (displacement in the y direction) 

dynamic equilibrium results in: 

am dx - Cdx=O 
ax 

for the balance of moments and 

av Tx dx+pAdxaJ 0 

for the balance of forces. 

(19) 

(20) 
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From (19) and (20): 

a2M a2w 
ax 2 dx = -pAdx at2 

Now, incorporating the relationship 

M=EI a2w — 
ax 

where I = the moment of inertia 

and substituting (22) into (21): 

or 

and 

where 

a2 a2w a2w 
(EI a2)dX=PAdX at2 

a2w 
El a4w dx = -pAdx at2 

ax 

1 a2w 

ax  - - q2 at2 

IEI 
q=- pA \/ 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Since deflection varies harmonically with time in a normal mode of 

oscillation, 

W1 = X[A1cos(o)1t) + B1sin(olt)] (27) 

for the 11th mode. For any particular mode, substituting (27) into (25) 

yields: 

d4X w2 
4 2x_0 

dx q 
(28) 
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Equation (28) is a fourth order ordinary differential equation. 

The general solution of (28) can be written in the form: 

X= C1sin(kx) + C2cos(kx) + C3sinh(kx) + C4cosh(kx) (29) 

where 

k2 CO 
q 

The constants C1, C2, C3, C4 are determined by the boundary 

(30) 

conditions. 

The total deflection response can be expressed as a summation 

of all the normal modes: 

W =IMAicos(COM + B1sln(o lt)] (31) 

with appropriate coefficients A1 and B1. 

To move now from a beam to a plate, we can superimpose this 

result in both the x and y directions in eq. (18a) which can then be 

used in the Rayleigh-Ritz method. Leissa [4.4] used this displacement 

model with 30 terms (1=30) to predict the frequencies of vibration for 

plates with aspect ratios of 1 to 2.5 under the 23 possible types of 

support (two free sides and two simply supported sides, etc.). The 

case of the completely free plate is also presented although Leissa 

admits that this is the most poorly behaved analytical model. Some 

significant results from this model relating to the problem at hand are 

presented in Table 7.1 and Graph 7.1. 
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CHARACTERISTIC FUNCTION MODELLED AS A FOURIER SERIES 

An extensive work by Gorman [4.5] uses a Levy type solution 

which employs a single series of trigonometric functions to describe 

transverse plate motion. The importance of the aspect ratio (a/b) 

necessitates the use of a dimensionless form of equation (1): 

 + 2 a4W() 4a4W(,r1) - 4co4W(,r) = 0 (32) 
all 4 2 all 2a2 + a4 4 

where 

= , i = and = (see fig.4.4) 

a 
FigA.4 

Fig. 4.4 Coordinate System For Analysis Of A Freely Suspended Plate 
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Transverse motion is represented by 
k 

W() = Y(ii)sin(mit) 

where the coefficients YM are functions of i. 

Substituting equation (33) into (32) will give: 

1d4Ym() - 22(mit)2d2Ym() + 4[m - 4]Y()}sin(mit)=O 

(33) 

(34) 

This is an ordinary fourth order homogeneous differential 

equation with constant coefficients which will have a solution for each 

value of m. 

when 

and 

when 

where 

and 

= Am COSh 3m 1 + B sinhf + Cm SIfl7m Y + DCOSyr( (35) 

CO 2 > (Mir) 

= Am CO5hf3m 1 + B siflh3T + Cm sinhymr + Dcosh'y (36) 

<(mit)2 

OM = + (Mir)2 

YM = 442 - (MX)2 or /(mit)2 - 

(37) 

(38) 
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whichever is real.. The constants Am Bm Cm Dm are determined by 

the boundary conditions. 

Gorman introduces a further refinement in modelling the free 

vibration of rectangular plates by developing a unique superposition 

method to simplify the calculations required. The method claims 

greater accuracy for the completely free plate than any previous 

method. The results pertaining to the present problem are presented 

in Tables 6.2 to 6.4. 

ANALYSIS OF A SIMPLER CASE: 

Knowing that the freely suspended plate is the most difficult to 

model because of the end conditions, examination of a more 

approachable support method may offer additional insight into the 

more complicated case. 

A plate which is simply supported on all sides and vibrating in 

its doubly symmetric modes is the simplest of the free vibration plate 

problems with simply supported edges. 
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Fig. 4.5 

S 

S 

Fig. 4.5 Coordinate System For The Simply Supported Plate 

Deleting the antisymmetric terms from equations (35) and (36) yields: 

Y = Am COSh i + Dm COSYm r (39) 

for ü2 > (mit)2 and 

= A COSh3 ri + DCoShy (40) 

for co 2 < (Mir)2. 

With this model, the boundary conditions at x = 0 and x = 1 are 

already satisfied and it remains only to enforce the boundary 

conditions at i = or 



d2Ym (11) 

= d2 -o 

The result is two sets of simultaneous homogeneous algebraic 

equations: 
1 

Am cosh - Pm + D 9i = 

A f3 2 CO5h +D 2 S-2 1 m'm coym =O mm 

for w2 > (mit)2 and 

Am  cosh- !3m + D CO5h'Y = 0 

Am 1m 2 cosh- m  + Dmm 2 COshy = 0 

for 
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(41) 

(42a) 

(42b) 

(43a) 

(43b) 

A nontrivial solution for equations (42) requires that the 

determinant be equal to zero. This in turn will result in an eigenvalue 

solution of the form: 

= (MC)2 + (nit)2 (44) 

The implications of equation (44) are fundamental to the 

solution of the problem at hand. 

Two important considerations arise: 

1. For a long narrow plate (large 4) equation (44) indicates 

that the modes along the short side (n) will not develop until several 

modes along the long side (m) have developed. This presents the 

possibility of suppressing unwanted modes in the frequency response. 

2. A large aspect ratio reduces equation (44) to 

co 2 = (45) 

for the fundamental frequency of vibration (m=n=1). This implies that 

a long narrow plate could be modelled as a beam undergoing circular 



44 

bending at its fundamental mode. Accuracy could be improved by 

allowing for the increased stiffness of a narrow plate undergoing 

circular bending along the long side. 

These two implications of equation (44) will have great importance in 

the eventual solution of the problem of making a plate ring with the 

approximate frequency response of a large bell. 

The approximate methods which have, been examined here or 

which stem from the concepts developed in the Ritz method can give 

good results when the material obeys the initial assumptions. However, 

the musical requirement that the plate approximate the sound of a 

large church bell imposes restrictions which are in opposition to the 

initial assumptions. The following conflicts arise: 

1 .The plate is assumed to be a conservative system (negligible 

damping). While this condition holds as far as predicting the 

frequencies of vibration of the plate, structural damping is the 

controlling factor in determining the amplitude balance of the natural 

frequencies. This overtone balance is critical to determining both the 

dominant frequency and the tone of the plate. Structural damping is 

poorly understood and difficult to model. While a mathematical model 

could be developed the difficulties encountered would be considerable. 

The aim of this thesis is to find a simple model. 

2. The strength of sound required to approximate the sound of a 

church bell precludes the use of very thin plates. Thicker plates 

require adjustment to the model to account for a more representative 

strain relationship. This will violate the assumption that plane sections 

remain plane. 
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Although Timoshenko develops a technique for dealing with 

thick plates (strain varies linearly from the middle fibre) much more 

work would need to be done in conjunction with the other conflicting 

constraints. 

The problem is further complicated by: 

1. The approximate methods are most useful when analyzing a 

given plate. In this case the shape of the plate is unknown and must be 

determined given very restrictive conditions. Again, it may be possible 

to develop a suitable mathematical model and use a computerized 

iterative procedure to isolate the most probable shapes but this would 

be a problem of enormous proportion. 

2. The means of initiating the vibration is another significant 

unknown which has a great effect on the sound produced by the plate 

but which is difficult to model with the necessary precision 

CONCLUSIONS: 

The available theoretical models of vibrating metal plates have 

been examined for application to producing plates which approximate 

the sound of large church bells. While some interesting relationships 

have been revealed, there remain many complicating restrictions and 

requirements. Yet these requirements are vital to the success of the 

project. Viewed from a strictly theoretical position, the problem is one 

of almost insurmountable complexity. Yet many knowledgeable 

musicians are of the opinion that a plate can indeed approximate the 

sound of a large bell. 
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A method of analysis is required which, like energy methods, 

will allow the many difficulties to be lumped together and dealt within 

the context of a unifying concept. This concept might be termed the 

"musical energy method" and can be developed by combining the 

ideas presented in Chapters 2, 3 and 4 to fill in the gaps which remain 

in the mathematical models. 
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CHAPTER 5 

DEVELOPMENT OF AN ARTISTICALLY DRIVEN SOLUTION METHOD 

The theoretical analysis of freely suspended vibrating plates 

leaves the researcher with three major obstacles when using plates to 

approximate the sound of large church bells. 

1. No basis exists for choosing a material or a material thickness. The 

obvious choice is brass (real bells are made from brass) but large 

brass plates are known to be very difficult to damp. 

2. No basis exists for choosing one aspect ratio over another. 

3. No basis exists for the selection of the harmonic structure required. 

According to the theoretical results all plates suffer from an excess 

of unharmonic overtones. 

The researcher is then left with three choices: 

1. Accept Helmholtz's view that plates cannot approximate the sound 

of large bells. 

2. Attempt to develop and solve an extremely complex mathematical 

model. 

3. Find new ways to approach the problem. 

The third choice is the obvious one given the premise of this 

thesis: 

Identifying and properly implementing the skills and knowledge 

that exist in the arts can bring about the solution of scientific 

problems which have previously defied solution. 

Having taken the first step of examining the theory of vibrating 

plates (Ch.4) and identifying the skills of the "musically trained ear" 
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(Ch. 3), the next step involves matching the appropriate skill and 

knowledge of the artist to each of the three problem areas of the 

analytical model. We first determine which type of musician could best 

evaluate the particular difficulties encountered. 

MATERIAL SELECTION 

This is possibly the most difficult connection to make. It 

requires a musician who has an extensive empirical knowledge of the 

sound of many different types and sizes of metal. While percussion 

players perform on many different metal instruments, they require no 

knowledge about the material itself. For the percussionist, the only 

question is "Does it produce the proper sound?" Only a percussion 

instrument manufacturer would have a high degree of knowledge about 

the possible acoustical behaviour of different materials. But no such 

manufacturer has been able to produce adequate bell plates. Since an 

individual of this description was not available, the next choice was to 

find a person who worked with metal and was a musician as well. 

Fortunately Paul Lavoie, the Supervisor of the Faculty Machine Shop for 

the Engineering Department at the University of Calgary, is a welder 

by trade and an excellent bluegrass guitar player. 

When presented with the question "Which material and what 

approximate thickness of that material would be the best choice for 

eventually producing a bell-like sound?" he was able to select an array 

of materials and material thicknesses as possible candidates. 

Given that the material choice must be steel, brass or aluminum, 

the most likely material initially seemed to be brass since large bells 

are made of brass. However, in the opinion of percussionists, brass 
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plates of a manageable size have a weak sound, probably due to the low 

modulus of elasticity. The rhythmic damping of such plates is also very 

difficult to control because of the large transverse displacements, 

again a result of a low modulus of elasticity. 

The opinion of the musician/welder was that steel plates, and 

more specifically one inch thick steel plate, held the most promise. 

The higher modulus of elasticity allows for small displacement and 

powerful, long lasting vibration. Thinner plates dissipate the 

vibrational energy too quickly and thicker plates "clink" meaning that 

there is an excess of strong, high harmonics in the frequency 

response. Aluminum plates are too weak since the modulus of 

elasticity is even lower than for brass. 

CHOOSING A SHAPE FOR THE PLATE 

The choice of material and material thickness was made to 

maximize the strength and duration of vibration while maintaining a 

playable size of plate. The next step was to select the shape which 

would give a frequency response closest to that of a bell. Although the 

musician/welder had opinions about the sound which were formulated 

from experimentation with a variety of shapes and sizes of plates, the 

problem now required the input of a musician intimately acquainted 

with the specific sound required and the various solutions which have 

been tried (chimes, recordings, synthesizers, local church bells 

playing at the right moment, etc.). The final solution must be 

compared to the ideal sound (which may exist only in the mind of the 

musician) and the best previous attempts. A successful solution will 

exist between these two limits. 
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Tim Rawlings, the principal percussionist with the Calgary 

Philharmonic Orchestra has performed Symphonie Fantastique many 

times and has been actively involved in finding a better approximation 

for the bell sound. Based on the information in Chapter 3 he is the 

musician likely to have the most refined 'aural templates' for this 

particular purpose. 

Because the expertise of the musician lies more in evaluation 

than in prediction, the most effective use of his skills was in evaluating 

a carefully selected array of shapes which covered the full range of 

shape possibilities. Although there are an infinite number of shapes, 

they can be categorized into: 

1. Rectangular (from square to beam). 

2. Round (from circular to oval). 

3. Combinations of straight and curved sides. 

4. Plates with holes. 
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The following selection of plates was presented for evaluation by 

the percussionist: 

TABLE 5.1 

Material Selection and Evaluation 

MATERIAL I DIMENSIONS (cm) EVALUATION 

Aluminum plate 1.25 X 25.0 X 25.5 dull tone 

Circular Steel Plate 1.25 X 12.5(radius) gong-like 

Steel Bar 1.75 X 5.0 X 43.0 chime-like 

Steel Plate 

(slightly rectangular) 

0.92 X 23.5 X 15.5 no distinct pitch 

Round Steel Bar 0.73(radius) X 32.0 chime-like 

Steel Plate 

(long and narrow) 

2.54X25.6X79.3 fairly bell-like 

Steel Plate with 

Round Hole 

1.83 X 21.4 X 30.6 

Hole: 7.2(radius) 

no distinct pitch 
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The sound of a long narrow plate was promising enough to begin a 

detailed theoretical study of its vibration characteristics. 

DETERMINATION OF THE DOMINANT FREQUENCIES. 

As explained in Helmholz [5. 11, the main drawback of using 

plates to approximate the sound of bells is the abundance of overtones 

which confuse the listener as to the actual pitch of the plate. There 

are two factors which must be considered here. First, a skilled 

percussionist is able to exert a considerable amount of control over 

which overtones dominate. This is achieved by striking the instrument 

in the most advantageous spot, thereby suppressing unwanted 

overtones, or by constructing a beater which will dampen or 

accentuate the appropriate modes of vibration. Secondly, while an 

untrained listener will hear a jumble of tones coming from an 

instrument like a bell or a tympani, a skilled musician (in this case 

Tom Miller, principal tynipanist with the CPO) can determine which 

frequency will dominate in the context of the orchestra. 

The tympanist's analysis was compared to the output of an FFT 

spectrum analyzer. The tympanist was able to correctly identify the 

frequencies of the overtones of the plate as well as single out the 

dominant frequencies. The skill of Mr. Miller surpassed the analyzer in 

that he could also hear fluctuations in pitch due to the different 

methods of striking the plate. An analyzer fails in these areas because 

of the mathematical averaging resulting from filtering, sampling and 

performing the Fast Fourier Transform calculations. Any subtle 

changes in the signal are lost in this process. 
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The tympanist was able to verify the choice of the percussionist 

and the welder. In addition, he was able to isolate the dominant 

frequencies in the plate and explain that it was the spacing and 

balance of fundamental and overtones that yielded the bell-like tone. 

Many times during the research project it was the tympanist who 

either pointed out problems that the analyzers failed to pick up or 

identified important frequency relationships which needed to be 

preserved. 

RESULTS 

In summary, the contribution of the musicians' skill and 

knowledge resulted in the selection of a long, narrow, fairly thick steel 

plate of approximately 0.80 meters in length and one inch in 

thickness. The success of this exercise rests primarily in ensuring that 

the missing information for the theoretical model be matched to 

specific skills which the individual musicians possess. As well as 

selecting the type of musician most appropriate for the evaluation, the 

musicians must be allowed to function in a manner which requires 

them to think and act as musicians rather than as pseudo-scientists or 

tightly controlled test subjects (see Ch. 3). 

THEORETICAL ANALYSIS OF THE MUSICIAN'S INPUT 

The use of musicians' specialized knowledge in the designing of 

metal plates to ring like large church bells has provided a direction for 

further analysis which would have been impossible using 'a purely 

theoretical approach. But the artist alone does not have the technical 

or theoretical training to complete the solution. While the vast scope 

of possible materials, sizes and shapes has been narrowed to a 
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manageable range, refining the choices to yield the precise frequency 

and frequency response required is outside the expertise of the artist. 

The problem again becomes theoretical as it is now necessary to 

find the analytical explanation for the musicians' conclusions in order 

to predict the dimensions of the required plates. 

CHOICE OF MATERIAL AND MATERIAL THICKNESS 

The vibrations of the plates must be strong and long lasting. At 

the same time, excessive transverse displacement which affects the 

rhythmic control of the plate must be avoided. To return to Rayleigh's 

view of vibrating bodies in general, the goal is to maximize the energy 

in the plate while minimizing the transverse displacement (damping 

effects are ignored). Recalling the equations for maximum potential 

and kinetic energy in a plate: 

11 

D 
Vmax  2 

where 

C [(w (a2w (a2W 1 
I -J I axay1 jdx dy 

Um = - phw J W02dxdy 

D Eh  - 
12(1_02) 

(1) 

(2) 

(3) 
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These equations indicate that the vibrational energy in a plate can be 

increased without increasing displacement (W) by increasing E, h, or 

p. The advantage of steel over brass or aluminum in terms of E and p is 

obvious from the table below with the exception of brass being more 

dense than steel. 
TABLE 5.2 

Comparison of Material Constants 
MATERIAL MODULUS OF 

ELASTICITY (GPa) 
DENSITY 
(Kg/m3 

Steel 200 7860 

Brass (annealed) 96.5 8500 

Aluminum 75 2700 

However, the increase in the kinetic energy of a brass plate due 

to its greater density is more than compensated for by the decrease in 

potential energy resulting from the lower modulus of elasticity. The 

increase in kinetic energy of a brass plate over a steel plate explains 

the difficulty encountered in rhythmically damping a brass plate. 

The influence of the thickness (h) is significant because it affects 

the energy in an exponential manner (h3). 
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From the equation 

I, 

lra2x•oj 
2 "a2w0 (a2w0a2w0 (a2w+2ol 2 ax J 2(1-ax]dxdY 

.1 

P • ff(Wo2dxdY) 

(4) 

the thickness has a squaring effect on the mode frequencies. This 

accounts for the "clink" of a plate which is too thick and therefore has 

a frequency response dominated by high overtones. 

The final choice of plate thickness is a critical factor which must 

be carefully balanced to give a strong vibration without unduly 

increasing the response frequencies. While the musician's "trained 

ear" quickly identified the optimum thickness, the effect of plate 

thickness in relation to the other parameters (E, p, length) is an area 

requiring further research. As explained in Chapter 6 there appears to 

be a critical relationship between plate thickness and length which 

has not been previously identified. 

CHOICE OF PLATE SHAPE 

The solution of the many variations of the Rayleigh-Ritz method 

(Ch. 4) generally results in an eigenvalue solution of the type: 

= (mit)2 + (nit)2  VU (5) 
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The long, narrow plate selected by the musicians was chosen 

because of the absence of unwanted overtones in the frequency 

response. The desired overtone structure will consist of the interval 

relationships which characterize the sound of a bell. Acceptable 

intervals are: the octave (frequency ratio 2:1), the fifth (3:2), the fourth 

(4:3), the third (5:4) and the minor third (6:5). Any other intervals are 

perceived to be dissonant or not bell-like by the listener. The goal is to 

suppress those dissonant modes which Helmholtz identified as the 

stumbling blocks to achieving a bell-like response from a metal plate. 

The circular plate will vibrate according to the relationship 

or 
CO 2w" 

a ''ph 
[5.2] (6) 

where q, is a constant determined for a given number of nodal 

diameters and nodal circles. 

A bar can be considered as a plate with a very large aspect ratio 

which results in a vibrational response described by the first term of 

equation (5). 

CO 2 = (Mir)2 (7) 

In this model, a bar is assumed to vibrate with mode shapes 

described by circular bending. Variations in the shape of the plate due 

to combinations of straight and curved sides will affect the frequency 

response through a slight distortion of the straight sided vibrational 

pattern. The distortion of the mode shape will affect only the higher 
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frequencies. This can be seen from the basic principle of the Fourier 

Series. As the vibration pattern departs from a simple sine function, 

its Fourier series approximation will contain more high frequency 

components, not more low frequency components. 

In general, the addition or removal of small amounts of mass 

from the basic rectangular shape will result mainly in frequency 

response changes high up in the sound spectrum unless mass is added 

or removed along nodal lines. The removal or addition of mass along 

nodal lines has a significant effect on the low frequency components of 

vibration. This is the result of balancing the change in mass with the 

change in stiffness along nodal lines. The effect of the change in mass 

will dominate over the minimal change in stiffness. This balancing is a 

fine tuning of the basic vibrational relationship: 

(8) 

This is a common practice in tuning bells and chimes but it also 

opens up another problem area for theoretical modeling. One of the 

goals of this project is to eliminate, as much as possible, the need for 

painstaking and expensive tuning of the plates. Attempting to re-tune 

a poorly tuned instrument usually compromises the clarity of the 

sound. 

The governing relationships for both the bar and the circular 

plate (eqs. 6 and 7) offer no theoretical possibility for suppressing 

unwanted overtones. In addition, the frequency response of the bar or 

circular plate with respect to the relative amplitude of the overtones 
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cannot be predicted. Only a relationship like equation (5) for a 

rectangular plate offers the theoretical possibility of permitting the 

suppression of unwanted overtones. However the prediction of the 

relative amplitudes of the overtones will still remain a problem. For a 

large aspect ratio (>>1) several modes will develop along the long 

side (m) before any modes develop along the short side (n). 

SELECTING THE DOMINANT OVERTONES 

Once the possibility of suppressing unwanted overtones was 

established, the remaining problem was adjusting the desired 

overtones to have a bell-like harmonic interval relationship. The first 

consideration was to ensure that the plate is not so narrow that the 

modes on the short side are eak and spaced too far above the 

fundamental. Secondly, the plate must not be so wide that modes 

along the short side interfere with the characteristic overtone spacing 

required. 

The literature indicates that: 

1. The principle of superposition applies to vibrating plates (linearity). 

2. Musically acceptable frequency relationships are: 

1:1 (unison) 

2:1 (octave) 

3:2 (fifth) 

4:3 (fourth) 

5:4 (major third) 

6:5 (minor third) 

3. A bell-like frequency response has at least an octave between the 

fundamental and the first overtone ([5.3] and graph 7.1). 
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4. A plate with an aspect ratio of 4 or greater will develop almost no 

modes along the short side [5.4]. 

From conditions (3) and (2) above, the acceptable frequency 

relationships must be octave shifted. The interval of a fifth will become 

an octave plus a fifth, etc. Ignoring the octave and unison as trivial, 

results in bell-like frequency relationships of-

3: 1 (fifth) 

4:1.5 (fourth) 

5:2 (major third) 

6:2.5 (minor third) 

Eliminating 4:1.5 and 5:2 as being too close to the limits, the best 

this 

choice is essentially a 3:1 frequency ratio. Turning now to condition 

(1), a plate cut to a 3:1 length/width ratio should produce a reasonable 

approximation of a bell sound. This is in agreement with the evaluation 

of the tympanist. 

In summary, the qualitative evaluation of the musicians has been 

reinforced by the governing mathematical relationships for vibrating 

plates. The solution, at this point, seems to be a one inch thick steel 

plate with an aspect ratio of 3. This combination of parameters has 

been shown both musically and theoretically to give strong, long 

lasting bell-like vibrations with a frequency response which 

approximates that of a church bell. 
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Chapter 6 

TESTING, PROTOTYPE EVALUATION AND RESULT 

The combination of theoretical and artistic input into the 

problem of using metal plates to approximate the sound of large 

church bells has resulted thus far in a theoretical solution which 

neither the artist nor the scientist could have achieved independently. 

The final test is the production of actual plates and the use of these 

plates in an orchestral concert. The original goal of this project was to 

produce two bell plates to imitate the sound of distant church bells in 

the fifth movement of Hector Berlioz's "Symphonie Fantastique". The 

musical score calls for a C bell and a G bell (sounding a fourth lower 

than the C bell). Berlioz had no particular bells in mind and instructs 

the performers to use several grand pianos if no bells can be found. 

Even the octave in which the bells should sound is left up to the 

musicians. Preliminary calculations indicated that plates could be 

produced in three octaves: 

TABLE 6.1 

Berlioz Bell Plates in Three Octaves 

PLATES Small Medium Large 

Freq. 

(hz) 

Weight 

(lbs) 

Freq. 

(hz) 

Weight 

(lbs) 

Freq. 

(hz) 

Weight 

(lbs) 

C Plates 260 69 130 135 65 270 

GPlates 196 92 98 180 49 360 
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EVALUATION OF THEORETICAL MODELS 

Test plates were cut to check the predicted frequency response 

from the methods of Leissa, Gorman and an Ansys finite element 

program (see program 7.1). Aspect ratios were used for which tables 

already exist (1.0, 2.5, 3.0). The test plates were hot rolled steel plate, 

flame cut to size and suspended by a polypropylene rope from a hole 

drilled in the center of one side.The material constants were assumed 

to be: E = 200GPa and u = 0.3. 

The results were: 

TABLE 6.2 
Prediction of the Fundamental Frequency of 

a Freely Suspended Vibrating Plate 
Steel Plate Dimensions = 0.1222 X 0 1222 X 0,0167m 

Aspect Ratio = 1.0 
* St = semitones 

METHOD FUNDAMENTAL 1st OVERTONE 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Freq. 

(h z) 

Error 

(%) 

Error 

(s t) 

Actual 3384 6090 

Leissa 3664 8.3 1.5 5378 11.7 2 

Gorman 3578 5.7 1.0 5223 14.2 2.5 

Ansys 3692 9.1 2 5373 11.8 2 
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TABLE 6.3 
Prediction of the Fundamental Frequency of 

a Freely Suspended Vibrating Plate 
Steel Plate Dimensions = 0.2604 X 0 6509 X 0.0254m 

Aspect Ratio = 2.5 
* St = semitones 

METHOD FUNDAMENTAL 1st OVERTONE 2nd OVERTONE 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Freq. 

(hz) 

Error 

(%) 

Error 

Js t) 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Actual 326 488 890 

Lelssa 315.2 3.3 <1 481.4 1.36 <0.5 875.9 1.6 <0.5 

Gorman 309.1 5.2 1.0 469.2 3.8 <1 1010 13.5 2.0 

Ansys 314 3.7 0.6 483 1.0 <0.5 899 1.0 <0.5 
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TABLE 6.4 
Prediction of the Fundamental Frequency of 

a Freely Suspended Vibrating Plate 
Steel Plate Dimensions = 0.2604 X 0.7812 X 0.0254m 

Aspect Ratio = 3.0 
* st = semitones 

METHOD FUNDAMENTAL 1st OVERTONE 2nd OVERTONE 

Freq. 

(hz) 

Error 

(%) 

Error 

(stj* 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Actual 224 429 615 

Gorman 215 4.0 1 389 9.3 1.5 824 33.9 5 

Ansys 218 2.6 <0.5 401 6.5 1 625 1.6 <0.5 

FUNDAMENTAL FREQUENCY PREDICTION 

The results of these three mathematical models fluctuates 

widely. The results do not obey the assumption that inaccuracies in 

the model will cause the predicted frequencies to be too high due to 

the additional stiffness imposed by the model. An examination of the 

plates used to develop the theory [6.1] indicates that, in order to obey 

the assumption of negligible shear strain, the plate must be very thin 

in relation to its length (h/l = 1/100). Since the use of a one inch 

thick plate has been determined to be critical to the sound quality, it 

is not feasible to try thinner plates. Yet, the most. likely cause of the 
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errors is the thickness of the plates. The use of thick plate theory [6.2] 

reduces the stiffness by only a small margin and often serves to 

increase the error rather than decrease it. Altering the assumed values 

for the material constants does not appreciably affect the results 

The use of a larger one inch plate should give greater accuracy as 

the thickness to length ratio will be reduced. This condition would 

eliminate the smallest set of plates. The remaining two larger sets of 

plates can be modelled with greater accuracy but the rhythmic control 

of the plates will be more difficult to achieve. The use of superposition 

to predict a consonant frequency response has met with limited 

success as shown in Table 6.4. The octave between the fundamental 

and the first overtone is acceptable but the second overtone is flatter 

than desired. Since this is not as critical as the frequency of the 

fundamental, a slight reduction of the short side would bring the 

frequency response into a more consonant overtone relationship. A 

thinner model with a slightly enlarged aspect ratio was tested to 

determine the potential of the two larger sets of plates with respect to 

prediction accuracy and overtone adjustment. The results are shown 

in Table 6.5 and Graph 7.4. 
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TABLE 6.5 
Prediction of the Fundamental Frequency of 

a Freely Suspended Vibrating Plate 
Steel Plate Dimensions = 0.2420 X .7800 X .0162m 

Aspect Ratio = 3.20 
* st = semitones 

METHOD FUNDAMENTAL 1st OVERTONE 2nd OVERTONE 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Freq. 

(hz) 

Error 

(%) 

Error 

(s t) 

Actual 140 273 392 

Ansys 139.8 0.1 0 275 0.7 0 399 1.7 <0.5 

The accuracy of the prediction improved remarkably and the 

overtone spacing improved as well. However, a new and entirely 

unexpected result also occurred. The plate would not ring 

predominantly at the fundamental frequency. Instead, the most audible 

frequency was the third harmonic. Therefore, rather than ringing at a 

D, the plate would be perceived to ring at a G above the D (see graph 

7.4). Further testing indicated that there may be a critical 

thickness/ length ratio below which the fundamental frequency will 

not dominate (see graphs 7.2 to 7.11). 

Now, rather than eliminating the smaller plates due to large 

prediction errors, it becomes, clear that the smaller plates are the only 
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possibility. In that case, a more accurate prediction method must be 

found. 

THICK PLATE FREQUENCY PREDICTION PROBLEM 

The necessity of using the smallest set of plates dictated that a 

solution to the error caused by the thickness of the plate must be dealt 

with. Returning to the equation which represents the typical vibrating 

plate solution: 

= (mit)2 + (nit)2 
2 (1) 

Equation (1) shows that a plate with a large aspect ratio may be 

treated as a beam undergoing circular bending. This applies only to 

the fundamental frequency (m=l, f >> I). Since the overall frequency 

response is now satisfactory, the determination of the frequency of the 

fundamental mode is all that is required. It should therefore be 

possible to model the plate as a beam and use Euler's beam theory to 

more accurately predict the frequency of the fundamental mode. 

From Thomson [6.3]: 

= (On l)2V 
EI 

Using this equation and the material áonstants defined previously, the 

accuracy of the prediction for the fundamental is greatly improved as 

shown in table 6.6. 

(2) 
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TABLE 6.6 
Comparison of Beam Theory Predictions Vs 

Plate Theory Predictions 
Steel Plate Dimensions = (0.7811 X 0.2604 X .0254m) 

Aspect Ratio = 3 

Method Frequency (hz) Error (%) 

Actual 224 

Gorman 214.6 4.2 

Ansys 218 2.6 

Beam Theory 216 3.6 

While at this point Ansys has the least error, the method can only 

analyze a given plate and cannot determine the dimensions required 

for a given frequency. Beam theory gives the best possible accuracy and 

applicability combination. A small adjustment to stiffen the 

mathematical model (E = 210 GPa instead of 200 Gpa) brings the 

beam theory model into a very high degree of accuracy as shown in 

Table 6.7. 
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Table 6.7 
Beam Theory Predictions vs 

Actual Plates Cut For 'Symphonie Fantastique' 
Aspect ratio = 3.2 
E = 210 GDa 

Frequency 

Required (hz) 

Predicted 

Dimensions (m) 

Actual 

Frequency (hz) 

Freq. Error (%) 

261.63 (C) 0.7186X 

0.2231 X.0254 

263 0.5 

196.0 (G) 0.8303 X 

0.2578 X .0254 

197 0.5 

The final design required only a single cut to achieve the desired 

fundamental frequencies. As the plates were cut from a larger plate, it 

was also convenient to cut plates for the lower octaves to verify the 

predicted problems and to check for any more unexpected results 

(see graphs 7.5 to 7.10). From graph 7.5 and 7.10 it is interesting to 

note that, while thin plate theory predicts the suppression of modes 

along the short side for a large aspect ratio, only the thick plate 

actually achieves the suppression. 

The plates were used in a performance of Berlioz's "Symphonie 

Fantastique" by the Calgary Philharmonic Orchestra in March of 1991. 

The pitch and quality of the sound produced by the plates was 

appraised very favourably by the conductor (Mario Bernardi), by the 

percussionists (Tom Miller and Tim Rawlings) and by the audience. 

Exposing the plates to the very stringent demands of an actual 

performance identified the need for further research in the areas of 
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controlling the rigid body motion of the plates and avoiding non-linear 

behaviour under loud performance conditions (heavy hammer blows). 

CONCLUSIONS AND FUTURE WORK 

The successful design of metal plates which approximate the 

sound of large church bells would not have been possible without the 

carefully coordinated input of both musicians and engineers. The 

project, which initially appeared to be a simple matter of plugging 

numbers into mathematical models which already exist, quickly 

became an impossibly complex theoretical problem due to the 

accuracy of pitch and the quality of sound required. The musicians 

were equally at a loss because their lack of technical expertise 

relegated any research to trial and error amidst a vast quantity of 

variables in material selection and dimension. 

The success of this project is primarily due to a very careful 

study, selection and implementation of the skills and knowledge 

possessed by the professional musician. With this knowledge in hand, 

each limitation of the mathematical models could be matched to an 

appropriate musically derived solution. The theoretical basis of the 

musically derived solution could then be determined and the impasse 

of the mathematical limitation overcome. This method has produced 

the best solution to date of a one hundred and fifty year old problem 

dismissed as unsolvable by none other than Helmholtz. 

The initial problem of designing metal plates to approximate the 

sound of large church bells was solved although the problems 

uncovered along the way have identified several areas for further 

theoretical research. The problems encountered during the course of 
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this project primarily concerned the mathematical tracking of the 

energy of vibration in a freely suspended plate. The most important of 

these problems is that of determining the relationship between the 

vibrational behaviour of a plate and its acoustic emission. Plates which 

conform to the assumption of thinness (negligible shear stress) will 

vibrate at the predicted frequencies but the acoustic emission will not 

dominate at the fundamental frequency. As a result, a thin plate will be 

perceived to ring at one of the overtones rather than at its 

fundamental frequency. From the experiments carried out on many 

different sizes of plates, there appears to be a critical relationship of 

thickness to length (in this case h/l = 0.03) below which the 

fundamental mode will not dominate acoustically. 

Another problem has to do with the suppression of modes along 

the short side of a plate with a high aspect ratio. Although the theory 

which predicts this is based on the assumption of thinness, it is only 

effective when the plate violates this assumption. A thick plate 

(h/i = 0. 035) will suppress modes on the short side but a thin plate 

(h/l= 0.015) with the same aspect ratio will not suppress these 

modes.Thls may also be tied to the relationship of vibration and 

acoustic emission since effective suppression occurs at the same ratio. 

Although the fundamental frequency of plates with this optimum 

dimensional relationship can be most accurately predicted using beam 

theory, this is mostly a fortunate coincidence. More work needs to be 

done to improve the applicability of plate theory. The main difficulty 

seems to be modelling the shear strain in a plate which is no longer 

thin. Thick plate theory accounts for shear strain which varies linearly 
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from the centre of the plate. A further refinement would be to allow a 

cubic relationship which correctly models the lack of shear at the 

plate surfaces. There may also be nonlinearities resulting from the 

suspension method and the method of excitation. Nonlinearity due to 

the method of excitation is evident in the rise in frequency of the G 

plate when it is played loudly with a soft beater. 

Acoustical analysis instrumentation is an area requiring an 

entirely new direction of research. This is very evident when 

comparing the output of the best Fast Fourier Transform and digital 

sound analyzers to the perception of a highly trained musician. All 

three sensors receive the same signal but the computer driven 

analyzers lose so much of the signal through filtering, sampling and 

mathematical averaging that most musically important subtleties are 

lost. A return to time domain analysis may be the key since the time 

domain signal contains all of the information required. 

In closing, the author would like to paraphrase a thought taken 

from Hermann Helmholtz in his work On The Sensation Of Tone. 

Those who prefer mechanical explanations may express their regret at 

having opened the door for artistic intervention while other critics 

with more metaphysical interests may reject the methods as too 

coarsely mechanical. "I hope my critics will excuse me if I conclude 

from the opposite nature of their objections that I have struck out 

nearly the right path". 
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CHAPTER SEVEN 

GRAPHS 
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Graph 7.2 

Frequency response 
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Graph 7.3 

Frequency Response 
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Graph 7.4 
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Graph 7.5 

Frequency Response 
of a 

Steel Plate 
Dimensions = 0.8318 X 0.2583 X 0.0254m 

Aspect Ratio = 3.22 
Predicted Fundamental Frequency = 196 liz (G) 

h/i = 0.0305 

Ni AUTO SPEC CH.R MAIN Y: -137.1dB 
Y: -91.9dB /1.05V RIIS 40dB X: 381Hz 
X: 0Hz + 800Hz LIM 

#A: 10 TOTAL : -81.2dB,YREF 

-95 i 
-100 

-103 

-110 

-130 

0 100 200 300 400 500 600 700 800 
SETUP Hi 

MEASUREMENT: CH.R SPECTRUM AVERAGING 
TRIGGER: FREE RUN 

AVERAGING: LIN 10 OVERLAP: MAX 

FREQ SPAN: 
CENTER FREQ: 
WEIGHTING: 

CH. A: 
C H. B: 
GENERATOR: 

800Hz F:1Hz 
BASE BAND 
REC TA NGU LA R 

30riV + PREAMP 
30rnV + PREAMP 
DISABLED 

T:ls T:488ps 

FILl :25. 6kHz 
F I LT :25.6k Hz 

1 V 'V 
'V/V 



79 
Graph 7.6 

Frequency Response 
of a 
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Graph 7.7 
Frequency Response 

of a 
Steel Plate 
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Graph 7.9 
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Graph 7.10 

Frequency Response 
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Graph 7.11 

Frequency Response 
of a 

Steel Plate 
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PROGRAM 7.1 

Ansys Finite Element Computer Program 
for 

Determination of the Frequencies of Vibration 
of 

A Freely Suspended Rectangular Plate 

$ansys$44 

/prep7 

/title, square 

et, 1,63 

kan,2 

kay,2,7 

kay,3,0 

dens, 1,7860 

r,1,0.0167 

ex, 1,200e9 

n,1 

n,9,0. 122 

fill 

ngen,9, 10,1,9,1,0,0.01525 

e, 1,2, 12, 11 

egen,8,1,1,1 

egen,8, 10,1,8,1 

nsel, node, 63,67,2 

nasel, node, 23,27,2 

nasel, node, 43,47,4 

nasel,node, 1,9,2 

nasel, node, 8 1,89,2 
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nasel,node, 1, 81,20 

nasei, node, 9,89,20 

m,all,ux 

m,alLuy 

m,all,uz 

nail 

iter,1,1,1 

afwrite 

fini 

/input,27 

fini 
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