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Recent advances in dynamic facility layout research 

 

Abstract 

It has been nearly two decades since Balakrishnan and Cheng (1998) reviewed the 

literature in dynamic facility layout. In these intervening years, many advances have 

been made in modelling as well as in the solution methods. In this study, models and 

solutions that address the dynamic facility layout problem (DFLP) are examined and 

categorized. Our review finds that, the recent DFLP models consider more complex 

design features and constraints. Further, only a few DFLP studies have adopted exact 

methods, while most of the effective algorithms used are heuristics, metaheuristics and 

hybrid approaches. Future research directions are also identified. 

Keywords: dynamic facility layout; modelling; algorithms; metaheuristics; 

survey 

1 Introduction 

This paper reviews recent work in the dynamic facility layout problem (DFLP, also 

called the dynamic plant layout problem – DPLP) where the facility may be redesigned 

during the planning horizon due to material flow changes. The DFLP is a relatively new 

research area compared to the static plant layout problem (SPLP). For a detailed 

analysis of the early work in DFLP, the reader may refer to Balakrishnan and Cheng 

(1998). 

In the two decades since Balakrishnan and Cheng’s (1998) review, significant 

progress has been made in the complexity of the models as well as in the solution 

methods. Thus, we feel that it is appropriate to provide an analysis of recent 

developments, which will give researchers a good understanding of the state-of-the-art 

in DFLP research. The remainder of the paper is organized as follows. The next section 



explains the models used by researchers. Section 3 discusses the solution methods 

applied. Finally, Section 4 summarizes the paper and suggests possible future research 

directions. 

2 Dynamic facility layout modelling 

Drira et al. (2007) summarized essential features to characterize facility layout problems 

(FLP). Based on Drira et al’s (2007) framework, the DFLP can be studied from the 

following aspects: problem formulations including objectives and constraints, and 

facility characteristics such as the specificities of the manufacturing systems, the facility 

shapes, and the layout configurations. 

2.1 Problem formulations 

In the past twenty years, different kinds of mathematical models have been used to 

formulate DFLP, which include the modified quadratic assignment problem (QAP), 

mixed integer programming (MIP), graph theoretic models (GT) and so on. 

More than half of the DFLP studies are modelled with discrete representation by 

modified QAP. Generally, in DFLPs formulated by modified QAP, the planar region is 

divided into a number of rectangular sub-regions with the same size and shape. Each 

sub-region is assigned to one department, so as to minimize the sum of the material 

handling cost and rearrangement cost. A typical formulation is shown as follows 

(Balakrishnan et al. 2003): 
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  (1)              

Subject to  

 

∑ 𝑋𝑡𝑖𝑗

𝑁

𝑖=1

= 1;    𝑗 = 1, 2, … , 𝑛;   𝑡 = 1, 2, … 𝑃  (2) 

 

∑ 𝑋𝑡𝑖𝑗

𝑁

𝑗=1

= 1;    𝑖 = 1, 2, … , 𝑛;   𝑡 = 1, 2, … 𝑃 (3) 

 
𝑌𝑡𝑖𝑗𝑙 = 𝑋(𝑡−1)𝑖𝑗  𝑋𝑡𝑖𝑙;    𝑖, 𝑗, 𝑙 = 1, 2, … , 𝑛;    𝑡 = 2, … 𝑃 (4) 

where 𝑓𝑡𝑖𝑘 is the flow cost from department 𝑖 to department 𝑘 in period 𝑡; 𝑑𝑡𝑗𝑙 is the 

distance from location 𝑗 to department 𝑙 in period 𝑡; 𝑋𝑡𝑖𝑗 is a 0-1 variable for locating 

department 𝑖 at location 𝑗 in period 𝑡; 𝐴𝑡𝑖𝑗𝑚 is fixed cost of shifting department 𝑖 from 𝑗 

to 𝑚 in period 𝑡 (𝐴𝑡𝑖𝑗𝑗 = 0); and 𝑌𝑡𝑖𝑗𝑚 is a 0-1 variable for shifting department 𝑖 from 𝑗 

to 𝑚 in period 𝑡. The objective in (1) is to minimize the sum of the material handling 

cost (first term) and the layout rearrangement cost (second term). Eq. (2) ensures every 

department to be assigned. Eq. (3) requires every location having a department assigned 

to it. Eq. (4) assigns 𝑌𝑡𝑖𝑗𝑚 a value of 1 only when a department has been shifted in the 

period. 

   Considering departments with unequal sizes, Kochhar and Heragu (1999) 

assumed that the facility is divided into a grid of squares of unit area and each 



department is assigned to one or more unit squares based on its area requirements (see 

Figure 1). Samarghandi et al. (2013) also considered unequal area and formulated a 

multi-objective DFLP using modified QAP. Different from Kochhar and Heragu 

(1999), they assumed that a department can only be placed in certain locations in each 

period. The formulation is shown as follows (Samarghandi et al. 2013): 
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Subject to 

 

∑ 𝑋𝑖𝑗𝑡

𝑁
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= 1;    𝑗 = 1, 2, … , 𝑁;   𝑡 = 1, 2, … 𝑇  (7) 
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𝑁
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= 1;    𝑖 = 1, 2, … , 𝑁;   𝑡 = 1, 2, … 𝑇 (8) 

 
𝑌𝑖𝑗𝑙𝑡 = 𝑋𝑖𝑗(𝑡−1) ∙  𝑋𝑖𝑙𝑡;    1 ≤ 𝑖, 𝑗, 𝑙 ≤ 𝑁;    2 ≤ 𝑡 ≤ 𝑇 (9) 

 
𝑉𝑖𝑎𝑏𝑡 = 𝑋𝑖((𝑎−1)𝐴+𝑏)𝑡;   𝑖 = 1, 2, … , 𝑁;             (10) 



𝑎 = 1, 2, … , 𝐴;    𝑏 = 1, 2, … , 𝐵;    𝑡 = 1, 2, … , 𝑇 

 

𝑋𝑖𝑗𝑡 = {
1   if facility i is assigned to location j in period t
0   otherwise                                                                  

           (11) 

The two objectives involved are minimizing total transportation and shifting 

costs (Eq. (5)) and maximizing closeness rating value (Eq. (6)). In Eq. (5), 𝑐𝑖𝑗𝑡 is the 

cost of handling one unit of product from facility 𝑖 to facility 𝑗 in period 𝑡 (1 ≤ 𝑡 ≤ 𝑇). 

𝑑𝑖𝑗  (1 ≤ 𝑖, 𝑗 ≤ 𝑁) is the distance between location 𝑖 and 𝑗.  𝜋𝑖𝑗𝑡  (1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖, 𝑗 ≤

𝑁 ) is the amount of transportation between facility 𝑖 and facility 𝑗 in period 𝑡.  

𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑁) is the shifting cost when facility 𝑖 is shifted from a location to another 

passing through periods. In Eq. (6), 𝑤𝑖𝑗𝑡 (1 ≤ 𝑖, 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇) is the closeness 

rating value of facilities 𝑖 and 𝑗 in period 𝑡. In Eq. (8), 𝑄𝑖𝑡 (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 ) is 

the set of locations where facility 𝑖 can be placed in period 𝑡. 

Chan and Malmborg (2010) developed a model for dynamic line layout problem 

considering unequal size work centres, multiple types of material handling devices and 

stochastic demand. In this model, as the material handling cost is piecewise linear, the 

robust solutions are obtained by solving an enumeration of the QAP instead of a single 

QAP. Azevedo et al. (2017) examined reconfigurable multi-facility layout problem 

considering the location of departments within a group of facilities, and the location of 

departments inside each facility itself. This dynamic multi-facility layout problem was 

formulated based on QAP with multiple objectives and unequal areas. In addition to 

minimizing material handling and rearrangement costs, Pourvaziri and Pierreval (2017) 

also considered the amount of work-in-process in a dynamic facility layout system. 

Hence, in their research, the DFLP is formulated by a mathematical model combining a 

developed QAP and an open queuing network. 



 

Figure 1 Examples of layouts for one floor in a multi-floor FLP. (Kochhar and Heragu 

1999) 

Some DFLPs are also formulated with discrete representation considering equal 

area facilities but through MIP, as the problems they intend to solve are more 

complicated. These studies often combine DFLP with other system problems or 

important manufacturing attributes. For instance, Kia et al. (2012) proposed a novel 

MIP model for the layout design of a dynamic cellular manufacturing system which 

covers a number of important manufacturing and design features including intra-cell 

layout, inter-cell layout, multi-rows layout of equal area facilities, alternate process 

routings, operation sequence, processing time, production volume of parts, purchasing 

machine, duplicate machines, machine capacity, lot splitting and flexible 

reconfiguration. 

Instead of discrete representation, a number of DFLP studies are formulated 

with continuous representations by MIP for unequal size facilities, in which the 

dimensions of facilities do not take integer values and the facilities can be located 

anywhere on the shop floor (Moslemipour et al. 2012). In these studies, facilities in the 

plant site are often located by their centroid coordinates. Such DFLP formulations are 



also suitable for designing a detailed layout where the location of pick-up/drop-off 

points can also be determined. For example, Jolai et al. (2012) considered a multi-

objective DFLP with unequal fixed size departments and pick-up/drop-off locations, 

and modelled the problem using MIP. In their model, (𝑥𝑡𝑖, 𝑦𝑡𝑖) is the centroid 

coordinate of department 𝑖 in period 𝑡.  𝑥𝑡𝑖𝑗
′  and  𝑦𝑡𝑖𝑗

′  are horizontal and vertical 

distances between centroid of department 𝑖 and department 𝑗 in period 𝑡. The distance 

between two facilities in period 𝑡 is then expressed by the following Eq. (12) (Jolai et al. 

2012): 

𝑑𝑡𝑖𝑗 = 𝑥𝑡𝑖𝑗
′ + 𝑦𝑡𝑖𝑗

′ = |𝑥𝑡𝑖 − 𝑥𝑡𝑗| + |𝑦𝑡𝑖 − 𝑦𝑡𝑗|            (12) 

One of the four objectives considered by Jolai et al. (2012) is to minimize the total 

material handling cost (Eq. (13)): 

Minimze:         ∑ ∑ ∑ 𝐶𝑡𝑖𝑗[(𝑥𝑡𝑖𝑗
′ + 𝑦𝑡𝑖𝑗

′ )
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𝑖=1
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+ (sgn𝑡𝑖 ∗ 𝑑𝑝𝑡𝑖 + sgn𝑡𝑗 ∗ 𝑑𝑝𝑡𝑗)] 

           (13) 

In Eq. (13), 𝐶𝑡𝑖𝑗 is the cost of material handling (a unit distance) between 

department 𝑖 and department 𝑗 in period 𝑡. The calculation of total material handling 

cost considers both the distance between two departments 𝑖 and 𝑗 and the distance 

between the department centroid and its pick-up/drop-off location. 𝑑𝑝𝑡𝑖 represents the 

distance between the centroid and the pick-up/drop-off location of department 𝑖, which 

depends on 𝑜𝑡𝑖 (orientation of department 𝑖; 0: vertical, 1: horizontal), 𝑝𝑡𝑖
′  and 𝑝𝑡𝑖

′′ (Eq. 

(14) - (15)), and sgn𝑡𝑖 is a sign variable which indicates the whether the relative 

location of departments 𝑖 and 𝑗 is positive or negative. DFLPs modelled by MIP are 

summarized in Table 1. 



𝑝𝑡𝑖
′ = {

1   if pick − up drop − off⁄  point is in longer edge 
of department 𝑖 in period 𝑡                                  

0   otherwise                                                                        

            (14) 

𝑝𝑡𝑖
′′ = {

1   if pick − up drop − off⁄  point is in north − west edges 
  of department 𝑖 in period 𝑡                                                   

0   if pick − up drop − off⁄  point is in south − east edges  
 of department 𝑖 in period 𝑡                                                  

            (15) 

Table 1 DFLPs formulated by MIP. 

Problem formulation Authors 

MIP with equal areas 

Krishnan et al. (2006), Bashiri and Dehghan (2010), Kia et al. 

(2012), Kia et al. (2013), Kia et al. (2014), Shafigh et al. 

(2015), Shafigh et al. (2017) 

MIP with unequal 

areas 

Yang and Peters (1998), Corry and Kozan (2004), Dunker et 

al. (2005), McKendall Jr and Hakobyan (2010), Jolai et al. 

(2012), Abedzadeh et al. (2013), Mazinani et al. (2013), 

Derakhshan Asl and Wong (2015), Kia et al. (2015), Kulturel-

Konak and Konak (2015), Li et al. (2015), Wang et al. (2015), 

Xu and Song (2015) 

 

DFLP can also be modelled as a graph, which consists of a number of vertices 

(nodes) and edges. The vertices (nodes) in the graph represent the facilities. The 

adjacency of each pair of facilities is represented using the edge weight, which is known 

in advance (Foulds and Robinson 1978). The edge weights can also be used to indicate 

the benefit or the cost of two adjacent facilities. When the edge weights represent the 

benefits, the objective considered in the DFLP is to arrange the facilities so as to 

maximize the total benefits. Dong et al. (2009) and Erel et al. (2003) formulated the 

DFLP with GT models. 



In regard to the data used in the DFLP formulations, given the uncertainties in 

the problem, some studies formulate the DFLP using fuzzy numbers to model the 

uncertainties in product market demand (Kaveh et al. 2014), transportation cost 

(Samarghandi et al. 2013, Xu and Song 2015) as well as the vagueness of the closeness 

relationship between facilities (Ning et al. 2010, Xu et al. 2016).  

Besides the different types of formulation discussed above, Kheirkhah and 

Bidgoli (2016) proposed a game theoretic model for DFLP to consider the effects of 

internal and external non-cooperating competitions on the changes in facility layout 

design over time, which may cause conflicts of objectives for decision makers. Bashiri 

and Dehghan (2010), Bozorgi et al. (2015) and Tayal et al. (2016) established data 

envelopment analysis (DEA) models for DFLP to find efficient layouts considering 

several other criteria in addition to cost. For example, Bashiri and Dehghan (2010) 

considered three additional criteria besides cost, including adjacency score, shape ratio 

and flexibility. They used the Global Criteria method to solve the DEA model and 

selected some efficient solutions for facility rearrangements.  

2.2 Objectives 

The objectives of FLPs generally include quantitative objectives and qualitative 

objectives. Quantitative objectives aim at minimizing space cost, material handling cost, 

rearrangement cost, total flow distance, traffic congestion and shape irregularities etc.. 

A common qualitative objective considered is maximizing adjacency rate (closeness 

ratio).   

In the DFLP, considering the changes in market demand, product prices and 

product mix, the planning horizon is divided into multiple time periods (e.g. weeks, 

months, years). Generally in DFLP, product demand, price and mix are assumed to be 

deterministic and constant for each period, but change from period to period. The 



product demand in each period is forecasted using historical data. Forecasts are 

naturally subject to error. Therefore, to make the model more realistic, some researchers 

consider the product demand to be stochastic. In these instances, the DFLP becomes the 

stochastic dynamic facility layout problem (SDFLP). Studies dealing with the SDFLP 

include papers of Yang and Peters (1998), Krishnan et al. (2008), Ripon et al. (2011a), 

Moslemipour and Lee (2012), Tayal et al. (2016), Vitayasak et al. (2016) and Tayal and 

Singh (2016). For DFLPs (including SDFLP), one common method of solving the 

problem is by using adaptive layout design. In adaptive layout design, the objective is to 

obtain an optimal layout for each period in the multi-period planning horizon so as to 

minimizing the sum of material handling and rearrangement costs. Another way is to 

use a robust approach. In a robust approach, a robust facility layout, which is not 

necessarily optimal for any particular time period, is selected as the best layout over the 

entire time planning horizon so that the total material handling cost is minimized 

(Moslemipour et al. 2012). In recent years, the majority of DFLP studies use adaptive 

layout design, while some focus on the robust approach which include work by 

Krishnan et al. (2008) and Pillai et al. (2011). In addition, Yang and Peters (1998) 

addressed a SDFLP and proposed a flexible machine layout design procedure which 

chooses robust layout (if the machine rearrangement cost is high), adaptable dynamic 

layouts (if rearrangement is easy or the production requirements change drastically), or 

a combination of the two strategies. 

Recently, there have been some studies that address multi-objective DFLPs 

which include more than one objective. Table 2 lists all the studies of multi-objective 

DFLPs. It is found that in addition to the quantitative and qualitative objectives listed at 

the beginning of this section, some researchers consider other special objectives like the 

flexibility of the layout, distance restriction, hazardous score etc.. For example, distance 



restrictions may be required because the distance between any two departments cannot 

be too large, or too small, as large distance is a waste while department overlapping can 

cause great damage to the facilities as well as security problems (Jolai et al. 2012). A 

‘hazardous’ score may be relevant since the relationship between the locations may 

depend on the facilities safety guidelines, type of product and the working 

environmental conditions so as to reduce the risk of hazard (Tayal and Singh 2016). 

Specifically, as manufacturing companies become larger and diverse, Tayal and Singh 

(2016) integrated Big Data Analytics (BDA) into DFLP modelling to handle and 

evaluate a large set of criteria which can greatly impact the manufacturing time and 

costs, product quality and delivery performance in optimal layout design. These criteria 

are identified first, and a survey for generating volume, velocity and variety of Big Data 

are conducted. A reduced set of criteria are then obtained using BDA. Finally, the 

reduced set of criteria are used to create a mathematical model with a weighted 

aggregate objective for a multi-objective SDFLP. 

Table 2 DFLP with multiple objectives. 

Authors Objectives 

Chen and Rogers 

(2009) 

Minimize the total cost of material flows with consideration 

of the distances between facility locations 

Maximize the adjacency scores between the facilities 

Bashiri and Dehghan 

(2010) 

All considered criteria (cost, adjacency score, shape ratio 

and flexibility) are optimized through maximizing sum of 

Decision Making Units' efficiencies simultaneously 

Ning et al. (2010) 

Minimize total handling cost of interaction flows between 

the facilities associated with the construction site layout 

Minimize the representative score of safety/environment 

concerns. 

Ripon et al. (2011a) 
Minimize material handling cost 

Maximize closeness relationship score 



Jolai et al. (2012) 

Minimize material handling and rearrangement costs 

Maximize total adjacency  

Distance requests 

Abedzadeh et al. 

(2013) 

Minimize material handling and rearrangement costs 

Minimize shape ratio 

Maximize adjacency rate 

Emami and Nookabadi 

(2013) 

Minimize material handling and rearrangement costs 

Maximize adjacency rate 

Samarghandi et al. 

(2013) 

Minimize total transportation and shifting costs 

Maximize closeness rating value 

Chen and Lo (2014) 
Minimize material handling and rearrangement costs 

Maximize closeness rating scores  

Bozorgi et al. (2015) 
Minimize material handling and rearrangement costs 

Adjacency and distance requests 

Kheirkhah et al. 

(2015) 

Minimize total costs of material handling, buying new 

material-handling devices, and idle or obsolete material-

handling devices 

Minimize material handling and rearrangement costs 

Xu and Song (2015) 
Minimize total transportation and rearrangement costs 

Distance restriction 

Tayal et al. (2016) 

Minimize material handling and rearrangement costs, flow 

distance and waste 

Maximize accessibility and maintenance 

Tayal and Singh 

(2016) 

Minimize material handling and rearrangement costs 

Minimize closeness rating, material handling flow time 

Maximize hazardous score  

Azevedo et al. (2017) 

Minimize material handling and rearrangement costs 

Maximize adjacency rate 

Minimize unsuitability between departments and locations 

Pourvaziri and 

Pierreval (2017) 

Minimize average work-in-progress  

Minimize empty and full trips of the material handling 

system  



Minimize machine rearrangement cost 

 

2.3 Constraints  

Drira et al. (2007) summarized the constraints commonly considered in FLP, which 

include area constraints (space allocated and facilities’ location), position constraints 

(e.g. non-overlapping, orientation and pick-up/drop-off points) and budget constraints. 

Among the DFLP studies reviewed in this paper, special constraints considered in the 

model mainly include non-overlapping constraints, orientation constraints, pick-

up/drop-off points constraints, budget constraints and capacity constraints. The capacity 

constraint considered in the literature usually refers to the limitation on machine 

capacity (Kia et al. 2013, Kia et al. 2015). The DFLP studies with special constraints are 

summarized in Table 3. 

Table 3 DFLP with different constraints. 

Constraints Authors 

Non-overlapping 

Yang and Peters (1998), Corry and Kozan (2004), Dunker et 

al. (2005), McKendall Jr and Hakobyan (2010), Jolai et al. 

(2012), Abedzadeh et al. (2013), Mazinani et al. (2013), 

Derakhshan Asl and Wong (2015), Kia et al. (2015), 

Kulturel-Konak and Konak (2015), Wang et al. (2015), Xu 

and Song (2015) 

Orientation 
Yang and Peters (1998), Dunker et al. (2005), Jolai et al. 

(2012), Abedzadeh et al. (2013), Kia et al. (2015) 

Pick-up/drop-off 

points 
Dunker et al. (2005), Jolai et al. (2012), Kia et al. (2015) 

Budget 
Baykasoglu et al. (2006), Şahin et al. (2010), Azimi and 

Charmchi (2012), Li et al. (2015) 



Capacity Kia et al. (2013), Kia et al. (2015) 

 

2.4 Facility characteristics  

Layout problems addressed are also dependent on specific characteristics of the facility 

studied. Several factors and design issues clearly differentiate the nature of DFLPs 

addressed, including different manufacturing systems, layout configurations, and 

facility shapes.   

Drira et al. (2007) categorized manufacturing systems into four types based on 

products variety and the production volumes, which include fixed product layout, 

product layout, process layout and cellular layout. The fixed product layout is often 

adopted by industries manufacturing large size products (e.g. ships, aircrafts, etc.), 

where the product does not move, while different resources and facilities are moved to 

perform operations on the product. More commonly, products circulate within various 

production facilities (e.g. machines, workers, etc.). When the manufacturing system has 

high production volume and low variety of products, facilities are organized according 

to the order of the successive manufacturing operations, which is called a product 

layout. When product variety is high or production volume is low, process layout 

(functional layout) is a common choice, in which resources of the same type (facilities 

with similar functions) are grouped together. Process layout is often thought to provide 

the greatest flexibility, but is notorious for its inefficient material-handling and complex 

scheduling, which can result in long lead times and large work-in-process inventories 

(Benjaafar et al. 2002). Cellular layout is an alternative to a process layout. In cellular 

layout, the factory is partitioned into cells, and each cell is dedicated to a family of 

products with similar processing requirements (Heragu 1994). Although cellular layout 

can simplify work flow and reduce material handling, it is inefficient when demand for 



existing products fluctuates or new products are introduced often (Benjaafar et al. 

2002). For cellular layout, researchers are generally concerned with not only the inter-

cell layout problem, but also the intra-cell machine layout problem. In the recent DFLP 

studies, Shahbazi (2010) and Yang et al. (2011) specifically focused on process layout 

problem, and a few other researchers work on cellular layout problems (see Table 4). 

Table 4 DFLP for cellular layout. 

Manufacturing System Authors 

Cellular Layout 
Chen (1998), Kia et al. (2012), Kia et al. (2013), Kia et al. 

(2014), Kia et al. (2015), Kumar and Prakash Singh (2017) 

 

Layout configuration is another design issue that impacts the DFLP. Most of the 

recent models regarding DFLPs are formulated using modified QAP, which is one of 

the many dealing with multi-row layout problems. The multi-row layout problem 

locates facilities on several rows and each pair of facilities is separated by their 

minimum clearances. In particular, Wang et al. (2015) solved a dynamic double-row 

layout problem. Besides multi-row layout problems, some researchers are interested in 

single-row layout optimization. Chan and Malmborg (2010) addressed a dynamic line 

layout problem. Tayal and Singh (2016) focused on optimizing the U-shape facility 

layout, which is also a type of single-row layout problem. Nowadays, with land supply 

being insufficient and land being expensive, manufacturers may seek to locate the 

facilities on several floors, so as to overcome the limitation on available horizontal 

space in the facility. This leads to the multi-floor FLP. In the multi-floor FLP, both the 

position on the floor and the level of the floor have to be determined for each facility. 

Additionally, material flow in multi-floor FLP has two directions, since the products 

can move both horizontally on a given floor (horizontal flow) and vertically from one 



floor to another floor at a different level (vertical flow), all of which need to be 

considered in finding the optimal solution. In the DFLP studies reviewed in this paper, 

Kochhar and Heragu (1999) and Kia et al. (2014) solved dynamic multi-floor FLPs. 

Facility shapes are divided into two types: regular shape (i.e., generally 

rectangular) and irregular shape. For regular facility shape, the rectangular facility can 

be defined by fixed dimensions, i.e., fixed length (𝐿𝑖) and fixed width (𝑊𝑖), or by its 

area using aspect ratio. Aspect ratio is usually defined by 𝑎𝑖 = 𝐿𝑖 𝑊𝑖⁄ , with an upper 

bound 𝑎𝑖𝑢 and a lower bound 𝑎𝑖𝑙 such that 𝑎𝑖𝑙 ≤ 𝑎𝑖 ≤ 𝑎𝑖𝑢. The facility shape is fixed if 

𝑎𝑖𝑙 = 𝑎𝑖 = 𝑎𝑖𝑢. In the DFLPs reviewed, a majority of the studies consider a regular 

rectangular facility with fixed dimensions, while a few studies define facility shape 

through the aspect ratio (see Table 5).  

Table 5 DFLP with aspect ratio. 

Regular Facility Shape Authors 

Aspect Ratio 

Kulturel-Konak et al. (2007), Bashiri and Dehghan (2010), 

Abedzadeh et al. (2013), Mazinani et al. (2013), Kulturel-

Konak and Konak (2015) 

3 Solution methodology 

Solution methods for DFLP can be grouped into four categories: exact methods, 

heuristics, metaheuristics, and hybrid approaches. As the DFLP is NP-hard, exact 

(optimal) methods are only useful in finding optimal solutions for small-sized problems. 

In recent years, very few DFLP studies have adopted exact methods, while most of the 

effective algorithms found in the DFLP literature are heuristics, metaheuristics and 

hybrid approaches. Studies using different exact methods, heuristics, metaheuristics and 

hybrid methods are summarized in Table 6.   



3.1 Exact methods 

The three types of exact methods used in recent DFLP studies are branch-and-bound, 

dynamic programming and modified sub-gradient.  

3.1.1 Branch-and-bound 

Branch-and-bound (B&B) is one of the most commonly used tool for solving NP-hard 

optimization problems. In the B&B algorithm, at each iteration, the current problem is 

branched into smaller subsets, and the lower bound (in the case of minimization) on the 

cost of all possible solutions within each subset is calculated. A branch is pruned, if it 

cannot produce a better solution than the best one found so far by the algorithm. 

Eventually, the optimal solution (if any) is found when all branches have been pruned. 

Lahmar and Benjaafar (2005) provided an exact solution based on B&B procedure for 

small-sized multi-period distributed layout problems, where product mix may vary from 

period to period and a re-layout can be undertaken at the beginning of each period.  

3.1.2 Dynamic programming 

In dynamic programming (DP), to solve a DFLP with 𝑛-facility and 𝑡-period, a very 

large number (𝑛!)𝑡 of possible solutions must be evaluated to find the optimum 

solution. For example, we would have to evaluate 1.93 × 1014 possible solutions for a 

six-facility and five-period DFLP. Hence, DP is used only to solve small-sized DFLPs. 

Chen (1998) proposed a facility layout model for designing sustainable cellular 

manufacturing systems with anticipated changes of demand or production process. This 

model attempts to minimize the total of inter-cell traveling cost, machine cost, and 

machine installation/removal cost. To solve this problem, DP was employed and a 

decomposition approach was developed so that the decomposed sub-problems can be 



solved with less computational effort. Urban (1998) used an incomplete DP algorithm 

similar to that of Wesolowsky’s (1973), so as to find the optimal solution for a special 

case of DFLP where the rearrangement cost is fixed.  

3.1.3 Modified sub-gradient  

Ulutas and Saraç (2012) solved a DFLP using the modified sub-gradient (MSG) 

algorithm for the first time. The MSG algorithm was proposed by Gasimov (2002) for 

solving a continuous non-linear model. Therefore, to apply the MGS algorithm, the 

modified QAP model for DFLP was converted into the continuous form first. Since the 

performance of the MSG algorithm depends on parameters and solver type, the authors 

also designed computational experiments to determine the appropriate parameter values 

and the most suitable SNOPT solvers in the general algebraic modelling system 

(GAMS) software used for solving the problem. The experimental analysis results 

showed that when suitable parameters are chosen, the MSG algorithm is a promising 

and competitive algorithm for solving DFLP; and the solver type has more influence on 

large scale problems.  

3.2 Heuristic algorithms 

Solving DFLP is a computationally difficult task, exact approaches are often considered 

not suitable for large-sized problems. As a result, many researchers developed heuristics 

and metaheuristics to solve large scale DFLPs. Heuristics are also called sub-optimal or 

approximated approaches, which can produce near-optimal satisfactory solutions in a 

very low computational time for problems where finding an optimal solution is 

impossible or impractical. 

In addition to the incomplete DP algorithm, Urban (1998) also introduced 

heuristic methods for problems with larger scale. In addition, upper and lower bounds 



that dominate all existing bounds were developed for the general DFLP where the 

rearrangement cost is not necessarily fixed. Yang and Peters (1998) proposed a heuristic 

procedure based on a construction type layout design algorithm to solve a flexible 

machine layout design problem over a planning horizon. Balakrishnan et al. (2000) 

developed an improved dynamic pair-wise exchange heuristic for DFLP. Their heuristic 

is on the basis of the steepest descent pairwise exchange heuristic proposed by Urban 

(1993) with two improvements. The first one is using a backward pass instead of the 

forward pass in Urban’s (1993) heuristic because the backward pass will never generate 

a worse layout than the forward pass (Kulturel-Konak 2007). The second one involves 

combining Urban’s (1993) method with the DP proposed by Rosenblatt (1986). They 

tested the new dynamic pair-wise exchange heuristic on different problems, and showed 

improvements on the results published by Urban (1993) in almost every case. 

Balakrishnan and Cheng (2009) also investigated the performance of this improved 

dynamic pair-wise exchange heuristic under fixed and rolling horizons, under different 

shifting costs and flow variability, and under forecast uncertainty. The results showed 

that rolling horizons have significant effect on the algorithm performance, while 

forecast uncertainty may not significantly affect the algorithm effectiveness and may be 

beneficial in some cases. Additionally, it is difficult to identify an algorithm that 

performs well under all situations (Balakrishnan and Cheng 2009). Ripon et al. (2011a) 

also developed a modified version of Urban’s (1993) heuristic by incorporating a 

backward pass to solve the multi-objective DFLP under uncertainty that presents the 

layout as a set of Pareto-optimal solutions. 

In addition to an exact method, Lahmar and Benjaafar (2005) offered a 

decomposition-based heuristic solution procedure for distributed layout design in 

settings with multiple periods where product demand and product mix may vary from 



period to period and where a re-layout may be undertaken at the beginning of each 

period. They showed that the proposed heuristic performs well relative to lower bounds. 

Also, as a distributed layout is quite robust to uncertainties in the production 

requirements, optimizing the layout in each period carries significantly less value than it 

does for process layouts. Chan and Malmborg (2010) developed a simple Monte Carlo 

simulation based heuristic procedure to identify robust solutions for dynamic line layout 

problems in which the production facility has unequal size work centres, uses 

conventional material handling devices and operates under stochastic demand scenarios. 

Their experimental results showed that robust solutions meeting aspiration levels of 

material handling cost performance across multiple material flow scenarios can be 

obtained using a modest volume of random sampling. 

Recently, Kumar and Prakash Singh (2017) introduced a novel similarity score-

based two-phase heuristic approach which can optimally solve the dynamic cellular 

layout problem considering multiple products in multiple times to be manufactured 

within reasonable time. In this two-phase heuristic, first, machines are grouped in cells 

in Phase I through using a grouping algorithm based on similarity score of machines in 

the machine–part matrix. In Phase II, an integer programming DFLP is formulated for 

the cellular layout problem. The proposed heuristic method was able to obtain 

promising solutions for the tested dynamic cellular FLP in reasonable time. 

3.3 Metaheuristics 

‘A metaheuristic is a set of algorithmic concepts that can be used to define heuristic 

methods applicable to a wide set of different problems’ (Dorigo et al. 2006). Since the 

DFLP is NP-hard, in recent years, a large number of researchers have used efficient 

metaheuristics to solve the DFLP, especially for large-sized problems. The popular 

metaheuristics used in DFLP studies mainly include simulated annealing, tabu search, 



genetic algorithm, ant colony optimization, particle swarm optimization, artificial 

immune system, and fuzzy system and so on. 

3.3.1 Simulated annealing 

Simulated annealing (SA) was first proposed by Kirkpatrick et al. (1983) which 

originates from the theory of statistical mechanics and is based on the analogy between 

the annealing process of solids and the solution methodology of combinatorial 

optimization problems (Baykasoğlu and Gindy 2001). SA is relatively easy to 

implement and is free of local optima in global optimization. However, the quality of 

the solution obtained by SA depends on the maximum iteration number of the inner 

loop (cooling schedule) and the initial temperature (Moslemipour et al. 2012). In recent 

years, SA has been a commonly used metaheuristic for solving DFLP.  

After Baykasoğlu and Gindy (2001) first applied the SA to DFLP, McKendall Jr 

et al. (2006) developed two SA heuristics for DFLP, one is a straightforward adaptation 

of SA to DFLP, the other combines the first SA method with a look-ahead/look-back 

strategy. After testing the two SA methods with the data sets taken from the study of 

Balakrishnan and Cheng (2000), the results showed that the proposed SA heuristics 

perform well. Ashtiani et al. (2007) proposed a multi-start SA to solve the DFLP. 

Compared with the SA heuristic developed by Baykasoğlu and Gindy (2001) and the 

hybrid genetic algorithm presented by Balakrishnan et al. (2003), the results showed 

that the multi-start SA performs well. Dong et al. (2009) presented a new DFLP with 

the capability of removing/adding machines in different periods. This new DFLP is 

defined based on unequal area machines and continual representation, which was 

converted to a shortest path problem. A shortest path based SA algorithm was proposed 

to solve this new DFLP. Tests with a case of four periods and 56 machines, showed that 



the proposed SA algorithm is efficient and effective. Later, Şahin et al. (2010) 

developed a SA for DFLP considering a budget constraint.  

Recently, Pillai et al. (2011) presented a robust model for DFLP. A SA heuristic 

was proposed to solve the suggested robust model, which performs well in almost all 

cases of problems from Yaman et al. (1993) and the QAPIB website, except in one case 

where the result is inferior by 0.07% compared with the optimal value. Kia et al. (2012) 

established a novel non-linear MIP model integrating cell formation and group layout 

decisions for a dynamic cellular layout problem. The presented model incorporates 

several design features including alternate process routings, operation sequence, 

processing time, production volume of parts, purchasing machines, duplicate machines, 

machine capacity, lot splitting, intra-cell layout, inter-cell layout, multi-rows layout of 

equal area facilities and flexible reconfiguration (Kia et al. 2012). A SA technique was 

developed to solve the model. The solution structure of the SA is presented as a matrix 

consists of four ingredients fulfilled hierarchically to satisfy constraints. The 

performance of the proposed SA algorithm is evaluated and compared with the LINGO 

software using several small/medium-sized problems. The results showed that the 

proposed SA algorithm could find near-optimal solutions in computational times 

approximately 100 times less than that of LINGO (Kia et al. 2012). Later, Kia et al. 

(2015) applied a SA heuristic to another dynamic cellular layout problem, which also 

integrates cell formation and group layout decisions but considers variability in the 

number and shape of cells. Kia et al. (2013) proposed a non-linear MIP model for intra-

cell layout design of a dynamic cellular manufacturing system, which aims to minimize 

the total costs of inter-cell material handling, forward and backward intra-cell material 

handling, setting up routes, machine relocation, purchasing new machines, as well as 

machine overhead and processing. The proposed model was solved by a SA algorithm 



whose solution structure was presented as a matrix with six ingredients fulfilled 

hierarchically to satisfy constraints. 

Moslemipour and Lee (2012) presented a model for dynamic layout design of a 

flexible manufacturing system in an uncertain environment where the product demands 

are assumed to be independent normally distributed random variables with a known 

probability density function and change from period to period. The model also considers 

the decision maker’s attitude about uncertainty in product demands using different 

confidence levels. A SA method with three different confidence levels was adopted to 

solve two test problems with 10 parts, 12 machines and two different time periods. 

Optimal layouts for both of the two test problems were obtained in a reasonable 

computational time. Li et al. (2015) focused on DFLP for remanufacturing, where a 

high-level uncertainty exists due to the stochastic returns of used products or 

components and uncontrollable quality conditions. They proposed a dynamic multi-row 

layout model and utilized a modified SA approach as the solution method which has a 

special solution structure with two-stage matrices for remanufacturing layout schemes. 

Kheirkhah and Bidgoli (2016) developed a game theoretic model for DFLP which 

considers the effect of an external duopoly Bertrand competition on the facility layout 

designs under a changing environment. Three algorithms were proposed to evaluate this 

game theoretic model which include B&B, SA and an imperialist competitive algorithm 

(ICA). Computational results showed that the proposed SA outperforms other proposed 

algorithms. Tayal et al. (2016) investigated a sustainable SDFLP considering several 

quantitative and qualitative criteria, namely material handling cost, rearrangement cost, 

flow distance, accessibility, maintenance and waste management. The proposed 

sustainable SDFLP was optimized using various metaheuristic techniques which include 

SA, chaotic simulated annealing (CSA) and hybrid firefly-chaotic simulated annealing 



(Hybrid FA/CSA). The layouts generated by SA, CSA and Hybrid FA/CSA were then 

used to identify efficient layouts through DEA. Finally, multiple attribute decision 

making (MADM) techniques and consensus ranking method were applied to rank the 

efficient layouts considering the aforementioned six criteria. Pourvaziri and Pierreval 

(2017) presented a DFLP that focuses on reducing not only the material handling and 

rearrangement costs but also the amount of work-in-process. A cloud-based multi-

objective simulated annealing (C-MOSA) which takes advantage of both a Pareto 

approach and cloud theory was used to find the Pareto-optimal solutions. After 

comparing the C-MOSA with parallel variable neighbourhood search (PVNS) and non-

dominated sorting genetic algorithm (NSGA-II), it showed that the C-MOSA performs 

better than PVNS and NSGA-II in terms of two performance criteria, mean ideal 

distance and diversity. Performance of C-MOSA is also acceptable with regard to 

spacing.  

3.3.2 Tabu search 

Developed by Glover (1989, 1990), tabu search (TS) is a metaheuristic featured by 

incorporating two main strategies in local search: adaptive memory and responsive 

exploration. The basic principle of TS is to prevent cycling back to previously visited 

solutions through using memory (tabu list) which stores the recent search history; and to 

accept non-improving moves so as to escape from a local optimum and explore a larger 

fraction of the search space to find global optimum.  

To the best of our knowledge, the first study adopted TS to solve DFLP was by 

Kaku and Mazzola (1997). In their TS approach, they used pairwise interchange as the 

local neighbourhood search technique. Their TS heuristic employs two stages. In the 

first stage, initial solutions are generated using a diversification strategy. In the second 

stage, neighbourhoods around the promising solutions found in the first stage are 



searched more intensively. At the end of the second stage, the best layout for DFLP is 

obtained by the TS heuristic. Compared with some existing heuristics, computational 

experiment results showed that the proposed TS generates improved solutions for over 

one third of the test problems. Kulturel-Konak et al. (2007) studied a facility re-layout 

problem considering unequal area redesign including both fixed facility areas and 

expanded facility areas. The proposed bi-objective model aims at minimizing material 

handling cost and re-layout cost was solved by a TS heuristic. In this TS heuristic, the 

objective function can randomly alternate between the two objectives in each step, 

thereby eliminating the difficulty of weighting and scaling the two objectives. Test 

results showed that the proposed TS heuristic is an effective and computationally 

tractable algorithm. McKendall and Jaramillo (2006) studied the dynamic space 

allocation problem (DSAP) which can be regarded as a generalization of both the QAP 

and the DFLP. They used a TS approach and five construction algorithms to solve the 

DSAP. The five construction algorithms include the first assignment algorithm (FA), 

the randomized clustering algorithm (RC), the modified first assignment algorithm 

(MFA) and two modified RC algorithms (MRC I, MRC II). These five construction 

algorithms are also used to generate initial solutions for the TS heuristic. It was shown 

that the TS heuristic with MFA, MRC I and MRC II outperformed the TS heuristic with 

FA and RC with respect to both solution quality and computational time. The proposed 

TS heuristic also performs better than the SA heuristics presented in the literature. 

Later, McKendall Jr (2008) developed another three TS heuristics for the DSAP. The 

first TS is a simple basic TS which is an improvement of the TS in the paper of 

McKendall and Jaramillo (2006); the second TS is the proposed simple basic TS with 

diversification and intensification strategies added; the third TS is a probabilistic TS. 

Tests showed that all the three TS heuristics are efficient techniques for solving the 



DSAP, while the TS with diversification and intensification strategies can find new best 

solutions using less computational time for half of the test problems. McKendall Jr and 

Hakobyan (2010) presented a continuous DFLP in which the departments have unequal-

areas, fixed department shapes and free orientations. A boundary search (construction 

type) technique (BSH) and a TS (improvement type) technique (TS/BSH) using BSH to 

generate initial solutions were developed to solve the problem. The computational 

results showed that TS/BSH heuristic performs well, especially for the large-sized 

problems. Shahbazi (2010) investigated the DFLP for the case of job shop process and 

added a new aspect to the problem, which is considering time value of money. To solve 

this new DFLP, SA and TS heuristics were developed. The computational experiments 

showed that the proposed TS heuristic performed better than the SA heuristic. 

McKendall Jr and Liu (2012) developed three TS heuristics for DFLP. Similar to 

McKendall Jr (2008), the three TS heuristics included a simple basic TS, the proposed 

simple basic TS with diversification and intensification strategies added and a 

probabilistic TS. It was shown that the TS with diversification and intensification 

strategies had the best performance. Bozorgi et al. (2015) determined the most efficient 

layout for DFLP with equal departments considering three criteria: cost, adjacency rate, 

and distance requested. For this purpose, a DEA model and a TS heuristic with 

diversification strategy including frequency-based memory, penalty function and 

dynamic tabu list size were applied. The local search technique used in the proposed TS 

heuristic is the steepest descent pairwise exchange heuristic. In the DEA model, cost is 

a negative criterion which needs to be minimized and is used as the input, whereas 

adjacency and distance requested are taken as positive criteria and used as outputs. 

Computational results showed that the proposed TS heuristic performs better than other 

heuristics developed in relevant literature, and the most efficient layout was obtained.  



3.3.3 Genetic algorithm 

Genetic algorithm (GA) is a metaheuristic inspired by the evolutionary ideas of natural 

selection and genetics. GA starts with an initial set of random solutions known as the 

‘population’. The individual solutions in the population are called ‘chromosomes’. The 

initial population evolves into an optimal solution through successive iterations called 

‘generations’. In each generation, a new population is created through merging 

(crossover) and modifying (mutation) chromosomes of the existing population. The 

selection of chromosomes to crossover and mutate is based on their fitness function (El-

Baz 2004). These iterations continue until the GA finds an acceptably good solution 

(Kia et al. 2014).  

Kochhar and Heragu (1999) studied a multiple-floor unequal-area DFLP which 

is able to respond to production demand and mix changes in a continuously evolving 

environment. They proposed a GA-based heuristic to solve this problem. Balakrishnan 

and Cheng (2000) developed a GA with nested loops to solve large-sized DFLPs. In this 

GA approach, they used point-to-point crossover to increase the search space. To 

increase population diversity, they utilized mutation and a generational replacement 

approach. The computational experiment results showed that the proposed GA 

outperforms the one developed by Conway and Venkataramanan (1994). Krishnan et al. 

(2008) presented a mathematical model to determine a compromise layout that can 

minimize the maximum loss in material handling cost for both single and multiple 

periods. The proposed model is then modified to minimize the total expected loss. A 

GA approach was developed to solve the proposed models. Results from the case 

studies showed that the compromise layouts obtained can efficiently reduce maximum 

loss in material handling cost and minimize the total expected loss. 



Yang et al. (2011) adopted a GA approach to solve a dynamic layout planning 

model considering job order as it significantly affects the moving paths of materials in a 

job shop manufacturing environment. This study also applies the cost-benefit analysis 

based on the cost gap between the current layout and the ideal layout obtained by GA. It 

was suggested that changing the layout can be a good choice when the rearrangement 

cost is lower than the cost gap. Emami and Nookabadi (2013) presented a multi-

objective model for DFLP which aims at minimizing material handling and 

rearrangement costs and maximizing adjacency rate. They evaluated two classic 

methods (weighted sum and ε-constraint methods) and three metaheuristic methods 

including nondominated sorting GA (NSGA-II), differential evolution (DE) and Pareto-

simulated annealing (PSA), in which only DE had not been applied to solve the multi-

objective DFLP. Using the technique for order performance by similarity to ideal 

solution (TOPSIS), the best method was selected on the basis of three comparison 

criteria (i.e. convergence, diversity and runtime). It was shown that metaheuristics 

outperform classic methods, and NSGA-II and DE are more efficient than PSA. 

Mazinani et al. (2013) proposed a novel DFLP based on flexible bay structure. In this 

new DFLP, departments may be free oriented and have unequal areas, which are 

assigned to parallel bays in a plant floor. A GA was established to solve this problem. 

After being tested on some problems taken from existing literature, the proposed GA 

was shown to be effective compared with other algorithms and software. Besides the 

SA methods discussed previously, Kia et al. (2014) also developed an efficient GA with 

a matrix-based chromosome structure to solve the multi-floor dynamic cellular layout 

problem that integrates cell formation and group layout decisions and aims at 

minimizing the total costs of intra-cell, inter-cell, and inter-floor material handling, 

purchasing machines, machine processing, machine overhead, and machine relocation. 



Vitayasak et al. (2016) solved a SDFLP with heterogeneous-sized resources and 

rectilinear material flow using three modified Backtracking Search Algorithms 

(mBSAs), the classic Backtracking Search Algorithm (BSA) and GA. BSA is a new 

evolutionary algorithm which has a simple structure and a single control parameter. 

BSA’s strategies (two new crossover and mutation operators) for generating trial 

populations and controlling the amplitude of the search-direction matrix and search-

space boundaries make its exploration and exploitation capabilities very powerful 

(Civicioglu 2013).  

3.3.4 Ant colony optimization 

The fundamental idea of ant colony optimization (ACO) is on the basis of the social 

behaviour of natural ants succeed in finding the shortest path from the nest to the food 

source through following the path with strong pheromone concentration. Pheromone is 

a volatile chemical substance laid by ants when they move along randomly selected 

paths. Over time, pheromone on the trail starts to evaporate, thus reducing its 

concentration. As it takes more time for ants to travel down and back on long paths, 

more pheromone evaporates, while on short paths, more ants can make the return trip in 

a given amount of time, thereby increases the density of pheromone and attracts more 

ants traveling on this path. Eventually, pheromone on the shortest path dominates all 

other paths, thus most ants are travelling on the shortest path from nest to food source 

(Corry and Kozan 2004).  

Different ACO algorithms have been applied to the DFLP studies in recent 

years. Corry and Kozan (2004) introduced an ACO algorithm to solve DFLP with fixed 

shape. The proposed ACO was shown to outperform the heuristically reduced integer 

programming method used in the study by Yang and Peters (1998). Baykasoglu et al. 

(2006) used an ACO to solve a DFLP considering the unconstrained and budget 



constrained cases. This study is the first attempt that applies ACO to DFLP with a 

budget constraint. Ning et al. (2010) proposed a new solution approach using max-min 

ant system (MMAS) under the guidance of continuous dynamic searching scheme to 

solve the multi-objective dynamic construction site layout planning problem through a 

weighted sum method. Chen and Lo (2014) studied the multi-objective DFLP with 

distance-based and adjacency-based objectives. They combined ACO with three 

different multi-objective approaches to solve this problem. The first approach is called 

ACO-DDML, which couple the ACO with MUGHAL, a weight-sum method for 

solving FLPs proposed by Dutta and Sahu (1982). The second approach, named ACO-

UDML, combines ACO with the additive model developed by Urban (1987). This 

approach determines the relative importance of the adjacency-based objective to the 

distance-based objective relying on only one user-defined weight. The third approach 

ACO-PDML coupling ACO with the Pareto efficiency concept, does not assign weights 

for multiple objectives but searches for a set of non-dominated solutions. The evaluation 

results showed that all the three proposed approaches are effective in solving the 

problem, however none of the them dominates the others for both of the two objectives. 

3.3.5 Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based stochastic optimization 

approach motivated by the analogy with the social behaviour of bird flocking or fish 

schooling. It belongs to evolutionary computation techniques which shares many 

similarities with ACO and GA. PSO operates with a population (swarm) of candidate 

solutions (particles). In PSO, particles fly through a multidimensional search space to 

find the optimal solution. The position of each particle is considered as a solution for 

the problem. During the flight, the new position of each particle is guided by the best 

position found by the particle and the entire swarm's best-known position. Since 



particles in PSO naturally move in continuous space, it is fundamentally designed to 

solve continuous problems. 

Jolai et al. (2012) dealt with a multi-objective DFLP with unequal sized 

departments and pick-up/drop-off locations. To solve the problem, they proposed a 

multi-objective PSO together with two novel heuristics used to preventing departments 

overlapping and reducing unused gaps between departments. Computational experiment 

results showed that the average percentage improvements over the initial solutions of 

the proposed multi-objective PSO ranges between 2% and 24% for the four objectives 

considered in the problem. Xu and Song (2015) developed a multi-objective position-

based adaptive PSO (p-based MOPSO) to solve a multi-objective DFLP with unequal-

area departments and fuzzy transportation cost for temporary construction facilities. The 

main difference between the proposed p-based MOPSO and the standard PSO is in 

solution representation. The p-based MOPSO uses a position-based solution 

representation, in which the multidimensional particles with different position values for 

each dimension are used to represent the candidate solutions (Xu and Song 2015). 

Kheirkhah et al. (2015) investigated a DFLP which is strongly correlated with the 

material handling system (MHS) design problem. A novel bilevel model was proposed 

for this problem, in which the upper objective function minimizes the total costs of 

material handling between departments, buying new material-handling devices (MHDs) 

and idle or obsolete MHDs; while the lower level objective function minimizes the total 

costs of material handling and rearrangement. Two bilevel metaheuristics known as 

bilevel PSO and coevolutionary algorithm were developed to solve the proposed bilevel 

model. Compared with the coevolutionary algorithm, the computational results showed 

that the bilevel PSO gives better average upper level fitness, better rationality and can 

solve the problem in shorter computational time. Derakhshan Asl and Wong (2015) 



applied a modified PSO to solve both the static facility layout problem (SFLP) and 

DFLP with unequal area. In this modified PSO, two local search methods are used. 

Additionally, the department swapping method is also adopted to prevent local optima 

and improve the quality of solutions. 

3.3.6 Artificial immune system 

Artificial immune system (AIS) is an evolutionary computation technique inspired by 

the principles and processes of the human immune system. Mechanisms and properties 

of immune system such as the clonal selection, learning ability, memory, robustness, 

and flexibility make AIS an efficient tool for solving combinatorial problems. The AIS 

technique that has been applied to the DFLP is the clonal selection algorithm (CSA) 

which is a population-based algorithm. In CSA, feasible solutions are coded as 

individuals. CSA starts with a randomly generated population of individuals 

(antibodies). At each iteration of CSA, first, the affinity value of each antibody is 

calculated by using the problem’s objective function. Then, the antibodies with the best 

affinity value are selected and cloned. Next, the new generations which are the 

improved antibodies created by mutating the clones are formed. Finally, a 

predetermined number of antibodies with low affinity value are replaced by the 

randomly generated new ones through the receptor editing process. The CSA terminates 

after replicating a pre-specified number of generations. 

Ulutas and Islier (2009) proposed a CSA to solve the DFLP. Test results showed 

that the proposed CSA achieves the best-known solutions and even better solutions for 

large-sized problems in nearly 90% of the cases. The CSA also outperforms other 

methods in the literature with regard to computation time. Later, Ulutas and Islier 

(2010) adopted the DFLP model proposed by Balakrishnan et al. (2003) (see Eq. (1)-

(4)) to solve the dynamic content area layout for internet newspapers. The objective of 



this layout problem is to minimize the sum of the content dissimilarities (material 

handling cost) and permanence values (rearrangement cost) for the planning horizons. 

This layout problem is optimized by CSA as well. Ulutas and Islier (2015) also used the 

CSA to solve a real-life DFLP in the footwear industry which is prone to seasonal 

demand changes. To the best of our knowledge, it is the first study of a real-life 

application. 

3.3.7 Fuzzy system 

Fuzzy logic uses the whole interval between 0 (false) and 1(true) to describe human 

reasoning. A fuzzy decision-making system consists of four major components, 

including fuzzification, knowledge base (including membership functions), if-then 

fuzzy decision rules, and defuzzification (Moslemipour et al. 2012). Fuzzy logic is an 

efficient method to cope with uncertainties in DFLP. Ning et al. (2010) and Xu et al. 

(2016) utilized fuzzy logic to represent the closeness relationship. In their studies, the 

closeness rating between facilities is divided into five levels described by linguistic 

words: absolutely important (A), especially important (E), important (I), ordinary (O), 

unimportant (U) and undesirable (X). Samarghandi et al. (2013) investigated a fuzzy 

multi-objective DFLP with unequal areas. They modelled the amount of transportation 

between two facilities using triangular fuzzy numbers. In order to solve this problem, 

several algorithms including a fuzzy TS, a fuzzy GA, a fuzzy PSO and a fuzzy variable 

neighbourhood search (VNS) were developed. Kaveh et al. (2014) defined the product 

demand in DFLP as fuzzy numbers with different membership functions. Therefore, 

material handling cost, and consequently the total costs are fuzzy numbers as well. The 

DFLP is then modelled as fuzzy programming through three approaches including 

expected value model (EVM), chance-constrained programming (CCP) and dependent-

chance programming (DCP). As decision makers can only provide a range for average 



unit cost of materials transportation and the transportation cost fluctuates over time, Xu 

and Song (2015) modelled the transportation costs between the facilities as fuzzy 

random variables.  

3.3.8 Other metaheuristics 

Urban (1998) adopted a greedy randomized adaptive search procedure (GRASP) and an 

initialized multigreedy algorithm to solve the large-sized DFLP with fixed 

rearrangement cost. Each iteration in GRASP consists of two phases including 

randomized construction and local improvement. In the construction phase, an initial 

feasible solution is randomly selected from a list of the most promising assignments. 

After a feasible solution is generated, a local search is conducted to identify better 

solutions in the improvement phase. Finally, at the end of all iterations, the best solution 

obtained is taken as the final solution. The initialized multigreedy algorithm is similar to 

GRASP, but appropriate information is transferred between sub-problems in it. The test 

results showed that for problems with 20 departments or less, the GRASP obtains better 

solutions than the initialized multigreedy algorithm with slightly higher computational 

time; while for larger problems, solutions provided by the initialized multigreedy 

algorithm have better quality, but the GRASP uses shorter computational time. 

Ming et al. (2002) developed a symbiotic evolutionary algorithm (SymEA) to 

solve the DFLP. In this SymEA, a coevolutionary multi-population approach is 

implemented, hence layouts of a particular period are represented as individuals of a 

corresponding population. A complete solution, called a symbion, is a combination of 

individuals in different populations. Symbion is the unit in the evaluation and selection 

process, top ranked symbia are used to reproduce the population for the next generation. 

Hence, populations evolve simultaneously and individuals interact both in evaluation 

and selection process (Ming et al. 2002). In addition, the generational replacement 



strategy (𝜇, 𝜆)-selection derived from Evolution Strategies was adopted for refining the 

symbiotic relationship. It was shown that the proposed SymEA has better performance 

than other proposed GAs, but is outperformed by a SA algorithm in large-sized 

problems. 

Abedzadeh et al. (2013) solved the multi-objective DFLP using a parallel 

variable neighbourhood search (PVNS) algorithm and CPLEX 12 optimizer for GAMS 

23.3 software. In the proposed PVNS algorithm, six structures, namely ‘swap, 

reversion, perturbation, insertion, exchange variable and 2-Opt algorithm’ were adopted 

for producing the neighbourhood around each solution (Abedzadeh et al. 2013). Test 

results showed that that the proposed PVNS algorithm is more efficient than GAMS 

software. 

Kheirkhah and Bidgoli (2016) evaluated a game theoretic model for DFLP using 

BB, SA and ICA. ICA is a metaheuristic inspired by the socio-political competition 

among empires in human social evolution. The proposed ICA has the shortest 

computation time but cannot get good quality solutions because its performance is 

largely dependent on the initial solutions. 

3.4 Hybrid algorithms 

Hybrid algorithms, which combine two or more solving methods together to further 

enhancing their computational capabilities have drawn increasing attention among 

researchers in recent years. 

GA is commonly considered in hybrid approaches. Balakrishnan et al. (2003) 

proposed a hybrid GA for DFLP using DP in crossover to create offspring and using a 

pair-wise exchange heuristic named CRAFT as the mutation method. Compared to 

other methods, it showed that the proposed hybrid GA performs better than the GA 

methods developed by Conway and Venkataramanan (1994) and Balakrishnan and 



Cheng (2000) as well as a SA. Dunker et al. (2005) developed a hybrid algorithm 

combining DP and GA to solve DFLP with unequal area. Krishnan et al. (2006) 

established a new tool called Dynamic From-Between Charts (DFBC) to capture the 

dynamic inter-departmental relationship and continuously track the flow between 

machines in DFLP. Besides, they proposed an algorithm which uses a modified 

Wagner-Whitin (W-W) procedure to select the redesign point and a GA to determine 

the layout at each step of the algorithm. Lately, since there is increasing use of industrial 

robots as material handling devices, Ripon et al. (2011b) established a hybrid GA 

incorporating jumping genes operations and a modified backward pass pair-wise 

exchange heuristic to solve the DFLP, so as to enhance the production rate and profit, 

save robot energy usage and extend the life of the robot. The GA with jumping genes 

operations has better capability of exploration and exploitation because it employs 

horizontal transmission together with the vertical transmission in the conventional GAs. 

Experimental results indicated that the proposed hybrid GA performs well in solving 

DFLP. Pourvaziri and Naderi (2014) developed a novel hybrid multi-population GA for 

DFLP, which overcomes the shortcomings of the existing algorithms and further 

improves the performance. In this hybrid GA, the subpopulation is generated using a 

heuristic procedure which ensures the diversification capability. A powerful SA-based 

local search is allocated to enhance the intensification capability. They also proposed a 

novel crossover operator generating only feasible solutions to reduce computational 

time. Comparing the hybrid multi-population GA with 11 other available algorithms, it 

showed that the proposed algorithm outperforms all the others. Uddin (2015) developed 

a hybrid metaheuristic GA-VNS for the DFLP which elegantly integrates the 

exploration ability of GA and the exploitation ability of VNS together. In the proposed 

hybrid algorithm, GA is used to ensure diversification capability and VNS local search 



is applied for intensification. Besides, in VNS, different neighbourhood structures are 

included to avoid getting trapped into local optimal and expand the search scope. 

SA is another frequently adopted metaheuristic in hybrid methods. Şahin and 

Türkbey (2009) presented a hybrid algorithm named TABUSA, which adopts both the 

stochastic nature of the SA and the short-term memory of TS (tabu list) to solve the 

DFLP. They compared the performance of TABUSA with pure SA and pure TS and 

showed that the proposed TABUSA is a very effective method to solve the DFLP. 

Kulturel-Konak and Konak (2015) developed a large-scale hybrid algorithm (LS-HSA) 

based on the hybridization of SA and MIP to find good solutions for the cyclic facility 

layout problem (CFLP), which is a special case of DFLP. Wang et al. (2015) combined 

an improved SA (ISA) with mathematical programming (MP) to generate a hybrid 

approach (ISA-MP) for solving the dynamic double-row layout problem (DDRLP). In 

the proposed hybrid algorithm, a mixed solution coding scheme is applied to represent 

both the combinatorial and continuous aspects of DDRLP, and four operators are 

devised to enhance the effectiveness of the algorithm. In addition, MP is applied to 

solutions obtained by ISA so as to further improve the solution quality. Computational 

experiment results showed that the ISA can find optimal solutions for small-size 

problems and obtain satisfactory solutions for problems with realistic size. Tayal and 

Singh (2016) solved a multi-objective SDFLP using a hybrid algorithm (Hybrid 

FA/CSA) which integrates two metaheuristics, firefly algorithm (FA) and chaotic SA 

(CSA). In the proposed Hybrid FA/CSA, exploration capability of FA is utilized to get 

an initial solution and followed by CSA, which exploits the local search space to 

improve the initial solution. This Hybrid FA/CSA was also used by Tayal et al. (2016) 

for solving a sustainable SDFLP. Shafigh et al. (2017) proposed a hybrid heuristic 

algorithm to solve a comprehensive model for distributed layout design with production 



planning and systems reconfiguration. This hybrid heuristic algorithm is a linear 

programming (LP) embedded SA with multiple search paths. In this hybrid approach, 

SA searches over the discrete variables in the problem solution space and the 

corresponding continuous variables are determined by solving a LP sub-problem using a 

simplex algorithm. Since there may be infinite combinations of the values for the 

continuous variables, by solving a LP sub-problem, values that optimally correspond to 

the integer solution can be obtained easily. Besides, some constraints having continuous 

variables in their equations may be difficult to satisfy by using stochastic search of the 

SA alone, but they can be satisfied by solving the LP sub-problem. Computational 

experiments showed that the proposed hybrid heuristic has very encouraging 

performance. 

Some researchers have built hybrid algorithms based on ACO. McKendall Jr 

and Shang (2006) modified the hybrid ant system (HAS–QAP) developed by 

Gambardella et al. (1999) and create three HASs (HAS I, HAS II, HAS III) for DFLP. 

In HAS I, a random descent pairwise exchange technique is used to improve the initial 

set of solutions and the set of modified solutions. HAS II uses a SA instead of the 

random decent pairwise exchange heuristic for local search, which is the only difference 

between HAS I and HAS II. HAS III is exactly like HAS I except that it adds a look-

ahead/look-back strategy to the random decent pairwise exchange heuristic. It showed 

that all the proposed HASs perform well in computational experiments. Chen and 

Rogers (2009) investigated a multi-objective DFLP which includes both quantitative 

(distance-based) and qualitative (adjacency-based) objectives. They proposed an ACO 

algorithm to solve this problem, which is also expanded from the HAS-QAP developed 

by Gambardella et al. (1999) with a simple but effective data structure and solution 

generation mechanism. Yu-Hsin Chen (2013) modified the HAS I and HAS III of 



McKendall Jr and Shang (2006) and established two new heuristics named Binary 

Coded HAS I (BC-HAS I) and Binary Coded HAS II (BC-HAS II). The difference 

between BC-HAS I and BC-HAS II is that they do not adopt the same local search 

strategy. BC-HAS I uses a pair-wise exchange heuristic for local search, whereas BC-

HAS II adopts the look-ahead/look-back strategy. 

Several studies presented hybrid algorithms incorporating more than two 

techniques. Kaveh et al. (2014) established a hybrid intelligent algorithm combining 

GA, SA and fuzzy simulation together to solve the three fuzzy models proposed for 

DFLP. Hosseini et al. (2014) presented a robust and simply structured hybrid algorithm 

by integrating three metaheuristics, namely, ICA, SA, and VNS, which can solve the 

DFLP efficiently. In this hybrid algorithms, ICA and VNS are applied for 

diversification, while VNS and SA are used to ensure intensification capability. 

Other hybrid approaches proposed in the literature are summarized as follows. 

Erel et al. (2003) presented a new hybrid heuristic for DFLP, which has three stages. In 

the first stage, a set of layouts that are likely to appear in the optimal solution are 

selected. Since the DFLP can be regarded as a shortest path problem, in the second 

stage, viable layouts obtained from the previous stage are used to solve this shortest 

path problem by DP. In the last stage, a local improvement process is included to 

improve the solutions obtained from the second stage. It was shown that the proposed 

heuristic can solve large scale DFLP. Azimi and Charmchi (2012) developed a new 

efficient heuristic algorithm integrating integer programming and discrete event 

simulation to address DFLP with budget constraint. In this algorithm, the nonlinear 

DFLP model has been changed to a pure integer programming model. They then used 

the optimal solution of the linear model in a simulation model to determine the 

probability of assigning facilities to certain locations. The simulation model obtains 



near-optimal solution after sufficient number of runs. The test results showed that the 

proposed heuristic is more efficient in terms of speed and accuracy than the heuristics 

reported in the paper of Şahin et al. (2010). Rezazadeh et al. (2009) extended the 

discrete particle swarm optimization (DPSO) developed by Liao et al. (2007) to solve 

the DFLP. They used the semi-annealing approach, a SA with only the outer loop as the 

local search technique in DPSO. The performance of the proposed DPSO was compared 

with other solving methods developed in existing literature including DP, GA, SA, 

HAS, hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and 

CONGA). The results showed that the proposed DPSO performs better than all the 

other approaches and has a good computational efficiency for larger scale problems.  

Hosseini-Nasab and Emami (2013) developed a hybrid PSO (HPSO) algorithm to solve 

DFLP, in which a simple and fast SA is used for local search.  

Table 6 Summary of DFLP studies by solution methodology. 

Exact Methods Authors 

B&B Lahmar and Benjaafar (2005), Kheirkhah and Bidgoli (2016) 

DP Chen (1998), Urban (1998) 

MSG Ulutas and Saraç (2012) 

Heuristics Authors 

 

Yang and Peters (1998), Balakrishnan et al. (2000), Lahmar and 

Benjaafar (2005), Balakrishnan and Cheng (2009), Chan and 

Malmborg (2010), Ripon et al. (2011a), Kumar and Prakash Singh 

(2017) 

Metaheuristics Authors 

SA 

Baykasoğlu and Gindy (2001), McKendall Jr et al. (2006), Ashtiani 

et al. (2007), Dong et al. (2009), Şahin et al. (2010), Shahbazi 

(2010), Pillai et al. (2011), Kia et al. (2012), Moslemipour and Lee 



(2012), Emami and Nookabadi (2013), Kia et al. (2013), Kia et al. 

(2015), Li et al. (2015), Kheirkhah and Bidgoli (2016), Tayal et al. 

(2016), Pourvaziri and Pierreval (2017) 

TS 

Kaku and Mazzola (1997), McKendall and Jaramillo (2006), 

Kulturel-Konak et al. (2007), McKendall Jr (2008), McKendall Jr 

and Hakobyan (2010), Shahbazi (2010), McKendall Jr and Liu 

(2012), Bozorgi et al. (2015) 

GA 

Kochhar and Heragu (1999), Balakrishnan and Cheng (2000), 

Krishnan et al. (2008), Yang et al. (2011), Emami and Nookabadi 

(2013), Mazinani et al. (2013), Kia et al. (2014), Vitayasak et al. 

(2016) 

ACO 
Corry and Kozan (2004), Baykasoglu et al. (2006), Ning et al. 

(2010), Chen and Lo (2014) 

PSO 
Jolai et al. (2012), Derakhshan Asl and Wong (2015), Kheirkhah et 

al. (2015), Xu and Song (2015) 

AIS 
Ulutas and Islier (2009), Ulutas and Islier (2010), Ulutas and Islier 

(2015) 

Fuzzy 
Ning et al. (2010), Samarghandi et al. (2013), Kaveh et al. (2014), 

Xu and Song (2015), Xu et al. (2016) 

Others 

Urban (1998): GRASP, initialized multigreedy algorithm  

Ming et al. (2002): SymEA  

Abedzadeh et al. (2013): VNS 

Kheirkhah and Bidgoli (2016): ICA 

Hybrid Authors 

 

Balakrishnan et al. (2003), Dunker et al. (2005), Erel et al. (2003), 

Krishnan et al. (2006), McKendall Jr and Shang (2006), Chen and 

Rogers (2009), Rezazadeh et al. (2009), Şahin and Türkbey (2009), 

Ripon et al. (2011b), Azimi and Charmchi (2012), Hosseini-Nasab 

and Emami (2013), Yu-Hsin Chen (2013), Hosseini et al. (2014), 

Kaveh et al. (2014), Pourvaziri and Naderi (2014), Kulturel-Konak 



and Konak (2015), Uddin (2015), Wang et al. (2015), Tayal et al. 

(2016), Tayal and Singh (2016), Shafigh et al. (2017) 

4 Conclusion and future directions 

This paper reviews the DFLP studies published since the survey by Balakrishnan and 

Cheng (1998) was conducted. At the beginning of this paper, different features of DFLP 

are discussed in terms of problem formulations, objectives, constraints as well as 

facility characteristics. Regarding problem formulations, modified QAP and MIP appear 

to be the most popular forms. Besides, the DFLP is also modelled using GT, game 

theoretic model and DEA. To address the uncertainties in production, several studies 

apply stochastic modelling for DFLP, thereby transforming DFLP to SDFLP. In 

addition, a stream of studies model uncertainties using fuzzy logic. In the past two 

decades, a number of studies consider multiple objectives in DFLP, including both the 

conventional quantitative objective (cost minimization) and qualitative objectives such 

as maximizing adjacency rate, minimizing shape ratio etc., so as to make the problem 

more realistic. Special constraints are also considered in DFLP modelling, which mainly 

include position constraints (e.g. non-overlapping, orientation and pick-up/drop-off 

points), budget constraints and capacity constraints. DFLP studies are also characterized 

by different manufacturing systems, layout configurations, and facility shapes. For 

example, a number of researchers focus on cellular layout, while some specifically deal 

with single-row layout, and some define facility shape using aspect ratio instead of 

fixed dimensions. 

Different solution methods implemented for solving DFLPs are also discussed in 

details. In recent years, a few researchers used exact approaches to find optimal 

solutions for DFLP. These methods generally work well on small-sized DFLPs. As 

recent DFLP studies are trying to capture more specific features in different 



manufacturing environments, the DFLP models have become more realistic yet more 

complex in computation. Hence, metaheuristics have become the most widely used 

approaches (56 out of 77), especially in the last decade (see Figure 2). Among the 

different metaheuristics adopted, SA is the most popular method followed by TS and 

GA (see Figure 3).  

Further, in the past decade, novel metaheuristics such as PSO, AIS and fuzzy 

system have been introduced in DFLP research for solving problems with multiple 

objectives, uncertainties and special constraints. Also, there is increasing interest in 

hybrid algorithms as they can overcome the weakness of using a pure method by 

incorporating other approaches so as to enhance computational capability and to 

improve the solution quality. In hybrid algorithms, the use of GA is frequent, with pair-

wise exchange heuristics and SA being commonly used in local search. 

Future research in DFLP could include custom objective functions and 

constraints to depict realistic problems more accurately, such as considering multiple 

cooperative or conflicting objectives, dynamic transportation costs during a single 

period (Samarghandi et al. 2013), time-dependent rearrangement cost, departments with 

variable shapes, new constraints related to facilities or different characteristics for the 

unsuitability between departments and locations (Azevedo et al. 2017). So far, a number 

of researchers have already attempted to solve DFLP with multiple floors, unequal area 

departments, uncertainties in the demand forecast, budget constraint, pick-up/drop-off 

points, however further exploration of DFLPs with these characteristics are still needed. 

Incorporating with BDA and DEA in DFLP has been investigated by a few researchers 

to deal with more complex and realistic problems and determine the most efficient 

layout. Hence, investigating other analytic methods in the DFLP is also a possible future 

direction.  Besides, the DFLP can also be integrated with more detailed layout 



configuration for each department at operational level to create powerful decision 

support systems (Azevedo et al. 2017). Real life circumstance and data (including 

factory data and big data) may also be considered in the DFLP for future work (Li et al. 

2015, Tayal and Singh 2016). In addition, Ulutas and Islier (2010) used the concept of 

DFLP to solve the dynamic content area layout for internet newspapers, which indicates 

the possibility of applying DFLP to other relevant problems in the digital age. 

As DFLP studies are focusing on more and more complicated and realistic 

scenarios, efficient solving methods are required. Metaheuristics and hybrid schemes 

are the most promising approaches for solving complex and large-sized DFLPs. In 

regard to metaheuristics, researchers can improve current metaheuristics or develop 

novel metaheuristics techniques to create more effective solutions. For hybrid schemes, 

combining different algorithms can overcome the drawbacks of a single algorithm type 

method so as to make it possible for generating good solutions for larger and more 

practical problems with realistic constraints and objectives. For example, the features of 

TS such as tabu list, adaptive memory, diversification and intensification may be added 

to the SA algorithms to obtain better computational results (Şahin and Türkbey 2009). 

Different local search procedures can also be applied in sophisticated hybrid schemes to 

develop effective approaches and achieve better solutions in complex DFLPs. Also, the 

proposed algorithms for DFLPs can be tried on the other well-known combinatorial 

optimisation problems such as the vehicle routing problem and travelling salesman 

problem. (Pourvaziri and Naderi 2014, Şahin and Türkbey 2009). Given the nature of 

today’s business environment where demand may be difficult to predict, the more use of 

fuzzy methods (Azimi and Charmchi 2012), and game theory (Kheirkhah and Bidgoli 

2016) in research would be attractive avenues in increasing realism in DFLP models. 

Finally, the application of more sophisticated statistical analysis of the results 



(Baykasoglu et al. 2006) and the application of design of experiments such as Taguchi 

methods is also desirable (Ulutas and Islier 2009). 

 

Figure 2 DFLP research classified by solution methodology. 

 

Figure 3 DFLP studies classified by metaheuristics algorithms. 
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