
THE UNIVERSITY OF CALGARY

A Clausal Approach to Digital Logic Circuit Design

by

Ronan O'Byrue

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

MASTER bF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA
JUNE, 1987

© Ronan O'Byrne, 1987

The University of Calgary

Faculty of Graduate Studies

The undersigned certify that they have read, and recommend to

the Faculty of Graduate Studies for acceptance, a thesis entitled,

"A Clausal Approach to Circuit Design" submitted by Ronan O'Byrne in

partial fulfillment of the requirements for the degree of Master of

Science.

John Kendall, Computer Science

Cçv

G. Birtwistle, Computer Science

G.S. He.e, ElectricajEhgineering

1987-06-01

Abstract

This thesis explores the use of logic programming as a

technique to aid in the design of complex logic systems.

The design of digital systems requires many purely clerical

tasks which must be performed accurately and within the

confines of many interacting rules. The design result which

is sought is usually the result of a search over a solution

space rather than a unique, procedurally generated

answer. In the development of newer CAD tools the

emphasis is on automatic logic generation from functional

specifications and an ability to deal effectively with design

complexity. Logic programming is proposed as a useful

technique necessary to develop these flexible yet automatic

design tools. Some research findings are presented, and a

simple logic synthesis and design system based on Prolog

is illustrated.

iii

Acknowledgement

I thank my advisor John Kendall for sparking my interest in logic circuit design and

for supplying direction and advice, even while giving me free rein to explore on my own.

He has been a pleasure to work with, generous with time and research support, and a

most constructive critic and remaining flaws are, of course, entirely of my own devising.

I thank the faculty and students of the Department of Computer Science, and other

members of the JADE project for their support and interest. I thank the Natural Sciences

and Engineering Research Council of Canada (NSERc). Most of all I thank my wife Ann,

for her patience, understanding and encouragement.

iv.

Table of Contents

1. Logical Design of Digital Systems 1

1.1 The Design Process 1

1.2 The Challenge to CAD 5

1.3 Logic Design & Computer Aided Engineering 8

1.3.1 DA4 - International Computers Ltd. 9

1.3.2 IEDS - Intergraph Corporation 12

1.4 VLSI Design 14

1.4.1 Design Styles for VLSI 16

1.4.2 TANCELL - Tangent Systems Corp. 18

1.4.3 Electric 19

2. Synthesis of Combinational Logic 20

2.1 What is Logic Synthesis 20

2.2 Why Logic Synthesis 22

2.3 Automatic Logic Synthesis & Optimization 24

2.3.1 ALERT 24

2.3.2 LSS (Logic Synthesis System) 25

2.3.3 DDL/SX (Digital Design Language/Synthesis eXpert) 29

2.3.4 MACDAS Circuit Design System 31

2.3.5 Socrates 32

V

2.3.6 Logic Design using Tokio & C-Prolog 35

2.3.7 DAA (Design Automation Assistant) 38

3. Logic Programming 39

3.1 Logic Programming 39

3.1.1 Prolog Logic Programming 40

3.2 Prolog as an Expert System Shell 43

3.3 The Case for a Clausal based Expert System Approach 45

4. Circuit Representation in Prolog 48

4.1 Circuit Representation in Prolog 48

4.2 Prolog Horn Clause Circuit Representation 48

4.3 Prolog Structure Circuit Representation 52

4.3.1 Pre-defined Circuits 54

4.3.2 Circuit Input Signals 55

4.3.3 Handling Errors 56

5. Logic Minimization & Conversion 57

5.1 Boolean Logic 57

5.2 Logic Minimization 59

5.2.1 Absolute Logic Minimization 60

5.2.2 Heuristic Logic Minimization Techniques 61

5.2.3 Prolog Logic Rewrite Rules 62

5.2.4 Meta-level inferencing 63

Vi

5.2.4.1 Logic Minimization Example 1 65

5.2.5 Rewrite rules and true minimzation 65

5.3 Logic Circuit Conversion 66

5.3.1 NAND/NOR Conversion 67

6. Counting Circuits 70

6.1 Counting Circuits 70

6.2 Designing Counter Circuits 72

7. Prolog Counter Design 78

7.1 User Interface 78

7.2 Limitations of a Prolog Interface 80

7.3 Selecting a Counter Type 81

7.4 Circuit Synthesis 85

7.4.1 Example 1 - Synchronous Ring Counter 85

7.4.2 Example 2- Synchronous Count-by 23 Counter 87

7.5 Logic Minimization 91

7.6 NAND Logic Adoptation 93

7.7 Functional Simulation 93

7.7.1 Functional Simulation Example 94

7.8 PCD Session 96

8. Summary and Conclusions 102

8.1 Summary 102

Vii

viii

8.2 Conclusions 103

8.3 Future Research 104

Bibliography 106

Index 116

Reference Index 118

Appendix A - PCD Listing 119

Appendix B - Prolog Simulation Trace 144

viii

List of Tables

2-1 Logic Synthesis Systems 24

4-1 Known Circuits 54

5-1 Rewrite Rules 64

5-2 Conversion Rules for NAND logic representation 69

6-1 Counter Code Sequences 72

6-1 Flow table 75

7-1 PCD Commands 82

ix

List of Figures

1-1 The Design Process 4

1-2 DA4 System Diagram 11

2-1 Levels of Description in LSS 26

2-2 Socrates System Diagram 33

4-1 Example circuit 52

6-1 Counter Tree Structure 71

6-2 Synchronous Ring Counter 73

6-3 Instability in a simple network 75

CHAPTER 1

Logical Design of Digital Systems

This chapter presents an overview of the evolution and use
of CAD for logic design. It is an overview of afield which
involves the works of many manufacturers, universities,
and research foundations, and as such, the example sys-
tems are selected as representative of a particular type.
Since this thesis is concerned with improved design auto-
mation techniques, this chapter answers the important
question, "Why is there a need for better design automa-
tion ?"
Increasing design complexity of integrated systems isforc-
ing a modification in the traditional approach to design.
To illustrate current approaches to the problem of logic
design several logic design and production systems are
introduced. These systems are discussed with respect to
their flexibility to adapt to changing fabrication technol-
ogy, and their ability to adapt to increasing complexity.

1.1 The Design Process

Historically, the design task was carried out completely manually. One of the first

design automation systems was presented at the 1956 Western Joint Computer Confer-

ence by Cray & Kisch [Cray 56]. They described a system which provided automatic

checking of logic equations for logical, clerical, and timing errors, logic simulation and

net-listing abilities. One interesting observation which also might indicate the pioneering

nature of this article is that it cited no references. Several systems flourished in the six-

ties, with many computer manufacturers developing their own systems ([Kaskey

61],[Rosenthal 61], [Button 60], and others). Design automation was spurred on by

tighter design constraints and complexity. These systems were generally not shared

1

2

among manufacturers, because they reflected each manufacturer's own design philoso-

phy, circuit technology and design computer.

Meanwhile in an attempt to reduce the number of engineering changes caused by

errors in design, logic simulation was introduced. The reasoning applied was that if the

logic design was completely simulated, then automatic wiring machines, which used

these "proven" designs, could produce an accurate reliable product. As system com-

plexity increased, engineers quickly found out that they could not contain the entire

design that they wanted to simulate on a small computer. Simulation had run into trou-

ble. Simulation could not give full coverage. This problem was partially solved by the

introduction of hierarchical design and the use of standardized components. Many

current design systems are based on these principles. Now simulation could occur above

the detailed level, and consequently could be more rigorous.

Hierarchical design became the first technique to deal with design complexity. In

hierarchical design, initial design occures at the highest level of abstraction and proceeds

to lower detailed levels of design. As each level of the. design is completed, it becomes a

specification for the lower levels of the design. With hierarchical design techniques,

optimization is hard to achieve because designs have downwardly imposing design con-

straints and upwardly imposing physical constraints. Failure in one or more levels of the

design results in a redesign of that level and possibly of other levels in the design.

The physical constraints of design have become more complex as technology has

evolved. In a first generation computer, one could point to a relay that performed some

primitive Boolean operation, and hold it in one's hand. Fabrication technology has

The Design Process 1.1

3

advanced to where it is now impossible, without the aid of a microscope, to find the spot

in an integrated circuit where that function is now performed. While the manufacturing

design elements of the components in a microcomputer are considerably reduced com-

pared to a first generation computer, the increase in the number of logic design elements,

and increased the logic design task. Clock speeds are now much faster and so timing

simulation is more important. Physical layout on silicon requires technology specific

logic design.

The Design Process is the sequence of tasks required to create a design subject to

constraints. In the design of digital systems, the design process takes a set of conceptual

ideas which describe a proposed digital system, and transforms it into a set of detailed

design data, such as part numbers, logic schematics etc., which provide suitable informa-

tion required for manufacture. The conceptual design process is illustrated in Figure 1-1.

The functional design is the initial process of deriving a potential and realizable

solution to the input design requirements. This is sometimes referred to as architectural

analysis and design, and includes such activities as hardware/software tradeoffs and

speed/power tradeoffs. With a firm functional design, analysis is then performed to

determine the best way to implement the design, subject to the design constraints (tech-

nology, size, power, and cost). A schematic can then be drawn to show the proposed

interconnections of available parts.

This proposed implementation is analyzed for proper functioning by applying a test

sequence that emulates a subset of the conditions to be expected in real use. Once a

designer is confident that the design will meet functional requirements, the physical lay-

The Design Process 1.1

4

Design

equirement

Design

Concept

Design

Constraints

Available

Parts

Test

Scenario

Physical

Constraints

Acceptance

Test

Functional

Design

4,
Design

Optimization

Design

Schematic
4,

Design

Verification
4,

Design

Layout

4,
Design

Realization

Design

\ Product

Redesign

Redesign

Redesign

Redesign

Redesign

FIGURE 1-1 The Design Process

out of the actual interconnection of devices is formulated. Finally the design is realized,

tested and ready for release as a product.

The design workflow is the sequence of tasks required to accomplish the design pro-

cess. It is sequential only in an ideal conceptual case. It is conceivable that during

The Design Process 1.1

5

physical layout, flaws in the functional or schematic design may be uncovered, which

would cause redesign at the conceptual level. During product acceptance tests, flaws in

the functional design may be uncovered, making a major redesign necessary. The key to

efficient design is to strive for a sequential design workflow, keeping any backtracking

and recycling to one or two stages in the design flow. The purpose of Computer-Aided

Design (CAD) is to assist the designer through each stage of the design workflow.

1.2 The Challenge to CAD

The expansion in the electronics field has occurred as a result of amazing progress

over the past few years in the semiconductor fabrication technology. Gate densities and

chip sizes both increased to make it possible to design larger, and more complex systems.

This rapid change in the complexity of what could be made, changed the focus from

"How to make it? " to "How to design it ?" The challenge to CAD is to provide design

automation which offers the opposing characteristics of flexibility and automation.

Provided with incredible potential for system integration, the electronic industry has

been both innovative and reactionary in their response to the logic and system design

problem. Innovative in their adoption of new fabrication technology, but reactive in

advances in the use of CAD for design. The net result is the generally accepted belief

that design is the major bottleneck to even greater system integration. This bottleneck

occurs for a variety of reasons. Design systems are technology specific and have prob-

lems adapting to changes in the fabrication technology. But, the most important, and yet

subtle problem which plagues design systems is their evolutionary nature. Most design

automation systems are based on a level of Man Computer interaction which was

The Challenge to CAD 1.2

6

appropriate a few years ago.

Most designers readily admit that their designs do not occur in a rigorous scientific

manner. They start a new design with only a sketchy knowledge of how the final design

might turn out. This allows them to keep their options open until later in the design

cycle. At the early stages, they are exploring possibilities of design. These specifications

are solidified as design options are explored at various levels of the design hierarchy.

When they look back at the process involved in creating a new design, they often believe

that they stumbled upon the design rather than it being the result of a coherent design

process. While it may be feasible for designs to occur in such a haphazard manner today,

in future more complex designs will lay pressure for a more coherent approach. Inade-

quacies of current Computer-Aided Design (CAD), caused by a philosophy which con-

siders CAD to facilitate design, makes design more of an art than a science, and places

greater reliance upon the designer to direct the design process.

While most designers agree that CAD is the interaction of the designer with the

computer to aid design decision making, they do not always agree as to what level of

interaction is the most appropriate. Several implementation styles for CAD have evolved

as a result, and are identified [McKinsey 84]. These design approaches are the result of

the perceived role of CAD by corporate senior management. The roles can be classified

as follows;

Electronic Pencil

An elementary role as an Electronic Pencil is suitable for very small designs, and for

manual design workflow procedures. With this approach the CAD system provides only

The Challenge to CAD 1.2

7

the means for a designer to develop a new design. Yet, it is surprising how many design

companies use CAD in this fashion.

Interactive Design

An interactive design system automates some common tedious step in the design process,

but requires the designer to design the system. This is the approach adopted by design

groups faced with a wide variety of design tasks, where a fully automated design system

does not have the flexibility to address these design realms.

Automated Design Synthesis

An automated design system designs the system based on specifications entered by the

designer. The CAD system is characterized by its complete involvement and active parti-

cipation in the design process. Although this approach is new, it has been applied suc-

cessfully in specialized design areas.([Darringer 80],[Fox 84],[Fujita 86] etc.)

The Challenge to CAD 1.2

8

1.3 Logic Design & Computer Aided Engineering

The commercial CAE (Computer Aided Electronics) marketplace is rapidly expand-

ing in North America at an annual rate of approximately 35 % and, now represents

approximately $200 billion for both hardware and software. Despite these impressive

figures the commercial use of design automation is in its infancy. Reviewing current

CAD techniques, [Wayne 85] comments that it is the designers'reluctance to advance

from low level design techniques which has restrained the advance of automation in

commercial design environments. Design automation tools offer the logic designer

greater productivity and reduced errors, but they require commitment to implement. It is

this requirement to change methodologies, the comfort level in current low level design

techniques, and the inflexibility of high level design techniques, which are responsible

for the slow transition in the design community to higher level design techniques.

Vendors in the CAE/CAD marketplace have been classified []Bogert 87] according

to the design systems offered. These classifications are;

(1) High-end Electronic Generalist

These companies attempt to provide an integrated set of design and management

methodologies that address diverse types of design. These companies stress

comprehensive management techniques, integrated hardware, and file and data-

base computing. Although the design software of the electronic generalist is not

as sophisticated as the semiconductor specialists', their ability to integrate and

transfer information is superior.

(2) Low-end Electronic Generalist

Logic Design & Computer Aided Engineering 1.3

9

These companies have built their electronic design automation products around

the personal computer. The report's authors [Bogert 87] commented that these

systems offer good design and management capabilities for their unusually low

prices, but do not have the functionality of high-end systems. These systems are

most suited to the "single-user" environment, but this is likely to change as low

cost networking "engineer workstations" become available.

(3) Integrated Circuit Specialist

Included in this group are silicon compiler companies, and other sophisticated

design techniques for VLSI, (Very Large Scale Integration). The "IC Special-

ist" is considered to offer "leading edge" IC design tools, but users are warned

to make sure that implementations of these circuit designs are straightforward.

(4) Semiconductor & Engineering Tools

These specialists offer design tools as an adjunct to their semiconductor

manufacturing businesses. These tools are usually finely tuned to their own sem-

icustom products and processes, and have design centers where customers can

use CAE tools to design circuits.

The following sub sections review example design systems from these defined

categories.

1.3.1 DA4 - International Computers Ltd.

DA4 [Adshead 81] is the design automation system used by International Comput-

ers Limited in the United Kingdom. Following earlier experiments with design automa-

DA4 - International Computers Ltd. 1.3.1

10

tion systems it was introduced in its basic form in 1974 as DA1. It is now a very

comprehensive system, supporting designs in nearly 20 different classes of interconnec-

tion technology. Thus DA4 is typical of an integrated CAD system, which It represents

over 400 man years of internal development. The goals of DA4 were;

(1) To provide a common design system for the whole company.

(2) To provide the basis for LSI (Large Scale Integration) design.

(3) To support hierarchical logical and physical design.

A system diagram is shown in Figure 1-2. High level system design uses a

language to represent a computer at the architectural level in terms of structure and

behaviour. The design can be expanded in a "top down" fashion. Logic input is

represented in the RMOD [Wager 81] language, which describes the circuit at the regis-

ter level. Logic designs can be keyed directly into alphanumeric terminals or entered

graphically at the design stations. RMOD achieves compression of input data by

expressing a circuit at the "register level" , rather than at the conventional "circuit-

element level."

Multi-strings are used to represent parallel data-paths, and are given structured sig-

nal names. Multi-symbols represent logic functions that are available as a functional

block.

DA4 provides logic simulation for complex logic elements reporting on worst case

delays, timing race etc. DA4 can also be used for automatic circuit testing. DA4 facili-

tates many production outputs such as schematics and photographic artwork.

DA4 - International Computers Ltd. 1.3.1

11

Micro Program

Assemblers

PROMS

High Level

System
Design

Production Output
o Production Control Documentation
o Assembly Drawings
o Silk Screens for Component Insertion
o control Documentation for modification
o Version Control
o Automatic Placement of components
o photographic Art-lark

Detailed Logic Capture

o RMOD logic language
o Compressed logic data capture

o Timing delays
o Race and hazard analysis

Testing
o Test pattern generation
Q Fault simulation
o Probe Test
o Group Checks

Figure 1-2 DA4 System Diagram

DA4 is typical of an in-house CAD system. These systems have evolved from a

simple design automation tool to a complex workflow solution system which have been

adapted to the evolving design automation needs of the company. With source code

available within the company, future evolution of the design system can be controlled to

conform to design practices and technologies. The result of this development guidance is

a system which performs well in its intended environment, but fails to be adaptable in

many other environments. This lack of flexibility means that DA4 is probably of no use

DA4 - International Computers Ltd. 1.3.1

12

to any other company.

1.3.2 IEDS - Intergraph Corporation

IEDS (Interactive Electronic Design System) which runs on an Intergraph aug-

mented DEC VAX and proprietary dual screen graphic workstations, is a typical graphi-

cal turnkey electronic design system for MSI and LSI circuit design. This system can be

classified under "High end Electronic Generalist" The approach to the design is interac-

tive where the designer can see instantly a graphical representation of the work he has

performed. The design is stored in graphical and linked attribute databases. To speed

the development of the schematic drawing, the designer can develop circuit cells and

place these in the drawing with one operation. The schematic can be defined hierarchi-

cally, so that the design is partitioned into smaller functional blocks. Once the schematic

of the circuit has been developed, the following automatic functions are available from

IEDS.

(1) Automatic Net-list generation

This is based upon schematic connectivity.

(2) Automatic component packaging for MSI

IEDS packages gates into standard MSI logic ICs, and also assigns pin numbers.

(3) Best initial PC Component Placement

When placing components on a printed circuit board, IEDS will show the outline

of the component and "rubber banded" interconnects to other components

already placed on the board.

IEDS - Intergraph Corporation 1.3.2

13

(4) Automatic Trace Routing

IEDS is provided with a multi-layer circuit board router.

(5) Manufacturing Interfaces

Interfaces to manufacturing equipment such as drilling machines and photo

masks are available.

Intergraph's IEDS electronic design software is typical of many turnkey CAD ven-

dors such as Computervision, Calma or Applicon. Although most digital design groups

use commercially available CAD systems, such as IEDS from Intergraph, they must put

up with the lack of source code to make minor modifications and the lack of control in

product evolution. These two drawbacks have not discouraged the use of commercial

systems.

IEDS - Intergraph Corporation 1.3.2

14

1.4 VLSI Design

VLSI (Very Large Scale Integrated) increases the size and complexity of logic

design, and thus poses the following special design problems.

[a] Verified Designs

A traditional design approach which uses repeated low level iterations through tasks

such as layout, detailed simulation, timing analysis, fault simulation, automatic test

generation is prohibitively expensive for VLSI due to the complexity of the circuit.

Circuits are more complex, where changes can have knock on effects which are

difficult for the designer to comprehend and control. Design techniques must

evolve to the stage where design is sequential to the greatest extent. This requires

that testing and evaluation be performed as the design evolves and the use of design

techniques which produce verified designs.

[b] Design Input

VLSI circuit design creates new problems for design input. Graphical input for

logic design and layout is the traditional approach. It is based on using CAD as an

"electronic pencil" allowing the designer to develop his design. For VLSI this

becomes a combersome technique which limits the potential to improve the

efficiency of the design. As the design is entered, it cannot be fully validated until

completion and as a result, errors are not discovered until late in the design process.

[c] Design Representation.

Traditional design representation is in the form of a schematic which shows func-

tional blocks, devices and the inter-relationships. These schematics describe only

VLSI Design 1.4

15

the physical domain. There are two other domains of interest which, when com-

bined with the physical domain, characterize any VLSI design. These are the struc-

tural and behavioural domains. These domains may be defined as follows. The

physical domain is concerned with the specification of the physical layout of the

integrated circuit via patterns on fabrication masks. The structural domain is con-

cerned with describing the electrical characteristics of the design in terms of electr-

ical components and their interconnections. The behavioural domain describes a

design in terms of its function.

Any design language must interface directly with the design verification sys-

tem, both at the structural and behavioural level. The necessity for having both

structural and behavioural design verification is that, initially, it is likely that simple

behavioural characteristics would be all that would be available. Hence design

verification can begin at this level. As the design matures, structural design can be

specified, and to some extent, automatically generated from the behavioural

specification. The design verification process can then continue, until the

behavioural and structural descriptions are verified to whatever degree of accuracy

deemed necessary. This process can involve the elimination of numerous design

errors and description errors. Furthermore, it can aid in the addition of testing

hardware in the design to test those areas of logic that were found to, be

insufficiently tested by the design verification process.

[dl Hierarchical Design.

In a structured VLSI design environment there exists one hierarchy of description

for all three domains. The VLSI design system should address functional and

VLSI Design 1.4

16

physical problems at each level. SHIFT [Liblong 84] is an example of a hierarchic

design language whose purpose is to capture the various descriptions of a circuit in

a consistent manner.

1.4.1 Design Styles for VLSI

Integrated electronics has developed in a heatedly competitive and often secretive

business environment. As a result there has been a proliferation of different device tech-

nologies, circuit design families, logic design techniques, mask making techniques, and

wafer fabrication techniques, etc. Another obstacle is the high rate of change in the elec-

tronics industry, which is driven by improvements in fabrication technology.

Design constraints have caused the evolution of several design styles. These design

styles have evolved to meet the requirements of particular design scenario.

The fully custom design method is an ad hoc implementation. To date, CAD tech-

niques support custom design only to a limited extent, and as a consequence, custom

design is profitable only for large production of complex systems, such as microproces-

sors or memories, or for circuits where special performance is required. Many industry

analysts believe that fully Custom IC design will be a growth market in the 1990's, and

will be performed by designers whose current approach is MSI logic.

In gate-array design, a circuit is implemented in silicon by personalizing a master

array of uncommitted gates using a set of interconnections. The design is constrained by

the fixed structure of the master array, and is limited to routing the interconnections.

CAD for gate-array design allows complex circuits to be implemented in a short time.

Design Styles for VLSI 1.4.1

17

Gate-arrays are widely used, in particular for small volume production or for prototyping

new designs.

The design of a VLSI circuit in a standard-cell (or poly-cell) design method

requires partitioning the circuit into atomic units that are implemented by precommitted

cells. Placement and routing of the cells is supported by computer-aided design tools.

The standard-cell and gate-array design methods alone do not support highly optimized

designs. Standard cell designs are more flexible than gate-array designs, but require

longer development time. An approach which combines the speed of gate-arrays and the

flexibility of standard-cells has been developed [Brown 74] called CMOS Cell Arrays.

The CMOS Cell Array uses transistor isolation within pre-characterized standard cells to

allow the cell row locations to be defined. This allows all wafers to be pre-processed

with all necessary diffusions - final transistor size and placement are part of the customi-

zation and add to the flexibility. This technique is so similar to standard cell, that the

same CAD soft''are can be used. Even the CCA library has the function and perfor-

mance as a SC library. Transistor isolation is the feature that allows pre-processing of

the CCA wafer.

Designing using algorithmically generated macro-cells, bridges the gap between

custom and standard cell design and is compatible with both methods. Macro-cells can

implement functional units that are specified by design parameters and by their func-

tionality. Macro-cells are usually highly regular and structured allowing computer pro-

grams, called module generators, to produce the layout of a macro-cell from its func-

tional description.

Design Styles for VLSI 1.4.1

18

The macro-cell approach is attractive because its flexibility allows the designer to

exploit the advantages of both custom and standard cell methods. Highly optimized and

area-efficient modules can be designed in a short time. In particular Programmable

Logic Arrays (PLA) macros have been shown to be efficient for designing both combina-

torial and sequential functions.

1.4.2 TANCELL - Tangent Systems Corp.

TANCELL is a Cell-based IC design system, developed by Tangent Systems Corp.

TANCELL offers timing driven layout lTeig 86J. Timing-driven layout of semicustom

ICs incorporates circuit timing requirements as basic criteria for layout optimization.

The timing-driven layout process consists of circuit timing analysis, automatic layout

using timing analysis results, and report generation documenting circuit performance.

Properly applied, timing-driven layout can produce, in a single pass ICs that satisfy

difficult timing specifications. Performed repeatedly during the layout process, timing

analysis uses the latest layout information to calculate the propagation delay for every

circuit path in the design. The timing analysis also measures the timing margin or criti-

cality, which is used to drive the automatic layout tools. Each automatic layout tool uses

this criticality in making placement and routing decisions. The frequent feedback from

the analysis of how the layout is progressing, keeps the designer in control over the per-

formance of the design.

This cell-based approach to IC design migrates timing analysis earlier in the design

to reduce circuit design changes.

TANCELL - Tangent Systems Corp. 1.4.2

CHAPTER 2

Synthesis of Combinational Logic

This chapter presents Logic Synthesis and a number of sys-
tems which use that approach to design. It is a relatively
new design technique which will extend the current role of
CAD in logic design. The technique is characterised, its
strengths and weaknesses highlighted, and various
research systems are discussed.
Later chapter 7 will show how logic programming can be
used to implement a logic synthesis system.

2.1 What is Logic Synthesis

Logic Synthesis is a technique which generates a logic implementation in the

desired technology from a designers functional specifications.

Logic synthesis programs are designed to improve engineering productivity by

designing combinational circuits automatically. The effectiveness of such programs

depend on their ease of use and the quality of the circuits they produce in the light of

constraints applied to the design. Circuits are constrained by the types and characteristics

of components available, and by area, delay and power, and testing requirements. Syn-

thesis programs should therefore be capable of generating circuits with competitive area,

speed, power and testibility characteristics. Different constraints are not always compati-

ble, ie. the smallest implementation is not always the fastest. So, an automatic synthesis

program should also be able to make tradeoffs between competing constraint goals.

20

21

The logic synthesis problem is defined as follows:

(1) Given a circuit family of components, including all constraints and circuit limita-

tions associated with each circuit element type.

(2) Given a logical description of a digital system in some language, such as the

language of register transfers, Boolean equations or functions, or even gate equa-

tions.

(3) Realize the system described in item (2) using components given in item (1) and

in addition minimize the total implementation cost. This cost consists of both the

circuit costs and the per-unit design costs. Usually these two costs are inversely

proportional to each other.

The logic synthesis problem is analogous to the problem of machine-language trans-

lation. Logic synthesis implements a given digital system in terms of elements from a

given circuit family. The compilation of a Fortran program, which consists of a set of

high level language statements, results in a set of object level code which the computer

understands.

The goal of generating an acceptable, technology-specific hardware implementation

from a functional specification is not new. Three strategies have been developed.

One approach concentrated on translating Boolean functions into minimum two-

level networks of Boolean primitives ([Breuer 72],[Dietmeyer 78]) and were later

extended to limited circuit fan-in and alternative cost functions. Unfortunately, since

these systems had algorithms which searched for true circuit minimums, they require

time exponential in the number of circuits and cannot be used on most actual designs.

What is Logic Synthesis 2.1

22

A second approach viewed the problem as one of assembling large macros. In

these design systems, the data flow of the machine was generated in terms of predesigned

or generated macros, such as multipiexors and ALUs. The control logic was usually

implemented by PLAs, Weinberger arrays, or ROMs with microcode. Most of the

current silicon compiler work falls into this category ([Johannsen 79],[Southard 83]).

Other research attempted to raise the level of specification. The DDL at Wisconsin

[Duley 68], APDL at Carnegie-Mellon University [Darringer 69], and ALERT at IBM

[Friedman 70], all began with behavioral specifications and produced technology-

independent implementations at the level of Boolean equations. Designs produced were

less efficient than a manually produced design, and they did not take advantage of the tar-

get technology. These systems pointed out the need for an appropriate level of efficiency

and control for the designer over the circuit.

2.2 Why Logic Synthesis

Logic synthesis and optimization has recently gained significant credibility and

practical use. Earlier systems only optimized cell counts, while current systems attempt

to synthesis and optimize digital systems based on many technology criteria. With tim-

ing constraints, testability, wirability, and efficient use of available primitives in addition

to cell counts, the system is able to produce quality designs which do not need further

re-design. Such systems are favoured because of their ability to produce efficient tech-

nology specific logic.

Hand crafted logic designs are normally checked by modeling and simulation. But,

What is Logic Synthesis 2.1

23

simulation alone is an inadequate check. The growing complexity of circuits, together

with the increasing number of parameters, do not allow thorough simulation with a com-

plete set of test patterns. Circuits which have been subjected to some incomplete func-

tional testing are not guaranteed to be safe and reliable in operation. More thorough test-

ing increases design costs, and introduces additional cost if flaws in the design are found.

A system which produces a verified design avoids costs associated with design itera-

tion. The major difference to conventional design, is the requirement to completely

determine behavior and interface description before starting any concrete design steps.

Designers often decline to take this step because a very early detailed definition is not

possible real circumstances. The alternative is for design to proceed unguided, where

parts are added as necessary. The introduction of a formal task specification primarily

shifts activities from a late stage in design to an early one, with subsequent time savings

brought about through a reduction in design process cycling. A designer who adopts this

approach has to change his interests at the early stage of design; he must try to validate

synthesis procedures used to produce a design rather than rely on simulation to later ver-

ify that his design will work.

This approach presents a number of challenges which are problems with current

systems.

(1) Modifiable & Extendible

Synthesis algorithms should be easy to understand, and should be modifiable by

the designer. This is a common problem with design automation tools and the

most common reason why design automation is not so widespread. With pro-

Why Logic Synthesis 2.2

24

cedural languages like Fortran, or C, this requirement is very difficult to satisfy.

(2) Sub-optimal Results

The design system should be able to develop suboptimal results where optimal

results are not practical. This is important when designs are complex and sub-

optimal results are of more value.

(3) Portability

The CAD system should be portable to different hardware.

2.3 Automatic Logic Synthesis & Optimization

A number of logic synthesis systems have been developed, and are listed in Table

2-1. Several of these systems are described in detail.

SYSTEM

ALERT
DAA
DDL/SX
DFT
EL/SYN
LSS
MACDAS
MACPuTS
Socrates
Tokio

DESCRIPTION

Logic design generator
Knowledge based synthesis
Rule based logic synthesis
Synthesis with testability
Expert analog circuit synthesis
Logic synthesis system
AND/OR circuit synthesis
VLSI synthesis
Synthesis & Optimization
Automatic CMOS :ate arra s nthesis

INSTITUTION

IBM Watson Research Center
Carnegie-Mellon University
Fujitsu Laboratories Ltd
Syracuse University
MIT
IBM Watson Research Center
Osaka University
MIT
University of Colorado
Universit of Tok o

Table 2-1 Logic Synthesis Systems

2.3.1 ALERT

The ALERT system [Friedman 69] converts preliminary high-level descriptions of

computers into logic. ALERT is unique in its use of Iverson notation [Falkoff 64] to

Automatic Logic Synthesis & Optimization 2.3

25

describe the architecture of the computer. This input is processed by eight routines in

series. First the "translator" checks the input and translates it into a less compact inter-

nal representation. Then the "selection decoding" routine scans for variable subscripts

and if found replaces it with an appropriate block of logic. The "macro generator"

replaces higher order logic elements with the complete combinational logic required to

accomplish that operation, and the "sequence analyzer" determines the sequence and

control requirements. The "consolidation" process eliminates duplicate logic blocks,

and inefficiently connected arrays of elements.

2.3.2 LSS (Logic Synthesis System)

Introduction

LSS (Logic Synthesis System) ([Darringer 84],[Joyner 86]) is an experimental logic

synthesis production system used to produce bipolar gate array chips. It has slowly

developed from initial logic synthesis experiments at IBM's Poughkeepsie laboratory in

New York. The development team background of automatic theorem proving (D

Brand,W Joyner), program verification (J Darringer) and logic design tools (J Gerbi) is

reflected in the approach used in LSS. What follows is a brief description of LSS.

Design Approach

In LSS, logic is transformed from the high-level specification into production-

quality implementation through a sequence of local transformations. The system takes

(as one of several input forms) a description language at the register transfer level, and

attempts to transform it into an interconnection of gates specific to a target technology.

ALERT 2.3.1

26

LSS uses levels of description, to which local transformations are applied. These

local transformations have the effect of simplifying the design and moving it to towards

the next level. Figure 2-1 illustrates this transformation process.

At the initial level, advantage is taken of "high level" constructs such as adders,

decoders and parity generators. For example, decoders may be present in the logic

"High Level"

Transformations

nd - Or"

Transformations

STEP(D

] STEP®
STEP®

STEP®

"Nand - Nor"

Transformations

Technology Specific

Transformations

llTzTD©NI

FIGURE 2-1 Levels of Description in LSS

LSS (logic Synthesis System) 2.3.2

27

because of their presence in the initial description, or because they are discovered by a

transformation. Transformations are applied at this level before the information inherent

in these operators is obscured by their expansion to more primitive gates.

At the AND/OR level of description, transformations simplify the logic by bunching

together nested AND!ORs and by doing straightforward simplification. In addition

transformations convert the design into an equivalent NAND or NOR representation.

At the final technology specific level of description, technology constraints are

enforced and advantage is taken of technology opportunities. Complex primitives

present in the target technology, such as exclusive-ORs and parity functions, AND-OR

and OR-AND combinations and multiplexors are utilized. Timing requirements are

enforced at this stage of synthesis.

LSS In Use

LSS is used-in a production environment as an automatic tool even though it was

originally conceived as an interactive design system. With standard scenarios of

transformation occurring repeatedly, users become familiar with the resulting output

logic and performed less manual examination. LSS is particularly suited to completing

first pass designs rapidly. With LSS sweeping design changes can be considered to

solve timing problems. This ability to correct timing problems through high-level

changes rather than low-level path tuning has contributed to the success of the project.

LSS did not fair well in refining logic designs. To make a design better seems to

require information which is not available to the synthesis system such as global plan-

fling and "don't care" conditions. LSS would benefit from a knowledge engineering

LSS (logic Synthesis System) 2.3.2

28

approach. With this approach,the designer would have the flexibility to incorporate addi-

tional rules as required to improve LSS design refinement performance. LSS is imple-

mented in PL/1, and suffers from the limitations associated with that programming style.

Technology Adaptation

LSS has been designed to produce efficient, technology-specific implementations.

Rather than using technology information throughout the scenario of transformations,

LSS uses table driven transformations to give LSS adaptability to different technologies

while maintaining the ability to produce designs which take the most advantage of the

technology. With this technique, new technologies can be incorporated quickly. Tech-

nology specific information is used in the technology independent parts of the synthesis

scenario as well as in the technology-specific section to help decide whether a particular

transformation should be applied. This information is typically used to calculate the

potential savings in replacing a grouping of gates. For example, size information about a

generic primitive (such as OR), which gives the number of cells it would take to imple-

ment in the target technology, can be used to evaluate the potential savings in replacing a

group of NAND or NOR gates by such a primitive. In fact LSS will evaluate all the

potential replacement candidates, and perform the conversions in the ranked savings

order.

Timing

Timing is an important design criteria which must be considered for optimal circuit

performance. The design goal of "speed" is usually to shorten certain critical paths on a

LSS (logic Synthesis System) 2.3.2

29

chip to meet design constraints, rather than to minimize all paths or total path length.

LSS uses a technology specific delay calculator which computes the difference between

the required and actual arrival times. This information is then used for timing correction

transformations within LSS. These timing correction transformations attempt to meet the

user-specified timing constraints, sometimes at the cost of area and power. The timing

analysis procedure computes the worst case arrival time of a signal at any logic block

input pin by tracing forward through the logic starting at the primary inputs, and it com-

putes the worst case required time by tracing backwards through the logic ending at the

primary outputs. The difference between the required and arrival times is the slack,

which when negative indicates that a signal does not meet the required timing. The slack

information is used by the timing correction transformations to determine their course of

action.

2.3.3 DDL/SX (Digital Design Language/Synthesis eXpert)

DDL/SX (Saito 86) is a CMOS gate-array rule-based system for logic circuit syn-

thesis. The system inputs technology-independent functional diagrams, and automati-

cally generates conventional technology-dependent logic diagrams. A rule-based

approach was adopted because the synthesis steps were not clear and were likely to

change. This approach made it easy to incrementally improve the system's capabilities

by adding, deleting, or modifying design knowledge represented as rules. Experimental

results reported at Fujitsu in Japan, reveals that logic designs generated automatically are

almost as good as the manual design, and that the design time is reduced by a factor of

four.

DDL/SX (Digital Design Language/Synthesis Expert) 2.3.3

30

The DDL/SX synthesis system's development was motivated by a desire to avoid

errors introduced by manual gate-level design, and to automate a task which occurs regu-

larly in electronic telephone system design.

The production system was implemented using ESHELL which is a general purpose

tool for building expert systems. It provides the kernal of a production system based on a

"backboard model" [Craig 86], and an environment which facilitates knowledge base

construction. Knowledge rules are classified as follows;

(1) Macro expansion

These rules are knowledge about how to organize cells in order to implement a

function of a macro.

(2) Optimization Rules

These rules are for removing redundant cells, and for replacing a group of cells

with a single cell.

(3) Constraint Check Rules

These rules are for detecting and eliminating violations of design constraints such

as fanout.

(4) Miscellaneous Rules

To interface the LSI with external circuits, I/O buffer cells and clock buffers

must be inserted. Unused pins of the components should be connected to dummy

cells which represent connections to ground or pull-up circuits. Scan path design

rules are also included.

DDL/SX (Digital Design Language/Synthesis Expert) 2.3.3

31

(5) Scheduling Synthesis Tasks

Rules for scheduling the synthesis tasks and checking whether the problem has

been solved are in this category.

Experimental results shows that designs generated automatically have approxi-

mately 20 % more unit cells, but are created in approximately one quarter the time

(allowing for input and slight modification) compared to manual design. Actual CPU

times for a circuit with 2,000 basic cells is approximately 10 secs on a FACOM M-380

15 MIPS machine.

2.3.4 MACDAS Circuit Design System

MACDAS (Multi-level AND-OR Circuit Design Automation System) [Sasao 86 is

a system developed at Osaka University which designs a multi-level circuit with fan-in

limited AND-OR gates. To use MACDAS, the user presents the specification of the cir-

cuit in the form of a truth table, or a net-list of the circuit diagram, or an arithmetic

expression. This input is processed as follows;

(1) AND-OR Conversion

The given specification is converted into an AND-OR two level circuit.

(2) Two variable function generators

Input variables are paired to produce an AND-OR two level circuit with two-

variable function generators (TVFG). A TVFG generates all the functions of one

and two-variables, and when inputs are paired each TVFG represents a "super

variable"

MACDAS Circuit Design System 2.3.4

32

(3) Complement

Some of the outputs are complemented to obtain a circuit with fewer AND gates.

(4) Factorization

The circuit is transformed into a multi-level fan-in limited AND-OR circuit. This

algorithm is based on finding common factors to resolve the fan-in limitations.

The algorithm, which maximally reduces the number of gates is drawn from

[Dietmeyer 78].

(5) Local transformation

Finally the circuit is optimized by local transformations.

MAMAS uses two PLA optimization techniques. The first one is the optimal

assignment of the input variables to PLA's with two bit decoders. The second is the

optimal selection of the output phases. These optimization techniques produce designs

which are better designed than would have been produced with a manual approach.

MAMAS is a useful tool for designing multi-level arithmetic circuits.

2.3.5 Socrates

The Socrates System [Gregory 86] diagram is presented in Figure 2-2. To have the

best representational form at each level, Socrates uses three different design representa-

tions.

(1) A logic Level representation is required for operations which operate on the logic

of the circuit. This logic level representation uses an extended version of

Expresso's PLA format. [Brayton 84]

MACDAS Circuit Design System 2.3.4

33

Compile UUU
Exso Coo WW LP.1&tcn

FUNCTOON

-f = ab + C'

Synthesize

'—'-4
GTrwtt
OjWrizr

Extract

HIETLUST
TOL1,,

TDI Ut

Dlcplay

Draft

Figure 2-2 Socrates System Diagram

(2) A circuit level representation is required for operations on circuits. They are

represented using a net-list format.

(3) A Boolean equation format for entering designs by hand.

Translators Compile, Synthesize and Extract, are provided to convert designs from

one format to another. Compile converts Boolean equations to a two level Expresso for-

mat. Multilevel equations are flattened to two-level equations in this step. Synthesize

Socrates 2.3.5

34

converts designs from the PLA format to the netlist format. Generic AND, OR and NOT

gates are used to implement corresponding logic in this step. Extract converts a netlist to

Boolean equations. Extract uses a Boolean variable to represent each signal in the net-

list, and writes an equation for each gate.

A constraint specification allows designers to describe the desired characteristics of

their circuit. Designers can specify when signals arrive at inputs, and the drive factor

associated with them. Designers can specify the maximum propagation delays to indivi-

dual outputs and the loads that must be driven at those outputs. Two programs Expresso

and Weak Division perform logic level manipulations on designs. Expresso finds a

minimum sum of products for each two level function. Weak Division decomposes two

level functions into multiple levels by iteratively dividing out common subexpressions

algebraically. The circuit optimizer program manipulates designs at the circuit level.

The program improves circuit characteristics by iteratively replacing and rearranging

groups of components in the circuit. It uses a library of alternate circuit implementa-

tions. The alternatives are given in the form of a rule, where conditions that are required

to be true for the circuit are listed, if that alternative circuit is to be considered. Compet-

ing alternatives can thus be implemented in turn, and the performance of the circuit

measured. After each rule application, an incremental timing and area analysis is per-

formed. These analysis are based on user supplied values for timing and area models of

each gate.

Before a rule is selected, transformations on the circuit resulting from its application

are attempted. The program evaluates the effects a transformation will have on other

transformations in the future by performing a state search. The depth and breadth of the

Socrates 2.3.5

35

search tree determine how far, and how exhaustively the program looks into the future

before selecting a new rule. This look-ahead mechanism enables the circuit optimizer to

choose transformations which do not immediately improve a circuit, but which lead to

other transformations which do. This look-ahead feature is an example of the application

of meta-level inferencing in SOCRATES. Meta rules control how area and speed are

traded off against each other, and when and where CPU time is used.

2.3.6 Logic Design using Tokio & C-Prolog

A program which automatically synthesizes logical circuits for CMOS gate array

from state diagram has been developed at the University of Tokyo ([Fujita 861). This

system is written in Prolog and Tokio [Aoyagi 85], where Tokio is a logic programming

language which is based on temporal logic. Tokio can be considered as a version of Pro-

log that has been extended to describe concurrent processing.

Synthesis Program Description

The synthesis process is divided into six steps:

(1) Convert DDL description to Prolog.

DDL [Duley 68] is a well accepted hardware description language, which is used

as a neutral file format to input the design. The DDL description includes "Ter-

minal Transfer Tables" , "Register Transfer Tables" and "State Transition

Tables"

(2) Expand & Fetch common parts from similar logic expressions.

Logic Design using Tokio & C-Prolog 2.3.6

36

This is the first stage of simplification, which is illustrated by the following

example:

Ti = A.B.C.D T2 = A.B.C.E

is converted to:

COM = A.B.0

T1=COM.D

T2 = COM.E

(3) Primary Simplification: Eliminate duplicate units

Four simplification rules are applied as appropriate.

1. Unification of units that have the same functions, same inputs, but different

nets.

2. Simplification of AND or OR gates that have several identical inputs.

3. Simplification of multiplexer gates containing sets that have the same source

under different conditions.

4. Simplification according to the replacement rules. Prolog is used to find cir-

cuit patterns where the replacement rules are applicable. Then the replacement

rule is applied.

(4) Analysis & modify the design according to the results.

Perform ana analysis the number of gates, the delay time, the fan-in and fan-out

and modify the result if there are any design constraint violations.

Logic Design using Tokio & C-Prolog 2.3.6

37

Processing Results

Performance of this synthesis system is quoted for a Unify Processor. This pro-

cessor consists of approximately 500 'ITL IC circuits and 17 internal registers.

The DDL description consisted of 1000 lines.

The processing time on a VAX 11/730 is as follows;

Phase 1
Phase 2
Expansion
Cross-Reference
Phase 3
Phase 4
Fan-out
Gate count
Delay Time

Total

Hours:mins
5:30

:40
11:30
74:30

3:30
:10
2:00

97:50

The initial design consisted of over 26,000 gates which was reduced, through

simplification, by 10,000 gates or 40%.

Conclusions

While this system shows that logic synthesis is practical, the processing times

shows that 20,000 gates is approximately the limit of capability for an interpretive sys-

tem. The greatest processing time occurred for primary simplification. It occurs as a

result of the repeated backtracking as the various simplification rules are tested. With

more clever program design it should be possible to reduce this processing time.

Logic Design using Tokio & C-Prolog 2.3.6

38

2.3.7 DAA (Design Automation Assistant)

The Design Automation Assistant (DAA) [Kowalski 83] expert system was

developed at Carnegie-Mellon University to investigate the application of Knowledge

Based Expert Systems (KBES) for cost effective design of low-volume special purpose

VLSI systems. DAA's area of expertise is allocating an architecture for a VLSI system.

Its input is an algorithmic data-flow description of a VLSI system, and its output is a list

of technology independent registers, operators, data paths and control signals. DA4 is

implemented as a production system using the OPS5 [Forgy 81] Knowledge Based

Expert System writing system. OPS5 facilitated the separation of expert knowledge from

reasoning in DAA. Incremental addition of new rules and the refinement of old ones is

easy because the rules have minimal interaction with one another.

DAA uses ordered subtasks to design the VLSI architecture. These subtasks are

implemented using about 130 rules. Particular rules are applied if the specified conditions

of the rule are met.

Experimental results from DAA indicate that a KBES approach to logic synthesis

improves the performance of logic synthesis. Such an approach requires that the expert

knowledge of design be explicitly defined. The definition of this knowledge aids our

understanding of the design process and can also be used in the teaching process.

DAA (Design Automation Assistant) 2.3.7

CHAPTER 3

Logic Programming

Logic programming is emerging as one possible technique
for Computer-Aided Design (CAD) system development to
cope with the recent increase in complexity of VLSI
designs. Logic programming contrasts with current algo-
rithmic solutions which are based on languages such as
Fortran or C. This chapter discusses what logic program-
ming is, and some specific advantages in its application to
logic design.

3.1 Logic Programming

Logic Programming is a technique which combines logic clauses (or hypotheses)

and a form of automatic logic deduction. Logic programming has gained acceptance as a

suitable technique for implementing expert systems, and as a suitable programming tech-

nique for Japan's Fifth-Generation computer research and development project [Feigen-

baum 83]. The theoretical basis of logic programming is Predicate Logic and the Resolu-

tion theorem [Chang 73].

The logic programming language Prolog ([Clocksin 81], [Cambell 84], [Pereira 84])

has gained wide acceptance throughout the Al community, and has been selected as one

of the basic languages for Japan's fifth generation computer project. Prolog is a rela-

tively new language, developed in the early seventies, which already has been used to

develop specific expert systems for logic synthesis. Specific expert systems such as DFT

(Design for Testability) [Hortmann 84] and DEMO, (meta Prolog experimentation sys-

39

40

tern), have been implemented in Prolog. Another system is under development at the

University of Tokyo [Fujita 86]. Supporting such system development are numerous

research papers which propose the use of the language for logic synthesis, simulation and

testing ([Suzuki 85],[Gullichen 85], and [Noda 85]).

3.1.1 Prolog Logic Programming

A Prolog program is a set of "Horn" clauses, but the notation differs slightly from

the traditional notation. In classical logic, a Horn clause may be written as,

P1&P2 ... &Pn -> Q

In Prolog syntax, the same clause would be expressed as,

Q :- P1,P2,...Pn.

where the antecedent is written to the right of the implication arrow, the consequent to

the left of the arrow, the arrow itself is reversed and is written as ":-" and the "&" signs

are replaced by commas, with a full stop at the end. "Q" is put at the left of the

antecedent to put emphasis that the antecedent constitutes the body of a procedure for

calculating "Q" These clauses are both declarative, describing objects and their relation-

ships and procedural, in that they are executed as functions. The symbol ":-" means

"implied by" in the clause context. Each consequent and antecedent can be thought of

as a function call of the form:

p(tl,t2, tn)

Prolog Logic Programming 3.1.1

41

where "p" is an arbitrary predicate symbol, and "ti" through "tn" are terms. Clauses

without antecedents are the facts of the system, while those without consequent clauses

are used as goals.

A Prolog logic program usually consists of a set of rule and fact clauses which is

used for the resolution of the goal clause. The goal clause is supplied from an external

source. The resolution process involves matching the antecedents in the goal with con-

seqents in the fact and rule set, and then using those antecedents as subgoals. This reso-

lution process continues sometimes recursively until either the empty goal is reached

(thereby proving the goal to be true) or a match is unavailable. When a match is unavail-

able backtracking occurs. Backtracking is the process by which the Prolog interpreter

selects alternative choices for subgoals if they are defined. If backtracking exhausts all

possible alternative definitions of the subgoal, then the subgoal is unprovable, and it falls

for the given set of facts and clauses. During this resolution process the variable terms

encountered are tinified ("instantiated") across antecedents and consequents. It is these

instantiations of variables that are used as answers when the goal is proved. Logic pro-

grams prove or disprove goals only in relation to the set of clauses (facts, rules and goals)

provided.

Prolog has been criticized as falling short of the ideal logic programming language

in two areas [Naish 83]

(1) Poor Implementation of Negation

Horn clauses can only be used to deduce positive information. The best way of

dealing with negation using Horn clauses is to use the closed world assumption,

Prolog Logic Programming 3.1.1

42

that is anything which cannot be proved true is assumed to be false. This cannot

be easily impleniented so Prolog uses a weaker rule, negation as failure. A goal

is assumed to be false if the interpreter finds a finite proof that the goal is unprov-

able. Most Prolog systems implement the clause not(p(X)) with a meaning of,

not(p(X)) <==> for all X,-p(X)

rather than,

not(p(X)) <==> there exists X such that ' p(X)

(2) Inadequate Control Facilities.

The basic control facilities of Prolog are just the ordering of clauses and atoms

within clauses. Once a program has been written in a particular way, the clauses

and sub-goals are always tried in the same order. While facilities such as cut and

var partly overcome these problems, correctness and clarity suffers. Prolog's

poor control facilities leads to poor program reliability, infinite loops and

inefficient algorithms.

Two improved Prolog systems have been developed which overcome these prob-

lems of the basic system.

(1) MU Prolog [Naish 83] comes closer to the goals of logic programming address-

ing the negation and control facility problems of Prolog. MU-Prolog uses a sys-

tem of delaying and resuming calls to clauses to provide more flexibility,

Prolog Logic Programming 3.1.1

43

efficiency and termination. Negation is implemented soundly by delaying the

computation of the clause to be negated. The clause is woken up when the vari-

ables in the clause are bound.

(2) IC-Prolog is probably the best known Prolog system with improved control

[Clark 81]. In IC-Prolog, control information is specified by adding annotation to

the program clauses. There are a wide range of annotations, and for certain

applications IC-Prolog can achieve more efficient algorithms than MU-Prolog.

3.2 Prolog as an Expert System Shell

Rule-based languages are generally considered to be the most suitable for represent-

ing knowledge in expert systems. Rules are relatively easy to understand, and their

modularity makes modification easy during knowledge base development and use.

Horn clause logic can be viewed as a rule-based language, which with appropriate

extensions, it is acandidate for representing knowledge in an expert system. Any collec-

tion of Horn clauses can be run directly as a Prolog program. It has been commented

[Hammond 83], that for some applications, running the expert system rules as a Prolog

program is adequate, and the implementation of the expert system becomes trivial. How-

ever, two important expert system shell features are not automatically available in Pro-

log.

(1) Prolog does not provide automatically an ability to explain and justify reasoning.

(2) Prolog does not provide automatically a request for data based on inference.

However, such features can be added to a Prolog program.

Prolog as an Expert System Shell 3.2

44

Prolog has the advantages of uniformity and extensibility. Uniformity is provided

in the form of rules that can perform both program control and data manipulation. To

further refine the expert system, rules can be modified or added. One preliminary conclu-

sions on the use of Prolog for DFT [Horstmann 84] [Horstmann 84] - CAD Using Logic

Programming suggest that rules can be added or changed easily, even while using the

system, and this feature was especially useful in developing and debuging the system.

Careful system design which separates rule function gives a Prolog program "modular-

ity" to adopt to design changes.

The efficiency of a Prolog program or the lack of it is a key concern for the accepta-

bility of Prolog as the development language. If the task is numerically intensive, or if it

can be procedurally defined then the task might be better suited to a procedural language

which would execute more efficiently than Prolog. In later chapters it can be shown that

there are many aspects of logic design which are best implemented in Prolog. Even if the

task may be suitable to Prolog, if a subtask of the design process does not lend itself to

Prolog programming, it can make sense to implement that task using a procedural

language. A combination of Prolog and an efficient procedural language can provide

considerably better overall performance when compared to a system programmed only in

Prolog, without having to compromise any of the benefits offered by Prolog.

The performance and efficiency of Prolog depends on the system programmer

understanding of the problem and how solutions can be obtained. It has been illustrated

in many texts on logic programming [Bundy 83] that the existance of a solution does not

guarantee that a solution will be found by the Prolog interpreter. It is thus necessary for

Prolog as an Expert System Shell 3.2

45

searching to be guided to obtain the solution in the fastest possible way. A Prolog system

designer should always place "likely" rules first in a Prolog program, so that those rules

are tested first. Backtracking, as the Prolog interpreter "tests" alternate rules is the

major source of inefficiency in Prolog programs.

3.3 The Case for a Clausal based Expert System Approach

The advent of VLSI technology has put considerable strains on current design tech-

niques in dealing with the growth in design complexity. Even hierarchical design tech-

niques, which were introduced to deal with the complexity issue, are often inadequate to

match, downwardly imposed design criteria and upwardly imposed physical constraints.

This thesis is in support of a clausal based expert system approach to design as the most

effective long term strategy for inexpensive exploitation of VLSI technology. Such a

design technique will make low-volume special purpose chips economically feasible.

Others support this design approach [Brewer 86], and propose a new model of

design which is based on communicating expert systems which operate at different levels

of design abstraction. The purpose of the expert on a given level is to create a structure

out of the design components predefined for that level. With this approach design is not

forced in a top to bottom fashion with little consideration for factors which arise at lower

levels. Design still proceeds top to bottom as each level is completed, with the provision

that any level may fail in its attempt to achieve its goal. When this occurs, control passes

back to the parent in the form of a failure report. The higher level task may decide to re-

allocate constraints, or change styles, or indeed fail itself. This procedure allows back-

tracking of earlier design decisions between levels of the design hierarchy, forcing

The Case for a Clausal based Expert System Approach 3.3

46

iterative refinement of design. It also effectively manages both upward and downward

propagation of design styles and parameters. Constraint propagation and failure report-

ing augment the completed design specification, and can aid the "expert designer" to

complete his design in much the same way as the human designer.

Although [Brewer 861 does not propose any specific language for implementing this

model of design, the author suggests Prolog as suitable for the task. Prolog has many

characteristics which would facilitate such an expert system model for design;

(1) Backtracking

Prolog's backtracking feature is directly useful for implementing the failure

reporting feature between levels of design abstraction.

(2) Expert System Language

Prolog has been used to implement Knowledge Based Expert Systems. There are

KBES logic design systems ie DEMO, LSS.

(3) Rule based Language

Prolog is a rule based language with a built in simple inference mechanism.

(4) Timing Representation

Concurrent Prolog is available to represent the timing element of a design.

(5) Unifying Language

Prolog could be used for all aspects of system development, thereby unifying or

uniting these expert systems together. Prolog clauses are both declarative, in that

they describe objects and relationships, and procedural in that they are executed

as functions.

The Case for a Clausal based Expert System Approach 3.3

47

(6) Circuit Transformation

Prolog re-write rules facilitate circuit transformations. These transformations are

required frequently in logic synthesis, logic minimization and for technology

conversion.

The Case for a Clausal based Expert System Approach 3.3

CHAPTER 4

Circuit Representation in Prolog

This chapter presents two techniques for representing and
manipulating circuits which are available in Prolog - data
structures and Horn clauses. Circuit representational
techniques are introduced first because they determine
which manipulations can be performed easily. The PCD
program (described in chapter 7) is based on a Prolog data
structure circuit representation.

4.1 Circuit Representation in Prolog

In choosing a representational technique two questions are normally posed. Does

the representational technique make efficient use of memory? Does the representational

technique allow for efficient manipulation? Unfortunately it is very hard to find a tech-

nique which optimizes both these requirements simultaneously. A circuit which is

represented using sets of Horn clausal statements presents circuit information suitable for

logic manipulations, but this representation does not make the most efficient use of

memory. A circuit represented as a Prolog data structure is stored more efficiently, but

cannot be accessed in the same manner as in a Horn clause representation. These tech-

niques are fully described in the following sections.

4.2 Prolog Horn Clause Circuit Representation

Digital logic circuits can be viewed as a network of primative gates whose intercon-

nection imposes constraints. Satisfying the constraints with some lines bound to some

constant values serves to simulate the operation of the circuit. Many features of Prolog

48

49

make it suitable to direct representation and simple simulation of logic circuits.

The following are characteristics of a Prolog Horn clause circuit representation;

(1) Functional & Physical Characteristics

The Prolog database mechanism can record both functional and physical charac-

teristics of logic elements.

(2) Hierarchical Circuit, Representation

Prolog representation facilitates an abstraction of complexity using hierarchical

descriptions. In digital circuitry, the subsystems tend to be homogeneous.

Smaller components are replicated and interconnected to produce a larger piece

of hardware. Hence, arbitrarily complex circuits, within implementation limits of

the Prolog interpreter, may be constructed in a hierarchical manner.

(3) Parallel Circuit Representation

Parallelism of physical computer components are closely modeled using Con-

current Prolog [Suzuki 85]. Concurrent Prolog is very similar to Prolog, but it

has multiprocessing features which make it suitable for describing and simulating

highly concurrent systems.

(4) Forward and Reverse Simulation

As inputs and outputs of a Prolog predicate need not be specified, but may be left

unbound at the time a predicate is invoked. These inputs are instantiated through

the action of the Prolog interpreter, to make the predicate true. With these

features, Prolog is very amenable to functional simulation of many circuit types.

Functional simulation is an alternative to transistor-level logic simulation.

Prolog Horn Clause Circuit Representation 4.2

50

It is often a better alternative because the circuit model, which can be modeled at

any desired level of abstraction, can be generated quickly and the functional

simulation, which is written at an abstract level is more efficient. A Prolog simu-

lator provides an effective methodology to create a functional specification in a

high level language and to debug these specifications against test data. Simula-

tion can occur in the forward as well as the reverse direction, and even bidirec-

tionally. The ability to efficiently perform backwards simulation is useful in both

fault detection test generation and deductive methods for fault isolation.

(5) Don't Care Values

As Prolog can deal with unbound variables, the problem of "don't care" and

"don't know" values is simplified.

Any logic gate, such as an AND gate, can be directly represented in Prolog as a col-

lection of axioms which describe its behavior. For example, a 2-input AND gate is func-

tionally specified by the following 4 Prolog axioms;

and(in(O,O),out(0)).

and(in(O,1),out(0)).

and(in(1,O),out(0)).

and(in(1,1),out(1)).

Queries may be posed to Prolog to simulate operation of the AND gate:

I?- and(in(O,1),out(X)).

Prolog Horn Clause Circuit Representation 4.2

51

XO,

yes.

I?- and(in(X,Y),out(1)).

X=11

Y=1,

yes

In the first query, the operation of the AND gate has been simulated in the forward

direction, with gate inputs being propagated forward to the output. The second query is

an example of a backward simulation, and operates in a manner in which the hardware

cannot. Gate output is propagated backward to the inputs. The query asks what inputs X

and Y to the AND produce an output of 1. By matching the axioms in the database, Pro-

log indicates that both inputs must be 1.

So far we have considered only the representation of a two value primative logic

AND gate. This technique may be employed for representing gates which implement

multivalue logic, and for representing more complex combinational circuits. Consider

the representation of the logic function represented by Figure 4-1. Figure 4-1 represents

a simple combinational logic circuit. Circuits are fashioned from an interconnected net-

work of logic gates, and may be represented by Prolog implications in a manner amen-

able to simulation. This circuit could be represented as Prolog predicate circuit as;

example(1[nA,InB,InC,InD,Out) :- or(AB,CD,Out),and(A,B,AB),and(C,D,CD).

Prolog Horn Clause Circuit Representation 4.2

52

and

}

and CD

Example / = (A05)+(C0D)

Figure 4-1 Example circuit

where circuits or(,,) and and(_,,J are pre-defined circuits.

Example I

• 4.3 Prolog Structure Circuit Representation

The use of a Prolog data structure for circuit representation is believed to be original

to this thesis. This is the representational technique which is used as the basis of the

PCD Prolog logic design system which is described in chapter 7. It was chosen for the

Prolog Horn Clause Circuit Representation 4.2

53

following reasons.

(1) Circuit Manipulation

A data structure circuit can be manipulated easier than a collection of predicate

clauses. Circuits can be written and read from file in one operation. An arbitrary

large circuit can be passed as parameters in a Prolog predicate clause. Several

circuit definitions can co-exist and be individually manipulated.

(2) Circuit Transformations

Logic synthesis can be considered as a guided incremental transformation of a

behavioral description into a logic description. The ability to perform transfor-

mations and combinations, which is an essential component of logic synthesis,

makes data structures the best choice for a logic synthesis design system.

(3) Compact Representation

A Prolog data structure representation is more efficient circuit representation than

a predicate representation. When several alternate large designs are being

evaluated, this efficiency becomes important.

(4) Flexibility

A data structure representation can cope with multi-value logic, with any fan-in,

and with any fan-out. The flexibility is such that circuits can be represented

which are invalid.

To illustrate how a circuit can be represented as a Prolog data structure, let us con-

sider the circuit in Figure 4-1. This circuit would be represented in Prolog as follows;

Prolog Structure Circuit Representation 4.3

54

example(or(and(A,B),and(C,D))).

The circuit type is given by the functor, in this case "example." The definition

itself is not standalone. It uses the definition of common circuit elements which, for con-

venience, are considered "pre-defined" circuits. Also, in this case, circuit input signals

are represented as variables. These can be circuits or signals in their own right.

4.3.1 Pre-defined Circuits

A distinction is made between known circuits such as and(A,B) or or(A,B) and

user-defined circuits such as a_circuit(and(Clockl,Sigl))

Known circuits are primitive gates and circuit devices which the user can use to

define his circuit. These known circuits form the lowest level representation possible,

and their logic behaviour is pre-defined. Since these gates are frequently used, pre-

definition of these logic elements reduces the representation of the user circuit. Known

circuits are listed in Table 4-1.

CIRCUIT DESCRIPTION

and(A,B) Boolean logic operator "AND" between A and B
or(A,B) Boolean logic operator "OR" between A and B
not(A) Boolean logic operator "NOT" of A
jk_ff(J,K) I K Flip-flop

Table 4-1 Known Circuits

Pre-defined Circuits 4.3.1

55

A user can extend the range of pre-defined circuits to include additional circuit ele-

ments. In PCD, J K flip-flops are included in the list of pre-defined circuits because they

occur frequently in the circuits created. To add an additional circuit as "pre-defined"

additional rules, which describe its behaviour, need to be added to the database.

4.3.2 Circuit Input Signals

Inputs to a circuit can be either variable or fixed signals. Fixed signals have values

such as "1" or "0" while variable signals do not. When the signals are variables, they

represent circuits of arbitrary complexity. Ultimately these circuits can be evaluated to

have values of " 1" or "0" or "undefined" (or as appropriate in a multi-value logic sys-

tem). For example 4-1 the circuit with variable inputs is represented as;

example(or(and(A,B),and(C,D)))

The use of uppercase for variable signals and lowercase for fixed is consistent with

Prolog's syntax. This circuit can be correctly interpreted as having signals represented

by "A" , "B" , "C" , and "D" which can have a value of either " 1" , "0" or

"undefined." It can be seen from this that a circuit cannot be evaluated until its inputs

have been evaluated.

If the circuit has only fixed inputs the circuit itself is defined. In Prolog this can be

represented using lower case variables and integers " 1" and "0." The example in Fig-

ure 4-1 with fixed inputs would be;

example(or(and(1,O),and(1,1)))

Circuit Input Signals 4.3.2

56

or with predefined signals;

example(or(and(a,b),and(c,d)))

4.3.3 Handling Errors

These rules which govern data structure representation allow the definition of the

following valid circuits.

and(a,b)

not(a)

1

and(a,and(b,and(c,d)))

or(and(1,O),and(1,1))

The user can define circuits which are invalid. These circuits cannot be evaluated or

minimized correctly. A few simple Horn clauses can be written to check the syntax of a

circuit definition for correct signal usage and nesting of circuits.

Handling Errors 4.3.3

CHAPTER 5

Logic Minimization & Conversion

Many attempts have been made to increase the size of logic
minimization problem which can be addressed by
sacrificing absolute minimaliy. This chapter introduces a
technique which uses Prolog to implement a heuristic logic
minimization tool. In addition the same transformation
technique is applied to the problem of technology adapta-
tion or logic conversion. The logic minimization and
conversion techniques are presented as original work.

5.1 Boolean Logic

Boolean logic (more precisely binary logic) is the foundation for applications of

logic circuits used in digital logic design. Boolean expressions are created by combining

Boolean Operators such as AND , OR and NOT. These combinations are chosen to meet

desired behaviour by the logic function under all possible variable inputs. Boolean

expressions can be expressed in Truth Table form, in Canonical form, and in Circuit

form. They can also be expressed as equivalent Boolean expressions using the rules of

Boolean Logic. The rules of Boolean Logic are;

Basic Definition

(1) 0=1'

(2) 1=0'

(3) A+0=A

(4) A&0=0

57

58

(5) A+1=A

(6) A&1=1

Complements

(1) A&A'=O

(2) A+A'=l

Commutative Laws

(1) A+B=B+A

(2) A&B=B&A

Identity Laws

(1) A+A=A

(2) A&A=A

Distributive Laws

(1) (A+B)+C=A+(B+C)

(2) (A&B)&C=A&(B&C)

(3) A+(B&C)=(A+B)&(A+C)

(4) A&(B+C)=(A&B)+(A&C)

DeMorgan's Law

(1) (A+B)' = A' & B' (A&B)' = A' + B'

Boolean Logic 5.1

59

5.2 Logic Minimization

Logic Minimization is -the search for an equivalent circuit implementation of a

Boolean expression which is "minimal" in both design and production costs. Minimal

is generally taken to mean "minimal cost" but, the tradeoff between absolute minimal

production cost and design time, and cost factors in the implementation technology have

made minimization a more general circuit design problem. To illustrate this point, con-

sider the minimization of a 3 variable Boolean expression with 4 terms expressed in its

canonical form. It is practical to obtain the Boolean expression which contains the least

number of Boolean operators by applying the rules of Boolean Algebra. This is possible

because both the number of variables and the number of terms are small.

The minimization of;

F = A&B&C' + A&B'&C + A'&B&C + A&B&C

applying the Identity law,

= A&B&C' + A&B'&C + A'&B&C + (A&B&C + A&B&C + A&B&C)

applying the Distributive Law,

= (A&B&C' + A&B&C) + (A&B'&C + A&B&C) + (A'&B&C + A&B&C)

= (A&B&(C'+C)) + (A&(B'+B)&C) + ((A'+A)&B&C)

applying Complements,

= (A&B&(l)) + (A&(1)&C) - ((1)&B&C)

by basic definition,

Logic Minimization 5.2

60

= (A&B) + (A&C) + (B&C)

= A&B + A&C + B&C

In this minimization "proof" a directed search is occurring by selecting the correct

rule at each stage. The rules are selected because they fit into the overall minimization

strategy. These human proofs can be automated by computers using the Resolution

Theorem and uniform proof procedures ([Bundy 83] Chapter 7). In effect, these tech-

niques exhaustively apply all rules at each step. All equivalent Boolean expressions are

generated, and the appropriate minimal expression is used, and the remaining expressions

are discarded. In [Bundy 83] Chapter 7, this technique is criticized. At each rule appli-

cation, a branching rate equal to the number of applicable rules in the database (often

greater than 15) and recursive application of rules cause unreliable termination.

5.2.1 Absolute Logic Minimization

In the 1950s, when logic gates were expensive, it was very important to develop

techniques that produced, for a given function, an implementation with the smallest

number of devices. Such simplification of logic functions became an active area of

research, and produced the map methods such as Karnaugh [Kamaugh 53] and Veitch

maps, and later other more sophisticated tabular methods. The map methods were only

practical for functions of up to S variables, while the tabular techniques were restricted

by the computational intensity of the problem.

The tabular method ([McCluskey 56], [Quine 55]) consists of three basic stages;

Logic Minimization 5.2

61

(1) Identification of prime implicants

Although the generation of all prime implicants has become more efficient, it can

be shown [Miller 65] that the number of prime implicants of a logic function with

n inputs can be as large as:

3/n

(2) Identification of essential prime implicants

The problem of selecting a minimal cost set of prime implicants which covers the

function "f" , is referred to as the prime implicant covering problem.

(3) Prime Implicant Covering Table.

Since the number of elements in the covering problem may be proportional to the

exponential of the number of input variables of the logic function, processing

makes this technique impractical for even medium sized problems (10 - 15 vari-

ables).

5.2.2 Heuristic Logic Minimization Techniques

Lower cost for logic gates in the early seventies reduced the requirement for an

exact minimum. Large complex PLA implementations with over 30 inputs and 100 pro-

duct terms made exact minimization impractical. Many heuristic techniques were

developed to obtain a near minimum.

Some approaches start by generating all the prime implicants, and then instead of

generating a minimum cover, a near minimum cover is selected heuristically ([Arevalo

78],[Hong 74] & [Rhyne 77]). With this approach there is the potential to generate a

Absolute Logic Minimization 5.2.1

62

very large number of prime implicants.

In two methods ([Rhyne77],[Arevalo 78]) a base minterm of the care-set of the

logic function to be minimized is selected. It is expanded until it is prime, and all mm-

terms that are covered by this prime are removed. The procedure is repeated until all the

minterms of the care-set are removed. In [Rhyne 77], where all prime implicants con-

taming the selected base minterm are generated, this method can be inefficient. In [Are-

valo 78] only a subset of all prime-implicants covering the base minterm is generated.

This gives a faster method with results which are not as good as in [Rhyne 77].

More recently heuristic minimization has found practical application in the design

of PLAs. The first was MINI developed at IBM in the middle 70s [Hong 74]. Later a

heuristic minimization program called PRESTO was introduced by D Brown [Brown

81]. During the summer of 1981 the authors created a program ESPRESSO - I [Brayton

82] to compare the various strategies employed by MINI and PRESSO.

5.2.3 Prolog Logic Rewrite Rules

Prologs rewrite rules express all valid manipulations to convert one form into

another. The use of rewrite rules for manipulation is not new, and is based on ideas ori-

ginally expounded by Bundy {Bundy 81].

The exhaustive application of Prolog rewrite rules has been criticized. Some prob-

lems will not terminate, while some result in an inefficient search. The repeated exhaus-

tive application of rewrite rules is not guaranteed to result in a solution, and so a tech-

nique for controlling inference is required here.

Heuristic Logic Minimization Techniques 5.2.2

63

5.2.4 Meta-level Inferencing

The term "meta-level" inference has been described [Bundy 81], where inference

is conducted at two levels simultaneously: the "object-level" and the "meta-level".

The object-level is where knowledge about facts of the domain are encoded, while the

meta-level encodes control or strategic knowledge. This style of inference results in a

"guided" search for a solution.

While meta-level inferencing is not original to this thesis, the application of meta-

level inferencing to logic minimization is. Reasoning at the meta level can range from

the simple to the complex.

Let us start by considering a simple but effective meta level technique which is used

in PCD. This technique could be called the most effective rule first technique and it relies

on ordering of rules to guide the search for the true minimum. Rewrite rules are grouped

into sets which address the main operators in the circuit. For typical circuits these are

broken into rule sets for AND , OR etc. In each of these rule sets, the rewrite rules are

ordered so that rules which have the most minimizing effect are placed first in the search.

This simple technique provides rudimentary guidance to improve the efficiency of the

search for a logically minimal representation. In PCD only those logic conversion rules

which do not expand the logic expression are considered. Table 5-1 lists a complete set

of minimization rewrite rules applicable for two input AND , OR logic. These rules are

tested for a match in the order they are listed in the table. The Prolog notation and

Boolean notation are listed together for comparison. The reader is referred to the Appen-

dix listing of PCD for a complete list of Prolog rewrite minimization rules. A Boolean

Prolog Logic Rewrite Rules 5.2.3

64

Number Rewrite Rule in Prolog

1. min_str(and(1,1),1).
2. min._str(and(1,X),Y) :- min_str(X,Y).
3. min_sir(and(X,1),Y) :- min_str(X,Y).
4. min_str(and(0,X),0).
5. minstr(and(X,0),0).
6. min_str(and(X,Y),Z) :- min...str(X,1),min_str(Y,Z).
7. min_str(and(X,Y),Z) :- min_str(Y,1),min_str(X,Z).
8. min_slr(and(X,Y),0) :- min_str(X,0).
9. minstr(and(X,Y),0) :- min_str(Y,0).
10. min_str(and(X,Y),Z) :- minstr(X,A),minstr(Y,B),minl(and(A,B),Z).
11. min_str(or(1,X),1).
12. min_str(or(X,1),1).
13. min_str(or(0,0),0).
14. min._str(or(0,X),Y) :- min_str(X,Y).
15. min_str(or(X,0),Y) :- min_str(X,Y).
16. min_str(or(X,Y),1) := min_str(X,1).
17. min_str(or(X,Y),1) := min_str(Y,1).
18. min_str(or(X,Y),Z) := min_str(X,0),min_str(Y,Z).
19. min_str(or(X,Y),Z) :- min....str(Y,0),min_str(X,Z).
20. min....str(or(X,Y),Z) :- min_str(X,A),min_str(Y,B),minl(and(A,B),Z).
21. min_str(not(1),0).
22. min_str(not(0),1).
23. min_sir(not(not(X)),Y) :- min....str(X,Y).
24. min_str(not(X),1) :- min_str(X,0).
25. min_slr(not(X),0) :- min_str(X,1).
26. min_str(not(X),not(Y) :- min....str(X,Y).
27. min_str(X,X).

logic equation such as;

Table 5-1 Rewrite Rules

A.1 =A

Boolean logic

1.1=1
1.x=x
x.1=x
0.x=0
X.0=0
(X=1).Y=Y
(Y=1).X=X
(X=0).Y=0
(Y=0).X=0
X.Y=A.B
1+X = 1
x+1=1
0+0=0
0+x =x
x+0=x
(X= 1)+Y= 1
(Y= 1)+X= 1
(X = 0)+Y = Y
(Y=0)+X=X
X+Y = A+B
1=0
-0= 1
-x=x
-0= 1
1=0

A=A

is used to represent a common logic simplification. "A" can be anything from a simple

logic variable to complex Boolean formula. Prolog can directly express these rules of

Boolean logic simplification. Each Prolog rule has two parameters, for the input, and

output structures. The input structure represents the circuit to be minimized, and the out-

put structure is the equivalent minimized structure. As an example, if (1 + b + c).(1 + d)

Meta-level Inferencing 5.2.4

65

was being minimized the call to "min_str" would look like;

min_str(and(or(1,or('B ','C')),not(or(l,'D'))),Out_str)

When minimization of this structure is complete, the variable "Out—sir" will be

instantiated to the minimized circuit data structure.

5.2.4.1 Logic Minimization Example 1

To illustrate how the rewrite rules work, let us consider the minimization of the fol-

lowing Boolean function

12 = (1.a.c.d)+(1.a.e,t)

which can be represented as the following Prolog data structure

f2(or(and(1,and(a,and(c,d))),and(1,and(a,ancl(e,f)))))

This example has been specially chosen because its true minimization results in logic

"false" and is independent of variables a, c, d, e and f.

Each "min_str" clause has two parameters, one for the input, the other for the out-

put structure. There are also some corresponding 'mini' rules which are equivalent to

"min_str" , but are not recursive. These clauses are used to prevent infinite loops.

5.2.5 Rewrite Rules and True Minimization

The approach taken to logic minimization in PCD can be summarized as;

Meta-level Inferencing 5.2.4

66

(1) Avoid term expansion

Any given logic expression is not expanded. Since only those conversions which

either reduce or convert to equal size are considered.

(2) Apply maximum reduction first

By ordering the rules in order of maximal reduction, the first minimal which

satisfies this transformation procedure is likely to be the best.

This strategy avoids most of the computation required to obtain a true minimum.

While it is possible for this strategy to provide a true minimal, it cannot be proven that a

true minimum has been obtained.

A true minimum can be obtained using Prolog's rewrite technique, but the method

is not practical for any real size problem due to the computational explosion, and the pos-

sibility that recursive expansion will prevent successful termination. The extra computa-

tion arises due to term expansion, and the requirement to search for all minimal solutions

to determine which is the true minimal. The reader is referred to [Bundy 83] chapter 7

for a full explanation of the difficulties associated with this approach.

5.3 Logic Circuit Conversion

There are a number of different approaches to the problem of converting a logic net-

work from one family of gate types to another ([Merwin 67], [Asija 68]). In digital logic

circuit design, conversion is required in two areas;

(1) NAND or NOR Logic

Often one of the final stages in logic design calls for the conversion of an expres-

Rewrite Rules and True Minimization 5.2.5

67

sion in AND , OR and NOT into an equivalent expression in NAND or NOR. It

can be shown that any Boolean expression can be expressed in terms of NAND

gates only, and also that these NAND gates can be expressed economically in

MOS (Metal Oxide Semiconductor) Transistors.

(2) Canonical Form

A multi-level Boolean expression can be converted either into the sum of pro-

ducts or the products of sums. The standard or canonic form of these two forms

is one in which each input variable appears in each of the mintenns or maxterms.

The standard form is useful because delay is limited to two gates, and if two dif-

ferent Boolean expressions have the same standard form, then they must be

equivalent.

5.3.1 NAND/NOR Conversion

The problem is to convert a circuit description based on Boolean operators (AND,

OR and NOT) into NAND(or NOR) based representation for the reasons previously out-

lined. Rewrite Rules can be applied here for the same reasons as with Logic Minimiza-

tion. The rule set is clearer, because there are fewer rules to apply at any step. Let us

consider logic conversion to NAND based technology. The conversion rules are;

Conversion Rules

(1) and(A,B) -> not(nand(A,B))

Logic Circuit Conversion 5.3

68

(2) or(A,B) -> nand(not(A),not(B))

(3) not(not(A)) -> A

(4) nand(A) -> nand(A)

For a circuit consisting of basic gate elements such as AND or OR gates etc., the

rewrite rules in Table 5-2 on the following page describe the transformation to

NAND/NOT technology, which obey these rules.

Usually, logic conversion to universal gate logic is considered in conjunction with

logic minimization, but logic minimization can be required without logic conversion as is

the case with a PLA implemented combinational logic function. The rules of conversion

to universal gate logic have the tendency to expand the expression, and introduce more

operators. Intuitively the sequence of logic minimization followed by universal logic

gate conversion is not the most effective approach to the problem.

If required, these two tasks can be combined together. If a single rule set is

developed then only one computationally intensive search needs to be performed, and the

result will have less redundancy. Additional rules can be introduced to simplify the

resulting expression.

NAND/1'TOR Conversion 5.3.1

69

conv_ug(and(A,and(B,C)),not(nand(D,nancj(E,F)))) :- conv_ug(A,D),
conv_ug(B ,E),conv_and(C,F).

conv_ug(and(A,B),not(nand(C,D))) :- cony_ ug(A,C),conv_ug(B,D).
conv_ug(or(and(A,B),and(C,D)),nand(nand(E,F),naiid(G,H))) :-conv_ug(A,E),

conv_ug(B ,F),conv_ug(C,G),conv_ug(D,H).
conv_ug(or(A,and(B,C)),nand(not(D),nand(B,F))) :-conv_ug(A,D),conv_ug(B,E),

conv_ug(C,E).
conv_ug(or(and(A,B),or(C,D)),nand(nand(E,F),nand(G,H))) :-conv_ug(A,E),

conv_ug(B,F),conv_ug(C,G),conv_and(D,H).
conv_ug(or(not(A),or(not(B),not(C))),nand(D,nand(E,F))) :- conv_ug(A,D),

conv_ug(B ,E),conv.....nand(C,F).
conv_ug(or(A,or(B,C)),nand(not(D),nand(not(E),not(F)))) :- conv_ug(A,D),

conv_ug(B,E),conv_or(C,F).
conv_ug(or(not(A),not(B)),nand(C,D)) :- conv_ug(A,C),conv_ug(B ,D).
conv_ug(or(A,B),nand(not(C),not(D))) :- cony_ ug(A,C),conv_ug(B,D).
conv_ug(not(and(A,and(B ,C))),nand(D,nand(E,F))) :- conv_ug(A,D),

conv_ug(B,E),conv_and(C,F).
conv_ug(not(and(A,B)),nand(C,D)) :- conv_ug(A,C),conv_ug(B,C).
conv_ug(not(not(A)),B) :- conv_ug(A,B).
conv_ug(not(A),not(B)) :- conv_ug(A,B).
conv_ug(A,A) :- integer(A).
conv_ug(A,A) :- atom(A).
conv_ug(A,A) :- var(A),display('PCD error: structure not instantiated'),nl,abort.
conv_ug(S ,Sug) :- S [C1assIList],cvt_ug_list(List,[] ,Uglist),

Sug [ClasslUglist].
cvt_ug_list([] ,List,Uglist) :- rev(List,[],Uglist).
cvt_ug_list([FfrstRest],Tmp,Ug1ist) :- cônv_ug(First,Ug),

cvt_ug_list(Rest,[UglTmp] ,Uglist).
cony _and(and(A,B),nand(C,D)) :- conv_ug(A,C),convand(B,D).
conv_and(A,B) :- conv_ug(A,B).
conv_or(or(A,B),(not(C),not(D))) :- conv_ug(A,C),conv_or(B,D).
conv_or(A,B) :- conv_ug(A,B).
convnand(or(not(A),not(B)),(C,D)) :- conv_ug(A,C),convug(B ,D).
convnand(or(not(A),B),(C,not(D))) :- conv_ug(A,C),conv_ug(B ,D).
conv_nand(A,B) :- conv_or(A,B).

Table 5-2 Conversion Rules for NAND logic representation

NAND/NOR Conversion 5.3.1

CHAPTER 6

Counting Circuits

As a prelude to chapter 7, this chapter discusses the design
constraints required for counters. This is provided first as
background information and secondly to illustrate how
constrained the design process is.

6.1 Counting Circuits

Counters are devices that count the number of times an event occurs. What we are

concerned with here is recognizing the different types, how they differ, and how they are

designed. Different types of counter circuits can be considered as branches of a counter

tree as per Figure 6-1.

The first branch at the top of the counter tree is the most significant - Asynchronous

or Synchronous. They differ not in the sequence counted, but in how they are clocked.

The synchronous type is clocked directly, while the asynchronous has clocking only

applied to the first flip-flop, and thus changes of state ripple from one flip-flop to the next.

The most general counters are the binary sequence count-by n or count-to n. The

"count-by n" counts to n and resets, while the "count-to n" counts to n and must be

reset before counting the sequence for a second time. Other common binary counters can

be derived from these. For example a BCD (Binary Coded Decimal) counter counts from

o to 9 and recycles, is a special case of a count-by n counter. Another example is a full

modulo binary counter which counts from 0 to 15, and recycles. This counter also is a

70

71

SYNCHRONOUS]

Binary

Modulo Bcd Count by

Sequence

/,\
Grey Moebius Ring

Johnson

ASYNCHRONOUS]

Sequence

IF A V
Modulo Bad Count by Grey Moebius Ring

Johnson

Figure 6-1 Counter Tree Structure

special case of a count-by n counter. All of these counter types can count in the forward

direction (also known as Up counters) or reverse (also known as Down counters) or,

reversible (ie both forward, and reverse depending in a reverse logic signal).

There are other special sequence counters worthy of note. A grey code is a

sequence where only one bit changes with each count. Then there are the shift counters.

These are the Moebius or Johnson sequence, and the Ring and Switchtail counters. This

sequence is listed in Table 6-1.

Counter Circuits 6.1

72

GreyCode Moebius Ring

000 000 000
001 100 001
011 110 010
010 111 100
110 011
111 001
101
100

Table 6-1 Counter Code Sequences

6.2 Designing Counter Circuits

A counter circuit is a finite state machine. It has inputs, outputs and memory.

Counter circuits should be designed considering the following design criteria.

(1) REGULARITY

A traditional minimization function, which strives for absolute absolute switch-

ing components reduction, is not suitable for VLSI design. For VLSI, circuit

regularity is important to reduce silicon area required for wires. A large complex

circuit which is regular can be a manageable design problem. This design cri-

terion produces circuits with serial pipeline communications, and counter circuits

which are implemented with PLA's.

(2) SPEED

Fast counter circuits are often required to meet critical system timing

Counter Circuits 6.1

73

requirements.

Asynchronous counter circuits are usually slower, and are more regular than a

synchronous equivalent. This causes the designer to often have to trade-off cir-

cuit speed and area through reduced regularity.

Synchronous Ring Counter, and Synchronous Switchtail Counter are fast

counter designs. To be fast, the counter must respond in the shortest possible

time before the occurrence of the next clock edge. This interval will determine

the effective maximum clock speed for the counter design. The Synchronous

B

K -Q K -Qe

J

K --Q

J

clock pulse

Figure 6-2 Synchronous Ring Counter

Designing Counter Circuits 6.2

74

Ring counter is the fastest because it has no combinational logic to add to the

delay caused by the flip-flop. Thus the maximum clock frequency is given by the

following formula

1
f=

propagation + setup time + strobe time

(3) HARDWARE ECONOMY

The desire for hardware economy leads to logic minimization. For VLSI design,

silicon area minimization is a stronger requirement which leads to logic minimi-

zation. There can also be a trade-off between hardware economy and speed. A

ripple counter can be implemented with flip-flop memory elements only, and is

regular and economical, while a synchronous counter requires combinational

logic gates to implement but can be clocked faster.

(4) STABILITY

Unstable counters are undesirable and result from poor design. They occur due to

clocking too fast, or through unexpected reactions in the circuit design. If we

consider the circuit in Figure 6-3 we can see how a simple circuit like this has

instability. The stable condition is when X = 0, and Y = 0. When X changes to 1

then not(Y) is 1, causing the output of the AND gate to go to 1. This will change

the value of not(Y) to 0, which will cause the oscillation to continue. In a simple

case this problem can be avoided through intuitive reasoning, but in a more corn-

Designing Counter Circuits 6.2

75

 0

and

Y

Figure 6-3 Instability in a simple network

X.-' Y

plex circuit a Y-map or flow table must be used. For the example of Y=X.not(Y)

the flow table is given in Figure 6-3.

Horizontal movement in the map corresponds to changes in the input variable X,

and vertical for Y. The energisation states (entries 'outside the boxes) define the

operational state that the circuit must assume. Stable operation is achieved when

the energisation and operation states are identical. Only one such state occurs in

the above table; when X and Y are zero, The operation states are deduced from

X, 9
0

Table 6-1 Flow Table

.0

0

0 Y
Designing Counter Circuits 6.2

76

the logical equations of the system. The equation is Y = X.not(Y). When X = 0

then Y = O.not(Y) = 0. When X = 1 then Y = not(Y), ie the operation state is

always not(Y). The Y values of the function are 0 for X = 0, and are plotted in

the upper and lower left-hand cells. When X = 1 the operation state is always

not(Y), giving the values in the right-hand cells which are opposite the Y values

outside the cell.

If initially Y = '1' and X = '0' the operation state is ' 0'. This becomes the new

energisation state. Corresponding to this energisation state the operation state is

0, and the system moves to the cell X,Y = 0,0. This is a stable operating state

since the energisation and operation states are equal. The output will lock in this

state. If X is now changed to ' 1', the operation state becomes' 1' and the state of

the system moves to the cell defined by the energisation state X,Y = (1,1). This

results in a new operation state of Y = 0, with the output oscillating between '0'

and ' 1' as shown by the arrows on the table. When X is changed to '0', the net-

work always returns to its stable operating state with X,Y = (0,0).

(5) RACE

When flip-flops are changing, all kinds of false outputs can be produced due to

the variation in speeds of the devices in the circuit. A ripple counter gets its

name from the effect of its flip-flops as they change state. With clocked logic,

these momentary glitches have no effect but with unclocked logic these glitches

may or may not have set the flip-flop. This can cause unreliable behavior. Most

circuit designs should not use unclocked logic especially for PRESET and

Designing Counter Circuits 6.2

77

CLEAR.

Race problems are often associated with asynchronous circuits, and waveform

diagrams are useful to check for race problems. By exaggerating possible timing

differences, possible race conditions can be examined.

A simple rule developed to help avoid race problems is

Never change more than one device in response to an asynchronous input
signal

(6) CLOCK SKEW

Clock skew is caused by the delay in the propagation of clock signals throughout

the circuit. For proper circuit operation, clock skew MUST be less than the

minimum propagation delay minus the hold time.

Designing Counter Circuits 6.2

CHAPTER 7

Prolog Counter Design

I have developed a Prolog based logic circuit design sys-
tem PCD (Prolog Counter Design) , which is not intended
as a production logic design system, but rather as a vehicle
to illustrate how logic programming techniques, imple-
mented in Prolog can be used for logic circuit design.
PCD is also an experiment in the application of logic pro-
gramming to logic synthesis, where the domain of interest
is MSI implemented counter circuits. Circuits are
represented as Prolog data structures, and individual
designs are created using sets of Horn clauses which guide
the creation of the circuit. PCD can minimize and convert
these circuits to universal NAND gate logic, and can per-
form rudimentary simulation of the circuit to confirm com-
pliance to design criteria. A listing of PCD appears in
Appendix A at the end of this thesis.

7.1 User Interface

A simple user-interface for PCD was developed to provide an environment for the

user to interact with PCD

(1) On-line Help

The user can request help for a listing of available commands, and a detailed

explanation of what each does. Help information is stored in a separate file and is

not read in until requested by the user. Each help information is represented as a

"help rule" which matches if help is called concerning that item. This approach

makes it easy to add additional help items.

(2) Command Interpretation

78

79

A command interpreter is provided to check command syntax and report program

errors. For each valid command there is an occurrance of the clause

"interpret(X)" , where "X" is the command. For a command that is entered,

it's syntax is checked by the clause interpret(X) to see if the command falls into

any known structure. Each command option is tried. If no match occurs then the

command always matches with the final rule definition, which echoes a message

telling the user that that command is not understood. This approach allows the

user to add additional commands to the program by adding in a new definition of

interpret(X) while at the same time provides a simple command interpreter struc-

ture.

(3) Design Storage

A design can be created, modified and stored to a file, and recovered at a later

stage. A design can be given a unique atomic name and subsequently manipu-

lated by that name.

(4) File Management

As a measure to improve the speed of PCD not all clausal definitions are read

from disk when PCD is started. Thus PCD is able to start faster because only

core clausal definitions are read in. When particular functions are called up for

the first time, the file containing their definitions are read in, and those functions

are invoked in the normal manner. This process does not require the user's initia-

tion, and as far as he is concerned, PCD operates with only one file.

(5) Error Messages

User Interface 7.1

80

PCD uses uses a standard error reporting technique which tells where in the pro-

gram the error is coming from and why. In addition compound error message

reporting is provided through failure backtracking of the goal. The combination

of error messages provided, if programmed correctly, can provide valuable addi-

tional insight into the cause of the problem to the user.

7.2 Limitations of a Prolog Interface

A user interface which is written solely in Prolog suffers from some limitations of

the environment provided by C Prolog programs. In the development of the user inter-

face for PCD the following limitations were encountered.

(1) EOT marker

After every response by the user, a dot must be entered to signify EOT. So, a

command at the PCD prompt would look like;

==> save(count23).

(2) Starting PCD

To initiate a PCD design session requires two operations. First the Prolog inter-

preter must be started, and second the Prolog program itself must be read into

memory. Prolog's saved states , which allow a Prolog interpreter to load a Pro-

log saved state, does not fully solve this problem. First, "saved states" in Prolog

are not guaranteed compatible between revision modifications to the Prolog inter-

preter. In addition there is no simple technique which can maintain an initial

Limitations of a Prolog Interface 7.2

81

"saved state"

(3) Reading '?' and''

Prolog's built in function "read(X)" is unable to read either a blank input or a

question mark. Thus a novice user who enters a question mark or a carriage

return, would not get any worthwhile response.

7.3 Selecting a Counter Type

The process of matching a circuit to requirements occurs at the early stages of func-

tional design. This "matching" process can be considered as a "searching" process

from available circuit types. This searching for the right circuit type can be imple-

mented directly using Prolog's depth first search techniques. Searching can be either

implicit (depth first) or, explicit (breadth first) where the search is guided by circuit

specifications entered by the user. In both search strategies, the search is also guided by

the order in which the circuit options are placed in the database. At each node of the

search tree, Prolog checks the first definition (usually represented as the left leg of the

search tree) before checking alternative definitions (branches of the search tree). At each

node of the search tree, the circuit specifications make only one leg of the search space

valid. "Preferred circuits" come into effect when there are more than one branch which

is valid using the circuit specifications. "Preferred circuits" is the bias which causes the

best circuit to be returned when more than one circuit meets the circuit specifications

entered by the user.

PCD requires the user to give a list of counter circuit specifications. Table 7-1 lists

Selecting a Counter Type 7.3

82

and describes PCD

Specification

check
clear

commands
convert(design)
counter
designs
exit
fan
get(design)
help (item)
min(design)
print(design)
save(design)
shell
simulate(design)

Description

Check the syntax of a circuit for errors
Removes user counter circuit specifications
Lists on terminal all valid commands
Convert circuit 'design' to universal gate logic
Design a counter
Lists all designs stored in memory and ifie
Exit from the PCD environment
Determine maximum fan in of circuit
Retrieves 'design' from file
Displays help information on 'item'
Evaluate and display minimum for circuit 'design'
Print to terminal the circuit 'design'
Writes the circuit 'design' to file
Create a Unix shell
Simulate a design

Table 7-1 PCD Commands

To design a counter the user enters "counter." at the command prompt as follows;

==> counter.

PCD then responds asking for a list of specifications. At this prompt the user can enter

either a special command such as "help" , or "exit" or a valid circuit specification. If

"help" is entered, then a list of valid specifications with brief descriptions is printed, or

if "exit" is entered, then the design process is, terminated. When the list of

specifications has been entered, it is checked for syntax before any specifications are

added to the database. This syntax checking compares the specifications entered by the

user with a list of known specification formats. This verifies that all specifications are

known to the system and points out early if there are any typographical errors. If all the

Selecting a Counter Type 7.3

83

specifications are valid, then they are added to the database. Then they are checked

against known conflicts rules. PCD contains a rule set of known conflicts caused by

improper use of specification combinations. If any of these rules match then an error is

printed, and the selection process stops. To illustrate how these rules are implemented in

PCD , let us consider one known conflict in the use of the "binary" and "moebius"

specifications. These specifications cannot be used together because they refer to dif-

ferent sequences that one counter could not count. To catch this if it should occur, the

following rule exists. When the conflict condition occurs the specifications "binary"

and "moebius" would be in the Prolog database, and so the error flag "invalid_spec"

would be added to the database, and an error message indicating the problem is printed at

the terminal.

check :- binary,moebius,

asserta(invalid_spec),

write('Error: binary and moebius spec conflict'), !,fail.

Note the use of cut and fail to force the use of other definitions of 'check'. A final

definition of 'check' always succeeds. The spec invalid_spec is used to prevent any

searching with that specification combination.

The user may not have supplied sufficient specifications to allow PCD to find a

counter circuit type. In this case additional specifications are required to narrow down

the choice. I have chosen to add rule sets which checks for specifications which do not

allow PCD to find at least one path from root to leaf in the search tree. For example, if

"modulus" is specified, but not "binary" , then the following clauses will catch this,

Selecting a Counter Type 7.3

84

and in this instance make the necessary changes to fix the problem.

check binary,modulus,counter(T).

check :- modulus,asserta(binary),

display('Warning: asserting spec binary').

PCD is ready now to perform the search. The following clauses illustrate how part of the

search tree is represented in PCD.

select(T) :- sync(T).
select(T) :- async(T).
async(T) :- binary,async_binary(T).
async(T) :- ring,async_ring(T).
async(T) :- shift,async_shift(T).

sync(T) :- binary,sync_binary(T).
sync(T) :- ring,sync_ring(T).
sync(T) :- shift,sync_shift(T).

Here the search is controlled by the ordering of the clauses and instantiation of

specifications. The depth first search here is directed to search the family of synchronous

counters first. Only if no synchronous counter is matched will Prolog backtrack and try

asynchronous counters. The first branch of synchronous counters that are checked are

binary counters. This process of narrowing the definition continues until a unique type of

counter circuit is defined. When a unique counter is defined then the Prolog variable

"T" is instantiated to the name of that circuit type. If no unique counter is found, then

the "T" variable is instantiated to "no—match"

Selecting a Counter Type 7.3

85

7.4 Circuit Synthesis

PCD has clauses for logic synthesis. When the counter type is instantiated to a

known counter type, PCD will build a circuit which conforms to the specifications. An

important feature of the approach is that PCD generates a counter circuit meeting

specifications rather than merely retrieving a previously stored circuit! PCD performs

the logic synthesis using groups of Prolog clausal statements, one for each circuit type.

These clauses rely on recursive calling to create the circuit as a Prolog data structure.

The following two examples illustrate how logic synthesis is performed.

7.4.1 Example 1 - Synchronous Ring Counter

Consider that a design for a Synchronous Ring counter is required. This circuit is to

be implemented using two MSI J-K flip-flops. To design this counter we call up PCD as

follows. Note that user input is shown in bold type.

% prolog

C-Prolog version 1.5

I ?- [pcd].

Prolog Circuit Design

(type "commands." for listing of available commands)

Version: April 14 1987

"counter" to design a counter.

Circuit Synthesis 7.4

86

=> counter.

counter consulted 10764 bytes 3.1667 sec.

Please enter Counter Circuit Specifications

Enter "help" for available options >>

The user can access help information, or go straight to entering the specifications which

will guide PCD in its search for a counter circuit type. An appropriate choice here is

"ff(2)" to indicate that the circuit is implemented with 2 flip-flop or state variables,

"ring" to indicate that a ring sequence is required, and finally "sync" to indicate that

the counter is synchronous. The entry at the terminal would look like.

Enter "help" for available options >> ff(2),ring,sync.

PCD first checks the syntax of the specification entry. If valid then it prints ou the mes-

sage

Counter circuit Specification syntax check ok

Then PCD checks known specification conflict rules, and if no conflict is found, the cir-

cuit is searched for on the counter tree. In this case no match to any conflict rule is found

and the search proceeds. With the given specifications, the search matches synchronous

ring counter as the correct circuit type, and that circuit is created using recursive rules for

that counter type. To synthesis this counter, PCD used just the following three clauses.

counter('synchronous ring',synqjing(List)) :- ff(N),Next is (N-i),

Example 1 - Synchronous Ring Counter 7.4.1

87

ring(Next,(jk_ff('a' ,not(' a'),clk)),List).
ring(O,L,L).
ring(N,Tmp,List) :- Next is (N- 1),Last is (N-i-1),alpha(Last,Letter),

ring(Next,(jk_ff(Letter,not(Letter),clk),Tmp),List).

The following Prolog trace illustrates how these clauses and some additional utility

clauses are used to build up the circuit;

(231) 11 Call: counter(synchronous ring,_33498)?
(232) 12 Call: ff(_217)?
(232) 12 Exit: ff(2)
(233) 12 Call: _33507 is 2-1?
(233) 12 Exit: 1 is 2-1
(234) 12 Call: ring(ljk_ff(a,not a,clk),_216)?
(235) 13 Call: _33533 is 1-1?
(235) 13 Exit: 0 is 1-1
(236) 13 Call: _33534is1+1?
(236) 13 Exit: 2 is 1+1
(237) 13 Call: alpha(2,_224) ? s
> (237) 13 Exit: alpha(2,b)
> (238) 13 Call: ring(0,(jk_ff(b,not b,clk),jk_ff(a,not a,clk)),_216)?
(238) 13 Exit: ring(0,(jkjf(b,not b,clk)jk_ff(a,not a,clk)),

(jk_ff(b,not b,clk),jk_ff(a,not a,clk)))
(234) 12 Exit: ring(1,jk_ff(a,not a,clk),(jk_ff(b,not b,clk),

jkjf(a,not a,clk)))
(231) 11 Exit: counter(ynchronous ring,sync_ring((jk_ff(b,not b,clk),

jk_ff(a,not a,clk))))

The call to the clause counter causes a call to to determine the number of flip-

flops required for the circuit. ff(N) returns "N" as equal to 2, which assigns variable

"Next" as 1 in the call to ring. There are two definitions of ring , where the first is used

as a terminating condition and is always checked first, and the second, which is recur-

sively called for each flip-flop required in the ring counter. The actual circuit structure is

built up as the clauses exit from the terminating clause.

7.4.2 Example 2 - Synchronous Count-by 23 Counter

Example 1 - Synchronous Ring Counter 7.4.1

88

As a more comprehensive example, consider the, design of a synchronous counter

which is to count a binary sequence to decimal equivalent "23" and then reset. It is pos-

sible to design such a count-by n counter using the same set of Horn clauses. For this

example the user specifications entered would look like

Please enter Counter circuit specifications

Enter "help" for available options >> count(23),clock(28).

4 count(23)" tells PCD that the counter must count 0..23 and "clock(28)" sets the clock

cycles per micro-second. The concept here is that this clocking requirement will set the

overall style of the counter ie with a fast clock speed forcing the use of a synchronous

style.

To build a Synchronous Count-by 23 counter, PCD uses the following clauses.

counter('synchronous binary count by',Str) :-
count(D),binary(D,[]3itlBinary_list]),number_ff(D,N),
process_true(N,B,Reset_term),process_false(N,B,Set_term),
Next is (N - 1),form....and(N,Anded_term),
do_eqtn.j(Set_term,Anded..term,Eqtnj),
do_eqtn_k(Reset_term,Anded_term,Eqtnk),
reset(Next,B,Binary_list,[jkjf(Eqtnj,Eqtnk)],Srr,Set_term,Reset_term).

reset(O,,,List,Str,_,J :- Str =.. [syncjinctIList].
reset(P,B,[BitlBinaryjist],Tmp,Str,Set_term,Resetjerm) :-

Next is (P - 1),form_and(P,Anded_term),
do_eqtn.j(Set_term,Anded_term,Eqtnj),
do...eqtn_k(Resetjerm,Andedjerm,Eqtnk),
reset(Next,B,Binary_list,[jk_ff(Eqtnj,Eqtnk)ITmp] ,Str,Set_term,Reset_term).

do_eqtnj(Set_term,Andd_term,and(AndecI_term,Set_term)).
do_eqtn_keset_term,Anded_term,or(Mded_term,Reset term)).

process _false(O,[},").
process_false(1,[1],not('a')).
process_false(1,[O],('a')).
processjalse(P,[BitBinary_list],and(B1,B2)) :- Next is (P - 1),

alpha_bit_false(Bit,P,B1),process_false(Next,Binary_list,B2).

Synchronous Count-by 23 Counter 7.4.2

89

process_lrue(O,[],").
process_true(1,[1},('a')).
processjrue(1,[O] ,not('a')).
process_thie(P,[BitIBinry_list],and(B 1,132)) :- Next is (P - 1),

alphabit_true(Bit,P,B1),process_true(Next,Binary_list,B2).

alpha_ bit _false(1,P,not(B)) :- alpha(P,B).
alpha_ bitjalse(O,P,B) :- alpha(P,B).
alpha_bit_true(1,P,B) :- alpha(P,B).
alpha_bit_true(O,P,not(B)) :- alpha(P,B).

The design approach is based on the recognition that at the end of the counting sequence

the flip-flops must be reset, and that during the counting, a flip-flop is toggled when the

flip-flops to the right are all l's. A false and a true term are formed to ensure the reset.

An anding equation is formd to ensure the toggling, and these equations are ORed

together to form the input equation to the flip-flop. The following Prolog trace gives the

calling sequence as the counter is being designed. Note, that to reduce the length of the

trace, some calling sequences have been "jumped" through.

Call: design_counter(synchronous binary count by)?
Call: counter(synchronous binary count by,_33462)?
Call: count(_33472)?
Exit: count(23)
Call: binary(23,L13 1L.132])? leep
Exit: binary(23,[1,O,1,1,l])
Call: number_ff(23,_133) ? leep
Exit: number_ff(23,5)
Call: process_lrue(5,_33473,_33474)?

[Sub-calls omitted]

Exit: process_true(5,[1,1,1,1,1],and(e,and(d,and(c,and(b,a)))))
Call: process_false(5,[1,1,1,1,1],_33475)?

[Sub-calls omitted]

Exit: process_false(5,[1,1,1,1,1],and(not e,and(not d,and(not c,and(not b,not a)))))
Call: _33476 is 5-1?
Exit: 4 is 5-1
Call: form_and(5,_33477)?
Exit: form_and(5,and(a,b,c,d))

Synchronous Count-by 23 Counter 7.4.2

90

Call: do..eqtn.j(and(not e,and(not d,and(not c,and(not b,not a)))),and(a,b,c,d),_134)?
Exit: do_eqtnj(and(not e,and(not d,and(not c,and(not b,not a)))),and(a,b,c,d),

and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a))))))
Call: do_eqm_k(and(e,and(d,and(c,and(b,a)))),and(a,b,c,d),_135)?
Exit: do_eqtn_k(and(e,and(d,and(c,and(b,a)))),and(a,b,c,d),or(and(a,b,c,d),

and(e,and(d,and(c,and(b,a))))))
Call: reset(4,[1,1,1,1,1],[0,1,1,l] ,[jk_ff(and(and(a,b,c,d),and(not e,and(not d,

and(not c,and(not b,not a))))),or(and(a,b,c,d),and(e,and(d,and(c,and(b,a))))))],_33462,
and(not e,and(not d,and(not c,and(not b,not a)))),and(e,and(d,and(c,and(b,a)))))?

[Sub-calls omitted]

Exit: reset(4,[1,1,1,1,1],[0,1,1,1],[
jk_ff(and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c,d),and(e,and(d,and(c,and(b,a)))y
syncjin_ct(
jk_ff(and(1,and(not e,and(not d,and(not c,and(not b,not a))))),or(1,and(e,and(d,and(c,and(b,a)))))),
jk_ff(and(a,and(not e,and(not d,and(not c,and(not b,not a))))),or(a,and(e,and(d,and(c,and(b,a)))))),
jk_ff(and(and(a,b),and(not e,and(not d,and(not c,and(not b,not a))))),,or(and(a,b),and(e,and(d,and(c,and(b,a)))))),
jk_ff(and(and(a,b,c),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c),and(e,and(d,and(c,and(b,a)))))),
jk_ff(and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c,d),
and(e,and(d,and(c,and(b,a))))))),and(not e,and(not d,and(not c,and(not b,not a)))),
and(e,and(d,and(c,and(b,a)))))
Exit: counter(synchronous binary count by,sync_bin...ct(
jk_ff(and(1,and(not e,and(not d,and(not c,and(not b,not a))))),or(1,and(e,and(d,and(c,and(b,a)))))),
jkff(and(a,and(not e,and(not d,and(not c,and(not b,not a))))),or(a,and(e,anci(d,and(c,and(b,a)))))),
jk_ff(and(and(a,b),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b),and(e,and(d,and(c,and(b,a)))))),
jkff(and(and(a,b,c),and(not e,and(not d,and(not c,and(not b,not a))))),or(ancl(a,b,c),and(e,and(d,and(c,and(b,a)))))),
jk_ff(and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c,d),and(e,and(d,and(c,and(b,a)))y

Synchronous Count-by 23 Counter 7.4.2

91

7.5 Logic Minimization

Logic minimization is provided as a general purpose combinational logic reduction
tool. Its design has been guided by the desire to provide logic minimization with reason-
able processing time, and is implemented using Prolog re-write rules as described in sec-
tion 5.2.3. To illustrate how these rules are used in PCD , let us consider the minimiza-
tion of (1+b+c).(1+d) using PCD. The following is a minimization session with PCD.

% prolog
C-Prolog version 1.5
I ?- [Pcd].

Prolog Counter Design
(type "commands." for listing of available commands)
Version: April 14 1987

=> get(exl).
Circuit structure retrieved

=> print(exl).
print consulted 3092 bytes 0.866666 sec.
cxl with input No 1;
((1+b+c).((1+d)))

=> min(exl).
min consulted 4176 bytes 1.1 sec.
cxl with input No 1;
1

Do you wish to store this NEW design yin>
Y.
Enter design name (atom) min_exi.
==> designs.
Designs currently in memory
min_exi
cxl

Designs saved to file;
other—design
==> exit.

{ Prolog execution halted I

The following C Prolog trace shows the rules which are being called to perform the

minimization.

Call: min_str(exl(and(or(1,b,c),not or(1,d))),_33376)?
Call: integer(exl(and(or(1,b,c),not or(1,d))))?
Fail: integer(exl(and(or(1,b,c),not or(1,d))))
Call: atom(exl(and(or(1,b,c),not or(1,d))))?
Fail: atom(exl(and(or(l,b,c),not or(1,d))))
Call: var(exl(and(or(1,b,c),not or(1,d))))?
Fail: var(exl(and(or(1,b,c),not or(1,d))))
Back to: min_str(exl(and(or(1,b,c),not or(1,d))),_33376)?

Logic Minimization 7.5

92

Call: exl(and(or(1,b,c),not or(1,d)))=..L2161 217] ?
Exit: exl(and(or(1,b,c),not or(1,d)))=..[exl,and(or(1,b,c),not or(1,d))]
Call: min_ list_str([and(or(1,b,c),not or(1,d))],[],_218) ?
Call: min_str(and(or(1,b,c),not or(1,d)),_231)?
Call: min_str(or(1,b,c),_234)?
Call: integer(or(1,b,c))?
Fail: integer(or(1,b,c))
Call: atom(or(1,b,c))?
Fail: atom(or(1,b,c))
Call: var(or(1,b,c))?
Fail: var(or(1,b,c))
Back to: min_str(or(1,b,c),_234)?
Call: or(1,b,c)=..L2401_241]?
Exit: or(1,b,c)=..[or,1,b,c]
Call: minjist_str([1,b,c] ,[],_242)?
Call: min_str(1,_255)?
Call: integer(l) ?
Exit: integer(1)
Exit: min_str(1,1)
Call: min_ list_str([b,c],[1],_242)?
Call: min_str(b,_261)?
Call: integer(b)?
Fail: integer(b)
Call: atom(b)?
Exit: atom(b)
Exit: min_str(b,b)
Call: min_ list_str([c],[b,1],_242)?
Call: min_str(c,_269)?
Call: integer(c)?
Fail: integer(c)
Call: atom(c)?
Exit: atom(c)
Exit: min_str(c,c)
Call: min_list_str([],[c,b,1],_242) ?
Call: rev([c,b,1],[],_242)? leep
Exit: rev([c,b,1],[],[1,b,c])
Exit: min _list_str([] ,fc,b,1],[1,b,c])
Exit: minlist_str([c],[b,1],[1,b,c])
Exit: min__list_str({b,c],[1],[1,b,c])

Exit: min _ list
,.str([1,b,c],[],{1,b,c])

Call: _234=..[or,1,b,c]?
Exit: or(1,b,c)=..[or,1,b,c]
Exit: min_slr(or(1,b,c),or(1,b,c))
Call: min_str(not or(1,d),_235)?
Call: minstr(or(1,d),_297)?
Exit: min_str(or(1,d),1)
Exit: minstr(not or(1,d),not 1)
Call: minl(and(or(1,b,c),not 1),_231) ?
Exit: minl(and(or(1,b,c),not 1),and(or(1,b,c),not 1))
Exit: min_str(and(or(1,b,c),not or(1,d)),and(or(1,b,c),not 1))
Call: min_list.str(U,{and(or(1,b,c),not 1)],_218) ?
Call: rev([and(or(1,b,c),not 1)],[],_218)?
Call: rev([],{and(or(1,b,c),not 1)], 218)?
Exit: rev([],[and(or(1,b,c),not 1)],[and(or(1,b,c),not 1)])

NAND Logic Adoptation 7.6

93

Exit: rev([and(or(1,b,c),not 1)],[],{and(or(1,b,c),not 1)J)
Exit: min_list_sir([],[and(or(1,b,c),not 1)],{and(or(1,b,c),not 1)])

Exit: min _ list _str([and(or(1,b,c),not or(1,d))],ft[and(or(1,b,c),not 1)])
Call: _33376=.. [exl,and(or(1,b,c),not 1)]?
Exit: exl(and(or(1,b,c),not 1))=..[exl,and(or(1,b,c),not 1)]
Exit: min._str(exl(and(or(1,b,c),not or(1,d))),exl(and(or(1,b,c),not 1)))

7.6 NAND Logic Adoptation

PCD has a set of logic clauses which convert a circuit structure defined using AND

or OR gates into a logically equivalent circuit which is built using only NAND and NOT

gates. The same Prolog re-write rules that were used for logic minimization are applied

to the logic conversion problem. The use of logic conversion is illustrated in the PCD

session in 7.8.

7.7 Functional Simulation

PCD is provided with a set of logic clauses to perform logic simulation at the gate

level, if PCD had a clausal circuit definition, then logic simulation would have been

almost directly obtainable from the definition of the circuit. These clauses illustrate that

it is possible to obtain logic simulation from a data structure represented circuit using

Prolog, although not as elegantly.

The approach taken is to first determine all the signals of the circuit and the values

of all variables. Then using the axiom values for the "known" gates, the circuit can be

evaluated.

This approach is used to simulate synchronous and asynchronous counters by using

the convention of letters "a" , "b" etc., to designate the output from the circuit on the

previous pulse. This works fine provided input signals to a one output circuit are not

NAND Logic Adoptation 7.6

94

named "a" or, "a" or "b" for a two output circuit.

7.7.1 Functional Simulation Example

Let us consider the functional simulation of a synchronous modulus binary counter,

which counts from 0 to 7. The circuit definition for this counter is as follows

sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk))

A simulation of that circuit would look as follows;

Prolog Counter Design
(type "commands." for listing of available commands)
Version: May 15 1987

=> get(sim).
Circuit structure retrieved

==> print(sim).
print consulted 3400 bytes 0.966668 sec.
sync.-bin—mod input 1;
i-K flipflop with J input
1
K input;
1
Clock input; clk

sync—bin—mod input 2;
i-K flipflop with J input;
a
K input;
a
Clock input; clk

sync _ bin _mod
input 3;

J-K flipflop with J input
(a.b)
K input;
(a.b)
Clock input; clk

sync_ bin _modlnput 4;
i-K flipflop with J input

(a.b.c)

Functional Simulation Example 7.7.1

95

K input;

(a.b.c)

Clock input; cik

=> simulate(sim).
simulate consulted 7644 bytes 2.36667 sec.

Warning: Circuit has fixed " 1" input value
Warning: Circuit has fixed 1" input value
What value should elk have? 0.
What value should a have? 0.
What value should b have? 0.
What value should c have ? 0.
Circuit state is
[d,c,b,a]
[0,0,0,1]
Do you wish to continue the simulation ? <y/n>. y.
Circuit state is
[d,c,b,a]
[0,0,1,0]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[0,0,1,1]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[0,1,0,0]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[0,1,0,1]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
(d,c,b,a]
[0,1,1,0]
Do you wish to continue the simulaiion ? <y/n>. y.
Circuit state is
[d,c,b,a]
[0,1,1,1]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[1,0,0,0]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[1,0,0,1]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]

Functional Simulation Example 7.7.1

96

[1,0,1,0]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[1,0,1,1]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[1,1,0,0]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[1,1,0,1]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]
[1,1,1,0]
Do you wish to continue the simulation? <y/n>. y.
Circuit state is
[d,c,b,a]]
[1,1,1,1]
Do you wish to continue the simulation ? <y/n>. y.
Circuit state is
[d,c,b,a]
[0,0,0,0]
Do you wish to continue the simulation ? <y/n>. n.
Simulation Concluded.

Appendix B contains a listing of the Prolog trace through this simulation, and shows

the calling sequence to perform the simulation.

7.8 PCD Session

The following design session illustrates how a variety of design activities would be

performed using PCD.

% prolog
C-Prolog version 1.5
I ?- [pcd].

Functional Simulation Example 7.7.1

97

Prolog Counter Design
(type "commands." for listing of available commands)
Version: May 18 1987
=> commands.

The following are a list with a brief description of commands available within PCD.

check(design)
clear
commands
convert(design)
counter
designs
exit
fan(design)
get(design)
help
min(design)
print(design)
save (design)
shell
store(design)
simulate(design)

Performs a syntax check on the definition, of "design".
Remove specs & circuits
Lists all available commands (this help).
Generates NAND circuit representation.
Design a counter.
Lists all designs in memory & file.
Terminates the current PCD session.
Calculate maximum fan in in circuit "design".
Retrieves the named design from file.
Gives general help information.
Generates a logic minimal representation of the named design.
Displays the design on the terminal.
Saves the design to file.
Create a C- shell session with PCD.
Stores a particular design in memory.
Simulates a circuit represented by thb named design.

=> help(clear).
heip_lib consulted 6464 bytes 0.800002 sec.

This command removes any design stored in memory, and also clears all counter circuit
specifications.

=> help(switchtail).

A Switchtail counter is a modification of a ring counter. In the Switchtail, the interconnections
between FF's is the same, but the connections at the end of the cas- cade of flip-flops are reversed.

=> counter.
counter consulted 10764 bytes 3.16667 sec.
Please enter Counter Circuit Specifications
Enter "help." for available options >> help.

count(n) :Count from zero to n
grey :Count greycode sequence
shift :Count a shift sequence
bed :Count 0 .. 9 and reset
modulo :Count 0.. 15 and reset

PCD Session 7.8

98

ff(n) :Number of flip flops
clock(n) :Circuit clock speed nSec
delay(n) :Max Circuit Timing delay = n

The following are example entries:
"tcount(23),clock(28)."
ttshift,ff(3),delay(27)."
Please enter Counter Circuit Specifications
Enter "help." for available options >> count(23),clock(28).
Counter Circuit Specification syntax check OK

print consulted 3092 bytes 0.933333 sec.

sync_ bin _ct input 1;
3-K flipflop with 3 input;

K input;
(1+(e.d.c.b.a))

sync—bin _ct input 2;
3-K flipflop with I input;
(a.(e).(d):(c):(b):(a))
K input;
(a+(e.d.c.b.a))

sync _ bin _ct input 3;
3-K flipflop with J input;
((a.b).(e):(d):(c):(b).'(a))
K input;
((a.b)+(e.d.c.b.a))

sync_bin_ct input 4;
3-K flipflop with I input;

K input;
((a.b.c)+(e.d.b.c.b.a))

sync_bin_ct input 5;
J-K flipflop with I input;
((a.b.c.d).(e):(d):(c):(b):(a))
K input;
((a.b.c.d)+(e.d.c.b.a))
Do you wish to store this NEW design y/n > y.

Enter design name (atom) ct23.

=> min(ct23).
min consulted 4136 bytes 1.05001 sec.

sync_bin_ct input 1;
3-K flipflop with J input;

K input;
1

PCD Session 7.8

99

sync_bin_ct input 2;
3-K flipflop with 3 input;

K input;
(a+(e.(d.(c.(b.a)))))

sync_bin_ct input 3;
3-K flipflop with 3 input;
((a.b).((e).((d).((e).('(b):(a))))))
K input;
((a.b)+(e.(d.(c.(b.a)))))

sync _ bin _ct input 4;
3-K ffipflop with 3 input;

K input;
((a.b.c)+(e.(d.(c.(b.a)))))

sync_bin_ct input 5;
3-K flipflop with 3 input;
((a.b.c.d).((e).((d).('(c).((b):(a))))))
K input;
((a.b.c.d)+(e.(d.(c.(b.a)))))
Do you wish to store this NEW design yin> y.

Enter design name (atom) min—ct23.

-> designs.
Designs currently in memory
min_ct23
ct23

Designs saved to file;
ct23
==> get(sim).
Circuit structure retrieved

=> print(sim).
print consulted 3400 bytes 1.11667 sec.
sync_bin_mod input 1;
3-K flipflop with 3 input;
1
K input;
1
Clock input; elk

sync_bin_mod input 2;
3-K flipflop with 3 input;
a
K input;
a
Clock input; elk

sync—bin—mod input 3;

PCD Session 7.8

100

J-K fiipflop with J input;
(a.b)
K input;
(a.b)
Clock input; cik

Sync_bin_mod input 4;
J-K flipfiop with 3 input;
(a.b.c)
K input;
(a.b.c)
Clock input; cik
=> shell.
%Is

check
check.BAK
check.CKP
convert
convert.BAK
convert.CKP
counter
counter.BAK
counter.CKP
ct23.select.iTace
ct23.syn.trace
ct23.syn.lrace.BAK
ct23.syn.trace.CKP
ct23.trace.BAK
ct23.trace.CKP
designs
doe_files
doc_files.BAK
fan
fan.BAK
fan.CKP
help

% date
Mon May 18 18:22:02
% ruptime

help-lib
help_lib.BAK
help_lib.CKP
mm
min.BAK
min.session
min.session.BAK
min.session.CKP
min.session.trace sim.session,BAK
min.session.trace.BAK sim.session.CKP
ped
pcd.BAK
pcd.CKP
pcd.log
pcd,log.BAK
pcd.log.CKP
pcd.session
pcd.session.BAK
pcd.session.CKP
print
prinLBAK
print.CKP

MDT 1987

cs-apollo-a up 20+08:28, 1 user, load 0.00, 0.00, 0.00
cs-sun-fsa up 7+10:56, 0 users, load 0.00, 0.00, 0.00
cs-sun-fsb up 7+10:56, 0 users, load 0.00, 0.00, 0.00
enel-fusion up 20+04:46, 0 users, load 0.00, 0.00, 0.00
enel-sun2-c up 9+21:45, 0 users, load 0.04, 0.00, 0.00
enel-sun3-a up 29+18:24, 0 users, load 0.03, 0.00, 0.00
enel-sun3-d up 4+10:01, 0 users, load 0.00, 0.00, 0.00
ene1750 up 6+07:03, 1 user, load 1.02, 1.09, 1.07
engg-sun3-a up 3+05:34, 1 user, load 0. 15, 0.20, 0.00
engg-sun3-b up 3+05:31, 0 users, load 0.04, 0.00, 0.00
evdsvax up 9+21:45, 1 user, load 0.08, 0.08, 0.09
pepr up 14+02:01, 1 user, load 0.95, 0.53, 0.16

piped
read in
ring.trace
ring.trace.BAK
s.trace
sim.circuit
sim.circuit.BAK
sim.session

sim.trace
sim.trace.BAK
sim.trace.CKP
simulate
simulate.BAK
simulate.CKP
t.CKP
tmp
typescript
typescript.BAK

PCD Session 7.8

101

ssgvax up 9+21:45, 0 users, load 0.01, 0.03, 0.04
vaxa up 6+07:15, 0 users, load 1.85, 1.71, 1.92
vaxb up 7+10:47, 7 users, load 1.31, 1.30, 1.42
vaxc up 3+04:57, 0 users, load 0.02, 0.03, 0.02
vaxd up 3+10:22, 0 users, load 0.00, 0.02, 0.03

%'D

=> min(sim).
min consulted 4216 bytes 1.13333 sec.
Sync_bin_mod input 1;
J-K flipflop with 3 input;
1
K input;
1
Clock input; elk

sync—bin—mod input 2;
3-K flipflop with 3 input;
a
K input;
a
Clock input; elk

sync_bin_mod input 3;
3-K flipflop with 3 input;
(a.b)
K input;
(a.b)
Clock input; elk

sync_bin_mod input 4;
3-K flipflop with 3 input;
(a.b.c)
K input;
(a.b.c)
Clock input; elk
Do you wish to store this NEW design yin> n.

Warning: circuit not stored

=> clear.
Counter specs cleared

=> exit.

[Prolog execution halted J

PCD Session 7.8

CHAPTER 8

Summary & Conclusions

In this chapter, important points that have been brought
out during the thesis are summarized. Concluding remarks
present a point form summary of the major arguements in
favour of a logic programming approach to logic design.

8.1 Summary

In this thesis, I have described various logic programming techniques for digital

system design. Chapter one summarized the current state of CAD design system. In

describing these systems, the reader is introduced to the need for more intelligent CAD

design systems which actively encourage the formulation of better designs.

In chapter two, the circuit design technique called "logic synthesis" was introduced as a

circuit design approach which is most appropriate for logic programming.

Chapter three introduced and justified the use of Prolog as a clausal logic programming

language. Then chapter four explored circuit storage and manipulation in Prolog.

Chapter four clearly indicated the profound impact that representation has on the types of

manipulations that can be performed. Chapter five described logic minimization and

conversion techniques using Prolog re-write rules. In chapter five it was shown that

when a Prolog rewrite rule based logic minimization system is employed, it is important

that the application of the rules is controlled so that the search for the logic equivalent

minimal expression is obtained, without risk of recursion or computational explosion.

102

103

Chapter six served to introduce the design criteria for counters, to form the basis for

the experimental system described in chapter seven. Chapters seven concluded the thesis

with a demonstration of a counter logic design system, which is used to illustrate the

techniques discussed in the thesis. This system, written in Prolog, is called Prolog

Counter Design (PCD), and is listed in Appendix A.

While the use of logic programming for circuit design is new, promising results

from preliminary experimental systems suggest that the approach has potential for com-

mercial logic circuit design.

8.2 Conclusions

The conclusion of the research in this thesis suggests that Prolog, or more

specifically logic programming, is viable for circuit design. The practicality of this is

demonstrated when systems, consisting of over 25000 gates, have been designed using

this approach [Fujita 86]. Using a clausal approach to circuit design has several benefits

over other circuit design programming techniques, which are summarized as follows;

(1) Flexible Automation

It is usually easy to add rules, or otherwise modify the system, since the expert

knowledge is a separate entity from the reasoning mechanisms of the system. It

is also possible to add or change rules while using the system. An approach

which relies completely on executable code is not so readily modifiable. This

feature is useful for the designer to adopt the system to the application, and to the

system programmer during initial system development.

Conclusions 8.2

104

(2) Maintaining System Performance

A logic design system written in Prolog is typically criticized for lack of

efficiency when compared to procedural languages like Fortran. Efficiency

should not be a problem for Prolog provided two criteria are met. First any por-

tion of the system which lends itself to procedural execution, should be pro-

grammed with a procedural language such as Fortran or C. Secondly the Prolog

program should be programmed to avoid backtracking, unless it is worthwhile or

is controlled. If these criteria can be met, a Prolog system can be comparable to

Fortran in most aspects of logic design. In addition, the emergence of more

powerful engineering design workstations will blur the efficiency distinction by

allowing practical problems to be programmed in Prolog.

(3) Rule-based Transformations

For such conversions as logic minimization, or conversion to technology specific

logic, Prolog can express clearly the transformation rules. The clearer style adds

comprehension, reliability and, is intuitively a more correct approach.

These advantages must be considered against a requirement to carefully consider

program control in Prolog. Without adequate control, a Prolog program becomes inef-

fective at solving the problem it was developed for.

8.3 Future Research

This thesis has broken new ground in the use of logic programming for circuit

design in the areas of circuit synthesis, logic minimzation and logic simulation at the

functional level. Several research topics can be pursued in this area.

Future Research 8.3

105

(1) Logic Minimization & Prolog

This thesis has shown that Prolog can directly express minimization rules.

Further research can be applied to compare efficiency and performance of alter-

native guided search strategies. Traditional logic minimization only considers a

cost function based on gate count. Prolog should be able to help minimize cir-

cuits based on more complex minimization functions.

(2) Logic Simulation & Prolog

Prolog has many features which facilitate logic simulation, and current research

in this area is promising. Look for the development of micro processor simulation

programs in Prolog. Topics in the use of Concurrent Prolog for solving logic

timing problems are also wide open.

Future Research 8.3

BIBLIOGRAPHY

In the following reference list the asterisk following a reference indicates that a personal

copy of that reference has been obtained.

[Adshead 813*

H. G. Adshead, DA4 - An Integrated Design System, European Conference on Electronic Design

Automation Sept. 1981 page 1-4.

[Arevalo 783*

Z. Arevalo and I G Bredeson, A Method to simplify a Boolean function into a near minimum sum of

products for PLAs, IEEE Trans. on Comp., Vol C-27, No lip 1078-1039 Nov 1978.

[Asija 68)

S. P. Asija, Instant Logic Conversion , in IEEE Spectrum, Vol. 5 ,December 1968, p77-80.

[Besslich 81]*

Ph. W. Besslich and P. Pichlbauer, Fast transform procedure for the generation of near-minimal cov-

ers of Boolean functions, in lEE Proc., Vol 128, Pt E No 6, November 1981.

[Bogert 87]

Bogert & Thomas Research, CAD/CAE and VLSI Design , published by Bogert/Thomas Research,

Palo Alto, Calif. 1987. Tel. (617)232-8080

[Bowman 68]*

Robert Bowman and E S McVey, A method for the fast approximate solution of large prime impli-

cant charts, IEEE Trans on Comp. Vol C-21 page 169-173, 1972

107

[Brayton 84]*

R.K. Brayton, G.D. Hachtel, C.T. McMullen, A. Sangiovanni-Vincentelli, Logic Minimization Algo-

rithms for VLSI Synthesis, Kluwer Acedemic Publishers, Netherlands, 1984.

[Breuer 72]

M. A. Breuer, (Ed.), Design Automation of Digital Systems Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1972.

[Brewer 86]*

F.D. Brewer, D.D. Gajski, An Expert-System Paradigm for Design, Proc 23rd ACM/IEEE Design

Automation Conf 1986 p62-68.

[Bubenik 72]

V. Bubenik, Weighting method for the determination of the irredundant set of prime implicants,

IEEE Trans. on Comp. Vol C-21 p1445-1451 1972.

[Bundy 81]*

A. Bundy, and B. Weiham, Using meta-level inference for selective application of multiple rewrite

rules in algebraic manipulations , in Artificial Intelligence 16(2)1981.

[Bundy 83]*

A. Bundy, The Computer Modelling of Mathematical Reasoning ,published by Academic Press, Lon-

don, 1983.

[Button 60]

C. H. Button, H. J. Grosskamp, J. L. Kenney, M. R. Murphy, and R. L. Simek, Parts Usage Mainte-

nance Program PUMP IBM Technical Report 00.746 (Poughkeepsie, New York, October 5, 1960).

[Campbell 84]

I. A. Campbell, Implemetations of PROLOG ,a collection of papers in the Ellis Horwood Series in

Bibliography

108

Artificial Intelligence published by Halsted Press, 1984.

[Chang 73]

C. L. Chang, R Lee, Symbolic logic and methematical theorem proving , Academic Press, 1973.

[Clark 82/1]

K. L. Clark & F. G. McCabe, Prolog: A language for implementing Expert Systems , Department of

computing, Imperial College, Technical Report no 80/21.

[Clark 82/2]

K. L. Clark, IC Prolog: Aspects of its implementation , in Proc of the Logic Programming Workshop,

Debrecen, 1980.

[Clark 82]

K. L. Clark, S. A. Tarniund (eds), Logic Programming , 1982, p153-172, Acedemic Press, New

York, NY.

[Clocksin 81]*

W. F. Clocksin, and C. S. Mellish, Programming in Prolog ,published by Springer-Verlag, 1981.

[Clocksin 85]

W. F. Clocksin, Logic programming and the specification of circuits , Computer Laboratory, Univer-

sity of Cambridge Technical Report No 72, 1985.

[Covington 85]

M. A. Covington, Eliminating unwanted loops in Prolog , in ACM SIGPLAN notices Vol 20,

l,pp20-26 Jan 1985.

[Craig 86]

I. D. Craig, The Adriadne - 1 Blackboard System , in The Computer Journal, Vol 29, No 3 p235 to

Bibliography

109

p240.

[Cray 56]

S. R. Cray and R. N. Kisch, A Progress Report on Computer Applications in Computer Design , in

Proceedings of the Western Joint Computer Conference (1956), p 82-85.

[Darringer 69]

I Darringer, The Description, Simulation, and Automatic Implementation of Digital Computer Pro-

cessors ,Ph. D. Thesis, Carnegie- Mellon University, Pittsburg, PA 1969.

[Darringer 80]

I. A. Darringer, W. H. Joyner, L. Berman, and L. Trevillyan, Experiments in Logic Synthesis , in

Proceedings of the IEEE International Conference on Circuits and Computers, Port Chester, NY,

1980 page 234-237.

[Darringer 81]*

S. Darringer, W. Joyner, L. Bermer, L. Trevillyan, Logic Synthesis through local transformations,

IBM Journal of Research & Development, Vol. 25, July 1981, page 272-280.

[Darringer 84]*

J. A. Darringer, D. Brand, S. V. Gerbi, W. H. Joyner, L. Trevillyan, LSS: A System for production

Logic Synthesis, in IBM Journal of Research & Development Vol 28 No 5 Sept. 1984.

[Das 71]

S.R. Das, Comments on 'A new algorithm for generating prime implicants', IEEE Trans. on Comp.

Vol C-20 p1614-1615 Dec 1971.

[deGeus 85]*

A.J. de Geus, W.W. Cohen, A Rule Based System for Optimizing Combinational Logic, IEEE Design

and Testing of Computers, August 1985, page 22-32.

Bibliography

110

[Dietmeyer 78]

D.L. Deitmeyer, Logic Design of Digital Systems, Second Edition, Allyn and Bacon Inc. 1978.

[Duley 68]

J.R. Duley, DDL A Digital Design Language ,Ph. D. Thesis, University of Wisconsin, Madison, WI,

1968.

[Falkoff 64]

A. D. Falkoff,K. E. Iverson, and E. H. Sussenguth, Formal description of systeinl36O in the IBM

System Journal Vol 3 pages 198-262, 1964.

[Feigenbaum 83]

E. A. Feigenbaum, and P. Mc Corduck, The Fifth Generation ,published by Addison-Wesley, Read-

ing, MA, 1983.

[Porgy 8 1

C. L. Forgy, OPS5 User's Manual , Department of Computer Science, Carnegie-Mellon University,

July 1981.

[Pox 84]*

J. R. Fox, Performance Prediction with the MacPitts Silicon Compiler ,in IEEE proc on Computer

Hardware, page 351-355, 1984.

[Friedman 691*

T.D. Friedman, and S. C. Yang, Methods Used in an Automatic Logic Design Generator (ALERT) ,in

IEEE TRansactions on Computers, Vol C-18, No 7 July 1969 page 593-614.

[Friedman 75]

A.D. Friedman, Logical Design of Digital Systems, Computer Science Press, 1975 page 72.

Bibliography

111

[Fujita 86]*

M. Fujita, M. Ishisona, H. Nakamura, H. Tanaka, & T. Moto-oka, Using the temporal logic program-

ming language Tokio for algorithm description and automatic CMOS gate array synthesis , in Proc

of the 4th Logic Programming Conference, held in Tokyo, July 1 - 3 1985, published by Springer-

Verlag Berlin 1986, edited by Eiita Wada.

[Gregory 86]*

D. Gregory, K. Bartlett, A. deGeus, G. Hachtel, SOCRATES: A System for Automatically Synthesiz-

ing & Optimizing Combinational Logic, Proceedings from the 23rd ACM/IEEE Design Automation

Conference June 29 - July 2, 1986.

[Gullichen 85]*

E. Gullichen, Heuristic Circuit Simulation using Prolog Integration , in the VLSI Journal, Vol 3,

p282-318, 1985.

[Hammond 83]

P. Hammond & M. Sergot, A Prolog Shell for Logic Based Expert Systems, Special report, Dept. of

Computing, Imperial College of Science and Technology, London.

[Hong 74]*

S.J. Hong, R.G. Cain, D.L. Ostapko, MINI: A Heuristic approach for logic minimization, IBM J Res

& Develop. p443-458, September 1974.

[Horstmann 83]*

P.W. Horstmann, Expert System & Logic Programming for CAD in VLSI Design (USA periodical)

Nov 1983, p34-40.

[Horstmann 84]*

P.W. Horstmann, Computer Aided design(CAD) using logic programming (for VLSI), IEEE 21st

Bibliography

112

design automation conf proceedings p144-151, June 25-27 1984.

[Hu 841*

Y.H. Hu, and D.Y. Yun, Application of Artificial Intelligence to VLSI CAD systems, in Proc of IEEE

Conf on Camp Design 1984, P737-841, 8-11 Oct 1984.

[Hulme 75]

B.L. Hulme and R.B. Worrell, A prime implicant algorithm with factoring, IEEE Trans on Comp.

Vol C-24 p1129-113 1 Nov 1973.

[Johannsen 79]

D. Johannsen, Bristle Blocks: A Silicon Compiler , Proceedings of the 16th Design Automation

Conference, June 1979, pp 310-313.

[Joyner 86]*

WE Joyner, L.H Trevillyan,D. Brand, T.A Nix, S.0 Gunderson, Technology Adoptation in Logic

Synthesis ,Proceedings from the 23rd ACM/IEEE Design Automation Conference, June 29 July

2, 1986.

[Karnaugh 53]

M. Karnaugh, The map method for synthesis of combinational logic circuits, Trans AIEE Vol 72 Part

1 p 593-598 1953.

[Kaskey 61]

Y. Kaskey, H. Lukoff, and N. S. Prywes, Application of Computers to Circuit Design for UNIVAC

LARC, in Proceedings of the Western Joint Computer Conference Vol 19 (1961) p 185-205.

[Kowalski 831*

T. J. Kowalski and D. E. Thomas, The VLSI Design Automation Assistant: Prototype System, in

Proc. of the 20th Design Automation Conference, Miami, Florada 1983.

Bibliography

113

[Liblong 84/1]*

B. Liblong, SHIFT a Structured Hierarchic Intermediate Form for VLSI Design, Masters Thesis,

University of Calgary, 1984.

[Liblong 84/2]*

B. Liblong, T. Melham, G. Birtwistle, J. Kendall, Towards a VLSI Design Tool System, Research

Report 84/175/33, Nov 84, Dept of Computer Science, University of Calgary.

[Lipp 79]*

H.M. Lipp, Current Trends in the Design of Digital Circuits , in Computer-Aided Design of Digital

circuits and systems, G Musgrave editor, page 91-102, published by North-Holland, 1979.

[Merwin 67]

R. W. Merwin, & J. L. SanBom, Digital Computers for logical Designs , in M Kierer & G Kom, eds

Digital Computer User's Handbook , New York, Mc Graw-Hill Book Company, 1967, part 4 p167-

192.

[McCluskey 56]*

E.J. McCluskey, Minimization of Boolean Functions, in The Bell System Technical Journal, page

1417-1'l'M, November 1956.

[McDermott 851*

R.M. McDermott, Computer-Aided Logic Design ,published by H W Sams & Co Ltd, Indianapolis,

Indiana, 1985.

[McKinsey 84]

McKinsey and Associates, Report to Participants ,Toronto, 1984.

[Mead 801*

C.A. Mead and L Conway, Introduction to VLSI Systems, Addison Wesley, Reading Mass 1980.

Bibliography

114

[Miller 65]

R. E. Miller, Switching Theory, Vol. 1: Combinatorial Circuits ,John Wiley & Sons, Inc., New York,

1965.

[Morris 76]

Noel M. Morris, Logic Circuits, McGraw Hill 1976.

[Naish 83/11*

Lee Naish, An Introduction to Mu Prolog, Technical Report, Department of Computer Science,

University of Melbourne, February 1982, revised July 1983.

[Naish 83/21*

Lee Naish, MU-Prolog 3.0 Reference Manual, Reference' manual included with delivery of MU-

Prolog interpreter, Melbourne University, July 1983.

[Noda 861*

Y. Nocla,T. Kinoshita,A. Okumura, T. Hirano, T. Hiruta, A Parallel Logic Simulator based on Con-

current Prolog , in Proc of the 4th Logic Programming Conference, held Tokyo July 1 - 3, 1985,

published by Springer Verlag Berlin 1986, edited by Eiiti Wada.

[Oberman 701*

R.M. Oberman, Disciplines in Combinational and Sequential Circuit Logic, in Electrical and Elec-

tronic Engineering series, McGraw Hill 1970.

[Obyrne 861*

R.P. O'Byrne and J. Kendall, Automatic Circuit Design for Digital Counters , Research Report No

86/232/6, June 1986, Department of Computer Science, University of Calgary.

{Ostapko 74]*

D.L. Ostapko, S.J. Hong, Generating Test Examples for Heuristic Boolean Minimization , in IBM

Bibliography

115

Journal of Research and Development, Sept 1974.

[Pereira 84]*

F. Pereira from material by D Warren, D Bowen, L Byrd and L Pereira, C-Prolog User's Manual,

supplied with C-Prolog interpreter ver 1.5, Sept 1984.

EQuine 551

W.V. Quine, A way to simplify truth functions, American Math Mon. Vol 62 p627-631, 1955.

[Rhyne 77]*

V. T. Rhyne, P. S. Noe, M. N. McKinny, and U. W. Pooch, A New Technique for the fast minimiza-

tion of switching function IEEE Trans. on Comp. Vol C-26, No 8, p757-764, August 1977.

[Rosenthal 61]

C. W. Rosenthal, Computing Machine Aids to a Development Project , in IRE Transactions on Elec-

tronic Computers, Vol EC-10 (September 1961). p 400-406.

[Rubin 821*

S.M. Rubin, An Integrated Aid for Top-Down Electrical Design, Special Report, Fairchild Labora-

tory for Artificial Intelligence research, 4001 Miranda Avenue, Palo Alto, Calif 94304.

[Saito 861*

T. Saito, S. Hiroyuki, M. Yamazald, and N. Kawato, A Rule-based Logic Circuit Synthesis System

for CMOS Gate Arrays in Proc from the 23rd ACM/IEEE Design Automation Conference, June 29 -

July 2, 1986, page 594 to 600.

[Sasao 861*

T. Sasao, MACDAS: Multi-level AND-OR Circuit Synthesis using Two-Variable Function Genera-

tors , Proceedings from the 23rd ACM/IEEE Design Automation Conference, June 29 - July 2, 1986.

Bibliography

116

[Southard 83]

J. R. Southard, MacPUts: An Approach to Silicon Compilation , Computer 16, No 12 p74-82

(December 1983).

[Suzuki 851*

N. Suzuki, Concurrent Prolog as an efficient VLSI design Language, published in Computer, Feb

1985, page 33-40.

[Taub 801*

Herbert Taub, Digital Circuit and Microprocessors, Mc Graw Hill 1980.

[Teig 86]*

S. Teig, R. Smith & I. Seaton, Timing Driven Layout of Cell-based ICs, in VLSI Systems Design,

May 1986.

[Wager 81]*

S.J. Wager & S.J. Poulton, Interactive logic diagrams at the register level, Proc. of European

Conference on Electronic Design Automation Sept 1-4 1981, page 149-153.

[Wayne 85]*

M. R. Wayne, and S. M. Braun, Looking for Mr Turnkey ,in Proc. of the 22nd ACM/IEEE Design

Automation Conference, 1985.

[Xin DaLu 811*

Xin Da Lu, A special purpose VLSI chip dynamic up-down counter, Computing Lab, Newcastle upon

Tyne University 1981.

Bibliography

Index 117

backtracking - definition of 41
behavioural domain - definition of 15
CAE vendor classification 8
circuit signals 55
circuit transformation 53
clock skew - designing counters 77
CMOS cell arrays - description of 17
commands - list of 82
counter tree 70
counters - definition of 70
data structure representation - advantages 52
design implementation styles 6
design process - definition of 3
design process - history 1
design process - use of CAD 6
design workflow - definition 4
error - compound error reporting 80
gate-array design 16
hardware economy - counter design 74
hierarchical design 2
horn clause representation - characteristics 49
known circuits - definition of 54
logic programming - definition of 39
logic synthesis - definition of 20
logic synthesis - definition of 21
macro-cell design 17
PCD - development goal 79
PCD - example design session 96
PCD - logic synthesis description 85
PCD command interpreter 79
PCD example minimization session 91
physical domain -definition of 15
PLA macro-cells 18
Prolog - processing efficiency 104
race - designing counters 77
regularity - designing counters 72
shift - hierarchic design language 16
Socrates - description of 32
speed - designing counters 72
stability - counter design 74
standard cell design - description of 17
structural domain - definition of 15
system performance - overall 104
VLSI design - custom 16
VLSI design domains 15

Index

Reference Index 118

[Adshead 8 1] - DA4: An Integrated Design System 9
[Aoyagi 85] - Tokio 35
[Arevalo 78] - A Method to simplify a Boolean function into 61
[Asija 68] - Instant Logic Conversion 66
[Bogert 87] - CAE/CAD and VLSI Design 8
[Brayton 82] - A Comparison of logic minimization 62
[Brayton 84] - Expresso Uc: Logic Minization Algorithms for VLSI 33
[Breuer 72] - Design Automation of Digital System 21
[Brewer 86] - An Expert-System Paradigm for Design 45
[Brown 74] CMOS Cell Arrays - An Alternative to Gate Arrays 17
[Brown 81] - A State-Machine Synthesizer - SMS 62
[Bundy 81] - Using meta-level inference for selective 62
[Bundy 83] - The Computer Modelling of Mathematical Reasoning 45,61,67
[Button 60] Parts Usage Maintenance Program 1
[Campbell 84] - Implementations of Prolog 39
[Chang 73] - Symbolic logic and mathematical theorem proving 39
[Clark 81] - The Control Facilities of IC-Prolog 43
[Clocksin 81] - Programming in Prolog 39
[Craig 86] - The Ariadne - 1 Blackboard System 30
[Cray 56] - A Progress Report on Computer Applications in 1
[Datringer 69] - The Description, Simulation 22
[Darringer80] 7
[Darringer 84] - LSS: A System for Production Logic Synthesis 25
[Dietmeyer 78] - Logic Design of Digital Systems. 21,32
[Duley -68] - DDL - A Digital Design Language 22,36
[Falkoff 64] - Formal description of System /360 24
[Feigenbaum 83] - The fifth Generation 39
[Forgy 81] - 0P55 User's Manual 38
[Fox 84] 7
[Friedman 69] - Methods used in an Automatic Logic Design ... 24
[Friedman 70] - Quality of designs from an automatic logic ... 22
[Fujita 86] - Using the temporal logic programming ... 7,35,41,110
[Gregory 86] - SOCRATES: A System for Automatically ... 32
[Gullichen 85] - Heuristic Circuit Simulation using Prolog ... 40
[Hammond 83] - A PROLOG Shell for Logic Based Expert Systems 43
[Hong 74] - MINI: A Heuristic Approach for Logic Minimization 62,63
[Johannsen 79] - Bristle Blocks: A Silicon Compiler 22
[Joyner 86] - Technology Adoptation in Logic Synthesis 25
[Karnaugh 53] - The map method for synthesis of combinational ... 0
[Kaskey 61] - Applications of Computers to Circuit Design for ... 1
[Kowalski 83] - The VLSI Design Automation Assistant: Prototype ... 38
[Liblong 84] - SHIFT - A Structured Hierarchical Intermediate form ... 16
[Lipp 79] - Current Trends in the Design of Digital Circuits 23
[McCluskey 56] - Minimization of Boolean Functions 60
[McDermott 85] - Computer Aided Logic Design 57

Reference Index

Reference Index 119

[McKinsey 84] - Report to Participants 6
[Merwin 67] - Digital Computers for Logic Design 66
[Naish 83] - An Introduction to Mu Prolog 41
[Naish 83] - MU-Prolog 3.0 Reference Manual 41
[Noda 86] - A Parallel Logic Simulator based on Con current Prolog 40
[Pereira 84] - C Prolog User's Manual 39
[Quine 55] - A Way to Simplify Truth Functions 60
[Rhyne 77] - A new technique for the fast minimization of ... 61
[Rosenthal 61] - Computing Machine Aids to ... 1
[Rubin 82] - An Integrated Aid for Top-Down Electrical Design 19
[Saito 86] - A Rule-based Circuit Synthesis System for CMOS ... 29
[Sasao 86] - MACDAS: Multi-level AND-OR Circuit Synthesis using ... 31
[Southard 83] - MacPitts: An Approach to Silicon Compilation 22
[Suzuki 85] - Concurrent Prolog as an Efficient VLSI Design Language 41,50
[Teig 86] - Timing Driven Layout of Cell-based ICs 18
[Wager 81] - Interactive Logic Diagrams at the Register Level 10
[Wayne 85] - Looking for Mr Turnkey 8

Reference Index

120

Appendix A - PCD Listing

PCD (Prolog Counter Design) consists of a number of files. These files are;

check clauses to check the syntax of a circuit definition.
convert clauses to convert AND/OR/NOT logic to NAND.
counter clauses to select and synthesis a counter circuit.
fan clauses to check the maximum fan in of the circuit.
helpJib clauses to present help information.
min clauses to perform logic minimization.
pcd clauses for command interpretation & Utilities.
print clauses to display a circuit at the terminal.
simulate clauses to perform circuit simulation.

These files are listed in alphabetical order on the following pages.

PCD listing - check Appendix A

121

1*
CIRCUIT
Created
Last Revision

SYNTAX CHECKER
March 1987
April 13 1987

*1
go_check(S,E) :- check_str(S,E).
gq.check(S,'ok').

checkstr(S,'Error: Circuit not instantiated') var(S).
check_sir(S,'Error: Signal value not 1 or 0') :- integer(S),(S < 0;S > 1).
check_str(S,E) :- functor(S,Name,N),check_str(S,Name,1,N,E).

check_.str(_,_,_,E) :- novar(E).

check_str(S,and,P,M,'Error: And gate too few params.') :- (M < 2).
check_str(S,and,M,M,E) :- arg(M,S,A),check_str(A,E).
check_str(S,and,P,ME) Next is P +1,arg(P,S,A),check_str(A,E),

check_str(S,and,Next,M,E).

checic_str(S,or,P,M,'Error: Or gate too few params.') :- (M < 2).
check_str(S,or,M,M,E) :- arg(M,S,A),check_str(A,E).
check_str(S,or,P,M,E) Next is P +1,arg(P,S ,A),check_str(A,E),

check_str(S,or,Next,M,E).

check_slr(S,notP,M,'Error: Not gate too many params.') :- (M> 1).
check_str(S,not,1,1,E) :- arg(1,S,A),check_str(A,E).
check_str(S,not,_,_,'Enor: Not gate definition').

check_str(S,nandP,M,'Error: Nand gate too few params.') :- (M < 2).
check_str(S,nand,M,M,E).
check_str(S,nand,P,M,E) :- Next is P +1,arg(P,S,A),check_str(A,E),

checkstr(S,nand,Next,M,E).
1*
The following clauses allow user defined circuits to be checked
*1
checkstr(S,Name,M,M,E) :- arg(M,S,A),checkstr(A,E).
checkstr(S,Name,P,M,E) arg(P,S,A),checksir(A,E),Next is + 1,

check_str(S,Name,Next,M,E).

PCD listing - check Appendix A

122

1*
NAND/NOT CIRCUIT CONVERSION
File Name convert
File Created January 1987
Last Revision April 14 1987

Rules Applied in Logic Conversion:

This file contains clauses necessary to convert a circuit
represented using general AND, OR and user defined gates
into an equivalent circuit represented only in NAND.
The following is a summary of the conversion rules
applied. Uppercase letters "tA", "Bt" etc. can represent
circuits in their own right.

LOGIC CONVERSION RULES

nand(A,B) = (A.B)
A.B = Thancl(A,B)

= nand(A,A)

nor(A,B) = (A+B)
A+B = nand(ArB)
A=A.

*1
go_convert(S,Sn) :- var(S),clisplay('Fatal Error Circuit not instantiated'),abort.
go_convert(S,Sn) :- functor(S,Name,N),conv_nd(S,Name,N,Sn).

conv_nd(S,_,O,S).
conv_nd(S,and,N,not(List)) :- conv_and(S,1,NJI,List).
conv_nd(S,or,N,nand(List)) :- conv_or(S,1,N,U,List).
conv_nd(S,not,1,Sn) :- convnot(S,Sn).
conv_nd(S,not,_,J :- display('Circuit Definition error in "not" function'),abort.
convnd(S,nand,N,Sn) :- conv_nand(S,1,N,fl,Sn).
conv_nd(S,Circuit,N,Sn) :- conv_ct(S ,1,N,ftList),conv_list(Sn,Circuit,List).

conv_and(S,N,N,C,Sn) :- arg(N,S,A),go.convert(A,An),conv_list(Sn,nand,[AnlC]).
conv_and(S,P,N,C,Sn) :- rg(P,S,A),go.convert(A,An),Next is P+1,

conv_and(S,Next,N,[AnIC],Sn).

conv_or(S,N,N,C,Sn) :- arg(N,S,A),goconvert(A,An),
convjist(Sn,nand,[not(An)IC]).

convor(S,P,N,C,Sn) :- arg(P,S,A),go_convert(A,An),Next is P+1,
conv_or(S,Next,N,[not(An)IC],Sn).

conv_not(S,Sn) :- arg(l ,S,A),functor(A,not,1),arg(1,A,N),go_convert(N,Sn).
/ ' This clause satisfies A = A
*1
conv_not(S,nand(An,An)) :- arg(1,S,A),goconvert(A,An).

conv_nand(S,N,N,C,Sn) :- arg(N,S,A),go_convert(A,An),conv_list(5n,nand,[AnCJ).
convnand(S,P,N,C,Sn) :- arg(P,S,A),go_convert(A,An),Next is P+1,

cony _nand(S,Next,N,[MIC],Sn).
These clauses allow conversion of a circuit which contains NAND gates

*1
conv_ct(S,N,N,C,[An[C]) :- arg(N,S,A),go_convert(A,An).
conv_ct(S,P,N,C,Sn) :- arg(N,S,A),go_convert(A,An),Next is P-i-i,

PCD listing- convert Appendix A

123

cony _ct(S,Next,N,[An[C],Sn).
These two clauses allow user defined circuits to be converted.

*1
conv_list(S,F,L) S =.. {HL].

PCD listing - convert Appendix A

124

1*
COUNTER
File Name
File Created
Last Revision

SELECTION & DESIGN
counter
July 1986
April 14 1987

This file contains all the clauses required to select and
synthesize a counter circuit. Counter selection is spec
driven, with specifications entered by the user. These
specifications are used to guide the selection process to
select the most appropriate counter first. A detailed
explanation of the selection procedure and synthesis is
included in chapter 7 sections 3.

*1
counter :- type(T),design_counter(T),pcd.
design_counter(no_match) :-
display('Error selecting a counter type for specifications. Re-specify'),nl.

design—counter(T) counter(T,S 1),print_str(S 1),! ,store(S 1).
design_counter(T) :- display('Error designing counter'),nl.
type(T) display('Please enter Counter Circuit Specifications'),nl,

display('Enter "help," for available options >>
read(Ans),nl,work_input(Ans,I).

type('no_match').
work_input(help,T) :- nl,select_help,! ,typeI).
work_input(exit,no_match).

select_help :- system("more help/specs").
work_input(Ans,T) :- valid_list(Ans),assert_list(Ans),! ,select(T).
workJnput(Ans,T) :- display('Your list is invalid. Check and reenter'),nl,

select—help.
valid_list((First_spec,Rest)) :- spec(First_spec),valid_list(Rest).
valid_list(Last_spec) :- spec(Last_spec),

display('Counter Circuit Specification syntax check OK'),nl.
PC

V This is a list of valid user specs which is used to check that
the user spec is syntactically correct /

spec(bcd).
spec(binary).
spec(clockLj).
spec(count(_)).
spec(delayLj).
spec(ffLJ).
spec(grey).
spec(modulo).
spec(ring).
spec(shift).
spec(switchtail).
spec(sync).

assert_ list((First,Rest)) :- asserta(First),assert_list(Rest).
assert_list(Last) asserta(Last).

select(no_match) :- min_spec(no_match).

PCD listing - counter Appendix A

125

min_spec(no_match) bcd,count(N),(N > 9;N < 9),
display('Error: spec bcd & count conflict'),nl.

/ "These clauses are checking for known conflicts and return "no—match"
to indicate the conflict.

*1

selectT) :- sync,sync('I).
select(T) :- delay(N),N =< 25,sync(T).
select(T) :- clock(N),N >= 25,sync(I).
select(T) :- clock(N),N =< 25,async(T).
select(T) :- display('Synchronous type counter'),nlj,sync(T).
/ "These clauses guide the search to either an asynchronous or

synchronous counters.
*1
sync(T) :- (count(N);binary),sync_bin(l).
sync('synchronous greycode serial') :- grey.
sync('synchronous ring') ring.
sync('synchronous shift parallel') :- shift.
sync('synchronous switchtail') :- switchtail.
sync('synchronous moebius') :- moebius.
sync('no_matcb') :- display('Erroc no Synchronous counter found'),nl.
/ "These clauses select synchronous counters
*1

async('asynchronous binary serial ripple').

sync_bin('synchronous bed') :- bed.
sync_bin('synchronous binary full modulo reverse') :- reverse,modulo.
syne_bin('synchronous binary full modulo bi-directional') :-

up_down,modulo.
sync_bin('synchronous binary full modulo') :- modulo.
syne_bin('synchronous binary count by').

1*
BUILD LOGIC EQUATIONS

Data Structures (5) for circuit with n outputs;

circuit_type(S 1,S2,.. Sn)

where S is any valid data structure.
pre-defined valid data structures are;
and(S 1,S2) or(S 1,S2) not(S1)
and(S1,..Sn) or(S1,..Sn)
nand(S1,S2) nor(S1,S2) new designs are constructed
nand(S l,..Sn) nor(S 1,..Sn) from valid existing designs.
all valid circuit structures can be evaluated
and return values such as true (1) or false (0) or undefined
(uninstantiated).

*1
binary(Decimal,Result) :-

binary(Decimal,,Result).
binary(l,Binary,Result) :-

binary(O,[llBinary],Result).

binary(0,Binary,Binary).

PCD listing - counter Appendix A

126

binary(Decimal,Binary,Result) :-
divide(Decimal,Quotient),
remainder(Decimal, Remainder),
binary(Quotient, [RemainderiBinary], Result).

1*
divide forms an integer division and returns the
result in Quotient. This is the number that will be divided again.
*1
divide(Decimal,Quotient) :-

Quotient is Decimal 11 2.

1*
The list is formed from the remainder of the division
Remainder uses the modulus function to find the remainder
after division by 2
*1
remainder(Decimal,Remainder) :-

Remainder is (Decimal mod 2).

1*
"number_ff" is a clause used to calculate the number of flip-flops required
for a counter. If the highest states can be represented then the rest
of the counter can be represented. The number of flip-flops required
to represent a counter with top state 12 is the same as a state 13 counter,
and so "number_fft returns the same number in both cases
*1

number_ff(Highest_state,Number) :- size_finder(Highest_state,2,l,Number).

size—finder incrments the number of ff until the highest state can
be represented. Inter—number is this incrementing variable
*1
size_finder(H,H,N,N).
size_finder(H,I,C,N) :- I> H,!, equal(N,C).
size_finder(Highest_state,Intermediate_state,Inter_number,Number)

New_highest_state is (Intermediate—state * 2),
New_ number is (Inter _number + 1),
size_finder(Highest_state,New_highest_state,New_number,Number).

counter('asynchronous binary serial ripple',async_bin_ser_rip(List)) :-
count(Highest_state),
number_ff(Highest_state,N),
Next is (N - 1),alpha(Next,Letter),
ripple(Next,(jk_ff(' 1',' 1 ',not(Letter))),List).

ripple(1,T,(jk_ff(' 1',' 1',cp(l)),T)).
ripple(N,Tmp,List) :- Next is (N -1),alpha(Next,Letter),

ripple(Next,(jk_ff(' 1',' 1 ',cp(not(Letter))),Tmp),List).

1*
SYNCHRONOUS BINARY FULL MODULO COUNTER
*1

PCD listing - counter Appendix A

127

counter('synchronous binary full modulo',sync_bin_mod(List)) :-
form_and(4,Eqtn),
modulo(3,(jk_ff(Eqtn,Eqtn,clk)),List).

modulo(O,List,List).
modulo(N,Tmp,List) :- Next is (N - 1),formand(N,Eqtn),

modulo(Next,(jk_ff(Eqtn,Eqtn,clk),Tmp),List).

1*

the form
_and clause actually forms the logic equation for the modulo

counter. It is also called for other counters.
*1
form_and(1,1).
form_and(2,'a').
form_and(3,and(a,b)).
form_and(4,and(a,b,c)).
form_and(5,and(a,b,c,d)).
form_and(6,and(a,b,c,d,e)).
form_and(7,and(a,b,c,d,e,f)).

SYNCHRONOUS BINARY FULL MODULO REVERSE
*1
counter('synchronous binary full modulo reverse sequence',sync_bin_mod_rev(List)) :-

form_and(4,Eqtn),
reverse_modulo(3,(jk_ff(not(Eqtn),not(Eqtn),clk)),List).

1*
the following clause is the terminating condition for the counter.
We know that for a full modulo counter the least sig. bit always
toggles on a clock input, so we can specify the equation directly.
*1
reverse_modulo(1,List,(jk_ff(1,1,clk),List)).
reverse_modulo(N,Tmp,List) :- Next is (N - 1),form_and(N,Eqtn),

reverse_modulo(Next,(jk_ff(not(Eqtn),not(Eqtn),clk),Tmp),List).

1*
SYNCHRONOUS BINARY FULL MODULO REVERSIBLE

eqtn_modulo_reversible calculates for a reversible synchronous
binary modulo counter. The control signal U can be either 1 or 0,
where 1 = Forward, and 0= reverse. When U = 1 E = Eqtn_up, when
U = 0, E = Eqtn_down is the basic rule. This is implemented

with: E = (U.Eqtn_up)+(not(U).Eqtn_down)
*1
counter('synchronous binary full modulo bi-directional',sync_bin_mod_bi(List)) :-

form_and(4,Eqtn_up),
reversible_modulo(3,(jk_ff(or(and('u',Eqtn_up),and(not('u'),

not(Eqtn_up))),or(and('u',Eqtn_up),and(not('u'),not(Eqm_up)))),clk)j,jst).

1*
following is the terminating clause. It is interesting to note that
the least sig. bit always toggles wether up or down counting.
*1

PCD listing - counter Appendix A

128

reversible_modulo(1,L,(jk_ff(1,l,clk),L)).
reversible_modulo(N,Tmp,List) :- Next is (N -1),form_and(N,Eqtn_up),

reversible
_modulo(Next,(jk_ff(or(and('u',Eqtn_up),and(not('u'),

not(Eqtn_up))),or(and('u',Eqtn_up),and(not('u'),not(Eqtn_up))),clk),Tmp),List).

1*
SYNCHRONOUS BCD COUNTER
eqtn_bcd calculates the logic equations for
a BCD counter. A Synchronous BCD counter which counts 0 - 9
is the same as a synchronous count by 9 counter.
The value of D will have been checked to be 9.
*1

counter('synchronous bcd' ,sync_bcd(L)) :-
counter('synchronous count by',sync_bin_ct(L)).

1*
SYNCHRONOUS BINARY COUNT BY COUNTER
eqtn_reset is used to calculate the logic equations for
a synchronous binary count by parallel counter which is not a
synchronous binary full modulo counter.
*1

counter('synchronous binary count by',Str) :-
count(D),binary(D,[BitlBinaryjist]),number_ff(D,N),
process_true(N,B,Reset_term),
process_false(N,B,Set_term),
Nextis(N - 1),
form_and(N,Anded_term),
do_eqtnj(Set_term,Anded_term,Eqtnj),
do_eqtn_k(Reset_term,Anded_term,Eqtnk),
reset(Next,B,Binary_llstjjk_ff(Eqtnj,Eqtnk)] ,Str,Set_term,Reset_term).

reset(O,_,_,List,Str,_,...) :- Str =.. [sync_bin_ctlList].
reset(P,B,[BitlBinary_list],Tmp,Str,Setjerm,Reset_term) :-

Nextis(P - 1),
form_and(P,Anded_term),
do....eqtn.j(Set_term,Anded_term,Eqtnj),
do_eqtn.k(Reset_term,Andedjerm,Bqtnk),
reset(Next,B,Binary_list,[jk_ff(Eqtnj,Eqtnjc)rrmp] ,Str,Set_term,Reset_term).

RULE:

Counting sequence is a Toggling operation when the
FF's to the right are all 1. With a J-K flip-flop , to
toggle just have J=K=1. At the end of the counting sequence
the FF must reset babk to zero, no matter what the toggle
would produce. To do this you 'OR' the toggle term with
a term that is true (at highest state only) for the set input J, and 'AND'
the toggle term with a term that is false only when you
want to reset. All this ensures that the FF will reset
when you want it to. The resulting logic equations are not
necessarily 'minimized' so there could be redundant terms.

PCD listing - counter Appendix A

129

STEPS:
1 form anding eqin
2 is full modulo? yes stop
3 form false term (using clause 'process_false').
4 form true term (using clause 'process—true').
5 OR these terms into list as eqtns for this ff.

the following two clauses build up the J and K inputs to
ensure that they both count and reset at the end of the sequence.

*1
do_eqtn.J(Set_term,Anded_term,and(Anded_term,5et_term)).
do_eqtn_k(Reset_term,Anded_term,or(Anded_term,Reset_term)).

process_false(0,U,").
process_false(1,[1],not('a')).
process_false(1,{0],('a')).
process_fa1se(P,[BitIBinary_list,and(B 1,B2)) :-

Next is (P - 1),alpha_bit_false(Bit,P,B 1),
process_false(Next,Binary_list,B2).

process_true(0,U,").
process_true(1,[1],('a')).
process_true(1,[0],not('a')).
process_true(P,[BitlBinary_list],and(B 1,B2)) :-

Next is (P - 1),alpha_bit_true(Bit,P,B 1),
process_true(Next,Binary_list,B2).

1*
these following clauses set the logic term to be either
true or not true based on whether the highest state has a 1 or a
zero at that position.

*1
alpha_bit_false(1,P,not(B)) :- alpha(P,B).
alpha_bit_false(0,P,B) :- alpha(P,B).
alpha_bit_true(1,P,B) :- alpha(P,B).
alpha_bit_true(0,P,not(B)) :- alpha(P,B).

1*
SYNCHRONOUS GREYCODE COUNTER
eqtn_grey calculates the logic equations for a reflected grey code counter
A reflected grey code counter starts at state with all FF's at 0.

A 3 FF counter counts as:
000
001
011
010
110
111
101
100
*1
counter('synchronous greycode serial',sync_greyList)) :- ff(N),

Next is (N - 1),

PCD listing - counter Appendix A

130

grey(Next,(jk_ff(1,1,clk)),List).
grey(O,L,L).
grey(N,Tmp,List) :— Next is (N - 1),

grey(Next,(jk_ff(1,1,clk),Tmp),List).
1*
logic_shift calculates the logic equation for a synchronous shift register counter.
THis type of counter has an initial state of all FF's = 1. At each clock pulse
the data or bits shift towards 'a' or the least significant bit. This has the effect
of counting down. Normally the counter is set at its initial state of all ones.
The highest FF is held with a zero on the S input to set it to zero for
each clock pulse. The sequence is none reseting.
*1
counter('synchronous shift parallel',sync_shift(List)) :—

ff(N),
Next is (N - 1),
ring(Next,(jk_ff(' 1 ',' O',clk)),List).

tic

SYNCHRONOUS RING COUNTER
logic—ring calculates the logic equations for a counter
where at each count, the state of the flip-flop to the left
is assumed. In a 4 FF counter FF D would always assume the
state of FF A. The count sequence must start from a non-zero
starting state.
*1
counter('synchronous ring',sync_ring(List)) :- ff(N),

Next is (N - 1),
ring(Next,(jk_ff('a',not('a'),clk)),List).

ring(O,L,L).
ring(N,Tmp,List) :— Next is (N -1),Last is (N + 1),alpha(Last,Letter),

ring(Next,(jk_ff(Letter,not(Letter),clk),Tmp),List):
1*
SYNCHRONOUS SWITCHTAIL COUNTER
eqtn_switch calculates the equations for a switchtail counter
where FF D assumes the inverse of FF A A switchtail is different
from a shift counter, in that the swithtail counter gets its next
input from the least sig. FF output.
*1
counter('synchronous switchtail',sync_switch(List)) :— ff(N),

Next is (N - 1),
ring(Next,(jk_ff(not('a'),'a',clk)),List).

1*
SYNCHRONOUS MOEBIUS SEQUENCE COUNTER
eqtn_moebius calculates the logic equations for a
Moebius or Johnson sequence counter. This sequence starts
at all FF's at zero. The first clock puts 1 in the left most
FF, the next shifts that right, and moves another in its place.
When all the FF's are 1, the next clock introduces a 0 and the
action repeats itself.
*1
counter('synchronous moebius', sync_moebius(List)) :- ff(N),

Nextis(N - 1),
alpha(N,Top_ff),
alpha(Next,Lcuer),moebius(Top_ff,Next,(jk_ff(Letter,not(Letter),cj.k)),List).

moebius(Top_ff,1,L,(jk_ff(not(Top_ft),Top_ff,clk),L)).
moebius(Top_ff,N,Tmp,List) :— Next is (N - 1), alpha(Next,Letter),

moebius(Top_ff,Next,(jk_ff(Letter,not(Letter),clk),Tmp),List).

PCD listing. counter Appendix A

131

1*
MAX FAN
File Name
File Created
Last Revision

IN
fan
February 1987
April 14 1987

This file contains all clauses necessary to determine
the maximum fax in of a circuit. The maximum fan in
is displayed at the terminal. The maximum fan is
determined by comparing all the fan values and swaping
a maximum value if required.

*1
fan_levels(S,F) :- var(S),display('Fatal Error: Circuit not instantiated'),abort.
1* "The above clause protects against illegal call
*1
fan_levels(S,F) :- functor(S,_,N),asserta(fi(N)),fan_in(S,1,N),fi(F).
fan_in(S,,O).
1* This terminates the fan search at a signal
*1
fan_in(S,1,1) :- arg(1,S,A),functor(A,_,N),fan_comp(N),fan_in(A,1,N).
1* The above clause allows for sub-circuits with a not or a user

defined one parameter circuit.
*1
fan_in(S,1,N) :- arg(1,S,A),functor(A,_,M),fan_comp(M),fan_in(A,1,M),fan_jn(S,2,N).
fan_in(S,N,M) :- arg(N,S,A),functor(A,_,Na),fan....comp(Na),fan_in(A,1,Na)Next is N+1,

fan_in(S,Next,M).

fan-.Pomp(N) :- fi(Old),Old<N,retract(fi(Old)),asserta(fi(N)).
fancomp(N).

PCD listing - counter Appendix A

132

1*
Prolog Circuit Design

HELP LIBRARY
- Counter Terminology
- PCD commands
- PCD description

File Created Jan 1987
Last Modified March 15 1987

*1
help(counter) :- system("more help/counter.intro").
help(switchtail) :- system("more help/switchtail").
help(ring) :- system("more help/ring").
help(ripple) :- system("more help/ripple").
help(counthy) :- system("more help/countby").
1*

Prolog Circuit Design
COMMANDS

*1
help(check) :- system("more help/check").
help(check(design)) :- system("more help/check").
help(clear) :- system("more help/clear").
help(commands) :- system("more help/commands").
help(convert) :- system("more help/convert").
help(convert(design)) :- system("more help/convert").
help(counter) :- system("more help/counter").
help(designs) :- system("more help/designs").
help(fan) :- system("more help/fan").
help(fan(design)) :- system("more help/fan").
help(get) :- system("more help/get").
help(get(design)) :- system("more help/get").
help(min) :- system("more help/mm").
help(min(design)) :- system("more help/mm").
help(save) :- system("more help/save").
help(save(design)) :- system("more help/save").
help(store) :- system("more help/store").
help(store(circuit)) :- system("more help/store").
help(print) :- system("more help/print").
help(print(design)) :- system("more help/print").

PROLOG CIRCUIT DESIGN
DESCRIPTION

*/

help(specs) :- system("more help/specs").
help(pcd) :- system("more help/pcd.intro").
help(Item) :- display('HELP error: '),display(Item),display(' ? '),nl,

display('Valid options for help are '),nl,nl,showHelp.

showHelp :- clause(help(Item),Y),nonvar(Item),display(Item),nl,fail.
showHelp.

PCD listing - help_Jib Appendix A

133

1*
EQUATION MINIMIZATION
Created Jan 1987
Last Revision March 6 1987
Boolean logic simplification rules:
AND A.A = A

LA = A
O.A = 0
A.1 = A
A.0 = 0
A.A = 0

OR A+A = A
1+A = 1
0+A = A
A-i-i = 1
A+O = A
A+-A= 1

NOT
= A

*1
min_str(jk_ff(A,B)jk_ff(C,D)) :- min_str(A,C),min_str(B,D).
min.str(and(1,A),B) :- min_str(A,B).
min_str(and(A,1),B) min_str(A,B).
min_str(and(O,A),O).
min_str(and(A,O),0).
min_str(and(A,A),B) :- min_str(A,B).
min_str(and(A,not(A)),0).
min_str(and(not(A),A),0).
min_slr(and(A,and(B,C)),D) :- mult_and({A],and(B,C),D).
min_str(and(A,B),Z) :- min_str(A,C),min_slr(B,D),mini(and(C,D),Z).

min_str(or(1,A),l).
min_str(or(A,1),1).
min_sir(or(A,A),B) :- min_str(A,B).
min_str(or(A,not(A)),1).
min_str(or(A,or(B,C)),D) :- mult_or([A],or(B,C),D).
minstr(or(A,B),Z) :- prod([A,B],Z).

min_str(not(not(A)),B) :- min_str(A,B).
min_str(not(A),not(B)) :- min_str(A,B).

min_str(A,A) :- integer(A).
min_str(A,A) :- atom(A).
min_str(A,A) :- var(A),display('PCD min effor: structure not instantiated'),

nl,abort.

min.str(S,Smin) :- S =.. [ClasslList},

min_ list _str(List,U,MmnList),
Smin =.. {ClasslMinList].

min_list_str(U,List,MinList) :- rev(List,ftMinList).
min_list_str([FirstlRest],Str,MinList) :-

min_slr(First,MinStr),

PCD listing - help lib Appendix A

134

min_list_str(Rest,[MinSt.r[Str],MinLisQ.

rev([],A,A).

rev([HITJ,Tmp,A) :- rev(T,[HITmp],A).

minl(and(1,1), 1).
minl(and(1,O),O).
minl(and(O,1),O).
minl(and(O,O),O).
minl(and(A,O),O).
minl(and(O,A),O).
minl(and(A,1),A).
minl(and(1,A),A).

minl(or(1,1),1).
minl(or(1,O),1).
minl(or(O,1),1).
minl(or(O,O),O).
minl(or(O,A),A).
minl(or(A,O),A).
minl(or(1,A),1).
minl(or(A,1),1).

minl(not(not(A)),A).
minl(A,A).

mult_and(tListj,and(A,and(B,C)),Z) mult_and((AlList],and(B,C),Z).
mult_and(List,and(A,B),Z) equal([AlList],Tmp),equal([B1Tmp],Sum),

remov_dupl(Sum,Nodupl),
remove_zeros(Nodup1NoZeros),
process_sum(NoZeros,Z).

process_sum((] ,O).
process_sum(Sums,O) anyzeros(Sums).
process.sum(Sums,Z) :- factor_sums(Sums,Z).

mult_or([List],or(A,or(B,C)),Z) mult_or([AlList],or(B,C),Z).
multor([List],or(A,B),Z) :- equal([AlList],Tmp),cqual([BITmp],Prod),

remov_dulp(Prod,Noclupl),
remov_ones(Nodulp,NoOnes),
process_prod(NoOnes,Z).

process_prod(,1).
process_prod(Prod,1) :- any_ones(Prod).
processprod(Prod,Z) :- factor_prod(ProcI,Z.

PCD listing - mill Appendix A

135

1*
Prolog Counter Design
File Name pcd
File Created Jan 1986
Last Revision May 15 1987

This file contains all Prolog clauses required for the user
interface, utilities, and file management.

*1
version('May 15 1987').
start :- seen,nofileerrors,pcd.
pcd prompt,read(X),interpret(X),!,pcd.
pcd :- pcd.
prompt :- nl,nl,display(' ==>').

interpret(check(X)) :- design(X,Str),! ,check(Str).
interpret(check(X)).

check(Str) :- check_ read _in,! ,go_check(Str,E),display(E),nl.
check(Str) :- [check],asserta(check_read_in),! ,go_check(Str,E),display(E),nl.
check(Str) :- display('Error: Unable to locate file "check"),nl.
interpret(clear) retract_specs.

retract_specs :- clock(J,retract(clock(_)),fail.
retract_specs :- countLj,retract(count(_)),fail.
retract_specs delayLj,retract(delayLj),fail.
retract_specs :- grey,retract(grey),fail.
retract_specs moebius,retract(moebius),faiL
retract_specs :- modulo,retract(modulo),faiL
retract_specs :- ring,retract(ring),fail.
retract_specs :- switchtail,retract(switchtail),fail.
retract_specs :- display('Counter specs cleared'),nl.

interpret(commands) system("more help/commands").
interpret(counter) :- counter_read_in,! ,counter.
interpret(counter) [counter] ,asserta(counter_read_in),! ,counter.
interpret(counter) :- display('Error: unable to find file "counter").
interpret(convertame)) :- design(Name,Str),!,convert(Str).
interpret(convert(Name)).
convert(Sir) :- convert_read_in,! ,go_convert(Sir,NandStr),store(NandStr).
convert(S1r) :- [convert],asserta(convert_read_in),! ,go_convert(Str,NandStr),

store(NandStr).
convert(Str) :- display('Error unable to locate file "convert").
interpret(designs) :- display('Designs currently in memory'),nl,

design(S,Str),display(S),nl,fail.
interpret(designs) nl,display('Designs saved to

system("ls designs").
interpret(end_of_file) :- halt.
interpret(exit) halt.
interpret(fan(X)) :- design(X,S),fan(S).
interpret(fan(X)).
fan(S) :- read_injan,! ,fan_levels(S,N),display('Max fan in is '),display(N),nl.
fan(S) [fan] ,asserta(fan_rea(Un),fan_levels(S ,N),display('Max fan in is '),

PCD listing - pcd Appendix A

136

display(N),nl.
fanLj :- display('Error: Unable to find file "fan"),nl.
interpret(get(Name)) :- name(Name,LisC),name('designs/',Dir),

append(Dir,List,FileList),name(File,FileLisO,
see(File),read(S),asserta(S),seen,
display('Circuit structure retrieved').

interpret(get(Name)) :- display('Error: Unable to get design').
interpret(help) :- interpret(helpcd)).

interpret(help(X)) :- read _in_help,help(X).
interpret(help(X)) :- [help_lib],asserta(readjn_help),help(X).
interpret(help(X)) :- display('Error: cant get help').
interpret(min(Name)) :- design(Name,S),min(S).
interpret(minName)).
mm(S) :- mm_read_in,! ,get_minS).
mm(S) :- [mm] ,asserta(min_read_mn),get_min(S).
mm(S) display('Error locating file "min"),nl.
get_mm(S) :- min_str(S,MinS),print_str(MmnS),store(MinS).
interpret(prmnt(Name)) :- design(Name,Str),print_str(Str).
interpret(prmnt(Name)).
print_str(S) :- prmnt_read_in,pr_str(S).
print_str(S) :- [print],asserta(print_readJn),pr_str(S).
print_ str(S) :- display('Error locating file "print").
interpret(save(Name)) :- design(Name,Str),

name(Name,List),name('designs/',Dir),append(Dir,List,FileLjst),
name(File,FileLisQ,display('File name '),display(File),nl,
tell(File),write(design(Name,Str)),write('.'),told,tell(user).

interpret(save(Name)).
interpret(shell) :- system("csh").
interpret(shell(Command)) :- display('Unable to execute command').
interpret(simulate(Name)) :- design(Name,Str),!,sim(Str).
interpret(simulate(Name)).
sim(Str) :- sim_read_in,! ,simulate(Str).
sim(Str) :- [simulate],asserta(sim_read_in),! ,simulate(Sir).
sim(Str) :- display('Error locating file "simulate").
intrepret(store(Str)) store(Str).
interpret(store(Str)) :- display('Error: unable to store circuit definition'),

ni.
store(Circuit) nl,display('Do you wish to store this NEW design yin> '),

read(y),nl,display('Enter design name (atom) '),rad(Name),nl,
atom(Name),asserta(design(Name,Circuit)),nl.

store(Circuit) :- nl,display('Warning: circuit not stored'),nl.

interpret(X) :- call(X).
interpret(Nonsense) :- display('Command Error'),nl.
1*

UTILITY CLAUSES
*1
alpha(O,1).
alpha(1,'a').
alpha(2,'b').
alpha(3,'c').
alpha(4,'d').
alpha(5,'e').
alpha(6,'f').
alpha(7,'g').
alpha(8,'h').

PCD listing - pcd Appendix A

137

alpha(9,'i').
alpha(1O,'j').

append(,L,L).
append([XIL1],L2,[XIL3]) :- append(Ll,L2,L3).

equal(T,1').

inverse(1,O).
inverse(O,1).
inverse(X,Y) :- clisplay('Fatal Error: incorect inverse call with

display(X),nl,abort.

rev([II,A,A).
rev([HIT},Tmp,A) :- rev(T,[HlTmp],A).
1*

AUTO STARTUP
*1
design(Name,Str) :- nonvar(Name),var(Str),

display('Error: Unable to find design tt'),display(Name),
display("),nl,! ,fail.

:- nl,nl,
display('Prolog Counter Design'),nl,
display('(type "commands." for listing of available commands)'),nl,
display('Version: '),version(D),display(D),start.

PCD listing - pcd Appendix A

138

1*
DISPLAYING THE CIRCUIT
File Name print
File Created Jan 1987
File Modified April 14 1987

This file contains all the clauses required to display a
circuit at the terminal. The logic operator AND is repre-
sented by a ".", the OR operator by "+" and the NOT oper-
ator by a Other logic operators and circuit names are
represented by the data structure functor.

*1
pr...str(A) :- var(A),display('Fatal Error: Structure not instantiated');abort.
pr_str(S) :- (atom(S);integer(S)),display(S).
pr_str(S) :- functor(S,Name,N),pr_str(Name,S,1,N).
pr..strQ :- display('Print Error: Unable to print circuit'),nl.

pr_str(jkjf,_,_,1) :- display('PrintError: JK flip-flop definition').
pr_str(jk_ff,S,1,3) :- nl,display('J-K flipflop with 3 input; '),nl,

arg(1,S,J),pr_str(J),nl,display('K input; '),nl,
arg(2,S,K),pr_sir(K),nl,display('Clock input;
arg(3,S,Clk),pr_str(Clk),nl.

pr_str(jk_ff,S,1,2) :- nl,display('J-K flipflop with J input; '),nl,
arg(1,S,J),pr_str(J),nl,display('K input; '),nl,
arg(2,S,K),pr_str(K),nl.

pr_str(jkjf,_,_,J :- display('Print Error: unable to print jk flipflop'),nl.

prstr(not,_,,N) :- N> 1,dllsplay('Print Error: Not circuit definition').
pr_str(not,S,1,1) :- display('('),arg(l,S,A),pr_sir(A),display(')').
pr_str(not,_,_,J :- display('Print Error: unable to print not circuit'),nl.

pr.str(and,_,,1) :- display('Print Error: And circuit definition').
pr_str(and,S,1,M) :- display('('),arg(l,S,A),pr_str(A),display('.'),

pr_str(and,S,2,M).
pr_str(and,S,M,M) :- arg(M,S,A),pr_str(A),display(')').
pr_str(and,S,N,M) :- arg(N,S,A),pr_str(A),display('.'),Next is (N + 1),

pr_slr(and,S,Next,M).

pr_str(or,_,_,1) :- display('Print Error: Or Circuit definition').
pr_str(or,S,1,M) :- display('('),arg(l,S,A),pr_str(A),display('+'),

pr.str(or,S,2,M).
pr_sir(or,S,M,M) :- arg(M,S,A),pr_str(A),display(')').
pr_str(or,S,N,lvl) :- arg(N,S,A),pr_str(A),display('-i-'),

Next is (N + 1),pr..str(or,S,Next,M).

pr_str(nand,S,N,N) :- arg(N,S ,A),pr_slr(A),display(')').
pr_str(nand,S,1,M) :- arg(1,S,A),display('nand('),pr_str(A),

prstr(nand,S,2,M).
pr_str(nand,S,P,M) :- arg(P,S,A),pr_str(A),Next is P-i-1,display(','),

pr_str(nand,S,Next,M).

pr_str(Circuit,S,1,1) :- arg(1,S,A),display(Circuit),
display(' with input No 1;'),nl,display(' '),prstr(A).

PCD listing - print Appendix A

139

pr_str(Circuit,S,1,M) :- arg(1,S ,A),display(Circuit),
display('input 1; '),
pr_str(A),pr_str(Circuit,S ,2,M).

pr_str(Circuit,S,M,M) :- arg(M,S,A),nl,display(Circuit),
display('Input '),display(M),display('; '),pr_str(A).

pr_str(Circuit,S,N,M) :- arg(N,S,A),nl,display(Circuit),
display('nput '),display(N),display(' ; '),
pr_str(A),Next is N + 1,pr_str(Circuit,S,Next,M).

pr_str(Name,,_,J :- display(Print Error : Unable to print circuit

display(Name),nl,!.

PCD listing - print Appendix A

140

1*
CIRCUIT
File Name
File Created
Last Revision

SIMULATION
simulate
February 211987
May 18 1987

This file contains the clauses required to perform
gate level functional simulation. The following
conventions are applied for simulation.

1. A circuit with multiple outputs are labeled
"a" for the first output, "b" for the second
etc. Thus a circuit which has input "a" is
actually connected to its output.

2. Values for all signals (inputs to circuits)
are determined before the circuit is simulated.
These signals values are stored and can be revised
as required.

*1
simulate(S) :- var(S),

display('Error: Circuit not instantiated for simulation'),nl.
simulate(S) :- cler_values,eval....signals(S),functor(S,Name,N),assert(sim_ci.rcuit(Name)),

assertz(value(X,O)),! ,asserta(current_bit(1)),!,
eval_str(S,1,N,Name,[],Result),! ,simulate(S,N,Name,Result).

/* The second definition of "simulate" is the normal calling sequence
for a simulation. First the circuit's signals are evaluated,
and circuit signals are assigned using "value(Signal,value)" rules.
Then the circuit is simulated using the "eval_sir" call.

*1

simulate(S,N,Name,Next_st) update_var(Next_st),show_st(Next_st),!,
go_on,retract(current_bit(x)),asserta(current_bit(1)),!,
eval_str(S,1,N,Name,U,Next_next_st),
siniulate(S,N,Name,Next_next_st).

simulate(S,N,Name,Result) :- display('Simulation concluded.'),nl.
clear—values retract(value(X,Y)),fail.
clear—values.
1*A "clear—values" is used to clear all variable value assignments

before a logic simulation is started. This avoids any errors
arising from previous simulations that have been run.

*1
update_var(State_list) :- rev(State_list,[],Rev_state),update_var(1,Rev_state).
update_var(N,[FirstlRest]) :- alpha(N,Letter),retract(value(Letter,X)),

asserta(value(Letter,First)),Next is (N+1),update_var(Next,Rest).
update_var(N,[FirstlRest]) alpha(N,Letter),asserta(value(Letter,First)),

Next is (N+1),update_var(Next,Rest).
update_var(N,One_ bit).
/ These "update_var" clauses are used to update the "value(signal,signal_value)"

clauses, which maintain the value of variables used in the simulation.
The first, one parameter dfinition, reverses the list making the
least significant bit "a", occur at the top of the state list.
Note the second and third definitions differ in that a "retract"

PCD listing - simulate Appendix A

141

call may not succeed in the case where the variable had not been
previously assigned.

*1
show_st(State_list) :- var(State_list),display('Fatal Error: current state not defined'),abort.
show_st(State_list) :- display('Circuit state is'),nl,display('['),

state_Ienght(O,N,State_list),display_state(N),nl,djsplay(state_ljst),nl.
state_lenght(Ct,N,[FirstlRestj) :- Next is (Ct+i),state_lenght(Next,N,Rest).
state_lenght(Ct,N,Rest) :- equal(N,Ct).

display--state(l) :- display('a]').
display—state(N) :- alpha(N,Letter),display(Letter),display(','),Next is (N- 1),

display_state(Next).
/ ' The above clauses are used to display the current state of the

simulation, with the state variables names displayed above the list.
*1

go_on :- display('Do you wish to continue the simulation? <y/n>.'),!,
read('y').

go_on :- pcd.

eval_signals(S) :- (atom(S);integer(S)),what_value(S).
oval—Signals(S) :- functor(S,_,N),eval_signals(S,1,N).
eval_signals(S,M,M) :- arg(M,S,A),eval_signals(A).
eval_signals(S,N,M) :- arg(N,S ,A),eval_signals(A),Next is N+1,eval_signals(S,Next,M).
what_value(S) :- signal(S ,Str),functor(Str,Name,N),eval_str(S,1,N,Name,[] ,Result).
what_value(S) :- signal(S,Str),display('Error in evaluating input signal'),nl,

abort.
what_value(1) :- nl,display('Warning: Circuit has fixed lilt? input value').
what_value(0) :- nl,display('Warning: Circuit has fixed Ito?? input value').
what_value(Atom) :- value(Atom,J.
what_value(Atom) :- nl,display('What value should '),display(Atom),

display(' have? '),read(X),asserta(value(Atom,X)).

evaljk(1,1,1,O).
evaljk(1,1,O,1).
evaljk(1,O,_,1).
evaljk(O,1,_,O).
evaljk(O,O,P,P).
1* V "eval_strt" is the main evaluation clause set. Each clause has

6 inputs which have the following meaning;

1 = the circuit or signal.
2= the position within the circuit.
3 = the number of parameters of the circuit.
4= the circuit name (functor of the structure).
5= intermediate result if list output
6= final output (can be list).

*1
eval_str(1, 1,O,_,[],i).
eval_str(O,i3O,_,[],O).
eval_str(A,1,O,_,[],Result) :- value(A,Result).
eval_str(S,1,N,and,[],Result) :- arg(1,S,A),functor(A,NameA,Na),

eval_slr(A,1,Na,NameA,ftRt),
eval_str(S ,2,N,and,[Rt],Result).

eval_str(S ,N,N,and,List,Result) :- arg(N,S,A),functor(A,NameA,Na),
eval_str(A, 1,Na,NameA,[],Res),eval_and([ReslList],Result).

eval_str(S,P,N,and,C,Result) :- arg(P,S,A),functor(A,NameA,Na),

PCD listing - simulate Appendix A

142

eval_str(A,1,Na,NameA,[],Rt),Next is + 1,
eval_str(S ,Next,N,and,{RtIC],Result).

eval_str(S ,1,N,or,[J,Result) arg(1,S,A),functor(A,NameA,Na),
eval_str(A,1,Na,NameA,U,Rt),
eval_str(S ,2,N,or,Rt,Result).

eval_str(S,N,N,or,List,Result) :- arg(1,S,A),functor(A,NameA,Na),
eval_str(A,1,Na,NameA,[},Rt),
eval_or([RtiList] ,Result).

evalstr(S ,P,N,or,C,Result) :- arg(P,S ,A),functor(A,NameA,Na),
eval_str(A,l,Na,NameA,[],Rt),Next is + 1,
eval_str(S,Next,N,or,[RtIC],Result).

eval_str(S ,1,N,nand,[],Result) :- arg(1,S,A),functor(A,NameA,Na),
eval_str(A,1,Na,NameA,[},Rt),
eval_str(S ,2,N,nand,Rt,Result).

eval_str(S,N,N,nand,List,Result) :- evalnand(List,Result).
eval_str(S,P,N,nand,C,Result) :- arg(P,S,A),functor(A,NameA,Na),

eval_str(A,1,Na,NameA,[],Rt),Next is + 1,
eval_str(S,Next,N,nand,[RttCJ,Result).

eval_str(S,1,N,not,[],Result) :- arg(1,S,A),functor(A,NameA,Na),
eval_str(A,1,N,NameA,j3,Res),equal(inverse(Res),Result).

eval_str(S,_,N,jk_ff,_,Result) :- arg(1,S,J),arg(2,S,K),
functor(J,Namej,Nj),functor(K,Namek,Nk),
eval_str(J,1,Nj,Namej,U,Rj),
eval_str(K,1,Nk,Namek,U,Rk),current_bit(Any),alpha(Any,C),value(C,Cb),
evak(Rj,Rk,Cb,Result).

The following clauses are used to evaluate user defined
circuits.

*1
eval_str(S ,1,1,Name,fl ,Result) :- arg(1,S ,A),functor(A,NameA,Na),

eval_slr(A,1,Na,NameA,[],Result).
eval_str(S ,N,N,Name,C,Result) :- arg(N,S,A),functor(A,NameA,Na),

eval_slr(A,1,Na,NameA,ftResA),equal(Result,{ResAIC]).
eval_str(S ,P,N,Name,C,Result) :- arg(P,S,A),functor(A,NameA,Na),

eval_str(A,1,Na,NameA,IJ,ResA),Next is P+1,pos(Name,P,N),
eval_str(S,Next,N,Name,[ResAlC],Result).

eval_str(A,B,C,D,E,F) :- display('Fatal Simululation Error: Cannot evaluate circuit'),
display(A),nl,display(B),nl,display(C),nl,display(D),nl,
display(E),nl,display(F),nl,abort.

pos(Circuit,P,N) :- sim_circuit(Circuit),P < N,retract(current_bit(P)),
Next is + 1,asserta(current_bit(Next)).

pos(Circuit,P,N).
1* These two clauses maintain the "current—bit" clause. This is

required for simulating counter circuits where previous values
are required.

*1

eval_and([HlRest] ,Result) :- equal(H,1),eval_and(Rest,Result).
eval_and([HlRest],O) :- equal(H2O).
eval_and(O,O).
eval_and(1,1).

PCD listing - simulate Appendix A

143

eval_and(U,1).
eval_and([1],1).
eval_and([0],0).
/ ' These four clauses are used to return the Boolean operation

AND which is performed on a list of l's and 0's. The list
is the first parameter and the result is the second parameter.

*1

eval_or([HlRest] ,Result) :- equal(H,0),eval_or([Rest],Result).
eval_or([HlRest],1) :- equal(H,1).
eval_or([0],O).
eval_or([1},l).
1* These four clauses are used to return the Boolean operation

OR which is performed on a list of l's and 0's.
If a 1 is found then the result must be 1, and no further
searching is required. If 0's only are found then keep searching
and return 0 if ALL were zeros.

*1

PCD listing - simulate Appendix A

144

Appendix B - Prolog Simulation Trace

The following is a trace of a synchronous modulus binary counter which is dis-
cussed in section 7.7.1. The simulation runs through one clock pulse.

Call: simulate(sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),dllc)))?
Call: var(sync_b in _mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)))?

Fail: var(sync_b in _mod(jk_ff(1,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)))
Back to: simulate(sync_bin_mod(jk_ff(l,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)))?
Call: clear_values? skip
>Exit: clear—values
>Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a1b,c),clk)))?
Call: atom(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,bc),clk)))?
Fail: atom(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)))
Call: integer(sync_bin_mod(jk_ff(1,1,clk),jkjf(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)))?
Fail: integer(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)))
Back to: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jkjf(and(a,b,c),and(a,b,e),clk)))?
Call: functor(sync_bin_mod(jk_ff(1,1,clk)jk_ff(aa,clk)jk_ff(and(a,b),and(a,b),cJk),
jk_ff(and(a,b,c),and(a,b,c),clk)),_33371,_33372)?
Exit: functor(sync_bin_mod(jk_ff(l,1,clk)jk_ff(a,ac1k)jk_ff(and(a,b),and(a,b),c1k),
jk_ff(and(a,b,c),and(a,b,c),clk)),sync_bin_mod,4)
Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(ancl(a,b,c),and(a,b,e),clk)),1,4)?
Call: arg(1,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),_33391)?
Exit: arg(1,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,cIk)jk_ff(and(a,b),and(a,b),clk),
jkjf(and(a,b,c),and(a,b,c),clk)),jk_ff(1, l,clk))
Call: eval_signals(jk_ff(1,1,clk)) ? skip

Warning: Circuit has fixedtt 1" input value
Warning: Circuit has fixed " 1" input value
What value should clk have? 0.
Exit: eval_signals(jk_ff(1,1,clk))
Call: _33392 is 1+1?
Exit: 2 is 1+1
Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),c1k),
jk_ff(and(a,b,c),and(ab,c),c1k)),2,4)?
Call: arg(2,sync_bin_mod(jk_ff(1,1,cIk)jk_ff(a,a,clk)jk_ff(and(a,b),ancga,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),_33692)?
Exit: arg(2,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk))jk_ff(a,a,clk))
Call: eval_signals(jk_ff(a,a,clk))? skip
What value should a have ? 0.
Exit: eval_signals(jk_ff(a,a,clk))

Prolog Simulation Trace Appendix B

145

Call: _33693 is 2+1?
Exit: 3 is 2+1
Call: eval_signa1s(sync_bin_mod(jk_ff(1,1,c1k)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),cJJ),
jlcjf(and(a,b,c),and(a,b,c),clk)),3,4)?
Call: arg(3,sync_bin_mod(jkjf(1,1,clk)jk_ ff(a,a,c1k)jk_ff(and(a,b),and(a,b),cJk),
_ jkff(and(a,b,c),and(a,b,c),cllc)),_3398 1)?

Exit: arg(3,syncjin_mod(jk_ff(1,1,clk)jk_ff(a,a,cJJc)jkfgand(a,b),and(a,b),c),
jk_ff(and(a,b,c),and(a,b,c),clk)),jk_ff(and(a,b),and(a,b),cjlc))
Call: eval_signals(jk_ff(and(a,b),and(a,b),clk)) ? skip

What value should b have ? 0.
Exit: eval_signals(jk_ff(and(a,b),and(a,b),clk))
Call: _33982 is 3+1?
Exit: 4 is 3+1
Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),cik),
jk_ff(and(a,b,c),and(a,b,c),clk)),4,4)?
Call: arg(4,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),dllc),
jkjf(and(a,b,c),and(a,b,c),clk)),_34488)?
Exit: arg(4,sync_bin_mod(jkjf(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk))jk_ff(and(a,b,c),and(a,b,c),clk))
Call: eval_signals(jk_ff(and(a,b,c),and(a,b,c),c]k)) ? skip

What value should c have ? 0.
Exit: eval_signals(jk_ff(and(a,b,c),and(a,b,c),clk))
Exit: eval_signals(syncjñn_mod(jk_fgl,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),dllc)),4,4)
Exit: eval_signals(syne_bin_mod(jk_ff(1,1,ck)jk_ff(a,a,clk),jk_fgad(a,b),ancga,b),cjjc),
jk_ff(and(a,b,c),and(a,b,c),clk)),3,4)
Exit: eval_signals(sync_bin_mocl(jk_ff(1,1,c1k)jk_ff(a,a,cIk),jk_ff(and(a,b),anc(a,b),ck),
jk_ff(and(a,b,c),and(a,b,c),clk)),2,4)
Exit: evalsignals(sync_binmod(jk_ff(1,1,clk)jk_ff(a,a,c1k),jk_ff(and(a,b),and(ab),cJjc),
jk_ff(and(a,b,c),and(a,b,c),dllc)),1,4)
Exit: eval_signals(sync_bin_mod(jk_ff(1,1,c1k)jkjf(a,a,clk),jk_ff(and(a,b),nd(a,b),cIk),
jk_ff(and(a,b,c),and(a,b,c),clk)))
Call: functor(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),c]k),
jk_ff(and(a,b,c),and(a,b,c),clk)),_241,_33352)?
Exit: functor(syncj)in_mod(jkjf(1,1,clk)jk_ff(a,a,cIic)jkjf(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),dllc)),sync_b in _mod,4)
Call: assert(sim_circuit(sync_bin_mod))?
Exit: assert(simcfrcuit(sync_bin_mod))
Call: assertz(value(-242,0))?
Exit: assertz(value(_242,0))
Call: asserta(current_bit(1))?
Exit: asserta(current_bit(1))
Call: eval_s(syncbin_modak_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),d(a,b),c),
jk_ff(and(a,b,c),and(a,b,c),clk)),1,4,sync_ bin mod,[],33353)?
Call: arg(1,syncjin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),c&),
jk_ff(and(a,b,c),and(a,b,c),clk)),_33366)?
Exit: arg(1,sync_binmod(jk_ff(1,1,cik)jk_ff(a,a,dll)jk_ff(and(a,b),d(a,b),c&),
jkjf(and(a,b,c),and(a,b,c),clk)),jk_ff(1,1,clk))
Call: functor(jk_ff(1,1,clk),_33367,_33368)?
Exit: functor(jk_ff(1,1,clk)jkjf,3)
Call: eval_str(jk_ff(1, 1,clk),1,3,jk_ff,[],_424) ? skip
Exit: eval_str(,jk_ff(1,1,clk),1,3jk_ff,[],1)
Call: 33369 is 1+1?
Exit: 2 is 1+1
Call: pos(sync_bin_mod,1,4) ? skip

Prolog Simulation Trace Appendix B

146

Exit: pos(sync_bin_mod,1,4)
Call: eval_str(sync_bin_mod(jk_ff(1,1,clk),jkjf(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),2,4,sync_b in _mod,[1],_33353)?
Call: arg(2,sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),_33605)?

Exit: arg(2,sync_b in _mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jkjf(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),jk_ff(a,a,clk))
C-all: functor(jk_ff(a,a,clk),_33606,_33607)?
Exit functor(jk_ff(a,a,clk),jk_ff,3)
Call: eval_str(jkjf(a,a,clk),1,3,jk_ff,ft_447)? skip
Exit eval_str(jkjf(a,a,clk),1,3jk_ff,ftO)
Call: _33608 is 2+1?
Exit: 3is2+1
Call: pos(sync_b in. ...mod,2,4) ? skip
Exit: pos(sync_bin_mod,2,4)
Call: eval_sir(syncjinmodk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),3,4,sync_ bin modjO,1],_33353)?
Call: arg(3,sync_bin_mod(jkjf(1,1,clk),jk_ff_(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),_33 864)?
Exit: &g(3,sync_binmocl(jk_ff(1,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),dllc)),jk_ff(and(a,b),and(a,b),clk))
Call: functor(jk_ff(and(a,b),and(a,b),clk),_33865,_33866)?
Exit: functor(jk_ff(and(a,b),and(a,b),clk)jk_ff,3)
Call: eval_str(jk_ff(and(a,b),and(a,b),clk),1,3 jk_ff,U,_472) 7 skip
Exit eval_str(jkjf(and(a,b),and(a,b),clk),1,3,jkjf,LJ,0)
Call: _33867 is 3+1?
Exit: 4is3+1
Call: pos(sync_bin_mocl,3,4) 7 skip
Exit pos(sync_bin_mocl,3,4)
Call: eval_str(sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,c1k),jk_ff(and(a,b),aid(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),dllc)),4,4syncj.inmod,[0,0,1],_33353)?
Call: arg(4,sync_bin_modjk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),_343 10)?
Exit: arg(4,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jkjf(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk))jkjf(and(a,b,c),and(a,b,c),clk))
Call: functor(jk_ff(and(a,b,c),and(a,b,c),clk),_343 11,_343 12)?
Exit: functor(jk_ff(and(a,b,c),and(a,b,c),clk),jk_ff,3)
Call: eval_str(jk_ff(and(a,b,c),and(a,b,c),clk),1,3,jk_ff,[],_514) 7 skip
Exit eval_slr(jk_ff(and(a,b,c),and(a,b,c),clk),1,3,jk_ff,[],O)
Call: equal33353,[0,0,0,1])?
Exit equal([0,0,0,1],[0,0,0,1])
Exit evalstr(sync_b in mod(jk_ff(1,1,dllc),jk_ff(a,a,clk),jk_ff(and(a,b),aiid(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),4,4,sync_bin_mod,{O,O,1],[O,O,O,1])

Exit: eval_str(sync_ bin _mod(jkjf(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),3,4,sync_bin_mod,[0,1],[O,O,o,1])
Exit: eval_slr(sync_bin_mod(jkjf(1,1,clk),jk_ff(a,a,clk),jkJf(and(a,b),md(a,b),clk),
jk_ff(and(a,b,c),and(a,b,c),clk)),2,4,sync_b in _mod,[1] ,[0,0,0,1])
Exit: eval_str(sync_b in modk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),c1k),
jk_ff(and(a,b,c),and(a,b,c),clk)),1,4,sync_bin_mocljj,[O,O,O, 1])
Call: simulate(syncbin_mod(jk_ff(1,1,c&)jk_ff(a,a,clk),jkjf(and(a,b),and(a,b),c1J(),
jk_ff(and(a,b,c),and(a,b,c),dllc)),4,sync_bin_mod,[O,O,O,1])?
Call: update_var([0,0,0,1]) ? skip
Exit: update_var([0,0,0,1])
Call: show_st([0,0,0,1]) 7 skip
Circuit state is
[d,c,b,a]
[0,0,0,1]

Prolog Simulation Trace Appendix B

147

Exit: show_st([O,O,O,1])
Call: go-on? skip
Do you wish to continue the simulation? <y/n>.n.

Prolog Simulation Trace Appendix B

I National Library
ofCanada du Canada

Dttawa, Canada
K1AON4

Bibliothèque nationale

TO -

ISBN

CANADIAN THESES ON MICROFICHE SERVICE SERVICE DES THESES CANADIENNES SUR MICROFICHE

PERMISION TO MICROFILM - AUTORISATION DE MICROFILMER
• Please print or type - Ecrire en Iettres moulées ou dactylographier

AUTHOR - AUTEUR

Full Name of Author - Nom complet de l'auteur

Q7am r o''
Date of Birth - Date de naissance

juNE —1
Canadian Citizen - Citoyen canadien

t7lYes/Oui flwo/Non

Country of Birth - Lieu de naissance

(QEjjt3t7

Permanent Address - Residence fixe

213 tER S4 3

CAdx,kjV t 1tTA -r'zi &N
THESIS - THEE

Title of Thesis - Titre de la these

t(Ti4L L-O&(C

4 Ck(4frRo14e,& iDA UCY ! JCr.

Degree for which thesis was presented
Grade pour lequel cette these fut présentée

M..
Year this degree conferred
Année d'obtention de ce grade

University - Université

UNtVsiTY o'F CAc&-Ar2'i.
Name of Supervisor - Nom du directeur de these

1 c:J kPkU
WrHOFIZATlQNAtitøilATiON

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis and to lend or sell copies of the film.

The author reserves other publication rights, and neither the thesis nor exten-
sive extracts from it may be printed or otherwise reproduced without the
author's written permission.

L'autorisation est, par la présente, accordée a la BIBLIOTHEQUE NATIONALE
DU CANADA de microfilmer cette these et de prêter ou de vendre des ex-
emplaires du film.

L'auteur se reserve les autres droits de publication; ni Ia these ni de longs ex-
traits de celle-ci ne doivent être imprimes ou autrement reproduits sans
l'autorisation écrite de i'auteur.

Signature

NL-91 (r. 84/03)

ATTACH FORM TO THESIS - VEUILLEZ JOINDRE CE FORMULAIRE A LA THESE

01 e•PJAk -

Date
4

Canada
I.'

J\J

