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Abstract 

This thesis explores the use of logic programming as a 

technique to aid in the design of complex logic systems. 

The design of digital systems requires many purely clerical 

tasks which must be performed accurately and within the 

confines of many interacting rules. The design result which 

is sought is usually the result of a search over a solution 

space rather than a unique, procedurally generated 

answer. In the development of newer CAD tools the 

emphasis is on automatic logic generation from functional 

specifications and an ability to deal effectively with design 

complexity. Logic programming is proposed as a useful 

technique necessary to develop these flexible yet automatic 

design tools. Some research findings are presented, and a 

simple logic synthesis and design system based on Prolog 

is illustrated. 
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CHAPTER 1 

Logical Design of Digital Systems 

This chapter presents an overview of the evolution and use 
of CAD for logic design. It is an overview of afield which 
involves the works of many manufacturers, universities, 
and research foundations, and as such, the example sys-
tems are selected as representative of a particular type. 
Since this thesis is concerned with improved design auto-
mation techniques, this chapter answers the important 
question, "Why is there a need for better design automa-
tion ?" 
Increasing design complexity of integrated systems isforc-
ing a modification in the traditional approach to design. 
To illustrate current approaches to the problem of logic 
design several logic design and production systems are 
introduced. These systems are discussed with respect to 
their flexibility to adapt to changing fabrication technol-
ogy, and their ability to adapt to increasing complexity. 

1.1 The Design Process 

Historically, the design task was carried out completely manually. One of the first 

design automation systems was presented at the 1956 Western Joint Computer Confer-

ence by Cray & Kisch [Cray 56]. They described a system which provided automatic 

checking of logic equations for logical, clerical, and timing errors, logic simulation and 

net-listing abilities. One interesting observation which also might indicate the pioneering 

nature of this article is that it cited no references. Several systems flourished in the six-

ties, with many computer manufacturers developing their own systems ([Kaskey 

61],[Rosenthal 61], [Button 60], and others). Design automation was spurred on by 

tighter design constraints and complexity. These systems were generally not shared 
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among manufacturers, because they reflected each manufacturer's own design philoso-

phy, circuit technology and design computer. 

Meanwhile in an attempt to reduce the number of engineering changes caused by 

errors in design, logic simulation was introduced. The reasoning applied was that if the 

logic design was completely simulated, then automatic wiring machines, which used 

these "proven" designs, could produce an accurate reliable product. As system com-

plexity increased, engineers quickly found out that they could not contain the entire 

design that they wanted to simulate on a small computer. Simulation had run into trou-

ble. Simulation could not give full coverage. This problem was partially solved by the 

introduction of hierarchical design and the use of standardized components. Many 

current design systems are based on these principles. Now simulation could occur above 

the detailed level, and consequently could be more rigorous. 

Hierarchical design became the first technique to deal with design complexity. In 

hierarchical design, initial design occures at the highest level of abstraction and proceeds 

to lower detailed levels of design. As each level of the. design is completed, it becomes a 

specification for the lower levels of the design. With hierarchical design techniques, 

optimization is hard to achieve because designs have downwardly imposing design con-

straints and upwardly imposing physical constraints. Failure in one or more levels of the 

design results in a redesign of that level and possibly of other levels in the design. 

The physical constraints of design have become more complex as technology has 

evolved. In a first generation computer, one could point to a relay that performed some 

primitive Boolean operation, and hold it in one's hand. Fabrication technology has 
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advanced to where it is now impossible, without the aid of a microscope, to find the spot 

in an integrated circuit where that function is now performed. While the manufacturing 

design elements of the components in a microcomputer are considerably reduced com-

pared to a first generation computer, the increase in the number of logic design elements, 

and increased the logic design task. Clock speeds are now much faster and so timing 

simulation is more important. Physical layout on silicon requires technology specific 

logic design. 

The Design Process is the sequence of tasks required to create a design subject to 

constraints. In the design of digital systems, the design process takes a set of conceptual 

ideas which describe a proposed digital system, and transforms it into a set of detailed 

design data, such as part numbers, logic schematics etc., which provide suitable informa-

tion required for manufacture. The conceptual design process is illustrated in Figure 1-1. 

The functional design is the initial process of deriving a potential and realizable 

solution to the input design requirements. This is sometimes referred to as architectural 

analysis and design, and includes such activities as hardware/software tradeoffs and 

speed/power tradeoffs. With a firm functional design, analysis is then performed to 

determine the best way to implement the design, subject to the design constraints (tech-

nology, size, power, and cost). A schematic can then be drawn to show the proposed 

interconnections of available parts. 

This proposed implementation is analyzed for proper functioning by applying a test 

sequence that emulates a subset of the conditions to be expected in real use. Once a 

designer is confident that the design will meet functional requirements, the physical lay-

The Design Process 1.1 
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FIGURE 1-1 The Design Process 

out of the actual interconnection of devices is formulated. Finally the design is realized, 

tested and ready for release as a product. 

The design workflow is the sequence of tasks required to accomplish the design pro-

cess. It is sequential only in an ideal conceptual case. It is conceivable that during 
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physical layout, flaws in the functional or schematic design may be uncovered, which 

would cause redesign at the conceptual level. During product acceptance tests, flaws in 

the functional design may be uncovered, making a major redesign necessary. The key to 

efficient design is to strive for a sequential design workflow, keeping any backtracking 

and recycling to one or two stages in the design flow. The purpose of Computer-Aided 

Design (CAD) is to assist the designer through each stage of the design workflow. 

1.2 The Challenge to CAD 

The expansion in the electronics field has occurred as a result of amazing progress 

over the past few years in the semiconductor fabrication technology. Gate densities and 

chip sizes both increased to make it possible to design larger, and more complex systems. 

This rapid change in the complexity of what could be made, changed the focus from 

"How to make it? " to "How to design it ?" The challenge to CAD is to provide design 

automation which offers the opposing characteristics of flexibility and automation. 

Provided with incredible potential for system integration, the electronic industry has 

been both innovative and reactionary in their response to the logic and system design 

problem. Innovative in their adoption of new fabrication technology, but reactive in 

advances in the use of CAD for design. The net result is the generally accepted belief 

that design is the major bottleneck to even greater system integration. This bottleneck 

occurs for a variety of reasons. Design systems are technology specific and have prob-

lems adapting to changes in the fabrication technology. But, the most important, and yet 

subtle problem which plagues design systems is their evolutionary nature. Most design 

automation systems are based on a level of Man Computer interaction which was 
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appropriate a few years ago. 

Most designers readily admit that their designs do not occur in a rigorous scientific 

manner. They start a new design with only a sketchy knowledge of how the final design 

might turn out. This allows them to keep their options open until later in the design 

cycle. At the early stages, they are exploring possibilities of design. These specifications 

are solidified as design options are explored at various levels of the design hierarchy. 

When they look back at the process involved in creating a new design, they often believe 

that they stumbled upon the design rather than it being the result of a coherent design 

process. While it may be feasible for designs to occur in such a haphazard manner today, 

in future more complex designs will lay pressure for a more coherent approach. Inade-

quacies of current Computer-Aided Design (CAD), caused by a philosophy which con-

siders CAD to facilitate design, makes design more of an art than a science, and places 

greater reliance upon the designer to direct the design process. 

While most designers agree that CAD is the interaction of the designer with the 

computer to aid design decision making, they do not always agree as to what level of 

interaction is the most appropriate. Several implementation styles for CAD have evolved 

as a result, and are identified [McKinsey 84]. These design approaches are the result of 

the perceived role of CAD by corporate senior management. The roles can be classified 

as follows; 

Electronic Pencil 

An elementary role as an Electronic Pencil is suitable for very small designs, and for 

manual design workflow procedures. With this approach the CAD system provides only 
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the means for a designer to develop a new design. Yet, it is surprising how many design 

companies use CAD in this fashion. 

Interactive Design 

An interactive design system automates some common tedious step in the design process, 

but requires the designer to design the system. This is the approach adopted by design 

groups faced with a wide variety of design tasks, where a fully automated design system 

does not have the flexibility to address these design realms. 

Automated Design Synthesis 

An automated design system designs the system based on specifications entered by the 

designer. The CAD system is characterized by its complete involvement and active parti-

cipation in the design process. Although this approach is new, it has been applied suc-

cessfully in specialized design areas.([Darringer 80],[Fox 84],[Fujita 86] etc.) 

The Challenge to CAD 1.2 
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1.3 Logic Design & Computer Aided Engineering 

The commercial CAE (Computer Aided Electronics) marketplace is rapidly expand-

ing in North America at an annual rate of approximately 35 % and, now represents 

approximately $200 billion for both hardware and software. Despite these impressive 

figures the commercial use of design automation is in its infancy. Reviewing current 

CAD techniques, [Wayne 85] comments that it is the designers'reluctance to advance 

from low level design techniques which has restrained the advance of automation in 

commercial design environments. Design automation tools offer the logic designer 

greater productivity and reduced errors, but they require commitment to implement. It is 

this requirement to change methodologies, the comfort level in current low level design 

techniques, and the inflexibility of high level design techniques, which are responsible 

for the slow transition in the design community to higher level design techniques. 

Vendors in the CAE/CAD marketplace have been classified []Bogert 87] according 

to the design systems offered. These classifications are; 

(1) High-end Electronic Generalist 

These companies attempt to provide an integrated set of design and management 

methodologies that address diverse types of design. These companies stress 

comprehensive management techniques, integrated hardware, and file and data-

base computing. Although the design software of the electronic generalist is not 

as sophisticated as the semiconductor specialists', their ability to integrate and 

transfer information is superior. 

(2) Low-end Electronic Generalist 

Logic Design & Computer Aided Engineering 1.3 
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These companies have built their electronic design automation products around 

the personal computer. The report's authors [Bogert 87] commented that these 

systems offer good design and management capabilities for their unusually low 

prices, but do not have the functionality of high-end systems. These systems are 

most suited to the "single-user" environment, but this is likely to change as low 

cost networking "engineer workstations" become available. 

(3) Integrated Circuit Specialist 

Included in this group are silicon compiler companies, and other sophisticated 

design techniques for VLSI, (Very Large Scale Integration). The "IC Special-

ist" is considered to offer "leading edge" IC design tools, but users are warned 

to make sure that implementations of these circuit designs are straightforward. 

(4) Semiconductor & Engineering Tools 

These specialists offer design tools as an adjunct to their semiconductor 

manufacturing businesses. These tools are usually finely tuned to their own sem-

icustom products and processes, and have design centers where customers can 

use CAE tools to design circuits. 

The following sub sections review example design systems from these defined 

categories. 

1.3.1 DA4 - International Computers Ltd. 

DA4 [Adshead 81] is the design automation system used by International Comput-

ers Limited in the United Kingdom. Following earlier experiments with design automa-

DA4 - International Computers Ltd. 1.3.1 
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tion systems it was introduced in its basic form in 1974 as DA1. It is now a very 

comprehensive system, supporting designs in nearly 20 different classes of interconnec-

tion technology. Thus DA4 is typical of an integrated CAD system, which It represents 

over 400 man years of internal development. The goals of DA4 were; 

(1) To provide a common design system for the whole company. 

(2) To provide the basis for LSI (Large Scale Integration) design. 

(3) To support hierarchical logical and physical design. 

A system diagram is shown in Figure 1-2. High level system design uses a 

language to represent a computer at the architectural level in terms of structure and 

behaviour. The design can be expanded in a "top down" fashion. Logic input is 

represented in the RMOD [Wager 81] language, which describes the circuit at the regis-

ter level. Logic designs can be keyed directly into alphanumeric terminals or entered 

graphically at the design stations. RMOD achieves compression of input data by 

expressing a circuit at the "register level" , rather than at the conventional "circuit-

element level." 

Multi-strings are used to represent parallel data-paths, and are given structured sig-

nal names. Multi-symbols represent logic functions that are available as a functional 

block. 

DA4 provides logic simulation for complex logic elements reporting on worst case 

delays, timing race etc. DA4 can also be used for automatic circuit testing. DA4 facili-

tates many production outputs such as schematics and photographic artwork. 

DA4 - International Computers Ltd. 1.3.1 
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Figure 1-2 DA4 System Diagram 

DA4 is typical of an in-house CAD system. These systems have evolved from a 

simple design automation tool to a complex workflow solution system which have been 

adapted to the evolving design automation needs of the company. With source code 

available within the company, future evolution of the design system can be controlled to 

conform to design practices and technologies. The result of this development guidance is 

a system which performs well in its intended environment, but fails to be adaptable in 

many other environments. This lack of flexibility means that DA4 is probably of no use 
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to any other company. 

1.3.2 IEDS - Intergraph Corporation 

IEDS ( Interactive Electronic Design System) which runs on an Intergraph aug-

mented DEC VAX and proprietary dual screen graphic workstations, is a typical graphi-

cal turnkey electronic design system for MSI and LSI circuit design. This system can be 

classified under "High end Electronic Generalist" The approach to the design is interac-

tive where the designer can see instantly a graphical representation of the work he has 

performed. The design is stored in graphical and linked attribute databases. To speed 

the development of the schematic drawing, the designer can develop circuit cells and 

place these in the drawing with one operation. The schematic can be defined hierarchi-

cally, so that the design is partitioned into smaller functional blocks. Once the schematic 

of the circuit has been developed, the following automatic functions are available from 

IEDS. 

(1) Automatic Net-list generation 

This is based upon schematic connectivity. 

(2) Automatic component packaging for MSI 

IEDS packages gates into standard MSI logic ICs, and also assigns pin numbers. 

(3) Best initial PC Component Placement 

When placing components on a printed circuit board, IEDS will show the outline 

of the component and "rubber banded" interconnects to other components 

already placed on the board. 

IEDS - Intergraph Corporation 1.3.2 
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(4) Automatic Trace Routing 

IEDS is provided with a multi-layer circuit board router. 

(5) Manufacturing Interfaces 

Interfaces to manufacturing equipment such as drilling machines and photo 

masks are available. 

Intergraph's IEDS electronic design software is typical of many turnkey CAD ven-

dors such as Computervision, Calma or Applicon. Although most digital design groups 

use commercially available CAD systems, such as IEDS from Intergraph, they must put 

up with the lack of source code to make minor modifications and the lack of control in 

product evolution. These two drawbacks have not discouraged the use of commercial 

systems. 

IEDS - Intergraph Corporation 1.3.2 
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1.4 VLSI Design 

VLSI (Very Large Scale Integrated) increases the size and complexity of logic 

design, and thus poses the following special design problems. 

[a] Verified Designs 

A traditional design approach which uses repeated low level iterations through tasks 

such as layout, detailed simulation, timing analysis, fault simulation, automatic test 

generation is prohibitively expensive for VLSI due to the complexity of the circuit. 

Circuits are more complex, where changes can have knock on effects which are 

difficult for the designer to comprehend and control. Design techniques must 

evolve to the stage where design is sequential to the greatest extent. This requires 

that testing and evaluation be performed as the design evolves and the use of design 

techniques which produce verified designs. 

[b] Design Input 

VLSI circuit design creates new problems for design input. Graphical input for 

logic design and layout is the traditional approach. It is based on using CAD as an 

"electronic pencil" allowing the designer to develop his design. For VLSI this 

becomes a combersome technique which limits the potential to improve the 

efficiency of the design. As the design is entered, it cannot be fully validated until 

completion and as a result, errors are not discovered until late in the design process. 

[c] Design Representation. 

Traditional design representation is in the form of a schematic which shows func-

tional blocks, devices and the inter-relationships. These schematics describe only 

VLSI Design 1.4 
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the physical domain. There are two other domains of interest which, when com-

bined with the physical domain, characterize any VLSI design. These are the struc-

tural and behavioural domains. These domains may be defined as follows. The 

physical domain is concerned with the specification of the physical layout of the 

integrated circuit via patterns on fabrication masks. The structural domain is con-

cerned with describing the electrical characteristics of the design in terms of electr-

ical components and their interconnections. The behavioural domain describes a 

design in terms of its function. 

Any design language must interface directly with the design verification sys-

tem, both at the structural and behavioural level. The necessity for having both 

structural and behavioural design verification is that, initially, it is likely that simple 

behavioural characteristics would be all that would be available. Hence design 

verification can begin at this level. As the design matures, structural design can be 

specified, and to some extent, automatically generated from the behavioural 

specification. The design verification process can then continue, until the 

behavioural and structural descriptions are verified to whatever degree of accuracy 

deemed necessary. This process can involve the elimination of numerous design 

errors and description errors. Furthermore, it can aid in the addition of testing 

hardware in the design to test those areas of logic that were found to, be 

insufficiently tested by the design verification process. 

[dl Hierarchical Design. 

In a structured VLSI design environment there exists one hierarchy of description 

for all three domains. The VLSI design system should address functional and 

VLSI Design 1.4 
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physical problems at each level. SHIFT [Liblong 84] is an example of a hierarchic 

design language whose purpose is to capture the various descriptions of a circuit in 

a consistent manner. 

1.4.1 Design Styles for VLSI 

Integrated electronics has developed in a heatedly competitive and often secretive 

business environment. As a result there has been a proliferation of different device tech-

nologies, circuit design families, logic design techniques, mask making techniques, and 

wafer fabrication techniques, etc. Another obstacle is the high rate of change in the elec-

tronics industry, which is driven by improvements in fabrication technology. 

Design constraints have caused the evolution of several design styles. These design 

styles have evolved to meet the requirements of particular design scenario. 

The fully custom design method is an ad hoc implementation. To date, CAD tech-

niques support custom design only to a limited extent, and as a consequence, custom 

design is profitable only for large production of complex systems, such as microproces-

sors or memories, or for circuits where special performance is required. Many industry 

analysts believe that fully Custom IC design will be a growth market in the 1990's, and 

will be performed by designers whose current approach is MSI logic. 

In gate-array design, a circuit is implemented in silicon by personalizing a master 

array of uncommitted gates using a set of interconnections. The design is constrained by 

the fixed structure of the master array, and is limited to routing the interconnections. 

CAD for gate-array design allows complex circuits to be implemented in a short time. 

Design Styles for VLSI 1.4.1 
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Gate-arrays are widely used, in particular for small volume production or for prototyping 

new designs. 

The design of a VLSI circuit in a standard-cell (or poly-cell) design method 

requires partitioning the circuit into atomic units that are implemented by precommitted 

cells. Placement and routing of the cells is supported by computer-aided design tools. 

The standard-cell and gate-array design methods alone do not support highly optimized 

designs. Standard cell designs are more flexible than gate-array designs, but require 

longer development time. An approach which combines the speed of gate-arrays and the 

flexibility of standard-cells has been developed [Brown 74] called CMOS Cell Arrays. 

The CMOS Cell Array uses transistor isolation within pre-characterized standard cells to 

allow the cell row locations to be defined. This allows all wafers to be pre-processed 

with all necessary diffusions - final transistor size and placement are part of the customi-

zation and add to the flexibility. This technique is so similar to standard cell, that the 

same CAD soft''are can be used. Even the CCA library has the function and perfor-

mance as a SC library. Transistor isolation is the feature that allows pre-processing of 

the CCA wafer. 

Designing using algorithmically generated macro-cells, bridges the gap between 

custom and standard cell design and is compatible with both methods. Macro-cells can 

implement functional units that are specified by design parameters and by their func-

tionality. Macro-cells are usually highly regular and structured allowing computer pro-

grams, called module generators, to produce the layout of a macro-cell from its func-

tional description. 

Design Styles for VLSI 1.4.1 
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The macro-cell approach is attractive because its flexibility allows the designer to 

exploit the advantages of both custom and standard cell methods. Highly optimized and 

area-efficient modules can be designed in a short time. In particular Programmable 

Logic Arrays (PLA) macros have been shown to be efficient for designing both combina-

torial and sequential functions. 

1.4.2 TANCELL - Tangent Systems Corp. 

TANCELL is a Cell-based IC design system, developed by Tangent Systems Corp. 

TANCELL offers timing driven layout lTeig 86J. Timing-driven layout of semicustom 

ICs incorporates circuit timing requirements as basic criteria for layout optimization. 

The timing-driven layout process consists of circuit timing analysis, automatic layout 

using timing analysis results, and report generation documenting circuit performance. 

Properly applied, timing-driven layout can produce, in a single pass ICs that satisfy 

difficult timing specifications. Performed repeatedly during the layout process, timing 

analysis uses the latest layout information to calculate the propagation delay for every 

circuit path in the design. The timing analysis also measures the timing margin or criti-

cality, which is used to drive the automatic layout tools. Each automatic layout tool uses 

this criticality in making placement and routing decisions. The frequent feedback from 

the analysis of how the layout is progressing, keeps the designer in control over the per-

formance of the design. 

This cell-based approach to IC design migrates timing analysis earlier in the design 

to reduce circuit design changes. 

TANCELL - Tangent Systems Corp. 1.4.2 



CHAPTER 2 

Synthesis of Combinational Logic 

This chapter presents Logic Synthesis and a number of sys-
tems which use that approach to design. It is a relatively 
new design technique which will extend the current role of 
CAD in logic design. The technique is characterised, its 
strengths and weaknesses highlighted, and various 
research systems are discussed. 
Later chapter 7 will show how logic programming can be 
used to implement a logic synthesis system. 

2.1 What is Logic Synthesis 

Logic Synthesis is a technique which generates a logic implementation in the 

desired technology from a designers functional specifications. 

Logic synthesis programs are designed to improve engineering productivity by 

designing combinational circuits automatically. The effectiveness of such programs 

depend on their ease of use and the quality of the circuits they produce in the light of 

constraints applied to the design. Circuits are constrained by the types and characteristics 

of components available, and by area, delay and power, and testing requirements. Syn-

thesis programs should therefore be capable of generating circuits with competitive area, 

speed, power and testibility characteristics. Different constraints are not always compati-

ble, ie. the smallest implementation is not always the fastest. So, an automatic synthesis 

program should also be able to make tradeoffs between competing constraint goals. 
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The logic synthesis problem is defined as follows: 

(1) Given a circuit family of components, including all constraints and circuit limita-

tions associated with each circuit element type. 

(2) Given a logical description of a digital system in some language, such as the 

language of register transfers, Boolean equations or functions, or even gate equa-

tions. 

(3) Realize the system described in item (2) using components given in item (1) and 

in addition minimize the total implementation cost. This cost consists of both the 

circuit costs and the per-unit design costs. Usually these two costs are inversely 

proportional to each other. 

The logic synthesis problem is analogous to the problem of machine-language trans-

lation. Logic synthesis implements a given digital system in terms of elements from a 

given circuit family. The compilation of a Fortran program, which consists of a set of 

high level language statements, results in a set of object level code which the computer 

understands. 

The goal of generating an acceptable, technology-specific hardware implementation 

from a functional specification is not new. Three strategies have been developed. 

One approach concentrated on translating Boolean functions into minimum two-

level networks of Boolean primitives ([Breuer 72],[Dietmeyer 78]) and were later 

extended to limited circuit fan-in and alternative cost functions. Unfortunately, since 

these systems had algorithms which searched for true circuit minimums, they require 

time exponential in the number of circuits and cannot be used on most actual designs. 

What is Logic Synthesis 2.1 
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A second approach viewed the problem as one of assembling large macros. In 

these design systems, the data flow of the machine was generated in terms of predesigned 

or generated macros, such as multipiexors and ALUs. The control logic was usually 

implemented by PLAs, Weinberger arrays, or ROMs with microcode. Most of the 

current silicon compiler work falls into this category ([Johannsen 79],[Southard 83]). 

Other research attempted to raise the level of specification. The DDL at Wisconsin 

[Duley 68], APDL at Carnegie-Mellon University [Darringer 69], and ALERT at IBM 

[Friedman 70], all began with behavioral specifications and produced technology-

independent implementations at the level of Boolean equations. Designs produced were 

less efficient than a manually produced design, and they did not take advantage of the tar-

get technology. These systems pointed out the need for an appropriate level of efficiency 

and control for the designer over the circuit. 

2.2 Why Logic Synthesis 

Logic synthesis and optimization has recently gained significant credibility and 

practical use. Earlier systems only optimized cell counts, while current systems attempt 

to synthesis and optimize digital systems based on many technology criteria. With tim-

ing constraints, testability, wirability, and efficient use of available primitives in addition 

to cell counts, the system is able to produce quality designs which do not need further 

re-design. Such systems are favoured because of their ability to produce efficient tech-

nology specific logic. 

Hand crafted logic designs are normally checked by modeling and simulation. But, 
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simulation alone is an inadequate check. The growing complexity of circuits, together 

with the increasing number of parameters, do not allow thorough simulation with a com-

plete set of test patterns. Circuits which have been subjected to some incomplete func-

tional testing are not guaranteed to be safe and reliable in operation. More thorough test-

ing increases design costs, and introduces additional cost if flaws in the design are found. 

A system which produces a verified design avoids costs associated with design itera-

tion. The major difference to conventional design, is the requirement to completely 

determine behavior and interface description before starting any concrete design steps. 

Designers often decline to take this step because a very early detailed definition is not 

possible real circumstances. The alternative is for design to proceed unguided, where 

parts are added as necessary. The introduction of a formal task specification primarily 

shifts activities from a late stage in design to an early one, with subsequent time savings 

brought about through a reduction in design process cycling. A designer who adopts this 

approach has to change his interests at the early stage of design; he must try to validate 

synthesis procedures used to produce a design rather than rely on simulation to later ver-

ify that his design will work. 

This approach presents a number of challenges which are problems with current 

systems. 

(1) Modifiable & Extendible 

Synthesis algorithms should be easy to understand, and should be modifiable by 

the designer. This is a common problem with design automation tools and the 

most common reason why design automation is not so widespread. With pro-
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cedural languages like Fortran, or C, this requirement is very difficult to satisfy. 

(2) Sub-optimal Results 

The design system should be able to develop suboptimal results where optimal 

results are not practical. This is important when designs are complex and sub-

optimal results are of more value. 

(3) Portability 

The CAD system should be portable to different hardware. 

2.3 Automatic Logic Synthesis & Optimization 

A number of logic synthesis systems have been developed, and are listed in Table 

2-1. Several of these systems are described in detail. 

SYSTEM 

ALERT 
DAA 
DDL/SX 
DFT 
EL/SYN 
LSS 
MACDAS 
MACPuTS 
Socrates 
Tokio 

DESCRIPTION 

Logic design generator 
Knowledge based synthesis 
Rule based logic synthesis 
Synthesis with testability 
Expert analog circuit synthesis 
Logic synthesis system 
AND/OR circuit synthesis 
VLSI synthesis 
Synthesis & Optimization 
Automatic CMOS :ate arra s nthesis 

INSTITUTION 

IBM Watson Research Center 
Carnegie-Mellon University 
Fujitsu Laboratories Ltd 
Syracuse University 
MIT 
IBM Watson Research Center 
Osaka University 
MIT 
University of Colorado 
Universit of Tok o 

Table 2-1 Logic Synthesis Systems 

2.3.1 ALERT 

The ALERT system [Friedman 69] converts preliminary high-level descriptions of 

computers into logic. ALERT is unique in its use of Iverson notation [Falkoff 64] to 
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describe the architecture of the computer. This input is processed by eight routines in 

series. First the "translator" checks the input and translates it into a less compact inter-

nal representation. Then the "selection decoding" routine scans for variable subscripts 

and if found replaces it with an appropriate block of logic. The "macro generator" 

replaces higher order logic elements with the complete combinational logic required to 

accomplish that operation, and the "sequence analyzer" determines the sequence and 

control requirements. The "consolidation" process eliminates duplicate logic blocks, 

and inefficiently connected arrays of elements. 

2.3.2 LSS (Logic Synthesis System) 

Introduction 

LSS (Logic Synthesis System) ([Darringer 84],[Joyner 86]) is an experimental logic 

synthesis production system used to produce bipolar gate array chips. It has slowly 

developed from initial logic synthesis experiments at IBM's Poughkeepsie laboratory in 

New York. The development team background of automatic theorem proving (D 

Brand,W Joyner), program verification (J Darringer) and logic design tools (J Gerbi) is 

reflected in the approach used in LSS. What follows is a brief description of LSS. 

Design Approach 

In LSS, logic is transformed from the high-level specification into production-

quality implementation through a sequence of local transformations. The system takes 

(as one of several input forms) a description language at the register transfer level, and 

attempts to transform it into an interconnection of gates specific to a target technology. 

ALERT 2.3.1 
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LSS uses levels of description, to which local transformations are applied. These 

local transformations have the effect of simplifying the design and moving it to towards 

the next level. Figure 2-1 illustrates this transformation process. 

At the initial level, advantage is taken of "high level" constructs such as adders, 

decoders and parity generators. For example, decoders may be present in the logic 

"High Level" 

Transformations 

nd - Or" 

Transformations 

STEP(D 

 ] STEP® 
STEP® 

STEP® 

"Nand - Nor" 

Transformations 

Technology Specific 

Transformations 

llTzTD©NI 

FIGURE 2-1 Levels of Description in LSS 
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because of their presence in the initial description, or because they are discovered by a 

transformation. Transformations are applied at this level before the information inherent 

in these operators is obscured by their expansion to more primitive gates. 

At the AND/OR level of description, transformations simplify the logic by bunching 

together nested AND!ORs and by doing straightforward simplification. In addition 

transformations convert the design into an equivalent NAND or NOR representation. 

At the final technology specific level of description, technology constraints are 

enforced and advantage is taken of technology opportunities. Complex primitives 

present in the target technology, such as exclusive-ORs and parity functions, AND-OR 

and OR-AND combinations and multiplexors are utilized. Timing requirements are 

enforced at this stage of synthesis. 

LSS In Use 

LSS is used-in a production environment as an automatic tool even though it was 

originally conceived as an interactive design system. With standard scenarios of 

transformation occurring repeatedly, users become familiar with the resulting output 

logic and performed less manual examination. LSS is particularly suited to completing 

first pass designs rapidly. With LSS sweeping design changes can be considered to 

solve timing problems. This ability to correct timing problems through high-level 

changes rather than low-level path tuning has contributed to the success of the project. 

LSS did not fair well in refining logic designs. To make a design better seems to 

require information which is not available to the synthesis system such as global plan-

fling and "don't care" conditions. LSS would benefit from a knowledge engineering 
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approach. With this approach,the designer would have the flexibility to incorporate addi-

tional rules as required to improve LSS design refinement performance. LSS is imple-

mented in PL/1, and suffers from the limitations associated with that programming style. 

Technology Adaptation 

LSS has been designed to produce efficient, technology-specific implementations. 

Rather than using technology information throughout the scenario of transformations, 

LSS uses table driven transformations to give LSS adaptability to different technologies 

while maintaining the ability to produce designs which take the most advantage of the 

technology. With this technique, new technologies can be incorporated quickly. Tech-

nology specific information is used in the technology independent parts of the synthesis 

scenario as well as in the technology-specific section to help decide whether a particular 

transformation should be applied. This information is typically used to calculate the 

potential savings in replacing a grouping of gates. For example, size information about a 

generic primitive ( such as OR), which gives the number of cells it would take to imple-

ment in the target technology, can be used to evaluate the potential savings in replacing a 

group of NAND or NOR gates by such a primitive. In fact LSS will evaluate all the 

potential replacement candidates, and perform the conversions in the ranked savings 

order. 

Timing 

Timing is an important design criteria which must be considered for optimal circuit 

performance. The design goal of "speed" is usually to shorten certain critical paths on a 
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chip to meet design constraints, rather than to minimize all paths or total path length. 

LSS uses a technology specific delay calculator which computes the difference between 

the required and actual arrival times. This information is then used for timing correction 

transformations within LSS. These timing correction transformations attempt to meet the 

user-specified timing constraints, sometimes at the cost of area and power. The timing 

analysis procedure computes the worst case arrival time of a signal at any logic block 

input pin by tracing forward through the logic starting at the primary inputs, and it com-

putes the worst case required time by tracing backwards through the logic ending at the 

primary outputs. The difference between the required and arrival times is the slack, 

which when negative indicates that a signal does not meet the required timing. The slack 

information is used by the timing correction transformations to determine their course of 

action. 

2.3.3 DDL/SX (Digital Design Language/Synthesis eXpert) 

DDL/SX (Saito 86) is a CMOS gate-array rule-based system for logic circuit syn-

thesis. The system inputs technology-independent functional diagrams, and automati-

cally generates conventional technology-dependent logic diagrams. A rule-based 

approach was adopted because the synthesis steps were not clear and were likely to 

change. This approach made it easy to incrementally improve the system's capabilities 

by adding, deleting, or modifying design knowledge represented as rules. Experimental 

results reported at Fujitsu in Japan, reveals that logic designs generated automatically are 

almost as good as the manual design, and that the design time is reduced by a factor of 

four. 

DDL/SX (Digital Design Language/Synthesis Expert) 2.3.3 
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The DDL/SX synthesis system's development was motivated by a desire to avoid 

errors introduced by manual gate-level design, and to automate a task which occurs regu-

larly in electronic telephone system design. 

The production system was implemented using ESHELL which is a general purpose 

tool for building expert systems. It provides the kernal of a production system based on a 

"backboard model" [Craig 86], and an environment which facilitates knowledge base 

construction. Knowledge rules are classified as follows; 

(1) Macro expansion 

These rules are knowledge about how to organize cells in order to implement a 

function of a macro. 

(2) Optimization Rules 

These rules are for removing redundant cells, and for replacing a group of cells 

with a single cell. 

(3) Constraint Check Rules 

These rules are for detecting and eliminating violations of design constraints such 

as fanout. 

(4) Miscellaneous Rules 

To interface the LSI with external circuits, I/O buffer cells and clock buffers 

must be inserted. Unused pins of the components should be connected to dummy 

cells which represent connections to ground or pull-up circuits. Scan path design 

rules are also included. 

DDL/SX (Digital Design Language/Synthesis Expert) 2.3.3 
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(5) Scheduling Synthesis Tasks 

Rules for scheduling the synthesis tasks and checking whether the problem has 

been solved are in this category. 

Experimental results shows that designs generated automatically have approxi-

mately 20 % more unit cells, but are created in approximately one quarter the time 

(allowing for input and slight modification) compared to manual design. Actual CPU 

times for a circuit with 2,000 basic cells is approximately 10 secs on a FACOM M-380 

15 MIPS machine. 

2.3.4 MACDAS Circuit Design System 

MACDAS (Multi-level AND-OR Circuit Design Automation System) [Sasao 86 is 

a system developed at Osaka University which designs a multi-level circuit with fan-in 

limited AND-OR gates. To use MACDAS, the user presents the specification of the cir-

cuit in the form of a truth table, or a net-list of the circuit diagram, or an arithmetic 

expression. This input is processed as follows; 

(1) AND-OR Conversion 

The given specification is converted into an AND-OR two level circuit. 

(2) Two variable function generators 

Input variables are paired to produce an AND-OR two level circuit with two-

variable function generators (TVFG). A TVFG generates all the functions of one 

and two-variables, and when inputs are paired each TVFG represents a "super 

variable" 
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(3) Complement 

Some of the outputs are complemented to obtain a circuit with fewer AND gates. 

(4) Factorization 

The circuit is transformed into a multi-level fan-in limited AND-OR circuit. This 

algorithm is based on finding common factors to resolve the fan-in limitations. 

The algorithm, which maximally reduces the number of gates is drawn from 

[Dietmeyer 78]. 

(5) Local transformation 

Finally the circuit is optimized by local transformations. 

MAMAS uses two PLA optimization techniques. The first one is the optimal 

assignment of the input variables to PLA's with two bit decoders. The second is the 

optimal selection of the output phases. These optimization techniques produce designs 

which are better designed than would have been produced with a manual approach. 

MAMAS is a useful tool for designing multi-level arithmetic circuits. 

2.3.5 Socrates 

The Socrates System [Gregory 86] diagram is presented in Figure 2-2. To have the 

best representational form at each level, Socrates uses three different design representa-

tions. 

(1) A logic Level representation is required for operations which operate on the logic 

of the circuit. This logic level representation uses an extended version of 

Expresso's PLA format. [Brayton 84] 
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Figure 2-2 Socrates System Diagram 

(2) A circuit level representation is required for operations on circuits. They are 

represented using a net-list format. 

(3) A Boolean equation format for entering designs by hand. 

Translators Compile, Synthesize and Extract, are provided to convert designs from 

one format to another. Compile converts Boolean equations to a two level Expresso for-

mat. Multilevel equations are flattened to two-level equations in this step. Synthesize 
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converts designs from the PLA format to the netlist format. Generic AND, OR and NOT 

gates are used to implement corresponding logic in this step. Extract converts a netlist to 

Boolean equations. Extract uses a Boolean variable to represent each signal in the net-

list, and writes an equation for each gate. 

A constraint specification allows designers to describe the desired characteristics of 

their circuit. Designers can specify when signals arrive at inputs, and the drive factor 

associated with them. Designers can specify the maximum propagation delays to indivi-

dual outputs and the loads that must be driven at those outputs. Two programs Expresso 

and Weak Division perform logic level manipulations on designs. Expresso finds a 

minimum sum of products for each two level function. Weak Division decomposes two 

level functions into multiple levels by iteratively dividing out common subexpressions 

algebraically. The circuit optimizer program manipulates designs at the circuit level. 

The program improves circuit characteristics by iteratively replacing and rearranging 

groups of components in the circuit. It uses a library of alternate circuit implementa-

tions. The alternatives are given in the form of a rule, where conditions that are required 

to be true for the circuit are listed, if that alternative circuit is to be considered. Compet-

ing alternatives can thus be implemented in turn, and the performance of the circuit 

measured. After each rule application, an incremental timing and area analysis is per-

formed. These analysis are based on user supplied values for timing and area models of 

each gate. 

Before a rule is selected, transformations on the circuit resulting from its application 

are attempted. The program evaluates the effects a transformation will have on other 

transformations in the future by performing a state search. The depth and breadth of the 
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search tree determine how far, and how exhaustively the program looks into the future 

before selecting a new rule. This look-ahead mechanism enables the circuit optimizer to 

choose transformations which do not immediately improve a circuit, but which lead to 

other transformations which do. This look-ahead feature is an example of the application 

of meta-level inferencing in SOCRATES. Meta rules control how area and speed are 

traded off against each other, and when and where CPU time is used. 

2.3.6 Logic Design using Tokio & C-Prolog 

A program which automatically synthesizes logical circuits for CMOS gate array 

from state diagram has been developed at the University of Tokyo ([Fujita 861). This 

system is written in Prolog and Tokio [Aoyagi 85], where Tokio is a logic programming 

language which is based on temporal logic. Tokio can be considered as a version of Pro-

log that has been extended to describe concurrent processing. 

Synthesis Program Description 

The synthesis process is divided into six steps: 

(1) Convert DDL description to Prolog. 

DDL [Duley 68] is a well accepted hardware description language, which is used 

as a neutral file format to input the design. The DDL description includes "Ter-

minal Transfer Tables" , "Register Transfer Tables" and "State Transition 

Tables" 

(2) Expand & Fetch common parts from similar logic expressions. 
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This is the first stage of simplification, which is illustrated by the following 

example: 

Ti = A.B.C.D T2 = A.B.C.E 

is converted to: 

COM = A.B.0 

T1=COM.D 

T2 = COM.E 

(3) Primary Simplification: Eliminate duplicate units 

Four simplification rules are applied as appropriate. 

1. Unification of units that have the same functions, same inputs, but different 

nets. 

2. Simplification of AND or OR gates that have several identical inputs. 

3. Simplification of multiplexer gates containing sets that have the same source 

under different conditions. 

4. Simplification according to the replacement rules. Prolog is used to find cir-

cuit patterns where the replacement rules are applicable. Then the replacement 

rule is applied. 

(4) Analysis & modify the design according to the results. 

Perform ana analysis the number of gates, the delay time, the fan-in and fan-out 

and modify the result if there are any design constraint violations. 

Logic Design using Tokio & C-Prolog 2.3.6 
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Processing Results 

Performance of this synthesis system is quoted for a Unify Processor. This pro-

cessor consists of approximately 500 'ITL IC circuits and 17 internal registers. 

The DDL description consisted of 1000 lines. 

The processing time on a VAX 11/730 is as follows; 

Phase 1 
Phase 2 
Expansion 
Cross-Reference 
Phase 3 
Phase 4 
Fan-out 
Gate count 
Delay Time 

Total 

Hours:mins 
5:30 

:40 
11:30 
74:30 

3:30 
:10 
2:00 

97:50 

The initial design consisted of over 26,000 gates which was reduced, through 

simplification, by 10,000 gates or 40%. 

Conclusions 

While this system shows that logic synthesis is practical, the processing times 

shows that 20,000 gates is approximately the limit of capability for an interpretive sys-

tem. The greatest processing time occurred for primary simplification. It occurs as a 

result of the repeated backtracking as the various simplification rules are tested. With 

more clever program design it should be possible to reduce this processing time. 
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2.3.7 DAA (Design Automation Assistant) 

The Design Automation Assistant (DAA) [Kowalski 83] expert system was 

developed at Carnegie-Mellon University to investigate the application of Knowledge 

Based Expert Systems (KBES) for cost effective design of low-volume special purpose 

VLSI systems. DAA's area of expertise is allocating an architecture for a VLSI system. 

Its input is an algorithmic data-flow description of a VLSI system, and its output is a list 

of technology independent registers, operators, data paths and control signals. DA4 is 

implemented as a production system using the OPS5 [Forgy 81] Knowledge Based 

Expert System writing system. OPS5 facilitated the separation of expert knowledge from 

reasoning in DAA. Incremental addition of new rules and the refinement of old ones is 

easy because the rules have minimal interaction with one another. 

DAA uses ordered subtasks to design the VLSI architecture. These subtasks are 

implemented using about 130 rules. Particular rules are applied if the specified conditions 

of the rule are met. 

Experimental results from DAA indicate that a KBES approach to logic synthesis 

improves the performance of logic synthesis. Such an approach requires that the expert 

knowledge of design be explicitly defined. The definition of this knowledge aids our 

understanding of the design process and can also be used in the teaching process. 

DAA (Design Automation Assistant) 2.3.7 



CHAPTER 3 

Logic Programming 

Logic programming is emerging as one possible technique 
for Computer-Aided Design (CAD) system development to 
cope with the recent increase in complexity of VLSI 
designs. Logic programming contrasts with current algo-
rithmic solutions which are based on languages such as 
Fortran or C. This chapter discusses what logic program-
ming is, and some specific advantages in its application to 
logic design. 

3.1 Logic Programming 

Logic Programming is a technique which combines logic clauses (or hypotheses) 

and a form of automatic logic deduction. Logic programming has gained acceptance as a 

suitable technique for implementing expert systems, and as a suitable programming tech-

nique for Japan's Fifth-Generation computer research and development project [Feigen-

baum 83]. The theoretical basis of logic programming is Predicate Logic and the Resolu-

tion theorem [Chang 73]. 

The logic programming language Prolog ([Clocksin 81], [Cambell 84], [Pereira 84]) 

has gained wide acceptance throughout the Al community, and has been selected as one 

of the basic languages for Japan's fifth generation computer project. Prolog is a rela-

tively new language, developed in the early seventies, which already has been used to 

develop specific expert systems for logic synthesis. Specific expert systems such as DFT 

(Design for Testability) [Hortmann 84] and DEMO, (meta Prolog experimentation sys-
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tern), have been implemented in Prolog. Another system is under development at the 

University of Tokyo [Fujita 86]. Supporting such system development are numerous 

research papers which propose the use of the language for logic synthesis, simulation and 

testing ([Suzuki 85],[Gullichen 85], and [Noda 85]). 

3.1.1 Prolog Logic Programming 

A Prolog program is a set of "Horn" clauses, but the notation differs slightly from 

the traditional notation. In classical logic, a Horn clause may be written as, 

P1&P2 ... &Pn -> Q 

In Prolog syntax, the same clause would be expressed as, 

Q :- P1,P2,...Pn. 

where the antecedent is written to the right of the implication arrow, the consequent to 

the left of the arrow, the arrow itself is reversed and is written as ":-" and the "&" signs 

are replaced by commas, with a full stop at the end. "Q" is put at the left of the 

antecedent to put emphasis that the antecedent constitutes the body of a procedure for 

calculating "Q" These clauses are both declarative, describing objects and their relation-

ships and procedural, in that they are executed as functions. The symbol ":-" means 

"implied by" in the clause context. Each consequent and antecedent can be thought of 

as a function call of the form: 

p(tl,t2, .... tn) 
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where "p" is an arbitrary predicate symbol, and "ti" through "tn" are terms. Clauses 

without antecedents are the facts of the system, while those without consequent clauses 

are used as goals. 

A Prolog logic program usually consists of a set of rule and fact clauses which is 

used for the resolution of the goal clause. The goal clause is supplied from an external 

source. The resolution process involves matching the antecedents in the goal with con-

seqents in the fact and rule set, and then using those antecedents as subgoals. This reso-

lution process continues sometimes recursively until either the empty goal is reached 

(thereby proving the goal to be true) or a match is unavailable. When a match is unavail-

able backtracking occurs. Backtracking is the process by which the Prolog interpreter 

selects alternative choices for subgoals if they are defined. If backtracking exhausts all 

possible alternative definitions of the subgoal, then the subgoal is unprovable, and it falls 

for the given set of facts and clauses. During this resolution process the variable terms 

encountered are tinified ( "instantiated" ) across antecedents and consequents. It is these 

instantiations of variables that are used as answers when the goal is proved. Logic pro-

grams prove or disprove goals only in relation to the set of clauses (facts, rules and goals) 

provided. 

Prolog has been criticized as falling short of the ideal logic programming language 

in two areas [Naish 83] 

(1) Poor Implementation of Negation 

Horn clauses can only be used to deduce positive information. The best way of 

dealing with negation using Horn clauses is to use the closed world assumption, 
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that is anything which cannot be proved true is assumed to be false. This cannot 

be easily impleniented so Prolog uses a weaker rule, negation as failure. A goal 

is assumed to be false if the interpreter finds a finite proof that the goal is unprov-

able. Most Prolog systems implement the clause not(p(X)) with a meaning of, 

not(p(X)) <==> for all X,-p(X) 

rather than, 

not(p(X)) <==> there exists X such that ' p(X) 

(2) Inadequate Control Facilities. 

The basic control facilities of Prolog are just the ordering of clauses and atoms 

within clauses. Once a program has been written in a particular way, the clauses 

and sub-goals are always tried in the same order. While facilities such as cut and 

var partly overcome these problems, correctness and clarity suffers. Prolog's 

poor control facilities leads to poor program reliability, infinite loops and 

inefficient algorithms. 

Two improved Prolog systems have been developed which overcome these prob-

lems of the basic system. 

(1) MU Prolog [Naish 83] comes closer to the goals of logic programming address-

ing the negation and control facility problems of Prolog. MU-Prolog uses a sys-

tem of delaying and resuming calls to clauses to provide more flexibility, 
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efficiency and termination. Negation is implemented soundly by delaying the 

computation of the clause to be negated. The clause is woken up when the vari-

ables in the clause are bound. 

(2) IC-Prolog is probably the best known Prolog system with improved control 

[Clark 81]. In IC-Prolog, control information is specified by adding annotation to 

the program clauses. There are a wide range of annotations, and for certain 

applications IC-Prolog can achieve more efficient algorithms than MU-Prolog. 

3.2 Prolog as an Expert System Shell 

Rule-based languages are generally considered to be the most suitable for represent-

ing knowledge in expert systems. Rules are relatively easy to understand, and their 

modularity makes modification easy during knowledge base development and use. 

Horn clause logic can be viewed as a rule-based language, which with appropriate 

extensions, it is acandidate for representing knowledge in an expert system. Any collec-

tion of Horn clauses can be run directly as a Prolog program. It has been commented 

[Hammond 83], that for some applications, running the expert system rules as a Prolog 

program is adequate, and the implementation of the expert system becomes trivial. How-

ever, two important expert system shell features are not automatically available in Pro-

log. 

(1) Prolog does not provide automatically an ability to explain and justify reasoning. 

(2) Prolog does not provide automatically a request for data based on inference. 

However, such features can be added to a Prolog program. 
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Prolog has the advantages of uniformity and extensibility. Uniformity is provided 

in the form of rules that can perform both program control and data manipulation. To 

further refine the expert system, rules can be modified or added. One preliminary conclu-

sions on the use of Prolog for DFT [Horstmann 84] [Horstmann 84] - CAD Using Logic 

Programming suggest that rules can be added or changed easily, even while using the 

system, and this feature was especially useful in developing and debuging the system. 

Careful system design which separates rule function gives a Prolog program "modular-

ity" to adopt to design changes. 

The efficiency of a Prolog program or the lack of it is a key concern for the accepta-

bility of Prolog as the development language. If the task is numerically intensive, or if it 

can be procedurally defined then the task might be better suited to a procedural language 

which would execute more efficiently than Prolog. In later chapters it can be shown that 

there are many aspects of logic design which are best implemented in Prolog. Even if the 

task may be suitable to Prolog, if a subtask of the design process does not lend itself to 

Prolog programming, it can make sense to implement that task using a procedural 

language. A combination of Prolog and an efficient procedural language can provide 

considerably better overall performance when compared to a system programmed only in 

Prolog, without having to compromise any of the benefits offered by Prolog. 

The performance and efficiency of Prolog depends on the system programmer 

understanding of the problem and how solutions can be obtained. It has been illustrated 

in many texts on logic programming [Bundy 83] that the existance of a solution does not 

guarantee that a solution will be found by the Prolog interpreter. It is thus necessary for 
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searching to be guided to obtain the solution in the fastest possible way. A Prolog system 

designer should always place "likely" rules first in a Prolog program, so that those rules 

are tested first. Backtracking, as the Prolog interpreter "tests" alternate rules is the 

major source of inefficiency in Prolog programs. 

3.3 The Case for a Clausal based Expert System Approach 

The advent of VLSI technology has put considerable strains on current design tech-

niques in dealing with the growth in design complexity. Even hierarchical design tech-

niques, which were introduced to deal with the complexity issue, are often inadequate to 

match, downwardly imposed design criteria and upwardly imposed physical constraints. 

This thesis is in support of a clausal based expert system approach to design as the most 

effective long term strategy for inexpensive exploitation of VLSI technology. Such a 

design technique will make low-volume special purpose chips economically feasible. 

Others support this design approach [Brewer 86], and propose a new model of 

design which is based on communicating expert systems which operate at different levels 

of design abstraction. The purpose of the expert on a given level is to create a structure 

out of the design components predefined for that level. With this approach design is not 

forced in a top to bottom fashion with little consideration for factors which arise at lower 

levels. Design still proceeds top to bottom as each level is completed, with the provision 

that any level may fail in its attempt to achieve its goal. When this occurs, control passes 

back to the parent in the form of a failure report. The higher level task may decide to re-

allocate constraints, or change styles, or indeed fail itself. This procedure allows back-

tracking of earlier design decisions between levels of the design hierarchy, forcing 
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iterative refinement of design. It also effectively manages both upward and downward 

propagation of design styles and parameters. Constraint propagation and failure report-

ing augment the completed design specification, and can aid the "expert designer" to 

complete his design in much the same way as the human designer. 

Although [Brewer 861 does not propose any specific language for implementing this 

model of design, the author suggests Prolog as suitable for the task. Prolog has many 

characteristics which would facilitate such an expert system model for design; 

(1) Backtracking 

Prolog's backtracking feature is directly useful for implementing the failure 

reporting feature between levels of design abstraction. 

(2) Expert System Language 

Prolog has been used to implement Knowledge Based Expert Systems. There are 

KBES logic design systems ie DEMO, LSS. 

(3) Rule based Language 

Prolog is a rule based language with a built in simple inference mechanism. 

(4) Timing Representation 

Concurrent Prolog is available to represent the timing element of a design. 

(5) Unifying Language 

Prolog could be used for all aspects of system development, thereby unifying or 

uniting these expert systems together. Prolog clauses are both declarative, in that 

they describe objects and relationships, and procedural in that they are executed 

as functions. 
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(6) Circuit Transformation 

Prolog re-write rules facilitate circuit transformations. These transformations are 

required frequently in logic synthesis, logic minimization and for technology 

conversion. 

The Case for a Clausal based Expert System Approach 3.3 



CHAPTER 4 

Circuit Representation in Prolog 

This chapter presents two techniques for representing and 
manipulating circuits which are available in Prolog - data 
structures and Horn clauses. Circuit representational 
techniques are introduced first because they determine 
which manipulations can be performed easily. The PCD 
program (described in chapter 7) is based on a Prolog data 
structure circuit representation. 

4.1 Circuit Representation in Prolog 

In choosing a representational technique two questions are normally posed. Does 

the representational technique make efficient use of memory? Does the representational 

technique allow for efficient manipulation? Unfortunately it is very hard to find a tech-

nique which optimizes both these requirements simultaneously. A circuit which is 

represented using sets of Horn clausal statements presents circuit information suitable for 

logic manipulations, but this representation does not make the most efficient use of 

memory. A circuit represented as a Prolog data structure is stored more efficiently, but 

cannot be accessed in the same manner as in a Horn clause representation. These tech-

niques are fully described in the following sections. 

4.2 Prolog Horn Clause Circuit Representation 

Digital logic circuits can be viewed as a network of primative gates whose intercon-

nection imposes constraints. Satisfying the constraints with some lines bound to some 

constant values serves to simulate the operation of the circuit. Many features of Prolog 

48 



49 

make it suitable to direct representation and simple simulation of logic circuits. 

The following are characteristics of a Prolog Horn clause circuit representation; 

(1) Functional & Physical Characteristics 

The Prolog database mechanism can record both functional and physical charac-

teristics of logic elements. 

(2) Hierarchical Circuit, Representation 

Prolog representation facilitates an abstraction of complexity using hierarchical 

descriptions. In digital circuitry, the subsystems tend to be homogeneous. 

Smaller components are replicated and interconnected to produce a larger piece 

of hardware. Hence, arbitrarily complex circuits, within implementation limits of 

the Prolog interpreter, may be constructed in a hierarchical manner. 

(3) Parallel Circuit Representation 

Parallelism of physical computer components are closely modeled using Con-

current Prolog [Suzuki 85]. Concurrent Prolog is very similar to Prolog, but it 

has multiprocessing features which make it suitable for describing and simulating 

highly concurrent systems. 

(4) Forward and Reverse Simulation 

As inputs and outputs of a Prolog predicate need not be specified, but may be left 

unbound at the time a predicate is invoked. These inputs are instantiated through 

the action of the Prolog interpreter, to make the predicate true. With these 

features, Prolog is very amenable to functional simulation of many circuit types. 

Functional simulation is an alternative to transistor-level logic simulation. 

Prolog Horn Clause Circuit Representation 4.2 
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It is often a better alternative because the circuit model, which can be modeled at 

any desired level of abstraction, can be generated quickly and the functional 

simulation, which is written at an abstract level is more efficient. A Prolog simu-

lator provides an effective methodology to create a functional specification in a 

high level language and to debug these specifications against test data. Simula-

tion can occur in the forward as well as the reverse direction, and even bidirec-

tionally. The ability to efficiently perform backwards simulation is useful in both 

fault detection test generation and deductive methods for fault isolation. 

(5) Don't Care Values 

As Prolog can deal with unbound variables, the problem of "don't care" and 

"don't know" values is simplified. 

Any logic gate, such as an AND gate, can be directly represented in Prolog as a col-

lection of axioms which describe its behavior. For example, a 2-input AND gate is func-

tionally specified by the following 4 Prolog axioms; 

and(in(O,O),out(0)). 

and(in(O,1),out(0)). 

and(in(1,O),out(0)). 

and(in(1,1),out(1)). 

Queries may be posed to Prolog to simulate operation of the AND gate: 

I?- and(in(O,1),out(X)). 
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XO, 

yes. 

I?- and(in(X,Y),out(1)). 

X=11 

Y=1, 

yes 

In the first query, the operation of the AND gate has been simulated in the forward 

direction, with gate inputs being propagated forward to the output. The second query is 

an example of a backward simulation, and operates in a manner in which the hardware 

cannot. Gate output is propagated backward to the inputs. The query asks what inputs X 

and Y to the AND produce an output of 1. By matching the axioms in the database, Pro-

log indicates that both inputs must be 1. 

So far we have considered only the representation of a two value primative logic 

AND gate. This technique may be employed for representing gates which implement 

multivalue logic, and for representing more complex combinational circuits. Consider 

the representation of the logic function represented by Figure 4-1. Figure 4-1 represents 

a simple combinational logic circuit. Circuits are fashioned from an interconnected net-

work of logic gates, and may be represented by Prolog implications in a manner amen-

able to simulation. This circuit could be represented as Prolog predicate circuit as; 

example(1[nA,InB,InC,InD,Out) :- or(AB,CD,Out),and(A,B,AB),and(C,D,CD). 
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and 

} 

and CD 

Example / = (A05)+(C0D) 

Figure 4-1 Example circuit 

where circuits or(,,) and and(_,,J are pre-defined circuits. 

Example I 

• 4.3 Prolog Structure Circuit Representation 

The use of a Prolog data structure for circuit representation is believed to be original 

to this thesis. This is the representational technique which is used as the basis of the 

PCD Prolog logic design system which is described in chapter 7. It was chosen for the 
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following reasons. 

(1) Circuit Manipulation 

A data structure circuit can be manipulated easier than a collection of predicate 

clauses. Circuits can be written and read from file in one operation. An arbitrary 

large circuit can be passed as parameters in a Prolog predicate clause. Several 

circuit definitions can co-exist and be individually manipulated. 

(2) Circuit Transformations 

Logic synthesis can be considered as a guided incremental transformation of a 

behavioral description into a logic description. The ability to perform transfor-

mations and combinations, which is an essential component of logic synthesis, 

makes data structures the best choice for a logic synthesis design system. 

(3) Compact Representation 

A Prolog data structure representation is more efficient circuit representation than 

a predicate representation. When several alternate large designs are being 

evaluated, this efficiency becomes important. 

(4) Flexibility 

A data structure representation can cope with multi-value logic, with any fan-in, 

and with any fan-out. The flexibility is such that circuits can be represented 

which are invalid. 

To illustrate how a circuit can be represented as a Prolog data structure, let us con-

sider the circuit in Figure 4-1. This circuit would be represented in Prolog as follows; 
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example(or(and(A,B),and(C,D))). 

The circuit type is given by the functor, in this case "example." The definition 

itself is not standalone. It uses the definition of common circuit elements which, for con-

venience, are considered "pre-defined" circuits. Also, in this case, circuit input signals 

are represented as variables. These can be circuits or signals in their own right. 

4.3.1 Pre-defined Circuits 

A distinction is made between known circuits such as and(A,B) or or(A,B) and 

user-defined circuits such as a_circuit(and(Clockl,Sigl)) 

Known circuits are primitive gates and circuit devices which the user can use to 

define his circuit. These known circuits form the lowest level representation possible, 

and their logic behaviour is pre-defined. Since these gates are frequently used, pre-

definition of these logic elements reduces the representation of the user circuit. Known 

circuits are listed in Table 4-1. 

CIRCUIT DESCRIPTION 

and(A,B) Boolean logic operator "AND" between A and B 
or(A,B) Boolean logic operator "OR" between A and B 
not(A) Boolean logic operator "NOT" of A 
jk_ff(J,K) I K Flip-flop  

Table 4-1 Known Circuits 

Pre-defined Circuits 4.3.1 
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A user can extend the range of pre-defined circuits to include additional circuit ele-

ments. In PCD, J K flip-flops are included in the list of pre-defined circuits because they 

occur frequently in the circuits created. To add an additional circuit as "pre-defined" 

additional rules, which describe its behaviour, need to be added to the database. 

4.3.2 Circuit Input Signals 

Inputs to a circuit can be either variable or fixed signals. Fixed signals have values 

such as "1" or "0" while variable signals do not. When the signals are variables, they 

represent circuits of arbitrary complexity. Ultimately these circuits can be evaluated to 

have values of " 1" or "0" or "undefined" (or as appropriate in a multi-value logic sys-

tem). For example 4-1 the circuit with variable inputs is represented as; 

example(or(and(A,B),and(C,D))) 

The use of uppercase for variable signals and lowercase for fixed is consistent with 

Prolog's syntax. This circuit can be correctly interpreted as having signals represented 

by "A" , "B" , "C" , and "D" which can have a value of either " 1" , "0" or 

"undefined." It can be seen from this that a circuit cannot be evaluated until its inputs 

have been evaluated. 

If the circuit has only fixed inputs the circuit itself is defined. In Prolog this can be 

represented using lower case variables and integers " 1" and "0." The example in Fig-

ure 4-1 with fixed inputs would be; 

example(or(and(1,O),and(1,1))) 
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or with predefined signals; 

example(or(and(a,b),and(c,d))) 

4.3.3 Handling Errors 

These rules which govern data structure representation allow the definition of the 

following valid circuits. 

and(a,b) 

not(a) 

1 

and(a,and(b,and(c,d))) 

or(and(1,O),and(1,1)) 

The user can define circuits which are invalid. These circuits cannot be evaluated or 

minimized correctly. A few simple Horn clauses can be written to check the syntax of a 

circuit definition for correct signal usage and nesting of circuits. 
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CHAPTER 5 

Logic Minimization & Conversion 

Many attempts have been made to increase the size of logic 
minimization problem which can be addressed by 
sacrificing absolute minimaliy. This chapter introduces a 
technique which uses Prolog to implement a heuristic logic 
minimization tool. In addition the same transformation 
technique is applied to the problem of technology adapta-
tion or logic conversion. The logic minimization and 
conversion techniques are presented as original work. 

5.1 Boolean Logic 

Boolean logic ( more precisely binary logic) is the foundation for applications of 

logic circuits used in digital logic design. Boolean expressions are created by combining 

Boolean Operators such as AND , OR and NOT. These combinations are chosen to meet 

desired behaviour by the logic function under all possible variable inputs. Boolean 

expressions can be expressed in Truth Table form, in Canonical form, and in Circuit 

form. They can also be expressed as equivalent Boolean expressions using the rules of 

Boolean Logic. The rules of Boolean Logic are; 

Basic Definition 

(1) 0=1' 

(2) 1=0' 

(3) A+0=A 

(4) A&0=0 
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(5) A+1=A 

(6) A&1=1 

Complements 

(1) A&A'=O 

(2) A+A'=l 

Commutative Laws 

(1) A+B=B+A 

(2) A&B=B&A 

Identity Laws 

(1) A+A=A 

(2) A&A=A 

Distributive Laws 

(1) (A+B)+C=A+(B+C) 

(2) (A&B)&C=A&(B&C) 

(3) A+(B&C)=(A+B)&(A+C) 

(4) A&(B+C)=(A&B)+(A&C) 

DeMorgan's Law 

(1) (A+B)' = A' & B' (A&B)' = A' + B' 

Boolean Logic 5.1 
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5.2 Logic Minimization 

Logic Minimization is -the search for an equivalent circuit implementation of a 

Boolean expression which is "minimal" in both design and production costs. Minimal 

is generally taken to mean "minimal cost" but, the tradeoff between absolute minimal 

production cost and design time, and cost factors in the implementation technology have 

made minimization a more general circuit design problem. To illustrate this point, con-

sider the minimization of a 3 variable Boolean expression with 4 terms expressed in its 

canonical form. It is practical to obtain the Boolean expression which contains the least 

number of Boolean operators by applying the rules of Boolean Algebra. This is possible 

because both the number of variables and the number of terms are small. 

The minimization of; 

F = A&B&C' + A&B'&C + A'&B&C + A&B&C 

applying the Identity law, 

= A&B&C' + A&B'&C + A'&B&C + (A&B&C + A&B&C + A&B&C) 

applying the Distributive Law, 

= (A&B&C' + A&B&C) + (A&B'&C + A&B&C) + (A'&B&C + A&B&C) 

= (A&B&(C'+C)) + (A&(B'+B)&C) + ((A'+A)&B&C) 

applying Complements, 

= (A&B&(l)) + (A&(1)&C) - ((1)&B&C) 

by basic definition, 
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= (A&B) + (A&C) + (B&C) 

= A&B + A&C + B&C 

In this minimization "proof" a directed search is occurring by selecting the correct 

rule at each stage. The rules are selected because they fit into the overall minimization 

strategy. These human proofs can be automated by computers using the Resolution 

Theorem and uniform proof procedures ([Bundy 83] Chapter 7). In effect, these tech-

niques exhaustively apply all rules at each step. All equivalent Boolean expressions are 

generated, and the appropriate minimal expression is used, and the remaining expressions 

are discarded. In [Bundy 83] Chapter 7, this technique is criticized. At each rule appli-

cation, a branching rate equal to the number of applicable rules in the database (often 

greater than 15) and recursive application of rules cause unreliable termination. 

5.2.1 Absolute Logic Minimization 

In the 1950s, when logic gates were expensive, it was very important to develop 

techniques that produced, for a given function, an implementation with the smallest 

number of devices. Such simplification of logic functions became an active area of 

research, and produced the map methods such as Karnaugh [Kamaugh 53] and Veitch 

maps, and later other more sophisticated tabular methods. The map methods were only 

practical for functions of up to S variables, while the tabular techniques were restricted 

by the computational intensity of the problem. 

The tabular method ([McCluskey 56], [Quine 55]) consists of three basic stages; 
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(1) Identification of prime implicants 

Although the generation of all prime implicants has become more efficient, it can 

be shown [Miller 65] that the number of prime implicants of a logic function with 

n inputs can be as large as: 

3/n 

(2) Identification of essential prime implicants 

The problem of selecting a minimal cost set of prime implicants which covers the 

function "f" , is referred to as the prime implicant covering problem. 

(3) Prime Implicant Covering Table. 

Since the number of elements in the covering problem may be proportional to the 

exponential of the number of input variables of the logic function, processing 

makes this technique impractical for even medium sized problems (10 - 15 vari-

ables). 

5.2.2 Heuristic Logic Minimization Techniques 

Lower cost for logic gates in the early seventies reduced the requirement for an 

exact minimum. Large complex PLA implementations with over 30 inputs and 100 pro-

duct terms made exact minimization impractical. Many heuristic techniques were 

developed to obtain a near minimum. 

Some approaches start by generating all the prime implicants, and then instead of 

generating a minimum cover, a near minimum cover is selected heuristically ([Arevalo 

78],[Hong 74] & [Rhyne 77]). With this approach there is the potential to generate a 
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very large number of prime implicants. 

In two methods ([Rhyne77],[Arevalo 78]) a base minterm of the care-set of the 

logic function to be minimized is selected. It is expanded until it is prime, and all mm-

terms that are covered by this prime are removed. The procedure is repeated until all the 

minterms of the care-set are removed. In [Rhyne 77], where all prime implicants con-

taming the selected base minterm are generated, this method can be inefficient. In [Are-

valo 78] only a subset of all prime-implicants covering the base minterm is generated. 

This gives a faster method with results which are not as good as in [Rhyne 77]. 

More recently heuristic minimization has found practical application in the design 

of PLAs. The first was MINI developed at IBM in the middle 70s [Hong 74]. Later a 

heuristic minimization program called PRESTO was introduced by D Brown [Brown 

81]. During the summer of 1981 the authors created a program ESPRESSO - I [Brayton 

82] to compare the various strategies employed by MINI and PRESSO. 

5.2.3 Prolog Logic Rewrite Rules 

Prologs rewrite rules express all valid manipulations to convert one form into 

another. The use of rewrite rules for manipulation is not new, and is based on ideas ori-

ginally expounded by Bundy {Bundy 81]. 

The exhaustive application of Prolog rewrite rules has been criticized. Some prob-

lems will not terminate, while some result in an inefficient search. The repeated exhaus-

tive application of rewrite rules is not guaranteed to result in a solution, and so a tech-

nique for controlling inference is required here. 
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5.2.4 Meta-level Inferencing 

The term "meta-level" inference has been described [Bundy 81], where inference 

is conducted at two levels simultaneously: the "object-level" and the "meta-level". 

The object-level is where knowledge about facts of the domain are encoded, while the 

meta-level encodes control or strategic knowledge. This style of inference results in a 

"guided" search for a solution. 

While meta-level inferencing is not original to this thesis, the application of meta-

level inferencing to logic minimization is. Reasoning at the meta level can range from 

the simple to the complex. 

Let us start by considering a simple but effective meta level technique which is used 

in PCD. This technique could be called the most effective rule first technique and it relies 

on ordering of rules to guide the search for the true minimum. Rewrite rules are grouped 

into sets which address the main operators in the circuit. For typical circuits these are 

broken into rule sets for AND , OR etc. In each of these rule sets, the rewrite rules are 

ordered so that rules which have the most minimizing effect are placed first in the search. 

This simple technique provides rudimentary guidance to improve the efficiency of the 

search for a logically minimal representation. In PCD only those logic conversion rules 

which do not expand the logic expression are considered. Table 5-1 lists a complete set 

of minimization rewrite rules applicable for two input AND , OR logic. These rules are 

tested for a match in the order they are listed in the table. The Prolog notation and 

Boolean notation are listed together for comparison. The reader is referred to the Appen-

dix listing of PCD for a complete list of Prolog rewrite minimization rules. A Boolean 
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Number Rewrite Rule in Prolog 

1. min_str(and(1,1),1). 
2. min._str(and(1,X),Y) :- min_str(X,Y). 
3. min_sir(and(X,1),Y) :- min_str(X,Y). 
4. min_str(and(0,X),0). 
5. minstr(and(X,0),0). 
6. min_str(and(X,Y),Z) :- min...str(X,1),min_str(Y,Z). 
7. min_str(and(X,Y),Z) :- min_str(Y,1),min_str(X,Z). 
8. min_slr(and(X,Y),0) :- min_str(X,0). 
9. minstr(and(X,Y),0) :- min_str(Y,0). 
10. min_str(and(X,Y),Z) :- minstr(X,A),minstr(Y,B),minl(and(A,B),Z). 
11. min_str(or(1,X),1). 
12. min_str(or(X,1),1). 
13. min_str(or(0,0),0). 
14. min._str(or(0,X),Y) :- min_str(X,Y). 
15. min_str(or(X,0),Y) :- min_str(X,Y). 
16. min_str(or(X,Y),1) := min_str(X,1). 
17. min_str(or(X,Y),1) := min_str(Y,1). 
18. min_str(or(X,Y),Z) := min_str(X,0),min_str(Y,Z). 
19. min_str(or(X,Y),Z) :- min....str(Y,0),min_str(X,Z). 
20. min....str(or(X,Y),Z) :- min_str(X,A),min_str(Y,B),minl(and(A,B),Z). 
21. min_str(not(1),0). 
22. min_str(not(0),1). 
23. min_sir(not(not(X)),Y) :- min....str(X,Y). 
24. min_str(not(X),1) :- min_str(X,0). 
25. min_slr(not(X),0) :- min_str(X,1). 
26. min_str(not(X),not(Y) :- min....str(X,Y). 
27. min_str(X,X).  

logic equation such as; 

Table 5-1 Rewrite Rules 

A.1 =A 

Boolean logic 

1.1=1 
1.x=x 
x.1=x 
0.x=0 
X.0=0 
(X=1).Y=Y 
(Y=1).X=X 
(X=0).Y=0 
(Y=0).X=0 
X.Y=A.B 
1+X = 1 
x+1=1 
0+0=0 
0+x =x 
x+0=x 
(X= 1)+Y= 1 
(Y= 1)+X= 1 
(X = 0)+Y = Y 
(Y=0)+X=X 
X+Y = A+B 
1=0 
-0= 1 
-x=x 
-0= 1 
1=0 

A=A 

is used to represent a common logic simplification. "A" can be anything from a simple 

logic variable to complex Boolean formula. Prolog can directly express these rules of 

Boolean logic simplification. Each Prolog rule has two parameters, for the input, and 

output structures. The input structure represents the circuit to be minimized, and the out-

put structure is the equivalent minimized structure. As an example, if ( 1 + b + c).(1 + d) 
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was being minimized the call to "min_str" would look like; 

min_str(and(or(1,or('B ','C')),not(or(l,'D'))),Out_str) 

When minimization of this structure is complete, the variable "Out—sir" will be 

instantiated to the minimized circuit data structure. 

5.2.4.1 Logic Minimization Example 1 

To illustrate how the rewrite rules work, let us consider the minimization of the fol-

lowing Boolean function 

12 = (1.a.c.d)+(1.a.e,t) 

which can be represented as the following Prolog data structure 

f2(or(and(1,and(a,and(c,d))),and(1,and(a,ancl(e,f))))) 

This example has been specially chosen because its true minimization results in logic 

"false" and is independent of variables a, c, d, e and f. 

Each "min_str" clause has two parameters, one for the input, the other for the out-

put structure. There are also some corresponding 'mini' rules which are equivalent to 

"min_str" , but are not recursive. These clauses are used to prevent infinite loops. 

5.2.5 Rewrite Rules and True Minimization 

The approach taken to logic minimization in PCD can be summarized as; 
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(1) Avoid term expansion 

Any given logic expression is not expanded. Since only those conversions which 

either reduce or convert to equal size are considered. 

(2) Apply maximum reduction first 

By ordering the rules in order of maximal reduction, the first minimal which 

satisfies this transformation procedure is likely to be the best. 

This strategy avoids most of the computation required to obtain a true minimum. 

While it is possible for this strategy to provide a true minimal, it cannot be proven that a 

true minimum has been obtained. 

A true minimum can be obtained using Prolog's rewrite technique, but the method 

is not practical for any real size problem due to the computational explosion, and the pos-

sibility that recursive expansion will prevent successful termination. The extra computa-

tion arises due to term expansion, and the requirement to search for all minimal solutions 

to determine which is the true minimal. The reader is referred to [Bundy 83] chapter 7 

for a full explanation of the difficulties associated with this approach. 

5.3 Logic Circuit Conversion 

There are a number of different approaches to the problem of converting a logic net-

work from one family of gate types to another ([Merwin 67], [Asija 68]). In digital logic 

circuit design, conversion is required in two areas; 

(1) NAND or NOR Logic 

Often one of the final stages in logic design calls for the conversion of an expres-
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sion in AND , OR and NOT into an equivalent expression in NAND or NOR. It 

can be shown that any Boolean expression can be expressed in terms of NAND 

gates only, and also that these NAND gates can be expressed economically in 

MOS (Metal Oxide Semiconductor) Transistors. 

(2) Canonical Form 

A multi-level Boolean expression can be converted either into the sum of pro-

ducts or the products of sums. The standard or canonic form of these two forms 

is one in which each input variable appears in each of the mintenns or maxterms. 

The standard form is useful because delay is limited to two gates, and if two dif-

ferent Boolean expressions have the same standard form, then they must be 

equivalent. 

5.3.1 NAND/NOR Conversion 

The problem is to convert a circuit description based on Boolean operators (AND, 

OR and NOT) into NAND( or NOR ) based representation for the reasons previously out-

lined. Rewrite Rules can be applied here for the same reasons as with Logic Minimiza-

tion. The rule set is clearer, because there are fewer rules to apply at any step. Let us 

consider logic conversion to NAND based technology. The conversion rules are; 

Conversion Rules 

(1) and(A,B) -> not(nand(A,B)) 
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(2) or(A,B) -> nand(not(A),not(B)) 

(3) not(not(A)) -> A 

(4) nand(A) -> nand(A) 

For a circuit consisting of basic gate elements such as AND or OR gates etc., the 

rewrite rules in Table 5-2 on the following page describe the transformation to 

NAND/NOT technology, which obey these rules. 

Usually, logic conversion to universal gate logic is considered in conjunction with 

logic minimization, but logic minimization can be required without logic conversion as is 

the case with a PLA implemented combinational logic function. The rules of conversion 

to universal gate logic have the tendency to expand the expression, and introduce more 

operators. Intuitively the sequence of logic minimization followed by universal logic 

gate conversion is not the most effective approach to the problem. 

If required, these two tasks can be combined together. If a single rule set is 

developed then only one computationally intensive search needs to be performed, and the 

result will have less redundancy. Additional rules can be introduced to simplify the 

resulting expression. 
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conv_ug(and(A,and(B,C)),not(nand(D,nancj(E,F)))) :- conv_ug(A,D), 
conv_ug(B ,E),conv_and(C,F). 

conv_ug(and(A,B),not(nand(C,D))) :- cony_ ug(A,C),conv_ug(B,D). 
conv_ug(or(and(A,B),and(C,D)),nand(nand(E,F),naiid(G,H))) :-conv_ug(A,E), 

conv_ug(B ,F),conv_ug(C,G),conv_ug(D,H). 
conv_ug(or(A,and(B,C)),nand(not(D),nand(B,F))) :-conv_ug(A,D),conv_ug(B,E), 

conv_ug(C,E). 
conv_ug(or(and(A,B),or(C,D)),nand(nand(E,F),nand(G,H))) :-conv_ug(A,E), 

conv_ug(B,F),conv_ug(C,G),conv_and(D,H). 
conv_ug(or(not(A),or(not(B),not(C))),nand(D,nand(E,F))) :- conv_ug(A,D), 

conv_ug(B ,E),conv.....nand(C,F). 
conv_ug(or(A,or(B,C)),nand(not(D),nand(not(E),not(F)))) :- conv_ug(A,D), 

conv_ug(B,E),conv_or(C,F). 
conv_ug(or(not(A),not(B)),nand(C,D)) :- conv_ug(A,C),conv_ug(B ,D). 
conv_ug(or(A,B),nand(not(C),not(D))) :- cony_ ug(A,C),conv_ug(B,D). 
conv_ug(not(and(A,and(B ,C))),nand(D,nand(E,F))) :- conv_ug(A,D), 

conv_ug(B,E),conv_and(C,F). 
conv_ug(not(and(A,B)),nand(C,D)) :- conv_ug(A,C),conv_ug(B,C). 
conv_ug(not(not(A)),B) :- conv_ug(A,B). 
conv_ug(not(A),not(B)) :- conv_ug(A,B). 
conv_ug(A,A) :- integer(A). 
conv_ug(A,A) :- atom(A). 
conv_ug(A,A) :- var(A),display('PCD error: structure not instantiated'),nl,abort. 
conv_ug(S ,Sug) :- S [C1assIList],cvt_ug_list(List,[] ,Uglist), 

Sug [ClasslUglist]. 
cvt_ug_list([] ,List,Uglist) :- rev(List,[],Uglist). 
cvt_ug_list([FfrstRest],Tmp,Ug1ist) :- cônv_ug(First,Ug), 

cvt_ug_list(Rest,[UglTmp] ,Uglist). 
cony _and(and(A,B),nand(C,D)) :- conv_ug(A,C),convand(B,D). 
conv_and(A,B) :- conv_ug(A,B). 
conv_or(or(A,B),(not(C),not(D))) :- conv_ug(A,C),conv_or(B,D). 
conv_or(A,B) :- conv_ug(A,B). 
convnand(or(not(A),not(B)),(C,D)) :- conv_ug(A,C),convug(B ,D). 
convnand(or(not(A),B),(C,not(D))) :- conv_ug(A,C),conv_ug(B ,D). 
conv_nand(A,B) :- conv_or(A,B). 

Table 5-2 Conversion Rules for NAND logic representation 
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CHAPTER 6 

Counting Circuits 

As a prelude to chapter 7, this chapter discusses the design 
constraints required for counters. This is provided first as 
background information and secondly to illustrate how 
constrained the design process is. 

6.1 Counting Circuits 

Counters are devices that count the number of times an event occurs. What we are 

concerned with here is recognizing the different types, how they differ, and how they are 

designed. Different types of counter circuits can be considered as branches of a counter 

tree as per Figure 6-1. 

The first branch at the top of the counter tree is the most significant - Asynchronous 

or Synchronous. They differ not in the sequence counted, but in how they are clocked. 

The synchronous type is clocked directly, while the asynchronous has clocking only 

applied to the first flip-flop, and thus changes of state ripple from one flip-flop to the next. 

The most general counters are the binary sequence count-by n or count-to n. The 

"count-by n" counts to n and resets, while the "count-to n" counts to n and must be 

reset before counting the sequence for a second time. Other common binary counters can 

be derived from these. For example a BCD (Binary Coded Decimal) counter counts from 

o to 9 and recycles, is a special case of a count-by n counter. Another example is a full 

modulo binary counter which counts from 0 to 15, and recycles. This counter also is a 
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SYNCHRONOUS] 

Binary 

Modulo Bcd Count by 

Sequence 

/,\ 
Grey Moebius Ring 

Johnson 

ASYNCHRONOUS] 

Sequence 

IF A  V 
Modulo Bad Count by Grey Moebius Ring 

Johnson 

Figure 6-1 Counter Tree Structure 

special case of a count-by n counter. All of these counter types can count in the forward 

direction (also known as Up counters) or reverse (also known as Down counters) or, 

reversible (ie both forward, and reverse depending in a reverse logic signal). 

There are other special sequence counters worthy of note. A grey code is a 

sequence where only one bit changes with each count. Then there are the shift counters. 

These are the Moebius or Johnson sequence, and the Ring and Switchtail counters. This 

sequence is listed in Table 6-1. 
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GreyCode Moebius Ring 

000 000 000 
001 100 001 
011 110 010 
010 111 100 
110 011 
111 001 
101 
100 

Table 6-1 Counter Code Sequences 

6.2 Designing Counter Circuits 

A counter circuit is a finite state machine. It has inputs, outputs and memory. 

Counter circuits should be designed considering the following design criteria. 

(1) REGULARITY 

A traditional minimization function, which strives for absolute absolute switch-

ing components reduction, is not suitable for VLSI design. For VLSI, circuit 

regularity is important to reduce silicon area required for wires. A large complex 

circuit which is regular can be a manageable design problem. This design cri-

terion produces circuits with serial pipeline communications, and counter circuits 

which are implemented with PLA's. 

(2) SPEED 

Fast counter circuits are often required to meet critical system timing 
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requirements. 

Asynchronous counter circuits are usually slower, and are more regular than a 

synchronous equivalent. This causes the designer to often have to trade-off cir-

cuit speed and area through reduced regularity. 

Synchronous Ring Counter, and Synchronous Switchtail Counter are fast 

counter designs. To be fast, the counter must respond in the shortest possible 

time before the occurrence of the next clock edge. This interval will determine 

the effective maximum clock speed for the counter design. The Synchronous 

B 

K -Q K -Qe  

J 

K --Q   

J 

clock pulse 

Figure 6-2 Synchronous Ring Counter 
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Ring counter is the fastest because it has no combinational logic to add to the 

delay caused by the flip-flop. Thus the maximum clock frequency is given by the 

following formula 

1 
f=   

propagation + setup time + strobe time 

(3) HARDWARE ECONOMY 

The desire for hardware economy leads to logic minimization. For VLSI design, 

silicon area minimization is a stronger requirement which leads to logic minimi-

zation. There can also be a trade-off between hardware economy and speed. A 

ripple counter can be implemented with flip-flop memory elements only, and is 

regular and economical, while a synchronous counter requires combinational 

logic gates to implement but can be clocked faster. 

(4) STABILITY 

Unstable counters are undesirable and result from poor design. They occur due to 

clocking too fast, or through unexpected reactions in the circuit design. If we 

consider the circuit in Figure 6-3 we can see how a simple circuit like this has 

instability. The stable condition is when X = 0, and Y = 0. When X changes to 1 

then not(Y) is 1, causing the output of the AND gate to go to 1. This will change 

the value of not(Y) to 0, which will cause the oscillation to continue. In a simple 

case this problem can be avoided through intuitive reasoning, but in a more corn-

Designing Counter Circuits 6.2 



75 

 0  

and 

Y 

Figure 6-3 Instability in a simple network 

X.-' Y 

plex circuit a Y-map or flow table must be used. For the example of Y=X.not(Y) 

the flow table is given in Figure 6-3. 

Horizontal movement in the map corresponds to changes in the input variable X, 

and vertical for Y. The energisation states (entries 'outside the boxes) define the 

operational state that the circuit must assume. Stable operation is achieved when 

the energisation and operation states are identical. Only one such state occurs in 

the above table; when X and Y are zero, The operation states are deduced from 

X,  9 
0 

Table 6-1 Flow Table 

.0 

0 

0 Y 
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the logical equations of the system. The equation is Y = X.not(Y). When X = 0 

then Y = O.not(Y) = 0. When X = 1 then Y = not(Y), ie the operation state is 

always not(Y). The Y values of the function are 0 for X = 0, and are plotted in 

the upper and lower left-hand cells. When X = 1 the operation state is always 

not(Y), giving the values in the right-hand cells which are opposite the Y values 

outside the cell. 

If initially Y = '1' and X = '0' the operation state is ' 0'. This becomes the new 

energisation state. Corresponding to this energisation state the operation state is 

0, and the system moves to the cell X,Y = 0,0. This is a stable operating state 

since the energisation and operation states are equal. The output will lock in this 

state. If X is now changed to ' 1', the operation state becomes' 1' and the state of 

the system moves to the cell defined by the energisation state X,Y = (1,1). This 

results in a new operation state of Y = 0, with the output oscillating between '0' 

and ' 1' as shown by the arrows on the table. When X is changed to '0', the net-

work always returns to its stable operating state with X,Y = (0,0). 

(5) RACE 

When flip-flops are changing, all kinds of false outputs can be produced due to 

the variation in speeds of the devices in the circuit. A ripple counter gets its 

name from the effect of its flip-flops as they change state. With clocked logic, 

these momentary glitches have no effect but with unclocked logic these glitches 

may or may not have set the flip-flop. This can cause unreliable behavior. Most 

circuit designs should not use unclocked logic especially for PRESET and 
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CLEAR. 

Race problems are often associated with asynchronous circuits, and waveform 

diagrams are useful to check for race problems. By exaggerating possible timing 

differences, possible race conditions can be examined. 

A simple rule developed to help avoid race problems is 

Never change more than one device in response to an asynchronous input 
signal 

(6) CLOCK SKEW 

Clock skew is caused by the delay in the propagation of clock signals throughout 

the circuit. For proper circuit operation, clock skew MUST be less than the 

minimum propagation delay minus the hold time. 
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CHAPTER 7 

Prolog Counter Design 

I have developed a Prolog based logic circuit design sys-
tem PCD (Prolog Counter Design) , which is not intended 
as a production logic design system, but rather as a vehicle 
to illustrate how logic programming techniques, imple-
mented in Prolog can be used for logic circuit design. 
PCD is also an experiment in the application of logic pro-
gramming to logic synthesis, where the domain of interest 
is MSI implemented counter circuits. Circuits are 
represented as Prolog data structures, and individual 
designs are created using sets of Horn clauses which guide 
the creation of the circuit. PCD can minimize and convert 
these circuits to universal NAND gate logic, and can per-
form rudimentary simulation of the circuit to confirm com-
pliance to design criteria. A listing of PCD appears in 
Appendix A at the end of this thesis. 

7.1 User Interface 

A simple user-interface for PCD was developed to provide an environment for the 

user to interact with PCD 

(1) On-line Help 

The user can request help for a listing of available commands, and a detailed 

explanation of what each does. Help information is stored in a separate file and is 

not read in until requested by the user. Each help information is represented as a 

"help rule" which matches if help is called concerning that item. This approach 

makes it easy to add additional help items. 

(2) Command Interpretation 
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A command interpreter is provided to check command syntax and report program 

errors. For each valid command there is an occurrance of the clause 

"interpret(X)" , where "X" is the command. For a command that is entered, 

it's syntax is checked by the clause interpret(X) to see if the command falls into 

any known structure. Each command option is tried. If no match occurs then the 

command always matches with the final rule definition, which echoes a message 

telling the user that that command is not understood. This approach allows the 

user to add additional commands to the program by adding in a new definition of 

interpret(X) while at the same time provides a simple command interpreter struc-

ture. 

(3) Design Storage 

A design can be created, modified and stored to a file, and recovered at a later 

stage. A design can be given a unique atomic name and subsequently manipu-

lated by that name. 

(4) File Management 

As a measure to improve the speed of PCD not all clausal definitions are read 

from disk when PCD is started. Thus PCD is able to start faster because only 

core clausal definitions are read in. When particular functions are called up for 

the first time, the file containing their definitions are read in, and those functions 

are invoked in the normal manner. This process does not require the user's initia-

tion, and as far as he is concerned, PCD operates with only one file. 

(5) Error Messages 

User Interface 7.1 
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PCD uses uses a standard error reporting technique which tells where in the pro-

gram the error is coming from and why. In addition compound error message 

reporting is provided through failure backtracking of the goal. The combination 

of error messages provided, if programmed correctly, can provide valuable addi-

tional insight into the cause of the problem to the user. 

7.2 Limitations of a Prolog Interface 

A user interface which is written solely in Prolog suffers from some limitations of 

the environment provided by C Prolog programs. In the development of the user inter-

face for PCD the following limitations were encountered. 

(1) EOT marker 

After every response by the user, a dot must be entered to signify EOT. So, a 

command at the PCD prompt would look like; 

==> save(count23). 

(2) Starting PCD 

To initiate a PCD design session requires two operations. First the Prolog inter-

preter must be started, and second the Prolog program itself must be read into 

memory. Prolog's saved states , which allow a Prolog interpreter to load a Pro-

log saved state, does not fully solve this problem. First, "saved states" in Prolog 

are not guaranteed compatible between revision modifications to the Prolog inter-

preter. In addition there is no simple technique which can maintain an initial 
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"saved state" 

(3) Reading '?' and'' 

Prolog's built in function "read(X)" is unable to read either a blank input or a 

question mark. Thus a novice user who enters a question mark or a carriage 

return, would not get any worthwhile response. 

7.3 Selecting a Counter Type 

The process of matching a circuit to requirements occurs at the early stages of func-

tional design. This "matching" process can be considered as a "searching" process 

from available circuit types. This searching for the right circuit type can be imple-

mented directly using Prolog's depth first search techniques. Searching can be either 

implicit (depth first) or, explicit (breadth first) where the search is guided by circuit 

specifications entered by the user. In both search strategies, the search is also guided by 

the order in which the circuit options are placed in the database. At each node of the 

search tree, Prolog checks the first definition (usually represented as the left leg of the 

search tree) before checking alternative definitions (branches of the search tree). At each 

node of the search tree, the circuit specifications make only one leg of the search space 

valid. "Preferred circuits" come into effect when there are more than one branch which 

is valid using the circuit specifications. "Preferred circuits" is the bias which causes the 

best circuit to be returned when more than one circuit meets the circuit specifications 

entered by the user. 

PCD requires the user to give a list of counter circuit specifications. Table 7-1 lists 
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and describes PCD 

Specification 

check 
clear 

commands 
convert(design) 
counter 
designs 
exit 
fan 
get(design) 
help (item) 
min(design) 
print(design) 
save(design) 
shell 
simulate(design) 

Description 

Check the syntax of a circuit for errors 
Removes user counter circuit specifications 
Lists on terminal all valid commands 
Convert circuit 'design' to universal gate logic 
Design a counter 
Lists all designs stored in memory and ifie 
Exit from the PCD environment 
Determine maximum fan in of circuit 
Retrieves 'design' from file 
Displays help information on 'item' 
Evaluate and display minimum for circuit 'design' 
Print to terminal the circuit 'design' 
Writes the circuit 'design' to file 
Create a Unix shell 
Simulate a design 

Table 7-1 PCD Commands 

To design a counter the user enters "counter." at the command prompt as follows; 

==> counter. 

PCD then responds asking for a list of specifications. At this prompt the user can enter 

either a special command such as "help" , or "exit" or a valid circuit specification. If 

"help" is entered, then a list of valid specifications with brief descriptions is printed, or 

if "exit" is entered, then the design process is, terminated. When the list of 

specifications has been entered, it is checked for syntax before any specifications are 

added to the database. This syntax checking compares the specifications entered by the 

user with a list of known specification formats. This verifies that all specifications are 

known to the system and points out early if there are any typographical errors. If all the 
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specifications are valid, then they are added to the database. Then they are checked 

against known conflicts rules. PCD contains a rule set of known conflicts caused by 

improper use of specification combinations. If any of these rules match then an error is 

printed, and the selection process stops. To illustrate how these rules are implemented in 

PCD , let us consider one known conflict in the use of the "binary" and "moebius" 

specifications. These specifications cannot be used together because they refer to dif-

ferent sequences that one counter could not count. To catch this if it should occur, the 

following rule exists. When the conflict condition occurs the specifications "binary" 

and "moebius" would be in the Prolog database, and so the error flag "invalid_spec" 

would be added to the database, and an error message indicating the problem is printed at 

the terminal. 

check :- binary,moebius, 

asserta(invalid_spec), 

write('Error: binary and moebius spec conflict'), !,fail. 

Note the use of cut and fail to force the use of other definitions of 'check'. A final 

definition of 'check' always succeeds. The spec invalid_spec is used to prevent any 

searching with that specification combination. 

The user may not have supplied sufficient specifications to allow PCD to find a 

counter circuit type. In this case additional specifications are required to narrow down 

the choice. I have chosen to add rule sets which checks for specifications which do not 

allow PCD to find at least one path from root to leaf in the search tree. For example, if 

"modulus" is specified, but not "binary" , then the following clauses will catch this, 
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and in this instance make the necessary changes to fix the problem. 

check binary,modulus,counter(T). 

check :- modulus,asserta(binary), 

display('Warning: asserting spec binary'). 

PCD is ready now to perform the search. The following clauses illustrate how part of the 

search tree is represented in PCD. 

select(T) :- sync(T). 
select(T) :- async(T). 
async(T) :- binary,async_binary(T). 
async(T) :- ring,async_ring(T). 
async(T) :- shift,async_shift(T). 

sync(T) :- binary,sync_binary(T). 
sync(T) :- ring,sync_ring(T). 
sync(T) :- shift,sync_shift(T). 

Here the search is controlled by the ordering of the clauses and instantiation of 

specifications. The depth first search here is directed to search the family of synchronous 

counters first. Only if no synchronous counter is matched will Prolog backtrack and try 

asynchronous counters. The first branch of synchronous counters that are checked are 

binary counters. This process of narrowing the definition continues until a unique type of 

counter circuit is defined. When a unique counter is defined then the Prolog variable 

"T" is instantiated to the name of that circuit type. If no unique counter is found, then 

the "T" variable is instantiated to "no—match" 
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7.4 Circuit Synthesis 

PCD has clauses for logic synthesis. When the counter type is instantiated to a 

known counter type, PCD will build a circuit which conforms to the specifications. An 

important feature of the approach is that PCD generates a counter circuit meeting 

specifications rather than merely retrieving a previously stored circuit! PCD performs 

the logic synthesis using groups of Prolog clausal statements, one for each circuit type. 

These clauses rely on recursive calling to create the circuit as a Prolog data structure. 

The following two examples illustrate how logic synthesis is performed. 

7.4.1 Example 1 - Synchronous Ring Counter 

Consider that a design for a Synchronous Ring counter is required. This circuit is to 

be implemented using two MSI J-K flip-flops. To design this counter we call up PCD as 

follows. Note that user input is shown in bold type. 

% prolog 

C-Prolog version 1.5 

I ?- [pcd]. 

Prolog Circuit Design 

(type "commands." for listing of available commands) 

Version: April 14 1987 

"counter" to design a counter. 
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=> counter. 

counter consulted 10764 bytes 3.1667 sec. 

Please enter Counter Circuit Specifications 

Enter "help" for available options >> 

The user can access help information, or go straight to entering the specifications which 

will guide PCD in its search for a counter circuit type. An appropriate choice here is 

"ff(2)" to indicate that the circuit is implemented with 2 flip-flop or state variables, 

"ring" to indicate that a ring sequence is required, and finally "sync" to indicate that 

the counter is synchronous. The entry at the terminal would look like. 

Enter "help" for available options >> ff(2),ring,sync. 

PCD first checks the syntax of the specification entry. If valid then it prints ou the mes-

sage 

Counter circuit Specification syntax check ok 

Then PCD checks known specification conflict rules, and if no conflict is found, the cir-

cuit is searched for on the counter tree. In this case no match to any conflict rule is found 

and the search proceeds. With the given specifications, the search matches synchronous 

ring counter as the correct circuit type, and that circuit is created using recursive rules for 

that counter type. To synthesis this counter, PCD used just the following three clauses. 

counter('synchronous ring',synqjing(List)) :- ff(N),Next is (N-i), 
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ring(Next,(jk_ff('a' ,not(' a'),clk)),List). 
ring(O,L,L). 
ring(N,Tmp,List) :- Next is (N- 1),Last is (N-i-1),alpha(Last,Letter), 

ring(Next,(jk_ff(Letter,not(Letter),clk),Tmp),List). 

The following Prolog trace illustrates how these clauses and some additional utility 

clauses are used to build up the circuit; 

(231) 11 Call: counter(synchronous ring,_33498)? 
(232) 12 Call: ff(_217)? 
(232) 12 Exit: ff(2) 
(233) 12 Call: _33507 is 2-1? 
(233) 12 Exit: 1 is 2-1 
(234) 12 Call: ring(ljk_ff(a,not a,clk),_216)? 
(235) 13 Call: _33533 is 1-1? 
(235) 13 Exit: 0 is 1-1 
(236) 13 Call: _33534is1+1? 
(236) 13 Exit: 2 is 1+1 
(237) 13 Call: alpha(2,_224) ? s 
> (237) 13 Exit: alpha(2,b) 
> (238) 13 Call: ring(0,(jk_ff(b,not b,clk),jk_ff(a,not a,clk)),_216)? 
(238) 13 Exit: ring(0,(jkjf(b,not b,clk)jk_ff(a,not a,clk)), 

(jk_ff(b,not b,clk),jk_ff(a,not a,clk))) 
(234) 12 Exit: ring(1,jk_ff(a,not a,clk),(jk_ff(b,not b,clk), 

jkjf(a,not a,clk))) 
(231) 11 Exit: counter(ynchronous ring,sync_ring((jk_ff(b,not b,clk), 

jk_ff(a,not a,clk)))) 

The call to the clause counter causes a call to to determine the number of flip-

flops required for the circuit. ff(N) returns "N" as equal to 2, which assigns variable 

"Next" as 1 in the call to ring. There are two definitions of ring , where the first is used 

as a terminating condition and is always checked first, and the second, which is recur-

sively called for each flip-flop required in the ring counter. The actual circuit structure is 

built up as the clauses exit from the terminating clause. 

7.4.2 Example 2 - Synchronous Count-by 23 Counter 
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As a more comprehensive example, consider the, design of a synchronous counter 

which is to count a binary sequence to decimal equivalent "23" and then reset. It is pos-

sible to design such a count-by n counter using the same set of Horn clauses. For this 

example the user specifications entered would look like 

Please enter Counter circuit specifications 

Enter "help" for available options >> count(23),clock(28). 

4 count(23)" tells PCD that the counter must count 0..23 and "clock(28)" sets the clock 

cycles per micro-second. The concept here is that this clocking requirement will set the 

overall style of the counter ie with a fast clock speed forcing the use of a synchronous 

style. 

To build a Synchronous Count-by 23 counter, PCD uses the following clauses. 

counter('synchronous binary count by',Str) :-
count(D),binary(D,[]3itlBinary_list]),number_ff(D,N), 
process_true(N,B,Reset_term),process_false(N,B,Set_term), 
Next is (N - 1),form....and(N,Anded_term), 
do_eqtn.j(Set_term,Anded..term,Eqtnj), 
do_eqtn_k(Reset_term,Anded_term,Eqtnk), 
reset(Next,B,Binary_list,[jkjf(Eqtnj,Eqtnk)],Srr,Set_term,Reset_term). 

reset(O,,,List,Str,_,J :- Str =.. [syncjinctIList]. 
reset(P,B,[BitlBinaryjist],Tmp,Str,Set_term,Resetjerm) :-

Next is (P - 1),form_and(P,Anded_term), 
do_eqtn.j(Set_term,Anded_term,Eqtnj), 
do...eqtn_k(Resetjerm,Andedjerm,Eqtnk), 
reset(Next,B,Binary_list,[jk_ff(Eqtnj,Eqtnk)ITmp] ,Str,Set_term,Reset_term). 

do_eqtnj(Set_term,Andd_term,and(AndecI_term,Set_term)). 
do_eqtn_keset_term,Anded_term,or(Mded_term,Reset term)). 

process _false(O,[},"). 
process_false(1,[1],not('a')). 
process_false(1,[O],('a')). 
processjalse(P,[BitBinary_list],and(B1,B2)) :- Next is (P - 1), 

alpha_bit_false(Bit,P,B1),process_false(Next,Binary_list,B2). 
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process_lrue(O,[],"). 
process_true(1,[1},('a')). 
processjrue(1,[O] ,not('a')). 
process_thie(P,[BitIBinry_list],and(B 1,132)) :- Next is (P - 1), 

alphabit_true(Bit,P,B1),process_true(Next,Binary_list,B2). 

alpha_  bit _false(1,P,not(B)) :- alpha(P,B). 
alpha_ bitjalse(O,P,B) :- alpha(P,B). 
alpha_bit_true(1,P,B) :- alpha(P,B). 
alpha_bit_true(O,P,not(B)) :- alpha(P,B). 

The design approach is based on the recognition that at the end of the counting sequence 

the flip-flops must be reset, and that during the counting, a flip-flop is toggled when the 

flip-flops to the right are all l's. A false and a true term are formed to ensure the reset. 

An anding equation is formd to ensure the toggling, and these equations are ORed 

together to form the input equation to the flip-flop. The following Prolog trace gives the 

calling sequence as the counter is being designed. Note, that to reduce the length of the 

trace, some calling sequences have been "jumped" through. 

Call: design_counter(synchronous binary count by)? 
Call: counter(synchronous binary count by,_33462)? 
Call: count(_33472)? 
Exit: count(23) 
Call: binary(23,L13 1L.132])? leep 
Exit: binary(23,[1,O,1,1,l]) 
Call: number_ff(23,_133) ? leep 
Exit: number_ff(23,5) 
Call: process_lrue(5,_33473,_33474)? 

[Sub-calls omitted] 

Exit: process_true(5,[1,1,1,1,1],and(e,and(d,and(c,and(b,a))))) 
Call: process_false(5,[1,1,1,1,1],_33475)? 

[Sub-calls omitted] 

Exit: process_false(5,[1,1,1,1,1],and(not e,and(not d,and(not c,and(not b,not a))))) 
Call: _33476 is 5-1? 
Exit: 4 is 5-1 
Call: form_and(5,_33477)? 
Exit: form_and(5,and(a,b,c,d)) 
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Call: do..eqtn.j(and(not e,and(not d,and(not c,and(not b,not a)))),and(a,b,c,d),_134)? 
Exit: do_eqtnj(and(not e,and(not d,and(not c,and(not b,not a)))),and(a,b,c,d), 

and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a)))))) 
Call: do_eqm_k(and(e,and(d,and(c,and(b,a)))),and(a,b,c,d),_135)? 
Exit: do_eqtn_k(and(e,and(d,and(c,and(b,a)))),and(a,b,c,d),or(and(a,b,c,d), 

and(e,and(d,and(c,and(b,a)))))) 
Call: reset(4,[1,1,1,1,1],[0,1,1,l] ,[jk_ff(and(and(a,b,c,d),and(not e,and(not d, 

and(not c,and(not b,not a))))),or(and(a,b,c,d),and(e,and(d,and(c,and(b,a))))))],_33462, 
and(not e,and(not d,and(not c,and(not b,not a)))),and(e,and(d,and(c,and(b,a)))))? 

[Sub-calls omitted] 

Exit: reset(4,[1,1,1,1,1],[0,1,1,1],[ 
jk_ff(and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c,d),and(e,and(d,and(c,and(b,a)))y 
syncjin_ct( 
jk_ff(and(1,and(not e,and(not d,and(not c,and(not b,not a))))),or(1,and(e,and(d,and(c,and(b,a)))))), 
jk_ff(and(a,and(not e,and(not d,and(not c,and(not b,not a))))),or(a,and(e,and(d,and(c,and(b,a)))))), 
jk_ff(and(and(a,b),and(not e,and(not d,and(not c,and(not b,not a))))),,or(and(a,b),and(e,and(d,and(c,and(b,a)))))), 
jk_ff(and(and(a,b,c),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c),and(e,and(d,and(c,and(b,a)))))), 
jk_ff(and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c,d), 
and(e,and(d,and(c,and(b,a))))))),and(not e,and(not d,and(not c,and(not b,not a)))), 
and(e,and(d,and(c,and(b,a))))) 
Exit: counter(synchronous binary count by,sync_bin...ct( 
jk_ff(and(1,and(not e,and(not d,and(not c,and(not b,not a))))),or(1,and(e,and(d,and(c,and(b,a)))))), 
jkff(and(a,and(not e,and(not d,and(not c,and(not b,not a))))),or(a,and(e,anci(d,and(c,and(b,a)))))), 
jk_ff(and(and(a,b),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b),and(e,and(d,and(c,and(b,a)))))), 
jkff(and(and(a,b,c),and(not e,and(not d,and(not c,and(not b,not a))))),or(ancl(a,b,c),and(e,and(d,and(c,and(b,a)))))), 
jk_ff(and(and(a,b,c,d),and(not e,and(not d,and(not c,and(not b,not a))))),or(and(a,b,c,d),and(e,and(d,and(c,and(b,a)))y 
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7.5 Logic Minimization 

Logic minimization is provided as a general purpose combinational logic reduction 
tool. Its design has been guided by the desire to provide logic minimization with reason-
able processing time, and is implemented using Prolog re-write rules as described in sec-
tion 5.2.3. To illustrate how these rules are used in PCD , let us consider the minimiza-
tion of (1+b+c).(1+d) using PCD. The following is a minimization session with PCD. 

% prolog 
C-Prolog version 1.5 
I ?- [Pcd]. 

Prolog Counter Design 
(type "commands." for listing of available commands) 
Version: April 14 1987 

=> get(exl). 
Circuit structure retrieved 

=> print(exl). 
print consulted 3092 bytes 0.866666 sec. 
cxl with input No 1; 
((1+b+c).((1+d))) 

=> min(exl). 
min consulted 4176 bytes 1.1 sec. 
cxl with input No 1; 
1 

Do you wish to store this NEW design yin> 
Y. 
Enter design name (atom) min_exi. 
==> designs. 
Designs currently in memory 
min_exi 
cxl 

Designs saved to file; 
other—design 
==> exit. 

{ Prolog execution halted I 

The following C Prolog trace shows the rules which are being called to perform the 

minimization. 

Call: min_str(exl(and(or(1,b,c),not or(1,d))),_33376)? 
Call: integer(exl(and(or(1,b,c),not or(1,d))))? 
Fail: integer(exl(and(or(1,b,c),not or(1,d)))) 
Call: atom(exl(and(or(1,b,c),not or(1,d))))? 
Fail: atom(exl(and(or(l,b,c),not or(1,d)))) 
Call: var(exl(and(or(1,b,c),not or(1,d))))? 
Fail: var(exl(and(or(1,b,c),not or(1,d)))) 
Back to: min_str(exl(and(or(1,b,c),not or(1,d))),_33376)? 
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Call: exl(and(or(1,b,c),not or(1,d)))=..L2161 217] ? 
Exit: exl(and(or(1,b,c),not or(1,d)))=..[exl,and(or(1,b,c),not or(1,d))] 
Call: min_ list_str([and(or(1,b,c),not or(1,d))],[],_218) ? 
Call: min_str(and(or(1,b,c),not or(1,d)),_231)? 
Call: min_str(or(1,b,c),_234)? 
Call: integer(or(1,b,c))? 
Fail: integer(or(1,b,c)) 
Call: atom(or(1,b,c))? 
Fail: atom(or(1,b,c)) 
Call: var(or(1,b,c))? 
Fail: var(or(1,b,c)) 
Back to: min_str(or(1,b,c),_234)? 
Call: or(1,b,c)=..L2401_241]? 
Exit: or(1,b,c)=..[or,1,b,c] 
Call: minjist_str([1,b,c] ,[],_242)? 
Call: min_str(1,_255)? 
Call: integer(l) ? 
Exit: integer(1) 
Exit: min_str(1,1) 
Call: min_ list_str([b,c],[1],_242)? 
Call: min_str(b,_261)? 
Call: integer(b)? 
Fail: integer(b) 
Call: atom(b)? 
Exit: atom(b) 
Exit: min_str(b,b) 
Call: min_ list_str([c],[b,1],_242)? 
Call: min_str(c,_269)? 
Call: integer(c)? 
Fail: integer(c) 
Call: atom(c)? 
Exit: atom(c) 
Exit: min_str(c,c) 
Call: min_list_str([],[c,b,1],_242) ? 
Call: rev([c,b,1],[],_242)? leep 
Exit: rev([c,b,1],[],[1,b,c]) 
Exit: min _list_str([] ,fc,b,1],[1,b,c]) 
Exit: minlist_str([c],[b,1],[1,b,c]) 
Exit: min__list_str({b,c],[1],[1,b,c]) 

Exit: min _ list 
,.str([1,b,c],[],{1,b,c]) 

Call: _234=..[or,1,b,c]? 
Exit: or(1,b,c)=..[or,1,b,c] 
Exit: min_slr(or(1,b,c),or(1,b,c)) 
Call: min_str(not or(1,d),_235)? 
Call: minstr(or(1,d),_297)? 
Exit: min_str(or(1,d),1) 
Exit: minstr(not or(1,d),not 1) 
Call: minl(and(or(1,b,c),not 1),_231) ? 
Exit: minl(and(or(1,b,c),not 1),and(or(1,b,c),not 1)) 
Exit: min_str(and(or(1,b,c),not or(1,d)),and(or(1,b,c),not 1)) 
Call: min_list.str(U,{and(or(1,b,c),not 1)],_218) ? 
Call: rev([and(or(1,b,c),not 1)],[],_218)? 
Call: rev([],{and(or(1,b,c),not 1)], 218)? 
Exit: rev([],[and(or(1,b,c),not 1)],[and(or(1,b,c),not 1)]) 
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Exit: rev([and(or(1,b,c),not 1)],[],{and(or(1,b,c),not 1)J) 
Exit: min_list_sir([],[and(or(1,b,c),not 1)],{and(or(1,b,c),not 1)]) 

Exit: min _ list _str([and(or(1,b,c),not or(1,d))],ft[and(or(1,b,c),not 1)]) 
Call: _33376=.. [exl,and(or(1,b,c),not 1)]? 
Exit: exl(and(or(1,b,c),not 1))=..[exl,and(or(1,b,c),not 1)] 
Exit: min._str(exl(and(or(1,b,c),not or(1,d))),exl(and(or(1,b,c),not 1))) 

7.6 NAND Logic Adoptation 

PCD has a set of logic clauses which convert a circuit structure defined using AND 

or OR gates into a logically equivalent circuit which is built using only NAND and NOT 

gates. The same Prolog re-write rules that were used for logic minimization are applied 

to the logic conversion problem. The use of logic conversion is illustrated in the PCD 

session in 7.8. 

7.7 Functional Simulation 

PCD is provided with a set of logic clauses to perform logic simulation at the gate 

level, if PCD had a clausal circuit definition, then logic simulation would have been 

almost directly obtainable from the definition of the circuit. These clauses illustrate that 

it is possible to obtain logic simulation from a data structure represented circuit using 

Prolog, although not as elegantly. 

The approach taken is to first determine all the signals of the circuit and the values 

of all variables. Then using the axiom values for the "known" gates, the circuit can be 

evaluated. 

This approach is used to simulate synchronous and asynchronous counters by using 

the convention of letters "a" , "b" etc., to designate the output from the circuit on the 

previous pulse. This works fine provided input signals to a one output circuit are not 
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named "a" or, "a" or "b" for a two output circuit. 

7.7.1 Functional Simulation Example 

Let us consider the functional simulation of a synchronous modulus binary counter, 

which counts from 0 to 7. The circuit definition for this counter is as follows 

sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)) 

A simulation of that circuit would look as follows; 

Prolog Counter Design 
(type "commands." for listing of available commands) 
Version: May 15 1987 

=> get(sim). 
Circuit structure retrieved 

==> print(sim). 
print consulted 3400 bytes 0.966668 sec. 
sync.-bin—mod input 1; 
i-K flipflop with J input 
1 
K input; 
1 
Clock input; clk 

sync—bin—mod input 2; 
i-K flipflop with J input; 
a 
K input; 
a 
Clock input; clk 

sync _ bin _mod 
input 3; 

J-K flipflop with J input 
(a.b) 
K input; 
(a.b) 
Clock input; clk 

sync_  bin _modlnput 4; 
i-K flipflop with J input 

(a.b.c) 
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K input; 

(a.b.c) 

Clock input; cik 

=> simulate(sim). 
simulate consulted 7644 bytes 2.36667 sec. 

Warning: Circuit has fixed " 1" input value 
Warning: Circuit has fixed 1" input value 
What value should elk have? 0. 
What value should a have? 0. 
What value should b have? 0. 
What value should c have ? 0. 
Circuit state is 
[d,c,b,a] 
[0,0,0,1] 
Do you wish to continue the simulation ? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[0,0,1,0] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[0,0,1,1] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[0,1,0,0] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[0,1,0,1] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
(d,c,b,a] 
[0,1,1,0] 
Do you wish to continue the simulaiion ? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[0,1,1,1] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[1,0,0,0] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[1,0,0,1] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
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[1,0,1,0] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[1,0,1,1] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[1,1,0,0] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[1,1,0,1] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[1,1,1,0] 
Do you wish to continue the simulation? <y/n>. y. 
Circuit state is 
[d,c,b,a]] 
[1,1,1,1] 
Do you wish to continue the simulation ? <y/n>. y. 
Circuit state is 
[d,c,b,a] 
[0,0,0,0] 
Do you wish to continue the simulation ? <y/n>. n. 
Simulation Concluded. 

Appendix B contains a listing of the Prolog trace through this simulation, and shows 

the calling sequence to perform the simulation. 

7.8 PCD Session 

The following design session illustrates how a variety of design activities would be 

performed using PCD. 

% prolog 
C-Prolog version 1.5 
I ?- [pcd]. 
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Prolog Counter Design 
(type "commands." for listing of available commands) 
Version: May 18 1987 
=> commands. 

The following are a list with a brief description of commands available within PCD. 

check(design) 
clear 
commands 
convert(design) 
counter 
designs 
exit 
fan(design) 
get(design) 
help 
min(design) 
print(design) 
save (design) 
shell 
store(design) 
simulate(design) 

Performs a syntax check on the definition, of "design". 
Remove specs & circuits 
Lists all available commands (this help). 
Generates NAND circuit representation. 
Design a counter. 
Lists all designs in memory & file. 
Terminates the current PCD session. 
Calculate maximum fan in in circuit "design". 
Retrieves the named design from file. 
Gives general help information. 
Generates a logic minimal representation of the named design. 
Displays the design on the terminal. 
Saves the design to file. 
Create a C- shell session with PCD. 
Stores a particular design in memory. 
Simulates a circuit represented by thb named design. 

=> help(clear). 
heip_lib consulted 6464 bytes 0.800002 sec. 

This command removes any design stored in memory, and also clears all counter circuit 
specifications. 

=> help(switchtail). 

A Switchtail counter is a modification of a ring counter. In the Switchtail, the interconnections 
between FF's is the same, but the connections at the end of the cas- cade of flip-flops are reversed. 

=> counter. 
counter consulted 10764 bytes 3.16667 sec. 
Please enter Counter Circuit Specifications 
Enter "help." for available options >> help. 

count(n) :Count from zero to n 
grey :Count greycode sequence 
shift :Count a shift sequence 
bed :Count 0 .. 9 and reset 
modulo :Count 0.. 15 and reset 
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ff(n) :Number of flip flops 
clock(n) :Circuit clock speed nSec 
delay(n) :Max Circuit Timing delay = n 

The following are example entries: 
"tcount(23),clock(28)." 
ttshift,ff(3),delay(27)." 
Please enter Counter Circuit Specifications 
Enter "help." for available options >> count(23),clock(28). 
Counter Circuit Specification syntax check OK 

print consulted 3092 bytes 0.933333 sec. 

sync_  bin _ct input 1; 
3-K flipflop with 3 input; 

K input; 
(1+(e.d.c.b.a)) 

sync—bin _ct input 2; 
3-K flipflop with I input; 
(a.(e).(d):(c):(b):(a)) 
K input; 
(a+(e.d.c.b.a)) 

sync _ bin _ct input 3; 
3-K flipflop with J input; 
((a.b).(e):(d):(c):(b).'(a)) 
K input; 
((a.b)+(e.d.c.b.a)) 

sync_bin_ct input 4; 
3-K flipflop with I input; 

K input; 
((a.b.c)+(e.d.b.c.b.a)) 

sync_bin_ct input 5; 
J-K flipflop with I input; 
((a.b.c.d).(e):(d):(c):(b):(a)) 
K input; 
((a.b.c.d)+(e.d.c.b.a)) 
Do you wish to store this NEW design y/n > y. 

Enter design name (atom) ct23. 

=> min(ct23). 
min consulted 4136 bytes 1.05001 sec. 

sync_bin_ct input 1; 
3-K flipflop with J input; 

K input; 
1 
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sync_bin_ct input 2; 
3-K flipflop with 3 input; 

K input; 
(a+(e.(d.(c.(b.a))))) 

sync_bin_ct input 3; 
3-K flipflop with 3 input; 
((a.b).((e).((d).((e).('(b):(a)))))) 
K input; 
((a.b)+(e.(d.(c.(b.a))))) 

sync _ bin _ct input 4; 
3-K ffipflop with 3 input; 

K input; 
((a.b.c)+(e.(d.(c.(b.a))))) 

sync_bin_ct input 5; 
3-K flipflop with 3 input; 
((a.b.c.d).((e).((d).('(c).((b):(a)))))) 
K input; 
((a.b.c.d)+(e.(d.(c.(b.a))))) 
Do you wish to store this NEW design yin> y. 

Enter design name (atom) min—ct23. 

-> designs. 
Designs currently in memory 
min_ct23 
ct23 

Designs saved to file; 
ct23 
==> get(sim). 
Circuit structure retrieved 

=> print(sim). 
print consulted 3400 bytes 1.11667 sec. 
sync_bin_mod input 1; 
3-K flipflop with 3 input; 
1 
K input; 
1 
Clock input; elk 

sync_bin_mod input 2; 
3-K flipflop with 3 input; 
a 
K input; 
a 
Clock input; elk 

sync—bin—mod input 3; 
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J-K fiipflop with J input; 
(a.b) 
K input; 
(a.b) 
Clock input; cik 

Sync_bin_mod input 4; 
J-K flipfiop with 3 input; 
(a.b.c) 
K input; 
(a.b.c) 
Clock input; cik 
=> shell. 
%Is 

check 
check.BAK 
check.CKP 
convert 
convert.BAK 
convert.CKP 
counter 
counter.BAK 
counter.CKP 
ct23.select.iTace 
ct23.syn.trace 
ct23.syn.lrace.BAK 
ct23.syn.trace.CKP 
ct23.trace.BAK 
ct23.trace.CKP 
designs 
doe_files 
doc_files.BAK 
fan 
fan.BAK 
fan.CKP 
help 

% date 
Mon May 18 18:22:02 
% ruptime 

help-lib 
help_lib.BAK 
help_lib.CKP 
mm 
min.BAK 
min.session 
min.session.BAK 
min.session.CKP 
min.session.trace sim.session,BAK 
min.session.trace.BAK sim.session.CKP 
ped 
pcd.BAK 
pcd.CKP 
pcd.log 
pcd,log.BAK 
pcd.log.CKP 
pcd.session 
pcd.session.BAK 
pcd.session.CKP 
print 
prinLBAK 
print.CKP 

MDT 1987 

cs-apollo-a up 20+08:28, 1 user, load 0.00, 0.00, 0.00 
cs-sun-fsa up 7+10:56, 0 users, load 0.00, 0.00, 0.00 
cs-sun-fsb up 7+10:56, 0 users, load 0.00, 0.00, 0.00 
enel-fusion up 20+04:46, 0 users, load 0.00, 0.00, 0.00 
enel-sun2-c up 9+21:45, 0 users, load 0.04, 0.00, 0.00 
enel-sun3-a up 29+18:24, 0 users, load 0.03, 0.00, 0.00 
enel-sun3-d up 4+10:01, 0 users, load 0.00, 0.00, 0.00 
ene1750 up 6+07:03, 1 user, load 1.02, 1.09, 1.07 
engg-sun3-a up 3+05:34, 1 user, load 0. 15, 0.20, 0.00 
engg-sun3-b up 3+05:31, 0 users, load 0.04, 0.00, 0.00 
evdsvax up 9+21:45, 1 user, load 0.08, 0.08, 0.09 
pepr up 14+02:01, 1 user, load 0.95, 0.53, 0.16 

piped 
read in 
ring.trace 
ring.trace.BAK 
s.trace 
sim.circuit 
sim.circuit.BAK 
sim.session 

sim.trace 
sim.trace.BAK 
sim.trace.CKP 
simulate 
simulate.BAK 
simulate.CKP 
t.CKP 
tmp 
typescript 
typescript.BAK 
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ssgvax up 9+21:45, 0 users, load 0.01, 0.03, 0.04 
vaxa up 6+07:15, 0 users, load 1.85, 1.71, 1.92 
vaxb up 7+10:47, 7 users, load 1.31, 1.30, 1.42 
vaxc up 3+04:57, 0 users, load 0.02, 0.03, 0.02 
vaxd up 3+10:22, 0 users, load 0.00, 0.02, 0.03 

%'D 

=> min(sim). 
min consulted 4216 bytes 1.13333 sec. 
Sync_bin_mod input 1; 
J-K flipflop with 3 input; 
1 
K input; 
1 
Clock input; elk 

sync—bin—mod input 2; 
3-K flipflop with 3 input; 
a 
K input; 
a 
Clock input; elk 

sync_bin_mod input 3; 
3-K flipflop with 3 input; 
(a.b) 
K input; 
(a.b) 
Clock input; elk 

sync_bin_mod input 4; 
3-K flipflop with 3 input; 
(a.b.c) 
K input; 
(a.b.c) 
Clock input; elk 
Do you wish to store this NEW design yin> n. 

Warning: circuit not stored 

=> clear. 
Counter specs cleared 

=> exit. 

[Prolog execution halted J 
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CHAPTER 8 

Summary & Conclusions 

In this chapter, important points that have been brought 
out during the thesis are summarized. Concluding remarks 
present a point form summary of the major arguements in 
favour of a logic programming approach to logic design. 

8.1 Summary 

In this thesis, I have described various logic programming techniques for digital 

system design. Chapter one summarized the current state of CAD design system. In 

describing these systems, the reader is introduced to the need for more intelligent CAD 

design systems which actively encourage the formulation of better designs. 

In chapter two, the circuit design technique called "logic synthesis" was introduced as a 

circuit design approach which is most appropriate for logic programming. 

Chapter three introduced and justified the use of Prolog as a clausal logic programming 

language. Then chapter four explored circuit storage and manipulation in Prolog. 

Chapter four clearly indicated the profound impact that representation has on the types of 

manipulations that can be performed. Chapter five described logic minimization and 

conversion techniques using Prolog re-write rules. In chapter five it was shown that 

when a Prolog rewrite rule based logic minimization system is employed, it is important 

that the application of the rules is controlled so that the search for the logic equivalent 

minimal expression is obtained, without risk of recursion or computational explosion. 
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Chapter six served to introduce the design criteria for counters, to form the basis for 

the experimental system described in chapter seven. Chapters seven concluded the thesis 

with a demonstration of a counter logic design system, which is used to illustrate the 

techniques discussed in the thesis. This system, written in Prolog, is called Prolog 

Counter Design (PCD), and is listed in Appendix A. 

While the use of logic programming for circuit design is new, promising results 

from preliminary experimental systems suggest that the approach has potential for com-

mercial logic circuit design. 

8.2 Conclusions 

The conclusion of the research in this thesis suggests that Prolog, or more 

specifically logic programming, is viable for circuit design. The practicality of this is 

demonstrated when systems, consisting of over 25000 gates, have been designed using 

this approach [Fujita 86]. Using a clausal approach to circuit design has several benefits 

over other circuit design programming techniques, which are summarized as follows; 

(1) Flexible Automation 

It is usually easy to add rules, or otherwise modify the system, since the expert 

knowledge is a separate entity from the reasoning mechanisms of the system. It 

is also possible to add or change rules while using the system. An approach 

which relies completely on executable code is not so readily modifiable. This 

feature is useful for the designer to adopt the system to the application, and to the 

system programmer during initial system development. 

Conclusions 8.2 
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(2) Maintaining System Performance 

A logic design system written in Prolog is typically criticized for lack of 

efficiency when compared to procedural languages like Fortran. Efficiency 

should not be a problem for Prolog provided two criteria are met. First any por-

tion of the system which lends itself to procedural execution, should be pro-

grammed with a procedural language such as Fortran or C. Secondly the Prolog 

program should be programmed to avoid backtracking, unless it is worthwhile or 

is controlled. If these criteria can be met, a Prolog system can be comparable to 

Fortran in most aspects of logic design. In addition, the emergence of more 

powerful engineering design workstations will blur the efficiency distinction by 

allowing practical problems to be programmed in Prolog. 

(3) Rule-based Transformations 

For such conversions as logic minimization, or conversion to technology specific 

logic, Prolog can express clearly the transformation rules. The clearer style adds 

comprehension, reliability and, is intuitively a more correct approach. 

These advantages must be considered against a requirement to carefully consider 

program control in Prolog. Without adequate control, a Prolog program becomes inef-

fective at solving the problem it was developed for. 

8.3 Future Research 

This thesis has broken new ground in the use of logic programming for circuit 

design in the areas of circuit synthesis, logic minimzation and logic simulation at the 

functional level. Several research topics can be pursued in this area. 

Future Research 8.3 
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(1) Logic Minimization & Prolog 

This thesis has shown that Prolog can directly express minimization rules. 

Further research can be applied to compare efficiency and performance of alter-

native guided search strategies. Traditional logic minimization only considers a 

cost function based on gate count. Prolog should be able to help minimize cir-

cuits based on more complex minimization functions. 

(2) Logic Simulation & Prolog 

Prolog has many features which facilitate logic simulation, and current research 

in this area is promising. Look for the development of micro processor simulation 

programs in Prolog. Topics in the use of Concurrent Prolog for solving logic 

timing problems are also wide open. 

Future Research 8.3 



BIBLIOGRAPHY 

In the following reference list the asterisk following a reference indicates that a personal 

copy of that reference has been obtained. 

[Adshead 813* 

H. G. Adshead, DA4 - An Integrated Design System, European Conference on Electronic Design 

Automation Sept. 1981 page 1-4. 

[Arevalo 783* 

Z. Arevalo and I G Bredeson, A Method to simplify a Boolean function into a near minimum sum of 

products for PLAs, IEEE Trans. on Comp., Vol C-27, No lip 1078-1039 Nov 1978. 

[Asija 68) 

S. P. Asija, Instant Logic Conversion , in IEEE Spectrum, Vol. 5 ,December 1968, p77-80. 

[Besslich 81]* 

Ph. W. Besslich and P. Pichlbauer, Fast transform procedure for the generation of near-minimal cov-

ers of Boolean functions, in lEE Proc., Vol 128, Pt E No 6, November 1981. 

[Bogert 87] 

Bogert & Thomas Research, CAD/CAE and VLSI Design , published by Bogert/Thomas Research, 

Palo Alto, Calif. 1987. Tel. (617)232-8080 

[Bowman 68]* 

Robert Bowman and E S McVey, A method for the fast approximate solution of large prime impli-

cant charts, IEEE Trans on Comp. Vol C-21 page 169-173, 1972 



107 

[Brayton 84]* 

R.K. Brayton, G.D. Hachtel, C.T. McMullen, A. Sangiovanni-Vincentelli, Logic Minimization Algo-

rithms for VLSI Synthesis, Kluwer Acedemic Publishers, Netherlands, 1984. 

[Breuer 72] 

M. A. Breuer, (Ed.), Design Automation of Digital Systems Prentice-Hall, Inc., Englewood Cliffs, 

NJ, 1972. 

[Brewer 86]* 

F.D. Brewer, D.D. Gajski, An Expert-System Paradigm for Design, Proc 23rd ACM/IEEE Design 

Automation Conf 1986 p62-68. 

[Bubenik 72] 

V. Bubenik, Weighting method for the determination of the irredundant set of prime implicants, 

IEEE Trans. on Comp. Vol C-21 p1445-1451 1972. 

[Bundy 81]* 

A. Bundy, and B. Weiham, Using meta-level inference for selective application of multiple rewrite 

rules in algebraic manipulations , in Artificial Intelligence 16(2)1981. 

[Bundy 83]* 

A. Bundy, The Computer Modelling of Mathematical Reasoning ,published by Academic Press, Lon-

don, 1983. 

[Button 60] 

C. H. Button, H. J. Grosskamp, J. L. Kenney, M. R. Murphy, and R. L. Simek, Parts Usage Mainte-

nance Program PUMP IBM Technical Report 00.746 (Poughkeepsie, New York, October 5, 1960). 

[Campbell 84] 

I. A. Campbell, Implemetations of PROLOG ,a collection of papers in the Ellis Horwood Series in 

Bibliography 



108 

Artificial Intelligence published by Halsted Press, 1984. 

[Chang 73] 

C. L. Chang, R Lee, Symbolic logic and methematical theorem proving , Academic Press, 1973. 

[Clark 82/1] 

K. L. Clark & F. G. McCabe, Prolog: A language for implementing Expert Systems , Department of 

computing, Imperial College, Technical Report no 80/21. 

[Clark 82/2] 

K. L. Clark, IC Prolog: Aspects of its implementation , in Proc of the Logic Programming Workshop, 

Debrecen, 1980. 

[Clark 82] 

K. L. Clark, S. A. Tarniund (eds), Logic Programming , 1982, p153-172, Acedemic Press, New 

York, NY. 

[Clocksin 81]* 

W. F. Clocksin, and C. S. Mellish, Programming in Prolog ,published by Springer-Verlag, 1981. 

[Clocksin 85] 

W. F. Clocksin, Logic programming and the specification of circuits , Computer Laboratory, Univer-

sity of Cambridge Technical Report No 72, 1985. 

[Covington 85] 

M. A. Covington, Eliminating unwanted loops in Prolog , in ACM SIGPLAN notices Vol 20, 

l,pp20-26 Jan 1985. 

[Craig 86] 

I. D. Craig, The Adriadne - 1 Blackboard System , in The Computer Journal, Vol 29, No 3 p235 to 

Bibliography 



109 

p240. 

[Cray 56] 

S. R. Cray and R. N. Kisch, A Progress Report on Computer Applications in Computer Design , in 

Proceedings of the Western Joint Computer Conference (1956), p 82-85. 

[Darringer 69] 

I Darringer, The Description, Simulation, and Automatic Implementation of Digital Computer Pro-

cessors ,Ph. D. Thesis, Carnegie- Mellon University, Pittsburg, PA 1969. 

[Darringer 80] 

I. A. Darringer, W. H. Joyner, L. Berman, and L. Trevillyan, Experiments in Logic Synthesis , in 

Proceedings of the IEEE International Conference on Circuits and Computers, Port Chester, NY, 

1980 page 234-237. 

[Darringer 81]* 

S. Darringer, W. Joyner, L. Bermer, L. Trevillyan, Logic Synthesis through local transformations, 

IBM Journal of Research & Development, Vol. 25, July 1981, page 272-280. 

[Darringer 84]* 

J. A. Darringer, D. Brand, S. V. Gerbi, W. H. Joyner, L. Trevillyan, LSS: A System for production 

Logic Synthesis, in IBM Journal of Research & Development Vol 28 No 5 Sept. 1984. 

[Das 71] 

S.R. Das, Comments on 'A new algorithm for generating prime implicants', IEEE Trans. on Comp. 

Vol C-20 p1614-1615 Dec 1971. 

[deGeus 85]* 

A.J. de Geus, W.W. Cohen, A Rule Based System for Optimizing Combinational Logic, IEEE Design 

and Testing of Computers, August 1985, page 22-32. 

Bibliography 



110 

[Dietmeyer 78] 

D.L. Deitmeyer, Logic Design of Digital Systems, Second Edition, Allyn and Bacon Inc. 1978. 

[Duley 68] 

J.R. Duley, DDL A Digital Design Language ,Ph. D. Thesis, University of Wisconsin, Madison, WI, 

1968. 

[Falkoff 64] 

A. D. Falkoff,K. E. Iverson, and E. H. Sussenguth, Formal description of systeinl36O in the IBM 

System Journal Vol 3 pages 198-262, 1964. 

[Feigenbaum 83] 

E. A. Feigenbaum, and P. Mc Corduck, The Fifth Generation ,published by Addison-Wesley, Read-

ing, MA, 1983. 

[Porgy 8 1 

C. L. Forgy, OPS5 User's Manual , Department of Computer Science, Carnegie-Mellon University, 

July 1981. 

[Pox 84]* 

J. R. Fox, Performance Prediction with the MacPitts Silicon Compiler ,in IEEE proc on Computer 

Hardware, page 351-355, 1984. 

[Friedman 691* 

T.D. Friedman, and S. C. Yang, Methods Used in an Automatic Logic Design Generator (ALERT) ,in 

IEEE TRansactions on Computers, Vol C-18, No 7 July 1969 page 593-614. 

[Friedman 75] 

A.D. Friedman, Logical Design of Digital Systems, Computer Science Press, 1975 page 72. 

Bibliography 



111 

[Fujita 86]* 

M. Fujita, M. Ishisona, H. Nakamura, H. Tanaka, & T. Moto-oka, Using the temporal logic program-

ming language Tokio for algorithm description and automatic CMOS gate array synthesis , in Proc 

of the 4th Logic Programming Conference, held in Tokyo, July 1 - 3 1985, published by Springer-

Verlag Berlin 1986, edited by Eiita Wada. 

[Gregory 86]* 

D. Gregory, K. Bartlett, A. deGeus, G. Hachtel, SOCRATES: A System for Automatically Synthesiz-

ing & Optimizing Combinational Logic, Proceedings from the 23rd ACM/IEEE Design Automation 

Conference June 29 - July 2, 1986. 

[Gullichen 85]* 

E. Gullichen, Heuristic Circuit Simulation using Prolog Integration , in the VLSI Journal, Vol 3, 

p282-318, 1985. 

[Hammond 83] 

P. Hammond & M. Sergot, A Prolog Shell for Logic Based Expert Systems, Special report, Dept. of 

Computing, Imperial College of Science and Technology, London. 

[Hong 74]* 

S.J. Hong, R.G. Cain, D.L. Ostapko, MINI: A Heuristic approach for logic minimization, IBM J Res 

& Develop. p443-458, September 1974. 

[Horstmann 83]* 

P.W. Horstmann, Expert System & Logic Programming for CAD in VLSI Design (USA periodical) 

Nov 1983, p34-40. 

[Horstmann 84]* 

P.W. Horstmann, Computer Aided design(CAD) using logic programming (for VLSI), IEEE 21st 

Bibliography 



112 

design automation conf proceedings p144-151, June 25-27 1984. 

[Hu 841* 

Y.H. Hu, and D.Y. Yun, Application of Artificial Intelligence to VLSI CAD systems, in Proc of IEEE 

Conf on Camp Design 1984, P737-841, 8-11 Oct 1984. 

[Hulme 75] 

B.L. Hulme and R.B. Worrell, A prime implicant algorithm with factoring, IEEE Trans on Comp. 

Vol C-24 p1129-113 1 Nov 1973. 

[Johannsen 79] 

D. Johannsen, Bristle Blocks: A Silicon Compiler , Proceedings of the 16th Design Automation 

Conference, June 1979, pp 310-313. 

[Joyner 86]* 

WE Joyner, L.H Trevillyan,D. Brand, T.A Nix, S.0 Gunderson, Technology Adoptation in Logic 

Synthesis ,Proceedings from the 23rd ACM/IEEE Design Automation Conference, June 29 July 

2, 1986. 

[Karnaugh 53] 

M. Karnaugh, The map method for synthesis of combinational logic circuits, Trans AIEE Vol 72 Part 

1 p 593-598 1953. 

[Kaskey 61] 

Y. Kaskey, H. Lukoff, and N. S. Prywes, Application of Computers to Circuit Design for UNIVAC 

LARC, in Proceedings of the Western Joint Computer Conference Vol 19 (1961) p 185-205. 

[Kowalski 831* 

T. J. Kowalski and D. E. Thomas, The VLSI Design Automation Assistant: Prototype System, in 

Proc. of the 20th Design Automation Conference, Miami, Florada 1983. 

Bibliography 



113 

[Liblong 84/1]* 

B. Liblong, SHIFT a Structured Hierarchic Intermediate Form for VLSI Design, Masters Thesis, 

University of Calgary, 1984. 

[Liblong 84/2]* 

B. Liblong, T. Melham, G. Birtwistle, J. Kendall, Towards a VLSI Design Tool System, Research 

Report 84/175/33, Nov 84, Dept of Computer Science, University of Calgary. 

[Lipp 79]* 

H.M. Lipp, Current Trends in the Design of Digital Circuits , in Computer-Aided Design of Digital 

circuits and systems, G Musgrave editor, page 91-102, published by North-Holland, 1979. 

[Merwin 67] 

R. W. Merwin, & J. L. SanBom, Digital Computers for logical Designs , in M Kierer & G Kom, eds 

Digital Computer User's Handbook , New York, Mc Graw-Hill Book Company, 1967, part 4 p167-

192. 

[McCluskey 56]* 

E.J. McCluskey, Minimization of Boolean Functions, in The Bell System Technical Journal, page 

1417-1'l'M, November 1956. 

[McDermott 851* 

R.M. McDermott, Computer-Aided Logic Design ,published by H W Sams & Co Ltd, Indianapolis, 

Indiana, 1985. 

[McKinsey 84] 

McKinsey and Associates, Report to Participants ,Toronto, 1984. 

[Mead 801* 

C.A. Mead and L Conway, Introduction to VLSI Systems, Addison Wesley, Reading Mass 1980. 

Bibliography 



114 

[Miller 65] 

R. E. Miller, Switching Theory, Vol. 1: Combinatorial Circuits ,John Wiley & Sons, Inc., New York, 

1965. 

[Morris 76] 

Noel M. Morris, Logic Circuits, McGraw Hill 1976. 

[Naish 83/11* 

Lee Naish, An Introduction to Mu Prolog, Technical Report, Department of Computer Science, 

University of Melbourne, February 1982, revised July 1983. 

[Naish 83/21* 

Lee Naish, MU-Prolog 3.0 Reference Manual, Reference' manual included with delivery of MU-

Prolog interpreter, Melbourne University, July 1983. 

[Noda 861* 

Y. Nocla,T. Kinoshita,A. Okumura, T. Hirano, T. Hiruta, A Parallel Logic Simulator based on Con-

current Prolog , in Proc of the 4th Logic Programming Conference, held Tokyo July 1 - 3, 1985, 

published by Springer Verlag Berlin 1986, edited by Eiiti Wada. 

[Oberman 701* 

R.M. Oberman, Disciplines in Combinational and Sequential Circuit Logic, in Electrical and Elec-

tronic Engineering series, McGraw Hill 1970. 

[Obyrne 861* 

R.P. O'Byrne and J. Kendall, Automatic Circuit Design for Digital Counters , Research Report No 

86/232/6, June 1986, Department of Computer Science, University of Calgary. 

{Ostapko 74]* 

D.L. Ostapko, S.J. Hong, Generating Test Examples for Heuristic Boolean Minimization , in IBM 

Bibliography 



115 

Journal of Research and Development, Sept 1974. 

[Pereira 84]* 

F. Pereira from material by D Warren, D Bowen, L Byrd and L Pereira, C-Prolog User's Manual, 

supplied with C-Prolog interpreter ver 1.5, Sept 1984. 

EQuine 551 

W.V. Quine, A way to simplify truth functions, American Math Mon. Vol 62 p627-631, 1955. 

[Rhyne 77]* 

V. T. Rhyne, P. S. Noe, M. N. McKinny, and U. W. Pooch, A New Technique for the fast minimiza-

tion of switching function IEEE Trans. on Comp. Vol C-26, No 8, p757-764, August 1977. 

[Rosenthal 61] 

C. W. Rosenthal, Computing Machine Aids to a Development Project , in IRE Transactions on Elec-

tronic Computers, Vol EC-10 (September 1961). p 400-406. 

[Rubin 821* 

S.M. Rubin, An Integrated Aid for Top-Down Electrical Design, Special Report, Fairchild Labora-

tory for Artificial Intelligence research, 4001 Miranda Avenue, Palo Alto, Calif 94304. 

[Saito 861* 

T. Saito, S. Hiroyuki, M. Yamazald, and N. Kawato, A Rule-based Logic Circuit Synthesis System 

for CMOS Gate Arrays in Proc from the 23rd ACM/IEEE Design Automation Conference, June 29 - 

July 2, 1986, page 594 to 600. 

[Sasao 861* 

T. Sasao, MACDAS: Multi-level AND-OR Circuit Synthesis using Two-Variable Function Genera-

tors , Proceedings from the 23rd ACM/IEEE Design Automation Conference, June 29 - July 2, 1986. 

Bibliography 



116 

[Southard 83] 

J. R. Southard, MacPUts: An Approach to Silicon Compilation , Computer 16, No 12 p74-82 

(December 1983). 

[Suzuki 851* 

N. Suzuki, Concurrent Prolog as an efficient VLSI design Language, published in Computer, Feb 

1985, page 33-40. 

[Taub 801* 

Herbert Taub, Digital Circuit and Microprocessors, Mc Graw Hill 1980. 

[Teig 86]* 

S. Teig, R. Smith & I. Seaton, Timing Driven Layout of Cell-based ICs, in VLSI Systems Design, 

May 1986. 

[Wager 81]* 

S.J. Wager & S.J. Poulton, Interactive logic diagrams at the register level, Proc. of European 

Conference on Electronic Design Automation Sept 1-4 1981, page 149-153. 

[Wayne 85]* 

M. R. Wayne, and S. M. Braun, Looking for Mr Turnkey ,in Proc. of the 22nd ACM/IEEE Design 

Automation Conference, 1985. 

[Xin DaLu 811* 

Xin Da Lu, A special purpose VLSI chip dynamic up-down counter, Computing Lab, Newcastle upon 

Tyne University 1981. 

Bibliography 



Index 117 

backtracking - definition of 41 
behavioural domain - definition of 15 
CAE vendor classification 8 
circuit signals 55 
circuit transformation 53 
clock skew - designing counters 77 
CMOS cell arrays - description of 17 
commands - list of 82 
counter tree 70 
counters - definition of 70 
data structure representation - advantages 52 
design implementation styles 6 
design process - definition of 3 
design process - history 1 
design process - use of CAD 6 
design workflow - definition 4 
error - compound error reporting 80 
gate-array design 16 
hardware economy - counter design 74 
hierarchical design 2 
horn clause representation - characteristics 49 
known circuits - definition of 54 
logic programming - definition of 39 
logic synthesis - definition of 20 
logic synthesis - definition of 21 
macro-cell design 17 
PCD - development goal 79 
PCD - example design session 96 
PCD - logic synthesis description 85 
PCD command interpreter 79 
PCD example minimization session 91 
physical domain -definition of 15 
PLA macro-cells 18 
Prolog - processing efficiency 104 
race - designing counters 77 
regularity - designing counters 72 
shift - hierarchic design language 16 
Socrates - description of 32 
speed - designing counters 72 
stability - counter design 74 
standard cell design - description of 17 
structural domain - definition of 15 
system performance - overall 104 
VLSI design - custom 16 
VLSI design domains 15 

Index 



Reference Index 118 

[Adshead 8 1 ] - DA4: An Integrated Design System 9 
[Aoyagi 85] - Tokio 35 
[Arevalo 78] - A Method to simplify a Boolean function into 61 
[Asija 68] - Instant Logic Conversion 66 
[Bogert 87] - CAE/CAD and VLSI Design 8 
[Brayton 82] - A Comparison of logic minimization 62 
[Brayton 84] - Expresso Uc: Logic Minization Algorithms for VLSI 33 
[Breuer 72] - Design Automation of Digital System 21 
[Brewer 86] - An Expert-System Paradigm for Design 45 
[Brown 74] CMOS Cell Arrays - An Alternative to Gate Arrays 17 
[Brown 81] - A State-Machine Synthesizer - SMS 62 
[Bundy 81] - Using meta-level inference for selective 62 
[Bundy 83] - The Computer Modelling of Mathematical Reasoning 45,61,67 
[Button 60] Parts Usage Maintenance Program 1 
[Campbell 84] - Implementations of Prolog 39 
[Chang 73] - Symbolic logic and mathematical theorem proving 39 
[Clark 81] - The Control Facilities of IC-Prolog 43 
[Clocksin 81] - Programming in Prolog 39 
[Craig 86] - The Ariadne - 1 Blackboard System 30 
[Cray 56] - A Progress Report on Computer Applications in 1 
[Datringer 69] - The Description, Simulation 22 
[Darringer80] 7 
[Darringer 84] - LSS: A System for Production Logic Synthesis 25 
[Dietmeyer 78] - Logic Design of Digital Systems. 21,32 
[Duley -68] - DDL - A Digital Design Language 22,36 
[Falkoff 64] - Formal description of System /360 24 
[Feigenbaum 83] - The fifth Generation 39 
[Forgy 81] - 0P55 User's Manual 38 
[Fox 84] 7 
[Friedman 69] - Methods used in an Automatic Logic Design ... 24 
[Friedman 70] - Quality of designs from an automatic logic ... 22 
[Fujita 86] - Using the temporal logic programming ... 7,35,41,110 
[Gregory 86] - SOCRATES: A System for Automatically ... 32 
[Gullichen 85] - Heuristic Circuit Simulation using Prolog ... 40 
[Hammond 83] - A PROLOG Shell for Logic Based Expert Systems 43 
[Hong 74] - MINI: A Heuristic Approach for Logic Minimization 62,63 
[Johannsen 79] - Bristle Blocks: A Silicon Compiler 22 
[Joyner 86] - Technology Adoptation in Logic Synthesis 25 
[Karnaugh 53] - The map method for synthesis of combinational ... 0 
[Kaskey 61] - Applications of Computers to Circuit Design for ... 1 
[Kowalski 83] - The VLSI Design Automation Assistant: Prototype ... 38 
[Liblong 84] - SHIFT - A Structured Hierarchical Intermediate form ... 16 
[Lipp 79] - Current Trends in the Design of Digital Circuits 23 
[McCluskey 56] - Minimization of Boolean Functions 60 
[McDermott 85] - Computer Aided Logic Design 57 

Reference Index 



Reference Index 119 

[McKinsey 84] - Report to Participants 6 
[Merwin 67] - Digital Computers for Logic Design 66 
[Naish 83] - An Introduction to Mu Prolog 41 
[Naish 83] - MU-Prolog 3.0 Reference Manual 41 
[Noda 86] - A Parallel Logic Simulator based on Con current Prolog 40 
[Pereira 84] - C Prolog User's Manual 39 
[Quine 55] - A Way to Simplify Truth Functions 60 
[Rhyne 77] - A new technique for the fast minimization of ... 61 
[Rosenthal 61] - Computing Machine Aids to ... 1 
[Rubin 82] - An Integrated Aid for Top-Down Electrical Design 19 
[Saito 86] - A Rule-based Circuit Synthesis System for CMOS ... 29 
[Sasao 86] - MACDAS: Multi-level AND-OR Circuit Synthesis using ... 31 
[Southard 83] - MacPitts: An Approach to Silicon Compilation 22 
[Suzuki 85] - Concurrent Prolog as an Efficient VLSI Design Language 41,50 
[Teig 86] - Timing Driven Layout of Cell-based ICs 18 
[Wager 81] - Interactive Logic Diagrams at the Register Level 10 
[Wayne 85] - Looking for Mr Turnkey 8 

Reference Index 



120 

Appendix A - PCD Listing 

PCD (Prolog Counter Design) consists of a number of files. These files are; 

check clauses to check the syntax of a circuit definition. 
convert clauses to convert AND/OR/NOT logic to NAND. 
counter clauses to select and synthesis a counter circuit. 
fan clauses to check the maximum fan in of the circuit. 
helpJib clauses to present help information. 
min clauses to perform logic minimization. 
pcd clauses for command interpretation & Utilities. 
print clauses to display a circuit at the terminal. 
simulate clauses to perform circuit simulation. 

These files are listed in alphabetical order on the following pages. 

PCD listing - check Appendix A 
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1* 
CIRCUIT 
Created 
Last Revision 

SYNTAX CHECKER 
March  1987 
April 13 1987 

*1 
go_check(S,E) :- check_str(S,E). 
gq.check(S,'ok'). 

checkstr(S,'Error: Circuit not instantiated') var(S). 
check_sir(S,'Error: Signal value not 1 or 0') :- integer(S),(S < 0;S > 1). 
check_str(S,E) :- functor(S,Name,N),check_str(S,Name,1,N,E). 

check_.str(_,_,_,E) :- novar(E). 

check_str(S,and,P,M,'Error: And gate too few params.') :- (M < 2). 
check_str(S,and,M,M,E) :- arg(M,S,A),check_str(A,E). 
check_str(S,and,P,ME) Next is P +1,arg(P,S,A),check_str(A,E), 

check_str(S,and,Next,M,E). 

checic_str(S,or,P,M,'Error: Or gate too few params.') :- (M < 2). 
check_str(S,or,M,M,E) :- arg(M,S,A),check_str(A,E). 
check_str(S,or,P,M,E) Next is P +1,arg(P,S ,A),check_str(A,E), 

check_str(S,or,Next,M,E). 

check_slr(S,notP,M,'Error: Not gate too many params.') :- (M> 1). 
check_str(S,not,1,1,E) :- arg(1,S,A),check_str(A,E). 
check_str(S,not,_,_,'Enor: Not gate definition'). 

check_str(S,nandP,M,'Error: Nand gate too few params.') :- (M < 2). 
check_str(S,nand,M,M,E). 
check_str(S,nand,P,M,E) :- Next is P +1,arg(P,S,A),check_str(A,E), 

checkstr(S,nand,Next,M,E). 
1* 
The following clauses allow user defined circuits to be checked 
*1 
checkstr(S,Name,M,M,E) :- arg(M,S,A),checkstr(A,E). 
checkstr(S,Name,P,M,E) arg(P,S,A),checksir(A,E),Next is  + 1, 

check_str(S,Name,Next,M,E). 
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1* 
NAND/NOT CIRCUIT CONVERSION 
File Name convert 
File Created January 1987 
Last Revision April 14 1987 

Rules Applied in Logic Conversion: 

This file contains clauses necessary to convert a circuit 
represented using general AND, OR and user defined gates 
into an equivalent circuit represented only in NAND. 
The following is a summary of the conversion rules 
applied. Uppercase letters "tA", "Bt" etc. can represent 
circuits in their own right. 

LOGIC CONVERSION RULES 

nand(A,B) = (A.B) 
A.B = Thancl(A,B) 

= nand(A,A) 

nor(A,B) = (A+B) 
A+B = nand(ArB) 
A=A. 

*1 
go_convert(S,Sn) :- var(S),clisplay('Fatal Error Circuit not instantiated'),abort. 
go_convert(S,Sn) :- functor(S,Name,N),conv_nd(S,Name,N,Sn). 

conv_nd(S,_,O,S). 
conv_nd(S,and,N,not(List)) :- conv_and(S,1,NJI,List). 
conv_nd(S,or,N,nand(List)) :- conv_or(S,1,N,U,List). 
conv_nd(S,not,1,Sn) :- convnot(S,Sn). 
conv_nd(S,not,_,J :- display('Circuit Definition error in "not" function'),abort. 
convnd(S,nand,N,Sn) :- conv_nand(S,1,N,fl,Sn). 
conv_nd(S,Circuit,N,Sn) :- conv_ct(S ,1,N,ftList),conv_list(Sn,Circuit,List). 

conv_and(S,N,N,C,Sn) :- arg(N,S,A),go.convert(A,An),conv_list(Sn,nand,[AnlC]). 
conv_and(S,P,N,C,Sn) :- rg(P,S,A),go.convert(A,An),Next is P+1, 

conv_and(S,Next,N,[AnIC],Sn). 

conv_or(S,N,N,C,Sn) :- arg(N,S,A),goconvert(A,An), 
convjist(Sn,nand,[not(An)IC]). 

convor(S,P,N,C,Sn) :- arg(P,S,A),go_convert(A,An),Next is P+1, 
conv_or(S,Next,N,[not(An)IC],Sn). 

conv_not(S,Sn) :- arg(l ,S,A),functor(A,not,1),arg(1,A,N),go_convert(N,Sn). 
/ ' This clause satisfies A = A 
*1 
conv_not(S,nand(An,An)) :- arg(1,S,A),goconvert(A,An). 

conv_nand(S,N,N,C,Sn) :- arg(N,S,A),go_convert(A,An),conv_list(5n,nand,[AnCJ). 
convnand(S,P,N,C,Sn) :- arg(P,S,A),go_convert(A,An),Next is P+1, 

cony _nand(S,Next,N,[MIC],Sn). 
These clauses allow conversion of a circuit which contains NAND gates 

*1 
conv_ct(S,N,N,C,[An[C]) :- arg(N,S,A),go_convert(A,An). 
conv_ct(S,P,N,C,Sn) :- arg(N,S,A),go_convert(A,An),Next is P-i-i, 
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cony _ct(S,Next,N,[An[C],Sn). 
These two clauses allow user defined circuits to be converted. 

*1 
conv_list(S,F,L) S =.. {HL]. 

PCD listing - convert Appendix A 



124 

1* 
COUNTER 
File Name 
File Created 
Last Revision 

SELECTION & DESIGN 
counter 
July 1986 
April 14 1987 

This file contains all the clauses required to select and 
synthesize a counter circuit. Counter selection is spec 
driven, with specifications entered by the user. These 
specifications are used to guide the selection process to 
select the most appropriate counter first. A detailed 
explanation of the selection procedure and synthesis is 
included in chapter 7 sections 3. 

*1 
counter :- type(T),design_counter(T),pcd. 
design_counter(no_match) :-
display('Error selecting a counter type for specifications. Re-specify'),nl. 

design—counter(T) counter(T,S 1),print_str(S 1),! ,store(S 1). 
design_counter(T) :- display('Error designing counter'),nl. 
type(T) display('Please enter Counter Circuit Specifications'),nl, 

display('Enter "help," for available options >>  
read(Ans),nl,work_input(Ans,I). 

type('no_match'). 
work_input(help,T) :- nl,select_help,! ,typeI). 
work_input(exit,no_match). 

select_help :- system("more help/specs"). 
work_input(Ans,T) :- valid_list(Ans),assert_list(Ans),! ,select(T). 
workJnput(Ans,T) :- display('Your list is invalid. Check and reenter'),nl, 

select—help. 
valid_list((First_spec,Rest)) :- spec(First_spec),valid_list(Rest). 
valid_list(Last_spec) :- spec(Last_spec), 

display('Counter Circuit Specification syntax check OK'),nl. 
PC 

V This is a list of valid user specs which is used to check that 
the user spec is syntactically correct / 

spec(bcd). 
spec(binary). 
spec(clockLj). 
spec(count(_)). 
spec(delayLj). 
spec(ffLJ). 
spec(grey). 
spec(modulo). 
spec(ring). 
spec(shift). 
spec(switchtail). 
spec(sync). 

assert_ list((First,Rest)) :- asserta(First),assert_list(Rest). 
assert_list(Last) asserta(Last). 

select(no_match) :- min_spec(no_match). 
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min_spec(no_match) bcd,count(N),(N > 9;N < 9), 
display('Error: spec bcd & count conflict'),nl. 

/ "These clauses are checking for known conflicts and return "no—match" 
to indicate the conflict. 

*1 

selectT) :- sync,sync('I). 
select(T) :- delay(N),N =< 25,sync(T). 
select(T) :- clock(N),N >= 25,sync(I). 
select(T) :- clock(N),N =< 25,async(T). 
select(T) :- display('Synchronous type counter'),nlj,sync(T). 
/ "These clauses guide the search to either an asynchronous or 

synchronous counters. 
*1 
sync(T) :- (count(N);binary),sync_bin(l). 
sync('synchronous greycode serial') :- grey. 
sync('synchronous ring') ring. 
sync('synchronous shift parallel') :- shift. 
sync('synchronous switchtail') :- switchtail. 
sync('synchronous moebius') :- moebius. 
sync('no_matcb') :- display('Erroc no Synchronous counter found'),nl. 
/ "These clauses select synchronous counters 
*1 

async('asynchronous binary serial ripple'). 

sync_bin('synchronous bed') :- bed. 
sync_bin('synchronous binary full modulo reverse') :- reverse,modulo. 
syne_bin('synchronous binary full modulo bi-directional') :-

up_down,modulo. 
sync_bin('synchronous binary full modulo') :- modulo. 
syne_bin('synchronous binary count by'). 

1* 
BUILD LOGIC EQUATIONS 

Data Structures (5) for circuit with n outputs; 

circuit_type(S 1,S2,.. Sn) 

where S is any valid data structure. 
pre-defined valid data structures are; 
and(S 1,S2) or(S 1,S2) not(S1) 
and(S1,..Sn) or(S1,..Sn) 
nand(S1,S2) nor(S1,S2) new designs are constructed 
nand(S l,..Sn) nor(S 1,..Sn) from valid existing designs. 
all valid circuit structures can be evaluated 
and return values such as true (1) or false (0) or undefined 
(uninstantiated). 

*1 
binary(Decimal,Result) :-

binary(Decimal,,Result). 
binary(l,Binary,Result) :-

binary(O,[llBinary],Result). 

binary(0,Binary,Binary). 
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binary(Decimal,Binary,Result) :-
divide(Decimal,Quotient), 
remainder(Decimal, Remainder), 
binary(Quotient, [RemainderiBinary], Result). 

1* 
divide forms an integer division and returns the 
result in Quotient. This is the number that will be divided again. 
*1 
divide(Decimal,Quotient) :-

Quotient is Decimal 11 2. 

1* 
The list is formed from the remainder of the division 
Remainder uses the modulus function to find the remainder 
after division by 2 
*1 
remainder(Decimal,Remainder) :-

Remainder is (Decimal mod 2). 

1* 
"number_ff" is a clause used to calculate the number of flip-flops required 
for a counter. If the highest states can be represented then the rest 
of the counter can be represented. The number of flip-flops required 
to represent a counter with top state 12 is the same as a state 13 counter, 
and so "number_fft returns the same number in both cases 
*1 

number_ff(Highest_state,Number) :- size_finder(Highest_state,2,l,Number). 

size—finder incrments the number of ff until the highest state can 
be represented. Inter—number is this incrementing variable 
*1 
size_finder(H,H,N,N). 
size_finder(H,I,C,N) :- I> H,!, equal(N,C). 
size_finder(Highest_state,Intermediate_state,Inter_number,Number) 

New_highest_state is (Intermediate—state * 2), 
New_ number is (Inter _number + 1), 
size_finder(Highest_state,New_highest_state,New_number,Number). 

counter('asynchronous binary serial ripple',async_bin_ser_rip(List)) :-
count(Highest_state), 
number_ff(Highest_state,N), 
Next is (N - 1),alpha(Next,Letter), 
ripple(Next,(jk_ff(' 1',' 1 ',not(Letter))),List). 

ripple(1,T,(jk_ff(' 1',' 1',cp(l)),T)). 
ripple(N,Tmp,List) :- Next is (N -1),alpha(Next,Letter), 

ripple(Next,(jk_ff(' 1',' 1 ',cp(not(Letter))),Tmp),List). 

1* 
SYNCHRONOUS BINARY FULL MODULO COUNTER 
*1 
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counter('synchronous binary full modulo',sync_bin_mod(List)) :-
form_and(4,Eqtn), 
modulo(3,(jk_ff(Eqtn,Eqtn,clk)),List). 

modulo(O,List,List). 
modulo(N,Tmp,List) :- Next is (N - 1),formand(N,Eqtn), 

modulo(Next,(jk_ff(Eqtn,Eqtn,clk),Tmp),List). 

1* 

the form 
_and clause actually forms the logic equation for the modulo 

counter. It is also called for other counters. 
*1 
form_and(1,1). 
form_and(2,'a'). 
form_and(3,and(a,b)). 
form_and(4,and(a,b,c)). 
form_and(5,and(a,b,c,d)). 
form_and(6,and(a,b,c,d,e)). 
form_and(7,and(a,b,c,d,e,f)). 

SYNCHRONOUS BINARY FULL MODULO REVERSE 
*1 
counter('synchronous binary full modulo reverse sequence',sync_bin_mod_rev(List)) :-

form_and(4,Eqtn), 
reverse_modulo(3,(jk_ff(not(Eqtn),not(Eqtn),clk)),List). 

1* 
the following clause is the terminating condition for the counter. 
We know that for a full modulo counter the least sig. bit always 
toggles on a clock input, so we can specify the equation directly. 
*1 
reverse_modulo(1,List,(jk_ff(1,1,clk),List)). 
reverse_modulo(N,Tmp,List) :- Next is (N - 1),form_and(N,Eqtn), 

reverse_modulo(Next,(jk_ff(not(Eqtn),not(Eqtn),clk),Tmp),List). 

1* 
SYNCHRONOUS BINARY FULL MODULO REVERSIBLE 

eqtn_modulo_reversible calculates for a reversible synchronous 
binary modulo counter. The control signal U can be either 1 or 0, 
where 1 = Forward, and 0= reverse. When U = 1 E = Eqtn_up, when 
U = 0, E = Eqtn_down is the basic rule. This is implemented 

with: E = (U.Eqtn_up)+(not(U).Eqtn_down) 
*1 
counter('synchronous binary full modulo bi-directional',sync_bin_mod_bi(List)) :-

form_and(4,Eqtn_up), 
reversible_modulo(3,(jk_ff(or(and('u',Eqtn_up),and(not('u'), 

not(Eqtn_up))),or(and('u',Eqtn_up),and(not('u'),not(Eqm_up)))),clk)j,jst). 

1* 
following is the terminating clause. It is interesting to note that 
the least sig. bit always toggles wether up or down counting. 
*1 
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reversible_modulo(1,L,(jk_ff(1,l,clk),L)). 
reversible_modulo(N,Tmp,List) :- Next is (N -1),form_and(N,Eqtn_up), 

reversible 
_modulo(Next,(jk_ff(or(and('u',Eqtn_up),and(not('u'), 

not(Eqtn_up))),or(and('u',Eqtn_up),and(not('u'),not(Eqtn_up))),clk),Tmp),List). 

1* 
SYNCHRONOUS BCD COUNTER 
eqtn_bcd calculates the logic equations for 
a BCD counter. A Synchronous BCD counter which counts 0 - 9 
is the same as a synchronous count by 9 counter. 
The value of D will have been checked to be 9. 
*1 

counter('synchronous bcd' ,sync_bcd(L)) :-
counter('synchronous count by',sync_bin_ct(L)). 

1* 
SYNCHRONOUS BINARY COUNT BY COUNTER 
eqtn_reset is used to calculate the logic equations for 
a synchronous binary count by parallel counter which is not a 
synchronous binary full modulo counter. 
*1 

counter('synchronous binary count by',Str) :-
count(D),binary(D,[BitlBinaryjist]),number_ff(D,N), 
process_true(N,B,Reset_term), 
process_false(N,B,Set_term), 
Nextis(N - 1), 
form_and(N,Anded_term), 
do_eqtnj(Set_term,Anded_term,Eqtnj), 
do_eqtn_k(Reset_term,Anded_term,Eqtnk), 
reset(Next,B,Binary_llstjjk_ff(Eqtnj,Eqtnk)] ,Str,Set_term,Reset_term). 

reset(O,_,_,List,Str,_,...) :- Str =.. [sync_bin_ctlList]. 
reset(P,B,[BitlBinary_list],Tmp,Str,Setjerm,Reset_term) :-

Nextis(P - 1), 
form_and(P,Anded_term), 
do....eqtn.j(Set_term,Anded_term,Eqtnj), 
do_eqtn.k(Reset_term,Andedjerm,Bqtnk), 
reset(Next,B,Binary_list,[jk_ff(Eqtnj,Eqtnjc)rrmp] ,Str,Set_term,Reset_term). 

RULE: 

Counting sequence is a Toggling operation when the 
FF's to the right are all 1. With a J-K flip-flop , to 
toggle just have J=K=1. At the end of the counting sequence 
the FF must reset babk to zero, no matter what the toggle 
would produce. To do this you 'OR' the toggle term with 
a term that is true (at highest state only) for the set input J, and 'AND' 
the toggle term with a term that is false only when you 
want to reset. All this ensures that the FF will reset 
when you want it to. The resulting logic equations are not 
necessarily 'minimized' so there could be redundant terms. 
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STEPS: 
1 form anding eqin 
2 is full modulo? yes stop 
3 form false term (using clause 'process_false'). 
4 form true term (using clause 'process—true'). 
5 OR these terms into list as eqtns for this ff. 

the following two clauses build up the J and K inputs to 
ensure that they both count and reset at the end of the sequence. 

*1 
do_eqtn.J(Set_term,Anded_term,and(Anded_term,5et_term)). 
do_eqtn_k(Reset_term,Anded_term,or(Anded_term,Reset_term)). 

process_false(0,U,"). 
process_false(1,[1],not('a')). 
process_false(1,{0],('a')). 
process_fa1se(P,[BitIBinary_list,and(B 1,B2)) :-

Next is (P - 1),alpha_bit_false(Bit,P,B 1), 
process_false(Next,Binary_list,B2). 

process_true(0,U,"). 
process_true(1,[1],('a')). 
process_true(1,[0],not('a')). 
process_true(P,[BitlBinary_list],and(B 1,B2)) :-

Next is (P - 1),alpha_bit_true(Bit,P,B 1), 
process_true(Next,Binary_list,B2). 

1*  
these following clauses set the logic term to be either 
true or not true based on whether the highest state has a 1 or a 
zero at that position. 

*1 
alpha_bit_false(1,P,not(B)) :- alpha(P,B). 
alpha_bit_false(0,P,B) :- alpha(P,B). 
alpha_bit_true(1,P,B) :- alpha(P,B). 
alpha_bit_true(0,P,not(B)) :- alpha(P,B). 

1* 
SYNCHRONOUS GREYCODE COUNTER 
eqtn_grey calculates the logic equations for a reflected grey code counter 
A reflected grey code counter starts at state with all FF's at 0. 

A 3 FF counter counts as: 
000 
001 
011 
010 
110 
111 
101 
100 
*1 
counter('synchronous greycode serial',sync_greyList)) :- ff(N), 

Next is (N - 1), 
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grey(Next,(jk_ff(1,1,clk)),List). 
grey(O,L,L). 
grey(N,Tmp,List) :— Next is (N - 1), 

grey(Next,(jk_ff(1,1,clk),Tmp),List). 
1* 
logic_shift calculates the logic equation for a synchronous shift register counter. 
THis type of counter has an initial state of all FF's = 1. At each clock pulse 
the data or bits shift towards 'a' or the least significant bit. This has the effect 
of counting down. Normally the counter is set at its initial state of all ones. 
The highest FF is held with a zero on the S input to set it to zero for 
each clock pulse. The sequence is none reseting. 
*1 
counter('synchronous shift parallel',sync_shift(List)) :— 

ff(N), 
Next is (N - 1), 
ring(Next,(jk_ff(' 1 ',' O',clk)),List). 

tic 

SYNCHRONOUS RING COUNTER 
logic—ring calculates the logic equations for a counter 
where at each count, the state of the flip-flop to the left 
is assumed. In a 4 FF counter FF D would always assume the 
state of FF A. The count sequence must start from a non-zero 
starting state. 
*1 
counter('synchronous ring',sync_ring(List)) :- ff(N), 

Next is (N - 1), 
ring(Next,(jk_ff('a',not('a'),clk)),List). 

ring(O,L,L). 
ring(N,Tmp,List) :— Next is (N -1),Last is (N + 1),alpha(Last,Letter), 

ring(Next,(jk_ff(Letter,not(Letter),clk),Tmp),List): 
1* 
SYNCHRONOUS SWITCHTAIL COUNTER 
eqtn_switch calculates the equations for a switchtail counter 
where FF D assumes the inverse of FF A A switchtail is different 
from a shift counter, in that the swithtail counter gets its next 
input from the least sig. FF output. 
*1 
counter('synchronous switchtail',sync_switch(List)) :— ff(N), 

Next is (N - 1), 
ring(Next,(jk_ff(not('a'),'a',clk)),List). 

1* 
SYNCHRONOUS MOEBIUS SEQUENCE COUNTER 
eqtn_moebius calculates the logic equations for a 
Moebius or Johnson sequence counter. This sequence starts 
at all FF's at zero. The first clock puts 1 in the left most 
FF, the next shifts that right, and moves another in its place. 
When all the FF's are 1, the next clock introduces a 0 and the 
action repeats itself. 
*1 
counter('synchronous moebius', sync_moebius(List)) :- ff(N), 

Nextis(N - 1), 
alpha(N,Top_ff), 
alpha(Next,Lcuer),moebius(Top_ff,Next,(jk_ff(Letter,not(Letter),cj.k)),List). 

moebius(Top_ff,1,L,(jk_ff(not(Top_ft),Top_ff,clk),L)). 
moebius(Top_ff,N,Tmp,List) :— Next is (N - 1), alpha(Next,Letter), 

moebius(Top_ff,Next,(jk_ff(Letter,not(Letter),clk),Tmp),List). 
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1* 
MAX FAN 
File Name 
File Created 
Last Revision 

IN 
fan 
February 1987 
April 14 1987 

This file contains all clauses necessary to determine 
the maximum fax in of a circuit. The maximum fan in 
is displayed at the terminal. The maximum fan is 
determined by comparing all the fan values and swaping 
a maximum value if required. 

*1 
fan_levels(S,F) :- var(S),display('Fatal Error: Circuit not instantiated'),abort. 
1* "The above clause protects against illegal call 
*1 
fan_levels(S,F) :- functor(S,_,N),asserta(fi(N)),fan_in(S,1,N),fi(F). 
fan_in(S,,O). 
1* This terminates the fan search at a signal 
*1 
fan_in(S,1,1) :- arg(1,S,A),functor(A,_,N),fan_comp(N),fan_in(A,1,N). 
1* The above clause allows for sub-circuits with a not or a user 

defined one parameter circuit. 
*1 
fan_in(S,1,N) :- arg(1,S,A),functor(A,_,M),fan_comp(M),fan_in(A,1,M),fan_jn(S,2,N). 
fan_in(S,N,M) :- arg(N,S,A),functor(A,_,Na),fan....comp(Na),fan_in(A,1,Na)Next is N+1, 

fan_in(S,Next,M). 

fan-.Pomp(N) :- fi(Old),Old<N,retract(fi(Old)),asserta(fi(N)). 
fancomp(N). 
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1* 
Prolog Circuit Design 

HELP LIBRARY 
- Counter Terminology 
- PCD commands 
- PCD description 

File Created Jan 1987 
Last Modified March 15 1987 

*1 
help(counter) :- system("more help/counter.intro"). 
help(switchtail) :- system("more help/switchtail"). 
help(ring) :- system("more help/ring"). 
help(ripple) :- system("more help/ripple"). 
help(counthy) :- system("more help/countby"). 
1* 

Prolog Circuit Design 
COMMANDS 

*1 
help(check) :- system("more help/check"). 
help(check(design)) :- system("more help/check"). 
help(clear) :- system("more help/clear"). 
help(commands) :- system("more help/commands"). 
help(convert) :- system("more help/convert"). 
help(convert(design)) :- system("more help/convert"). 
help(counter) :- system("more help/counter"). 
help(designs) :- system("more help/designs"). 
help(fan) :- system("more help/fan"). 
help(fan(design)) :- system("more help/fan"). 
help(get) :- system("more help/get"). 
help(get(design)) :- system("more help/get"). 
help(min) :- system("more help/mm"). 
help(min(design)) :- system("more help/mm"). 
help(save) :- system("more help/save"). 
help(save(design)) :- system("more help/save"). 
help(store) :- system("more help/store"). 
help(store(circuit)) :- system("more help/store"). 
help(print) :- system("more help/print"). 
help(print(design)) :- system("more help/print"). 

PROLOG CIRCUIT DESIGN 
DESCRIPTION 

*/ 

help(specs) :- system("more help/specs"). 
help(pcd) :- system("more help/pcd.intro"). 
help(Item) :- display('HELP error: '),display(Item),display(' ? '),nl, 

display('Valid options for help are '),nl,nl,showHelp. 

showHelp :- clause(help(Item),Y),nonvar(Item),display(Item),nl,fail. 
showHelp. 
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1* 
EQUATION MINIMIZATION 
Created Jan 1987 
Last Revision March 6 1987 
Boolean logic simplification rules: 
AND A.A = A 

LA = A 
O.A = 0 
A.1 = A 
A.0 = 0 
A.A = 0 

OR A+A = A 
1+A = 1 
0+A = A 
A-i-i = 1 
A+O = A 
A+-A= 1 

NOT 
= A 

*1 
min_str(jk_ff(A,B)jk_ff(C,D)) :- min_str(A,C),min_str(B,D). 
min.str(and(1,A),B) :- min_str(A,B). 
min_str(and(A,1),B) min_str(A,B). 
min_str(and(O,A),O). 
min_str(and(A,O),0). 
min_str(and(A,A),B) :- min_str(A,B). 
min_str(and(A,not(A)),0). 
min_str(and(not(A),A),0). 
min_slr(and(A,and(B,C)),D) :- mult_and({A],and(B,C),D). 
min_str(and(A,B),Z) :- min_str(A,C),min_slr(B,D),mini(and(C,D),Z). 

min_str(or(1,A),l). 
min_str(or(A,1),1). 
min_sir(or(A,A),B) :- min_str(A,B). 
min_str(or(A,not(A)),1). 
min_str(or(A,or(B,C)),D) :- mult_or([A],or(B,C),D). 
minstr(or(A,B),Z) :- prod([A,B],Z). 

min_str(not(not(A)),B) :- min_str(A,B). 
min_str(not(A),not(B)) :- min_str(A,B). 

min_str(A,A) :- integer(A). 
min_str(A,A) :- atom(A). 
min_str(A,A) :- var(A),display('PCD min effor: structure not instantiated'), 

nl,abort. 

min.str(S,Smin) :- S =.. [ClasslList}, 

min_  list _str(List,U,MmnList), 
Smin =.. {ClasslMinList]. 

min_list_str(U,List,MinList) :- rev(List,ftMinList). 
min_list_str([FirstlRest],Str,MinList) :-

min_slr(First,MinStr), 
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min_list_str(Rest,[MinSt.r[Str],MinLisQ. 

rev([],A,A). 

rev([HITJ,Tmp,A) :- rev(T,[HITmp],A). 

minl(and(1,1), 1). 
minl(and(1,O),O). 
minl(and(O,1),O). 
minl(and(O,O),O). 
minl(and(A,O),O). 
minl(and(O,A),O). 
minl(and(A,1),A). 
minl(and(1,A),A). 

minl(or(1,1),1). 
minl(or(1,O),1). 
minl(or(O,1),1). 
minl(or(O,O),O). 
minl(or(O,A),A). 
minl(or(A,O),A). 
minl(or(1,A),1). 
minl(or(A,1),1). 

minl(not(not(A)),A). 
minl(A,A). 

mult_and(tListj,and(A,and(B,C)),Z) mult_and((AlList],and(B,C),Z). 
mult_and(List,and(A,B),Z) equal([AlList],Tmp),equal([B1Tmp],Sum), 

remov_dupl(Sum,Nodupl), 
remove_zeros(Nodup1NoZeros), 
process_sum(NoZeros,Z). 

process_sum((] ,O). 
process_sum(Sums,O) anyzeros(Sums). 
process.sum(Sums,Z) :- factor_sums(Sums,Z). 

mult_or([List],or(A,or(B,C)),Z) mult_or([AlList],or(B,C),Z). 
multor([List],or(A,B),Z) :- equal([AlList],Tmp),cqual([BITmp],Prod), 

remov_dulp(Prod,Noclupl), 
remov_ones(Nodulp,NoOnes), 
process_prod(NoOnes,Z). 

process_prod(,1). 
process_prod(Prod,1) :- any_ones(Prod). 
processprod(Prod,Z) :- factor_prod(ProcI,Z. 
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1* 
Prolog Counter Design 
File Name pcd 
File Created Jan 1986 
Last Revision May 15 1987 

This file contains all Prolog clauses required for the user 
interface, utilities, and file management. 

*1 
version('May 15 1987'). 
start :- seen,nofileerrors,pcd. 
pcd prompt,read(X),interpret(X),!,pcd. 
pcd :- pcd. 
prompt :- nl,nl,display(' ==>'). 

interpret(check(X)) :- design(X,Str),! ,check(Str). 
interpret(check(X)). 

check(Str) :- check_  read _in,! ,go_check(Str,E),display(E),nl. 
check(Str) :- [check],asserta(check_read_in),! ,go_check(Str,E),display(E),nl. 
check(Str) :- display('Error: Unable to locate file "check"),nl. 
interpret(clear) retract_specs. 

retract_specs :- clock(J,retract(clock(_)),fail. 
retract_specs :- countLj,retract(count(_)),fail. 
retract_specs delayLj,retract(delayLj),fail. 
retract_specs :- grey,retract(grey),fail. 
retract_specs moebius,retract(moebius),faiL 
retract_specs :- modulo,retract(modulo),faiL 
retract_specs :- ring,retract(ring),fail. 
retract_specs :- switchtail,retract(switchtail),fail. 
retract_specs :- display('Counter specs cleared'),nl. 

interpret(commands) system("more help/commands"). 
interpret(counter) :- counter_read_in,! ,counter. 
interpret(counter) [counter] ,asserta(counter_read_in),! ,counter. 
interpret(counter) :- display('Error: unable to find file "counter"). 
interpret(convertame)) :- design(Name,Str),!,convert(Str). 
interpret(convert(Name)). 
convert(Sir) :- convert_read_in,! ,go_convert(Sir,NandStr),store(NandStr). 
convert(S1r) :- [convert],asserta(convert_read_in),! ,go_convert(Str,NandStr), 

store(NandStr). 
convert(Str) :- display('Error unable to locate file "convert"). 
interpret(designs) :- display('Designs currently in memory'),nl, 

design(S,Str),display(S),nl,fail. 
interpret(designs) nl,display('Designs saved to 

system("ls designs"). 
interpret(end_of_file) :- halt. 
interpret(exit) halt. 
interpret(fan(X)) :- design(X,S),fan(S). 
interpret(fan(X)). 
fan(S) :- read_injan,! ,fan_levels(S,N),display('Max fan in is '),display(N),nl. 
fan(S) [fan] ,asserta(fan_rea(Un),fan_levels(S ,N),display('Max fan in is '), 
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display(N),nl. 
fanLj :- display('Error: Unable to find file "fan"),nl. 
interpret(get(Name)) :- name(Name,LisC),name('designs/',Dir), 

append(Dir,List,FileList),name(File,FileLisO, 
see(File),read(S),asserta(S),seen, 
display('Circuit structure retrieved'). 

interpret(get(Name)) :- display('Error: Unable to get design'). 
interpret(help) :- interpret(helpcd)). 

interpret(help(X)) :- read _in_help,help(X). 
interpret(help(X)) :- [help_lib],asserta(readjn_help),help(X). 
interpret(help(X)) :- display('Error: cant get help'). 
interpret(min(Name)) :- design(Name,S),min(S). 
interpret(minName)). 
mm(S) :- mm_read_in,! ,get_minS). 
mm(S) :- [mm] ,asserta(min_read_mn),get_min(S). 
mm(S) display('Error locating file "min"),nl. 
get_mm(S) :- min_str(S,MinS),print_str(MmnS),store(MinS). 
interpret(prmnt(Name)) :- design(Name,Str),print_str(Str). 
interpret(prmnt(Name)). 
print_str(S) :- prmnt_read_in,pr_str(S). 
print_str(S) :- [print],asserta(print_readJn),pr_str(S). 
print_ str(S) :- display('Error locating file "print"). 
interpret(save(Name)) :- design(Name,Str), 

name(Name,List),name('designs/',Dir),append(Dir,List,FileLjst), 
name(File,FileLisQ,display('File name '),display(File),nl, 
tell(File),write(design(Name,Str)),write('.'),told,tell(user). 

interpret(save(Name)). 
interpret(shell) :- system("csh"). 
interpret(shell(Command)) :- display('Unable to execute command'). 
interpret(simulate(Name)) :- design(Name,Str),!,sim(Str). 
interpret(simulate(Name)). 
sim(Str) :- sim_read_in,! ,simulate(Str). 
sim(Str) :- [simulate],asserta(sim_read_in),! ,simulate(Sir). 
sim(Str) :- display('Error locating file "simulate"). 
intrepret(store(Str)) store(Str). 
interpret(store(Str)) :- display('Error: unable to store circuit definition'), 

ni. 
store(Circuit) nl,display('Do you wish to store this NEW design yin> '), 

read(y),nl,display('Enter design name (atom) '),rad(Name),nl, 
atom(Name),asserta(design(Name,Circuit)),nl. 

store(Circuit) :- nl,display('Warning: circuit not stored'),nl. 

interpret(X) :- call(X). 
interpret(Nonsense) :- display('Command Error'),nl. 
1* 

UTILITY CLAUSES 
*1 
alpha(O,1). 
alpha(1,'a'). 
alpha(2,'b'). 
alpha(3,'c'). 
alpha(4,'d'). 
alpha(5,'e'). 
alpha(6,'f'). 
alpha(7,'g'). 
alpha(8,'h'). 
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alpha(9,'i'). 
alpha(1O,'j'). 

append(,L,L). 
append([XIL1],L2,[XIL3]) :- append(Ll,L2,L3). 

equal(T,1'). 

inverse(1,O). 
inverse(O,1). 
inverse(X,Y) :- clisplay('Fatal Error: incorect inverse call with  

display(X),nl,abort. 

rev([II,A,A). 
rev([HIT},Tmp,A) :- rev(T,[HlTmp],A). 
1* 

AUTO STARTUP 
*1 
design(Name,Str) :- nonvar(Name),var(Str), 

display('Error: Unable to find design tt'),display(Name), 
display("),nl,! ,fail. 

:- nl,nl, 
display('Prolog Counter Design'),nl, 
display('(type "commands." for listing of available commands)'),nl, 
display('Version: '),version(D),display(D),start. 
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1* 
DISPLAYING THE CIRCUIT 
File Name print 
File Created Jan 1987 
File Modified April 14 1987 

This file contains all the clauses required to display a 
circuit at the terminal. The logic operator AND is repre-
sented by a ".", the OR operator by "+" and the NOT oper-
ator by a Other logic operators and circuit names are 
represented by the data structure functor. 

*1 
pr...str(A) :- var(A),display('Fatal Error: Structure not instantiated');abort. 
pr_str(S) :- (atom(S);integer(S)),display(S). 
pr_str(S) :- functor(S,Name,N),pr_str(Name,S,1,N). 
pr..strQ :- display('Print Error: Unable to print circuit'),nl. 

pr_str(jkjf,_,_,1) :- display('PrintError: JK flip-flop definition'). 
pr_str(jk_ff,S,1,3) :- nl,display('J-K flipflop with 3 input; '),nl, 

arg(1,S,J),pr_str(J),nl,display('K input; '),nl, 
arg(2,S,K),pr_sir(K),nl,display('Clock input; 
arg(3,S,Clk),pr_str(Clk),nl. 

pr_str(jk_ff,S,1,2) :- nl,display('J-K flipflop with J input; '),nl, 
arg(1,S,J),pr_str(J),nl,display('K input; '),nl, 
arg(2,S,K),pr_str(K),nl. 

pr_str(jkjf,_,_,J :- display('Print Error: unable to print jk flipflop'),nl. 

prstr(not,_,,N) :- N> 1,dllsplay('Print Error: Not circuit definition'). 
pr_str(not,S,1,1) :- display('('),arg(l,S,A),pr_sir(A),display(')'). 
pr_str(not,_,_,J :- display('Print Error: unable to print not circuit'),nl. 

pr.str(and,_,,1) :- display('Print Error: And circuit definition'). 
pr_str(and,S,1,M) :- display('('),arg(l,S,A),pr_str(A),display('.'), 

pr_str(and,S,2,M). 
pr_str(and,S,M,M) :- arg(M,S,A),pr_str(A),display(')'). 
pr_str(and,S,N,M) :- arg(N,S,A),pr_str(A),display('.'),Next is (N + 1), 

pr_slr(and,S,Next,M). 

pr_str(or,_,_,1) :- display('Print Error: Or Circuit definition'). 
pr_str(or,S,1,M) :- display('('),arg(l,S,A),pr_str(A),display('+'), 

pr.str(or,S,2,M). 
pr_sir(or,S,M,M) :- arg(M,S,A),pr_str(A),display(')'). 
pr_str(or,S,N,lvl) :- arg(N,S,A),pr_str(A),display('-i-'), 

Next is (N + 1),pr..str(or,S,Next,M). 

pr_str(nand,S,N,N) :- arg(N,S ,A),pr_slr(A),display(')'). 
pr_str(nand,S,1,M) :- arg(1,S,A),display('nand('),pr_str(A), 

prstr(nand,S,2,M). 
pr_str(nand,S,P,M) :- arg(P,S,A),pr_str(A),Next is P-i-1,display(','), 

pr_str(nand,S,Next,M). 

pr_str(Circuit,S,1,1) :- arg(1,S,A),display(Circuit), 
display(' with input No 1;'),nl,display(' '),prstr(A). 
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pr_str(Circuit,S,1,M) :- arg(1,S ,A),display(Circuit), 
display('input 1; '), 
pr_str(A),pr_str(Circuit,S ,2,M). 

pr_str(Circuit,S,M,M) :- arg(M,S,A),nl,display(Circuit), 
display('Input '),display(M),display('; '),pr_str(A). 

pr_str(Circuit,S,N,M) :- arg(N,S,A),nl,display(Circuit), 
display('nput '),display(N),display(' ; '), 
pr_str(A),Next is N + 1,pr_str(Circuit,S,Next,M). 

pr_str(Name,,_,J :- display(Print Error : Unable to print circuit  

display(Name),nl,!. 
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1* 
CIRCUIT 
File Name 
File Created 
Last Revision 

SIMULATION 
simulate 
February 211987 
May 18 1987 

This file contains the clauses required to perform 
gate level functional simulation. The following 
conventions are applied for simulation. 

1. A circuit with multiple outputs are labeled 
"a" for the first output, "b" for the second 
etc. Thus a circuit which has input "a" is 
actually connected to its output. 

2. Values for all signals (inputs to circuits) 
are determined before the circuit is simulated. 
These signals values are stored and can be revised 
as required. 

*1 
simulate(S) :- var(S), 

display('Error: Circuit not instantiated for simulation'),nl. 
simulate(S) :- cler_values,eval....signals(S),functor(S,Name,N),assert(sim_ci.rcuit(Name)), 

assertz(value(X,O)),! ,asserta(current_bit(1)),!, 
eval_str(S,1,N,Name,[],Result),! ,simulate(S,N,Name,Result). 

/* The second definition of "simulate" is the normal calling sequence 
for a simulation. First the circuit's signals are evaluated, 
and circuit signals are assigned using "value(Signal,value)" rules. 
Then the circuit is simulated using the "eval_sir" call. 

*1 

simulate(S,N,Name,Next_st) update_var(Next_st),show_st(Next_st),!, 
go_on,retract(current_bit(x)),asserta(current_bit(1)),!, 
eval_str(S,1,N,Name,U,Next_next_st), 
siniulate(S,N,Name,Next_next_st). 

simulate(S,N,Name,Result) :- display('Simulation concluded.'),nl. 
clear—values retract(value(X,Y)),fail. 
clear—values. 
1*A "clear—values" is used to clear all variable value assignments 

before a logic simulation is started. This avoids any errors 
arising from previous simulations that have been run. 

*1 
update_var(State_list) :- rev(State_list,[],Rev_state),update_var(1,Rev_state). 
update_var(N,[FirstlRest]) :- alpha(N,Letter),retract(value(Letter,X)), 

asserta(value(Letter,First)),Next is (N+1),update_var(Next,Rest). 
update_var(N,[FirstlRest]) alpha(N,Letter),asserta(value(Letter,First)), 

Next is (N+1),update_var(Next,Rest). 
update_var(N,One_ bit). 
/ These "update_var" clauses are used to update the "value(signal,signal_value)" 

clauses, which maintain the value of variables used in the simulation. 
The first, one parameter dfinition, reverses the list making the 
least significant bit "a", occur at the top of the state list. 
Note the second and third definitions differ in that a "retract" 
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call may not succeed in the case where the variable had not been 
previously assigned. 

*1 
show_st(State_list) :- var(State_list),display('Fatal Error: current state not defined'),abort. 
show_st(State_list) :- display('Circuit state is'),nl,display('['), 

state_Ienght(O,N,State_list),display_state(N),nl,djsplay(state_ljst),nl. 
state_lenght(Ct,N,[FirstlRestj) :- Next is (Ct+i),state_lenght(Next,N,Rest). 
state_lenght(Ct,N,Rest) :- equal(N,Ct). 

display--state(l) :- display('a]'). 
display—state(N) :- alpha(N,Letter),display(Letter),display(','),Next is (N- 1), 

display_state(Next). 
/ ' The above clauses are used to display the current state of the 

simulation, with the state variables names displayed above the list. 
*1 

go_on :- display('Do you wish to continue the simulation? <y/n>.'),!, 
read('y'). 

go_on :- pcd. 

eval_signals(S) :- (atom(S);integer(S)),what_value(S). 
oval—Signals(S) :- functor(S,_,N),eval_signals(S,1,N). 
eval_signals(S,M,M) :- arg(M,S,A),eval_signals(A). 
eval_signals(S,N,M) :- arg(N,S ,A),eval_signals(A),Next is N+1,eval_signals(S,Next,M). 
what_value(S) :- signal(S ,Str),functor(Str,Name,N),eval_str(S,1,N,Name,[] ,Result). 
what_value(S) :- signal(S,Str),display('Error in evaluating input signal'),nl, 

abort. 
what_value(1) :- nl,display('Warning: Circuit has fixed lilt? input value'). 
what_value(0) :- nl,display('Warning: Circuit has fixed Ito?? input value'). 
what_value(Atom) :- value(Atom,J. 
what_value(Atom) :- nl,display('What value should '),display(Atom), 

display(' have? '),read(X),asserta(value(Atom,X)). 

evaljk(1,1,1,O). 
evaljk(1,1,O,1). 
evaljk(1,O,_,1). 
evaljk(O,1,_,O). 
evaljk(O,O,P,P). 
1* V "eval_strt" is the main evaluation clause set. Each clause has 

6 inputs which have the following meaning; 

1 = the circuit or signal. 
2= the position within the circuit. 
3 = the number of parameters of the circuit. 
4= the circuit name (functor of the structure). 
5= intermediate result if list output 
6= final output (can be list). 

*1 
eval_str(1, 1,O,_,[],i). 
eval_str(O,i3O,_,[],O). 
eval_str(A,1,O,_,[],Result) :- value(A,Result). 
eval_str(S,1,N,and,[],Result) :- arg(1,S,A),functor(A,NameA,Na), 

eval_slr(A,1,Na,NameA,ftRt), 
eval_str(S ,2,N,and,[Rt],Result). 

eval_str(S ,N,N,and,List,Result) :- arg(N,S,A),functor(A,NameA,Na), 
eval_str(A, 1,Na,NameA,[],Res),eval_and([ReslList],Result). 

eval_str(S,P,N,and,C,Result) :- arg(P,S,A),functor(A,NameA,Na), 
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eval_str(A,1,Na,NameA,[],Rt),Next is  + 1, 
eval_str(S ,Next,N,and,{RtIC],Result). 

eval_str(S ,1,N,or,[J,Result) arg(1,S,A),functor(A,NameA,Na), 
eval_str(A,1,Na,NameA,U,Rt), 
eval_str(S ,2,N,or,Rt,Result). 

eval_str(S,N,N,or,List,Result) :- arg(1,S,A),functor(A,NameA,Na), 
eval_str(A,1,Na,NameA,[},Rt), 
eval_or([RtiList] ,Result). 

evalstr(S ,P,N,or,C,Result) :- arg(P,S ,A),functor(A,NameA,Na), 
eval_str(A,l,Na,NameA,[],Rt),Next is  + 1, 
eval_str(S,Next,N,or,[RtIC],Result). 

eval_str(S ,1,N,nand,[],Result) :- arg(1,S,A),functor(A,NameA,Na), 
eval_str(A,1,Na,NameA,[},Rt), 
eval_str(S ,2,N,nand,Rt,Result). 

eval_str(S,N,N,nand,List,Result) :- evalnand(List,Result). 
eval_str(S,P,N,nand,C,Result) :- arg(P,S,A),functor(A,NameA,Na), 

eval_str(A,1,Na,NameA,[],Rt),Next is  + 1, 
eval_str(S,Next,N,nand,[RttCJ,Result). 

eval_str(S,1,N,not,[],Result) :- arg(1,S,A),functor(A,NameA,Na), 
eval_str(A,1,N,NameA,j3,Res),equal(inverse(Res),Result). 

eval_str(S,_,N,jk_ff,_,Result) :- arg(1,S,J),arg(2,S,K), 
functor(J,Namej,Nj),functor(K,Namek,Nk), 
eval_str(J,1,Nj,Namej,U,Rj), 
eval_str(K,1,Nk,Namek,U,Rk),current_bit(Any),alpha(Any,C),value(C,Cb), 
evak(Rj,Rk,Cb,Result). 

The following clauses are used to evaluate user defined 
circuits. 

*1 
eval_str(S ,1,1,Name,fl ,Result) :- arg(1,S ,A),functor(A,NameA,Na), 

eval_slr(A,1,Na,NameA,[],Result). 
eval_str(S ,N,N,Name,C,Result) :- arg(N,S,A),functor(A,NameA,Na), 

eval_slr(A,1,Na,NameA,ftResA),equal(Result,{ResAIC]). 
eval_str(S ,P,N,Name,C,Result) :- arg(P,S,A),functor(A,NameA,Na), 

eval_str(A,1,Na,NameA,IJ,ResA),Next is P+1,pos(Name,P,N), 
eval_str(S,Next,N,Name,[ResAlC],Result). 

eval_str(A,B,C,D,E,F) :- display('Fatal Simululation Error: Cannot evaluate circuit'), 
display(A),nl,display(B),nl,display(C),nl,display(D),nl, 
display(E),nl,display(F),nl,abort. 

pos(Circuit,P,N) :- sim_circuit(Circuit),P < N,retract(current_bit(P)), 
Next is  + 1,asserta(current_bit(Next)). 

pos(Circuit,P,N). 
1* These two clauses maintain the "current—bit" clause. This is 

required for simulating counter circuits where previous values 
are required. 

*1 

eval_and([HlRest] ,Result) :- equal(H,1),eval_and(Rest,Result). 
eval_and([HlRest],O) :- equal(H2O). 
eval_and(O,O). 
eval_and(1,1). 
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eval_and(U,1). 
eval_and([1],1). 
eval_and([0],0). 
/ ' These four clauses are used to return the Boolean operation 

AND which is performed on a list of l's and 0's. The list 
is the first parameter and the result is the second parameter. 

*1 

eval_or([HlRest] ,Result) :- equal(H,0),eval_or([Rest],Result). 
eval_or([HlRest],1) :- equal(H,1). 
eval_or([0],O). 
eval_or([1},l). 
1* These four clauses are used to return the Boolean operation 

OR which is performed on a list of l's and 0's. 
If a 1 is found then the result must be 1, and no further 
searching is required. If 0's only are found then keep searching 
and return 0 if ALL were zeros. 

*1 
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Appendix B - Prolog Simulation Trace 

The following is a trace of a synchronous modulus binary counter which is dis-
cussed in section 7.7.1. The simulation runs through one clock pulse. 

Call: simulate(sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),dllc)))? 
Call: var(sync_b in _mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)))? 

Fail: var(sync_b in _mod(jk_ff(1,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk))) 
Back to: simulate(sync_bin_mod(jk_ff(l,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)))? 
Call: clear_values? skip 
>Exit: clear—values 
>Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a1b,c),clk)))? 
Call: atom(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,bc),clk)))? 
Fail: atom(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk))) 
Call: integer(sync_bin_mod(jk_ff(1,1,clk),jkjf(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)))? 
Fail: integer(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk))) 
Back to: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jkjf(and(a,b,c),and(a,b,e),clk)))? 
Call: functor(sync_bin_mod(jk_ff(1,1,clk)jk_ff(aa,clk)jk_ff(and(a,b),and(a,b),cJk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_33371,_33372)? 
Exit: functor(sync_bin_mod(jk_ff(l,1,clk)jk_ff(a,ac1k)jk_ff(and(a,b),and(a,b),c1k), 
jk_ff(and(a,b,c),and(a,b,c),clk)),sync_bin_mod,4) 
Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(ancl(a,b,c),and(a,b,e),clk)),1,4)? 
Call: arg(1,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_33391)? 
Exit: arg(1,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,cIk)jk_ff(and(a,b),and(a,b),clk), 
jkjf(and(a,b,c),and(a,b,c),clk)),jk_ff(1, l,clk)) 
Call: eval_signals(jk_ff(1,1,clk)) ? skip 

Warning: Circuit has fixedtt 1" input value 
Warning: Circuit has fixed " 1" input value 
What value should clk have? 0. 
Exit: eval_signals(jk_ff(1,1,clk)) 
Call: _33392 is 1+1? 
Exit: 2 is 1+1 
Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),c1k), 
jk_ff(and(a,b,c),and(ab,c),c1k)),2,4)? 
Call: arg(2,sync_bin_mod(jk_ff(1,1,cIk)jk_ff(a,a,clk)jk_ff(and(a,b),ancga,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_33692)? 
Exit: arg(2,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk))jk_ff(a,a,clk)) 
Call: eval_signals(jk_ff(a,a,clk))? skip 
What value should a have ? 0. 
Exit: eval_signals(jk_ff(a,a,clk)) 
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Call: _33693 is 2+1? 
Exit: 3 is 2+1 
Call: eval_signa1s(sync_bin_mod(jk_ff(1,1,c1k)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),cJJ), 
jlcjf(and(a,b,c),and(a,b,c),clk)),3,4)? 
Call: arg(3,sync_bin_mod(jkjf(1,1,clk)jk_ ff(a,a,c1k)jk_ff(and(a,b),and(a,b),cJk), 
_ jkff(and(a,b,c),and(a,b,c),cllc)),_3398 1)? 

Exit: arg(3,syncjin_mod(jk_ff(1,1,clk)jk_ff(a,a,cJJc)jkfgand(a,b),and(a,b),c), 
jk_ff(and(a,b,c),and(a,b,c),clk)),jk_ff(and(a,b),and(a,b),cjlc)) 
Call: eval_signals(jk_ff(and(a,b),and(a,b),clk)) ? skip 

What value should b have ? 0. 
Exit: eval_signals(jk_ff(and(a,b),and(a,b),clk)) 
Call: _33982 is 3+1? 
Exit: 4 is 3+1 
Call: eval_signals(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),cik), 
jk_ff(and(a,b,c),and(a,b,c),clk)),4,4)? 
Call: arg(4,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),dllc), 
jkjf(and(a,b,c),and(a,b,c),clk)),_34488)? 
Exit: arg(4,sync_bin_mod(jkjf(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk))jk_ff(and(a,b,c),and(a,b,c),clk)) 
Call: eval_signals(jk_ff(and(a,b,c),and(a,b,c),c]k)) ? skip 

What value should c have ? 0. 
Exit: eval_signals(jk_ff(and(a,b,c),and(a,b,c),clk)) 
Exit: eval_signals(syncjñn_mod(jk_fgl,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),dllc)),4,4) 
Exit: eval_signals(syne_bin_mod(jk_ff(1,1,ck)jk_ff(a,a,clk),jk_fgad(a,b),ancga,b),cjjc), 
jk_ff(and(a,b,c),and(a,b,c),clk)),3,4) 
Exit: eval_signals(sync_bin_mocl(jk_ff(1,1,c1k)jk_ff(a,a,cIk),jk_ff(and(a,b),anc(a,b),ck), 
jk_ff(and(a,b,c),and(a,b,c),clk)),2,4) 
Exit: evalsignals(sync_binmod(jk_ff(1,1,clk)jk_ff(a,a,c1k),jk_ff(and(a,b),and(ab),cJjc), 
jk_ff(and(a,b,c),and(a,b,c),dllc)),1,4) 
Exit: eval_signals(sync_bin_mod(jk_ff(1,1,c1k)jkjf(a,a,clk),jk_ff(and(a,b),nd(a,b),cIk), 
jk_ff(and(a,b,c),and(a,b,c),clk))) 
Call: functor(sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),c]k), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_241,_33352)? 
Exit: functor(syncj)in_mod(jkjf(1,1,clk)jk_ff(a,a,cIic)jkjf(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),dllc)),sync_b in _mod,4) 
Call: assert(sim_circuit(sync_bin_mod))? 
Exit: assert(simcfrcuit(sync_bin_mod)) 
Call: assertz(value(-242,0))? 
Exit: assertz(value(_242,0)) 
Call: asserta(current_bit(1))? 
Exit: asserta(current_bit(1)) 
Call: eval_s(syncbin_modak_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),d(a,b),c), 
jk_ff(and(a,b,c),and(a,b,c),clk)),1,4,sync_ bin mod,[],33353)? 
Call: arg(1,syncjin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),c&), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_33366)? 
Exit: arg(1,sync_binmod(jk_ff(1,1,cik)jk_ff(a,a,dll)jk_ff(and(a,b),d(a,b),c&), 
jkjf(and(a,b,c),and(a,b,c),clk)),jk_ff(1,1,clk)) 
Call: functor(jk_ff(1,1,clk),_33367,_33368)? 
Exit: functor(jk_ff(1,1,clk)jkjf,3) 
Call: eval_str(jk_ff(1, 1,clk),1,3,jk_ff,[],_424) ? skip 
Exit: eval_str(,jk_ff(1,1,clk),1,3jk_ff,[],1) 
Call: 33369 is 1+1? 
Exit: 2 is 1+1 
Call: pos(sync_bin_mod,1,4) ? skip 
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Exit: pos(sync_bin_mod,1,4) 
Call: eval_str(sync_bin_mod(jk_ff(1,1,clk),jkjf(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),2,4,sync_b in _mod,[1],_33353)? 
Call: arg(2,sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_33605)? 

Exit: arg(2,sync_b in _mod(jk_ff(1,1,clk)jk_ff(a,a,clk)jkjf(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),jk_ff(a,a,clk)) 
C-all: functor(jk_ff(a,a,clk),_33606,_33607)? 
Exit functor(jk_ff(a,a,clk),jk_ff,3) 
Call: eval_str(jkjf(a,a,clk),1,3,jk_ff,ft_447)? skip 
Exit eval_str(jkjf(a,a,clk),1,3jk_ff,ftO) 
Call: _33608 is 2+1? 
Exit: 3is2+1 
Call: pos(sync_b in. ...mod,2,4) ? skip 
Exit: pos(sync_bin_mod,2,4) 
Call: eval_sir(syncjinmodk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),3,4,sync_ bin modjO,1],_33353)? 
Call: arg(3,sync_bin_mod(jkjf(1,1,clk),jk_ff_(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_33 864)? 
Exit: &g(3,sync_binmocl(jk_ff(1,1,clk),jk_ff(a,a,clk)jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),dllc)),jk_ff(and(a,b),and(a,b),clk)) 
Call: functor(jk_ff(and(a,b),and(a,b),clk),_33865,_33866)? 
Exit: functor(jk_ff(and(a,b),and(a,b),clk)jk_ff,3) 
Call: eval_str(jk_ff(and(a,b),and(a,b),clk),1,3 jk_ff,U,_472) 7 skip 
Exit eval_str(jkjf(and(a,b),and(a,b),clk),1,3,jkjf,LJ,0) 
Call: _33867 is 3+1? 
Exit: 4is3+1 
Call: pos(sync_bin_mocl,3,4) 7 skip 
Exit pos(sync_bin_mocl,3,4) 
Call: eval_str(sync_bin_mod(jk_ff(1,1,clk),jk_ff(a,a,c1k),jk_ff(and(a,b),aid(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),dllc)),4,4syncj.inmod,[0,0,1],_33353)? 
Call: arg(4,sync_bin_modjk_ff(1,1,clk)jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),_343 10)? 
Exit: arg(4,sync_bin_mod(jk_ff(1,1,clk)jk_ff(a,a,clk),jkjf(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk))jkjf(and(a,b,c),and(a,b,c),clk)) 
Call: functor(jk_ff(and(a,b,c),and(a,b,c),clk),_343 11,_343 12)? 
Exit: functor(jk_ff(and(a,b,c),and(a,b,c),clk),jk_ff,3) 
Call: eval_str(jk_ff(and(a,b,c),and(a,b,c),clk),1,3,jk_ff,[],_514) 7 skip 
Exit eval_slr(jk_ff(and(a,b,c),and(a,b,c),clk),1,3,jk_ff,[],O) 
Call: equal33353,[0,0,0,1])? 
Exit equal([0,0,0,1],[0,0,0,1]) 
Exit evalstr(sync_b in mod(jk_ff(1,1,dllc),jk_ff(a,a,clk),jk_ff(and(a,b),aiid(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),4,4,sync_bin_mod,{O,O,1],[O,O,O,1]) 

Exit: eval_str(sync_ bin _mod(jkjf(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),3,4,sync_bin_mod,[0,1],[O,O,o,1]) 
Exit: eval_slr(sync_bin_mod(jkjf(1,1,clk),jk_ff(a,a,clk),jkJf(and(a,b),md(a,b),clk), 
jk_ff(and(a,b,c),and(a,b,c),clk)),2,4,sync_b in _mod,[1] ,[0,0,0,1]) 
Exit: eval_str(sync_b in modk_ff(1,1,clk),jk_ff(a,a,clk),jk_ff(and(a,b),and(a,b),c1k), 
jk_ff(and(a,b,c),and(a,b,c),clk)),1,4,sync_bin_mocljj,[O,O,O, 1]) 
Call: simulate(syncbin_mod(jk_ff(1,1,c&)jk_ff(a,a,clk),jkjf(and(a,b),and(a,b),c1J(), 
jk_ff(and(a,b,c),and(a,b,c),dllc)),4,sync_bin_mod,[O,O,O,1])? 
Call: update_var([0,0,0,1]) ? skip 
Exit: update_var([0,0,0,1]) 
Call: show_st([0,0,0,1]) 7 skip 
Circuit state is 
[d,c,b,a] 
[0,0,0,1] 
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Exit: show_st([O,O,O,1]) 
Call: go-on? skip 
Do you wish to continue the simulation? <y/n>.n. 
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