1

Natural quantification and genitive case constructs in COOL: A com-

posite object oriented declaratiive database language

J. Bradley
Department of Computer Science
University of Calgary

Calgary, Alberta, Canada

Abstract COOL is a composite object-oriented declarative data base

2F relational data bases. COOL uses a con-

language for use with N
struct called a genitive relation to enable unambiguous specifica-
tion and quantification, both conventional and natural, of rela-

tionships. A genitive relation is used in a manner corresponding to
the genitive case with noun objects in natural language. Instead of

formal genitive relation name syntax, a genitive case alias can be

used to promote ease of expression construction.

1.0 INTRODUCTION

The object-oriented approach to database management [2, 5,
7, 8, 9, 10, 11] evolved from the object-oriented approach used
with programming languages such as C** and Smalltalk, and is find-
ing use in many application areias.

Although rich in properties, the object oriented model is
quite complex and does not have the strong theoretical foundation
of the conceptually simpler relational model [6] - nor is there any
agreement on what exactly constitutes an object-oriented model [5].

But because of the firm foundation underlying the relational ap-

proach and its wide use, there has evolved considerable support in
the data base research community for extending the relational model
to enable it to support objects, both from a point of view of the
structure of objects and the behaviour of objects.

1.1 Object oriented extensions to the relational model

The most widely accepteld extension paradigm involves remov-
ing the requirement for normalized relations on which the conven-
tional relational approach is based [6] giving us non nornal form
or N2F relations [1].

An NZF relation can have collection attributes, both sets
and lists. While in theory a set attribute of an unnormalized rela-
tion could have a value that is a set of tuples, it seems desirable
and sufficient to restrict N2F felations to attributes that contain
a single stored atomic value, aLtributes that contain stored sets
or lists of atomic values, struEture attributes (attributes with
composite type) corresponding tp program defined hierarchically
structured types (such as DATE or ADDRESS), and attributes whose
values are not stored but are derived, where the derivation of an
attribute value is via a functibn acting on stored values. The
equivalent of structure array attributes is not allowed. It is in
this sense that N2F relations are used in this paper.

Extended versions of thé conventional relational declara-
tive languages are needed to mafnipulate an N2F relational data
base. The best known prototypes embodying this approach are IBM's
STARBURST [11], which uses an extension of SQL, and the POSTGRES
system [12], which uses an extemsion of QUEL.

1.2 Two types of declarative lamguages for data base manipulation

It is the thesis of this paper that there are two fundamen-
tally different approaches to declarative languages. One approach
is the relation-oriented approach, embodied in the languages of the
conventional relational approach, such as DSL Alpha, SQL, and rela-
tional algebra and QUEL [6]. The other approach is what might be
called a composite object-oriented approach. Currently, there are
no implemented examples of this second type of language. This paper
deals with a proposal for a language of the second type, called
COOL - or Composite Object Oriented Language. COOL is soundly based
on a set theoretic tuple calculus [3]. Full details of COOL cannot
be given in this paper but are to be found in [4].

1.3 The project database
In the object-oriented approach, an object has a unique identity
that is independent of any values it contains [5]. Such system gen-

2F data model used in this

erated unique keys are assumed in the N
paper.

Our N2F data base is assumed to allow all of the attribute
types commonly fround in 00 databases - but no repeating group
equivalents. Many of these features can be illustrated by the data-

base definition in Figure 1 for the project database, which con-

cerns document management.

Document: <
doc#: Document;
title: STRING;
revised: DATE;
topic: STRING;

nchapters() INTEGER FUNCTION;

keyword:
authlist:
chaplist:
activlist:
Chapter: <
chap#:
doc#:
ctitle:
npages:
ndiagram:

Create genitive

SET[STRING];
LIST[Author];
LIST[Chapter];

LIST[Activity];

Chapter;
Document;
STRING;
INTEGER;
INTEGER; >

relation alias

Document.chaplist*Chapter

Chapter.doc#*Document

Activity: <
acti#:
doci#:
authi:
payment:

Author: <
authi:
doclist:
actlist:
pname:

position:

Activity;
Document;
Author;

INTEGER; >

Author;
LIST[Document];
LIST[Activity];
STRING;

STRING;

>

Figure 1

Document's Chapters
Document's Chapter objects

Chapter's Document

5

The main object type is Document, where each object
represents a document. A document can have many chapters, with each
chapter represented by a Chapter object. An Author can author many
documents and a document can be authored by many Authors. An Author
is represented by a Author object and the object Activify (or au-
thor activity) enables the resulting many-to-many relationship be-
tween Document and Author objects.

The genitive relation specification in Figure 1 will be ex-
plained presently. Note that the system generated object identifier
for each object type is specified in Figure 1 using the object
type. Thus the object identifier doc# must have the type Document,
and chap# the type Chapter.

The convention of using a relation name beginning with an
upper case letter, and an attribute name beginning with a lower
case letter is used throughout, with both SQL and COOL expressions.
2.0 COOL CONCEPTS, SEMANTICS AND SYNTAX

2.1 COOL manipulation of atomic objects

To retrieve attribute values from each object instance of a given
type that complies with a simple condition, the semantics and es-
sential syntax of SQL suffices, except where a collection attribute
is involved in a condition. Thus the following could specify the
COOL retrieval: Get the titles of chapters with more than 10 pages:

select ctitle from [each] Chapter [object]

where pages > 10;
The expression is enriched with the non essential words, each and
object, to help clarify semantics. Like SQL, COOL does not normaly

use prior delared tuple or range variables. In the semantics for

the expression, the term Chapter is a default range variable rang-
ing over Chapter tuples. Attributes are selected from each specific
range variable value for which the where-condition holds.

2.2 Language semantics for 1l:n relationships

Here we deal with the common case of retrieval of attribute values
from each tuple of object type A that satisfies a condition that
can involve one or more related tuples of type B, where A and B are
in a 1:n relationship.

Consider the portion of the database definition in Figure 1
that includes the 1:n relationship between Document and Chapter ob-
jects. In the object Chapter, the attribute chap#, although system
generated, is taken as naming the object identifier for a chapter
of a document. Accordingly, the collection attribute chaplist in
Document, which is a list of chap# values, gives a list of the ob-
ject identifiers of the chapters of that document, so that the type
of chaplist must be LIST[Chapter]. Furthermore, in a Chapter ob-
ject, there is an attribute doc# with the type Document, that is,
its value must be a Document object identifier. The attributes
chaplist and doc# are reference or relationship attributes. They
are used instead of the primary and foreign keys of the conven-
tional relational approach, and precisely define the 1l:n rela-
tionship between the objects Document and Chapter.

Now suppose we are dealing with a specific Document object.
To specify a quantity of its chapters, that is, a quantity of its
related Chapter objects that complies with a given condition, the
construct needed must specify

(a) A quantifier, and

7

(b) The set of related Chapter objects

(c) The condition the specified quantity of objects must satisfy
or more formally:

{quantifier>{related objects><{(condition)>

an expression that will have the value true or false. In the syntax
of a computer language, the quantifier symbol could be any common
quantifier notation, such as for all [its], or for each [of [its]].
In the simplest case, the condition specification would involve the
attribute name, a relational operator, and a literal value, such
as: (page = 10).

To specify the {related objects> term, where in English the
genitive expression "chapters of document"” would be used, a precise
relationship specification is needed, since there could be more
than one relationship between two object types. To explicitly
specify the relevant object instances of the relationship the
reference list chaplist can be used in a flexible and rich con-
struct that specifies what we propose to call a genitive relation.

Semantically, what is needed is an unambiguous specifica-
tion of the current document's Chapter tuples, that is, an unam-
biguous specification of a genitive relation. Since for a given
Document tuple, the chaplist attribute specifies the set of identi-
fiers of that Document's chapters, any construct listing chaplist
and Chapter can serve to unambiguously specify of the current Docu-
ment's Chapter tuples. We therefore propose the term

[Document.]chaplist*Chapter
to specify the related Chapter tuples of the current Document

tuple, that is, a genitive relation. [The complete syntax for

specifying a COOL where-expression involving a genitive relation is
shown in the appendix.] The use of a genitive relation is il-
lustrated by the retrieval:
Get the document title for each database document with at least
4 chapters with more than 10 pages.
In this case the required natural quantifier is for at least &4:
select title from [each] Document [object]
where where topic = 'databases'
and for at least 4 [Document.]chaplist*Chapter [objects]
(pages > 10)
The term chaplist*Chapter denotes the set of, that is, the derived
relation holding, Chapter tuples that are referenced in chaplist in
the current Document object. Thus a genitive relation can be looked
at as the join of the list (regarded as a unary relation) chaplist
and the relation Chapter, using the object identifier as the join
field. The relation chaplist*Chapter clearly also is the set of
child Chapter tuples for the Document tuple containing the chaplist
value used. This set of child tuples can also be expressed using
its full path name:
Document.chaplist*Chapter [objects].

It should be clearly understood that a genitive relation
such as chaplist*Chapter is a relation. Since a relation name in
SQL and in COOL serves as an implicit range or tuple variable, a
genitive relation name also serves as an implicit range variable in
COOL, and the COOL expression above must be interpreted in this
sense. In the next section there is a brief discussion of genitive

relations and tuple variables in the context of predicate calculus.

If the quantifier in the retrieval above is changed, to for
most or for a majority of, for example, only the quantifier in the
predicate needs be changed, as in:

select title from [each] Document [object]

where topic = 'database' and

for a majority of [Document.]chaplist*Chapter [objects]

(pages > 10);

The above quantifier retrieval examples involved retrieving data
from a parent object, given conditions in an associated child ob-
ject, with a 1:n relation. In such expressions we used a reference
list, such as chaplist, to specify the needed genitive relation.
The converse case involves retrieval of a child, given conditions
for the parent. In this case we use the syntax variable
{reference>, which specifies a reference (such as doc#) to the
parent entity, to costruct the relatively trivial genitive rela-
tion. This is illustrated by the retrieval:

Get the names of chapters with more than 10 pages in documents

on databases.

select ctitle from Chapter
where (npages > 10)
and for its one [Chapter.ldoc#*Document [object]
(topic = 'databases');

The formal COOL syntax for the expressions in this section is given
in the appendix.
2.3 Use of alias genitive relation names
A genitive relation can additionally be defined in the data base
definition has having an alias that is convenient to remember. Sup-

pose we define:

10

Create genitive relation alias:
Document.chaplist*Chapter Document's Chapters/
Document's Chapter objects
Chapter.doc#*Document Chapter's Document
as in Figure 1. In that case the retrieval expressions above could
be rewritten:
Get the document title for each database document with at least
4 chapters with more than 10 pages.
select title from [each] Document [object]
where where topic = 'databases'
and for at least 4 Document's Chapter objects (pages > 10);
Get the names of chapters with more than 10 pages in documents
on databases.
select ctitle from Chapter
where (npages > 10)
and for its Chapter's Document object (topic = 'databases');
Note that since the genitive case construct is of fundamental im-
poratnce in natural languages in dealings with complex objects, it
seems sensible to introduce it into computer languages for dealing
with objects.
2.4 Many to many relationships
In the object-oriented approach, a many-to-many relationship can
involve either two objects, in the case where there is no intersec-
tion data, or three objects, for the case where the third object
type concerns intersection data. Consider now the many-to-many re-
lationship between a document and an Author, where one or more Au-

thors can author one or more documents.

11

In the case of no intersection data, the object-oriented
approach simply treats the many-to-many relationships as two sym-
metric one parent for many children relationships. Thus the con-
structs for retrieving a parent given conditions involving the
children, as developed in the previous section, may be used with
this kind of many-to many relationship - specifically we may use
the (where-expression)> syntax given in the previous section in the
appendix. As an example, suppose the retrieval:

Get the each documents about databases with at least two
authors who are systems analysts.
This can be expressed:
select title from [each] Document [object]
where (topic = 'databases')
and for at least 2 [Document.lauthlist*Author [objects]
(position = 'systems analyst')
A converse retrieval would be:
Get the name each engineer who has never authored any documents
about computers.
select pname from [each] Author [object]
where (position = 'engineer')
and for no doclist*Document [objects]
(topic = 'computers');
In the case of intersection data, there are simply two symmetric
l1:n relationships, referring to Figure 1, between Document and
Activity, and between Author and Activity. These can be handled
like normal 1:n relationships. However, some retrievals will re-

quire the use of all three objects, and therefore a nesting of

12

quantified expressions. The where-expression formalism given in the
appendix covers unlimited nesting of quantified cross references.
For example, consider the retrieval:

Retrieve the name of each document about computers written by

authors who were all systems analysts, all of whom were paid

more than $100.
A further level of nesting is needed. By nesting the constructs al-
ready developed, in compliance with the <(where-condition} syntax
above, we get the expression:

select title from [each] Document [object]

where topic = 'databases'

and for each [Document.]authlist*Activity [objects]
(payment > 100 and for the [one] auth#*Author [object]
(position = 'systems analyst'))
It is useful to compare this expression with the equivalent rela-
tional SQL expression, if the database were relational (i.e. all
collection attributes are omitted):
sql: select title from Document
where topic = 'databases' and doc# not in
(select doc# from Activity where
payment not > 100 or auth# not in
(select auth# from Author
where position = 'systems analyst'));

The required negation of the implicit existential quantifier means
that we have to negate a complex predicate, and use De Morgan's
rules for negation of compound expresssions to do it correctly.

2.5 Composite objects and inheritance

13

COOL has facilities for defining and retrieving composite object
types, that is, the equivalent of an XNF view. It also has
facilities for concentrating composite object types once retrieved
or defined. COOL also has extensive facilities for handling gener-
alization structures, that is, structures involving IS-A rela-
tionships and inheritance. Furthermore, it has facilities for ag-
gregation, with the use of aggregastion functions like count(), sum
(), max(), min(), avg() and stdv(); see the term <aggregation func-
tion> in the appendix.

A discussion of these facilities is necessarly lengthy and
is to be found in a separate paper [4]. It is sufficient for the
purposes of this paper to ensure the reader that they exist and
that COOL is indeed a language that can manipulate composite ob-
jects.

2.6 Updating

This paper is not concerned with languages for N2F relational data
base updating, which is a topic to be addressed in a later paper.
3.0 SUMMARY

Language constructs for tuple selection and composite object forma-
tion have been presented for COOL, an object-manipulation language
designed for manipulation of an N2F relational data base. This lan-
guage makes extensive use of a construct we have called a genitive
relation. Genitive relations are used to manipulate quantified re-
lationships between objects by means of expressions that specify
only components of the object involved. This is in contrast to SQL,
which manipulates relationships between objects in a set-theoretic
manner that requires specification of which sets of objects are in-

volved and which are not involved.

14

COOL is not proposed as a replacement for SQL, but as a
subset of SQL, for use where the data base has a distinct object-
orientation. Currently, there are no implemented examples of an
object-manipulation type data base language. However, GenRel, a
project at the Space Information Science Laboratory at the Uni-
ersity of Calgary to develop a prototype composite object-oriented
NZF genitive relational base system, will embody both SQL and COOL.
Appendix
{where-expression):=

{condition> [<<op> {quantifed xreferenced> ...]
{quantified xreference)>:= <{(quantifier><genitive
relation>[(<where expression))]
{genitive relation>:=
[related] [<referencing object>.]<reference attributel*
{referenced object>[object[s]]
{op>:= AND/OR
{reference attributed>:= (reference)/
{reference 1list>
{condition):= <literal) <comparison op> <{returned aggregate> /
{returned aggregate> {comparison op> {returned aggregate>
{returned aggregate) :=
{aggregation function>(select <attribute>
from [each] <tuple set> [object]
[where <(where-expression)]) /
(select Caggregation function)>(<attribute))
from [each] <tuple set> [object]

[where <where-expression)] /

15

{tuple set)>:= <object name>/<{genitive relation)
{genitive relation)>:=
[related][<referencing object>.]<reference attributed*
{referenced object>[object[s]]
{comparison op>:= > / > / [not] = / >= | (=
{condition> := <atomic set> {(set compare op> <atomic set>
{atomic set)> := {(set of literal values) /
(select <Cattribute)
from [each] <(tuple set> [object]
[where (where-expression>]) /
{tuple set>:= <object named/{genitive relation)
{genitive relation):=
[related] [<{referencing object>.]<reference attribute)*
{referenced object>[object[s]]

{set compare op> := [not] contains

REFERENCES

1. Abiteboul, S., and N Bidoit. Non first normal form relations to
represent hierarchically organized data. In Proceeding of the ACM
PODS Conference, Waterloo, Ont. Canada, 1984,

2. Bancilhon, F., et al. The design and implementation of 09, an
object-oriented DBMS, in "Advances in Object Oriented Database Sys-
tems," K. R. Dittrich, ed., Computer Science Lecture Notes 334,
Springer Verlag, New York, 1988.

3. Bradley, J. A genitive relational tuple calculus for an N2F
object-oriented relational data model. Research Report 92/488/26,

University of Calgary, 1992. To be published.

16

4. Bradley J. COOL concepts and semantics for definition, con-
centration and manipulation of composite objects in an NZF rela-
tional data base. Research Report University of Calgary,
1993. To be published.

5. Cardenas, A. F., McLeod, D. "Research Foundations in Object-
Oriented and Semantic Databases," Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

6. Codd, E. F. Relational databases, a practical design for produc-
tivity, CACM, 25(2), 1982, 109-117.

7. Hudson, S.E. and King, R. Cactis: A self-adaptive, concurrent
implementation of an object-oreiented data base management system.
ACM Trans. on Database Systems, 14(3), 1989, pp 291-323.

8. Kim, W. et al. Features of the ORION object-oriented DBMS, in
"Object-Oriented Concepts, Databases and Applications,” W. Kim,
F.H. Lochovsky, Eds., Addison-Wesley, Reading, Mass, 1988.

9. Lamb, C. Landis, G., Orenstein, J. and D. Weinreb, The Ob-
jectStore database system, CACM, 34(10), 1991, 51-63.

10. Lecluse, C., Richard, P., and F. Velez. 0o, an object-oriented
data model, Proc. ACM SIGMOD Conference, 1989,

11. Lohman, G. M., Lindsay, B., Pirahesh, H., and Schiefer, X. B.
Extensions to Starburst: Objects, types, functions and rules. CACM,
34(10), 1991, pp 95-109.

12, Stonebraker, M., Kemnitz, G., The POSTGRES next-generation data

base system, CACM, 34(10), 1991, pp. 78-92.

